

Beginning HTML & CSS

inTroduCTion . xxxiii

CHapTer 1 Structuring Documents for the Web . 1

CHapTer 2 Fine-tuning Your Text . 39

CHapTer 3 Links and Navigation . 55

CHapTer 4 Images, Audio, and Video . 79

CHapTer 5 Tables . 111

CHapTer 6 Forms . 139

CHapTer 7 Cascading Style Sheets . 191

CHapTer 8 More Cascading Style Sheets . 257

CHapTer 9 Rounded Corners, Animations, Custom Fonts, and More

with CSS3 . 311

CHapTer 10 Learning JavaScript . 339

CHapTer 11 Working with jQuery . 383

CHapTer 12 jQuery: Beyond the Basics . 407

CHapTer 13 Checklists . 437

appendix a Answers to Exercises . 447

appendix B HTML Element Reference . 475

appendix C CSS Properties . 515

appendix d Color Names and Values . 551

appendix e Character Encodings . 561

appendix F Special Characters . 565

appendix g Language Codes . 577

appendix H MIME Media Types . 583

appendix i Changes between HTML4 and HTML5 . 595

index . 603

Beginning

HTML & CSS

Beginning

HTML & CSS

Rob Larsen

Beginning HTML & CSS

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-34018-9
ISBN: 978-1-118-34028-8 (ebk)
ISBN: 978-1-118-41651-8 (ebk)
ISBN: 978-1-118-65351-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012954405

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

For Jo & Ingmar. I’ll take good care of Jude.

aBouT THe auTHor

roB LarSen has more than 13 years of experience as a front-end engineer
and team lead, building websites and applications for some of the world’s
biggest brands.

He is an active writer and speaker on web technology with a special focus
on emerging standards like HTML5, CSS3, and the ongoing evolution of the
JavaScript programming language. He is co-author of Professional jQuery
(Wrox). He’s also active in the open source community, helping to bridge
the gap between the front lines of web development and the people actively

working on the tools that drive the web.

In his career Rob has spent time at Sapient Global Markets, Isobar, The Brand Experience, and
Cramer and as an independent consultant. Over the years, he has solved unique problems for clients
such as Samsung, Adidas, Motorola, Philips, Reebok, Gillette, Boston’s Museum of Science, and
Harvard Kennedy School.

(Photo by RicaRdo Salema: www.ricardosalema.com)

executive editor
Carol Long

project editor
Katherine Burt

Technical editor
Dan Maharry

production editor
Daniel Scribner

Copy editor
San Dee Phillips

editorial Manager
Mary Beth Wakefield

Freelancer editorial Manager
Rosemarie Graham

associate director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

production Manager
Tim Tate

Vice president and executive
group publisher
Richard Swadley

Vice president and executive publisher
Neil Edde

associate publisher
Jim Minatel

project Coordinator, Cover
Katie Crocker

Compositor
Craig Woods, Happenstance Type-O-Rama

proofreader
Nicole Hirschman

indexer
Robert Swanson

Cover designer
Elizabeth Brooks

Cover image
©Aliaksandr Zabudzko/iStockphoto

CrediTS

aCknowLedgMenTS

i’d Like To THank CaroL Long and the rest of the folks at Wiley for giving me this opportunity.
Without it, I probably would have spent half the summer playing video games.

I have to thank Katherine Burt a million times over for her patience and assistance in getting this
slow-to-start monster up to speed.

Dan Maharry’s technical insight has been invaluable—teaching me a thing or two every chapter and
asking the right questions throughout the process. It’s a much better book for his involvement.

At the pace I wrote some of this I’d be nuts not to thank our copy editor, San Dee Phillips. I should
have apologized in advance.

I’d also like to thank Lynn Haller from Studio B for her ongoing help in navigating the business side
of book writing.

I’ve got to give a big shout-out to John Duckett—standing on the shoulders of giants and all that.

As always, I want to thank all the great front-end engineers I’ve worked with at Cramer, Isobar, and
Sapient for pushing me to be a better programmer, manager, and colleague.

Finally, I’d like to thank my wife for her support and understanding throughout this process. I couldn’t
have done it without her.

ConTenTS

IntroductIon xxxiii

CHapTer 1: STruCTuring doCuMenTS For THe weB 1

A Web of Structured Documents 1
introducing HTML5 2

Tags and Elements 4

Separating Heads from Bodies 5

Attributes Tell You about Elements 6

Learning from Others by Viewing Their Source Code 8

Elements for Marking Up Text 8

Attribute groups 9
Core Attributes 9

The id Attribute 10

The class Attribute 10

The title Attribute 10

The style Attribute 11

Internationalization 11

The dir Attribute 11

The lang Attribute 12

Core elements 13
About DOCTYPEs 13

The <html> Element 13

The <head> Element 13

The <title> Element 14

Links and Style Sheets 15

Ensuring Backward Compatibility for HTML5 Tags 15

The <body> Element 16

Common Content Elements 16

Basic Text Formatting 17
White Space and Flow 17

Creating Headings Using <hn> Elements 18

Creating Paragraphs Using the <p> Element 20

Creating Line Breaks Using the
 Element 20

Creating Preformatted Text Using the <pre> Element 21

Understanding Block and inline elements 24

ConTenTS

CHapTer 1: aBouT THe auTHor

HapTer 2: CrediTS

HapTer 3: aCknowLedgMenTS

Ion

is For

need to Use This Book

is Organized

errata

HapTer 4: STruCTuring doCuMenTS For THe weB

introducing HTML5

groups
elements

inline elements

grouping Content

HapTer 5: Fine-Tuning Your TexT

elements That Describe Text-Level Semantics
editing Text

entities for Special Characters

xvi

CONTENTS

grouping Content 25
The New Outline Algorithm in HTML5 25

The <div> Element 26

The <header> Element 26

The <hgroup> Element 27

The <nav> Element 27

The <section> Element 27

The <article> Element 28

The <hr> Element 28

The <blockquote> Element 28

Using the cite Attribute with the <blockquote> Element 29

The <aside> Element 29

The <footer> Element 29

The <address> Element 30

Working with Lists 30
Using the Element to Create Unordered Lists 30

Ordered Lists 31

Using the start Attribute to Change the Starting Number in
Ordered Lists 32

Count Down in Your Ordered Lists with the reversed Attribute 32

Specify a Marker with the type Attribute 33

Definition Lists 33

Nesting Lists 34

Summary 35

CHapTer 2: Fine-Tuning Your TexT 39

elements That Describe Text-Level Semantics 39
The Element 39

The Element 40

The Element 40

The Element 41

The <i> Element 41

 versus and versus <i> 41

The <small> Element 41

The <cite> Element 41

The <q> Element 42

The <dfn> Element 42

The <abbr> Element 42

The <time> Element 43

The <code> Element 44

<figure> and <figcaption> Elements 44

The <var> Element 45

xvii

CONTENTS

The <samp> Element 45

The <kbd> Element 45

The <sup> Element 46

The <sub> Element 46

The <mark> Element 46

editing Text 49
Using Character entities for Special Characters 51
Comments 51
Summary 52

CHapTer 3: LinkS and naVigaTion 55

Basic Links 56
Linking to Other Web Pages 56

Linking to E-mail Addresses 57

Understanding Directories and Directory Structures 60
Understanding URLs 61

Absolute and Relative URLs 63

Same Directory 64

Subdirectory 64

Parent Directory 64

From the Root 65

The <base> Element 65

Creating in-Page Links with the <a> element 65
Creating a Source Anchor with the href Attribute 65

Creating a Destination Anchor Using the name and id Attributes
(Linking to a Specific Part of a Page) 66

The <a> Element’s Other Attributes 68

The accesskey Attribute 69

The hreflang Attribute 69

The rel Attribute 69

The tabindex Attribute 70

The target Attribute 71

The title Attribute 71

The type Attribute 71

Advanced e-mail Links 74
Summary 75

CHapTer 4: iMageS, audio, and Video 79

Adding images Using the element 80
The src Attribute 80

The alt Attribute 81

xviii

CONTENTS

The height and width Attributes 81

Adding Images to a Web Page 82

Using images as Links 84
Choosing the Right image Format 85

GIF Images 87

Animated GIFs 90

JPEG Images 91

PNG Images 92

Keeping File Sizes Small 92

Adding Flash, Video, and Audio to Your Web Pages 95
Adding YouTube Movies to Your Web Pages 95

Adding Rich Media with the <audio> and <video> Elements 97

Controlling Playback with the preload, autoplay, loop, and
muted Attributes 97

Using the poster Attribute to Customize the Initial Frame 98

Adding Video Playback Controls with the controls Attribute 98

Adding Audio to Your Web Pages Using the <audio> Element 99

On Containers and Codecs 99

Adding Flash Movies to Your Web Pages 100

Cross-Browser Video—Using Video for Everybody 103

Video Size 104

A Closer Look at the <object> and <param> Elements 104

The data Attribute 105

The height and width Attributes 105

The tabindex Attribute 105

The usemap Attribute 105

The <param> Element 105

Summary 106

CHapTer 5: TaBLeS 111

introducing Tables 111
Basic Table elements and Attributes 118

The <table> Element Creates a Table 119

The dir Attribute 119

The <tr> Element Contains Table Rows 119

The <td> and <th> Elements Represent Table Cells 119

The colspan Attribute 119

The headers Attribute 120

The rowspan Attribute 120

The scope Attribute 120

Creating a Basic Table 120

xix

CONTENTS

Adding a Caption to a Table 122
grouping Sections of a Table 123

Spanning Columns Using the colspan Attribute 123

Spanning Rows Using the rowspan Attribute 124

Splitting Up Tables Using a Head, Body, and Foot 125

Grouping Columns Using the <colgroup> Element 128

Columns Sharing Styles Using the <col> Element 128

nested Tables 129
Accessible Tables 130

How to Linearize Tables 131

Using the id, scope, and headers Attributes 132

Creating an Accessible Table 133

Summary 135

CHapTer 6: ForMS 139

introducing Forms 140
Creating a Form with the <form> element 143

The action Attribute 143

The method Attribute 143

The id Attribute 143

The name Attribute 144

The enctype Attribute 144

The accept-charset Attribute 144

The novalidate Attribute 145

The target Attribute 145

The autocomplete Attribute 145

Form Controls 145
Text Inputs 146

Single-Line Text Input Controls 147

Password Input Controls 148

Multiple-Line Text Input Controls 149

New HTML5 Input Types and Attributes 151

Using the placeholder Attribute to Illustrate Example Input 154

Ensuring User Privacy and Security with the autocomplete Attribute 154

Ensuring Information Is Provided with the required Attribute 155

Buttons 155

Creating Buttons Using the <input> Element 156

Using Images for Buttons 157

Creating Buttons Using the <button> Element 158

Check Boxes 159

Radio Buttons 161

xx

CONTENTS

Select Boxes 163

The <select> Element 164

The <option> Element 164

Creating Scrolling Select Boxes 165

Selecting Multiple Options with the multiple Attribute 166

Grouping Options with the <optgroup> Element 166

Attributes for Select Boxes 167

File Select Boxes 168

Hidden Controls 169

New HTML5 Form Elements 170

Track Completion of a Task with the New <progress> Element 170

Represent Scalar Measurement within a Range with the
<meter> Element 171

Create an Autocomplete List with an <input> and the New
<datalist> Element 171

Creating a Contact Form 172
Creating Labels for Controls and the <label> element 174
Structuring Your Forms with <fieldset> and <legend> elements 176
Focus 177

Tabbing Order 178

Access Keys 179

Disabled and Read-Only Controls 181
Sending Form Data to the Server 183

HTTP get 183

HTTP post 184

Creating More Usable Form Fields 185
Summary 187

CHapTer 7: CaSCading STYLe SHeeTS 191

introducing CSS 192
A Basic Example 193

Inheritance 197

Where You Can Add CSS Rules 197
The <link> Element 198

The rel Attribute 199

The href Attribute 199

The media Attribute 199

The <style> Element 200

Advantages of External Style Sheets 200

CSS Properties 201

xxi

CONTENTS

Controlling Text 203
The font-family Property 204

The font-size Property 206

The font-weight Property 207

The font-style Property 209

The font-variant Property 209

Text Formatting 210
The color Property 211

The text-align Property 211

The vertical-align Property 212

The text-decoration Property 214

The text-indent Property 214

The text-shadow Property 215

The text-transform Property 216

The letter-spacing Property 217

The word-spacing Property 217

The white-space Property 218

The direction Property 219

Text Pseudo-Classes 220
The first-letter Pseudo-Class 220

The first-line Pseudo-Class 221

Styling Text 221
Selectors 224

Universal Selector 224

The Type Selector 224

The Class Selector 224

The ID Selector 225

The Child Selector 225

The Descendant Selector 226

The Adjacent Sibling Selector 226

The General Sibling Selector 226

Using Child and Sibling Selectors to Reduce Dependence on
Classes in Markup 227

Attribute Selectors 228

Lengths 231
Relative Units 231

px 231

em 231

ex 232

New Relative Units: rem, vh, and vw 232

Absolute Units 232

Percentages 233

xxii

CONTENTS

introducing the Box Model 233
An Example Illustrating the Box Model 234

The border Properties 236

The border-color Property 236

The border-style Property 236

The border-width Property 238

Expressing border Properties Using Shorthand 238

The padding Property 239

The margin Property 240

Dimensions of a Content Box 241

The height and width Properties 242

The line-height Property 243

The max-width and min-width Properties 244

The min-height and max-height Properties 244

The overflow Property 245

The Internet Explorer Box Model and box-sizing: border-box 246

Creating a Style Sheet for Code 248
Summary 252

CHapTer 8: More CaSCading STYLe SHeeTS 257

Links 258
Backgrounds 259

The background-color Property 260

The background-image Property 261

The background-repeat Property 262

The background-position Property (for Fixing Position
of Backgrounds) 264

The background-attachment Property (for Watermarks) 265

The background Property (the Shorthand) 266

Lists 267
The list-style-type Property 267

The list-style-position Property 269

The list-style-image Property 270

The list-style Property (the Shorthand) 271

Tables 271
Table-Specific Properties 273

The border-collapse Property 274

The border-spacing Property 275

The empty-cells Property 276

The caption-side Property 277

The table-layout Property 278

xxiii

CONTENTS

Outlines 280
The outline-width Property 281

The outline-style Property 281

The outline-color Property 281

The outline Property (the Shorthand) 281

The :focus and :active Pseudo-Classes 282
generated Content 283

The :before and :after Pseudo-Elements 283

The content Property 284

Counters 284

Quotation Marks 287

Miscellaneous Properties 288
The cursor Property 288

The display Property 289

The visibility Property 290

Additional Rules 291
The @import Rule: Modularized Style Sheets 291

The !important Rule 292

Positioning and Layout with CSS 293
Normal Flow 294

The position Property 294

Box Offset Properties 295

Relative Positioning 295

Absolute Positioning 296

Fixed Positioning 298

The z-index Property 299

Floating Using the float Property 300

The clear Property 302

Building a Sample Layout 303

Summary 308

CHapTer 9: rounded CornerS, aniMaTionS, CuSToM
FonTS, and More wiTH CSS3 311

The Modular Approach of CSS3 312
Mature CSS3 Modules 312

More Powerful CSS Selectors 312

Advanced Color Options 315

Use New, Easier-to-Understand, Numerical Color Values with HSL 316

Control Transparency with RGBA, HSLA, and the opacity Property 317

Backgrounds and Borders Module 319

Multi-column Layout Module 321

Media Queries 323

xxiv

CONTENTS

new and in-Development Modules 326
Custom Fonts with the @font-face Directive 326

On Font Formats, Compatibility, and the Evolution of the
Bulletproof @font-face Syntax 327

Adding Custom Fonts to Example Café 327

Advanced CSS Manipulations with Transforms, Animations,
and Transitions 331

2D Transforms 331

3D Transforms 332

CSS Animations and CSS Transitions 334

Summary 336

CHapTer 10: Learning JaVaSCripT 339

What is Programming About? 340
How to Add a Script to Your Pages 343

Comments in JavaScript 344

The <noscript> Element 344

Create an external JavaScript 345
The Document Object Model 346

Accessing Values Using Dot Notation 346

Different Types of Objects 346

Starting to Program with JavaScript 347
The JavaScript Console 347

General Programming Concepts 349

Variables 349
Assigning a Value to a Variable 350

Lifetime of a Variable 350

Operators 351
Arithmetic Operators 351

Assignment Operators 352

Comparison Operators 353

Logical or Boolean Operators 353

String Operators (Using + with Strings) 354

Functions 354
How to Define a Function 354

How to Call a Function 355

The return Statement 356

Function Expressions and Anonymous Functions 356

Conditional Statements 357
if Statements 357

if . . . else Statements 358

switch Statements 358

xxv

CONTENTS

Looping 360
while 360

do . . . while 361

for 361

Infinite Loops and the break Statement 362

events 363
Built-in Objects 364

String 364

Properties 365

Methods 365

Manipulating Strings with JavaScript 366

Date 368

Math 371

Properties 371

Methods 372

Array 373

Window 375

Properties 376

Methods 377

Writing JavaScript 377
A Word about Data Types 378

Keywords 379

Summary 380

CHapTer 11: working wiTH JQuerY 383

Why jQuery? 384
Adding jQuery to Your Page 384
jQuery Basics 386

Introducing the $ Function 386

Chaining 386

Start Your Scripts the Smart Way with $(document) .ready() 387

jQuery and the DOM 387
Selecting Elements with jQuery 387

Creating and Adding Elements 389

Manipulating Elements with jQuery 391

Manage CSS Classes with $() .addClass(), $() .removeClass(),
$() .hasClass(), and $() .toggleClass() 391

Get or Set Attributes with $() .attr() 392

Get or Set CSS Properties with $() .css() 393

Get or Set the HTML of an Element with $() .html() 394

xxvi

CONTENTS

Basic Animations and Effects 395

Show and Hide Elements with $() .show(), $() .hide(), and $() .toggle() 395

Animate Opacity with $() .fadeIn(), $() .fadeOut(), and $() .fadeToggle() 396

Create a Sliding Doors Effect with $() .slideUp(), $() .slideDown(),
and $() .slideToggle() 396

Managing events with jQuery 397
Bind Events with $() .on() and $() .off() 398

Legacy jQuery Event Handling 400

Using jQuery, CSS, and HTML to Add Interactivity 400

Summary 403

CHapTer 12: JQuerY: BeYond THe BaSiCS 407

Ajax with jQuery 407
JSON, XML, or Text 409

Working with XML 409

Working with Text Responses 410

GETting and POSTing 411

Form Validation 414

Using jQuery to Add a Contact Form to a Site 416

jQuery Ui 420
Getting jQuery UI 420

jQuery UI Behaviors 421

Draggable and Droppable 421

Resizable 423

Selectable 423

Sortable 424

jQuery UI Widgets 425

The Accordion Widget 425

The Autocomplete Widget 426

The Button Widget 426

The Datepicker Widget 427

The Dialog Widget 427

The Menu Widget 428

The Progressbar Widget 430

The Slider Widget 431

The Spinner Widget 431

The Tabs Widget 432

The Tooltip Widget 432

Summary 433

xxvii

CONTENTS

CHapTer 13: CHeCkLiSTS 437

Search engine Optimization Checklist 437
On-Page Techniques 437

Identifying Keywords and Phrases 438

Brainstorm for Words People Might Search On 439

Select Five to Ten Major Keywords 439

List Other Keywords and Phrases That Correspond to Your
Major Keywords 439

Look Up Related Words (Not Exact Matches) 439

Determine the Popularity of Terms 440

Prioritize the Core Terms 440

Location 440

Mapping Core Terms to Pages 440

Homepages 440

Off-Page Techniques 441

Accessibility Checklist 441
Setting Up Your Document 441

Structural and Semantic Markup 442

Links and Navigation 442

Images and Multimedia 442

Color 443

Tables 443

Forms 443

Style Sheets 444

JavaScript 444

Skip Links 444

appendix a: anSwerS To exerCiSeS 447

Chapter 1 447
Chapter 2 448
Chapter 3 449
Chapter 4 451
Chapter 5 454
Chapter 6 455
Chapter 7 458
Chapter 8 463
Chapter 9 466
Chapter 10 468
Chapter 11 470
Chapter 12 472
Chapter 13 474

xxviii

CONTENTS

appendix B: HTML eLeMenT reFerenCe 475

appendix C: CSS properTieS 515

Font Properties 515
font 515

font-family 516

font-size 516

font-size-adjust 516

font-stretch 516

font-style 517

font-variant 517

font-weight 517

Text Properties 518
letter-spacing 518

text-align 518

text-decoration 518

text-indent 519

text-shadow 519

text-transform 520

white-space 520

word-spacing 520

Color and Background Properties 521
background 521

background-attachment 521

background-color 522

background-image 522

background-position 522

background-positionX 523

background-positionY 523

background-repeat 523

Border Properties 523
border (border-bottom, border-left, border-top, border-right) 523

border-color (border-bottom-color, border-left-color,
border-top-color, border-right-color) 524

border-style (border-bottom-style, border-left-style,
border-top-style, border-right-style) 524

border-width (border-bottom-width, border-left-width, border-top-width,
border-right-width) 525

Dimensions 525
height 525

line-height 526

xxix

CONTENTS

max-height 526

max-width 526

min-height 527

min-width 527

width 527

Margin Properties 528
margin (margin-bottom, margin-left, margin-top, margin-right) 528

Padding Properties 528
padding (padding-bottom, padding-left, padding-right, padding-top) 528

List Properties 529
list-style 529

list-style-position 529

list-style-type 529

marker-offset 530

Positioning Properties 531
bottom 531

clip 531

left 531

overflow 532

overflow-x 532

overflow-y 532

position 532

right 533

top 533

vertical-align 533

z-index 534

Outline Properties 534
outline (outline-color, outline-style, outline-width) 535

Table Properties 535
border-collapse 535

border-spacing 535

caption-side 536

empty-cells 536

table-layout 536

Classification Properties 537
clear 537

display 537

float 537

visibility 538

internationalization Properties 538
direction 538

unicode-bidi 539

xxx

CONTENTS

Selected CSS3 Properties 539
Color 539

Backgrounds and Borders 540

border-radius (border-top-left-radius, border-top-right-radius,
border-bottom-right-radius, border-bottom-left-radius) 540

box-shadow 540

Multi-Column 541

column-count 541

column-gap 542

column-width 542

Media Queries 542

@font-face 544

2D Transforms 544

3D Transforms 545

Animations 546

Transitions 547

Lengths 548
Absolute Lengths 548

Relative Lengths 549

CSS3 Relative Length Properties 549

appendix d: CoLor naMeS and VaLueS 551

Using Hex Codes to Specify Colors 551
Understanding Hex Codes 553
Using Color names to Specify Colors 554
Color name and number Reference 555

appendix e: CHaraCTer enCodingS 561

appendix F: SpeCiaL CHaraCTerS 565

Character entity References for iSO 8859-1 Characters 566
Character entity References for Symbols, Mathematical Symbols,
and greek Letters 570
Character entity References for Markup-Significant and
internationalization Characters 575

xxxi

CONTENTS

appendix g: Language CodeS 577

appendix H: MiMe Media TYpeS 583

Text 584
image 585
Multipart 586
Audio 586
Video 588
Message 589
Model 590
Application 590

appendix i: CHangeS BeTween HTML4 and HTML5 595

new elements 595
new <input> element Types 596
new Attributes 597
global Attributes 598
Changed Attributes 598
Obsolete elements 600
Obsolete Attributes 600
At-Risk elements 602

Index 603

inTroduCTion

THere are a LoT oF BookS about building web pages, so thank you for picking up this one. I’ve
spent the last 13 years building websites, so hopefully I’ve picked up a thing or two that I can share
with you to make your purchase worthwhile.

If you’re just starting out with building web pages, you’ve picked a great time to get started. The
way web pages are built is changing right now in a big way. While the same basic technologies we’ve
used for the last 15–20 years are still in place, there are new versions available that have people like
me very excited for the future of the web.

This book presents a practical introduction to the process of making websites using a blend of
the latest and greatest techniques, as well as a healthy understanding of some older technologies
that have been around for a while. The techniques described in this book are informed by having
solved real-world problems; so, although it has an eye toward the future it’s grounded in the act of
making websites today.

You will learn a few different languages to create effective and attractive web pages:

➤➤ HTML is needed to explain the structure of a web page. This page is made up of a lot of
words. On web pages, it is the job of HTML to explain the structure of the words—which
words form a heading, where paragraphs start and end, and which text should have bullet
points. This language also specifies things such as the links between different web pages, where
images should appear, where videos should appear, and forms for entering text.

➤➤ CSS is used to control how your pages look. For example, you can use CSS to specify that a
typeface should be a large, bold Arial typeface or that the background of a page should be
a light green. You can also use CSS to control where different items appear on a page, such
as placing three columns of text next to each other.

➤➤ JavaScript can add interactivity to your web pages. JavaScript is a huge topic in itself, so it
is not covered in the same depth as HTML and CSS, but I teach you just enough JavaScript
to write your own basic scripts and to be able to effectively use jQuery, the most popular
JavaScript library in the world.

aBouT THe Book

As you have already seen, you’ll learn how to control the structure of a web page using HTML,
how to style it using CSS, and how to add interactivity using JavaScript and jQuery. Learning how
this code works will give you a solid foundation for building websites, and alongside this you will
see plenty of practical advice that helps you learn about issues you are likely to meet when you start
building sites.

xxxiv

introduction

While learning how to code, you will see lots of advice on usability—how to build websites that are
easy to use and enable visitors to achieve what they came for. In several parts of the book, I also discuss
issues regarding accessibility—making a site available to as many users as possible (in particular, people
with disabilities, who may have impaired vision or difficulty using a mouse). In the same way that many
countries have laws requiring architects to design buildings that are accessible, there are strict acces-
sibility guidelines for building websites to ensure they do not exclude visitors. A little careful thought
before you build your website means that people with vision impairments can either view your site with
larger text or have it read to them by a piece of software called a screen reader. Whole books are dedi-
cated to the topics of usability and accessibility and are aimed at web developers who need to learn how
to make their code more accessible and usable. My aim is to teach you to code with these principles in
mind from the start.

Although it is important to learn the latest practices for creating web pages using these languages, if
you intend to create websites that anyone can access, you will also have to learn some older aspects of
the languages you meet. This is important because not everyone has the latest web browser installed
on his or her computer; as a result, the latest features may not work for everyone, and in such cases
you need to learn techniques that will work in some older browsers that are still popular today.

By the end of this book, you will be writing web pages that not only use the latest technologies but
also are still viewable by older browsers—pages that look great and can also be accessed by those
with visual and physical impairments. These are pages that not only address the needs of today’s
audiences but can also work on emerging technologies—and therefore the skills you will learn
should be relevant longer.

wHo THiS Book iS For

This book is written for anyone who wants to learn how to create web pages, and for people who
may have dabbled in writing web pages (perhaps using some kind of web page authoring tool), but
who want to really understand the languages of the web, to give them more control over the pages
they create.

More experienced web developers can also benefit from this book because it teaches some of the
latest technologies and encourages them to embrace web standards that not only meet the needs of
the new devices that access the web but also help make their sites available to more visitors.

You don’t need any previous programming experience to work with this book. This is one of the
first steps on the programming ladder. Whether you are just a hobbyist or want to make a career
of web programming, this book will teach you the basics of programming for the web.

wHaT THiS Book CoVerS

By the end of this book, you will be able to create professional-looking and well-coded web pages.

Not only will you learn the code that makes up HTML, but you will also see how to apply this code
so you can create sophisticated layouts for your pages, positioning text and images where you would

xxxv

introduction

like them to appear and getting the colors and fonts you want. Along the way, you will see how to
make your pages easy to use and available to the biggest audience possible.

The main technologies covered in this book are HTML and CSS. You will also learn the basics of
JavaScript—enough to work on some examples that add interactivity to your pages and enable you
to work with jQuery.

The code I encourage you to write is based on what are known as web standards; HTML and CSS
are all created and maintained by the World Wide Web Consortium, or W3C (www.w3.org/), an
organization dedicated to the development of the web. You will also learn about some features that
are not in these standards; it is helpful to know about some of these in case you come across such
markup and need to know what it does. Where these are introduced, I make it clear they are not
part of the standard.

wHaT You need To uSe THiS Book

All you need to work through this book is a computer with a web browser (preferably the latest
version of Firefox, Chrome, or Internet Explorer 9 or higher), and a simple text editor such as
Notepad or Sublime Text on Windows or TextEdit or Sublime Text on Mac.

How THiS Book iS organized

The first chapter of this book will show you that the main task in creating a website is marking up the
text you want to appear on your site, using elements and attributes. As you will see, these elements
and attributes describe the structure of a document (what is a heading, what is a paragraph of text,
what is a link, and so on).

The first six chapters of the book describe the different elements and attributes that make up HTML
and how you can use them to write web pages. These chapters are organized into task-related areas,
such as structuring a document into headings and paragraphs; creating links between pages; adding
images, audio, and video; and displaying tables. With each task or topic that is introduced, you will
see an example first to give you an idea of what is possible; then you can look at the elements and
attributes used in detail.

When you first read this book, you do not need to closely read the detailed explanations of every
single element. As long as you understand the gist of the markup, feel free to move on, and then
come back and look at the finer detail when you need it.

Each chapter ends with exercises designed to get you working with the concepts you’ve just learned.
Don’t worry if you have to go back and review the content of the chapter in order to complete the
exercises; this book has been created with the intention that it should be a helpful reference for
years to come, so don’t feel that you need to learn everything by heart. Along the way, you’ll see
which browsers support each element and you’ll learn plenty of handy tips, tricks, and techniques
for creating professional web pages.

xxxvi

introduction

Once you have seen how to create and structure a document using HTML, Chapters 7, 8, and 9 will
show you how to make your pages look more attractive using CSS. For example, you’ll learn how to
change the typefaces and size of fonts, color of text, backgrounds, and borders that go around items.
In addition, you’ll learn how to control where items appear on the page, which will enable you to
create attractive layouts.

Having worked through the three chapters on CSS, and using the examples in the book, you should be
able to write quite complex web pages. The chapters up to that point can then act as a helpful reference
you can keep coming back to, and the examples will act as a toolkit for building your own sites.

Chapter 10 introduces you to JavaScript, a programming language that enables you to add inter-
activity to your pages. While the entire JavaScript language is too large to teach you in one chap-
ter, you will learn how to create your own basic scripts and also how to integrate scripts other
people have written into your pages.

Chapters 11 and 12 introduce you to jQuery, a library that helps you code JavaScript more easily.
jQuery is by far the most popular library for working with JavaScript. It’s easy to use and fun, and
it lies at the center of a vast ecosystem of scripts that you can use to enhance your own site.

The final chapter, Chapter 13, includes some checklists. These bring together some topics that are
dotted throughout the book.

I have also included several helpful appendices, including a reference to HTML elements and CSS
properties. There is an appendix that explains how HTML and CSS specify colors. Other appendi-
ces show you available character encodings, language codes, and escape characters that can be used
with HTML, XHTML, CSS, and JavaScript. Finally, there is an appendix that outlines the major
differences between the last two major versions of HTML.

ConVenTionS

To help you get the most from the text and keep track of what’s happening, I’ve used a number of
conventions throughout the book.

TrY iT ouT

The Try It Out is an exercise you should work through, following the text in the book.

 1 . They usually consist of a set of steps.

 2 . Each step has a number.

 3 . Follow the steps through with your copy of the database.

xxxvii

introduction

WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

As for styles in the text:

➤➤ I italicize new terms and important words when I introduce them.

➤➤ I show keyboard strokes like this: Ctrl+A.

➤➤ I show filenames, URLs, and code within the text like so: persistence.properties.

➤➤ Code appears like this:

We use a monofont type with no highlighting for most code examples.
We use bolding to emphasize code that’s particularly important in the present context.

SourCe Code

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. All of the source code used in this
book is available for download at www.wrox.com. Specifically for this book, the code download is
on the Download Code tab at www.wrox.com/remtitle.cgi?isbn=9781118340189. You can also
search for the book at www.wrox.com by ISBN (the ISBN for this book is to find the code.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-34018-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

erraTa

I’ve made every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you find an error in this book, such as a spelling mistake
or faulty piece of code, I would be very grateful for your feedback. By sending in errata you may
save another reader hours of frustration, and at the same time you will be helping to provide even
higher quality information.

xxxviii

introduction

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message to
the book’s errata page and fix the problem in subsequent editions of the book.

p2p .wrox .CoM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow
these steps:

 1 . Go to p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4 . You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Structuring Documents
for the Web

wHaT You wiLL Learn in THiS CHapTer

➤➤ Creating several example web pages in HTML

➤➤ Seeing how a web page describes its structure to a web browser

➤➤ Discovering the meaning of some key terms used by web designers,

such as elements, attributes, tags, and markup

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 1 down-
load and individually named according to the names throughout the chapter.

In this chapter, you learn the key concept to create any web page: how to give it structure. You
need to add structure to a document so that web browsers can present the page to people who
visit your site in a way they can understand. For example, imagine a news article that contains a
headline (or title) and several paragraphs of text; if you want to put this article on the web, you
would need to add structure to the words in the document so that the browser knows which
words are the headline, and where each paragraph starts and ends. To give a document structure,
you need to learn how to create web pages using HTML.

a weB oF STruCTured doCuMenTS

Every day, you come across all kinds of printed documents—newspapers, train timetables, and
insurance forms. You can think of the web as being a sea of documents that all link together
and bear a strong similarity to the printed documents that you meet in everyday life.

1

2 ❘ CHapTer 1 Structuring DocumentS for the Web

Take the example of a newspaper. A newspaper consists of several stories or articles (and probably a
fair smattering of advertisements, too). Each story has a headline and then some paragraphs, perhaps
a subheading, and then some more paragraphs; it may also include a picture or two.

The structure of articles on news websites is similar to the structure of articles in newspapers. Each
article consists of headings, paragraphs of text, and some pictures. (Sometimes the pictures might be
replaced by a video.) The parallel is quite clear; the only difference is that in a newspaper you may
have several stories on a single page, whereas on the web each story tends to get its own page. The
news websites also often use homepages that display the headline and a brief summary of the stories.

Consider another example: You’re catching a train to see a friend, so you check the schedule or
timetable to see what time the train leaves. The main part of the schedule is a table telling you what
times trains arrive and when they depart from different stations. You can probably think of several
types of documents that use tables. From the listings in the financial supplement of your paper to the
TV schedule, you come across tables of information every day—and often when this information is
put on the web, these tables are re-created.

Another common type of printed document is a form. For example, think about a common form from
an insurance company. Such a form contains fields to write your name, address, and the amount of
coverage, along with check boxes to indicate the number of rooms in the house and what type of lock
is on the front door. There are lots of forms on the web, from simple search boxes that ask what you
are looking for to the registration forms you are required to fill out before you can place an online
order for books or CDs.

As you can see, there are many parallels between the structure of printed documents you come
across every day and pages you see on the web. When you are writing web pages, it is the HTML
code you start learning in this chapter that tells the web browser how the information you want
to display is structured—what text to put in a heading, paragraph, or table, and so on so that the
browser can present it properly to the user.

inTroduCing HTML5

Even if you have never seen any HyperText Markup Language (HTML) code, you may know that it is
used to create web pages. There have been five versions of HTML since the web began, and the develop-
ment of the language is overseen by an organization called the World Wide Web Consortium (W3C).

This book focuses on the latest version of the language, popularly referred to as HTML5. There
are two other versions you might encounter. These are HTML 4.01, the last major version of the
language from December 1999, and a stricter version from 2000 called Extensible HyperText
Markup Language (XHTML). XHTML is still popular in some applications, so important dif-
ferences between it and HTML5 will be called out in the text.

NOTE Generally, you see just the term HTML used in the rest of this book. The one
exception is when there is a feature or convention related to a single version.

introducing HTML5 ❘ 3

As its name suggests, HTML is a markup language, which may sound complicated until you realize
that you come across markup every day. When creating a document in a word processor, you can add
styles to the text to explain the document’s structure. For example, you can distinguish headings from
the main body of the text using a heading style (usually with a larger font). You can use the Return
(or Enter) key to start a new paragraph. You can insert tables into your document to hold data or cre-
ate bulleted lists for a series of related points, and so on. Although this does affect the presentation of
the document, the key purpose of this kind of markup is to provide a structure that makes the docu-
ment easier to understand.

When marking up documents for the web, you perform a similar process, except you do it by adding
things called tags to the text. With HTML, the key thing to remember is that you must add the tags
to indicate the structure of the document (not how you want it to be presented); for example, which
part of the document is a heading, which parts are paragraphs, what belongs in a table, and so on.
Browsers such as Internet Explorer, Firefox, and Google Chrome all use this markup to help present
the text in a familiar fashion, similar to that of a word processor—main headings are bigger than the
text in paragraphs, there is space above and below each paragraph, and lists of bullet points have a
circle in front of them.

NOTE Although earlier versions of HTML enabled you to control the pre-
sentation of a document—such as which typefaces and colors a document
should use—HTML markup is not supposed to be used to style the document;
that is the job of Cascading Style Sheets (CSS), which you meet in Chapter 7,
“Cascading Style Sheets.”

Now have a look at a simple web page (ch01_eg01.html). You don’t need any special programs to
write web pages; you can simply use a text editor such as Notepad on Windows or TextEdit on a
Mac and save your files with the .html or .htm file extension.

<html>
 <head>
 <title>Popular Websites: Google</title>
 </head>
 <body>
 <h1>About Google</h1>
 <p>Google is best known for its search engine, although
 Google now offers a number of other services.</p>
 <p>Google's mission is to organize the world's
 information and make it universally accessible and
 useful.</p>
 <p>Its founders Larry Page and Sergey Brin started
 Google at Stanford University.</p>
 </body>
</html>

This may look a bit confusing at first, but it will all make sense soon. As you can see, there are several
sets of angle brackets with words or letters between them, such as <html>, <head>, </title>, and
</body>. These angle brackets and the words inside them are known as tags, and these are the markup
previously mentioned. Figure 1-1 illustrates what this page would look like in a web browser.

4 ❘ CHapTer 1 Structuring DocumentS for the Web

As you can see, this document contains the heading
“About Google” and a paragraph of text to introduce
the company. Note also that it says “Popular Websites:
Google” in the top-left corner of the browser window;
this is known as the title of the page (to the right it says
Mozilla Firefox, which is the browser this page was
opened in).

To understand the markup in this first example, you
need to look at what is written between the angle
brackets and compare that with what you see in the
figure, which is what you do next.

Tags and elements
If you look at the first and last lines of the code for the previous example, you see pairs of angle
brackets containing the letters “html”. Starting on the first line, the first angled bracket looks like a
less-than sign (<); then there are the letters “html,” followed by a second angled bracket, which looks
like a greater-than sign (>). The two brackets and all the characters between them are known as a tag.

In this example, there are lots of tags, and they are all in pairs; there are opening tags and closing
tags. The closing tag is always slightly different from the opening tag in that it has a forward slash
(/) after the first angled bracket: </html>.

A pair of tags and the content these include are known as an
element. In Figure 1-2, you see the heading for the page of the
previous example.

The opening tag says, “This is the beginning of a heading” and the
closing tag says, “This is the end of a heading.” Like most tags in
HTML, the text inside the angled brackets explains the purpose of the
tag—here h1 indicates that it is a level 1 heading (or top-level heading). As you will see shortly, there are
also tags for subheadings (<h2>, <h3>, <h4>, <h5>, and <h6>). If you don’t put tags around the words
“About Google,” it is just another bit of text; it would not be clear that these words formed the heading.

Now look at the three paragraphs of text about the company; each one is placed between an opening
<p> tag and a closing </p> tag. And you guessed it, the p stands for paragraph.

WARNING You must understand the basic distinction between tags and ele-
ments: A tag usually consists of left-angle and right-angle brackets and letters
and numbers between those brackets, whereas elements are the opening and
closing tags plus anything between the two tags.

Figure 1-1

Element

<hl>About Google</hl>

Opening
tag

Closing
tag

Figure 1-2

introducing HTML5 ❘ 5

WARNING To be precise, there are also tags that consist of just one left-angle
bracket and one right-angle bracket, with no content and no closing tag. These
are also elements.

As you can see, the tags throughout this example actually describe what you will find between them,
creating the structure of the document. The text between the <h1> and </h1> tags is a heading, and
the text between the opening <p> and closing </p> tags makes up paragraphs. Indeed, the whole
document is contained between opening <html> and closing </html> tags.

You often find that terms from a family tree are used to describe the relationships between elements.
For example, an element that contains another element is known as the parent, whereas the element
that’s between the parent element’s opening and closing tags is called a child of that element. So, the
<title> element is a child of the <head> element, the <head> element is the parent of the <title>
element, and so on. Furthermore, the <title> element can be thought of as a grandchild of the
<html> element.

Additionally, if two elements are children of the same parent, they are referred to as siblings.

It is worth noting that the tags in this example are all in lowercase characters; you sometimes see
web pages written in HTML where tags are uppercase (or a mix of uppercase and lowercase letters).
When XHTML was introduced, with its stricter rules, it stated that all tags were written in lower-
case. Technically, HTML5 loosens these restrictions to enable mixed case. In practice you generally
see lowercase even in HTML5 documents.

NOTE Even though HTML5 enables mixed case tags, lowercase should be used
for consistency with XHTML documents, which require lowercase tags.

Separating Heads from Bodies
Whenever you write a web page in HTML, the whole of the page is contained between the opening
<html> and closing </html> tags, just as it was in the previous example. Inside the <html> element,
there are two main parts to the page:

➤➤ The <head> element: Often referred to as the head of the page, this contains information
about the page. (This is not the main content of the page.) For example, it might contain a
title and a description of the page or instructions on where a browser can find CSS rules that
explain how the document should look. It consists of the opening <head> tag, the closing
</head> tag, and everything in between.

➤➤ The <body> element: Often referred to as the body of the page, this contains the information
you actually see in the main browser window. It consists of the opening <body> tag, the closing
</body> tag, and everything in between.

6 ❘ CHapTer 1 Structuring DocumentS for the Web

Together, the <html>, <head>, and <body> elements make up the skeleton of an HTML document—
they are the foundation upon which every web page is built.

Inside the <head> element of the first example page, you see a <title> element:

<head>
 <title>Popular Websites: Google</title>
</head>

Between the opening <title> tag and the closing </title> tag are the words “Popular Websites:
Google,” or the title of this web page. Figure 1-1 shows the words at the top of the browser window,
which is where browsers such as Internet Explorer, Firefox, and Chrome display the title of a docu-
ment. It is also the name they use when you save a page in your Favorites List, and it helps search
engines understand what your page is about. The <title> element is mandatory for all web pages.

The real content of your page is held in the <body> element, which is what you want users to read,
and this is shown in the main browser window.

WARNING The <head> element contains information about the document, which
is not displayed within the main page. The <body> element holds the actual con-
tent of the page viewed in your browser.

You may have noticed that the tags in this example appear in a symmetrical order. If you want to
have one element inside another, both the element’s opening and closing tags must be inside the
containing element. For example, the following is allowed:

<p> This paragraph contains some emphasized text.</p>

whereas the following is wrong because the closing tag is not inside the paragraph element:

<p> This paragraph contains some emphasized text. </p>

In other words, if an element is to contain another element, it must wholly contain that element.
This is referred to as nesting your elements correctly.

attributes Tell You about elements
Attributes in HTML are much like the attributes you experience every day. They are the qualities
that describe a person or thing, such as a tall man or a brown dog. Similarly, HTML elements can
be described in ways that web browsers can understand. This section looks at attributes, starting
with the most important one that beats at the heart of the web.

What differentiates web documents from standard documents are the links (or hyperlinks) that take
you from one web page to another. Look at a link by adding one to the example you just looked at.
Links are created using an <a> element. (The a stands for anchor.)

introducing HTML5 ❘ 7

You can add a link from this page to Google in a new paragraph at the end of the document. There
is just one new line in this example (ch01_eg02.html) and that line is highlighted:

<html>
 <head>
 <title>Popular Websites: Google</title>
 </head>
 <body>
 <h1>About Google</h1>
 <p>Google is best known for its search engine, although Google now offers a
 number of other services.</p>
 <p>Google's mission is to organize the world's information and make it
 universally accessible and useful.</p>
 <p>Its founders Larry Page and Sergey Brin started Google at Stanford
University.</p>
 <p>Click here to visit Google's Web
 site.</p>
 </body>
</html>

Inside this new paragraph is the <a> element that
creates the link. Between the opening <a> tag and the
closing tag is the text that you can click, which
says, “Click here to visit Google’s Web site.” Figure 1-3
shows you what this page looks like in a browser.

If you look closely at the opening tag of the link, it
carries something called an attribute. In this case, it’s
the href attribute; this is followed by an equal sign
and then a pair of quotation marks, which contain the
URL for Google’s website. In this case, the href attri-
bute tells you where the link should take you. You look
at links in greater detail in the Chapter 3, “Links and
Navigation,” but for the moment this illustrates the
purpose of attributes.

➤➤ Attributes are used to say something about the element that carries them, and they always
appear on the opening tag of the element that carries them. Almost all attributes consist of
two parts: a name and a value. The name is the property of the element that you want to set.
In this example, the <a> element carries an attribute whose name is href, which you can use
to indicate where the link should take you.

➤➤ The value is what you want the value of the property to be. In this example, the value was
the URL of the site that the link should take you to, so the value of the href attribute is
http://www.google.com.

The value of the attribute should always be put in double quotation marks and separated from the
name with the equal sign.

Figure 1-3

8 ❘ CHapTer 1 Structuring DocumentS for the Web

There are several attributes in HTML5 that do not consist of a name/value pair but consist of just
a name. These are called boolean attributes and you will learn more about those in the section
“Attribute Groups.”

Another common attribute on anchors is the title attribute, which gives a plain language description
of the target of the link. You could add one to the example to inform people that Google is a popular
search engine.

<a href="http://www.Google.com"
 title="Google.com is the world's most popular search engine">

This illustrates that elements can carry several attributes; although, an element should never have
two attributes of the same name.

Learning from others by Viewing Their Source Code
When HTML first came out, a lot of people learned how to create pages by using a handy feature that
you can find in most common browsers: the ability to look at the source code that made the page.

If you go to the View menu in your browser and then look for an option that says View Source or
Page Source, you should see the code that created the page.

If you want to see how the author of a page achieved something on a page, this can be a handy
technique. Figure 1-4 shows how to look at the source of the author’s homepage. (The window
on the right contains the source for the page.)

Figure 1-4

elements for Marking up Text
You now know that an HTML page (also sometimes referred to as an HTML document) consists
of elements that describe how its content is structured. Each element describes what you will find
between its opening and closing tags. The opening tags can also carry attributes that tell you more
about that particular element.

Attribute groups ❘ 9

Equipped with this knowledge, you can find that much of learning HTML is a matter of learning
what elements you can use, what each of these elements does, and what attributes each can carry.

aTTriBuTe groupS

As you have seen, attributes live on the opening tag of an element and provide extra information about
the element that carries them. Many attributes consist of a name and a value; the name reflects a prop-
erty of the element the attribute describes, and the value is a value for that property. For example, the
lang attribute describes the language used within that element; a value such as EN-US would indicate
that the language used inside the element is U.S. English.

Some attributes consist of only a name, such as required or checked. These are called boolean
attributes. To say something is a boolean (which you learn more about in Chapter 10, “Learning
JavaScript”) is to indicate that it can be in one of two states: true or false. For HTML attributes the
presence of one of the boolean attributes in a tag indicates that the value is true. So, the following
are equivalent:

<input type="text" required >
<input type="text" required="true">

Many of the elements in HTML can carry some or all the attributes you will meet in this section.
At first some of them may sound a little abstract; although, they will make more sense as you see
them used throughout the book. So don’t worry if they do not make much sense at first.

In this section, you look at three groups of attributes common to many HTML elements:

➤➤ Core attributes: Including the class, id, style, and title attributes

➤➤ Internationalization attributes: For example, the dir and lang attributes

➤➤ Accessibility attributes: For example, accesskey and tabindex

WARNING Together, the core attributes and the internationalization attributes
are known as universal attributes.

Core attributes
The four core attributes that you can use on the majority of HTML elements (although not all) are:

id title class style

Throughout the rest of the book, these attributes are revisited when they have special meaning
for an element that differs from the description given here; otherwise their use can generally be
described as you see in the subsections that follow.

10 ❘ CHapTer 1 Structuring DocumentS for the Web

The id Attribute
You can use the id attribute to uniquely identify any element within a page. You might want to
uniquely identify an element so that you can link to that specific part in the document or to specify
that a CSS style or piece of JavaScript should apply to the content of just that one element within
the document.

The syntax for the id attribute is as follows (where string is your chosen value for the attribute):

id="string"

For example, you can use the id attribute to distinguish between two paragraph elements, like so:

<p id="accounts">This paragraph explains the role of the accounts department.</p>
<p id="sales">This paragraph explains the role of the sales department.</p>

Following are some special rules for the value of the id attribute:

➤➤ Must begin with a letter (A–Z or a–z) and can then be followed by any number of letters,
digits (0–9), hyphens, underscores, colons, and periods. (You may not start the value with
a digit, hyphen, underscore, colon, or period.)

➤➤ Must remain unique within that document; no two id attributes may have the same value
within one HTML page. This case should be handled by the class attribute.

The class Attribute
You can use the class attribute to specify that an element belongs to a class of elements. For example,
you might have a document that contains many paragraphs, and a few of those paragraphs might con-
tain a summary of key points, in which case you could add a class attribute whose value is summary to
the relevant <p> elements to differentiate those paragraphs from the rest in the document.

<p class="summary">Summary goes here</p>

It is commonly used with CSS, so you learn more about the use of the class attribute in Chapter 7,
which introduces CSS. The syntax of the class attribute is as follows:

class="className"

The value of the attribute may also be a space-separated list of class names, for example:

class="className1 className2 className3"

The title Attribute
The title attribute gives a suggested title for the element. The syntax for the title attribute is
as follows:

title="string"

Attribute groups ❘ 11

The behavior of this attribute depends upon the element that carries it; although, it is often displayed
as a tooltip or while the element loads. Not every element that can carry a title attribute actually
needs one, so when you meet an element that particularly benefits from use of this attribute, you will
see the behavior it has when used with that element.

The style Attribute
The style attribute enables you to specify CSS rules within the element. You meet CSS in Chapter 7,
but for now, here is an example of how it might be used:

<p style="font-family:arial; color:#FF0000;">Some text.</p>

As a general rule, however, it is best to avoid the use of this attribute. If you want to use CSS rules
to govern how an element appears, it is better to use a separate style sheet instead. The only place
where this attribute is still commonly used is when it is set with JavaScript. You learn more about
that in Chapter 11, “Working with jQuery,” when you’re introduced to jQuery’s powerful tools for
manipulating HTML elements.

internationalization
The web is a worldwide phenomenon. Because of this, there are mechanisms built into the tools that
drive the web that allow authors to create documents in different languages. This process is called
internationalization.

Two common internationalization attributes help users write pages for different languages and
character sets:

dir lang

You look at each next, but it is worth noting that even in current browsers, support for these attri-
butes is still patchy. Therefore where possible you should specify a character set that creates text in
the direction you require.

The website of a helpful W3C document that describes internationalization issues in greater detail
is found at www.w3.org/TR/i18n-html-tech-char/; although, you briefly look at each of these
attributes next.

NOTE The internationalization attributes are sometimes referred to as the i18n
attributes, an odd name that comes from the draft-ietf-html-i18n specification in
which they were first defined.

The dir Attribute
The dir attribute enables you to indicate to the browser the direction in which the text should flow:
left to right or right to left. When you want to indicate the directionality of a whole document (or

12 ❘ CHapTer 1 Structuring DocumentS for the Web

the majority of the document), use it with the <html> element rather than the <body> element for
two reasons: Its use on the <html> element has better support in browsers, and it can apply to the
header elements as well as those in the body. You can also use the dir attribute on elements within
the body of the document if you want to change the direction of a small portion of the document.

The dir attribute can take one of two values, as you can see in Table 1-1.

TaBLe 1-1: dir Attribute Values

VaLue Meaning

ltr Left to right (the default value)

rtl Right to left (for languages such as Hebrew or Arabic that are read right

to left)

The lang Attribute
The lang attribute enables you to indicate the main language used in a document.

The lang attribute was designed to offer language-specific display to users; although, it has little
effect in the main browsers. The benefits of using the lang attribute are for search engines (which
can tell the user which language the document is authored in), screen readers (which might need
to pronounce different languages in different ways), and applications (which can alert users when
either they do not support that language or it is a different language than their default language).
When used with the <html> element, the attribute applies to the whole document; although, you
can use it on other elements, in which case it just applies to the content of those elements.

The values of the lang attribute are ISO-639-1 standard two-character language codes. If you want
to specify a dialect of the language, you can follow the language code with a dash and a subcode
name. Table 1-2 offers some examples.

TaBLe 1-2: lang Attribute Values

VaLue Meaning

ar Arabic

en English

en-us U .S . English

zh Chinese

You can find a list of language codes for most of the main languages in use today in Appendix G,
“Language Codes.”

Core elements ❘ 13

Core eLeMenTS

Now take a closer look at the four main elements that form the basic structure of every docu-
ment: <html>, <head>, <title>, and <body>. These four elements should appear in every HTML
document that you write, and you will see them referred to throughout this book as the skeleton
of the document.

about doCTYpes
Although the four main elements describe the skeleton of a document, one final piece qualifies the
document as a whole. The DOCTYPE (for DOCument TYPE) tells the browser what rules to follow
when showing the document to the user. These rules are called modes. This book focuses on the
HTML5 DOCTYPE that puts the browser into strict mode. You can think of strict mode as the browser
acknowledging the author wanting to play by the rules. The other common mode, quirks mode, tells
the browser you will use some funky rules, which have their origins in the late 1990s. You don’t want
to have anything to do with quirks mode.

So what does the HTML5 DOCTYPE look like?

<!doctype html>

Start all your documents with that DOCTYPE, and your pages will always render in the correct mode.

The basic skeleton of an HTML5 page therefore looks like this:

<!doctype html>
<html>
 <head>
 <title>The Skeleton of an HTML5 Document</title>
 </head>
 <body>
 </body>
</html>

The <html> element
The <html> element is the containing element for the whole HTML document. After the DOCTYPE
declaration, each HTML document should have an opening <html> tag, and each document should
end with a closing </html> tag.

The <html> element can also carry the following attributes, which you learned about in the
“Attribute Groups” section:

id dir lang

The <head> element
The <head> element is just a container for all other header elements. It is the first thing to appear
after the opening <html> tag.

14 ❘ CHapTer 1 Structuring DocumentS for the Web

Each <head> element should contain a <title> element indicating the title of the document;
although, it may also contain any combination of the following elements, in any order:

➤➤ <base>, which you will meet in Chapter 3, “Links and Navigation”

➤➤ <link> to link to an external file, such as a style sheet, which you see in Chapter 7

➤➤ <style> to include CSS rules inside the document, covered in Chapter 7

➤➤ <script> for including script in the document, which you see in more detail in Chapter 10

➤➤ <meta>, which includes information about the document such as a description or the name of
the author

The opening <head> tag can carry the following attributes:

id dir lang

NOTE One meta tag you should be aware of is <meta charset=utf-8>. This
tag and attribute combination tells the browser which character set to use.
Character sets are collections of characters used to render written language. For
the most part, using utf-8 is going to be the best bet on the web. Utf-8 contains
every character in the Unicode character set (over one million characters), which
means it can render text in everything from English to Chinese to Russian.

For an in-depth discussion of character encoding, see Joel Sposky’s article, “The
Absolute Minimum Every Software Developer Absolutely, Positively Must Know
about Unicode and Character Sets (No Excuses!),” found at www.joelonsoftware
.com/articles/Unicode.html.

The <title> element
You should specify a title for every page that you write using the <title> element (which, as you
saw earlier in the chapter, is a child of the <head> element). It is presented and used in several ways:

➤➤ At the top of a browser window (as you saw in the first example and Figure 1-1)

➤➤ As the default name for a bookmark in browsers such as IE, Firefox, and Chrome

➤➤ By search engines that use its content to help index pages

Therefore, you must use a title that describes the content of your site. For example, the homepage of
this book should not just say “Homepage”; rather it should describe what your site is about. Rather
than just saying “Wrox Homepage,” it is more helpful to write:

<title>Wrox: Programming Books, Learn HTML, CSS, ASP.Net, PHP</title>

The test for a good title is whether visitors can tell what they will find on that page just by reading
the title, without looking at the actual content of the page, and whether it uses words that people
would use if they were going to search for this kind of information.

Core elements ❘ 15

The <title> element should contain only the text for the title; it may not contain any other elements.
The <title> element can carry the following attributes:

id dir lang

Links and Style Sheets
Although you’ll learn more about CSS and JavaScript later in the book, they are going to be a
common element on every page you look at and build, so it’s important that we quickly cover
how to include them in your web pages.

Adding a style sheet relies on the <link> element. The <link> element also uses the href attribute,
which you learned about already, to point to a resource on the web. In this case, instead of pointing to
a new page or website to visit when a link is clicked, it points to the location of a file containing style
information for the current page. The rel (for relation) attribute indicates that the linked document is
a style sheet and should be handled accordingly.

<link rel="stylesheet" href="css/main.css">

Adding a script to the page is even easier. You add a <script> element to the page and add a src
attribute pointing to the location of the JavaScript file you want to use.

<script src="js/main.js"></script>

WARNING Always include the closing </script> tag when inserting a script ele-
ment, even if, as in this case, there’s no content between the opening and closing
tags. If you don’t, strange things can happen.

You need to start using one piece of JavaScript. Now that you know how to add a script to the page,
you’re ready to learn about the HTML5 Shiv and Modernizr.

ensuring Backward Compatibility for HTML5 Tags
There’s one final element you see in many HTML5 documents. Because of a wrinkle in the way
that Internet Explorer deals with unknown HTML elements, you need to include a small piece of
JavaScript in the head of your document. If you don’t, things look wrong when you view your pages
in Internet Explorer 8 or less. It’s called the HTML5 Shiv, and including it in your pages looks
something like this:

<script src="http://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6/html5shiv.min.js">
</script>

As for what it does, for the time being, just know that it needs to be there, or you’ll get unpredictable
results in IE8 and older.

16 ❘ CHapTer 1 Structuring DocumentS for the Web

If you’re interested in the history of this small but vitally important script, see Paul Irish’s article, “The
History of the HTML5 Shiv,” at http://paulirish.com/2011/the-history-of-the-html5-shiv/.

Building on the HTML5 Shiv, there’s another library you’ll encounter in this book. It’s called
Modernizr and at its core includes the HTML5 Shiv for backward compatibility; in addition, it
adds in tests for emerging web features that you can use when building sites. That way you can
ensure that you’re not trying to serve something to a browser that can’t actually handle it. You’ll
learn about Modernizr throughout the book, but for now the following code sample shows how
to include Modernizr:

<script
src="http://cdnjs.cloudflare.com/ajax/libs/modernizr/2.6.1/modernizr.min.js">
</script>

The power of Modernizr will become more apparent throughout the book. For now the examples in
the book use the simpler HTML5 Shiv to ensure compatibility with Internet Explorer 8 and below.

And now, with that trip through the head, you’re ready to start adding in the star of the show, the
content of your page.

The <body> element
The <body> element appears after the <head> element, and as you have already seen, it contains the
part of the web page that you actually see in the main browser window, which is sometimes referred
to as body content. The <body> element can carry all the attributes from the attribute groups.

Common Content elements
You spend most of the remaining part of this chapter learning the different elements you can use to
describe the structure of text. These include:

➤➤ The six levels of headings: <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>

➤➤ Paragraphs <p>, preformatted sections <pre>, line breaks
, and addresses <address>

➤➤ Grouping elements: <div>, <header>, <hgroup>, <nav>, <section>, <article>, and <hr>

➤➤ Presentational elements: , <i>, <sup>, and <sub>

➤➤ Phrase elements: , , <abbr>, <dfn>, <blockquote>, <q>, <cite>, <code>,
<kbd>, <var>, and <samp>

➤➤ Lists such as unordered lists using and ; ordered lists using and ; and
definition lists using <dl>, <dt>, and <dd>

➤➤ Editing elements: <ins> and

That may sound like a lot of elements, but you might be surprised at how quickly you can move
through them.

Basic Text Formatting ❘ 17

BaSiC TexT ForMaTTing

Because almost every document you create contains some form of text, the elements you are about
to meet are likely to feature in most pages that you will build. In this section, you learn how to use
basic text formatting elements:

➤➤ <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>

➤➤ <p>,
, and <pre>

As you read through this section, one browser might display each of these elements in a certain
way, and another browser might display the same page in a slightly different way. For example, the
typefaces used, the font sizes, and the spaces around these elements may differ between browsers.
(And therefore the amount of space a section of text takes up can vary, too.)

Before you look at the elements, it helps to know how text displays by default without any ele-
ments. This helps demonstrate the importance to use markup to tell the browser if you want it to
treat text differently.

white Space and Flow
Before you start to mark up your text, it’s best to understand what HTML does when it comes
across spaces and how browsers treat long sentences and paragraphs of text.

You might think that if you put several consecutive spaces between two words, the spaces would
appear between those words onscreen, but this is not the case; by default, only one space displays.
This is known as white space collapsing. Similarly, if you start a new line in your source document,
or you have consecutive empty lines, these will be ignored and simply treated as one space, as will
tab characters. For example, consider the following paragraph (taken from ch01_eg03.html in the
code samples):

<p>This paragraph shows how multiple spaces between words are
treated as a single space. This is known as white space collapsing, and
the big spaces between some of the words will not appear in the
browser.

It also demonstrates how the browser will treat multiple carriage returns
(new lines) as a single space, too.</p>

In Figure 1-5 the browser treats the multiple spaces and several carriage returns (where text appears
on a new line) as if there were only one single space. It also enables the line to take up the full width
of the browser window.

Now look at the code for this example again, and compare where each new line starts in the code
with where each new line starts onscreen. Unless told otherwise, when a browser displays text, it
automatically takes up the full width of the screen and wraps the text onto new lines when it runs
out of space (refer to Figure 1-5). You can see the effect of this better if you open this example in a
browser and try resizing the browser window (making it smaller and larger) and notice how the text
wraps at new places on the screen. (This example is available with the rest of the download code for
this book at www.wrox.com.)

18 ❘ CHapTer 1 Structuring DocumentS for the Web

Figure 1-5

White space collapsing can be particularly helpful because it enables you to add extra spaces into
your HTML that do not show up when viewed in a browser. You can use these spaces to indent your
code, which makes it easier to read. The first two examples in this chapter demonstrated indented code,
where child elements are indented from the left to distinguish them from their parent elements, which is
used this throughout this book to make the code more readable. (If you want to preserve the spaces in
a document, you need to use either the <pre> element, which you learn about later in the chapter, or an
entity reference such as , a nonbreaking space, which you learn about in Appendix F, “Special
Characters.”)

Now that you know how multiple spaces and line breaks are collapsed, you can see why you must
learn how to use the elements in the rest of this chapter to break up and control the presentation of
your text.

Creating Headings using <hn> elements
No matter what sort of document you create, most documents have headings in one form or another.
Newspapers use headlines; a heading on a form tells you the purpose of the form; the title of a table
of sports results tells you the league or division the teams play in; and so on.

In longer pieces of text, headings can also help structure a document. If you look at the table of
contents for this book, you can see how different levels of headings have been arranged to add
structure to the book, with subheadings under the main headings.

HTML offers six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>.
Browsers display the <h1> element as the largest of the six and <h6> as the smallest. (Although you
can see in Chapter 7 that you can use CSS to override the size and style of any of the elements.) The
levels of headings would look something like those in Figure 1-6 (ch01_eg04.html).

WARNING Most browsers display the contents of the <h1>, <h2>, and <h3> ele-
ments larger than the default size of text in the document. The content of the <h4>
element would be the same size as the default text, and the content of the <h5> and
<h6> elements would be smaller unless you instruct them otherwise using CSS.

Basic Text Formatting ❘ 19

Figure 1-6

Here is another example of how you might use headings to structure a document (ch01_eg05.html),
where the <h2> elements are subheadings of the <h1> element. (This actually models the structure of
this section of the chapter.)

<h1>Basic Text Formatting</h1>
<p> This section is going to address the way in which you mark up text.
Almost every document you create will contain some form of text, so this
will be a very important section. </p>
<h2>White Space and Flow</h2>
<p> Before you start to mark up your text, it is best to understand what HTML does
when it comes across spaces and how browsers treat long sentences and
paragraphs of text.</p>
<h2>Creating Headings</h2>
<p> No matter what sort of document you are creating, most documents have
 headings in some form or other...</p>

Figure 1-7 shows how this will look.

Figure 1-7

20 ❘ CHapTer 1 Structuring DocumentS for the Web

The six heading elements can all carry the universal attributes:

class id style title dir lang

Creating paragraphs using the <p> element
The <p> element offers another way to structure your text. Each paragraph of text should go in
between an opening <p> and closing </p> tag, as in this example (ch01_eg06.html):

<p>Here is a paragraph of text.</p>
<p>Here is a second paragraph of text.</p>
<p>Here is a third paragraph of text.</p>

When a browser displays a paragraph, it usually inserts a new line before the next paragraph and
adds a little bit of extra vertical space, as shown in Figure 1-8.

Figure 1-8

The <p> element can carry all the universal attributes:

class id style title dir lang

Creating Line Breaks using the
 element
Whenever you use the
 element, anything following it starts on the next line. The
 element
is an example of an empty element; you don’t need opening and closing tags, because there is nothing
to go in between them.

You can use multiple
 elements to push text down several lines, and many designers use
two line breaks between paragraphs of text rather than using the <p> element to structure text,
as follows:

Paragraph one

Paragraph two

Paragraph three

Although two
 elements look similar to using a <p> element, remember that HTML markup is
supposed to describe the structure of the content. So if you use two
 elements between paragraphs,
you are not describing the document structure.

Basic Text Formatting ❘ 21

NOTE Strictly speaking, do not use
 elements to position text; use them only
within a block-level element. The <p> element is a block-level element; you learn
more about these in the “Understanding Block and Inline Elements” section.

Here you can see an example of the
 element in use within a paragraph (ch01_eg07.html):

<p>When you want to start a new line you can use the line break element.
So, the next
word will appear on a new line.</p>

Figure 1-9 shows you how the line breaks look after the words “next” and “do.”

Figure 1-9

The
 element can carry the following attributes:

class id style title

Creating preformatted Text using the <pre> element
Sometimes you want your text to follow the exact format of how it is written in the HTML document;
you don’t want the text to wrap onto a new line when it reaches the edge of the browser. You also
don’t want it to ignore multiple spaces, and you want the line breaks where you put them.

Any text between the opening <pre> tag and the closing </pre> tag preserves the formatting of
the source document. You should be aware, however, that most browsers display this text in a
monospaced font by default. (Courier is an example of a monospaced font because each letter
of the alphabet takes up the same width. Compare this to a nonmonospaced font, where an i is
usually narrower than an m.)

22 ❘ CHapTer 1 Structuring DocumentS for the Web

The most common uses of the <pre> element are to represent computer source code. For example,
the following shows some JavaScript inside a <pre> element (ch01_eg08.html):

<pre>
function testFunction(strText){
 console.log(strText)
}
</pre>

Figure 1-10 shows how the content of the <pre> element displays in the monospaced font. More
important, you can see how it follows the formatting shown inside the <pre> element—the white
space is preserved.

Figure 1-10

Although tab characters can have an effect inside a <pre> element, and a tab is supposed to represent
eight spaces, the implementation of tabs varies across browsers, so it is advisable to use spaces instead.

You will come across more elements that you can use to represent code in the next chapter, “Fine-
tuning Your Text,” which covers the <code>, <kbd>, and <var> elements.

TrY iT ouT Basic Text Formatting

Now that you’ve seen the basic elements that you can use to format your text—headings and paragraphs—
it’s time to put that information to work.

In this example, you create a page for a fictional company called Example Café. You will work on this
example throughout the book to build up an entire site. This page is going to be the homepage for the
site, introducing people to the café:

 1 . Add the skeleton of the document: the DOCtype declaration and the <html>, <head>, <title>,
and <body> elements.

<!doctype html>
<html>
 <head>
 <title>Example Cafe - community cafe in Newquay, Cornwall, UK </title>
 </head>
 <body>
 </body>
</html>

Basic Text Formatting ❘ 23

The entire page is contained in the <html> element. The <html> element can contain only two child
elements: the <head> element and <body> element. The <head> element contains the title for the page,
and you can tell from the title of the page the type of information the page contains.

Meanwhile, the <body> element contains the main part of the web page, the part that viewers actually
see in the main part of the web browser.

 2 . Add to your page a main heading and some level 2 headings to add structure to the information on
the page:

<body>
 <h1>EXAMPLE CAFE</h1>
 <h2>A community cafe serving home cooked, locally sourced, organic food</h2>
 <h2>This weekend's special brunch</h2>
</body>

 3 . Fill out the page with some paragraphs that follow the headings:

 <body>
 <h1>EXAMPLE CAFE</h1>
 <p>Welcome to example cafe. We will be developing this site throughout
 the book.</p>
 <h2>A community cafe serving home cooked, locally sourced, organic food</h2>
 <p>With stunning views of the ocean, Example Cafe offers the perfect
environment to unwind and recharge the batteries.</p>
 <p>Our menu offers a wide range of breakfasts, brunches and lunches,
 including a range of vegetarian options.</p>
 <p>Whether you sip on a fresh, hot coffee or a cooling smoothie, you never
 need to feel rushed - relax with friends or just watch the world go by.</p>
 <h2>This weekend's special brunch</h2>
 <p>This weekend, our season of special brunches continues with scrambled egg
 on an English muffin. Not for the faint-hearted, the secret to these eggs is
 that they are made with half cream and cooked in butter, with no more than
 four eggs in the pan at a time.</p>
</body>

 4 . Save the file as index.html and then open it in a web browser. The result should look something
like Figure 1-11. The name index.html is often given to the homepage of sites built in HTML.

How It Works

The basic skeleton, the <head> and <body> elements, combined with a mix of <p> elements and headings
might be simple, but it represents a complete web page. The default rendering of a <p> element and the
<h1> and <h2> elements give this page solid structure even without any style information.

24 ❘ CHapTer 1 Structuring DocumentS for the Web

Figure 1-11

underSTanding BLoCk and inLine eLeMenTS

Now that you have seen many of the elements that you can use to mark up text, you must consider
all the elements that live inside the <body> element because each can fall into one of two categories:

➤➤ Block-level elements

➤➤ Inline elements

This is quite a conceptual distinction, but it has important ramifications for other features of
HTML.

Block-level elements appear on the screen as if they have a carriage return or line break before and
after them. For example, the <p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, , , <dl>, <pre>,
<hr />, <blockquote>, and <address> elements are all block-level elements. They all start on their
own new lines, and anything that follows them appears on its own new line, too.

Inline elements, on the other hand, can appear within sentences and do not need to appear on new
lines of their own. The , <i>, <u>, , , <sup>, <sub>, <small>, <ins>, ,
<code>, <cite>, <dfn>, <kbd>, and <var> elements are all inline elements.

grouping Content ❘ 25

For example, look at the following heading and paragraph; both of these elements start on new
lines, and anything that follows them goes on a new line, too. Meanwhile, the inline elements in the
paragraph are not placed on their own new lines. Here is the code (ch01_eg09.html):

<h1>Block-Level Elements</h1>
 <p>Block-level elements always start on a new line. The
 <code><h1></code> and <code><p></code> elements will not sit
 on the same line, whereas the inline elements flow with the rest of the
 text.</p>

You can see what this looks like in Figure 1-12.

Figure 1-12

Strictly speaking, inline elements may not contain block-level elements and can appear only within
block-level elements. (So you should not have a element outside a block-level element.) Block-level
elements, meanwhile, can contain other block-level elements and inline elements.

grouping ConTenT

You can find one of the most interesting new additions to the HTML5 specification in a number of
new elements added to aid in grouping content. As you just learned, elements represent the different
parts of an article with different levels of headings and paragraphs. As you’ll learn throughout the
chapter, there are many other elements left to mark up to describe text.

One thing that was lacking was the ability to group all that well-described content into meaningful
ways. So, although you could write an article and mark up each paragraph meaningfully, it wasn’t
possible to indicate that the entire block of text was an article. HTML5 changes that with the addition
of several new elements designed to enable you to more accurately group content.

This section introduces the various ways to group content in HTML.

The new outline algorithm in HTML5
In adding these new grouping elements, the authors of the specification made a change to the way
headings are used in HTML. Before HTML5, the general standard was to have one <h1> element
per page. The basic idea was that the entire HTML document was by itself a standalone element
and should therefore have just one overall outline with a single <h1> at the top of the tree.

26 ❘ CHapTer 1 Structuring DocumentS for the Web

As the web evolved to contain more complicated, compound documents, this concept no longer
held true for many of the documents on the web. With a blog, you can easily have several separate
articles all contained in a single HTML document. Each of those articles could contain a logical
outline of its own, independent of the rest of the page. Because of this, the ability to add more than
one <h1> to the page inside different sectioning elements was added.

As you’ll learn throughout this section and as you continue to work with HTML5, there’s much
greater flexibility in the ways you can structure pages using the new markup.

As an aid to work with HTML5 documents, there’s a handy bookmarklet and Google Chrome exten-
sion called the HTML5 Outliner (h5o) that can help to analyze the structure of your pages. Even expe-
rienced authors find it useful, so it’s definitely good to have on hand to make sure your pages make
sense at the outline level. You can download it from Google code: http://code.google.com/p/h5o/.

The <div> element
Before the extension of the grouping elements in HTML5, the most common container for groups of
HTML elements was the <div>. It represents a generic block of content and is designed to be used
with classes and ids to give structure to documents. Taking the markup from Example Café, you
could mark it up with <div> elements representing different content sections.

For example, if you want to set the header apart in some way, you can mark it up like the following
example. Using a <div> with a class of header you can encapsulate the site title and tagline into a
single structure:

<div class="header">
 <h1>EXAMPLE CAFE</h1>
 <p>Welcome to example cafe. We will be developing this site throughout
the book.</p>
</div>

Although this is actually quite useful for styling and scripting, there’s no semantic meaning behind
the <div>, no matter how well chosen the classes or ids are. As you see throughout this section, the
new sectioning elements in HTML5 enhance the utility of the <div> with (mostly) straightforward
semantic meaning.

The <header> element
As part of the development of the new specification, the editor of the HTML standard, Ian Hickson,
did a survey of the web and identified common markup patterns. Some of these he captured as new
HTML elements. This is one such element.

As you saw in the previous example, the concept of a “header” for common introductory or navigation
content is a useful one and was repeated over and over on the web. Marking up the previous example
with a <header> simplifies the markup and imparts more semantic meaning to the page.

<header>
 <h1>EXAMPLE CAFE</h1>
 <p>Welcome to example cafe. We will be developing this site throughout
the book.</p>
</header>

grouping Content ❘ 27

Although this example shows a header generated at the page level, you can also use headers within
other grouping elements. For example, an <article> element, which you’ll learn about shortly, can
have its own header containing information about the author, the data published, and the title of
the article.

The <hgroup> element
The <hgroup> element is designed to group together multiple levels of headings that have some logical
connection, for example, subheadings, alternative titles, or taglines.

Adding an <hgroup> element, and a silly tagline, to the previous example illustrates how to use the
<hgroup> element:

<header>
 <hgroup>
 <h1>EXAMPLE CAFE</h1>
 <h2>Serving Home Style Example Markup since 2012</h2>
 </hgroup>
</header>

The <nav> element
The <nav> element represents a navigation section of the page, containing a list of links to other pages
or site sections within the site or application. Because the Example Café site is going to have more than
one page, look at one way to mark up a simple menu linking to other pages on the site. In this example
you can see a series of <p> tags, containing links to the site’s other pages. Later you learn about work-
ing with lists and learn a more common pattern for marking up navigational elements. For now, just
focus on the use of the <nav> element.

<nav>
 <p>Recipes</p>
 <p>Menu</p>
 <p>Opening Times</p>
 <p><a href-"contact.html">contact</p>
</nav>

The <section> element
The <section> element is used to represent a section of a document or application. A <section>
differs from a <div>, the most generic content grouping element, by the idea that content contained
in a <section> is designed to be part of the document’s outline.

Although the Example Café site is going to have separate pages, it can conceivably be one page bro-
ken into several sections. A simplified example, just using the headings for each section and no con-
tent, would look something like this:

<section>
 <h1>Introduction</h1>
</section>
<section>

28 ❘ CHapTer 1 Structuring DocumentS for the Web

 <h1>Recipes</h1>
</section>
<section>
 <h1>Menu</h1>
</section>
<section>
 <h1>Opening Times</h1>
</section>
<section>
 <h1>Contact</h1>
</section>

The <article> element
In the words of the specification, you can use an <article> element to mark up “independent
content.” That’s not the friendliest description, so it’s useful to think of common examples such as
a blog post, a forum post, a movie review, a news article, or an interactive widget. The basic rule
of thumb is that if the content can be syndicated or shared without the rest of the site context,
it should be marked up as an article. For example, a short, glowing review of the Example Café
might be marked up like the following example:

<article>
 <h1>Example Cafe, Great Food Delivered with Superior Markup and Style</h1>
 <p>It's rare to find a restaurant that combines as many exemplary elements as
the example café. From the superior markup of the café's website to the
delicious dishes served with care nothing about the Example Café is
left to chance.</p>
</article>

The <hr> element
The <hr> element creates a horizontal rule across the page. It is an empty element, rather like the

 element.

<hr>

This is frequently used to separate distinct sections of a page where a new heading is not
appropriate.

The <blockquote> element
When you want to quote a passage from another source, you should use the <blockquote> element.
Note that there is a separate <q> element for use with smaller quotations, as discussed in the next
section. Here’s ch01_eg10.html:

<p>The following description of the blockquote element is taken from
the WHATWG site:</p>
<blockquote> The blockquote element represents a section that is quoted from
another source. Content inside a blockquote must be quoted from another
source, whose address, if it has one, may be cited in the
cite attribute.</blockquote>

grouping Content ❘ 29

Text inside a <blockquote> element is usually indented from the left and right edges of the surrounding
text, and some browsers use an italicized font. (Use it only for quotes—if you simply want an indented
paragraph of text, use CSS.) You can see what this looks like in Figure 1-13.

Figure 1-13

using the cite attribute with the <blockquote> element
You can use the cite attribute on the <blockquote> element to indicate the source of the quote.
The value of this attribute should be a URL pointing to an online document; if possible, the exact
place in that document. Browsers do not currently do anything with this attribute, but it means the
source of the quote is there should you need it in the future (ch01_eg11.html).

<blockquote cite=
"http://developers.whatwg.org/grouping-content.html#the-blockquote-element">
The blockquote element represents a section that is quoted from another source.
Content inside a blockquote must be quoted from another source, whose address,
if it has one, may be cited in the cite attribute.</blockquote>

The <aside> element
The <aside> element is used to mark up related content such as pull quotes, sidebars, and ads. The
content in the aside should be related to the surrounding content.

Pulling the first glowing sentence of the previous review illustrates a simple usage of the <aside>
element.

<article>
 <h1>Example Cafe, Great Food Delivered with Superior Markup and Style</h1>
 <p>It's rare to find a restaurant that combines as many exemplary elements as
the example café. From the superior markup of the café's website to the
delicious dishes served with care nothing about the Example Café is left
to chance.</p>
 <aside> It's rare to find a restaurant that combines as many exemplary
elements as the example café.</aside>
</article>

The <footer> element
Like the <header>, the <footer> was an extremely common class and id name found during Ian
Hickson’s survey of the web. A common usage of the footer is for legal copy. On some sites, such as
those of pharmaceutical companies or financial services firms, this can be quite a large block of text,

30 ❘ CHapTer 1 Structuring DocumentS for the Web

sometimes stretching to several screen’s worth of text. Thankfully Example Café doesn’t have quite the
same legal and regulatory overhead, so you can just add a simple copyright notice into your <footer>.

<footer>
 <p>All content copyright Example Café 2012</p>
</footer>

The <address> element
The <address> element is used to mark up contact information for an article element or for the
document as a whole. In this example you add it as contact information in the footer.

<footer>
 <address>For more information contact
Example Café via email</address>
 <p>All content copyright Example Café 2012</p>
</footer>

working wiTH LiSTS

There are many reasons you might want to add a list to your pages, from putting your five favorite
albums on your homepage to including a numbered set of instructions for visitors to follow (such as
the steps you follow in the Try It Out examples in this book).

You can create three types of lists in HTML:

➤➤ Unordered: Like lists of bullet points

➤➤ Ordered: Use a sequence of numbers or letters instead of bullet points

➤➤ Definition: Enable you to specify a term and its definition

You can think of more uses for the lists as you meet them and start using them.

using the element to Create unordered Lists
If you want to make a list of bullet points, write the list within the element (which stands for
unordered list). Each bullet point or line you want to write should then be contained between opening
 tags and closing tags. (The li stands for list item.)

You should always close the element. Even though you might see some HTML pages that leave
off the closing tag, this is a bad habit you should avoid.

If you want to create a bulleted list, you can do so like this (ch01_eg12.html):

 Bullet point number one
 Bullet point number two
 Bullet point number three

In a browser, this list would look something like Figure 1-14.

Working with Lists ❘ 31

Figure 1-14

As promised, the following shows the list of links from the illustration of the <nav> element reworked
to use an unordered list. Navigation elements on the web are commonly marked up using lists, so it’s
useful to get used to that pattern as soon as possible.

<nav>

 Recipes
 Menu
 Opening Times
 <a href-"contact.html">contact

</nav>

The and elements can carry all the universal attributes and UI event attributes.

ordered Lists
Sometimes, you want your lists to be ordered. In an ordered list, rather than prefixing each point with
a bullet point, you can use either numbers (1, 2, 3), letters (A, B, C), or Roman numerals (i, ii, iii) to
prefix the list item.

An ordered list is contained inside the element. Each item in the list should then be nested inside
the element and contained between opening and closing tags (ch01_eg13.html).

 Point number one
 Point number two
 Point number three

The result should be similar to what you see in Figure 1-15.

Figure 1-15

32 ❘ CHapTer 1 Structuring DocumentS for the Web

In Chapter 7, in the section on styling lists with CSS, you learn about customizing the type of glyph
used for your ordered lists.

Using the start Attribute to Change the Starting number in Ordered Lists
If you want to specify the number that a numbered list should start at, you can use the start attribute
on the element. The value of this attribute should be the numeric representation of that point in
the list (ch01_eg14.html).

<ol start="4">
 Point number one
 Point number two
 Point number three

You can see the result in Figure 1-16.

Figure 1-16

Count Down in Your Ordered Lists with the reversed Attribute
The boolean reversed attribute allows you to reverse the order of ordered lists, counting down
from the highest number (supported only in Chrome). The following code sample shows this in
action (ch01_eg15.html).

<ol reversed>
 Point number one
 Point number two
 Point number three

You can see the count begin with “3” in Figure 1-17.

Figure 1-17

Working with Lists ❘ 33

Specify a Marker with the type Attribute
The type attribute allows you to specify the class of markers to use with ordered lists. Table 1-3
shows the available options. If you use this attribute, keep in mind that the values are case-sensitive.

TaBLe 1-3: type Attribute Values

keYword STaTe deSCripTion

1 decimal Decimal number (default)

a lower-alpha Lowercase Latin alphabet

A upper-alpha Uppercase Latin alphabet

i lower-roman Lowercase Roman numerals

I upper-roman Uppercase Roman numerals

The following code sample (ch01_eg16.html) shows a list using the lowercase Latin alphabet.

<ol type="a">
 Point number one
 Point number two
 Point number three

You can see the count begin with “a” in Figure 1-18.

Figure 1-18

definition Lists
The HTML5 spec states <dl> is for description lists, which have a slightly wider remit than term
and definition. “The <dl> element represents a description list, which consists of zero or more
term-description (name/value) groupings; each grouping associates one or more terms/names (the
contents of <dt> elements) with one or more descriptions/values (the contents of <dd> elements).”

34 ❘ CHapTer 1 Structuring DocumentS for the Web

The definition list is a special kind of list for providing terms followed by a short text definition or
description for them. Definition lists are contained inside the <dl> element. The <dl> element then con-
tains alternating <dt> and <dd> elements. The content of the <dt> element is the term you define. The
<dd> element contains the definition of the previous <dt> element. For example, here is a definition list
that describes the different types of lists in HTML (ch01_eg17.html):

<dl>
 <dt>Unordered List</dt>
 <dd>A list of bullet points.</dd>
 <dt>Ordered List</dt>
 <dd>An ordered list of points, such as a numbered set of steps.</dd>
 <dt>Definition List</dt>
 <dd>A list of terms and definitions.</dd>
</dl>

In a browser, this looks something like Figure 1-19.

Figure 1-19

Each of these elements can carry the universal attributes and UI event attributes.

nesting Lists
You can nest lists inside other lists. For example, you might want a numbered list with separate
points corresponding to one of the list items. Number each nested list separately, unless you specify
otherwise using the start attribute. And you should place each new list inside a element
(ch01_eg18.html):

<ol type="I">
 Item one
 Item two
 Item three
 Item four
 <ol type="i">
 Item 4.1
 Item 4.2

Summary ❘ 35

 Item 4.3

 Item Five

In a browser, this looks something like Figure 1-20.

Figure 1-20

SuMMarY

In this chapter, you learned about the similarities between web pages and print documents; for
example, a news story in print or on the web consists of a headline, some paragraphs of text,
maybe some subheadings, and one or more pictures. On the web you need to explain the struc-
ture of these documents, and you can do that using HTML.

You know that HTML5 is the latest version of the HTML5 specification, and you know the special
DOCTYPE used to put HTML documents into standards mode.

You have learned that the content of a web page is marked up using elements that describe the structure
of the document. These elements consist of an opening tag, a closing tag, and some content between the
opening and closing tags. To alter some properties of elements, the opening tag may carry attributes,
and attributes are commonly written as name/value pairs. They can also be empty elements.

You also learned a lot of new elements and the attributes they can carry. You’ve seen how every
HTML document should contain at least the <html>, <head>, <title>, and <body> elements. In
the next chapter you learn about fine-tuning your text by adding meaning for both humans and
computers, more specific structure and other features that will greatly enrich your web pages.

36 ❘ CHapTer 1 Structuring DocumentS for the Web

exerCiSeS

 1 . Mark up the following list, with inserted and deleted content:

Ricotta pancake ingredients:

➤➤ 1 1/2 3/4 cups ricotta

➤➤ 3/4 cup milk

➤➤ 4 eggs

➤➤ 1 cup plain white flour

➤➤ 1 teaspoon baking powder

➤➤ 75g 50g butter

➤➤ pinch of salt

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 37

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

HTML HTML is the foundation that the World Wide Web is built upon .

Tags, elements, and attributes Tags, elements, and attributes combine to describe content for

the web .

paragraphs and headers HTML offers tools to create basic document outlines, including

different levels of headers and plain paragraphs .

grouping content Starting with HTML5, there are several ways to group content in

HTML, including elements that describe quotes, headers, footers,

and articles .

Lists HTML has several tools for marking up lists .

Fine-tuning Your Text

 wHaT You wiLL Learn in THiS CHapTer

➤➤ Fine-tuning your text with markup that defines importance

and emphasis

➤➤ Marking up text that describes the time, abbreviations, code, and more

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 2 down-
load and individually named according to the names throughout the chapter.

Beyond the basic structural elements outlined so far, you can use a wide range of elements to
mark up your text. The following chapter introduces these elements. After working through
it, you’ll have all the elements you might need to mark up almost any kind of content you can
dream up.

eLeMenTS THaT deSCriBe TexT-LeVeL SeManTiCS

This section introduces a number of elements, which will help you more precisely describe text.
Starting with elements that help you describe the importance or emphasis of text and working
through elements that describe structured data such as time or represent programmatic code,
this chapter adds a much richer set of tools to mark up your web pages.

The element
The element is a close cousin to the <div>. It’s a generic element with no semantic value
that you can use to group inline elements. So, if you have a part of a sentence or paragraph you

2

40 ❘ CHapTer 2 fine-tuning Your text

want to group, you can use the element. Here you can see a element added to indicate
which content refers to an inventor. It contains both a strong element and some text.

<div class="footnotes">
 <h2>Footnotes</h2>
 <p>1 The World Wide Web was
 invented by Tim Berners-Lee</p>
 <p>2 The W3C is the World Wide Web Consortium
 which maintains many Web standards</p>
</div>

On its own, this would have no effect on how the document looks visually, but it does add extra
meaning to the markup, which now groups the related elements. It’s particularly helpful to attach
special styles to these elements using CSS rules.

The element
The content of an element is intended to be a point of emphasis in your document, and it
usually displays in italicized text. The kind of emphasis intended is on words such as “must” in
the following sentence:

<p>You must remember to close elements in HTML.</p>

You should use this element only when you want to add emphasis to a word, not just because you
want to make the text appear italicized. If you just want italic text for stylistic reasons—without
adding emphasis—you can either use the <i> element or preferably use CSS.

The element
The element is intended to show strong emphasis for its content—stronger emphasis than
the element. As with the element, you should use the element only when you
want to add strong emphasis to part of a document. Most visual browsers display the strong emphasis
in a bold font.

<p>Always look at burning magnesium through protective colored
glass as it can cause blindness.</p>

Figure 2-1 shows how the and elements are rendered in Firefox (ch02_eg01.html).

You need to remember that how the elements are presented (italics or bold) is largely irrelevant. You
should use these elements to add emphasis to phrases and therefore give your documents greater mean-
ing, rather than to control how they appear visually. As you can see in Chapter 7, it is quite simple
with CSS to change the visual presentation of these elements—for example, to highlight any words
inside an element with a yellow background and make them bold rather than italic.

Figure 2-1

elements That Describe Text-Level Semantics ❘ 41

The element
Anything that appears in a element displays in bold, like the word “bold” here:

The following word uses a bold typeface.

For those interested in typography, it is worth noting that this does not necessarily mean the browser
will use a boldface version of a font. Some browsers use an algorithm to take a normal version of a
font and make the lines thicker (giving it the appearance of being bold).

The <i> element
The content of an <i> element displays in italicized text, like the word “italic” here:

The following word uses an <i>italic</i> typeface.

This does not necessarily mean the browser looks for an oblique or italicized version of the font.
Most browsers use an algorithm to put the lines on a slant to simulate an italic font.

 versus and versus <i>
You probably wonder why elements present the same way when shown in a browser and which
one you should use. and are generally recommended over and <i> because the
strength and emphasis aren’t necessarily tied to typographic conventions. This means they can more
sensibly be used in a screen reader or other implementation not dependent on a certain type style.

The <small> element
The <small> element is used for “fine print.” Disclaimers, caveats, and copyrights are typical usages
of the <small> element.

<small id="copyright">© Rob Larsen 2012</small>

The <cite> element
If you quote a text, you can indicate the source by placing it between an opening <cite> tag and a
closing </cite> tag. As you would expect in a print publication, the content of the <cite> element
renders in italicized text by default (ch02_eg02.html).

This chapter is taken from <cite>Beginning Web Development</cite>.

If you reference an online resource, you should place your <cite> element inside an <a> element,
which, as you see in Chapter 3, creates a link to the relevant document.

There are several applications that potentially could make use of the <cite> element. For example, a
search application could use <cite> tags to find documents that reference certain works. Or a browser
could collect the content of <cite> elements to generate a bibliography for any given document;
although, at the moment it is not widely enough used for either feature to exist.

42 ❘ CHapTer 2 fine-tuning Your text

The <q> element
Use the <q> element when you want to add a quote within a sentence, rather than as an indented
block on its own (ch02_eg03.html):

<p>As Dylan Thomas said, <q>Somebody's boring me. I think it's me</q>.</p>

The HTML recommendation says that the text enclosed in a <q> element should begin and end in
double quotes. Firefox inserts these quotation marks for you, but IE8 was the first version of Internet
Explorer to support the <q> element. So, if you want your quote to be surrounded by quotation marks,
be warned that IE7 and earlier versions of IE do not display them. If you still need to support IE7 and
older, you can use CSS to fix this issue, so all is not lost.

The <q> element can also carry the cite attribute. The value should be a URL pointing to the
source of the quote.

The <dfn> element
The <dfn> element enables you to specify that you are introducing a special term. Its use is similar
to the italicized notes in this book used to introduce important new concepts.

Typically, use the <dfn> element the first time you introduce a key term and only in that instance.
Most recent browsers render the content of a <dfn> element in an italic font.

For example, you can indicate that the term “HTML” in the following sentence is important and
should be marked as such:

This book teaches you how to mark up your documents for the Web using
<dfn>HTML</dfn>.

Figure 2-2 shows the use of the <dfn> element (ch02_eg04.html).

Figure 2-2

The <abbr> element
You can indicate when you use an abbreviated form or acronym by placing the abbreviation between
opening <abbr> and closing </abbr> tags.

When possible, consider using a title attribute whose value is the full version of the abbreviations.
For example, if you want to indicate that HTML is an acronym for HyperText Markup Language,
you can use the <abbr> element like so:

This book teaches you how to mark up your documents for the Web using <dfn>
<abbr title="HyperText Markup Language">HTML</abbr></dfn>

elements That Describe Text-Level Semantics ❘ 43

If you abbreviate a foreign word, you can also use the lang attribute to indicate the language used.

The <time> element
You can use the <time> element alongside the associated datetime attribute to mark up text rep-
resenting time in various forms. It consists of a <time> element along with an optional datetime
attribute. The contents of the <time> element display in the browser, and the contents of the
datetime attribute are designed to be a computer-readable representation of the same informa-
tion. If you neglect to include a datetime attribute, the contents of the <time> element must be
in one of the formats shown in Table 2-1.

TaBLe 2-1: Options for the datetime Attribute

ForMaT exaMpLe

Valid month string <time>2013-1</time>

Valid date string <time>2013-1-1</time>

Valid year-less date string <time>1-1</time>

Valid time string <time>11:11</time>

Valid local date and time string <time>2013-1-1T11:11</time>

Valid time zone offset string <time>+0000</time>

<time>-0800</time>

Valid global date and time string <time>2013-1-1T14:54+0000</time>

<time>2013-1-1T06:54-0800</time>

<time>2013-1-1T06:54:39-0800</time>

Valid week string <time>2013-W1</time>

Valid non-negative integer representing a year <time>2013</time>

Valid duration string <time>2h 3m 38s</time>

Using a datetime attribute enables you to present a friendly date for your users and still leverage
one of the more computer-useful representations (refer to Table 2-1). Marking up a valid date string
with a more human-readable name might look like the following examples:

<time datetime="2013-1-1">New Year's Day 2013</time>

<time datetime="2004-10-27T20:25">On a late October night</time>, the Boston
Red Sox played in the decisive game four of the 2004 World Series

The world marathon record now sits at <time datetime="2h 3m 38s">
just over two hours</time>

44 ❘ CHapTer 2 fine-tuning Your text

The <code> element
If your pages include any programming code (which is not uncommon on the web), the following
four elements will be of particular use to you. You must place any code that you want to appear
on a web page inside a <code> element. Usually the content of the <code> element is presented in a
monospaced font, just like the code in most programming books (including this one).

WARNING When you are trying to display code on a web page (for example,
if you were creating a page about web programming), and you want to include
angled brackets, you cannot just use the opening and closing angle brackets
inside these elements because the browser could mistake these characters
for actual markup. Use < instead of the left-angle bracket (<), and use >
instead of the right-angle bracket (>). These replacement sets of characters are
known as escape codes or character entities, and a full list of them appears in
Appendix F.

Here is an example of the <code> element used to represent an <h1> element and its content in
HTML (ch02_eg05.html):

<p><code><h1>This is a primary heading</h1></code></p>

Figure 2-3 shows how this would look in a browser.

Figure 2-3

The <code> element is often used with the <pre> element so that the formatting of the code is retained.

<figure> and <figcaption> elements
You can use the <figure> element and the associated <figcaption> element to mark up and anno-
tate figures or illustrations that might be referenced in text but aren’t part of the main flow of the
document. Using a small <code> element illustrates how you might use <figure> to illustrate some
of the code from this book.

<figure id="l4">
 <figcaption> using the code element to represent an h1 element and its
content in HTML</figcaption>
 <code><h1>This is a primary heading</h1></code>
</figure>

elements That Describe Text-Level Semantics ❘ 45

The <var> element
The <var> element is another of the elements added to help programmers. You usually use it with
the <pre> and <code> elements to indicate that the content of that element is a variable that can be
supplied by a user (ch02_eg06.html).

<p><code>console.log("<var>user-name</var>")</code></p>

Typically, the content of a <var> element is italicized (refer to Figure 2-4). Chapter 10, “Learning
JavaScript,” covers the concept of variables.

The <samp> element
The <samp> element indicates sample output from a program, script, or the like. Again, it is mainly
used when documenting programming concepts, for example (ch02_eg07.html):

<p>The following line uses the <samp> element to indicate the output from
a script or program.</p>
<p><samp>This is the output from our test script.</samp></p>

This tends to display in a monospaced font, as you can see in Figure 2-4.

Figure 2-4

The <kbd> element
If, when talking about computers, you want to tell a reader to enter some text, you can use the
<kbd> element to indicate what should be typed in, as in this example (ch02_eg08.html):

<p>To force quit an application in Windows, hold down the <kbd>ctrl</kbd>,
<kbd>alt</kbd> and <kbd>delete</kbd> keys together.</p>

The content of a <kbd> element is usually represented in a monospaced font, rather like the content
of the <code> element. Figure 2-5 shows you what this would look like in a browser.

Figure 2-5

46 ❘ CHapTer 2 fine-tuning Your text

The <sup> element
The content of a <sup> element is written in superscript; it displays one-half a character’s height
above the other characters and is also often slightly smaller than the text surrounding it.

Written on the 31st February.

The <sup> element is especially helpful to add exponential values to equations, and add the st, nd, rd,
and th suffixes to numbers such as dates. However, in some browsers, you should be aware that it can
create a taller gap between the line with the superscript text and the line above it.

The <sub> element
The content of a <sub> element is written in subscript; it displays one-half a character’s height
beneath the other characters and is also often slightly smaller than the text surrounding it.

The EPR paradox₂ was devised by Einstein, Podolsky, and Rosen.

The <sub> element is particularly helpful to create footnotes.

The <mark> element
You can use the <mark> element to highlight text in a document. The goal of <mark> is to draw
attention to content in a document outside of any emphasis the original author intended. Use this
the same way you use a highlighter in a paper book, or as is common on some sites, use <mark> to
indicate the presence of a particular search term in a block of text. The following code shows the
word “HTML5” highlighted using <mark> in a block of text.

<p> This book focuses on the latest version of the language, popularly referred
to as <mark>HTML5</mark>. There are two other versions you might encounter.
These are HTML 4.01, the last major versions of the language from December 1999
and a stricter version from 2000 called XHTML (Extensible Hypertext Markup
Language). XHTML is still very popular in some applications so important
differences between it and <mark>HTML5</mark> will be called out in
the text. </p>

TrY iT ouT Using Text Markup

Now that you’ve looked at the different elements and attributes you can use to mark up text, it is time
to put them into practice. In this example, you use a selection of markup to create a page for your café
site that displays a recipe for the world’s best scrambled eggs. So open up your text editor or web page
authoring tool and follow these steps:

 1 . Add the skeleton elements for the document: <html>, <head>, <title>, and <body>:

<!doctype html>
<html>
 <head>
 <title>Wrox Recipes - World's Best Scrambled Eggs</title>
 </head>
 <body>
 </body>
</html>

elements That Describe Text-Level Semantics ❘ 47

You have seen the skeleton several times now, so move on to add some content.

 2 . Add some appropriate heading elements into the body of the document; these help add structure to
the page:

<body>
 <h1>Wrox Recipes - World's Best Scrambled Eggs</h1>
 <h2>Ingredients</h2>
 <h2>Instructions</h2>
</body>

 3 . After you add the <h1> element that tells you the recipe is for scrambled eggs, add a bit of an
explanation about the recipe (and why it is the World’s Best). Use several of the elements you have
previously met in these two paragraphs.

<h1>Wrox Recipes - World's Best Scrambled Eggs</h1>
 <p>I adapted this recipe from a book called

 <cite>Sydney Food</cite>
 by Bill Grainger. Ever since tasting
 these eggs on my 1st visit to Bill's restaurant in Kings
 Cross, Sydney, I have been after the recipe. I have since transformed
 it into what I really believe are the best scrambled eggs
 I have ever tasted.</p>
 <p>This recipe is what I call a <q>very special breakfast</q>; just look at
 the ingredients to see why. It has to be tasted to be believed.</p>

In the first sentence, the <cite> element indicates a reference to the book this recipe is adapted from. The
next sentence makes use of the <sup> element, so you can write “1st” and use superscript text. This makes
the gap between the first line and the second line of text larger than the gap between the second and third
lines of text because the superscript letters poke above the line. In the final sentence of the first paragraph,
there is emphasis on the word “best” because these actually are the best scrambled eggs you’ll ever taste.

In the second paragraph, another of the elements is at work; you use the <q> element for a quote.

 4 . After the first <h2> element, list the ingredients in an unordered list:

<h2>Ingredients</h2>
 <p>The following ingredients make one serving:</p>

 2 eggs
 1 tablespoon of butter (10g)
 1/3 cup of cream <i>(2 3/4 fl ounces)</i>
 A pinch of salt
 Freshly milled black pepper
 3 fresh chives (chopped)

In the line that describes how much cream you need, provide an alternative measure in italics.

 5 . Add the instructions after the second <h2> element in a numbered list:

<h2>Instructions</h2>

 Whisk eggs, cream, and salt in a bowl.

48 ❘ CHapTer 2 fine-tuning Your text

 Melt the butter in a non-stick pan over a high heat <i>(taking care
 not to burn the butter)</i>
 Pour egg mixture into pan and wait until it starts setting around
 the edge of the pan (around 20 seconds).
 Using a wooden spatula, bring the mixture into the center as if it
 were an omelet, and let it cook for another 20 seconds.
 Fold contents in again, leave for 20 seconds, and repeat until
 the eggs are only just done.
 Grind a light sprinkling of freshly milled pepper over the eggs
 and blend in some chopped fresh chives.

<p>You should only make a maximum of two servings per
 frying pan.</p>

The numbered list contains an italicized comment about not burning the butter, and the final paragraph
contains a strong emphasis that you should cook no more than two batches of these eggs in a pan.

 6 . Save this example as recipes.html. When you open it in a browser you should see something like
Figure 2-6.

Figure 2-6

I hope you will enjoy the eggs—go on; you know you want to try them now.

editing Text ❘ 49

How It Works

Adding elements that describe content at a more granular level allows you to craft content that has
greater meaning for both humans and computers. Through the proper use of these elements you can
emphasize the importance of certain instructions; you can indicate that the source of a phrase is a quo-
tation or change the voice to indicate an aside.

ediTing TexT

When working on a document with others, it helps if you can see changes that another person has
made. Even when working on your own documents, it can be helpful to keep track of changes you
make. Two elements are specifically designed for revising and editing text:

➤➤ The <ins> element for when you want to add text (usually shown underlined in a browser)

➤➤ The element for when you want to delete some text (usually shown crossed out in
a browser)

Here you can see some changes made to the following HTML (ch02_eg09.html):

<h1>How to Spot a Wrox Book</h1>
<p>Wrox-spotting is a popular pastime in bookshops. Programmers like to find
the distinctive blue<ins>red</ins> spines because they know that
Wrox books are written by 1000 monkeys<ins>Programmers</ins> for
Programmers.</p>
<ins><p>Both readers and authors, however, have reservations about the use
of photos on the covers.</p></ins>

This example would look something like Figure 2-7 in a browser.

Figure 2-7

These features would also be particularly helpful as editing tools to note changes and modifications
made by different authors.

NOTE If you are familiar with Microsoft Word, you’ll see the <ins> and
elements are similar to a feature called Track Changes (which you can find under
the Tools menu). The Track Changes feature underlines new text additions and
crosses through deleted text.

50 ❘ CHapTer 2 fine-tuning Your text

NOTE You must be careful when using <ins> and to ensure that you do
not end up with a block-level element (such as a <p> or an <h2> element) inside
an inline element (such as a <ins> or element).

You can use the title attribute to provide information as to who added the <ins> or element
and why it was added or deleted. This information is offered to users as a tooltip in the major browsers.

You might also use the cite attribute on the <ins> and element to indicate the source or
reason for a change; although, this attribute is quite limiting because the value must be a URI.

The <ins> and elements can also carry a datetime attribute whose value is a date and time
in the following format:

YYYY-MM-DDThh:mm:ssTZD

This formula breaks down as follows:

➤➤ YYYY represents the year.

➤➤ MM represents the month.

➤➤ DD represents the day of the month.

➤➤ T is a separator between the date and time.

➤➤ hh is the hour.

➤➤ mm is the number of minutes.

➤➤ ss is the number of seconds.

➤➤ TZD is the time zone designator.

For example, 2013-04-16T20:30-05:00 represents 8:30 p.m. on April 16, 2013, according to U.S.
Eastern Standard Time.

NOTE As you can see, the datetime attribute is rather long to be entered by
hand and is more likely to be entered by a program that enables users to edit
web pages.

REfERENcE When you learn how to use CSS in Chapter 7, you can see how to
show and hide the inserted and deleted content as required.

Comments ❘ 51

uSing CHaraCTer enTiTieS For SpeCiaL CHaraCTerS

You can use most alphanumeric characters in your document, and they will display without a problem.
However, some characters have special meaning in HTML, and for some characters you cannot enter
a keyboard equivalent. For example, you cannot use the angle brackets that start and end tags because
the browser can mistake them for markup. You can, however, use a set of different characters known
as character entities to represent these special characters. Sometimes you also see character entities
referred to as escape characters.

You can add all special characters into a document using the numeric entity for that character, and
some also have named entities, as shown in Table 2-2.

TaBLe 2-2: Numeric and Named Entities for Common Characters

CHaraCTer nuMeriC enTiTY naMed enTiTY

“ " "

& & &

< < <

> > >

A full list of character entities (or special characters) appears in Appendix F.

CoMMenTS

You can put comments between any tags in your HTML documents. Comments use the follow-
ing syntax:

<!-- comment goes here -->

Anything after <!-- until the closing --> does not display. It can still be seen in the source code for
the document but is not shown onscreen.

It is good practice to comment your code, especially in complex documents, to indicate sections of a
document and any other notes to anyone looking at the code.

You can even comment out whole sections of code. In the following snippet of code, you would not see
the content of the <h2> element. You can also see comments indicating the section of the document,
who added it, and when it was added.

<!-- Start of Footnotes Section added 04-24-04 by Bob Stewart -->
 <!-- <h2>Character Entities</h2> -->
 <p>Character entities can be used to escape special
 characters that the browser might otherwise think have special meaning.</p>
<!-- End of Footnotes section -->

52 ❘ CHapTer 2 fine-tuning Your text

SuMMarY

In this chapter, you learned a lot of new elements and the attributes they can carry to describe the
structure of text:

➤➤ Presentational elements: , <i>, <sup>, and <sub>

➤➤ Phrase elements: , , <abbr>, <dfn>, <blockquote>, <q>, <cite>, <code>,
<kbd>, <var>, and <samp>

➤➤ Editing elements: <ins> and

You will obviously use some of these elements more than others, but where an element fits the content
you want to mark up, from paragraphs to addresses, you should try to use these because structuring
your text properly helps it last longer than if you just format it using line breaks. As browsers and
search engines support more and more of these elements, you will gain additional benefit.

exerCiSeS

 1 . Mark up the following sentence with the relevant presentational elements .

The 1st time the bold man wrote in italics, he emphasized several key words.

 2 . You have already created the homepage for the Example Café site that you will build throughout

the book . You also created a recipes page . Now you need to create three more pages so that

you can continue to build the site in upcoming chapters . Each page should start like the homep-

age, with a level 1 heading titled example Café, followed by this paragraph: welcome to example
Café . we will be developing this site throughout the book . After this:

 a . For a menu page, add a level 2 heading titled Menu . This should be followed by a para-

graph saying, The menu will go here . Update the content of the <title> element to reflect

that this page will feature the menus at the café . Save the file with the name menu.html .

 b . For an opening times page, add a level 2 heading saying opening hours . This should be

followed by a paragraph saying, details of opening hours and how to find us will go here .
Update the <title> element to reflect that the page tells visitors opening hours and where

to find the café . Save the file with the name opening.html .

 c . For the contact page, add a level 2 heading titled Contact . This page should contain the

address: 12 Sea View, newquay, Cornwall, uk . Update the <title> element to reflect that

the page tells visitors how to contact the café .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 53

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

elements for text-level-semantics HTML provides a broad range of elements and attributes

to better describe the content of your web pages . Using

them helps both humans and computers better understand

your text .

Links and navigation

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to link between pages of your site

➤➤ How to link to other sites

➤➤ How to structure the folders on your website

➤➤ How to link to specific parts of a page in your site

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 3 download
and individually named according to the names throughout the chapter.

What distinguishes the web from other mediums is the way in which a web page can contain
links (or hyperlinks) that you can click to be taken from one page to another page. The link
can be a word, phrase, or image.

When you link to another page in your own website, the link is an internal link. When you
link to a different site, it is an external link and uses what’s known as an absolute URL—a
URL that includes the full web address (like http://www.google.com/). In this chapter you
learn how to create both types of links. You also see how you can link to a specific point
within a page.

Although you can learn the basics of linking from one web page to another fairly quickly, you
also must learn some other concepts, such as how to structure your site well by storing different
files in separate folders or directories. When you understand directory structure, you can link
between pages of your own site using shorter links called relative URLs.

3

56 ❘ CHapTer 3 LinkS anD navigation

BaSiC LinkS

You can specify a link using the <a> element. Anything between the opening <a> tag and the closing
 tag becomes part of the link that users can click in a browser.

Linking to other web pages
To link to another web page, the opening <a> tag must carry an attribute called href; the value of
the href attribute is the name of the file you are linking to.

For example, here is the <body> of the page ch03_eg01.html. This page contains a link to a second
page called index.html:

<body>
 <p>Return to the home page.</p>
</body>

As long as index.html is in the same folder as ch03_eg01.html,
when you click the words “home page,” the index.html page loads
into the same window, replacing the current ch03_eg01.html page.
As you can see from Figure 3-1, the content of the <a> element
forms the link.

This is how the links for the download code for this chapter work.
Remember that you can view the source of a page at any time to
see what is going on in an HTML page. Why not try it on the
download code now?

If you want to link to a different site, you can use the <a> element again, but this time you specify the
full web address for the page you want to link to rather than just the filename. Here is an example of
a link that takes you to an external site, in this case the Wrox website (ch03_eg02.html):

<body>
 <p>Why not visit the Wrox Web site?</p>
</body>

As you can see, the value of the href attribute is what you would type into a browser if you want
to visit the Wrox website; the full web address is often referred to as a Uniform Resource Locator
(URL). Since it includes the full web address, it’s referred to as an Absolute URL.

When creating any link, you should try to make it concise and use words that let people know what
they will see if they click the link. One reason for this is that links are usually presented in a differ-
ent color than the surrounding text, which makes them stick out more than the text around them.
As a result, many people scan pages for links when they want to go to the next page without reading
the entire page. Therefore, people are more likely to keep exploring your website if the links are easy
to read and have a better explanation than just Click Here.

Many web designers also use images inside the <a> element, which is something you see in the next
chapter. When you use an image, you should make sure that the image gives a clear indication of
where the link takes you.

Figure 3-1

Basic Links ❘ 57

You can also use the title attribute on a link; the value of the title attribute should be a descrip-
tion of what the link takes you to, which displays in a tooltip when you hover over the link. This can
be helpful if you do use an image for a link.

Following is a link to the Google homepage (ch03_eg03.html):

<p>Google
is a very popular search engine.</p>

Figure 3-2 shows the title attribute, which gives further informa-
tion about the link to the user, when the cursor is held over the link.

You should be aware that everything inside the <a> element renders
as a link, including white space around the text or images. Therefore,
avoid spaces directly after an opening <a> tag or before the closing
 tag. For example, consider the following link with spaces just
inside the <a> element (ch03_eg04.html):

Why not visit the Wrox Web site ?

As you can see in Figure 3-3, these spaces in the link are underlined.

Figure 3-3

It is far better to use white space outside of these tags, like so:

Why not visit the Wrox Web site?

Of course, you should still have spaces between words inside the <a> element; it’s just best if they
are not inside the beginning or end of the link.

Linking to e-mail addresses
You’ve probably seen a web page with an e-mail address that, when clicked, opens a new e-mail in
your e-mail program, with the To field pre-populated with the e-mail address.

To create a link to an e-mail address, you need to use the following syntax with the <a> element
(ch03_eg05.html):

name@example.com

Figure 3-2

58 ❘ CHapTer 3 LinkS anD navigation

Here, the value of the href attribute starts with the keyword mailto, followed by a colon, and then
the e-mail address you want the mail sent to. As with any other link, the content of the <a> element
is the visible part of the link shown in the browser, so this would also work:

E-mail us.

There is one drawback to putting your e-mail address on a web page: Some less scrupulous inhabit-
ants of the web use little programs to automatically search websites for e-mail addresses. After they
find e-mail addresses on websites, they start sending spam to those addresses.

Following are alternatives to creating a link to an e-mail address:

➤➤ Use an e-mail form that visitors fill out instead because automated programs cannot use
contact forms to collect e-mail addresses. The drawback is that an e-mail form requires a
script to run on the web server (written in a language such as ASP.NET or PHP). Chapter 6,
“Forms,” provides an example of an e-mail form.

➤➤ Write your e-mail address into the page using JavaScript (covered in Chapter 11, “Working
with jQuery”). The idea behind this technique is that the programs that scour the web for
e-mail addresses cannot read the JavaScript version of an address.

Now that you’ve gotten a glimpse at how links are created, it’s time to put what you’ve learned into
practice with a small coding exercise.

TrY iT ouT Creating Simple Links

Now it’s your turn to create a page that has three types of links: an internal link, an external link,
and an e-mail link. You develop the Example Café site you started in the previous chapter, so open the
contact.html page in the sample application folder from Chapter 1, “Structuring Documents for
the Web”:

 1 . Check that the page looks like this:

<!doctype html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example Cafe - community cafe in Newquay, Cornwall, UK</title>
 </head>

<body>

 <h1>EXAMPLE CAFE</h1>
 <p>Welcome to Example Cafe. We will be developing this site throughout
 the book.</p>

 <h2>Contact</h2>
 <address>12 Sea View, Newquay, Cornwall, UK</address>

</body>
</html>

Basic Links ❘ 59

 2 . Add navigation between the pages of the site. You saw what this looks like when you learned about
the <nav> element in the first chapter. This section looks at this in detail. Replace the first paragraph
(after the <h1> element) with links to the three other pages of the site. Each <a> element should con-
tain the name of the page it links to, as shown here. Group these links inside a <nav> element:

<h1>EXAMPLE CAFE</h1>
 <nav>
 HOME
 MENU
 RECIPES

 </nav>

 3 . Add the name of the contact page, but do not make it a link because this is the page that the user is
already on; they do not need a link to it:

<h1>EXAMPLE CAFE</h1>
 <nav>
 HOME
 MENU
 RECIPES
 CONTACT
 </nav>

 4 . Add the filename of each of these pages as the value of the href attribute:

<h1>EXAMPLE CAFE</h1>
 <div>
 HOME
 MENU
 RECIPES
 CONTACT
</div>

Because these pages are all in the same folder, you need to specify only the filename; you do not need a
full URL.

 5 . Under the paragraph containing the address, add a link to the following page on Google Maps, like
so: info@examplecafe.com:

<p>Find us on Google Maps</p>

This time the value of the href attribute is the web address you would type into your browser to find a
map of Newquay in Google Maps.

 6 . Under the Google Maps link, add a link to send an e-mail to info@examplecafe.com:

<p>Mail Example Cafe</p>

This time the value of the href attribute begins with mailto: and is followed by the e-mail address.

 7 . Save this file as contact.html in the same folder as the sample application for this chapter. Then
open it up and take a look at it in your browser. You should end up with something that looks like
Figure 3-4.

60 ❘ CHapTer 3 LinkS anD navigation

Figure 3-4

How It Works

This example uses three separate styles of URL to create links. The relative URLs used for site navi-
gation are resolved based on the location of the page; the absolute URL pointing to Google Maps
represents the full address of that resource, and the e-mail links will open the user’s e-mail client in
order to send you an e-mail.

You have now seen how to create basic types of links, and you are ready to delve into the more
in-depth topics. But first you need to read through a few pages that explain more about how you
should organize the files in your website into folders, and also understand the anatomy of a URL
(the address that identifies pages and other resources on your website).

underSTanding direCTorieS and direCTorY STruCTureS

A directory is simply another name for a folder on a website; in the same way that your hard drive
contains different folders, a website can be said to contain directories. Usually you find that a web-
site contains several directories and that each directory contains different parts of a website. For
example, a big site with several subsections will have a separate directory for each section of that
site and also different directories for different types of files. (For example, images may live in one
directory and style sheets in another.)

In the same way that you probably organize the files on your hard drive into separate folders, you
must organize the files on your website into directories so that you can find what you are looking
for more easily and keep control of all the files. As you can imagine, if all the files used in a website
resided in the same directory, that directory would quickly get large and complicated.

Figure 3-5 shows an example directory structure for a news site with separate folders for each sec-
tion. The Music section has its own folders for subsections about Features, MP3s, and Reviews.
In addition, the main folder has separate folders for different types of files used in the site: images,
scripts, and style sheets.

Understanding URLs ❘ 61

Figure 3-5

When you start to build any website, you should create a good directory structure that can with-
stand growth. It’s surprising how a small website can quickly grow and contain many more files
than you initially imagined.

As you learn about linking, it’s helpful to learn some of the terms used in describing directory
structures and the relationships between directories, so refer to Figure 3-5 to see an example
directory structure:

➤➤ The root directory (or root folder) is the main directory that holds the whole of your website;
in this case, it is called exampleNewsSite.com.

➤➤ A subdirectory is a directory that is within another directory. Here, Film is a subdirectory of
Entertainment.

➤➤ A parent directory is one that contains another directory. Here, Entertainment is the parent
directory of Arts, Film, Music, and TV.

underSTanding urLS

A Uniform Resource Locator, or URL, specifies where you can find a resource on the web; you are
probably most used to thinking of them as web addresses. As you move around the web, you see the
URL of each web page in the address bar of your browser.

If you look at the example URL in Figure 3-6, there are three
key parts to the URL: the scheme, the host address, and the
filepath.

Now look at each of these in turn.

Host address

http://www.wrox.com/index.html

Scheme Filepath

Figure 3-6

62 ❘ CHapTer 3 LinkS anD navigation

The scheme identifies the way a file transmits. Most web pages use something called the HyperText
Transfer Protocol (HTTP) to pass information to you, which is why most web pages start with
http://. Although you might have noticed other prefixes such as https:// when doing banking
online (which is a more secure form of http) or ftp:// when downloading large files.

The host address is usually the domain name for the site, for example, wrox.com. Often you see
www before the domain name; although, it is not actually part of the domain name. The host
address can also be a number called an IP address.

NOTE All computers connected to the Internet use an IP address. An IP address
is a set of up to 12 digits separated by a period (full stop) symbol. When you enter
a domain name into a browser, behind the scenes the name converts into the
IP address for the computer(s) that stores the website. This is done by consulting
a domain name server (DNS), which keeps a directory of domain names and the
corresponding IP addresses.

Interestingly, at one point, the Internet was running out of IP addresses, so the
Internet Engineering Task Force (IETF) introduced Internet Protocol version 6
(IPv6), which is a new system of IP addressing that allows for many more avail-
able addresses.

The filepath always begins with a forward slash character and may consist of one or more directory
names. (Remember, a directory is just another name for a folder on the web server.) The filepath
may end with a filename at the end. Here, BeginningHTML.html is the filename:

/books/BeginningHTML.html

The filepath usually corresponds to the directory structure of the website, so in this case you could
find the BeginningHTML.html page in a directory called books.

It is not just web pages that have their own URLs; every file on the web, including each image, has
its own URL. So the filename could be an image rather than an HTML page.

If a filename is not given, the web server usually does one of three things (depending upon how it is
configured):

➤➤ Looks for a default file and returns that. For websites written in HTML, the default file is usu-
ally index.html. If no filepath is specified, the server looks for a file called index.html in the
root folder, or if a directory is specified, it looks for an index.html file in that directory.

➤➤ Offers a list of files in that directory.

➤➤ Shows a message saying that the page cannot be found or that you cannot browse the files in
a folder.

When linking to pages on your website, you do not need to use all three parts of the URL. You can
just use the filepath and filename, as you see in the next section.

Understanding URLs ❘ 63

absolute and relative urLs
An absolute URL contains everything you need to uniquely identify a particular file on the Internet.
This is what you would type into the address bar of your browser to find a page. For example, to get
the page about film on the fictional news site you met earlier in the chapter, you might type in the
following URL. You may find it helpful to refer to Figure 3-5 to see how the filepath corresponds to
the directory structure:

http://www.exampleNewsSite.com/Entertainment/Film/index.html

As you can see, absolute URLs can quickly get quite long, and every page of a website can contain
many links. When linking to a page on your own site, however, you can use a shorthand form: rela-
tive URLs.

A relative URL indicates where the resource is in relation to the current page. The examples earlier
in this chapter, which link to another page in the same directory, are relative URLs. You can also
use relative URLs to specify files in different directories. For example, imagine you are looking at
the homepage for the entertainment section of the following fictional news site:

http://www.exampleNewsSite.com/Entertainment/index.html

You want to add a link to the index pages for each of the subsections: Film, TV, Arts, and Music.
Rather than including the full URL for each page, you can use a relative URL, for example:

Film/index.html
TV/index.html
Arts/index.html
Music/index.html

This is a lot quicker than having to write out the following:

http://www.exampleNewsSite.com/Entertainment/Film/index.html
http://www.exampleNewsSite.com/Entertainment/TV/index.html
http://www.exampleNewsSite.com/Entertainment/Arts/index.html
http://www.exampleNewsSite.com/Entertainment/Music/index.html

NOTE Web servers usually have the concept idea of a default document. This
means that any request for a directory is passed along to a default document.
On many servers, this tends to be index.html, which would make the list of long
articles easier to use.

You might be interested to know that your web browser still requests the full URL, not the short-
ened relative URL, but it is the browser that is actually doing the work of turning the relative URLs
into full absolute URLs.

Another benefit to using relative URLs within your site is that you can develop the site on your
desktop or laptop without having bought a domain name. You can also change your domain name
or copy a subsection of one site over to a new domain name without having to change all the links
because each link is relative to other pages within the same site.

64 ❘ CHapTer 3 LinkS anD navigation

NOTE Relative URLs work only on links within the same website; you cannot use
them to link to pages on other domain names.

The subsections that follow provide a summary of the different types of relative URLs you can use.

Same Directory
When you want to link to, or include, a resource from the same directory, you can just use the
name of that file. For example, to link from the homepage (index.html) to the Contact Us page
(contactUs.html), you can use the following:

contactUs.html

Because the file lives in the same folder, you do not need to specify anything else.

Subdirectory
The Film, TV, Arts, and Music directories from Figure 3-5 were all subdirectories of the Entertainment
directory. If you write a page in the Entertainment directory, you can create a link to the index page of
the subdirectories like so:

Film/index.html
TV/index.html
Arts/index.html
Music/index.html

You must include the name of the subdirectory, followed by a forward slash character, and the name
of the page you want to link to.

For each additional subdirectory, just add the name of the directory followed by a forward slash
character. So, if you create a link from a page in the root folder of the site (such as the site’s main
homepage), use a relative URL such as the following to reach the same pages:

Entertainment/Film/index.html
Entertainment/TV/index.html
Entertainment/Arts/index.html
Entertainment/Music/index.html

Parent Directory
If you want to create a link from one directory to its parent directory (the directory that it is in), use
the ../ notation of two periods or dots followed by a forward slash character. For example, from a
page in the Music directory to a page in the Entertainment directory, your relative URL looks like this:

../index.html

If you want to link from the Music directory to the root directory, you repeat the notation:

../../index.html

Each time you repeat the ../ notation, you go up another directory.

Creating in-Page Links with the <a> element ❘ 65

From the Root
You can indicate a file relative to the root folder of the site. So, if you want to link to the
contactUs.html page from any page within the site, use its path preceded by a forward slash.
For example, if the Contact Us page is in the root folder, you just need to enter

/contactUs.html

Alternatively, you can link to the Music section’s index page from anywhere within that site using
the following:

/Entertainment/Music/index.html

The forward slash at the start indicates the root directory, and then the path from there is specified.

The <base> element
As mentioned earlier, when a browser comes across a relative URL, it actually transforms the relative
URL into a full absolute URL. The <base> element enables you to specify a base URL for a page that
all relative URLs will be added to when the browser comes across a relative URL.

You specify the base URL as the value of the href attribute on the <base> element. For example,
you might indicate a base URL for http://www.exampleSite2.com/ as follows:

<base href="http://www.exampleSite2.com/" />

In this case, a relative URL like this one

Entertainment/Arts/index.html

ends up with the browser requesting this page:

http://www.exampleSite2.com/Entertainment/Arts/index.html

Apart from the href attribute, the only other attribute a <base> element can carry is the id attribute.

CreaTing in-page LinkS wiTH THe <a> eLeMenT

You have already seen examples of using the <a> element to create links. The rest of the chapter looks
more closely at the <a> element, and you can see how to use it to link to a specific part of a page.

As with all journeys, links have a starting point known as the source and a finishing point known
as the destination. In HTML both points are called anchors. Each link that you see on a page that
you can click is a source anchor, created using the <a> element. You can also use the <a> element to
create markers in parts of your pages that enable you to link directly to that part of the page. These
markers are called destination anchors.

Creating a Source anchor with the href attribute
The source anchor is what most people think of when talking about links on the web—whether the
link contains text or an image. It is something you can click expecting to be taken somewhere else.

66 ❘ CHapTer 3 LinkS anD navigation

As you have already seen, any text contained between the opening <a> tag and closing tag
forms part of the link that a user can click. The URL the user should be taken to is specified as the
value of the href attribute.

For example, when you click the words Wrox Website (which you can see are inside the <a> ele-
ment), the link takes you to http://www.wrox.com/:

Why not visit the Wrox Website to
find out about some of our other books?

If the following link were placed on the homepage of the fictional news site you have been looking
at, it would take you to the main Film page of that site:

You can see more films in the film
section.

By default, the link looks something like the one shown in
Figure 3-7, underlined and in blue text.

You need to specify a destination anchor only if you want
to link to a specific part of a page, as described in the next
section.

Creating a destination anchor using the name and id
attributes (Linking to a Specific part of a page)

If you have a long web page, you might want to link to a specific part of that page to save the
user from having to scroll up and down the page to find the relevant part. The destination anchor
enables the page author to mark specific points in a page that a source anchor can point to.

Common examples of linking to a specific part of a page that you might have seen used on web
pages include:

➤➤ Back to Top links at the bottom of a long page

➤➤ A list of contents on a page that takes the user to the relevant section of that page

➤➤ Links within text to footnotes or definitions

You create a destination anchor using the <a> element again, but when it acts as a destination
anchor rather than using an href attribute, you use the id attribute.

If you look at the source code of some older web pages, you may see a name attribute used as well,
or even instead of the id attribute. You may remember from Chapter 1 that the name and id attri-
butes were two of the universal attributes that most elements can carry. The id attribute is now the
preferred way to create a destination anchor, but it was introduced only in version 4 of HTML, and
the name attribute was used to perform the same function in previous versions.

By way of example, imagine that you have a long page with a main heading and several subheadings.
The whole page does not fit on the screen at once, forcing the user to scroll, so you want to add links
at the top of the page that take readers directly to each of the section headings on that page.

Figure 3-7

Creating in-Page Links with the <a> element ❘ 67

Before you can create links to each section of the page (using the source anchors), you must add the
destination anchors. Here you can see that inside the <h2> subheading elements, there is an id attri-
bute whose value identifies each section. Remember that a page should not contain two id attributes
that have the same value.

<h1>Linking and Navigation</h1>
<h2 id="URL">URLs</h2>
<h2>id="SourceAnchors">Source Anchors</h2>
<h2id="DestinationAnchors">Destination Anchors</h2>
<h2id="Examples">Examples</h2>

With destination anchors in place, you can now add source anchors to link to these sections. To link to
a particular section, the value of the href attribute in the source anchor should be the same as the value
of the id attribute on the corresponding destination element, preceded by a pound or hash sign (#).

<nav>
 <p>This page covers the following topics:</p>

 URLs
 Source Anchors
 Destination Anchors
 Examples

</nav>

If you look at Figure 3-8, you can see how the page has several links to the sections of the page, and
in Figure 3-9, you can see what happens when the user clicks the second link and is taken directly
to that section of the page. You can see the full code for this example in the download code for this
chapter (ch03_eg06.html).

Figure 3-8

68 ❘ CHapTer 3 LinkS anD navigation

Figure 3-9

If people want to link to a specific part of this web page from a different website (such as the section
on Source Anchors), they would add the full URL for the page, followed by the pound or hash sign
and then the value of the id attribute, as follows:

http://www.example.com/HTML/links.html#SourceAnchors

WARNING The value of a name or id attribute should be unique within the page,
and source anchors should use the same combination of uppercase and lower-
case characters as used in the destination anchors.

The <a> element’s other attributes
The <a> element can carry several attributes that you have not yet met. Although these attributes
are not used as much as those covered up to this point, for completeness it is worth quickly looking
at them.

The <a> element supports all the universal attributes and the following attributes:

accesskey href hreflang rel style tabindex target type

Creating in-Page Links with the <a> element ❘ 69

The accesskey Attribute
The accesskey attribute creates a keyboard shortcut that you can use to activate a link. For example,
if you gave the accesskey attribute a value of t, when the user presses the T key along with either the
Alt key or the Ctrl key (depending on the operating system), the link activates.

In some browsers, when a link activates, the browser immediately follows the link. In some other
browsers, the link is just highlighted, and the user must press the Enter (or Return) key for the link
to be followed.

The accesskey attribute should be specified on the source anchor. For example, if you want to
follow a link to the top of the page when the user presses the T key on his keyboard (with either
Alt or Ctrl), you use the accesskey attribute like so:

Back to top

The key is case-insensitive. You see more about the accesskey attribute (and some examples) when
you look at forms in Chapter 6.

The hreflang Attribute
The hreflang attribute indicates which language the page you are linking to is written in. It’s
designed to be used when linking to a page in a different language from the current document,
and the value of this attribute is a two-letter language code, for example:

Amazon Japan

Appendix G, “Language Codes,” lists the language codes that are possible values for this attribute.

The rel Attribute
Use the rel attribute on the source anchor to indicate the relationship between the current docu-
ment and the resource specified by the href attribute. The major browsers do not currently make
any use of this attribute; although, automated applications could be written to use this information.
For example, the following link uses the rel attribute to indicate that its destination is a glossary of
terms used in the document:

For more information, please read the <a href="#glossary"
rel="glossary">glossary.

Table 3-1 shows possible values of the rel attribute.

TaBLe 3-1: Possible Values of the rel Attribute

VaLue deSCripTion

toc (or contents) A document that is a table of contents for the current document

Index A document that is an index for the current document

continues

70 ❘ CHapTer 3 LinkS anD navigation

VaLue deSCripTion

Glossary A document containing a glossary of terms that relate to the current

document

Copyright A document containing the copyright statement for the current document

Start A document that is the first in a series of ordered documents, of which this

is one document

Next A document that is next in a series of ordered documents, of which this is

one document

prev (or previous) A document that is previous in a series of ordered documents, of which this

is one document

Help A document that helps users understand or navigate the page and/or site

Chapter A document that acts as a chapter within a collection of documents

Section A document that acts as a section in a collection of documents

Subsection A document that acts as a subsection in a collection of documents

Appendix A document that acts as an appendix in a collection of documents

Author Identifies a URL that serves as the homepage of the author of an article

Me Indicates the author of the current document is also the owner of the asso-

ciated URL

The tabindex Attribute
To understand the tabindex attribute, you need to know what it means for an element to gain
focus. Any element that a user can interact with can gain focus. If users click the Tab key on their
keyboard when a page loads, the browser moves focus between the parts of the page that users can
interact with. The parts of the page that can gain focus include links and some parts of forms (such
as the boxes that enable you to enter text). When a link receives focus, and the users press Enter on
the keyboard, the link activates.

You can see focus working on the Google website; if you repeatedly press the Tab key, you should
see focus pass between links on the page. After it has passed across each link in turn, it goes to the
box where you enter search terms, across the site’s buttons, and usually ends up back where you
typed in the URL. Then it cycles around the same elements again as you keep pressing Tab.

The tabindex attribute enables you to specify the order in which, when the Tab key is pressed, the
links (or form controls) obtain focus. So, when the user clicks the Tab key, you may want the focus
to land on the key items on the page that the user might want to interact with (skipping some of the
less-used features).

TaBLe 3-1 (continued)

Creating in-Page Links with the <a> element ❘ 71

The value of the tabindex attribute is a number between 0 and 32767. A link whose tabindex
attribute has a value of 1 receives focus before a link with a tabindex value of 20. (And if a value
of 0 is used, the links appear in the order in which they appear in the document.) Chapter 6 shows
some examples of the tabindex being used with forms.

Elements without a tabindex receive focus after an element with a tabindex set in the order they
appear in the document.

The target Attribute
By default, when you use the <a> element to create a link, the document you are linking to opens in
the same browser window. If you want the link to open in a new browser window, you can use the
target attribute with a value of _blank.

Page 2

The title Attribute
As mentioned at the start of the chapter, you should use a title attribute on any links that contain
images. It can also help provide additional information to visitors in the form of a visual text tooltip
in most browsers or an auditory clue in voice browsers for the visually impaired. Figure 3-2 near
the beginning of this chapter showed you what the title attribute looks like in Firefox when a user
hovers over the link.

The type Attribute
The type attribute specifies the MIME type of the link. MIME types can be compared to file exten-
sions but are more universally accepted across different operating systems. For example, an HTML
page would have the MIME type text/html, whereas a JPEG image would have the MIME type
img/jpeg. (Appendix H, “MIME Media Types,” includes a list of common MIME types.)

Following is an example of the type attribute used to indicate that the document the link points to is
an HTML document:

Index

Theoretically, the browser could use the information in the type attribute to either display it differ-
ently or indicate to the user what the format of the destination is; although none use it at present.

TrY iT ouT Creating Links within Pages

Now it’s your turn to try making a long page with links between different parts of the page. In this
example, you create the menu for your Example Café. So open the menu.html page from the sample
application in your text editor or authoring tool:

 1 . The page should look like this when you begin:

<!doctype html>
<html>

<head>

72 ❘ CHapTer 3 LinkS anD navigation

 <title>Example Cafe - community cafe in Newquay, Cornwall, UK</title>
</head>
<body>
 <h1>EXAMPLE CAFE</h1>
 <p>Welcome to Example cafe. We will be developing this site throughout
 the book.</p>

 <h2>Menu</h2>
 <p>The menu will go here.</p>
</body>
</html>

 2 . After the <h1> element, replace the first paragraph with a <nav> element containing the links for the
navigation, just like the ones you created in the previous Try It Out for the contact.html page.
The only difference this time is that the CONTACT option is a link, but the MENU option is not a link.

 <nav>
 HOME
 MENU
 RECIPES
 OPENING
 CONTACT
 </nav>

 3 . Below this, add the headings for the different courses on offer.

 4 . Each heading should have a destination anchor so that you can link directly to that part of the
page, and the value of the id attribute describes that section. The main heading also needs a des-
tination anchor because it will be used for Back to Top links. Remember that destination anchors
require some content, so these anchors contain the text for the heading:

<h1 id="top">Example Cafe Menu</h1>
<h2 id="starters">Starters</h2>
<h2 id="mains">Main Courses</h2>
<h2 id="desserts">Desserts</h2>

 5 . Under the heading for the Example Café Menu, add links to the destination anchors for each
course. These should go inside a <p> element:

<p>Starters | Main Courses | Desserts</p>

 6 . At the bottom of the page, you have a note that states any items marked with a letter v are suit-
able for vegetarians. Links next to vegetarian items point to this note, so it needs to have a desti-
nation anchor:

<p><small>Items marked with a (v) are suitable
for vegetarians.</small></p>

 7 . You can just add in the items on the menu in a bulleted list. The vegetarian items have a link down
to the description of vegetarian dishes. Don’t forget to add the Back to Top links under each list.

<h2>Starters</h2>

 Chestnut and Mushroom Goujons (v)

Creating in-Page Links with the <a> element ❘ 73

 Goat Cheese Salad (v)
 Honey Soy Chicken Kebabs
 Seafood Salad

<p><small>Back to top</small></p>

<h2>Main courses</h2>

 Spinach and Ricotta Roulade (v)
 Beef Tournados with Mustard and Dill Sauce
 Roast Chicken Salad
 Icelandic Cod with Parsley Sauce
 Mushroom Wellington (v)

<p><small>Back to top</small></p>

<h2>Desserts</h2>

 Lemon Sorbet (v)
 Chocolate Mud Pie (v)
 Pecan Pie (v)
 Selection of Fine Cheeses from Around the World

<p><small>Back to top</small></p>

 8 . Save your example as menu.html and take a look at it in your browser. You should end up with
something that looks like Figure 3-10.

Figure 3-10

74 ❘ CHapTer 3 LinkS anD navigation

How It Works

The id attributes act as a signpost, denoting specific areas on the page. Web browsers will scroll the
page to those specific areas as needed in the act of either clicking an in-page link or navigating to a page
that includes a hash value in the url (like menu.html#starters.)

adVanCed e-MaiL LinkS

As you saw at the beginning of the chapter, you can make a link open up the user’s default e-mail
editor and automatically address an e-mail to you—or any other e-mail address you give. This is
done like so:

info@example.org

You can also specify some other parts of the message, such as the subject, body, and e-mail
addresses that should be cc’d or bcc’d on the message.

To control other properties of the e-mail, place a question mark after the e-mail address and then
use name/value pairs to specify the additional properties. The name and the value are separated by
an equal sign.

For example, to make the subject line of the e-mail “Inquiry,” you would add the subject property
name followed by an equals sign (=), and then the term Inquiry, like so:

You can specify more than one property by separating the name/value pairs with an ampersand (&).
Here you can see that the subject and a CC address have been added in:

Table 3-2 includes a full list of properties you can add.

TaBLe 3-2: Available E-mail Link Properties

properTY purpoSe

Subject Adds a subject line to the e-mail; you can add this to encourage the user to use a

subject line that makes it easier to recognize where the mail has come from .

Body Adds a message into the body of the e-mail; although you should be aware that users

could alter this message .

Summary ❘ 75

cc Sends a carbon copy of the mail to the cc’d address; the value must be a valid

e-mail address . If you want to provide multiple addresses, you simply repeat the

property, separating it from the previous one with an ampersand .

bcc Secretly sends a carbon copy of the mail to the bcc’d address without any recipient

seeing any other recipients; the value must be a valid e-mail address . If you want to

provide multiple addresses, simply repeat the property, separating it from the previous

one with an ampersand .

If you want to add a space between any of the words in the subject line, you should add %20 between
the words instead of the space. If you want to create a line break in the body of the message, you
should add %0D%0A (where 0 is a zero, not a capital O).

While an e-mail link can create an e-mail with all these properties set, it does not stop users from
editing the values in their e-mail program.

It is common practice to add only the e-mail address in e-mail links. If you want to add subject lines
or message bodies, you may decide to use an e-mail form instead, like the one you see in Chapter 6.
(Although these do require a script on the server that can process the form and send the e-mail.)

SuMMarY

In this chapter you learned about links. Links enable users to jump between pages and even between
parts of an individual page (so that they don’t have to scroll to find the place they need).

You have seen that you can use the <a> element to create source anchors, which are what most people
think of when you mention links on the web. The content of the source anchor is what users can click—
and this should usually be an informative, concise description of what users see when they click the link
(rather than text such as “click here”), or it can be an image (as you see in Chapter 4, “Images, Audio,
and Video”).

You also learned how to link to specific parts of a page using the id attribute.

Along the way, you learned more about URLs, in particular the difference between an absolute URL,
as with those that appear in the address bar of your browser, and relative URLs, which describe where
a resource is in relation to the document containing it. Learning the different ways in which relative
URLs can be used can also be helpful as you head to the next chapter and learn about adding images
and other objects into your documents.

76 ❘ CHapTer 3 LinkS anD navigation

exerCiSeS

 1 . Look at the Try It Out example where you created a menu, and create a new page that links

directly to each course on the menu . Then add a link to the main Wrox website (www.wrox.com) .

The page should look something like Figure 3-11 .

Figure 3-11

 2 . Go back to the pages in the sample application to ensure that you have updated the navigation

for each page .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 77

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

Links Links are the connective tissue of the web and are the single defining fea-

ture that originally sets the web apart from other media .

urLs URLs are the addressing system of the web . In the context of building

web pages there are two kinds of links: absolute URLs and relative URLs .

Absolute URLs represent the complete web address . Relative URLs are

pieced together using the existing site context as a starting point .

in-page links Using the id attribute and the URL hash you can link to specific points on

a web page .

images, Audio, and Video

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to add images to a web page

➤➤ What the different types of image formats are and where to use each

➤➤ How to add audio and video to your web pages

➤➤ All about the <video>, <audio>, and <object> elements

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 4
download and individually named according to the names throughout the chapter.

In this chapter, you learn how to add images, animations, audio, and video to your site. This
should start to breathe some life into the pages you’ve been creating so far.

You start by learning how to add images to your documents using the element. You
also learn how to make an image a link, and even how to divide an image into sections so
that different parts of the image link to different pages, which is known as an image map.
Then you look at some of the main image formats used on the web (JPEG, GIF, and PNG)
and learn which image format to use for different types of images. This is important because
it can greatly affect the speed with which your web pages load. (And as you know, slow web-
sites frustrate users.)

After you finish with images, you look at how to add some more multimedia content to your
site in the form of Flash and the new HTML5 <video> and <audio> elements. In doing so,
you also meet the <object>, <param>, and <embed> elements. By the end of the chapter, your
pages should look more exciting.

4

80 ❘ CHapTer 4 imageS, auDio, anD viDeo

adding iMageS uSing THe eLeMenT

Images are added to a site using the element, which must carry at least two attributes: the src
attribute, indicating the source of the image, and an alt attribute, which provides a description of
the image.

For example, the following line would add the image called logo.gif into the page (in this case, the
image lives in a directory called images). You can find this code at ch04_eg01.html.

Figure 4-1 shows what this image looks like in a browser.

Figure 4-1

In addition to carrying all the universal attributes, the element can carry the following
attributes:

src alt height width ismap usemap

The src attribute
The src attribute tells the browser where to find the image. The value is a URL and, just like the
links you met in the previous chapter, the URL can be an absolute URL or a relative URL.

Generally speaking, images for your site should always reside on your server or on another server
you control. It is not good practice to link to images on other sites because if the owner of the other
site decides to move that image, your users will no longer see the image.

Because the images are on your server, rather than being an absolute URL, the value is more likely
to be a relative URL that uses the same shorthand notations you met in the previous chapter when
relative URLs were introduced.

Most web page authors create a separate directory (or folder) in the website for images. If you have
a large site, you might even create different folders for different types of images. For example, you
might keep any images used in the design of the interface (such as logos or buttons) separate from
images used in the content of the site.

Adding images Using the element ❘ 81

The alt attribute
The alt attribute should appear on every element and its value should be a text description of
the image.

Often referred to as alt text, the value of this attribute should describe the image because of the
following:

➤➤ If the browser cannot display the image, this text alternative is shown instead.

➤➤ Web users with visual impairments often use software called a screen reader to read a page to
them, in which case the alt text describes the image they cannot see.

➤➤ Although search engines are clever, they cannot yet describe or index the contents of an image;
therefore, providing a text alternative helps search engines index your pages and helps visitors
find your site.

Sometimes images do not convey any information and are used only to enhance the layout of the page.
(For example, you might have an image that is just a decorative element and does not add any informa-
tion to the page.) In such a case, the alt attribute should still be used but given no value, as follows:

As you’ll see in Chapter 7, “Cascading Style Sheets,” decorative elements are usually best handled
with CSS. Still, there are situations in which decorative images are unavoidable. In those exceptions
this is the correct pattern.

The height and width attributes
The height and width attributes specify the height and width of the image, and the values for these
attributes are almost always shown in pixels. (If you are not familiar with the concept of pixels, look
at this in the section “Choosing the Right Image Format.”)

Technically, the values of these attributes can be a percentage of the browser screen. Or if the image
is inside an element that takes up only part of the page, known as a containing element, it would be
a percentage of the containing element. If you do use a percentage, the number will be followed by a
percent sign, but for most web pages this is rare, and showing an image at any size other than the size
at which it was created can result in a distorted or fuzzy image.

Specifying the size of the image is considered good practice, so you should try to use these attributes
on any image that you put on your pages.

It also helps a page to load faster and more smoothly because the browser knows how much space to
allocate to the image, and it can correctly render the rest of the page while the image is still loading.

Also, if for some reason the image doesn’t load, you’ll also have the browser draw an empty box of
the given height and width with the alt text within it.

82 ❘ CHapTer 4 imageS, auDio, anD viDeo

Although you can tell the browser to display images smaller or larger than they actually are (by tell-
ing the browser that the width and height are different from what they actually are), you should avoid
doing this because your image will not be as clear. Rather, you should aim to create versions of images
at the same size that you will use them on your web pages. Programs such as Photoshop, Photoshop
Elements, Paint Shop Pro, or GIMP can help you do this.

It is also important not to use images bigger than they are shown on screen (for example, you should not
use an image 800 pixels by 800 pixels if you will show it only at 100 pixels by 100 pixels on the screen)
because the smaller an image, the smaller the size of the file (in terms of kilobytes). And the smaller the
file size, the quicker the image loads in the browser. Also, for putting your site on the web for others to
see, it might save you money because you are often charged in relation to the total size of all the files you
send to the people who visit your site.

Likewise, it is important not to show images larger than they actually are. If you have a small image
(say, 100 pixels by 100 pixels) and try to display it much larger (say, 300 pixels by 300 pixels) it will
appear grainy (as shown in Figure 4-2).

Although it is not a good idea to do so, if you just specify the height or width attribute and leave out
the other one, your browser will show the image to scale. Assume for a moment that you have an image
that is 200 pixels wide by 100 pixels tall. If you just specify the width of the image as 200 pixels, it
would try to show the image at its correct size: 200 pixels wide by 100 pixels tall. However, if you said
that the image was 100 pixels wide and did not specify the height, the browser would try to make the
image 50 pixels tall. Because it is 50 percent the width of the original image, it would display the image
at 50 percent of its height. In other words, it maintains the aspect ratio of an image (its width divided by
its height).

You could even distort images by providing a different width in relation to height.

Figure 4-2 shows an image at its actual size (top: 130 pixels by 130 pixels); the image magnified
(middle: the width attribute is given a value of 160 pixels); and the image distorted (bottom: the
width attribute is given a value of 80 pixels and the height attribute a value of 150 pixels).

Here is the code for this example (ch04_eg02.html):

<p>Fixed size: width 130 height 130</p>
<img src="images/apple.jpg" alt="Photo of red apple" width="130"
 height="130" >
<p>Enlarged: width 160 (no height specified)</p>

<p>Stretched: width 80 height 150</p>

adding images to a web page
Now that you’ve learned the basics of how images work, it’s time to roll up your sleeves and use one
in a web page.

Adding images Using the element ❘ 83

Figure 4-2

TrY iT ouT Adding images to a Document

In this example, you add some images to the café example. You add a logo for the café and also a pic-
ture of the special brunch offer. So, open the homepage in a text editor or web page authoring tool and
follow these steps:

 1 . Replace the <h1> heading with the logo.gif in the images folder of the sample application.

 2 . The src attribute indicates the URL for the image. The URLs in this example are all relative URLs
pointing to an images directory inside the folder that the example page is in.

 3 . Add the following after the navigation and before the <h2> element:

<img src="images/scrambled_eggs.jpg" width="622" height="370" alt="Photo of
 scrambled eggs on an English muffin" >

 4 . The width and height attributes tell the browser how big the image should be displayed.

 5 . Save the file and open it in your browser. You should end up with something that resembles
Figure 4-3.

84 ❘ CHapTer 4 imageS, auDio, anD viDeo

Figure 4-3

How It Works

The image element is referred to as a replaced element. Replaced elements are HTML elements whose
content is provided by another resource, in this case the scrambled_eggs.jpg referenced in the src
attribute. This image has intrinsic properties including height, width, and aspect ratio. This is why you
can supply only one or none of the dimensions, and the browser can figure out the rest by itself, accord-
ing the image the proper space within the layout. Here you provide those dimensions to help the browser
render more efficiently, but it’s not necessary because of the nature of replaced elements. You’ll learn
about three more replaced elements throughout this chapter: <video>, <audio>, and <object>.

uSing iMageS aS LinkS

It’s easy to turn an image into a link. Rather than putting text between the opening <a> tag and the
closing tag (as you saw in the previous chapter), you simply place an image inside these tags.
Images are often used to create graphical buttons or links to other pages, as follows (ch04_eg03.html):

 <img src="images/wrox_logo.gif" alt="Wrox logo"
 width="338" height ="79" >

Choosing the Right image Format ❘ 85

You can see what this looks like in Figure 4-4. This
screenshot was purposely taken in IE to show you
how IE draws a blue (appears grey in the black-and-
white image) border around any image inside an <a>
element. There is nothing in the HTML specification
that says a border should be drawn around images
that are links, and none of the other browsers do this.

This border doesn’t look nice, so you could use CSS
to indicate that any elements inside an <a>
element should have no border. (You learn how to
do this in Chapter 7.)

CHooSing THe rigHT iMage ForMaT

Images and graphics can bring your site to life, but you must learn how to prepare images for the
web. Otherwise, they can significantly increase the time it takes for a page to load.

When writing sites on your desktop or laptop computer, you may not realize how long a page will
take to load; files that are sitting on your computer will load a lot faster than they would if they were
on the Internet. Therefore, choosing the right image format and saving your images correctly can
ensure that your site will not load unnecessarily slow—and this should result in happier visitors.

NOTE For practice purposes, you can download images from other sites by right-
clicking the image (or Ctrl+Clicking) and selecting either the download image to
disk or save image as options. Remember, however, that images are subject to
copyright, and you could land yourself in legal trouble if you use other people’s
images on your site.

Most static images on the web are classified as bitmapped images. Bitmapped images divide a picture
into a grid of pixels and specify the color of each pixel individually. If you look closely at your computer
screen, you might see the pixels that make up the screen. There are several different bitmap formats;
common ones include JPEG, GIF, TIFF, PNG, and the rather confusingly named bitmap or BMP.

Figure 4-5 shows a bitmap image with one section modified so that you can see how pixels make up
the image.

The number of pixels in every square inch of the image is referred to as the resolution of the image.
It is normal to save images that will be used on the web at a resolution of 72 pixels per inch because
this corresponds with the number of pixels in a square inch on your computer screen. By contrast,
images used in print are usually supplied to printers at 300 dots per inch.

The more pixels or dots per inch an image contains, the larger the size (in KB) of the file, and the
larger the file, the longer it takes to transfer over the web. Therefore, any images that you use on the
web should be saved at a resolution of 72 dots per inch.

Figure 4-4

86 ❘ CHapTer 4 imageS, auDio, anD viDeo

Figure 4-5

NOTE Although you can easily save an image that is 300 dots per inch
at 72 pixels per inch for the web, you cannot simply increase an image from
72 pixels per inch to 300 dots per inch because you do not know what color
the 228 missing pixels should be. If you just try to increase the resolution of
the image, it often looks grainy. Therefore, when you have a high-resolution
300-dots-per-inch picture, you should make a copy of it for use on the web
and keep the original version separately.

Browsers tend to support three common bitmap graphics formats, and most graphics programs save
images in these formats:

➤➤ GIF: Graphics Interchange Format (pronounced either “gif” or “jif”)

➤➤ JPEG: Joint Photographic Experts Group (pronounced “jay-peg”)

➤➤ PNG: Portable Network Graphics (pronounced “pee-en-gee” or “ping”)

Now take a quick look at each of these because understanding how the format works helps you
choose how to save an image.

Choosing the Right image Format ❘ 87

giF images
Graphics Interchange Format (GIF) images are created using a palette of up to 256 colors, and each
pixel of the image is one of these 256 colors. Every different GIF image can have a different palette
of 256 colors selected from a range of more than 16 million colors. The program that saves the
image also selects the palette that best represents the images.

The GIF file stores the palette of colors in a lookup table, and each pixel references the color
information in the lookup table rather than each pixel specifying its own color information. The
advantage of this technique is that if many pixels use the same colors, the image does not repeat
the same color information, and the result is a smaller file size. This makes GIF images more
suited to graphics (where there are often areas of the same color—known as a flat color) and less
suited to photographs (where there are often many more different colors).

This way to store images is an indexed color format. Figure 4-6 shows a GIF file created in Adobe
Photoshop. You can see the color palette for this image represented in the set of squares halfway
down the image on the right.

Figure 4-6

If a GIF contains fewer than 16 colors (in which case it can be referred to as a 4-bit GIF), the
image will be less than one-half the file size of a GIF using 256 colors (an 8-bit GIF). Therefore,
if you create an image that uses fewer than 16 colors, it is worth checking whether your program
automatically saves your image as a 4-bit GIF because this results in a smaller file that’s quicker to
download than an 8-bit GIF.

88 ❘ CHapTer 4 imageS, auDio, anD viDeo

NOTE Even if your image looks as though it features just two colors, say a black-
and-white line drawing, it may use many more colors. For example, if you have a
line drawing where the edges have been smoothed out by the graphics program
(a process known as anti-aliasing), your image contains more than two colors
because the edges use a variety of other colors to make them look smooth.

If the GIF needs to use more than 256 colors, most graphics programs, when saving GIFs, use a tech-
nique called dithering to better represent the extra colors. This means that they use two or more colors
in adjacent pixels to create an effect of a third color. Dithering has the following two drawbacks:

➤➤ If you place a flat color next to a dithered color, you see where the change occurs (because
the dithered color consists of more than one color).

➤➤ It can result in some banding in colors. For example, when there is a smooth transition
between one color and another color (referred to as a gradient), many more than 256 shades
may be required to show the gradient. Therefore, dithering would be used, but the result
might be that the smooth gradient now looks like a series of stripes.

Figure 4-7 illustrates how even a simple gradient, when saved as a GIF, can result in banding because
the image contains more than 256 colors. The bottom part of this image zooms into an area of the
gradient where you can see that the gradient has vertical lines rather than a smooth transition from
black to white.

Figure 4-7

Choosing the Right image Format ❘ 89

Because GIFs support only 256 colors and must use dithering to achieve any further colors, they are
not suitable for detailed photographs, which tend to contain many more than 256 colors. If you have
a photograph, gradient, or any image with similar shades of the same color next to each other, you
are often better off using a JPEG, which can support unlimited colors, or sometimes a PNG—both
of which you’ll learn about shortly.

GIFs do have another handy feature: You can specify one or more colors in a GIF to represent a
transparent background—in parts of the image that are the specified colors, the background will
be allowed to show through.

This technique works best with images that have perfectly straight edges because when you have a
curved edge, an image editing program often anti-aliases the edge (use several shades) to make the
image look smooth, as shown in Figure 4-8.

Figure 4-8

However, in a transparent GIF each pixel is either on
or off, opaque or transparent—there are no degrees of
transparency. As a result, if you try to use it with curved
corners, the corners may appear pixelated. To help over-
come this problem, you should try to make the transpar-
ency color as close to the background color as possible.
(Or if you use Photoshop, you can use the matte feature.)

Figure 4-9 shows how a pixelated effect is created when
a GIF is not created on a suitable background. Notice
the lighter pixels around the corners in particular.

To make GIF files smaller, you can compress them using
a technique called LZW compression, which scans rows
of the image looking for consecutive pixels that share
the same color. When it comes across pixels that are the
same color, it indicates that from this point, x number
of pixels should be written using the same color. Figure 4-9

90 ❘ CHapTer 4 imageS, auDio, anD viDeo

LZW compression is known as a lossless compression technique because no data is lost; therefore,
there is no loss of quality. This is contrasted with lossy compression techniques where some of the
data is discarded during compression and therefore cannot be recovered from the compressed file.

animated giFs
GIF images can store more than one frame (or copy of the image) within a file, allowing the GIF
to rotate between the versions/frames and create a simple animation. It works in a similar way to a
flip-book animation, where the drawing on each page of the book changes slightly from the previous
one so that when a user flips the pages it looks as if the images are moving.

This works well if your animated image contains large areas of flat color because when the image is
compressed after the initial frame has been recorded, only the pixels that have changed need to be
stored with each subsequent frame. It is far less suitable, however, for photographic images because
many more of the pixels change, resulting in a large image.

NOTE It is also worth mentioning that attention-grabbing animated GIFs are
often frowned upon by professional web designers, who tend to use them only
sparingly.

Figure 4-10 shows you an animated GIF created in Adobe Image Ready. The window on the right
shows you that there are three dots on separate layers of the image. The window at the bottom shows
you that in frame 1 of the animation, only the bottom dot shows; in frame two, the bottom and middle
dots show; and in the third frame, all three dots show. Under each frame of the animation you can see
how long each frame should appear. (In each case it is 1 second.)

Figure 4-10

Choosing the Right image Format ❘ 91

Jpeg images
The JPEG image format was developed as a standard for storing and compressing images such as
photographs that use a wide range of colors. When you save a JPEG, you can usually specify by how
much, if at all, you want to compress the image—which depends upon the image quality you want.
The process to compress a JPEG involves discarding color data that people would not normally
perceive, such as small color changes. However, because the image format discards this data when
the image is compressed, some of the data is lost, and the original cannot be re-created from a com-
pressed version—hence it is known as lossy compression.

The amount of compression you apply will change from image to image, and you can judge how
much to compress a JPEG only by looking at it. Hence the size of the file varies depending upon how
much you compress the image. When you save the image, you are often asked for a percentage of
quality to be used; 100 percent does not compress the picture at all, and for a photo you can often get
down to approximately 60–70 percent (but not usually much lower). Some programs use words such
as excellent, very good, good, and so on instead of percentages to describe the image quality.

A good image-editing program enables you to compare the original image side by side with the com-
pressed version as you choose how much compression to add. Figure 4-11 shows you how Adobe
Photoshop enables you to compare two versions of the image next to each other as you prepare to
save the JPEG for the web. On the left, you have the original image, and on the right is the ver-
sion that it saves for use on the web. Photoshop also provides an estimated download time for the
graphic at that size, which can help you estimate how well it will work when it’s on the web.

Figure 4-11

Because the JPEG format was designed to work with photo-realistic images, it does not work so well
with images that have large amounts of flat color or high-contrast hard edges (such as lettering and
line drawings). As you increase compression in a JPEG, you may also see banding start to show in
colors that are similar.

92 ❘ CHapTer 4 imageS, auDio, anD viDeo

png images
The Portable Network Graphics format is the most recent format on the block. It was developed in the
late 1990s because the company that owns the patent for GIFs (Unisys) decided to charge companies
that developed software for creating and viewing GIFs a license fee to use the technology. Although
web designers and web surfers are not directly affected by this charge, the companies that make the
software they use are.

The PNG format was designed for the same uses as GIF images, but while it was created, the designers
decided to solve what they thought were some of the disadvantages with the GIF format. The result
is two types of PNG. The 8-bit PNG has the same limitations as an 8-bit GIF—only 256 colors, and
when transparency is used each pixel is either on or off. Then there is the enhanced PNG-24, a 24-bit
version, which has two major advantages:

➤➤ The number of colors available for use in an image is not restricted, so any color can be
included without losing any data.

➤➤ A map (like the lookup table that indicates the color of each pixel in GIFs) provides different
levels of transparency for every pixel, which allows for softer, anti-aliased edges.

Furthermore, all PNGs tend to compress better than a GIF equivalent. The PNG format was adopted
slowly because some older browsers did not fully support the format. Although basic support was
offered in early versions of browsers, some of the more advanced features took longer to be imple-
mented. For example, Internet Explorer was unable to deal with transparency correctly until version 7.
The story now is much different, with excellent support for PNGs across all the major browsers.

NOTE Unless you need to support those older browsers (and sometimes even
if you do because there are ways to mitigate the issues), PNG is the suggested
format for any of the uses described for both the PNG and GIF formats.

NOTE There are two PNG-based alternatives to animated gifs: Multiple-
image Network Graphics (MNG), (http://www.libpng.org/pub/mng/) and
Animated PNGs (APNG) (https://wiki.mozilla.org/APNG_Specification).
Unfortunately there is almost no support for MNGs, and only Opera 9+ and
Firefox 3+ support APNGs.

keeping File Sizes Small
You usually want to save the images for your site in the format that best compresses the image and
therefore results in a smaller file size. Not only can your pages load faster, but also you can save on
the charges to host your site.

Choosing the Right image Format ❘ 93

Usually one or another format will be the obvious choice for you. The rule of thumb is as follows:

➤➤ Use JPEGs for photo-realistic pictures with a lot of detail or subtle shade differences you
want to preserve.

➤➤ Use PNGs for images with flat color (rather than textured colors) and hard edges, such as
diagrams, text, or logos.

Look at the following images (see Figure 4-12)—one is a photograph of a cat, and the other is a
black-and-white cartoon.

Figure 4-12

Table 4-1 shows you the file size of each of these saved as an 8-bit PNG and as a JPEG (where the
JPEG is saved at 60 percent quality).

TaBLe 4-1: Size Comparison across Different Image Formats

iMage Jpeg png

Cat 72 .1 k 210 k

Cartoon 39 .3 k 22 .5 k

As you can see, the cartoon has areas of flat, plain color, whereas the photo of the cat uses lots of
different shades. Therefore, the cartoon is better suited to the GIF or PNG formats, whereas the
photo of the cat with all its shadows is suited better to the JPEG format.

NOTE Good image editing software is helpful if you use a lot of images on your site.
Adobe Photoshop is the most popular software used by professionals; although,
it is expensive. There is, however, a limited functionality version called Photoshop
Elements that includes many of the common features—including the Save for Web
options. Three other popular image-editing programs are Paint Shop Pro (available
from Corel at www.corel.com) and two free image-editing programs: One is called
Gimp (which you can download from www.gimp.org); the other is called Paint.net.
It’s unfortunate that it’s available only for Windows, but it offers a good alternative
if you’re on that platform.

94 ❘ CHapTer 4 imageS, auDio, anD viDeo

If you need to include many large, complex photographic images on your site, it’s good practice to
offer users smaller versions of the images when the pages first load and then add a link to the larger
version. These smaller images are often referred to as thumbnails, and you usually see them in image
galleries or on pages that contain summaries of information (such as the homepages of news sites and
pages that list several products, from which you link to a page with more detail and larger images).
Figure 4-13 shows you an example of using thumbnails in an image gallery. (The small images at the
bottom are smaller in physical size and file size than the counterparts that show at the top.)

Figure 4-13

When creating the smaller version, scale the image down in an image-editing program. Do not simply
alter the width and height attributes of the element because users still must download the
full-sized image even though they see only a smaller version of it. (The full-sized image takes longer
to download.) By creating a special thumbnail of any smaller images you use, your pages can load a
lot quicker.

Adding Flash, Video, and Audio to Your Web Pages ❘ 95

NOTE You may hear of a format called Vector format, which is more popular in
illustration and animation software. Flash and SVG employ vector graphics. Vector
formats store information in terms of coordinates, between which lines are drawn.
Inside these lines a colored fill may be specified. Because they are based on
coordinates, it is easy to increase the physical size of the image by increasing the
gap between each point that the coordinates are plotted against. SVG has long
suffered from issues with browser support, but with support in all major browsers
including Internet Explorer 9 and the demands of high-resolution monitors, SVG’s
time might finally be here. SVG isn’t covered in this book, but if you want to know
more about it, the WebPlatform SVG topic (http://docs.webplatform.org/wiki/
svg) is a good place to start.

adding FLaSH, Video, and audio To Your weB pageS

You spent the first half of the chapter looking at adding images to your web pages, and in the second
half of the chapter you look at adding video and audio to your pages. At one point this was relatively
straightforward. If you learned just a little bit about Adobe Flash, you could easily embed audio and
video on your pages, and that media would be available to the vast majority of Internet users.

Unfortunately, for people who make websites, this is no longer the case. With the explosive growth
of mobile devices and the lack of support for Flash on iOS (the operating system for Apple products)
adding audio and video to pages is a lot more complicated than it used to be.

The following section simplifies the issues as much as possible. The hope is that you can handle
the most common scenarios you’ll encounter. Reading this chapter won’t make you an expert on the
different ways video and audio on the Internet work, but you will have the foundation needed to get
up and running.

The basic approach these days is to serve video and audio to all modern browsers (the latest versions
of Chrome, Firefox, Internet Explorer, and Safari) using the new HTML5 <video> element and
then use Adobe Flash to serve video to users of Internet Explorer 8 or below. You’ll learn how to do
this later in this chapter. First, you learn about the most common example of embedding rich media
on the web today, using a third-party service such as YouTube. These companies take the business
of putting video on the web and make it as simple as possible, providing a simple interface to upload
video, hosting services for video content, and easy-to-use embed code. Under the hood, they use the
same techniques you’ll learn about later in the chapter; they just hide all the complexity from their
end users.

adding YouTube Movies to Your web pages
By far, the most common way to host and share video is with Google’s YouTube service. Whether
you upload your own content or want to share content from another YouTube user, the method to
embed the video is the same.

96 ❘ CHapTer 4 imageS, auDio, anD viDeo

YouTube has made it easy for users to embed the YouTube Player on their pages. This is done simply
by copying and pasting a line of code from the YouTube site into any web page; Figure 4-14 shows
you where to find this line of code.

Figure 4-14

Looking at it you see that it introduces a new element, the <iframe>. The <iframe> element doesn’t,
by itself, have anything to do with video. The <iframe>, or inline frame, is a special element that
enables you to embed another web page within a web page using the familiar src attribute. By embed-
ding the <iframe> from YouTube in a small corner of your site, you can always be sure to get the
latest content and code that YouTube offers. All it takes is to paste that small <iframe> code snippet
anywhere within the body of your page, and you have a world-class video solution.

Adding Flash, Video, and Audio to Your Web Pages ❘ 97

Here’s the code for this example (ch04_eg04.html):

<iframe width="420" height="315"
 src="http://www.youtube.com/embed/J---aiyznGQ"
 frameborder="0" allowfullscreen></iframe>

If you decide to take advantage of YouTube or another similar service, this simple example is all you
need to build off to handle serving video to the widest possible audience with the minimum amount
of fuss.

That said, it’s not always possible or preferable to host video with a service such as YouTube. In a
situation like that it helps to understand how to embed video intelligently. To do this you must learn
about two new elements: <object> and <video>. In addition, to share audio files in the same way
you would share <video>, you must learn about the <audio> element.

adding rich Media with the <audio> and <video> elements
Any rich media solution for the modern web starts with the new <audio> and <video> elements,
which work similarly, so many of the lessons you learn about one applies to the other. You focus
mostly on <video> in this section, but you see an example of <audio> in action as well.

<video> is designed to work just like the element you learned about earlier in this chapter. The
most basic usage is a <video> element with src, height, and width attributes (ch04_eg05.html). As
a note, this and the following examples in this section work only in Internet Explorer 9, Chrome, and
Safari. You learn why that is in the upcoming section on containers and codecs.

<video width="720" height="480" src="central.mp4">

In addition to the global attributes, <video> supports the following attributes:

poster preload autoplay mediagroup loop muted
controls crossorigin

With the exception of the crossorigin attribute that you learn about when you explore JavaScript
and Ajax in Chapter 12, “jQuery: Beyond the Basics,” the following section introduces these attributes
with simple examples.

Controlling Playback with the preload, autoplay, loop, and muted Attributes
These four attributes set parameters for how the video should behave without user interaction. All
these are boolean attributes.

The preload attribute indicates that the browser should begin to download the video referenced in
the src attribute even before the user presses Play. The preload attribute is defined in the specifica-
tion as a “hint.” This means browser vendors can decide in certain situations, for example, on a
mobile device, to ignore this attribute (ch04_eg06.html).

<video width="720" height="480" src="video/central.mp4" preload>

98 ❘ CHapTer 4 imageS, auDio, anD viDeo

The autoplay attribute indicates whether the video should automatically play when the page is
loaded. Unless you have an extremely well-thought-out reason for doing this, don’t. Let your site
visitors choose when to play your video (ch04_eg07.html).

<video width="720" height="480" src=" video/central.mp4" autoplay>

loop, as the name implies, indicates that the browser should start the video over when playback is
complete (ch04_eg08.html).

<video width="720" height="480" src=" video/central.mp4" loop>

muted indicates whether the video player should play the associated audio track (ch04_eg09.html).

<video width="720" height="480" src=" video/central.mp4" muted>

Using the poster Attribute to Customize the initial Frame
The poster attribute defines an image used as a placeholder until the video plays. If there is no
poster attribute defined, the first frame of the video is used as the poster (ch04_eg10.html).

<video width="720" height="480" src=" video/central.mp4" poster="central.jpg">

Adding Video Playback Controls with the controls Attribute
If you’ve ever used a stereo with physical knobs and buttons, an MP3 player, the music player
on your smartphone, or a video player on your desktop, you’re familiar with playback controls.
The boolean controls attribute indicates whether the browser should include playback controls.
Figure 4-15 illustrates two <video> elements, one with the controls attribute and the other with-
out (ch04_eg11.html).

<video width="720" height="480" src=" video/central.mp4" controls>

Figure 4-15

Adding Flash, Video, and Audio to Your Web Pages ❘ 99

adding audio to Your web pages using the <audio> element
As you learned, the <audio> element works the same way as the <video> element. As the following
code sample (ch04_eg12.html) shows, an <audio> element and an src attribute are enough to get
audio onto your pages.

<audio src="audio/pink_noise.mp3">

<audio> also supports the following attributes that you learned about earlier in the chapter:

crossorigin preload autoplay loop muted controls

on Containers and Codecs
There are actually two reasons video on the web is complicated these days. The first is limited
Flash support on mobile devices. The other is because of the tricky case of containers and codecs.
Disputes about containers and codecs are why the examples in this section work only in a subset
of modern browsers.

Without going into too much detail, containers can be thought of as file formats designed to hold
other stuff (in this case video or audio). Codecs are coding/decoding systems that translate the 1s
and 0s of binary data into something you can hear and see. The combination of a container such as
MPEG Layer 4 (the .mp4 files you’ve seen in the video examples so far in this chapter) and a codec
such as h.264 defines the kind of rich media files you see on the web.

This isn’t the sort of thing the average web author should worry about. You should just create a
great video and share it with the world. Unfortunately, for political, sociological, and business rea-
sons, this isn’t the case. It’s getting better, and perhaps at some point in the future (maybe by the
time you read this) it will be solved. The issue is that, for a long time, there was a divide between
two different camps about which container/codec combination would be best for the future of the
web. The divide was between Apple and Microsoft standing firmly behind the patent-encumbered
h.264 and MPEG4, and Google, Opera, and Mozilla backing free, open, and royalty-free video
formats such as WebM or OGG/Theora.

On the audio front, the story was similar with Microsoft and Apple standing behind the ubiquitous
MP3 format and Firefox and Opera backing OGG/Vorbis.

In March 2012, after a long stalemate Mozilla backed down and decided to support h.264, but as of
this writing that support is still unscheduled.

So, for now, Mozilla’s Firefox does support the <video> and <audio> elements, just not with the
most common formats.

The next section shows you how to embed Flash movies. Although Flash isn’t nearly as important as
it once was, it still comes up and is a key component to cross-browser web video, so you must have a
basic understanding of how it works.

100 ❘ CHapTer 4 imageS, auDio, anD viDeo

adding Flash Movies to Your web pages
Flash started as a way to add animations into web pages but quickly evolved to offer a high level of
interactivity and the capability to deal with images, audio, and video. The momentum that Flash
enjoyed for many years may have been dulled by Apple’s refusal to add support for Flash to iOS, but
it still remains a popular way to add audio and video to web pages and is a required technology to
provide the broadest possible support for video in all browsers.

Most Flash files are created using the Flash authoring environment, which Adobe charges for. A lot
of sites offer tools such as MP3 players, video players, slideshows, and more, all written in Flash,
which you can use on your site without purchasing a copy of Flash authoring program. Although
creating your own Flash files from scratch is beyond the scope of this book, you see how to include
in your HTML pages Flash files that have already been written.

If you work on a project using the Flash authoring tool, your projects will be saved with the .fla file
extension. (And they are commonly referred to as FLA files.) But before you can use such a file on the
web, you must export it in the .swf format. When files have been exported into the .swf format, they
go by one of two names, either SWF (sometimes pronounced “swiff”) files or Flash movies. (Rather
confusingly, they can be called Flash movies even if they do not contain any video.)

With the exception of Chrome, which ships with Flash built directly into the browser, the major
browsers don’t play SWF files by themselves; rather, they rely on a free plug-in called the Flash
Player. The Flash Player is often pre-installed on computers, but it can also be downloaded from
the Adobe.com website.

Now briefly recap what you have learned about Flash because there was quite a lot to take in:

➤➤ You pay for the Flash authoring environment that enables you to create and edit FLA files.
These files are saved with the .fla file extension.

➤➤ When you want to use Flash files on the web, you export them to SWF files or Flash movies.
These files have the .swf file extension.

➤➤ Except for Chrome, the free Flash Player plug-in needs to be installed for the browser to play
the SWF files.

Now look at the code used to add Flash to a page. It uses the <object> element and several child
<param> elements to indicate different characteristics of the movie to the browser (ch04_eg13.html).

 <object width="550" height="400">
 <param name="allowScriptAccess" value="always" />
 <param name="allowFullScreen" value="false" />
 <param name="movie" value="flash/this-changes-everything.swf" />
 <param name="loop" value="false" />
 <embed src="flash/this-changes-everything.swf" loop="false"
 allowScriptAccess="sameDomain"
 allowFullScreen="false" width="550" height="400" />
 </object>

On the opening <object> tag, you can see that the width and height attributes specify the size of
the Flash movie. These behave just like the width and height attributes on the element, indi-
cating how much space this item needs.

Adding Flash, Video, and Audio to Your Web Pages ❘ 101

Inside the <object> element, you can see four <param> elements, each of which has a name and
value attribute:

➤➤ The first indicates that a movie is to be loaded, along with the URL for the movie.

➤➤ The second indicates whether the player should allow the user to view the movie in full-
screen mode.

➤➤ The third is a special property, which, in this case, is used to ensure that the Flash movie can
be played from different websites.

➤➤ The fourth indicates whether the movie should return to the beginning and start over when
playback is completed.

These parameters are specific to this example and do not necessarily apply to all Flash movies.
Other parameters may be specific to a version of Flash; for example, the ability to show full-screen
Flash movies was introduced in Flash 9, which was released in 2006.

For compatibility reasons, an <object> element often contains an <embed> element, and this is no
exception. You may have noticed that the <embed> element does not contain any <param> elements;
rather, it uses attributes on the opening tag to provide the same information. The first attribute is
an src attribute—just like the one used on the element indicating where to find the Flash file.
This is followed by a type attribute indicating that the file is a Flash movie. The next three attri-
butes match the <param> elements you just met. The last two, width and height, specify the size of
the Flash movie.

For several years, the standard is to use JavaScript to include Flash movies in pages, rather than
the <object> and <embed> elements. This is true of both the web development community and the
Adobe authoring environment.

When adopting this technique, you create the page using a <div> element to hold the Flash movie,
and you should use CSS to make sure that the <div> element is the same width and height as the
SWF file you want to include. (You learn how to set the size of a <div> element in Chapter 7.) This
<div> element should also have an id attribute to uniquely identify that element.

Inside that <div> element you can use text and images that will be shown to users who do not have
Flash installed.

A JavaScript is then added to the page; this script checks whether the browser has Flash Player installed.
If it is installed, the JavaScript replaces the content of the specified element <div> with the SWF file.

The JavaScript checks not only that the user has Flash Player installed but also that it is the required
version. As you might have guessed, over the years there have been several versions of Flash, and the
latest versions have new and improved features. But not everyone has the latest version of the plug-in,
and if a browser does not have the minimum version required to play the SWF file, the JavaScript will
not attempt to load the Flash, leaving behind the content of the <div> element.

The most popular script for this is called SWFObject, which you can download from http://code
.google.com/p/swfobject/. You do not need any experience with JavaScript to use this technique.

102 ❘ CHapTer 4 imageS, auDio, anD viDeo

Now look at an example; load exactly the same Flash movie that you saw in the previous example,
but this time use SWFObject (version 2.2) to include it in the page (ch04_eg14.html):

<!DOCTYPE html>
<html >
 <head>
 <meta charset="utf-8">
 <title>Adding a flash movie with SWF Object</title>
 </head>
 <body>

 <div id="flash_movie">This element can contain content
 that search engines can index, and which is helpful to
 those who do not have Flash installed.</div>
 <script type="text/javascript" src="swfobject.js"></script>
 <script type="text/javascript">
 swfobject.embedSWF("flash/this-changes-everything.swf",
 "flash_movie", "550", "400", "8.0.0");
 </script>
 </body>
</html>

Although the code is quite different, in the browser this example looks just like the previous one.
The only difference is the title of the page indicates that it has been written using SWFObject.

In this example, the <div> element carries an id attribute with a value of “flash_movie”. (The id
attribute is used to uniquely identify an element within a web page.) It is this element that will be
replaced with the Flash movie if the user has the appropriate version of Flash Player installed.

At the bottom of the page, you can see two <script> elements. The first includes a separate
JavaScript file whose location is specified using the src attribute (just as the src attribute on an
image specifies where the image can be found):

<script type="text/javascript" src="swfobject.js"></script>

As you can see, it loads a file called swfobject.js, and it is this file that does most of the work.
You do not need to understand the content of this file or how it works, but if you are curious, you
can have a look at it in a text editor or any HTML editing tool. The second <script> element calls
the script included in the previous line and tells it five things so that it can do its job:

<script type="text/javascript">
 swfobject.embedSWF("flash/this-changes-everything.swf", "flash_movie",
 "550", "400", "8.0.0");
 </script>

The five parameters passed in are shown in bold:

➤➤ “flash/this-changes-everything.swf” is the location of the Flash movie to be played.

➤➤ “flash_movie” is the value of the id attribute of the element that is to be replaced.

➤➤ “550” indicates the width of the movie in pixels.

➤➤ “400” indicates the height of the movie in pixels.

➤➤ “8.0.0” is the minimum version of Flash Player required to play the movie.

Adding Flash, Video, and Audio to Your Web Pages ❘ 103

This approach has two additional advantages not mentioned yet:

➤➤ It is considered to be better for search engines. Because search engines cannot index Flash
content well, they see the HTML content that would have been replaced.

➤➤ It is also considered good for accessibility purposes, because if users have disabled Flash,
there is alternative content for them.

As already mentioned, there are several places where you can download Flash movies that you can
use on your own sites (without necessarily using the Flash authoring tool). A good starting place is
http://ActiveDen.net/, which features works by many authors.

Now that you know about both the <video> element and Flash, it’s time to put them together to
create your own cross-browser video solution.

Cross-Browser Video—using Video for everybody
Although you should definitely look to leverage third-party services if you’re interested in serving
video to the largest possible audience with the smallest amount of effort, there are times when you
want to serve video on your own terms.

The simplest approach to this is with a clever markup pattern called Video for Everybody
(http://camendesign.com/code/video_for_everybody). Video for Everybody defines a
pattern that uses the HTML5 <video> element wrapped around a Flash movie in a way that
automatically chooses the appropriate method to play the video. The basic pattern is a <video>
element with one or more <source> child elements. <source> elements work like the src attri-
bute you’re familiar with—directing the browser to a video resource. The only difference is that
they can be combined with other <source> elements to give the browser multiple options for
playback content. After the <source> elements, a Flash video player or Flash movie is included
to handle the fallback for older versions of Internet Explorer.

An example would look like the following code (ch04_eg15.html). This version has three <source>
elements, one containing an MP4 (for Internet Explorer 9+, Safari, Chrome, and Mobile Safari),
webm (a higher quality option available to Firefox and Opera), and ogv (an option available for
older versions of Firefox). It then falls back to a Flash movie for older versions of Internet Explorer.

<video width="720" height="480" controls>
 <source src="video/central.mp4" type="video/mp4" />
 <source src="video/central.webm" type="video/webm" />
 <source src="video/central.ogv" type="video/ogg" />
 <object width="720" height="480"
 type="application/x-shockwave-flash"
 data="video/central.swf">
 <param name="movie" value="video/central.swf" />
 </object>
</video>
<p> Download Video:
 "MP4"
"Ogg"
</p>

104 ❘ CHapTer 4 imageS, auDio, anD viDeo

It takes some effort to encode video in more than one format, and having four copies of a video
adds significantly to the amount of storage needed for a site’s video assets. For these reasons and the
simplicity of the code needed, it’s much easier at this time to use a third-party service. These services
will take care of the different browsers and encoding and hosting the various formats. That said, if
you need to host you own video, this is the pattern to use.

Cross-browser audio can be handled in a similar manner to the Video for Everybody pattern. The fol-
lowing code sample (ch04_eg16.html) shows an <audio> element with two separate child <source>
elements pointing to an MP3 (Chrome, Internet Explorer 9+, Safari) and an OGG/Vorbis file (Firefox,
Opera). In addition, a simple Flash-based MP3 player called Dewplayer is used to provide a fallback for
Internet Explorer 8 and below. To use Dewplayer, you need to pass the MP3 filename as a query param-
eter and Dewplayer takes care of the rest, serving audio in pretty much any browser that matters.

<audio controls>
 <source src="audio/pink_noise.mp3" type="audio/mp3" >
 <source src="audio/pink_noise.ogg" type="audio/ogg" >
 <object data="flash/dewplayer.swf?mp3=audio/pink_noise.mp3"
 width="200" height="20" id="dewplayer">
 <param name="wmode" value="transparent">
 <param name="movie"
 value="flash/dewplayer.swf?mp3=audio/pink_noise.mp3">
 </object>
</audio>

Video Size
When showing any video, you need to be aware of the physical size at which you are showing the
video. It might be nice to show the video as large as possible, but the larger the video, the larger
the file size, and big files can be an issue for a couple of reasons:

➤➤ The smaller the file, the faster it downloads. Users are less likely to watch videos that take a
long time to download, or keep pausing when the viewer tries to watch them.

➤➤ The bigger the file, the more bandwidth you use. (Bandwidth is the total size of files sent to
visitors to your site.) Because companies that host websites often charge for bandwidth, you
could end up with large bills if your video is popular. This is another reason why many people
host their videos on sites such as YouTube—not only is it easy to upload video content and
put it on your page, but it is also cheaper.

So there is always a balancing act between having a video big enough to show people what you
want them to see and having one not so big that it will not play smoothly on the average broadband
connection.

If you have a long video, you might also want to consider splitting it into sections. By doing this you
are less likely to pay for viewers to download an entire video that they may not watch to the end.

a Closer Look at the <object> and <param> elements
Now that you have seen several examples of how to add rich media to your web pages, this chapter
finishes with a closer look at the <object> and <param> elements in the same way previous chapters
covered the syntax of other elements.

Adding Flash, Video, and Audio to Your Web Pages ❘ 105

The <object> element can carry all the universal attributes and the following attributes:

data height width
tabindex usemap

Take a look at each of these, although the ones you most commonly use are the classid attribute, the
type attribute, and the id attributes (discussed in Chapter 1, “Structuring Documents for the Web”).

The data Attribute
If the object has a file to process or play, the data attribute specifies the URL for that file. For example,
here is a URL to an MP3:

data="http://www.example.com/mp3s/newsong.mp3"

This is similar to the src attribute used on the element, and the value can be a relative URL.

The height and width Attributes
The height and width attributes specify the height and width of an object. The values should be in
pixels or a percentage of the containing element. They are treated just like height and width attributes
of the element. The use of these attributes should make the page load faster because the browser
can lay out the rest of the page without completely loading the object.

The tabindex Attribute
The tabindex attribute indicates the tab index of the object within a page. Tabbing order is discussed
in Chapter 5, “Tables.”

The usemap Attribute
The usemap attribute indicates that the object is an image map containing defined areas that are
hyperlinks. Its value is the map file used with the object. It can be a complete URL to an external
file or a reference to the value of an inline <map> element’s name attribute.

The <param> element
The <param> element is used to pass parameters to an object. The kinds of parameters an object
requires depend upon what the object does; for example, if an object has to load a Flash MP3 player
into the page, you will probably need to specify where the MP3 file can be found. Alternatively, if
you add a video to a page, your object might allow you to tell it whether to automatically play the
video when the page loads or whether to wait for the user to press a Play button for it to start.

In addition to the universal attributes and basic events, the <param> element can carry the following
attributes:

name value

106 ❘ CHapTer 4 imageS, auDio, anD viDeo

The name and value attributes act as a name/value pair (rather like attributes themselves). The name
attribute provides a name for the parameter you pass to the application, whereas value gives the
value of the parameter.

Here are a couple of examples taken from a QuickTime movie. The first parameter indicates the
source of the file loaded to play, whereas the second indicates that the movie should start playing
automatically as it loads (without the user having to start it):

<param name="src" value="movieTrailer.mov" >
<param name="autoplay" value="true" >

If you work with a Java applet, you could use the name and value attributes to pass values into a
method.

SuMMarY

In this chapter, you learned how to make your pages look more exciting by adding images and other
multimedia objects.

Images can add life to a page, but they can also increase the time it takes to load a page. Therefore,
it pays to save any images you want to show on the web in JPEG, GIF, or PNG formats, which com-
press well (creating smaller files) while retaining quality.

The GIF and PNG formats are the formats of choice for images with flat colors, whereas JPEGs are
better for photographic images and graphics with gradients of the same color.

When looking at images, you also learned how to make image links, and how to create an image
map, which divides an image into separate parts that you can click.

Then, you saw how to add video and audio to your site. You learned that the easiest way to do this
is to leverage a third-party service such as YouTube.

You also learned about Flash and how to combine <video> with Flash to serve video to a wide
audience using the Video for Everybody pattern.

Now you should be well equipped to add images and rich media to your pages to make them look
appealing and attract more visitors.

exerCiSeS

 1 . Add the images of icons that represent a diary, a camera, and a newspaper to the following example .

All the images are provided in the images folder in the download code for Chapter 4 .

<h1>Icons</h1>
<p>Here is an icon used to represent a diary.</p>

<p>Here is an icon used to represent a picture.</p>
Camera image goes here

Summary ❘ 107

<p>Here is an icon used to represent a news item.</p>
Newspaper image goes here

Your finished page should resemble Figure 4-16 .

Figure 4-16

 2 . Look at the images shown in Figures 4-17 and 4-18 to decide whether you are more likely to get

smaller file sizes and better quality images if you save them as PNGs or JPEGs .

Figure 4-17

108 ❘ CHapTer 4 imageS, auDio, anD viDeo

Figure 4-18

 3 . Go through the files for the sample application and replace the main heading with the logo on

each page . On every page except for the homepage, make sure that the image links back to the

index.html page .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 109

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

The
element

The img element is a replaced element that enables you to insert image files

directly into your pages .

File formats Use JPGs for photographs and PNGs for images with a limited number

of colors .

The <audio> and

<video> elements

Insert audio and video files into your pages with these replaced elements .

Flash Flash is a proprietary technology from Adobe that enables you to embed

animations and rich media in older browsers .

Tables

wHaT You wiLL Learn in THiS CHapTer

➤➤ What are tables and how are they used in HTML

➤➤ Basic table elements and attributes

➤➤ How to create accessible tables

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 5 down-
load and individually named according to the names throughout the chapter.

Tables display information in rows and columns; they are commonly used to display all
manner of data that fits in a grid such as train schedules, television listings, financial
reports, and sports results. In this chapter, you learn when to use tables and the markup
that you need to create them.

To begin this chapter, you look at some examples of tables and then quickly move to the
basic elements used to create them. Having learned the basics, you can then learn some of
the more advanced features of tables such as adding captions and headings and achieving
more complicated table layouts. The chapter ends with a discussion of accessibility issues
that relate to tables, because you must understand how a screen reader would read the con-
tents of a table for users with visual impairments.

inTroduCing TaBLeS

To work with tables, you need to start thinking in grids, so start by looking at some examples
of how popular websites use tables.

5

112 ❘ CHapTer 5 tabLeS

Figure 5-1 shows the NFL website, which has the standings for each team in a table. You can see
a list of teams on the left, and for each team there are columns providing different stats, including
number of games won, lost, or tied.

Figure 5-1

Figure 5-2 shows the Bloomberg website, which displays major stock markets. In this case, there are
tables for different regions around the world. (You can see North and Latin America as the first region,
followed by Europe, Africa, and the Middle East.) Each table contains the major indexes trading in that
region down the left side, followed by columns that show the current value, fluctuations in values, and
date/time of the stats.

introducing Tables ❘ 113

Figure 5-2

Figure 5-3 shows the website for the Heathrow Express, a train between Central London and
London’s Heathrow Airport. The tables on this page show the times that the trains run.

In Figure 5-4, you can see The New York Times website. On this page, the tables provide television
listings.

These examples give you a better idea of what a table is and when you might want to use one. Not
every website that displays stock market data or television listings should use a table—rather you con-
sider using a table when you need to display information that sits well in a grid of rows and columns.
If you look at a web page and want to know whether that page uses a table to control how the data is
laid out, you can always look at the source for that page and look for the elements you read about in
this chapter.

114 ❘ CHapTer 5 tabLeS

Figure 5-3

You can think of a table as being similar to a spreadsheet because it is made up of rows and columns,
as shown in Figure 5-5.

Here you can see a grid of rectangles. Each rectangle is known as a cell. A row consists of a set
of cells on the same line from left to right, and a column consists of a line of cells going from top
to bottom.

Now look at an example of a basic HTML table so that you can see how it is created (see
Figure 5-6).

introducing Tables ❘ 115

Figure 5-4

You create a table in HTML using the <table> element. Inside the <table> element, the table is
written out row by row. A row is contained inside a <tr> element, which stands for table row. Each
cell is then written inside the row element using a <td> element, which stands for table data.

Following is the code used to create this basic table (ch05_eg01.html):

<table border="1">
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>

116 ❘ CHapTer 5 tabLeS

 <td>Row 2, Column 2</td>
 </tr>
</table>

COLUMN 1

ROW 1

COLUMN 2

ROWS

CO
LU

M
N

S

ROW 1

COLUMN 3

ROW 1

COLUMN 4

ROW 1

COLUMN 1

ROW 2

COLUMN 2

ROW 2

COLUMN 3

ROW 2

COLUMN 4

ROW 2

COLUMN 1

ROW 3

COLUMN 2

ROW 3

COLUMN 3

ROW 3

COLUMN 4

ROW 3

COLUMN 1

ROW 4

COLUMN 2

ROW 4

COLUMN 3

ROW 4

COLUMN 4

ROW 4

COLUMN 1

ROW 5

COLUMN 2

ROW 5

COLUMN 3

ROW 5

COLUMN 4

ROW 5

Figure 5-5

When writing code for a table in a text editor, you should
start each row and cell on a new line and indent table cells
inside table rows as shown. If you use a web page authoring
tool such as Dreamweaver, it probably automatically indents
the code for you.

Many web page authors find it particularly helpful to indent
the code for a table because leaving off just one tag in a table
can prevent the entire table from displaying properly. Indenting
the code makes it easier to keep track of the opening and clos-
ing of each element.

Take a look at the same code again. This time, it has not been split onto separate lines or indented,
which is much harder to read.

<table border="1"><tr><td>Row 1, Column 1</td><td>Row 1, Column 2</td></tr><tr>
<td>Row 2, Column 1</td><td>Row 2, Column 2</td></tr></table>

All tables follow this basic structure; although additional elements and attributes enable you to con-
trol the presentation of tables. If a row or column should contain a heading, use a <th> element in

Figure 5-6

introducing Tables ❘ 117

place of the <td> element for the cells that contain a heading. By default, most browsers render the
content of a <th> element in bold text.

WARNING Each cell must be represented by either a <td> or a <th> element for
the table to display correctly, even if there is no data in that cell.

Now take a look at a slightly more complicated table (see Figure 5-7). This time the table includes
headings. In this example, the table shows a financial summary for a small company.

Figure 5-7

Here is the code used to create this table (ch05_eg02.html):

<table border="1">
 <tr>
 <th></th>
 <th>Outgoings ($)</th>
 <th>Receipts ($)</th>
 <th>Profit ($)</th>
 </tr>
 <tr>
 <th>Quarter 1 (Jan-Mar)</th>
 <td>11200.00</td>
 <td>21800.00</td>
 <td>10600.00</td>
 </tr>
 <tr>
 <th>Quarter 2 (Apr-Jun)</th>
 <td>11700.00</td>
 <td>22500.00</td>
 <td>10800.00</td>
 </tr>
 <tr>
 <th>Quarter 3 (Jul - Sep)</th>
 <td>11650.00</td>
 <td>22100.00</td>
 <td>10450.00</td>
 </tr>

118 ❘ CHapTer 5 tabLeS

 <tr>
 <th>Quarter 4 (Oct - Dec)</th>
 <td>11850.00</td>
 <td>22900.00</td>
 <td>11050.00</td>
 </tr>
</table>

The first row is made entirely of headings for outgoings, receipts, and profit. The top-left cell in
Figure 5-7 is empty; in the code for the table; you still need an empty <td> element to tell the browser
that this cell is empty. (Otherwise it has no way to know that there is an empty cell.)

In each row, the first cell is also a table heading cell (indicated using a <th>), which states which
quarter the results are for. Then the remaining three cells of each row contain table data contained
inside the <td> elements.

The figures showing the profit (in the right column) are contained within a element, which
shows the profit figures in a bold typeface. This demonstrates how any cell can contain all manner
of markup. The only constraint on placing markup inside a table is that it must nest within the table
cell element (whether a <td> or a <th> element). You cannot have an opening tag for an element
inside a table cell and a closing tag outside that cell—or vice versa.

When creating tables, many people do not actually bother with the <th> element and instead use the
<td> element for every cell—including headers. You should, however, aim to use the <th> element
whenever you have a table heading. This is especially true when you use the scope attribute (which
you learn about in the next section, “Basic Table Elements and Attributes”), as it is valid only for
<th> elements.

NOTE As you can see from the examples so far in this chapter, tables can take
up a lot of space and make a document longer, but clear formatting of tables
makes it much easier to see what is going on in your code. No matter how
familiar the code looks when you write it, you will be glad that you made good
use of structure if you have to come back to it a year later. Most good code
editors have the option to format HTML automatically. No matter what code
editor you use, you should familiarize yourself with the tools available to auto-
matically format code for you.

BaSiC TaBLe eLeMenTS and aTTriBuTeS

Now that you’ve seen how basic tables work, this section describes the elements in a little more
detail, introducing the attributes they can carry. Some of the attributes enable you to create more
sophisticated table layouts. Skim through this section quickly; when you know what you can do
with the markup, you can always come back again and study the markup closely to see how to
achieve what you want.

Basic Table elements and Attributes ❘ 119

The <table> element Creates a Table
The <table> element is the containing element for all tables. It can carry the following attributes:

➤➤ All the universal attributes

➤➤ Basic event attributes for scripting

The dir Attribute
The dir attribute is supposed to indicate the direction of text used in the table. Possible values are
ltr for left to right text and rtl for right to left (for languages such as Hebrew and Arabic):

dir="rtl"

If you use the dir attribute with a value of rtl on the <table> element, the cells appear from the
right first, and each consecutive cell is placed to the left of that one.

The <tr> element Contains Table Rows
The <tr> element contains each row in a table. Anything appearing within a <tr> element should
appear on the same row.

The <td> and <th> elements Represent Table Cells
Every cell in a table is represented by either a <td> element for cells containing table data or a <th>
element for cells containing table headings.

By default, the contents of a <th> element usually display in a bold font, horizontally aligned in the
center of the cell. The content of a <td> element, meanwhile, usually displays left-aligned and not in
bold (unless otherwise indicated by CSS or another element).

The <td> and <th> elements can both carry the same set of attributes, and the attribute applies only
to that one cell carrying it. Any effects these attributes have override settings for the table as a whole
or any containing element (such as a row).

In addition to the universal attributes and the basic event attributes, the <td> and <th> elements can
also carry the following attributes:

colspan headers
 rowspan

<th> elements can also carry the scope attribute.

The colspan Attribute
Use the colspan attribute when a cell should span across more than one column. The value of the
attribute specifies how many columns of the table a cell spans across. (See the section “Spanning
Columns Using the colspan Attribute.”)

colspan="2"

120 ❘ CHapTer 5 tabLeS

The headers Attribute
The headers attribute indicates which headers correspond to that cell. The value of the attribute is a
space-separated list of the header cells’ id attribute values:

headers="income q1"

The main purpose of this attribute is to support voice browsers. When a table is read to you, it can
be hard to keep track of which row and column you are on; therefore, the header attribute reminds
users which row and column the current cell’s data belongs to.

The rowspan Attribute
The rowspan attribute specifies the number of rows of the table a cell spans across, the value of
the attribute being the number of rows the cell stretches across. (See the example in the section
“Spanning Rows Using the rowspan Attribute.”)

rowspan="2"

The scope Attribute
You can use the scope attribute to indicate which cells the current header provides a label or header
information for. You can use it instead of the headers attribute in basic tables, but it does not have
much support.

scope="range"

Table 5-1 shows the possible values of the attribute.

TaBLe 5-1: Possible Values for the scope Attribute

VaLue purpoSe

row Cell contains header information for that row .

col Cell contains header information for that column .

rowgroup Cell contains header information for that rowgroup (a group of cells in a row

created using the <thead>, <tbody>, or <tfoot> elements) .

colgroup Cell contains header information for that colgroup (a group of columns created

using the <col> or <colgroup> element, both of which are discussed in the

section “Grouping Sections of a Table”) .

Creating a Basic Table
Now that you’ve learned the basic elements and attributes of tables, you can create a table display-
ing information concerning the hours of operation of the Example Café.

Basic Table elements and Attributes ❘ 121

TrY iT ouT An Opening Hours Table

In this example, you create a table that shows the opening hours of the Example Café website you have
been working on throughout the book. The table looks like the one shown in Figure 5-8.

Figure 5-8

 1 . Open the contact.html file in your text or HTML editor and add a table to show serving hours
beneath the e-mail link.

 2 . The table is contained within the <table> element, and its content is then written out a row at a
time. The table has three rows and eight columns.

Starting with the top row, you have eight table heading elements. The first <th> element is empty
because the top-left corner cell of the table is empty. The next seven elements contain the days of
the week.

In the second row of the table, the first cell acts as a heading for that row, indicating the meal
(breakfast). The remaining cells show what times these meals are served. The third row follows
the same format as the second row but shows times for lunch.

<table>
 <tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
 <th>Saturday</th>
 <th>Sunday</th>
 </tr>
 <tr>
 <th>Breakfast</th>
 <td>7:00am - 10:00am</td>
 <td>7:00am - 10:00am</td>

122 ❘ CHapTer 5 tabLeS

 <td>7:00am - 10:00am</td>
 <td>7:00am - 10:00am</td>
 <td>7:00am - 11:00am</td>
 <td>8:00am - 11:30pm</td>
 <td>8:00am - 11:30pm</td>
 </tr>
 <tr>
 <th>Lunch</th>
 <td>11:30am - 2:30pm</td>
 <td>11:30am - 2:30pm</td>
 <td>11:30am - 2:30pm</td>
 <td>11:30am - 2:30pm</td>
 <td>11:30am - 2:30pm</td>
 <td>11:30am - 3:30pm</td>
 <td>11:30am - 3:30pm</td>
 </tr>
</table>

As long as you accept that each row is written out in turn, you should have no problem creating
quite complex tables.

 3 . Save your file as contact.html.

How It Works

As you learned, the <table> element represents a grid of information. The <table> element serves as
a container for the rows of data, represented by the <tr> elements. The <tr> elements, in turn, contain
the tabular data contained in the <td> elements. Following this simple pattern you can build out large
grids of data or information easily.

adding a CapTion To a TaBLe

Whether your table shows results for a scientific experiment, values of stocks in a particular market,
or what is on television tonight, each table should have a caption so that visitors to your site know
what the table is for.

Even if the surrounding text describes the content of the table, it is good practice to give the table a
formal caption using the <caption> element. By default, most browsers display the contents of this
element centered above the table, as shown in Figure 5-10 in the next section.

The <caption> element appears directly after the opening <table> tag; it should come before the
first row:

<table>
 <caption> Opening hours for the Example Cafe</caption>
 <tr>

By using a <caption> element, rather than just describing the purpose of the table in a previ-
ous or subsequent paragraph, you are directly associating the content of the table with this

grouping Sections of a Table ❘ 123

description—and this association can be used by screen readers and by applications that process
web pages (such as search engines).

grouping SeCTionS oF a TaBLe

In this section, you look at some techniques that enable you to group together cells, rows, and
columns of a table, and learn the advantages that doing this can bring. In particular, you see how
to do the following:

➤➤ Use the rowspan and colspan attributes to make cells stretch over more than one row
or column.

➤➤ Split a table into three sections: a head, body, and foot.

➤➤ Group columns using the <colgroup> element.

➤➤ Share attributes between unrelated columns using the <col> element.

Spanning Columns using the colspan attribute
As you saw when looking at the <td> and <th> elements, both can carry an attribute called colspan
that enables the table cell to span (or stretch) across more than one column.

Figure 5-9 shows a table that has three rows; the cells of the table are shaded to illustrate the colspan
attribute in action:

➤➤ The first row has three columns of equal width, and there is one cell for each column.

➤➤ In the second row, the first cell is the width of one column, but the second cell spans the
width of two columns.

➤➤ The third row has just one cell that spans all three columns.

Figure 5-9

124 ❘ CHapTer 5 tabLeS

Now take a look at the code for this example to see how the colspan attribute is used. This exam-
ple also uses CSS classes (which you’ll learn how to define in Chapter 7, “Cascading Style Sheets”)
to illustrate a point visually (ch05_eg03.html):

<table>
<caption>Spanning columns using the colspan attribute</caption>
 <tr>
 <td class="one"> </td>
 <td class="two"> </td>
 <td class="three"> </td>
 </tr>
 <tr>
 <td class="one"> </td>
 <td colspan="2" class="two"> </td>
 </tr>
 <tr>
 <td colspan="3" class="one"> </td>
 </tr>
</table>

In the first row, you can see that there are three <td> elements, one for each cell.

In the second row, there are only two <td> elements, and the second of these elements carries a
colspan attribute. The value of the colspan attribute indicates how many columns the cell should
stretch across. In this case, the second cell spans two columns; therefore, it has a value of 2.

In the final row, there is just one <td> element, and this time the colspan attribute has a value of 3,
which indicates that it should take up three columns.

As mentioned at the start of this chapter, when dealing with tables you must think in terms of grids.
This grid is three cells wide and three rows tall, so the middle row could not have two equal-sized
cells. (Because they would not fit in the grid—you cannot have a cell spanning 1.5 columns.)

An example of where the colspan attribute might be useful is in creating a timetable or schedule
where the day is divided into hours—some slots lasting 1 hour, others lasting 2 to 3 hours.

You might also have noticed the use of the nonbreaking space character () in the cells, which
is included so that the cell has some content; without content for a table cell, some browsers cannot
display the background color.

Spanning rows using the rowspan attribute
The rowspan attribute does much the same thing as the colspan attribute, but it works in the opposite
direction: It enables cells to stretch vertically across cells. You can see the effect of the rowspan attri-
bute in Figure 5-10.

When you use a rowspan attribute, the corresponding cell in the row beneath it must be left out
(ch05_eg04.html):

<table>
<caption>Spanning rows using the rowspan attribute</caption>
 <tr>
 <td class="one"> </td>
 <td class="two"> </td>

grouping Sections of a Table ❘ 125

 <td rowspan="3" class="three"> </td>
 </tr>
 <tr>
 <td class="one"> </td>
 <td rowspan="2" class="two"> </td>
 </tr>
 <tr>
 <td class="one"> </td>
 </tr></table>

Figure 5-10

Splitting up Tables using a Head, Body, and Foot
There are occasions in which you may want to distinguish between the body of a table (where most
of the data is held) and the headings or maybe even the footers. For example, think of a bank state-
ment: You may have a table where the header contains column headings, the body contains a list of
transactions, and the footer contains the balance in the account.

If the table is too long to show on a screen, the header and footer might remain in view all the time,
whereas the body of the table gains a scrollbar. Similarly, when printing a long table that spreads
over more than one page, you might want the browser to print the head and foot of a table on each
page. Unfortunately, the main browsers do not yet support these ideas, although there are options to
implement this using CSS or JavaScript. However, if you add these elements to your tables, you can
use CSS to attach different styles to the contents of the <thead>, <tbody>, and <tfoot> elements. It
can also help those who use aural browsers, which read pages to users.

The three elements for separating the head, body, and foot of a table follow:

➤➤ <thead> to create a separate table header

➤➤ <tbody> to indicate the main body of the table

➤➤ <tfoot> to create a separate table footer

126 ❘ CHapTer 5 tabLeS

A table may also contain several <tbody> elements to indicate different “pages,” or groups of data.

Here you can see an example of a table that makes use of these elements (ch05_eg05.html):

<table>
 <thead>
 <tr>
 <th>Transaction date</th>
 <th>Payment type and details</th>
 <th>Paid out</th>
 <th>Paid in</th>
 <th>Balance</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td></td>
 <td></td>
 <td>$1970.27</td>
 <td>$2450.00</td>
 <td>$8940.88</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>12 Jun 12</td>
 <td>Amazon.com</td>
 <td>$49.99</td>
 <td></td>
 <td>$8411.16</td>
 </tr>
 <tr>
 <td>13 Jun 12</td>
 <td>Total</td>
 <td>$60.00</td>
 <td></td>
 <td>$8351.16</td>
 </tr>
 <tr>
 <td>14 Jun 12</td>
 <td>Whole Foods</td>
 <td>$75.28</td>
 <td></td>
 <td>$8275.88</td>
 </tr>
 <tr>
 <td>14 Jun 12</td>
 <td>Visa Payment</td>
 <td>$350.00</td>
 <td></td>
 <td>$7925.88</td>
 </tr>
 <tr>
 <td>15 Jun 12</td>
 <td>Cheque 122501</td>
 <td></td>

grouping Sections of a Table ❘ 127

 <td>$1450.00</td>
 <td>$9375.88</td>
 </tr>
 </tbody>
 <tbody>
 <tr>
 <td>17 Jun 12</td>
 <td>Murco</td>
 <td>$60.00</td>
 <td></td>
 <td>$9315.88</td>
 </tr>
 <tr>
 <td>18 Jun 12</td>
 <td>Wrox Press</td>
 <td></td>
 <td>$1000.00</td>
 <td>$10315.88</td>
 </tr>
 <tr>
 <td>18 Jun 12</td>
 <td>McLellans Bakery</td>
 <td>$25.00</td>
 <td></td>
 <td>$10290.88</td>
 </tr>
 <tr>
 <td>18 Jun 12</td>
 <td>Apple Store</td>
 <td>$1350.00</td>
 <td></td>
 <td>$8940.88</td>
 </tr>
 </tbody>
</table>

Figure 5-11 shows what this example looks like in Firefox, which supports the thead, tbody, and
tfoot elements. This example uses CSS to give the header and footer of the table a background shade.

Figure 5-11

128 ❘ CHapTer 5 tabLeS

grouping Columns using the <colgroup> element
If two or more columns are related, you can use the <colgroup> element to explain that those columns
are grouped together.

For example, in the following table, there would be six columns. The first four columns are in the
first column group, and the next two columns are in the second column group (ch05_eg06.html):

<table>
 <colgroup span="4" class="mainColumns" />
 <colgroup span="2" class="subTotalColumns" />
 <tr>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 <td>4</td>
 <td>5</td>
 <td>6</td>
 </tr>
</table>

When the <colgroup> element is used, it comes directly after the opening <table> tag and carries a
span attribute, which indicates how many columns the group contains.

In this example, the class attribute is used to attach CSS rules that tell the browser the width of each
column in the group and the background color for each cell. You learn more about CSS in Chapter 7,
but it is worth noting that some browsers support only a subset of the CSS rules for this element.

You can see what this example looks like in Figure 5-12.

Figure 5-12

Columns Sharing Styles using the <col> element
The <col> element was introduced to specify attributes of the columns in a <colgroup> (such as
width or alignment of cells within that column). Unlike the <colgroup> element, the <col> element
does not imply structural grouping and is therefore more commonly used for presentational purposes.

The <col> elements are always empty elements; they do not have any content, although they do
carry attributes.

nested Tables ❘ 129

For example, the following table would have six columns, and the first five, although not a group in
their own right, could be formatted differently than the last column because it belongs to a separate
set (ch05_eg07.html):

<table>
 <colgroup span="6">
 <col span="5" class="mainColumns" />
 <col span="1" class="totalColumn" />
 </colgroup>
 <tr>
 <td></td>
 ...
 <td></td>
 </tr>
</table>

You can see what this looks like in Figure 5-13.

Figure 5-13

The attributes that the <col> element can carry are the same as for the <colgroup> element.

neSTed TaBLeS

As mentioned earlier in the chapter, you can include markup inside a table cell, as long as the whole
element is contained within that cell. This means you can even place another entire table inside a
table cell, creating what’s referred to as a nested table. Figure 5-14 shows you an example of a table
that shows a schedule for a weekend of activities.

Figure 5-14

130 ❘ CHapTer 5 tabLeS

In the bottom-right cell of this table is a second table that divides up the attendees into two groups.
(ch05_eg08.html):

<table>
 <tr>
 <th></th>
 <th>Morning</th>
 <th>Afternoon</th>
 </tr>
 <tr>
 <th>Saturday</th>
 <td>Cycling</td>
 <td>Fishing</td>
 </tr>
 <tr>
 <th>Sunday</th>
 <td>Rowing</td>
 <td>
 <table>
 <tr>
 <th>Group 1</th>
 <th>Group 2</th>
 </tr>
 <tr>
 <td>Water skiing</td>
 <td>Wake boarding</td>
 </tr>
 </table>
 </td>
 </tr>
</table>

Now that you’ve seen how to create a nested table, it is worth noting that they should be used
sparingly because they are quite hard for those who rely upon screen readers to follow. You see
this in the next section.

aCCeSSiBLe TaBLeS

By their nature, tables can contain a lot of data and provide a helpful visual representation of
this information. When looking at a table, it is easy to scan across rows and up and down col-
umns to find a particular value or compare a range of values. If you think back to the examples
you saw at the start of the chapter (the NFL sports results or the train timetable), you would not
need to read all the content of the table just to find out how your team is doing this season or
when a train is leaving.

However, for those who listen to pages on a voice browser or a screen reader, tables can be much
harder to understand. For example, if you imagine having a table read to you, it would be much
more difficult to compare entries across a row or column because you have to remember what you
have heard so far. (It is not as easy to scan back and forth.)

Accessible Tables ❘ 131

Yet with a little thought or planning, you can make tables a lot easier for all to understand. Here are
some things you can do to ensure your tables are easy to understand:

➤➤ Add captions to your tables. The <caption> element clearly associates a caption with a
table, and the screen reader can read the caption to users before they see the table so that
they know what to expect. If the listener knows what to expect, it is easier to understand
the information.

➤➤ Always try to use the <th> element to indicate a table heading.

➤➤ Always put headings in the first row and the first column.

➤➤ Avoid using nested tables (like the one you saw in the previous section) because this can
make it harder for the user of a screen reader to follow.

➤➤ Avoid using rowspan and colspan attributes, which again make it harder for the user with a
screen reader to follow. If you do use them, make sure that you use the scope and headers
attributes, which are discussed shortly.

➤➤ Learn how a voice browser or screen reader would read a table and the order in which the
cells are read out; this can help you to understand how to structure your tables for maximum
ease of use. (You see examples of this in the following section.)

➤➤ If you use the scope and headers attributes to clearly indicate which headings apply to which
rows and columns, screen readers can help users retrieve headings for a particular cell. If you
imagine someone having a table read to him, the screen reader often gives the user an option
to hear the headers that are relevant to that cell again (without having to go up to the first row
or back to the first cell in the column to hear the heading that corresponds with that cell).

You already saw how to add a caption to a table, so move on to see how tables are read to a user, or
how they are linearized.

How to Linearize Tables
When a screen reader is used to read a table, it tends to perform linearization, which means that
the reader starts at the first row and reads the cells in that row from left to right, one by one, before
moving on to the next row, and so on until the reader has read each row in the table. Consider the
following simple table (ch05_eg09.html):

<table border="1">
 <tr>
 <td>Column 1, Row 1</td>
 <td>Column 2 Row 1</td>
 </tr>
 <tr>
 <td>Column 1, Row 2</td>
 <td>Column 2, Row 2</td>
 </tr>
</table>

132 ❘ CHapTer 5 tabLeS

Figure 5-15 shows what this simple table would look like in a browser.

Figure 5-15

The order in which the cells in Figure 5-16 would be read is therefore

➤➤ Column 1 Row 1

➤➤ Column 2 Row 1

➤➤ Column 1 Row 2

➤➤ Column 2 Row 2

This small example is fairly easy to follow. But imagine a larger table: The headings will be read
first, followed by a row of data. If the table had several more columns, it would be hard to remember
which column you were in. (Even worse, if you use nested tables, it becomes far harder for users to
follow where they are because one table cell can contain an entirely new table that often has different
numbers of rows or columns.)

Luckily, most screen readers can remind users of the column and row they are currently in, but this
works better when the table uses <th> elements for headers. And if you build a complex table, you
can also enhance this information using the id, scope, and headers attributes, covered in the fol-
lowing section.

using the id, scope, and headers attributes
The id, scope, and headers attributes have already been mentioned in this chapter, when you looked
at the attributes that the <td> and <th> elements can carry. Here you look at how they can be used to
record the structure of a table better and make it more accessible.

When you make a cell a heading, adding the scope attribute to the <th> element helps you indicate
which cells that element is the heading for. If you give it a value of row, you indicate that this element
is the header for that row; given the value of column, it indicates that it is the header for that column.
You can also have values for a rowgroup or columngroup, as shown in Table 5-2.

TaBLe 5-2: Possible Values for the scope Attribute

VaLue purpoSe

row Cell contains header information for that row .

col Cell contains header information for that column .

Accessible Tables ❘ 133

VaLue purpoSe

rowgroup Cell contains header information for that rowgroup—a group of cells in a row created

using the <thead>, <tbody>, or <tfoot> elements . (There is no corresponding ele-

ment for columns like the <colgroup> element .)

colgroup Cell contains header information for that colgroup (a group of columns created using

the <col> or <colgroup> element) .

The headers attribute performs the opposite role to the scope attribute because it is used on <td> ele-
ments to indicate which headers correspond to that cell. The value of the attribute is a space-separated
list of the header cells’ id attribute values, so here you can tell that the headers for this cell would have
id attributes whose values are income and q1.

headers="income q1"

The main purpose of this attribute is to support voice browsers. When a table is read to you, it can
be hard to keep track of which row and column you are on; therefore, the header attribute reminds
users which row and column the current cell’s data belongs to.

Creating an accessible Table
You now have the tools needed to create an accessible table.

TrY iT ouT An Accessible Timetable

In this Try It Out, you create a new page for the Example Café website featuring a timetable for a
weekend cookery course, with morning and afternoon sessions over 2 days, as shown in Figure 5-16.

Figure 5-16

134 ❘ CHapTer 5 tabLeS

Although you cannot see it from this screenshot, the table is specifically designed to be accessible for
those with visual impairments.

 1 . Set up the skeleton:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Ultimate brunch Course</title>
</head>
<body>
</body>
</html>

 2 . The table has three rows and three columns; the first row and the left column contain headings and
therefore use <th> elements. The remaining table cells use a <td> element. While you are adding
these elements, add in some content for the table, too:

<body>
<table>
 <tr>
 <th></th>
 <th>Saturday</th>
 <th>Sunday</th>
 </tr>
 <tr>
 <th>Morning</th>
 <td>Baking bread: loaves, croissants and muffins.</td>
 <td>Sweet treats: pancakes and waffles.</td>
 </tr>
 <tr>
 <th>Afternoon</th>
 <td>Eggs 4 ways: boiled, scrambled, poached, fried.</td>
 <td>Fry pan specials: Fritters and hash browns.</td>
 </tr>
</table>
</body>

 3 . The next stage is to add id attributes to the <th> elements that have content, and header attributes
to the <td> elements to indicate which headers apply to those elements; this approach improves
accessibility for visitors who use screen readers. The value of the header attributes should corre-
spond to the values of the id attributes indicating which headings correspond to each cell:

<table>
 <tr>
 <th></th>
 <th id="Saturday" scope="col">Saturday</th>
 <th id="Sunday" scope="col">Sunday</th>
 </tr>
 <tr>
 <th id="Morning scope="row">Morning</th>
 <td headers="Saturday Morning" Baking bread: loaves,
croissants and muffins.</td>

Summary ❘ 135

 <td headers="Sunday Morning" >Eggs 4 ways: boiled,
scrambled, poached, fried </td>
 </tr>
 <tr>
 <th id="Afternoon" scope="row">Afternoon</th>
 <td headers="Saturday Afternoon">Sweet treats:
pancakes and waffles.</td>
 <td headers="Sunday Afternoon">Fry pan specials:
Fritters and hash browns.</td>
 </tr>
</table>

 4 . Save your file as course.html. This example is quite a bit more complex than most tables you will
come across. Not many people have gotten into the practice of using the id and header attributes
on <table> elements, but it makes tables a lot easier to use for those with visual impairments, in
particular on larger tables that have a lot of columns and rows. You won’t usually see the abbr
attribute used on table cells. If you look at the code for other people’s websites, you are still more
likely to see the use of lots of deprecated attributes rather than these attributes.

How It Works

The combination of the id attribute and the headers attribute enables screen readers to associate head-
ers with table data cells. By matching the values of the header attributes with the corresponding values
of the associated id attributes, there’s an explicit connection between the <td> and <th> elements.

NOTE Including attributes like these can help set you apart from other coders
who have not yet learned to make their tables more accessible. Furthermore,
awareness of accessibility issues is required in an increasing number of jobs,
so you should learn how to use such attributes.

SuMMarY

In this chapter, you have seen how tables can be a powerful tool when creating pages. You have seen
how all tables are based on a grid pattern and use the four basic elements: <table>, which contains
each table; <tr>, which contains the rows of a table; <td>, which contains a cell of table data; and
<th>, which represents a cell that contains a heading.

You have also seen how you can add headers, footers, and captions to tables. It is particularly helpful
to add a <thead> and <tfoot> element to any table that may be longer than a browser window or
sheet of printed paper because these could help a reader relate between the content and the informa-
tion in headers or footers.

You can now make cells span both columns and rows; although, you should avoid doing this in
tables that contain data because it makes them harder for aural browsers to read to a user. You

136 ❘ CHapTer 5 tabLeS

have also seen how to group columns so that you can preserve structure, and so they can share
styles and attributes.

Finally, you saw some of the accessibility issues for the use of tables. You must be aware of the pro-
cess of linearization, which a screen reader performs before reading a table to a user, so that your
sites are accessible to users with visual impairments. You also need to know how to provide extra
information that indicates the headers for each cell.

In the next chapter, you learn about using forms to collect information from visitors.

exerCiSeS

 1 . Where should the <caption> element for a table be placed in the document and, by default,

where is it displayed?

 2 . In what order would the cells in Figure 5-17 be read aloud by a screen reader?

Figure 5-17

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 137

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

Tables Tables allow you to preset structured content in an easy to

digest format .

grouping table section You should use all the tools available to you to properly group

content in tables .

accessibility Tables are difficult for screen readers to manage, so using the tools

available to enhance table accessibility is the key to ensuring the wid-

est possible audience has access to your content .

Forms

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to create a form

➤➤ How to use different types of form controls

➤➤ What happens to the data a user enters

➤➤ How to make forms accessible

➤➤ How to structure the content of forms

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 6
download and individually named according to the names throughout the chapter.

Almost every time you want to collect information from a visitor to your site, you need to use
a form. Some forms are quite complex, such as those that enable you to book plane tickets or
purchase insurance online. Others are quite simple, such as the search box on the homepage
of Google.

Many online forms bear a strong resemblance to paper forms. On paper, forms are made up of
areas to enter text, boxes to check, options to choose from, and so on. Similarly, on the web you
can create a form by combining form controls, such as textboxes (to enter text into), check boxes
(to place a cross in), select boxes and radio buttons (to choose from different options), and so on.
In this chapter, you learn how each of these different types of controls can be combined into a
form to collect all kinds of information from visitors to your site.

6

140 ❘ CHapTer 6 formS

NOTE HTML is used only to present the form to the user; it does not enable you to
say what happens with that data after it is collected. To get a better idea of what
happens to the data after it is collected from a form, you must look at a book on a
server-side language, such as ASP.NET or PHP. (You can find a range of books on
these topics at www.wrox.com.)

inTroduCing ForMS

Start by looking at a couple examples of forms. Figure 6-1 shows the Google homepage, which
contains two kinds of form controls:

➤➤ Text input: Where you enter your search term.

➤➤ Submit buttons: Send the form to the server. There are two on this form: You can see the
words Google Search written on the first one and I’m Feeling Lucky on the second.

Figure 6-1

Now look at a more complicated example. Figure 6-2 shows part of an insurance form, which
actually spreads over several pages. This form has many more types of controls:

➤➤ Select boxes: Sometimes referred to as drop-down lists (refer to the top-left of Figure 6-2), to
choose from a list of provided answers.

➤➤ Radio buttons: Such as the ones in the top-right corner with Yes or No options. When you
have a group of radio buttons, you can pick only one response.

introducing Forms ❘ 141

➤➤ Check boxes: Such as the ones at the bottom of the screenshot indicating how you can be
contacted (by e-mail, post, or phone). When you have a group of check boxes, you can pick
more than one response.

➤➤ Text inputs: To enter a variety of information, or in this case a date of birth and registration
number.

Figure 6-2

Several other form controls are not shown in these examples. You’ll learn about all these throughout
the chapter.

Any form that you create lives inside a <form> element, and the form controls (the text input boxes,
drop-down boxes, check boxes, a submit button, and so on) live between the opening <form> and
closing </form> tags. A <form> element can also contain other HTML markup as you would find
in the rest of a page.

After users enter information into a form, they usually must click a submit button. (Although the
actual text on the button may say something different such as Search, Send, or Proceed—and often

142 ❘ CHapTer 6 formS

pressing the Return key on the keyboard has the same effect as clicking this button.) This indicates
that the user has filled out the form, and this usually sends the form data to a web server.

On a traditional web page, after form data arrives at the server, a script or other program processes
the data and sends a new web page back to you. The returned page responds to a request you have
made or acknowledges an action you have taken. There’s a variation on this called Ajax that you’ll
learn about in Chapter 13, “Checklists,” where all these actions take place on the same page. The
rest of this chapter focuses on the traditional pattern.

For example, you might want to add the
search form shown in Figure 6-3 to your
page (ch06_eg01.html).

You can see that this form contains a textbox
for users to enter the keywords of what they are
searching for, and a submit button with the word
Search on it. When users click the Search button,
the information is sent to the server, which then
processes the data and generates a new page for
users telling what pages meet the search criteria
(Figure 6-4).

When a browser sends data to the server, it is
transmitted in name/value pairs. The name cor-
responds to the name of the form control, and the
value is what the user has entered (if the user can
type an answer) or the value of the option selected
(if there is a list of options to choose from).

Each item needs both a name and a value because
if you have five textboxes on a form, you need to
know which data corresponds to which textbox.
The processing application can then process the
information from each form control individually.

Here is the code for the simple search form shown
in Figure 6-3:

<form action=" http://www.example.org/search.aspx " method="get">
 <h3>Search the site</h3>
 <input type="text" name="txtSearchItem">
 <input type="submit" value="Search">
</form>

The <form> element carries an attribute called action whose value is the URL of the page on the web
server that handles search requests. Meanwhile, the method attribute indicates which of two HTTP
methods—get and post—are used in getting the form data to the server. (You learn the difference
between these methods in the section “Sending Form Data to the Server.”)

To create forms, you first need to look at the <form> element in a little more detail and then go through
the different types of form controls to see how they sit inside the <form> element.

Figure 6-3

Figure 6-4

Creating a Form with the <form> element ❘ 143

CreaTing a ForM wiTH THe <ForM> eLeMenT

As you have already seen, forms live inside an element called <form>. The <form> element can also
contain other markup, such as paragraphs, headings, and so on; although, it may not contain another
<form> element.

Providing you keep your <form> elements separate from each other (and no <form> element contains
another <form> element), your page may contain as many forms as you like. For example, you might
have a login form, a search form, and a form to subscribe to a newsletter, all on the same page. If
you do have more than one form on a page, users can send the data from only one form at a time to
the server.

In a traditional web page, every <form> element should carry at least two attributes:

action method

A <form> element may also carry all the universal attributes and the following attributes:

enctype novalidate target autocomplete accept-charset

The action attribute
The action attribute indicates what happens to the data when the form is submitted. Usually, the
value of the action attribute is a page or program on a web server that receives the information.

For example, if you have a login form consisting of a username and password, the details the user
enters may get passed to a page written in ASP.NET on the web server called login.aspx, in which
case the action attribute could read as follows:

<form action="http://www.example.org/membership/login.aspx">

The method attribute
Form data can be sent to the server in two ways, each corresponding to an HTTP method:

➤➤ The get method, which sends data as part of the URL. This is the default.

➤➤ The post method, which hides data in the HTTP headers.

You learn more about these two methods in the section “Sending Form Data to the Server,” where
you learn what they mean and when you should use each one.

The id attribute
The id attribute enables you to uniquely identify the <form> element within a page, just as you can
use it to uniquely identify any element on a page.

It is good practice to give every <form> element an id attribute because many forms make use of
style sheets and scripts, which may require the use of the id attribute to identify the form.

The value of the id attribute should be unique within the document and should also follow the
other rules for values of the id attribute mentioned in Chapter 1, “Structuring Documents for

144 ❘ CHapTer 6 formS

the Web.” Some people start the value of id and name attributes for forms with the characters
frm and then use the rest of the value to describe the kind of data the form collects—for example,
frmLogin or frmSearch.

The name attribute
As you have already seen through its use on other elements, the name attribute is the predecessor to
the id attribute, and as with the id attribute, the value should be unique to the document.

Generally, you do not need to use this attribute, but when you do use it, you can give it the same value
as the id attribute. You often see the value of this attribute begin with the characters frm followed by
the purpose of the form (such as frmLogin or frmSearch).

The enctype attribute
If you use the HTTP post method to send data to the server, you can use the enctype attribute to
specify how the browser encodes the data before it sends it to the server. Browsers tend to support
three types of encoding:

➤➤ application/x-www-form-urlencoded, which is the standard method most forms use.
Browsers use this because some characters, such as spaces, the plus sign, and some other
nonalphanumeric characters, cannot be sent to the web server. Instead, they are replaced by
other characters that are used to represent them.

➤➤ multipart/form-data, which enables the data to be sent in parts, where each consecutive
part corresponds to a form control, in the order it appears in the form. It is commonly used
when visitors need to upload files (such as photos) to a server. Each part can have an optional
content-type header of its own indicating the type of data for that form control.

➤➤ text/plain, which sends the data to the server as unmodified, plain text.

If this attribute is not used, browsers use the first value. As a result, you are likely to use this attribute
only if your form allows users to upload a file (such as an image) to the server, or if they are going to
use non-ASCII characters, in which case the enctype attribute should be given the second value:

enctype="multipart/form-data"

The accept-charset attribute
Different languages are written in different character sets or groups of characters. However, when
creating websites, developers do not always build them to understand all different languages. The idea
behind the accept-charset attribute is that it specifies a list of character encodings that a user may
enter and that the server can then process. Values should be a space-separated or comma-delimited list
of character sets (as shown in Appendix E, “Character Encodings”).

For example, the following indicates that a server accepts UTF-8 encodings:

accept-charset="utf-8"

If no accept-charset attribute is set, any character set is valid.

Form Controls ❘ 145

The novalidate attribute
The novalidate attribute is a boolean attribute that indicates whether the form should be validated
when submitted. If present, the browser should not validate the form prior to submission.

<form
 action="http://www.example.org/membership/login.aspx"
 novalidate >

This attribute is currently supported in Chrome 6+, Firefox 4+, Opera 10.6+, and Internet
Explorer 10+.

The target attribute
The target attribute specifies a named window or keyword for the processing of the form
submission.

To process a form in a new window, for example, you could set the target of a <form> element
to "_blank".

<form
 action="http://www.example.org/membership/login.aspx"
 target="_blank" >

The autocomplete attribute
This attribute indicates whether or not the browser should auto-fill form values. Setting it to off
indicates that the browser should not auto-fill any values. The default value is on.

<form
 action="http://www.example.org/membership/login.aspx"
 autocomplete="off" >

This attribute is currently supported in Chrome 17+, Firefox 4+, Safari 5.2+, and Opera 10.6+.

ForM ConTroLS

This section covers the different types of form controls that live inside the <form> element to collect
data from a visitor to your site, including:

➤➤ Text input controls, including many new HTML5 inputs

➤➤ Buttons

➤➤ Check boxes and radio buttons

➤➤ Select boxes (sometimes referred to as drop-down menus and list boxes)

➤➤ File select boxes

➤➤ New HTML5 form elements such as progress bars and meters

➤➤ Hidden controls

146 ❘ CHapTer 6 formS

Text inputs
Text input boxes are used on many web pages. Possibly the most famous text input box is the one in
the middle of the Google homepage that enables you to enter what you want to search for.

On a printed form, the equivalent of a text input is a box or line on which you write a response.

For a long time there were only three types of text input used on forms:

➤➤ Single-line text input controls: Used for items that require only one line of user input. They
are created using the <input> element and sometimes referred to simply as textboxes.

➤➤ Password input controls: These are just like the single-line text input, except they mask the
characters a user enters so that the characters cannot be seen on the screen. They tend to
show either an asterisk or a dot instead of each character the user types so that someone
cannot simply look at the screen to see what a user types in. Password input controls are
mainly used for entering passwords on login forms or sensitive details such as credit card
numbers. They are also created using the <input> element.

➤➤ Multiline text input controls: Used when the user is required to give details that may be longer
than a single sentence. Multiline input controls are created with the <textarea> element.

This simple view has changed with HTML5. The HTML5 specification added many new types of
<input> elements that correspond to common types of data on the web. The list of new <input>
elements follows:

➤➤ color: For choosing a color by using a color wheel.

➤➤ date: For entering a calendar date.

➤➤ datetime: For entering a date and time with the time zone set to Greenwich/Universal Time.

➤➤ datetime-local: For entering a local date and time.

➤➤ email: For entering either a single e-mail address or a list of e-mail addresses. Multiple
addresses can be entered in a comma-separated list.

➤➤ month: For entering a year and month.

➤➤ number: For numerical input.

➤➤ range: Unlike the normal text inputs in this list, this input type is generally represented as a
slider that enables the user to choose a value from a range of numerical values.

➤➤ search: For entering search terms.

➤➤ tel: For entering telephone numbers.

➤➤ time: For entering a time consisting of hours, minutes, seconds, and fractional seconds.

Form Controls ❘ 147

➤➤ url: For entering website URLs.

➤➤ week: For entering a date that is made up of a year and week number. An example of this
format is 2013-W01 for the first week of 2013.

Now take a look at each of these types of input in turn.

Single-Line Text input Controls
The most basic single-line text input controls are created using an <input> element whose type
attribute has a value of text. Here is a basic example of a single-line text input used for a search
box (ch06_eg02.html):

 <form action="http://www.example.org/search.aspx" method="get" name="frmSearch">
 <p>Search:

 <input type="text" name="txtSearch" value="Search for" size="20"
maxlength="64"></p>
 <p><input type="submit" value="Submit"></p>
 </form>

Figure 6-5 shows what this form looks like in a browser.

Figure 6-5

NOTE Just as some people try to start form names with the characters frm , it is
also common to start text input names with the characters txt to indicate that the
form control is a textbox. This can be particularly handy when working with the data
on the server to remind you what sort of form control sent that data. However, some
programmers prefer not to use this notation, so if you work with someone else on a
project, it is worth discussing that person’s preference at the start of the work.

Table 6-1 lists the attributes the <input> element can carry when its type attribute is set to text for
a text input control. The purpose of the name attribute is quite specific on this element and different
from its use on other elements you have met already.

148 ❘ CHapTer 6 formS

TaBLe 6-1: Attributes for a Standard Text Input

aTTriBuTe purpoSe

name This attribute is also required and gives the name part of the name/value pair

sent to the server . (Remember: Each control on a form is represented as a name/

value pair where the name identifies the form control, and the value is what the

user entered .)

value Provides an initial value for the text input control that the user sees when the form

loads . You would use this attribute only if you want something to be written in the

text input when the page loads (such as a cue to tell users what they should enter) .

The new placeholder attribute does a better job at this hinting task . The value

attribute is also used for scripting, as you’ll learn in Chapter 10, “Learning JavaScript .”

size Enables you to specify the width of the text input control in terms of characters;

the search box in the earlier example is 20 characters wide . The size property

does not affect how many characters users can enter (in this case they could

enter 40 characters even when the size property has a value of 20); it just indi-

cates how many characters wide the input will be . If users enter more characters

than the size of the input, they can scroll right and left using the arrow keys to see

what they have entered .

maxlength Enables you to specify the maximum number of characters a user can enter into

the textbox . Usually after the maximum number of characters has been entered,

even if the user keeps pressing more keys, no new characters will be added .

placeholder Represents a short hint that displays as the initial value in the input field .

When an <input> element’s type attribute has a value of text, it can also carry the following
attributes:

➤➤ All the universal attributes

➤➤ disabled, readonly, form, autocomplete, autofocus, list, pattern, required,
and dirname

Password input Controls
If you want to collect sensitive data such as passwords and credit card information, you can use the
password input. The password input masks the characters the user types on the screen by replacing
them with either a dot or an asterisk, so that they would not be visible to someone looking over the
user’s shoulder.

Password input controls are created almost identically to the single-line text input controls, except
that the type attribute on the <input> element is given a value of password.

Here you can see an example of a login form that combines a single-line text input control and a
password input control (ch06_eg03.html):

<form action="http://www.example.com/login.asp" method="post">
 <p>Username:

Form Controls ❘ 149

 <input type="text" name="txtUsername" value="" size="20" maxlength="20"></p>
 <p>Password:
 <input type="password" name="pwdPassword" value="" size="20"
maxlength="20"></p>
 <p><input type="submit" value="Log in"></p>
 </form>

NOTE As you can see, it is common to start the name of any password with the
characters pwd so that when you come to deal with the data on the server, you
know the associated value came from a password input box.

Figure 6-6 shows you how this login form might look in a browser when the user starts
entering details.

Figure 6-6

Password inputs accept the same attributes as plain text inputs.

NOTE Although passwords are hidden on the screen, they are still sent across
the Internet as clear text, which is not considered secure. To make them secure
you must use an SSL connection between the client and server and encrypt any
sensitive data (such as passwords and credit card details). SSL connections and
encryption should be covered in a book about server-side languages such as
ASP.NET and PHP.

Multiple-Line Text input Controls
If you want to allow a visitor to your site to enter more than one line of text, you must create a
multiple-line text input control using the <textarea> element.

Here is an example of a multiple-line text input used to collect feedback from visitors to a site
(ch06_eg04.html):

 <form action="http://www.example.org/feedback.asp" method="post">
 <p>Please tell us what you think of the site and then click submit:</p>
 <textarea name="txtFeedback" rows="20" cols="50">
 Enter your feedback here.
 </textarea>
 <p><input type="submit" value="Submit"></p>
 </form>

150 ❘ CHapTer 6 formS

The text inside the <textarea> element is not indented (in the same way that other code in this
book is indented). Anything written between the opening and closing <textarea> tags is treated
as if it were written inside a <pre> element, and formatting of the source document is preserved. If
the words “Enter your feedback here” were indented in the code, they would also be indented in the
resulting multiline text input on the browser.

Figure 6-7 shows what this form might look like.

In the figure, you can see the writing between the
opening <textarea> and closing </textarea>
tags, which is shown in the text area when the page
loads. Users can delete this text before adding their
own text, and if they do not delete the text from the
textbox, it will be sent to the server when the form is
submitted. Users often type after any text written in
a <textarea> element, so you may choose to avoid
adding anything in between the elements, but you
should still use both opening and closing <textarea>
tags. Otherwise, older browsers may not render the
element correctly.

The <textarea> element can take the attributes
shown in Table 6-2.

TaBLe 6-2: Common Attributes for the <textarea> Element

aTTriBuTe purpoSe

name The name of the control . This is used in the name/value pair that is sent to the server .

rows Used to specify the size of a <textarea>; it indicates the number of rows of text a

<textarea> element should have and therefore corresponds to the height of the

text area .

cols Used to specify the size of a <textarea>; it specifies the number of columns of text

and therefore corresponds to the width of the box . One column is the average width

of a character .

The attributes shown in Table 6-3 are newly added to the <textarea> element. Since they’re new,
some of them have limited support across browsers. Generally, they’re supported in Firefox 4+,
Safari 5.2+, Chrome 10+, Opera 10.6+, and IE10+. For specifics on any attribute and up-to-date
information on this and other questions about what form elements and attributes are supported,
keep your eye on “The Current State of HTML5 Forms” found at http://www.wufoo.com/html5/.

Figure 6-7

Form Controls ❘ 151

TaBLe 6-3: New Attributes for the <textarea> Element

aTTriBuTe purpoSe

maxlength Maximum number of characters the user can enter .

autofocus Boolean attribute that indicates that the element should have focus when the

page loads .

required Boolean attribute that indicates whether the input is a required element .

placeholder Specifies a sample value to show users as a hint .

dirname Provides a name for a text directional hint .

wrap Specifies whether the text in a text area should be forced to wrap at the value of

the cols attribute .

disabled Boolean attribute that disables the select box, preventing user intervention .

form Indicates the association <form> element for the <textarea> element . Value

represents the id of the associated <form> .

readonly Boolean attribute that indicates whether the user can edit the form field .

The <textarea> element can also take all the universal attributes.

By default, when a user runs out of columns in a <textarea>, the text is wrapped onto the next line
(which means it just flows onto the next line as text in a word processor does), but the server receives
it as if it were all on one line. Because some users expect the sentences to break where they see them
break on the screen, the wrap attribute enables you to indicate how the text should be wrapped.
Possible values are as follows:

➤➤ soft (the default), which means wherever the text wraps, users see it on the new line, but it
is transmitted to the server as if it were all on the same line, unless users press the Enter key,
in which case it is treated as a line break.

➤➤ hard, which means wherever the text wraps, it is transmitted to the server as a new line.

new HTML5 input Types and attributes
This section introduces you to the new HTML5 <input> types and to several new attributes that
significantly enhance the power of the once lowly <input>. These take the <input> element beyond
simple text and into much more specific options that better map to real-world use cases.

Support for these elements and attributes is interesting. For details or to test your own browser, go
to Mike Taylor’s site: http://miketaylr.com/code/input-type-attr.html, browse the table
at http://wufoo.com/html5/, or check out the latest at http://caniuse.com/#feat=forms.
Generally, support is available in the latest versions of all the major browsers, including Internet
Explorer 10. Thankfully, because of the way browsers treat unknown input types, all is not lost
if your target audience includes older versions of Internet Explorer or other browsers. Basically,

152 ❘ CHapTer 6 formS

browsers treat any <input> with an unknown type as type text, which means that you can still
collect the data, even if the specific UI enhancements provided by the new inputs aren’t available.
Similarly, browsers ignore any attributes they don’t understand, so although the features might not
be supported, it’s safe to include them even when a visitor uses an older browser such as Internet
Explorer 6.

You must think about the experience for users with older browsers. In some cases it might be enough to
simply present the form element as a simple text <input>. Other times it might be worth looking into
a polyfill solution. Polyfills are small libraries, usually written in JavaScript that provide support for
new features in older browsers. You look at one of these in the section on the placeholder attribute,
but there are many available polyfills for a variety of HTML5 features. The Modernizr project keeps
a list at its project site: https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-
Polyfills. This is an important concept to grasp as you work with more advanced technologies.

Now look at some of these new elements in action. The following form presents a website registra-
tion form marked up using the following new <input> types: tel, url, email, date, and color
(ch06_eg05.html).

<form action="http://www.example.org/feedback.asp" method="post">
 <p>Name:

 <input type="text" name="txtName" value="" size="20" maxlength="20"></p>
 <p>Telephone Number:

 <input type="tel" name="txtTel" value="" size="20" maxlength="20"></p>
 <p>Email:

 <input type="email" name="txtEmail" value="" size="20" maxlength="20"></p>
 <p>Favorite Color:

 <input type="color" name="txtColor" value="" size="20" maxlength="20"></p>
 <p>Date of Birth:

 <input type="date" name="txtDate" value="" size="20" maxlength="20"></p>
 <p><input type="submit" value="Submit"></p>
</form>

Figure 6-8 shows how this page looks in Google Chrome 21. This version of Chrome supports both
date and color. In this illustration the calendar control of the date input is expanded to show just how
much power is packed into these new text inputs. Before these new inputs were introduced, creating a
similar datepicker control would take dozens of kilobytes of JavaScript and CSS, complicated markup,
and multiple images. Using a control provided by the browser is less complicated for authors and is
much faster because all the various files needed for a JavaScript datepicker add overhead to the page.

Figure 6-9 illustrates how these new inputs look in Firefox 15, which doesn’t support either input
type. As you can see, they look exactly like a standard text input and work exactly the same as well,
which means that even if users don’t have the best available browser, they can still enter the infor-
mation needed to fill out the form.

Now that you’ve seen some of the new input types in action, it’s time to look at some of the other
new attributes for input controls in HTML5. Like the new input types, these new attributes replace
common interaction or programming patterns found on the web with controls provided by the
browser. In some cases, using these new attributes is trickier than using the new input types. With
the new input types, all you have to do is assume that users with older browsers will just enter their
answers with text and be prepared to handle that kind of input on the server side. In the case of
some of these new attributes, the functionality they provide, such as form validation, might need

Form Controls ❘ 153

to be provided using JavaScript and other technologies, for users of older browsers. As you’ve read,
these technology fallbacks are called polyfills.

Figure 6-8

Figure 6-9

The next section shows how to use the new placeholder attribute and shows how to supply a
simple, third-party polyfill for the functionality in older browsers. Following that, you learn about
some of the other important new attributes.

154 ❘ CHapTer 6 formS

Using the placeholder Attribute to illustrate example input
As you saw in the section on basic inputs, the value attribute is often used to provide a sample input.
The downside to this technique is that users don’t always clear the input so that example text is often
included as part of the data sent to the server. To fix this, people script the input to show a default value
until the input is given focus. Focus indicates that the form element is the current one being interacted
with by the user. After a form element has focus, the JavaScript can clear out the input value and ready
the form field for user input. The placeholder attribute replicates this behavior without the need for
scripting. The following code sample (ch06_eg06.html) shows what this looks like.

<form action="http://www.example.org/feedback.asp" method="post">
 <p>Name:

 <input type="text" name="txtName" value="" size="20" maxlength="20"
placeholder="Rob Larsen"></p>
 <p><input type="submit" value="Submit"></p>
</form>

To add support for a placeholder in older browsers, you need to add a JavaScript file from the
Placeholder.js project https://github.com/jamesallardice/Placeholders.js and then run
a small piece of JavaScript to initialize support (ch06_eg06.html).

<script src="Placeholders.js"></script>
<script>
Placeholders.init();
</script>

Hopefully, you won’t need to do much of this, but if you need to use a new feature, this is the best
way to add support for older browsers. Now that you’ve seen a simple example of how to handle
polyfill solutions, it’s time to look at the rest of the important new attributes.

NOTE Not every polyfill solution is as easy or as foolproof as the placeholder. In
addition, some new HTML5 features are impossible to polyfill. You must do a little
research before you decide to use one of the newest features. As the web evolves,
the question of how to support older browsers evolves with it, so having awareness
of the basic pattern for support can serve you well for a long time to come.

ensuring User Privacy and Security with the autocomplete Attribute
Web browsers typically offer the ability to save form entries to save time when filling out forms
with similar information. This is a convenient feature, but there are times where this is dangerous
behavior. For example, saving and redisplaying a credit card number, bank account number, or
Social Security code could be catastrophic if you entered that information on a public computer.
Similarly, login and password information can be convenient to have prepopulated, but it’s a seri-
ous security hole.

Setting the autocomplete attribute allows web authors to control whether form entries should be
cached. autocomplete takes two different values: on and off. on indicates that the values are safe

Form Controls ❘ 155

to save and prepopulate. off indicates that they should not be saved. The following example shows
a simple login and password form with autocomplete set to off (ch06_eg07.html).

 <form action="http://www.example.com/login.asp" method="post">
 <p>Username:

 <input type="text" name="txtUsername" value="" size="20"
 maxlength="20" autocomplete="off"></p>
 <p>Password:
 <input type="password" name="pwdPassword" value="" size="20"
 maxlength="20" autocomplete="off"></p>
 <p><input type="submit" value="Log in"></p>
 </form>

ensuring information is Provided with the required Attribute
Often information in a form is required. For example, if you request an insurance quote for your car,
the make and model of the car and the address where it’s parked at night would be information needed
to provide a reasonable quote. In those cases you can use the required attribute to ensure that the
form will be submitted only if there’s content in the required fields. The following text sample shows
required attributes in use on a simple form (ch06_eg08.html), and Figure 6-10 shows the result of an
attempted form submission with the required input left empty.

<form action="http://www.example.org/feedback.asp" method="post">
 <p>Name:

 <input type="text" name="txtName" value="" size="20" maxlength="20"
placeholder="Rob Larsen" required></p>
 <p><input type="submit" value="Submit"></p>
</form>

Figure 6-10

Buttons
Buttons are most commonly used to submit a form; although, they are sometimes used to clear or
reset a form and even to trigger client-side scripts. (For example, on a basic loan calculator form
within the page, a button might be used to trigger the script that calculates repayments without
sending the data to the server.) You can create a button in three ways:

➤➤ Using an <input> element with a type attribute whose value is submit, reset, or button

➤➤ Using an <input> element with a type attribute whose value is image

➤➤ Using a <button> element

With each different method, the button appears slightly different.

156 ❘ CHapTer 6 formS

Creating Buttons Using the <input> element
When you use the <input> element to create a button, the type of button you create is specified
using the type attribute. The type attribute can take the following values to create a button:

➤➤ submit, which creates a button that submits a form when pressed

➤➤ reset, which creates a button that automatically resets form controls to their initial values as
they were when the page loaded

➤➤ button, which creates a button that is used to trigger a client-side script when the user clicks
that button

Here you can see examples of all three types of buttons (ch06_eg09.html):

<form action="http://www.example.org/feedback.aspx" method="post">
 <p>
 <input type="submit" name="btnVoteRed" value="Vote for reds">
 </p>
 <p>
 <input type="submit" name="btnVoteBlue" value="Vote for blues">
 </p>
 <p>
 <input type="reset" value="Clear form">
 </p>
 <p>
 <input type="button" value="Calculate" onclick="calculate()">
 </p></form>

Figure 6-11 shows what these buttons might look like in Firefox on a PC. (A Mac displays them in
the standard Mac style for buttons.)

Figure 6-11

Table 6-4 shows the attributes used by the buttons.

Form Controls ❘ 157

TaBLe 6-4: Common Attributes for Buttons

aTTriBuTe purpoSe

type Specifies the type of button you want and takes one of the following values:

submit, reset, or button .

name Provides a name for the button . You need to add only a name attribute to a button if

there is more than one button on the same form . (In which case it helps to indicate

which of the buttons was clicked .) It is considered good practice, however, to give

the button a name anyway to provide an indication of what the button does .

value Enables you to specify what the text on the button should read . If a name attribute

is given, the value of the value attribute is sent to the server as part of the name/

value pair for this form control . If no value is given, then no name/value pair is sent

for this button .

The attributes in Table 6-5 are newly added to <input> elements of type submit, reset, or button.

TaBLe 6-5: New Attributes for <input> Elements of Type submit, reset, or button

aTTriBuTe purpoSe

autofocus Boolean attribute that indicates the element should have focus when the page loads .

disabled Boolean attribute that disables the select box, preventing user intervention .

form Indicates the association <form> element for the <textarea> element . value

should represent the id of the associated <form> .

An <input> of type submit, reset, or button can also take all the universal attributes.

If you do not use the value attribute on the submit button, you may find that a browser displays
text that is inappropriate to the purpose of the form—for example, IE displays the text Send Query,
which is not ideal for a login button form.

Using images for Buttons
You can use an image for a button rather than use the standard button that a browser renders for
you. Creating an image button is similar to creating any other button, but the type attribute has a
value of image:

<input type="image" src="submit.jpg" alt="Submit" name="btnImage">

NOTE You can start the value of a name attribute for a button with the characters
btn, in keeping with the naming convention mentioned earlier. (When you refer to
the name of the form control in other code, the use of this prefix helps remind you
what type of form control the information came from.)

158 ❘ CHapTer 6 formS

Because you are creating a button that has an image, you need to have two additional attributes,
which are listed in Table 6-6.

TaBLe 6-6: Important Attributes for <input> Type image

aTTriBuTe purpoSe

src Specifies the source of the image file .

alt Provides alternative text for the image . This displays when the image cannot be

found and also read to people using voice browsers .

height Specifies the height of the image .

width Specifies the width of the image .

In addition to the attributes mentioned in Table 6-6 and the global attributes, this input type
also supports the following attributes: disabled, form, formaction, autofocus, formenctype,
formmethod, formtarget, and formnovalidate.

If the image button has a name attribute, when you click it, the browser sends a name/value pair to
the server. The name will be what you provide for the name attribute, and the value will be a pair
of x and y coordinates for where on the button the user clicked.

In Figure 6-12, you can see a graphical submit button. Both Firefox and IE change the cursor when
the user hovers over one of these buttons to help users know that they can click it.

Figure 6-12

Creating Buttons Using the <button> element
The <button> element is a more recent introduction that enables you to specify what appears on a
button between an opening <button> tag and a closing </button> tag so you can include textual
markup or image elements between these tags.

Browsers offer a relief (or 3-D) effect on the button, which resembles an up or down motion when
the button is clicked.

Form Controls ❘ 159

Here are some examples of using the <button> element (ch06_eg10.html):

<form action="http://www.example.org/feedback.aspx" method="post">
 <p>
 <button type="submit">Submit</button>
 </p>
 <p>
 <button type="reset">Clear this form I want to start again</button>
 </p>
 <p>
 <button type="button"></button>
 </p></form>

As you can see, the first submit button just contains text, the second reset button contains text and
other markup (in the form of the element), and the third button contains an element.

Figure 6-13 shows what these buttons would look like.

Figure 6-13

In addition to the attributes mentioned above and the global attributes, this <button> element also
supports the following attributes: disabled, name, autofocus, and value.

Check Boxes
Check boxes are like light switches; they can be either on or off. When they are checked, they are
on—the user can simply toggle between on and off positions by clicking the check box.

Check boxes can appear individually, with each having its own name, or they can appear as a
group of check boxes that share a control name and allow users to select several values for the
same property.

Check boxes are ideal form controls when you need to allow a user to

➤➤ Provide a simple yes or no response with one control (such as accepting terms and conditions)

➤➤ Select several items from a list of possible options (such as when you want users to indicate
all the skills they have from a given list)

160 ❘ CHapTer 6 formS

A check box is created using the <input> element whose type attribute has a value of checkbox.
Following is an example of some check boxes that use the same control name (ch06_eg11.html):

<form action="http://www.example.com/cv.aspx" method="get" name="frmCV">
Which of the following skills do you possess? Select all that apply.

 <input type="checkbox" name="chkSkills" value="html">HTML

 <input type="checkbox" name="chkSkills" value="CSS">CSS

 <input type="checkbox" name="chkSkills" value="JavaScript">JavaScript

 <input type="checkbox" name="chkSkills" value="aspnet">ASP.Net

 <input type="checkbox" name="chkSkills" value="php">PHP
</form>

NOTE For consistency with the naming convention you have used for form
elements throughout the chapter, you can start the name of check boxes with
the letters chk.

Figure 6-14 shows how this form might look in a
browser. Note how there is a line break after each
check box, so that each clearly appears on its own
line. (If you have check boxes side by side, users are
likely to get confused about which label applies to
which check box.)

Because all the selected skills will be sent to the
processing application in the form of name/value
pairs, if someone selects more than one skill, there
will be several name/value pairs sent to the server
that all share the same name.

In contrast, here is a single check box, acting like a simple yes or no option:

<form action="http://www.example.org/accept.aspx" name="frmTandC" method="get">
 <input type="checkbox" name="chkAcceptTerms" checked>
 I accept the terms and conditions.

 <input type="submit">
</form>

The <input> element that creates this check box does not carry a value attribute. In the absence
of a value attribute, the value is on. In this example, you can also see a boolean attribute called
checked, which indicates that when the page loads, the check box is selected.

Table 6-7 shows common attributes that an <input> element whose type attribute has a value of
checkbox can carry.

Figure 6-14

Form Controls ❘ 161

TaBLe 6-7: Important Attributes for <input> Type checkbox

aTTriBuTe purpoSe

type Indicates that you want to create a check box .

name Gives the name of the control . Several check boxes may share the same name, but this

should happen only if you want users to have the option to select several items from

the same list—in which case, they should be placed next to each other on the form .

value The value that will be sent to the server if the check box is selected .

checked Indicates that when the page loads the check box should be selected .

Check boxes can also carry the following attributes:

➤➤ All universal attributes

➤➤ disabled, form, autofocus, and required

radio Buttons
Radio buttons are similar to check boxes in that they can be either on or off, but there are two
key differences:

➤➤ When you have a group of radio buttons that share the same name, only one of them can be
selected. After one radio button has been selected, if the user clicks another option, the new
option is selected and the old one is deselected.

➤➤ You should not use radio buttons for a single form control where the control indicates on or
off because after a lone radio button has been selected, it cannot be deselected again (without
writing a script to do that).

Therefore, a group of radio buttons is ideal if you want to provide users with a number of options
from which they must pick only one. In such situations, an alternative is to use a drop-down select
box that allows users to select only one option from several. Your decision between whether to use
a select box or a group of radio buttons depends on three things:

➤➤ Users’ expectations: If your form models a paper form where users would be presented with
several check boxes, from which they can pick only one, then you should use a group of
radio buttons.

➤➤ Seeing all the options: If users would benefit from having all the options in front of them
before they pick one, you should use a group of radio buttons.

➤➤ Space: If you are concerned about space, for example, on a mobile device, a drop-down select
box takes up far less space than a set of radio buttons.

162 ❘ CHapTer 6 formS

NOTE The term “radio buttons” comes from old radios. On some old radios, you
could press only one button at a time to select the radio station you wanted to lis-
ten to from the ones that had been set. You could not press two of these buttons
at the same time on your radio, and pressing one would pop the other out.

The <input> element is again called upon to create radio buttons, and this time the type attribute
should be given a value of radio. For example, here radio buttons are used to allow users to select
which class of travel they want to take (ch06_eg12.html):

<form action="http://www.example.com/flights.aspx" name="frmFlightBooking"
 method="get">
 Please select which class of travel you wish to fly:

 <input type="radio" name="radClass" value="First">First class

 <input type="radio" name="radClass" value="Business">Business class

 <input type="radio" name="radClass" value="Economy">Economy class

</form>

As you can see, the user should be allowed to select only one of the three options, so radio buttons
are ideal. You can also start the name of a radio button with the letters rad. Figure 6-15 shows you
what this might look like in a browser.

Figure 6-15

Table 6-8 lists common attributes for an <input> element whose type attribute has a value of radio.

TaBLe 6-8: Common Attributes for Radio Buttons

aTTriBuTe purpoSe

type To indicate that you want a radio button form control .

name The name of the form control .

value Used to indicate the value that will be sent to the server if this option is selected .

checked Indicates that this option should be selected by default when the page loads .

Remember that there is no point using this with a single radio button because a

user can’t deselect the option .

Form Controls ❘ 163

Radio buttons can also take the following attributes:

➤➤ All the universal attributes

➤➤ disabled, form, autofocus, and required

NOTE When you have a group of radio buttons that share the same name, some
browsers automatically select the first option as the page loads, even though
they are not required to do so in the HTML specification. Therefore, if your radio
buttons represent a set of values—say for a voting application—you might want
to set a medium option to be selected by default so that should some users for-
get to select one of the options, the results are not overly biased by the browser’s
selection. To do this, you should use the checked attribute.

Select Boxes
A drop-down select box enables users to select one item from a drop-down menu. Drop-down select
boxes can take up far less space than a group of radio buttons.

Drop-down select boxes can also provide an alternative to single-line text input controls where you
want to limit the options that a user can enter. For example, imagine that you were asking which
country someone was from. If you had a textbox, visitors from the United States could enter different
options such as U.S.A., U.S., United States, America, or North America, whereas with a select box
you could control the options they could enter.

A drop-down select box is contained by a <select> element, whereas each individual option within
that list is contained within an <option> element. For example, the following form creates a drop-
down select box for the user to select a color (ch06_eg13.html):

<select name="selColor">
 <option selected="selected" value="">Select color</option>
 <option value="red">Red</option>
 <option value="green">Green</option>
 <option value="blue">Blue</option>
</select>

As you can see here, the text between the opening <option> tags and the closing </option> tags is
used to display options to the user, whereas the value that would be sent to the server if that option
were selected is given in the value attribute. You can also see that the first <option> element does
not have a value and that its content is Select color; this is to indicate to users that they must pick
one of the color choices. Finally, notice again the use of the letters sel at the start of the name of a
select box.

Figure 6-16 shows what this would look like in a browser.

The width of the select box will be the width of the longest option displayed to the user; in this
case, it will be the width of the text Select color. You can update the width of the box using CSS,
which you learn about in Chapter 7.

164 ❘ CHapTer 6 formS

Figure 6-16

The <select> element
The <select> element is the containing element for a drop-down list box; it can take the attributes
shown in Table 6-9.

TaBLe 6-9: Common Attributes for <select> Elements

aTTriBuTe purpoSe

name The name for the control .

size Can be used to present a scrolling list box, as you will see shortly . Its value would

be the number of rows in the list that should be visible at the same time .

multiple This boolean attribute enables a user to select multiple items from the menu . If the

attribute is not present, the user may select only one item . The use of this attribute

changes the presentation of the select box, as you see in the section “Selecting

Multiple Options with the Multiple Attribute .”

According to the HTML specification, a <select> element must contain at least one <option>
element; although, in practice it should contain more than one <option> element. After all, a
drop-down list box with just one option might confuse a user.

Check boxes can also carry the following attributes:

➤➤ All universal attributes

➤➤ disabled, form, autofocus, and required

The <option> element
Inside any <select> element, you can find at least one <option> element. The text between the
opening <option> and closing </option> tags displays to the user as the label for that option. The
<option> element can take the attributes shown in Table 6-10.

Form Controls ❘ 165

TaBLe 6-10: Attributes of the <option> Element

aTTriBuTe purpoSe

value The value sent to the server if this option is selected .

selected This boolean attribute specifies that this option should be the initially selected value

when the page loads . This attribute may be used on several <option> elements

even if the <select> element does not carry the multiple attribute .

label An alternative way of labeling options, which uses an attribute rather than element

content . This attribute is particularly useful when using the <optgroup> element,

which is covered in the section “Grouping Options with the <optgroup> Element .”

disabled Boolean attribute that disables the select box, preventing user intervention .

Creating Scrolling Select Boxes
As mentioned earlier, you can create scrolling menus where users can see a few of the options in a
select box at a time. To do this, you just add the size attribute to the <select> element. The value
of the size attribute is the number of options you want to be visible at any one time.

Although scrolling select box menus are rarely used, they can give users an indication that several pos-
sible options are open to them and enable them to see a few of the options at the same time. Following
is the code for a scrolling select box that enables the user to select a day of the week (ch06_eg14.html):

<form action="http://www.example.org/days.aspx" name="frmDays" method="get">
 <select size="4" name="selDay">
 <option value="Mon">Monday</option>
 <option value="Tue">Tuesday</option>
 <option value="Wed">Wednesday</option>
 <option value="Thu">Thursday</option>
 <option value="Fri">Friday</option>
 <option value="Sat">Saturday</option>
 <option value="Sun">Sunday</option>
 </select>

<input type="submit" value="Submit">
</form>

As Figure 6-17 shows, users can clearly see that they
have several options; to save space only a few of the
available options are shown.

The multiple attribute, which you meet in the next
section, is not used on this element.

Figure 6-17

166 ❘ CHapTer 6 formS

Selecting Multiple Options with the multiple Attribute
The multiple attribute enables users to select more than one item from a select box. When you use
this attribute, it is always a good idea to tell people how to select multiple items: by holding down
the Control key and clicking the items they want to select.

The addition of this attribute automatically makes the select box look like a scrolling select box.
Here you can see an example of a multiple-item select box that enables users to select more than one
day of the week (ch06_eg15.html):

<form action="http://www.example.org/days.aspx" method="get" name="frmDays">
 Please select more than one day of the week (to select multiple days
 hold down the control key and click on your chosen days):

 <select name="selDays" multiple>
 <option value="Mon">Monday</option>
 <option value="Tue">Tuesday</option>
 <option value="Wed">Wednesday</option>
 <option value="Thu">Thursday</option>
 <option value="Fri">Friday</option>
 <option value="Sat">Saturday</option>
 <option value="Sun">Sunday</option>
 </select>

<input type="submit" value="Submit">
</form>

The result is shown in Figure 6-18, where you can see that even without the addition of the size
attribute, the select box is still represented in the same way as a scrolling one.

Figure 6-18

grouping Options with the <optgroup> element
If you have a long list of items in a select box, you can group them together using the <optgroup>
element, which acts just like a container element for all the elements you want within a group.

Form Controls ❘ 167

The <optgroup> element must carry a label attribute whose value is a label for that group of options.
In the following example, you can see how the options are grouped in terms of type of equipment
(ch06_eg16.html):

<form action="http://www.example.org/info.aspx" method="get" name="frmInfo">
 Please select the product you are interested in:

 <select name="selInformation">
 <optgroup label="Hardware">
 <option value="Desktop">Desktop computers</option>
 <option value="Laptop">Laptop computers</option>
 </optgroup>
 <optgroup label="Software">
 <option value="OfficeSoftware">Office software</option>
 <option value="Games">Games</option>
 </optgroup>
 <optgroup label="Peripherals">
 <option value="Monitors">Monitors</option>
 <option value="InputDevices">Input Devices</option>
 <option value="Storage">Storage</option>
 </optgroup>
</select>
<p><input type="submit" value="Submit"></p>
</form>

Different browsers display <optgroup> elements in different ways. Figure 6-19 shows how Safari
on a Mac displays options held by <optgroup> elements, whereas Figure 6-20 shows the result in
Firefox on a PC.

Figure 6-19 Figure 6-20

Attributes for Select Boxes
For completeness, the following is the full list of attributes that the <select> element can carry:

➤➤ disabled, form, size, multiple, required, and autofocus

➤➤ All universal attributes

168 ❘ CHapTer 6 formS

Meanwhile, the <option> element can carry the following attributes:

➤➤ label, selected, value, and disabled

➤➤ All universal attributes

File Select Boxes
If you want to allow users to upload a file to your website from their computers, you must use a file
upload box, also known as a file select box. This is created using the <input> element (again), but
this time you give the type attribute a value of file (ch06_eg17.html):

<form action="http://www.example.com/imageUpload.aspx" method="post"
 name="fromImageUpload" enctype="multipart/form-data">
 <input type="file" name="fileUpload" accept="image/*">
<p><input type="submit" value="Submit"><p>
</form>

NOTE When you use a file upload box, the method attribute of the <form> element
must be post.

At the beginning of the chapter, you learned about some attributes in this example:

➤➤ The enctype attribute has been added to the <form> element with a value of multipart/
form-data so that each form control is sent separately to the server. This is required on a
form that uses a file upload box.

➤➤ The accept attribute has been added to the <input> element to indicate the MIME types of
the files that can be selected for upload. In this example, the accept attribute is indicating
that any image format can be uploaded because the wildcard character (the asterisk) has been
used after the image/ portion of the MIME type. This attribute is currently supported only by
Opera 11+, Chrome 16+, Firefox 9+, and Internet Explorer 10+.

In Figure 6-21 you can see that when you click the Browse button in Firefox, a file dialog box opens
up enabling you to browse to a file and select which one you want to upload. It is worth noting that
different browsers sometimes show this control in slightly different ways. (For example, Safari has a
button saying Choose File instead of Browse.)

An <input> element whose type attribute has a value of file can take the following attributes:

➤➤ name, disabled, form, accept, autofocus, required, and multiple

Form Controls ❘ 169

Figure 6-21

Hidden Controls
Sometimes you want to pass information between pages without users seeing it; to do this, you can
use hidden form controls. Although users cannot see them in the web page, if they were to look at the
source code for the page, they would see the values in the code. Therefore, hidden controls should not
be used for any sensitive information that you do not want the user to see.

NOTE You may have come across forms on the web that span more than one
page. Long forms can be confusing, and splitting them up can help a user. In
such cases, it is often necessary to pass values that a user has entered into the
first form (on one page) onto the form in the second page, and then onto another
page. Hidden elements are one way in which programmers can pass values
between pages.

You create a hidden control using the <input> element whose type attribute has a value of hidden.
For example, the following form contains a hidden form control indicating which section of the site
users were on when they filled in the form (ch06_eg18.html):

<form action="http://www.example.com/vote.aspx" method="get" name="fromVote">
 <input type="hidden" name="hidPageSentFrom" value="home page">
 <input type="submit" value="Click if this is your favorite page of our
 site. ">
</form>

170 ❘ CHapTer 6 formS

Hidden form controls need both the name and value attributes to be sent with the rest of a form.

NOTE Chapter 8, “More Cascading Style Sheets,” discusses how you can also
hide form controls using the CSS display and visibility properties.

new HTML5 Form elements
In addition to the new <input> types, the new HTML specification added several completely new form
elements. As was the case with many of the new form types, several of these new form elements replace
common patterns on the web that were previously created using copious amounts of JavaScript, CSS,
and markup.

This section introduces three of the most useful: <progress>, <meter>, and <datalist>. The
others are <output> for the output of mathematical exercises or other calculations and <keygen>,
which is used with cryptography.

Track Completion of a Task with the new <progress> element
The <progress> element is designed to represent the progress through a task. For example, you
could use <progress> to track the amount of a file downloaded or the percentage of a survey com-
pleted. In addition to the global attributes you’ve already learned about, <progress> also makes
specific use of two attributes to craft the display.

➤➤ max, indicates the maximum value of the <progress> element.

➤➤ value, indicates the amount completed.

If you include both, the progress bar will be colored proportionately to the amount completed. The
following code sample shows this usage of <progress> (ch06_eg19.html):

 Your progress through this book

 <progress value="6" max="13">

Figure 6-22 shows the rendering of this variation.

If you fail to indicate a value, the rendering of the
element changes from a determinate <progress>
element to one that’s indeterminate. The rendering
of an indeterminate <progress> is different in that
it doesn’t show a specific percentage of completion
and instead cycles through the possible values in an
animation oddly reminiscent of the sweeping eye effect seen in the Cylons from the Battlestar Galactica
television show. To see it properly, test the following code (ch06_eg20.html) in a supporting browser
(as of this writing Internet Explorer 10, Firefox, Chrome, Safari, and Opera):

 Your progress through this book

 <progress max="13">

Figure 6-22

Form Controls ❘ 171

Represent Scalar Measurement within a Range with the <meter> element
Similar to the <progress> element, the <meter> element enables you to display a gauge. A good
example of this might be disk usage. The following example shows the current usage of the author’s
e-mail inbox (ch06_eg21.html). <meter> uses a min attribute to add a lower (potentially nonzero)
bound to the <meter>. You can see an illustration of the <meter> element rendered by Google
Chrome in Figure 6-23:

 <p>You are currently using 510MB out of 950MB available. </p>
 <meter min="0" value="510" max="950">

Figure 6-23

<meter> accepts the following attributes:

➤➤ high specifies the low end of the “high” range.

➤➤ low specifies the high end of the “low” range.

➤➤ max sets the maximum range for the progress element.

➤➤ min sets the minimum range for the progress element.

➤➤ optimum represents the optimal numeric value.

➤➤ value specifies how much of the task has been completed.

Create an Autocomplete List with an <input> and the new <datalist> element
Using a <datalist> enables you to pair the flexibility to have a plain text entry field with a list of
prepopulated options available for the user to choose from. You’re probably familiar with this func-
tionality from sites, such as Google, that offer suggestions as you type.

Normally, this is accomplished with JavaScript. Doing it with just HTML elements is accomplished
with one new <input> attribute, list, and the <datalist> element. You pair the <datalist> element
with a series of nested <option> elements. These options directly populate a list of options that narrow
down as the user types (ch06_eg22.html).

<form action="http://www.example.org/info.asp" method="get" name="frmInfo">
 Please indicate your area of interest:

 <input type="text" name="txtName" value="" size="20" maxlength="20"
list="tech">
 <datalist id="tech">
 <option value="CSS">
 <option value="HTML">
 <option value="JavaScript">
 </datalist>
</form>

172 ❘ CHapTer 6 formS

Figure 6-24 shows how this combination looks in Google Chrome.

Figure 6-24

CreaTing a ConTaCT ForM

Now that you’ve learned about the basics of HTML forms, it’s time to try out what you’ve learned
with a very common example, a contact form.

TrY iT ouT Creating a Contact Form

In this example, you combine several of the form controls to make up a contact form for the Example Café.

 1 . Create a new HTML document with the skeleton in place. Then add a heading:

<!DOCTYPE html>
<html>
<head>
 <title>Contact Us</title>
</head>
<body>

<h1>Contact Us</h1>
<p>Use the following form to send a message to Example Cafe</p>

</body>
</html>

 2 . The form is going to be placed in a table with two columns so that the instructions are in the left
column, and the form controls are aligned in the right column. (Without this, the form controls
would look uneven across the page.) As you’ll learn as you go through Chapter 7, “Cascading Style
Sheets” and Chapter 8, “More Cascading Style Sheets,” it’s preferable to create effects like this
using CSS. For now, stick to using tables.

 3 . In the first two rows, add a text input for the visitor’s e-mail address using an <input> element
whose type attribute has a value of email. Set the size of the form control and the maximum num-
ber of characters a user can enter.

 4 . Add the following table under the paragraph that tells people to use the form to send a message:

<table>
 <tr>
 <td>Your email</td>

Creating a Contact Form ❘ 173

 <td><input type="email" name="txtFrom" id="emailFrom"
 size="20" maxlength="250"></td>
 </tr>

 5 . This first row of the table is followed by a second row containing a text area for their message. The
size of the text area is specified using the rows and cols attributes:

 <tr>
 <td>Message</td>
 <td><textarea name="txtBody" id="emailBody" cols="50"
 rows="10"></textarea></td>
 </tr>

 6 . In the next row, add a select box so that users can tell you how they heard of the café:

 <tr>
 <td>How did you hear of us?</td>
 <td>
 <select name="selReferrer">
 <option value="google">Google</option>
 <option value="ad">Local newspaper ad</option>
 <option value="friend">Friend</option>
 <option value="other">Other</option>
 </select>
 </td>
 </tr>

 7 . In the final row, add a check box to indicate whether visitors want to sign up for e-mail updates.
This is created with the <input> element, whose type attribute has a value of checkbox. The
check box should be selected by default, and this is indicated using the checked attribute:

 <tr>
 <td>Newsletter</td>
 <td><input type="checkbox" name="chkBody" id="newsletterSignup"
 checked>
 Ensure this box is checked if you would like to
 receive email updates</td>
 </tr>
 </table>

 8 . Add a submit button, again using the <input> element so that the visitor can send the message to
the café:

 <input type="submit" value="Send message">

 9 . Save the file as emailForm.html and open it in your browser; it should look something like
Figure 6-25.

174 ❘ CHapTer 6 formS

Figure 6-25

How It Works

Forms provide an interface for your users to enter text. The action indicates the server resource that
will handle the data, and the type indicates how the data will be sent—either as a series of query para-
maters appended to the URL (get) or as part of the HTTP headers (post). When the form is submitted,
the data is sent to the server as a series of name/value pairs. For example, the selReferrer <select>
box could be sent to the server with a value of google or friend.

Now that you’ve seen the basics of forms, it is time to look at more advanced features that you can use
to enhance your forms.

CreaTing LaBeLS For ConTroLS and THe <LaBeL> eLeMenT

Forms can be confusing enough at the best of times. You have probably received many insurance
and tax forms that left you scratching your head.

If you create a form for your site, it is worth spending time to provide good labeling so that users
know what data they should enter and where. If visitors have difficulty understanding your form,
they will be less likely to complete the form (in particular if they purchase something), or they are
more likely to make a mistake when filling it in.

Some form controls, such as buttons, already have labels. For the majority of form controls, how-
ever, you must provide the label.

Creating Labels for Controls and the <label> element ❘ 175

For controls that do not have a label, you should use the <label> element. This element does
not affect the form in any way other than telling users what information they should be entering
(ch06_eg23.html).

<form action="http://www.example.org/login.aspx" method="post" name="frmLogin">
 <table>
 <tr>
 <td><label for="Uname">User name</label></td>
 <td><input type="text" id="Uname" name="txtUserName"></td>
 </tr>
 <tr>
 <td><label for="Pwd">Password</label></td>
 <td><input type="password" id="Pwd" name="pwdPassword"></td>
 </tr>
 </table>
</form>

NOTE You can see that this form has been placed inside a table; this ensures
that even if the labels are of different lengths, the text inputs are aligned in their
own column. If a list of text inputs is not aligned, it can be harder to use. In the
chapters on CSS, you learn how you can implement this same layout without
using a table.

As you can see here, the <label> element carries an attribute called for, which indicates the form
control associated with the label. The value of the for attribute should be the same as the value of
the id attribute on the corresponding form control. For example, the textbox form control, where
users enter their username, has an id attribute whose value is Uname, and the label for this textbox
has a for attribute whose value is also Uname.

Figure 6-26 shows what this login screen looks like.

The label may be positioned before or after the control.
For textboxes and drop-down select boxes, it is generally
good practice to have the label on the left or above the
form control, whereas for check boxes and radio buttons,
it is often easier to associate the label with the correct
form control if they are on the right.

NOTE You should have a new <label> element for each form control.

Another way to use the <label> element is as a containing element. When you use the <label> element
this way, you do not need to use the for attribute because it applies to the form element that is inside it.
This kind of label is sometimes known as an implicit label, for example:

<form action="http://www.example.org/login.aspx" method="post" name="frmLogin">
 <label>Username <input type="text" id="Uname" name="txtUserName"></label>
 <label>Password <input type="password" id="Pwd" name="pwdPassword">
 </label>
</form>

Figure 6-26

176 ❘ CHapTer 6 formS

The drawback to this approach is that you cannot control where the label appears in relation to the
form control.

STruCTuring Your ForMS wiTH <FieLdSeT> and
<Legend> eLeMenTS

Large forms can be confusing for users, so it’s good practice to group together related form controls.
The <fieldset> and <legend> elements do exactly this—help you group controls.

➤➤ The <fieldset> element creates a border around the group of form controls to show that
they are related.

➤➤ The <legend> element enables you to specify a caption for the <fieldset> element, which
acts as a title for the group of form controls. When used, the <legend> element should
always be the first child of the <fieldset> element.

Figure 6-27 shows these elements in action. You can see that the form has been divided into four
sections: Contact Information, Competition Question, Tiebreaker Question, and Enter Competition.

Figure 6-27

Focus ❘ 177

Now take a look at the code for this example. You can see how the <fieldset> elements create
borders around the groups of form controls, and how the <legend> elements are used to title the
groups of controls. Remember, when you use the <legend> element, it must be the first child of
the <fieldset> element (ch06_eg24.html).

<form action="http://www.example.org/competition.aspx" method="post"
name="frmComp">
 <fieldset>
 <legend>Contact Information</legend>
 <label>First name: <input type="text" name="txtFName" size="20"> </label>

 <label>Last name: <input type="text" name="txtLName" size="20"></label>

 <label>E-mail: <input type="text" name="txtEmail" size="20"></label>

 </fieldset>
 <fieldset>
 <legend>Competition Question</legend>
 How tall is the Eiffel Tower in Paris, France?

 <label><input type="radio" name="radAnswer" value="584">
 584ft</label>

 <label><input type="radio" name="radAnswer" value="784">
 784ft</label>

 <label><input type="radio" name="radAnswer" value="984">
 984ft</label>

 <label><input type="radio" name="radAnswer" value="1184">
 1184ft</label>

 </fieldset>
 <fieldset>
 <legend>Tiebreaker Question</legend>
 <label>In 25 words or less, say why you would like to win $10,000:
 <textarea name="txtTiebreaker" rows="10" cols="40"></textarea>
 </label>
 </fieldset>
 <fieldset>
 <legend>Enter competition</legend>
 <input type="submit" value="Enter Competition">
 </fieldset>
</form>

The <fieldset> element can take the following attributes:

➤➤ All the universal attributes.

➤➤ name, disabled, and form

The <legend> element can take all the universal attributes.

FoCuS

When a web page featuring several links or several form controls loads, you may have noticed that
you can use your Tab key to move between those elements (or Shift+Tab to move backward through
elements). As you move between them, the web browser tends to add some type of border or high-
lighting to that element (be it a link or a form control). This is known as focus.

178 ❘ CHapTer 6 formS

Only elements that a user can interact with, such as links and form controls, can receive focus.
Indeed, if a user is expected to interact with an element, that element must receive focus.

An element can gain focus in four ways:

➤➤ An element can be selected using a pointing device such as a mouse or trackball.

➤➤ Elements that can gain focus can be navigated between using the keyboard—often using the
Tab key (or Shift+Tab to move backward through elements). As you are about to see, the ele-
ments in some documents can be given a fixed tabbing order, indicating the order in which
elements gain focus when the user presses the Tab key.

➤➤ A web page author can indicate that an element should receive focus when a user presses a
keyboard shortcut known as an access key. For example, if the page author set the access key
on a search box to be the key for the letter s, on a PC you would likely press the Alt key plus
the access key (Alt+S), whereas on a Mac you would press the Control key with an access key
(Control+S), and the corresponding form control would gain focus.

➤➤ If the autofocus attribute is set on an element, the element gains focus once the document is
loaded. Only one element in a form should have the autofocus attribute set.

Tabbing order
If you want to control the order in which elements can gain focus, you can use the tabindex attribute
to give that element a number between 0 and 32767, which becomes part of the tabbing order. Every
time the user presses the Tab key, the focus moves to the element with the next highest tabbing order.
(And again, Shift+Tab moves focus in reverse order.)

After a user tabs through all elements in a document that can gain focus, then focus may be given to
other browser features (most commonly the address bar).

To demonstrate how tabbing order works, the following example gives focus to the check boxes in a
different order than you might expect (ch06_eg25.html):

<form action="http://www.example.com/tabbing.aspx" method="get"
 name="frmTabExample">
 <input type="checkbox" name="chkNumber" value="1" tabindex="3"> One

 <input type="checkbox" name="chkNumber" value="2" tabindex="7"> Two

 <input type="checkbox" name="chkNumber" value="3" tabindex="4"> Three

 <input type="checkbox" name="chkNumber" value="4" tabindex="1"> Four

 <input type="checkbox" name="chkNumber" value="5" tabindex="9"> Five

 <input type="checkbox" name="chkNumber" value="6" tabindex="6"> Six

 <input type="checkbox" name="chkNumber" value="7" tabindex="10"> Seven

 <input type="checkbox" name="chkNumber" value="8" tabindex="2"> Eight

 <input type="checkbox" name="chkNumber" value="9" tabindex="8"> Nine

 <input type="checkbox" name="chkNumber" value="10" tabindex="5"> Ten

 <input type="submit" value="Submit">
</form>

In this example, the check boxes receive focus in the following order:

4, 8, 1, 3, 10, 6, 2, 9, 5, 7

Focus ❘ 179

Figure 6-28 shows how Firefox for PC by default gives a yellow outline to form elements as they
gain focus. (Other browsers give a different outline. Internet Explorer uses blue lines.) The item is
zoomed in on focus so that you can see it in closer detail.

Figure 6-28

Elements that could gain focus but do not have a tabindex attribute are automatically given a value
of 0. Therefore, when you specify a tabindex value, it should be 1 or higher, rather than 0.

If two elements have the same value for a tabindex attribute, they will be navigated in the order in
which they appear in the document. So, after the elements that have a tabindex of 1 or more have
been cycled through, the browser cycles through the remaining elements (which have a value of 0) in
the order in which they appear in the page.

NOTE If an element is disabled, it cannot gain focus and does not participate in
the tabbing order. Also, if you use a Mac, you may need to check your Keyboard
Shortcuts settings in system preferences. At the bottom of the window where it
says Full Keyboard Access, this needs to have the All Controls option selected.

access keys
Access keys act just like keyboard shortcuts. The access key is a single character from the document’s
character set expected to appear on the user’s keyboard. When this key is used with another key or keys
(such as Alt with IE on Windows, Alt and Shift with Firefox on Windows, and Control on an Apple),
the browser automatically goes to that section. (Exactly which key must be used with the access key
depends upon the operating system and browser.)

The access key is defined using the accesskey attribute. The value of this attribute is the character
(and key on the keyboard) you want the user to press (with the other key/keys dependent upon the
operating system and browser).

180 ❘ CHapTer 6 formS

To see how access keys work, you can revisit the example of a competition form (ch06_eg24.html),
which was covered in the section “Structuring Your Forms with <fieldset> and <legend> Elements”
earlier in this chapter. Now the accesskey attributes can be added to the <legend> elements:

 <legend accesskey="c"><u>C</u>ontact Information</legend>
 <legend>Competition Question</legend>
 <legend accesskey="t"><u>T</u>iebreaker Question</legend>
 <legend>Enter competition</legend>

The new version of this file is ch06_eg26.html in the download code. (Extra
 elements have
been added to show how the screen scrolls to the appropriate section when an access key is used.)
As a hint to users that they can use the access keys as shortcuts, information has also been added to
the information in the <legend> element by underlining the access key. Figure 6-29 shows how this
updated example looks in a browser.

Figure 6-29

The effect of an access key being used depends upon the element that it is used with. With <legend>
elements, such as those shown previously, if the page is longer than the viewport, the browser scrolls
to that part of the page automatically and gives focus to the first form control in the section. When
used with form controls, those elements gain focus. As soon as the element gains focus, the user

Disabled and Read-Only Controls ❘ 181

should interact with it (by either typing in text controls or pressing the Enter or Return key with
other form controls).

When you are using letters a–z, it does not matter whether you specify an uppercase or lowercase
access key; although, strictly speaking, it should be lowercase.

diSaBLed and read-onLY ConTroLS

Throughout the chapter, you have seen that several of the elements can carry attributes called disabled
and readonly:

➤➤ The readonly attribute prevents users from changing the value of the form controls themselves;
although, it may be modified by a script. The name and value of any readonly control will be
sent to the server.

➤➤ The disabled attribute disables the form control, or set of form controls in a <fieldset>
element, so that users cannot alter it. A script can be used to re-enable the control, but unless
a control is re-enabled, the name and value will not be sent to the server.

The readonly attribute is particularly helpful when you want to stop visitors from changing a part
of the form, perhaps because it must not change (for example, if you put terms and conditions inside
a text area).

The disabled attribute is particularly helpful when preventing users from interacting with a con-
trol until they have done something else. For example, you might use a script to disable a submit
button until all the form fields contain a value.

Table 6-11 shows which form controls work with the readonly and disabled attributes.

TaBLe 6-11: Elements That Support the readonly and disabled Attributes

eLeMenT readonLY diSaBLed

<textarea> Yes Yes

<input type=”text”> Yes Yes

<input type=”checkbox”> No Yes

<input type=”radio”> No Yes

<input type=”submit”> No Yes

<input type=”reset”> No Yes

<input type=”button”> No Yes

<input type=”color”> No Yes

<input type=”date”> Yes Yes

continues

182 ❘ CHapTer 6 formS

eLeMenT readonLY diSaBLed

<input type=”datetime”> Yes Yes

<input type=”datetime-local”> Yes Yes

<input type=”email”> Yes Yes

<input type=”file”> No Yes

<input type=”month”> Yes Yes

<input type=”number”> Yes Yes

<input type=”range”> No Yes

<input type=”search”> Yes Yes

<input type=”tel”> Yes Yes

<input type=”url”> Yes Yes

<input type=”week”> Yes Yes

<input type=”time”> Yes Yes

<select> No Yes

<option> No Yes

<optgroup> No Yes

<keygen> No Yes

<fieldset> No Yes

<button> No Yes

Table 6-12 indicates the main differences between the readonly and disabled attributes.

TaBLe 6-12: Differences between readonly and disabled Attributes

aTTriBuTe readonLY diSaBLed

Can be modified Yes by script, not by user Not while disabled

Will be sent to server Yes Not while disabled

Will receive focus Yes No

Included in tabbing order Yes No

TaBLe 6-11 (continued)

Sending Form Data to the Server ❘ 183

Sending ForM daTa To THe SerVer

When your browser requests a web page and when the server sends a page back to the browser, you
use the HyperText Transfer Protocol (HTTP).

There are two methods that a browser can use to send form data to the server—HTTP get and HTTP
post—and you specify which should be used by adding the method attribute on the <form> element.

If the <form> element does not carry a method attribute, then by default the get method will be
used. If you use a file upload form control, you must choose the post method. (And you must set
the enctype attribute to have a value of multipart/form-data.) Now take a closer look at each
of these methods.

HTTp get
When you send form data to the server using the HTTP get method, the form data is appended to
the URL specified in the action attribute of the <form> element.

The form data is separated from the URL using a question mark. Following the question mark, you get
the name/value pairs for each form control. Each name/value pair is separated by an ampersand (&).

For example, take the following login form, which you saw when the password form control was
introduced:

<form action="http://www.example.com/login.aspx" method="get">
 Username:
 <input type="text" name="txtUsername" value="" size="20" maxlength="20">

 Password:
 <input type="password" name="pwdPassword" value="" size="20" maxlength="20">
 <input type="submit">
</form>

When you click the submit button, your username and password are appended to the URL
http://www.example.com/login.aspx in the query string. It should look like this:

http://www.example.com/login.aspx?txtUsername=Bob&pwdPassword=LetMeIn

When a browser requests a URL with any spaces or unsafe characters such as /, \ , =, &, and + (which
have special meanings in URLs), they are replaced with a hex code to represent that character. This is
done automatically by the browser and is known as URL encoding. When the data reaches the server,
the server usually un-encodes the special characters automatically.

One of the advantages of passing form data in a URL is that it can be bookmarked. If you look at
searches performed on major search engines such as Google, they tend to use the get method so
that the page can be bookmarked.

The get method, however, has some disadvantages. Indeed, when sending sensitive data such as the
password shown here, or credit card details, you should not use the get method because the sensi-
tive data becomes part of the URL and is in full view to everyone (and could be bookmarked).

184 ❘ CHapTer 6 formS

You should not use the HTTP get method when

➤➤ You deal with sensitive information, such as passwords or credit card details (because the
sensitive form data would be visible as part of a URL).

➤➤ You update a data source such as a database or spreadsheet (because someone could make
up URLs that would alter your data source).

➤➤ Your form contains a file upload control (because uploaded files cannot be passed in the URL).

In these circumstances, you should use the HTTP post method.

HTTp post
When you send data from a form to the server using the HTTP post method, the form data is sent
transparently in the HTTP headers. Although you do not see these headers, they are not, strictly
speaking, secure on their own. If you send sensitive information such as credit card details, the data
should be sent under a Secure Sockets Layer (SSL) and should be encrypted. For more informa-
tion about SSL, there’s a gentle introduction available at https://computing.ece.vt.edu/~jkh/
Understanding_SSL_TLS.pdf.

If the login form you just saw was sent using the post method, it could be represented like this in
the HTTP headers:

User-agent: MSIE 10
Content-Type: application/x-www-form-urlencoded
Content-length: 35
...other headers go here...
txtUserName=Bob&pwdPassword=LetMeIn

The last line is the form data, which is in exactly the same format as the data after the question
mark in the get method—it would also be URL-encoded, so any spaces or unsafe characters such
as /, \ , =, &, and + (which have special meanings in URLs) are replaced with a hex code to represent
that character as they were in HTTP get requests.

There is nothing to stop you from using the post method to send form data to a page that also con-
tains a query string. For example, you might have one page to handle users who want to subscribe
to or unsubscribe from a newsletter, and you might choose to indicate whether users want to sub-
scribe or unsubscribe in the query string. Meanwhile, you might want to send their actual contact
details in a form that uses the post method because you are updating a data source. In this case,
you could use the following <form> element:

<form action="http://www.example.com/newsletter.asp?action=subscribe"
 method="post">

The only issue with using the HTTP post method is that the information the user entered on the
form cannot be bookmarked in the same way it can when it is contained in the URL. So you cannot
use it to retrieve a page that was generated using specific form data as you can when you bookmark
a page generated by most search engines, but it is good for security reasons.

Creating More Usable Form Fields ❘ 185

CreaTing More uSaBLe ForM FieLdS

Now it’s time to enhance the form you created earlier using the usability tools you’ve picked up in
the past few sections.

TrY iT ouT Contact Form Revisited

It is time to revisit the contact form from the earlier “Try It Out” section in this chapter. This time, you
use techniques learned in the latter part of the chapter to add a new field and to make it more usable.

 1 . Open the file emailForm.html that you made earlier in the chapter, and save it as emailForm2
.html so that you have a different copy to work with.

 2 . You should place <label> elements around the instructions that described the purpose of the form
control. This <label> element should carry the for attribute, whose value is the value of the id
attribute on the corresponding form control, like this one:

 <tr>
 <td><label for="emailFrom">Your email</label></td>
 <td><input type="email" name="txtFrom" id="emailFrom"
 size="20" tabindex="1" maxlength="250"></td>
 </tr>

 3 . Add in a new single-line text input to the beginning of the form, indicating to whom the message is
sent. This input should be read-only:

 <tr>
 <td><label for="emailTo">To</label></td>
 <td><input type="text" name="txtTo" readonly="readonly"
 id="emailTo" size="20" value="Example Cafe"></td>
 </tr>

 4 . Set the tab index so that the input that allows visitors to enter their e-mail addresses receives focus
first, followed by the text area where the visitors enter their messages:

 <tr>
 <td><label for="emailFrom">Your email</label></td>
 <td><input type="email" name="txtFrom" id="emailFrom" size="20"
 tabindex="1" maxlength="250"></td>
 </tr>

 <tr>
 <td><label for="emailBody">Message</label></td>
 <td><textarea name="txtBody" id="emailBody" cols="50" rows="10"
 tabindex="2"></textarea></td>
 </tr>

186 ❘ CHapTer 6 formS

 5 . Now split the form into two sections using the <fieldset> element. To make sure that the ele-
ments nest correctly, each fieldset needs its own table. The first section indicates that it is for infor-
mation about the visitor’s message.

<fieldset>
 <legend>Your message:</legend>
 <table>
 <tr>
 <td><label for="emailTo">To</label></td>
 <td><input type="email" name="txtTo" readonly="readonly" id="emailTo"
 size="20" value="Example Cafe"></td>
 </tr>

 <tr>
 <td><label for="emailFrom">Your email</label></td>
 <td><input type="text" name="txtFrom" id="emailFrom" size="20"
 tabindex="1" maxlength="250"></td>
 </tr>

 <tr>
 <td><label for="emailBody">Message</label></td>
 <td><textarea name="txtBody" id="emailBody" cols="50" rows="10"
 tabindex="2"></textarea></td>
 </tr>

 </table>
 </fieldset>

 6 . The second section is for information about the company (how the user found the site and if the
user wants to be on the mailing list):

<fieldset>
 <legend>How you found us:</legend>
 <table>
 <tr>
 <td><label for="emailBody">How did you hear of us</label></td>
 <td>
 <select name="selReferrer">
 <option value="google">Google</option>
 <option value="ad">Local newspaper ad</option>
 <option value="friend">Friend</option>
 <option value="other">Other</option>
 </select>
 </td>
 </tr>

 <tr>
 <td><label for="newsletterSignup">Newsletter</label></td>
 <td><input type="checkbox" name="chkBody" id="newsletterSignup"

 checked="checked"> Ensure this box is checked if you would like
 to receive email updates</td>
 </tr>
 </table>
 </fieldset>

Summary ❘ 187

This extended registration form is now a lot more usable. If you save the file again and open it in your
browser, you should find something that resembles Figure 6-30.

Figure 6-30

How It Works

Ensuring forms are easy to use is a vital piece of any successful site. In this Try It Out, you added labels to
your form using the <label> element, then you utilized the readonly attribute to add the e-mail address
to which you want the form sent, preventing the visitor from making changes. Finally, you added some
organization using the tabindex attribute to create a tabbing order and the <fieldset> element to define
sections of the form. These enhancements go a long way toward increasing the usability of your forms.

SuMMarY

This chapter introduced you to the world of creating online forms, which are a vital part of many
sites. In most cases, when you want or need to directly collect information from a visitor to your
site, you will use a form, and you have seen several examples of forms.

You learned how a form lives inside a <form> element, and that inside a form there are one or more
form controls. You know how to use the <input> element to create several kinds of form controls,
including many different types of single-line text input controls, as well as check boxes, radio buttons,

188 ❘ CHapTer 6 formS

file upload boxes, buttons, and hidden form controls. You can also use the <textarea> elements to
create multiple line text inputs and the <select> and <option> elements to create select boxes. You
also learned about new HTML5 elements such as <progress> and <meter> used for marking up com-
plicated UI components simply.

After you create a form with its form controls, you need to ensure that each element is labeled
properly so that users know what information they should enter or which selection to make. You
can also organize larger forms using the <fieldset> and <label> elements and aid navigation
with tabindex and accesskey attributes.

Finally, you learned when you should use the HTTP get or post methods to send form data to
the server.

Next you’ll learn about how to add style with CSS to the content you’ve learned to mark up in these
chapters on HTML.

exerCiSeS

 1 . Create an e-mail feedback form that looks like the one shown in Figure 6-31 .

Figure 6-31

The first textbox is a readonly textbox so that the user cannot alter the name of the person

the e-mail is sent to .

Summary ❘ 189

 2 . Create a voting or ranking form that looks like the one shown in Figure 6-32 .

Figure 6-32

The following <style> element was added to the <head> of the document to make each

column of the table the same fixed width with text aligned in the center . (You’ll see more

about this in Chapter 7, “Cascading Style Sheets .”)

<head>
 <title>Voting</title>
 <style type="text/css">
 td {
 width:100px;
 text-align:center;
 }
 </style>
</head>

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

190 ❘ CHapTer 6 formS

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

The <form> element The basic building block for all data collection on the web .

The <input> element Various flavors of input designed to handle different kinds of data

such as e-mail addresses, URLs, or just plain text .

Buttons There are multiple ways to insert buttons into your page including a

separate <input> type and the <button> element .

<select> boxes <select> boxes enable you to provide a predefined set of choices

for your users to choose from when inputting data .

new HTML5 form elements Form elements such as <meter> and <progress> replace common

JavaScript components with easy-to-use native implementations .

Cascading Style Sheets

wHaT You wiLL Learn in THiS CHapTer

➤➤ What makes up a CSS rule

➤➤ How properties and values control the presentation of different

elements within your document

➤➤ How to control the presentation of text using CSS

➤➤ How CSS is based on a box model, and how you set different

properties for these boxes (such as width and styles of borders)

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 7
download and individually named according to the names throughout the chapter.

Having learned how to structure the content of your documents using HTML’s wide variety of
elements and attributes, you can now start making your pages look a lot more exciting.

In this chapter, you learn how to use cascading style sheets (CSS) to take control of the style of
your pages, including the color and size of fonts, the width and color of lines, and the amount
of space between items on the page. The cascading style sheets specification works by enabling
you to specify rules that say how the content of elements within your document should appear.
For example, you can specify that the background of the page is a cream color, the contents of
all <p> elements should display in gray using the Arial typeface, and all <h1> elements should
be in red using the Times New Roman typeface.

By the end of the chapter, you should be confidently writing CSS style sheets and should have
learned many of the properties you can use to affect the presentation of any document using CSS.

7

192 ❘ CHapTer 7 caScaDing StYLe SheetS

inTroduCing CSS

CSS works by enabling you to associate rules with the elements that appear in a web page. These
rules govern how the content of those elements should be rendered. Figure 7-1 shows an example of
a CSS rule, which is made up of two parts:

➤➤ The selector indicates which element or elements the declaration applies to. (If it applies to
more than one element, you can have a comma-separated list of several elements.)

➤➤ The declaration sets out how the elements referred to in the selector should be styled.

Declaration

{width:36px;}

Property

Selector

td

Value

Figure 7-1

The rule in Figure 7-1 applies to all <td> elements and indicates that they should be 36 pixels wide.

The declaration is also split into two parts, separated by a colon:

➤➤ A property is the property of the selected element(s) that you want to affect, in this case the
width property.

➤➤ A value is a specification for this property; in this case it is that table cells should be
36 pixels wide.

This is similar to the way that HTML elements can carry attributes and how the attribute controls
a property of the element; the attributes’ value would be the setting for that property. For example, a
<td> element could have a width attribute whose value is the width you want the table to be:

<td width="36"></td>

With CSS, however, rather than specifying the attribute on each instance of the <td> element, the
selector indicates that this one rule applies to all <td> elements in the document.

Here is an example of a CSS rule that applies to several different elements (the <h1>, <h2>, and <h3>
elements). A comma separates the name of each element that this rule applies to. The rule also specifies
several properties for these elements with each property-value pair separated by a semicolon. Note how
all the properties are kept inside the curly braces:

h1, h2, h3 {
 font-weight : bold;
 font-family : arial;
 color : #000000;
 background-color : #FFFFFF;
}

introducing CSS ❘ 193

Even if you have never seen a CSS rule before, you should now have a good idea of what this rule
does. There are three heading elements named in the selector (<h1>, <h2>, and <h3>), and this
rule says that where these headings are used they will be written in a bold Arial font in black
with a white background.

NOTE If there is only one property-value pair in the declaration, you do not need
to end it with a semicolon. However, because a declaration can consist of several
property-value pairs, and each property-value pair within a rule must be separated
by a semicolon, it is good practice to start adding semicolons every time you write
a rule in case you want to add another rule later. If you forget to add the semicolon,
any further property-value pairs will be ignored.

a Basic example
Now look at an example that shows how a set of CSS rules can transform the look of an HTML
page. CSS rules can live inside the HTML document. Although, this example makes a separate file to
hold the CSS rules, and the HTML page contains a link to this file, which is known as a style sheet.

Before you meet the style sheet, look at Figure 7-2, which shows the HTML page you will be styling
on its own before the CSS rules have been attached.

Figure 7-2

The code for the page you saw in Figure 7-2 (ch07_eg01.html) contains a heading, a paragraph,
and a table. Inside the <head> element is a <link> element that tells the browser where to find the
style sheet that will style this page; the location of the style sheet is given as the value of the href
attribute. Also look at how some of the <td> elements carry a class attribute whose value is code.
This distinguishes the table cells that contain code from other <td> elements in the document.

<!DOCTYPE html>
<html>
<head>
 <title>CSS Example</title>

194 ❘ CHapTer 7 caScaDing StYLe SheetS

 <link rel="stylesheet" href="ch07_eg01.css">
</head>

<body>

<h1>Basic CSS Font Properties</h1>
<p>The following table shows you the basic CSS font properties that allow
you to change the appearance of text in your documents.</p>

<table>
 <tr>
 <th>Property</th>
 <th>Purpose</th>
 </tr>
 <tr>
 <td class="code">font-family</td>
 <td>Specifies the font used.</td>
 </tr>
 <tr>
 <td class="code">font-size</td>
 <td>Specifies the size of the font used.</td>
 </tr>
 <tr>
 <td class="code">font-style</td>
 <td>Specifies whether the font should be normal, italic or oblique.</td>
 </tr>
 <tr>
 <td class="code">font-weight</td>
 <td>Specifies whether the font should be normal, bold, bolder, or lighter</td>
 </tr>
</table>

</body>
</html>

Now look at how to style this page. Figure 7-3 shows how the page looks with the style sheet attached.

Figure 7-3

introducing CSS ❘ 195

You can create a style sheet in the same editor you use to create your HTML pages. After you create
a CSS file, it is saved with the file extension .css.

The style sheet for this example (ch07_eg01.css) uses several CSS rules. Now go through them one
at a time so that you can see what each one does.

Before the first rule, however, there is a comment to tell you which file this style sheet was written
for. Anything between the opening /* and closing */ is ignored by the browser and therefore does
not have an effect on the appearance of the page:

/* Style sheet for ch07_eg01.html */

After the comment, the first rule applies to the <body> element. It specifies that the default color
of any text and lines used on the page will be black and that the background of the page should be
white. The colors here are represented using a hex code. (Appendix D, “Color Names and Values,”
covers the different ways to specify colors.) It also states that the typeface used throughout the docu-
ment should be Arial. If Arial is not available, Verdana will be used instead; failing that, it will use
its default font group that corresponds to that generic font group.

body {
 color:#000000;
 background-color : #ffffff;
 font-family : arial, verdana, sans-serif;
}

NOTE I always specify a background-color property for the body of a document
because some people change the default background color of the windows on
their computers (so that it is not a glaring white). If you do not set this property, the
background color of those users’ browsers will be whatever color they selected.

The next two rules simply specify the size of the contents of the <h1> and <p> elements, respectively.
(As you will see in the section “Lengths,” px stands for pixels.)

h1 {
 font-size : 18px;
}
p {
 font-size : 12px;
}

Next, it is time to add a few settings to control the appearance of the table. First, give it a light gray
background. Then, draw a border around the edge. Three properties are used to describe the border:
The first says it is a solid line (rather than a dashed or dotted line), the second says it should be 1 pixel
thick, and the third specifies that it should be light gray:

table {
 background-color : #efefef;
 border-style : solid;
 border-width : 1px;
 border-color : #999999;
}

196 ❘ CHapTer 7 caScaDing StYLe SheetS

Within the table, the table headings should have a medium gray background color (slightly darker
than the main body of the table); the text should appear in a bold font; and between the edge of the
cell and the text, there should be 5 pixels of padding. (As you will see in more detail in the section
“The padding Property,” padding is the term used for the space between the edge of a box and the
content inside it.)

th {
 background-color : #cccccc;
 font-weight : bold;
 padding : 5px;
}

The individual table data cells also have 5 pixels of padding (like the headings). Adding this space
makes the text much easier to read, and without it the text in one column might run up right next
to the text in the neighboring column:

td {
 padding : 5px;
}

Finally, you may have noticed in Figure 7-3 that the cells of the table that contained the names of CSS
properties were in a Courier font. If you look at the corresponding table cells in the HTML document,
they carried a class attribute whose value was code. On its own, the class attribute does not change
the display of the document (refer to Figure 7-2), but the class attribute does enable you to associ-
ate CSS rules with elements whose class attribute has a specific value. Therefore, the following rule
applies only to <td> elements that carry a class attribute whose value is code, not to all <td> elements:

td.code {
 font-family : courier, courier-new, serif;
 font-weight : bold;
}

When you want to specify an element whose class attribute has a specific value, you put the value
of that class attribute preceded by a period (or full stop) symbol.

There you have the first example; you can find the code for this example (ch07_eg01.html) with the
download code for the rest of the book. This example provides you with an overview of how CSS
works. Therefore, for the rest of this chapter and the following chapter you need to look at

➤➤ The properties you can use to control the appearance of various elements, and the values
they can take. The different properties are grouped throughout this chapter and the next.
For example, the properties that affect the appearance of fonts are together, those that affect
borders are together, and so on.

➤➤ Different selectors that enable you to specify which elements these properties apply to. The
basic example featured just a few of the many methods you can use to indicate which elements
are controlled by which style rules.

➤➤ How CSS treats each element in a web page as if it were in its own box and how this affects
the way in which you lay out web pages.

Along the way you also see where you can use CSS rules in your documents, the units of measure-
ments used in CSS (such as pixels and percentages), and a powerful concept called inheritance.

Where You Can Add CSS Rules ❘ 197

inheritance
One of the powerful features of CSS is that when a property has been applied to one element, it
will often be inherited by child elements (elements contained within the element that the rules were
declared upon). For example, after the font-family property had been declared for the <body>
element in the previous example, it applied to all the elements inside the <body> element. This saves
you from repeating the same rules for every element that makes up a web page.

If another rule is more specific about which elements it applies to, then it overrides any properties
associated with the <body> element or any other containing element. In the preceding example, most
of the text was in an Arial typeface, as specified in the rule associated with the <body> element;
although, there were a few table cells that used a Courier typeface. The table cells that were differ-
ent had a class attribute whose value was code:

<td class="code">font-size</td>

Here you can see the rule associated with these elements:

td.code {
 font-family : courier, courier-new, serif;
 font-weight : bold;
}

This rule takes precedence over the one associated with the <body> element because the selector
is more specific about which element it applies to. The W3C site (http://www.w3.org/TR/CSS21/
cascade.html#specificity) offers a set of rules for determining how specific a rule is. Warning,
it’s not for the faint of heart.

The way in which some properties inherit saves you from writing out rules and all the property-value
pairs for each element and makes for a more compact style sheet. Appendix C, “CSS Properties,” is a
handy reference and tells you which ones do and do not inherit.

wHere You Can add CSS ruLeS

The example that you saw at the beginning of the chapter placed the CSS rules in a separate file known
as an external style sheet. CSS rules can also appear in two places inside the HTML document:

➤➤ Inside a <style> element, which sits inside the <head> element of a document

➤➤ As a value of a style attribute on any element that can carry the style attribute

When the style sheet rules are held inside a <style> element in the head of the document, they are
referred to as an internal style sheet.

<head>
 <title>Internal Style sheet</title>
 <style type="text/css">
 body {
 color : #000000;
 background-color : #ffffff;
 font-family : arial, verdana, sans-serif;
 }

198 ❘ CHapTer 7 caScaDing StYLe SheetS

 h1 {
 font-size : 18pt;
 }
 p {
 font-size : 12pt;
 }
</style>
</head>

When style attributes are used on HTML elements, they are known as inline style rules, for example:

<td style="font-family:courier; padding:5px; border-style:solid;
border-width:1px; border-color:#000000; ">

Here you can see that the properties are added as the value of the style attribute. You still need to
separate each property from its value with a colon and each of the property-value pairs from each
other with a semicolon. However, there is no need for a selector here (because the style is automati-
cally applied to the element that carries the style attribute), and there are no curly braces.

You should generally avoid using both inline style rules and internal style sheets in favor of using
external style sheets. There are some cases in which both are useful, but external sheets are much
easier to maintain. You learn more about this in the “Advantages of External Style Sheets” section.

As you’ve already learned, external style sheets are loaded using the <link> element. Before moving
on, take a slightly more in-depth look at the <link> element and associated attributes.

The <link> element
The <link> element is used in web pages to describe the relationship between two documents; for
example, it can be used in an HTML page to specify a style sheet that should be used to style a
page. You may also see the <link> element used in HTML pages for other purposes, for example,
to specify an RSS feed that corresponds with a page.

It is a different kind of link than the <a> element because the two documents are automatically
associated—the user does not need to click anything to activate the link.

The <link> element is always an empty element, and when used with style sheets, it must carry
two attributes: rel and href. Here is an example of the <link> element used in an HTML page
indicating that it should be styled by a CSS file called interface.css, which lives in a subdirec-
tory called CSS:

<link rel="stylesheet" href="../CSS/interface.css">

In addition to the core attributes, the <link> element can also take the following attributes:

charset href hreflang media rel type sizes target

You have met many of these already, so the more important ones are discussed in the following
sections.

Where You Can Add CSS Rules ❘ 199

The rel Attribute
The rel attribute is required and specifies the relationship between the document containing the
link and the document being linked to. The key value for working with style sheets is stylesheet:

rel="stylesheet"

The other possible values for this element are discussed in Chapter 3, “Links and Navigation.”

The href Attribute
The href attribute specifies the URL for the document being linked to:

href="../stylesheets/interface.css"

The value of this attribute can be an absolute or relative URL (which were covered in Chapter 3,
“Links and Navigation”), but it is usually a relative URL because the style sheet is part of the site.

The media Attribute
The media attribute specifies the output device that is intended for use with the document:

media="screen"

Although this attribute is not always used, it is important because people access the Internet in
different ways using different devices. Table 7-1 shows the possible values.

TaBLe 7-1: Values of the media Attribute

VaLue uSeS

screen Nonpaged computer screens (such as desktop computers and laptops)

tty Media with a fixed-pitch character grid, such as teletypes, terminals, or portable

devices with limited display capabilities

Tv TV devices with low-resolution, color screens, and limited ability to scroll

down pages

print Printed documents, which are sometimes referred to as paged media (and

documents shown onscreen in print preview mode)

projection Projectors

handheld Handheld devices, which often have small screens, rely upon bitmapped graphics,

and have limited bandwidth

braille Braille tactile feedback devices

embossed Braille paged printers

speech Speech synthesizers

all Suitable for all devices

200 ❘ CHapTer 7 caScaDing StYLe SheetS

The <style> element
The <style> element is used inside the <head> element to contain style sheet rules within a web
page, rather than linking to an external document. It is also sometimes used when a single page
needs to contain just a few extra rules that do not apply to the other pages of the site that all share
the same style sheet.

For example, here is a style sheet attached to the HTML document using the <link> element you
just learned about, as well as a <style> element containing an additional rule for <h1> elements:

<head>
 <title>
 <link rel="stylesheet" href="../styles/mySite.css">
 <style type="text/css">
 h1 {
 color:#FF0000;
 }
 </style>
</head>

When you use the <style> element it should always carry the type attribute although it’s not
mandatory. In addition to all the global attributes, it can carry:

type media scoped

advantages of external Style Sheets
If two or more documents are going to use a style sheet, you should use an external style sheet.
There are several reasons for this, including the following:

➤➤ It saves you repeating the same style rules in each page.

➤➤ You can change the appearance of several pages by altering just the style sheet rather than
each individual page. This means it is easier to update your site if you want to, for example,
change the style of font used in all headings or alter the color of all links.

➤➤ After a visitor to your site has downloaded the CSS with the first page of your site that uses
it, subsequent pages will be quicker to load (because the browser retains a copy of the style
sheet and the rules do not need to be downloaded for every page). This also puts less strain
on the server (the computer that sends the web pages to the people viewing the site) because
the pages it sends out are smaller.

➤➤ The style sheet can act as a style template to help different authors achieve the same style of
document without learning all the individual style settings.

➤➤ Because the web pages do not contain the style rules, different style sheets can be attached to
the same document. So you can use the same HTML document with one style sheet when the
viewer is on a desktop computer, another style sheet when the user has a handheld device,
another style sheet when the page is being printed, another style sheet when the page is being
viewed on a TV, and so on. You can reuse the same document with different style sheets for
different visitors’ needs.

CSS Properties ❘ 201

➤➤ A style sheet can import and use styles from other style sheets, allowing for modular
development and good reuse.

➤➤ If you remove the style sheet, you can make the site more accessible for those with visual
impairments because you are no longer controlling the fonts and color schemes.

It is fair to say, therefore, that whenever you write a whole site, you should use an external style
sheet to control the presentation of it (rather than putting CSS rules in the individual web pages).
Although, as you see in the next chapter, you might use several external style sheets for different
aspects of the site.

CSS properTieS

You now know that styling a web page using CSS involves creating rules, and these rules contain
two parts: a selector to indicate which elements the rule applies to and one or more properties that
control the presentation of these elements. So, if there is a part of the page that you want to make a
certain color or size, then you need to use the correct selector to target that part of the page and the
correct properties to change their appearance accordingly.

The properties are grouped together into related functionality; for example, there are properties
that enable you to control the presentation of tables, lists, and backgrounds. The following list
shows the main properties available to you, all of which you meet in this chapter or Chapter 8,
“More Cascading Style Sheets.”

FonT

font

font-family

font-size

font-style

font-variant

font-weight

TexT

color

direction

letter-spacing

text-align

text-decoration

text-indent

text-shadow

text-transform

unicode-bidi

white-space

word-spacing

BaCkground

background

background-attachment

background-color

background-image

background-position

background-repeat

Border

border

border-color

border-style

border-width

border-bottom

border-bottom-color

border-bottom-style

border-bottom-width

border-left

border-left-color

border-left-style

border-left-width

border-right

border-right-color

border-right-style

border-right-width

border-top

border-top-color

border-top-style

border-top-width

202 ❘ CHapTer 7 caScaDing StYLe SheetS

Margin

margin

margin-bottom

margin-left

margin-right

margin-top

padding

padding

padding-bottom

padding-left

padding-right

padding-top

diMenSionS

height

line-height

max-height

max-width

min-height

min-width

width

poSiTioning

bottom

clip

left

overflow

right

top

vertical-align

z-index

ouTLineS

outline

outline-color

outline-style

outline-width

TaBLe

border-collapse

border-spacing

caption-side

empty-cells

table-layout

LiST and Marker

list-style

list-style-image

list-style-position

list-style-type

marker-offset

generaTed ConTenT

content

counter-increment

counter-reset

quotes

CLaSSiFiCaTion

clear

cursor

display

float

position

visibility

In addition there is a new version of CSS, CSS3, which focuses on modules. These modules are
broken into separate areas of focus. The following modules are the focus of Chapter 9, “Rounded
Corners, Animations, Custom Fonts, and More with CSS3”:

➤➤ Selectors

➤➤ Color

➤➤ Backgrounds and Borders

➤➤ Multicolumn Layout

➤➤ Media Queries

➤➤ Fonts

➤➤ 2D Transforms

➤➤ 3D Transforms

➤➤ Animations and Transitions

Controlling Text ❘ 203

There are also some properties that are not covered in this book, either because they are rarely used
or because there is little support for them. (For example, aural style sheets because there are not many
aural browsers that support them.) You can find out more about these properties on the following
websites, or you can read a book dedicated to CSS:

➤➤ www.w3.org/style/css/

➤➤ www.devguru.com/Technologies/css/quickref/css_index.html

ConTroLLing TexT

Several properties enable you to control the appearance of text in your documents. These can be
split into two groups:

➤➤ Those that directly affect the font and its appearance. (These include the typeface used,
whether it is regular, bold, or italic, and the size of the text.)

➤➤ Those that would have the same effect on the text irrespective of the font used. (These
include the color of the text and the spacing between words or letters.)

Table 7-2 lists the properties that directly affect the font (the first of these two groups):

TaBLe 7-2: Font Properties

properTY purpoSe

font Enables you to combine several of the following properties into one .

font-family Specifies the typeface or family of the font that should be used .

font-size Specifies the size of the font .

font-weight Specifies whether the font should be normal or bold .

font-style Specifies whether the font should be normal, italic, or oblique .

font-variant Specifies whether the font should be normal or small caps .

Before looking at these properties in detail, it helps to understand some key terms used in typography.
Perhaps most important, a font is not the same thing as a typeface:

➤➤ A typeface is a family of fonts, such as the Arial family.

➤➤ A font is a specific member of that family, such as Arial 12-point bold.

You often see the terms used interchangeably, but it is helpful to be aware of the distinction.

Typefaces tend to belong to one of two groups: serif and sans-serif fonts. Serif fonts have extra curls on
letters. For example, in Figure 7-4, the first l contains a serif on the top of the letter and at the bottom
of the letter, whereas sans-serif fonts have straight ends to the letters, such as in the second example.

204 ❘ CHapTer 7 caScaDing StYLe SheetS

The third common style of a typeface is a monospaced serif font. Every letter in a monospaced font is
the same width, whereas nonmonospaced fonts have different widths for different letters. (For example,
in serif and sans-serif fonts, the l tends to be narrower than the m.)

lm
monospace font

lm
sans-serif font

lm
serif font

Figure 7-4

Serif fonts are generally assumed to be easier to read for large amounts of printed text. But on the
Internet many people find serif fonts harder to read for long stretches, largely because the resolution
of a computer screen is not as good as printed documents, which makes the less detailed sans-serif
fonts easier to read.

So that you can study the properties that affect fonts, most of the examples in the following section
use a similar structure. Paragraphs of text will be repeated, and each <p> element carries a class
attribute with a different value, for example:

<p class="sans-serif">Here is some text in a sans-serif font.</p>
<p class="serif">Here is some text in a serif font.</p>
<p class="monospace">Here is some text in a monospaced font.</p>

You can then see how different properties affect each <p> element by writing a separate rule for each
paragraph. You can use the value of the class attributes in the CSS selectors to create rules that
apply just to one <p> element at a time.

The font-family property
The font-family property enables you to specify the typeface that should be used for any text
inside the element(s) that a CSS rule applies to.

When choosing typefaces you must know that without using the @font-face directive, covered in
Chapter 9, browsers can display only HTML text in the font you have specified if that typeface is
installed on that computer. So, if you specify a font such as Futura or Garamond, and I do not have
it on my computer, I would see the text in a different font—not the one you specified.

This is why, if you look at a selection of websites, most rely heavily on a small selection of typefaces
installed on most computers that access the web, in particular Arial, Courier/Courier New, Georgia,
Times/Times New Roman, and Verdana. (From this list, Arial and Verdana are particularly popular
because they are considered easy to read online.)

To help matters, you can specify a list of typefaces so that if users do not have your first choice of
typeface installed on their computer, the browser can try to show the text in your second or third
choice. Each typeface in the list is separated by a comma, and if the name contains spaces (such as

Controlling Text ❘ 205

times new roman or courier new) you should place the name of the typeface in double quotation
marks (ch07_eg02.css), like so:

p.sans-serif {
 font-family : arial, verdana, sans-serif;
}
p.serif {
 font-family : times, "times new roman", serif;
}
p.monospace {
 font-family : courier, "courier new", monospace;
}

Figure 7-5 shows what this example would look like in a browser; you can see the different types of
fonts used for each paragraph (ch07_eg02.html).

Figure 7-5

You may notice that each list of typefaces in the previous example ends with so-called generic font
names (sans-serif, serif, and monospace). The idea behind these is that each computer will have a
font that corresponds to one of five generic font groups (sans-serif, serif, monospace, cursive, and
fantasy), and if it cannot find the typefaces you have specified, it can use its choice of font that cor-
responds to that generic font group, as shown in Table 7-3.

TaBLe 7-3: Generic Font Names

generiC FonT naMe TYpe oF FonT exaMpLe

serif Fonts with serifs Times

sans-serif Fonts without serifs

monospace Fixed-width fonts Courier

cursive Fonts that emulate handwriting

fantasy Decorative fonts for titles and so on Impact

206 ❘ CHapTer 7 caScaDing StYLe SheetS

One thing to consider when choosing a list of fonts is that each font can be of different heights or
widths, so you probably want to choose a list of fonts that are of a similar size. (Otherwise, the layout
could look different to what you expect.) For example, Courier New is quite short and wide, so if this
were your first choice, it would not be good to have Impact as a second choice because Impact is quite
tall and narrow.

If you want to use a specific typeface, you must wade into the slightly scary waters of web fonts.
Chapter 9 covers the benefits and shortcomings of this new technology.

The font-size property
The font-size property enables you to specify a size for the font. You often see the value for this
property specified in pixels, like so:

p.twelve {
 font-size : 12px;
}

However, you can provide a value in many ways:

➤➤ Length: (Along with pixels, there are several other units of length that you will learn about in
the section “Lengths” later in this chapter.)

px em ex pt in cm pc mm rem vw vh

➤➤ Absolute size: Each of these values corresponds to a fixed size:

xx-small x-small small medium large x-large xx-large

➤➤ Relative size: This value is relative to the surrounding text:

smaller larger

➤➤ Percentage: A percentage is calculated as a proportion of the parent element:

2% 10% 25% 50% 100%

Here is an example of each of these ways to specify a value for the font-size property:

p.one {
 font-size : xx-small;
}
p.twelve {
 font-size : 12px;
}
p.thirteen {
 font-size : 3pc;
}
p.fourteen {
 font-size : 10%;
}

Controlling Text ❘ 207

Figure 7-6 shows how a selection of these font sizes works in the browser. (ch07_eg03.html
and ch07_eg03.css contain several examples of different ways to specify size and compare how
they look.)

Font Sizes

Absolute
xx-small

Pixels
9 px

12 px

14 px

18 px

24 px

36 px

48 px

Points
9 pt

Picas
1 pc

Relative Sizes
smaller

no style

larger
2 pc

3 pc

4 pc

48 pt

12 pt

14 pt

18 pt

24 pt

36 pt

x-small

small

Ems
1em

Exs
1ex

Percents
50%

Viewport
1vh

Root Element
1rem

2rem

3rem

3rem

2vh

4vh

6vh

75%

100%

150%

200%

200%

2ex

3ex

4ex

5ex

6ex

7ex

2em

3em

4em

medium

large

large

large

Figure 7-6

The font-weight property
Most fonts have different variations, such as bold and italic. When typographers create a new font,
it is not unusual for them to individually craft a separate, thicker version of each character for the
bold variation.

Despite all this careful work, rather than finding the bold version of a typeface, browsers tend to
use an algorithm that takes the normal version of the font and makes it thicker. Because it uses an
algorithm, it means you can also create a lighter version of fonts. This is what the font-weight
property is for.

The possible values for font-weight are:

normal bold bolder lighter 100 200 300 400 500 600 700 800 900

208 ❘ CHapTer 7 caScaDing StYLe SheetS

The following example uses several of these values (ch07_eg04.css):

p.one {
 font-weight : normal;
}
p.two {
 font-weight : bold;
}
p.three {
 font-weight : normal;
}
p.three span {
 font-weight : bolder;
}
p.four {
 font-weight : bold;
}
p.four span {
 font-weight : lighter;
}
p.five {
 font-weight : 100;
}
p.six {
 font-weight : 200;
}

Figure 7-7 shows you how these values appear in the browser (ch07_eg04.html).

Of these values, bold is most commonly used. Although, you might see the use of normal. (Especially
if a large section of text is already bold and an exception must be created in which just a few words
are not in bold.)

Figure 7-7

Controlling Text ❘ 209

The font-style property
The font-style property enables you to specify that a font should be normal, italic, or oblique,
and these are the values of the font-style property, for example (ch07_eg05.css):

p.one {
 font-style : normal;
}
p.two {
 font-style : italic;
}
p.three {
 font-style : oblique;
}

Figure 7-8 shows you how these values appear in the
browser (from ch07_eg05.html).

In typography, an italic version of a font would normally
be a specifically stylized version of the font based on cal-
ligraphy, whereas an oblique version of the font would
take the normal version of the font and place it at an
angle. In CSS, when you specify a font-style property
should be italic, browsers usually take the normal ver-
sion of the font and simply render it at an angle (as you
would expect with an oblique version of a font).

The font-variant property
There are two possible values for the font-variant property: normal and small-caps. A small
caps font looks like a smaller version of the uppercase letterset.

For example, look at the following paragraph, which contains a with a class attribute
(ch07_eg06.html):

<p>This is a normal font, but then there
are some small caps in the middle.</p>

Now look at the style sheet (ch07_eg06.css):

p {
 font-variant : normal;
}
span.smallcaps {
 font-variant : small-caps;
}

As you can see from Figure 7-9, the rule associated with the element indicates that its content
should be shown in small caps.

Figure 7-8

210 ❘ CHapTer 7 caScaDing StYLe SheetS

Figure 7-9

TexT ForMaTTing

In addition to the properties that affect the font, several properties affect the appearance or format-
ting of your text (independently from the font it is shown in), as shown in Table 7-4.

TaBLe 7-4: Text Formatting Properties

properTY purpoSe

color Specifies the color of the text .

text-align Specifies the horizontal alignment of the text within its containing element .

vertical-align Specifies the vertical alignment of text within its containing element .

text-decoration Specifies whether the text should be underlined, overlined, or

strikethrough .

text-indent Specifies an indent from the left border for the text .

text-transform Specifies that the content of the element should all be uppercase, lower-

case, or capitalized .

text-shadow Specifies that the text should have a drop shadow .

letter-spacing Controls the width between letters (known to print designers as tracking) .

word-spacing Controls the amount of space between each word .

white-space Specifies whether the white space should be collapsed, preserved, or pre-

vented from wrapping .

direction Specifies the direction of text (similar to the dir attribute) .

Text Formatting ❘ 211

The color property
The color property enables you to specify the color of the text. The value of this property is most
commonly a hex code for a color or a color name. (Both Chapter 9 and Appendix D further discuss
the way in which colors are specified for the web.)

For example, the following rule (ch07_eg07.css) would make the content of paragraph elements
red, as shown in ch07_eg07.html:

p {
 color : #ff0000;
}

The text-align property
The text-align property works like the deprecated align attribute would with text. It aligns the
text within its containing element or the browser window. Table 7-5 displays possible values.

TaBLe 7-5: Possible Values for the text-align Property

VaLue purpoSe

left Aligns the text with the left border of the containing element .

right Aligns the text with the right border of the containing element .

center Centers the content in the middle of the containing element .

justify Spreads the width across the whole width of the containing element .

start Added in CSS3, aligns inline contents to the start of the line box .

end Added in CSS3, aligns inline contents to the end of the line box .

Figure 7-10 shows you how these would work in a table that is 500 pixels wide.

Figure 7-10

212 ❘ CHapTer 7 caScaDing StYLe SheetS

Here are the rules for each row of this example (ch07_eg08.css):

.leftAlign {
 text-align : left;
}
.rightAlign {
 text-align : right;
}
.center {
 text-align : center;
}
.justify {
 text-align : justify;
}

The effects of these rules are shown in ch07_08.html.

The vertical-align property
The vertical-align property is useful when working with inline elements, in particular images
and portions of text. It enables you to control their vertical positioning within the containing
element, for example:

span.footnote {
 vertical-align : sub;
}

It can take several values, as shown in Table 7-6.

TaBLe 7-6: Values for the vertical-align Property

VaLue purpoSe

baseline Aligns to the baseline of the parent element . (This is the default setting .)

sub Makes the element subscript . With images, the top of the image should be on

the baseline . With text, the top of the font body should be on the baseline .

super Makes the element superscript . With images, the bottom of the image should

be level with the top of the font . With text, the bottom of the descender (the

parts of letters such as g and p that go beneath the line of text) should align

with the top of the font body .

top Aligns the top of the text and the top of the image with the top of the tallest

element on the line .

text-top Aligns the top of the text and the top of the image with the top of the tallest

text on the line .

Text Formatting ❘ 213

middle Aligns the vertical midpoint of the element with the vertical midpoint of

the parent .

bottom Aligns the bottom of the text and the bottom of the image with the bottom of

the lowest element on the line .

text-bottom Aligns the bottom of the text and the bottom of the image with the bottom of

the lowest text on the line .

This property may also accept inherit, a length and a percentage value.

You can try out all these in your browser using ch07_eg09.html.

Figure 7-11 shows some of these values.

Figure 7-11

214 ❘ CHapTer 7 caScaDing StYLe SheetS

The text-decoration property
The text-decoration property enables you to specify the values, as shown in Table 7-7.

TaBLe 7-7: Values for the text-decoration Property

VaLue purpoSe

underline Adds a line under the content .

overline Adds a line over the top of the content .

line-through Adds a line through the middle of the content, such as strikethrough text . In

general, this should be used only to indicate text marked for deletion .

none Removes any text-decoration on an element .

Here are these properties used on separate paragraphs (ch07_eg10.css):

p.underline {
 text-decoration : underline;
}
p.overline {
 text-decoration : overline;
}
p.line-through {
 text-decoration : line-through;
}

Figure 7-12 shows you what they look like in Firefox (ch07_eg10.html).

Figure 7-12

The text-indent property
The text-indent property enables you to indent the first line of text within an element. In the fol-
lowing example it has been applied to the second paragraph (ch07_eg11.html):

<p>This paragraph should be aligned with the left-hand side of the browser. </p>
<p class="indent">Just the first line of this paragraph should be indented by
3 em, this should not apply to any subsequent lines in the same paragraph. </p>

Text Formatting ❘ 215

Now, here is the rule that indents the second paragraph (ch07_eg11.css):

.indent {
 text-indent : 3em;
}

You can see what this looks like in Figure 7-13.

Figure 7-13

The text-shadow property
The text-shadow property is supposed to create a drop shadow, which is a dark version of the
word just behind it and slightly offset. This has often been used in print media, and its popularity
has meant that is has gained its own CSS property. The value for this property is quite complicated
because it can take a color followed by three lengths (ch07_eg12.css):

.dropShadow {
 text-shadow : #999999 10px 10px 3px;
}

After the color has been specified, the first two lengths specify how far from the original text the
drop shadow should fall (using X and Y coordinates), whereas the third specifies how blurred
the drop shadow should be.

This property is supported in all the major browsers, including Internet Explorer 10 or later.
Figure 7-14 shows what this example (ch07_eg12.html) looks like in Safari on a Mac.

Figure 7-14

216 ❘ CHapTer 7 caScaDing StYLe SheetS

The text-transform property
The text-transform property enables you to specify the case for the content of an element. The
possible values are shown in Table 7-8.

TaBLe 7-8: Values for the text-transform Property

VaLue purpoSe

none No change takes place .

capitalize Capitalizes the first letter of every word .

uppercase Makes the entire content of the element uppercase .

lowercase Makes the entire content of the element lowercase .

To demonstrate this property, in the following example there are four paragraphs (ch07_eg13.html):

<p class="none">This text has not been transformed</p>
<p class="capitalize">The first letter of each word will be capitalized</p>
<p class="uppercase">All of this text will be uppercase</p>
<p class="lowercase">ALL OF THIS TEXT WILL BE LOWERCASE</p>

Here you can see the four different values for the text-transform property in use (ch07_eg13.css):

p.none {
 text-transform : none;
}
p.capitalize {
 text-transform : capitalize;
}
p.uppercase {
 text-transform : uppercase;
}
p.lowercase {
 text-transform : lowercase;
}

Figure 7-15 shows you how the paragraphs would appear in a browser with these styles applied.

Figure 7-15

Text Formatting ❘ 217

The letter-spacing property
The letter-spacing property controls something that print designers refer to as tracking: the gap
between letters. Loose tracking indicates that there is a lot of space between letters, whereas tight
tracking refers to letters squeezed together. No tracking refers to the normal gap between letters for
that font.

If you want to increase or decrease the spacing between letters, you most likely specify this in pixels
or something known as an em. (Although, it can be any unit of length that CSS supports—you look
at the CSS units of length in the “Length” section in this chapter.)

If you have a section of text where letter spacing has been altered, you can specify that an element
should have no tracking using the keyword normal.

The first paragraph of the following example shows normal tracking. The second paragraph shows
a gap of 3 pixels used between each letter. The third paragraph shows a gap between each letter of
0.5 em. The final paragraph shows spacing cut by 1 pixel from what it would have been in normal
tracking (ch07_eg14.css):

.two {
 letter-spacing : 3px;
}
.three {
 letter-spacing : 0.5em;
}
.four {
 letter-spacing : -1px;
}

Figure 7-16 gives you an indication of what this looks like in a browser (ch07_eg14.html).

Figure 7-16

The word-spacing property
The word-spacing property sets the gap between words, and its value should be a unit of length. In
the following example (ch07_eg15.css), in the first paragraph there is a standard gap between each

218 ❘ CHapTer 7 caScaDing StYLe SheetS

of the words. In the second paragraph the gap is 10 pixels between each of the words. In the final
paragraph the gap has been cut to 1 pixel less than normal spacing:

.two {
 word-spacing : 20px;
}
.three {
 word-spacing : -1px;
}

Figure 7-17 gives you an indication of what this looks like (ch07_eg15.html).

Figure 7-17

The white-space property
As you saw in Chapter 1, browsers change any two or more spaces next to each other into a single
space and make any carriage returns a single space. The white-space property controls whether
white space is preserved, offering the same results as the HTML <pre> element where white space
is preserved and the nowrap attribute where text is broken only onto a new line if explicitly told to.
Table 7-9 shows the possible values for this property.

TaBLe 7-9: Values for the white-space Property

VaLue purpoSe

normal Follows normal white space collapsing rules .

pre Preserves white space just as in the <pre> element of HTML, but the formatting

is whatever is indicated for that element . (It is not a monospaced font by default

like the <pre> element .)

nowrap Breaks text onto a new line only if explicitly told to with a
 element; otherwise

text does not wrap .

For example, you can use the white-space property like so (ch07_eg16.css):

.pre {
 white-space : pre;

Text Formatting ❘ 219

}
.nowrap {
 white-space : nowrap;
}

You can see both of these properties working in Figure 7-18 (ch07_eg16.html).

Figure 7-18

The direction property
The direction property is rather like the dir attribute and specifies the direction in which the text
should flow. Table 7-10 shows the possible values.

TaBLe 7-10: Values for the direction Property

VaLue purpoSe

ltr The text flows from left to right .

rtl The text flows from right to left .

inherit The text flows in the same direction as its parent element .

For example, here are rules for two paragraphs indicating different directions for the text
(ch07_eg17.css used with ch07_eg17.html):

p.ltr {
 direction : ltr;
}
p.rtl {
 direction : rtl;
}

In practice, both IE and Firefox use this property much as the align attribute is used. The value rtl
simply right-aligns text, as shown in Figure 7-19. Note, however, that the period (or full stop) is to
the left of the sentence in the paragraph that is supposed to be running right to left.

220 ❘ CHapTer 7 caScaDing StYLe SheetS

Figure 7-19

TexT pSeudo-CLaSSeS

While you are learning about text, there are two pseudo-classes that can help you work with text.
These pseudo-classes enable you to render either the first letter or the first line of an element in a
different way than the rest of that element.

The first-letter pseudo-Class
The first-letter pseudo-class enables you to specify a rule just for the first letter of an element.
This is most commonly used on the first character of a new page, either in some magazine articles
or in books.

Here is an example of the first-letter pseudo-class applied to a <p> element that has a class
attribute whose value is introduction. Note how the selector for the element and the first-letter
pseudo-class are separated by a colon (ch07_eg18.css used with ch07_eg18.html):

p.introduction:first-letter {
 font-size : 42px;
}

Figure 7-20 shows the effect of this first-letter pseudo-class (and also shows the next pseudo-class
you look at).

Figure 7-20

Styling Text ❘ 221

The first-line pseudo-Class
The first-line pseudo-class enables you to render the first line of any paragraph differently
from the rest of the paragraph. Commonly, this is a bold font so that the reader can clearly see
an introduction (for articles) or the first line (for poems).

The name of the pseudo-class is separated from the selector for the element by a colon:

p.introduction:first-line {
 font-weight : bold;
}

It is worth trying this example out in a browser because if you resize the window so that there is less
text on the first line, you can see how only the first line of text in the browser is given this new style.
Refer to Figure 7-20 to see the first-line pseudo-class in action, which also demonstrates the
first-letter pseudo-class.

STYLing TexT

The single most common task with CSS on the web is styling text. In this next Try It Out, you style
text on the sample website.

TrY iT ouT Styling the example Café Text

Now that you’ve learned about using CSS to format text, it is time to put what you have learned into
practice by adding styles to the Example Café website.

 1 . To create an external style sheet, start your text editor and create a file called interface.css.
Save it in a folder called css with the rest of the Example Café files. At the beginning of the style
sheet, add a comment to explain what the style sheet is for:

/* style sheet for Example Cafe */

 2 . The default font family should be Arial. If the user does not have Arial installed, suggest Verdana,
failing which the computer’s default is sans-serif font.

body {
 font-family : arial, verdana, sans-serif;
}

222 ❘ CHapTer 7 caScaDing StYLe SheetS

 3 . To have the headings stand out in a different font, have Georgia as the first choice for headings, then
Times, and finally the default serif font. To have them appear in gray rather than black, specify a
color for the headings using the color property (which is discussed in more detail in the following
chapter). Because you want to make all headings the same, specify the styles in a single rule like so:

h2 {
 font-family : georgia, times, serif;
 color : #666666;
}

 4 . The paragraphs of text might look a little better slightly smaller than the default size of text, so
make them 90 percent of the default size. Also make the text dark gray rather than black.

p {
 font-size:90%;
 color:#333333;
}

 5 . Now look at the navigation. In particular, you want to control the appearance of the links in the
navigation. To do this, open the HTML pages and add an id attribute to the <nav> element that
contains the navigation.

 <nav id="navigation">
 HOME
 MENU
 RECIPES
 OPENING
 CONTACT
 </nav>

 6 . To add a selector (which specifies that you want to select only <a> elements that live inside an ele-
ment that has an id attribute whose value is navigation), use the hash or pound symbol followed
by the value of the id attribute. Specify that these links should be a light blue to match the logo:

#navigation a {
 color:#3399cc;
}

 7 . By default, links appear with underlines; you can remove these by using the text-decoration
property with a value of none:

#navigation a {
 color : #3399cc;
 text-decoration : none;
}

Styling Text ❘ 223

 8 . In the HTML pages, you need to add the <link> element, which associates the style sheet with the
pages. Add this to every page:

<link rel="stylesheet" href="css/interface.css">

Now all the pages in the example use this same style sheet, and your homepage should look a little
more like the example in Figure 7-21.

Figure 7-21

How It Works

CSS rules are applied to elements using a system that uses specificity to calculate which properties
should be applied to which elements. In this case there are only two sources for properties: the style
sheet you created and the default styling present in every browser. In this case the rules you’ve written
override the default browser styling. You’ll learn more about how specificity works as you continue to
learn about CSS, beginning with an in-depth look at selectors in the next section.

224 ❘ CHapTer 7 caScaDing StYLe SheetS

SeLeCTorS

So far, you have seen lots of examples of properties that affect the presentation of text, and you have
seen how you can apply these properties to elements using style rules. Before continuing to look at
more properties, you need to look at some more fundamental issues. Start by looking at how you
can use a different type of a selector to specify which elements a style sheet rule can apply to. There
are actually several ways to do this, not just by using the names of the elements as you have seen so
far in this chapter (which is, incidentally, known as a simple selector) or using the value of the class
attribute or id attribute. Learn how in the next few sections.

universal Selector
The universal selector is an asterisk; it is like a wildcard and matches all element types in the document.

*{}

If you want a rule to apply to all elements, you can use this selector. Sometimes it is used for default
values that apply to the whole of the document (such as a font-family and font-size) unless another
more specific selector indicates that an element should use different values for these same properties.

It is slightly different from applying default styles to the <body> element because the universal
selector applies to every element and does not rely on the property inherited from the rules that
apply to the <body> element.

The Type Selector
The type selector matches all the elements specified in the comma-delimited list. It enables you to
apply the same rules to several elements. For example, if you want to apply the same rules to differ-
ent sized heading elements, the following would match all h1, h2, and h3 elements:

h1, h2, h3 {}

The Class Selector
The class selector enables you to match a rule with an element (or elements) carrying a class attri-
bute whose value matches the one you specify in the class selector. For example, imagine you have an
<aside> element with a class attribute whose value is BackgroundNote, like so:

<aside class="BackgroundNote">This paragraph contains an aside.</aside>

You can use a class selector in one of two ways here. One way is to simply assign a rule that applies
to any element that has a class attribute whose value is BackgroundNote, like so, preceding the
value of the class attribute with a period or full stop:

.BackgroundNote {}

Selectors ❘ 225

Or you can create a selector that selects only the <aside> elements that carry a class attribute with
a value of BackgroundNote (not other elements) like so:

aside.BackgroundNote {}

If you have several elements that can all carry a class attribute with the same value (for example,
an <aside> element and a <div> element could both use the class attribute with the same value)
and you want the content of these elements to display in the same manner, use the former notation.
If the styles you define are specific to just the <aside> element whose class attribute has a value of
BackgroundNote, use the latter notation.

A class attribute can also contain several values separated by a space, for example:

<p class="important code">

You can use the following syntax to indicate an element that has a class attribute whose value
contains both important and code. (Although, IE7 was the first version of Internet Explorer to
support this syntax.)

p.important.code {}

The id Selector
The id selector works just like a class selector but works on the value of id attributes. Rather than
using a period or full stop before the value of the id attribute, you use a hash or pound sign (#). So
an element with an id attribute whose value is abstract can be identified with this selector.

#abstract

Because the value of an id attribute should be unique within a document, this selector should apply
only to the content of one element. (And you should not need to specify the element name.)

NOTE Because of the way browsers calculate which styles to apply to an
element, supplying an element name with your selector actually slows down
your page slightly. The browser must parse all elements of that type and check
to see if they have the matching id attribute instead of simply targeting the
unique element specific in your selector.

The Child Selector
The child selector matches an element that is a direct child of another. In this case it matches any
 elements that are direct children of <td> elements. The names of the two elements are separated
by a greater-than symbol (>) to indicate that b is a child of td, which is referred to as a combinator:

td>b {}

226 ❘ CHapTer 7 caScaDing StYLe SheetS

This would enable you to specify a different style for elements that are direct children of the
<td> element compared with elements that appear elsewhere in the document.

As a direct child of the <td> element, no other tags would sit between the opening <td> tag and
the element. For example, the following selector does not make sense because the element
should not be a direct child of a <table> element. (Instead, a <tr> element is more likely to be the
direct child of a <table> element.)

table>b {}

IE7 was the first version of Internet Explorer to support the child selector.

The descendant Selector
The descendant selector matches an element type that is a descendant of another specified element
(or nested inside another specified element), not just a direct child. Although the greater-than symbol
is the combinator for the child selector, for the descendent selector the combinator is the space. Look
at this example:

table b {}

In this case, the selector matches any element that is a child of the <table> element, which
means it would apply to elements both in <td> and <th> elements.

This is a contrast to the child selector because it applies to all the children of the <table> element,
rather than just the direct children.

The adjacent Sibling Selector
An adjacent sibling selector matches an element type that is the next sibling of another. For example, if
you want to make the first paragraph after any level 1 heading a different style from other <p> elements,
you can use the adjacent sibling selector like so to specify rules for just the first <p> element to come
after any <h1> element:

h1+p {}

IE7 was the first version of Internet Explorer to support the adjacent sibling selector.

The general Sibling Selector
The general sibling selector matches an element type that is a sibling of another; although, it does
not need to be the directly preceding element. So, if you have two <p> elements that are siblings of
an <h1> element, they would both use the rules of this selector.

h1~p {}

The general sibling selector is part of CSS3, which you’ll learn more about in Chapter 9. IE7 was the
first version of Internet Explorer to support the general sibling selector, and Firefox 2 was the first
version of Firefox to support it.

Selectors ❘ 227

using Child and Sibling Selectors to reduce dependence on
Classes in Markup

The child and adjacent sibling selectors are both important because they can reduce the number of
class attributes you need to add into an HTML document.

It is easy to add classes for all kinds of eventualities. For example, if you want the first paragraph
after an <h1> element to show in bold, you might be tempted to add a class attribute to the first
<p> element after every <h1> element. Although this works, your markup can be littered with all
kinds of classes that are only there to make it easier to control the presentation of the pages.

If you then decide you wanted the first two <p> elements after every <h1> element to be bold, you
might go back and add in new class attributes for the second <p> elements after every <h1> element.
So the child and adjacent sibling selectors add a lot of flexibility to how you style documents and
can make for much cleaner markup.

Look at the following HTML content (ch07_eg19.html):

<p>Paragraph One: not inside a div element.</p>
<div>
 <p>Paragraph One: inside a div element</p>
 <p>Paragraph Two: inside a div element </p>
 <p>Paragraph Three: inside a div element </p>
 <p>Paragraph Four: inside a div element </p>
 <p>Paragraph Five: inside a div element </p>
</div>

Using the child and adjacent sibling selectors only, you can create a page that looks like the one
shown in Figure 7-22.

Figure 7-22

The three different paragraph styles are:

➤➤ The first paragraph has no border or background color.

➤➤ The paragraphs inside the <div> element all have borders.

➤➤ The last three paragraphs have a gray background and border.

228 ❘ CHapTer 7 caScaDing StYLe SheetS

The different paragraph styles are not specified with three different classes, but rather one rule controls
the font used for all paragraphs (ch07_eg19.css):

p {
 font-family : arial, verdana, sans-serif;
}

The following is the second rule for any paragraph that is a child of a <div> element. (Because the
first paragraph is not inside a <div> element, the rule does not apply to the first paragraph.)

div>p {
 border : 1px solid #000000;
}

The third rule matches any paragraph that is also a third consecutive <p> element. (Because the
fourth and fifth <p> elements have two previous <p> elements, this rule applies to them and the third
<p> element inside the <div>.)

p+p+p {
 background-color : #999999;
}

Remember that this example cannot work in IE6 or earlier versions of Internet Explorer because
these selectors were first introduced in IE7.

NOTE While it doesn’t always make a perceptible difference, it’s useful to note
that CSS selectors using classes and ids are faster than other selectors like child
and sibling selectors. Ids are especially fast. This is usually only important when
you have very complex web pages. For more information, read the article “Writing
Efficient CSS” found at https://developer.mozilla.org/en-US/docs/CSS/
Writing_Efficient_CSS.

attribute Selectors
Attribute selectors enable you to use the attributes that an element carries, and their values, in the
selector. There are several types of attribute selectors, and they enable complex ways to select elements
in a document.

The use of attribute selectors is fairly limited because they have been supported only in the latest
versions of browsers. Some of the attribute selectors in Table 7-11 are from CSS3, which you’ll learn
more about in Chapter 9.

Selectors ❘ 229

TaBLe 7-11: CSS Attribute Selectors

naMe exaMpLe MaTCHeS

Existence selector p[id] Any <p> element carrying an attribute

called id .

Equality selector p[id="summary"] Any <p> element carrying an attribute

called id whose value is summary .

Space selector p[class~="HTML"] Any <p> element carrying an attribute

called class, whose value is a list of

space-separated words, one of which is

exactly the same as HTML .

Hyphen selector p[language|="en"] Any <p> element carrying an attribute

called language whose value begins with

en and is followed with a hyphen . (This

particular selector is designed for use with

language attributes .)

Prefix selector (CSS3) p[attr^"b"] Any <p> element carrying any attribute

whose value begins with b (CSS3) .

Substring selector (CSS3) p[attr*"on"] Any <p> element carrying any attribute

whose value contains the letters on (CSS3) .

Suffix selector (CSS3) p[attr$"x"] Any <p> element carrying any attribute

whose value ends in the letter x (CSS3) .

Internet Explorer implemented these attribute selectors in IE7. Firefox started to support them in
Firefox 2.

Now look at an example of using these attribute selectors. Here are seven different paragraph elements,
each carrying different attributes/attribute values (ch07_eg20.html):

<p id="introduction">Here’s paragraph one; each paragraph has different
attributes.</p>
<p id="summary">Here’s paragraph two; each paragraph has different attributes.</p>
<p class="important HTML">Here’s paragraph three; each paragraph has different
attributes.</p>
<p language="en-us">Here’s paragraph four; each paragraph has different
attributes.</p>
<p class="begins">Here’s paragraph five; each paragraph has different
attributes.</p>
<p class="contains">Here’s paragraph six; each paragraph has different
attributes.</p>
<p class="suffix">Here’s paragraph seven; each paragraph has different
attributes.</p>

230 ❘ CHapTer 7 caScaDing StYLe SheetS

Now look at a CSS style sheet that uses attribute selectors to associate different style rules with each
of these elements (ch07_eg20.css):

p[id] {
 border : 1px solid #000000;
}
p[id="summary"] {
 background-color : #999999;
}
p[class~="HTML"] {
 border : 3px solid #000000;
}
p[language|="en"] {
 color : #ffffff;
 background-color : #000000;
}
p[class^="b"]{
 border : 3px solid #333333;
}
p[class*="on"] {
 color : #ffffff; background-color:#333333;
}
p[class$="x"] {
 border : 1px solid #333333;
}

You can see the result in Firefox 3.0 in Figure 7-23.

Figure 7-23

All selectors should match the case of the element name that they are supposed to match.

As a general rule, the latest versions of Chrome, Safari, Firefox, and Internet Explorer 9+ support all
the CSS selectors you will encounter in this book. IE8 was the first version of Internet Explorer to
support the CSS2 selectors. Older versions of Internet Explorer are problematic except for the most
basic selectors. For a complete list, check the support table from Browse Em All found at http://
www.browseemall.com/Blog/post/2012/03/16/The-cross-browser-compatibility-guide-

CSS-selectors-browser-support.aspx.

Lengths ❘ 231

LengTHS

You have already seen that the values of some CSS properties are given as lengths (such as the size
of fonts, height of lines of text, and gaps between words and letters), and you will come across more
properties whose values are expressed as lengths throughout the chapters on CSS. So, now take a
moment to look at the three ways lengths can be specified in CSS:

➤➤ Relative units

➤➤ Absolute units

➤➤ Percentages

relative units
There are three types of relative units: the pixel (px), which relates to the resolution of the screen,
and the em and ex, both of which relate to the size of fonts.

px
The pixel, referred to in code as px, is by far the most commonly used unit of length in CSS. A pixel
is the smallest unit of resolution on a screen, and if you look closely at your screen, you might just
see the square dots that are the pixels.

Technically, the size of a layout that uses pixels as a unit of measurement can depend upon the viewing
medium, which is why it is counted as a relative unit.

Most computer screens have a resolution of 72 dots per inch (dpi), but laser and bubble jet printers
are usually set with a higher resolution—for example, 300 dpi. In contrast, mobile devices can have
a lower resolution than computer screens or (for some smartphones such as the iPhone) a higher
resolution.

So, a table that is 500 pixels wide could be 9.9444 inches wide on a 72 dpi screen, 1.666 inches
wide at 300 dpi, or 13.888 inches wide on a 32 dpi screen. (And a screen that is only 32 dpi is
unlikely to be that much more than 13 inches wide.)

In reality, when you print a web page from your browser, it adjusts the pixels to present a readable
version of the document. CSS recommends that in such cases user agents rescale pixel units so that
when a document is read at arm’s length 1 pixel would correspond to approximately 0.28 mm or
1/90 of an inch.

em
An em is equivalent to the height of the current font, and because the size of fonts can vary throughout
a document, the height of the em unit can be different in different parts of the document. Furthermore,
because users can change the size of text in their browser, the em unit can vary in relation to the size of
the text that the user has selected.

This means that the em unit is most commonly used for measurements of elements that contain text
and for controlling spacing between text. (For example, you can use it in the line-height property
to set the gaps between lines of text in relation to their height.)

232 ❘ CHapTer 7 caScaDing StYLe SheetS

Although the em unit is equivalent to the height of a font, it is often thought to have derived from the
width of a lowercase m; you may also hear the term en, which equates to half an em.

ex
The ex should be the height of a lowercase x. Because different fonts have different proportions, the
ex is related to the font size and the type of font. In Figure 7-24, you can see the x in the Courier
typeface is smaller than the x in the Impact typeface.

X
courier

X
Impact

Figure 7-24

new Relative Units: rem, vh, and vw
You may encounter three new relative units introduced in the CSS Values and Units Candidate
Recommendation (http://www.w3.org/TR/css3-values/): rem, vh, and vw.

➤➤ rem units are equal to the font size of the root element—a “root em.” This allows you to
use font-relative sizing with less complexity than with the traditional path of em units and
percentage-based heights/widths.

➤➤ vh units are equal to 1 percent of the viewport height. vw units are equal to 1 percent of the
viewport width. This allows for viewport-relative layouts. If the viewport changes (for example,
in the change from portrait to landscape on a tablet), these units scale proportionally.

rem units are supported in IE9+ and the latest versions of the other major desktop browsers. As
of this writing vh and vw support is only in IE10+, Chrome 20+, Firefox 19+, Safari 6+, and with
partial support in Opera 12.5.

absolute units
Generally speaking, absolute units are used far less than relative units. (And you rarely come
across designs that use these units of measurement.) Table 7-12 shows the absolute units used in
some CSS properties.

TaBLe 7-12: Absolute Units in CSS

uniT FuLL naMe

pt Point

pc Pica

in Inch

introducing the Box Model ❘ 233

cm Centimeter

mm Millimeter

You shouldn’t need clarification for inches, millimeters, or centimeters, but the other two are more
interesting. A point is 1/72 of an inch (the same as a pixel in most computer screen resolutions), and a
pica is 1/12 of an inch (12 points). Typographers tend to use points to measure font sizes and leading
(the gaps between lines), whereas picas measure line lengths.

percentages
Percentages give a value in relation to another value. For example, if your page contains only two
paragraphs, and you want each to take up one-half of the width of the browser, you might give the
paragraphs a width property with a value of 50%. However, if the <p> element were inside another
element that you knew was 500 pixels wide, they would take up 50 percent of the width of that
containing element (or 250 pixels) each.

inTroduCing THe Box ModeL

The box model is an important concept in CSS because it determines how elements are positioned
within the browser window. It gets its name because CSS treats every element as if it were in a box.

As you can see in Table 7-13, every box has three properties you must be aware of.

TaBLe 7-13: Important Box Model Properties

properTY deSCripTion

border Even if you cannot see it, every box has a border . This separates the edge

of one box from other surrounding boxes .

margin The margin is the distance between the border of a box and the box next

to it .

padding This padding is the space between the content of the box and its border .

You can get a better idea of these properties in Figure 7-25, which shows the various parts of the
box. (The black line is the border.)

You can use CSS to individually control the border, margin, and padding on each side of a box; you
can specify a different width, line-style, and color for each side of the box’s border.

The padding and margin properties are especially important in creating what designers refer to as
white space; this is the space between the various parts of the page. For example, if you have a box

234 ❘ CHapTer 7 caScaDing StYLe SheetS

with a black border and the box contains black text,
you would not want the text to touch the border because
it would make the text harder to read. Giving the box
padding helps separate the text from the line around
the edge.

Meanwhile, suppose you have two boxes next to each other,
both with borders. If there is not a margin between them,
the boxes will run into each other, and the line where the
boxes meet could look thicker than the other lines.

There is, however, an interesting issue with margins: When a bottom margin of one element meets the
top margin of another, only the larger of the two shows. (If they are the same size, the margin is equiva-
lent to the size of the larger of the two margins.) Figure 7-26 shows the vertical margins of two adjacent
boxes collapsing. (This applies only to vertical margins; the same is not true for left and right margins.)

Vertical margins
have collapsed

Here is a box
with some
content

padding-bottom

padding-top

margin-top

p
a
d
d
i
n
g
-
l
e
f
t

m
a
r
g
i
n
-
l
e
f
t

p
a
d
d
i
n
g
-
r
i
g
h
t

m
a
r
g
i
n
-
r
i
g
h
t

Here is a box
with some
content

padding-bottom
margin-bottom

padding-top

margin-top

p
a
d
d
i
n
g
-
l
e
f
t

m
a
r
g
i
n
-
l
e
f
t

p
a
d
d
i
n
g
-
r
i
g
h
t

m
a
r
g
i
n
-
r
i
g
h
t

Figure 7-26

To understand how the box model works with elements, look at the example in the next section.

an example illustrating the Box Model
To illustrate the box model, you can add a border to each of the elements in a web page. The <body>
element creates one box that contains the whole page, and inside that box each heading, paragraph,
image, or link creates another box. First, here is the HTML for the page (ch07_eg21.html):

 <h1>Thinking Inside the Box</h1>
 <p class="description">When you are styling a web page with CSS you
 must start to think in terms of boxes.</p>
 <p>Each element is treated as if it generates a new box. Each box can have
 new rules associated with it.</p>

 <p>As you can see from the diagram above, each box has a border.
 Between the content and the border you can have padding, and
 outside of the border you can have a margin to separate this box
 from any neighboring boxes.</p>

Here is a box
with some
content

padding-bottom
margin-bottom

padding-top

margin-top

p
a
d
d
i
n
g
-
l
e
f
t

m
a
r
g
i
n
-
l
e
f
t

p
a
d
d
i
n
g
-
r
i
g
h
t

m
a
r
g
i
n
-
r
i
g
h
t

Figure 7-25

introducing the Box Model ❘ 235

Using just one CSS rule, you can see how each element involved with the body of the document—
<body>, <h2>, <p>, , and —is treated as if it were in a separate box. You can do this by
adding a CSS rule that adds a border around each of these elements. You learn more about these
properties shortly (ch07_eg21.css).

body, h1, p, img, b {
 border-style : solid;
 border-width : 2px;
 border-color : #000000;
 padding:2px;
}

Each box can be presented differently. For example, you can give the <h1> and <bold> elements a
gray background to help distinguish them from other elements.

h1, b {
 background-color : #cccccc;
}

Figure 7-27 shows you what this page looks like in a browser. Although it is not too attractive, the
lines show you the borders of the boxes (and demonstrate how boxes are created for each element).

Figure 7-27

You may remember from Chapter 1 that there is a difference between block-level elements and inline
elements. The difference becomes quite important when working with CSS because it determines how
each box displays.

➤➤ The <h1> and <p> elements are examples of block-level elements. Each block-level element
starts on a new line, and the box around a block-level element takes up the full width of the
browser (or the full width of the element it sits inside).

➤➤ The element is an example of an inline element. Its box sits in the middle of the paragraph
and it does not take up the width of a whole line. (It flows within its containing element.)

236 ❘ CHapTer 7 caScaDing StYLe SheetS

The element may look like it is a block-level element because it starts on its own line, but it
is actually an inline element. You can tell this because the border around it takes up only the width
of the image; if it were a block-level element, the border would reach across the full width of the
browser. The image is on its own line only because the elements on either side of it are block-level
elements. (And therefore the surrounding elements appear on their own lines.)

Now that you know how each element is treated as if it were in its own box, look at the properties
that control the borders, padding, and margins for each box.

The border properties
The border properties enable you to specify how the border of the box representing an element
should look. There are three properties of a border you can change:

➤➤ border-color to indicate the color a border should be

➤➤ border-style to indicate whether a border should be a solid, dashed, or double line, or one
of the other possible values

➤➤ border-width to indicate the width a border should be

The border-color Property
The border-color property enables you to change the color of the border surrounding a box,
for example:

p {
 border-color : #ff0000;
}

The value can be any valid color value. (Colors are discussed in greater detail in Appendix D.)

You can individually change the color of the bottom, left, top, and right sides of a box’s border using
the following properties:

➤➤ border-bottom-color

➤➤ border-right-color

➤➤ border-top-color

➤➤ border-left-color

The border-style Property
The border-style property enables you to specify the line style of the border:

p {
 border-style : solid;
}

The default value for this property is none, so no border would be shown automatically. Table 7-14
shows the possible values.

introducing the Box Model ❘ 237

TaBLe 7-14: Values for the border-style Property

VaLue deSCripTion

none There is no border . (Equivalent of border-width:0;)

solid The border is a single solid line .

dotted The border is a series of dots .

dashed The border is a series of short lines .

double The border is two solid lines; the value of the border-width property

creates the sum of the two lines and the space between them .

groove The border looks as though it is carved into the page .

ridge The border looks the opposite of groove .

inset The border makes the box look like it is embedded in the page .

outset The border makes the box look like it is coming out of the canvas .

hidden Same as none, except in terms of border-conflict resolution for table elements .

Figure 7-28 shows an example of what each of these would look like (taken from ch07_eg22.html).
Note that even though the last four examples in Figure 7-27 look similar, they are different, and you
can try them for yourself with the download code for this example.

You can individually change the style of the bottom, right, top, and left borders of a box using the
following properties:

➤➤ border-bottom-style

➤➤ border-right-style

➤➤ border-top-style

➤➤ border-left-style

Figure 7-28

238 ❘ CHapTer 7 caScaDing StYLe SheetS

The border-width Property
The border-width property enables you to set the width of your borders; usually the width is
specified in pixels.

p {
 border-style : solid;
 border-width : 4px;
}

The value of the border-width property cannot be given as a percentage; although, you could use
any absolute unit or relative unit, or one of the following values:

➤➤ thin

➤➤ medium

➤➤ thick

The actual width of the thin, medium, and thick values are not specified in the CSS recommendation
in terms of pixels, so the actual width that corresponds to these keywords is dependent on the browser.

You can individually change the width of the bottom, right, top, and left borders of a box using the
following properties:

➤➤ border-bottom-width

➤➤ border-right-width

➤➤ border-top-width

➤➤ border-left-width

expressing border Properties Using Shorthand
The border property enables you to specify color, style, and width of lines in one property:

p {
 border : 4px solid red;
}

If you use this shorthand, the values should not have anything (other than a space) between them.
You can also specify the color, style, and width of lines individually for each side of the box in the
same way using these properties:

➤➤ border-bottom

➤➤ border-top

➤➤ border-left

➤➤ border-right

introducing the Box Model ❘ 239

The padding property
The padding property enables you to specify how much space should appear between the content of
an element and its border:

td {
 padding : 5px;
}

The value of this property is most often specified in pixels. Although, it can use any of the units of
length you met earlier, a percentage, or the word inherit.

The padding of an element does not inherit by default, so if the <body> element has a padding prop-
erty with a value of 50 pixels, this does not automatically apply to all other elements inside it. If the
value inherit is applied to any elements, only then can they have the same padding as their parent
elements.

If a percentage is used, the percentage is of the containing box, and if the value of 10 percent is
specified, there would be 5 percent of each side of the box as padding.

You can specify different amounts of padding inside each side of a box using the following
properties:

➤➤ padding-bottom

➤➤ padding-top

➤➤ padding-left

➤➤ padding-right

The padding attribute is especially helpful to create white space between the content of an element
and any border it has. Look at the following two paragraphs in Figure 7-29.

Figure 7-29

240 ❘ CHapTer 7 caScaDing StYLe SheetS

If you look at the CSS rules for these two paragraph elements, you can see that by default the first
paragraph has no padding. It must be specified if you want a gap like the one shown in the second
paragraph (ch07_eg23.css).

.a, .b {
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
 width : 100px;
}
.b {
 Padding : 5px;
}

Sometimes, an element might not have a visible border, but it has a background color or pattern. In
such cases giving the box some padding can help make your design more attractive.

The margin property
The margin property controls the gap between boxes, and its value is either a length, a percentage, or
inherit, each of which has exactly the same meaning as it did for the padding property you just saw.

p {
 margin:20px;
}

As with the padding property, the values of the margin property are not inherited by child elements
unless you use the value inherit.

Also, remember that when one box sits on top of another box, only the larger of the two margins
shows (or if both are equal, the size of one margin).

You can also set different values for the margin on each side of the box using the following
properties:

➤➤ margin-bottom

➤➤ margin-top

➤➤ margin-left

➤➤ margin-right

If you look at the following example (see Figure 7-30, which shows ch07_eg24.html), you can see
three paragraphs, which look as if they are spaced equally. However, they have taller margins on the
top than the bottom, and therefore where two boxes meet, the bottom margin is ignored—the margins
are collapsed. (This happens only to the vertical margins, not the left and right margins.)

introducing the Box Model ❘ 241

The example also shows how to set the left and right
margins on the side of inline elements—where you see the
highlighted words. Again, this is not the most attractive
example, but it illustrates how both block and inline boxes
use margins.

The words in the paragraphs that are emphasized using
the element have margin-left and margin-right
properties set. Because these elements also have a
background color set, you can actually see how the margins
to the left and the right separate the words from the sur-
rounding words (refer to Figure 7-30).

Here are the rules from ch07_eg24.css:

body {
 color : #000000;
 background-color : #ffffff;
 font-family : arial, verdana, sans-serif;
 font-size : 12px;
}
p {
 margin-top : 40px;
 margin-bottom : 30px;
 margin-left : 20px;
 margin-right : 20px;
 border-style : solid;
 border-width : 1px;
 border-color : #000000;}
em {
 background-color : #cccccc;
 margin-left : 20px;
 margin-right : 20px;
}

dimensions of a Content Box
Now that you’ve seen the border that surrounds every content box, the padding that can appear inside
the border of each content box, and the margin that can go outside the border, it is time to look at the
properties that enable you to control the dimensions of content boxes, shown in Table 7-15.

TaBLe 7-15: Content Box Properties

properTY purpoSe

height Sets the height of a box .

width Sets the width of a box .

line-height Sets the height of a line of text (such as leading in a layout program) .

Figure 7-30

continues

242 ❘ CHapTer 7 caScaDing StYLe SheetS

properTY purpoSe

max-height Sets the maximum height for a box .

min-height Sets the minimum height for a box .

max-width Sets the maximum width for a box .

min-width Sets the minimum width for a box .

The height and width Properties
The height and width properties enable you to set the height and width for content boxes. They
can take values of a length, a percentage, or the keyword auto. (The default value is auto, which
means the content box is just large enough to house its contents.)

Here you can see the CSS rules for two paragraph elements, the first with a class attribute whose
value is one and the second whose class attribute has a value of two (ch07_eg25.css):

p.one {
 width : 200px;
 height : 100px;
 padding : 5px;
 margin : 10px;
 border-style : solid;
 border-color : #000000;
 border-width : 2px;}
p.two {
 width : 300px;
 height : 100px;
 padding : 5px;
 margin : 10px;
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
}

Figure 7-31

TaBLe 7-15 (continued)

introducing the Box Model ❘ 243

As you can see in Figure 7-31, the first paragraph is 200 pixels wide and 100 pixels high, whereas
the second paragraph is 300 pixels wide and 100 pixels high.

The most common unit of measurement for boxes is pixels. Although, percentages and ems are often
used in layouts that stretch and contract to fit the size of the browser window.

The line-height Property
The line-height property is one of the most important properties when laying out text. It enables
you to increase the space between lines of text (known to print designers as leading).

The value of the line-height property can be a length or a percentage. It is a good idea to specify
this property in the same measurement in which you specify the size of your text.

Here you can see two rules setting different line-height properties (ch07_eg26.css):

p.two {
 line-height : 16px;
}
p.three {
 line-height : 28px;
}

As you can see in Figure 7-32, the first paragraph does not have a line-height attribute, whereas
the second and third paragraphs correspond to the preceding rules. Adding some extra height
between each line of text can often make it more readable, especially in longer articles.

In long paragraphs try to use leading of approximately 1.5 times the height of the font. This property
can also be helpful when you need to add spacing around single lines of text.

Figure 7-32

244 ❘ CHapTer 7 caScaDing StYLe SheetS

The max-width and min-width Properties
The max-width and min-width properties enable you to specify a maximum and a minimum width
for a content box. This should be particularly useful if you want to create parts of pages that stretch
and shrink to fit the size of users’ screens. The max-width property can stop a box from being so
wide that it is hard to read (lines that are too long are harder to read on screens), and min-width
can help prevent boxes from being so narrow that they are unreadable. IE7 and Firefox 2 were the
first of the major browsers to support these properties.

The value of these properties can be a number, a length, or a percentage, and negative values are not
allowed. For example, look at the following rule, which specifies that a <div> element may not be
less than 200 pixels wide and no wider than 500 pixels wide (ch07_eg27.css):

div {
 min-width : 200px;
 max-width : 500px;
 padding : 5px;
 border : 1px solid #000000;
}

You can see what this looks like in Figure 7-33, which shows two browser windows, and you can try
it for yourself using ch07_eg27.html in the code download. The first window is opened to more than
500 pixels wide, and the box does not stretch wider than 500 pixels. The second window is closed
to less than 200 pixels, at which point the browser starts to show a horizontal scrollbar because you
cannot see the full width of the box.

Figure 7-33

The min-height and max-height Properties
The min-height and max-height properties correspond with the min-width and max-width proper-
ties, but specify a minimum height and maximum height for the content box. Again, IE7 and Firefox 2
were the first major browsers to support these properties.

introducing the Box Model ❘ 245

The value of these properties can be a number, a length, or a percentage, and negative values are not
allowed. Look at the following example (ch07_eg28.css):

div {
 min-height : 150px;
 max-height : 200px;
 padding : 5px;
 border : 1px solid #000000;
}

Again, these properties are useful to create layouts that can be resized depending upon the size of
the user’s browser window. However, you can see an interesting phenomenon in Figure 7-34: If the
content of the box takes up more space than the box is allowed because of these rules, the content
can overflow out of the box. (You learn how to deal with this in the next section.)

Figure 7-34

The overflow Property
As you just saw in Figure 7-34, when you control the size of a box, the content you want to fit in the
box might require more space than you have allowed for it. This happens not only with the min-height
and max-height or min-width and max-width properties but also for a number of other reasons.

The overflow property was designed to deal with these situations and can take one of the values
shown Table 7-16.

TaBLe 7-16: overflow Property Values

VaLue purpoSe

hidden The overflowing content is hidden .

visible The overflowing content is visible outside of the box .

continues

246 ❘ CHapTer 7 caScaDing StYLe SheetS

VaLue purpoSe

scroll The box is given scrollbars to allow users to scroll to see the content .

auto The box is given scrollbars when necessary .

inherit The box inherits its overflow properties from its parent .

Now look at the following example, where the width of two <div> elements has been controlled by
the max-height and max-width properties so that the content of the <div> elements does not fit in
the box. For the first element, the overflow property is set to have a value of hidden and the second
to have a value of scroll (ch07_eg29.css).

div {
 max-height : 75px;
 max-width : 250px;
 padding : 5px;
 margin : 10px;
 border : 1px solid #000000;
}
div.one {
 overflow : hidden;
}
div.two {
 overflow : scroll;
}

Now take a look at Figure 7-35, which shows ch07_eg29.html. You can see the effect of these two
properties—in the first box the text is simply cut off when it runs out of space, and in the second
box a scrollbar is created allowing users to scroll to the appropriate content.

Figure 7-35

The internet explorer Box Model and box-sizing: border-box
In the early days of CSS development, two competing box models were introduced. You’ve met
one already: The one that’s been the CSS standard for many years. The other one was introduced by
early versions of Internet Explorer. Those early versions of IE treated the width of a box as though

TaBLe 7-16 (continued)

introducing the Box Model ❘ 247

it included the width of any border it had been given and the width of the padding in the size of the
box. The CSS specification says that the width of a box should only be the width of the content (not
including the border or padding). You can see this in Figure 7-36.

content

width

padding
border

margin

IE Box Model

content

width

padding
border

margin

W3C Box Model

Figure 7-36

This divergent set of rules was a problem. IE6 resolved this problem because it could run in the two
“modes” you learned about in Chapter 1:

➤➤ The standards-compliant mode follows the CSS specification.

➤➤ The Quirks mode retains the alternative box mode. IE6 or above can run in Quirks mode
when there is no !DOCTYPE declaration.

A funny thing happened after this “IE box model bug” was fixed. People took a sober look at the
Internet Explorer box model and recognized that it made more sense than the standard box model.
Translating a design that featured a box measured at 500 pixels with 20 pixels of padding meant doing
a bit of math. Although the common sense “width” was 500 pixels, the width property would have to
be set to 460px to account for the padding. This is counterintuitive, and forcing humans to do math
when inputting display rules into a computer isn’t the most efficient distribution of resources.

Enter the new CSS box-sizing property. box-sizing enables you to choose between the CSS
standard and the border-box box model. border-box maps to the Internet Explorer box model.
This property is supported in Internet Explorer 8 and above, as well as all other major browsers, so
if you don’t have to support IE7, border-box can make your work with CSS much easier.

Let computers compute.

248 ❘ CHapTer 7 caScaDing StYLe SheetS

CreaTing a STYLe SHeeT For Code

In the following Try It Out, you practice formatting text for use as computer code.

TrY iT ouT A Style Sheet for Code

I often find the need to display code online. So I wrote the following style sheet to enable me to define styles
similar to those you see in this book, for showing code on the web. As you will see in the next chapter, this
code can then be included in other style sheets when needed, which means it is a reusable style sheet.

The style sheet features several styles for block and inline elements. Table 7-17 shows the styles you
will create.

TaBLe 7-17: Styles for Code Samples

STYLe naMe inLine or BLoCk uSe

codeInText Inline For a bit of code written in the middle of a sen-

tence, shown in a monospace font .

codeForeground Block Highlighted code in a monospace font for showing

examples .

codeBackground Block Like codeForeground, but not highlighted because

it has been seen before or is not the key point of

the example .

keystroke Inline Keys a user should enter on the keyboard, distin-

guishable because it is italic .

importantWords Inline The first use of a key term; helps users scan the

document because it appears in a bold font .

boxText Block Creates a block of important or key notes that is in

a box and has background shading .

background Block Creates a block of italic text that has an aside or

interesting note .

 1 . Create class selectors for each of these styles. Element names are not used for several of the styles
here because the styles could apply to different elements. (For example, box text could be in a <p>
element or a <div> grouping other elements.) The selectors that do use elements are the ones repre-
senting code.

code.codeInText{}
code.codeForeground {}
code.codeBackground {}
.keystroke {}
.importantWords {}
.boxText {}
.background {}

Creating a Style Sheet for Code ❘ 249

 2 . Start adding declarations to each selector inside the curly brackets. First is the codeInText style
for words that appear in the middle of a sentence or paragraph that represent code. In the same
tradition as most written matter on programming, the code displays in a monospaced font. The
first choice of typeface—specified using the font-family property—is Courier, failing which the
browser should try to find Courier New. If it cannot find that typeface, it uses its default mono-
spaced font. (Although most computers do have Courier or Courier New installed.)

 3 . To make the code easier to read, this font appears in bold text, as indicated using the font-weight
property.

.codeInText {
 font-family : courier, "courier new", monospace;
 font-weight : bold;
}

 4 . The second style is the codeForeground style. This style uses the same type of font as the
codeInText style. Fill out the style as follows:

.codeForeground {
 font-family : courier, "courier new", monospace; font-weight:bold;
 letter-spacing : -0.1em;
 display : block;
 background-color : #cccccc;
 padding : 0.5em;
 margin-bottom : 1em;
 margin-top : 1.5em;
}

Here are a few things to take note of:

➤➤ The codeForeground style should always be displayed as a block-level element, but just in
case the class is incorrectly used with an inline element, the display property is used with
a value of block to ensure that it is displayed as a block. (You see more of this property in
Chapter 8.)

➤➤ You also see that the letter-spacing property has been used with a negative value because
monospace fonts tend to take up quite a bit of width on the page. So, to help get as many
characters as possible on the same line, it is given a value of –0.1 of an em (or 10 percent of
a font’s height).

➤➤ All lengths in the style sheet are specified in ems so that they relate to the default size of the
text in the document. If some of these elements were given in absolute sizes, they might have
suddenly appeared a lot smaller or larger than the surrounding text.

➤➤ The background color of the codeForeground style is gray. This helps the code stand out
and makes it more readable. A one and one-half em-sized padding has been added inside the
box so that the text does not go right to the edge of the background color—this also makes
the code easier to read.

➤➤ The margin ensures that the box does not touch any other boxes or paragraphs. It has a
smaller margin on the bottom than the top, as do all the styles in this style sheet that use the
margin property.

250 ❘ CHapTer 7 caScaDing StYLe SheetS

 5 . The codeBackground style is identical to the codeForeground style except that the background-
color is white. Add the following code to the empty rule:

.codeBackground {
 font-family : courier, "courier new", monospace; font-weight:bold;
 letter-spacing : -0.1em;
 display : block;
 background-color : #ffffff;
 padding : 0.5em;
 margin-bottom : 1em;
 margin-top : 1em;}

 6 . The keyStroke style is in a Times typeface, or Times New Roman if Times is not available; otherwise,
the default serif typeface for the browser is used. The keyStroke style should look like the following:

.keyStroke {
 font-family : times, "Times New Roman", serif;
 font-style : italic;
}

 7 . The importantWords style is simply bold, so add the single property-value pair shown here:

.importantWords {
 font-weight : bold;
}

 8 . The boxText style has a bold font with a light gray background; what differentiates it is that it has
a border. The class definition should look like this when all is said and done:

.boxText {
 font-weight : bold;
 background-color : #efefef;
 width : 90%;
 padding : 1em;
 margin-left : 3em;
 margin-right : 3em;
 margin-bottom : 1em;
 margin-top : 1.5em;
 border-style : solid;
 border-width : 1px;
 border-color : #000000;
}

 9 . As with the codeForeground style, boxText has some padding so that the text does not reach the
border—making it easier to read—and it has a margin to inset it from the left and right as well as
vertically to separate it from other elements. Note that the bottom margin is slightly smaller than
the top margin.

 10 . The final style is the background style. This style is italic and has the same amount of padding and
margins as the boxText style. Build out the definition so that it looks like this:

.background {
 font-style : italic;
 width : 90%;
 padding : 1em;

Creating a Style Sheet for Code ❘ 251

 margin-left : 3em;
 margin-right : 3em;
 margin-bottom : 1em;
 margin-top : 1em;
}

 11 . For this example, a rule is included for the <p> element and a rule for the <body> element.
(Although they are not part of the standard CSS used for code styles.) Make sure you define both
of those elements as follows:

body {
 color : #000000;
 background-color : #ffffff;
 font-family : arial, verdana, sans-serif;
 font-size : 12px;
}
p {
 margin-bottom : 1em;
 margin-top : 1.5em;
}

 12 . Save this file as codeStyles.css. Then take a look at the following HTML, which makes use of
this style sheet. As you can see, the <link> element indicates that this is the style sheet to be used
for this example. You can then see the elements with the class attributes that relate to these styles:

<!DOCTYPE html>
<html>
<head>
 <title>CSS Example</title>
 <link rel="stylesheet" href="codeStyles.css">
</head>

<body>
<p>You are about to see some <code class="codeInText">codeInText</code>
 followed by some importantWords,
 and the font for a keystroke.</p>

<p>Next you will see some foreground code:</p>
<code class="codeForeground">p {
 font-family : arial, sans-serif;
 font-weight : bold;
}</code>

<p>Next you will see some background code:</p>
<code class="codeBackground">p {
 font-family : arial, sans-serif;
 font-weight : bold;
}</code>

<p class="boxText">This is some boxed text for important statements.</p>

<p class="background">Here is a background comment or aside.</p>
</body>
</html>

252 ❘ CHapTer 7 caScaDing StYLe SheetS

If you look at this example in the browser, it should look like Figure 7-37.

Figure 7-37

How It Works

This simple combination of a “code” font, font weights, letter spacing, and background colors produces
a flexible system to display code on the web. The CSS rules replace the default rendering for several ele-
ments with ones better suited to code rendering.

Courier and other monospaced fonts are used for programming (and programming examples) for several
reasons, including:

➤➤ Common programming punctuation is easier to read in a monospaced font ! () {} : versus ! () {} :.

➤➤ Line lengths are always the same. Eighty characters are always the same length on screen. This enables
strings of the same character length to line up, no matter what characters the string consists of.

➤➤ Lookalikes are easier to spot: lI (lowercase L/uppercase i) versus lI.

SuMMarY

In this chapter, you learned how to write CSS. You have seen that a style sheet is made up of rules
that first select the element or elements to which the rules apply and then contain property-value
pairs that specify how the element’s content should appear.

You have learned how you can change the appearance of fonts and text.

You now know that CSS manages to render a document by treating each element as if it were a sepa-
rate box and then using the properties to control how each box should appear. You also learned how
to set the dimensions and borders, padding, and margins for each box.

In the next chapter, you not only learn some more properties but also see how you can use CSS
to position elements on a page, which enable you to create attractive layouts for pages. You even
see how you can insert content from a style sheet into a document, deal with bulleted lists, create
counters, and more.

Summary ❘ 253

exerCiSeS

 1 . In this exercise (and the next), you continue to work on the Example Café website . Open the index .

html page, and add a <div> element just inside the opening <body> tag and the closing </body> tag .

Then give the element an id attribute whose value is page . Repeat this for each page of the site .

 a . In the style sheet add a rule that gives this element a margin, border, and padding so that it

looks like the border in Figure 7-38 .

Figure 7-38

 b . Create a CSS rule that can make the following changes to the navigation:

 i . Add a single-pixel gray border on the top and bottom .

 ii . Give it 20 pixels of margin above and below the gray lines .

 iii . Give it 10 pixels of padding on the top and bottom in the box .

 iv . Add a margin to the right of each link in the navigation .

 c . Give the main image on the homepage a class attribute whose value is main_image . Then

create a rule that gives the image a single-pixel black border, and also give the image a

10-pixel margin on the right and bottom sides of the image .

 d . Increase the gaps between each line of text within paragraphs to 1 .3 em .

254 ❘ CHapTer 7 caScaDing StYLe SheetS

 2 . For this exercise, take a look at the following HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Font test</title>
 <link rel="stylesheet" href="tableStyles.css" />
</head>
<body>
<table>
 <tr>
 <th>Quantity</th>
 <th>Ingredient</th>
 </tr>
 <tr class="odd">
 <td>3</td>
 <td>Eggs</td>
 </tr>
 <tr>
 <td>100ml</td>
 <td>Milk</td>
 </tr>
 <tr class="odd">
 <td>200g</td>
 <td>Spinach</td>
 </tr>
 <tr>
 <td>1 pinch</td>
 <td>Cinnamon</td>
 </tr>
 </table>
</body>
</html>

Now create the tableStyles.css style sheet, which makes this example look like it does in

Figure 7-39 .

Figure 7-39

Don’t worry about getting the sizes exactly the same as the screenshot, but do make sure you

have padding in the cells and a border around the outside . The white border is created by

default in IE; you will find out how to remove this in Chapter 8 .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 255

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

CSS The technology that enables you to adjust the look and feel of web pages .

CSS text Using fonts, font size, font weight, color, and other properties, you can

adjust the appearance of web text .

Selectors Selectors enable you to target specific HTML elements for styling .

The box model Elements in HTML are treated like boxes by CSS . The system of laying out

boxes with heights, widths, padding, borders, and margins is called the box

model . In modern browsers there are two options, the CSS standard and

border-box, which maps to the old Internet Explorer “IE box model bug .”

More Cascading Style Sheets

wHaT You wiLL Learn in THiS CHapTer

➤➤ Styling links

➤➤ Setting document backgrounds

➤➤ Styling bullet points and numbered lists

➤➤ Changing the appearance of tables

➤➤ Adjusting the outlines around boxes

➤➤ Adding content to the HTML document before or after an element

➤➤ Understanding three positioning schemes that enable you to

determine where on a page a box appears

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 8
download and individually named according to the names throughout the chapter.

In this chapter, you continue to learn how to use CSS to control the presentation of HTML
web pages, starting with CSS properties that enable you to control the presentation of links,
backgrounds, list styles, table styles, and outlines around boxes. You then learn a technique
to add content to a page (even if it were not in the HTML document) using the :before and
:after pseudo-classes. Finally, you see how to use CSS to position boxes on the page, which
enables you to create attractive layouts for your pages.

8

258 ❘ CHapTer 8 more caScaDing StYLe SheetS

LinkS

By default, most browsers show links in blue with an underline and change the color of links you
have already visited, unless you tell them to do otherwise. The following are properties often used
with links:

➤➤ color: Changes the colors of the links

➤➤ background-color: Highlights the link, as if it had been highlighted with a highlighter pen

➤➤ text-decoration: Commonly used to control whether the link is underlined; although, it
can also specify that text should have a strikethrough, blink, or be overlined

Although you can just create rules that apply to the <a> element to set properties such as color
and text-decoration, there are also four pseudo-classes that can give you greater control over
the presentation of links, as shown in Table 8-1.

TaBLe 8-1: Link Pseudo-Classes

pSeudo-CLaSS purpoSe

link Styles for links in general

visited Styles for links that have already been visited

hover Styles for when someone is hovering over a link

active Styles for links that are currently active (being clicked)

Using these pseudo-classes enables you to change properties of links when the user hovers over them
(making them a slightly different color, maybe adding a highlight and underlining them) and also
the properties of links that have been visited (for example, making them a slightly different color—
which helps users know where they have been).

When used, these properties should be specified in the order listed in the previous table. Here is an
example that can change the styles of links as users interact with them (ch08_eg01.css):

body {
 background-color : #ffffff;
}
a {
 font-family : arial, verdana, sans-serif;
 font-size : 12px;
 font-weight : bold;
}
a:link {
 color : #0000ff;
 text-decoration : none;
}
a:visited {
 color : #333399;

Backgrounds ❘ 259

 text-decoration : none;
}
a:link:hover {
 background-color : #e9e9e9;
 text-decoration : underline;
}
a:active {
 color : #0033ff;
 text-decoration : underline;
}

Figure 8-1 gives you an idea of how links will look with this style sheet. Although, it is rather hard to
see the full effect of this in print, with the links changing as the user rolls the mouse over links and
visits the sites, so try out the example (ch08_eg01.html) with the downloaded code for this chapter.

Figure 8-1

BaCkgroundS

As you saw in the last chapter, CSS treats each element as if it were its own box. You can control the
background of these boxes using the properties shown in Table 8-2 (when used on the <body> ele-
ment they affect the entire browser window).

TaBLe 8-2: Background Properties

properTY purpoSe

background-color Specifies a background color .

background-image Specifies an image to use as the background .

background-repeat Indicates whether the background image should be repeated .

continues

260 ❘ CHapTer 8 more caScaDing StYLe SheetS

properTY purpoSe

background-attachment Indicates a background image should be fixed in one position on

the page, and whether it should stay in that position when the user

scrolls down the page .

background-position Indicates where an image should be positioned .

background A shorthand form that enables you to specify all of these properties .

The background-color property
The background-color property enables you to specify a single solid color for the background of
any element.

When the background-color property is set for the <body> element, it affects the whole document,
and when it is used on any other element, it uses the specified color inside the border of the box created
for that element.

The value of this property can be any valid color value. (Colors are covered in greater depth in
Appendix D, “Color Names and Values.”) For example (ch08_eg02.css):

body {
 background-color : #cccccc;
 color : #000000;
}
b {
 background-color : #FF0000;
 color : #FFFFFF;}
p {
 background-color : rgb(255,255,255);
}

ch08_eg02.html (shown in Figure 8-2) used the previous styles from ch08_eg02.css.

Figure 8-2

TaBLe 8-2 (continued)

Backgrounds ❘ 261

NOTE I add a rule for the <body> element to set the background-color property
for every style sheet I write because some people set their computers to have a
background other than plain white (often because it causes less strain on their
eyes). When the background color of an operating system is changed, browsers
usually use that color, too (along with applications such as word processors). If
you do not specify this property, you cannot guarantee that the visitors to the site
have the same background color as you want them to have.

The background-image property
As its name suggests, the background-image property enables you to add an image to the background
of any box in CSS. This can be useful in many situations, from adding a subtle texture or shading to
adding a distinctive design to the back of elements or entire pages.

The value for this property should start with the letters url, followed by the URL for the image in
brackets and quotes like so:

body {
 background-image : url("images/background.gif");
}

If both a background-image property and the background-color property are used, then the
background-image property takes precedence. It is good practice to supply a background-color
property with a background image and give it a value similar to the main color in the background
image because the page uses this color while the background image loads or if it cannot display
the image for any reason.

Here is an example of using a single background image, which is 200 pixels wide and 150 pixels high.
By default, this image is repeated across the page (ch08_eg03.css). The background-color property
is set to be the same color as the background of the image (just in case the image cannot be loaded):

body {
 background-image : url("images/background.gif");
 background-color : #cccccc;
}

Figure 8-3 shows what this looks like in a browser
(ch08_eg03.html).

This is not a great example of how to use a background
image because there is not enough contrast between the
colors used in the background image and the text that
appears on top of it, which makes the text harder to
read. But it does illustrate the point that you must make
sure that there is sufficient contrast between any back-
ground image and the writing that appears on top of it;
otherwise, users will have trouble reading the text. Figure 8-3

262 ❘ CHapTer 8 more caScaDing StYLe SheetS

If you do use an image behind text, it is worth remembering that low-contrast images (images made
up of similar colors) often make better backgrounds because it is harder to find a color that will be
readable on top of a high-contrast image.

Figure 8-4 shows an improved example of the background image, where the text is on a solid color,
which makes it easier to read. This time a larger image is also used (ch08_eg04.html).

Figure 8-4

There are a few points to note about how background images work:

➤➤ There is no way to express the intended width and height of a background image, so you
need to save it at the size you want it to appear.

➤➤ There is no equivalent to the alt attribute (alternative text for those who cannot see the
image for any reason); therefore, a background image should not be used to convey any
important information that is not described on the page in text as well.

➤➤ Background images are often shown on the page after other items have been rendered, so it
can look as if they take a long time to load.

The background-repeat property
When you specify a background-image, and the box is bigger than the image, then the image is
repeated to fill up the whole box, creating what is known as wallpaper.

If you do not want your image to repeat all over the background of the box, you should use the
background-repeat property, which has four helpful values, as you can see in Table 8-3.

Backgrounds ❘ 263

TaBLe 8-3: Values of the background-repeat Property

VaLue purpoSe

repeat This causes the image to repeat to cover the whole page . (It is the default and

rarely used .)

repeat-x The image will be repeated horizontally across the page (not down the whole

page vertically) .

repeat-y The image will be repeated vertically down the page (not across horizontally) .

no-repeat The image displays only once .

These different properties can have interesting effects. It is worth looking at each in turn. You have
already seen the effect of the repeat value. (This is the default behavior when the property is not
used.) The value repeat-x creates a horizontal bar following the browser’s x-axis (ch08_eg05.css):

body {
 background-image : url("images/background_small.gif");
 background-repeat : repeat-x;
}

You can see the result of using this property in Figure 8-5.

Figure 8-5

The repeat-y value works just like repeat-x but in the other direction, vertically following the
browser’s y-axis (ch08_eg06.css):

body {
 background-image : url("images/background_small.gif");
 background-repeat : repeat-y;
}

In Figure 8-6, you can see the result with the sidebar coming down the left.

The final value was no-repeat, leaving one instance of the image that by default will be in the top-
left corner of the browser window (ch08_eg07.css):

body {
 background-image : url("images/background_small.gif");

264 ❘ CHapTer 8 more caScaDing StYLe SheetS

 background-repeat : no-repeat;
 background-color : #eaeaea;
}

Figure 8-6

You can see the result in Figure 8-7; note how the background color of the page has been set to the
same color as the image you have been using—this makes the image blend in with the page better.

Figure 8-7

The background-position property (for Fixing position
of Backgrounds)

You may want to alter the position of this image, and you can do this using the background-position
property, which takes the values shown in Table 8-4.

TaBLe 8-4: Values of the background-position Property

VaLue Meaning

x% y% Percentages along the x (horizontal) and y (vertical) axis

x y Absolute lengths along the x (horizontal) and y (vertical) axis in pixels

left Shown to the left of the page or containing element

Backgrounds ❘ 265

center Shown to the center of the page or containing element

right Shown to the right of the page or containing element

top Shown at the top of the page or containing element

center Shown at the center of the page or containing element

bottom Shown at the bottom of the page or containing element

Here is an example of fixing the position of the image, as shown in Figure 8-8 (ch08_eg08.css):

body {
 background-image : url("images/background_small.gif");
 background-position : 50% 20%;
 background-repeat : no-repeat;
 background-color : #eaeaea;
}

This image is horizontally centered (because it should
be 50 percent of the screen’s width from the left side of
the page) and one-fifth of the way down from the top
of the screen (because it is positioned 20 percent of the
window height from the top of the screen). It is worth
trying this example in the code download (ch08_eg08
.html) and changing the size of the browser window to
see how the background image remains in the center of
the browser window horizontally and one-fifth of the
way down the window vertically when you change
the size of the window.

The background-attachment property (for watermarks)
When you specify a background image, you can use the background-attachment property (values
shown in Table 8-5) to specify whether the image is fixed in its position, or whether it moves as the
user scrolls up and down the page.

TaBLe 8-5: Values for the background-attachment Property

VaLue purpoSe

fixed The image does not move if the user scrolls up and down the page .

scroll The image stays in the same place on the background of the page . If the

user scrolls up or down the page, the image moves, too .

Figure 8-8

266 ❘ CHapTer 8 more caScaDing StYLe SheetS

Here is an example where the image stays in the middle of the page even when the user scrolls further
down (ch08_eg09.css):

body {
 background-image : url("images/background_small.gif");
 background-attachment : fixed;
 background-position : center;
 background-repeat : no-repeat;
 background-color : #eaeaea;
}

Figure 8-9 shows that the user has scrolled halfway down the page and the image is in the center of
the browser window. (The background looks exactly the same as it would have when the user was
at the top of the page.)

Figure 8-9

The background property (the Shorthand)
The background property enables you to specify several of the background properties at once.
The values can be given in any order, and if you do not supply one of the values, the default value
will be used.

➤➤ background-color

➤➤ background-image

➤➤ background-repeat

➤➤ background-attachment

➤➤ background-position

For example, you can just write

body {
 background: #cc66ff url("images/background_small.gif")
fixed no-repeat center;
}

This creates exactly the same effect as the example shown in Figure 8-9.

Lists ❘ 267

LiSTS

In Chapter 1, “Structuring Documents for the Web,” you learned how to use the and ele-
ments to create lists with bullet points (also known as unordered lists) and the and elements
to create numbered (or ordered) lists. In this section you learn about the CSS properties you can use to
control lists (shown in Table 8-6).

TaBLe 8-6: List Properties

properTY purpoSe

list-style-type Enables you to control the shape or appearance of the marker . (The

marker is another name for the bullet point or number .)

list-style-position When a list item takes up more than one line, this property specifies

where the marker should appear in relation to the text .

list-style-image Specifies an image for the marker rather than a bullet point or number .

list-style Serves as shorthand for the preceding properties .

marker-offset Specifies the distance between a marker and the text in the list .

The list-style-type property
The list-style-type property enables you to control the shape or style of a bullet point (also
known as a marker) for unordered lists and the style of numbering characters in ordered lists.

Table 8-7 shows the values for an unordered list.

TaBLe 8-7: list-style-type Values for Unordered Lists

VaLue Marker

none None

disc Filled-in circle (default)

circle Empty circle

square Filled-in square

Table 8-8 shows the values for ordered lists.

268 ❘ CHapTer 8 more caScaDing StYLe SheetS

TaBLe 8-8: list-style-type Values for Ordered Lists

VaLue Meaning exaMpLe

decimal Number 1, 2, 3, 4, 5

decimal-leading-zero 0 before the number 01, 02, 03, 04, 05

lower-alpha |

lower-latin

Lowercase alphanumeric

characters

a, b, c, d, e

upper-alpha |

upper-latin

Uppercase alphanumeric

characters

A, B, C, D, E

lower-roman Lowercase Roman

numerals

i, ii, iii, iv, v

upper-roman Uppercase Roman

numerals

I, II, III, IV, V

lower-greek Lowercase classical Greek , , , ,

armenian Armenian numbering

georgian Georgian numbering

The list-style-type property can be used either on the and elements (in which case it
applies to the entire list) or on the individual elements. The following example demonstrates all
these styles (ch08_eg10.html):

li.a {
 list-style-type : none;
}
li.b {
 list-style-type : disc;
}
li.c {
 list-style-type : circle;
}
li.d {
 list-style-type : square;
}
li.e {
 list-style-type : decimal;
}
li.f {
 list-style-type : lower-alpha;
}
li.g {
 list-style-type : upper-alpha;
}
li.h {
 list-style-type : lower-roman;

Lists ❘ 269

}
li.i {
 list-style-type : upper-roman;
}
li.j {
 list-style : georgian;
}
li.k {
 list-style : armenian;
}
li.l {
 list-style : lower-greek;
}

You can see the result with examples of each kind of bullet in Figure 8-10.

Figure 8-10

The list-style-position property
Lists are indented into the page, and the list-style-position property indicates whether the
marker should appear inside or outside of the box containing the main points. There are two values
for this property, as shown in Table 8-9.

TaBLe 8-9: Values for the list-style-position Property

VaLue purpoSe

inside The marker is inside the block of text (which is indented) .

outside The marker sits to the left of the block of text . (This is the default value if this is

not specified .)

Here you can see how this property is written; in this case it is given on the or elements
(ch08_eg11.css):

270 ❘ CHapTer 8 more caScaDing StYLe SheetS

ul {
 list-style-position : outside;
}
ol {
 list-style-position : inside;
}

Figure 8-11 shows what this would look like in a browser.

Figure 8-11

As you can see, the text is indented in both cases, and the value of this property indicates whether
the marker is inside the box or outside of the box.

The list-style-image property
The list-style-image property enables you to specify an image so that you can use your own bul-
let style. The syntax is similar to the background-image property; the value starts with the letters
url and is followed by the URL for the image in brackets and quotation marks (ch08_eg12.css):

li {
 list-style-image: url("images/bulletpoint.gif");
}

Figure 8-12 shows some triangular bullet points.

If the image cannot display, the browser displays a dot rather than a broken image symbol.

Figure 8-12

Tables ❘ 271

NOTE If you use nested lists, this value inherits from its parent element. To
prevent this from happening, you can use the list-style-image property on
the nested list and give it a value of none.

The list-style property (the Shorthand)
The list-style property is a way to express more than one of these properties at once. They
should appear in the order: type, position, image—for example:

ul {
 list-style : circle inside;
}

Remember that you can also set the border, padding, and margin properties for , , ,
<dl>, <dt>, and <dd> elements because each element has its own box in CSS.

TaBLeS

In the last chapter, you saw a couple examples that use CSS with tables. Properties commonly used
with the <table>, <td>, and <th> elements include the following:

➤➤ border to set the properties of the border of a table.

➤➤ padding to set the amount of space between the border of a table cell and its content—this
property is important to make tables easier to read.

➤➤ Properties to change text and fonts.

➤➤ text-align to align writing to the left, right, or center of a cell.

➤➤ vertical-align to align writing to the top, middle, or bottom of a cell.

➤➤ width to set the width of a table or cell.

➤➤ height to set the height of a cell (often used on a row as well).

➤➤ background-color to change the background color of a table or cell.

➤➤ background-image to add an image to the background of a table or cell.

You should be aware that, apart from the background-color and height properties, it is best to
avoid using these properties with <tr> elements because browser support for these properties on
rows is not as good as it is for individual cells.

To demonstrate how some of these properties are used with a table, take a look at the one shown in
Figure 8-13. It might look familiar because you saw it at the beginning of the last chapter, but this
time it has an added <caption> element (ch08_13.html).

272 ❘ CHapTer 8 more caScaDing StYLe SheetS

Figure 8-13

Now look at the style sheet for this table (ch08_eg13.css):

body {
 color : #000000;
 background-color : #ffffff;
}
h1 {
 font-size : 18pt;
}
p {
 font-size : 12pt;
}
table {
 background-color : #efefef;
 width : 350px;
 border-style : solid;
 border-width : 1px;
 border-color : #999999;
 font-family : arial, verdana, sans-serif;}
caption {
 font-weight : bold;
 text-align : left;
 border-style : solid;
 border-width : 1px;
 border-color : #666666;
 color : #666666;
}
th {
 height : 50px;
 font-weight : bold;
 text-align : left;
 background-color : #cccccc;
}

Tables ❘ 273

td, th {
 padding : 5px;
}
td.code {
 width : 150px;
 font-family : courier, courier-new, serif;
 font-weight : bold;
 text-align : right;
 vertical-align : top;
}

Here are some key points to note about this example. You will be altering settings of some of these
properties using new properties that you will meet throughout this section.

➤➤ The rule for the <table> element uses a width property to fix the width of the table to
350 pixels; otherwise, it would take up as much of the screen as needed to show as much
text as possible on one line.

➤➤ The rule for the <table> element also has a border property set, which creates a single-pixel
border all around the table. Note, however, that none of the other cells in the table inherits
this property.

➤➤ The rule that applies to the <caption> element has its font-weight, border, and
text-align properties set. By default the text is normal (not bold), aligned in the center,
and without a border.

➤➤ The rule that applies to the <th> element sets the height of the headings to 50 pixels, and
the text is aligned left (rather than centered, which is the default).

➤➤ There is a rule that applies to both the <th> and <td> elements, and this indicates that both
should have a padding property set to 5px so that the content of the cells does not touch
the border of those cells. Creating space around the cells is important and makes the table
more readable.

➤➤ The final rule states that the <td> elements whose class attribute has a value of code are
given a width property whose value is 150px (150 pixels). This ensures that the content of
this whole column remains on one line. Unfortunately, there is no way to assign a style to a
column, but in the case of the width property, after it has been set on one element, it does
not need to be set on all the others in the column.

You might also have noticed in Figure 8-13 that there is a white line around the two columns (which
is particularly noticeable around table header cells). Browsers automatically add this to separate each
cell from its neighbor. You can, however, remove this gap using a property called border-spacing,
which you learn about in the next section.

Table-Specific properties
In the following section you meet five properties that can be used only with tables, and also some
values for the border-style property that apply only to tables (shown in Table 8-10).

274 ❘ CHapTer 8 more caScaDing StYLe SheetS

TaBLe 8-10: Table-Specific Properties

properTY purpoSe

border-collapse Where the borders of two table cells touch, this property indicates

whether both borders should be visible, or whether the browser

should pick just one of the borders to show .

border-spacing Specifies the width of the space that should appear between

table cells .

caption-side Specifies which side of a table the caption should appear on .

empty-cells Specifies whether the border should be shown if a cell is empty .

table-layout If the space you have allocated for a table is not enough to fit the con-

tents, browsers often increase the size of the table to fit the content

in—this property can force a table to use the dimensions you specify .

The border-collapse property
Where two table cells meet, you can tell the browser to show just one of the borders (rather than
both—which is the default behavior). You can do this using the border-collapse property, which
can take two values, as shown in Table 8-11.

TaBLe 8-11: Values of the border-collapse Property

VaLue purpoSe

collapse Horizontal borders collapse and vertical borders abut one another .

separate Separate rules are observed . This value opens up additional proper-

ties to give you further control .

If two adjacent table cells have different border styles, and you have specified that borders should be
collapsed, there is a complex set of rules to specify which border should be shown—rather than try
to learn these rules, it is quicker to simply try your table out in a browser.

To illustrate how the border-collapse property works, the following style rules apply to two
tables: The first has a border-collapse property with a value of collapse; the second has a value
of separate; and both tables contain adjacent cells with dotted and solid lines (ch08_eg14.css):

table.one {
 border-collapse : collapse;
}
table.two {
 border-collapse : separate;
}
td.a {
 border-style : dotted;
 border-width : 3px;

Tables ❘ 275

 border-color : #000000;
 padding : 10px;
}
td.b {
 border-style : solid;
 border-width : 3px;
 border-color : #333333;
 padding : 10px;
}

Figure 8-14 shows how, with a value of collapse, the browser collapses borders into each other so
that the solid border takes precedence over the dotted border. This wouldn’t look as odd if the borders
were both solid, but it does illustrate the point well.

Figure 8-14

If you do not specify that the borders should be collapsed, then two further properties control
border presentation:

➤➤ border-spacing

➤➤ empty-cells

The following sections discuss these properties.

The border-spacing property
The border-spacing property specifies the distance that separates adjacent cells’ borders. If you
provide one value, it applies to both vertical and horizontal borders:

table.one {
 border-spacing : 15px;
}

276 ❘ CHapTer 8 more caScaDing StYLe SheetS

Or you can specify two values, in which case the first refers to the horizontal spacing and the second
to the vertical spacing:

table.two {
 border-spacing : 2px 8px;
}

You can see what this looks like in Figure 8-15 (ch08_eg15.html styled with ch08_eg15.css).

Figure 8-15

The empty-cells property
The empty-cells property indicates whether a cell without any content should have a border dis-
played. It can take one of three values, as you can see in Table 8-12.

TaBLe 8-12: Values of the empty-cells Property

VaLue purpoSe

show Borders show even if the cell is empty . (This is the default value .)

hide Borders are hidden if a cell is empty .

inherit Borders obey the rules of the containing table (only of use in

nested tables) .

NOTE If you want to explicitly hide or show borders of empty cells, you should
use the empty-cells property because some versions of IE and Firefox treat
empty cells differently.

Tables ❘ 277

Here you can see a table with two empty cells: an empty <th> element and an empty <td> element
(ch08_eg16.html):

<table>
 <tr>
 <th></th>
 <th>Title one</th>
 <th>Title two</th>
 </tr>
 <tr>
 <th>Row Title</th>
 <td>value</td>
 <td>value</td>
 </tr>
 <tr>
 <th>Row Title</th>
 <td>value</td>
 <td></td>
 </tr>
</table>

The following code shows the empty-cells property used to hide borders of empty cells in the
<table> element (ch08_eg16.css):

table {
 width : 350px;
 border-collapse : separate;
 empty-cells : hide;}
td {
 padding : 5px;
 border-style : solid;
 border-width : 1px;
 border-color : #999999;
}

Figure 8-16 shows what the table looks like without borders for empty cells.

Figure 8-16

The caption-side property
The caption-side property is for use with the <caption> element to indicate on which side of the
table the caption should go. Table 8-13 lists the possible values.

278 ❘ CHapTer 8 more caScaDing StYLe SheetS

TaBLe 8-13: Values of the caption-side Property

VaLue purpoSe

top The caption appears above the table (the default) .

right The caption appears to the right of the table .

bottom The caption appears below the table .

left The caption appears to the left of the table .

For example, here you can see the caption is set to the bottom of the table (ch08_eg17.css):

caption {
 caption-side : bottom
}

Figure 8-17 shows you the caption-side property at work; you can see that the caption for this
table has moved to the bottom of the table (rather than the top).

Figure 8-17

The table-layout property
When you specify a width for a table or table cell, but the content does not fit into the space you have
allowed, a browser can give the table more space to fit the content. The table-layout property enables
you to force the browser to stick to the widths you specify, even if this makes the content unreadable.

Table 8-14 shows the three possible values this property can take.

Tables ❘ 279

TaBLe 8-14: Values of the table-layout Property

VaLue purpoSe

auto The browser looks through the entire table for the widest unbreakable

content in the cells . This is slower at rendering but more useful if you

do not know the exact size of each column . This is the default value .

fixed The width of a table cell depends only on the widths you specified for

the table and its cells . This speeds up rendering .

inherit Obeys the rules of the containing table (only of use in nested tables) .

In the following example there are two tables, each with just one cell. The cells contain the letters
of the alphabet, and there is a space before the last three letters. Normally, each table cell will be
as wide as the longest unbroken set of characters in a cell—in this case, the letters A through W
(ch08_eg18.html).

<table class="one">
 <tr>
 <td>ABCDEFGHIJKLMNOPQRSTUVW XYZ</td>
 </tr>
</table>

<table class="two">
 <tr>
 <td>ABCDEFGHIJKLMNOPQRSTUVW XYZ</td>
 </tr>
</table>

Now, if you look at the CSS for this example, you can see that the width of the table is set to
75 pixels—not enough for the letters A through W. One table has the table-layout property
set to auto, the other to fixed (ch08_eg18.css).

table {
 width : 75px;
}
table.one {
 table-layout : auto;
}
table.two {
 table-layout : fixed;
}
td {
 padding : 5px;
 border-style : solid;
 border-width : 1px;
 border-color : #999999;
}

280 ❘ CHapTer 8 more caScaDing StYLe SheetS

You can see the results of this example in Figure 8-18; by default the table makes enough space for
the letters A through W. However, when the second table is forced to stick to the width specified
in the CSS, the letters spill over the edge of the table.

Figure 8-18

To prevent the letters spilling over the edge, you could use the overflow property.

ouTLineS

Outlines are similar to the borders that you met in the last chapter, but there are two crucial
differences:

➤➤ An outline does not take up space.

➤➤ Outlines do not need to be rectangular.

The idea behind the outline properties is that you might want to highlight some aspect of a page for
the user; this property enables you to do that without affecting the flow of the page (where elements
are positioned) in the way that a physical border would take up space. It’s almost as if the outline
style sits on top of the page.

NOTE Unfortunately, the outline properties are not supported by Internet
Explorer 7 (or earlier versions). They do work in other major browsers; although,
there can be some slight variations in appearance in different browsers.

Table 8-15 lists the four outline properties.

TaBLe 8-15: Outline Properties

properTY purpoSe

outline-width Specifies the width of the outline .

outline-style Specifies the line style for the outline .

Outlines ❘ 281

outline-color Specifies the color of the outline .

outline Shorthand for above properties in the pattern: width, style, color .

Note that the outline is always the same on all sides; you cannot specify different values for different
sides of the element.

The outline-width property
The outline-width property specifies the width of the outline to be added to the box. Its value should
be a length or one of the values thin, medium, or thick—just like the border-width attribute.

input {
 border-width : 2px;
}

The outline-style property
The outline-style property specifies the style for the line (solid, dotted, or dashed) that goes
around the box. Its value should be one of the values used with the border-style property you
learned about in Chapter 7, “Cascading Style Sheets,” for example:

input {
 outline-style : solid;
}

The outline-color property
The outline-color property enables you to specify the color of the outline. Its value can be any
valid color value, for example:

input {
 outline-color : #ff0000;
}

The outline property (the Shorthand)
The outline property is the shorthand that enables you to specify values for any of the three proper-
ties discussed previously in any order you like. The following example features a paragraph of text:

<p>Inside this paragraph the word in bold is going to have an outline.</p>

There is a rule that says the contents of the element should have an 8-pixel dashed red border
around the edge (ch08_eg19.css):

b {
 outline : #ff0000 8px dashed;
}

282 ❘ CHapTer 8 more caScaDing StYLe SheetS

Figure 8-19 shows what this example looks like; although the border is gray here, not red. Note how
the outline does not affect the position of other items on the page (in the same way that the border
properties would); it just sits on top of the rest of the page.

Figure 8-19

THe :FoCuS and :aCTiVe pSeudo-CLaSSeS

You may remember in Chapter 6, “Forms,” the topic of focus. An element needs to gain focus if a
user interacts with it; for example, focus can be given to links and form controls.

When an element gains focus, browsers tend to give it a slightly different appearance. The :focus
pseudo-class enables you to associate extra rules with an element when it gains focus to make it more
pronounced. Meanwhile the :active pseudo-class enables you to associate further styles with elements
when they are activated—such as when a user clicks a link.

Here is an example of a rule that can change the background-color property of an <input> element
when it gains focus (ch08_eg20.css):

input {
 border : none;
 background-color : #dddddd;
}
input:focus {
 background-color : #c4c4c4;
}

As you can probably imagine, this could offer users
help to know which item they should currently be
filling in as they work their way through a form.
Figure 8-20 shows the form input has focus with a
darker background than other input elements.

IE8 was the first version of IE to support the :focus
pseudo-class. It’s long been supported in all other major
browsers.

Figure 8-20

generated Content ❘ 283

generaTed ConTenT

CSS2 introduced a powerful way to add content before or after a specified element, even if it were
not in the HTML document. To do this, the :before and :after pseudo-elements are added to the
selector, and then the content property is used to specify what should be inserted into the document.

The :before and :after pseudo-elements work to a limited degree in IE7 or higher and have good
support in the other major browsers.

NOTE In CSS3, pseudo-elements are specified with a double colon to dif-
ferentiate them from pseudo-classes—::before, ::after, ::first-letter,
and ::first-line. Most browsers will accept them with a single colon as
well. Internet Explorer 8 only supports the single-colon version. If you need to
support that browser, you should use the single-colon version. Otherwise, the
double-colon version is the pattern to use.

The :before and :after pseudo-elements
The :before and :after pseudo-elements enable you to add text before or after each instance of
an element defined in a selector. For example, the following CSS rule adds the words “You need to
register to read the full article” after each instance of a <p> element that carries the class attribute
whose value is abstract (ch08_eg21.css):

p.abstract:after {
 content : "You need to register to read the full
 article.";
 color:#ff0000;
}

Here you can see that the pseudo-element :after is used at the end of the selector. Then, inside
the declaration, you can see the content property; the text in quotes will be added to the end of
the element. The content property can add a number of types of content to the document, not
just text, and you see these in the next section.

The default styles for the parent element will be adopted if no other declarations are added to the
rule. Although, in this example a property was added to indicate that the content should be written
in red. You can see this pseudo-element in use in Figure 8-21.

Figure 8-21

284 ❘ CHapTer 8 more caScaDing StYLe SheetS

NOTE By default, the element created using these pseudo-classes will be inline
unless you use the display property with a value of block. If the element identified
in the selector is an inline element, you should not use the display property to turn
it into a block-level element.

The content property
The content property is used with the :before and :after pseudo-elements to indicate what
content should be added to the document. Table 8-16 lists the values it can take; each value inserts
different types of content into the HTML document it is supposed to be styling.

TaBLe 8-16: Values of the content Property

VaLue purpoSe

A string Inserts plain text . (The term string is a programming term for a set of

alphanumeric characters, not a CSS property .) The text may not include

quotes (which in turn means that it cannot include HTML markup that

carries attributes) .

A URL The URL can point to an image, a text file, or an HTML file to be included

at this point .

A counter A counter for numbering elements on the page (discussed in the

next section) .

attr(x) The value of an attribute named x that is carried on that element . (This is

of more use to languages other than HTML .)

open-quote Inserts the appropriate opening quote symbol (see the “Quotation

Marks” section) .

close-quote Inserts the appropriate closing quote symbol (see the “Quotation

Marks” section) .

no-open-quote Do not use any opening quotes .

no-close-quote Do not use a closing quote (of particular use in prose where one person

speaks for a long time and style dictates the quote is closed only on the

last paragraph) .

Counters
You have already seen how you can create a numbered list using the element, so the concept of
automatic numbering is not new. The counter() function is different from numbered lists because
you can create a counter that increments each time a browser comes across any specified element—
not just an element.

generated Content ❘ 285

The idea is particularly helpful if you want to automatically number sections of a document without
them being a list. It also means that items will automatically be renumbered if extra elements are added
or removed (without having to go into the document and manually renumber each item).

To see how it works, create an example in which the sections of a document are numbered using the
counter() function. Here is the HTML (ch08_eg22.html):

<body>
<h1> Introducing Web Technologies</h1>
 <h2>Introducing HTML</h2>
 <h2>Introducing CSS</h2>
 <h2>Introducing XHTML</h2>
<h1> Structure of Documents</h1>
 <h2>Text</h2>
 <h2>Lists</h2>
 <h2>Tables</h2>
 <h2>Forms</h2>
</body>

The example contains two counters, one called chapter and the other called section. Each time an
<h1> element comes up, the chapter counter is incremented by 1, and each time the <h2> element
comes up, the section counter is incremented by 1.

Furthermore, each time the browser comes across an <h1> element, it inserts the word “Chapter”
and the number in the counter before the content of the <h1> element. Meanwhile, each time the
browser comes across an <h2> element, it displays the number of the chapter counter, then a period
or full stop, and then the value of the section counter.

The result should look like Figure 8-22.

Figure 8-22

286 ❘ CHapTer 8 more caScaDing StYLe SheetS

Now look at how this works. First, it is worth noting that you use the counter-reset property on
the <body> element to create the chapter and section counters and set them to zero.

body {
 counter-reset : chapter;
 counter-reset : section;
}

Then there are the CSS rules using the :before pseudo-class to insert the automatic numbering of
sections. First, look at the rule that adds the word “Chapter” and the chapter number before every
<h1> element. If you look at the content property, the value has a set of quotes containing the word
“Chapter,” followed by the counter() function. (Inside the brackets you see the name of the counter.)
After this, you see another set of quotes containing the colon symbol followed by a space:

h1:before {
 content : "Chapter " counter(chapter) ": ";
}

The content property that adds the section numbering before the <h2> elements starts with the
counter() function calling the chapter counter, follows that with a period (or full stop) in quotes,
and then calls the counter() function again, this time with the section number:

h2:before {
 content: counter(chapter) "." Counter (section) " ";
}

Each time the browser comes across an <h2> element, it should increment the section counter using
the counter-increment property:

h2 {
 counter-increment : section;
}

Each time the browser comes across an <h1> element, it should increment the chapter counter using
the counter-increment property and reset the section counter:

h1 {
 counter-increment : chapter;
 counter-reset : section;
}

When you put these rules together, they should look like this (ch08_eg22.css):

body {
 counter-reset : chapter;
 counter-reset : section;
}
h1:before {
 content : "Chapter " counter(chapter) ": ";
}
h2:before {
 content : counter(chapter) "." Counter (section) " ";
}

generated Content ❘ 287

h1 {
 counter-increment : chapter;
 counter-reset : section;
}
h2 {
 counter-increment : section;
}

The first version of IE to support the counter functions was IE8. They are supported in all other
major browsers.

Quotation Marks
The content property can use the values open-quote and close-quote to add quotation marks
before and after occurrences of specified elements.

IE8 was the first version of Internet Explorer to support these properties. They’re supported in all
other major browsers. Here is the HTML for this example: (ch08_eg23.html):

<h1>Generated quotes</h1>
<p>Here are some quotes from Oscar Wilde:</p>
<blockquote>Consistency is the last refuge of the unimaginative.</blockquote>
<blockquote>If you want to tell people the truth, make them laugh,
otherwise they'll kill you.</blockquote>
<blockquote>It is a very sad thing that nowadays there is so little useless
information.</blockquote>

And now to add the quotes before and after the <blockquote> element, use the following CSS
(ch08_eg23.css):

blockquote:before {
 content: open-quote;
}
blockquote:after {
 content: close-quote;
}

You can see the result in Figure 8-23.

Figure 8-23

288 ❘ CHapTer 8 more caScaDing StYLe SheetS

MiSCeLLaneouS properTieS

There are a few helpful properties that have not yet been covered, which you look at next:

➤➤ The cursor property

➤➤ The display property

➤➤ The visibility property

The cursor property
The cursor property enables you to specify the type of mouse cursor that should be displayed to the
user. For example, when an image is used for a submit button on a form, this property is often used
to change the cursor from an arrow to a hand, providing a visual clue to users that they can click it.
Figure 8-24 shows some of the cursor types available for you to use—although, you see only one at
a time if you try the example (ch08_eg24.html).

Figure 8-24

As a general rule, you should use these values to add only helpful information for users in places
they would expect to see that cursor—for example, using a crosshair on a link may confuse users.

Table 8-17 shows possible values for the cursor property.

TaBLe 8-17: Values for the cursor Property

VaLue deSCripTion

auto The shape of the cursor depends on the context area it is over (a text cur-

sor over text, a hand over a link, and so on) .

crosshair A crosshair or plus sign .

default Usually an arrow .

Miscellaneous Properties ❘ 289

pointer A pointing hand .

move A grasping hand (ideal if you are doing drag-and-drop script) .

e-resize

ne-resize

nw-resize

n-resize

se-resize

sw-resize

s-resize

w-resize

Indicate that an edge can be moved . For example, if you were stretching a

box with the mouse, the se-resize cursor is used to indicate a movement

starting from the southeast corner of the box .

text Similar to the vertical bar I .

wait An hourglass .

help A question mark or balloon, ideal for use over help buttons .

<url> The source of a cursor image file .

progress A progress indicator . Differs from wait in that the user can interact with

the application .

The display property
The display property can be used to force an element to be either a block-level or an inline box. For
example, to make an inline element such as a link into a block-level box, you would use the following:

a {
 display : block;
}

Or you could make a block-level box such as a paragraph into an inline box like so:

p {
 display : inline;
}

You may also want to use the value none to indicate that the box should not be displayed. When
this value is used, it does not take up any space on the page—it is treated as if it were not in the
markup at all.

p {
 display : none;
}

290 ❘ CHapTer 8 more caScaDing StYLe SheetS

There’s a useful combination of both inline and block-level characteristics called inline-block, which
lets an element flow inline like a or but still allows it to accept some block-like attributes
such as width and height.

p {
 display : inline-block;
}

This property can take other values, but they’re rarely used in practice.

The visibility property
The visibility property enables you to hide a box from view. When you give the visibility prop-
erty a value of hidden, you do not see the content of the element, but it still affects the layout of the
page. (It takes up the same amount of space that it would if you could see the element on the page—if
you want to make something disappear without taking up space, you should use the display property
that you just met in the previous section.) A common use of the visibility property would be to
hide error messages that display only if the user needs to see them. The visibility property can also
take a value of visible to show the element (which is the default state for all elements), as shown in
Table 8-18.

TaBLe 8-18: Values for the visibility Property

VaLue purpoSe

visible The box and its contents are shown to the user (the default state for all elements) .

hidden The box and its contents are made invisible; although, they still affect the

layout of the page .

For example, here are four paragraphs of text (ch08_eg25.html):

<body>
 <p>Here is a paragraph of text.</p>
 <p>Here is a paragraph of text.</p>
 <p class="invisible">This paragraph of text should be invisible.</p>
 <p>Here is a paragraph of text.</p>
</body>

Note that the third paragraph has a class attribute whose value indicates that it’s part of the invisible
class. Now look at the rule for this class (ch08_eg25.css):

p.invisible {
 visibility : hidden;
}

You can see from Figure 8-25 that the invisible paragraph still takes up space, but it is not visible to
the user.

Additional Rules ❘ 291

Figure 8-25

Remember that the source code still contains whatever is in the invisible paragraph, so you should
not use this to hide sensitive information such as credit card details or passwords.

addiTionaL ruLeS

Before you move on to look at how you can use CSS to position elements on a page, take a look at
two rules:

➤➤ @import imports another style sheet into the current style sheet.

➤➤ !important indicates that some rules should take precedence over others.

The @import rule: Modularized Style Sheets
The @import rule enables you to import styles from another style sheet. It must appear right at the start
of the style sheet before any of the rules, and its value is a URL. It can be written in one of two ways:

@import "mystyle.css";
@import url("mystyle.css");

Either works fine. The significance of the @import rule is that it enables you to develop your style
sheets with a modular approach. You can create separate style sheets for different aspects of your
site. This concept was introduced in the last chapter when you created a style sheet for code styles.
Now if you want to include those styles in any other style sheet you write, rather than repeat them,
you just use the @import rule to bring those rules into the style sheet you are writing.

Here is an example of a style sheet that imports the codeStyles.css style sheet from the last chapter.
(For convenience, this file has been copied into the folder for the code download for this chapter.) This
example is ch08_eg26.css:

@import "codeStyles.css"
body {
 background-color : #ffffff;
 font-family : arial, verdana, helvetica, sans-serif;}
h1 {
 font-size : 24pt;
}

292 ❘ CHapTer 8 more caScaDing StYLe SheetS

As you can see, it does not contain many rules; the code styles have all been taken from the imported
style sheet. Figure 8-26 shows a page that uses this style sheet that has imported the styles for the
code (ch08_eg26.html).

Figure 8-26

You might also consider developing modular style sheets that control appearance of forms, different
layouts, and so on. If a style sheet contains a rule for one element (say the <body> element was given
a black background color), this rule would take precedence over any conflicting rules that applied to
imported style sheets (for example, if there were a rule in the imported style sheet indicating that the
<body> element should be given a red background color).

WARNING While using @import can help you organize your style sheets, it does
come with a performance penalty because it blocks parallel downloads. (For
more information, refer to www.stevesouders.com/blog/2009/04/09/dont-use-
import/.) For optimal performance, you want as many resources to be downloaded
at one time as possible. CSS files attached to a page using <link> will download in
parallel. Using @import causes them to download sequentially.

The !important rule
When there is a chance that two style sheet rules might conflict with each other, you can use the
!important rule to indicate that this particular rule should take precedence over others. This can
be helpful if you develop modular style sheets and you want to ensure that a rule in the included
style sheets takes precedence over any conflicting rules in the style sheet containing the @import rule
(which would otherwise have taken precedence).

WARNING If you want to play nice with other code authors, you should use
!important only as a last resort. It can cause confusion when another author is
trying to override a style using specificity and fails, only to discover an !important
rule lurking in another style sheet.

Positioning and Layout with CSS ❘ 293

It can also be helpful when users have set their own style sheets. Part of the aim of separating style
from content, using CSS to style web pages, was to make them more accessible to those with visual
impairments. So after you have spent your valuable time learning about CSS and how to write your
style sheets to make your sites attractive, users can create their own style sheets that can override
your settings!

In reality, few people do create their own CSS style sheets to view pages the way they want, but the
ability is there and was designed for those with disabilities. By default, your style sheet rather than
theirs should be viewed; however, the users’ style sheet can contain the !important rule, which says
“override the site’s style sheet for this property.” For example, a user might use the rule like so:

p {
 font-size : 18pt !important;
 font-weight : bold !important;
}

There is nothing you can do to force users to use your style sheet, but in practice, a small percentage (if
any) of your visitors will create their own style sheets, so you should not worry about it—it’s covered
here only so that you understand what the rule is and why you may come across it.

NOTE In CSS1, the !important rule allowed authors to overrule users’ style
sheets, but this was switched over in the second version.

poSiTioning and LaYouT wiTH CSS

Up to this point, you have learned how the content of each element is represented in CSS using a
box, and you’ve seen many of the properties you can use to affect the appearance of the box and
its content. Now it’s time to look at how to control where the boxes should be positioned within
a page.

In CSS, there are three common positioning schemes that enable you to control layout of a page:
normal, float, and absolute positioning. In the following sections, you see how you can use each of
these to indicate where the content of an element should appear on the page.

Although the CSS positioning schemes were not intended to be a mechanism to control the layout of
pages, they have become the standard way to lay out pages on the web. For the rest of the chapter,
you look at how you can control where boxes appear on the page using CSS.

NOTE Before CSS, web designers commonly used tables to control the layout of
web pages. Although you still occasionally see tables used for this purpose, they
were designed to contain tabular data, and you should aim to control layout of
new pages using CSS instead. If you use CSS to control layout rather than tables,
your pages will be smaller (in terms of lines of code), easier to adapt to different
devices, easier to redesign, faster to load, and more visible to search engines.

294 ❘ CHapTer 8 more caScaDing StYLe SheetS

normal Flow
By default, elements are laid out on the page using normal or static flow. In normal flow, the
block-level elements within a page flow from top to bottom (remember that each block-level
element appears as if it is on a new line), and inline elements flow from left to right (because
they do not start on a new line).

For example, each heading and paragraph should appear on a different line, whereas the contents of
elements such as , , and sit within a paragraph or other block-level element. They do
not start on new lines.

Figure 8-27 illustrates this with three paragraphs, each of which is a block-level element sitting
on top of the other. Inside each paragraph is an example of an inline element, in this case the
 element (ch08_eg27.html).

Figure 8-27

If you want the content of elements to appear in other places than where they would in normal flow,
you have two properties to help you: position and float.

The position property
The position property enables you to specify how you want to control the position for a box (and
is generally used to take items out of normal flow). It can take the four values listed in Table 8-19.

TaBLe 8-19: Values of the position Property

VaLue Meaning

static This is the same as normal flow and is the default, so you rarely (if ever) see

it specified .

relative The position of the box can be offset from where it would be if it were left in

normal flow .

Positioning and Layout with CSS ❘ 295

absolute The box is positioned exactly using x and y coordinates from the top-left

corner of the containing element .

fixed The position is calculated from the top-left corner of a browser window and

does not change position if the user scrolls the window .

You see how these are used in the coming sections.

Box offset properties
As you see in the coming sections, when boxes have a position property whose value is relative,
absolute, or fixed, they also use box offset properties to indicate where these boxes should be
positioned. Table 8-20 lists the box offset properties.

TaBLe 8-20: Values for the Box Offset Properties

properTY Meaning

top Offset position from the top of the containing element

left Offset position from the left of the containing element

bottom Offset position from the bottom of the containing element

right Offset position from the right of the containing element

Each can take a value of a length, a percentage, or auto. Relative units, including percentages, are
calculated for the containing boxes’ dimensions or properties.

relative positioning
Relative positioning enables you to move a box in relation to where it would appear in normal flow. For
example, you might move a box 30 pixels down from where it would appear in normal flow, or 100
pixels to the right. It is displaced from where it would be in normal flow using the box offset properties.

Now go back to the last example you met in the previous section when looking at normal flow and
move the second paragraph using relative positioning, as shown in Figure 8-28.

Figure 8-28

296 ❘ CHapTer 8 more caScaDing StYLe SheetS

The second paragraph in this example is offset from where it would be in normal flow (where it
was in the last example) by 40 pixels from the left and 40 pixels from the top—note the minus sign,
which raises it above its position in normal flow (ch08_eg28.css).

p {
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
 padding : 5px;
 background-color : #FFFFFF;
}
p.two {
 position : relative;
 left : 40px;
 top : -40px;
}

The value of the box offsets is most commonly given in pixels or a percentage.

NOTE You should specify only a left or right offset and a top or bottom offset. If
you specify both left and right or both top and bottom, the right or bottom offset
will be ignored.

When you use relative positioning, some boxes can overlap others, as in the previous example.
Because you offset a box relative to normal flow, if the offset is large enough, one box ends up on
top of another. This might create an effect you are looking for; however, there are a couple pitfalls
you must be aware of:

➤➤ Unless you set a background for a box (either a background color or image) the box will be
transparent by default, making any overlapping text an unreadable mess. In the preceding
example, the background-color property was used to make the background of the para-
graphs white and thereby prevent this from happening.

➤➤ The CSS specification does not say which element should appear on top when relatively posi-
tioned elements overlap each other, so there can be differences between browsers. (Although,
you can control this using the z-index property, which you meet shortly.)

absolute positioning
Absolute positioning takes an element out of normal flow, allowing you to fix its position. You can
specify that an element’s content should be absolutely positioned by giving it the position property
with a value of absolute. Then you use the box offset properties to position it where you want.

The box offsets fix the position of a box relative to the containing block—which is slightly differ-
ent from a containing element because it is a containing element whose position property is set to
relative, absolute, or fixed.

Positioning and Layout with CSS ❘ 297

Now look at the following style sheet. This style sheet is for use with three paragraphs again,
but this time the paragraphs are held within a <div> element that also uses absolute positioning
(ch08_eg29.css):

div.page {
 position : absolute;
 left : 50px;
 top : 100px;
 border-style : solid;
 border-width : 2px;
 border-color : #000000;
}
p {
 background-color : #FFFFFF;
 width : 200px;
 padding : 5px;
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
}
p.two {
 position : absolute;
 left : 50px;
 top : -25px;}

Figure 8-29 shows what this would look like in a browser; as you can clearly see, the second para-
graph is no longer in the middle of the page. The second paragraph element has been taken out of
normal flow because the third paragraph is now in the place where the second paragraph would
have been if it participated in normal flow. Furthermore, it even appears before the first paragraph
and over to the right!

Figure 8-29

298 ❘ CHapTer 8 more caScaDing StYLe SheetS

The presence of the <div class="page"> element here is to show that the paragraph is being
positioned according to the containing block—the absolutely positioned <div> element.

Absolutely positioned elements always come out above relatively positioned elements, as you see
here, unless you use the z-index property (which you’ll learn about later in this chapter).

It is also worth noting that because absolutely positioned boxes are taken out of normal flow, even if
two vertical margins meet, their margins do not collapse.

Fixed positioning
The final value you need to be aware of for the position property is the value fixed. This value
specifies not only that the content of the element should be completely removed from normal flow,
but also that the box should not move when users scroll up or down a page.

Although Firefox, Safari, and Chrome have offered support for fixed positioning for a while, IE7
was the first version of Internet Explorer to support it.

You can use the following sample of HTML from ch08_eg30.html to demonstrate fixed positioning.
This example continues with several more paragraphs so that you can see the page scrolling while the
content of the <div> element remains fixed at the top of the page:

<div class="header">Beginning Web Development</div>
<p class="one">This page has to contain several paragraphs so you can see
the effect of fixed positioning. Fixed positioning has been used on the
header so it does not move even when the rest of the page scrolls.</p>

Here you can see the style sheet for this example (ch08_eg30.css). The header has the position
property with the value fixed and is positioned to the top left of the browser window:

div.header {
 position : fixed;
 top : 0px;
 left : 0px;
 width : 100%;
 padding : 20px;
 font-size : 28px;
 color : #ffffff;
 background-color : #666666;
 border-style : solid;
 border-width : 2px;
 border-color : #000000;
}
p {
 width : 300px;
 padding : 5px;
 color : #000000;
 background-color : #FFFFFF;
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
}
p.one {
 margin-top : 100px;
}

Positioning and Layout with CSS ❘ 299

Figure 8-30 shows you what this fixed header element looks like even though the user has scrolled
halfway down the page.

Figure 8-30

The z-index property
Elements positioned using absolute and relative positioning often overlap other elements. When this
happens the default behavior is to have the first elements underneath later ones. This is known as
stacking context. You can specify which of the boxes appears on top using the z-index property. If
you are familiar with graphic design packages, the stacking context is similar to using the “bring to
top” and “send to back” features.

The value of the z-index property is a number, and the higher the number the nearer the top that
element should display. (For example, an item with a z-index of 10 appears on top of an item with
a z-index of 5.)

To better understand z-index, look at another example of absolute positioning—this time there are
just three paragraphs (ch08_eg31.html):

<p class="one">Here is paragraph one.
 This will be at the top of the page.</p>
<p class="two">Here is paragraph two.
 This will be underneath the other elements.</p>
<p class="three">Here is paragraph three.
 This will be at the bottom of the page.</p>

Each of these paragraphs shares common width, background-color, padding, and border prop-
erties, which are specified in the first rule. (This saves you from repeating the same properties for
each individual <p> element.) Then each paragraph is positioned separately using absolute position-
ing. Because these paragraphs now all overlap, the z-index property is added to control which one
appears on top; the higher the value, the nearer the top it ends up (ch08_eg31.css):

p {
 width : 200px;
 background-color : #ffffff;

300 ❘ CHapTer 8 more caScaDing StYLe SheetS

 padding : 5px;
 margin : 10px;
 border-style : solid;
 border-color : #000000;
 border-width : 2px;
}
p.one {
 z-index : 3;
 position : absolute;
 left : 0px;
 top : 0px;
}
p.two {
 z-index : 1;
 position : absolute;
 left : 150px;
 top : 25px;}
p.three {
 z-index : 2;
 position : absolute;
 left : 40px;
 top : 35px;
}

Figure 8-31 shows how the second paragraph now appears to be underneath the first and third
paragraphs, and the first one remains on top.

Figure 8-31

Floating using the float property
The float property enables you to take an element out of normal flow and place it as far to the left
or right of a containing box as possible.

Anything else that lives in the containing element will flow around the element associated with the
float property (just like text and other elements can flow around an image).

Whenever you specify a float property on an element, you must also set a width property indicating
the width that the box should take up. Otherwise, it automatically takes up 100 percent of the width
of the containing box, leaving no space for things to flow around it and therefore making it appear
like a plain block-level element.

Positioning and Layout with CSS ❘ 301

To indicate that you want a box floated to either the left or the right of the containing box, you set
the float property, which can take one of the values listed in Table 8-21.

TaBLe 8-21: Values of the float Property

VaLue purpoSe

left The box is floated to the left of the containing element, and the content of the

containing element flows to the right of it .

right The box is floated to the right of the containing element, and the content of the

containing element flows to the left of it .

none The box is not floated and remains where it would have been positioned in

normal flow .

inherit The box takes the same property as its containing element .

When a box uses the float property, vertical margins will not be collapsed above or below it like
block boxes in normal flow can be (because it has been taken out of normal flow). The floated box
will be aligned with the top of the containing box.

Look at the following HTML (ch08_eg32.html) to see how the first <aside> element has a class
attribute whose value is pullQuote:

<body>
 <h1>Heading</h1>
 <aside class="pullQuote">Here is the pullquote. It will be removed from
 normal flow and appear on the right of the page.</aside>
 <p>This is where the story starts and it will appear at the top of the
 page under the heading. You can think of it as the first paragraph of an
 article or story. In this example, the pull quote gets moved across to the
 right of the page. There will be another paragraph underneath.</p>
 <p>Here is another paragraph. This one will be at the bottom of the page.</p>
</body>

As this example shows, the first <p> element is taken out of the normal flow and placed to the right
of the containing <body> element using the float property with a value of right (ch08_eg32.css):

body {
 color : #000000;
 background-color : #ffffff;
 font-size : 12px;
 margin : 10px;
 width : 514px;
 border : 1px solid #000000;
}
p {
 background-color : #FFFFFF;
 border : 2px solid #000000;
 padding : 5px;
 margin : 5px;

302 ❘ CHapTer 8 more caScaDing StYLe SheetS

 width : 500px;
}
.pullQuote {
 float : right;
 width : 150px;
}

You can see how the content of the <aside> element with the class attribute whose value is
pullQuote ends up to the right of the page, with the content of the paragraph flowing to the
left and then underneath it, as shown in Figure 8-32.

Figure 8-32

The clear property
The clear property is especially helpful when you are working with boxes that are floated. Content
can flow around a floated element (refer to Figure 8-32); however, you might not want this to happen.
You might prefer that nothing sits next to the floated element, and that surrounding content be pushed
underneath the floated element. This is what the clear property is for, and Table 8-22 shows you the
values that this property can take.

TaBLe 8-22: Values of the clear Property

VaLue purpoSe

left The element with the clear property cannot have content on the left-hand

side of it .

right The element with the clear property cannot have content on the

right-hand side of it .

both The element with the clear property cannot have content to the left or

right of it .

none Allows floating on either side .

Positioning and Layout with CSS ❘ 303

Now look at an example. The HTML page uses exactly the same structure as the last example, but
this time the style sheet ensures that nothing sits next to the pull quote.

To ensure that the second paragraph does not wrap around the pull quote, use the clear property
on the rule for the <aside> elements indicating that nothing should appear to the left of it; you can
see this new property is highlighted in the following code (ch08_eg33.css):

p {
 background-color : #FFFFFF;
 border : 2px solid #000000;
 padding : 5px;
 margin : 5px;
 width : 500px;
 clear : right
}

Figure 8-33 shows you how the clear property works in this example, ensuring that the second and
third paragraphs sit below the pull quote.

Figure 8-33

Building a Sample Layout
Now it’s time to put the positioning and layout lessons you’ve just learned into practice in the following
Try It Out.

TrY iT ouT A Sample Layout

In this Try It Out, you create a sample page layout that uses a combination of the techniques you
learned in this chapter to control the layout of the page using CSS.

The page you work with is shown in Figure 8-34 without the style sheet attached.

304 ❘ CHapTer 8 more caScaDing StYLe SheetS

Figure 8-34

Here is the body of the HTML code for this example (samplePage.html):

<body>
<h1>Cascading Style Sheets</h1>
 <div class="nav">Examples index
 Chapter 8 Code</div>
<h2>CSS Positioning</h2>
 <p class="abstract"><img class="floatLeft" src="images/background.gif"
 alt="wrox logo">This article introduces the topic of laying out
 web pages in CSS using a combination of positioning schemes.</p>
 <p>CSS allows you to use three different positioning schemes to create
 complex layouts:</p>

 Normal flow
 Absolute positioning
 Floating

 <p>By using a combination of these schemes you do not need to resort to
 using tables to lay out your pages.</p>
</body>

This example illustrates some of the issues that you need to be aware of with CSS—in particular, it
is important to demonstrate that while you have seen some helpful properties, some of them are sup-
ported only in the latest browsers. Although you can design your site in such a way that it works with
most browsers, you might not get some techniques to work in all the browsers you want them to, so
you need to test your site thoroughly.

In Firefox, this Try It Out example looks like Figure 8-35, and you would get a similar result in IE7+.

Positioning and Layout with CSS ❘ 305

Figure 8-35

However, Figure 8-36 shows you what this page would look like in IE6. In particular note how there
is no longer the word Navigation before the links in the left, and how the heading CSS Positioning sits
further down the page. So if you still have visitors coming to your site who use IE6, you need to consider
which features will and won’t work and check your page in IE6 before publishing the site. Less and less
people are using IE6, but it still is popular in some areas (China, for example) so it’s good to be aware
that there are some limitations with that browser.

Figure 8-36

306 ❘ CHapTer 8 more caScaDing StYLe SheetS

To start working on the CSS file for this page, start your web page editor and follow these steps:

 1 . Create a file called samplePage.css, add the elements from the HTML page, and use class selectors
where appropriate to identify each type of element. You should end up with a list like the one that
follows; then you can look at the rule for each element in turn.

body {}
h1 {}
div.nav {}
h2 {}
p {}
p.abstract {}
img {}
ul {}

 2 . The rule for the <body> element sets up some defaults for the page.

body {
 color : #000000;
 background-color : #ffffff;
 font-family : arial, verdana, sans-serif;
 font-size : 12px;
}

 3 . The header for the site uses fixed positioning to take it out of normal flow and anchor it to the
top of the page even if the user scrolls. It also has a z-index property to ensure that this heading
remains on top of the navigation.

h1 {
 position : fixed;
 top : 0px;
 left : 0px;
 width : 100%;
 color : #ffffff;
 background-color : #666666;
 padding : 10px;
 height : 60px;
 z-index : 2;
}

 4 . The navigation is also removed from normal flow because it is absolutely positioned. It is positioned
80 pixels from the top so that the links will not disappear underneath the page’s heading when the
page first loads. The navigation is placed in a box that is 100 pixels wide and 300 pixels high with
a light gray background. As a visitor scrolls down the page, the navigation will go underneath the
heading for the page because you have not specified a z-index property, and the heading has a
z-index property with a value of 2.

div.nav {
 position : absolute;
 top : 80px;
 left : 0px;
 width : 100px;

Positioning and Layout with CSS ❘ 307

 height : 300px;
 padding : 10px;
 background-color : #efefef;
}

 5 . You may have noticed that the navigation bar contains the word Navigation, which was not in the
original HTML file. This style sheet uses the CSS :before pseudo-class to add this word in. You
can see here that it also has other styles associated with it.

div.nav:before {
 content : "Navigation ";
 font-size : 18px;
 font-weight : bold;
}

 6 . The rule for the <h2> element needs to be indented from the left because the navigation takes up the
first 120 pixels to the left of it. It also has padding at the top to bring the text underneath the heading.

h2 {
 padding : 80px 0px 0px 130px;
}

 7 . There are two rules for paragraphs. The first rule is for all paragraphs, and the second one ensures
that the abstract of the article is in bold. As with the <h2> element, all paragraphs need to be
indented from the left.

p {
 padding-left : 115px;
}
p.abstract{
 font-weight : bold;
}

 8 . The image that sits in the first paragraph is floated to the left of the text. As you can see, the text in
the paragraph flows around the image. It also has a 5-pixel margin to the right.

img {
 float : left;
 width : 60px;
 margin-right : 5px;
}

 9 . The rule for the unordered list element needs to be indented further than the paragraphs or level 2
heading. It also specifies the style of bullet to be used with the list-style property.

ul {
 clear : left;
 list-style : circle;
 padding-left : 145px;
}

 10 . Save your style sheet as samplePage.css and try loading the samplePage.html file that is going
to use it.

308 ❘ CHapTer 8 more caScaDing StYLe SheetS

How It Works

Laying out web pages using CSS is as much art as it is a technical exercise. Knowing when to use floats,
when to use absolute positioning, and when to just let the document flow is something you’ll never stop
learning about no matter how long you build sites. As this example illustrates, successful layouts are
often a combination of two or more of these layouts and positioning techniques.

For example, a layout that features floated columns might set one of the columns to be
position:relative without associated offset properties to absolutely position child elements
within the column. Or a simple, single column layout might leverage floated elements to break up
the monotony of stacked block-level elements. Experimenting with these techniques and examining
layouts you encounter on the web can help you solve most of the layout issues you will encounter.

SuMMarY

In this chapter you learned the CSS properties that enable you to control lists, links, tables, outlines,
and backgrounds with CSS. You then saw how CSS enables you to add content from the style sheet
into the document. The :before and :after pseudo-classes enable you to add content before or after
an element specified in the selector. This includes text, an image, or content from a file. You can even
add automatic numbering or counting of any element using the counter() function and can manage
complex sets of quotation marks. (Although not all browsers support all these functions yet.)

You also learned how to use the @import rule to include rules from other style sheets into the
current one and create modularized style sheets that enable you to reuse the same rules on differ-
ent sites, whereas the @charset rule indicates which character set is used in the style sheet.

Finally, this chapter looked at the three main positioning schemes in CSS: normal flow (and its
offshoot relative positioning); absolute positioning (and its offshoot fixed positioning); and float-
ing. These are powerful tools for controlling where the content of a document should appear; they
complete the picture of separating style from content.

exerCiSeS

 1 . In this exercise, you create a linked table of contents that sits at the top of a long document in an

ordered list and links to the headings in the main part of the document .

The HTML file exercise1.html is provided with the download code for this book, ready for you

to create the style sheet . Your style sheet should do the following:

➤➤ Set the styles of all links including active and visited links .

➤➤ Make the contents of the list bold .

➤➤ Make the background of the list light gray and use padding to ensure the bullet points show .

➤➤ Make the width of the links box 250 pixels wide .

➤➤ Change the styles of heading bullet points to empty circles .

➤➤ Change the style of link bullet points to squares .

Summary ❘ 309

Your page should look something like Figure 8-37 .

Figure 8-37

 2 . In this exercise, you test your CSS positioning skills . You should create a page that represents the

links to the different sections of the chapter in a different way . Each of the sections must be shown in

a different block, and each block must be absolutely positioned in a diagonal top-left to bottom-right

direction . The middle box should appear on top, as shown in Figure 8-38 .

Figure 8-38

You can find the source HTML file (exercise2.html) with the download code for this chapter .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

310 ❘ CHapTer 8 more caScaDing StYLe SheetS

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

Styling backgrounds You can use solid colors and images . Images can be tiled in different

ways, can be attached to certain areas, or can fill the entire element .

Styling lists You can change the appearance of lists by customizing the size, shape,

and position of the bullet .

outlines CSS outlines are similar to CSS borders, with the key difference that they

don’t figure into the calculation of the box offset .

positioning and layout Layouts on the web are accomplished using a combination of the three

available layout schemes: normal, absolute positioning, and floats .

Learning the strengths and weaknesses of each and how they support

each other is an important piece of the web development toolkit .

Rounded Corners, Animations,
Custom Fonts, and More
with CSS3

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to use new CSS3 selectors

➤➤ How to set variable opacity elements with the new CSS3 Color module

➤➤ New options for multi-column layouts

➤➤ How to create drop shadows and rounded corners without using

any images

➤➤ How to apply custom fonts to the web using the @font-face directive

➤➤ How to add animations, transitions, and transformations without

using any JavaScript

wrox .CoM Code downLoadS For THiS CHapTer

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 9
download and individually named according to the names throughout the chapter.

In this chapter, you learn about the latest version of the CSS specification, CSS3. Unlike previous
versions of the specification, CSS3 consists of smaller specifications that focus on particular areas
of interest. These are called modules. CSS3 significantly increases the power of CSS.

First, you focus on more mature modules—ones that have been in development for the longest
time and are furthest along the road to standardization. These include new options for select-
ing elements and adjusting the color of elements, new border and background options, and new

9

312 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

functionality that enables you to specify CSS styles based on attributes of your visitors’ browsers
and devices.

Then you learn about newer modules that might not be completely finalized but are still available
in some browsers. This section includes CSS features that enable you to lay out pages using a grid
system, options for animation, and transitions between element states, and the ability to transform
HTML elements in two and three dimensions.

After reading this chapter you’ll be prepared to start using the latest tools available for styling elements.

THe ModuLar approaCH oF CSS3

Unlike the previous incarnations of the specification, which were large documents that covered
the entirety of each generation of CSS, the latest version of CSS takes a modular approach to
specification design. CSS3 modules enhance functionality introduced in previous versions of
the specification.

This approach means that the folks writing specifications and implementing them in browsers
can focus on different parts of the emerging CSS landscape at different times. It also means that
some modules are much further along than others for both the specification process and browser
implementation.

This chapter focuses on two classes of CSS3 modules—ones that are further along the specification
path and those that are newer.

Although there’s mixed support in browsers for both types, the ones that are more mature are less
likely to change in any appreciable way in the future and somewhat safer to start using now.

MaTure CSS3 ModuLeS

The modules in this section are all mature, having been in development for five or more years,
and all are proposed recommendations, candidate recommendations, or recommendations in the
W3C’s completeness hierarchy. Defined simply, a proposed recommendation is the second-to-last
step, and a candidate recommendation is the last step before a specification reaches the recommen-
dation stage. A recommendation is an official standard. That means these modules are done or are
close to done.

More powerful CSS Selectors
The CSS3 Selector module expands on the CSS selectors you met in Chapter 7, “Cascading Style
Sheets,” with a number of new options. These options enable a precise selection of elements based
on the position in the document, the value of attributes, the UI state, and even whether the element
has any children.

Table 9-1 lists these new selectors.

Mature CSS3 Modules ❘ 313

TaBLe 9-1: New CSS3 Selectors

naMe exaMpLe MaTCHeS

Attribute Starts with Selector p[name^="value"] Any <p> element carrying an

attribute called name whose value

begins with the string value .

Attribute Ends with Selector p[name$="value"] Any <p> element carrying an

attribute called name whose value

ends with the string value .

Attribute Contains Selector p[name*="value"] Any <p> element carrying an attri-

bute called name whose value con-

tains the string value .

Root Selector :root The root of the document . In HTML

documents this is always the

HTML element .

Nth Child Selector p:nth-child(n) Any <p> element, the nth child of

its parent .

Nth Last Child Selector p:nth-last-child(n) Any <p> element, the nth child

of its parent, counting from the

last one .

Nth of Type Selector p:nth-of-type(n) Any <p> element, the nth sibling of

its type .

Nth Last of Type Selector p:nth-last-of-type(n) Any <p> element, the nth sibling of

its type, counting from the last one .

Last Child Selector p:last-child Any <p> element, last child of

its parent .

First of Type Selector p:first-of-type Any <p> element, first sibling of its

type under its parent .

Last of Type Selector p:last-of-type Any <p> element, last sibling of its

type under its parent .

Only Child Selector p:only-child Any <p> element, only child of

its parent .

Only of Type Selector p:only-of-type Any <p> element, only sibling of

its type .

Empty Selector p:empty Any <p> element that has no

children (including text nodes) .

continues

314 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

naMe exaMpLe MaTCHeS

Target Selector p:target Any <p> element being the target

of the referring URL .

Enabled/Disabled Selectors input:enabled

input:disabled

An <input> element that is either

enabled or disabled .

Checked Selector input:checked An <input> element of type

check box which is checked .

Not Selector p:not(".special") A <p> element not of class

.special .

Next Siblings Selector div ~ p Any <p> element preceded by a

<div> element .

These selectors are supported by Internet Explorer 9+ and all the other major browsers. The follow-
ing HTML file illustrates several of these selectors (ch09_eg01.html):

<p>This is the first child of the body.</p>
<p>This is the second child of the body.
 This input is disabled <input type="text" disabled></p>
<p>This is the third paragraph. The text here is blue.</p>
<p>This paragraph includes two links, one is
 secure, starting with 'http://'
 the other is to a .org</p>
<div></div>
<p>This element is preceded by an empty <div></p>
<p>This is the last child</p>

The associated CSS file (ch09_eg01.css) uses the first child selector to increase the size of the first
paragraph. Following are two examples of the nth-child selector, changing the font-family and
color of the second and third paragraphs. In the next section, the attribute starts with and ends
with selectors that match <a> elements containing two different URL values. One matches against
links beginning with https: indicating that they are secure, and the other matches against .org/ at
the end of the link to target nonprofit organizations. The disabled selector is used after that to give
a slightly thicker, gray border to the disabled <input> element. You then see the empty selector used
to give a background color, height, and width to the empty <div> element. Finally, the previous sib-
ling’s selector is used to change the font-size, color, and font-family of any <p> elements that follow
any <div> elements in the document.

a[href^="https"] {
 color : red;
}
a[href$="org/"] {
 color : purple;
}

TaBLe 9-1 (continued)

Mature CSS3 Modules ❘ 315

input:disabled{
 border : 2px solid #000000;
};
p:nth-child(2) {
 font-family : arial, helvetica, sans-serif;
}
p:first-child {
 font-size : 125%;
}
p:nth-child(3) {
 color : #006699;
}
div:empty {
 height : 100px;
 width : 200px;
 background : #666666;
}
div~p {
 font-size : 200%;
 color : #666666;
 font-family : consolas, courier, "courier new", monospace;
}

Figure 9-1 shows this style sheet rendered in Firefox 15.

Figure 9-1

advanced Color options
The CSS3 Color module expands on the color options that you already learned about in Chapter 7.
These additions include a new method for defining colors and ways to specify the translucency of an
element by defining its opacity or alpha.

316 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

Use new, easier-to-Understand, numerical Color Values with HSL
You’ve seen one example of a numerical color value with RGB color values. CSS3 adds one new option
based on hue, saturation, and lightness (HSL). HSL is an alternative to RGB, which more closely mir-
rors the way that people actually think about color. Instead of mixing three RGB values together to cre-
ate the target color, HSL enables you to set the hue with one number between 0 and 360 (for example,
0 = red, 120 = green, and 240 = blue) and then adjust the richness or saturation (0 percent is gray; 100
percent is full saturation) of the color and the amount of lightness/darkness (0 percent lightness is black,
100 percent lightness is white, and 50 percent lightness is normal) as needed. The hue and saturation
values are expressed as percentages.

The following example (ch09_eg02.html) shows how easy it is to tweak colors using HSL nota-
tion. The nine <div> elements in the following example are grouped in three sections.

<section>
 <h1>Changing Just the Hue</h1>
 <div class=”one”></div>
 <div class=”two”></div>
 <div class=”three”></div>
</section>
<section>
 <h1>Changing just the Saturation</h1>
 <div class=”four”></div>
 <div class=”five”></div>
 <div class=”six”></div>
</section>
<section>
 <h1>Changing Just the Lightness</h1>
 <div class=”seven”></div>
 <div class=”eight”></div>
 <div class=”nine”></div>
</section>

In the attached CSS (ch09_eg02.css) classes are used for the three <div> elements in each section.
One section focuses on changing just the hue, one section focuses on the saturation, and the other
section focuses on just the lightness.

div {
 height:25px;
 width:300px;
}
.one {
 background-color : hsl(111,50%,50%);
}
.two {
 background-color : hsl(222,50%,50%);
}
.three {
 background-color : hsl(333,50%,50%);
}
.four {
 background-color : hsl(333,10%,67%);
}
.five {
 background-color : hsl(333,50%,67%);

Mature CSS3 Modules ❘ 317

}
.six {
 background-color : hsl(333,90%,67%);
}
.seven {
 background-color : hsl(333,65%,67%);
}
.eight {
 background-color : hsl(333,65%,44%);
}
.nine {
 background-color : hsl(333,65%,22%);
}

As Figure 9-2 illustrates, there’s a clear, common sense connection between the component values
and the final color. By changing just one human-friendly (as opposed to computer-friendly) value,
you can easily adjust colors. (The subtle nuances of hue, saturation and lightness are lost to some
degree in grey-scale. The full-color version of Figure 9-2 is available for download with the code for
this chapter, at www.wrox.com/remtitle.cgi?isbn=9781118340189 on the Download Code tab.)

Figure 9-2

Control Transparency with RgBA, HSLA, and the opacity Property
The CSS3 Color module also adds the ability to set the level of transparency on elements. It does
this in two ways: as a fourth alpha value added to RGB and HSL color values and with the stand-
alone opacity property.

Adding transparency to both HSL and RGB colors is handled the same way. You simply add a
fourth alpha value between 0 (completely transparent) and 1 (completely opaque):

h1 {
 background-color : hsla(0, 100%, 50%, 0.5);
}

318 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

h2 {
 background-color : rgba(255, 0, 0, 0.5);
}

Setting opacity is similar in that it takes an argument representing the level of opacity between 0 and 1.
The difference is that, although HSLA or RGBA enables you to target transparency to one specific com-
ponent of the element, using the opacity property sets the entire element’s transparency, including
all child elements. The two <div> elements in the following code sample (ch09_eg03.html) illustrate
this difference.

<div class=”opacity”>
 <p>This element has a 50% opacity</p>
</div>
<div class=”hsla”>
 <p>This element has 50% alpha</p>
</div>

The CSS (ch09_eg03.css) defines the two classes to have the equivalent background color (pure
red) and equivalent transparency. The difference, as shown in Figure 9-3, is that the example using
HSLA leaves the foreground text untouched and completely opaque. Compare that to the example
using the opacity property where the text is also set to 50 percent transparency.

.opacity {
 opacity : .5;
 background-color : #ff0000;
}
.hsla {
 background-color : hsla(0,100%,50%,.5)
}

Figure 9-3

Table 9-2 shows browser support for these new color values.

TaBLe 9-2: Browser Support for New Color Values

VaLue ie FF SaFari CHroMe opera

hsl 9 1 3 .1 1 9 .5

hsla 9 3 3 .1 1 10

rgba 9 3 3 .1 1 10

Mature CSS3 Modules ❘ 319

Backgrounds and Borders Module
It would be hard to definitively prove, but based on the sites the author has seen and built over the
years, rendering elements with rounded corners and drop shadows has wasted more developer time
and more kilobytes downloaded than any other design motif over the past 10–15 years. Traditionally
done using a combination of extra elements, images, and copious amounts of CSS, these design ele-
ments were common on designer wish lists for CSS features. Thankfully, with the Backgrounds and
Borders module, these two features are now available directly in the browser; no extra images or
markup needed.

As with many things on the web, there is one small catch. Browsers are taking the standards process
much more seriously these days. Part of that new dedication is the desire to implement new and pro-
posed features as soon as possible to allow web developers to test them and produce valuable feedback.
Because these features might end up changing, the idea of using browser prefixes was struck upon to
indicate that the feature being used is experimental. Using those rounded corners as an example, note
that the default property name is border-radius. In older browsers based on the WebKit open source
project (most notably Chrome and Safari), this property was exposed as -webkit-border-radius. So,
for maximum support you would write your CSS rule like this:

-webkit-border-radius: 12px; /* Safari 3-4, iOS 1-3.2, Android ≤1.6 */
border-radius: 12px; /* Opera 10.5, IE9+, Safari 5 */
/* Chrome, Firefox 4+, iOS 4, Android 2.1+ */

As you go through the samples in this chapter, any rules where vendor prefixes matter are pointed
out. If you’re going to use any of these rules that rely on vendor prefixes, using a site such as
http://css3please.com/ that allows you to edit CSS3 rules right in your web browser might
make things a little easier. Figure 9-4 shows CSS3, Please! in action.

Figure 9-4

320 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

There are other tools available to help you with vendor prefixes. If you’re a user of Microsoft’s Visual
Studio, for example, there are tools in the Web Essentials add-in that take care of them for you. There’s
also a JavaScript library called “-prefix-free” (http://leaverou.github.com/prefixfree/) that can
make working with them during development very easy. If you get serious about using these new fea-
tures, you’ll find a system that works with your development style.

Now that you’ve learned about vendor prefixes and had a sneak peek at the syntax for border-
radius in the previous example, it’s time to look at a full example of rounded corners and drop
shadows in action.

The markup (ch09_eg04.html) is simple—just a single <div> element with an <h1> and <h2> inside
to spice things up.

<div>
 <h1>Rounded Corners!</h1>
 <h2>Drop Shadow!</h2>
</div>

The CSS (ch09_eg04.css) shows the two new properties in action. The border-radius is set to
12 pixels, which is measured like the radius you might remember from geometry class—from the
center to the edge of the circle. Figure 9-5 illustrates this measurement.

Figure 9-5

The drop-shadow property takes five values.

➤➤ The horizontal offset of the shadow.

➤➤ The vertical offset of the shadow.

➤➤ The third value is the blur radius; the larger the value, the more the shadow’s edge is blurred.

➤➤ The spread distance; how much the shadow “bleeds.”

➤➤ The color of the shadow.

div {
 padding : 10px;
 width : 400px;

Mature CSS3 Modules ❘ 321

 -webkit-border-radius : 12px;
 border-radius : 12px;
 -webkit-box-shadow : 0px 0px 4px 0px #000000;
 box-shadow : 0px 0px 4px 0px #000000;
}

It helps to experiment with drop-shadow to get a sense of how the different values interact to create
different effects. This is one of the great benefits of a site such as CSS3, Please because it enables you
to see the changes in real time.

Table 9-3 shows browser support for border-radius and box-shadow.

TaBLe 9-3: Browser Support for Borders and Backgrounds

FeaTure inTerneT expLorer googLe CHroMe FireFox SaFari opera

box-shadow 9 .0+ 4 .0+ 3 .5+ 3 .1+ 10 .5+

border-radius 9 .0+ 4 .0+ 3 .0+ 3 .1+ 10 .5+

Multi-column Layout Module
Multiple-column layouts, where text is flowed across several separate blocks of text, are a common
design element in the world of print. It has never been possible on the web. Although you’ve already
seen ways to separate out content into different columns, laying out a single block of text across two
or three columns while keeping all the text within the same element is impossible.

The Multi-column Layout module changes this, enabling you to set multiple columns for a single ele-
ment. There are two ways to set the number of columns for an element. The first is with the column-
count property, which simply enables you to set the number of columns for the element. The other
way is to use the column-width property, which enables you to set a specific width for each column.
This is useful for variable width elements where you want to control the width of the columns for
better readability.

The markup in the example is simple (ch09_eg05.html), featuring one <div> element with a class
of fixed-width and another <div> element with a class of percentage-width. Both contain a
paragraph or two of nonsense text.

<div class=”fixed-width”>
<p>Proident accusamus readymade, exercitation wolf ullamco quinoa
chambray. Tattooed est gluten-free, tumblr ethical sartorial pickled.
…</p>
</div>
<div class=”percentage-width”>
<p>Proident accusamus readymade, exercitation wolf ullamco quinoa
flexitarian chambray. Tattooed est gluten-free, tumblr ethical sartorial
 pickled … keffiyeh nesciunt american apparel.</p>
<p>Proident accusamus readymade, exercitation wolf ullamco quinoa
flexitarian chambray. Tattooed est gluten-free, tumblr ethical
sartorial pickled…
</p>
</div>

322 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

The CSS (ch09_eg05.css) sets up columns using both techniques. The class .fixed-width sets the
width of the element to 500px. Three columns are defined with 15 pixels of gap between each of them.
The class .percentage-width uses column-width to create 100-pixel columns that number as many
as the 100 percent <div> requires.

Notice the use of the -webkit- and -moz- browser prefixes here because both Firefox and
Chrome/Safari require the prefixed version.

Figure 9-6 shows this layout in Firefox:

.fixed-width {
 width:500px;
 height:200px;
 -webkit-column-count: 3;
 -webkit-column-gap: 15px;
 -moz-column-count: 3;
 -moz-column-gap: 15px;
 column-count: 3;
 column-gap: 15px;
}
.percentage-width {
 width:100%;
 height:200px;
 -webkit-column-width: 100px;
 -webkit-column-gap: 15px;
 -moz-column-width: 100px;
 -moz-column-gap: 15px;
 column-width: 100px;
 column-gap: 15px;
}

Figure 9-6

Mature CSS3 Modules ❘ 323

NOTE Using multi-column layouts changes the way that content flows, so pay
attention to the overflow property when creating multi-column layouts in CSS.
If the overflow property is set to auto or overflow and the text is larger than the
containing element, you see more columns than you’ve defined. The text over-
flows horizontally and not vertically as it normally does. In this case, the browser
calculates the width of each column as if it were going to fit as defined by the
column-count property and then continues to add new columns outside of the
containing box. Figure 9-7 illustrates what this looks like in a <div> element set to
300 pixels with a column-count of 2. An entire column appears outside the box.

Figure 9-7

Table 9-4 illustrates browser support for Multi-column Layouts.

TaBLe 9-4: Browser Support for Multi-column Layouts

inTerneT expLorer googLe CHroMe FireFox SaFari opera

10 .0+ 4 .0+ 2 .0+ 3 .1+ 11 .2+

Media Queries
Media Queries extend the @media rules of CSS (commonly used to provide a style sheet for printing
or for voice browsers) and the media attribute in HTML, adding parameters such as display size,
color depth, and aspect ratio that you can test against. This allows you to adjust your designs based
on device or browser characteristics.

Media Queries play a major part in Responsive Web Design, a new technique for designing and
developing websites that allows them to display in a wide variety of devices. A good introduction
to Responsive Web Design is the article that introduced the technique to the wider web audience,
Ethan Marcotte’s A List Apart article “Responsive Web Design” at http://www.alistapart.com/
articles/responsive-web-design/.

324 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

The following code sample (ch09_eg06.html) shows Media Queries in action. The markup is simple:
a <div> element with an id of “container” containing two paragraphs.

<div id=”container”>
 <p>Proident accusamus readymade, exercitation wolf ullamco quinoa
flexitarian chambray. Tattooed est gluten-free, tumblr ethical...</p>
 <p>Proident accusamus readymade, exercitation wolf ullamco quinoa
flexitarian chambray. Tattooed est gluten-free, tumblr ethical ...</p>
</div>

The CSS (ch09_eg06.css) defines the #container element with a width of 940 pixels, a height of
200 pixels, and 450-pixel columns. Following that, you see the first of your Media Queries. The @
media section initializes the Media Query, and the screen keyword indicates that this rule is for
use in a screen display (as opposed to a printer or with a voice browser). The and keyword then ties
the screen display to another rule, the actual query. This is max-width with a value of 999 pixels.
Reading this in plain English, this rule means, “If this is a screen display and the screen is no wider
than 999 pixels, apply the following CSS rules.”

The rules for this query change the width to better fit in an 800-pixel display, change the background-
color, and change the column-width to better fit in the new layout.

The third rule uses the same pattern (with a different value) and reads, in plain English, “If this is
a screen display and the screen is no wider than 480 pixels, apply the following CSS rules.” Those
rules change the width to fit the new screen resolution, and the height to accommodate stacking
columns and the background-color.

#container {
 background-color : #fe57a1;
 height : 200px;
 width : 940px;
 padding : 10px;
 -webkit-column-width: 450px;
 -webkit-column-gap: 15px;
 -moz-column-width: 450px;
 -moz-column-gap: 15px;
 column-width: 450px;
 column-gap: 15px;
}
@media screen and (max-width:999px) {
 #container {
 width: 740px;
 background-color : #b3d4fc;
 -webkit-column-width: 350px;
 -webkit-column-gap: 15px;
 -moz-column-width: 350px;
 -moz-column-gap: 15px;
 column-width: 350px;
 column-gap: 15px;
 }
}

@media screen and (max-width:480px)

Mature CSS3 Modules ❘ 325

{
 #container {
 width : 400px;
 background-color : #ffcc00;
 height : 400px;

 }
}

Figure 9-8 shows the three states of this style sheet in Google Chrome.

Figure 9-8

Table 9-5 indicates support for Media Queries in the major desktop browsers.

326 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

TaBLe 9-5: Browser Support for Media Queries

inTerneT expLorer googLe CHroMe FireFox SaFari opera

9 .0+ 4 .0+ 3 .5+ 4 .0+ 9 .5+

new and in-deVeLopMenT ModuLeS

With the exception of the Fonts module, this section serves as a quick introduction to some of the new
CSS3 modules. Although these modules are extremely exciting, the support landscape is relatively thin,
and the opportunity for polyfills or designing around the lack of certain features is more difficult. If
you have a specific target audience, you might use these today, but for most people these aren’t going
to be ready for production use. Still, they show the powerful new direction CSS is taking.

Start with one that you can, with some attention to detail, use today with wide browser support—
the CSS3 Fonts module.

Custom Fonts with the @font-face directive
The most important component of the new Fonts module is the @font-face rule. This rule allows for
much greater control of type on the web by enabling you to directly embed fonts into the document
using CSS rules.

As you learned in Chapter 7, fonts on the web are normally based on the fonts available on a
user’s computer. Because few users are designers who have hundreds or thousands of fonts on
their machines, this has meant that, for the history of the web, the number of fonts available to
web designers and developers has been limited. The @font-face rule changes this. As long as the
font license allows for embedding on the web, you can use the @font-face rule to allow your
users to download and use that font for your web page. This opens up a wide range of possibilities
for type on the web.

The basic format of an @font-face rule looks like the following snippet. It opens with the @font-
face directive, which basically tells the browser “This style sheet is going to define a font.” After that
the font-family is defined. This property allows you to define a keyword to use as a reference to the
new font. Just like you could type Arial or Helvetica in a font declaration to reference those fonts on
a user’s computer, you can now use FontName to reference your newly defined font-family in your
CSS rules. The src property works just like every other src attribute or property you’ve learned about
in the book; it identifies a web resource to download the font face. This can be a resource on your own
web server or a third-party service.

@font-face {
 font-family: FontName;
 src: url(http://example.com/fonts/FontName.ttf);
}

new and in-Development Modules ❘ 327

On Font Formats, Compatibility, and the evolution of the
Bulletproof @font-face Syntax

The previous syntax tells only part of the story. Although many browsers support the @font-face
directive, different browsers support different font formats.

Thankfully, like the <video> element you learned about in Chapter 5, “Tables,” there are ways to
layer different formats to provide the broadest possible support. This pattern has been the subject of
much community discussion. To read about why this pattern works, keep an eye on Paul Irish’s post
at http://paulirish.com/2009/bulletproof-font-face-implementation-syntax/. Paul regu-
larly updates this post with new information as it becomes available.

Paul’s version has been improved upon by the community, culminating with the current champion,
the “Fontspring @Font-Face Syntax.” This syntax is illustrated in the following code snippet. In this
example you create a new font-family called InconsolataMedium. The two separate src properties
and multiple url values combine to provide support for a wide range of devices.

@font-face {
 font-family: ‘InconsolataMedium’;
 src: url(‘Inconsolata-webfont.eot’);
 src: url(‘Inconsolata-webfont.eot?#iefix’) format(‘embedded-opentype’),
 url(‘Inconsolata-webfont.woff’) format(‘woff’),
 url(‘Inconsolata-webfont.ttf’) format(‘truetype’),
 url(‘Inconsolata-webfont.svg#InconsolataMedium’) format(‘svg’);
 font-weight: normal;
 font-style: normal;
}

If this looks slightly complicated (and it is) and you’re not familiar with the ways to create the
different font formats (not many people are), you can use the FontSquirrel font generator, which
creates the different font formats and creates the proper CSS snippet for you. You can access the
font generator at http://www.fontsquirrel.com/fontface/generator.

Adding Custom Fonts to example Café
The best way to learn this somewhat complicated process for adding custom fonts is to practice in
the following Try It Out.

TrY iT ouT Adding a Custom Font

Adding custom fonts is an advanced CSS feature that will add some pizzazz to the Example Café website.

 1 . Start your text editor and open interface.css, the CSS file for your site.

 2 . You want to change the default font for the header elements on the site to be Droid Serif, a font
provided free by the Google Android team. To download it in every version needed and generate
the @font-face code needed to embed the font, go to http://www.fontsquirrel.com/fonts/
Droid-Serif and click the @font-face Kit button (see Figure 9-9).

328 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

Figure 9-9

 3 . Choose the default options and then hit the large Download @font-face Kit button. This down-
load will be a zip file containing each of the different font formats, an HTML file, and a CSS file.
Extract the zip file and then move the font files to a new folder in your example site called fonts.

 4 . Open the example stylesheet.css file in your @font-face kit. The code in it will look like the
following:

@font-face {
 font-family: ‘DroidSerifRegular’;
 src: url(‘DroidSerif-Regular-webfont.eot’);
 src: url(‘DroidSerif-Regular-webfont.eot?#iefix’)
 format(‘embedded-opentype’),
 url(‘DroidSerif-Regular-webfont.woff’) format(‘woff’),
 url(‘DroidSerif-Regular-webfont.ttf’) format(‘truetype’),
 url(‘DroidSerif-Regular-webfont.svg#DroidSerifRegular’)
 format(‘svg’);
 font-weight: normal;
 font-style: normal;
}
@font-face {
 font-family: ‘DroidSerifItalic’;
 src: url(‘DroidSerif-Italic-webfont.eot’);
 src: url(‘DroidSerif-Italic-webfont.eot?#iefix’)
 format(‘embedded-opentype’),
 url(‘DroidSerif-Italic-webfont.woff’) format(‘woff’),
 url(‘DroidSerif-Italic-webfont.ttf’) format(‘truetype’),
 url(‘DroidSerif-Italic-webfont.svg#DroidSerifItalic’)
 format(‘svg’);
 font-weight: normal;
 font-style: normal;
}
@font-face {
 font-family: ‘DroidSerifBold’;
 src: url(‘DroidSerif-Bold-webfont.eot’);

new and in-Development Modules ❘ 329

 src: url(‘DroidSerif-Bold-webfont.eot?#iefix’)
 format(‘embedded-opentype’),
 url(‘DroidSerif-Bold-webfont.woff’) format(‘woff’),
 url(‘DroidSerif-Bold-webfont.ttf’) format(‘truetype’),
 url(‘DroidSerif-Bold-webfont.svg#DroidSerifBold’)
 format(‘svg’);
 font-weight: normal;
 font-style: normal;
}
@font-face {
 font-family: ‘DroidSerifBoldItalic’;
 src: url(‘DroidSerif-BoldItalic-webfont.eot’);
 src: url(‘DroidSerif-BoldItalic-webfont.eot?#iefix’)
 format(‘embedded-opentype’),
 url(‘DroidSerif-BoldItalic-webfont.woff’) format(‘woff’),
 url(‘DroidSerif-BoldItalic-webfont.ttf’) format(‘truetype’),
 url(‘DroidSerif-BoldItalic-webfont.svg#DroidSerifBoldItalic’) format(‘svg’);
 font-weight: normal;
 font-style: normal;
}

 5 . You need to adjust all the URLs to match the new fonts subfolder you’ve created. Taking the
example of the DroidSerifRegular definition, your new definition will look like the following:

@font-face {
 font-family: ‘DroidSerifRegular’;
 src: url(‘../fonts/DroidSerif-Regular-webfont.eot’);
 src: url(‘../fonts/DroidSerif-Regular-webfont.eot?#iefix’)
 format(‘embedded-opentype’),
 url(‘../fonts/DroidSerif-Regular-webfont.woff’) format(‘woff’),
 url(‘../fonts/DroidSerif-Regular-webfont.ttf’) format(‘truetype’),
 url(‘../fonts/DroidSerif-Regular-webfont.svg#DroidSerifRegular’)
 format(‘svg’);
 font-weight: normal;
 font-style: normal;
}

 6 . Now focus on the header elements. Instead of using Georgia, the header elements use
DroidSerifRegular. You still use Georgia as a backup in case something goes wrong with
the custom font or a user visits the site with a much older browser. The new header definitions
will look like this:

h1, h2, h3, h4 {
 font-family : DroidSerifRegular, georgia, times, serif;
 color : #666666;
}

 7 . Now all the pages in the example should be using this same style sheet, and your homepage should
look like the example in Figure 9-10.

330 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

Figure 9-10

How It Works

The @font-face rule creates a new font-family entry that represents the downloaded file.
Whenever you want to reference it, you simply need to reference the short name you’ve given the
file. Technically, you could name the new font-family almost anything that strikes your fancy; it
simply makes more sense to choose a name that precisely describes the font in question. The next
developer who has to edit your CSS might not appreciate you calling a particular font BibFortuna,
no matter how much of a Star Wars fan you are.

This combination of font formats and @font-face declaration provides support for Safari 5.03+, IE 6+,
Firefox 3.6+, Chrome 8+, iOS 3.2+, Android 2.2+, and Opera 11+.

new and in-Development Modules ❘ 331

advanced CSS Manipulations with Transforms, animations,
and Transitions

The modules in this section can get quite advanced, and support for them is still a bit spotty. Still,
they’re exciting, so it’s worthwhile to take a quick tour through them. This section briefly introduces
each feature and provides a simple demo to show the basic technique and format.

2D Transforms
The 2D Transforms module introduces a new property that allows for the rotation, translation, and
scaling of a box, without changing its place in the flow of the document. Table 9-6 lists the common
values of the transform property and gives a small example of each.

TaBLe 9-6: Potential CSS 2D Transform Values

VaLue deSCripTion exaMpLe

translate Moves an element up/down, left/right without

changing the element’s place in the flow of the

document .

transform :

translate(10px,

10px);

translateX Moves an element left or right without changing

the element’s place in the flow of the document .

transform :

translateX(10px);

translateY Moves an element up or down without changing

the element’s place in the flow of the document .

transform :

translateY(10px);

rotate Rotates an element around an axis . The rotation

can be specified in degrees or using other values

like the turn keyword .

transform :

rotate(180deg)

scale Scales an element without changing the element’s

place in the document . scale is set as a multiple

of 1, so scale(2) tells the browser to make the

element twice as big .

transform :

scale(2)

scaleX Scales an element on its x-axis without changing

the element’s place in the document .

transform :

scaleX(2)

scaleY Scales an element on its y-axis without changing

the element’s place in the document .

transform :

scaleY(2)

The following code sample (ch09_eg07.html) shows both scale and rotate in action. The first
<div> is rotated 20 degrees. The second <div> is scaled down by 1/2. For reference, the background
image of the page shows the position of each <div> in the flow of the document.

<div id=”rotate”>
 <p>The background image of the page shows the original orientation of
 this element</p>

332 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

</div>
<div id=”scale”>
 <p>Scaled. This div is defined as 500px x 200px, but is scaled to be much
 smaller as the background image of the page shows.</p>
</div>

As you can see, the CSS (ch09_eg07.css) needs to leverage browser prefixes for several different
browsers.

div {
 position : absolute;
 width : 500px;
 height : 200px;
 }
#rotate {
 -webkit-transform : rotate(20deg);
 -moz-transform : rotate(20deg);
 -ms-transform : rotate(20deg);
 -o-transform : rotate(20deg);
 transform : rotate(20deg);
 background : #00ffcc;
 top : 100px;
 left : 50px;
}
#scale {
 -webkit-transform : scale(0.5);
 -moz-transform : scale(0.5);
 -ms-transform : scale(0.5);
 -o-transform : scale(0.5);
 transform : scale(0.5);
 background : #ccff00;
 top : 400px;
 left : 50px;
}

Figure 9-11 shows the result of the transformations in Google Chrome.

There’s an additional transform function, matrix, which is easiest to understand mathematically. If
you’re interested in learning more about matrix, look at the article “The CSS3 matrix() Transform
for the Mathematically Challenged” at http://www.useragentman.com/blog/2011/01/07/css3-
matrix-transform-for-the-mathematically-challenged/, which does an admirable job of
explaining it without resorting to purely mathematical terms.

3D Transforms
Developed with the SVG specification, the 3D Transforms module extends 2D Transforms with a
perspective transform function and 3D variations on some 2D transformation functions you’ve
already seen: matrix3d, translate3d, translateZ, scale3d, scaleZ, rotate3d, rotateY,
rotateX, and rotateZ.

new and in-Development Modules ❘ 333

Figure 9-11

The following code snippet (ch09_eg08.css) illustrates the use of perspective on a single <div>
(ch09_eg08.html). The perspective transform function takes a value in pixels, which defines how
deep the perspective “box” should be. It’s then rotated on its y axis using rotateY.

#perspective {
 top : 100px;
 left : 50px;
 position : absolute;
 -webkit-transform : perspective(500px) rotateY(75deg);
 -moz-transform : perspective(500px) rotateY(75deg);
 -ie-transform : perspective(500px) rotateY(75deg);
 transform : perspective(500px) rotateY(75deg);
 width : 500px;
 height : 200px;
 background : #ccff00;
}

Figure 9-12 shows this rendered in Google Chrome.

334 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

Figure 9-12

CSS Animations and CSS Transitions
The Animations module enables you to assign an animation to an element. You do this by specifying
the properties to animate, the timing, and the units to change during the animation.

The Transitions module defines a property to animate the transitions between pseudo-classes, for
example, when an element enters or leaves the :hover state.

After developers have relied entirely on JavaScript for these kinds of effects for many years, it’s nice to
rely on standardized, browser-optimized functionality for these interface enhancements. Defining a
specific mechanism for animations also enables browsers to optimize the visual display of animations.
Up until the introduction of CSS animations, there was no way to indicate to the browser that the set
of JavaScript instructions it was running should be optimized to look like a smooth animation in the
eyes of a human being. With CSS animations that mechanism now exists.

The following code sample (ch09_eg09.html) shows a simple animation of a single <div> element.
The CSS source code (ch09_eg09.css) here is simplified, using only the unprefixed properties. In
practice, prefixes for Safari and Chrome (-webkit-), Firefox (-moz-), and Opera (-o-) should be
used. They’re in place in the downloaded CSS file.

The <div> is initially set as a 100-pixel square pinned to the left edge of the browser. You should
be familiar with all these rules now. The new pieces are in the @keyframes directive and in the
new CSS animation- properties. The @keyframes directive creates a reference to a new animation
named scroll, which instructs the browser to animate the <div> to the far left edge of the page
and rotate the element 180 degrees. The animation-name property references that same named
animation. The animation-duration property indicates that the animation should take 5 seconds.
The animation-iteration-count property indicates that the animation should run infinitely.

new and in-Development Modules ❘ 335

Finally, the animation-direction property indicates that the animation should reverse directions
each time it runs.

#animated {
 position : absolute;
 width : 100px;
 height : 100px;
 left:0px;
 top:100px;
 background: #ffcc00;
 animation-name: scroll;
 animation-duration: 5s;
 animation-iteration-count: infinite;
 animation-timing-function: ease-in-out;
 animation-direction: alternate;

}
@keyframes scroll {
 to {
 left:100%;
 transform: rotate(180deg);
 }
}

CSS Transitions are similar to animations in that they put the onus of creating smooth animations
onto the browser. Although JavaScript developers are a smart crowd, they don’t have the same access
to the inner workings of the computer that the browser vendors do, including access to the Graphics
Processing Unit (GPU.)

The following code sample (ch09_eg10.css) shows a simple transition in action. In it a simple
menu, created using elements, transitions, on hover, between two shades of blue. It’s also
made slightly larger.

In the standard state, the transition-property is set to background-color,width,height. This
defines the properties to animate. In addition, the transition-duration property is set to 1s. In
the li:hover definition background-color,width,height are defined and transition-duration
is also set to 1s. This ensures that the properties are animated both in and out of the hover event.

#transition li{
 font:16px arial, helvetica, sans-serif;
 color:#fff;
 padding:2px 10px;
 width : 200px;
 list-style-type : none;
 height : 50px;
 background-color : #06F;
 -webkit-transition-property: background-color,width,height;
 -moz-transition-property: background-color,width,height;
 -o-transition-property: background-color,width,height;
 transition-property: background-color,width,height;

 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: background-color 1s;
 transition-duration: background-color 1s;

336 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

}
#transition li:hover {
 background-color: #036;
 width:225px;
 height:60px;
 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: 1s;
 transition-duration: 1s;

}

Table 9-7 shows browser support for transforms and animations.

TaBLe 9-7: Browser Support for Advanced CSS3 Features

FeaTure inTerneT expLorer googLe CHroMe FireFox SaFari opera

2D Transforms 9 .0+ 4 .0+ 3 .5+ 3 .1+ 10 .5+

3D Transforms 10 .0+ 12 .0+ 10 .0+ 4 .0+ None

Animations 10 .0+ 4 .0+ 5 .0+ 4 .0+ 12 .0+

Transitions 10 .0+ 4 .0+ 4 .0+ 3 .1+ 10 .5+

SuMMarY

In this chapter you learned about several new CSS3 features. You first learned about the new
modular design of CSS3 and how this new approach means there are some modules that are
nearly complete in development and others are much newer and not quite finished.

You then learned about new, powerful ways to select elements for styling. Then you were introduced
to advanced color options, including ones using hue, saturation, and lightness, as well as options for
creating elements with variable opacity using the opacity property or by defining an alpha channel
on RGB or HSL colors.

You learned how to simply implement some common design motifs including rounded corners, drop
shadows, and multi-column test displays. You also learned about Media Queries, which enable you
to specify style rules for specific device or browser characteristics. Finally you learned about new
CSS3 features including animations and transitions.

exerCiSeS

 1 . In this exercise, you create a linked table of contents that sits at the top of a long document in an

ordered list and links to the headings in the main part of the document .

Summary ❘ 337

The HTML file exercise1.html is provided with the download code for this book, ready for you

to create the style sheet . Your style sheet should do the following:

➤➤ Round the corners of the #contents <div> element with a 12-pixel corner radius .

➤➤ Make the background color of the #contents element 70 percent opaque, leaving the

text black .

➤➤ Change the font to be Inconsolata using http://www.fontsquirrel.com/fonts/

Inconsolata.

Your page should look something like Figure 9-13 .

Figure 9-13

 2 . In this exercise, you test your understanding of border-radius and the Transitions module to

make a neat hover effect . Your style sheet should do the following:

➤➤ Set 1 second transitions for both the :hover and standard state . Transition the border-radius

and background-color properties .

➤➤ In the #hover:hover definition, change the background color to #00ccff and change the

border-radius to be 100 pixels, which makes the box a circle .

The hover state of your page should look like Figure 9-14 .

Figure 9-14

You can find the source HTML file (exercise2.html) with the download code for this chapter .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

338 ❘ CHapTer 9 rounDeD cornerS, animationS, cuStom fontS, anD more With cSS3

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

new CSS selectors Learning about new, more precise selectors enables you to easily

select HTML elements for custom styles .

alpha versus opacity Adding an alpha channel to an RGB or HSL color value makes a

semi-transparent background . Using the opacity property makes

the entire element (including children) semi-transparent .

Browser prefixes Certain, new CSS properties require browser prefixes . You can

use an online tool such as CSS3, Please to create rules that rely on

browser prefixes .

Fonts CSS fonts can be used today, as long as you use the latest version

of the bulletproof @font-face syntax .

Transitions and animations Used with care, owing to compatibility issues, Transitions and

Animations can add smooth animations and effects to your

web pages .

Learning JavaScript

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to start with programming JavaScript

➤➤ How the Document Object Model enables you to access and

manipulate HTML elements

➤➤ How to apply logic to your JavaScript programs

➤➤ How to loop through collections of information with JavaScript

➤➤ How to work with dates, math, and other built-in JavaScript features

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 10
download and individually named according to the names throughout the chapter.

Many programming languages exist today, and in this chapter, you begin learning the basics of
a programming language called JavaScript. JavaScript is by far the most common programming
language used on web pages. jQuery, a framework created to make working with JavaScript
easier and more fun, is the most popular way to work with JavaScript on the web.

Although you can’t learn everything there is to learn about jQuery and JavaScript in this
book, many free jQuery resources are on the web that you can use today to enhance your
pages. Therefore, the aim of this chapter is to teach you enough to start using these scripts in
your web pages and to understand how they work. You can customize these scripts and write
some basic scripts of your own based upon what you learn in this chapter. In addition, this is
a good introduction to general programming concepts.

10

340 ❘ CHapTer 10 Learning JavaScript

JavaScript gives web developers a programming language to use in web pages that enables them to
perform tasks such as the following:

➤➤ Read elements from documents and write new elements and text into documents.

➤➤ Manipulate or move text.

➤➤ Perform mathematical calculations on data.

➤➤ React to events, such as a user clicking a button.

➤➤ Retrieve the current date and time from a user’s computer or the last time a document
was modified.

➤➤ Determine the user’s screen size, browser version, or screen resolution.

➤➤ Perform actions based on conditions such as alerting users if they enter the wrong informa-
tion into a form.

You might need to read through this chapter more than once to get a good grasp of what you can do
with JavaScript. Then, after you see the examples in the next three chapters, you should have a better
idea of its power. There is a lot to learn, but these three chapters should get you well on your way.

WARNING JavaScript is not the same as Java, which is a different programming
language.

wHaT iS prograMMing aBouT?

As you see in this chapter, programming is largely about performing different types of calculations
upon various types of data (including numbers, text, and graphics). In all programming languages
you can perform tasks such as

➤➤ Performing mathematical calculations on numbers such as addition, subtraction, multiplica-
tion, and division.

➤➤ Working with text to find out how long a sentence is, or where the first occurrence of a
specified letter is within a section of text.

➤➤ Checking if one value (a number or letter) matches another.

➤➤ Checking if one value is shorter or longer, lower or higher than another.

➤➤ Performing different actions based on whether a condition (or one of several conditions) is
met. For example, if a user enters a number less than 10, a script or program can perform
one action; otherwise it performs a different action.

➤➤ Repeating an action a certain number of times or until a condition is met (such as a user
pressing a button).

What is Programming About? ❘ 341

These actions might sound rather simple, but they can be combined so that they become complicated
and powerful. As you will see, different sets of actions can be performed in different situations a
numbers of times to create a huge variety of results.

But before you can learn how to perform these kinds of calculations, first, you need some data for
the programming language to work with, and you need to know how the language can work with
this data. For your purpose, the data with which you work is the web page loaded in the browser
at the time. When the browser loads a page, it stores it in an electronic form that programmers can
then access through an interface. The interface is a little like a predefined set of questions and com-
mands. For example, you can ask questions such as

➤➤ What is the title of the page?

➤➤ What is the third item in the bulleted list whose id attribute has a value of ToDoList?

➤➤ What is the URL of the page in the first link on the page?

You can also use commands to tell the browser to change some of these values, or even add new ele-
ments into the page. The interface that works with web pages is the Document Object Model (DOM).

In object-oriented programming languages, real-life objects are represented (or modeled) using a set
of objects, which form an object model. For example, a car object might represent a car, a basket
object might represent a shopping basket, and a document object could represent a document such
as a web page.

Each object can have a set of properties that describes aspects of the object. A car object might have
properties that describe its color or engine size. A basket object might have properties that describe
the number of items it contains or the value of those items. A document object has properties that
describe the background color of the web page or the title of the page.

Then there are methods; each method describes an action that can be done to (or with) the object. For
example, a method of an object representing a car might be to accelerate or to change gear. A method of
a shopping basket might be to add an item or to recalculate the value of items in the basket. A method
on a document could be to write a new line of text into the web page.

Finally, there are events. In a programming language, an event is the object putting up its hand and
saying, “x just happened,” usually because a program might want to do something as a result of the
event. For example, a car object might raise an event to say the ignition started or that it is out of
fuel. A basket might raise an event when an item is added to it or when it is full. A document might
raise an event when the user presses Submit on a form or clicks a link. Furthermore, an event can
also trigger actions; for example, if a car is out of fuel, the car will stop.

An object model is therefore a description of how a program can represent real-life entities using a
set of objects, and it also specifies a set of methods, properties, and events an object may have.

All the main browsers implement an object model called the DOM that was devised to represent
web pages. In this DOM, the page as a whole is represented using a document object.

342 ❘ CHapTer 10 Learning JavaScript

The DOM describes how you can

➤➤ Get and set properties of a web page such as the background color.

➤➤ Call methods that perform actions such as writing a new line into a page.

➤➤ React to events such as a user pressing a Submit button on a form.

Web browsers implement the DOM as a way for programming languages to access (and work with)
the content of web pages. When you have learned how the DOM enables you to access and change
web pages, you can then see how the programming language can ask the DOM about the web page,
perform calculations with the data it receives back, and then tell the browser to change something
based upon these calculations.

If you think of the DOM as an interface between the browser and the programming language, you
can compare it to a remote control that acts as the interface between your TV and you. You know
that pressing 1 on your remote control turns your TV to channel 1, or that the volume-up button
increases the volume. If you call up the TV schedule, you can see what is on next, and you might
choose to change the channel (or turn the TV off) as a result. Similarly, the DOM is like the remote
control that enables a programming language (such as JavaScript) to work with the browser (and
the web page in that browser).

To take the remote control analogy a little further, it doesn’t matter what language you speak; as
long as someone presses the right button on the remote, the TV behaves in the same way. If you get
a new TV, the core functions of the remote will be similar. When you are working with the DOM,
it does not matter what language you program with. As long as you use the right properties and
methods, the effect will be the same.

Also, under the covers, it does not matter how your remote tells the TV to turn up the volume, as
long as the effect is the same. (The volume goes up.) Likewise, it doesn’t matter how the browser
retrieves the title of the page when you ask for it, or the background color of the page when you ask
for that, as long as it returns it to you in the way you expect (which is specified in the DOM).

The point of this analogy is that your script can achieve the same goal in any browser that imple-
ments the DOM. It does not matter how a browser implements the DOM, as long as you can ask
it for properties, or to perform methods in the standard way set out in the DOM, and you then get
the results in an expected format. How the browser actually does the work under the hood does
not matter.

In the rest of this chapter, you look at how the DOM enables you to work with a web page; then you
look at JavaScript to see what you can do with this data and how you can use it to get and set values
of the document, call methods, and respond to events.

NOTE Just like there are new versions of CSS and HTML, there’s a new version
of the DOM in the works: DOM Level 4 (http://www.w3.org/TR/domcore/). It
ties in directly with the work that’s going on with HTML5 and will also be a core
improvement to the tools used to build the web.

How to Add a Script to Your Pages ❘ 343

How To add a SCripT To Your pageS

JavaScript can be either embedded in a page or placed in an external script file (rather like CSS).
But to work in the browser, the browser must have JavaScript enabled. (The major browsers enable
users to disable JavaScript; although, few people do.)

You add scripts to your page inside the <script> element.

NOTE You often see a type="text/javascript" attribute on script tags.
Because JavaScript is the primary programming language of the web, this type
attribute is unnecessary.

Here you see a simple script that writes the words “My first JavaScript” into the page
(ch10_eg01.html):

<html>
<body>
 <script>
 document.write("My first JavaScript")
 </script>
</body>
</html>

In this case, you use the write() method to add a new line
of text into the web page. (And the web page is represented
using the document object.) The text is added into the page
where the script is written in the page. Figure 10-1 shows
what this simple page would look like.

Where you put your JavaScript within a page is important.
If you put it in the body of a page—as in this example—it
runs (or executes) in-place as the page loads. Whenever
the browser encounters a script block it executes it before
going on to read the rest of the HTML. You rarely do this.
This is bad for both page performance and maintenance.

Instead you should write your JavaScript in external documents that have the file extension .js (in
the same way that you write external style sheets) and link to them in the <head> or the bottom of
your <body> element. Using external JavaScript files is a particularly good option because

➤➤ If your script is used by more than one page, you do not need to repeat the script in each
page that uses it.

➤➤ If you want to update your script, you need to change it only in one place.

➤➤ It makes the HTML page cleaner and easier to read.

Figure 10-1

344 ❘ CHapTer 10 Learning JavaScript

When you place your JavaScript in an external file, you need to use the src attribute on the <script>
element; the value of the src attribute should be an absolute or relative URL pointing to the file con-
taining the JavaScript, for example:

<script src="scripts/validation.js"></script>

NOTE Generally, it’s good practice to place your external JavaScript at the bottom
of your <body> element. Doing this makes your page appear faster to your users.
Because JavaScript can change the contents of the page (like with the document
.write you’ve already seen), browsers can block other downloads and rendering
whenever it encounters JavaScript. When this blocking occurs nothing else hap-
pens on the page. You want to avoid this, and the easiest way to do that is by put-
ting your scripts at the bottom of the <body> element.

Comments in JavaScript
You can add comments to your JavaScript code in two ways. The first way is illustrated in the
following code snippet; anything on the same line after the two forward slash characters is
treated as a comment:

<script
 document.write("My first JavaScript") // comment goes here
</script>

You can also comment out multiple lines using the following syntax, holding the comment between
the opening characters /* and closing characters */ like so:

/* This whole section is commented
out so it is not treated as a part of
the script. */

This is similar to comments in CSS.

NOTE As with all code, it’s good practice to comment your code clearly, even if
you are the only person likely to be using it because what might have seemed clear
when you wrote a script might not be so obvious when you come back to it later.

The <noscript> element
The <noscript> element offers alternative content for users who have disabled JavaScript. It can
contain any HTML content that the author wants to be seen in the browser if the user does not
have JavaScript enabled.

Create an external JavaScript ❘ 345

NOTE Strictly speaking, the W3C’s recommendation is that the content of
this element should be displayed only when the browser does not support the
scripting language required; however, the browser manufacturers have decided
that it should also work when scripting is disabled.

CreaTe an exTernaL JaVaSCripT

Since it’s a best practice to use external scripts, it’s time to learn how to create one.

TrY iT ouT Creating an external JavaScript

You have already seen a basic example of a JavaScript that writes to a page. In this example, you move
that code to an external file. The external file can write some text to the page.

 1 . Open your editor and type the following code:

document.write("Here is some text from an external file.");

 2 . Save this file as external.js.

 3 . Open a new page in your editor and add the following. The <script> element is empty this time
but carries the src attribute whose value is the JavaScript file (just as it does on the element).
This may be a relative or full URL.

<!DOCTYPE html>
<html>
<head><title>External script</title></head>
<body>
 <script src="external.js"></script>
 <noscript>This only shows if the browser has JavaScript turned off.
 </noscript>
</body>
</html>

 4 . Save this example as ch10_eg02.html and open it in your browser. You should see something
like Figure 10-2.

Figure 10-2

346 ❘ CHapTer 10 Learning JavaScript

How It Works

The external JavaScript file is read by the browser and executed directly in the place it was inserted into
the document. This is exactly equivalent to embedding the script directly in the page.

This document.write technique is used by many third-party scripts to add advanced functionality to
your web pages.

THe doCuMenT oBJeCT ModeL

As mentioned at the start of the chapter, in the context of a web page, JavaScript doesn’t do much
more than enable you to perform calculations or work with basic strings. To make a document more
interactive, the script needs to access the contents of the document and know when the user is inter-
acting with it. The script does this by interacting with the browser by using the properties, methods,
and events set out in the DOM interface.

The DOM represents the web page loaded into the browser using a series of objects. The main
object is the document object, which in turn contains several other child objects.

The DOM explains what properties of a document a script can retrieve and which ones it can alter;
it also defines some methods that can be called to perform an action on the document.

accessing Values using dot notation
To access the properties and methods of the different objects you encounter in JavaScript, you list
the objects, methods, or properties in order. Each object, property, or method is separated by a
period or full-stop character; hence, this is a dot notation.

For example, to access any CSS class names on the <body> element, you would type the following:

document.body.className

This statement has three parts separated by periods, to get to the CSS class name:

➤➤ The word document indicates you are accessing the document object.

➤➤ The word body corresponds to the <body> element.

➤➤ The className indicates that you want to access any CSS classes attached to the body.

Each object has different properties, objects, and methods that you can access. You continue to see
this dot notation used to access them throughout the next three chapters.

different Types of objects
You will come across several types of objects in JavaScript, each of which is responsible for a related
set of functionalities. For example, the document object has methods and properties that relate to
the document; the forms collection, which is part of the document object, deals with information

Starting to Program with JavaScript ❘ 347

regarding forms; and so on. As you are about to see, there can be lots of different objects, each of
which deals with a different set of functionalities and properties.

Here are some of the types of objects you are likely to come across:

➤➤ W3C DOM objects: These are like those already covered in this chapter; although, in more
recent browsers several more objects are made available to enable you more control over a
document.

➤➤ Built-in objects: Several objects are part of the JavaScript language. These include the Date
object, which deals with dates and times, and the Math object, which provides mathematical
functions. You learn more about these built-in objects later in the chapter.

➤➤ Custom objects: If you start to write advanced JavaScript, you might even start creating your
own JavaScript objects that contain related functionality; for example, you might have a
validation object that you have written just to use to validate your forms.

Although the creation of custom objects isn’t covered in this chapter, you learn about the built-in
objects later in this chapter.

STarTing To prograM wiTH JaVaSCripT

Now that you have seen how JavaScript can access a document in the web browser using the DOM,
it is time to look at how you use these properties and methods in scripts.

The JavaScript Console
While you are learning about JavaScript to add interactivity to your web pages, you must know that
JavaScript can run in different environments. It can run on a web server or as a separate program
on your computer. It can also run in a browser outside of the context of a web page. All the major
web browsers now come with a special interface for running JavaScript, called the console. The con-
sole is used by JavaScript programmers to log messages about the state of their application. It also
enables you to run JavaScript commands outside the context of a web page. This is great because it
enables you to experiment with the fundamentals of the JavaScript programming language interac-
tively. You can type a command or a series of commands and then see the results immediately. You
can try this with some of the examples in this book.

For example, to launch the console in Google Chrome, press Control+Shift+J (Windows) or
Command+Option+J (Mac). To try out the most common console command, type the following
and press Return:

console.log("this is the console");

Your message displays as shown in Figure 10-3.

348 ❘ CHapTer 10 Learning JavaScript

Figure 10-3

This works because the console makes use of a console object that has methods, such as log(),
which enables you to write messages to the console.

Table 10-1 lists the shortcuts needed to open the console in all the major browsers.

TaBLe 10-1: Opening the JavaScript Console

BrowSer MaC SHorTCuT pC SHorTCuT

Google Chrome Command+Option+J Control+Shift+J

Safari1 Command+Option+C Control+Alt+C

Internet Explorer Press F12; open the

Console tab .

Firefox Command+Option+K Control+Shift+K

Firefox (with Firebug installed)2 Press F12; open the

Console tab .

Press F12; open the

Console tab .

Opera Command+Option+I to open

Dragonfly, and then open the

Console tab .

Control+Shift+I to open

Dragonfly, and then open the

Console tab .

1 The Develop tab needs to be enabled. See www.mac-geeks.de/2008/03/20/safari-developer-mode/.
2 A handy set of developer tools is available from http://getfirebug.com/.

You’ll see more examples of the console in use in the next three chapters.

Variables ❘ 349

general programming Concepts
As mentioned earlier, a programming language mainly performs calculations. So here are the key
concepts you need to learn to perform different types of calculations:

➤➤ A variable is used to store some information; it’s like a little bit of the computer’s memory
where you can store numbers, strings (which are a series of characters), or references to objects.
You can then perform calculations to alter the data held in variables within your code.

➤➤ Operators perform functions on variables. There are different types of operators, for example:

➤➤ Arithmetic operators enable you to do things such as add (+) numbers together, or
subtract (-) one from another (providing they are numbers).

➤➤ Comparison operators enable you to compare two strings and see if one is the same
as the other, or different (for example, whether x is equal to y or whether a is greater
than b).

➤➤ Functions are parts of a script grouped together to perform a specific task. For example, you
could have a function that calculates loan repayments, and when you tell the loan calculator
function the information it needs (the amount of money to be borrowed, the number of years
the loan will last, and the interest rate) the function can return the monthly payment. Functions
are objects in their own right and are similar to things called methods; one of the key differ-
ences is that methods often belong to an object already, whereas functions are customized.

➤➤ Conditional statements enable you to perform different actions based upon a condition. For
example, a condition might be whether a variable holding the current time is greater than 12.
If the condition is true, code to write “Good Afternoon” might be run. Whereas, if it is less
than 12, a different block of code saying “Good Morning” could be shown.

➤➤ Loops can be set up so that a block of code runs a specified number of times or until a condi-
tion is met. For example, you can use a loop to get a document to write your name 100 times.

➤➤ There are also several built-in JavaScript objects that have methods that are of practical use.
For example, in the same way that the document object of the DOM has methods that enable
you to write to the document, the built-in JavaScript Date object can tell you the date, time,
or day of the week.

The following section looks at these key concepts in more detail.

VariaBLeS

Variables store data. To store information in a variable, you can give the variable a name and put an
equal sign between it and the value you want it to have. Here is an example:

userName = "Bob Stewart";

The variable is called userName and the value is Bob Stewart. If no value is given, its value
is undefined.

The script can access the value of the variable using its name (in this case userName). It can also
change the value.

350 ❘ CHapTer 10 Learning JavaScript

You can create a variable but not store anything with it by using the var keyword; this is declaring a
variable. (Unlike some other languages, you do not have to declare a variable before you can use it;
although, it is commonly considered good practice to do so.)

var userName;

Notice the semicolon at the end of the variable declaration. Although they’re not strictly required, it
is considered good form for statements in JavaScript to end in a semicolon.

There are a few rules you must remember about variables in JavaScript:

➤➤ They must begin with a letter or the underscore character.

➤➤ Variable names are case-sensitive.

➤➤ Avoid giving two variables the same name within the same document because one might
override the value of the other, creating an error.

➤➤ Do not call two variables the same name with different cases to distinguish them (for example,
username and UserName) because this is a common source of confusion later.

➤➤ Try to use descriptive names for your variables. This makes your code easier to understand.
This can help you debug your code later if there is a problem with it and can greatly aid any
other developer who tries to figure out what your code does.

assigning a Value to a Variable
When you want to give a value to a variable, you put the variable name first, then an equal sign, and
then on the right the value you want to assign to the variable. You have already seen values assigned to
these variables when they were declared a moment ago. So, here is an example of a variable assigned a
value and then the value changed:

var userName = "Bob Stewart";
userName = "Robert Stewart";

userName is now the equivalent of Robert Stewart.

Lifetime of a Variable
When you declare a variable in a function, it can be accessed only in that function. (You learn
about functions shortly.) After the function has run, you cannot call the variable again. Variables
in functions are local variables.

Because a local variable works only within a function, you can have different functions that contain
variables of the same name (because each is recognized by that function only).

NOTE If you declare a variable using the var keyword inside a function, it uses
up memory only when the function is run, and after the function finishes it does
not take up any memory.

Operators ❘ 351

If you declare a variable outside a function, called a global variable because it’s available globally to
all scripts on the page, all the functions on your page can access it. The lifetime of these variables
starts when they are declared and ends when the page is closed.

Local variables take up less memory and fewer resources than page-level variables because they
require only the memory during the time that the function runs, rather than having to be created
and remembered for the life of the whole page.

Global variables are also dangerous because if you have more than one author of scripts on a page,
you can quickly create errors if more than one author relies on a variable of the same name but with
quite different purposes.

operaTorS

The operator is a keyword or symbol that does something to a value when used in an expression.
For example, the arithmetic operator + adds two values together.

The symbol is used in an expression with either one or two values and performs a calculation on the
values to generate a result. For example, here is an expression that uses the multiplication operator:

var area = (width * height);

An expression is just like a mathematical expression. The values are known as operands. Operators
that require only one operand (or value) are sometimes referred to as unary operators, whereas
those that require two values are sometimes called binary operators.

The different types of operators you see in this section are

➤➤ Arithmetic

➤➤ Assignment

➤➤ Comparison

➤➤ Logical

➤➤ String

You see lots of examples of the operators in action both later in this chapter and in the next two
chapters. First, however, it’s time to learn about each type of operator.

arithmetic operators
Arithmetic operators perform arithmetic operations upon operands. (Note that in the examples in
Table 10-2, x = 10.)

352 ❘ CHapTer 10 Learning JavaScript

TaBLe 10-2: JavaScript’s Arithmetic Operators

SYMBoL deSCripTion exaMpLe (x = 10) reSuLT

+ Addition x+5 15

- Subtraction x-2 8

* Multiplication x*3 30

/ Division x/2 5

% Modulus (division remainder) x%3 1

++ Increment (increments the variable by 1—this

technique is often used in counters)

x++ 11

-- Decrement (decreases the variable by 1) x-- 9

assignment operators
The basic assignment operator is the equal sign, but do not take this to mean that it checks whether
two values are equal. Rather, it’s used to assign a value to the variable on the left of the equal sign,
as you saw in the previous section, which introduced variables.

The basic assignment operator can be combined with several other operators to allow you to assign
a value to a variable and perform an operation in one step. For example, look at the following state-
ment where there is an assignment operator and an arithmetic operator:

total = total - profit;

This can be reduced to the following statement:

total -= profit;

Although it might not look like much, this kind of shorthand can save a lot of code if you have
many calculations like this to perform (see Table 10-3).

TaBLe 10-3: Shorthand Assignment Operators

SYMBoL exaMpLe uSing SHorTHand eQuiVaLenT wiTHouT SHorTHand

+= x+=y x=x+y

-= x-=y x=x-y

= x=y x=x*y

/= x/=y x=x/y

%= x%=y x=x%y

Operators ❘ 353

Comparison operators
Table 10-4 shows that comparison operators compare two operands and then return either true or
false based on whether the comparison is true. The comparison for checking whether two operands
are equal is two equal signs. (A single equal sign would be an assignment operator.)

TaBLe 10-4: Comparison Operators

operaTor deSCripTion exaMpLe

== Equal to 1==2 returns false

3==3 returns true

!= Not equal to 1!=2 returns true

3!=3 returns false

> Greater than 1>2 returns false

3>3 returns false

3>2 returns true

< Less than 1<2 returns true

3<3 returns false

3<1 returns false

>= Greater than or equal to 1>=2 returns false

3>=2 returns true

3>=3 returns true

<= Less than or equal to 1<=2 returns true

3<=3 returns true

3<=2 returns false

There is another way to test equality in JavaScript, the identity comparison operator, ===. You learn
more about that operator later in this chapter after you learn about types.

Logical or Boolean operators
Logical or boolean operators (as shown in Table 10-5) return one of two values: true or false.
They are particularly helpful when you want to evaluate more than one expression at a time.

354 ❘ CHapTer 10 Learning JavaScript

TaBLe 10-5: Boolean Operators

operaTor naMe deSCripTion exaMpLe (wHere x=1 and y=2)

&& And Enables you to check if both

of two conditions are met

(x < 2 && y > 1) Returns true

(because both conditions are met)

?? Or Enables you to check if one

of two conditions is met

(x < 2 ?? y < 2) Returns true

(because the first condition is met)

! Not Enables you to check if

something is not the case

! (x > y) Returns true (because

x is not more than y)

The two operands in a logical or boolean operator evaluate to either true or false. For example,
if x=1 and y=2, then x<2 is true and y>1 is true. So the following expression returns true because
both of the operands evaluate to true. (You can see more examples by referring to the right column
in Table 10-4.)

(x<2 && y>1);

String operators (using + with Strings)
You can also add text to strings using the + operator. For example, here the + operator is used to add
two variables that are strings together:

var firstName = "Bob ";
var lastName = "Stewart";
name = firstName + lastName;

The value of the name variable would now be Bob Stewart. The process of adding two strings
together is known as concatenation.

You can also compare strings using the comparison operators you just met. For example, you could
check whether a user has entered a specific value into a textbox. (You see more about this topic when
you look at the “Conditional Statements” section.)

FunCTionS

A function is made up of related code that performs a particular task. For example, a function
could be written to calculate the area given the width and height. The function can then be called
elsewhere in the script or when an event fires.

How to define a Function
There are three parts to creating or defining a function:

➤➤ Define a name for it.

➤➤ Indicate any values that might be required; these are known as arguments.

➤➤ Add statements to the body of the function.

Functions ❘ 355

For example, if you want to create a function to calculate the area of a rectangle, you might name
the function calculateArea(). (A function name should be followed by parentheses.) To calculate the
area, you need to know the rectangle’s width and height, so these would be passed in as arguments,
which are the information the function needs to do its job. Inside the body of the function (the part
between the curly braces) are the statements, which indicate that the area is equal to the width multi-
plied by the height (both of which have been passed into the function). The area is then returned.

function calculateArea(width, height) {
 var area = width * height;
 return area
}

If a function has no arguments, it should still have parentheses after its name—for example, you might
have a function that runs without any extra information passed as an argument such as logOut().

How to Call a Function
The calculateArea() function does nothing sitting on its own in the head of a document; it must
be called. In this example, you can call the function from a simple form using the onclick event so
that when the user clicks the Submit button, the area will be calculated and shown in an alert box.

Here you can see that the form contains two text inputs for the width and height (ch10_eg03.html):

<form name="frmArea">
Enter the width and height of your rectangle to calculate the size:

Width: <input type="text" name="txtWidth" size="5" id="width">

Height: <input type="text" name="txtHeight" size="5" id="height">

<input type="button" value="Calculate area" id="calc">
</form>

In the JavaScript file (ch10_eg03.js) you see two blocks of code. The first is the same
calculateArea() function you saw before. The second block starts your programming
career. For starters it introduces one of the most common methods of the document object,
getElementById(). This method enables you to get a reference to an HTML element using the
same id attribute you learned about when working with CSS. When you have the reference to
the element with the id “calc,” you tell the browser that you want to listen for the onclick
event and then do something. In this case you ask it to run a function. Unlike calculateArea()
this function is without a name and is therefore called an anonymous function. Anonymous
functions are common in JavaScript, especially when working with jQuery. You learn more about
anonymous functions shortly. For now, just focus on the statements inside the curly braces {}.
First, there is a call to console.log(). As mentioned, writing program information to the log
is common, so it’s good to get into the habit of doing so now. The argument to console.log(),
which is the text to be logged, is a call to calculateArea(), which is called with two argu-
ments. Both are calls to document.getElementById, reading the value property of the height
and width form inputs.

function calculateArea(width, height) {
 var area = width * height;
 return area;
}

356 ❘ CHapTer 10 Learning JavaScript

document.getElementById("calc").onclick = function(){
 console.log(calculateArea(
 document.getElementById("width").value,
 document.getElementById("height").value
));
}

The return Statement
Functions that return a result must use the return statement. This statement specifies the value that
will be returned to where the function was called. The calculateArea() function, for example,
returned the area of the rectangle:

function calculateArea(width, height) {
 var area = width * height;
 return area;
}

What is returned depends on the code inside the function; for example, your area function returns the
area of the rectangle. By contrast, if you have a form where people could enter an e-mail address to
sign up for a newsletter, you might use a function to check whether that person entered a valid e-mail
address before submitting the form. In that case, the function might just return true or false values.

What happens when the value is returned depends on how the function was called. With your func-
tion to calculate area, you could display the area to the user with some more JavaScript code. If
you were checking whether an e-mail address were in a valid format before subscribing that e-mail
address to a newsletter, the return value would determine whether the form was submitted.

Function expressions and anonymous Functions
As you’ve seen, there are a couple different ways to define functions in JavaScript. Technically, the
format you first learned with the calculateArea() function is called a function declaration. This is
the standard way to define reusable blocks of JavaScript statements. Because you give the function an
identifier, you can refer to it throughout the life of your application. This is a good thing. Creating
reusable code is something you should strive for. This format also uses the function keyword. This
is a standard function declaration for a function named name().

function name(){ /*Code*/}

Function declarations can’t be nested within other blocks of JavaScript, which means if all you had
available to you was a function declaration you would have to define all of your functions in that way
before you could use them. Sometimes, as you’ve already seen, that doesn’t need to be the case. If you
define a function that will be used as an event handler (the code to be run when an event happens) it
can be easier to define the function in place without using an identifier.

Doing so uses the second form you’ve seen, the function expression. A function expression is a func-
tion that can be defined more flexibly, as part of a larger piece of JavaScript. For example, you can use
a function expression as the value of a variable or as an argument to another function. Commonly

Conditional Statements ❘ 357

function expressions used in this way will be defined without using an identifier. Because it doesn’t
have an identifier, this is an anonymous function. A function created in this way works in the same
way as a function created with a function declaration. It’s still a collection of JavaScript statements.
It differs in that it can be created in place. This code shows an example of an anonymous function
assigned to a variable anon:

var anon = function(){/*code*/}

This example shows an anonymous function used as an argument to another function, name():

name(function(){
 return "Rob Larsen";
});

It may not make complete sense now, but as you continue to program JavaScript, your ability to
create anonymous functions will become more apparent.

CondiTionaL STaTeMenTS

Conditional statements enable you to take different actions depending upon different statements.
You will learn about three types of conditional statements:

➤➤ if statements, which are used when you want the script to execute if a condition is true

➤➤ if...else statements, which are used when you want to execute one set of code if a condi-
tion is true and another if it is false

➤➤ switch statements, which are used when you want to select one block of code from many
depending on a situation

if Statements
if statements enable code to be executed when the condition specified is met; if the condition is true
then the code in the curly braces is executed. Here is the syntax for an if statement:

if (condition){
 //code to be executed if condition is true
}

For example, you might want to start your homepage with the text “Good Morning” if the time is
in the morning. You can achieve this using the following script (ch10_eg04.js):

var date = new Date();
var time = date.getHours();
 if (time < 12) {
 document.body.innerHTML += '<h1>Good Morning</h1>';
 }

This example first creates a Date object (which you learn about later in the chapter) and then calls
the getHours() method of the Date object to find the time in hours (using the 24-hour clock). If the

358 ❘ CHapTer 10 Learning JavaScript

time in hours is less than 12, then the script writes an <h1> element saying “Good Morning” into
the body of the page. (If it is after 12, you see a blank page because nothing is written to it.) This
example uses the innerHTML property to write the <h1> into the page. The innerHTML property is a
string that represents the HTML markup inside any HTML element. In this case, you add the string
<h1>Good Morning</h1> to the body by using the shorthand += assignment operator on the string.

For clarity this line could be rewritten

document.body.innerHTML =
 document.body.innerHTML + '<h1>Good Morning</h1>';

if . . . else Statements
When you have two possible situations and you want to react differently for each, you can use an
if...else statement. This means: “If the conditions specified are met, run the first block of code;
otherwise run the second block.” The syntax follows:

if (condition){
 //code to be executed if condition is true
}
else{
 //code to be executed if condition is false
}

Returning to the previous example, you can write Good Morning if the time is before noon, and
Good Afternoon if it is after noon (ch10_eg05.js).

var date = new Date();
var time = date.getHours();

if (time < 12) {
 document.body.innerHTML += '<h1>Good Morning</h1>';
}
else {
 document.body.innerHTML += '<h1>Good Afternoon</h1>';
}

As you can imagine there are a lot of possibilities for using conditional statements.

switch Statements
A switch statement enables you to deal with several possible results of a condition. You have
a single expression, which is usually a variable. This is evaluated immediately. The value of the
expression is then compared with the values for each case in the structure. If there is a match,
the block of code executes.

Here is the syntax for a switch statement:

switch (expression){
case option1:
 //code to be executed if expression is what is written in option1
 break;
case option2:
 //code to be executed if expression is what is written in option2

Conditional Statements ❘ 359

 break;
case option3:
 //code to be executed if expression is what is written in option3
 break;
default:
 //code to be executed if expression is different from option1, option2,
 and option3
}

You use the break to prevent code from running into the next case automatically. For example, you
might check what type of animal a user has entered into a textbox, and you want to write out dif-
ferent things to the screen depending upon what kind of animal is in the text input. Here is a form
that appears on the page. When the user enters an animal and clicks the button, the checkAnimal()
function contained in the head of the document is called (ch10_eg06.html) and uses a JavaScript
alert box to send a message to the user:

<p>Enter the name of your favorite type of animal that stars in a cartoon:</p>
<form name="frmAnimal">
 <input type="text" name="txtAnimal" />

 <input type="button" value="Check animal" onclick="checkAnimal()" />
</form>

Here is the function that contains the switch statement (ch10_eg06.js):

function checkAnimal() {
 switch (document.getElementById("txtAnimal").value.toLowerCase()){
 case "rabbit":
 alert("Watch out, it's Elmer Fudd!");
 break;
 case "coyote":
 alert("No match for the road runner - meep meep!");
 break;
 case "mouse":
 alert("Watch out Jerry, here comes Tom!");
 break;
 default : alert("Are you sure you picked an animal from a cartoon?");
 }
}

The final option—the default—is shown if none of the cases
are met. You can see what this would look like when the
user has entered “rabbit” into the textbox in Figure 10-4.

Note the use of the toLowerCase() method in the switch
statement. If the user enters text in a different case, it will
not match the options in the switch statement. Because
JavaScript is case-sensitive, if the letter’s case does not
match the value of the case in the switch statement, it
will not be a match. This method converts a string to
lowercase which solves the issue of matching cases. This is
a method of the built-in JavaScript String object, which
you meet later in the chapter. Figure 10-4

360 ❘ CHapTer 10 Learning JavaScript

Note the way the onclick is set up. See how there is no () after the checkAnimal? That means it’s
a reference to the function to use when the user clicks the button. This tells the browser, “I want to
run the function with the identifier checkAnimal when the user clicks the button.” If you did some-
thing like the following, with the parentheses, the function would execute as soon as the browser
read this line (showing the default case because there would be no time to enter text), and nothing
would happen when the user clicked the submit button.

document.getElementById("check").onclick =
 checkAnimal;

Looping

Looping statements are used to execute the same block of code a specified number of times (which is
handy because repetitive tasks are something that computers are particularly well suited to):

➤➤ A while loop runs the same block of code while or until a condition is true.

➤➤ A do...while loop runs once before the condition is checked. If the condition is true, it con-
tinues to run until the condition is false. (The difference between a do and a do...while loop
is that do while runs once whether the condition is met.)

➤➤ A for loop runs the same block of code a specified number of times (for example, five times).

while
In a while loop, a code block is executed if a condition is true and for as long as that condition
remains true. The syntax is as follows:

while (condition){
 //code to be executed
}

In the following example, you can see a while loop that shows the multiplication table for the num-
ber 3. This works based on a counter called i. Every time the while script loops, the counter incre-
ments by one. (This uses the ++ arithmetic operator, as you can see from the line that says i++.) So,
the first time the script runs the counter is 1, and the loop writes out the line 1 n 3 = 3; the next time
it loops around the counter is 2, so the loop writes out 2 n 3 = 6. This continues until the condi-
tion—that i is no longer less than 11—is true (ch10_eg07.js):

var i = 1;
while (i < 11) {
 document.getElementById("numbers").innerHTML +=
 "" + i + " x 3 = " + (i * 3) +"";
 i ++;
}

You can see the result of this example in Figure 10-5.

Before looking at the next type of loop (a do ... while loop), it is worth noting that a while loop
may never run at all because the condition may not be true when it is called.

Looping ❘ 361

Figure 10-5

do . . . while
A do ... while loop executes a block of code once and then checks a condition. For as long as the
condition is true, it continues to loop. So, whatever the condition, the loop runs at least once (as you
can see the condition is after the instructions). Here is the syntax:

do {
 code to be executed
}
while (condition)

For example, here is the example with the 3 times table again. The counter is set with an initial
value of 12, which is higher than required in the condition, so you see the sum 12 n 3 = 36 once,
but nothing after that because when it comes to the condition, it has been met (ch10_eg8.js):

var i = 12;
do {
 document.getElementById("numbers").innerHTML +=
 "" + i + " x 3 = " + (i * 3) +"";
 i ++;
}while (i < 11);

Now, if you change the value of the initial counter to 1, you see that the script loops through the
multiplication table as it did in the last example until it gets to 11.

for
The for statement executes a block of code a specified number of times. You use it when you want
to specify how many times you want the code to be executed (rather than running while a particu-
lar condition is true/false). It is worth noting here that the number of times that the for loop runs
could be specified by some other part of the code. First, here is the syntax (which always takes three
arguments):

for (a; b; c){
 //code to be executed
}

362 ❘ CHapTer 10 Learning JavaScript

Now you need to look at what a, b, and c represent:

➤➤ a is evaluated before the loop is run and is only evaluated once. It is ideal for assigning a
value to a variable; for example, you might use it to set a counter to 0 using i=0.

➤➤ b should be a condition that indicates whether the loop should be run again; if it returns
true the loop runs again. For example, you might use this to check whether the counter is
less than 11.

➤➤ c is evaluated after the loop has run and can contain multiple expressions separated by a
comma (for example, i++, j++;). For example, you might use it to increment the counter.

So if you come back to the 3 times table example again, it would be written something like this
(ch10_eg09.js):

for (var i=0; i<11; i++) {
 document.getElementById("numbers").innerHTML +=
 "" + i + " x 3 = " + (i * 3) +"";
}

Now look at the for statement in small chunks:

➤➤ var i=0 The counter is assigned to have a value of 0.

➤➤ i<11 The loop should run if the value of the counter is less than 11.

➤➤ i++ The counter is incremented by 1 every time the loop runs.

The assignment of the counter variable, the condition, and the incrementing of the counter all
appear in the parentheses after the keyword for.

You can also assign several variables at once in the part corresponding to the letter a if you separate
them with a comma, for example, var i = 0, j = 5;. It is also worth noting that you can count
downward, as well as upward, with loops.

infinite Loops and the break Statement
If you have an expression that always evaluates to true in any loop, you end up with something
known as an infinite loop. These can tie up system resources and can even crash the computer;
although, some browsers try to detect infinite loops and then stop the loop.

You can, however, add a break statement to stop an infinite loop; here it is set to 100
(ch10_eg10.js):

for (var i=0; /* no condition here */ ; i++) {
 document.getElementById("numbers").innerHTML +=
 "" + i + " x 3 = " + (i * 3) +"";
 if (i == 100) {
 break;
 }
}

When the script gets to a break statement, it simply stops running. This effectively prevents a loop
from running too many times.

events ❘ 363

eVenTS

All browsers are expected to support a set of events known as intrinsic events such as the onload
event, which happens when a page has finished loading, onclick for when a user clicks on an element,
and onsubmit for when a form is submitted. These events can be used to trigger a script.

There are two types of events that can be used to trigger scripts:

➤➤ Window events, which occur when something happens to a window. For example, a page
loads or unloads (is replaced by another page or closed) or focus is moved to or away from
a window or frame.

➤➤ User events, which occur when the user interacts with elements in the page using a mouse (or
other pointing device) or a keyboard, such as placing the mouse over an element, clicking an
element, or moving the mouse off an element.

Table 10-6 provides a recap of the most common events you are likely to come across.

TaBLe 10-6: Intrinsic Events

eVenT purpoSe

onload Document has finished loading . (If used in a frameset, all frames have

finished loading .)

onunload Document is unloaded, or removed, from a window or frameset .

onclick Button on mouse (or other pointing device) has been clicked over

the element .

ondblclick Button on mouse (or other pointing device) has been double-clicked over

the element .

onmousedown Button on mouse (or other pointing device) has been depressed (but not

released) over the element .

onmouseup Button on mouse (or other pointing device) has been released over

the element .

onmouseover Cursor on mouse (or other pointing device) has been moved onto

the element .

onmousemove Cursor on mouse (or other pointing device) has been moved while over

the element .

onmouseout Cursor on mouse (or other pointing device) has been moved off the element .

onkeypress A key is pressed and released .

onkeydown A key is held down .

continues

364 ❘ CHapTer 10 Learning JavaScript

eVenT purpoSe

onkeyup A key is released .

onfocus Element receives focus either by a mouse (or other pointing device)

clicking it, tabbing order giving focus to that element, or code giving

focus to the element .

onblur Element loses focus .

onsubmit A form is submitted .

onreset A form is reset .

onselect User selects some text in a text field .

onchange A control loses input focus and its value has been changed since

gaining focus .

You see examples of these events used throughout this and the jQuery chapters.

BuiLT-in oBJeCTS

You learned about the document object at the beginning of the chapter, and now it is time to see
some of the objects that are built into the JavaScript language. You see the methods that enable you
to perform actions upon data and properties that tell you something about the data.

String
The String object enables you to deal with strings of text. Before you can use a built-in object, you
need to create an instance of that object. You create an instance of the String object by assigning it
to a variable like so:

var myString = new String('Here is some text');

The String object now contains the words “Here is some text” and this is stored in a variable
called myString. After you have this object in a variable, you can write the string to the document
or perform actions upon it.

In addition, you can create a string directly using quotes and the wanted text on the right side of the
assignment operator.

 var myString = 'Here is some text';

This second pattern is more common in modern JavaScript.

TaBLe 10-6 (continued)

Built-in Objects ❘ 365

You can check the length of this string like so; the result is the number of characters including
spaces and punctuation (in this case 41):

var myString = "How many characters are in this sentence?";
console.log(myString.length);

Before you can use the String object, remember you first must create it and then give it a value.

Properties
The main property for the String object is length and its purpose is to return the number of
characters in a string.

Methods
Table 10-7 lists some common methods for the String object and their purposes.

TaBLe 10-7: Methods of the String Object

MeTHod purpoSe

charAt(index) Returns the character at a specified position . (For example, if

you have a string that says “banana” and your method reads

charAt(2), then you end up with the letter n—remember that

indexes start at 0 .)

concat(string2, string3,

/*etc…*/)

Combines the text of two or more strings and returns a

new string .

indexOf(searchValue,

[fromindex])

Returns the position of the first occurrence of a specified charac-

ter (or set of characters) inside another string .

For example, if you have the word “banana” as your string,

and you want to find the first occurrence of the letter n within

“banana” you use indexOf('n') .

If you supply a value for the fromIndex argument, the

search begins at that position . For example, you might want

to start after the fourth character, in which case you can use

indexOf('n',4) .

The method returns -1 if the string searched for never occurs .

lastIndexOf(searchValue,

[fromIndex])

Same as the indexOf() method but runs from right to left .

slice(beginslice, end-

Slice)

)

Extracts a piece of a string based on a beginning, zero-based

index and optional ending index and returns as a new string . If the

second argument is omitted, it extracts to the end of the string .

continues

366 ❘ CHapTer 10 Learning JavaScript

MeTHod purpoSe

split(separator) Splits a string into an array (another built-in object you learn

about shortly) of strings by separating the string into substrings

based on a separator . A common separator would be “ ” (to get

the words out of a sentence) or “,” (to extract the data from a list

of Comma Separated Values) .

substr(start, [length]) Returns the specified characters . 14,7 returns 7 characters, from

the 14th character (starts at 0) .

substring(startPosition,

endPosition)

Returns the specified characters between the start and end

index points . 7,14 returns all characters from the 7th up to but

not including the 14th (starts at 0) .

toLowerCase() Converts a string to lowercase .

toUpperCase() Converts a string to uppercase .

trim() Trims white space from the beginning and end of the string .

Manipulating Strings with JavaScript
Now that you’ve learned about strings, it’s time to take what you’ve learned and put it into
practice. Manipulating strings is an important part of programming JavaScript, so it’s good
to practice manipulating them as much as possible.

TrY iT ouT Using the String Object

In this example, you see a subsection of a string collected and turned into all uppercase letters. The full
string (at the beginning of the example) holds the words “Learning about Built-in Objects is easy”; then
the code just extracts the words “Built-in Objects” from the string, and finally it turns the selected part
of the string into uppercase characters.

 1 . Create a skeleton HTML document, like so:

<!DOCTYPE html>
<html>
<head>
<title>String Object</title>
</head>
<body>
</body></html>

 2 . Add the <script> element and link to ch10_eg11.js.

 3 . Now open a new text file and add the following code

var myString = 'Learning about Built-in Objects is easy';
myString = myString.substring(15, 31);

TaBLe 10-7 (continued)

Built-in Objects ❘ 367

myString = myString.toUpperCase();
document.body.innerHTML += "<h1>" + myString + "</h1>";

Now look at this a little closer. First, you need to create an instance of the String object, which is
assigned to the variable myString:

var myString = 'Learning about Built-in Objects is easy';

As it has been created, the String object has been made to hold the words Learning about Built-in
Objects is easy. But, the idea of this exercise is just to select the words “Built-in Objects” so that
you use the substring() method to extract those words. The syntax follows:

substring(startPosition, endPosition)

So you select the String object (which is in the variable myString) and make its value the new sub-
string you want (this is reassigning the value of the variable with the substring you want):

myString = myString.substring(15, 32);

This selects the string from the 16th character to the 33rd character—because it starts at position 0.

Next, you must convert the string to uppercase using the toUpperCase() method:

myString = myString.toUpperCase();

And finally you can write it to the document like so:

document.body.innerHTML += "<h1>" + myString + "</h1>";

 4 . Save this file as ch10_eg11.html and when you open it in the browser, you should see the text
shown in Figure 10-6.

Figure 10-6

368 ❘ CHapTer 10 Learning JavaScript

The result looks quite simple, but when you consider that the original string was Learning about
Built-in Objects is easy, it now looks substantially different.

How It Works

Strings can be manipulated in several ways using the index of characters in the string. Although it
might look like a long sentence, it can also be thought of as a collection of individual characters that
you can access using their place in the order of the string.

date
The Date object helps you work with dates and times. You create a new Date object using the date
constructor like so:

new Date()

You can create a Date object set to a specific date or time, in which case you need to pass in one of
four parameters:

➤➤ milliseconds: This value should be the number of milliseconds since 01/01/1970.

➤➤ dateString: Can be any date in a format recognized by the parse() method.

➤➤ yr_num, mo_num, day_num: Represents year, month, and day.

➤➤ yr_num, mo_num, day_num, hr_num, min_num, seconds_num, ms_num: Represents the years,
days, hours, minutes, seconds, and milliseconds.

Here are some examples; the first uses milliseconds and reads Mon Apr 06 1970 21:06:40
GMT-0400 (Eastern Daylight Time).

NOTE If you’re working with the Date object, remember that all the Date object’s
workings are performed using Coordinated Universal Time (UTC), even though
your computer may display a time consistent with your time zone.

var birthDate = new Date(8298400000);
console.log(birthDate);

The second uses a dateString and reads Wed Apr 16 1975 00:00:00 GMT-0400 (Eastern
Daylight Time).

var birthDate = new Date("April 16, 1975");
console.log(birthDate);

The third uses yr_num, mo_num, and day_num and reads Wed May 28 1975 00:00:00 GMT-0400
(Eastern Daylight Time).

var birthDate = new Date(1975, 4, 28);
console.log(birthDate);

Built-in Objects ❘ 369

There are a few things to watch out for:

➤➤ The first confusing thing you might notice here is that the number 4 corresponds to the month
of May! That makes January 0. Similarly, when working with days, Sunday is treated as 0.

➤➤ You might find that you get different time zones. The author is based in Boston and runs on
Eastern Time.

➤➤ Although you can add or subtract dates, your result ends up in milliseconds. For example, if
you want to find out the number of days until the end of the year, you might use something
like this:

var today = new Date();
var newYear = new Date(2014,1,1);
var daysRemaining = (newYear - today);
console.log(daysRemaining);

The problem with this is that you end up with a result that is long. With 86,400,000 milliseconds in
each day, you are likely to see a large figure.

So, you need to divide the daysRemaining by the number of milliseconds in the day (86400000) to
find the number of days (ch10_eg12.html):

var today = new Date();
var newyear = new Date(2014,1,1);
var remDays = (newyear - today);
remDays = remDays/86400000;
document.body.innerHTML += "days until the new year: "+
remDays.toLocaleString();

When you use the Date object, you need to keep in mind that a user’s computer click may well be
inaccurate and the fact that different users could be in various time zones.

Table 10-8 shows some commonly used methods of the Date object.

TaBLe 10-8: Common Methods of the Date Object

MeTHod purpoSe

date() Returns a Date object .

getDate() Returns the date of a Date object (from 1 to 31) .

getDay() Returns the day of a Date object (from 0 to 6; 0=Sunday, 1=Monday, and

so on) .

getMonth() Returns the month of a Date object (from 0 to 11; 0=January, 1=February,

and so on) .

getFullYear() Returns the year of a Date object (four digits) .

getYear() Returns the year of a Date object using only two digits (from 0 to 99) .

continues

370 ❘ CHapTer 10 Learning JavaScript

MeTHod purpoSe

getHours() Returns the hours of a Date object (from 0 to 23) .

getMinutes() Returns the minutes of a Date object (from 0 to 59) .

getSeconds() Returns the seconds of a Date object (from 0 to 59) .

getTime() Returns the number of milliseconds since midnight 1/1/1970 .

getTimezoneOffset() Returns the time difference between the user’s computer and GMT .

now() A shortcut for a common code pattern: var date = new Date();

date.getTime(); Date.now() . Returns the number of milliseconds

since midnight 1/1/1970 . Only available in modern browsers .

parse() Returns a string date value that holds the number of milliseconds since

January 01 1970 00:00:00 .

setDate() Sets the date of the month in the Date object (from 1 to 31) .

setFullYear() Sets the year in the Date object (four digits) .

setHours() Sets the hours in the Date object (from 0 to 23) .

setMinutes() Sets the minutes in the Date object (from 0 to 59) .

setMonth() Sets the months in the Date object (from 0 to 11; 0=January, 1=February) .

setSeconds() Sets the seconds in the Date object (from 0 to 59) .

setTime() Sets the milliseconds after 1/1/1970 .

setYear() Sets the year in the Date object (00 to 99) .

toGMTString() Converts the Date object to a string, set to GMT time zone .

toLocaleString() Converts the Date object to a string, set to the current time zone of

the user .

toString() Converts the Date object to a string .

Many of the methods in Table 10-9 were then added offering support for the universal (UTC) time,
which takes the format Day Month Date, hh,mm,ss UTC Year.

TaBLe 10-9: UTC Methods of the Date Object

MeTHod purpoSe

getUTCDate() Returns the date of a Date object in universal (UTC) time .

getUTCDay() Returns the day of a Date object in universal time .

TaBLe 10-8 (continued)

Built-in Objects ❘ 371

getUTCMonth() Returns the month of a Date object in universal time .

getUTCFullYear() Returns the four-digit year of a Date object in universal time .

getUTCHours() Returns the hour of a Date object in universal time .

getUTCMinutes() Returns the minutes of a Date object in universal time .

getUTCSeconds() Returns the seconds of a Date object in universal time .

getUTCMilliseconds() Returns the milliseconds of a Date object in universal time .

setUTCDate() Sets the date in the Date object in universal time (from 1 to 31) .

setUTCDay() Sets the day in the Date object in universal time (from 0 to 6;

Sunday=0, Monday=1, and so on) .

setUTCMonth() Sets the month in the Date object in universal time (from 0 to 11;

0=January, 1=February) .

setUTCFullYear() Sets the year in the Date object in universal time (four digits) .

setUTCHour() Sets the hour in the Date object in universal time (from 0 to 23) .

setUTCMinutes() Sets the minutes in the Date object in universal time (from 0 to 59) .

setUTCSeconds() Sets the seconds in the Date object in universal time (from 0 to 59) .

setUTCMilliseconds() Sets the milliseconds in the Date object in universal time (from 0 to 999) .

Math
The Math object helps in working with numbers. It has properties for mathematical constants and
methods representing mathematical functions such as the tangent and sine functions.

For example, the following sets a variable called numberPI to hold the constant of pi and then write
it to the log (ch10_eg13.html):

var numberPI = Math.PI;
console.log(numberPI);

The following example rounds pi to the nearest whole number (integer) and writes it to the log (also
shown in ch10_eg13.html):

var numberPI = Math.PI;
numberPI = Math.round(numberPI);
console.log(numberPI);

Properties
Table 10-10 lists the properties of the Math object.

372 ❘ CHapTer 10 Learning JavaScript

TaBLe 10-10: Properties of the Math Object

properTY purpoSe

E Returns the base of a natural logarithm

LN2 Returns the natural logarithm of 2

LN10 Returns the natural logarithm of 10

LOG2E Returns the base-2 logarithm of E

LOG10E Returns the base-10 logarithm of E

PI Returns pi

SQRT1_2 Returns 1 divided by the square root of 2

SQRT2 Returns the square root of 2

Methods
Table 10-11 lists the methods for the Math object.

TaBLe 10-11: Methods of the Math Object

MeTHod purpoSe

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x

asin(x) Returns the arcsine of x

atan(x) Returns the arctangent of x

atan2(y,x) Returns the angle from the x axis to a point

ceil(x) Returns the nearest integer greater than or equal to x

cos(x) Returns the cosine of x

exp(x) Returns the value of E raised to the power of x

floor(x) Returns the nearest integer less than or equal to x

log(x) Returns the natural log of x

max(x,y) Returns the number with the highest value of x and y

min(x,y) Returns the number with the lowest value of x and y

pow(x,y) Returns the value of the number x raised to the power of y

Built-in Objects ❘ 373

random() Returns a random number between 0 and 1

round(x) Rounds x to the nearest integer

sin(x) Returns the sine of x

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of x

array
An array is like a special variable. It’s special because it can hold more than one value, and these
values can be accessed individually. Arrays are particularly helpful when you want to store a group
of values in the same variable rather than having separate variables for each value. You may want
to do this because all the values correspond to one particular item, or just for the convenience of
having several values in the same variable rather than in differently named variables. Or it might
be because you do not know how many items of information are going to be stored. (For example,
you might store the items that would appear in a shopping basket in an array.) You often see arrays
used with loops, where the loop is used to add information into an array or read it from the array.

You can use a constructor with an Array object, so you can create an array by either specifying the
name of the array and how many values it will hold or by adding all the data straight into the array.
For example, here is an array created with three items; it holds the names of musical instruments:

var instruments = new Array("guitar", "drums", "piano");

In addition, you can create an array using an array literal, which is a representation of the array on
the right side of the assignment operator. For example, creating an empty array called instruments
would look like this:

var instruments = [];

Re-creating the earlier example with the same initial values would look like this:

var instruments = ["guitar", "drums", "piano"];

Whichever version you use, you’re still creating arrays, so it’s a matter of preference which you use.
As was the case with strings, most developers now use the slightly more compact literal syntax.

The items in the array can be referred to by a number that reflects the order in which they are stored
in the array. The number is an index, so it begins at 0. For example, you can refer to the guitar as
instruments[0], the drums as instruments[1], and so on.

An array does need to know how many items you want to store in it, but you do not need to provide
values for each item in the array when it is created. You can just indicate how many items you want
to store. (To confuse matters, this value does not start at 0 so it creates three elements, not four.)

var instruments = new Array(3);

374 ❘ CHapTer 10 Learning JavaScript

This number is stored in the length property of the Array object, and the contents are not actually
assigned yet. If you want to increase the size of an array, you can just assign a new value to the length
property that is higher than the current length.

Here is an example that creates an array with five items and then checks how many items are in the
array using the length property:

var fruit = ["apple", "banana", "orange", "mango", "lemon"];
console.log(fruit.length);

Here is an example of the toString() method, which converts the array to a string:

console.log('These are ' + fruit.toString());

Keeping the related information in the one variable tends to be easier than having five variables, such
as fruit1, fruit2, fruit3, fruit4, and fruit5. Using one array like this also takes up less memory
than storing five separate variables, and in situations when you might have varying numbers of fruit,
it allows the variable to grow and shrink in accordance with your requirements (rather than creating
ten variables, one-half of which might be empty).

Table 10-12 lists the common methods of an array.

TaBLe 10-12: Common Array Methods

MeTHod purpoSe

concat() Joins (or concatenates) two or more arrays to create one new one .

join(separator) Joins all the elements of an array together separated by the char-

acter specified as a separator . (The default is a comma .)

pop() Removes the last element of an array and then returns the element .

push() Adds an element to an array and returns the new array length .

reverse() Returns the array with items in reverse order .

shift() Removes the first element from an array and returns the element .

slice() Returns a selected part of the array (if you do not need it all) .

sort() Returns a sorted array, sorted by alphabetical or numerical order .

splice(index, howMany,

[elements])

Returns a modified array . Modification starts at index and removes

howMany elements from the array, replacing them with the elements

provided as the third, fourth, fifth, etc . arguments .

toString() Returns a string representing the array and its component elements .

unshift() Adds one or more elements to the beginning of an array; returns

the new length of an array .

Built-in Objects ❘ 375

Table 10-13 lists array methods that are only available in modern browsers such as Internet Explorer 9
and other modern browsers such as Google Chrome and Mozilla Firefox.

TaBLe 10-13: New Array Methods

MeTHod purpoSe

every() every() accepts a function as an argument . That function tests every

element in the array and returns true if all pass .

filter() filter() accepts a function as an argument . That function tests every

element in the array and returns a new array containing every element for

which the filtering function returns true .

forEach() Calls a function for each element in the array .

indexOf() Returns the first index of an element within the array that matches the

specified value . Returns -1 if no match is found .

lastIndexOf() Returns the last index of an element within the array that matches the

specified value . Returns -1 if no match is found .

map() map() accepts a function as an argument that returns a new array based on

the results of calling the function argument on every element in this array .

reduce() reduce() calls a specified callback function for every element in an array

starting with the leftmost element . Every function execution returns the

accumulated result as an argument in the next call to the callback function .

This allows you to reduce the array to a single value .

reduceRight() reduceRight() calls a specified callback function for every element in an

array, starting with the rightmost element . Every function execution returns

the accumulated result as an argument in the next call to the callback

function . This allows you to reduce the array to a single value .

some() some() accepts a function as an argument . That function tests every

element in the array and returns true if at least one element in the array

returns true .

window
Every browser window has a corresponding window object created with every instance of a
<body> element.

For a simple example (ch10_eg14.html), you can access several pieces of information about the
browser window using available properties of the window object. To do this, you need to add a

376 ❘ CHapTer 10 Learning JavaScript

function that is going to be triggered when the page loads, and then use this function to write some
information about the innerHeight, innerWidth, and screen.colorDepth:

function windowObject(){
 document.body.innerHTML += "<p>innerHeight: "+
window.innerHeight + "</p>";
 document.body.innerHTML += "<p>innerWidth: "+
window.innerWidth + "</p>";

 document.body.innerHTML+= "<p>Color Depth: "+
window.screen.colorDepth + "</p>";
}

You then call this function from the <body> element’s onload event, like so:

document.body.onload = windowObject ;

Properties
Table 10-14 lists some common properties of the window object.

TaBLe 10-14: Common Properties of the window Object

properTY purpoSe

document The document object contained in that window .

history A history object that contains details and URLs visited from that

window (mainly for use in creating back and forward buttons like those

in the browser) .

innerHeight Represents the height of the content area of the browser window includ-

ing any scrollbars .

innerWidth Represents the width the content area of the browser including any

scrollbars .

location The location object; the URL of the current window .

name The window’s name .

opener Contains a reference to the window that opened the current window .

screen Contains a reference to the screen object . The screen object contains

a wealth of information about the page including the height, width, color

depth, and pixel depth .

top A reference for the topmost browser window if several windows are open

on the desktop .

window The current window .

Writing JavaScript ❘ 377

Methods
Table 10-15 lists common methods of the window object.

TaBLe 10-15: Common Methods of the window Object

MeTHod purpoSe

alert() Displays an alert box containing a message and an

OK button .

back() Same effect as the browser’s Back button .

blur() Removes focus from the current window .

close() Closes the current window or another window if a refer-

ence to another window is supplied .

confirm() Brings up a dialog box asking users to confirm that they

want to perform an action with either OK or Cancel as the

options . They return true and false, respectively .

focus() Gives focus to the specified window and brings it to the

top of others .

forward() Equivalent to clicking the browser’s Forward button .

home() Takes users to their browser’s designated homepage .

moveBy(horizontalPixels,

verticalPixels)

Moves the window by the specified number of pixels in

relation to current coordinates .

moveTo(Xposition, Yposition) Moves the top left of the window to the specified x-y

coordinates .

open(URL, name [,features]) Opens a new browser window (this method is covered in

more detail in the Chapter 11, “Working with jQuery”) .

print() Prints the content of the current window (or brings up the

browser’s print dialog) .

prompt() Creates a dialog box for the user to enter an input .

stop() Same effect as clicking the Stop button in the browser .

wriTing JaVaSCripT

You need to be aware of a few points when you start writing JavaScript:

➤➤ JavaScript is case-sensitive, so a variable called myVariable is different from a variable called
MYVARIABLE, and both are different from a variable called myvariable.

378 ❘ CHapTer 10 Learning JavaScript

➤➤ When you see symbols such as (, {, [, ", and ' they must have a closing symbol to match: ',
“,], }, and). (Note how the first bracket opened is the last one to be closed, which is why
the closing symbols are in reverse order here.)

➤➤ Like HTML, JavaScript ignores extra spaces, so you can add white space to your script to
make it more readable. The following two lines are equivalent, even though there are more
spaces in the second line:

myVariable="some value";
myVariable = "some value";

➤➤ If you have a large string, you can break it up with a backslash, as you can see here:

console.log("My first \
 JavaScript example")

➤➤ But you must not break anything other than strings, so this would be wrong:

console.log \
 ("My first JavaScript example")

➤➤ You can insert special characters such as ",', ;, and &, which are otherwise reserved (because
they have a special meaning in JavaScript), by using a backslash before them like so:

console.log("I want to use a \"quote\" mark \& an ampersand.")

This writes out the following line to the log:

I want to use a "quote" mark & an ampersand.

a word about data Types
By now you should get the idea that you can do different things with different types of data. For
example, you can add numbers together, but you cannot mathematically add the letter A to the
letter B. Some forms of data require that you deal with numbers that have decimal places (floating
point numbers); currency is a common example. Other types of data have inherent limitations; for
example, if you deal with dates and time, you want to add hours to certain types of data without
getting 25:30 as a time. (Even though you might often wish you could add more hours to a day.)

Different types of data (letters, whole numbers, decimal numbers, and dates) are known to have dif-
ferent data types; these allow programs to manage the different types of data in different ways. For
example, if you use the + operator with a string, it concatenates two strings, whereas if it is used with
numbers, it adds the two numbers together. Some programming languages require that you specifi-
cally indicate what type of data a variable is going to hold and require you to convert between types.
Although JavaScript supports different data types, as you are about to see, it handles conversion
between types, so you don’t need to worry about telling JavaScript that a certain type of data is a
date or a string (a string being a set of characters that may include letters and numbers).

There are three simple data types in JavaScript:

➤➤ Number: Used to perform arithmetic operations (addition, subtraction, multiplication, and
division). Any whole number or decimal number that does not appear between quotation
marks is considered a number.

Writing JavaScript ❘ 379

➤➤ String: Used to handle text. It is a set of characters (including numbers, spaces, and punctua-
tion) enclosed by quotation marks.

➤➤ Boolean: A boolean value has only two possible values: true and false. This data enables
you to perform logical operations and check whether something is true or false.

You may also come across two other data types:

➤➤ Null: Indicates that a value does not exist. This is written using the keyword null. This is an
important value because it explicitly states that no value has been given. This can mean a dif-
ferent thing from a string that just contains a space or a zero.

➤➤ Undefined: Indicates a situation in which the value has not been defined previously in code
and uses the JavaScript keyword undefined. You might remember that if you declare a
variable but do not give it a value, the variable is said to be undefined. (You are particularly
likely to see this when something is not right in your code.)

Now that you’ve learned about types, it’s time to look at the two comparison operators mentioned
earlier. These two identity operators are similar to the == and != equality operators that you
learned about before, except that they test for the same value and type when doing a comparison.

Why does this matter? JavaScript is sloppy when it comes to comparisons. When you use the equal-
ity operators, the JavaScript engine does what’s called a type conversion on the values to convert
them to the same type and then does a comparison. So if either value is a number or a boolean, the
operands are converted to numbers, and if either value is a string, both are converted to strings if
possible. This means that the following would both log true:

console.log(1 == "1");
console.log(1 == true);

As you can see, that might cause problems. To get around this issue you can use the identity opera-
tors that test for both type and value and don’t do any type conversions. The following now resolve
to false:

console.log(1 === "1");
console.log(1 === true);

keywords
You may have noticed that there are several keywords in JavaScript that perform functions, such as
break, for, if, and while, all of which have special meaning. Therefore, these words should not be
used in variable, function, method, or object names. The following is a list of the keywords that you
should avoid using. (Some of these are not actually used yet but are reserved for future use.)

abstract boolean break byte case catch char class const
continue default do double else extends false final
finally float for function goto if implements import
in instanceof int interface long native new null
package private protected public return short static
super switch synchronized this throw throws transient
true try var void while with

380 ❘ CHapTer 10 Learning JavaScript

SuMMarY

This chapter introduced you to many new concepts: objects, methods, properties, events, arrays,
functions, interfaces, object models, data types, and keywords. Although it’s a lot to take in all at
once, after you look at some of the examples in the next two chapters, it should be a lot clearer. After
reading those chapters and working through jQuery, you can read through this chapter again, and
you should understand more examples of what can be achieved with JavaScript.

You started off by looking at how you can access information from a document using the Document
Object Model. When you know how to get information from a document, you can use JavaScript to
perform calculations upon the data in the document. JavaScript mainly performs calculations using
features such as the following:

➤➤ Variables: Store information in memory

➤➤ Operators: Such as arithmetic and comparison operators

➤➤ Functions: Live in the <head> of a document and contain code called by an event

➤➤ Conditional statements: Handle choices of actions based on different circumstances

➤➤ Loops: Repeat statements until a condition has been met

As you see in Chapter 11, “Working with JQuery,” and Chapter 12, “jQuery: Beyond the Basics,”
these simple concepts can be brought together to create powerful results. Using jQuery for a variety
of tasks, you can see some advanced JavaScript, and you will have a good idea of how basic building
blocks can create complex structures.

Finally, you looked at a number of other objects made available through JavaScript; you met the
String, Date, Math, Array, and window objects. Each object contains related functionality; each has
properties that tell you about the object (such as the date, time, size of window, or length of string),
and methods that allow you to do things with this data stored in the object.

You should be starting to get a grasp of how JavaScript can help you add interactivity to your pages,
and you see how it does this in the next chapter when you delve into examples of JavaScript libraries
and look at examples that can help you make use of JavaScript.

exerCiSeS

 1 . Create a script to write out the multiplication table for the number 5 from 1 to 20 using a while loop .

 2 . Modify ch10_eg05.js so that it can say one of three things:

➤➤ “Good Morning” to visitors coming to the page before 12 p .m . (using an if statement) .

➤➤ “Good Afternoon” to visitors coming to the page between 12 p .m . and 6 p .m . (again using an

if statement) . (Hint: You might need to use a logical operator .)

➤➤ “Good Evening” to visitors coming to the page after 6 p .m . up until midnight (again using an

if statement) .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 381

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

JavaScript JavaScript is not Java . JavaScript is the programming language that

adds interactivity to the web .

doM The DOM enables you to access objects, properties, and methods of

the HTML document .

programming basics Variables hold references to other data . Operators work with variables .

Functions contain multiple JavaScript statements to run together .

Conditional statements enable you to test your data . Loops enable you

to work on collections of data .

Built-in objects JavaScript has many built-in objects that enable you to work with dates,

math, and strings as well as special collections of data in arrays .

Working with jQuery

wHaT You wiLL Learn in THiS CHapTer

➤➤ What is jQuery and why you should use it

➤➤ How to get jQuery to use on your pages

➤➤ How jQuery helps you work with the DOM

➤➤ Event handling made easy with jQuery

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 11
download and individually named according to the names throughout the chapter.

There are many collections of JavaScript code available, called libraries or frameworks, to
help you make JavaScript applications. These libraries collect utilities and common features
together to make you more efficient when coding JavaScript. jQuery is by far the most popular
library in the world for working with JavaScript.

jQuery, released in 2006, offers several advantages over writing your own custom JavaScript:

➤➤ It provides a concise, friendly, human-readable interface to use JavaScript more efficiently.

➤➤ It smooths over the differences in the implementation of JavaScript in the different
web browsers. As you’ve learned throughout this book, some browsers implement web
standards differently. This is especially true with older versions of Internet Explorer
and the JavaScript programming language.

➤➤ There is an incredible community full of tutorials, articles, and free code called plug-ins,
which can help you get up and running with jQuery.

11

384 ❘ CHapTer 11 Working With JQuerY

This chapter and the next chapter focus on introducing the basics of jQuery so that you can start to
take advantage of some of these resources in your own web pages. If you can master the basics pre-
sented here and can wrap your head around the fundamentals of JavaScript presented in Chapter 10,
“Learning JavaScript,” the true power of the web can be in your hands.

wHY JQuerY?

As mentioned, jQuery is the most popular JavaScript library on the web. According to BuiltWith.com,
a site that tracks technology trends, jQuery is in use on more than 59 percent of the top 10,000 sites
on the Internet (http://trends.builtwith.com/javascript). Popularity alone doesn’t make some-
thing good, however, so the question remains, why should you use jQuery?

For many people, especially those just starting with programming, the most important reason to
use jQuery is that jQuery is fun. jQuery is powerful and is written in a style that reads like plain
English, so it’s easier for novice programmers to understand. For example, the following code is
valid jQuery:

$("#fluent").hide("slow").addClass("fun").show("fast");

Can you guess what it does? The first part, $("#fluent"), might be confusing, but hopefully the
rest should make some sense:

➤➤ The hide() method hides something.

➤➤ The addClass() method adds a CSS class.

➤➤ The show() method shows something.

You’ll learn more about the specifics of how these methods work over the next couple of chapters,
but for now just know that as often as possible, jQuery reads just like plain English—at least as
much like plain English as a programming language can read.

In addition to being fun, jQuery is also at the center of a vast collection of tutorials, sample code,
and plug-ins that make it much easier to make websites. Although some other libraries might be
more elegant or more powerful, jQuery’s popularity ensures that it is well served in terms of the
ecosystem surrounding the library. When you choose jQuery, you’re not just choosing a library;
you’re choosing a vibrant community that’s there to help with tutorials, advice, and examples.

Now that you have a taste of why you might want to use jQuery, now jump into the how. First up is
getting jQuery into your pages.

adding JQuerY To Your page

The most basic way to get jQuery is to go to www.jquery.com and download the library to your
computer. Just accept the default choices in the download form, and click the Download link.
Figure 11-1 shows the link on the homepage of the site.

Adding jQuery to Your Page ❘ 385

Figure 11-1

Save the file to your site. Like you’ve learned to organize your CSS in a separate folder, it can be help-
ful to save your JavaScript in a separate folder as well. You can save it to a folder named js. To start
using jQuery, all you must do is include it in your page, like any other script (ch11_eg01.html):

<script src="js/jquery-1.8.2.min.js"></script>

Unless it needs to be in the <head> for some reason (Modernizr is the most common example of
a script that needs to be in the <head>), for top performance, JavaScript should be included right
before the closing </body> tag. This is as true of jQuery as it is of every other script. The examples
throughout this chapter will place jQuery there.

A common alternative to downloading and hosting jQuery is to use a public version served by a
Content Delivery Network (CDN). CDNs are fast servers spread around the world and designed
to serve files as fast as possible no matter where in the world someone might be. Although the
Internet seems immediate and the world seems tightly connected, there is a little bit of a lag when
people try to get files from halfway around the world, so using a CDN can sometimes speed up
things for your users. This is especially true if you have a global audience. Large companies (such
as Google and Microsoft) interested in a fast Internet offer versions of jQuery hosted, for free,
on their respective CDNs. This can have a performance benefit for your site. It’s also convenient
because you can get up and running with jQuery just by linking to the CDN-hosted version—no
download required. To do so, simply link to the version on the CDN using the URL provided by
the service. To use Google’s CDN, for example, simply browse to the Google Hosted Libraries
page (https://developers.google.com/speed/libraries/devguide#jquery) and link to the
URL provided (ch11_eg02.html):

<script
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js">
</script>

386 ❘ CHapTer 11 Working With JQuerY

To ensure that you can test your code whether or not you’re connected to the Internet, all the remain-
ing jQuery samples in this book link to a local file. You should use the CDN option when you’re ready
to build out your site and publish it to the web.

JQuerY BaSiCS

Now that you have a copy of jQuery loaded into your page, it’s time to start jQuery programming.
This section introduces you to two of the most fundamental parts of the library: the jQuery or $
function and the $(document).ready() event.

introducing the $ Function
At the heart of every jQuery operation is the jQuery object. Everything you do with the library
starts there.

You can access this function with two different names: jQuery or as the more famous alias $. In the
context of programming with jQuery, they’re equivalent. The rest of the text refers to $ exclusively.

$ is used in two different ways. Called as a function, $(), it enables you to access, create, and
manipulate HTML elements. $ also enables you to access additional methods and properties of
jQuery. You learn more about this second option in Chapter 12, “jQuery: Beyond the Basics,”
when you learn about $.ajax(). For now, focus on the first option.

In its most basic usage, $() accepts a string representing a CSS selector and returns the HTML ele-
ment or elements that match the selector. You can then perform additional operations on the results.
Now look at the HTML for this example (ch11_eg03.html), which is simple. It’s an <h1> element
with an id of “greeting.” Notice that there’s no actual greeting; it’s an empty element.

<h1 id="greeting"></h1>

Using jQuery (ch11_eg03.js) you can quickly add some text to the element. There are two parts
to this code. The first is the call to $(). Remember the method document.getElementById()? This
works the same way except the argument includes the same # character that you would use to indicate
an id in a CSS selector. You learn more about how to use CSS selectors with jQuery in the section
“jQuery and the DOM.” For now, just understand that you have a reference to the <h1> element with
the id #greeting. Because you got that element with $(), the reference is empowered with all that
jQuery has to offer. In this example you just use the method $().text(), which as you might have
guessed enables you to set the text of an HTML element.

$("#greeting").text("It's time to learn about jQuery");

Chaining
In the first example of jQuery, the one line of code did several different things. This capability to
do many things in one line is one of the most powerful features of jQuery. When you get a reference
to an element using jQuery, jQuery almost always returns that element when it performs an action.
This means you can string multiple commands together on one line. This is an efficient and fun way
to code. You’ll see many examples of chaining throughout this chapter and the next chapter.

jQuery and the DOM ❘ 387

Start Your Scripts the Smart way with $(document) .ready()
When you make web pages, there are times when you want your JavaScript to manipulate the
page based on some data you received from the server or because of something interesting about
the user’s browser or screen. You want this to happen as soon as the browser has read the page’s
HTML. This means that the DOM is loaded into the browser and there’s no chance that you could
try to change an element that the browser doesn’t know about yet. The W3C DOM offers a method
to do this with the DOMContentLoaded event, but, as with many things on the web, older versions
of Internet Explorer didn’t support it until version 9. Because of that, jQuery offers a method called
$(document).ready(), which enables you to run code as soon as the document/DOM is “ready.”
Rewriting the previous example to use $(document).ready() looks like this (ch11_eg04.js):

$(document).ready(function() {
 $("#greeting").text("It's time to learn about jQuery");
});

The important difference is that the code you want to run is wrapped in an anonymous function. This
means that any statements you want to run are encapsulated in the anonymous function, and they will
be executed when the $(document).ready() event fires. If you didn’t do that and instead did some-
thing like the following, directly placing the jQuery statement inside the $(document).ready()
call, the code would execute immediately and wouldn’t be saved for when the DOM is loaded.

$(document).ready(
 $("#greeting").text("It's time to learn about jQuery")
);

Now that you’ve learned about two of the most fundamental pieces of jQuery, it’s time to look in
more depth at what it can offer.

JQuerY and THe doM

One of jQuery’s great strengths is the way it can easily access and manipulate HTML elements.
When you have a strong foundation in the way jQuery works, you can easily add dynamic elements
to your pages.

Selecting elements with jQuery
The most common usages of jQuery start with selecting an element or collection of elements using
$() and a CSS selector. The following code sample (ch11_eg05.js) shows this in action with three uses
of $(), selecting elements by: class name, id/class name/element, and an attribute-equals selector. After
the selection is made the $().css() method is used to change some CSS attributes. Notice that multiple
elements are changed when using the class-based selector. That’s because jQuery automatically changes
every element in the matched set.

$(document).ready(function(){
 $(".item").css("color" , "blue");
 $("#menu .item p").css("color" , "red");
 $("input[type=email]").css("border" , "10px solid blue");
});

388 ❘ CHapTer 11 Working With JQuerY

Paired with the following markup (ch11_eg05.html), this code produces the result shown in
Figure 11-2:

<ul id="menu">
 <li class="item"><p>This is a paragraph</p>
 <li class="item">No paragraph here
 <li class="item">No paragraph here
 <li class="item">No paragraph here

<p>
 <label for="email">Email: <input type="email" id="email"></label>
</p>
<p>
 <label for="text">Plain Text: <input type="text" id="text"></label>
</p>

Figure 11-2

jQuery supports all the selectors you’ve learned about so far and several selectors that are new
extensions added by jQuery. Table 11-1 lists the jQuery extensions to CSS3.

TaBLe 11-1: jQuery Selector Extensions

SeLeCTor deSCripTion exaMpLe

:animated Selects all elements in the middle of a

jQuery animation

$("p:animated")

Attribute Not

Equal Selector

Performs an inverse selection based on

the attribute value

$("input[type!='email']")

:eq() Selector Selects the element at a specific index

within the returned collection

$("li:eq(2)")

:even Selector Selects even elements $("tr:even")

:first Selector Selects the first matched element $("tr:first")

:gt() Selector Selects all elements greater than a spe-

cific index within the returned collection

$("li:gt(2)")

jQuery and the DOM ❘ 389

:has() Selector A filter that selects elements, which con-

tain at least one element that matches

the specified selector

$("div:has(p)")

:header Selector Selects all headers $(":header")

:hidden Selector Selects all hidden elements $("p:hidden")

:last Selector Selects the last matched element $("tr:last")

:lt() Selector Selects all elements less than a specific

index within the returned collection

$("li:lt(2)")

:odd Selector Selects all odd elements $("tr:odd")

:parent Selector Selects all elements that are the parent

of another element

$("p:parent")

:selected

Selector

Selects all selected elements $("option:selected")

:visible

Selector

Selects all visible elements $("p:visible")

Creating and adding elements
In addition to selecting elements, the $() function enables you to create elements on the fly. This
enables you to create elements based on data from a server or user interaction, manipulate them,
and then eventually insert them into the DOM. Rewriting the “Good Morning”/“Good Afternoon”
example from Chapter 10 illustrates this. The markup, again, is simple—just a single <div> element
(ch11_eg06.html):

 <div id="container">
 </div>

The JavaScript (ch11_eg06.js) is similar to the example from Chapter 10 but does a little bit more
because of the power of jQuery. It starts off the same way—by creating a new Date object and getting
the hours. After that an empty variable elem is created. elem is then defined depending on the time of
day. That’s where things get interesting.

First, an <h1> element is created by passing the string “<h1>” to $(). At this point jQuery has
reference to a generic <h1> element and can perform any of the jQuery methods on it. In this
example, the proper greeting is added using $().text(). Then, an id attribute added using the
method $.attr(). $.attr() takes two arguments in this form: the attribute to set and the
attribute’s value. Finally, the $.hide() method is used to hide the text so that you can show it
later. You learn even more about using $().show(), $().hide(), and other effects and anima-
tions later in the section “Basic Animations and Effects.”

390 ❘ CHapTer 11 Working With JQuerY

After the element is created, the elem variable is added to the container element using
the $().append() method. $().append(), not surprisingly, appends a new element to the
selected element.

Finally, the #greeting element, which is now in the document, is shown with a little animation
provided by $().show().

$(document).ready(function(){
 var date = new Date();
 var time = date.getHours();
 var elem;

 if (time < 12) {
 elem = $("<h1>")
 .text("Good Morning")
 .attr("id","greeting")
 .hide();
 }
 else {
 elem = $("<h1>")
 .text("Good Afternoon")
 .attr("id","greeting")
 .hide();
 }
 $("#container").append(elem);
 $("#greeting").show("slow");
});

jQuery is flexible. One such example of its flexibility is an alternative method to create the <h1> in
the previous example. Instead of creating an empty <h1> and then using $().text() to populate it
with text, you can do something like this (ch11_eg07.js), where you pass a string of valid HTML,
complete with the text into $():

if (time < 12) {
 elem = $("<h1>Good Morning</h1>")
 .attr("id","greeting").hide();
}

Or you could even do something like this where you embed the id directly in the string, skipping
both $().text() and $().attr() (ch11_eg08.js).

if (time < 12) {
 elem = $("<h1 id='greeting'>Good Morning</h1>").hide();
}

Because you’re just starting with jQuery, you should pick one style and stick with it. And because it
can teach you the various methods available with jQuery, sticking to the first style can teach you the
most about the library. Also, it will probably be clearer to anyone else who might work on your code.

Now that you’ve learned the basics to select and create elements with jQuery, it’s time to learn more
about how to manipulate them. You’ve seen some examples already with methods such as $().attr(),

jQuery and the DOM ❘ 391

$().text(), and $().css(). The next section looks at those and some other common methods in a
little bit more depth.

Manipulating elements with jQuery
As you’ve seen, jQuery makes it easy to select and create HTML elements. You’ve also had a
glimpse at how easy it is to manipulate them using the many powerful methods jQuery offers. This
section introduces you to some of these methods.

Manage CSS Classes with $().addClass(), $().removeClass(), $().hasClass(),
and $().toggleClass()

Manipulating CSS classes is a common task when building websites or applications. You often need to
change the style of an element based on a user interaction (when validating a form, for example,) data
from a server or other changes in the application state. Although you can change CSS properties on
the HTML element using JavaScript, it’s generally better to continue to keep style information in your
CSS files. Testing, adding, and removing classes enable you to create dynamic pages while still preserv-
ing the ability to manage the look and feel with CSS. Four methods deal with CSS classes provided by
jQuery: $().addClass(), $().removeClass(), $().hasClass(), and $().toggleClass(). All four
methods accept a string representing the class or classes to be targeted by the methods. These can be
individual classes or a space-separated list of multiple classes.

$().addClass() adds a class or classes to an element or collection of elements. $().removeClass()
removes a class or classes from an element or collection of elements. $().hasClass() tests for the
presence of a class or classes on an element. $().toggleClass() toggles a class on or off without
the program keeping track of its current state.

The following code sample (ch11_eg09.html) shows $().addClass() in action. The JavaScript
(ch11_eg09.js) adds a class of “selected” to the “home” menu item. This would be a typical action on
the homepage of a website, where a button might need to be selected, indicating the place in the site.

$(document).ready(function(){
 $("#home").addClass("selected");
});

With the following CSS (ch11_eg09.css) in place, the end result looks like Figure 11-3:

.item {
 list-style-type : none;
 width : 200px;
 height : 25px;
 background : #ccc;
 padding : 2px;
}
.selected {
 background : #666;
 color : #fff;
}

392 ❘ CHapTer 11 Working With JQuerY

Figure 11-3

The following code sample (ch11_eg10.js) uses $().hasClass() and $().removeClass() to test
for the presence of the “selected” class on an element and removes it if the class is on the element.
$().hasClass returns true or false depending on the result of the test, so it’s perfect to use with
if statements.

$(document).ready(function(){
 if ($("#home").hasClass("selected")){
 $("#home").removeClass("selected");
 }
});

NOTE Because $().hasClass() returns a boolean value, it’s one of the jQuery
methods that doesn’t enable chaining. Several other methods don’t allow for chain-
ing. All of them either return a boolean value or return some metric or value (like an
element's width, height, or text content) based on the element’s properties.

$().toggleClass() is a helpful method that adds logic on top of the functionality provided by
$().addClass() and $().removeClass(). With $().toggleClass(), you don’t need to test
whether a class is present on an element. You just need to tell jQuery to “toggle,” and it will take
care of everything, turning on or off the element as needed.

The following code sample (ch11_eg11.js) shows a common use of $().toggleClass(), switching
menu items from “selected” to the default state. This code sample also briefly introduces event handling
in jQuery. You learn more about it in the “Managing Events With jQuery” section. For now just note
the similarities to the way you set events in Chapter 10. You have an object reference, and on click you
run a function.

$(document).ready(function(){
 $("#home").on("click", function(){
 $("#home").toggleClass("selected");
 });
});

get or Set Attributes with $().attr()
You’ve already seen $().attr() used in an example, setting the id attribute of an element. That’s
the basic usage, passing in two arguments: The first is the attribute to set, and the second is the
value of the attribute. There are two additional features of $().attr() you should know about.

jQuery and the DOM ❘ 393

The first is the capability of $().attr() to get values, in addition to set them. The second is the
capability to set multiple attributes at once using a plain JavaScript object as a map containing a
series of attributes and values.

The following code sample (ch11_eg12.js) shows these two uses of $().attr(), first setting multiple
values (id, rel, href, and title) and then getting the value of title to set the text of a newly created
element. In the first call to $().attr(), see how the attribute/value pairs are inside a set of brackets
{}, separated by commas and paired using a colon. This is an object literal, just like the array literal
you learned about in Chapter 10. Because they allow you to set many options at once, they’re a com-
mon option for arguments in jQuery.

$(document).ready(function(){
 var newLI;
 $("#contact a").attr({
 "href" : "http://htmlcssjavascript.com/",
 "title" : "Visit Rob's blog about web technology",
 "rel" : "me",
 "id" : "htmlcssjavascript"
 });
 newLI = $("").text($("#contact a").attr("title"));
 $("ul").append(newLI);
});

With the following markup (ch11_eg12.html) the previous jQuery code produces the output shown
in Figure 11-4:

 <li id="contact"><a>Rob Larsen

Figure 11-4

get or Set CSS Properties with $().css()
You’ve already seen $().css() in action setting individual elements using two arguments: the name
of the property to set and the value of the property. Like $().attr(), $().css() also enables you to
retrieve values of CSS properties and enables you to set multiple CSS properties using an object literal
as a map. The following code sample (ch11_eg13.js) shows both of these in action, setting several CSS
properties (font-size, color, height, width, background color, and border) of an <h1> element.
Then the script reads back the new border property and writes it into a element.

$(document).ready(function(){
 $("h1").css({
 "font-size" : "200%",

394 ❘ CHapTer 11 Working With JQuerY

 "color" : "#ffffff",
 "height" : "100px",
 "width" : "500px",
 "background-color" : "#61b7ff",
 "border" : "10px solid #003366"
 });
 $("#result").text($("h1").css ("border"));
});

NOTE Because of the way that JavaScript interprets the “-” character, any CSS
property that contains a dash needs to be within quotation marks when using
the $().css() method along with an object map. The quotation marks for the
property names are actually not required because JavaScript object labels can
be unquoted, but because of this quirk, it’s better to simply quote them all the
time. You can also use an alternative written in Camel Case, which uses internal
capital letters at the word boundaries. For example, font-size would change to
fontSize. Still, it’s nicer and causes less confusion to match the CSS properties
directly across JavaScript and CSS, so the quoted options are the way to go.

With the following markup (ch11_eg13.html) the page would look like Figure 11-5:

<h1>Beginning HTML and CSS</h1>
<p>The border property is: </p>

Figure 11-5

get or Set the HTML of an element with $().html()
$().html() is similar to the .innerHTML property you learned about in Chapter 10. This method
enables you to get or set the HTML content of an HTML element. This is a useful method that
enables you to quickly and dynamically create or adjust the contents of an HTML element. The
following code sample (ch11_eg14.js) shows $().html() in action, building up a string that rep-
resents a element and then inserting it into the document using $().html().

$(document).ready(function(){
 var methods = ["attr()", "css()", "html()", "addClass()",
 "removeClass()", "hasClass()", "toggleClass()"];

jQuery and the DOM ❘ 395

 var list = "";
 for (var i = 0, len = methods.length; i < len; i++){
 list += "" + methods[i] +"";
 }
 $("#methods").html(list);
});

Paired with the following markup (ch11_eg14.html) the page looks like Figure 11-6.

Figure 11-6

You’ll often use a pattern like this, looping through a collection and building out HTML, when
working with Ajax. You learn more about Ajax in the next chapter.

Basic animations and effects
One of the nicest things about jQuery is the easy access it provides to common effects used on web
pages. jQuery’s animation capabilities are quite deep. This section introduces just a couple of the more
common effects and animations so that you can start experimenting with them. If you’re excited by
the power of jQuery animations and effects, the jQuery documentation is a good place to start learning
about all they have to offer (http://api.jquery.com/category/effects/).

Show and Hide elements with $().show(), $().hide(), and $().toggle()
These methods control the visibility of HTML elements. You’ve already seen $().show() and
$().hide() in action, but there are options available with each method that haven’t been covered.
You look at those in detail here. You also learn that $().toggle() is a convenience method like
$().toggleClass(), which enables you to toggle the visibility of elements without tracking their
current state.

In the examples you’ve seen of $().show() and $().hide(), there’s been a keyword argument:
“slow.” That keyword indicates to jQuery that the element should slowly turn on or off, taking
600 ms. There’s also a “fast” keyword, which takes 200 ms to perform the animation. There are
other options. For example, if $().show() or $().hide() are called without an argument, the
element is immediately made visible or invisible. In addition, these methods take a numeric argu-
ment, in milliseconds, which is how long the animation should take.

In detail, when “fast” or “slow” or a millisecond argument is used, jQuery animates the width,
height, and opacity of the element simultaneously.

396 ❘ CHapTer 11 Working With JQuerY

The following code illustrates (ch11_eg15.js) all these options in action, with three <div> elements
shown using the slow and millisecond arguments. Then a click event is attached to a <button>
element, which uses the $().toggle method to show and hide a <div> element.

$(document).ready(function(){
 $("#slow").show("slow");
 $("#fast").show("fast");
 $("#ms").show(1500);
 $("#toggle").on("click" , function(){
 $("#toggled").toggle();
 });
});

Starting with all the <div> elements set to display : none, animation goes through the steps
shown in Figure 11-7.

Figure 11-7

Animate Opacity with $().fadein(), $().fadeOut(), and $().fadeToggle()
Where $().show() and $().hide() in animation mode show several properties at once, this collection
of methods operates only on the elements’ opacity. These methods also take the “fast” and “slow”
keywords and the millisecond arguments. Because these methods always animate, there is a default
animation timing of 400 ms. Rewriting the previous example to use the fade methods (ch11_eg16.js)
looks something like this:

$(document).ready(function(){
 $("#slow").fadeIn("slow");
 $("#fast").fadeIn("fast");
 $("#ms").fadeIn(1500);
 $("#toggle").on("click" , function(){
 $("#toggled").fadeToggle();
 });
});

Starting with all the <div> elements set to visibility : hidden, the animation goes through the
steps shown in Figure 11-8.

Create a Sliding Doors effect with $().slideUp(), $().slideDown(),
and $().slideToggle()

This suite of methods animates against the height of an element. $().slideDown() animates from
zero height to full element height. $().slideUp() animates from full element height to zero height.
$().slideToggle() behaves like all the other toggle methods you’ve met, toggling the element up
and down without you needing to track the current state.

Managing events with jQuery ❘ 397

Figure 11-8

The following code sample (ch11_eg17.js) binds a click event to all the <dt> elements in a defini-
tion list (ch11_eg17.html), which slides down the associated <dd> element using the $().toggle()
method. There are two new wrinkles to the click function. The first is the user of the this keyword.
The this keyword can be a complicated subject in JavaScript. For now you should focus on the most
basic usage shown here. Inside the body of a function bound to an HTML element, this refers to
the bound HTML element. So, in this case it would refer to whatever <dt> you just clicked. This is a
vital feature because it gives you some context to work with when dealing with JavaScript events.

Passing this into jQuery loads jQuery with a reference to that element, which means you can use
all jQuery’s features on the element. You learn more about this in the next section on jQuery events.
The second new wrinkle is the method $().next(), which returns the next HTML element in the
DOM. In this case that works out to be the associated <dd>.

$(document).ready(function(){
 $("dt").on("click" , function(){
 $(this).next().slideToggle();
 })
});

Like the other animation methods, the slide methods also take the “fast” and “slow” keywords and
a millisecond argument.

Managing eVenTS wiTH JQuerY

You learned about basic JavaScript events in Chapter 10 and have seen several examples of binding
click events in this chapter. This section expands your knowledge of jQuery’s ways of handling events
and introduces you to the many events you can use in jQuery. It also points out some old ways that
jQuery used to handle events—just in case you see some of these options in legacy code.

As with everything in these sections, this examination of jQuery events is designed to be just enough to
get you up and running. As with everything else in the JavaScript chapters in this book, there’s always
going to be more to explore. The jQuery documentation on events is full of solid examples and paints a
complete picture of all of the options available (http://api.jquery.com/category/events/).

398 ❘ CHapTer 11 Working With JQuerY

Bind events with $() .on() and $() .off()
jQuery has two main methods to manage events: $().on() and $().off(). You’ve already seen
$().on() in action. In its most basic form, it accepts two arguments: the event to listen for (such as
“click” and “submit”) and a function to fire when the event occurs. $().off(), which you haven’t
seen, reverses the process, removing events from elements.

The following code sample (ch11_eg18.js) shows both of these in action. This example rewrites
the slide animation suite example. It adds a <button> element that expands all the <dd> elements.
$().off() is then used to make sure the button doesn’t try to expand the already expanded ele-
ments. The expansion is performed using another new method: $().trigger(), which is useful.
It manually fires events on elements. It takes a string argument representing the event to be fired.

$(document).ready(function(){
 function toggler(){
 $(this).next().slideToggle();
 }
 $("button").on("click" , function(){
 $("dt").trigger("click").off("click" , toggler);
 });
 $("dt").on("click" , toggler)
});

Table 11-2 lists common events available in jQuery.

TaBLe 11-2: Common jQuery Events

eVenT deSCripTion

blur Fires when an element like an input, select, or anchor loses focus .

change Fires when the data in a text input or select input changes .

click Fires when the user clicks the mouse .

dblclick Fires when the user double-clicks .

focus Fires when an element such as an input, select, or anchor gains focus .

hover A shortcut to create “hover” effects . Attaches two event handlers . One is to be

executed when the mouse enters an element, and the other is to be fired when

the mouse leaves an element .

keydown Fires when the user presses on a key . This event fires multiple times as long as

the user keeps the key depressed .

keypress Fires when a character is inserted into a text input or text area . This event fires

multiple times as long as the user keeps the key depressed .

keyup Fires when the user releases a key .

Managing events with jQuery ❘ 399

mousedown Fires when a mouse button is pressed .

mouseenter Fires when the mouse enters an element . This is an enhanced jQuery event that

cleans up some issues with the mouseover and mouseout events .

mouseleave Fires when the mouse enters an element . This is an enhanced jQuery event that

cleans some issues with the mouseover and mouseout events .

mousemove Fires when the mouse moves .

mouseout Fires when the mouse leaves an element .

mouseover Fires when the mouse is over an element .

mouseup Fires when the user releases a mouse button press .

resize Fires when the window or other element is resized .

scroll Fires when the window or other element is scrolled .

select Fires when an element is selected .

submit Fires when a user clicks a submit button or otherwise submits a form (by pressing

Enter, for example) .

There’s an optional selector argument that gives context to your event binding. This enables you
to bind events to elements that might not exist when the page is created. This works in two ways.
The first is to bind the event in the context of the document and then pass in your target selector as
the optional argument. For example, to bind a click event to any <a> element that will exist in your
entire document, you would use $().on() like this:

$(document).on("click", "a", function(){
 //code goes here
});

This basically means, “Listen to every click on the whole document, and if it happens on an
<a> element, fire this event.” The only problem with this is that it forces jQuery to listen for every
click that happens on the entire document. For certain events or pages this can be slow.

To listen to clicks for <a> elements that might be dynamically created in the future, you can use
$().on(), as shown in the following snippet. In it, the event binding starts with an id selector.
Because this limits the search to a single element, this means that there will be less overhead when
jQuery listens for events:

$("#article").on("click", "a", function(){
 //code goes here
});

400 ❘ CHapTer 11 Working With JQuerY

Legacy jQuery event Handling
$().on() and $().off() were introduced in jQuery 1.7. They simplified and replaced several
other methods used to bind events. Although these other options exist, you should focus on and
use $().on() and $().off(). If you do inherit code written before jQuery 1.7, this section should
give you some sense of how these legacy methods work.

These legacy event methods break down into four basic categories:

➤➤ Event-specific methods such as $().click() and $().submit() behave similarly to the
standard use of $().on(), binding a function to an element that already exists in the docu-
ment. The one exception is that the type of event is encoded in the method name: $().click(
function(){}) instead of $().on("click", function(){}).

➤➤ $().live() and $().die() behave like the example of binding an event to the document
and passing in a filtering selector.

➤➤ $().delegate() and $().undelegate() behave like the example of binding an event to
an element that limits the elements that jQuery must listen to and then passing in a filtering
selector.

➤➤ $().bind() and $().unbind() behave exactly like the standard usage of $.on() and
$().off().

If you do run into code that uses these legacy methods, the jQuery API documentation will be your
friend to work through any wrinkles. Hopefully, you won’t run into too much of this stuff because
the new methods are much easier to use.

using jQuery, CSS, and HTML to add interactivity
Now that you’ve seen the basics of jQuery, it’s time to put what you’ve learned into use. In this
example you take a combination of jQuery, CSS, and HTML to create a dynamic interface for the
Example Café menu page.

TrY iT ouT Adding Basic interactivity to a Web Page with jQuery

This example builds on the example you saw when you learned about the $().slideUp() and
$().slideDown() methods to add some interactivity to the Example Café site. The Example Café
wants to expand its menu. For you to do that without creating a long scrolling page, each of the menu
sections will expand and contract as needed so that only one is visible at a time.

 1 . Open up the sample application site, and create a folder named js.

 2 . Download a copy of jQuery from http://www.jQuery.com to the new js folder.

 3 . Open your text editor and type in the following code:

$(document).ready(function(){
});

 4 . Save the file in the js folder as main.js.

Managing events with jQuery ❘ 401

 5 . Open the menu.html and, before the closing </body> tag, add the following code. (Adjust the
jQuery reference to match the version you just downloaded.)

<script src="js/jquery-1.8.2.min.js"></script>
<script src="js/main.js"></script>

 6 . Continuing in the menu.html, adjust the markup so that there is a <div> element wrapping every
 and move the id attributes off of the <a> elements and onto their parent <h2> elements. Finally,
add a class of “menu” on the <body> element. The body of your HTML will look like this:

<body class="menu">
<div id="page">

 <img src="images/logo.gif" alt="example cafe"
 width="194" height="80">
 <div id="navigation">
 HOME
 <a>MENU
 RECIPES
 OPENING
 CONTACT
 </div>

 <h1>Menu</h1>
 <h2 id="starters"><a>Starters</h2>
 <div>

 Chestnut and Mushroom Goujons (v)
 Goat Cheese Salad (v)
 Honey Soy Chicken Kebabs
 Seafood Salad

 <p><small>Back to top</small></p>
 </div>
 <h2 id="mains"><a>Main courses</h2>
 <div>

 Spinach and Ricotta Roulade (v)
 Beef Tournados with Mustard and Dill Sauce
 Roast Chicken Salad
 Icelandic Cod with Parsley Sauce
 Mushroom Wellington (v)

 <p><small>Back to top</small></p>
 </div>
 <h2 id="desserts"><a>Desserts</h2>
 <div>

 Lemon Sorbet (v)
 Chocolate Mud Pie (v)
 Pecan Pie (v)
 Selection of Fine Cheeses from Around the World

 <p><small>Back to top</small></p>

402 ❘ CHapTer 11 Working With JQuerY

</div>
</div>
<script src="js/jquery-1.8.2.min.js"></script>
<script src="js/main.js"></script>

 7 . Now go back to your main.js file, and type in the following code inside the body of the
$(document).ready() function.

 if ($("body").hasClass("menu")) {
 $("#mains + div, #desserts + div").hide();
 $("#starters").addClass("expanded");
 $("h2").on("click", function(){
 if(!$(this).hasClass("expanded")) {
 $(".expanded").removeClass("expanded").next().slideUp("fast");
 $(this).addClass("expanded").next().slideDown("slow");
 }
 });
 }

 8 . Open your interface.css file, and add the following two lines:

h2 {
 padding: 0 0 0 40px;
 background : url(../images/plus-minus.png) no-repeat 0px 0px;
}
h2.expanded {
 background : url(../images/plus-minus.png) no-repeat 0px -30px;
}

 9 . Open the page in your browser, and you should see something like Figure 11-9.

Figure 11-9

Summary ❘ 403

How It Works

This example leverages many techniques you’ve learned about. When the $(document).ready()
event fires, the first thing that happens is that the script uses an if statement to test whether the body
element has a class of “menu” by using the $().hasClass() method. This enables you to run this code
only if you’re on the menu page. This will be important when more interactivity is added to the site in
different sections.

After that, you use the adjacent sibling selector to hide two of the three menu <div> elements. Take
note of the way the two CSS selectors are separated by a comma. jQuery works just like regular CSS
selection, so you can use multiple selectors in a single call to jQuery.

Next, the #starters element has the class “expanded” added to it using $().addClass(). This
ensures that it has the “–” next to it in the CSS and ensures that you have easy access to that element
in the next section.

Now that the page is initialized properly, it’s time to add in the behavior. Using $().on(), a func-
tion is added to all the <h2> elements on the page. This function first tests whether the element being
clicked has the “expanded” class. This is accomplished by adding a “!” character in front of the call
to $().hasClass(). This “!” negates the test, so it now reads, “if this element doesn’t have the class
‘expanded.’” If it doesn’t, it continues to run the rest of the function.

The first line inside the conditional block uses jQuery to get a reference to the “expanded” element
and then does some housekeeping. First, it removes the “expanded” class because that element will
no longer be expanded. Then it gets a reference to the next element using $().next() and slides it
up with the “fast” keyword as an argument.

Then, the clicked element is referenced using this, the expanded class is added to it, and then the next
element slides down using the “slow” keyword.

This combination to use CSS classes for both styling elements and then to use them for reference later
in scripts is common and, even in this simple example, handy.

SuMMarY

This chapter introduced you to the most popular JavaScript library in the world: jQuery. You learned
some reasons to use jQuery, including the remarkable ecosystem that has grown up around the library
over the past few years. Then you learned how to obtain and install jQuery in your pages, using either
a local copy or a version hosted on a CDN.

Following that you learned about some core library features including using the $() function
coupled with the same CSS selectors you learned about when working with CSS to access HTML
elements quickly and efficiently. You also know several different ways you can manipulate elements
using jQuery, including the following:

➤➤ Adding, removing, and toggling CSS classes

➤➤ Getting and setting attributes

404 ❘ CHapTer 11 Working With JQuerY

➤➤ Setting or getting individual CSS properties

➤➤ Getting or setting the HTML content of an element

➤➤ Animating HTML elements in different ways using built-in jQuery methods

Finally, you learned about event handling using jQuery.

With just this simple foundation, you now have the basic building blocks to create rich web pages.

exerCiSeS

 1 . Rewrite the code from the files ch10_eg03.html and ch10_eg03.js to use jQuery . Instead of a

console.log, add a <p> element to display the results as a child of the <body> element . Use the

jQuery method $().val() to get the value of the form fields .

 2 . Modify main.js in the Example Café site to test the hash of the URL . You can access the hash

with the BOM property window.location.hash . Use a conditional statement and jQuery to satisfy

the following three conditions:

➤➤ If the hash equals “starters,” hide the menu items for mains and desserts .

➤➤ If the hash equals “mains,” hide the menu items for starters and desserts .

➤➤ If the hash equals “desserts,” hide the menu items for starters and mains .

Test by appending each hash to the file URL (for example: menu.html"#starters") .

➤➤ Note that the window.location.hash property includes the # character .

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 405

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

jQuery jQuery is the most popular JavaScript library in the world . It makes

JavaScript easier and more fun to use .

Cdn It’s better to use the Google CDN to host your JavaScript on your

public web pages . For testing locally it’s easier to have a local copy .

$ Everything in jQuery starts with $, a method that (among other features)

enables you to access and create HTML elements .

animations with jQuery jQuery makes creating animations and effects easy . With just a few

basic methods, you can add interactivity to your pages .

jQuery events Although there are several legacy methods, the only methods you

should use for event binding are $().on() and $().off() .

jQuery: Beyond the Basics

wHaT You wiLL Learn in THiS CHapTer

➤➤ How to work with Ajax and jQuery

➤➤ What jQuery UI is and how it can help you make more interactive

web pages

wrox .CoM Code downLoadS For THiS CHapTer

You can find the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118340189 on the Download Code tab. The code is in the Chapter 12
download and individually named according to the names throughout the chapter.

With the basics of jQuery in hand, it’s time to dive a little bit further into what jQuery has to
offer. This includes a look at working with a technology called Ajax and the powerful jQuery
UI library, which enable you to build rich interactive components with a little bit of code.

aJax wiTH JQuerY

If you had to choose one reason why JavaScript went from an also-ran to being one of the
most important programming languages on the planet, a good choice would be a technology
pattern called Ajax. The Ajax era in web development, starting in the mid-2000s, has driven
enormous interest and development in JavaScript libraries, browsers, and the language itself.

So what is Ajax?

The easiest way to describe it is to first think of the basic web page interaction. As you learned
in Chapter 3, “Links and Navigation,” links enable users to navigate from page to page. When
this happens a new HTML document is requested from the server, and all the JavaScript, CSS,
and images that make up the page need to be loaded to render the page. Ajax changes this basic

12

408 ❘ CHapTer 12 JQuerY: beYonD the baSicS

pattern by loading small pieces of data into an already loaded page. Because you’re just loading the
new or changed data, you can now do things like read an e-mail, view a photo, or post to Twitter
without requesting the entire page. This makes for a smoother, more desktop-like experience.

jQuery’s Ajax implementation was one of its original killer features and continues to be one of the
strongest features in the library.

The foundation of jQuery’s Ajax implementation is built on top of the method $.ajax(), which is
called from $ directly and doesn’t require the context of an HTML element or element fragment.

NOTE Ajax needs to run on a web server. If you’re familiar with existing web
servers such as Apache or Microsoft’s IIS and have one or the other set up on
your machine, you can use one of those to run the code samples in this chapter.
If you’re not familiar with setting up a web server, you can use the provided web
server in the download directory. On Windows, simply click the mongoose3-3.exe
application, and browse to http://localhost:8080/ to see a list of the files in
this chapter and work with Ajax applications.

If you’re on a Mac or Linux, Apache should be installed by default.

The following code (ch12_eg01.html) sample shows a basic usage of $.ajax(). The script
(ch12_eg01.js) has just one call. In it, there is a JavaScript object used as a map for the single
argument. This map has two properties: the URL of the file to be requested (data/ch12_eg01
.json) and a callback function to run when the file is successfully retrieved.

In this example, the function uses console.log to log the information that’s passed into the callback
function. In jQuery’s Ajax implementation, there are three arguments passed into callback functions:
the data returned from the server, a string representing the status of the request (basically indicating
whether things went okay), and the jQuery XMLHttpRequest object (jqXHR), which is an enhanced
version of the XMLHttpRequest object that is central to all Ajax applications. This object provides
properties and methods that enable JavaScript to communicate with a web server.

The samples in this chapter mostly focus on the data argument, but you must know that those other
arguments exist.

$(document).ready(function(){
 $.ajax({
 "url" : "data/ch12_eg01.json",
 "success" : function(data,status,jqxhr){
 console.log(data,status,jqxhr)
 }
 });
});

Figure 12-1 shows the result of this interaction in Google Chrome’s console. As you can see, the value
of data is a JavaScript object containing one property, title, with a value of “Beginning HTML and
CSS.” The statusText argument is “success” because this was a successful Ajax request. Finally the
jqXHR argument is a JavaScript object that contains several pieces of information about the request,
including the server response as a text string.

Ajax with jQuery ❘ 409

Figure 12-1

Because the data argument in this case is a JavaScript object, you can access the properties and values
the same way you would with any other JavaScript object. The following example (ch12_eg02.js)
illustrates this ability by accessing the title property and writing its value as a new <h1> element in
a document (ch12_eg02.html).

$(document).ready(function(){
 $.ajax({
 "url" : "data/ch12_eg01.json",
 "success" : function(data){
 $("#container").html("<h1>"+ data.title +"</h1>");
 }
 });
});

As you can see it is easy to use dot notation to access server data in this way. Because of this ease
of use, using JavaScript objects to pass data from a server to a web page is the most popular way to
connect a web page to a server. This technology is called JSON.

JSon, xML, or Text
Although JSON is by far the most popular way to pass data from a server to the browser, there are
two other common methods that you should be aware of: XML and plain text.

Working with XML
When Ajax first burst onto the scene, it used a technology called Extensible Markup Language (XML)
as the format to pass data back and forth from the server. XML looks familiar to you because it shares
many conventions with the HTML you’ve worked with throughout this book.

Rewriting the data/ch12_eg01.json file to use XML would look something like the following code
sample (data/ch12_eg03.xml). As you can see it’s similar to the HTML you’re familiar with, with
a <books> element and a child <title> element. The one new element that you might be unfamiliar

410 ❘ CHapTer 12 JQuerY: beYonD the baSicS

with is the XML declaration at the top, which indicates that this is an XML document, complete
with a version and document encoding.

<?xml version="1.0" encoding="UTF-8" ?>
<books>
 <title>
 Beginning HTML and CSS
 </title>
</books>

Rewriting the previous example to use XML instead (ch12_eg03.js) shows some of the differences
between JSON and XML.

In this case, because the data is XML, you need to indicate that in the request with the dataType
property. You should be aware that, because of its popularity, json is the default dataType.

In addition, dealing with XML as Ajax data is different from working with JSON. Instead of work-
ing with it directly using dot notation like you can with JSON, you must manipulate it a little bit to
get your hands on the data.

In this case, you pass the data object from the Ajax request into $(), which enables you to use all
the regular jQuery methods on it. In this case you use a new method $().find(), which enables
you to filter a collection based on a CSS selector. Normally, you use it to filter a regular collection
of DOM elements, but here you use it to filter the XML document passed in as the data in the Ajax
request. Because you need the value of the <title> element, you pass title in as the selector. This
gets access to the <title> element. You can then use the method $().text() to get the text needed
to fill in the <h1> element.

$(document).ready(function(){
 $.ajax({
 "url" : "data/ch12_eg01.xml",
 "dataType" : "xml",
 "success" : function(data){
 var title = $(data).find("title").text();
 $("#container").html("<h1>"+ title +"</h1>");
 }
 });
});

These extra hoops you have to leap through to get the XML data is one of the reasons that people
gravitated toward JSON over the past few years.

Working with Text Responses
No matter what format the data is in, it’s actually sent over the wire as plain text. It’s only in the
hands of the browser or in the hands of JavaScript that it converts into the JSON objects or XML
fragments that you’ve seen.

This means you can, at times, short-circuit these data structures and go directly to the text. This
doesn’t happen often; you more commonly want to get larger blocks of structured data, but some-
times you get server responses that make some sense as plain text. For example, you could have a
single piece of information from the server like the availability of a username (which would return

Ajax with jQuery ❘ 411

true or false) or a block of preformatted HTML. In both of these cases, working directly with the
text would be possible and maybe even preferred for reasons of performance or simplicity in server
implementation.

The following code sample (ch12_eg04.js) shows both of these in action. The first $().ajax()
request uses the same data argument you’ve been using throughout this chapter. In the first request
the URL mimics a server response to a query. The URL data/isAuthor.txt?author=rob%20larsen
is standing in for a piece of server code that returns true or false depending on whether the value
of the query string author is someone who writes books. Because it’s beyond the scope of this book
to go into the logic you might see on the server side for this kind of application, it’s just a simple text
file that contains one word: true. But it’s simple to imagine that it would return true or false after
looking at a collection of author names and matching against the name in the author query string.
In the success function, the data argument, which in this case is just a text string, is used to test
whether the provided name is an author. If it is, a second Ajax request is fired, which gets the title of
this book as a formatted HTML string. This string is then inserted directly into the DOM.

$(document).ready(function(){
 $.ajax({
 "url" : "data/isAuthor.txt?author=rob%20larsen",
 "dataType" : "text",
 "success" : function(data){
 if (data === "true"){
 $.ajax({
 "url" : "data/ch12_eg04.txt",
 "dataType" : "text",
 "success" : function(data){
 $("#container").html(data);
 }
 });
 }
 }
 });
});

geTting and poSTing
As you learned in Chapter 6, “Forms,” there are two ways to make requests to a web server, GET
and POST. GET is a simple request for a resource, and POST is used to pass form information to the
server. Both GET and POST are used with Ajax.

The default action in jQuery is to use a GET request, so on the basis of the examples you’ve already
seen, you already know how to make a GET request with jQuery.

jQuery offers two ways to specify the HTTP method. The first is to specify the type. Rewriting the
earlier JSON example to use an explicit type would look like this (ch12_eg05.js):

$(document).ready(function(){
 $.ajax({
 "type" : "get",
 "url" : "data/ch12_eg01.json",
 "success" : function(data){
 $("#container").html("<h1>"+ data.title +"</h1>");

412 ❘ CHapTer 12 JQuerY: beYonD the baSicS

 }
 });
});

In addition to setting an explicit type, there are two methods that enable you to easily (and mnemoni-
cally) set the HTTP method: $.get() and $.post(). These methods don’t offer as many options as
$.ajax(), but most of the time they’re going to offer you all you need—the ability to set the HTTP
method, a URL to fetch, an optional data object, and a callback function to execute on success-
ful completion of the request. Rewriting the previous example to use $.get() illustrates usage of the
method (ch12_eg06.js).

$(document).ready(function(){
 $.get("data/ch12_eg01.json", function(data){
 $("#container").html("<h1>"+ data.title +"</h1>");
 });
});

You can send data along with either GET or POST requests, and the jQuery shortcut methods both
handle it in the same way. They either accept a JavaScript object containing the name and value
pairs representing the data or a formatted string representing the data.

Because POST is more secure and enables more data to be sent over the wire, it’s better practice to
use the POST method to communicate with a server. The following example shows a simple contact
form that uses Ajax to do the form submission using $.post().

First, here’s the HTML (ch12_eg07.html), which builds up a simple form with three inputs: one
e-mail, one URL, and one submit.

<div id="container">
 <form action="ch12_eg07.json" method="post"
 id="frmContact">
 <p><label for="emailFrom">Your email</label>
 <input type="email" name ="emailFrom"
 id="emailFrom" maxLength="250"
 placeholder="rob@example.com">
 </p>
 <p><label for="urlSite">Your Site</label>
 <input type="url" name="urlSite"
 id="urlSite" maxLength="250"
 placeholder="http://htmlcssjavascript.com">
 </p>
 <p><input type="submit" value="Submit"></p>
 </form>
</div>

The JavaScript introduces a few new wrinkles, in addition to the use of $.post(). For starters
the variable $this is created, which points to jQuery loaded with reference to the form you just
submitted. This makes things slightly faster when you need to access jQuery methods with that
<form> element as the context. This is because jQuery needs to get loaded with the element only
the first time and then every reference to it after that loads from memory. jQuery doesn’t need to
find that element again.

Ajax with jQuery ❘ 413

The second new wrinkle is an argument, event, passed into the callback function for the form sub-
mission. This object is automatically passed in as the first argument to any function that is generated
by a user interaction. It contains information about the event (for example, what element generated
the event) and has several methods available to manage the way the event works its way through the
environment. Most of the properties and methods of the event object are a little more advanced and
not within the scope of this book, but there is one that you will often use: event.preventDefault().
This method simply prevents the default action of an element. In this case it prevents the form from
being submitted in the traditional manner. This enables you to POST it using Ajax. For another com-
mon example, calling event.preventDefault() on a link would stop the link from navigating.

Next is the use of $.post(). It’s relatively straightforward. First, you access the action attribute
of the form to set the url of the Ajax request. Second, a new method, $().serialize(), is used
to take the contents of the form, <input> element by <input> element, and concatenates them into
a set of name/value pairs that will be passed to the server as a string. Inside the callback function
there’s a simple test to see if the server accepted the form submission. If it was accepted (and because
the data for this example is hard-coded, it will always be) the containing <div> element’s contents
are replaced with a message sent back by the server.

This replacement is done using the jQuery method $().empty, which empties an HTML element of
all content and $().html(), which you’re already familiar with (ch12_eg07.js).

$(document).ready(function(){
 $("#frmContact").on("submit", function(event){
 var $this = $(this);
 event.preventDefault();
 $.post($this.attr("action"), $this.serialize(), function(data){
 if (data.status === "accepted") {
 $("#frmContact").empty().html("<h1>" + data.message + "</h1>")
 }
 });
 });
});
The data looks like this

{
 "status" : "accepted",
 "message" : "Thanks! Your message was accepted"
}

The two stages of this form submission are illustrated in Figure 12-2.

NOTE $().empty() is better than simply replacing the HTML or setting the
$().html() to an empty string because the $().empty() method ensures that
no stale references to events or other data remain in memory. In certain situ-
ations events or data bound to elements can remain even after the element is
removed from the DOM. This can cause performance issues. These stale refer-
ences are referred to as memory leaks, and jQuery makes an effort to avoid
them wherever possible. This is another reason why using a library like jQuery is
better than coding custom JavaScript—you don’t have to pay as much attention
to these issues as you would if you were in control of everything.

414 ❘ CHapTer 12 JQuerY: beYonD the baSicS

Figure 12-2

Form Validation
Building on the previous example, the following addresses form validation. This process ensures that
the form is filled out properly. This validation process can take two separate approaches: One is to
ensure that form fields are filled out, and the other ensures that the right type or format of data is used.

As you learned when you looked at the new form elements and input types, in newer browsers you
can use some of the new form tools such as the required attribute and polyfills to help with this. But
for now if you want the broadest possible support across all types of form elements and validation
methods, you should use a little JavaScript. To do this with jQuery, use the core jQuery Validation
plug-in, available from http://bassistance.de/jquery-plugins/jquery-plugin-validation/.

To start, adjust the markup from the previous example to add a little bit of data to the elements in the
form of CSS classes. You also need to ensure that the plug-in is included in the page (ch12_eg08.html).

<div id="container">
<form action="data/ch12_eg07.json" method="post" id="frmContact">
 <p><label for="emailFrom" class="required">Your email</label>
 <input type="email" name ="emailFrom"
 id="emailFrom" maxLength="250"
 placeholder="rob@example.com"
 class="email required">
 </p>
 <p><label for="urlSite" class="required">Your Site</label>
 <input type="url" name="urlSite"
 id="urlSite" maxLength="250"
 placeholder="http://htmlcssjavascript.com"
 class="url required">
 </p>
 <p><input type="submit" value="Submit"></p>
</form>
<p class="key">Indicates required field</p>
</div>
<script src="js/jquery-1.8.2.min.js"></script>

Ajax with jQuery ❘ 415

<script src="js/jquery.validate.min.js"></script>
<script src="ch12_eg08.js"></script>

The JavaScript is similar to what you’ve seen before. The biggest change is that the submit event
handler is replaced by a call to the Validation plug-in. This call sets up the form to be validated
when submitted and creates a submitHandler to run when the form is submitted. Inside the
handler the reference to the current form is changed from being $(this) to being a reference to
$(this.currentForm). This is because the context of the function is changed from the direct
form submission where this refers to the form being submitted to the context of the form vali-
dation plug-in where this is a reference to the plug-in and contains a reference to the current
form as a property (ch12_eg08.js).

$(document).ready(function(){
 $("#frmContact").validate(
 {"submitHandler" : function(){
 var $form = $(this.currentForm);
 $.post($form.attr("action"), $form.serialize(), function(data){
 if (data.status === "accepted") {
 $("#frmContact").empty().html("<h1>" + data.message + "</h1>")
 }
 });
 }
 });
});

Finally, some additional styles are added to the CSS to benefit from the plug-in, which adds hints in
the form of an error message and CSS classes depending on the status of the form. In this case you
add a red border to any form field with an error (data/ch12_eg08.css).

label {
 display : inline-block;
 width : 200px;
}
#emailFrom, #urlSite {
 width : 300px;
}
.required:after, .key:before {
 content : "*";
 color : #03F;
 font-weight : bold;
 font-size:24px;
}
input.error {
 border : 4px solid red;
}
label.error {
 width : 400px;
}

Figure 12-3 shows the initial state, an error state, and the successful submission of a form.

416 ❘ CHapTer 12 JQuerY: beYonD the baSicS

Figure 12-3

using jQuery to add a Contact Form to a Site
Now that you’ve had a chance to get your feet wet with using Ajax on a website, put what you’ve
learned into practice on the Example Café site.

TrY iT ouT Adding a Contact Form to a Site Using jQuery

This example adds a contact form to the Example Café site. This form enables users to save the site’s
address from being harvested by spammers while still allowing people to write in with their comments.

 1 . Go to http://bassistance.de/jquery-plugins/jquery-plugin-validation/ and download
the jQuery validation plug-in, saving it in your js folder.

 2 . Open contact.html in your text editor. Adjust the markup so that it matches the following output.
The biggest changes are to the form, the addition of the "contact" class on the <body> element,
and a <section> element to wrap the form up and serve as a placeholder for the server response.

<body class="contact">
<div id="page">
 <header>

 <img src="images/logo.gif" alt="example cafe logo"
 width="194" height="80" >

 <nav id="navigation">

Ajax with jQuery ❘ 417

 HOME
 MENU
 RECIPES
 CONTACT
 </nav>
 </header>
 <article>
 <h1>Contact</h1>
 <section id="contact">
 <form action="data/response.json"
 method="post" id="frmContact">
 <fieldset>
 <legend>Your Message</legend>
 <p>
 <label for="emailFrom" class="required">Your email
 </label>
 <input type="email" name ="emailFrom"
 id="emailFrom" maxLength="250"
 placeholder="rob@example.com" class="email required"
 tabindex="0">
 </p>
 <p>
 <label for="emailBody" class="required">Your Message
 </label>
 <textarea name="txtBody" id="emailBody"
 tabindex="2"
 class="required"></textarea>
 </p>
 <p class="key">Indicates required field</p>
 </fieldset>
 <fieldset>
 <legend>How you found us:</legend>
 <p>
 <label for="selReferrer">How did you hear of us
 </label>
 <select name="selReferrer" tabindex="3">
 <option value="google">Google</option>
 <option value="ad">Local newspaper ad</option>
 <option value="friend">Friend</option>
 <option value="other">Other</option>
 </select>
 </p>
 <p>
 <label for="newsletterSignup">Newsletter</label>
 <input type="checkbox" name="chkBody"
 id="newsletterSignup" checked tabindex="3">
 Ensure this box is checked if you would like to
 receive email updates</p>
 </fieldset>
 <p>
 <input type="submit" value="Submit">
 </p>
 </form>
 </section>
 <p>

418 ❘ CHapTer 12 JQuerY: beYonD the baSicS

 <address>
 12 Sea View, Newquay, Cornwall, UK
 </address>
 </p>
 <p>Find us on
 Google Maps</p>
 </article>
</div>
<script src="js/jquery-1.8.2.min.js"></script>
<script src="js/jquery.validate.min.js"></script>
<script src="js/main.js"></script>

 3 . Open the interface.css file, and make sure that the following styles are in place to deal with the
new elements and the response from the validation plug-in.

label {
 display : inline-block;
 width : 100px;
}
#emailFrom, #emailBody {
 width : 300px;
}
#emailBody {
 height:200px;
}
label[for=emailBody]{
 vertical-align:top;
}
.required:after, .key:before {
 content : "*";
 color : #03F;
 font-weight : bold;
 font-size:24px;
}
input.error {
 border : 4px solid red;
}
label.error {
 width : 400px;
}

 4 . Open your main.js file and add the following code:

 if ($("body").hasClass("contact")) {
 $("#frmContact").validate(
 {"submitHandler" : function(){
 var $form = $(this.currentForm);
 $.post($form.attr("action"), $form.serialize(), function(data){
 if (data.status === "accepted") {
 $("#contact").empty().html("<h2>" + data.message + "</h3>")
 }
 });
 }
 });
 }

Ajax with jQuery ❘ 419

 5 . Create a data folder in your site directory, and create a file named response.json. The contents
of the file should look like this:

{ "status" : "accepted", "message" : "Thanks! Your message was accepted" }

 6 . Open the page in your browser, and you should see something like Figure 12-4.

Figure 12-4

How It Works

Nothing here should be all that new to you. However, this example does put together many of the
lessons from the book, so the overall package might be a little overwhelming.

420 ❘ CHapTer 12 JQuerY: beYonD the baSicS

To start there’s some solid markup in the form, taking advantage of the <fieldset> and <legend>
elements to give some organization to the form. The tabindex attribute is used to make sure that the
tab order makes sense.

In addition, the new placeholder attribute is used to hint at the format for the e-mail address.

Taking the structure and meta data provided by the CSS classes and the form itself, the validator plug-in
intercepts the form submission (try it by both clicking on the Submit button and pressing Enter on an input)
and verifies that the data is in the proper format and is provided for all required fields. The form data is
then serialized and passed to $.post() to be sent to the server for processing. The Ajax response that
comes back is parsed, and a message is shared with end users telling them the submission was successful
without them ever needing to leave the page.

JQuerY ui

You’ve heard a lot about the jQuery ecosystem. One of the most important parts of that ecosys-
tem is jQuery UI. jQuery UI, available from http://jqueryui.com, is a curated set of behaviors
and widgets designed to make developing rich Internet applications and interactive websites
much easier. Developed alongside the core jQuery project with its own dedicated team, jQuery
UI greatly enhances core jQuery functionality. This section introduces the components available
from the jQuery UI project and illustrates the basics of how jQuery UI works, including down-
loading the project, getting set up, and implementing some of the available features.

getting jQuery ui
To get jQuery UI, you just need to go to http://jqueryui.com and download the latest stable
version. When you have that, extract the files and then, in your HTML file, link to two separate
files: the jQuery UI JavaScript and the associated jQuery UI CSS file. Both are required for jQuery
UI to work. This code sample (ch12_eg09.html) shows the two files linked properly.

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>jQuery UI Draggable and Droppable</title>
<link href="css/smoothness/jquery-ui-1.9.1.custom.min.css" rel="stylesheet">
<link href="css/ch12_eg09.css" rel="stylesheet">
</head>
<body>
<div id="container">
 <div id="draggable">
 <p>Drag here</p>
 </div>
 <div id="droppable">
 <p>Drop here</p>
 </div>
</div>
<script src="js/jquery-1.8.2.min.js"></script>

jQuery Ui ❘ 421

<script src="js/jquery-ui-1.9.1.custom.min.js"></script>
<script src="ch12_eg09.js"></script>
</body>
</html>

As you’ll see throughout these examples, the CSS file and associated images provide a richly designed
interface for jQuery UI widgets. This interface is called a theme. If you want to customize a theme for
your own site, you should check out the Themeroller, which is a web-based tool that creates custom
jQuery UI themes (http://jqueryui.com/themeroller/).

Now that jQuery UI is installed, look at some of the features it offers.

jQuery ui Behaviors
jQuery UI offers as one of its core features, several common interactions as easy-to-implement
plug-ins. Unlike the widgets you learn about in the next section, these behaviors don’t represent an
entire feature but instead enable you to enhance your existing site or application in whatever way
that makes sense for your site. Think of them as building blocks.

Draggable and Droppable
Often used in concert with each other, the Draggable (http://jqueryui.com/draggable/) and
Droppable (http://jqueryui.com/droppable/) behaviors enable you to click and drag an HTML
element and then drop it on a target area.

This example starts with this simple HTML (ch12_eg09.html), which features an element designed
to be dragged and a target area for dropping.

<div id="container">
 <div id="draggable">
 <p>Drag this</p>
 </div>
 <div id="droppable">
 <p>Drop here</p>
 </div>
</div>

To enable the Draggable and Droppable behaviors, all you need to do is call the $().draggable()
and $().droppable() methods on the two <div> elements (ch12_eg09.js).

$(document).ready(function(){
 $("#draggable").draggable();
 $("#droppable").droppable({
 drop: function(event, ui) {
 $(this)
 .css("border" , "4px solid hotpink")
 .html("<p>Dropped!</p>");
 }
 });
});

This pattern, getting a reference to an element and then calling the associated jQuery UI method, is
the basic pattern for all jQuery UI methods.

422 ❘ CHapTer 12 JQuerY: beYonD the baSicS

All jQuery UI methods also accept a JavaScript object as a map representing the different options
for the behavior or widget. In this example there is a callback method for the “drop” event, which
fires when an element is dropped on a target element. Figure 12-5 shows the finished product.

Figure 12-5

NOTE This book doesn’t go into too much depth in the options available for each
feature. Just be aware that there are many options that you can learn about by
browsing the excellent jQuery UI documentation at http://api.jqueryui.com/.

jQuery Ui ❘ 423

Resizable
The Resizable (http://jqueryui.com/resizable/) behavior adds a small grip to an element and
enables that element to be resized by a click-and-drag action.

The HTML for this example is as simple as it gets, just a single <div> element with some text
(ch12_eg10.html).

 <div id="resizable">
 <p>Resizable Element</p>
 </div>

And the JavaScript (ch12_eg10.html) is also quite simple. Called without arguments
$().resizable() enhances a div with resize handles and the ability to be resized, as shown
in Figure 12-6.

$(document).ready(function(){
 $("#resizable").resizable();
});

Figure 12-6

Selectable
The Selectable (http://jqueryui.com/selectable/) behavior enables HTML elements to become
selectable with a mouse click. You can use this to simulate a check box with an arbitrary HTML
element. The markup (ch12_eg11.html) for this behavior is simple, an element with a series of
 elements representing the selectable elements. While this demo and many of the examples you
see on the Internet use lists, this behavior can be called on any wrapper element with child elements.

<ol id="selectable">
 These items are selectable
 These items are selectable
 These items are selectable
 These items are selectable
 These items are selectable

424 ❘ CHapTer 12 JQuerY: beYonD the baSicS

The JavaScript is another simple one-liner (ch12_eg11.js); although, it does take advantage of the
method $().disableSelection(), which disables the ability to select HTML text.

$(document).ready(function(){
 $("#sortable").sortable().disableSelection();
});

Figure 12-7 shows a single element in the list selected.

Figure 12-7

Sortable
The Sortable behavior (http://jqueryui.com/sortable/) enables users to rearrange the elements
in an ordered collection of elements. This example again uses a list (ch12_eg12.html):

<ol id="sortable">
 One
 Two
 Three
 Four
 Five

And again, the most basic example is a one-liner (ch12_eg12.js) using $().disableSelection().

$(document).ready(function(){
 $("#sortable").sortable().disableSelection();
});

Figure 12-8 shows the list mid-sort.

Figure 12-8

jQuery Ui ❘ 425

jQuery ui widgets
Whereas the jQuery UI behaviors represent building blocks to put together your own custom inter-
actions, the jQuery UI widgets are full-blown features you can use simply and easily. This section
introduces them with simple examples.

The Accordion Widget
The Accordion widget (http://jqueryui.com/accordion/) is similar to the exercise you did with
expanding and collapsing content in Chapter 11, “Working with jQuery.” It enables you to create an
interface that shows or hides blocks of content based on user interaction. The difference here is that
it’s going to take you one line of code to set up.

The HTML (ch12_eg13.html) for this basic example is a <dl> element. With this structure the <dt>
elements act as the toggle switches, and the <dd> elements appear as shown and hidden as needed.

<dl id="accordion">
 <dt>Expandable</dt>
 <dt>Pickled ethical before they sold out quis, fixie veniam artisan
 cupidatat. Vinyl selvage keffiyeh vero, american apparel sed </dt>
 <dt>Expandable</dt>
 <dt>Pickled ethical before they sold out quis, fixie veniam artisan
cupidatat. Vinyl selvage keffiyeh vero, american apparel sed </dt>
 <dt>Expandable</dt>
 <dt>Pickled ethical before they sold out quis, fixie veniam artisan
 cupidatat. Vinyl selvage keffiyeh vero, american apparel sed </dt>
 <dt>Expandable</dt>
 <dt>Pickled ethical before they sold out quis, fixie veniam artisan
 cupidatat. Vinyl selvage keffiyeh vero, american apparel sed </dt>
</dl>

The JavaScript (ch12_eg13.js) is another one-liner, a simple call to $().accordion(). The power of
jQuery UI widgets, as shown in Figure 12-9, transforms, with a single line of JavaScript, that simple
markup into a rich, interactive, professionally styled widget.

$(document).ready(function(){
 $("#accordion").accordion();
});

Figure 12-9

426 ❘ CHapTer 12 JQuerY: beYonD the baSicS

The Autocomplete Widget
Like the autocomplete functionality provided by the <datalist> element you learned about in
Chapter 6, the Autocomplete widget (http://jqueryui.com/autocomplete/) enables the user to
see a list of hints to choose from when trying to complete a form.

The Autocomplete widget uses a data source to feed the hints. This data source can be a hard-coded
array or can be a live data source provided by a server. In this case (ch12_eg14.js) it’s a data source
featuring an array. The URL of the resource "data/ch12_eg14.json" is passed in as the value of
the source property and jQuery takes care of the rest, requesting the resource with Ajax.

$(document).ready(function(){
 $("#widgets").autocomplete({
 "source" : "data/ch12_eg14.json"
 });
});

The markup is just a familiar text input (ch12_eg14.html). The combination of that simple
markup and the call to $().autocomplete() turns into the cross-browser functionality, as
shown in Figure 12-10.

<label for="widgets">jQuery UI Widgets: </label>
 <input id="widgets">

Figure 12-10

The Button Widget
The Button widget (http://jqueryui.com/button/) enables you to easily turn <input> elements,
<button> elements, and links into cross-platform consistent buttons. This sample uses a common
submit button (ch12_eg15.html).

<input type="submit" id="button" value="Button">

Calling $().button() (ch12_eg15.js) produces the output shown in Figure 12-11.

$(document).ready(function(){
 $("input").button()
});

jQuery Ui ❘ 427

Figure 12-11

The Datepicker Widget
The Datepicker widget (http://jqueryui.com/datepicker/) is another jQuery UI widget that
maps to functionality provided by the HTML5 specification. Analogous to the new date input type,
the Datepicker widget provides a themeable, cross-browser, calendar-based date selection utility.

Of all the widgets provided by jQuery UI, this is likely the one that offers the most functionality
for the least amount of end user code. With two simple lines (one <input> element and one line of
jQuery) you can have a fully realized calendar widget that enables your users to easily pick dates.

The markup is a simple input (ch12_eg16.html):

 <input type="text" id="datepicker">

And the JavaScript (ch12_eg16.js) is a common one-liner. The combination creates the interactive
widget, as shown in Figure 12-12.

$(document).ready(function(){
 $("#datepicker").datepicker();
});

Figure 12-12

The Dialog Widget
The Dialog widget (http://jqueryui.com/dialog/) is a themeable, more flexible, more usable
replacement for the common JavaScript alert or other application/website dialog.

428 ❘ CHapTer 12 JQuerY: beYonD the baSicS

This widget takes some content and a title attribute and creates a neatly designed dialog box. By
default the widget is centered vertically and horizontally on the screen.

The markup here is a <div> element with a title attribute (ch12_eg17.html). As the paragraph at
the heart of this markup states, the jQuery UI Dialog widget can automatically be resized, moved,
and closed. The title attribute is moved to the title bar of the dialog.

<div id="dialog" title="Dialog Demo">
 <p>This dialog can be moved, resized and closed (with the 'x' icon.)</p>
</div>

The pattern of the JavaScript one-liner should be familiar to you by now (ch12_eg17.js). It’s used
here to create the dialog shown in Figure 12-13.

$(document).ready(function(){
 $("#dialog").dialog();
});

Figure 12-13

The resize and move/draggable behavior of the Dialog widget is a clear illustration of the way the
jQuery UI behaviors can combine to make new features and functionality.

The Menu Widget
The Menu widget (http://jqueryui.com/menu/) takes structured markup like a series of nested
 elements and transforms it into a themeable cascading menu that can show or hide submenu
items based on user interaction.

The markup for this represents a nested list of elements that correspond to topics in the first
chapter of this book (ch12_eg18.html). Although it’s structurally and semantically correct, it can
be a bit unwieldy to just spit out such a large block of markup and call it a menu. The Menu widget
makes that a more compact structure visually, while still allowing access to the full content.

<ul id="menu">
 A Web of Structured Documents
 The Foundations of the Web

 The separation of content, style and behavior

 Introducing HTML5
 Tags and Elements

 Separating Heads from Bodies
 Attributes Tell Us About Elements

jQuery Ui ❘ 429

 Learning from Others by Viewing Their Source Code
 Elements for Marking Up Text

 Attribute Groups

 Core Attributes
 Internationalization

 Core Elements and Attributes

 About DOCTYPEs
 The <html> Element
 Character Encodings
 The <head> Element
 The <title> Element
 Links and Style Sheets
 Ensuring Backwards Compatibility for HTML5 Tags
 The <body> Element
 Common Content Elements

 Basic Text Formatting

 White Space and Flow
 Creating Headings Using <hn> Elements
 Creating Paragraphs Using the <p> Element
 Creating Line Breaks Using th e
 Element

 Creating Preformatted Text Using the
 <pre> Element

 Understanding Block and Inline Elements
 Grouping Content

 Document Outlines in HTML5
 The <div> element
 The <header> element
 The <hgroup> element
 The <nav> element
 The <section> element
 The <article> element
 The <hr> element
 The <blockquote> element
 Using the cite Attribute with the
 <blockquote> Elemen
 The <aside> element
 The <footer> element
 The <address> element

 Working With Lists

430 ❘ CHapTer 12 JQuerY: beYonD the baSicS

 The element
 The element
 The element
 The <dl> element
 The <dt> element
 The <dd> element

The JavaScript (ch12_eg18.js) is simple but completely transforms the lists into a compact, interac-
tive menu, as shown in Figure 12-14.

$(document).ready(function(){
 $("#menu").menu();
});

Figure 12-14

The Progressbar Widget
The Progressbar widget (http://jqueryui.com/progressbar/) is similar to the <progress> ele-
ment you learned about in Chapter 6 but represents a fully cross-browser solution.

The markup starts with a simple <div> element (ch12_eg19.html):

<div id="progress"></div>

The JavaScript takes a map argument with a single value property, 40, used to set a default value.
Unlike the <progress> element that has a value attribute, to access the value of a Progressbar,
you need to get the value property of the plug-in instance by passing the string "value" into
$().progressbar(). Figure 12-15 shows this widget in action.

$(document).ready(function(){
 $("#progress").progressbar({
 "value" : 40
 });
 console.log($("#progress").progressbar("value"));
});

jQuery Ui ❘ 431

Figure 12-15

The Slider Widget
The Slider widget (http://jqueryui.com/slider/) is roughly equivalent to the HTML5 input
range input type. Like the Progressbar widget before it, this also starts with a <div> element
(ch12_eg20.html):

 <div id="slider"></div>

The JavaScript illustrates a couple of things you can do with the slider. The first is to bind an event
to the "sliderchange" event using $().on(). The callback function then illustrates two different
ways to access the value of the slider. The first is to access the value property of the ui argument
passed into the callback function by the jQuery UI plug-in. The second is similar to the way you
accessed the value of the Progressbar, passing "value" in as a string to $().slider().

$(document).ready(function(){
 $("#slider").slider().on("slidechange", function(e , ui) {
 console.log(ui.value);
 console.log($("#slider").slider("value"))
 });
});

Figure 12-16 shows the widget.

Figure 12-16

The Spinner Widget
The Spinner widget (http://jqueryui.com/spinner/) enables you to increment and decrement
a numerical value using up and down arrows. The markup (ch12_eg21.html) starts with a simple
text input.

<input id="spinner" type="text">

A call to $().spinner() transforms it into the element shown in Figure 12-17:

$(document).ready(function(){
 $("#spinner").spinner();
});

Figure 12-17

432 ❘ CHapTer 12 JQuerY: beYonD the baSicS

The Tabs Widget
The Tabs widget (http://jqueryui.com/tabs/) takes structured content bound together with a
hash-based link and creates a series of tabbed elements. The markup (ch12_eg22.html) for this is a
little bit more complicated than some of the previous examples. There’s a wrapped <div> that can
accept the call to $().tabs(). Inside there’s a element that contains several <a> elements with
hrefs pointing to several page ids. The ids are then seen in a series of <div> elements that represent
the tab “body” content.

<div id="tabs">

 Tab1
 Tab2
 Tab3

 <div id="tab1">
 <p>Semiotics aute jean shorts occupy, pour-over raw denim odd
 future organic. Leggings keytar ennui chillwave photo booth</p>
 </div>
 <div id="tab2">
 <p>Semiotics aute jean shorts occupy, pour-over raw denim odd
 future organic. Leggings keytar ennui chillwave photo booth</p>
 </div>
 <div id="tab3">
 <p>Semiotics aute jean shorts occupy, pour-over raw denim odd
 future organic. Leggings keytar ennui chillwave photo booth</p>
 </div>
</div>

Calling $().tabs() (ch12_eg22.js) transforms the markup soup above into the component shown
in Figure 12-18.

$(document).ready(function(){
 $("#tabs").tabs();
});

Figure 12-18

The Tooltip Widget
The Tooltip widget (http://jqueryui.com/tooltip/) takes title and alt attributes and trans-
forms them into themeable HTML elements—basically a souped-up version of the standard browser
tooltip. The markup (ch12_eg23.html) for this is an <a> element with a title attribute.

<p>A <a href="http://htmlcssjavascript.com/" title="Visit Rob's blog:
HTML + CSS + JavaScript">a blog about web technology</p>

Summary ❘ 433

The JavaScript (ch12_eg23.js) creates the fancy tooltip shown in Figure 12-19:

$(document).ready(function(){
 $("#tabs").tabs();
});

Figure 12-19

SuMMarY

This chapter introduced you to two major components of web development: jQuery Ajax and
jQuery UI.

You learned how to make Ajax requests using jQuery, including how to request JSON, plain text,
and XML. You also learned how to use GET and POST requests.

Using what you learned about POSTing form data, you also learned about the basics of form valida-
tion using jQuery Validate.

After that you learned about the different features of the powerful jQuery UI library and saw basic
examples in action.

exerCiSeS

 1 . Use a jQuery GET request to get the file data/example1.json . The file contains an array . Every

element in the array is another array full of numbers . Loop through each element in the array and

write every number into the cell of a table with jQuery’s DOM manipulation tools . Style the table

so that it has 1-pixel black borders, 3 pixels of padding on all sides, and no space between the

cells . When you finish, the table should look something like Figure 12-20 .

Figure 12-20

434 ❘ CHapTer 12 JQuerY: beYonD the baSicS

 2 . Start with the following markup:

<div id="container">
 <h1>This book is about </h1>
 <ul id="subjects">
 HTML
 CSS
 JavaScript
 Ajax
 HTML5
 CSS3
 Video
 Audio

 <div id="target">
 <p>Drop subjects here!</p>
 </div>
</div>

 a . Apply the Draggable behavior to the elements . Use the revert property (http://api

.jqueryui.com/draggable/#option-revert) to ensure that the elements return to

their original place after they’re dropped .

 b . Apply the Droppable behavior to the <div> element with the id of target . If an is

dropped on it, use the drop callback to get the text of the selected and insert it into the

 element with the id of subject .

 c . Give the elements a single pixel, black border with 3 pixels of padding . Make them

200 pixels wide . The target box should be 300 pixels by 300 pixels, with a background of

#00ccff, and it should be pinned to the right edge of the page .

 d . If everything works, the page should look something like Figure 12-21, and you can update

the text of the <h1> by dragging subjects over to the target .

Figure 12-21

The answers to all the exercises are in Appendix A, “Answers to Exercises.”

Summary ❘ 435

 ⊲ wHaT You Learned in THiS CHapTer

TopiC keY TakeawaY

ajax Ajax is a dominant pattern in web application development . It enables you

to update a page without hitting the server for a full page request, creating

a smoother, more application-like experience .

ajax and jQuery jQuery provides rich, cross-browser utilities for handling Ajax interactions .

geT and poST The two basic methods of requesting information from a server are GET

and POST . jQuery makes both of these easy, providing mnemonic conve-

nience methods .

jQuery ui jQuery UI is a rich collection of JavaScript behaviors and widgets that

enable you to create advanced websites and web applications .

Checklists
This final chapter contains checklists on some helpful topics. The checklists are not intended
to be exhaustive and turn you into an expert on each of these topics (as there are entire books
devoted to the subjects of these checklists). Rather, the purpose is to show the key points
and bring together some of the things you have learned throughout the book. There are two
checklists, covering

➤➤ Search engine optimization

➤➤ Accessibility

SearCH engine opTiMizaTion CHeCkLiST

On any successful site, a good proportion of traffic comes from search engines. For people to
find you on a search engine, you want to be as near the top of their search results as possible.

The techniques you can use to improve your visibility in search engines are known as search
engine optimization, or SEO for short, and can be grouped in two ways:

➤➤ Things you can do on the site (on-page).

➤➤ Things that appear on other people’s sites (off-page).

Focus on the former because you have a lot more control over what appears on the pages of
your own site. (Although, mentions will be made of off-page techniques.)

on-page Techniques
Before you can start optimizing your site for search engines, you need to determine what
terms users would type into a search engine to find your site; these are known as keywords
and key phrases.

13

438 ❘ CHapTer 13 checkLiStS

You then need to include these keywords and phrases in the copy for your site. It is important for
these words and phrases to appear in four places:

➤➤ Title of the page: This is specified in the <title> element, which you met in Chapter 1,
“Structuring Documents for the Web.” It appears at the top of the browser window (above
all the toolbars).

➤➤ Description of the page: This is added using the <meta> tag. Although it is not visible on the
page, it is often shown on the results pages of search engines.

➤➤ Headings: You met the <h1> to <h6> tags in Chapter 1, which are used to help structure the
page, providing headings that describe what will be found in the subsequent sections.

➤➤ Body text: This is the copy that appears in the <body> of the page, for example, in para-
graphs, lists, and links.

Search engines rely on text; they cannot see what is in images (other than in the alt text that you
provide on images and in filenames). Therefore, if you can incorporate the keywords and phrases
that you have identified into these four parts of your pages, your site is more likely to get picked
up by search engines.

You can further help the search engines by carefully structuring your documents and using semantic
markup. A good way to add structure to your pages is to organize the sections of pages using head-
ings that describe what is in the following paragraphs, lists, images, and forms. Furthermore, elements
such as the <address>, <cite>, <code>, and elements help describe the information found inside
those elements.

NOTE When working with search engines, you should not try to fool them. (For
example, do not try to squeeze extra keywords onto your page by writing them in
the same color as the background of the page.) Search engines know a lot of ways
in which people try to fool them, and they will penalize you for this kind of behavior.
You should also avoid free (or paid) tools that promise to submit your site to hun-
dreds of search engines.

All the preceding information seems straightforward and easy to implement. For many people, the
biggest problem about SEO is in identifying the keywords and phrases that they should use in the first
place, and that is what this checklist focuses on.

identifying keywords and phrases
When choosing keywords and phrases, in most cases, you must focus not just on attracting volumes
of users but also on attracting the right kinds of visitors. For example, if you create a site for a service
that is offered locally, such as slate roofing, you probably are not interested in people who

➤➤ Do not live in the same geographic area you work in

➤➤ Have a roof made of tiles or shingles

➤➤ Live in apartment blocks (and do not have roofs to maintain)

Search engine Optimization Checklist ❘ 439

Therefore, getting 10,000 people to visit you by searching for “new roof” is not likely to be as valuable
to you as getting 100 people who are looking for “slate roof Chicago.”

The page people find in the search engine must have a title and description that relate to the key-
words people use when they search, because the titles and descriptions are commonly displayed in
search engine results. If users do not think the page looks relevant (by looking at the information
the search engine returns), they are less likely to click the link to your page.

So, to determine the search terms you should use on your site, use the steps in the following sections.

Brainstorm for Words People Might Search On
List every individual word you think people might search under when looking for your site.

Select Five to Ten Major Keywords
From your brainstorming list, select 5–10 major keywords, most of which will be single words.
(Although you may have a couple phrases, such as “slate roof.”)

Write these 5–10 major keywords in columns because you are going to create lists underneath them.

List Other Keywords and Phrases That Correspond to Your Major Keywords
Now that you have your list of major keywords, you can go back to your brainstorming session and
expand upon the 5–10 major keywords you selected. List keywords and phrases that closely correspond
to these major keywords. You might find it helpful to look up synonyms of words in your list and also
the root words of terms. (For example, you might add “light” to a list that covers lighting.)

You must also consider more generic terms such as “buy,” “download,” “free,” “info,” or “tips,” if
you think that potential visitors might be hoping for one of these.

You should look for a total of approximately 20–30 popular phrases that you think your target
audience will search for.

NOTE If you have a phrase that contains words such as “the” or “and,” do not
skip that word in the phrase. For example, “chicken and mushroom pie” should
not become “chicken mushroom pie.”

Look Up Related Words (not exact Matches)
Sometimes, people search for terms that are not exactly what your site offers, but they are close
enough for your site to be relevant to that visitor. For example, thinking back to the café example,
you might add “restaurant” and “coffee shop” to the lists.

If there are some terms that are not exact matches but are relevant and related to the content of your
site, add them under the major keywords.

440 ❘ CHapTer 13 checkLiStS

Determine the Popularity of Terms
Use one of the following web-based tools to look up the words and phrases on your list.

➤➤ Keyword Discovery: www.keyworddiscovery.com

➤➤ Wordtracker: www.wordtracker.com

These tools both show alternative options for search terms. They also show the number of times
people have searched for these words.

When you look at the alternative options for search terms on these sites, you want to look at the top
10 variations to see how many are relevant—if several of the top 10 variations on the term apply to
your site, this should be a core term and you should list the top 10 variations with it.

Prioritize the Core Terms
To determine the priority of the core terms that you have found, you need to look at the number of
searches each core term received, and compare this number with how closely you think that search
meets your target audience. At first this will require you to judge which terms you think might be
most relevant to your audience, but as your site grows, you can use analytics software to discover
how people are finding your site.

If a search term generates 10,000 visitors, but only 10 percent would be interested in the content of
your site, that term is not as valuable as a term that attracts just 5,000 viewers of whom 50 percent
would be interested in your content.

Location
If the information, service, or product your site offers is location-dependent, the location should be
added to your core terms.

The location you choose to include might not just be the name of the town that your business is based
in. If you have customers across the state, county, or region that you work in, you might want to use
those names, too. (More people might search on the name of the region than on your specific town.)

Mapping Core Terms to Pages
Now you need to take the core terms (and their variations) and map them to the most relevant page.

Most of the core terms will match to internal pages. You might have more than one page focused
on one core term, but you should not try to get more than one core term per page (or one core term
plus location).

Homepages
The two or three most general (rather than specific) core terms and the most popular core terms
should be prime targets for the homepage.

Whenever you look at your on-page techniques for search engine optimization, you must measure the
success of your efforts. This involves not only looking at things such as your page rank in Google but

Accessibility Checklist ❘ 441

also using analytics software like Google Analytics (http://www.google.com/analytics/) to see
which terms people search on frequently to find your site.

off-page Techniques
When search engines calculate where to position your site on a list of search results, the major
search engines consider the number of sites that link to you.

The search engines look not just for any site that links to you but rather for sites that contain terms
similar to those that people enter into search engines to find your site. For example, a search engine
would not consider a link from an acupuncture site to a site about slate roofing as having the impor-
tance of a link between a building projects site and a site about slate roofing.

Search engines also look at the words that appear between the opening <a> tag and the closing
tag. If the text in the link contains keywords, the search engines consider that link more relevant than
one that just says something like “Click here.”

If you use analytics software on your site, you can see which sites link to you. You can then use this
information to find more sites that cover similar topics to see if they would like to cover you, too.

aCCeSSiBiLiTY CHeCkLiST

Accessibility is about ensuring that as many people as possible can access your web pages. Traditionally,
writing on accessibility has focused on people who may have disabilities such as vision impairments
(and therefore use screen readers to read the content of websites to them). Others might have poor
motor control and find it hard to use a mouse. However, it is increasingly becoming apparent that
accessibility techniques apply to people who simply do not use a standard desktop PC to access web
pages—for example, those on mobile devices who might not use a mouse or view as many images at the
same time.

Entire books have been written on accessible design for the web, but this checklist can help ensure
that your site meets basic accessibility requirements, and points you to the relevant part of the book
where each of these topics was discussed.

Setting up Your document
When creating any new document, you should

➤➤ Use a DOCTYPE declaration to indicate which version of HTML or XHTML you use.

➤➤ Specify the language of your document on the <html> element. For example:

<html lang="en">

If the language changes in the middle of the text, specify it with another lang attribute
indicating the new language on the element.

442 ❘ CHapTer 13 checkLiStS

Structural and Semantic Markup
In Chapter 1, you met many elements used to mark up text. You should always try to use these elements
to add structure and semantic information to the words on the page. Where possible

➤➤ Use the different levels of headings <h1> through <h6> to organize and add structure to
your pages.

➤➤ Use elements for the purpose they were created, not just for visual effects. (Use CSS to control
presentation of documents.)

➤➤ Use any elements available that describe the purpose or meaning of words in your page; for
example, use the <abbr> element when you have an acronym or abbreviation on the page, use
the <address> element when you have a mail address to write out, and use the <code> element
when you write code.

Links and navigation
As you saw in Chapter 3, “Links and Navigation,” links are one of the key things that differentiate
the web from other media. Your links need to be as accessible as possible so that people can navigate
to your site. When you are creating links

➤➤ Ensure that your links stand out on the page, so visitors can easily see where they should be
clicking and thus can skim the page for links.

➤➤ Use text or images inside the link that describe what visitors see if they click the link. (Do not
just use terms such as “Click here.”) If you use images inside a link, ensure that the alt text
describes what users see if they click the link.

➤➤ You can use the title attribute on an <a> element to provide additional information to
a visitor.

➤➤ In Chapter 6, “Forms,” you saw how forms can make use of keyboard shortcuts to help visitors
navigate the form. Keyboard shortcuts could also be used to link to other parts of pages.

➤➤ Avoid opening links in new windows because this can often confuse users who either do not
see the new window opening or end up with more windows open than they wanted.

➤➤ Avoid links and interactive elements, such as cascading drop-down menus with many levels,
which require a user to have fine control over the mouse (or other pointing device).

images and Multimedia
Images, audio, and video (as you saw in Chapter 4, “Images, Audio, and Video”) can bring a page
to life. But assistive technologies used by those who have vision impairments cannot describe the
content of an image, audio file, or video. Therefore, there is one key rule for all kinds of multi-
media content: Always provide a text description for nontext content. To achieve this

➤➤ Provide an alt attribute for every image, and ensure that the text you specify as a value of
the alt attribute describes the content of that image to a visitor. The only exception to this
rule is when the image does not convey any meaning. (Perhaps it is just a decorative element.)
In this case you still use the alt attribute, but you do not give it a value.

Accessibility Checklist ❘ 443

➤➤ If the image is complex and the description does not fit nicely into the alt attribute
(for example, if you have an information graphic), you can use the longdesc attribute to
specify where a longer description is, or use a letter D inside a normal link that points
to a longer description.

➤➤ If you have video or audio track, provide a text-based transcript (on either the same page or
a link to it).

➤➤ If you use an image map, offer a text-based alternative to the image links.

➤➤ If you provide any animated content, ensure that there is an easy way for the visitor to pause
or stop that content.

➤➤ You should also avoid using animated content that could induce a seizure (for example,
strobed content). If you do want to include such content, there should be a clear warning
before that content, which the user should be forced to read and agree to.

Color
Color is an important part of any website, but color blindness is far more prevalent than most
web designers realize. When you are creating a page, color can help add information and organize
the page; however,

➤➤ No information on the page should be conveyed by color alone.

➤➤ There must be sufficient contrast between backgrounds and text so that the user can read
the content.

Tables
You looked at creating tables in Chapter 5, “Tables.” When you create a table, you should

➤➤ Use <th> elements for all headings.

➤➤ Describe the content of the table using the <caption> element.

➤➤ Use the scope and header, in complex tables.

➤➤ Use scope attributes to describe which cells each heading corresponds to.

➤➤ Not use tables as a way to control the layout of entire pages.

Forms
Chapter 6 introduced forms, which you need to use if you want to collect information from visitors
to your site. It then discusses them again in the chapters that cover JavaScript. Some instructions for
their use follow:

➤➤ Use the <label> element to indicate the label for each individual type of form element.

➤➤ If a user makes an error, where possible write the error next to the appropriate form field,
and give that form element focus, so the user can correct the element.

444 ❘ CHapTer 13 checkLiStS

➤➤ Make use of the <fieldset> and <legend> elements to group form controls into related
functionality.

➤➤ Access keys can help users navigate long forms.

Style Sheets
You looked at CSS in Chapters 7 (“Cascading Style Sheets”), 8 (“More Cascading Style Sheets”),
and 9 (“Rounded Corners, Animations, Custom Fonts, and More with CSS3”). Using CSS to control
the presentation of a document can automatically help improve accessibility of the page because style
sheets can be overruled by a user when necessary. But you should still

➤➤ Organize the page so it can still be read without style sheets.

➤➤ Ensure that you have provided enough contrast in colors so that any text can easily be read.

➤➤ Aim to design for device independence, or use CSS to provide alternative style sheets for
multiple devices.

JavaScript
JavaScript was covered in Chapters 10 (“Learning JavaScript”), 11 (“Working with jQuery”), and
12 (“jQuery: Beyond the Basics”). Your pages must work even if the user does not have JavaScript
enabled. Here are some instructions that help ensure your scripts do not compromise the accessibil-
ity of pages:

➤➤ If you need to use JavaScript on your pages (and they will not work without it), you should
use the <noscript> element to provide an explanation that the page will not work if the
visitor does not have JavaScript enabled.

➤➤ Do not automatically refresh pages. If you provide this feature, allow visitors the option to
turn it off.

➤➤ Do not use JavaScript to redirect people from one page to another.

➤➤ Ensure that your scripts can be controlled with accessible/assistive technologies (such as
screen readers).

Skip Links
One topic not covered in the main part of this book is the creation of skip links. These are links that
enable people who use screen readers (rather than visual browsers) to skip over the common content
that appears on every page, such as the header and main navigation. Imagine that you are browsing
the web using technology that reads every page to you. You can see that on sites where you viewed
many pages, it would not take long to get tired of hearing the same header repeated every time you
moved to a new page.

The solution to this problem is a technique generally known as skip links or skip navigation. It simply
involves creating links to specific parts of the page, such as the main content, and then hiding those

Accessibility Checklist ❘ 445

links from users who browse visually using CSS. For example, look at the following links after the
opening body element:

<body>
 <div class="skip-links">
 skip to main content
 skip to search
 skip to footer
 </div>

These links correspond to id attributes of <a> elements in the relevant sections of the page. For
example, the first <h1> element might look like this:

<h1>Introduction to Accessibility</h1>

The links at the top of the page are hidden using a CSS rule like this so that visitors using a normal
visual browser do not see the skip links:

.skip-links {display:none;}

This makes browsing a site pleasant for those who have the site read to them.

Answers to exercises
This appendix covers the answers to each of the exercises at the end of each chapter.

CHapTer 1

exercise 1
Mark up the following list, with inserted and deleted content:

Ricotta pancake ingredients:

➤➤ 1 1/2 3/4 cups ricotta

➤➤ 3/4 cup milk

➤➤ 4 eggs

➤➤ 1 cup plain white flour

➤➤ 1 teaspoon baking powder

➤➤ 75g 50g butter

➤➤ Pinch of salt

Answer
Here is the bulleted list with elements that show which content has been inserted and deleted:

<h1>Ricotta pancake ingredients:</h1>

 1 1/2<ins>3/4</ins> cups ricotta
 3/4 cup milk
 4 eggs
 1 cup plain <ins>white</ins> flour
 1 teaspoon baking powder

A

448 ❘ appendix a anSWerS to exerciSeS

 75g<ins>50g</ins> butter
 Pinch of salt

CHapTer 2

exercise 1
Mark up the following sentence with the relevant presentational elements.

The 1st time the bold man wrote in italics, he emphasized several key words.

Answer
The sentence uses superscript, bold, italic, and emphasized elements.

<p>The 1st time the bold man wrote in
 <i>italics</i>, he emphasized several key words.</p>

exercise 2
You have already created the homepage for the Example Café site that you will build throughout
the book. You also created a recipes page. Now you need to create three more pages so that you can
continue to build the site in upcoming chapters. Each page should start like the homepage, with a
level 1 heading titled Example Café, followed by this paragraph: Welcome to Example Café. We will
be developing this site throughout the book. After this

 a . For a menu page, add a level 2 heading titled Menu. This should be followed by a paragraph
saying The menu will go here. Update the content of the <title> element to reflect that this
page will feature the menus at the café. Save the file with the name menu.html.

 b . For an opening times page, add a level 2 heading saying Opening hours. This should be
followed by a paragraph saying Details of opening hours and how to find us will go here.
Update the <title> element to reflect that the page tells visitors opening hours and where
to find the café. Save the file with the name opening.html.

 c . For the contact page, add a level 2 heading titled Contact. This page should contain this
address: 12 Sea View, Newquay, Cornwall, UK. Update the <title> element to reflect that
the page tells visitors how to contact the café.

Answer
The markup for menu.html should look like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example Cafe - Menu</title>

Chapter 3 ❘ 449

 </head>
 <body>
 <h1>Example Café</h1>
 <p>Welcome to Example Café. We will be developing this site
 throughout the book.</p>
 <h2>Menu</h2>
 <p>The menu will go here.</p>
 </body>
</html>

The markup for opening.html should look like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example Cafe - Menu</title>
 </head>
 <body>
 <h1>Example Café</h1>
 <p>Welcome to Example Café. We will be developing this site
 throughout the book.</p>
 <h2>Opening Hours</h2>
 <p>Details of opening hours and how to find us will go here. </p>
 </body>
</html>

The markup for contact.html should look like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example Cafe - Menu</title>
 </head>
 <body>
 <h1>Example Café</h1>
 <p>Welcome to Example Café. We will be developing this site
 throughout the book.</p>
 <h2>Contact</h2>
 <p>12 Sea View, Newquay, Cornwall, UK</p>
 </body>
</html>

CHapTer 3

exercise 1
Look back at the Try It Out example where you created a menu, and create a new page that links
directly to each course on the menu. Then add a link to the main Wrox website (www.wrox.com).
The page should look something like Figure A-1.

450 ❘ appendix a anSWerS to exerciSeS

Figure a-1

Answer
Here is the page with links to the menu first and then a link to the Wrox Press website:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Links to Example Cafe and Wrox.com</title>
</head>
<body>
 <h1>Links to Example Cafe</h1>
 <p>
 Starters |
 Main Courses |
 Desserts
 </p>
 <p>This is an example taken from a book published by
 Wrox Press
 </p>.
</body>
</html>

exercise 2
Go back to the pages in the sample application and make sure that you have updated the navigation
for each page.

Answer
Navigation for the homepage:

<nav>
 HOME
 MENU
 RECIPES
 CONTACT
</nav>

Chapter 4 ❘ 451

Navigation for the menu page:

<nav>
 HOME
 MENU
 RECIPES
 CONTACT
</nav>

Navigation for the recipes page:

<nav>
 HOME
 MENU
 RECIPES
 CONTACT
</nav>

Navigation for the contact page:

<nav>
 HOME
 MENU
 RECIPES
 CONTACT
</nav>

CHapTer 4

exercise 1
Add the images of icons that represent a diary, a camera, and a newspaper to the following example.
All the images are provided in the images folder in the download code for Chapter 4.

<h1>Icons</h1>
<p>Here is an icon used to represent a diary.</p>

<p>Here is an icon used to represent a picture.</p>
Camera image goes here

<p>Here is an icon used to represent a news item.</p>
Newspaper image goes here

Your finished page should resemble Figure A-2.

452 ❘ appendix a anSWerS to exerciSeS

Figure a-2

Answer
Here is the code for this page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Exercise 1</title>
</head>
<body>
 <h1>Icons</h1>
 <p>Here is an icon used to represent a diary.</p>

 <p>Here is an icon used to represent a picture.</p>

 <p>Here is an icon used to represent a news item.</p>

</body>
</html>

Chapter 4 ❘ 453

exercise 2
Look at the images shown in Figures A-3 and A-4 and decide whether you are more likely to get
smaller file sizes and better quality images if you save them as PNGs or JPEGs.

Figure a-3

Figure a-4

454 ❘ appendix a anSWerS to exerciSeS

Answer
As discussed in Chapter 3, “Links and Navigation,” images with large, flat areas of color, such as
Image 1 where you see only the silhouette of the people, compress better as GIFs or PNGs than JPEGs,
whereas JPEGs are better for saving photographic images where there is greater variety of colors and
more difference in the shades of different colors.

➤➤ Image 1 (Figure A-3): GIF or PNG

➤➤ Image 2 (Figure A-4): JPEG

exercise 3
Go through the files for the sample application and replace the main heading with the logo on
each page. On every page except for the homepage, make sure that the image links back to the
index.html page.

Answer
The new heading should look like this:

 <img src="images/logo.gif" alt="example cafe logo" width="194"
height="80" >

CHapTer 5

exercise 1
Where should the <caption> element for a table be placed in the document and, by default, where is
it displayed?

Answer
The <caption> element should appear after the opening <table> element but before the first
<tr> element.

exercise 2
In what order would the cells in Figure A-5 be read out by a screen reader?

Figure a-5

Chapter 6 ❘ 455

Answer
The names would be read in the following order: Emily, Jack, Frank, Mary, Dominic, Amy,
Thomas, Angela, and David.

CHapTer 6

exercise 1
Create an e-mail feedback form that looks like the one shown in Figure A-6.

Figure a-6

The first textbox is a readonly textbox so that the user cannot alter the name of the person the
e-mail is sent to.

Answer
Here is the code for the feedback form:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Reply to ad</title>
</head>

456 ❘ appendix a anSWerS to exerciSeS

<body>
<h1>Reply to ad</h1>
<p>Use the following form to respond to the ad:</p>
<form action="http://www.example.com/ads/respond.aspx" method="post"
 name="frmRespondToAd">
<table>
 <tr>
 <td><label for="emailTo">To</label></td>
 <td><input type="text" name="txtTo" readonly="readonly" id="emailTo"
 size="20" value="Star Seller" /></td>
 </tr>
 <tr>
 <td><label for="emailFrom">To</label></td>
 <td><input type="text" name="txtFrom" id="emailFrom" size="20" /></td>
 </tr>
 <tr>
 <td><label for="emailSubject">Subject</label></td>
 <td><input type="text" name="txtSubject" id="emailSubject"
 size="50" /></td>
 </tr>
 <tr>
 <td><label for="emailBody">Body</label></td>
 <td><textarea name="txtBody" id="emailBody" cols="50" rows="10">
 </textarea></td>
 </tr>
</table>
 <input type="submit" value="Send email" >
</form>
</body>
</html>

exercise 2
Create a voting or ranking form that looks like the one shown in Figure A-7.

Figure a-7

Chapter 6 ❘ 457

The following <style> element was added to the <head> of the document to make each column of
the table the same fixed width, with text aligned in the center.

<head>
 <title>Voting</title>
 <style type="text/css">td {width:100px; text-align:center;}</style>
</head>

Answer
Here is the code for the voting form. The checked attribute is used on the middle value for this form
so that it loads with an average score (in case the form is submitted without a value selected):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Voting</title>
 <style type="text/css">td {width:100px; text-align:center;}</style>
</head>
<body>
<h2>Register your opinion</h2>
<p>How well do you rate the information on this site (where 1 is
 very poor and 5 is very good)?</p>
<form action="http://www.example.com/ads/respond.aspx" method="get"
 name="frmRespondToAd">
 <table>
 <tr>
 <td><input type="radio" name="radVote" value="1" id="vpoor" /></td>
 <td><input type="radio" name="radVote" value="2" id="poor" /></td>
 <td><input type="radio" name="radVote" value="3" id="average"
 checked="checked" /></td>
 <td><input type="radio" name="radVote" value="4" id="good" /></td>
 <td><input type="radio" name="radVote" value="5" id="vgood" /></td>
 </tr>
 <tr>
 <td><label for="vpoor">1
Very Poor</label></td>
 <td><label for="poor">2
Poor</label></td>
 <td><label for="average">3
Average</label></td>
 <td><label for="good">4
Good</label></td>
 <td><label for="vgood">5
Very Good</label></td>
 </tr>
 </table>
 <input type="submit" value="Vote now" />
</form>
</body>
</html>

458 ❘ appendix a anSWerS to exerciSeS

CHapTer 7

exercise 1
In this exercise (and the next), you continue to work on the Example Café website. Open the index
.html page, and add a <div> element just inside the opening <body> tag and the closing </body>
tag. Give the element an id attribute whose value is page. Repeat this for each page of the site.

 a . In the style sheet add a rule that gives this element a margin, border, and padding so that it
looks like the border in Figure A-8.

Figure a-8

Answer
Here is the HTML for the homepage; you can see the new <div> element has
been highlighted:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Example Cafe - community cafe in Newquay, Cornwall, UK</title>
 <link rel="stylesheet" href="css/interface.css">
</head>

Chapter 7 ❘ 459

<body>
 <div id="page">
 <header>
 <img src="images/logo.gif" alt="example cafe logo"
 width="194" height="80" >
 <nav id="navigation">
 HOME
 MENU
 RECIPES
 CONTACT
 </nav>
 </header>
 <article>
 <h1>Home</h1>
 <img src="images/scrambled_eggs.jpg" width="622" height="370"
 alt="Photo of scrambled eggs on an English muffin" align="left" >
 <h2>A community cafe serving home cooked, locally sourced, organic
food</h2>
 <p>With stunning views of the ocean, Example Cafe offers the
 perfect environment to unwind and recharge the batteries.</p>
 <p>Our menu offers a wide range of breakfasts, brunches and
lunches,
 including a range of vegetarian options.</p>
 <p>Whether you sip on a fresh, hot coffee or a cooling smoothie,
you
 never need to feel rushed. Relax with friends or just watch the world go
 by.</p>
 <h2>This weekend's special brunch</h2>
 <p>This weekend, our season of special brunches continues with
scrambled
 egg on an English muffin. Not for the faint-hearted, the secret to these
eggs
 is that they are made with half cream and cooked in butter, with no more
than four eggs in the pan at a time.</p> </article>
 </div>
</body>
</html>

Now here is the CSS rule that creates the blue border:

#page {
 width:960px;
 border:10px solid #3399cc;
 padding:40px;
 margin:20px;
}

 b . Create a CSS rule that makes the following changes to the navigation:

 i . Add a single-pixel gray border on the top and bottom.

 ii . Give it 20 pixels of margin above and below the gray lines.

 iii . Give it 10 pixels of padding on the top and bottom in the box.

 iv . Add a margin to the right of each link in the navigation.

460 ❘ appendix a anSWerS to exerciSeS

Answer
The first three changes (for points a, b, and c) can be handled using one CSS rule. The
rule must control four properties:

➤➤ The border-top and border-bottom properties add a single-pixel gray line
above and below the navigation.

➤➤ The padding property adds space between the lines and the items in the
navigation.

➤➤ The margin property adds a bit of space above and below the gray lines.

➤➤ The margin-right property can be used to add space to the right of each indi-
vidual link.

#navigation {
 border-top:1px solid #d6d6d6;
 border-bottom:1px solid #d6d6d6;
 padding:10px 0px 10px 0px;
 margin:20px 0px 20px 0px;
}
#navigation a {
 color:#3399cc;
 text-decoration:none;
 margin-right:20px;
}

 c . Give the main image on the homepage a class attribute whose value is main_image.
Then create a rule that gives the image a single-pixel black border, and also give the image
a 10-pixel margin on the right and bottom sides of the image.

Answer
Here is the new CSS rule that controls the appearance of the image:

.main_image {
 border:1px solid #000000;
 margin:0px 10px 10px 0px;}

 d . Increase the gaps between each line of text within paragraphs to 1.3 em.

Answer
You can add the line-height property to the rule that controls the <p> elements to
change the gap between the text, which typesetters refer to as leading.

p {
 color:#333333;
 font-size:90%;
 line-height:1.3em;
}

Chapter 7 ❘ 461

exercise 2
Take a look at the following HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Font test</title>
 <link rel="stylesheet" href="tableStyles.css" />
</head>
<body>
<table>
 <tr>
 <th>Quantity</th>
 <th>Ingredient</th>
 </tr>
 <tr class="odd">
 <td>3</td>
 <td>Eggs</td>
 </tr>
 <tr>
 <td>100ml</td>
 <td>Milk</td>
 </tr>
 <tr class="odd">
 <td>200g</td>
 <td>Spinach</td>
 </tr>
 <tr>
 <td>1 pinch</td>
 <td>Cinnamon</td>
 </tr>
 </table>
</body>
</html>

Now create the tableStyles.css style sheet, which makes this example look like Figure A-9.

Figure a-9

462 ❘ appendix a anSWerS to exerciSeS

Don’t worry about getting the sizes exactly the same as the screen shot, but do make sure you have
padding in the cells and a border around the outside. The white border is created by default in IE;
you find out how to remove this in Chapter 8.

Answer
First, you need to add a style rule for either the <body> element or all elements using the universal
selector *, which indicates that the rule applies to all elements. As mentioned in the chapter, set the
background-color property of the <body> element on a site in case the user has set it to another
value. You can also set the font-family and font-size properties to control how the text appears.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:14px;
}

To give the entire table a single-pixel, dark gray border, you can use the following style rules, or you
could just use the border property shorthand:

table {
 border-style:solid;
 border-width:1px;
 border-color:#666666;
}

The table headings have a dark background with light writing; the font is also bold. In addition,
there is no border to the headings. Note how the shorthand border property is used this time and
the cells have padding:

th {
 color:#ffffff;
 background-color:#999999;
 font-weight:bold;
 border:0;
 padding:4px;
}

By default, the table rows will have a light background color:

tr {background-color:#cccccc;}

To alternate the colors of the rows, the <tr> elements that have a class attribute whose value is odd
will have a different background color:

tr.odd {background-color:#efefef;}

Finally, you should give two pixels of padding to each table cell, and ensure that the color of the text
in the cells is black.

td {
 color:#000000;
 padding:2px;
}

Chapter 8 ❘ 463

CHapTer 8

exercise 1
In this exercise, you create a linked table of contents that sits at the top of a long document in an
ordered list and links to the headings in the main part of the document.

The HTML file exercise1.html is provided with the download code for this book, ready for you
to create the style sheet. Your style sheet should do the following:

➤➤ Set the styles of all links including active and visited links.

➤➤ Make the contents of the list bold.

➤➤ Make the background of the list light gray and use padding to ensure the bullet points show.

➤➤ Make the width of the links box 250 pixels wide.

➤➤ Change the style of heading bullet points to empty circles.

➤➤ Change the style of link bullet points to squares.

Your page should look something like Figure A-10.

Figure a-10

Answer
You can create a rule that applies to the <body> element to control the background color of the page
and the font used.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

464 ❘ appendix a anSWerS to exerciSeS

There were several tasks that related to the list of bullet points that make up the contents. If you
look at the following rule, you can see it starts by setting the background color of the list to a light
gray. This is followed by a property that sets the default style of bullet points to empty circles. Then
all the text is made bold. The fourth property sets the padding to the left of the list. Finally, the
width of the lists is set to 250 pixels wide.

ul {
 background-color:#d6d6d6;
 list-style:circle;
 font-weight:bold;
 padding-left:30px;
 width:250px;}

The links to the sections are in nested unordered lists, and there are a couple of properties you need
to set for these lists. First, you must set the bullet points to squares. Second, because all unordered
lists have a gray background and are 250 pixels wide, the nested lists would poke out to the right
side if you did not make them less wide.

ul ul {
 list-style:square;
 width:220px;}

The final item on the list was to set the styles of all links including active and visited links, which
requires another four rules:

a:link {
 color:#0033ff;;
 text-decoration:none;}
a:visited {
 color:#0066ff;
 text-decoration:none;}
a:active {
 text-decoration:underline;}
a:link:hover {
 color:#003399;
 background-color:#e9e9e9;
 text-decoration:underline;}

exercise 2
In this exercise, you test your CSS positioning skills. You should create a page that represents the
links to the different sections of the chapter in a different way. Each of the sections must be shown
in a different block, and each block must be absolutely positioned in a diagonal top-left to bottom-
right direction. The middle box should appear on top, as shown in the Figure A-11.

You can find the source HTML file (exercise2.html) with the download code for this chapter.

Chapter 8 ❘ 465

Figure a-11

Answer
To begin, set the background color for the entire page and default font in a rule that applies to the
<body> element.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

Next, set a rule that applies to all the <div> elements. Even though you will change the background
color of two of the boxes, whenever boxes are taken out of normal flow, there is a risk that they will
overlap, so you should give them a background color (because by default boxes have no background).

You can also set some common properties, adding padding to each box, as well as a border and the
width of the boxes.

div {
 background-color:#ffffff;
 padding:10px;
 border-style:groove; border-width:4px; border-color:#999999;
 width:300px;}

Finally, you simply position each of the boxes. Because the containing element is the <body> ele-
ment, you position each box from the top-left corner of the browser window.

div.page1 {
 position:absolute;
 top:70px;

466 ❘ appendix a anSWerS to exerciSeS

 z-index:2;
 background-color:#d6d6d6;}

div.page2 {
 position:absolute;
 top:170px; left:100px;
 z-index:3;}

div.page3 {
 position:absolute;
 top:270px; left:200px;
 z-index:1;
 background-color:#efefef;}

CHapTer 9

exercise 1
In this exercise, you create a linked table of contents that sits at the top of a long document in an
ordered list and links to the headings in the main part of the document.

The HTML file exercise1.html is provided with the download code for this book, ready for you
to create the style sheet. Your style sheet should do the following:

➤➤ Round the corners of the #contents <div> element with a 12-pixel corner radius.

➤➤ Make the background color of the #contents element 70 percent opaque, leaving the
text black.

➤➤ Change the font to be Inconsolata using http://www.fontsquirrel.com/fonts/
Inconsolata.

Your page should look something like Figure A-12.

Figure a-12

Chapter 9 ❘ 467

Answer
Your CSS should look something like the following:

@font-face {
 font-family: 'InconsolataMedium';
 src: url('fonts/Inconsolata-webfont.eot');
 src: url('fonts/Inconsolata-webfont.eot?#iefix')
 format('embedded-opentype'),
 url('fonts/Inconsolata-webfont.woff') format('woff'),
 url('fonts/Inconsolata-webfont.ttf') format('truetype'),
 url('fonts/Inconsolata-webfont.svg#InconsolataMedium')
 format('svg');
 font-weight: normal;
 font-style: normal;

}
#contents {
 padding : 10px;
 font-family : InconsolataMedium;
 background-color : hsla(0,0%,80%,.7);
 width : 400px;
 -webkit-border-radius: 12px;
 border-radius: 12px;
}

exercise 2
In this exercise, you test your understanding of border-radius and the Transitions module to make
a neat hover effect. Your style sheet should do the following:

➤➤ Set 1 second transitions for both the :hover and standard state. Transition the border-radius
and background-color properties.

➤➤ In the #hover:hover definition, change the background color to #00ccff and change the
border-radius to 100 pixels, which makes the box a circle.

The hover state of your page should look like Figure A-13.

You can find the source HTML file (exercise2.html) with the download code for this chapter.

Figure a-13

468 ❘ appendix a anSWerS to exerciSeS

Answer
Your style sheet should look like the following. It may look different depending on the number of
prefixed browser variations you use:

#hover {
 width : 200px;
 height : 200px;
 background-color : #ffcc00;
 -webkit-transition-property : background-color,
 -webkit-border-radius;
 -moz-transition-property : background-color,
 -moz-border-radius;
 -o-transition-property : background-color,
 -o-border-radius;
 transition-property : background-color,
 border-radius;
 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: background-color 1s;
 transition-duration: background-color 1s;
 text-align: center;
 line-height:200px;
}
#hover:hover {
 width : 200px;
 background-color : #00ccff;
 -webkit-transition-property : background-color,
 -webkit-border-radius;
 -moz-transition-property : background-color,
 -moz-border-radius;
 -o-transition-property : background-color,
 -o-border-radius;
 transition-property : background-color,
 border-radius;
 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: background-color 1s;
 transition-duration: background-color 1s;
 -webkit-border-radius : 100px;
 border-radius : 100px;
}

CHapTer 10

exercise 1
Create a script to write out the multiplication table for the number 5 from 1 to 20 using a
while loop.

Chapter 10 ❘ 469

Answer
The exercise is based around a counter (to work out where you are in your tables); each time the
code is run, the counter increments by 1. So, you need to make sure the counter can go up to 20,
rather than 10. This goes in the condition of the while loop:

while (i < 21) {

Then you need to change the multiplier, which is both written out and used in the calculation:

document.body.innerHTML+= "<p>" + i + " x 5 = " + (i * 5) + "</p>";

Depending on how you write out the results, your answer should look something like this:

var i = 1;
while (i < 21) {
 document.body.innerHTML+= "<p>" + i + " x 5 = " + (i * 5) + "</p>";
 i++;
}

exercise 2
Modify ch10_eg05.js so that it can say one of three things:

➤➤ “Good Morning” to visitors coming to the page before 12 p.m. (using an if statement).

➤➤ “Good Afternoon” to visitors coming to the page between 12 p.m. and 6 p.m. (again using
an if statement). (Hint: You might need to use a logical operator.)

➤➤ “Good Evening” to visitors coming to the page after 6 p.m. up until midnight (again using an
if statement).

Answer
This script needs to use the getHours() method of the date object to determine the time and then
uses if statements to check the appropriate time for each statement presented to the user.

The afternoon uses a logical operator to check that it is after 12 p.m. but before 6 p.m.

var date = new Date();
var time = date.getHours();

if (time < 12) {
 document.body.innerHTML += '<h1>Good Morning</h1>';
}
if (time >= 12 && time < 18) {
 document.body.innerHTML += '<h1>Good Afternoon</h1>';
}
if (time >= 18) {
 document.body.innerHTML += '<h1>Good Evening</h1>';
}

470 ❘ appendix a anSWerS to exerciSeS

CHapTer 11

exercise 1
Rewrite the code from the files ch10_eg03.html and ch10_eg03.js to use jQuery. Instead of a
console.log, add a <p> element to display the results as a child of the <body> element. Use the
jQuery method $().val() to get the value of the form fields.

Answer
First, you need to add jQuery and add the <p> element to hold the results.

<!DOCTYPE html>
<html>
<head>
<title>Area calculator</title>
</head>
<body>
<form name="frmArea">
Enter the width and height of your rectangle to calculate the size:

Width: <input type="text" name="txtWidth" size="5" id="width">

Height: <input type="text" name="txtHeight" size="5" id="height">

<input type="button" value="Calculate area" id="calc">
</form>
<p id="results">
</p>
<script src="js/jquery-1.8.2.min.js"></script>
<script src="exercise1.js"></script>
</body>
</html>

Then you need to adjust the script. Most of it is similar to the core JavaScript example; you just use
the jQuery convenience methods. The biggest difference is getting a reference to the #results <p>
element and using $().html() to write out the results of the calculation:

function calculateArea(width, height) {
 var area = width * height;
 return area
}

$("#calc").on("click" , function(){
 $("#results").html(calculateArea(
 $("#width").val(),
 $("#height").val()
));
});

Chapter 11 ❘ 471

exercise 2
Modify main.js in the Example Café site to test the hash of the URL. You can access the hash with
the BOM property window.location.hash. Use a conditional statement and jQuery to satisfy the
following three conditions:

➤➤ If the hash equals “starters,” hide the menu items for mains and desserts.

➤➤ If the hash equals “mains,” hide the menu items for starters and desserts.

➤➤ If the hash equals “desserts,” hide the menu items for starters and mains.

Test it by appending each hash to the file URL (for example, menu.html”#starters”).

➤➤ Note that the window.location.hash property includes the # character.

Answer
All the pieces for this script, with the exception of testing window.location.hash, are already in
place from the earlier Try It Out. The differences are as follows:

➤➤ You need to hide all the menu items instead of just the desserts and mains.

➤➤ You need to test the window.location.hash against the options and then show the correct
menu using a conditional statement.

➤➤ If there’s not a hash set at all or the hash doesn’t match any of the predefined options, you
need to show the default.

$(document).ready(function(){
 if ($("body").hasClass("menu")) {
 $("#starters + div, #mains + div, #desserts + div").hide();
 if (document.location.hash === "#starters") {
 $("#starters").addClass("expanded").next().show();
 } else if (document.location.hash === "#mains") {
 $("#mains").addClass("expanded").next().show();
 } else if (document.location.hash === "#desserts") {
 $("#desserts").addClass("expanded").next().show();
 } else {
 $("#starters").addClass("expanded").next().show();
 }
 $("h2").on("click", function(){
 if(!$(this).hasClass("expanded")) {
 $(".expanded").removeClass("expanded").next().slideUp("fast");
 $(this).addClass("expanded").next().slideDown("slow");
 }
 });
 }
});

472 ❘ appendix a anSWerS to exerciSeS

CHapTer 12

exercise 1
Use a jQuery GET request to get the file data/example1.json. The file contains an array. Every
element in the array is another array full of numbers. Loop through each element in the array and
write every number into the cell of a table with jQuery’s DOM manipulation tools. Style the table so
that it has 1-pixel black borders, 3 pixels of padding on all sides, and no space between the cells.

When you finish, the table should look something like Figure A-14.

Figure a-14

Answer
Using the $.get() convenience method, you need to get a reference to the cells from the data.cells
array. Then you build up a string of HTML in a for loop, using simple concatenation. There are dif-
ferent ways to build up HTML. This example simply uses a string that will eventually be passed into
$().html() to insert it into the DOM.

$(document).ready(function(){
 $.get('data/example1.json' , function(data){
 var cells = data.cells,
 html = "<table>";
 for (var i = 0, len = cells.length; i < len; i++) {
 html += "<tr>";
 for (var j = 0; j < cells[i].length; j++){
 html += "<td>" + cells[i][j] +"</td.>";
 }
 html += "<tr>";
 }
 html+="</table>";
 $("#container").html(html);
 });
});

Chapter 12 ❘ 473

exercise 2
Start with the following markup:

<div id="container">
 <h1>This book is about </h1>
 <ul id="subjects">
 HTML
 CSS
 JavaScript
 Ajax
 HTML5
 CSS3
 Video
 Audio

 <div id="target">
 <p>Drop subjects here!</p>
 </div>
</div>

 a . Apply the Draggable behavior to the elements. Use the revert property (http://api
.jqueryui.com/draggable/#option-revert) to ensure that the elements return to
their original place after they’re dropped.

 b . Apply the Droppable behavior to the <div> element with the id of target. If an is
dropped on it, use the drop callback to get the text of the selected and insert it into the
 element with the id of subjects.

 c . Give the elements a single-pixel, black border with 3 pixels of padding. Make them
200 pixels wide. The target box should be 300 pixels by 300 pixels, with a background of
#00ccff, and it should be pinned to the right edge of the page.

 d . If everything works, the page should look something like Figure A-15, and you can update
the text of the <h1> by dragging subjects over to the target.

Figure a-15

474 ❘ appendix a anSWerS to exerciSeS

Answer
This is another example of how powerful jQuery UI can be after you get the hang of it.

First, you instantiate the Draggable behavior on the elements, setting the revert property to
true so that the elements return to their original place after being dropped:

$(document).ready(function(){
 $("#subjects li").draggable({
 "revert" : true
 });

Then you need to set up the Droppable behavior with a callback function that reads the text of the
dropped and writes it into the subject element.

 $("#target").droppable({
 "drop" : function(e, ui){
 $("#subject").text($(ui.draggable).text());
 }
 });
});

CHapTer 13

There are no exercises in Chapter 13.

HTML element Reference
This appendix is a quick reference to the elements in the W3C HTML5 Candidate
Recommendation. They are listed with the attributes each element can carry and a brief
description of their purpose.

Note that if an attribute can be “empty,” that means it can be set without a value. For instance,

 ...

Also, obsolete attributes are not included here. They are listed in Appendix I, “Changes
between HTML4 and HTML5,” for your reference.

Core Attributes
Unless otherwise stated, the core attributes can be used with all the elements in this appendix.

accesskey = list_of_key_labels Defines a space-separated list of hotkeys/

keyboard shortcuts for the current element .

class = list_of_class_names Specifies a space-separated list of CSS classes for

the current element .

contenteditable = true | false

| "" | empty

Indicates whether the element is editable by

the user .

contextmenu = id Specifies the id of an HTML element to serve as a

context menu for the current element .

dir = ltr | rtl | auto Defines a unique identification value for that

element within the document .

draggable = true | false Specifies whether the element should be draggable .

dropzone = copy | move | link Specifies which kind of content can be dropped

on an element .

B

continues

476 ❘ appendix B htmL eLement reference

hidden = hidden | "" | empty The boolean attribute indicates whether the ele-

ment is hidden .

id = id Specifies a unique identifier for an element .

lang = language_tag Specifies the (human) language for the content of

the element .

spellcheck = true | false | ""

| empty

Indicates whether the current element should be

checked for spelling errors .

style = CSS_rule Specifies an inline CSS style rule for the element .

tabindex = integer Defines this element’s position in the tabbing order .

title = title Defines explanatory text for the element, which

can be displayed as a tooltip .

translate = yes | no Specifies whether the element’s attributes and

contents should be translated when the page

is localized .

<a>
Defines a hyperlink.

href = url Specifies the URL of the hyperlink target .

hreflang = language_tag Specifies the language of the link’s destination .

media = media_query Specifies, using a media query, the media the

linked resource applies to .

rel = relationship (same | next

| parent | previous | string)

Indicates the relationship of the current document

to the target document .

target = <window_name> |

_parent | _blank | _top | _self

Defines the name of the frame or window that

should load the linked document .

type = mime_type Defines the MIME type of the target .

<abbr>
Indicates that the content of the element is an abbreviation or an acronym. Use the title attribute
to provide the expansion of the abbreviation or acronym.

<address>
Indicates that the content of the element is an address.

(continued)

<area> ❘ 477

<area>
Used to specify coordinates for a clickable area or hotspot in an image map. This element must have
an ancestor <map> element.

alt = text Specifies alternative text for the area if the image can-

not be loaded .

coords = string Specifies a list of coordinates for the area .

href = url Specifies the URL of the hyperlink target .

hreflang = language_code Specifies the language encoding for the target of

the link .

media = media_query Specifies, using a media query, the media the linked

resource applies to .

rel = relationship (same | next |

parent | previous | string)

Indicates the relationship of the current area to the

target document .

shape = circ | circle | poly |

polygon | rect | rectangle

Defines the shape of a region .

target = <window_name> | _parent

| _blank | _top| _self

Defines the name of the frame or window that should

load the linked document .

type = mime_type Defines the MIME type of the target .

<article>
Indicates standalone content that can live outside the context of the page. Must not be written as a
child of an <address> element.

<aside>
Defines content that is tangentially related to the content of the page. Must not be written as a child
of an <address> element.

<audio>
Embeds audio within a document.

autoplay = autoplay | "" | empty Specifies whether the audio should automatically

begin playing .

controls = controls | "" | empty Specifies whether the audio should have

playback controls .

continues

478 ❘ appendix B htmL eLement reference

loop = loop | "" | empty Specifies whether the audio should play on a loop .

mediagroup = keystring Sets the browser to link together audio and video

streams with the same keystring .

muted = muted | "" | empty Specifies whether the audio should be muted initially .

preload = none | metadata | auto |

"" | empty

Provides a hint to the browser as to how to handle

preloading the video content .

src = url Specifies the URL of the video .

The content of the element should be displayed in a bold font.

<base>
Specifies a base URL for the links in a document. You must set at least one of the href and target
attributes.

href = url Specifies the URL of the base for the links in

this document .

target = <window_name> | _parent

| _blank | _top | _self

Defines the name of the frame or window that should

load the linked document .

<bdi>
Isolates text from its context for the purposes of bidirectional text formatting.

<bdo>
Turns off the bidirectional rendering algorithm for selected fragments of text.

A bdo element must have a dir attribute.

<blockquote>
The content of the element is a quotation. Usually used for a paragraph quote or longer. Otherwise
use the <q> element.

cite = url Specifies a URL for the source of the quote .

(continued)

<body> ❘ 479

<body>
Specifies the start and end of the body section of a page. All nonglobal attributes enable you to set
functions to run at a particular point in the document’s life cycle.

onafterprint = functionbody After the user has printed the current document .

onbeforeprint = functionbody Before the user has printed the current document but

after the print has been requested .

onbeforeunload = functionbody When the document is about to be unloaded .

onblur = functionbody When the document has lost focus . For example,

the cursor has moved out of the frame containing the

document .

onerror = functionbody When the document has failed to load properly .

onfocus = functionbody When the document has received focus .

onhashchange = functionbody When part of the document’s current address has

changed .

onload = functionbody When the document has finished loading .

onmessage = functionbody When the document has received a message .

onoffline = functionbody When network connections have failed .

ononline = functionbody When network connections have returned .

onpagehide = functionbody When the user has selected a page to view from

session history .

onpageshow = functionbody When the user has arrived at a page to view from

session history .

onpopstate = functionbody User navigated session history .

onresize = functionbody When the document viewing area has been resized .

onstorage = functionbody When a web storage area has changed .

onunload = functionbody When the document is being unloaded .

Inserts a line break.

480 ❘ appendix B htmL eLement reference

<button>
Creates an HTML button. Any enclosed markup is used as the button’s caption.

autofocus = autofocus | "" | empty Specifies that the button should have focus when the

page loads .

disabled = disabled | "" | empty Specifies the button is disabled, preventing user

intervention .

form = formID Indicates the associated <form> element for the

<button> element . Value should be the id of

the associated <form> .

formaction = URL Specifies the URL of the processing application that

will handle the form . If set on the button, it overrides

the action attribute of the form itself .

formenctype = "application/x-www-

form-urlencoded" | "multipart/

form-data" | "text/plain"

Specifies the encoding method for form values . If set

on the button, it overrides the enctype attribute of

the form itself .

formmethod = get | post Specifies how the data gets sent from the browser

to the processing application . If set on the button, it

overrides the method attribute of the form itself .

formnovalidate = formnovalidate |

"" | empty

Specifies whether the form should be validated

when submitted . If set on the button, it overrides the

novalidate attribute of the form itself .

formtarget = <window_name> |

_parent | _blank | _top | _self

Defines the name of the frame or window that should

load the results of the form . If set on the button, it

overrides the target attribute of the form itself .

name = name Specifies a name for the form control passed to the

forms processing application as part of the name/

value pair .

type = button | submit | reset Specifies the type of button .

value = string Specifies the value of the parameter sent to the

processing application as part of the name/value

pair (required) .

<canvas>
Defines a scriptable bitmap image canvas in the document.

height = number Specifies the height of the canvas in pixels .

width = number Specifies the width of the canvas in pixels .

<caption> ❘ 481

<caption>
The content of this element specifies a caption to be placed next to a table. It must be the child of a
<table> element.

<cite>
The content of the element is the title of a cited work.

<code>
The content of the element is code and should be rendered in a fixed-width font.

<col>
Represents one or more columns in its <colgroup> parent.

span = number Number of columns spanned by the <col> tag .

<colgroup>
Used to contain a group of columns in its <table> parent.

span = number Number of columns affected by the <colgroup> tag .

<command type="checkbox">
Represents a command that can be toggled.

checked = checked | "" | empty Specifies the command is selected .

disabled = disabled | "" | empty Specifies the command is not currently available .

icon = url A URL for the image that represents the command .

label = string The name of the command .

<command type="command">
Represents a command that a user can invoke; for example, a keyboard shortcut or menu option.

disabled = disabled | "" | empty Specifies the command is not currently available .

icon = url A URL for the image that represents the command .

label = string The name of the command .

482 ❘ appendix B htmL eLement reference

<command type="radio">
Represents a selection of one command from a list.

checked = checked | "" | empty Specifies the command is selected .

disabled = disabled | "" | empty Specifies the command is not currently available .

icon = url A URL for the image that represents the command .

label = string The name of the command .

radiogroup = string The name of the group of commands that will be

toggled when the command is toggled .

<datalist>
Specifies a list of predefined options for use in other form controls.

<dd>
Represents a description or value of an item in a definition list. This is usually indented from
other text.

The content of the element has been marked as having been deleted from an earlier version of the
document.

cite = url Specifies a URL for justification of deletion .

datetime = date Specifies the date and time it was deleted .

<details>
With the summary element, creates an interactive widget, which can show/hide information.

open = open | "" | empty Specifies the <details> element should initially be

visible on the page .

<dfn>
Defines an instance of a term.

<div>
A containing element to hold other elements, defining a generic section of a page. This is a block-
level container.

<dl> ❘ 483

<dl>
Denotes a definition list. Contains one or more <dt> elements, followed by one or more <dd>
elements.

<dt>
Denotes a term or a name within a definition list.

Represents a span of text to be emphasized, usually by rendering it in an italic font.

<embed>
Embeds files in a page that requires a plug-in.

height = number Specifies the height of the embedded object in pixels .

src = url Specifies the URL of the data to be used by the object .

type = mime_type Specifies the MIME type of the data used by the object .

width = number Specifies the width of the embedded object in pixels .

<fieldset>
Creates a box around the contained elements indicating that they are related items in a form.

disabled The boolean attribute disables the button, preventing user

intervention .

form = formID Indicates the associated <form> element for the <button>

element . Value should be the id of the associated <form> .

name = string The name of this element for use in form submission .

<figcaption>
The caption for a <figure> element.

<figure>
Defines content that illustrates or otherwise gives additional context to the main content.

<footer>
Defines a footer of a document or section of a document.

484 ❘ appendix B htmL eLement reference

<form>
Containing element for form controls and elements.

accept-charset =

list_of_encoding_names

Specifies a list of accepted character sets the pro-

cessing application can handle .

action = url Specifies the URL of the processing application that

will handle the form .

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

enctype = application/x-www-form-

urlencoded | multipart/form-data |

text/plain

Specifies the encoding method for form values .

method = get | post Specifies how the data gets sent from the browser to

the processing application .

name = string The name of the form .

novalidate = novalidate | "" |

empty

The boolean attribute indicates whether the form

should be validated when submitted .

target = <window_name> | _parent

| _blank | _top | _self

Defines the name of the frame or window that should

load the results of the form .

<head>
Container element for heading information about the document; its content will not be displayed in
the browser.

<header>
Defines the header of a document or section of a document.

<hgroup>
Groups a set of <hn> headers.

<hn>
Headings from <h1> (largest) through <h6> (smallest).

<hr>
Creates a horizontal rule across the page (or containing element) representing a thematic break in a
section of a document.

<html> ❘ 485

<html>
Containing element for an HTML or XHTML page.

manifest = url Specifies a resource manifest for files that should

be cached .

<i>
The content of this element should be rendered in an italic font.

<iframe>
Embeds an HTML document within a page.

height = number Specifies the height of the iframe in pixels .

name = string Specifies the name for the iframe for use as the

target of hyperlinks .

sandbox = allow-same-origin |

allow-top-navigation |

allow-forms |

allow-scripts | empty

Enables security restrictions on the content

contained in the iframe .

seamless = seamless | "" | empty Specifies whether the browser should render the

iframe as if it were part of the containing document .

src = url Specifies the URL of the file to be displayed in

the iframe .

srcdoc = markup A string representing the content the iframe should

contain .

width = number Specifies the width of the iframe in pixels .

Embeds an image within a document. The src attribute is mandatory.

alt = text Specifies alternative text if the application cannot load

the image (required); also used in accessibility devices .

height = number Specifies the height of the image in pixels .

ismap = ismap | "" | empty Specifies whether the image is a server-side

image map .

continues

486 ❘ appendix B htmL eLement reference

src = url Specifies the URL of the image .

usemap = url Specifies the map containing coordinates and links that

define the links for the image (server-side image map) .

width = name Specifies the width of the image in pixels .

<input type="button">
Creates a form input control that is a button a user can click.

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the button, preventing user intervention .

form = formID Indicates the associated <form> element for

the button . The value should be the id of the

associated <form> .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="checkbox">
Creates a form input control that is a check box a user can check.

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

checked = checked | "" | empty Specifies that the check box is checked . (This can be

used to make the check box selected by default .)

disabled = disabled | "" | empty Disables the check box, preventing user intervention .

form = formID Indicates the associated <form> element for the

check box . The value should be the id of the associ-

ated <form> .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

(continued)

<input type="color"> ❘ 487

required = required | "" | empty Specifies whether the check box is a required

element .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="color">
Creates a form input control that enables a user to select a color using a color picker.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element containing

a list of predefined options for the control .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="date">
Creates a form input control that enables a user to select a date.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the

control . The value should be the id of the associ-

ated <form> .

continues

488 ❘ appendix B htmL eLement reference

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = date Sets the maximum date value for the input .

min = date Sets the minimum date value for the input .

name = name Specifies a name for the form control passed to

the form’s processing application as part of the

name/value pair .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = any | number Specifies the granularity of the input .

value = date Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="datetime">
Creates a form input control that enables a user to select a date and time.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the

control . The value should be the id of the associ-

ated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = datetime Sets the maximum datetime value for the input .

min = datetime Sets the minimum datetime value for the input .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

(continued)

<input type="datetime-local"> ❘ 489

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = number Specifies the granularity of the input .

value = datetime Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="datetime-local">
Creates a form input control that enables a user to select a date and time without a time zone.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the

control . The value should be the id of the associ-

ated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = local_datetime Sets the maximum datetime value for the input .

min = local_datetime Sets the minimum datetime value for the input .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = any | number Specifies the granularity of the input .

value = local_datetime Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

490 ❘ appendix B htmL eLement reference

<input type="email">
Creates a form input control that enables a user to enter an e-mail address.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the textbox, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

maxlength = number Maximum number of characters the user can enter .

multiple = multiple | "" | empty Indicates whether more than one value is valid .

(And multiple e-mails can be written as a comma-

separated list .)

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers of

characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="file">
Creates a form input control that enables a user to select a file.

accept = list_of_MIME_Types Indicates what file types the server may upload . Uses

a comma-separated list of MIME types .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

<input type="hidden"> ❘ 491

disabled = disabled | "" | empty Disables the file control, preventing user intervention .

form = formID Indicates the associated <form> element for the file

control . The value should be the id of the associ-

ated <form> .

multiple = multiple | "" | empty Indicates whether more than one value is valid (and

multiple files can be uploaded) .

name = name Specifies a name for the file control passed to the

form’s processing application as part of the name/

value pair .

readonly = readonly | "" | empty Specifies whether the user can modify content .

<input type="hidden">
Creates a form input control, similar to a text input, but is hidden from the user’s view. (Although,
the value can still be seen if the user views the source for the page.)

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the

control . Value should be the id of the associated

<form> .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type=”image”>
Creates a form input control that is like a button or submit control, but uses an image instead of
a button.

alt = string Provides alternative text for the image .

autofocus = autofocus | "" |

empty

Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control, preventing user intervention .

form = formID Indicates the associated <form> element for

the control . The value should be the id of the

associated <form> .

continues

492 ❘ appendix B htmL eLement reference

formaction = URL Specifies the URL of the processing application that will

handle the form . If set on the button, this overrides the

action attribute of the form itself .

formenctype = "application/

x-www-form-urlencoded" |

"multipart/form-data" |

"text/plain"

Specifies the encoding method for form values . If set on

the button, this overrides the enctype attribute of the

form itself .

formmethod = get | post Specifies how the data gets sent from the browser to

the processing application . If set on the button, this

overrides the method attribute of the form itself .

formnovalidate = formnovalidate

| "" | empty

Specifies whether the form should be validated when

submitted . If set on the button, this overrides the

novalidate attribute of the form itself .

formtarget = <window_name> |

_parent | _blank | _top | _self

Defines the name of the frame or window that should

load the results of the form . If set on the button, this

overrides the target attribute of the form itself .

height = number Specifies the height of the input in pixels .

src = url Specifies the URL of the image .

<input type="month">
Creates a form input control that enables a user to select a month.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the con-

trol . Value should be the id of the associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = month Sets the maximum month value (yyyy-mm) for

the input .

min = month Sets the minimum month value (yyyy-mm) for

the input .

(continued)

<input type="number"> ❘ 493

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = number Specifies the granularity of the input .

value = month Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="number">
Creates a form input control that enables a user to select a number.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the con-

trol . Value should be the id of the associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = number Sets the maximum value for the input .

min = number Sets the minimum value for the input .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = any | number Specifies the granularity of the input .

value = number Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

494 ❘ appendix B htmL eLement reference

<input type="password">
Creates a form input control that is like a single-line text input control but shows asterisks or bullet
marks rather than the characters to prevent an onlooker from seeing the values a user has entered.
This should be used for sensitive information; although, the values get passed to the servers as plain
text. (If you have sensitive information, you should still consider making submissions safe using a
technique such as SSL.)

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the box, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

maxlength = number Maximum number of characters the user can enter .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

placeholder = placeholder text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers of

characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="radio">
Creates a form input control that is a radio button. These appear in groups that share the same
value for the name attribute and create mutually exclusive groups of values. (Only one of the radio
buttons in the group can be selected.)

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

checked = checked | "" | empty Specifies that the radio button is checked .

<input type="range"> ❘ 495

disabled = disabled | "" | empty Disables the radio button, preventing user

intervention .

form = formID Indicates the associated <form> element for

the check box . Value should be the id of the

associated <form> .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

required = required | "" | empty Specifies whether the radio button is a

required element .

value = string Specifies the value of the radio button sent to the

processing application as part of the name/value pair .

<input type="range">
Creates a form input control that represents a range of values.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for

the control . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = number Sets the maximum value for the input .

min = number Sets the minimum value for the input .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

step = any | number Specifies the granularity of the input .

value = number Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

496 ❘ appendix B htmL eLement reference

<input type="reset">
Creates a form input control that is a button to reset the values of the form to the same values pres-
ent when the page loaded.

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the button, preventing user intervention .

form = formID Indicates the associated <form> element for

the button . The value should be the id of the

associated <form> .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="search">
Creates a form input control that is optimized for search keywords.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this <form> .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

dirname = formElementName Specifies the name of a <form> element containing

the direction of the text in the element .

disabled = disabled | "" | empty Disables the textbox, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

maxlength = number Maximum number of characters the user can enter .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

<input type="submit"> ❘ 497

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers

of characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="submit">
Creates a form input control that is a Submit button to send the form values to the server.

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the button, preventing user intervention .

form = formID Indicates the associated <form> element for

the button . The value should be the id of the

associated <form> .

formaction = URL Specifies the URL of the processing application that

will handle the form . If set on the button, this over-

rides the action attribute of the form itself .

formenctype = "application/x-www-

form-urlencoded" | "multipart/

form-data" | "text/plain"

Specifies the encoding method for form values . If set

on the button, this overrides the enctype attribute of

the form itself .

formmethod = get | post Specifies how the data gets sent from the browser to

the processing application . If set on the button, this

overrides the method attribute of the form itself .

formnovalidate = formnovalidate |

"" | empty

Specifies whether the form should be validated when

submitted . If set on the button, this overrides the

novalidate attribute of the form itself .

formtarget = <window_name> |

_parent | _blank | _top | _self

Defines the name of the frame or window that should

load the results of the form . If set on the button, this

overrides the target attribute of the form itself .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

498 ❘ appendix B htmL eLement reference

<input type="tel">
Creates a form input control that is optimized for telephone numbers.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the textbox, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

maxlength = number Maximum number of characters the user can enter .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers

of characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="text">
Creates a form input control that is a single-line text input.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

<input type="time"> ❘ 499

dirname = formElementName Specifies the name of a <form> element containing

the direction of the text in the element .

disabled = disabled | "" | empty Disables the textbox, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

maxlength = number Maximum number of characters the user can enter .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers

of characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="time">
Creates a form input control that enables a user to select a time.

autocomplete = on | off Indicates whether the browser can automatically complete

values for elements in this form .

autofocus = autofocus | "" |

empty

Indicates this element should receive focus when the docu-

ment is loaded .

disabled = disabled | "" |

empty

Disables the control .

form = formID Indicates the associated <form> element for the control .

The value should be the id of the associated <form> .

continues

500 ❘ appendix B htmL eLement reference

list = id Specifies the id of a <datalist> element containing a list

of predefined options for the control .

max = time Sets the maximum time value (hh:mm:ss) for the input .

min = time Sets the minimum time value (hh:mm:ss) for the input .

name = name Specifies a name for the form control passed to the form’s

processing application as part of the name/value pair .

readonly = readonly | "" |

empty

Specifies whether the user can modify content .

required = required | "" |

empty

Specifies whether the input is a required element .

step = number Specifies the granularity of the input .

value = time Specifies the value of the control sent to the processing

application as part of the name/value pair .

<input type="url">
Creates a form input control that enables a user to input a URL.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the textbox, preventing user intervention .

form = formID Indicates the associated <form> element for the

<input> element . The value should be the id of the

associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

maxlength = number Maximum number of characters the user can enter .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

pattern = pattern Specifies a regular expression to test the input’s

value against .

(continued)

<input type="week"> ❘ 501

placeholder = placeholder_text Specifies a sample value to show to users as a hint .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the width of the input in numbers

of characters .

value = string Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

<input type="week">
Creates a form input control that enables a user to select a week.

autocomplete = on | off Indicates whether the browser can automatically

complete values for elements in this form .

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the control .

form = formID Indicates the associated <form> element for the con-

trol . Value should be the id of the associated <form> .

list = id Specifies the id of a <datalist> element contain-

ing a list of predefined options for the control .

max = week Sets the maximum week value (yyyy-Wnn) for

the input .

min = week Sets the minimum week value (yyyy-Wnn) for

the input .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

readonly = readonly | "" | empty Specifies whether the user can modify content .

required = required | "" | empty Specifies whether the input is a required element .

step = number Specifies the granularity of the input .

value = week Specifies the value of the control sent to the process-

ing application as part of the name/value pair .

502 ❘ appendix B htmL eLement reference

<ins>
The content of the element has been added since an earlier version of the document.

cite = url Specifies a URL indicating why the content was added .

datetime = date | datetime Specifies a date and time for the addition of content .

<kbd>
The content of the element is something that should be entered on a keyboard and is rendered in a
fixed-width font.

<keygen>
This element enables users to generate a key pair used in encryption.

autofocus = autofocus | "" | empty Indicates this element should receive focus when

the document is loaded .

challenge = string A challenges strip submitted along with the

public key .

disabled = disabled | “” | empty Disables the control .

form = formID Indicates the associated <form> element for the

<keygen> element . The value should be the id of

the associated <form> .

keytype = rsa The type of key generated .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair (required) .

<label>
The content of the element is used as a label for a form element.

for = controlID Specifies the id of the form element it is a label for .

form = formID Indicates the associated <form> element for the

<label> element . The value should be the id of the

associated <form> .

<legend> ❘ 503

<legend>
The content of this element is the title text to place in a <fieldset>. It must be the first child ele-
ment of that <fieldset>.

The content of this element is an item in a list. The element is referred to as a line item. For appro-
priate attributes, see the parent element for that kind of list (, , and <menu>).

value = number Specifies the number of the item in the list (when in

an list) .

<link>
Defines a link between the document and another resource. Often used to include style sheets in
documents. This element has two mandatory attributes: href and rel.

href = url Specifies the URL of the linked document .

hreflang = language_code Specifies the language encoding for the target of

the link .

media = list Comma-separated list of media types the document

is intended for, for example, screen, print, braille, and

so on .

rel = list Space-separated list of relationships between docu-

ment and target document . You can find a list of

potential values at http://microformats.org/

wiki/existing-rel-values .

sizes = any | list_of_sizes If the rel attribute is set to icon, use sizes to specify

a space-separated list of dimensions of the icons pro-

vided by the resource .

type = type Specifies the MIME type of the document being

linked to .

<map>
Creates a client-side image map and specifies a collection of clickable areas or hotspots. The name
attribute is mandatory.

name = string Name of the map .

504 ❘ appendix B htmL eLement reference

<mark>
Defines highlighted content.

<menu>
Creates a list of commands.

type = context | toolbar Indicates the type of menu .

label = string Provides a label for the menu .

<meta charset>
Specifies the document’s character encoding, for example, UTF-8.

charset = character_set Specifies the character set used to encode

the document .

<meta http-equiv=content-type>
Specifies the document’s character encoding. Equivalent to <meta charset>.

content= text/html;charset=

character_set

Specifies the character set used to encode

the document .

http-equiv = content-type Specifies that the <meta> tag defines the document’s

content-type .

<meta http-equiv=default-style>
Enables the user to nominate a style sheet already <link>ed to as the preferred one. Both attributes
are mandatory.

content = style-title Specifies the title for either the <link> or the

<style> element containing the document’s

preferred style sheet .

http-equiv = default-style Specifies the document’s preferred style sheet .

<meta http-equiv=refresh> ❘ 505

<meta http-equiv=refresh>
Enables the user to tell the browser when to refresh the page or go to a different page if content is set
to a URL. Both attributes are mandatory.

content= number[;url=URL] Specifies the number of seconds before the page is

reloaded and optionally the URL of the new page

to load .

http-equiv = refresh Indicates either the number of seconds after which

to reload the current page or the number of seconds

after which to load a different page and the URL for

the new page .

<meta name>
Represents meta data about the document. Both attributes are mandatory.

content= meta_content Specifies the value for the meta information .

name = application-name | author |

description | generator | keywords

Specifies the name of the meta information . Further

valid, non-HTML5 values can be found at http://

wiki.whatwg.org/wiki/MetaExtensions .

<meter>
This form control illustrates a scalar value within a known range.

high = number Specifies the low end of the “high” range .

low = number Specifies the high end of the “low” range .

max = number Sets the maximum range for the meter .

min = number Sets the minimum range for the meter .

optimum = number The optimal numeric value .

value = string The current value of the control .

<nav>
Defines a navigation section in a document.

<noscript>
The content of the element is displayed for browsers that do not support the script. Most browsers
also display this content if scripting is disabled.

506 ❘ appendix B htmL eLement reference

<object>
Adds an embedded object or non-HTML control to the page. At least one of the data and type attri-
butes must be set for this element.

data = url Specifies the data URL for the object .

form = formID Indicates the association <form> element for the

<button> element . The value should be the id of

the associated <form> .

height = number Specifies the height of the object in pixels .

name = name Specifies a name for the object .

type = mime_type Specifies the MIME type for the object’s data .

usemap = url Defines an image map for use with the object .

width = number Specifies the object’s width in pixels .

Creates an ordered or numbered list.

reversed = reversed | "" | empty Specifies whether the list should run in reverse order .

start = integer Specifies the number with which the list should start .

type = 1 | a | A | i Specifies the marker type for the list .

<optgroup>
Used to group <option> elements with a common label inside a <select> element. The label attri-
bute is mandatory.

disabled = disabled | "" | empty Disables the entire group of options .

label = string Specifies a label for the option group .

<option>
Represents one choice in a <select> drop-down list or select box, an <optgroup>, or a <datalist>
of options for use in other form elements.

disabled = disabled | "" | empty Disables the option .

label = string Specifies a label for the option .

<output> ❘ 507

selected = selected | "" | empty Indicates that the option should be selected by

default when the page loads .

value = string Specifies the value of this option .

<output>
Displays the output of a calculation.

for = list_of_IDs A space-separated list of element IDs associated with

the output’s calculation .

form = formID Indicates the associated <form> element for the

<output> element . The value should be the id of

the associated <form> .

name = string Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair .

<p>
The content of this element is a paragraph.

<param>
Used as a child of an <object> element to set properties of the object.

name = name Specifies the name of the parameter .

value = value The value of the parameter .

<pre>
The content of this element is rendered in a fixed-width type that retains the formatting (such as
spaces and line breaks) in the code.

<progress>
This form control illustrates the completeness of a task.

max = number Sets the total amount of work required in the task .

value = number Specifies how much of the task has been completed .

508 ❘ appendix B htmL eLement reference

<q>
The content of the element is a short quotation from another source.

cite = url Specifies the URL for the content of the quote

in question .

<rp>
Defines a set of parentheses around a ruby annotation for nonsupporting browsers.

<rt>
Defines the text of a ruby annotation.

<ruby>
Defines a set of ruby annotations. Ruby annotations show pronunciation information for East
Asian characters.

<s>
Indicates the content of the element is no longer accurate and has been “struck” from the document.

<samp>
The content of the element is sample output from a program.

<script>
The content of the element is script code that the browser should execute.

async = async | "" | empty Indicates whether the script should be executed

asynchronously or as soon as it is loaded .

charset = character_set Specifies the character set used to encode the script .

defer = defer | "" | empty Indicates whether the execution of the script

should be deferred until after the document has

been parsed .

src = url URL for the location of the script file .

type = MIME_Type Specifies the MIME type of the script .

<section>
Defines a thematic section in a document.

<select> ❘ 509

<select>
Creates a select or drop-down list box.

autofocus = autofocus | "" | empty Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" | empty Disables the select box, preventing user intervention .

form = formID Indicates the associated <form> element for the

<select> element . The value should be the id of

the associated <form> .

multiple = multiple | "" | empty Indicates whether more than one value can be

selected from the list at a time .

name = name Specifies a name for the form control passed to the

form’s processing application as part of the name/

value pair (required) .

required = required | "" | empty Specifies whether the input is a required element .

size = number Specifies the number of items that may appear

at once .

<small>
Indicates the content of this element is “small print” such as disclaimers or terms and conditions.

<source>
As a child element of <video> or <audio>, this enables the specification of multiple media sources.
The src attribute is mandatory.

src = url Specifies the URL of the resource .

type = MIME_Type Indicates the MIME type of the resource .

media = list Comma-separated list of media types the resource is

intended for, for example, screen, print, braille, and

so on .

Used as a generic wrapper for inline elements (as opposed to block-level elements).

The content of this element has strong importance.

510 ❘ appendix B htmL eLement reference

<style>
Contains CSS style rules that apply to that page.

type = MIME_Type Indicates the MIME type of the style section .

media = list Comma-separated list of media types the styles are

intended for, for example, screen, print, braille, and

so on .

scoped = scoped | "" | empty If used, indicates that the styles should apply to just

the parent element and all that element’s children .

<sub>
The content of this element is subscript.

<summary>
Specifies the hidden information for its parent <details> element.

<sup>
The content of this element is superscript.

<table>
Creates a table.

border = 1 | "" Indicates that its table element is not being used for

layout purposes .

<tbody>
Denotes the body section of a table.

<td>
Creates a cell of a table.

colspan = number Specifies the number of columns this cell spans .

headers = list_of_IDs A space-separated list of IDs for the <th> header

elements associated with this cell .

rowspan = number Specifies the number of rows the cell spans .

<textarea> ❘ 511

<textarea>
Creates a multiple-line text input control in a form.

autofocus = autofocus | “”

| empty

Indicates this element should receive focus when the docu-

ment is loaded .

cols = number Specifies the number of columns of characters the text area

should be (the width in characters) .

dirname = formElementName Specifies the name of a form element containing the direction

of the text in the element .

disabled = disabled | “” |

empty

Disables the control, preventing user intervention .

form = formID Indicates the associated <form> element for the <textarea>

element . The value should be the id of the associated <form> .

maxlength = number Maximum number of characters the user can enter .

name = string Specifies a name for the form control passed to the form’s pro-

cessing application as part of the name/value pair (required) .

placeholder =

placeholder_text

Specifies a sample value to show users as a hint .

readonly = readonly | "" |

empty

Specifies whether the user can modify content .

required = required | "" |

empty

Specifies whether the input is a required element .

rows = number Specifies the number of rows of text that should appear in the

text area without the scrollbar appearing .

wrap = hard | soft Specifies whether the text in a text area should be forced to

wrap at the value of the cols attribute .

<tfoot>
Denotes the row or rows of a table to be used as a footer for the table.

512 ❘ appendix B htmL eLement reference

<th>
Denotes the header cell of a table. By default, content is often shown in bold font.

colspan = number Specifies the number of columns this cell spans .

headers = list_of_IDs A space-separated list of IDs for the <th> header

elements associated with this <th> element .

rowspan = number Specifies the number of rows the cell spans .

scope = row | col | rowgroup |

colgroup

Specifies the scope of a header cell .

<thead>
Denotes the row or rows of a table to be used as a header for the table.

<time>
Represents a date or time.

datetime = date | datetime Specifies a valid date or date/time stamp for

the element .

<title>
The content of this element is the title of the document. It must be a child of the page’s
<head> element.

<tr>
Denotes a row of a table.

<track>
Specifies timed text track for an <audio> or <video> element. The src attribute is mandatory.

default = default | "" | empty Indicates this is the default track for the parent

<audio> or <video> file .

kind = subtitles | captions |

descriptions | chapters | metadata

Defines the usage of the track element .

label = label The label for the track .

src = url The URL of the track .

srclang = language code A language code indicating the language of the track .

<u> ❘ 513

<u>
The convoluted language of the specification at http://www.w3.org/TR/2011/WD-html5-
author-20110809/the-u-element.html. Defines this element as “Represents a span of text
offset from its surrounding content without conveying any extra emphasis or importance, and
for which the conventional typographic presentation is underlining; for example, a span of text
in Chinese that is a proper name (a Chinese proper name mark), or span of text that is known to
be misspelled.”

For the rest of us, the content of this element is rendered with underlined text.

Creates an unordered list.

<var>
The content of this element is a programming variable.

<video>
Embeds a video within a document.

autoplay = autoplay | "" | empty Indicates whether the video should play automatically .

controls = controls | "" | empty Indicates whether the video should have

playback controls .

height = number Specifies the height of the video in pixels .

loop = loop | "" | empty Indicates whether the video should play on a loop .

mediagroup = keystring Sets the browser to link together audio and video

streams with the same keystring .

muted = muted | "" | empty Indicates whether the video should initially be muted .

preload = none | metadata | auto |

"" | empty

Provides a hint to the browser as to how to handle

preloading the video content .

src = url Specifies the URL of the video .

poster = url Specifies the URL of a frame to show until the user

interacts with the video; defaults to the first frame if

no poster is specified .

width = number Specifies the width of the video in pixels .

514 ❘ appendix B htmL eLement reference

<wbr>
Indicates a point in a text where a suggested line break should occur.

alt = string Provides alternative text for the image .

autofocus = autofocus | "" |

empty

Indicates this element should receive focus when the

document is loaded .

disabled = disabled | "" |

empty

Disables the control, preventing user intervention .

form = formID Indicates the associated <form> element for

the control . The value should be the id of the

associated <form> .

formaction = URL Specifies the URL of the processing application that will

handle the form . If set on the button, this overrides the

action attribute of the form itself .

formenctype = "application/

x-www-form-urlencoded" |

"multipart/form-data" |

"text/plain"

Specifies the encoding method for form values . If set on

the button, this overrides the enctype attribute of the

form itself .

formmethod = get | post Specifies how the data gets sent from the browser to

the processing application . If set on the button, this

overrides the method attribute of the form itself .

formnovalidate = formnovalidate

| "" | empty

Specifies whether the form should be validated when

submitted . If set on the button, this overrides the

novalidate attribute of the form itself .

formtarget = <window_name> |

_parent | _blank | _top | _self

Defines the name of the frame or window that should

load the results of the form . If set on the button, this

overrides the target attribute of the form itself .

height = number Specifies the height of the input in pixels .

src = url Specifies the source of the image .

width = number Specifies the width of the input in pixels .

CSS Properties
This appendix is a reference to the main CSS properties that you can use to control the
appearance of your documents.

The majority of the properties covered here are from CSS2. Because the full universe of CSS3
properties is large and still changing, only the CSS3 properties covered in this book are included
here, which can be found in the section “Selected CSS3 Properties.”

For each property covered, you first see a brief description of the property and then an example
of its usage. This is followed by a table that shows the possible values the property can take,
along with the first versions of Internet Explorer to support these values, whether the property
can be inherited, what the default value for the property is, and which elements it applies to.

These tables focus on Internet Explorer support because, with a few rare exceptions, any
version of Google Chrome, Safari, Firefox, or Opera that you encounter in the wild can
support the full complement of CSS2 properties.

The CSS3 section contains a full set of compatibility tables.

Although browsers may support the inherit value of many properties, if the browser cannot set
the property to some other value in the first place (perhaps because that value is not supported),
then the inherit value is of little use.

At the end of the appendix are units of measurement.

FonT properTieS

The font properties enable you to change the appearance of a typeface.

font
This enables you to set several font properties at the same time, separated by spaces. You can
specify font-size, line-height, font-family, font-style, font-variant, and font-weight
in this one property.

font {color:#ff0000; arial, verdana, sans-serif; 12pt;}

C

516 ❘ appendix C cSS propertieS

font-family
This enables you to specify the typefaces you want to use. It can take multiple values separated by
commas, starting with your first preference, then moving to your second choice, and ending with a
generic font-family (serif, sans-serif, cursive, fantasy, or monospace).

p {font-family:arial, verdana, sans-serif;}

font-size
This enables you to specify the size of a font. The font-size property has its own specific values:

➤➤ Absolute sizes: xx-small, x-small, small, medium, large, x-large, and xx-large

➤➤ Relative sizes: larger or smaller

➤➤ Percentage: Percentage of the parent font

➤➤ Length: A unit of measurement (as described at the end of the appendix)

font-size-adjust
This enables you to adjust the aspect value of a font, which is the ratio between the height of a low-
ercase letter x in the font and the height of the font.

{font-size-adjust:0.5;}

VaLue ie inHeriTed YeS

[number] - Default Specific to font

none - Applies to All elements

inherit -

font-stretch
This enables you to specify the width of the letters in a font (not the space between them).

➤➤ Relative values: normal, wider, or narrower

➤➤ Fixed values: ultra-condensed, extra-condensed, condensed, semi-condensed,
semi-expanded, expanded, extra-expanded, or ultra-expanded

p {font-family:courier; font-stretch:semi-condensed;}

VaLue ie inHeriTed YeS

[relative] - Default Specific to font

[fixed] - Applies to All elements

inherit -

Font Properties ❘ 517

font-style
This applies styling to a font. If the specified version of the font is available, it can be used; other-
wise, the browser renders it.

p {font-style:italic;}

VaLue ie inHeriTed YeS

normal 3 Default normal

italic 3 Applies to All elements

oblique 4

inherit 8

font-variant
This creates capital letters that are the same size as normal lowercase letters.

VaLue ie inHeriTed YeS

normal 4 Default normal

small-caps 4 Applies to All elements

inherit 8

font-weight
This specifies the thickness of the text—its “boldness.”

➤➤ Absolute values: normal or bold

➤➤ Relative values: bolder or lighter

➤➤ Numeric value: Between 0 and 100

p {font-weight:bold;}

VaLue ie inHeriTed YeS

[absolute] 3 Default normal

[relative] 4 Applies to All elements

[number 1–100] 4

inherit 8

518 ❘ appendix C cSS propertieS

TexT properTieS

Text properties change the appearance and layout of text in general (as opposed to the font).

letter-spacing
This specifies the distance between letters as a unit of length.

p {letter-spacing:1em;}

VaLue ie inHeriTed YeS

[length] 4 Default normal

normal 4 Applies to All elements

inherit 8

text-align
This specifies whether text is aligned left, right, center, or justified.

p {text-align:center}

VaLue ie inHeriTed YeS

left 3 Default Depends on user agent and element (usually left

except for <th> elements, which are center)

right 3 Applies to All elements

center 3

justify 4

inherit 8

text-decoration
This specifies whether text should have an underline, overline, line-through, or blink
appearance.

p {text-decoration:underline;}

VaLue ie inHeriTed no

none 3 Default none

underline 3 Applies to All elements

Text Properties ❘ 519

overline 4

line-through 3

blink -

inherit 8

text-indent
This specifies the indentation in length or as a percentage of the parent element’s width.

p {text-indent:3em;}

VaLue ie inHeriTed YeS

[length] 4 Default 0

[percentage] 4 Applies to Block elements

inherit 8

text-shadow
This creates a drop shadow for the text. It should take three lengths; the first two specify X and Y
coordinates for the offset of the drop shadow, whereas the third specifies a blur effect. This is then
followed by a color, which can be any valid color value.

.dropShadow {text-shadow: 0.3em 0.3em 0.5em black}

VaLue inHeriTed no

[shadow effects] Default none

none Applies to All elements

inherit

Browser Support is as follows:

ie FF SaFari CHroMe opera

10 3 .5 4 1 9 .6

520 ❘ appendix C cSS propertieS

text-transform
This specifies capitalization of text in an element:

➤➤ none: Removes inherited settings.

➤➤ uppercase: All characters are uppercase.

➤➤ lowercase: All characters are lowercase.

➤➤ capitalize: First letter of each word is capitalized.

p {text-transform:uppercase;}

VaLue ie inHeriTed YeS

none 4 Default none

uppercase 4 Applies to All elements

lowercase 4

capitalize 4

inherit 8

white-space
This indicates how white space should be dealt with:

➤➤ normal: White space should be collapsed.

➤➤ pre: White space should be preserved.

➤➤ nowrap: Text should not be broken to a new line except with the
 element.

p {white-space:pre;}

VaLue ie inHeriTed YeS

normal 5 .5 Default normal

pre 5 .5 Applies to Block elements

nowrap 5 .5

inherit 8

word-spacing
This specifies the gap between words.

p {word-spacing:2em;}

Color and Background Properties ❘ 521

VaLue ie inHeriTed YeS

normal 6 Default normal

[length] 6 Applies to All elements

inherit 8

CoLor and BaCkground properTieS

The following properties enable you to change the colors and backgrounds of both the page and
other boxes.

background
This is shorthand for specifying background properties for color, url, repeat, scroll, and position;
separated by a space. By default, the background is transparent.

body {background: #efefef url("images/background.gif"); }

VaLue ie inHeriTed no

[background-attachment] 4 Default Not defined (by default background is

transparent)

[background-color] 3 Applies to All elements

[background-image] 3

[background-position] 4

[background-repeat] 3

inherit -

background-attachment
This specifies whether a background image should be fixed in one position or scroll along the page.

body {background-attachment:fixed;
 background-image: url("images/background.gif");}

VaLue ie inHeriTed no

fixed 4 Default scroll

scroll 4 Applies to All elements

inherit 8

522 ❘ appendix C cSS propertieS

background-color
This sets the color of the background. This can be a single color or two colors blended together.
Colors can be specified with any valid color value. By default the box will be transparent.

body {background-color:#efefef;}

VaLue ie inHeriTed no

[color] 4 Default transparent

transparent 4 Applies to All elements

inherit 8

background-image
This specifies an image to be used as a background, which by default will be tiled. Value is a URL
for the image.

body {background-image: url("images/background.gif");}

VaLue ie inHeriTed no

[url] 4 Default none

none 4 Applies to All elements

inherit 8

background-position
This specifies where a background image should be placed in the page, from the top-left corner.
Values can be an absolute distance, a percentage, or one of the keywords. If only one value is given,
it is assumed to be horizontal.

➤➤ The keywords available are top, bottom, left, right, and center.

body {background-position:center;
 background-image: url("images/background.gif");}

VaLue ie inHeriTed no

[length - x y] 4 Default top, left

[percentage - x% y%] 4 Applies to Block-level elements

top 4

left 4

Border Properties ❘ 523

bottom 4

right 4

center 4

inherit 8

background-positionx
The position of a background image runs horizontally across the page. Values are the same as for
background-position (default: top).

background-positionY
The position of a background image runs vertically down the page. Values are the same as for
background-position (default: left).

background-repeat
This specifies if a background image should be repeated and if so in which directions. Values are
repeat to repeat horizontally and vertically, repeat-x to just repeat horizontally, repeat-y to just
repeat vertically, and no-repeat to prevent it from repeating.

VaLue ie inHeriTed no

repeat 4 Default none

repeat-x 4 Applies to All elements

repeat-y 4

no-repeat 4

inherit 8

Border properTieS

The border properties enable you to control the appearance and size of a border around any box.

border (border-bottom, border-left, border-top, border-right)
This is shorthand for specifying border-style, border-width, and border-color properties.

524 ❘ appendix C cSS propertieS

VaLue ie inHeriTed no

[border-style] 4 Default none, medium, none

[border-width] 4 Applies to All elements

[border-color] 4

inherit 8

border-color (border-bottom-color, border-left-color,
border-top-color, border-right-color)

This specifies the color of a border; values can be any valid color value.

table {border-color:#000000;}

VaLue ie inHeriTed no

[color value] 4 Default none

inherit 8 Applies to All elements

border-style (border-bottom-style, border-left-style,
border-top-style, border-right-style)

This specifies the style of line that should surround a block box.

div.page {border-style:solid;}

VaLue ie inHeriTed no

none 4 Default none

dotted 5 .5 Applies to All elements

dashed 5 .5

solid 4

double 4

groove 4

ridge 4

inset 4

Dimensions ❘ 525

outset 4

hidden -

inherit 8

border-width (border-bottom-width, border-left-width,
border-top-width, border-right-width)

This specifies the width of a border line; it can be a width or a keyword.

div.page {border-width:2px;}

VaLue ie inHeriTed no

[length] 4 Default medium

thin 4 Applies to All elements

medium 4

thick 4

inherit 8

diMenSionS

The dimensions properties enable you to specify the size that boxes should be.

height
This specifies the vertical height of a block element.

table {height:400px;}

VaLue ie inHeriTed no

auto 4 Default auto

[length] 4 Applies to Block-level elements

[percentage] 4

inherit 8

526 ❘ appendix C cSS propertieS

line-height
This specifies the height of a line of text. It is a way of controlling leading (space between multiple
lines of text) because the line height may be more or less than the size of the font.

p {line-height:18px;}

VaLue ie inHeriTed YeS

normal 3 Default Depends on browser

[number] 4 Applies to All elements

[length] 3

[percentage] 3

inherit 8

max-height
This specifies the maximum height of a block-level element (same values as for height).

td {max-height:200px;}

VaLue ie inHeriTed no

auto 7 Default auto

[length] 7 Applies to Block-level elements

[percentage] 7

inherit 8

max-width
This specifies the maximum width of a block-level element (same values as for width).

td {max-width:400px;}

VaLue ie inHeriTed no

auto 7 Default auto

[length] 7 Applies to Block elements

[percentage] 7

inherit 8

Dimensions ❘ 527

min-height
This specifies the minimum height of a block-level element (same values as for height).

td {min-height:100px;}

VaLue ie inHeriTed no

auto 7 Default auto

[length] 7 Applies to Block-level elements

[percentage] 7

inherit 8

min-width
This specifies the minimum width of a block-level element (same values as for width).

td {min-width:200px;}

VaLue ie inHeriTed no

auto 7 Default auto

[length] 7 Applies to Block elements

[percentage] 7

inherit 8

width
This specifies the horizontal width of an element.

td {width:150px;}

VaLue ie inHeriTed no

auto 4 Default auto

[length] 4 Applies to Block-level elements

[percentage] 4

inherit 8

528 ❘ appendix C cSS propertieS

Margin properTieS

Margin properties enable you to specify a margin around a box and therefore create a gap between
elements’ borders.

margin (margin-bottom, margin-left, margin-top, margin-right)
This specifies the width of a margin around a box.

p {margin:15px;}

VaLue ie inHeriTed no

auto 3 Default 0

[length] 3 Applies to All elements

[percentage — relative to

parent element]

3

inherit 8

padding properTieS

Padding properties set the distance between the border of an element and its content. They are
important for adding white space to documents (in particular table cells).

padding (padding-bottom, padding-left, padding-right,
padding-top)

This specifies the distance between an element’s border and its content.

td {padding:20px;}

VaLue ie inHeriTed no

auto 4 Default 0

[length] 4 Applies to All elements

[percentage—relative to

parent element]

4

inherit 8

List Properties ❘ 529

LiST properTieS

List properties affect the presentation of bulleted, numbered, and definition lists.

list-style
This is shorthand allowing you to specify list-style-position and list-style-type.

ul {list-style: inside disc}

VaLue ie inHeriTed YeS

<position> 4 Default Depends on browser

<type> 4 Applies to List elements

<image> 4

inherit 8

list-style-position
This specifies whether the marker should be placed inside each item of a list or to the left of them.

ul {list-style-position:inside;}

VaLue ie inHeriTed YeS

inside 4 Default outside

outside 4 Applies to List elements

inherit 8

list-style-type
This indicates the type of bullet or numbering that a bullet should use.

ul {list-style-type:circle;}

VaLue ie inHeriTed YeS

none 4 Default disc

disc (default) 4 Applies to List elements

circle 4

square 4

decimal 4

continues

530 ❘ appendix C cSS propertieS

VaLue ie inHeriTed YeS

decimal-leading-

zero

-

lower-alpha 4

upper-alpha 4

lower-roman 4

upper-roman 4

Additional numbered list styles are available in CSS, but unfortunately they are not supported in
any versions of Internet Explorer. Support exists in Chrome 1+, Firefox 1+, Opera 7+, and Safari 1+.

Hebrew Traditional Hebrew numbering

Georgian Traditional Georgian numbering (an, ban, gan, . . . , he, tan, in, in-an, . . .)

Armenian Traditional Armenian numbering

cjk-ideographic Plain ideographic numbers

Hiragana (a, i, u, e, o, ka, ki, . . .)

Katakana (A, I, U, E, O, KA, KI, . . .)

hiragana-iroha (i, ro, ha, ni, ho, he, to, . . .)

katakana-iroha (I, RO, HA, NI, HO, HE, TO, . . .)

marker-offset
This specifies the space between a list item and its marker.

ol {marker-offset:2em;}

VaLue ie inHeriTed no

[length] 7 Default auto

auto 7 Applies to Marker elements

inherit 8

(continued)

Positioning Properties ❘ 531

poSiTioning properTieS

Positioning properties allow you to use CSS for positioning boxes on the page.

bottom
This sets the vertical position of an element from the bottom of the window or containing element.

VaLue ie inHeriTed no

auto 5 Default auto

[length] 5 Applies to Positioned elements

[percentage—relative to

parent’s height]

5

inherit 8

clip
This controls which part of an element is visible. Parts outside the clip are not visible. If value is
rect(), it takes the following form:

➤➤ rect([top] [right] [bottom] [left])

rect(25 100 100 25)

VaLue ie inHeriTed no

auto 4 Default auto

rect 4 Applies to Block elements

inherit 8

left
This sets the horizontal position of an element from the left of the window or containing element.

VaLue ie inHeriTed no

auto 4 Default auto

[length] 4 Applies to Positioned elements

[percentage—relative to

parent’s width]

4

inherit 8

532 ❘ appendix C cSS propertieS

overflow
This specifies how a container element will display content that is too large for its containing
element.

p {width:200px; height:200px; overflow:scroll;}

VaLue ie inHeriTed no

auto 4 Default visible

hidden 4 Applies to Block elements

visible 4

scroll 4

inherit 8

overflow-x
This is the same as overflow but only for the horizontal x axis. This was first supported in IE5.

overflow-y
This is the same as overflow but only for the vertical y axis. This was first supported in IE5.

position
This specifies the positioning schema that should be used for an element. When an element is
positioned, you also need to use the box-offset properties covered next (top, left, bottom, and
right). Note that you should not use top and bottom or left and right together (if you do,
top and left take priority).

➤➤ absolute can be fixed on the canvas in a specific position from its containing element (which
is another absolutely positioned element); it will also move when the user scrolls the page.

➤➤ static will fix it on the page in the same place and keep it there even when the user scrolls.

➤➤ relative will be placed offset in relation to its normal position.

➤➤ fixed will fix it on the background of the page and not move when the user scrolls.

p.article{position:absolute; top:10px; left:20px;

VaLue ie inHeriTed no

absolute 4 Default static

relative 4 Applies to All elements

Positioning Properties ❘ 533

static 4

fixed 7

inherit 8

right
This sets the horizontal position of an element from the right of the window or containing element.

VaLue ie inHeriTed no

auto 5 Default auto

[length] 5 Applies to Positioned elements

[percentage—relative to

parent’s width]

5

inherit 8

top
This sets the vertical position of an element from the top of the window or containing element.

VaLue ie inHeriTed no

auto 4 Default auto

[length] 4 Applies to Positioned elements

[percentage—relative to

parent’s height]

4

inherit 8

vertical-align
This sets the vertical positioning of an inline element:

➤➤ baseline aligns element with base of parent.

➤➤ middle aligns midpoint of element with half the height of parent.

➤➤ sub makes element subscript.

➤➤ super makes element superscript.

➤➤ text-top aligns element with the top of parent element’s font.

534 ❘ appendix C cSS propertieS

➤➤ text-bottom aligns element with the bottom of parent element’s font.

➤➤ top aligns top of element with the top of tallest element on current line.

➤➤ bottom aligns element with the bottom of lowest element on the current line.

span.superscript {vertical-align:super;}

VaLue ie inHeriTed no

baseline 4 Default baseline

middle 4 Applies to Inline elements

sub 4

super 4

text-top 4

text-bottom 4

top 4

bottom 4

[percentage—relative to line height] 8

[length] -

inherit 8

z-index
This controls which overlapping element appears to be on top. Positive and negative numbers
are permitted.

p {position:absolute; top:10px; left:20px; z-index:3;}

VaLue ie inHeriTed no

auto 4 Default Depends on position of element in

XHTML source document

[number] 4

inherit 8 Applies to Positioned elements

ouTLine properTieS

Outlines act like borders, but do not take up any space—they sit on top of the canvas.

Table Properties ❘ 535

outline (outline-color, outline-style, outline-width)
This is a shortcut for the outline-color, outline-style, and outline-width properties:

outline {solid #ff0000 2px}

Note that outline-color, outline-style, and outline-width take the same values as
border-color, border-style, and border-width.

VaLue ie inHeriTed no

outline-color 8 Default none

outline-style 8 Applies to All elements

outline-width 8

outline 8

TaBLe properTieS

Table properties enable you to affect the style of tables, rows, and cells.

border-collapse
This specifies the border model that the table should use (whether adjacent borders should be col-
lapsed into one value or kept separate).

table {border-collapse:separate;}

VaLue ie inHeriTed YeS

collapse 5 Default collapse

separate 5 Applies to Table and inline elements

inherit 8

border-spacing
This specifies the distance between adjacent cells’ borders.

table {border-spacing:2px;}

VaLue ie inHeriTed YeS

[length] 8 Default 0

inherit 8 Applies to Table and inline elements

536 ❘ appendix C cSS propertieS

caption-side
This indicates which side of a table a caption should be placed on.

caption {caption-side:bottom;}

VaLue ie inHeriTed YeS

top 8 Default top

left 8 Applies to <caption> elements in

<table> elements

bottom 8

right 8

inherit 8

empty-cells
This specifies whether borders should be displayed if a cell is empty.

td, th {empty-cells:hide;}

VaLue ie inHeriTed YeS

show 5 Default show

hide 5 Applies to Table cell elements

inherit 8

table-layout
This specifies how the browser should calculate the layout of a table; it can affect the speed of ren-
dering a large or graphics-intensive table.

VaLue ie inHeriTed no

auto 5 Default auto

fixed 5 Applies to Table and inline elements

inherit 8

Classification Properties ❘ 537

CLaSSiFiCaTion properTieS

Classification properties affect how the boxes in the box model are rendered.

clear
This forces elements, which would normally wrap around an aligned element, to display below it.
Value indicates which side may not touch an aligned element.

p {clear:left;}

VaLue ie inHeriTed no

none 4 Default none

both 4 Applies to All elements

left 4

right 4

inherit 8

display
This specifies how an element is rendered, if at all. If set to none the element is not rendered, and it
does not take up any space. This property can also force an inline element to display as a block or
vice versa.

span.important {display:block;}

VaLue ie inHeriTed YeS

none 4 Default inline

inline 5 Applies to All elements

block 5

list-item 5

inherit 8

Although the default value of this property is inline, browsers tend to treat the element depending
on its inherent display type. Block-level elements, such as headings and paragraphs, get treated as if
the default were block, whereas inline elements such as <i>, , or get treated as inline.

float
Subsequent elements should be wrapped to the left or right of the element, rather than below.

img.featuredItem {float:left;}

538 ❘ appendix C cSS propertieS

VaLue ie inHeriTed no

none 4 Default none

left 4 Applies to All elements

right 4

inherit 8

visibility
This specifies whether an element should be displayed or hidden. Even if hidden, elements take up
space on the page but are transparent.

VaLue ie inHeriTed no

visible 4 Default inherit

show 8 Applies to All elements

hidden 4

hide 8

collapse 8

inherit 8

inTernaTionaLizaTion properTieS

Internationalization properties affect how text is rendered in different languages.

direction
This specifies the direction of text from left to right or right to left. This should be used in associa-
tion with the unicode-bidi property.

td.word{direction:rtl; unicode-bidi:bidi-override;}

VaLue ie inHeriTed YeS

ltr 5 Default ltr

rtl 5 Applies to All elements

inherit 8

Selected CSS3 Properties ❘ 539

unicode-bidi
The unicode-bidi property enables you to override Unicode’s built-in directionality settings
for languages.

td.word{unicode-bidi:bidi-override; direction:rtl; }

VaLue ie inHeriTed no

normal 5 Default normal

embed 5 Applies to All elements

bidi-override 5

inherit 8

SeLeCTed CSS3 properTieS

This section covers a subset of CSS3 properties, focused on the ones covered in this book. Unlike the
earlier tables, a full support matrix showing Chrome, Firefox, Safari, and Opera support is included
in addition to information about support in Internet Explorer.

For full support tables of all CSS3 modules, the interactive tool at http://caniuse.com/ can’t
be beat.

Color
The CSS3 Color module offers the ability to specify colors using the Hue Saturation and Lightness
(HSL) scheme, as well as the ability to set an alpha channel to define transparency using both RGBA
and HSLA notation.

.hsl {
 background-color : hsl(333,50%,50%);
}
.hsla {
 background-color : hsla(0, 100%, 50%, 0.5);
}
.rgba {
 background-color : rgba(255, 0, 0, 0.5);
}

VaLue ie FF SaFari CHroMe opera

hsl 9 1 3 .1 1 9 .5

hsla 9 3 3 .1 1 10

rgba 9 3 3 .1 1 10

540 ❘ appendix C cSS propertieS

Backgrounds and Borders
The Backgrounds and Borders module extends the border and background properties introduced in
earlier versions of CSS to include rounded corners and drop shadows.

border-radius (border-top-left-radius, border-top-right-radius, border-bottom-
right-radius, border-bottom-left-radius)

.rounded-corners {
 -webkit-border-radius : 12px;
 border-radius : 12px;
}

VaLue inHeriTed no

auto Default auto

[length] Applies to All elements

[percentage]

inherit

box-shadow
The possible values for this property are

inset offset-x offset-y blur-radius spread-radius color
.drop-shadow {
// inset offset-x offset-y blur-radius spread-radius color
 -webkit-box-shadow : 0px 0px 4px 0px #000000;
 box-shadow : 0px 0px 4px 0px #000000;
}

VaLue inHeriTed no

none Default auto

[inset] Applies to All elements

[offset-x] [offset-y]

[blur-radius]

[spread-radius]

[color]

Selected CSS3 Properties ❘ 541

Browser support is as follows:

VaLue ie FF SaFari CHroMe opera

box-shadow 9 3 .5*/4 .0 3*/5 .1 1*/10 10 .5

border-radius 9 1*/2 .0 3*/5 .2*/4 10 .5

*Indicates support with browser prefix.

Multi-Column
The CSS Multi-Column layout module enables the definition of multiple columns of text.

.fixed-width {
 width:500px;
 height:200px;
 -webkit-column-count: 3;
 -webkit-column-gap: 15px;
 -moz-column-count: 3;
 -moz-column-gap: 15px;
 column-count: 3;
 column-gap: 15px;
}
.percentage-width {
 width:100%;
 height:200px;
 -webkit-column-width: 100px;
 -webkit-column-gap: 15px;
 -moz-column-width: 100px;
 -moz-column-gap: 15px;
 column-width: 100px;
 column-gap: 15px;
}

column-count
This defines the number of columns in an element.

VaLue inHeriTed no

auto Default auto

[integer] Applies to Block-level elements, table cells, and

inline-block elements

542 ❘ appendix C cSS propertieS

column-gap
This defines the gutter between the columns of a multi-column element.

VaLue inHeriTed no

normal Default 1em

[length] Applies to Multi-column elements

column-width
This defines the width of the columns of a multi-column element.

VaLue inHeriTed no

auto Default auto

[length] Applies to Multi-column elements

Browser support is as follows:

properTY ie FF SaFari CHroMe opera

column-count 10 1 .5* 3* 1* 11 .1

column-gap 10 1 .5* 3* 1* 11 .1

column-width 10 1 .5* 3* 1* 11 .1

*Indicates support with browser prefix.

Media Queries
The CSS Media Queries module enables the definition of styles based on device and browser
characteristics.

#container {
 width : 940px;
}
@media screen and (max-width:999px) {
 #container {
 width : 740px;
 }
}

@media screen and (max-width:480px)
{

Selected CSS3 Properties ❘ 543

 #container {
 width : 400px;
 }
}

The module supports the following properties:

properTieS deSCripTion

width Tests the width of the display area of the device in a browser . This

is equal to the width of the browser window .

height Tests the height of the display area of the device . In a browser this

is equal to the height of the browser window .

device-width Tests the width of the rendering surface of the device . In a browser

this is equal to the full screen width .

device-height Tests the height of the rendering surface of the device . In a

browser this is equal to the full screen height .

orientation Tests the orientation of a device .

aspect-ratio Tests the aspect-ratio as measured by the width and

height properties .

device-aspect-ratio Tests the aspect-ratio as measured by the device-width and

device-height properties .

color Tests the color depth of the device .

color-index Tests the number of entries in the lookup table of the device .

monochrome Tests the number of bits per pixel in a monochrome frame buffer .

resolution Tests the pixel density of the target device .

scan Tests the scanning process of “tv” devices .

grid Tests whether the device is a grid or bitmap . An example of a grid

would be a text browser such as Lynx run from the terminal .

Basic support is as follows:

ie FF SaFari CHroMe opera

@media (basic support) 9 3 .5 4 1 9 .5

544 ❘ appendix C cSS propertieS

@font-face
The CSS Fonts Modules enable the use of custom fonts.

@font-face {
 font-family: 'InconsolataMedium';
 src: url('Inconsolata-webfont.eot');
 src: url('Inconsolata-webfont.eot?#iefix') format('embedded-opentype'),
 url('Inconsolata-webfont.woff') format('woff'),
 url('Inconsolata-webfont.ttf') format('truetype'),
 url('Inconsolata-webfont.svg#InconsolataMedium') format('svg');
 font-weight: normal;
 font-style: normal;
}

Basic support is as follows:

ie FF SaFari CHroMe opera

@font-face 4 3 .5 3 .1 4 10

2d Transforms
The 2D Transforms module introduces a new property that enables the rotation, translation, and
scaling of a box, without changing its place in the flow of the document.

#rotate {
 -webkit-transform : rotate(20deg);
 -moz-transform : rotate(20deg);
 -ms-transform : rotate(20deg);
 -o-transform : rotate(20deg);
 transform : rotate(20deg);
 background : #00ffcc;
 top : 100px;
 left : 50px;
}
#scale {
 -webkit-transform : scale(0.5);
 -moz-transform : scale(0.5);
 -ms-transform : scale(0.5);
 -o-transform : scale(0.5);
 transform : scale(0.5);
 background : #ccff00;
 top : 400px;
 left : 50px;
}

The following table lists the common functions of the transform property and gives a small
example of each.

Selected CSS3 Properties ❘ 545

VaLue deSCripTion exaMpLe

translate Moves an element up/down or left/right with-

out changing the element’s place in the flow

of the document .

transform :

translate(10px,

10px);

translateX Moves an element left or right without chang-

ing the element’s place in the flow of the

document .

transformX :

translate(10px);

translateY Moves an element up or down without chang-

ing the element’s place in the flow of the

document .

transformY :

translate(10px);

rotate Rotates an element around an axis . The rota-

tion can be specified in degrees or using

other values like the turn keyword .

transform :

rotate(180deg)

scale Scales an element without changing the ele-

ment’s place in the document . Scale is set as

a multiple of 1, so scale(2) tells the browser

to make the element twice as big .

transform : scale(2)

scaleX Scales an element on its x axis without chang-

ing the element’s place in the document .

transform : scale(2)

scaleY Scales an element on its y axis without chang-

ing the element’s place in the document .

transform : scale(2)

Basic support is as follows:

VaLue ie FF SaFari CHroMe opera

transform 9*/10 3 .5*/16 3 .1* 1* 10 .5*/12 .1

*Indicates support with browser prefix.

3d Transforms
The 3D Transforms module extends 2D Transforms with a perspective transform function.

#perspective {
 top : 200px;
 left : 200px;
 position : absolute;
 -webkit-transform : perspective(500px) rotateY(75deg);
 -moz-transform : perspective(500px) rotateY(75deg);
 -ie-transform : perspective(500px) rotateY(75deg);
 transform : perspective(500px) rotateY(75deg);

546 ❘ appendix C cSS propertieS

 width : 500px;
 height : 100px;
 background : #ccff00;
}

Basic support is as follows:

VaLue ie FF SaFari CHroMe opera

transform 10 10*/16 4* 12* none

*Indicates support with browser prefix.

animations
The Animations module enables you to assign an animation to an element. You do this by specifying
the properties to animate, the timing, and the units to change during the animation.

#animated {
 position : absolute;
 width : 100px;
 height : 100px;
 left:0px;
 top:100px;
 background: #ffcc00;
 animation-name: scroll;
 animation-duration: 5s;
 animation-iteration-count: infinite;
 animation-timing-function: ease-in-out;
 animation-direction: alternate;

}
@keyframes scroll {
 to {
 left:100%;
 transform: rotate(180deg);
 }
}

The @keyframes directive defines named states that define standard CSS properties to use as anima-
tion keyframes.

The following table lists the subproperties of the animation property.

properTY deSCripTion

animation-name Defines the name of the @keyframes rule that defines the

animation’s keyframes .

animation-duration Defines the length of time the animation should take to

run once .

Selected CSS3 Properties ❘ 547

animation-timing-function Defines the transition of animations through keyframes using

keyword-based functions .

animation-iteration-count Defines the number of times the animation should run .

animation-direction Defines whether the animation should reverse direction dur-

ing each iteration .

animation-play-state Defines the play/pause state of the animation .

animation-delay' Defines the animation delay .

animation-fill-mode Defines how an animation should apply target styles .

Basic support is as follows:

ie FF SaFari CHroMe opera

Basic Support 10 5*/16 4* 1* 12*/12 .1

*Indicates support with browser prefix.

Transitions
The Transitions module defines a property to animate the transitions between pseudo-classes, for
example, when an element enters or leaves the :hover state.

#transition li{
 font:16px arial, helvetica, sans-serif;
 color:#fff;
 padding:2px 10px;
 width : 200px;
 list-style-type : none;
 height : 50px;
 background-color : #06F;
 -webkit-transition-property: background-color,width,height;
 -moz-transition-property: background-color,width,height;
 -o-transition-property: background-color,width,height;
 transition-property: background-color,width,height;

 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: background-color 1s;
 transition-duration: background-color 1s;

}
#transition li:hover {
 background-color: #036;
 width:225px;
 height:60px;

548 ❘ appendix C cSS propertieS

 -webkit-transition-duration: 1s;
 -moz-transition-duration: 1s;
 -o-transition-duration: 1s;
 transition-duration: 1s;
}

The following table lists the transition properties.

VaLue deSCripTion

transition-property Defines the property or properties to transition through .

transition-duration Defines the length of time the transition should take to

run once .

transition-timing-function Defines a keyword-based function used to shape

the transition .

transition-delay Defines the transition delay .

Basic support is as follows:

ie FF SaFari CHroMe opera

Basic Support 10 4*/16 3* 1* 11 .6*/12 .1

*Indicates support with browser prefix.

LengTHS

Following are the unit measurements for lengths that can be used in CSS.

absolute Lengths

uniT ie

cm 3

in 3

mm 3

pc 3

pt 3

Lengths ❘ 549

relative Lengths

uniT ie

em 4

ex 4

px 3

CSS3 Relative Length Properties

ie FF SaFari CHroMe opera

rem 9 3 .6 5 6 .0 11 .6

vw 10 19 6 20 12 .5

vh 10 19 6 20 12 .5

Color names and Values
The first thing you need to learn about color is how to specify exactly the color you want; after
all, there are a lot of different hues, tones, and shades and you must choose the right ones.

In HTML you can specify a color in four key ways:

➤➤ Hex codes: These are six-digit codes representing the amount of red, green, and blue
that make up the color, preceded by a pound or hash sign # (for example, #333333).

➤➤ Color names: A set of names that represent more than 200 colors, such as red,
lightslategray, and fuchsia.

➤➤ RGB color values: Here, numbers between 0 and 255 represent the amount of red,
green, and blue that makes up each color.

➤➤ HSL color values: HSL is an alternative to RGB and closely mirrors the way that people
actually think about color. Instead of mixing three RGB values together to create the
target color, HSL enables you to set the hue with one number between 0 and 360, where,
for example, 0 is red, 120 is green, and 240 is blue. Then, you adjust the saturation of
the color using 0 percent as gray and 100 percent as full saturation. Finally you adjust
lightness/darkness of the color where 0-percent lightness is black, 100-percent lightness is
white, and 50-percent lightness is “normal.”

uSing Hex CodeS To SpeCiFY CoLorS

When you start using hexadecimal codes (or hex codes for short), they can be daunting
because they use a mix of numbers and letters to represent colors. Although you are used to
numbers represented with 10 digits (0–9), hexadecimal codes are represented with 16 digits
(0–9 and A–F). Table D-1 provides some examples of colors and their hex values; you will
understand hex codes shortly (in the “Understanding Hex Codes” section), after you see
what they represent.

D

552 ❘ appendix d coLor nameS anD vaLueS

TaBLe d-1: Common Hex Codes

CoLor HexadeCiMaL Code

Black #000000

White #FFFFFF

Red #FF0000

Green #00FF00

Blue #0000FF

Purple #800080

The idea that colors are represented by a mix of numbers and letters might seem a little strange, but
what follows the # sign is actually the amount of red, green, and blue that makes up the color. The
format for hex codes is as follows:

#rrggbb

As you might already know, the screens on computer monitors consist of thousands of tiny squares
called pixels. (If you look closely at your monitor, you can see them.) When it is not turned on, the
screen is black because it does not emit any light. When it is turned on, a picture is created because
each pixel can be a different color. Every one of these colors is expressed in terms of a mix of red,
green, and blue (just like a television screen).

It’s hardly surprising, therefore, that you specify colors in the amounts of red, green, and blue required
to make a given color. The values of red, green, and blue required to make a color are specified using
numbers between 0 and 255, so when red, green, and blue all have a value of 0, you get black, whereas
if each has a value of 255, you get white. If red is given a value of 255 and green and blue have a value
of 0, you get red. You can make other colors by mixing the amounts of red, green, and blue as well—
for example, if red and blue are given values of 255 and blue a value of 0, you get pink.

You may have seen that some software represents colors using three sets of numbers between 0 and
255. Figure D-1 shows the color window in Adobe Photoshop.

Figure d-1

Understanding Hex Codes ❘ 553

The hexadecimal codes used on the web for color are a direct translation of these values between
0 and 255, except they use two characters, not three, to represent the numbers between 0 and 255.
For example, FF represents 255 and 00 represents 0.

When designing a site, you can use a tool such as Photoshop or a number of free resources on the
web to find hex codes for colors:

➤➤ www.colorschemer.com

➤➤ www.colourlovers.com/colors/add

However, if you want to understand how hex codes work, you need to understand how computers
store information, so read the following section.

underSTanding Hex CodeS

You may have heard people say that computers store all their information in 0s and 1s, and
although it may sound hard to believe, it’s true! The smallest unit of information a computer
stores in is known as a bit, and a bit can have only one of two values:

➤➤ 0, which means off (or false)

➤➤ 1, which means on (or true)

These two values on their own do not store much information, but if you combine 4 bits together,
you can get 16 different values. For example, using combinations of four 0s and 1s, you can represent
the digits 0 through 9 (and still have values to spare):

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 0 1 2 3 4 5 6 7 8 9 - - - - - -

Four bits can be replaced by a single hexadecimal digit. There are 16 digits in hexadecimal numbers
to represent the 16 possible values of four 0s and 1s:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 is the smallest; F is the largest.

Still, computers need to work with more than 16 possible values, so they tend to store information
in even larger segments. A group of 8 bits is known as a byte. A byte can therefore be represented
using just two hexadecimal digits, for example:

Binary 0100 1111
Hexadecimal 4 F

This gives 256 possible combinations of 0s and 1s (16 n 16), plenty for the characters of the English
language, which is why colors are represented in numbers between 0 and 255.

554 ❘ appendix d coLor nameS anD vaLueS

So, although hexadecimal codes for web colors may appear a little complicated, #4F4F4F is a lot
easier to read than 010011110100111101001111. Table D-2 shows some more hexadecimal codes
and their corresponding decimal numbers.

TaBLe d-2: Select Hex Codes and Their Corresponding Decimal Values

HexadeCiMaL deCiMaL

00 0

33 51

66 102

99 153

AA 170

BB 187

CC 204

DD 221

EE 238

FF 255

uSing CoLor naMeS To SpeCiFY CoLorS

Rather than using hex values to specify colors, you can also use the names of many colors such as
red, green, and white to specify the color you want. There are more than 200 different color names
supported by IE, Firefox, and Safari, all of which are listed at the end of this appendix.

Although names might sound a lot easier to understand than hex codes, some of the colors are easier
to remember than others, and remembering which color corresponds to each of the 200 names is
very difficult. Here is a sample of some of the color names:

aqua black blue fuchsia gray green lime maroon navy olive purple red silver
 teal white yellow

Furthermore, if you do jobs for larger companies, such companies often want to specify exact colors
that represent their brand, and their color might not have an HTML name. Indeed, when clients
specify the color they want, they usually specify a hex code.

Because hex codes give you many more choices of shades, tints, and hues of colors than color names,
and because a lot of companies ask for specific colors to represent their company, hex codes tend to
be the choice of web professionals.

Color name and number Reference ❘ 555

CoLor naMe and nuMBer reFerenCe

Table D-3 shows the color names supported by the main browsers and their corresponding hex
values. It is worth noting, however, that these are browser extensions, not part of the HTML
recommendation.

TaBLe d-3: Color Names

CoLor naMe Hex VaLue

Aliceblue #f0f8ff

Antiquewhite #faebd7

Aqua #00ffff

Aquamarine #7fffd4

Azure #f0ffff

Beige #f5f5dc

Bisque #ffe4c4

Black #000000

Blanchedalmond #ffebcd

Blue #0000ff

Blueviolet #8a2be2

Brown #a52a2a

Burlywood #deb887

Cadetblue #5f9ea0

Chartreuse #7fff00

Chocolate #d2691e

Coral #ff7f50

Cornflowerblue #6495ed

Cornsilk #fff8dc

Crimson #dc143c

Cyan #00ffff

Darkblue #00008b

continues

556 ❘ appendix d coLor nameS anD vaLueS

CoLor naMe Hex VaLue

Darkcyan #008b8b

Darkgoldenrod #b8860b

Darkgray #a9a9a9

Darkgreen #006400

Darkkhaki #bdb76b

Darkmagenta #8b008b

Darkolivegreen #556b2f

Darkorange #ff8b04

Darkorchid #9932cc

Darkred #8b0000

Darksalmon #e9967a

Darkseagreen #8fbc8f

Darkslateblue #483d8b

Darkslategray #2f4f4f

Darkturquoise #00ced1

Darkviolet #9400d3

Deeppink #ff1493

Deepskyblue #00bfff

Dimgray #696969

Dodgerblue #1e90ff

Firebrick #b22222

Floralwhite #fffaf0

Forestgreen #228b22

Fuchsia #ff00ff

Gainsboro #dcdcdc

Ghostwhite #f8f8ff

TaBLe d-3 (continued)

Color name and number Reference ❘ 557

Gold #ffd700

Goldenrod #daa520

Gray #808080

Green #008000

Greenyellow #adff2f

Honeydew #f0fff0

Hotpink #ff69b4

Indianred #cd5c5c

Indigo #4b0082

Ivory #fffff0

Khaki #f0e68c

Lavender #e6e6fa

Lavenderblush #fff0f5

Lawngreen #7cfb04

Lemonchiffon #fffacd

Lightblue #add8e6

Lightcoral #f08080

Lightcyan #e0ffff

Lightgoldenrodyellow #fafad2

Lightgreen #90ee90

Lightgrey #d3d3d3

Lightpink #ffb6c1

Lightsalmon #ffa07a

Lightseagreen #20b2aa

Lightskyblue #87cefa

Lightslategray #778899

Lightsteelblue #b0c4de

continues

558 ❘ appendix d coLor nameS anD vaLueS

CoLor naMe Hex VaLue

Lightyellow #ffffe0

Lime #00ff00

Limegreen #32cd32

Linen #faf0e6

Magenta #ff00ff

Maroon #800000

Mediumaquamarine #66cdaa

Mediumblue #0000cd

Mediumorchid #ba55d3

Mediumpurple #9370db

Mediumseagreen #3cb371

Mediumslateblue #7b68ee

Mediumspringgreen #00fa9a

Mediumturquoise #48d1cc

Mediumvioletred #c71585

Midnightblue #191970

Mintcream #f5fffa

Mistyrose #ffe4e1

Moccasin #ffe4b5

Navajowhite #ffdead

Navy #000080

Oldlace #fdf5e6

Olive #808000

Olivedrab #6b8e23

Orange #ffa500

Orangered #ff4500

TaBLe d-3 (continued)

Color name and number Reference ❘ 559

Orchid #da70d6

Palegoldenrod #eee8aa

Palegreen #98fb98

Paleturquoise #afeeee

Palevioletred #db7093

Papayawhip #ffefd5

Peachpuff #ffdab9

Peru #cd853f

Pink #ffc0cb

Plum #dda0dd

Powderblue #b0e0e6

Purple #800080

Red #ff0000

Rosybrown #bc8f8f

Royalblue #4169e1

Saddlebrown #8b4513

Salmon #fa8072

Sandybrown #f4a460

Seagreen #2e8b57

Seashell #fff5ee

Sienna #a0522d

Silver #c0c0c0

Skyblue #87ceeb

Slateblue #6a5acd

Slategray #708090

Snow #fffafa

Springgreen #00ff7f

continues

560 ❘ appendix d coLor nameS anD vaLueS

CoLor naMe Hex VaLue

Steelblue #4682b4

Tan #d2b48c

Teal #008080

Thistle #d8bfd8

Tomato #ff6347

Turquoise #40e0d0

Violet #ee82ee

Wheat #f5deb3

White #ffffff

Whitesmoke #f5f5f5

Yellow #ffff00

Yellowgreen #9acd32

TaBLe d-3 (continued)

Character encodings
Appendix D, “Color Names and Values,” discusses how computers store information, how
a character-encoding scheme is a table that translates between characters, and how they are
stored in the computer.

The most common character set (or character encoding) in use on computers is The American
Standard Code for Information Interchange (ASCII), which is probably the most widely used
character set for encoding text electronically. You can expect all computers browsing the web
to understand ASCII.

The problem with ASCII is that it supports only the uppercase and lowercase Latin alpha-
bet, the numbers 0–9, and some extra characters: a total of 128 characters. Table E-1 lists
the printable characters of ASCII. (The other characters are things such as line feeds and
carriage-return characters.)

TaBLe e-1: Printable Characters of ASCII

! “ # $ % & ` () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~

However, many languages use either accented Latin characters or completely different alpha-
bets. ASCII does not address these characters, so you need to learn about character encodings
if you want to use any non-ASCII characters.

E

562 ❘ appendix e character encoDingS

Character encodings are also important if you want to use symbols because these cannot be guar-
anteed to transfer properly between different encodings (from some dashes to some quotation mark
characters). If you do not indicate the character encoding the document is written in, some of the
special characters might not display.

The International Standards Organization created a range of character sets to deal with different
national characters. ISO-8859-1 is commonly used in Western versions of authoring tools such as
Adobe Dreamweaver, as well as applications such as Windows Notepad, as shown in Table E-2.

TaBLe e-2: ISO Character Sets

CHaraCTer SeT deSCripTion

ISO-8859-1 Latin alphabet part 1

Covering North America, Western Europe, Latin America, the Caribbean,

Canada, and Africa

ISO-8859-2 Latin alphabet part 2

Covering Eastern Europe including Bosnian, Croatian, Czech, Hungarian,

Polish, Romanian, Serbian (in Latin transcription), Serbo-Croatian, Slovak,

Slovenian, Upper Sorbian, and Lower Sorbian

ISO-8859-3 Latin alphabet part 3

Covering SE Europe, Esperanto, Maltese, Turkish, and miscellaneous others

ISO-8859-4 Latin alphabet part 4

Covering Scandinavia/Baltics (and others not in ISO-8859-1)

ISO-8859-5 Latin/Cyrillic alphabet part 5

ISO-8859-6 Latin/Arabic alphabet part 6

ISO-8859-7 Latin/Greek alphabet part 7

ISO-8859-8 Latin/Hebrew alphabet part 8

ISO-8859-9 Latin 5 alphabet part 9 (same as ISO-8859-1 except Turkish characters

replace Icelandic ones)

ISO-8859-10 Latin 6 Lappish, Nordic, and Eskimo

ISO-8859-15 The same as ISO-8859-1 but with more characters added

ISO-8859-16 Latin 10

Covering SE Europe, Albanian, Croatian, Hungarian, Polish, Romanian and

Slovenian, plus can be used in French, German, Italian, and Irish Gaelic

ISO-2022-JP Latin/Japanese alphabet part 1

ISO-2022-JP-2 Latin/Japanese alphabet part 2

ISO-2022-KR Latin/Korean alphabet part 1

Character encodings ❘ 563

It is helpful to note that the first 128 characters of ISO-8859-1 match those of ASCII, so you can
safely use those characters as you would in ASCII.

The Unicode Consortium was then set up to devise a way to show all characters of different languages,
rather than have these different, incompatible character codes for different languages.

Therefore, if you want to create documents that use characters from multiple character sets, you can
do so using the single Unicode character encodings. Furthermore, users can view documents written
in different character sets, providing their processor (and fonts) supports the Unicode standards, no
matter what platform they are on or which country they are in. By having the single-character encod-
ing, you can reduce software development costs because the programs do not need to be designed to
support multiple character encodings.

One problem with Unicode is that a lot of older programs were written to support only 8-bit character
sets (limiting them to 256 characters), which is nowhere near the number required for all languages.

Unicode therefore specifies encodings that can deal with a string in special ways to make enough
space for the huge character set it encompasses. These are known as UTF-8, UTF-16, and UTF-32,
as shown in Table E-3.

TaBLe e-3: Unicode Character Sets

CHaraCTer SeT deSCripTion

UTF-8 A Unicode Translation Format that comes in 8-bit units . That is, it comes

in bytes . A character in UTF-8 can be from 1 to 4 bytes, making UTF-8 a

variable width .

UTF-16 A Unicode Translation Format that comes in 16-bit units . That is, it comes in

shorts . It can be 1 or 2 shorts, making UTF-16 a variable width .

UTF-32 A Unicode Translation Format that comes in 32-bit units . That is, it comes in

longs . It is a fixed-width format and is always 1 “long” in length .

The first 256 characters of Unicode character sets correspond to the 256 characters of ISO-8859-1.

By default, HTML 4 processors should support UTF-8, and XML processors are supposed to support
UTF-8 and UTF-16; therefore, all XHTML-compliant processors should also support UTF-16 (because
XHTML is an application of XML). The HTML5 specification is strongly biased toward UTF-8.

In practice you almost always want to use UTF-8.

For more information on internationalization and different character sets and encodings, see
www.i18nguy.com and the article “The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know about Unicode and Character Sets (No Excuses!)” at www.joelonsoftware
.com/articles/Unicode.html.

Special Characters
Some characters are reserved in HTML; for example, you cannot use the greater-than and
less-than signs or angle brackets within your text because the browser could mistake them for
markup. HTML processors must support the five special characters listed in Table F-1.

TaBLe F-1: Special Characters

SYMBoL deSCripTion enTiTY naMe nuMBer Code

& Ampersand & &

< Less than < <

> Greater than > >

" Double quote " "

Non-breaking space

To write an element and attribute into your page so that the code is shown to the user rather
than being processed by the browser (for example, as <div id="character">), you would write

<div id="character">

There is also a long list of special characters that HTML 4.0–aware processors should sup-
port. For these to appear in your document, you can use either the numerical code or the
entity name. For example, to insert a copyright symbol, you can use either of the following:

© 2008
© 2013

F

566 ❘ appendix F SpeciaL characterS

The special characters have been split into the following sections:

➤➤ Character Entity References for ISO 8859-1 Characters

➤➤ Character Entity References for Symbols, Mathematical Symbols, and Greek Letters

➤➤ Character Entity References for Markup-Significant and Internationalization Characters

They are taken from the W3C website at www.w3.org/TR/REC-html40/sgml/entities.html.

CHaraCTer enTiTY reFerenCeS For iSo 8859-1 CHaraCTerS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

No-break space = non-breaking space

¡ Inverted exclamation mark ¡ ¡

¢ Cent sign ¢ ¢

£ Pound sign £ £

¤ Currency sign ¤ ¤

¥ Yen sign = yuan sign ¥ ¥

¦ Broken bar = broken vertical bar ¦ ¦

§ Section sign § §

¨ Diaeresis = spacing diaeresis ¨ ¨

© Copyright sign © ©

a_ Feminine ordinal indicator ª ª

« Left-pointing double angle quotation

mark = left-pointing guillemet

« «

¬ Not sign ¬ ¬

Soft hyphen = discretionary hyphen ­ ­

® Registered sign = registered

trademark sign

® ®

¯ Macron = spacing macron = overline =

APL overbar

¯ ¯

˚ Degree sign ° °

± Plus-minus sign = plus-or-minus sign ± ±

Character entity References for iSO 8859-1 Characters ❘ 567

2 Superscript two = superscript digit two

= squared

² ²

3 Superscript three = superscript digit

three = cubed

³ ³

´ Acute accent = spacing acute ´ ´

µ Micro sign µ µ

N Pilcrow sign = paragraph sign ¶ ¶

· Middle dot = Georgian comma = Greek

middle dot

· ·

¸ Cedilla = spacing cedilla ¸ ¸

1 Superscript one = superscript digit one ¹ ¹

$ Masculine ordinal indicator º º

» Right-pointing double angle quotation

mark = right-pointing guillemet

» »

¼ Vulgar fraction one-quarter = fraction

one-quarter

¼ ¼

½ Vulgar fraction one-half = fraction

one-half

½ ½

¾ Vulgar fraction three-quarters = fraction

three-quarters

¾ ¾

¿ Inverted question mark = turned ques-

tion mark

¿ ¿

À Latin capital letter A with grave = Latin

capital letter A grave

À À

Á Latin capital letter A with acute Á Á

Â Latin capital letter A with circumflex Â Â

Ã Latin capital letter A with tilde Ã Ã

Ä Latin capital letter A with diaeresis Ä Ä

Å Latin capital letter A with ring above =

Latin capital letter A ring

Å Å

Æ Latin capital letter AE = Latin capital

ligature AE

Æ Æ

continues

568 ❘ appendix F SpeciaL characterS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

Ç Latin capital letter C with cedilla Ç Ç

È Latin capital letter E with grave È È

É Latin capital letter E with acute É É

Ê Latin capital letter E with circumflex Ê Ê

Ë Latin capital letter E with diaeresis Ë Ë

Ì Latin capital letter I with grave Ì Ì

Í Latin capital letter I with acute Í Í

Î Latin capital letter I with circumflex Î Î

Ï Latin capital letter I with diaeresis Ï Ï

Ð Latin capital letter ETH Ð Ð

Ñ Latin capital letter N with tilde Ñ Ñ

Ò Latin capital letter O with grave Ò Ò

Ó Latin capital letter O with acute Ó Ó

Ô Latin capital letter O with circumflex Ô Ô

Õ Latin capital letter O with tilde Õ Õ

Ö Latin capital letter O with diaeresis Ö Ö

n Multiplication sign × ×

Ø Latin capital letter O with stroke = Latin

capital letter O slash

Ø Ø

Ù Latin capital letter U with grave Ù Ù

Ú Latin capital letter U with acute Ú Ú

Û Latin capital letter U with circumflex Û Û

Ü Latin capital letter U with diaeresis Ü Ü

Ý Latin capital letter Y with acute Ý Ý

Þ Latin capital letter THORN Þ Þ

ß Latin small letter sharp s = ess-zed ß ß

à Latin small letter a with grave = Latin

small letter a grave

à à

(continued)

Character entity References for iSO 8859-1 Characters ❘ 569

á Latin small letter a with acute á á

â Latin small letter a with circumflex â â

ã Latin small letter a with tilde ã ã

ä Latin small letter a with diaeresis ä ä

å Latin small letter a with ring above =

Latin small letter a ring

å å

æ Latin small letter ae = Latin small

ligature ae

æ æ

ç Latin small letter c with cedilla ç ç

è Latin small letter e with grave è è

é Latin small letter e with acute é é

ê Latin small letter e with circumflex ê ê

ë Latin small letter e with diaeresis ë ë

ì Latin small letter i with grave ì ì

í Latin small letter i with acute í í

î Latin small letter i with circumflex î î

ï Latin small letter i with diaeresis ï ï

đ Latin small letter eth ð ð

ñ Latin small letter n with tilde ñ ñ

ò Latin small letter o with grave ò ò

ó Latin small letter o with acute ó ó

ô Latin small letter o with circumflex ô ô

õ Latin small letter o with tilde õ õ

ö Latin small letter o with diaeresis ö ö

- Division sign ÷ ÷

Ø Latin small letter o with stroke = Latin

small letter o slash

ø ø

ù Latin small letter u with grave ù ù

ú Latin small letter u with acute ú ú

û Latin small letter u with circumflex û û

continues

570 ❘ appendix F SpeciaL characterS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

ü Latin small letter u with diaeresis ü ü

ý Latin small letter y with acute ý ý

Þ Latin small letter thorn þ þ

ÿ Latin small letter y with diaeresis ÿ ÿ

CHaraCTer enTiTY reFerenCeS For SYMBoLS,
MaTHeMaTiCaL SYMBoLS, and greek LeTTerS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

LaTin exTended-B

ƒ Latin small f with hook = function = florin ƒ ƒ

greek

 Greek capital letter alpha Α Α

 Greek capital letter beta Β Β

 Greek capital letter gamma Γ Γ

 Greek capital letter delta Δ Δ

 Greek capital letter epsilon Ε Ε

 Greek capital letter zeta Ζ Ζ

 Greek capital letter eta Η Η

 Greek capital letter theta Θ Θ

 Greek capital letter iota Ι Ι

 Greek capital letter kappa Κ Κ

 Greek capital letter lambda Λ Λ

 Greek capital letter mu &Mu Μ

 Greek capital letter nu Ν Ν

 Greek capital letter xi Ξ Ξ

(continued)

Character entity References for Symbols, Mathematical Symbols, and greek Letters ❘ 571

 Greek capital letter omicron Ο Ο

 Greek capital letter pi Π Π

 Greek capital letter rho Ρ Ρ

 Greek capital letter sigma Σ Σ

 Greek capital letter tau Τ Τ

 Greek capital letter upsilon Υ Υ

 Greek capital letter phi Φ Φ

X Greek capital letter chi Χ Χ

 Greek capital letter psi Ψ Ψ

 Greek capital letter omega Ω Ω

 Greek small letter alpha α α

 Greek small letter beta β β

 Greek small letter gamma γ γ

 Greek small letter delta δ δ

 Greek small letter epsilon ε ε

 Greek small letter zeta ζ ζ

 Greek small letter eta η η

 Greek small letter theta θ θ

 Greek small letter iota ι ι

 Greek small letter kappa κ κ

 Greek small letter lambda λ λ

 Greek small letter mu μ μ

 Greek small letter nu ν ν

 Greek small letter xi ξ ξ

 Greek small letter omicron ο ο

 Greek small letter pi π π

 Greek small letter rho ρ ρ

 Greek small letter final sigma ς ς

continues

572 ❘ appendix F SpeciaL characterS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

 Greek small letter sigma σ σ

 Greek small letter tau τ τ

 Greek small letter upsilon υ υ

 Greek small letter phi φ φ

 Greek small letter chi χ χ

 Greek small letter psi ψ ψ

 Greek small letter omega ω ω

 Greek small letter theta symbol ϑ ϑ

 Greek upsilon with hook symbol ϒ ϒ

 Greek pi symbol ϖ ϖ

generaL punCTuaTion

• Bullet = black small circle • •

… Horizontal ellipsis = three dot leader … …

 Prime = minutes = feet ′ ′

 Double prime = seconds = inches ″ ″

¯ Overline = spacing overscore ‾ ‾

/ Fraction slash ⁄ ⁄

LeTTerLike SYMBoLS

 Script capital P = power set =

Weierstrass p

℘ ℘

 Blackletter capital I = imaginary part ℑ ℑ

 Blackletter capital R = real part symbol ℜ ℜ

TM Trademark sign ™ ™

 Alef symbol = first transfinite cardinal ℵ ℵ

arrowS

← Left arrow ← ←

↑ Up arrow ↑ ↑

→ Right arrow → →

(continued)

Character entity References for Symbols, Mathematical Symbols, and greek Letters ❘ 573

↓ Down arrow ↓ ↓

↔ Left-right arrow ↔ ↔

↵ Down arrow with corner leftward =

carriage return

↵ ↵

⇐ Left double arrow ⇐ ⇐

⇑ Up double arrow ⇑ ⇑

⇒ Right double arrow ⇒ ⇒

⇓ Down double arrow ⇓ ⇓

⇔ Left-right double arrow ⇔ ⇔

MaTHeMaTiCaL operaTorS

 For all ∀ ∀

∂ Partial differential &part ; ∂

 There exists ∃ ∃

 Empty set = null set = diameter ∅ ∅

 Nabla = backward difference ∇ ∇

 Element of ∈ ∈

 Not an element of ∉ ∉

 Contains as member ∋ ∋

 n-ary product = product sign ∏ ∏

 n-ary summation ∑ ∑

 Minus sign − −

* Asterisk operator ∗ ∗

√ Square root = radical sign √ √

∝ Proportional to ∝ ∝

∞ Infinity ∞ ∞

∠ Angle ∠ ∠

∧ Logical and = wedge ∧ ∧

∨ Logical or = vee &or ; ∨

∩ Intersection = cap ∩ ∩

continues

574 ❘ appendix F SpeciaL characterS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

∪ Union = cup ∪ ∪

∫ Integral ∫ ∫

∴ Therefore ∴ ∴

∼ Tilde operator = varies with = similar to ∼ ∼

≅ Approximately equal to ≅ ≅

≈ Almost equal to = asymptotic to ≈ ≈

≠ Not equal to ≠ ≠

≡ Identical to ≡ ≡

≤ Less than or equal to ≤ ≤

≥ Greater than or equal to ≥ ≥

⊂ Subset of ⊂ ⊂

⊃ Superset of ⊃ ⊃

⊄ Not a subset of ⊄ ⊄

⊆ Subset of or equal to ⊆ ⊆

⊇ Superset of or equal to ⊇ ⊇

⊕ Circled plus = direct sum ⊕ ⊕

⊗ Circled times = vector product ⊗ ⊗

⊥ Up tack = orthogonal to = perpendicular ⊥ ⊥

⋅ Dot operator ⋅ ⋅

MiSCeLLaneouS TeCHniCaL

˹ Left ceiling = apl upstile ⌈ ⌈

˺ Right ceiling ⌉ ⌉

˻ Left floor = apl downstile ⌊ ⌊

˼ Right floor ⌋ ⌋

〈 Left-pointing angle bracket = bra ⟨ 〈

〉 Right-pointing angle bracket = ket ⟩ 〉

(continued)

Character entity References for Markup-Significant and internationalization Characters ❘ 575

geoMeTriC SHape

◊ Lozenge ◊ ◊

MiSCeLLaneouS SYMBoLS

♠ Black spade suit ♠ ♠

♣ Black club suit = shamrock ♣ ♣

♥ Black heart suit = valentine ♥ ♥

♦ Black diamond suit ♦ ♦

CHaraCTer enTiTY reFerenCeS For Markup-SigniFiCanT
and inTernaTionaLizaTion CHaraCTerS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

“ Quotation mark = APL quote " "

& Ampersand & &

< Less-than sign < <

> Greater-than sign > >

Œ Latin capital ligature OE Œ Œ

œ Latin small ligature oe œ œ

Š Latin capital letter S with caron Š Š

š Latin small letter s with caron š š

Ÿ Latin capital letter Y with diaeresis Ÿ Ÿ

SpaCing ModiFierS

ˆ Modifier letter circumflex accent ˆ ˆ

˜ Small tilde ˜ ˜

generaL punCTuaTion

En space    

Em space    

Thin space    

continues

576 ❘ appendix F SpeciaL characterS

SYMBoL deSCripTion enTiTY naMe nuMBer Code

Zero width non-joiner ‌ ‌

Zero width joiner ‍ ‍

Left-to-right mark ‎ ‎

Right-to-left mark ‏ ‏

– En dash – –

— Em dash — —

‘ Left single quotation mark ‘ ‘

’ Right single quotation mark ’ ’

‚ Single low-9 quotation mark ‚ ‚

“ Left double quotation mark “ “

” Right double quotation mark ” ”

„ Double low-9 quotation mark „ „

† Dagger † †

‡ Double dagger ‡ ‡

‰ Per mille sign ‰ ‰

‹ Single left-pointing angle quotation mark

(proposed, but not yet standardized)

‹ ‹

› Single right-pointing angle quota-

tion mark (proposed, but not yet

standardized)

› ›

€ Euro sign € €

(continued)

Language Codes
Table G-1 shows the two-letter ISO 639 language codes that you can use to declare the language
of a document in the lang attribute. It covers many of the world’s major languages.

TaBLe g-1: ISO 639 Language Codes

Language iSo Code

Abkhazian AB

Afan (Oromo) OM

Afar AA

Afrikaans AF

Albanian SQ

Amharic AM

Arabic AR

Armenian HY

Assamese AS

Aymara AY

Azerbaijani AZ

Bashkir BA

Basque EU

Bengali; Bangla BN

G

continues

578 ❘ appendix g Language coDeS

Language iSo Code

Bhutani DZ

Bihari BH

Bislama BI

Breton BR

Bulgarian BG

Burmese MY

Byelorussian BE

Cambodian KM

Catalan CA

Chinese ZH

Corsican CO

Croatian HR

Czech CS

Danish DA

Dutch NL

English EN

Esperanto EO

Estonian ET

Faroese FO

Fiji FJ

Finnish FI

French FR

Frisian FY

Galician GL

Georgian KA

German DE

TaBLe g-1 (continued)

Language Codes ❘ 579

Greek EL

Greenlandic KL

Guarani GN

Gujarati GU

Hausa HA

Hebrew HE

Hindi HI

Hungarian HU

Icelandic IS

Indonesian ID

Interlingua IA

Interlingue IE

Inuktitut IU

Inupiak IK

Irish GA

Italian IT

Japanese JA

Javanese JV

Kannada KN

Kashmiri KS

Kazakh KK

Kinyarwanda RW

Kirghiz KY

Korean KO

Kurdish KU

Kurundi RN

Laothian LO

continues

580 ❘ appendix g Language coDeS

Language iSo Code

Latin LA

Latvian; Lettish LV

Lingala LN

Lithuanian LT

Macedonian MK

Malagasy MG

Malay MS

Malayalam ML

Maltese MT

Maori MI

Marathi MR

Moldavian MO

Mongolian MN

Nauru NA

Nepali NE

Norwegian NO

Occitan OC

Oriya OR

Pashto; Pushto PS

Persian (Farsi) FA

Polish PL

Portuguese PT

Punjabi PA

Quechua QU

Rhaeto-Romance RM

Romanian RO

TaBLe g-1 (continued)

Language Codes ❘ 581

Russian RU

Samoan SM

Sangho SG

Sanskrit SA

Scots Gaelic GD

Serbian SR

Serbo-Croatian SH

Sesotho ST

Setswana TN

Shona SN

Sindhi SD

Singhalese SI

Siswati SS

Slovak SK

Slovenian SL

Somali SO

Spanish ES

Sudanese SU

Swahili SW

Swedish SV

Tagalog TL

Tajik TG

Tamil TA

Tatar TT

Telugu TE

Thai TH

Tibetan BO

continues

582 ❘ appendix g Language coDeS

Language iSo Code

Tigrinya TI

Tonga TO

Tsonga TS

Turkish TR

Turkmen TK

Twi TW

Uigur UG

Ukrainian UK

Urdu UR

Uzbek UZ

Vietnamese VI

Volapuk VO

Welsh CY

Wolof WO

Xhosa XH

Yiddish YI

Yoruba YO

Zhuang ZA

Zulu ZU

TaBLe g-1 (continued)

MiMe Media Types
You have seen the type attribute used throughout this book on a number of elements, the
value of which is a MIME media type.

Multipurpose Internet Mail Extension (MIME) media types were originally devised so that
e-mail could include information other than plain text. MIME media types indicate the fol-
lowing things:

➤➤ How the parts of a message, such as text and attachments, are combined into the
message

➤➤ The way in which each part of the message is specified

➤➤ The way the items are encoded for transmission so that even software that was
designed to work only with ASCII text can process the message

As you have seen, however, MIME types are not just for use with e-mail; they were adopted
by web servers as a way to tell web browsers what type of material was being sent to them so
that they could cope with that kind of file correctly.

MIME content types consist of two parts:

➤➤ A main type

➤➤ A subtype

The main type is separated from the subtype by a forward slash character—for example,
text/html for HTML.

This appendix is organized by the main types:

➤➤ text

➤➤ image

➤➤ multipart

➤➤ audio

H

584 ❘ appendix H mime meDia tYpeS

➤➤ video

➤➤ message

➤➤ model

➤➤ application

For example, the text main type contains types of plain text files, such as

➤➤ text/plain for plain text files

➤➤ text/html for HTML files

➤➤ text/rtf for text files using rich text formatting

MIME types are officially supposed to be assigned and listed by the Internet Assigned Numbers
Authority (IANA).

Many of the popular MIME types in this list (all those that begin with x-) are not assigned by the
IANA and do not have official status. (Some of these are popular and browsers support them, such
as audio/x-mp3. You can see the list of official MIME types at www.iana.org/assignments/
media-types/.)

Those preceded with vnd. are vendor-specific.

The most popular MIME types are listed in this appendix in a bold typeface to help you find them.

TexT

When specifying the MIME type of a content-type field (for example, in a <meta> element), you can
also indicate the character set for the text being used, for example:

content-type:text/plain; charset=iso-8859-1

If you do not specify a character set, the default is US-ASCII.

calendar

css

directory

enriched

html

parityfec

plain

prs.fallenstein.rst

prs.lines.tag

rfc822-headers

richtext

rtf

sgml

t140

tab-separated-values

uri-list

vnd.abc

vnd.curl

vnd.DMClientScript

vnd.fly

image ❘ 585

vnd.fmi.flexstor

vnd.in3d.3dml

vnd.in3d.spot

vnd.IPTC.NewsML

vnd.IPTC.NITF

vnd.latex-z

vnd.motorola.reflex

vnd.ms-mediapackage

vnd.net2phone.commcenter.command

vnd.sun.j2me.app-descriptor

vnd.wap.si

vnd.wap.sl

vnd.wap.wml

vnd.wap.wmlscript

xml

xml-external-parsed-entity

iMage

bmp

cgm

g3fax

gif

jpeg

Ief

naplps

png

prs.btif

prs.pti

t38

tiff

tiff-fx

vnd.cns.inf2

vnd.djvu

vnd.dwg

vnd.dxf

vnd.fastbidsheet

vnd.fpx

vnd.fst

vnd.fujixerox.edmics-mmr

vnd.fujixerox.edmics-rlc

vnd.globalgraphics.pgb

vnd.microsoft.icon

vnd.mix

vnd.ms-modi

vnd.net-fpx

vnd.sealed.png

vnd.sealedmedia.softseal.gif

vnd.sealedmedia.softseal.jpg

vnd.svf

vnd.wap.wbmp

vnd.xiff

x-portable-pixmap

x-xbitmap

586 ❘ appendix H mime meDia tYpeS

MuLTiparT

alternative

appledouble

byteranges

digest

encrypted

form-data

header-set

mixed

parallel

related

report

signed

voice-message

audio

1d-interleaved-parityfec

32kadpcm

3gpp

3gpp2

ac3

AMR

AMR-WB

amr-wb+

asc

ATRAC-ADVANCED-LOSSLESS

ATRAC-X

ATRAC3

audio/qcelp

basic

BV16

BV32

clearmode

CN

DAT12

dls

dsr-es201108

dsr-es202050

dsr-es202211

dsr-es202212

DV

DVI4

eac3

EVRC

EVRC0

EVRC1

EVRCB

EVRCB0

EVRCB1

EVRC-QCP

EVRCWB

EVRCWB0

EVRCWB1

example

fwdred

G719

G722

G7221

Audio ❘ 587

G723

G726-16

G726-24

G726-32

G726-40

G728

G729

G7291

G729D

G729E

GSM

GSM-EFR

GSM-HR-08

iLBC

ip-mr_v2.5

L8

L16

L20

L24

LPC

mobile-xmf

MPA

mp4

MP4A-LATM

mpa-robust

mpeg

mpeg4-generic

ogg

parityfec

PCMA

PCMA-WB

PCMU

PCMU-WB

prs.sid

QCELP

raptorfec

RED

rtp-enc-aescm128

rtp-midi

rtx

SMV

SMV-QCP

SMV0

sp-midi

speex

t140c

t38

telephone-event

tone

UEMCLIP

ulpfec

VDVI

VMR-WB

vnd.3gpp.iufp

vnd.4SB

vnd.audiokoz

vnd.CELP

vnd.cisco.nse

vnd.cmles.radio-events

vnd.cns.anp1

vnd.cns.inf1

vnd.dece.audio

vnd.digital-winds

vnd.dlna.adts

588 ❘ appendix H mime meDia tYpeS

vnd.dolby.heaac.1

vnd.dolby.heaac.2

vnd.dolby.mlp

vnd.dolby.mps

vnd.dolby.pl2

vnd.dolby.pl2x

vnd.dolby.pl2z

vnd.dolby.pulse.1

vnd.dra

vnd.dts

vnd.dts.hd

vnd.dvb.file

vnd.everad.plj

vnd.hns.audio

vnd.lucent.voice

vnd.ms-playready.media.pya

vnd.nokia.mobile-xmf

vnd.nortel.vbk

vnd.nuera.ecelp4800

vnd.nuera.ecelp7470

vnd.nuera.ecelp9600

vnd.octel.sbc

vnd.rhetorex.32kadpcm

vnd.rip

vnd.sealedmedia.softseal.mpeg

vnd.vmx.cvsd

vorbis

vorbis-config

x-aiff

x-midi

x-mod

x-mp3

x-wav

Video

3gpp

3gpp-tt

3gpp2

BMPEG

BT656

CelB

DV

example

H261

H263

H263-1998

H263-2000

H264

H264-RCDO

H264-SVC

JPEG

jpeg2000

MJ2

MP1S

MP2P

MP2T

mp4

MP4V-ES

MPV

Message ❘ 589

mpeg

mpeg4-generic

Nv

ogg

parityfec

pointer

quicktime

raptorfec

raw

rtp-enc-aescm128

rtx

SMPTE292M

ulpfec

vc1

vnd.CCTV

vnd.dece.hd

vnd.dece.mobile

vnd.dece.mp4

vnd.dece.pd

vnd.dece.sd

vnd.dece.video

vnd.directv.mpeg

vnd.directv.mpeg-tts

vnd.dlna.mpeg-tts

vnd.dvb.file

vnd.fvt

vnd.hns.video

vnd.iptvforum.1dparityfec-1010

vnd.iptvforum.1dparityfec-2005

vnd.iptvforum.2dparityfec-1010

vnd.iptvforum.2dparityfec-2005

vnd.iptvforum.ttsavc

vnd.iptvforum.ttsmpeg2

vnd.motorola.video

vnd.motorola.videop

vnd.mpegurl

vnd.ms-playready.media.pyv

vnd.nokia.interleaved-multimedia

vnd.nokia.videovoip

vnd.objectvideo

vnd.sealed.mpeg1

vnd.sealed.mpeg4

vnd.sealed.swf

vnd.sealedmedia.softseal.mov

vnd.uvvu.mp4

x-msvideo

x-sgi-movie

MeSSage

CPIM

delivery-status

disposition-notification

external-body

http

news

partial

rfc822

s-http

sip

sipfrag

590 ❘ appendix H mime meDia tYpeS

ModeL

iges

mesh

vnd.dwf

vnd.flatland.3dml

vnd.gdl

vnd.gs-gdl

vnd.gtw

vnd.mts

vnd.parasolid.transmit.binary

vnd.parasolid.transmit.text

vnd.vtu

vrml

appLiCaTion

activemessage

andrew-inset

applefile

atomicmail

batch-SMTP

beep+xml

cals-1840

cnrp+xml

commonground

cpl+xml

cybercash

dca-rft

dec-dx

dicom

dvcs

EDI-Consent

EDI-X12

EDIFACT

eshop

font-tdpfr

http

hyperstudio

iges

index

index.cmd

index.obj

index.response

index.vnd

iotp

ipp

isup

mac-binhex40

macwriteii

marc

mathematica

mpeg4-generic

msword

news-message-id

news-transmission

ocsp-request

ocsp-response

octet-stream

oda

ogg

Application ❘ 591

parityfec

pdf

pgp-encrypted

pgp-keys

pgp-signature

pidf+xml

pkcs10

pkcs7-mime

pkcs7-signature

pkix-cert

pkix-crl

pkix-pkipath

pkixcmp

postscript

prs.alvestrand.titrax-sheet

prs.cww

prs.nprend

prs.plucker

qsig

reginfo+xml

remote-printing

riscos

rtf

sdp

set-payment

set-payment-initiation

set-registration

set-registration-initiation

sgml

sgml-open-catalog

sieve

slate

timestamp-query

timestamp-reply

tve-trigger

vemmi

vnd.3gpp.pic-bw-large

vnd.3gpp.pic-bw-small

vnd.3gpp.pic-bw-var

vnd.3gpp.sms

vnd.3M.Post-it-Notes

vnd.accpac.simply.aso

vnd.accpac.simply.imp

vnd.acucobol

vnd.acucorp

vnd.adobe.xfdf

vnd.aether.imp

vnd.amiga.ami

vnd.anser-web-certificate-issue-initiation

vnd.anser-web-funds-transfer-initiation

vnd.audiograph

vnd.blueice.multipass

vnd.bmi

vnd.businessobjects

vnd.canon-cpdl

vnd.canon-lips

vnd.cinderella

vnd.claymore

vnd.commerce-battelle

vnd.commonspace

vnd.contact.cmsg

vnd.cosmocaller

vnd.criticaltools.wbs+xml

vnd.ctc-posml

592 ❘ appendix H mime meDia tYpeS

vnd.cups-postscript

vnd.cups-raster

vnd.cups-raw

vnd.curl

vnd.cybank

vnd.data-vision.rdz

vnd.dna

vnd.dpgraph

vnd.dreamfactory

vnd.dxr

vnd.ecdis-update

vnd.ecowin.chart

vnd.ecowin.filerequest

vnd.ecowin.fileupdate

vnd.ecowin.series

vnd.ecowin.seriesrequest

vnd.ecowin.seriesupdate

vnd.enliven

vnd.epson.esf

vnd.epson.msf

vnd.epson.quickanime

vnd.epson.salt

vnd.epson.ssf

vnd.ericsson.quickcall

vnd.eudora.data

vnd.fdf

vnd.ffsns

vnd.fints

vnd.FloGraphIt

vnd.framemaker

vnd.fsc.weblaunch

vnd.fujitsu.oasys

vnd.fujitsu.oasys2

vnd.fujitsu.oasys3

vnd.fujitsu.oasysgp

vnd.fujitsu.oasysprs

vnd.fujixerox.ddd

vnd.fujixerox.docuworks

vnd.fujixerox.docuworks.binder

vnd.fut-misnet

vnd.genomatix.tuxedo

vnd.grafeq

vnd.groove-account

vnd.groove-help

vnd.groove-identity-message

vnd.groove-injector

vnd.groove-tool-message

vnd.groove-tool-template

vnd.groove-vcard

vnd.hbci

vnd.hhe.lesson-player

vnd.hp-HPGL

vnd.hp-hpid

vnd.hp-hps

vnd.hp-PCL

vnd.hp-PCLXL

vnd.httphone

vnd.hzn-3d-crossword

vnd.ibm.afplinedata

vnd.ibm.electronic-media

vnd.ibm.MiniPay

vnd.ibm.modcap

vnd.ibm.rights-management

vnd.ibm.secure-container

Application ❘ 593

vnd.informix-visionary

vnd.intercon.formnet

vnd.intertrust.digibox

vnd.intertrust.nncp

vnd.intu.qbo

vnd.intu.qfx

vnd.ipunplugged.rcprofile

vnd.irepository.package+xml

vnd.is-xpr

vnd.japannet-directory-service

vnd.japannet-jpnstore-wakeup

vnd.japannet-payment-wakeup

vnd.japannet-registration

vnd.japannet-registration-wakeup

vnd.japannet-setstore-wakeup

vnd.japannet-verification

vnd.japannet-verification-wakeup

vnd.jisp

vnd.kde.karbon

vnd.kde.kchart

vnd.kde.kformula

vnd.kde.kivio

vnd.kde.kontour

vnd.kde.kpresenter

vnd.kde.kspread

vnd.kde.kword

vnd.kenameaapp

vnd.kidspiration

vnd.koan

vnd.liberty-request+xml

vnd.llamagraphics.life-balance.desktop

vnd.llamagraphics.life-balance.exchange+xml

vnd.lotus-1-2-3

vnd.lotus-approach

vnd.lotus-freelance

vnd.lotus-notes

vnd.lotus-organizer

vnd.lotus-screencam

vnd.lotus-wordpro

vnd.mcd

vnd.mediastation.cdkey

vnd.meridian-slingshot

vnd.micrografx.flo

vnd.micrografx.igx

vnd.mif

vnd.minisoft-hp3000-save

vnd.mitsubishi.misty-guard.trustweb

vnd.Mobius.DAF

vnd.Mobius.DIS

vnd.Mobius.MBK

vnd.Mobius.MQY

vnd.Mobius.MSL

vnd.Mobius.PLC

vnd.Mobius.TXF

vnd.mophun.application

vnd.mophun.certificate

vnd.sss-ntf

vnd.street-stream

vnd.svd

vnd.swiftview-ics

vnd.triscape.mxs

vnd.trueapp

594 ❘ appendix H mime meDia tYpeS

vnd.truedoc

vnd.ufdl

vnd.uiq.theme

vnd.uplanet.alert

vnd.uplanet.alert-wbxml

vnd.uplanet.bearer-choice

vnd.uplanet.bearer-choice-wbxml

vnd.uplanet.cacheop

vnd.uplanet.cacheop-wbxml

vnd.uplanet.channel

vnd.uplanet.channel-wbxml

vnd.uplanet.list

vnd.uplanet.list-wbxml

vnd.uplanet.listcmd

vnd.uplanet.listcmd-wbxml

vnd.uplanet.signal

vnd.vcx

vnd.vectorworks

vnd.vidsoft.vidconference

vnd.visio

vnd.visionary

vnd.vividence.scriptfile

vnd.vsf

vnd.wap.sic

vnd.wap.slc

vnd.wap.wbxml

vnd.wap.wmlc

vnd.wap.wmlscriptc

vnd.webturbo

vnd.wqd

vnd.wrq-hp3000-labelled

vnd.wt.stf

vnd.wv.csp+wbxml

vnd.wv.csp+xml

vnd.wv.ssp+xml

vnd.xara

vnd.xfdl

vnd.yamaha.hv-dic

vnd.yamaha.hv-script

vnd.yamaha.hv-voice

vnd.yamaha.smaf-audio

vnd.yamaha.smaf-phrase

vnd.yellowriver-custom-menu

watcherinfo+xml

whoispp-query

whoispp-response

wita

wordperfect5.1

x-debian-package

x-gzip

x-java

x-javascript

x-msaccess

x-msexcel

x-mspowerpoint

x-rpm

x-zip

x400-bp

xhtml+xml

xml

xml-dtd

xml-external-parsed-entity

zip

Changes between HTML4
and HTML5

This document outlines the major element differences between HTML4 and HTML5. For a
full view of all the changes, see the W3C’s document “HTML5 Differences from HTML4” at
www.w3.org/TR/html5-diff/.

new eLeMenTS

The following list represents all the new elements introduced in HTML5. For descriptions of
these elements, see Appendix B, “HTML Element Reference”:

➤➤ section

➤➤ article

➤➤ aside

➤➤ hgroup

➤➤ header

➤➤ footer

➤➤ nav

➤➤ figure

➤➤ figcaption

➤➤ video

➤➤ audio

➤➤ track

➤➤ embed

I

596 ❘ appendix i changeS betWeen htmL4 anD htmL5

➤➤ mark

➤➤ progress

➤➤ meter

➤➤ time

➤➤ ruby

➤➤ rt

➤➤ rp

➤➤ bdi

➤➤ wbr

➤➤ canvas

➤➤ command

➤➤ cetails

➤➤ catalist

➤➤ keygen

➤➤ output

new <inpuT> eLeMenT TYpeS

The input element’s type attribute now has the following new values. For descriptions of these
elements, see Appendix B, “HTML Element Reference”:

➤➤ tel

➤➤ search

➤➤ url

➤➤ email

➤➤ datetime

➤➤ date

➤➤ month

➤➤ week

➤➤ time

➤➤ datetime-local

➤➤ number

➤➤ range

➤➤ color

new Attributes ❘ 597

new aTTriBuTeS

Many new attributes have been added to existing elements. These new attributes either are existing
attributes added to new elements or are completely new attributes. These are also covered in depth
alongside their elements in Appendix B, “HTML Element Reference”:

eLeMenT aTTriBuTeS

<a> media

<area> hreflang, media, rel, type

<base> target

<button> autofocus, form, formaction, formenctype, formmethod,

formnovalidate, formtarget

<fieldset> disabled, form, name

<form> novalidate

<html> manifest

<iframe> sandbox, seamless, srcdoc

 crossorigin

<input> autocomplete, autofocus, dirname, form, formaction,

formenctype, formmethod, formnovalidate, formtarget list,

max, min, multiple, pattern, placeholder, required, step,

height, width

<label> form

<link> sizes

<menu> label, type

<meta> charset

<object> form, typemustmatch

 reversed

<output> form

<script> async

<select> autofocus, form, required

<style> scoped

<textarea> autofocus, form, maxlength, placeholder, required,

wrap, dirname

598 ❘ appendix i changeS betWeen htmL4 anD htmL5

gLoBaL aTTriBuTeS

HTML5 greatly expands on the number of global attributes. The following list includes all the new
global attributes and the global attributes present in previous versions of HTML:

➤➤ accesskey

➤➤ class

➤➤ contenteditable

➤➤ contextmenu

➤➤ dir

➤➤ draggable

➤➤ dropzone

➤➤ hidden

➤➤ id

➤➤ lang

➤➤ spellcheck

➤➤ style

➤➤ tabindex

➤➤ title

➤➤ translate

CHanged aTTriBuTeS

Several existing attributes have had their meanings changed:

aTTriBuTe eLeMenT CHange

accept <input> audio/*, video/*, and image/* are now

valid values .

accesskey global Now allows multiple characters to be

specified .

action <form> No longer allowed to have an empty URL .

colspan <td><th> Now has to be greater than zero .

coords <area> No longer allows a percentage value of

the radius when the element is a circle .

Changed Attributes ❘ 599

data <object> No longer relative to the codebase .

defer <script> Explicitly executes the script when the

page has finished parsing .

dir global Now allows the value auto .

enctype <form> Now supports the value text/plain .

width/height , <iframe>,

<object>

No longer allowed to contain percent-

ages . No longer allowed to stretch the

image to a different aspect ratio than its

intrinsic aspect ratio .

href <link> No longer allowed to have an empty URL .

href <base> Allowed to contain a relative URL .

Attributes that accept URLs global Now support IRIs if the document’s encod-

ing is UTF-8 or UTF-16 .

http-equiv <meta> No longer said to be used by HTTP serv-

ers to create HTTP headers in the HTTP

response . Instead, it is said to be a pragma

directive to be used by the user agent .

id global Now allowed to have any unique value, as

long as it is not an empty string and does

not contain spaces .

lang global Takes the empty string in addition to a

valid language identifier .

media <link> Now accepts a media query . Defaults

to “all .”

Event handlers global Defaults to JavaScript as the scripting

language .

value No longer deprecated .

start/type No longer deprecated .

style global Always uses CSS as the style language .

tabindex global Allows negative values, which indicates

that the element can receive focus but

cannot be tabbed to .

target <a><area> No longer deprecated .

continues

600 ❘ appendix i changeS betWeen htmL4 anD htmL5

aTTriBuTe eLeMenT CHange

type <script> <style> No longer required if the scripting lan-

guage is JavaScript and the styling

language is CSS, respectively .

usemap img No longer takes a URL, but instead

takes a valid hash-name reference to

a map element .

oBSoLeTe eLeMenTS

The elements in this section are no longer part of the HTML specification:

➤➤ basefont

➤➤ big

➤➤ center

➤➤ font

➤➤ strike

➤➤ tt

➤➤ frame

➤➤ frameset

➤➤ noframes

➤➤ acronym

➤➤ applet

➤➤ isindex

➤➤ dir

oBSoLeTe aTTriBuTeS

Some attributes from HTML4 are no longer allowed in HTML5:

eLeMenT aTTriBuTeS

<a> charset, coords, rev, shape

<area> nohref

(continued)

Obsolete Attributes ❘ 601

<body> alink, background, bgcolor, link, text, vlink

 clear

<caption> align

<col> align, char, charoff, valign, width

<colgroup> align, char, charoff, valign, width

<div> align

<dl> Compact

<head> profile

<hn> align

<hr> align, noshade, size, width

<html> version

<iframe> align, frameborder, longdesc, marginheight,

marginwidth, scrolling

 align, hspace, longdesc, name, vspace

<input> align

<legend> align

 type

<link> charset, rev, target

<menu> compact

<meta> scheme

<object> align, archive, border, classid, codebase, codetype,

declare, space, standby, vspace, hspace

 compact

<p> align

<param> type, valuetype

<pre> width

<table> align, bgcolor, cellpadding, cellspacing, rules,

summary, width, frame

<tbody> align, char, charoff, valign

continues

602 ❘ appendix i changeS betWeen htmL4 anD htmL5

eLeMenT aTTriBuTeS

<td> abbr, align, axis, bgcolor char, charoff, height,

nowrap, scope, valign, width

<tfoot> align char, charoff, valign

<th> abbr, align, axis, bgcolor char, charoff, height,

nowrap, valign, width

<thead> align, char, charoff, valign

<tfoot> align, char, charoff, valign

<tr> align, bgcolor, char, charoff, valign

 compact, type

aT-riSk eLeMenTS

The following elements and attribute types are at risk of being removed from the specification:

➤➤ <hgroup>

➤➤ <command>

➤➤ <menu>

➤➤ <dialog>

➤➤ <details>

➤➤ <summary>

➤➤ <input type=color>

➤➤ <input type=datetime>

➤➤ <input type=month>

➤➤ <input type=week>

➤➤ <input type=time>

➤➤ <input type=datetime-local>

➤➤ <output>

➤➤ <style scoped>

➤➤ <iframe seamless>

(continued)

603

Symbols

; (semi-colon)
CSS property-value pairs, 192
variable declarations, 350

-->, comments, 51
<--, comments, 51
"-", CSS properties, 394
$(), jQuery, 386
../, parent directory, 64
*/, styles sheets, 195
/*, styles sheets, 195
& (ampersand), character entities, 51, 565
<> (angled brackets), character entities,

51, 565
* (asterisk), CSS universal selector, 224
\ (backslash), JavaScript, 378
{} (curly brackets)

CSS properties, 192
if statements, 357

"" (double quotes)
character entities, 51, 565
content, 284–287
<q>, 42

= (equals sign), subject, 74
> (greater than sign), CSS child

selectors, 225
(hash sign), href, 67
+ (plus sign), string operators, 354

/ (slash)
comments, 344
filepath, 62
opening tags, 4
root directory, 65
subdirectory, 64

%0D%0A, e-mail, 75
%20, e-mail, 75

a

<a>, 6–7, 476
accesskey, 69
<cite>, 41
destination anchor, 66–68
href, 56
hreflang, 69
IE, 85
images, 56
in-page links, 65–74
jQuery Tabs, 432
links, 56
<nav>, 59
$().on(), 399
rel, 69–70
source anchor, 65–66
tabindex, 70–71
target, 71
title, 71, 432, 442

index

604

<a> (continued) – $.attr

<a> (continued)
type, 71
white space, 57

<abbr>, 16, 42–43, 476
accessibility checklist, 442
lang, 43
title, 42

absolute

CSS, 296–298
position, 295

absolute units, CSS, 232–233, 548
absolute URLs, 55, 63–65
accept, 598

<input>, 168
MIME, 168

accept-charset, <form>, 144
accessibility

checklists, 441–445
tables, 130–131, 133–135

accesskey, 598
<a>, 69
form control focus, 179–181

accesskey = list_of_key_labels, 475
Accordion, jQuery UI, 425
action, 142, 143, 598
active, 258
:active, 282
addClass(), 384
$().addClass(), 391–392
<address>, 16, 30, 438, 442, 476
adjacent sibling selectors, CSS, 226

class, 227–228
:after, CSS pseudo-elements, 283–284
Ajax, 142

jQuery, 407–409
$.ajax(), 408
alert(), 377
all, 199
alpha, CSS3, 315, 317–318

alt

images, 442
, 81
<input>, 158

alt text, 81, 438
American Standard Code for Information

Interchange (ASCII), 561
anchors, 6–7, 65
:animated, 388
animated GIFs, 90

PNG, 92
Animated PNGs (APNG), 92
animations

CSS3, 334–336, 546–547
jQuery, 395–397

animation-direction, 335
animation-duration, 334
animation-iteration-duration, 334
animation-name, 334
anonymous functions, 356–357
answers to exercises, 447–474
APNG. See Animated PNGs
$().append(), 390
Appendix, 70
application, 590–594
application/x-www-form-urlencoded, 144
ar, 12
<area>, 477
arguments, 355
arithmetic operators, JavaScript, 351–352
Armenian, 268
Array, 373–375
<article>, 16, 28, 477
ASCII. See American Standard Code for

Information Interchange
<aside>, 29, 225, 477
aspect ratio, images, 82
assignment operators, JavaScript, 352
$.attr(), 389

605

$().attr() – baseline

$().attr(), 392
attr(x), 284
attributes

$().attr(), 392
boolean, 8, 9

checked, 160
buttons, 157
checkbox, 161
core, 9–11

HTML, 475–476
CSS, $().css(), 387
elements, 6–8
groups, 9

<body>, 16
HTML5, 8, 597–602
<input>, 158
internationalization, 11–12
opening tags, 8
<option>, 165
radio buttons, 162
<select>, 164
select boxes, 167–168
selectors, CSS, 228–230
tables, 118–122

audio

cross browser audio, 104
MIME media type, 586–588

<audio>, 477–478
rich media, 97–98
web pages, 99

Author, 70
auto

cursor, 288
overflow, 246
table-layout, 279

autocomplete

<form>, 145
privacy, 154–155
security, 154–155

$().autocomplete(), 426
Autocomplete widget, jQuery UI, 426
autofocus

<input>, 157
<textarea>, 151

autoplay, 97–98

B

, 16, 41, 478
back(), 377
background, 248, 521

CSS, 266
backgrounds, CSS3, 319–321
Background and Borders module, CSS3,

319–321
background-attachment, 265–266, 521
background-color, 195, 324, 467, 522

<body>, 260, 462, 463
CSS, 258, 260

tables, 271
transition-property, 335

background-image, 522
CSS, 261–262

tables, 271
BackgroundNote, 224
background-position, 264–265, 522–523
background-positionX, 523
background-positionY, 523
background-repeat, 262–264, 523
backgrounds

CSS, 521–523
CSS3, 540–541

backward compatibility, HTML5 tags, 15–16
banding, colors, 88
bandwidth, 104
<base>, 478

URL, 65
baseline, 212

606

basic text formatting elements – box model

basic text formatting elements, 17–24
bcc, 75
<bdi>, 478
<bdo>, 478
:before, 283–284
binary operators, 351
$().bind(), 400
bits, 553
bitmapped images, 85
block, 284
block-level elements, 24–25, 50

CSS box model, 235
<blockquote>, 16, 28–29, 478

cite, 29
blur(), 377
Body, 74
<body>, 3, 458, 479

attribute groups, 16
background-color, 260, 462, 463
browsers, 22
HTML5, 5–6
JavaScript, 343
jQuery, 385
SEO, 438
universal selector, 462

body content, 16
bold, 448

, 41
boolean attributes, 8, 9

checked, 160
boolean operators, JavaScript, 353–354
border, 523–524

<caption>, 273
CSS

box model, 233, 236–238
tables, 271

<table>, 273

borders
CSS, 523–525
CSS3, 319–321

border-bottom, 460
border-box, 246–247
border-collapse, 274–275, 535
border-color, 236, 524
border-radius, 319, 320, 467, 540
borders, CSS3, 540–541
border-spacing, 275–276, 535
border-style, 236–237, 524–525
border-top, 460
border-width, 238
both, 302
bottom, 531

box offset, 295
caption-side, 278
vertical-align, 213

box model, CSS, 233–247
block-level elements, 235
border, 233, 236–238
border-box, 246–247
box-sizing, 246–247
content box dimensions, 241–247
height, 241–243
IE, 246–247
inline elements, 235
line-height, 243
margin, 233, 240–241
max-height, 244–245
max-width, 244
min-height, 244–245
min-width, 244
overflow, 245–246
padding, 233, 239–240
white space, 233
width, 241–243

607

box offset – cascading style sheets

box offset, CSS, 295
box-shadow, 321, 540–541
box-sizing, 246–247
boxText, 248

, 16, 20–21, 479
braille, 199
break, 359, 362
browsers. See also specific browsers

<body>, 22
cross browser audio, 104
cross browser video, 103–104
CSS selectors, 225, 230
CSS3 Media Queries, 325
Flash, 95, 100
HTML, 3
JavaScript console, 347–348
PNG, 92
radio buttons, 163
URLs, 63

btn, 157
button, 156
<button>, 155, 480

creating buttons, 158–159
jQuery Button widget, 426

buttons
attributes, 157
form controls, 140, 141–142, 155–159
images, 157–158
<input>, 155–157
name, 157
type, 157
value, 157

Button, jQuery UI, 426–427
bytes, 553

C

callback functions, 412, 413
<canvas>, 480
capitalize, 216

<caption>, 481
accessibility checklist tables, 443
border, 273
font-weight, 273
screen readers, 123
<table>, 454
tables, 122–123
text-align, 273

caption-side, 277–278, 536
cascading style sheets (CSS), 191–254.

See also CSS3
absolute, 296–298
absolute units, 548
adding rules, 197–201
adjacent sibling selectors, 226

class, 227–228
attributes, $().css(), 387
attribute selectors, 228–230
background, 266
background-attachment, 265-266
background-color, 258, 260
background-image, 261–262
background-position, 264–265
background-repeat, 262–264
backgrounds, 521–523
borders, 523–525
box model, 233–247

block-level elements, 235
border, 233, 236–238
border-box, 246–247
box-sizing, 246–247
content box dimensions, 241–247
height, 241–243
IE, 246–247
inline elements, 235
line-height, 243
margin, 233, 240–241
max-height, 244–245
max-width, 244

608

cascading style sheets (continued)

cascading style sheets (continued)
min-height, 244–245
min-width, 244
overflow, 245–246
padding, 233, 239–240
white space, 233
width, 241–243

box offset, 295
building sample layout, 303–308
child selectors, 225–226

class, 227–228
class selector, 224–225
clear, 302–303
color, 211
colors, 521–523
content, 284–287
cursor, 288–289
declarations, 192
descendant selectors, 226
dimensions, 525–527
direction, 219–220
display, 289–290
em, 231–232
, 40
ex, 232
external style sheets, 197
first-letter, 220
first-line, 221
fixed, 298–299
float, 300–302
font, 203–204
font-family, 204–206
fonts, 515–517
font-size, 206–207
font-style, 209
font-variant, 209–210
font-weight, 207–208
general sibling selectors, 226

href, 199
HTML, 257–309
id, 225
images, 81, 460
, 85
@import, 291–292
!important, 292–293
inheritance, 197
internal style sheets, 197
internationalization, 538–539
jQuery, 400–403
lengths, 231–233, 548–549
letter-spacing, 217
<link>, 198–199
links, 258–259
lists, 267–271, 529–530
margins, 528
media, 199
monospaced font, 204
navigation, 459–460
normal flow, 294
outlines, 280–282, 534–535
<p>, 204
padding, 528
percentages, 233
pixels, 231
position, 294–295
positioning schemes, 293–308
positions, 531–534
properties, 201–203, 288–291, 515–549

classifications, 537–538
$().css(), 393–394

pseudo-classes, 282
pseudo-elements, 283–284
px, 231
rel, 199
relative, 295–296
relative units, 231–232, 549

609

cc – class

rem, 232
selectors, 192, 224–230

browsers, 225, 230
<hn>, 193

, 40
static flow, 294
<style>, 200
tables, 271–280, 535–536

border-collapse, 274–275
border-spacing, 275–276
caption-side, 277–278
empty-cells, 276–277
table-layout, 278–280

<td>, 192, 225–226
text, 518–521

control, 203–210
formatting, 210–220
pseudo-classes, 220–221
styling, 221–223

text-decoration, 214
text-indent, 214–215
text-shadow, 215
text-transform, 216
3D Transforms, 332–334
2D Transforms, 331–332
type selector, 224
universal selector, 224
vertical-align, 212–213
vh, 232
visibility, 290–291
vw, 232
white-space, 218–219
word-spacing, 217–218
z-index, 296, 299–300

cc, 75
CDN. See Content Delivery Network
center, 212, 265
chaining, jQuery, 386

Chapter, 70
character encodings, 561–563
character entities, 44

HTML, 51
internationalization, 575–576
ISO, 566–570
special characters, 51
symbols, 570–575

character sets, 14, 144
charAt(), 365
check boxes, form controls, 141, 159–161
checkbox

attributes, 161
<input>, 160

checked, 9
boolean attributes, 160
checkbox, 160
radio buttons, 162

checklists, 437–445
accessibility, 441–445
SEO, 437–441

child, 5
elements, <html>, 22
selectors, CSS, 225–228

Chrome, 152
CSS3 Media Queries, 324

circle, list-style-type, 267
cite

<blockquote>, 29
<q>, 42

<cite>, 16, 481
<a>, 41
SEO, 438

class, 10
<aside>, 225
BackgroundNote, 224
code, 225
CSS selectors, 227–228

610

class (continued) – containers

class (continued)
<div>, 225
HTML, 196
important, 225
main_image, 460
<td>, 193, 196, 273
<tr>, 462

class = list_of_class_names, 475
class selector, 224–225
classid, 105
clear, 537

CSS, 302–303
$().click(), 400
clip, 531
close(), 377
close-quote, 284
closing tags, 4, 15
cm, 233
code, 225
<code>, 16, 481

accessibility checklist, 442
monospaced font, 44
SEO, 438
<var>, 45

codeBackground, 248
codecs, 99
codeForeground, 248
codeInText, 248
col, 120, 132
<col>, 128–129, 481
colgroup, 120, 133
<colgroup>, 128, 481
collapse, 274
collapsed margins, 240
color, 211, 258
colors

accessibility checklists, 443
banding, 88

CSS, 521–523
CSS3, 315–318
GIF, 87–89
gradient, 88
hex codes, 551–554
PNG, 92
value and names, 551–560

Color module, CSS3, 315–318
colors, CSS3, 539
cols, 150
colspan, 123–124, 598

tables, 119
<td>, 124

columns, tables, 114
grouping, 128
sharing, 128–129
spanning, 123–124

column-count, 321, 541
column-gap, 542
column-width, 321, 324, 542
combinator, 225
<command type="checkbox">, 481
<command type="command">, 481
<command type="radio">, 482
comments

HTML, 51
JavaScript, 344

comparison operators, JavaScript, 353
concat(), 365, 374
conditional statements, JavaScript, 357–360
confirm(), 377
console, 347–348
constructors, 373
CONTACT, 72
contact form, 172–174

jQuery, 416–420
#container, 324
containers, <video>, 99

611

containing block – custom fonts

containing block, 296
containing element, 81
content, 284–287
content box dimensions, CSS box model,

241–247
Content Delivery Network (CDN), 385–386
contenteditable = true | false | "" |

empty, 475
contents, 69
#contents, 466
contextmenu = id, 475
controls, form, 139, 145–172

buttons, 140, 141–142, 155–159
check boxes, 141, 159–161
disabled, 181–182
<fieldset>, 176–177
file select boxes, 168–169
focus, 177–181

accesskey, 179–181
tabbing order, 178–179

hidden, 169–170
<label>, 174–176
<legend>, 176–177
radio buttons, 140, 161–163
readonly, 181–182
select boxes, 140, 163–168
text inputs, 140, 141, 146–151

Coordinated Universal Time (UTC), 368
coords, 598
Copyright, 70
core attributes, 9–11

HTML, 475–476
core elements, 13–16
corner-radius, 321
counter(), content, 284–287
cross browser audio, 104
cross browser video, 103–104

crosshair, cursor, 288
crossorigin, 97
CS, 281
CSS. See cascading style sheets
$().css(), 387, 393–394
CSS3, 311–337

alpha, 315, 317–318
animations, 334–336, 546–547
Background and Borders module,

319–321
backgrounds, 319–321, 540–541
borders, 319–321, 540–541
Color module, 315–318
colors, 315–318, 539
custom fonts, 326–330
<div>, 316, 331
HSL, 316
JavaScript, 320
matrix, 332
Media Queries, 323–334, 542–543
modules, 312–326
Multi-column Layout Module, 321–323,

541–542
opacity, 315, 317–318
<p>, 313–314
properties, 539–548
RGB, 317–318
Selector module, 312–315
selectors, 312–315
3D Transforms, 545–546
transforms, 331–333
transitions, 334–336, 547–548
transparency, 317–318
2D Transforms, 544–545

cursive, 205
cursor, 288–289
custom fonts, CSS3, 326–330

612

dashed – domain name server

d

dashed, 237
data, 105, 599
data types, JavaScript, 378–379
<datalist>, 171–172, 482
dataString, 368
Date, 368–371
datepicker

JavaScript, 152
jQuery UI, 427

datetime, 43
, 50
<ins>, 50

<dd>, 16, 33–34, 482
Decimal, 268
decimal-leading-zero, 268
declarations

CSS, 192
functions, 356
variables, 350

default, 288
defer, 599
definition lists, 16, 33–34, 483
, 16, 49–50, 482

block-level elements, 50
$().delegate(), 400
descendant selectors, 226
destination

anchor, 65, 66–68
links, 65

<details>, 482
determinate elements, 170
<dfn>, 16, 482

special terms, 42
Dialog widget, jQuery UI, 427–428
dimensions, CSS, 525–527
dir, 11–12, 599

tables, 119

dir = ltr | rtl |auto, 475
direction, 219–220, 538
directories, 55, 60–61
dirname, 151
disabled

form controls, 181–182
<input>, 157
<option>, 165
<textarea>, 151

disc, 267
display, 537

block, 284
CSS, 289–290

dithering, 88
<div>, 16, 26, 482

class, 225
CSS3, 316, 331
fixed-width, 321
Flash, 101
id, 102
index.html, 458
jQuery Tabs, 432
, 39
title, 428

<dl>, 16, 33–34, 483
DNS. See domain name server
DOCTYPE, 13
document, 341–342, 376

DOM, 341
Document Object Model (DOM)

JavaScript, 341–342, 346–347
jQuery, 387–397
W3C, DOMContentLoaded, 387

$(document).ready(), 387
document.getElementById(), 386
DOM. See Document Object Model
domain name, 63
domain name server (DNS), 62

613

DOMContentLoaded – existence selector

DOMContentLoaded, 387
dot notation, 346
dotted, 237
double, 237
do...while, 361
downloads, images, 85, 91
Draggable, jQuery UI, 421–422, 473–474
draggable = true | false, 475
drop shadow, 215
Droppable, jQuery UI, 421–422
drop-shadow, 320–321
dropzone = copy | move |link, 475
<dt>, 16, 33–34, 483

e

editing elements, 16
elem, 390
elements

attributes, 6–8
basic text formatting, 17–24
block-level, 24–25, 50

CSS box model, 235
containing, 81
core, 13–16
determinate, 170
editing, 16
empty, 20
forms, HTML5, 170–172
HTML, 475–514
HTML5, 4–9, 595–596, 600–602
indeterminate, 170
inline, 24–25, 235
jQuery, 389–395
for marking up text, 6–7
nesting, 6
phrase, 16
presentational, 16

pseudo-elements, CSS, 283–284
replaced, 84
tables, 118–122
text-level semantics, 39–49

em, 231–232
, 16, 40, 483

<i>, 41
SEO, 438

e-mail addresses, 74, 75
JavaScript, 58
links, 57–58

advanced, 74–75
<embed>, 483

<object>, 101
embossed, 199
$().empty(), 413
empty element, 20
empty-cells, 276–277, 536
en, 12
enctype, 144, 168, 599
end, 212
en-us, 12
:eq(), 388
equality selector, 229
e-resize, 289
escape characters, 51
escape codes, 44
:even, 388
events, 341

DOM, 342
JavaScript, 363–364
jQuery, 397–403

event handler, 356
jQuery, 400

event.preventDefault(), 413
every(), 375
ex, 232
existence selector, 229

614

expressions – font-size

expressions
function, 356–357
JavaScript, 351

Extensible Hypertext Markup Language
(XHTML), 2

Extensible Markup Language (XML)
jQuery, 409–410
JSON, 410

external links, 55
external scripts, 345–346
external style sheets

advantages, 200–201
CSS, 197
<link>, 198

F

$().fadeIn(), 396
$().fadeOut(), 396
$().fadeToggle(), 396
fantasy, 205
<fieldset>, 483

accessibility checklist forms, 444
form controls, 176–177

<figcaption>, 44
<figure>, 44, 483
file, 168
file upload box, 168
filepath, 62
filter(), 375
$().find, 410
fine print, 41
Firefox, 152

CSS general sibling selectors, 226
h.264, 99
Ogg/Vorbis, 99
<q>, 42

:first, 388

first-letter, 220
first-line, 221
fixed

background-attachment, 265
CSS, 298–299
position, 295
table-layout, 279

fixed-width, 321
.fla, 100
Flash

browsers, 95, 100
<div>, 101
JavaScript, 101
<object>, 100
<param>, 100
SEO, 103
web pages, 100–103

flat color, 87
<flgcaption>, 483
float, 300–302, 537–538
focus

form controls, 177–181
accesskey, 179–181

tabindex, 70
value, 154

focus(), 377
:focus, 282
font, 203–204, 515
fonts, 203

CSS, 515–517
CSS3, 326–330
formats, 327
monospaced, 21–22

<code>, 44
CSS, 204

@font-face, 204, 326–330, 544
font-family, 204–206, 327, 516
font-size, 206–207, 516

615

font-size-adjust – gradient

font-size-adjust, 516
FontSquirrel, 327
font-stretch, 516
font-style, 209, 517
font-variant, 209–210, 517
font-weight, 207–208, 273, 517
<footer>, 29–30, 483
for

JavaScript, 361–362
<label>, 175

forEach(), 375
form

<input>, 157
<textarea>, 151

<form>, 484
accept-charset, 144
action, 142, 143
autocomplete, 145
creating forms, 143–145
enctype, 144, 168
HTML, 141
id, 143–144
method, 143, 183
name, 144
novalidate, 145
target, 145

forms, 2, 139–189
accessibility checklists, 442–443
creating contact form, 172–174
creating usable fields in, 185–187
HTML, 140
HTML5, elements, 170–172
HTTP, 183–184
jQuery, validation, 414–416

form controls, 139, 145–172
buttons, 140, 141–142, 155–159
check boxes, 141, 159–161
disabled, 181–182

<fieldset>, 176–177
file select boxes, 168–169
focus, 177–181

accesskey, 179–181
tabbing order, 178–179

hidden, 169–170
<label>, 174–176
<legend>, 176–177
radio buttons, 140, 161–163
readonly, 181–182
select boxes, 140, 163–168
text inputs, 140, 141, 146–151

forward(), 377
frm, 147
ftp://, 62
functions

anonymous, 356–357
callback, 412, 413
declarations, 356
expressions, 356–357
JavaScript, 354–357

g

general sibling selectors, 226
generic font names, 205
Georgian, 268
get

HTTP, 183–184
method, 142, 143

$.get(), 412
GET, jQuery, 411–414, 472
GIF. See Graphics Interchange Format
global variables, 351
Glossary, 70
GPU. See Graphics Processing Unit
gradient, colors, 88

616

graphics interchange Format – href

Graphics Interchange Format (GIF), 87–90,
453–454

animated, 90
PNG, 92

colors, 87–89
dithering, 88
flat color, 87
indexed color format, 87
lookup table, 87
LZW compression, 89–90
transparent background, 89

Graphics Processing Unit (GPU), 335
groove, 237
>, 44
:gt(), 388

H

h.264, 99
handheld, 199
hard, 151
:has(), 389
$().hasClass(), 391–392
<head>, 3, 13–14, 484

<body>, 16
HTML5, 5–6
JavaScript, 343
<link>, 193
Modernizr, 385
<style>, 197, 457
<title>, 6, 14

header, 443
:header, 389
<header>, 16, 26–27, 484
headers, tables, 120, 132–133
headings, 16

<hn>, 18–20

height, 525, 599
CSS

box model, 241–243
tables, 271

, 81–82
<input>, 158
<object>, 100, 105
transition-property, 335

Help, 70
help, 289
hex codes, colors, 551–554
<hgroup>, 16, 27, 484
Hidden

border-style, 237
<input>, 169
overflow, 245
visibility, 290

hidden = hidden | "" | empty, 476
hidden form controls, 169–170
hide(), 384
$.hide(), 389
$().hide(), 395–396
high, 171
history, 376
<hn>, 16, 484

accessibility checklist, 442
CSS selectors, 193
headings, 18–20
images, 83
jQuery, 389, 390

home(), 377
hover, 258
:hover, 334
#hover:hover, 467
<hr>, 16, 28, 484
href, 7, 599

<a>, 56
CSS, 199

617

hreflang – ie

id, 67
mailto, 58
source anchor, 65–66
URL, 199

hreflang, 69
HSL. See hue, saturation, and lightness
HTML. See Hypertext Markup Language
$().html(), 470

HTML, 394–395
<html>, 3, 5, 13, 485

child elements, 22
dir, 12

HTML5, 2–9
attributes, 8, 597–602
<body>, 5–6
changes, 595–602
elements, 4–9, 595–596, 600–602

form, 170–172
grouping content, 25–30
<head>, 5–6
<input>, 151–155, 596
jQuery Datepicker, 427
outline algorithm, 25–26
placeholder, 152
Shiv, 15–16
tags, 4–5

backward compatibility, 15–16
text inputs, 146
<video>, 95
Video for Everybody, 103–104

HTTP. See Hypertext Transfer Protocol
http://, 62
http-equiv, 599
hue, saturation, and lightness (HSL), 316, 539
hyperlinks. See links
Hypertext Markup Language (HTML), 2–3

browsers, 3
character entities, 51
class, 196

comments, 51
core attributes, 475–476
CSS, 257–309
elements, 475–514
<form>, 141
forms, 140
$().html(), 394–395
jQuery, 390, 400–403
<link>, 198
lists, 30–35
style, 198
style sheets, 193, 195
<table>, 115–116

Hypertext Transfer Protocol (HTTP), 62
forms, 183–184
get, 183–184
headers, 184
jQuery, 411–414
method, 142, 143
post, 184

hyphen selector, 229

i

<i>, 40, 41, 485
id, 10, 72, 599

$.attr(), 389
$().attr(), 392
CSS, 225
destination anchor, 66–68
<div>, 102
<form>, 143–144
href, 67
jQuery Tabs, 432
tables, 132–133

id = id, 476
identifiers, 356
identity operators, JavaScript, 379
IE. See Internet Explorer

618

ieTF – <input>

IETF. See Internet Engineering Task Force
if statements, 357–358
if...else statements, 358
<iframe>, 485

inline frame, 96
YouTube, 96

image

<input>, 155
MIME media type, 585

images, 451–454
<a>, 56
accessibility checklist, 442–443
alt, 442
aspect ratio, 82
buttons, 157–158
CSS, 81, 460
downloads, 85, 91
file size, 92–95
formats, 85–95
<hn>, 83
, 80–84
links, 84–85
longdesc, 443
resolution, 85
scaling, 94
search engines, 81
web pages, 82–84

, 485–486
alt, 81
CSS, 85
height, 81–82
images, 80–84
src, 80
<video>, 97
width, 81–82

implicit labels, 175–176
@import, 291–292

important, 225
!important, 292–293
importantWords, 248
in, 232
indeterminate elements, 170
Index, 69
index pages, 63
indexed color format, 87
index.html, 62, 63, 454, 458
indexOf(), 365, 375
infinite loops, 362
inherit

direction, 219
float, 301
overflow, 246
padding, 239
table-layout, 279
vertical-align, 213

inheritance, CSS, 197
inline elements, 24–25, 235
inline frame, 96, 485
inline style rules, 198
innerHeight, 376
innerWidth, 376
in-page links, 65–74
<input>, 146

accept, 168
attributes, 158
autofocus, 157
buttons, 155–157
checkbox, 160
disabled, 157
file, 168
form, 157
hidden, 169
HTML5, 151–155, 596
image, 155

619

<input type="button"> – JavaScript

jQuery Button widget, 426
radio, 162
$().serialize(), 413
type, 147, 148, 155–157
value, 160

<input type="button">, 486
<input type="checkbox">, 486–487
<input type="color">, 487
<input type="date">, 487–488
<input type="datetime">, 488–489
<input type="datetime-local">, 489
<input type="email">, 490
<input type="file">, 490–491
<input type="hidden">, 491
<input type="image">, 491–492
<input type="month">, 492–493
<input type="number">, 493
<input type="password">, 494
<input type="radio">, 494–495
<input type="range">, 495
<input type="reset">, 496
<input type="search">, 496–497
<input type="submit">, 497
<input type="tel">, 498
<input type="text">, 498–499
<input type="time">, 499–500
<input type="url">, 500–501
<input type="week">, 501
<ins>, 16, 49–50, 502
inset, 237
inside, 269
interfaces, 341
internal links, 55
internal style sheets, 197
International Standards Organization

(ISO), 562
character entities, 566–570

internationalization
attributes, 11–12
character entities, 575–576
CSS, 538–539

Internet Engineering Task Force (IETF), 62
Internet Explorer (IE)

<a>, 85
CSS

box model, 246–247
Selector module, 314
selectors, 226

JavaScript, 15
<q>, 42

Internet Protocol version 6 (IPv6), 62
IP Address, 62
IPv6. See Internet Protocol version 6
ISO. See International

Standards Organization
italics, 40, 41, 42, 45, 448

J

JavaScript, 339–380
for, 361–362
accessibility checklists, 444
arithmetic operators, 351–352
Array, 373–375
assignment operators, 352
<body>, 343
boolean operators, 353–354
comments, 344
comparison operators, 353
conditional statements, 357–360
console, 347–348
CSS3, 320
data types, 378–379
Date, 368–371
datepicker, 152

620

JavaScript (continued) – jQuery

JavaScript (continued)
DOM, 341–342

dot notation, 346
objects, 346–347

do...while, 361
e-mail addresses, 58
events, 363–364
expressions, 351
external scripts, 345–346
Flash, 101
functions, 354–357
<head>, 343
identity operators, 379
IE, 15
if statements, 357–358
if...else statements, 358
keywords, 379
looping, 360–362
Math, 371–373
<noscript>, 344
objects, 364–377
operators, 351
placeholder, 154
return, 356
<script>, 343–344
starting programs, 347–349
string, 364–368
string operators, 354
style, 11
switch statements, 358–360
variables, 349–351
while, 360–361, 468–469
white space, 378
window, 375–378
writing, 377–379

join(), 374
Joint Photographic Expert Groups (JPEG),

91, 453–454
file size, 93

jQuery, 383–403
$(), 386
advanced, 407–434
Ajax, 407–409
animations, 395–397
<body>, 385
CDN, 385–386
chaining, 386
contact form, 416–420
CSS, 400–403
$(document).ready(), 387
DOM, 387–397
elements, 389–395
events, 397–403
event handler, 400
form validation, 414–416
GET, 411–414, 472
<hn>, 389, 390
HTML, 390, 400–403
HTTP, 411–414
JSON, 409–411
opacity, 396
<p>, 470
POST, 411–414
selectors, 388–389
sliding doors effect, 396–397
text responses, 410–411
UI, 420–433

Accordion, 425
Autocomplete, 426
behaviors, 421–424
Button, 426–427
Datepicker, 427
Dialog, 427–428
Draggable, 421–422, 473–474
Droppable, 421–422
Menu, 428–430
Progressbar, 430–431
Resizable, 423

621

JSOn – links

Selectable, 423–424
Slider, 431
Sortable, 424
Spinner, 431
Tabs, 432
Tooltip, 432–433
widgets, 425–433

Validation plug-in, 415–416
web pages, 384–386
XML, 409–410

JSON, 409–411
justify, 212

k

<kbd>, 16, 45, 502
key phrases, SEO, 437, 438–441
@keyframes, 334
<keygen>, 502
keystroke, 248
keywords

JavaScript, 379
SEO, 437, 438–441

L

label

<optgroup>, 167
<option>, 165

<label>, 502
for, 175
accessibility checklist forms, 443
form controls, 174–176

labels, implicit, 175–176
lang, 12, 599

<abbr>, 43
lang = language_tag, 476
language codes, 577–582
:last, 389

lastIndexOf(), 365, 375
leading, 243
left, 531

background-position, 264
box offset, 295
caption-side, 278
clear, 302
float, 301
text-align, 211

<legend>, 176–177, 444, 503
length

Array, 374
string, 365

lengths, CSS, 231–233, 548–549
letter-spacing, 217, 518
, 16, 30, 503
line breaks, 20–21, 24
linearization, tables, 131–132
line-height, 243, 460, 526
line-through, 214
link, 258
<link>, 15, 503

CSS, 198–199
external style sheets, 198
<head>, 14, 193
HTML, 198

links, 6, 15
<a>, 56
accessibility checklist, 442
CSS, 258–259

pseudo-classes, 258
destination, 65
e-mail addresses, 57–58

advanced, 74–75
external, 55
images, 84–85
index pages, 63
in-page, 65–74

622

links (continued) – media types

links (continued)
internal, 55
navigation, 55–75
parent directory, 64
relative URLs, 64
root directory, 65
same directory, 64
skip links, 444–445
source, 65
subdirectory, 64
subheadings, 67
title, 57
web pages, 56–57

lists, 16
CSS, 267–271, 529–530
HTML, 30–35
nesting, 34–35, 271

list-style, 271, 529
list-style-image, 270–271
list-style-position, 269–270, 529
list-style-type, 267–269, 529–530
$().live(), 400
local variables, 350–351
location, 376
logical operators. See boolean operators
longdesc, 443
lookup table, GIF, 87
loop, 97–98
looping, JavaScript, 360–362
lossless compression. See LZW compression
lossy compression, 90, 91
low, 171
lower-alpha, 268
lowercase, 216
lower-greek, 268
lower-latin, 268
lower-roman, 268
<, 44

:lt(), 389
Ltr, 12
ltr, 219
LZW compression, 89–90

M

mailto, 58
main_image, 460
map(), 375
<map>, 503
margin, 233, 240–241, 460, 528
margins, CSS, 528
margin-right, 460
<mark>, 46, 504
marker-offset, 530
Math, 371–373
matrix, 332
max

<meter>, 171
<progress>, 170

max-height, 244–245, 526
maxlength, 148, 151
max-width, 324, 526

CSS box model, 244
Me, 70
media, 199, 599
@media, 323
Media Queries, CSS3, 323–334, 542–543
media types, MIME, 583–594

application, 590–594
audio, 586–588
image, 585
message, 589
model, 590
multipart, 586
text, 584–585
video, 588–589

623

MenU – navigation

MENU, 72
<menu>, 504
Menu, jQuery UI, 428–430
menu.html, 448–449
message, 589
<meta>, 14, 438
<meta charset>, 504
<meta http-equiv=content-type>, 504
<meta http-equiv=default-style>, 504
<meta http-equiv=refresh>, 505
<meta name>, 505
<meter>, 171, 505
method, 142, 143, 183
methods, 341

Date, 368–371
DOM, 342
string, 365–366

middle, 213
milliseconds, 368
MIME

accept, 168
media types, 583–594

application, 590–594
audio, 586–588
image, 585
message, 589
model, 590
multipart, 586
text, 584–585
video, 588–589

type, 71
min, 171
min-height, 244–245, 527
min-width, 244, 527
mm, 233
MNG. See Multiple-image Network Graphics
model, 590
Modernizr, 16, 152, 385
modes, 13

modules, CSS3, 312–326
monospace, 205
monospaced fonts, 21–22

<code>, 44
CSS, 204

move, 289
moveBy(), 377
moveTo(), 377
MP3, 99, 104
Multi-column Layout Module, CSS3, 321–

323, 541–542
multiline text input controls, 146, 149–151
multimedia, accessibility checklist, 442–443
multipart, 586
multipart/form-data, 144
multiple, 164, 166
Multiple-image Network Graphics

(MNG), 92
muted, 97–98

n

name, 376
attributes, 7
buttons, 157
checkbox, 160
destination anchor, 66–68
<form>, 144
form text inputs, 148
<param>, 105–106
radio buttons, 162
<select>, 164
<textarea>, 150

name/value pairs, 142
<nav>, 16, 27, 31, 59, 505
navigation, 450–451

accessibility checklist, 442
CSS, 459–460
links, 55–75

624

ne-resize – <option>

ne-resize, 289
nesting

elements, 6
lists, 34–35, 271
tables, 129–130

Next, 70
no-close-quote, 284
none

border-style, 237
clear, 302
float, 301
list-style-type, 267
text-decoration, 214
text-transform, 216

no-open-quote, 284
no-repeat, 263
normal, 218
normal flow, CSS, 294
<noscript>, 344, 505
novalidate, 145
nowrap, 218
nw-resize, 289

o

<object>, 104–105, 506
classid, 105
data, 105
<embed>, 101
Flash, 100
height, 100, 105
<param>, 101
tabindex, 105
usemap, 105
width, 100, 105
YouTube, 97

objects, JavaScript, 364–377
DOM, 346–347

object model, 341

object-oriented programming, 341
:odd, 389
$().off(), 398–399
Ogg/Vorbis, 99
, 16, 31–32, 506
$().on(), 398–399
$().on, 431
onblur, 364
onchange, 364
onclick, 360, 363
ondblclick, 363
onfocus, 364
onkeydown, 363
onkeypress, 363
onkeyup, 364
onload, 363
onmousedown, 363
onmousemove, 363
onmouseout, 363
onmouseover, 363
onmouseup, 363
onreset, 364
onselect, 364
onsubmit, 364
onunload, 363
opacity, 315, 317–318, 396
open(), 377
opener, 376
opening tags, 4, 8
open-quote, 284
Opera, 99
operands, 351
operators, JavaScript, 351–354, 379
<optgroup>, 166–167, 167, 506
optimum, 171
<option>, 506–507

attributes, 165
<datalist>, 171

625

ordered lists – presentational elements

<select>, 164–165
Select color, 163

ordered lists, 31–33
outline, 281–282, 535
outlines

CSS, 280–282, 534–535
HTML5, 25–26

Outline-color, 281

outline-style, 281
outline-width, 281
<output>, 507
outset, 237
outside, 269
overflow, 245–246, 323, 532
overflow-x, 532
overflow-y, 532
overline, 214

p

<p>, 16, 507
CSS, 204
CSS3, 313–314
jQuery, 470
line-height, 460
paragraphs, 20

padding, 460, 528
CSS, 528

box model, 233, 239–240
tables, 271

inherit, 239
pixels, 196
<td>, 273
<th>, 273

paragraphs, 4, 20, 239–240
<param>, 105–106, 507

Flash, 100
<object>, 101

parent, 5
directory, 61, 64

:parent, 389
password, 148
passwords

input controls, 146, 148–149
SSL, 149

pc, 232
percentages, CSS, 233
percentage-width, 321
phrase elements, 16
pixels, 85, 552

CSS, 231
padding, 196

placeholder, 148, 151, 152, 154, 420
PNG. See Portable Network Graphics
pointer, 289
polyfill solutions, 152–154
pop(), 374
Portable Network Graphics (PNG), 92, 93
position, 294–295, 532–533
positions, CSS, 293–308, 531–534
post

HTTP, 184
method, 142, 143

$.post(), 412, 413
POST, jQuery, 411–414
poster, 98
pre, 218
<pre>, 16, 507

preformatted text, 21–22
source code, 22
tabs, 22
<var>, 45

prefix selector, 229
preformatted text, 21–22
preload, 97–98
presentational elements, 16

626

prev – <ruby>

prev, 70
print, 199
print(), 377
privacy, 154–155
progress, 289
<progress>, 170, 430, 507
Progressbar, jQuery UI, 430–431
projection, 199
prompt(), 377
properties, 341

CSS, 201–203, 288–291, 515–549
$().css(), 393–394
tables, 273–280, 535–536

DOM, 342
string, 365

pseudo-classes, CSS, 220–221, 258, 282
pseudo-elements, CSS, 283–284
pt, 232
push(), 374
pwd, 149
px, 231

Q

<q>, 16, 42, 508
quirks mode, 13

r

radio, 162
radio buttons, form controls, 140, 161–163
Readonly, 151
readonly, 181–182, 455
reduce(), 375
reduceRight(), 375
rel, 15, 69–70, 199
relative, 294, 295–296
relative units, CSS, 231–232, 549
relative URLs, 55, 63–65

rem, 232
$().removeClass(), 391–392
repeat, 263
repeat-x, 263
repeat-y, 263
replaced element, 84
required, 9, 151, 155
reset, 156
Resizable, jQuery UI, 423
resolution, images, 85
Responsive Web Design, 323
return, 356
reverse(), 374
reversed, 32
RGB, 317–318
rich media, 97–98
ridge, 237
right, 533

background-position, 265
box offset, 295
caption-side, 278
clear, 302
float, 301
text-align, 211

root directory, 61, 65
rotate, 331, 545
Row, 120
row, 132
rows, tables, 114

spanning, 124–125
rowgroup, 120, 133
rows, 150
rowspan, 120, 124–125
<rp>, 508
<rt>, 508
rtl, 12, 219
<ruby>, 508

627

<s> – $().slideToggle()

S

<s>, 508
<samp>, 16, 45, 508
sans-serif, 205
sans-serif fonts, 203–204
scale, 331, 545
scheme, URL, 62
scope

accessibility checklist tables, 443
tables, 120, 132–133
<th>, 118

screen, 199, 376
screen readers, 81, 454–455

<caption>, 123
<script>, 508

<head>, 14
JavaScript, 343–344
src, 15

scroll

background-attachment, 265
overflow, 246

scrolling select boxes, 165
search engines

Flash, 103
images, 81

search engine optimization (SEO), checklists,
437–441

Section, 70
<section>, 16, 27–28, 508
Secure Sockets Layer (SSL), 149, 184
security, 154–155
<select>, 164, 509

attributes, 164
<option>, 164–165
size, 165

select boxes
attributes, 167–168
form controls, 140, 163–169

multiple, 166
<optgroup>, 166–167
scrolling, 165

Select color, 163
Selectable, jQuery UI, 423–424
selected, 165
:selected, 389
selectors

CSS, 192, 224–230
attributes, 228–230
browsers, 225, 230
<hn>, 193

CSS3, 312–315
jQuery, 388–389
universal, 224, 462

Selector module, CSS3, 312–315
SEO. See search engine optimization
separate, 274
$().serialize(), 413
serif, 205
serif fonts, 203–204
shift(), 374
Shiv, 15–16
show(), 384
$.show(), 389
$().show(), 395–396
siblings, 5, 226, 227–228
single-line text input controls, 146, 147–148
size

form text inputs, 148
<select>, 164, 165

skeleton, 13, 22
skip links, 444–445
slice(), 365, 374
$().slideDown(), 396–397
$().slider(), 431
Slider, jQuery UI, 431
$().slideToggle(), 396–397

628

$().slideUp() – .swf

$().slideUp(), 396–397
sliding doors effect, jQuery, 396–397
<small>, 41, 509
soft, 151
solid, 237
some(), 375
sort(), 374
Sortable, jQuery UI, 424
<source>, 103, 104, 509
source anchor, 65–66
source code, 8, 22
space selector, 229
, 39–40, 509
special characters, 51, 565–576
special terms, 42
speech, 199
spellcheck = true | false |"" |

empty, 476
$().spinner(), 431
Spinner, jQuery UI, 431
splice(), 374
split(), 366
square, 267
src

@font-face, 326
, 80
<input>, 158
<script>, 15
URLs, 80, 83

SSL. See Secure Sockets Layer
stacking context, 299
Start, 70
start

ordered lists, 32
text-align, 212

start/type, 599
static, 294
static flow, CSS, 294
stop(), 377

strict mode, 13
string, 364–368
string operators, JavaScript, 354
, 16, 40, 41, 509
structured documents, 2–3
style, 11, 198, 599
<style>, 14, 197, 200, 457, 510
style = CSS_rule, 476
style sheets. See also cascading style

sheets; CSS3
accessibility checklists, 444
external

advantages, 200–201
CSS, 197
<link>, 198

HTML, 193, 195
internal, 197

style sheets for code, 248–252
sub, 212
<sub>, 16, 46, 510
subdirectory, 61, 64
subheadings, 4, 67
subject, 74
submit, 156
$().submit, 400
submitHandler, 415
subscript, 46
Subsection, 70
substr(), 366
substring(), 366
substring selector, 229
suffix selector, 229
<summary>, 510
<sup, 46
<sup>, 16, 510
super, 212
superscript, 46, 448
SVG, 95, 332
.swf, 100

629

SWFObject – text

SWFObject, 101–102
switch statements, 358–360

T

Tab key, 70–71
tabbing order, form control focus, 178–179
tabindex, 178–179, 599

<a>, 70–71
focus, 70
<object>, 105
Tab key, 70–71

tabindex = integer, 476
<table>, 119, 510

border, 273
<caption>, 454
HTML, 115–116
width, 273

tables, 111–136
accessibility, 130–131, 133–135

checklists, 443
attributes, 118–122
<caption>, 122–123
<col>, 128–129
<colgroup>, 128
colspan, 119
columns, 114

grouping, 128
sharing, 128–129
spanning, 123–124

creating basic, 120–122
CSS, 271–280, 535–536

border-collapse, 274–275
border-spacing, 275–276
caption-side, 277–278
empty-cells, 276–277
table-layout, 278–280

dir, 119
elements, 118–122

grouping sections, 123–129
headers, 120, 132–133
id, 132–133
linearization, 131–132
nesting, 129–130
rows, 114

spanning, 124–125
rowspan, 120
scope, 120, 132–133
splitting, 125–127
<tbody>, 125–127
text editors, 116
<tfoot>, 125–127
<thead>, 125–127

table-layout, 278–280, 536
tabs

jQuery UI, 432
<pre>, 22

$().tabs(), 432
tags, 3

HTML5, 4–5
backward compatibility, 15–16

target, 71, 145, 599
<tbody>, 125–127, 510
<td>, 115, 117–118, 119, 510

class, 193, 196, 273
colspan, 124
CSS, 192, 225–226
padding, 273

text
basic formatting elements, 17–24
CSS, 518–521

control, 203–210
formatting, 210–220
pseudo-classes, 220–221
styling, 221–223

editors, 3, 49–50
tables, 116

630

text (continued) – txt

text (continued)
inputs

form controls, 140, 141, 146–151
HTML5, 146

multiline input controls, 146, 149–151
preformatted, 21–22
responses, jQuery, 410–411
single-line input controls, 146, 147–148

text, 148, 289, 584–585
$().text(), 410
text-align, 211–212, 271, 273, 518
<textarea>, 146, 149–151, 511
text-bottom, 212
textboxes, 146
text-decoration, 214, 258, 518–519
text-indent, 214–215, 519
text-level semantics, 39–49
text/plain, 144
text-shadow, 215, 519
text-top, 212
text-transform, 216, 520
<tfoot>, 125–127, 511
<th>, 116–118, 119, 512

accessibility checklist tables, 443
padding, 273
scope, 118

<thead>, 125–127, 512
$this, 412
$(this), 415
3D Transforms, 332–334, 545–546
thumbnails, 94
<time>, 43, 512
title, 4, 8, 10–11

<a>, 71, 432, 442
<abbr>, 42
, 50
<div>, 428

<ins>, 50
links, 57

<title>, 3, 5, 14–15, 512
<head>, 6, 14
SEO, 438

title = title, 476
toc, 69
$().toggle(), 395–396
$().toggleClass(), 391–392
toLowerCase(), 359, 366
Tooltip, jQuery UI, 432–433
tooltips, title, 11
top, 376, 533

background-position, 265
box offset, 295
caption-side, 278
vertical-align, 212

toString(), 374
toUpperCase(), 366
<tr>, 115, 119, 462, 512
<track>, 512
Track Changes, Word, 49
transforms

CSS, 544–546
CSS3, 331–333

transition-duration, 335
transition-property, 335
transitions, CSS3, 334–336, 547–548
translate, 331, 545
translate = yes | no, 476
transparency, CSS3, 317–318
transparent background, GIF, 89
trim(), 366
tty, 199
Tv, 199
2D Transforms, 331–332, 544–545
txt, 147

631

type – value

type, 600
<a>, 71
button, 156
buttons, 157
checkbox, 160
<input>, 147, 148, 155–157
MIME, 71
ordered lists, 33
radio buttons, 162
reset, 156
<style>, 200
submit, 156

type selector, 224
typefaces, 203

u

<u>, 513
UI. See user interface
, 16, 30–31, 432, 513
unary operators, 351
$().unbind(), 400
undefined, 379
undefined value, 349
$().undelegate(), 400
underline, 214
Unicode Consortium, 563
unicode-bidi, 539
Uniform Resource Locator (URL), 56,

61–65
absolute, 55, 63–65
<base>, 65
browsers, 63
content, 284
domain name, 63
href, 199
relative, 55, 63–65
scheme, 62
src, 80, 83

universal selector, 224, 462
unordered lists, 16, 30–31, 432, 513
unshift(), 374
upper-alpha, 268
uppercase, 216
upper-latin, 268
upper-roman, 268
URL. See Uniform Resource Locator
<url>, 289
usemap, 105, 600
user interface (UI), jQuery, 420–433

Accordion, 425
Autocomplete, 426
behaviors, 421–424
Button, 426–427
Datepicker, 427
Dialog, 427–428
Draggable, 421–422, 473–474
Droppable, 421–422
Menu, 428–430
Progressbar, 430–431
Resizable, 423
Selectable, 423–424
Slider, 431
Sortable, 424
Spinner, 431
Tabs, 432
Tooltip, 432–433
widgets, 425–433

UTC. See Coordinated Universal Time
UTF, 563

V

Validation plug-in, jQuery, 415–416
value

colors, 551–560
CSS declarations, 192
variables, 350

632

value – width

value, 599
attributes, 7
buttons, 157
checkbox, 160
focus, 154
form text inputs, 148
<input>, 160
<meter>, 171
<option>, 165
<param>, 105–106
<progress>, 170, 430
radio buttons, 162

var, 350
<var>, 16, 45, 513
variables

declarations, 350
JavaScript, 349–351
value, 350

Vector, 95
vertical-align, 212–213, 271, 533–534
vh, 232
video

cross browser video, 103–104
file size, 104
initial frame, poster, 98
playback

autoplay, 97–98
controls, 98
loop, 97–98
muted, 97–98
preload, 97–98

video, 588–589
<video>, 513

codecs, 99
containers, 99
HTML5, 95
, 97
rich media, 97–98

<source>, 103
YouTube, 97

Video for Everybody, 103–104
visibility, 290–291, 538
visible, 245, 290
:visible, 389
visited, 258
Visual Studio, 320
vw, 232

w

W3C. See World Wide Web Consortium
wait, 289
wallpaper, 262
watermarks, 265–266
<wbr>, 514
web pages

<audio>, 99
Flash, 100–103
images, 82–84
jQuery, 384–386
links, 56–57
YouTube, 95–97

while, 360–361, 468–469
white space

<a>, 57
collapsing, 17–18
CSS box model, 233
JavaScript, 378

white-space, 218–219, 520
widgets, jQuery UI, 425–433
width, 527, 599

CSS
box model, 241–243
tables, 271

, 81–82
<input>, 158

633

window – z-index

<object>, 100, 105
<table>, 273
transition-property, 335

window, 375–378
window.location.hash, 471
Word, Track Changes, 49
word-spacing, 217–218, 520–521
World Wide Web Consortium (W3C), 2

DOM, DOMContentLoaded, 387
wrap, 151
wraps, 17
write(), 343

x

x% y%, 264
XHTML. See Extensible Hypertext

Markup Language
XML. See Extensible Markup Language

Y

YouTube
<iframe>, 96
<object>, 97
<video>, 97
web pages, 95–97

z

zh, 12
z-index, 296, 299–300, 534

	Beginning HTML and CSS
	Contents
	Introduction
	Chapter 1: Structuring Documents for the Web
	A Web of Structured Documents
	Introducing HTML5
	Attribute Groups
	Core Elements
	Basic Text Formatting
	Understanding Block and Inline Elements
	Grouping Content
	Working with Lists
	Summary

	Chapter 2: Fine-tuning Your Text
	Elements That Describe Text-Level Semantics
	Editing Text
	Using Character Entities for Special Characters
	Comments
	Summary

	Chapter 3: Links and Navigation
	Basic Links
	Understanding Directories and Directory Structures
	Understanding URLs
	Creating In-Page Links with the <a> Element
	Advanced E‑mail Links
	Summary

	Chapter 4: Images, Audio, and Video
	Adding Images Using the Element
	Using Images as Links
	Choosing the Right Image Format
	Adding Flash, Video, and Audio to Your Web Pages
	Summary

	Chapter 5: Tables
	Introducing Tables
	Basic Table Elements and Attributes
	Adding a Caption to a Table
	Grouping Sections of a Table
	Nested Tables
	Accessible Tables
	Summary

	Chapter 6: Forms
	Introducing Forms
	Creating a Form with the <form> Element
	Form Controls
	Creating a Contact Form
	Creating Labels for Controls and the <label> Element
	Structuring Your Forms with <fieldset> and <legend> Elements
	Focus
	Disabled and Read-Only Controls
	Sending Form Data to the Server
	Creating More Usable Form Fields
	Summary

	Chapter 7: Cascading Style Sheets
	Introducing CSS
	Where You Can Add CSS Rules
	CSS Properties
	Controlling Text
	Text Formatting
	Text Pseudo-Classes
	Styling Text
	Selectors
	Lengths
	Introducing the Box Model
	Creating a Style Sheet for Code
	Summary

	Chapter 8: More Cascading Style Sheets
	Links
	Backgrounds
	Lists
	Tables
	Outlines
	The :focus and :active Pseudo-Classes
	Generated Content
	Miscellaneous Properties
	Additional Rules
	Positioning and Layout with CSS
	Summary

	Chapter 9: Rounded Corners, Animations, Custom Fonts, and More
	The Modular Approach of CSS3
	Mature CSS3 Modules
	New and In-Development Modules
	Summary

	Chapter 10: Learning JavaScript
	What Is Programming About?
	How to Add a Script to Your Pages
	Create an External JavaScript
	The Document Object Model
	Starting to Program with JavaScript
	Variables
	Operators
	Functions
	Conditional Statements
	Looping
	Events
	Built-in Objects
	Writing JavaScript
	Summary

	Chapter 11: Working with jQuery
	Why jQuery?
	Adding jQuery to Your Page
	jQuery Basics
	jQuery and the DOM
	Managing Events with jQuery
	Summary

	Chapter 12: jQuery: Beyond the Basics
	Ajax with jQuery
	jQuery UI
	Summary

	Chapter 13: Checklists
	Search Engine Optimization Checklist
	Accessibility Checklist

	Appendix A: Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Appendix B: HTML Element Reference
	Appendix C: CSS Properties
	Font Properties
	Text Properties
	Color and Background Properties
	Border Properties
	Dimensions
	Margin Properties
	Padding Properties
	List Properties
	Positioning Properties
	Outline Properties
	Table Properties
	Classification Properties
	Internationalization Properties
	Selected CSS3 Properties
	Lengths

	Appendix D: Color Names and Values
	Using Hex Codes to Specify Colors
	Understanding Hex Codes
	Using Color Names to Specify Colors
	Color Name and Number Reference

	Appendix E: Character Encodings
	Appendix F: Special Characters
	Character Entity References for ISO 8859-1 Characters
	Character Entity References for Symbols, Mathematical Symbols, and Greek Letters
	Character Entity References for Markup-Significant
and Internationalization Characters

	Appendix G: Language Codes
	Appendix H: MIME Media Types
	Text
	Image
	Multipart
	Audio
	Video
	Message
	Model
	Application

	Appendix I: Changes between HTML4
	New Elements
	New <input> Element Types
	New Attributes
	Global Attributes
	Changed Attributes
	Obsolete Elements
	Obsolete Attributes
	At-Risk Elements

	Index

