

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

LN

Apress°

Contents at a Glance

ADOUL T8 AULNOTS ... e e
About the Technical REVIEWETcooiiiiiieeie e
ACKNOWIEAGMENTS ... e e e e e e e e e e e e e eeena s
INEFOTUCTION ..ottt e e e e e e e e e e e e e e e e
Chapter 1: Getting Startedccov i e e eenes
Chapter 2: HTML and CSS BaSICSciviiiiiiiii et e e e e e e e e e ennes
Chapter 3: The DOCUMENTooiiiiiiiiieee et
Chapter 4: Constructing CONTENTuuiiiiiiii e
Chapter 5: Embedding Mediaoooiiiiiiiiiiiiiee e
Chapter 6: LinKinNg the WED ...
Chapter 7: Building TaBIESooooiiiii e
Chapter 8: Assembling Forms and ApplicationScccooviiiiiiiiieiiiiieee e
Chapter 9: Page Layout With CSS ...
Chapter 10: Putting it All TOQEINEI......uviiiiiiiiieee e

Chapter 1

Getting Started

We’'re sure you're champing at the bit to start building web pages, but we'd like to set the stage first and
cover some general information about the Internet and World Wide Web, as well as some background on
HTML and CSS. This chapter isn’'t a comprehensive overview by any means, but it will get you up to speed
on some of the terminology and concepts you'll need to be familiar with throughout the rest of this book. If
you're already pretty web-savvy, and if you've used and worked with websites for some time, feel free to
skip ahead to Chapter 2 and start getting your hands dirty.

Introducing the Internet and the World Wide Web

“The Internet” is simply a catchall name for the vast, globe-spanning network of computers that are
connected to each other and can transmit and receive data, shuttling information back and forth around
the world at nearly the speed of light. It's been around in some form for nearly half a century now, ever
since a few smart people figured out how to make one computer talk to another computer. The Internet
has since become so ubiquitous and pervasive, impacting so many aspects of modern life, that it's hard to
imagine a world without it.

The World Wide Web is one facet of the Internet, like a bustling neighborhood in a much larger city (other
Internet “neighborhoods” include e-mail, news groups, and chat rooms). The Web is made up of millions of
files and documents residing on different computers across the Internet, all interconnected to weave a web
of information around the world, which is how it gets its name. In its relatively short history, the Web has

Chapter 1

grown and evolved far beyond the simple text documents it began with, carrying other types of information
through the same channels: images, video, audio, and fully immersive interactive experiences. But at its
core, the Web is fundamentally a text-based medium, and that text is usually encoded in HTML (more on
that in a minute).

Many different devices can access the Web: desktop and laptop computers, tablets and PDAs, mobile
phones, game consoles, and even some household appliances. Whatever the device, it in turn operates
software that interprets HTML. These programs are technically known as user-agents, but the more
familiar term is web browsers. A web browser is specifically a program intended to visually render web
documents, whereas some user-agents interpret HTML but don’t display it.

In this book we’ll generally use the word browser to mean any user-agent capable of handling and
rendering HTML documents, and we may use the term graphical browser when we're specifically referring
to one that renders the document in a visually enhanced format, in full color, and with styled text and
images. It's important to make this distinction because some web browsers are not graphical and only
render plain, unstyled text without any images.

A browser or user-agent is also known as a client, because it is the thing requesting and receiving service.
The computer that serves data to the client is called, not surprisingly, a server. The Internet is riddled with
servers, all storing and processing data and delivering it in response to client requests. The client and the
server are two ends of the chain, connected to each other through the Internet.

What Is HTML?

The World Wide Web originated as a purely textual medium, built upon the written word. Pictures were
soon added to the mix, and eventually sound, animation, and video made the Web the rich multimedia
tapestry it is today. But the overwhelming bulk of Web content still takes the form of written text, and that's
not likely to change any time soon. Most of the time you spend surfing the Web is probably spent reading.

The Web, for all its multimedia richness, is still essentially a textual medium. It's a weave of documents,
cross-referenced and interconnected by the humble hyperlink, wherein a bit of text in one document is
linked directly to another document somewhere else on the Web. And just like that, what would otherwise
be ordinary text becomes the much more exciting and dynamic hypertext, and hypertext needs to be
encoded in a whole new language: HyperText Markup Language (HTML).

HTML is the computer coding language that describes the structure of a web page. It converts ordinary
text into active text for display and use on the Web, and also gives plain, unstructured text the sort of
structure human beings rely on to read it. As you read this book, you're looking for visual cues to help you
organize the words into smaller portions that you can process and comprehend. You recognize the
significance of things like punctuation, capitalization, spacing, and font sizes. You know just by looking at it
that this paragraph ends after this sentence.

Getting Started

Computers don't read text the same way humans do—they can't interpret a string of words and grasp the
concept behind them, they don’t see the visual cues we use to separate one group of words from another,
and they can’t automatically group related sentences into meaningful paragraphs. Instead of visual cues, a
computer requires a structure composed of clear markers that designate the nature of each portion of text.
That's the essence of a markup language: embedded instructions that a computer can follow in order to
make content readable and usable by humans.

HTML consists of encoded markers called tags that surround and differentiate portions of text, indicating
the function and purpose of the content those tags “mark up.” Tags are embedded directly in a plain-text
document where they can be interpreted by a browser. They're called tags because, well, that's what they
are. Just as a price tag displays the cost of an item and a toe tag identifies a cadaver, so too does an
HTML tag indicate the nature of a portion of content and provide vital information about it. Listing 1-1 is a
very simple bit of HTML, just a heading and a paragraph.

Listing 1-1. An example of text marked up with HTML. The tags are highlighted in bold.
<h1>This is a Level One Heading</h1»
<p>This is a paragraph.</p>

A browser doesn't display the tags themselves; tags only tell the browser how to treat the content between
them. A matched pair of start and end tags (the end tag has a slash) forms an element, comprising the
tags and everything in between them. You'll learn a lot more about tags and elements in Chapter 2, and
you'll learn about the full range of HTML elements throughout the rest of this book.

From its inception, HTML has been carefully designed to be a simple and flexible language. It's a free,
open standard, not owned or controlled by any company or individual. There is no license to purchase or
specialized software required to author your own HTML documents. Anyone can create and publish web
pages, and it's that very openness that makes the Web the powerful, far-reaching medium it is. HTML
exists so that we can all share information freely and easily.

However, you do need to follow certain rules when you author documents in HTML—there are certain
ways they should be assembled to make certain they'll work properly. The Web runs on agreement, with
all the different authors and programmers and clients and servers agreeing to abide by the same basic
rules, collectively referred to as web standards. Standardizing web languages ensures that the Web can
work consistently and reliably for everyone—users and authors alike. Sticking to the agreed-upon rules
makes communication possible, like the rules of grammar and punctuation that help you understand this
sentence.

Of course, it follows that someone needs to write down the rules to which we should agree. The technical
specifications for many of the core languages (including HTML) that make up the Web are overseen and
maintained by the World Wide Web Consortium (W3C), an international, non-profit organization founded in
1994 for just this purpose—to standardize the languages and map a clear path for the Web of the future.

Chapter 1

You can learn more about the W3C and read all of their public specifications, past and present, at their
website, w3.org. The specifications can be difficult to read because they're extremely technical in nature,
written primarily for computer scientists and software vendors who program web user-agents. But this kind
of standardization is essential for the widespread adoption of the Web, ensuring that websites function
properly across different browsers and operating systems. The Web is meant to be “platform independent”
and “device independent,” and adherence to web standards makes that possible.

The Evolution of HTML

HTML first appeared in 1990—built upon the pre-existing Standard Generalized Markup Language
(SGML)—as the foundational language for the newborn World Wide Web, but it wasn't formally defined
until 1993. It was further refined and extended with HTML 2.0, the first official HTML standard, in 1995.
Version 3.2 arrived in early 1997 with a slew of new features, and HTML 4.0 came shortly thereafter near
the end of the same year.

In those early years of the Web, the language specifications weren't always followed as closely as they
should have been. Different browsers supported different features of HTML, and introduced their own
nonstandard features just to get a leg up on the competition. Given the unruly landscape of the time,
authors didn’t follow the standards any better than the browsers did. The early web was a tangle of
bloated, convoluted markup and proprietary, browser-specific functionality. Developers often resorted to
making multiple versions of their sites targeted to different browsers, or even worse, they built websites
that worked properly in only one browser and failed utterly in others. Ask an old timer about the Browser
Wars of the mid-90s and they’ll regale you with frightening tales of forked scripts, nested tables, and pixel
shims. Those were dark days indeed.

Thankfully, this is no longer the case. The web browsers of today follow the standardized specs much
more consistently than in previous generations, encouraging authors to do the same, and thus advancing
the Web toward the ultimate goal of a truly universal medium.

As the Web really took off in the late 1990s, a few minor (but significant) changes to HTML 4.0 were
released in 1999 as HTML 4.01. After a decade of rapid innovation, HTML 4.01 was expected to be the
last complete specification of the HTML language. A new kid called XHTML had joined the class, and it
was praised as the wave of the future.

The Age of X

Around the turn of the century (way back in the year 2000), the W3C was convinced that the future of the
Web lay in eXtensible Markup Language (XML), a powerful language that allows authors to create
customized elements rather than relying only on the elements predefined by the language itself. Extensible
HTML (XHTML) is a reformulation of HTML following the more stringent syntax of XML. It was meant to
bridge the gap between HTML and XML, preparing web authors for this bright XML future everyone
expected to arrive any day now.

Getting Started

Whereas XML is extensible, XHTML offers a finite set of predefined elements to choose from—all the
same elements that were available in HTML 4.01, in fact. The only real differences between HTML 4.01
and XHTML 1.0 are stylistic, with just a few more rules dictating how XHTML must be written. HTML is a
lax language designed to be tolerant of minor transgressions in syntax, whereas XML is fussy and
demands strict adherence to its rules. XHTML simply applies the strictness of XML to HTML, resulting in a
hardened set of rules for authoring a document. An XHTML document is essentially just an HTML
document written to a more exacting standard.

It was also right around the time XHTML came on the scene that web designers and developers began a
serious campaign to improve the state of the Web, encouraging their clients and colleagues to develop in
accordance with web standards, and pressuring browser makers to correctly support those same
standards in their products. XHTML, with its stricter rules of conformance, was the darling of the web
standards movement because it encouraged authors to pay closer attention to how they constructed their
documents.

The Web Standards Project (WaSP) was founded in 1998 in reaction to the inconsistent
browser behaviors and unsustainable development practices of the era. This group led
the charge in what became “the web standards movement,” promoting a new set of best
practices for web designers and developers, ultimately changing the way web sites are
made and improving the state of the Web, for authors and users alike. WaSP continues
to work with web authors, educators, browser vendors, and standards bodies to advance
and promote web standards. Their website is webstandards.org.

Meanwhile, the W3C immediately began work on XHTML 2.0. No simple reformulation of existing
standards, this was going to be a radical overhaul of the language from the ground up, a whole new
approach to authoring documents for the Web. That was over a decade ago. The XHTML 2.0 specification
stagnated and eventually stalled, while the Web continued to move inexorably forward, innovating on top
of a foundation that was beginning to show its age. By the mid-2000s it became clear to some that XHTML
2.0 was perhaps not the best way forward after all, and it was time to re-examine and refresh good old
HTML.

Out with the X, in with the 5

A splinter group formed within the W3C in 2004 and began to craft new addendums to HTML. They called
themselves the Web Hypertext Application Technology Working Group (WHATWG, whatwg.org) and their
side projects were dubbed Web Apps 1.0 and Web Forms 2.0, both meant to be extensions of the stale
HTML 4.01 spec. Eventually these two projects were united in a new fledgling specification: HTML5.

In due time the W3C also came to accept that XHTML 2.0 wasn’t working out as planned, and recognized
that this new HTML5 business was something worth paying attention to. The W3C started the process of
adopting and formalizing the work produced by WHATWG. And so HTML5 gained official status as the
next HTML standard.

Chapter 1

As all versions of HTML have done, HTML5 builds on what came before, always refining and extending
and improving. In fact, HTMLS5 is still taking shape as we write this in the summer of 2011, though they're
aiming for the spec to be completed in 2012. But, although the specification is incomplete at the moment,
it's relatively stable at the time of this writing (knock on wood) and there’s nothing preventing you from
using the fundamentals of HTML5 on the Web today.

Two groups—WHATWG and the W3C—are working on HTMLS5 in tandem. Although the
specification is still taking shape, you can read the work in progress at their respective
websites: WHATWG's version is at whatwg.org/html and the W3C's is at
w3.org/TR/html5/. Depending on when each was last updated, there may be some
differences between the two versions of the spec, and both are works in progress and
subject to change. Generally speaking, the WHATWG version includes the very latest
changes, and the W3C version is a bit more refined and finalized.

One of the tenets of HTML5 is to maintain backward compatibility (something XHTML 2 would have
broken); existing content must continue to function under HTML5. In that sense, any document marked up
in any version or variant of HTML is already an HTML5 document, and any browser that interprets HTML
already supports most of HTML5. What really matters is browser support for the few specific features that
are brand new.

HTMLS5 introduces a number of new tags and attributes that didn't exist in any prior HTML version. Current
versions of most popular browsers already support many of these new features, whereas some other
advanced features aren’t fully developed and aren’t yet supported by browsers, but that tide is changing at
a breakneck pace. All the major browser makers—Mozilla, Microsoft, Apple, Google, and Opera—are
releasing frequent updates to their browsers, improving support for the finer points of HTML5 with each
new version.

What’s in HTML57?

As often happens with any advance in technology, “HTML5” was quickly seized upon as a buzzword to
make things sound bleeding edge and cool, even if what was being discussed wasn’t part of HTML5 at all.
A broad range of technologies and techniques were soon lumped together under the banner of “HTML5,”
leading to a great deal of confusion about just what is and isn't, in actuality, HTMLS5.

HTMLS5 is simply the next iteration of HTML, the language that gives web content its necessary structure.
As you read earlier in this chapter, HTML tags form structural elements in a document, allowing readers
(and programs) to differentiate a headline from a paragraph, or a paragraph from a list, or a list from a
quotation, and so on. Content without structure is content without meaning. This latest version of HTML
introduces a number of new, meaningful elements that were lacking in HTML 4 and XHTML. In addition to
the usual headings, paragraphs, tables, and lists, there are new elements for things like navigation,
menus, articles, summaries, dates and times, figures with captions, and a heap of new interactive form

Getting Started

elements. All the useful elements from previous versions of HTML have been kept, but HTML5 eliminates
some legacy elements that have outlived their usefulness. You'll learn all about the elements of HTML5,
both old and new, in detail throughout the rest of this book.

Also new in HTML5 are elements for embedding rich media in documents. Images have been on the Web
almost from the beginning, but for years authors had to rely on third-party plug-in applications—such as
Adobe’s Flash or Apple’s QuickTime—to play sound and video over the Web. HTML5 makes it possible to
play sound and video natively in the browser, without plug-ins. HTML5 also brings the canvas element, an
area in a document where scripts and programs can draw live graphics. You'll learn more about
embedding media in Chapter 5.

After all our “the Web is made of documents” talk, we shouldn’t gloss over the prevalence of web
applications. A web application might be similar to other computer applications you're familiar with—like an
e-mail program, a word processor, or the spreadsheet shown in Figure 1-1—but it works directly in a web
browser. Under the surface, a great many web apps are actually nothing more than enhanced documents,
using sophisticated code to manipulate HTML right before your eyes, yet still built on that same HTML
foundation. HTML5 is being written with web apps in mind, offering new abilities and frameworks to
enhance the applications built on top of it.

Figure 1-1. A Google Docs spreadsheet offers most of the features of a desktop spreadsheet application
like Microsoft Excel, but runs within a web browser and stores its data online. This web app is built entirely
with HTML, CSS, and JavaScript.

Chapter 1

Alongside HTML5 and its regular content-structuring markup duties, a number of related scripting APIs
(Application Programming Interfaces) are being developed and standardized to help web apps work with
HTMLS5 content. For example, with HTML5-empowered web apps, you'll be able to store application data
offline, edit web documents directly in the browser, use a web app to work with files stored on your
computer, send messages between web documents, share your location, and more. But don't get too
excited just yet; we won't be covering these scripting APIs in any detail in this book. They're related to
HTMLS5, and are often grouped under the HTML5 umbrella, but they are not necessarily HTML5. As far as
we're concerned right now—and for the rest of this book—HTMLS5 is still just a language to mark up
documents for the Web.

Separating Content from Presentation

HTML is intended to bestow a meaningful structure upon unstructured text, showing that different blocks of
words are in fact different types of content. A headline is not the same as a paragraph; those two types of
content should be marked up with different tags, making their innate difference absolutely clear to another
computer. But human beings don’'t want to read encoded tags. We're used to reading text that looks a
certain way—we expect headlines to appear in a large, boldfaced font to let us know that it's a headline
and not something else. Early browser developers knew this, and they programmed their software to
display different types of content in different styles.

From its humble roots, the Web quickly blossomed and soon was no longer the exclusive domain of
academics and computer scientists. Graphic designers discovered this exciting new medium and sought
ways to make it more aesthetically appealing than ordinary, unadorned text. However, HTML lacked a
proper means of influencing the display of content; it was strictly intended to provide structure, with only a
few conceits to graphic design. Designers were forced to repurpose existing features of HTML, taking
advantage of the way browsers displayed content in an effort to create something more visually
compelling. Unfortunately, this resulted in many websites of the day being built with presentational markup
that was messy, overcomplicated, hard to maintain, and had nothing to do with what the content meant but
only how it should look.

In 1996, when the Web was still in its infancy, the W3C introduced Cascading Style Sheets (CSS). It was
an entirely different language, one specifically created to describe how HTML documents should be
visually presented while leaving the structural markup clean and meaningful. A style sheet written in CSS
can be applied to an HTML document, adding an attractive layer of design without negatively impacting the
markup that serves as its foundation. The code that gives the content its structure is kept separate from
the code describing its presentation.

Separating content from presentation allows both aspects to become stronger and more adaptable. An
HTML document can be changed without completely reconstructing it to correct the design. An entire
website can be redesigned by changing a single style sheet without rewriting one line of structural markup.

Getting Started

It took some time for the major browsers to catch up and fully support the early versions of CSS as they
were intended, but today’s browsers (a few lingering bugs notwithstanding) support CSS levels 1 and 2
well enough that presentational markup should be a thing of the past. In the chapters to come you'll learn
to write meaningful, structural markup to support your content according to its inherent meaning and
purpose. Along the way, you'll see many examples of how you can visually style your content with CSS,
avoiding the trap of presentational markup.

The Next Level of CSS

Like HTML, CSS is an open standard developed and maintained by the W3C (w3.org/Style/CSS/). And
like HTML, CSS has changed and adapted over the years, adding new features at each step along the
way. CSS level 1 debuted in 1996, with CSS level 2 expanding on it in 1998. The browser uptake was slow
for these first iterations of the CSS spec. In fact, as of this writing, there still isn’t a browser in the land that
has fully implemented every last part of CSS 2.1. But that hasn’t slowed down development of CSS level
3. No, what has slowed down CSS3 is the fact that CSS3 is vastly more complicated than CSS1 or CSS2.

The first two versions of CSS were focused on relatively basic aspects of presentation: font sizes, spacing,
drawing boxes, defining colors, positioning elements on the page, and so on. Once those fundamentals
were pretty well hammered out, the next generation of CSS was going to reach toward much broader
horizons. CSS3 promises multi-column layouts, color gradients, embedded typefaces, rounded corners,
border images, shadows, transitions, animations, and much more. It's been a long process, and it's still
ongoing.

Given the breadth and depth of CSS3, as well as the programmatic complexity of producing some of the
intended effects, the specification was split apart into a number of modules, each focusing on one
particular area. Modules like Fonts, Animations, Backgrounds and Borders, Color, Grid Layout, Speech—
over 40 modules in all—can each be drafted and rolled out independently. As such, there isn’t really single
specification called “CSS level 3,” and there may never be a time when the whole thing could be
considered “completed.” But its modular nature means a number of CSS3 features are already stable and
well supported in modern web browsers, and you'll learn how to use some of them later in this book.

Progressive Enhancement

HTML5 and CSS3 are still taking shape as we're writing this book and they’ll continue to evolve for the
foreseeable future. Although the W3C is nearing completion of the HTML5 specification, this iteration will
only be a snapshot of the ever-advancing, living HTML standard. The modular nature of CSS3 means
some parts of it are already complete, other parts still need more work, and some modules have barely
started. Furthermore, there’s already some very early planning for future iterations of these languages,
vaguely referred to as HTML6 and CSS4 for the time being.

You don't have to wait for all of HTML5 and CSS3 to be “finished” before you can use them. When you can
use these emerging standards isn't really a question of how complete the standards are; it's more a
question of browser support for the newly introduced features. Web browsers are evolving rapidly

10

Chapter 1

alongside the web standards, and the browser makers are directly involved in defining the very standards
they follow. Quite simply, as soon as a browser—or a few browsers, hopefully—supports a given feature,
that's when you can use it.

You can get up-to-date information on which browsers support which new features in
HTML5 and CSS3 as well as some of the new JavaScript APIs at Can | Use
(caniuse.com) and at HTML5 Please (html5please.com).

It probably goes without saying that only newer web browsers support the newer features of HTML and
CSS; older browsers couldn’t support what didn’t exist. However, not every web surfer out there is using
the very latest browser, and even among the latest versions, not every current browser supports every
new feature equally. Even so, you can still employ some of the more advanced features of HTML5 and
CSS3 without shutting out less capable browsers and devices by following progressive enhancement.

Progressive enhancement isn’t a specific technique; it's a general methodology, a particular approach to
making websites that applies more advanced web technologies in a layered fashion. You'll begin with pure
content and basic structure, then enhance that with additional layers of meaning, presentation, and
behavior in such a way that browsers and devices that support those enhancements can benefit from
them, but those that don’t support the enhancements can still access the original content.

Web browsers are pretty easy-going when it comes to parsing HTML and CSS. When a browser
encounters some piece of markup or styling it doesn’t support, rather than lock up and refuse to proceed,
the browser will simply ignore that unsupported code and continue on its merry way. The directive to
ignore unsupported code is baked right into the web standards. The browsers’ built-in fault tolerance is
what makes progressive enhancement possible; they'll just skip over any code they don't understand and
get on with rendering the code they already know.

With progressive enhancement, you can add bells and whistles from HTML5 and CSS3 without destroying
the nutritious kernel of content underneath. The real key to a progressive enhancement methodology is to
avoid making your websites completely dependent on a specific bell or whistle. Start simple and add layers
of complexity in such a way that each subsequent layer is an optional enhancement on top of the layer that
supports it.

First give your content a solid and stable structure with simple HTML that every web-capable device will
have no trouble processing. Enhance that basic structure with some of the more cutting edge parts of
HTML5 and browsers that don’t support the newer features will still have the basic structure to fall back on.
Use simple, well-supported CSS to further enhance your content and make it more presentable. Add in
some of the newer techniques from CSS3—the ones that only the latest browsers support—and older
browsers will still render the simpler, time-tested styling (and any devices that don’t even support the
simple styling will still fall back to the unadorned HTML). Enhance that styled content even further with
layers of behavior and interaction using JavaScript, and devices that don't support the scripting will still
render readable, accessible, styled content.

Getting Started

Unlike HTML and CSS, JavaScript is not a fault tolerant language. Any unsupported
methods or functions that appear in your JavaScript—even a simple syntax mistake—
will generate an error and bring the script to a screeching halt. Every part of a script
needs to be in working order or else the entire thing can fall apart. However, you can
incorporate checks and failsafes into your JavaScript to detect whether the browser
supports a given feature, and to fail gracefully if it doesn’t. JavaScript is another
important layer in the progressive enhancement stack, but that's a subject for another
book.

At every stage and with every new layer of enhancement you add, think about how the content will
degrade if and when that layer is stripped away. If removing a layer would make the content nonfunctional
or unusable, then perhaps you need to revise your strategy.

Working with HTML and CSS

Though HTML and CSS can seem overwhelming when you first dive in, creating your own web pages is
actually quite easy once you get the hang of it. All you really need is a way to edit text files, a browser to
view them in, and a place to store the files you create.

Choosing an Editor

HTML documents are plain text, devoid of any special formatting or style—all of the visual formatting
happens when a graphical web browser renders the document. To create and edit plain-text electronic
documents, you'll need to use software that can do so without automatically imposing any formatting of its
own. Fortunately, every operating system comes with some kind of simple text-editing program:

= Windows users can use Notepad, which you will find under Start 72 All Programs 7 Accessories 7
Notepad. WordPad is another Windows alternative, but it will format documents by default. If you
use WordPad, be sure to edit and save your documents as plain text, not “rich text.”

= Linux users can choose from several text editors, such as vi, vim, or emacs.

= Mac users can use TextEdit, which ships natively with OS X in the Applications folder. Like
WordPad for Windows, TextEdit defaults to a rich-text format. You can change this by selecting
Format 72 Make Plain Text.

In addition to these basic text editors, more advanced, specialized text editors are available for Windows,
Linux, and Macintosh systems, many specially designed for editing web documents. Some of them are
even available free of charge. There are also so-called What You See Is What You Get (WYSIWYG,
pronounced as “wizzy wig”) editors on the market that offer a graphical interface wherein you can edit
documents in their formatted, rendered state while the software automatically produces the markup behind

11

Chapter 1

it. However, this is no substitute for understanding how HTML and CSS really work, and some WYSIWYG
editors can generate convoluted, presentational markup. Handcrafting your documents in plain text is
really the best way to maintain control over every aspect of your markup, and many professionals swear
by it.

Choosing a Web Browser

As we mentioned earlier, a web browser is the software you use to view websites, and you almost certainly
have one already. Every modern computer operating system comes with some sort of web browser
installed, or you can choose one of the many others on the market:

= Microsoft Internet Explorer is the default browser on Windows operating systems.
= Apple Safari is the default browser for Mac OS X, and is also available for Windows.

= Mozilla Firefox is a free browser available for Windows, Mac OS X, and Linux
(mozilla.org/firefox).

= Opera is another free browser available for a wide range of operating systems (opera.com).
= Google Chrome is a free browser for Windows, Mac OS X, and Linux (google.com/chrome).
= Konqueror is a free browser and file manager for Linux (konqueror.org).

Ordinary HTML documents don't require any other software to operate. All of your files can be stored
locally on your computer’s hard drive, and you can view pages in their rendered state by simply launching
your browser of choice and opening the document you want to view (you can find the command to open a
local file under the File menu in most browsers).

Validating Your Documents

12

Having a standardized set of rules is all well and good, but how can you be sure you've followed them
correctly, crossing all the ts and dotting all the is? You should validate your HTML documents, checking
them against the standard rule set to ensure that they’re put together properly. It's like a spell-checker for
markup. The W3C has created an online validation tool (available at http://validator.w3.org/, shown in
Figure 1-2) for just this purpose. This web-based service allows you to validate your documents by either
entering the location of a page on the Web, uploading a file from your computer, or simply pasting your
markup directly into a form on the website.

http://validator.w3.org/

Getting Started

Figure 1-2. The W3C Markup Validation Service

The W3C validator can automatically analyze your markup and display any errors it encounters so you can
correct them. It will also display validation warnings, which are simply cautions about issues you might
want to address but are not quite as severe as errors; warnings can be ignored if you have good reason to
do so, but errors are flaws that really must be fixed. When no errors are found, you'll see a joyful banner
declaring that your document is valid. A document that is valid and correctly assembled according to the
rules of the language is said to be well-formed. Other validation tools are also available—both online and
offline—that can help you check your documents.

CSS also needs to be authored in accordance with the specifications, and the W3C offers a similar CSS
validation service (http://jigsaw.w3.org/css-validator/) to check your CSS files for problems.

Most web browsers are still able to interpret and render invalid documents, but only because they've been
designed to compensate for minor errors. Valid, well-formed documents are much more stable, and you
won't have to depend on a browser’s built-in error handling to display them correctly.

13

http://jigsaw.w3.org/css-validator/

Chapter 1

Hosting Your Web Site

You can save all of your work locally on your own computer, but when it's time to make it available to the
World Wide Web, you need to move those files to a web server. You have a few hosting options if you're
building your own website:

= Using web space provided by your ISP: An Internet service provider (ISP) is the company that
connects you to the Internet. Many service providers offer a limited amount of web space where
you can host your own site. Ask your ISP whether web space is included with your service
contract and how you can use it.

= Using free web space: Many companies provide free web hosting, though “free” is a relative term
because free web hosts are usually supplemented by advertising. If you're not bothered by such
ads appearing on your website, free hosting may be a quick solution to getting your files online.

= Paying for web hosting: Perhaps the best option is to purchase service from a company that
specializes in hosting websites. Many offer hosting packages for as little as $10 (US) per month
and include more robust features than free hosting or ISP hosting provides (such as e-malil
service, server-side scripting, and databases). Research your options, and choose a host that
can meet your needs.

If you opt for paid web hosting, you'll also need to purchase and register a unique domain name to be your
site’s address on the Web. Some hosting companies offer domain registration as an included service (and
some domain registrars also offer hosting services), but securing a domain and securing a host are usually
two separate processes.

We won't go into all the particulars of registering a domain and getting your site online with a web host.
After all, this is still the first chapter, and numerous resources online can provide more information. To
learn more about hosting your websites when the time comes, just visit your favorite search engine and
have a look around for information about “web hosting basics” or some similar phrase. One good place to
start is the Wikipedia entry about web hosting service (http://en.wikipedia.org/wiki/Web_hosting),
which offers a fairly detailed introduction to set you on your way.

Introducing the URL

14

Every file or document available on the Web resides at a unique address called a Uniform Resource
Locator (URL). The term Uniform Resource Identifier (URI) is sometimes used interchangeably with URL,
though URI is a more general term; a URL is a type of URIL. We'll be using the term URL in this book to
discuss addressed file locations. It's this address that allows a web-connected device to locate a specific
file on a specific server in order to download and display it to the user (or employ it for some other
purpose; not all files on the Web are meant to be displayed).

http://en.wikipedia.org/wiki/Web_hosting

Getting Started

The Components of a URL

A web URL follows a standard form that can be broken down into a few key parts, diagrammed in Figure
1-3. Each segment of the URL communicates specific information to both the client and the server.

Protocol Hostname Path File
]]]]

[1 [11 11 1
http://www.example.com/examples/example.html
| I]l I |

Prefix Domain Name Extension

Figure 1-3. The components of a URL

The protocol indicates one of a few different sets of rules that dictate the movement of data over the
Internet. The Web uses HyperText Transfer Protocol (HTTP), the standard protocol used for transmitting
hypertext-encoded data from one computer to another. The protocol is separated from the rest of the URL
by a colon and two forward slashes (://).

A hostname is the name of the site from which the browser will retrieve the file. The web server’s true
address is a unique numeric Internet Protocol (IP) address, and every computer connected to the Internet
has one. IP addresses look something like “66.211.109.45,” which isn't very easy on the eyes and is
certainly a challenge to remember. A domain name is a more memorable alias that directs Internet traffic
to an IP address. Many web hostnames feature a domain prefix, further naming the particular server being
accessed (especially when there are multiple servers within a single domain), though that prefix is
frequently optional. A prefix can be almost any short text label, but “www” is traditional. It's possible for
another entire website to exist separately within a domain under a different prefix, known as a subdomain.
A hostname will also feature a domain suffix (sometimes called an extension) to indicate the domain’s
category, such as “.com” for a U.S. commercial domain, “.edu” for a U.S. educational institution, or “.co.uk”
for a commercial website in the United Kingdom. Every country also has its own domain extension, and
you'll often see URLSs that indicate a country of origin but not any particular category.

The path specifies the directory on the web server that holds the requested document, just as you save
files in different virtual folders on your own computer. Files on a web server may be stored in
subdirectories—folders within folders—and each directory in the path is separated by a forward slash (/).
This path is the route a client will follow to reach the ultimate destination file. The top-level directory of a
website (the one that contains all other files and directories) is called the site root directory and doesn’t
appear in the URL.

The specific file to retrieve is identified by its file name and extension. You can give your files just about
any name you want, and a file extension indicates what type of file it is. An HTML (or XHTML) document
will have an extension of .html or .htm (the shorter version is used on some servers that support only
three-letter file extensions). CSS files use the .css extension, JavaScript files use .js, and so forth. Web

15

http://www.example.com/examples/example.html

Chapter 1

servers are configured to recognize these extensions and handle the files appropriately, processing
different types of files in different ways.

You won'’t see a file name and extension in every URL you encounter. Most web servers are configured to
automatically locate a specially named file when a directory is requested without a specified file name.
This could be the file called index.html, default.html, or some other name, depending on the way the
server has been set up. Indeed, most of the various parts of the URL may be optional depending on the
particular server configuration.

The URL is the instrument that allows you to build links to other parts of the Web, including other parts of
your own site. You'll use URLs extensively in the HTML and CSS you author, which is why we’ve spent so
much time exploring them in this first chapter.

Absolute and Relative URLS

16

A URL can take either of two forms when it points to a resource elsewhere within the same site. An
absolute URL is one that includes the full string, including the protocol and hostname, leaving no question
as to where that resource is found on the Web. You'll use an absolute URL when you link to a site or file
outside your own site’s domain, though internal URLs can also be absolute.

A relative URL is one that points to a resource within the same site by referencing only the path and/or file,
omitting the protocol and hostname because those can be safely assumed. It might look something like
this:

examples/chapteri/example.html

If the destination file is kept within the same directory as the file where the URL occurs, the path can be
assumed as well so only the file name and extension are required, like so:

example.html

If the destination is in a directory above the source file, you can indicate that relative path with two dots
and a slash (../), instructing the browser to go up one level to find the resource. Each occurrence of ../
indicates one up-level directive, so a URL pointing two directories upwards might look like this:

../../example.html

Almost all web servers are configured to interpret a leading slash in a relative URL as the site root
directory, so URLs can be “site root relative,” showing the full path from the site root down:

/examples/chapteri/example.html

Lastly, if the destination is a directory rather than a specific file, only the path is needed:

/examples/chapter1/

Getting Started

Relative URLs are a useful way to keep file references short and portable; an entire site can be moved to
another domain and all of its relative URLs will remain intact and functional.

Summary

This chapter has provided a high-level overview of what the Internet and World Wide Web are and how
they work. You've been introduced to HTML and CSS and are beginning to understand how you can make
these languages work together to produce a rendered web page. You got a short history lesson on how
HTML and CSS have changed over time, and some inkling of what the future holds for these fundamental
web languages. We mentioned a few different text editors you can use to create your documents and
some popular web browsers with which to view them. You've also learned a little about web hosting and a
lot about the components of a URL, information you'll find essential as you begin assembling your own
websites. We haven't gone into all the gory details in this introduction—after all, we’ve got the rest of the
book to cover them. In Chapter 2 you'll finally get to sink your teeth into some real HTML and CSS. Buckle
up; this should be a fun ride!

17

p

\

Chapter 2

HTML and CSS Basics

HTMLS5 is the latest and greatest, and is still taking shape as we write. But it's flexible and forward-looking
by design, and most of HTMLS5 is ready to use right now. This book will show you how. Chapter 1 briefly
introduced you to HTML and CSS, and in this chapter we’ll go a bit deeper and show you how you can
write markup and style sheets to create your own web pages. You'll become familiar with the fundamental
components of HTML and how to use them. As you know by now, you must adhere to some standards
when constructing a document for the Web, and we're going to be writing lean, valid, semantically rich
HTMLS5 throughout the chapters to come.

Later in the chapter, we’ll walk you through the essentials of CSS so you can use it to visually style your
web pages. HTML provides the structure that supports the content of your web pages, whereas CSS adds
some polish to make your content more attractive and memorable. Designing websites with CSS isn’t
possible without some solid bedrock of markup underneath, so let's begin at the beginning.

The Parts of Markup: Tags, Elements, and Attributes

The linchpin of HTML is the tag. Tags are the coded symbols that separate and distinguish one portion of
content from another while also informing the browser about what type of content it's dealing with. A web
browser (or any user-agent) can interpret the tags embedded in an HTML document and treat different
types of content appropriately. Most of the tags available in HTML have names that describe exactly what
they do and what sort of content they designate, such as headings, paragraphs, lists, images, quotations,
and so on.

17

18

Chapter 2

Tags in HTML are surrounded by angle brackets (< and »>) to clearly distinguish them from ordinary text.
The first angle bracket (<) marks the beginning of the tag, immediately followed by the specific tag name,
and the tag ends with an opposing angle bracket (>). For example, this is the HTML tag that begins a
paragraph:

<p>

We've written the tag name in lowercase, but you can use uppercase (<P>) if you prefer. Tag names are
not case-sensitive in HTML, but they must be lowercase in XHTML (that's one of those more stringent
rules that separates XHTML from HTML). Whereas XHTML demands lowercase for all tags and attributes,
HTMLS5 isn't so picky, and doesn’'t draw any distinction between a <p> and a <P> so it's entirely up to you
whether your tags are uppercase or lowercase.

Most tags come in matched pairs: one start tag (also called an opening tag) to mark the beginning of a
portion of content and one end tag (also called a closing tag) to mark its end. For example, the beginning
of a paragraph is marked by the start tag, <p>, and the paragraph ends with a </p> end tag; the slash
after the opening bracket is what distinguishes it as an end tag. A complete (if short) paragraph would be
marked up like this:

<p>Hello, world!</p>

These twin tags and everything between them form a complete element, and elements are the basic
building blocks of an HTML document.

A few elements don’t require an end tag in select circumstances. For example, if certain elements are
immediately followed by certain other elements, the start tag for the following element implies the end of
the previous element, so that previous element’s end tag may be optional, depending on the elements in
play. This is true in HTMLS5, as it was in HTML 4 and earlier, but not in XHTML: XHTML requires an end
tag for all elements. Even in HTMLS5, it's not a bad idea to include end tags, if only because it can be hard
to remember which elements allow tag omission in which cases. When in doubt, close your elements.
We'll include end tags on all the elements in markup examples you see in this book... almost all, that is.

Some tags indicate void elements (also called empty elements), which are elements that do not, and in
fact cannot, hold any contents. Void elements don't require a closing tag because there’s nothing to
enclose; a single tag represents the complete element. In XHTML, which strictly requires end tags for all
elements, these void elements are “self-closed” with a trailing slash at the end of the tag. For example, the
br element represents a line break that forces the text that follows it to wrap to a new line on the rendered
page. It's a void element that can’t hold any content, so in XHTML it would be self-closed like so:

Trailing slashes to end void elements are valid in HTMLS5, but they’re not required. The choice is yours.

Some void elements are also known as replaced elements; the element itself isn’'t actually rendered by a
graphical browser but is instead replaced by some other content. The most common example is the img
element, which occurs in the document to mark where an image should appear on the rendered page.
When the browser renders the document, the image file replaces the img element. You'll learn all about
using images and other media in Chapter 5.

HTML and CSS Basics

There are a very few special circumstances where even an element’s start tag can be omitted and the
entire element is merely implied. In the case of these implied elements, the element still “exists” within the
rendered page because browsers will generate it automatically, but its start and end tags are optional in
the markup. For instance, the tbody element defines the body of a table in HTML, and its start tag is often
optional because the beginning and ending of the table body is implied by the other elements around it.
You'll learn about HTML tables in Chapter 7.

Attributes

An element’s start tag can carry attributes to provide more information about the element—specific traits or
properties that element should possess. An attribute consists of an attribute name followed by an attribute
value, like so:

<p class="greeting">Hello, world!</p>

This paragraph includes a class attribute with a value of “greeting,” making it distinct from other
paragraphs that don’t include that attribute (you'll learn more about the class attribute later). An attribute’s
name and its value are connected by an equal sign (=) with no spaces allowed between; class =
"greeting"” isn't valid.

The quotation marks enclosing the value are optional in HTML5, but are required in XHTML. In HTMLS5,
the attributes class=greeting and class="greeting" are equally valid so the choice is yours. When
you do choose to quote attribute values, you can use either single quotes ('...") or double quotes
("...") solong as both of them match; quoting a value like "..." wouldn’t be valid. Some attributes may
possess multiple values separated by spaces, or a value composed of several words with spaces
between, and in those cases the entire value or set of values must be enclosed in quotation marks.

Some attributes don’'t require a value at all and the very presence of the attribute provides all the
information a user-agent needs. An attribute without a value is called a minimized attribute. For example,
here’s the markup for a pre-checked checkbox, with the checked attribute in its minimized form
(highlighted in bold):

<input type="checkbox" checked>

This is also called a Boolean attribute, named after the 19" Century mathematician George Boole, who
devised a system of logic based on true and false values represented by the digits 1 (true) and O (false).
Boolean logic is the foundation for much of computer science; a bit in binary is either 1 or 0, a switch is
either on or it's off. There’s no need for any other value for the checked attribute because a checkbox is
either checked or not checked; the attribute’s mere presence indicates “true.” XHTML's strictness requires
values for all attributes and doesn't allow minimizing attributes, not even Boolean ones. Thus, the same
checkbox would appear in XHTML with a non-minimized checked attribute:

<input type="checkbox" checked="checked" />

It seems redundant, and it is, but it's just part of XHTML'’s strictness. XML requires values for all attributes,
so XHTML requires them too. HTML5 doesn’t require values for Boolean attributes, but nor does it forbid
them. Some newer Boolean attributes introduced in HTML5 accept true and false values rather than
repeating the attribute name XHTML-style. Also note the trailing slash in the example above, because

19

Chapter 2

input is a void element that must be closed in XHTML (see Chapter 8 for more about forms and
checkboxes). The above example of XHTML is perfectly valid in HTML5 as well, so once again the choice
of minimizing Boolean attributes is yours.

Like tag names, attribute names aren’t case-sensitive in HTML but must be lowercase in XHTML. Attribute
values are never case-sensitive; a good thing because some values might need to use capital letters.

An element’s start tag can include several attributes, separated by spaces, and attributes must appear
only in a start tag (or a void element’s lone tag). Some elements require specific attributes whereas others
are optional—it all depends on the individual element, and you'll be learning about all of them throughout
the rest of this book, including which attributes each element may or must possess.

Figure 2-1 illustrates the components of an element.

Figure 2-1. The basic components of an HTML element

Content Models

20

HTML5 has a variety of rules and requirements about where and when certain elements can appear in a
document, and what types of content each element can and can’'t contain. To simplify these often-
confusing rules, elements in HTML5 are divided into a few broad categories, or content models, classifying
elements by their expected contents. For example, some elements are intended to contain lengthy
passages of text, whereas other elements typically contain only a few words. It's important to be aware of
this as you construct your documents, ensuring that you use the right element for the right content. The
basic content models in HTML5 are:

= Flow content: This umbrella category actually includes almost every element. The model is
called “flow content” because these elements influence the flow of other content on the page, like
a stone influences the flow of a stream.

= Phrasing content: This category is for elements that contain a few words, distinct from the other
words around them, such as a link or an emphasized word within a sentence. We’'ll cover most of
the phrase elements in Chapter 4.

HTML and CSS Basics

= Heading content: These elements are headings or titles, introducing the text that follows them.
Headings are covered in Chapter 4.

= Sectioning content: These elements wrap around groups of elements to form larger, distinctive
blocks of content, such as an article or a sidebar. These are covered in Chapter 4 as well.

= Embedded content: Elements that embed content into the page, like images, videos, audio, or
dynamic graphics. You'll learn about most of these in Chapter 5.

= Interactive content: Interactive elements are typically found in forms that let web users send
data directly to the web server, like text fields, checkboxes, and buttons. Forms and their
interactive elements are covered in Chapter 8.

= Metadata content: These elements supply information about the document itself, or connect the
document to additional resources like scripts and style sheets. You'll learn about these in
Chapter 3.

Some elements may have more than one content model. For instance, a link (the a element, covered in
depth in Chapter 6) is both a phrasing element and an interactive element. Although there are occasional
exceptions and oddities, these content models are generally intuitive and easy to keep straight. As we
introduce the individual elements in detail throughout this book we’ll include their relevant content model(s)
and any special rules about what they can or can’t contain.

Block-level vs. Inline

In previous versions of HTML (including XHTML), most elements were divided into two broad categories:
block-level and inline. A block-level element is one that contains a significant block of content that should
be displayed on its own line, to break apart long passages of text into manageable portions such as
paragraphs, headings, and lists. An inline element usually contains a shorter string of text and is displayed
adjacent to other text on the same line, like a few emphasized words within a sentence. Inline elements
could only contain text and other inline elements.

The block and inline classifications were always essentially presentational, and HTML5 has moved to the
more nuanced and meaningful system of content models. If you're familiar with HTML 4.01 or XHTML 1.0,
the flow and sectioning content models are roughly analogous to block-level, and phrasing elements are
roughly analogous to inline.

Even though these classifications are gone from HTMLS5, their legacy remains in the form of the display
property in CSS, which determines an element’s formatting on the rendered page. If an element’s display
property is declared with the value block, the rendered element forms a “block box” and rests on its own
line, occupying the full available width unless some other width is specified. The value inline indicates
that the element appears on the same line as adjacent text or elements, and its width collapses to the
width of its contents.

Graphical web browsers have their own built-in style sheets that dictate how various HTML elements
display by default, including whether they should be treated as block-level or inline. You can override these
browser defaults with your own CSS, as you'll soon see, but it's important to know which elements are
styled as block-level or inline by default.

21

Chapter 2

You can learn more about the CSS display property from the Mozilla Developer
Network (https://developer.mozilla.org/docs/CSS/display), or from the CSS
2.1 specification (w3.0rg/TR/CS521/visuren.html#display-prop).

Nesting Elements

Elements can be nested like Russian matryoshka dolls, each one residing within its containing element.
They must be nested correctly, with each end tag appearing in the correct order to close an inner element
before you close its container. Here’s an example of some improperly nested elements:

<p>Hello, world!</p>

The start tag occurs after the <p> start tag, but the </p> end tag occurs before the end tag—
the em element here should be completely inside the p element. To ensure correct nesting of elements,
always close them in the reverse order in which you opened them:

<p>Hello, world!</p>

A browser may still be able to render improperly nested elements so you can’t always count on the
mistake being obvious at a glance. A validator will catch these errors and keep you on the straight and
narrow. It can be a bit more challenging to track when nested elements begin and end if you choose to
omit end tags for those elements that allow it, so bear that in mind.

Global Attributes

We'll be listing each element’s required and optional attributes as we introduce them individually
throughout this book. However, some common attributes can be assigned to practically any element and
are almost always optional. To spare you the repetition, we’'ll cover these global attributes here, divided
into a few categories (they're also called core attributes). When we mention “global attributes” in later
chapters you can just refer back to this list—it's not going anywhere.

General Purpose Attributes

22

These attributes include general information about the element, and you can validly include them in the
start tag of almost any element:

= class: Indicates the class or classes to which a particular element belongs. Elements that belong
to the same class may share aspects of their presentation, and classifying elements can also be
useful in client-side scripting. Any number of elements may belong to the same class.
Furthermore, a single element may belong to more than one class, with multiple class names
separated by spaces in the attribute value (also note that a single class name can't contain
spaces).

= id: Specifies a unique identifier for an element. An ID can be almost any short label without
spaces, but it must be unique within a single document; more than one element cannot share the
same identifier.

https://developer.mozilla.org/docs/CSS/display

HTML and CSS Basics

style: Specifies CSS style properties for the element. This is known as inline styling, which you'll
learn more about in the next chapter. Although the style attribute is valid for most elements, it
mixes presentation with your content so you should avoid using it whenever possible.

title: Supplies a text title for the element. This might be a note, a label, a warning, or indeed a
titte—the attribute accepts any short bit of text. Many graphical browsers display the value of a
title attribute in a “tooltip,” a small, floating window displayed when the user’s cursor lingers
over the rendered element.

hidden: Indicates that the element is not relevant and that the browser shouldn’t render it. This
Boolean attribute is somewhat controversial—arguably, irrelevant and invisible elements
shouldn’t be in the document in the first place. The attribute was introduced because there may
be some unusual situations when an element is irrelevant in one context but relevant in another.
For example, a page might have special navigation that should be visible on a mobile device but
should never be seen on a desktop computer, or a log in form that isn’t relevant to users who are
already logged in. The intent is that dynamic scripts could toggle the attribute to hide or show
elements as needed, but there’s a lot of potential for careless authors to misuse the hidden
attribute, hence the debate on whether it should be allowed in HTMLS5 at all. This attribute should
not be used to arbitrarily hide any old content you might want to hide. We've included the hidden
attribute in this list because you might encounter it in the wild, and you might even come up with a
legitimate use for it—but do so with care.

Previous versions of HTML and XHTML imposed much stricter limitations on class and
id values. No punctuation or symbols were allowed other than hyphens and
underscores, and an ID had to begin with a letter of the alphabet, not a numeral or
symbol. HTML5 has loosened these restrictions but they still apply if you're working with
an HTML 4.01 or XHTML 1.0 document.

Internationalization Attributes

Internationalization attributes contain information about the natural language in which an element’s
contents are written such as English, French, Tamil, Latin, Klingon, and so forth. They can be included in
almost any element, especially those that contain text in a language different from the rest of the
document’s content.

dir: Sets the direction in which the text should be read, as specified by a value of 1tr (left to
right) or rtl (right to left). This attribute usually isn’t necessary because a language’s direction
should be inferred from the lang attribute. It's a good idea to include it just the same. Most Earth
languages are read left to right, with Arabic, Persian, and Hebrew being the most common right to
left alphabets.

lang: Specifies the natural language of the enclosed content, indicated by an abbreviated
language code such as en for English, es for Spanish (Espafiol), ja for Japanese, ar for Arabic,
rn for Kirundi, and so on. You can find a listing of the most common language codes at
webpageworkshop.co.uk/main/language codes.

23

Chapter 2

An xml:lang attribute can also specify the content’s language. This is the XML format
for the 1ang attribute, as it should occur in XML documents. XHTML documents are both
XML and HTML (depending on how the server delivers them), so both the Iang and
xml:1ang attributes may be applied to an element in XHTML, both with the same value.
The xml : 1ang attribute isn't needed (or valid) in an HTML5 document.

Focus Attributes

When some elements—especially links and form controls—are in a pre-active state, they are said to have
focus because the browser’'s “attention” is concentrated on that element, ready to activate it. You can
apply these focus attributes to some elements to enhance accessibility for people using a keyboard to
navigate your web pages by cycling the browser’s focus through the document:

» accesskey: Assigns a keyboard shortcut to an element for easier and quicker access through
keyboard navigation. The value of this attribute is the character corresponding to the access key.
The exact keystroke combination needed to activate an access key varies between browsers and
operating systems.

= tabindex: Specifies the element’s position in the tabbing order when the Tab key is used to cycle
through links and form controls.

Interactive Attributes

24

HTMLS5 introduces a number of new attributes to indicate that elements can be manipulated by users and
applications. You won't find these attributes in HTML 4.01 or XHTML 1.0, and even in HTMLS5 they’re not
all supported by every current browser. Some of these relate to those scripting APIs we mentioned in the
last chapter, and they're very cool, but well beyond the scope of this book. We're briefly listing these
attributes here so you'll recognize them when you come across them in the wild, but they're fairly
advanced and you won't see them again in these pages. We're sorry to get your hopes up only to dash
them.

= contenteditable: Indicates that users can edit the element's content. This attribute only
accepts the values true, false, or inherit, and it can also be minimized. The minimized form
with no value is equivalent to contenteditable="true".

= contextmenu: Associates the element with a contextual menu elsewhere in the document. This
attribute’s value is the ID of a menu element within the same document (menu will be introduced in
Chapter 8).

= draggable: Indicates that the element can be dragged by the user to another area of the
rendered page (this is used by the Drag and Drop API). This attribute only accepts the values
true, false, or auto, and is minimizable. The minimized form with no value is equivalent to
draggable="auto".

HTML and CSS Basics

» dropzone: Indicates the element is an area where draggable elements can be dropped. This
attribute only accepts the values copy (the dropped data is duplicated), move (the dropped data is
moved to the new location), or 1ink (creates a link to the original item, which returns to its
previous location).

» spellcheck: Related to forms and contenteditable, this attribute indicates the element's
content is available for automatic spelling and grammar checking. It only accepts the values true
or false, and is minimizable, with the minimized attribute equivalent to true.

Numerous event attributes are available for client-side scripting, including onclick,
ondblclick, onkeydown, onkeyup, onmousedown, onmouseover, onmouseup,
onscroll, onfocus, and many more. Each of these events occurs when the user
performs the indicated action upon the element. However, you should try to avoid using
such inline event handlers, so we won't be covering these optional attributes in any
detail. Scripted behavioral enhancements are best separated from the document's
content and structure, just as you should separate presentation. You won't really need to
know about these event handlers until you dip your toe into JavaScript, and that's a
subject for another book.

Custom Data Attributes

New in HTMLS5, data attributes allow web developers to create custom, descriptive attributes with the prefix
data- followed by whatever attribute name you like (which you can hyphenate further if necessary),
though it shouldn’t include any uppercase letters. The attribute’s value can be whatever text or data you
might need. This is useful for scripts and web applications as it offers a place to store arbitrary meta-
information about the element in a valid, unobtrusive way in the absence of any more suitable attributes.
It's much better to use a custom data attribute rather than shoehorning machine-readable data into an
inappropriate attribute, or exposing it as raw text when it's not meant to be read by your users. For
example:

<p class="product" data-price="$9,799" data-product-id="v900-shrink-ray">
v900 Portable Shrink Ray
</p>

Browsers don't display custom data attributes—they completely ignore them, in fact. Data attributes
shouldn’t be used for any CSS styling and shouldn’t contain any information you intend to be usable by
your visitors. These attributes only exist as hooks for scripts to latch onto and storage vessels for data that
scripts can use. Hence, you won't see them again for most of this book. As with the standard interactive
attributes, we've introduced data attributes here so you'll recognize them when you encounter them
elsewhere.

White Space

When you create your HTML documents as plain text, you're free to format them however you want. Line
breaks and indentations can help to make your markup more readable as you work, as you'll see in most

Chapter 2

of the markup examples in this book. Indenting nested elements can make it easier to see where a
particular element begins and ends, and thus you're less likely to run into nesting problems or forget to
close an element with the correct end tag.

Web browsers ignore any extra line breaks and carriage returns, collapsing multiple spaces into a single
space. To illustrate, here’s a bit of markup with a lot of extra space:

<p>

Wide
open
spaces!
</p>

This is a rather extreme example—one you'd probably never perpetrate yourself—but it serves to
demonstrate how all of those spaces are collapsed when a browser renders the document. Although the
spaces and returns are intact in the markup, your visitors would just see:

Wide open spaces!

Sometimes you may want to preserve extra spaces, tabs, and line breaks in your content—when you're
formatting poetry or displaying computer code, for instance. The pre element can delineate passages of
preformatted text in just such cases, and you'll learn more about that element in Chapter 4.

Adding Comments

26

It's often useful to embed comments in your documents. They're notes that aren't displayed in a browser
but that you (or someone else) can read when viewing the source markup. Comments can include
background on why a document is structured a particular way, instruction on how to update a document, or
a recorded history of changes. Comments in HTML use a specialized tag-like structure:

¢!-- Use an h2 for subheadings --»
<h2>Adding Comments</h2>

A comment starts with <! --, a set of characters the browser recognizes as the opening of a comment, and
ends with -->. Web browsers won’t render any content or elements that occur between those markers,
even if the comment spans multiple lines. Comments can also be useful to temporarily “hide” portions of
markup when you're testing your web pages.

<!-- Hiding this for testing

<h2>Adding Comments</h2>
End hiding -->

Although a browser doesn't visibly render comments, the comments are still delivered along with the rest
of the markup and can be seen in the page’s source code if a visitor views it. Don’t expect comments to
remain completely secret, and don't rely on them to permanently remove or suppress any important
content or markup.

HTML and CSS Basics

CSS Fundamentals

CSS can add style to your pages, enhancing and improving the presentation of your content. HTML
supplies the structure—each element designates a different portion of content, and attributes pass along
more information about those elements. CSS acts as another layer to influence the presentation of those
HTML elements. Colors, fonts, text sizes, borders, backgrounds, and the arrangement of elements on the
page are all presentational aspects of your content, and you can control them all through artful application
of CSS.

Anatomy of a CSS Rule

If elements are the building blocks of markup, the building block of CSS is the rule. It's a set of instructions
that a browser can follow to alter the appearance of HTML elements based on the presentational values
you supply. A style sheet is a collection of rules gathered together in a particular order, telling the browser
to “find this element and make it look like this, then find this other element and make it look like this” and
so on, until you've described every element you want to style.

A CSS rule consists of a few component parts, diagrammed in Figure 2-2.

Figure 2-2. The components of a rule in CSS

The selector is the part of the rule that targets an element for styling. Its scope can be very broad, affecting
every instance of a particular element, or very narrow and specific, affecting only a few elements or even
just one. We'll cover some of the different kinds of selectors in the next section of this chapter.

A declaration comprises two more parts: a property and a value. The property is that aspect of an
element’s presentation that is changing, such as its color, its width, or its placement on the page. Dozens
of properties are available in the CSS language, and you'll become familiar with many of them in the
following chapters. The property’s value delivers the specific style that should be applied to the selected
element. The accepted values depend on the particular property, and some properties accept multiple
values.

Declarations reside in a set of curly braces ({ and }), and multiple declarations can apply to the same
selector, modifying several aspects of an element’s presentation in the course of a single rule. A property
and its value are separated by a colon (:) and the declaration ends with a semicolon (;). That semicolon is
important to separate multiple declarations, but if there’s only one declaration in the rule or if it's the last

Chapter 2

declaration in a series, the terminating semicolon is optional. It's not a bad idea to get in the habit of
including a semicolon at the end of every declaration, even when there’s only one, just to play it safe.

If your CSS doesn'’t conform to this basic structure and syntax—if you forget the closing brace or the colon
separating a property from its value, for example—the entire rule or even the entire style sheet might fail.
Just like HTML, a style sheet should be well formed and properly constructed. The W3C hosts a CSS
validation service (http://jigsaw.w3.org/css-validator/, shown in Figure 2-3) that can help you
catch goofs and glitches in your style sheets.

Figure 2-3. The W3C CSS Validation Service

CSS Selectors

A selector, as its name implies, selects an element in your HTML document. A number of different types of
selectors are available, with varying levels of specificity to target a large number of elements or just a few.
Specificity is a means of measuring a given selector’s scope; in other words, how many or few elements it
selects. CSS is designed so that more specific selectors override and supersede less specific selectors.
Specificity is one of the more nebulous and hard-to-grasp concepts in CSS but it's also one of the most
powerful features of the language. We'll cover the rules of specificity in more detail later, but first allow us
to introduce some selectors.

Universal Selector

The universal selector is merely an asterisk (*) acting as a “wild card” to select any and all elements in the
document. For example, this rule:

28

http://jigsaw.w3.org/css-validator/

HTML and CSS Basics

* { color: blue; }

would apply a blue foreground (text) color to all elements. Headings, paragraphs, lists, cells in tables, and
even links—all would turn blue because the universal selector selects the entire universe. This is the least
specific selector available, because it's not specific at all.

Element Selector

An element selector selects all instances of an element, specified by its tag name. This selector is more
specific than the universal selector, but it's still not very specific because it targets every occurrence of an
element, no matter how many of them there may be. For example, the rule:

em { color: red; }

gives every em element the same red foreground color, even if there are thousands of them in a document.
Element selectors are also known as type selectors.

Class Selector

A class selector targets any element that bears the given class name in its class attribute. Because a
class attribute can be assigned to practically any element in HTML, and any number of elements can
belong to the same class, this selector is not terribly specific but is still more specific than an element
selector. In CSS, class selectors are preceded by a dot (.) to distinguish them. For example, this rule will
style any elements belonging to the “info” class, whatever those elements happen to be:

.info { color: purple; }

ID Selector

An ID selector will select only the element carrying the specified identifier. Practically any element can
have an id attribute, but that attribute’s value may be used only once within a single document. The ID
selector targets just one element per page, making it much more specific than a class selector that might
target many. ID selectors are preceded by an octothorpe (#). (This is often called a hash, number sign, or
pound, but octothorpe is the character’s proper name. It also sounds cool and will impress people at dinner
parties.) The following rule would give the element with the ID “introduction” a green foreground color:

#introduction { color: green; }

Pseudo-class Selector

A pseudo-class is preceded by a colon (:) and is somewhat akin to a class selector (and is equal to
classes in specificity), but it selects an element in a particular state. Some of the most common pseudo-
classes relate to links:

Chapter 2

:link { color: blue; }
:visited { color: purple; }
thover { color: green; }
:focus { color: orange; }
:active { color: red; }

The :1link pseudo-class selects all elements that are hyperlinks (which you'll learn much more about in
Chapter 6). The :visited pseudo-class selects hyperlinks whose destination has been previously visited
(recorded in a web browser’s built-in history). The :hover pseudo-class selects any element that is being
“hovered” over by a user’'s pointing device. Although any element can be in a hover state, this most
commonly applies to links (and some older browsers supported this pseudo-class only for links and no
other elements). The :focus pseudo-class selects any element in a focused state (including links), and
the :active pseudo-class selects links in an active state, that interval when the link is being activated
(while clicking a mouse or pressing the Enter or Return key).

Descendant Selector

30

One of the most useful and powerful selectors in the CSS arsenal, a descendant selector is assembled
from two or more other selector types, separated by spaces, to select elements matching that particular
context in the document (these are also called contextual selectors). An element nested within another
element is called a descendant, and its containing element is its ancestor. We'll explain these terms in
more depth in Chapter 3. But first, here’s a style rule with a simple descendant selector:

.introduction em { color: yellow; }

That rule will select any em element that is itself within (descended from) any element with the class value
“introduction” and apply a yellow text color. Descendant selectors allow for very precise selection of just
the elements you want to target, based on the structure of your HTML document.

For a more elaborate example, the portion of HTML in Listing 2-1 shows an article element containing a
section element that in turn contains a paragraph (the p element) that contains a link (the a element;
you'll learn more about all of these elements in coming chapters).

Listing 2-1. Nested descendant elements

<article id="main">
<section class="introduction">
<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a
large printing plant. Behind their modest storefront
is an expansive warehouse positively packed to the portholes
with paraphernalia.</p>
</section>
</article>

A more complex descendant selector can target links in that very specific context:

#main .introduction p a { font-weight: bold; }

http://example.com/Sinnott_Inkworks

HTML and CSS Basics

This would select all a elements that are descendants of a p element that is a descendant of any element
with the class “introduction” that is a descendant of the element with the ID “main”, and only those
elements. Any links that don’t exactly match this context wouldn’t be affected by this CSS rule. You can
see how the scope of a descendent selector can be very narrow indeed, targeting only a few elements that
meet the selector’s criteria.

Combining Selectors

You can combine two or more selector types, such as an element and an ID or an ID and a class. These
combinations can also narrow down the specificity of your selectors, seeking out only the elements you
want to style and leaving others alone. This rule:

p.info { color: cyan; }

selects only paragraphs (p elements) belonging to the “info” class. Another element in that class would be
overlooked, and other paragraphs not belonging to the “info” class are also left untouched.

Combining selectors within a descendant selector can target elements with surgical precision:
p#introduction a.more-info:hover { color: silver; }

This rule would apply only to hovered links (a elements) belonging to the “info” class that are descendants
of the paragraph with the ID “introduction.” You'll rarely have to get this precise with your selectors but it's
good to know the power is there if you need it.

Grouping Selectors

You can group several selectors together as part of a single rule so the same set of declarations can apply
to numerous elements without redundantly repeating them. A comma separates each selector in the rule:

p, hi, h2 { color: maroon; }

The previous rule applies the same color value to every instance of the p, h1, and h2 elements. The more
complex set of selectors in this rule:

p#introduction em, a.info:hover, h2.info { color: gold; }
will target all em elements descended from the paragraph with the ID “introduction” and all hovered links
with the class “info” as well as h2 elements (a second-level heading) in the “info” class (remember that

different types of elements can belong to the same class). Grouping and combining selectors is a great
way to keep your style sheets compact and manageable.

Advanced Selectors

The selectors you've seen so far are all part of CSS level 1, the first standardized version of CSS
introduced way back in 1996. A few more selectors were introduced in CSS level 2.1:

= Attribute selectors target an element bearing a particular attribute and even an attribute with a
specified value.

Chapter 2

= Pseudo-element selectors target elements that don’t specifically exist in the document but are
implied by its structure, such as the first line of a paragraph or the element immediately before
another element.

= Child selectors select an element that is an immediate child of another element and not its other
descendants.

= Adjacent sibling selectors target elements that are immediate siblings of another element, sharing
the same parent in the document.

These CSS 2.1 selectors are well supported by the current generation of graphical browsers, a few
stragglers notwithstanding. CSS 3 brings even more exciting and elaborate selectors to the table, including
a bundle of new pseudo-classes and structural pseudo-elements. Browser support for some of the latest,
cutting-edge selectors from CSS 3 isn’t quite as far along, so such advanced features should be used with
care and extensive cross-browser testing.

You'll get to see a few advanced selectors in action later in this book, but the basic selectors (universal,
element, class, pseudo-class, ID, and descendant) will serve you well.

Specificity and the Cascade

32

As we mentioned earlier, each type of selector is assigned a certain level of specificity, measuring how
many possible HTML elements that selector might influence. Examine these two CSS rules, one with an
element selector and the other with a class selector:

h2 { color: red; }
.title { color: blue; }

and this snippet of HTML, an h2 element classified as a title:

<h2 class="title">Specificity and the Cascade</h2>

The first rule selects all h2 elements, and the second rule selects all elements belonging to the “title” class.
But the element shown fits both criteria, causing a conflict between the two CSS rules. A browser must
choose one of the two rules to follow before it can determine the heading’s final color. In CSS, a more
specific selector trumps a less specific selector. Because a class selector is more specific than an element
selector, the second rule has greater specificity, and the heading is rendered in blue.

Modern web browsers follow a complex formula to calculate a selector’s specificity, which can be rather
confusing to noncomputers like us. Thankfully, you'll rarely need to calculate a selector's numeric
specificity value if you just remember these few rules:

= Auniversal selector isn’t specific at all.

= An element selector is more specific than a universal selector.

= Aclass or pseudo-class selector is more specific than an element selector.
= An ID selector is more specific than a class or pseudo-class.

= Properties in an inline style attribute are most specific of all.

HTML and CSS Basics

Specificity is also cumulative in combined and descendant selectors. Each of the base selector types
carries a different weight in terms of specificity—a selector with two classes is more specific than a
selector with one class, a selector with one ID is more specific than a selector with two classes, and so on.
The specificity algorithm is carefully designed so that a large number of less specific selectors won't
outweigh a more specific selector. Even if you assembled a complex selector made up of hundreds of
element selectors, another rule with just one ID selector could still override it. Understanding specificity will
allow you to construct CSS rules that target elements with pinpoint accuracy.

For a more in-depth explanation of how specificity is calculated by web browsers, see
the W3C specification for CSS 2.1 (w3.0rg/TR/(S521/cascade.html#specificity)
along with Molly Holzschlag’s more approachable clarification at
molly.com/2005/10/06/css2-and-css21-specificity-clarified.

At this point you might be wondering what happens when two selectors target the same element and also
have the same specificity. For example:

.info h2 { color: purple; }
h2.title { color: orange; }

If an h2 element belonging to the “title” class is a descendant of another element in the “info” class, both of
these rules should apply to that h2. How can the browser decide which rule to obey? Enter the cascade,
the C in CSS.

Assuming selectors of equal specificity, style declarations are applied in the order in which they are
received, so later declarations override prior ones. This is true whether the declarations occur within the
same rule, in a separate rule later in the same style sheet, or in a separate style sheet that is downloaded
after a prior one. It's this aspect of CSS that gives the language its name: multiple style rules that cascade
over each other, adding up to the final presentation in the browser. In the earlier example, the rendered h2
element would be orange because the second rule overrides the first.

For another example, the following rule:

color: black;
color: green;

contains two declarations, but rendered paragraphs will be green because that declaration comes later in
the cascade.

The sometimes-complex interplay between specificity and the cascade can make CSS challenging to work
with in the beginning, but once you understand the basic rules, it all becomes second nature. You'll learn
more about the cascade order in Chapter 3.

limportant

In some extremely rare cases where both specificity and the cascade may not be sufficient to apply your
desired value, the special keyword !important (complete with preceding exclamation point) can force a

33

Chapter 2

browser to honor that value above all others. This is a powerful and dangerous tool, and should be used
only as a last resort to resolve conflicting styles beyond your control (for example, if you're forced to work
with third-party markup that uses inline styles that you can’t modify directly).

The !important directive must appear at the end of the value, before the semicolon, like so:
hi { color: navy !important; }

A value declared as ! important is applied to the rendered content regardless of where that value occurs
in the cascade or the specificity of its selector. That is unless another competing value is also declared
limportant; specificity and the cascade once again take over in those cases. There’'s one notable
exception to be aware of: users can create their own custom style sheets in their browsers to style
websites to their preference, and !important values in a user style sheet always take precedence, even
overriding !important values in author style sheets. This gives the ultimate power to the user, which is
only right; after all, it's their computer.

Formatting CSS

34

Like HTML, CSS is a plain text language. You're free to format your CSS however you like, just as long as
you follow the basic syntax. Extra spaces and carriage returns are ignored in CSS; the browser doesn't
care what the plain text looks like, just that it's technically well formed. When it comes to formatting CSS,
the most important factors are your own preferences. Individual rules can be written in two general
formats: extended or compacted.

Extended rules break the selector and declarations onto separate lines, which many authors find more
readable and easier to work with. It allows you to see at a glance where each new property begins and
ends, at the expense of a lot of scrolling when you're working with long and complex style sheets. Listing
2-2 shows a few simple rules in an extended format.

Listing 2-2. CSS rules in extended format
hi, h2, h3 {

color: red;
margin-bottom: .5em;

h1 {
font-size: 150%;

}

h2 {
font-size: 130%;

}

h3 {
font-size: 120%;
border-bottom: 1px solid gray;

}

HTML and CSS Basics

Compact formatting condenses each rule to a single line, thus shortening the vertical scrolling, but it can
demand horizontal scrolling in your text editor when a rule includes many declarations in a row. Listing 2-3
demonstrates the same set of rules compacted to single lines and with unnecessary spaces removed.

Listing 2-3. CSS rules in compacted format
h1,h2,h3{color:teal;margin-bottom:.5em;}
hi{font-size:150%;}

h2{font-size:130%;}
h3{font-size:120%;border-bottom:1px solid gray;}

Another advantage of compacted rules is a slight reduction in file size. Spaces, tabs, and carriage returns
are stored as characters in the electronic file, and each additional character adds another byte to the
overall file size that must be downloaded by a client. A long style sheet might be a considerably larger file
in an extended format because of all the extra space characters. In fact, you could choose to remove all
excess spaces and place your entire style sheet on a single line for optimal compression, but that might be
overkill and make your CSS much harder to work with. To reconcile maximum readability with minimal file
size, some authors work with style sheets in an extended format and then automatically compress the
entire thing to a single line when moving it to a live web server.

A few extra spaces in a compacted rule can at least make it easier to scan, spreading a one-line rule out a
bit by including spaces between declarations and values. For lack of a better term, we’ll call this format
semi-compacted, as shown in Listing 2-4.

Listing 2-4 CSS rules in semi-compacted format

hi, h2, h3 { color: teal; margin-bottom: .5em; }

hi { font-size: 150%; }

h2 { font-size: 130%; }

h3 { font-size: 120%; border-bottom: 1px solid gray; }

In the end, it's entirely up to you. Write your style sheets in a way that makes sense to you. If you
collaborate with other web developers—as you almost surely will if you build websites professionally—
authoring readable CSS will be beneficial to the entire team.

CSS Comments

You can add comments to your style sheets for the same reasons you might use comments in HTML.: to
make notes, to pass along instructions to other web developers, or to temporarily hide or disable parts of
the style sheet during testing. A comment in CSS begins with /* and ends with */, and anything between
those markers won't be interpreted by the browser. Just like comments in HTML, CSS comments can span
multiple lines.

/* These base styles apply to all heading levels. */
h1, h2, h3, h4, h5, h6 { color: teal; margin-bottom: .5em; }

/* Adjust the size of each. */
h1 { font-size: 150%; }
h2 { font-size: 130%; }
h3 { font-size: 120%; }

35

Chapter 2

/* Temporarily hiding these rules
ha { font-size: 100%; }

hs { font-size: 90%; }

he { font-size: 80%; }

End hiding */

Comment liberally. Unless you're strictly building personal websites for yourself, you should always strive
to make your code (HTML and CSS both) easy to understand for other people who may wind up working

with it. Comments can also be handy notes to yourself so when your revisit a style sheet a few months or
years down the road, you can remember why you did things the way you did them.

Summary

36

This chapter has covered a lot of ground to get you up to speed on the inner workings of HTML and CSS.
You've learned the basics of authoring HTML, using tags to define elements and adding attributes to relay
more information about them. Throughout the rest of this book, you'll become intimately familiar with most
of the elements you'll use when you create your own web pages.

The second part of this chapter gave you a crash course in CSS, unveiling the mechanics of this rich and
powerful language. You learned about CSS selectors and how specificity and the cascade work together
to give you great control over how your content is presented. You'll use HTML to build the structure that
supports your content, and then use CSS to apply a separate layer of polished presentation. In the
following chapters, you'll see glimpses of how you can use CSS in different ways to create different visual
effects. Chapter 9 will delve a bit deeper to show you a few ways to use CSS to lay out your pages by
placing elements where you want them to appear on-screen, all without damaging their underlying
structure. Then in Chapter 10 you'll get to see some more of the bells and whistles CSS3 puts at your
fingertips.

From here on, we’ll assume you've reached an understanding of the basic rules of syntax for authoring
your own HTML and CSS, and the rest of this book will dig into the real meat of markup. To get things
rolling, Chapter 3 examines the document itself and how different elements relate to each other.

Onward, true believer!

Chapter 3

The Document

The Web is made of documents. Well, mostly. There’s an awful lot of non-text content on the Web: millions
of hours of video and audio, billions of photos and drawings, thousands of embeddable games and
widgets that require plug-ins, and a vast array of APIs and services working behind the scenes to move
information around the Web when it isn’t in document form. But most of the time what you see and interact
with—what you probably call a web page—is a rendered HTML document. It might exist as a single self-
contained file on a web server, or it might be assembled on the server from separate pieces of code before
it's sent to your web browser, and some or all of it might be generated by dynamic scripts right before your
eyes... but it's still a document. When we refer to an HTML document we mean the entire collection of text
and markup that a browser renders into a web page.

You can view the source HTML document underlying any web page you visit, usually by selecting an
option in a contextual menu that appears if you right-click on the page, or from a View menu. Different
browsers put the option in different places and give it different names—usually “View Source” or
something similar—but every desktop browser has such a command. Viewing and studying the source
code of live websites is one of the best ways to learn how they're put together. Just remember: a great
many web pages still aren’t built according to web standards and best practices, so quite often viewing the
markup of a live website will serve as a better example of what not to do.

In this chapter you'll learn about the parts of an HTML document and how it forms the surrounding
framework for the content of your web pages. The basic framework of a document is composed of just a
few essential parts, with a few other optional parts that are less essential but no less useful. We’'ll cover
each element one by one, explaining what it does, how to use it, what attributes it offers, and where the
element fits into the document.

37

Chapter 3

We'll be honest: some parts of this chapter will be pretty dry and technical, and if you're just starting out
with HTML you may want to skip over some of the denser bits and move on to Chapter 4. Don’t worry too
much about things like metadata, character sets, media types, and JavaScript just yet if you're not quite
ready for them. But it's important to understand the fundamentals of the documents you'll be working with
from here on, so this is an important chapter to have near the beginning. You can always come back to
this chapter later for a refresher; that's why pages turn both ways, after all (unless you're reading a digital
edition, but scrollbars scroll both ways too).

The Anatomy of an HTML Document

An HTML document is put together from a few vital components: a document type declaration (or
doctype), a root element that wraps around the entire document, a head element featuring a title and other
information about the document, and a body element that holds all of the content. Listing 3-1 shows a
simple document with all the pieces in place. If you've downloaded the source code that accompanies this
book (you can get it from apress.com or from foundationhtml.com) you'll find this example document in
the Chapter 3 folder, and this can serve as a starting point for all your documents to come.

Listing 3-1. A basic HTML document

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Document Title</title>
</head>
<body>
<p>This is a very simple web page.</p>
</body>
</html>

Believe it or not, this relatively short block of code is a complete, valid, well-formed HTML document,
authored in strict adherence to the rules of the HTML5 specification. That's not so difficult, is it? In fact, as
minimal as it is, this example is even more verbose than strictly required. You could choose to omit some
of the tags we've included, making the document even smaller while still complete and valid. We've
included those optional tags in our examples, and we recommend including them in your own documents
as well, if only to help you read your own markup as you work with it.

Next we'll dig a bit deeper to tell you what each of these component parts is all about, and introduce a few
more optional parts you'll need further down the road.

The Doctype

38

The first essential piece of an HTML document is a document type declaration, or just doctype for short.
This bit of code informs the user-agent what type of document it's dealing with, so it knows what to expect
and can process the rest of the document accordingly. Though the doctype is contained in angle brackets
(< and »), it isn't really a tag, it's an instruction—something like a special comment—and the ! at the
beginning distinguishes it from any other code in the document.

The Document

The word “doctype” often appears in all uppercase letters but it isn’t actually case sensitive; <!doctype is
just as valid as <!DOCTYPE. The keyword “html” appears after the doctype opening, and is also case-
insensitive (HTML is the same as html), but its case should match the case of the root element, which we'll
cover next. This essentially tells the browser that the document it's reading has been authored in HTML
and not some other markup language.

In past versions of HTML and XHTML, the doctype included additional information telling the browser that
not only was the document an HTML or XHTML document, but which specific set of rules the document
conformed to, like this doctype for HTML 4.01 Strict:

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

The doctype has been greatly simplified for HTML5 with an eye toward the future; now just declaring that a
document is HTML is sufficient. Browsers don’t necessarily need to worry about which particular version of
HTML it is, as long as it's HTML. However, if you happen to be working with a document authored in a
specific older version, you should still declare that older version in your doctype. If your document relies on
features or elements specific to the HTML 4.01 Frameset version, for instance, you should declare an
HTML 4.01 Frameset doctype. If you're working with an XHTML document you’ll need to declare an
XHTML doctype. All the markup examples you'll see in this book conform to the rules of the HTML5
specification, at least as it stands as we write this in 2012; remember that the spec is still subject to
change.

The HTML5 doctype is quite modest indeed:

<!DOCTYPE html>

This must be the very first line of text in an HTML document for it to be considered valid and well formed
according to the HTMLS5 specification (only white space can appear before the doctype). Web browsers

will usually still render a document even if the doctype is missing, but they’ll render it in a very different
way.

Doctype Switching and Rendering Modes

Some of the earliest browsers that supported CSS did so largely according to their own rules, rather than
following the standardized specifications (in their defense, some of the early CSS specs were pretty vague
to begin with). This inconsistency between browsers was a major stumbling block in the adoption of CSS
and web standards in general. A page might render perfectly in one browser and appear completely
broken in another.

As browsers improved their support for CSS—that is, moved toward an agreed standard for rendering web
pages—they were faced with a dilemma. Many websites had already been designed with built-in
dependencies on the inconsistent, inaccurate renderings of older browsers. Suddenly opting to follow the
rules could cause millions of web pages to seem “broken” in the latest version of a web browser when they
looked just fine the day before. The site didn’t change overnight; only the browser’'s method of rendering it
did. An oft-repeated mantra among browser vendors is “don’t break the Web.” As they implement new
features or improve support for emerging standards, they must still maintain backwards compatibility with
the content that already exists on the Web—even sites that were built poorly.

39

http://www.w3.org/TR/html4/strict.dtd

Chapter 3

This dilemma inspired the introduction of the doctype switch. When a document includes a correct
doctype, a modern browser will assume the entire document is well formed and authored according to web
standards. The browser can then render the page in a mode intended to comply with the established
standards for markup and CSS, a mode known as compliance mode or strict mode. If the doctype is
missing, incomplete, or malformed, the browser will assume it's dealing with an outdated or badly made
website and revert to a looser and more tolerant rendering mode, known as quirks mode because it's
intended to adjust to the various quirks of nonstandard and improperly constructed markup (it's also
sometimes called compatibility mode). Very old browsers lack a doctype switching mechanism and are
forever locked in their outdated quirks modes.

To invoke standards compliance mode in modern web browsers, a complete doctype must be the very first
line of text in a document; only white space is allowed to appear before it. Any unexpected text or code
appearing before the doctype declaration will throw most modern browsers into quirks mode, with often-
unpredictable results. Designing websites with CSS is considerably easier and the results are more
consistent when you invoke compliance mode. Hence, including a correct doctype is essential. And
because a doctype is already a required part of a valid document, modern browsers will always render
your pages in compliance mode if you build your documents correctly.

Peter-Paul Koch offers additional information and opinions on quirks mode at his
appropriately named website, Quirks Mode (quirksmode.orqg/css/quirksmode.html).
For a breakdown of just how browsers render documents differently in their quirks
modes, check out Jukka Korpela's article “What Happens in Quirks Mode?”
(www. cs. tut.fi/~jkorpela/quirks-mode.html).

The Root Element: html

40

After the doctype, the rest of the document is entirely contained in a single html element. This is also
called the root element because it's the starting point for the document tree, and all other elements in the
document branch off from the html element that contains them. The root element can only have one head
and one body element as its direct children (both covered in this chapter) and every other element
descends from one of those two. You can choose to omit the html element’s start and end tags and the
browser will simply generate them itself when it renders the document; the html element is always there
because the doctype implies its existence.

However, it's still generally a good idea to include the root element’s start and end tags in your markup,
especially because the start tag can carry attributes. The lang and dir internationalization attributes are
optional, but you should usually include them with the html element. The Web is a globe-spanning,
borderless nation that speaks many languages—all of them, in fact. Declaring the natural language of your
content can assist browsers in parsing and rendering it, especially if the browser and operating system are
localized for a different language.

Listing 3-2 shows an HTML document with an html element that includes the lang and dir attributes,
indicating that this page is written in American English (lang="en-US") and should be read (and rendered)
from left to right (dir="1tr"). These are global attributes, as we mentioned in Chapter 2, so they can

http://www.cs.tut.fi/~jkorpela/quirks-mode.html

The Document

appear on any element in HTML. Including them on the root html element declares the language and
directionality for the entire document.

Listing 3-2. Internationalization attributes in a document'’s root element

<!DOCTYPE html>
<html lang="en-US" dir="1tr">
<head>
<meta charset="utf-8">
<title>Document Title</title>
</head>
<body>
<p>This is a very simple web page.</p>
</body>
</html>

The html element can also carry an optional manifest attribute, the value of which is the URL of an
application cache manifest. This file informs the browser about data resources that it can cache locally on
the user’'s computer for later use when it isn't connected to the Internet. Offline application caching is one
of the great new APIs introduced with HTML5 that, alas, we won't be covering in any detail in this
book. You can find a brief introduction to the ApplicationCache APl at HTML5 Rocks
(html5rocks.com/en/tutorials/appcache/beginner/) and you can read all the gritty details in the
W3C specification (w3.0rg/TR/html5/0ffline.html).

Required Attributes

The html element doesn’t require any attributes.

Optional Attributes

= manifest: the URL of an application cache manifest. This attribute’s value must be a valid URL,
either relative or absolute, though absolute URLs must be within the same domain as the current
document.

head

The head element acts as a container for other elements that provide information about the document
itself, collectively known as the document’s header. This metadata informs the browser about where to find
external scripts or style sheets, or embeds such scripts and style sheets directly in the document,
establishes relationships between the current document and other resources, and can provide additional
data that's useful for user-agents but isn't intended for human visitors. Apart from the required title
element, covered next in this chapter, browsers don't display any of the metadata content within the head
at all; the header isn't part of the rendered web page.

The head element must be the first child of the html element; no other content or elements can appear
before it. However, like the html element, you can opt to omit the head element’s start and end tags and
the element is still implied to exist. If you do omit the head element, any of the metadata content that would
ordinarily occur inside it must still come before any body content.

Chapter 3

Some of the metadata elements we’'ll be covering in this chapter can’t appear anywhere else in a
document except within the head element. That's one more good reason to include the element: it makes it
very clear where the header ends and your other content begins. You'll see a few more examples of the
head element in this chapter as we detail the metadata elements it contains.

Required Attributes

The head element doesn’t require any attributes.

Optional Attributes

The head element doesn’'t have any optional attributes.

Previous versions of HTML and XHTML had an optional profile attribute for the head
element, and its value was one or more URLs pointing to additional metadata profile
definitions that extend the metadata already inherent in HTML. The profile attribute is
obsolete in HTML5, and metadata profiles can be extended by the meta and 1ink
elements instead (both covered in this chapter).

title

42

The title element provides a text title for the document. It appears as a child of the head element, and
there can be only one title per document. It's also a required element; every HTML document must have
exactly one title element.

Browsers display the contents of the title element in the browser window's title bar, and the page’s tab
in browsers that offer tabbed browsing (like Safari does in Figure 3-1). The title also acts as the default
page name when a visitor bookmarks the page or saves it as a favorite, so it should describe the page
even when read out of context.

Figure 3-1. Browsers display the contents of a title element in tabs and title bars

The Document

Perhaps most significantly, the contents of a title element will appear in search engine results as the
default title for the page. A title should stand on its own in a different context, where people will read the
title before seeing the page it introduces. Good titles help people find the content they want. Think about
your titles and write them for people, not for search engines.

A title should be short, simple, easily understood, and descriptive of the page it labels:
<title>About The Company</title>

To make it stand alone better in different contexts, you can include the website’s name in addition to the
title of the single page:

<title>Power Outfitters Superhero Costume and Supply Co. - About Us</title>

Or, to be a bit more readable and put the most relevant information up front, include the single page title
before the site name:

<title>About Us - Power Outfitters Superhero Costume and Supply Co.</title>

If your website is organized in a multi-level hierarchy, as many sites are, the title element can reflect
that structure to help orient your visitors:

<title>Model MDTS40 / Domino Masks / Masks and Cowls / Power Outfitters</title>

If the main feature of your particular web page is a self-contained article or a blog post, the title element
should carry the title or headline of the article:

<title>Earth Nations Join Forces to Resist Invaders from Space! | Daily Globe</title>

The title element can only appear as a child of the head element and nowhere else, and it can only

contain text; no other elements are allowed within a title. This element belongs to the metadata content
model (as most of these header elements do) and always requires both a start tag and an end tag.

Required Attributes

There aren't any required attributes for the title element.

Optional Attributes

The title element doesn't offer any optional attributes.

meta

The term metadata is often defined as “data about data.” The HTML meta element carries information
about the document itself, such as who created it, when it was published, or what software generated it. A
meta element can also give special instructions to user-agents and web servers for how to handle the
document, such as what set of characters to use for rendering the text, or how long the page should be
stored in a browser’s cache. It's a void element that holds no contents and has no end tag, but you can
close it with a trailing slash (/>) if you prefer XHTML syntax. This element isn't rendered on the page itself
and isn't seen by users at all (unless they view the source HTML, of course).

44

Chapter 3

The meta element is multipurpose and can carry several kinds of data, depending on which attributes are
present:

= With a name attribute, the meta element represents document-level metadata that applies to the
entire document.

* With an http-equiv attribute, the element represents a pragma directive, which is information
sent to the web server about how the document should be served.

= With a charset attribute, the element declares the character set used for rendering the page.

HTML5 also introduces the itemprop attribute that combines with other attributes to
allow web authors to include user-defined metadata in their documents. This microdata
is very bleeding edge at the time we write this, and hasn't yet been fully defined or
implemented, so we won't be covering it in this book, but there’s some great potential for
microdata in the near future as the standard takes shape. If you're curious, you can read
more at whatwg.org/specs/web-apps/current-work/multipage/microdata.html

The charset attribute is new in HTML5 and turns a meta element into a character set declaration for the
document, instructing browsers about how the document is encoded and what characters it should use to
render the text. A character encoding system is the code computers use to draw letters and symbols, so
declaring your document’s character set will inform the browser about what characters it should call upon
to display your text accurately. Declaring the wrong character set might cause incorrect rendering or
missing symbols if the text requires a character that isn’t part of the declared set. The de-facto standard
character set for web pages is UTF-8—short for UCS Transformation Format, 8-bit—and you'll rarely need
to use anything else:

<meta charset="utf-8">

Technically, declaring your document’s character set in the header is optional. Web servers usually send
character encoding information when they send the document to the browser, so if you include your own
meta charset declaration in your page’s header, make sure the character set you declare is the same as
the server’s. You can override the character set declared in the header for individual elements on the page
using the lang attribute, handy if you need to include special characters from other languages that might
not be part of the UTF-8 standard set (though UTF-8 includes thousands of characters).

Apart from the charset attribute, meta elements usually provide their metadata in the form of a name-
value pair where a name or http-equiv attribute provides the name or category of the data and the
content attribute provides the value:

<meta name="author" content="Craig Cook">

<meta name="title" content="Foundation HTML5 with CSS3 - Chapter 3: The Document">
<meta http-equiv="date" content="Thu, 15 Dec 2011 09:19:41 UTC">

<meta http-equiv="last-modified" content="Tue, 17 Apr 2012 22:34:13 UTC">

The http-equiv attribute lets a meta element act as an equivalent to an HTTP response header, settings
typically sent directly to the browser by the web server. You may not always have the option of modifying
server-side configurations to change these, so a meta element with http-equiv can step in.

The Document

Older versions of HTML didn’t offer the charset attribute, instead relying on the http-equiv attribute with
a value of content-type to declare a document’s character set along with the content type, like so:

<meta http-equiv="content-type" content="text/html;charset=UTF-8">

This has been supplanted by the charset attribute in HTML5 so it's no longer necessary to declare
character sets using an http-equiv attribute. However, some older browsers don't recognize the
shortened charset declaration from HTML5 and so may fall back to a default character encoding, ignoring
the meta element entirely. If you need to cater to older browsers that may otherwise have trouble
rendering special characters, you should still declare your character set with http-equiv. You can use
both methods together—charset for modern browsers and http-equiv for older browsers—just be sure
to declare the same character set both times.

The http-equiv attribute only accepts a handful of predefined values, whereas the name attribute is more
extensible and can hold almost any value you like (whether any browsers will understand or use your
made up name value is another matter). You can learn more about http-equiv and its accepted values
from Sitepoint's HTML reference (http://reference.sitepoint.com/html/meta/http-equiv).

Metadata for Search Engines

Web search engines like Google, Yahoo!, and Bing employ programs that endlessly crawl the Web,
reading documents and following links, cataloging the immense variety of web content in order to help
people find what they’re looking for amidst the vast sea of information. These programs—affectionately
called “robots,” “spiders,” or “crawlers"—are simple user-agents that parse HTML, and meta elements can
give the robots additional information or special instructions.

If, for some reason, you'd rather not have your web page indexed by search engine robots, you can ask
them politely not to index it and not to follow any outbound links from your page:

<meta name="robots" content="noindex, nofollow">

Or, as you'll more likely desire, you can ask the robots to please index the page and follow all its links
(they’ll probably do so even without this meta element, but some added encouragement doesn't hurt):

<meta name="robots" content="index, follow">

You can also include other metadata useful to search engines, such as offering a set of related keywords
and a descriptive summary of the page:

<meta name="keywords" content="capes, masks, tights, superhero, costumes, gadgets">
<meta name="description" content="Power Outfitters manufactures and sells costumes,-=
accessories, supplies, and equipment for the contemporary costumed crime-fighter">

But beware: you're now heading into the murky waters of Search Engine Optimization (SEO), and there’s
plenty of conflicting and downright harmful advice out there about best practices. Early search engines
paid a lot of attention to keywords in a meta element, so some unscrupulous characters would “game the
system” by loading their meta elements with dozens (or even hundreds) of keywords that weren't relevant
to the page’s content but would cause that page to appear in results for searches on unrelated topics, all in
an effort to lure visitors under false pretenses. This practice of “keyword stuffing” soon became so
widespread and destructive—a search engine isn’t effective when the results aren’t what people are

45

http://reference.sitepoint.com/html/meta/http-equiv

Chapter 3

actually searching for—that search engines now largely ignore keywords in meta elements, and keywords
have no impact on where a page will rank in the search results for a given term.

Even so, meta keywords may still be marginally beneficial to search engines and searchers. If you're going
to include keywords in a meta element, keep the list reasonably short and make sure the terms are
actually relevant to the contents of the page. You can also get along just fine without meta keywords at all;
the search engines will still find you.

Including a meta description is much more useful than keywords because it will often appear in search
engine results alongside the page title and URL. The description should be a very brief summary of the
page’s contents, or the introduction to an article, if that's the main content of the page. A site’s home page
might bear a description of the entire website whereas individual pages within the site should have more
specific descriptions for each individual page.

Search engines exist to help people find content, so the very best advice is simply to provide content
people will want to find. Good metadata can help nudge the search engine robots in the right direction, but
it's the readable content of your page that really matters. Build your web pages for humans, not for robots.

Attributes

The meta element typically requires a content attribute in combination with either a name or http-equiv
attribute. An exception is the charset attribute, which doesn't require the presence of a content attribute.

= charset: The document’s character encoding set, usually UTF-8 unless you specifically need an
alternative encoding (which usually depends on your content’s natural language).

» content: The metadata value, paired with either a name or http-equiv attribute.

= http-equiv: A pragma directive, equivalent to an HTTP header typically passed to the browser
from the server. This attribute specifies the particular metadata declared while the content
attribute specifies the value.

= name: Arbitrary document-level metadata applying to the entire document, or special instructions
for user-agents. This attribute specifies the particular metadata declared while the content
attribute specifies the value.

link

46

The link element associates the current document with an external resource. The required rel attribute
indicates the relationship between the current document and the linked resource, and the required href
attribute carries the linked resource’s URL. This is a void element with no text content and no end tag, and
it can only appear within the head element.

The 1ink element’'s most common duty is to connect a web page to an external style sheet, but it can also
connect the document to alternative versions, specify an alternate URL for the page, associate the page
with an icon that browsers can display in bookmarks and the address field, and more.

This element requires a rel attribute, with its value being a space-separated list of predefined keywords
that indicate the relationship between the current document and the linked resource, thus also indicating

The Document

what type of link the element represents. Some of the most common values for the rel attribute are
stylesheet (for cascading style sheets), alternate (for alternative formats/versions of the document),
and icon (for a shortcut icon to associate with the web page). The 1ink element also requires an href
attribute (short for hypertext reference; you'll see much more of this one in Chapter 6) to carry the URL of
the linked resource.

Listing 3-3 shows two different 1ink elements: one linking to a style sheet and one linking to a shortcut
icon (commonly known as a “favicon”).

Listing 3-3. Two 1ink elements relating the document to two different external resources

<!DOCTYPE html>
<html lang="en-US" dir="I1tr">
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<link rel="stylesheet" type="text/css" href="/css/styles.css">
<link rel="icon" type="image/ico" href="/favicon.ico"»
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

There’s no limit to the number of 1ink elements you can include in a document’s header. You can, for
example, link to different style sheets for different media or to offer alternate styles, or multiple icons in
different sizes, or link to multiple versions of your page in different languages.

Media Type (The type Attribute)

The 1ink element’s optional type attribute indicates the Internet media type of the linked resource. This is
also called the content type or MIME type (MIME stands for Multipurpose Internet Mail Extensions; these
media types were originally defined for use in e-mail but were later adopted for other Internet applications,
including the Web).

Different types of files are served and handled in different ways. Text files are very different from image
files, and both are different from video files or application files. The Internet media type is a two-part
identifier consisting of a type and a subtype, separated by a slash, that indicates what type of file the
browser is dealing with so it can process the data accordingly.

The media type for CSS files is text/css, indicating that the style sheet is a text file written in the CSS
language, and that's the type value you're most likely to encounter in a 1ink element. Other media files
have their own content types, such as text/html for HTML documents, text/javascript for JavaScript
files, image/jpeg for JPEG graphics, and audio/mpeg for MP3 audio files. The type attribute can appear
on other elements besides link, and you'll see content types again in Chapter 5 when we cover
embedding audio and video, but all in due time.

47

Chapter 3

You can browse the complete list of current Internet media types at
iana.org/assignments/media-types/ or refer to a shorter list of some of the most
common ones at wikipedia.org/wiki/Internet_media_type

You don't always need to declare the content type for every resource. That information is typically sent
automatically by the web server, or may even be embedded in the file itself. However, some types of files
may not be recognized automatically by every browser, and including the content type in a type attribute
can let the browser know what kind of data it can expect.

Although the type attribute’s value is an “Internet media type,” you might prefer (as we do) to use the term
content type to avoid confusion—the term media type refers to something else entirely in CSS.

The Other Media Type (The media Attribute)

48

When the 1ink element links to a style sheet, the optional media attribute can indicate the medium for
which that style sheet is intended. This means you can easily tailor your site’s layout and design for
different media. For example, you could provide two separate style sheets, one for display on computer
screens and another for use when the page is printed:

<link rel="stylesheet" href="/css/screen-styles.css" media="screen">
<link rel="stylesheet" href="/css/print-styles.css" media="print">

You can also include multiple media types in a single media attribute, separated by commas:
<link rel="stylesheet" href="/css/screen-styles.css" media="screen,projection,tv">
There are only a handful of media types you can use as the value of a media attribute:

= all: suitable for all devices and media (this is the default, assumed if the media attribute is
absent).

= braille: for Braille tactile feedback devices, such as refreshable Braille displays that output text
by mechanically raising small dots through holes in a flat surface.

= embossed: for Braille printers that emboss Braille text into paper.

= handheld: for handheld devices, typically with small screens, low resolution, and limited
bandwidth. The newer classes of smartphones and tablets still have small screens, but also
feature full-color displays of a higher resolution than the mobile phones and PDAs from just a few
years ago. Many modern mobile devices have much more sophisticated web browsers than their
predecessors, and are perfectly capable of displaying style sheets otherwise intended for desktop
screens, so they'll honor the screen media type and often ignore handheld style sheets.

» print: for paged, printed material as well as documents viewed on screen in “print preview”
mode.

»= projection: for projected presentations.

= screen: primarily for color computer screens, like you find with desktop and laptop computers.

The Document

= speech: for speech synthesizers such as those in screen reading software for the visually
impaired.

= tty: for media using a fixed-pitch character grid that outputs text one character at a time, such as
teletypes (especially teleprinters used by the deaf) or old-fashioned computer terminals.

= tv: for televisions or television-type devices such as some touch-screen kiosks (low resolution,
color, limited-scrollability screens).

Past versions of HTML and XHTML only accepted these values in a 1ink element’s media attribute, but in
HTMLS5 the value can also be a comma-separated list of media queries. A media query consists of a media
type and one or more expressions about the media features, such as screen width, height, resolution, or
aspect ratio. This lets you link to different style sheets not only for different types of media, but also for
different characteristics of the browser or device. For example, you can offer different layouts optimized for
different screen widths simply by linking two separate style sheets with different media queries:

<link rel="stylesheet" href="wide.css" media="screen and (min-device-width: 600px)">
<link rel="stylesheet" href="narrow.css" media="screen and (max-device-width: 600px)">

Older browsers don’t recognize or support these media queries in a media attribute, so if you use them in
your document you should also provide a separate 1ink element with a simple media type keyword as a
fallback.

Media queries are a concept introduced in CSS3. They extend the functionality of media
types and allow web developers to programmatically check for certain device or media
properties, delivering different content or style rules to meet different criteria. You'll learn
a bit more about media queries later on in this book, and you can also read up on them
in the CSS specification (wW3.0rg/TR/css3-mediaqueries).

Required Attributes

= rel: indicates the relationship between the current document and the linked resource. This
attribute’s value is a space-separated list of a few predefined keywords. You can find the full list
of accepted link type values at w3.0rg/TR/html5/1inks.html#1inkTypes.

= href: the URL of the linked resource, which may be either a relative or absolute URL.

Optional Attributes

= title: this attribute, when combined with rel="stylesheet alternate", indicates that the
linked style sheet is an alternative style, and may not apply to the document unless selected by
the user. This differs slightly from the global title attribute, as title has special semantics
when it appears with a 1ink element and rel="stylesheet alternate".

= type: the content type of the linked resource. This attribute’s value must be a valid Internet media
type (also known as the content type or MIME type).

Chapter 3

= media: the media for which the linked resource is intended. This attribute’s value must be a valid
media type or media query.

» hreflang: the natural (human) language of the linked resource, such as English, German, or
Hindi, indicated by an abbreviated language code. This is similar to the global lang attribute, and
is most important when the link’s destination is in a language different from that of the current
document.

= sizes: gives the sizes of icons for visual media. The attribute’s value is a set of space-separated
sizes, each in the format [width]x[height], for example: sizes="16x16 32x32". See
w3.0rg/TR/html5/1inks.html#attr-1ink-sizes for more information. This attribute should
only appear when the rel attribute has a value of icon.

base

The base element allows you to specify the base URL to be used for resolving any relative URLs within a
document, or to specify a default target window where links in the document will open. This is an empty
element that can only appear in a document’s head, and there can be only one base element in a single
document. It requires either an href attribute or a target attribute, though it can have both.

Base URL

50

When the base element has an href attribute, that attribute’s value acts as the base URL for the entire
document. Any relative URLs in the document following the base element will have the base URL
prepended to them.

The value of the href attribute must be a valid URL, but it can be either absolute or relative. For example,
if your page has been moved into a different subdirectory on the server but all of its relative URLs should
still point to the original parent directory, you could use a base element with a relative URL in its href:

<base href="/products/">

Any subsequent relative URLSs that are relative to the current document—meaning they don’t begin with a
leading slash (/) or up-level directive (../)—will be prepended with the relative base URL. Thus a URL
written in the document as utility-belts.html would behave in the browser as if it were
/products/utility-belts.html. This can be useful if your page has been moved from its original
location or if your server isn’t properly configured to handle relative URLSs.

A base element with an absolute URL might look like:
<base href="http://power-outfitters.com">

Any relative URLs throughout the document (still limited to those relative to the current document, not
those relative to the site root or to a higher directory) would then use that URL as their base and would
point to the power-outfitters.com domain, even if the document itself is hosted somewhere else.

But this doesn't apply only to hyperlinks; all locally relative URLs throughout the document will use this
URL as their base. That includes any 1ink or script elements in the header (if they appear after the

http://power-outfitters.com

The Document

base element), images and other embedded media, inline frames with src attributes, forms with action
attributes, and so on. The base element effectively rewrites every document-relative URL that follows it.

Base target

If the base element has a target attribute, the attribute’s value is a name or keyword indicating the
default location (a window, tab, or inline frame) where results are displayed when hyperlinks or forms in
the document cause navigation. If the target is the name of a window or frame, any links in the document
will display their results within that named window or frame. If the target name doesn’t match any existing
browsing context—if no window or frame exists by that name—Ilinks and forms will load their results in a
new window instead.

In place of a target name, some reserved keywords (complete with their leading underscores) have special
meanings:

* self: Loads the result into the same browsing context as the current one. This is the default if the
target attribute isn’t specified, or if the base element is missing altogether. In other words, this is
how links and forms behave normally.

= blank: Loads the result into a new, unnamed browsing context (a new browser window or tab).

= parent: Loads the result into the parent browsing context of the current one. If there is no parent,
this option behaves in the same manner as _self.

= top: Loads the result into the top-level browsing context, which is the window or inline frame that
is an ancestor of the current one but has no parent of its own. If there is no parent, this option
behaves in the same manner as _self.

You could, for example, declare that every link in your document should open in a new, blank window (or
tab, if the browser is set to open tabs instead of windows):

<base target="_blank">

But that could be downright abusive to your visitors and there aren’t many cases where it would be useful
or justified. A more practical use case might be in a page intended for display within an inline frame (the
iframe element is covered in Chapter 4) where any links within that document should open in the parent
window rather than inside the frame:

<base target="_top">

Optional Attributes

The base element doesn’t offer any other optional attributes apart from the global attributes that apply to
all elements.

Chapter 3

style

The style element contains style information applicable to the current document. In HTML, this is almost
always written in CSS. Other style languages could be used for other types of structured documents, but in
HTML—and as far as we're concerned for this book—CSS is the only style language that matters.

The optional type attribute indicates the content type of the enclosed style data, which is text/css for
CSS, and browsers will assume that content type if the type attribute is omitted. The entire contents of the
style element are hence written in the CSS language; the style element can't contain any HTML, so no
nested elements are allowed and comments inside a style element must be CSS comments, not HTML
comments.

Listing 3-4 shows an example of a simple style sheet enclosed in a style element.

Listing 3-4. CSS rules embedded in a Style element

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<style type="text/css">
body { background-color: ivory; color: navy; }
h1 { font-size: 1.6em; color: crimson; }
</style>
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

Because this style information is included as part of the HTML document, it's known as an embedded style
sheet, or sometimes an internal style sheet. Style sheets embedded in style elements are most useful for
one-off, standalone web pages where those style rules don’t need to be shared by any other documents.
Otherwise, for websites consisting of numerous pages that should share common styles, it's much more
practical to link to a separate external style sheet by way of a 1ink element.

A single document can have any number of style elements, and like the 1ink element, an optional media
attribute can indicate the specific media for which those styles are intended. Also like the 1ink element,
the style element’s media attribute can carry a media query, though older browsers may not support it.
When the media attribute is absent, the browser will use the enclosed styles for all media by default (the
same as including media="all").

The scoped Attribute

Ordinarily, a style element can only appear within the head element, and placing a style element
anywhere else in the document isn’t valid. But that could change in HTML5 with the introduction of the
scoped attribute. This Boolean attribute, when present, allows a style element to appear outside the

52

The Document

head, anywhere in the document’s body element, and the enclosed CSS rules will apply only to the style
element’s immediate parent element and its contents.

Limiting the scope of a style element allows you to embed a set of style rules for just one section of a
page. Or that's how it may work soon, at least—no browsers have yet implemented support for the scoped
attribute at the time we write this.

There are some major problems with the scoped attribute even beyond the current lack of browser
support. For one thing, it mixes presentation with structure, injecting CSS rules into the markup of a page
where they arguably don’t belong. But moreover, most browsers currently tolerate style elements in the
body (invalid though it is) and will try to apply those style rules to the entire document, just as if it were in
the header. Browsers that don’t understand the scoped attribute (which is to say every web browser ever
made to date) won’t narrow the scope of the embedded rules and will still apply those styles to every
matching element on the page, defeating the purpose of using a scoped style element in the first place. If
or when the next generation of web browsers support scoped style elements, the scoped attribute still
breaks backward compatibility with current and older browsers.

The HTML5 specification is a work in progress, and there’s a chance the scoped attribute will be removed
by the time you read this. Even if it survives in the spec, and even if browsers begin to support it, you're
probably better off finding another way to style your elements. Simply adding a class attribute to some
container element and using that class as a “hook” for more specific style rules in your external or
embedded style sheet is a tried and true, completely failsafe approach. Don't use scoped unless you know
very well what you're in for.

Required Attributes

The style element doesn't require any attributes. The type attribute was required in some previous strict
versions of HTML and XHTML, but that requirement is lifted in HTML5 (browsers assume the content type
is text/css unless told otherwise).

Optional Attributes

= media: the media for which the embedded style information is intended. This attribute’s value
must be a valid media type or media query.

» scoped: a Boolean attribute that, when present, applies the embedded style rules only to the
parent element and its other descendants, not to the rest of the document. This attribute is new in
HTML5 and isn’t currently implemented in any browsers as of this writing. Even if it's
implemented in the future, older browsers won't support it and may still apply the embedded
styles to the entire document. This lack of current support and lack of backwards compatibility
makes the scoped attribute impractical for the moment, and probably for the foreseeable future.

= title: this attribute, when present, indicates that the embedded style information is an
alternative style sheet, and may not apply to the document unless selected by the user. This
differs slightly from the global title attribute, as title has special semantics when it appears
with a style element.

Chapter 3

= type: the content type of the embedded style information. This attribute’s value must be a valid
Internet media type (also known as the content type or MIME type). It will almost always be
text/css in HTML and XHTML documents, and web browsers will assume that content type if
the attribute is omitted.

script

54

The script element encloses a series of instructions written in a scripting language, or it may link to an
external script file specified by a URL in a src attribute. These scripts—almost always written in the
JavaScript language—are processed and executed by the browser to perform a wide range of tasks, from
fairly simple calculations to extremely complicated interactions and animated effects. The script element
requires an end tag and cannot contain any HTML; the entire contents of a script element should be
written in the particular scripting language.

An optional type attribute indicates the content type of the enclosed script, which is text/javascript for
scripts written in JavaScript. There may be other scripting languages, such as Microsoft's proprietary
VBScript, but they're rather obscure and rarely seen (VBScript is only supported by Internet Explorer).
JavaScript is far and away the most ubiquitous scripting language on the Web, and browsers will assume
a content type of text/javascript if the type attribute is omitted from a script element.

JAVASCRIPT

JavaScript is a scripting language. Unlike a full-fledged programming language that can execute all of its
own commands, a scripting language only passes instructions to another program to execute. In the case
of JavaScript, the program that does the real work is the web browser.

With JavaScript, web developers can dynamically manipulate HTML documents, creating, destroying,
moving, and modifying elements and content on the fly as it lives in the browser. JavaScript can also
facilitate communication between the browser and server, setting and reading cookies, or fetching new
data from the server without reloading the page. It's a powerful and complex language in its own right, and
is a subject for other, more advanced books than this one. We won’t be delving into JavaScript in any
detail in these pages.

Even so, JavaScript rarely exists independent of HTML, and indeed a great deal of what JavaScript does is
manipulate the same markup and CSS you'll be seeing throughout this book. Scripting adds a progressive
layer of behavior and interactivity on top of the underlying layers of content, structure, and presentation.

JavaScript should not be confused with the Java programming language—though the names are similar,
Java and JavaScript have almost nothing in common.

The Document

Listing 3-5 shows a short bit of JavaScript embedded in a document’s header. This script simply generates
an alert dialog as soon as the page loads; not very useful, but it serves as an adequate demonstration.

Listing 3-5. A simple script embedded in a Scrip‘t element

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<script>
window.onload = function() {
alert("Excelsior!");

</script>
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

Somewhat akin to the style element, a script element can embed scripts directly into the document for
use within that document alone. But the script element can also attach an external script by way of the
optional src attribute (short for “source”), the value of which is the URL where the external script can be
found, usually with a . js file extension for JavaScript files.

Listing 3-6 shows a script element with a src attribute pointing to an external file. This allows any
number of pages to share the same resources without writing the same scripts over and over for each
page. It can also help pages load faster because the external files are cached after the first time they're
downloaded, held in the browser’s temporary memory for use on subsequent pages.

Listing 3-6. Linking to an external script file

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<script src="/scripts/excelsior.js"></script>
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

When the src attribute is present the script element must be empty (it can still contain whitespace or
comments, but no script statements). This means you can’t use the same script element to both embed a

55

Chapter 3

script in the document and link to an external file. If you do, most browsers will only run the external script
and will ignore the embedded contents of the element. Also note that even when linking to an external
script, the script element still requires a closing </script> tag; it's not a void element even when it's
empty, so it always needs an end tag.

The script element often appears in a document's head element, but it can also appear within the
document’s body. It's not uncommon to find scripts embedded or attached at the very end of a document
so they load and execute last, after the rest of the page has been parsed. Scripts that must execute before
the page fully loads—especially those that generate HTML for parts of the page itself—should still appear
in the header so browsers can execute them at the correct time.

There’s no specified limit to the number of script elements that can appear within a single document,
either in the head or the body. However, browsers may have their own internal limitations if you try to link
to a huge number of external scripts, so it's best to keep the number of script elements to a sensible
minimum. There can also be serious performance issues when scripts become too numerous or complex,
and it's possible that commands and functions written into those separate scripts can conflict with each
other if you're not careful.

Required Attributes

There are no required attributes for the script element.

Optional Attributes

56

= async: a Boolean attribute that, when present, suggests that browsers should execute the script
asynchronously, as soon as it is available. Only valid in combination with a src attribute
(embedded scripts are always processed as the browser reads them). The async attribute is new
in HTML5 so older browsers—and some current browsers—don’t support it.

= charset: defines the character encoding of an external script. This is only valid in combination
with a src attribute (embedded scripts automatically inherit the character encoding of the HTML
document).

= defer: a Boolean attribute that, when present, suggests that browsers should defer execution of
the external script until the page has finished loading. This is only valid in combination with a sxc
attribute (embedded scripts are processed as the browser reads them).

= src: specifies the URL (either relative or absolute) of an external script file.

= type: indicates the content type of the external or embedded script, almost always
text/javascript.

Past versions of HTML included a language attribute for the script element, to
indicate the scripting language within and even the specific version of that language.
The language attribute has long been deprecated in favor of the type attribute and it's
completely obsolete in HTMLS5.

The Document

body

The body element acts as a container for all of the page’s contents, and that's pretty much all it does.
Everything that's displayed by the browser and seen by the user is wrapped in a single body element (and
only one body element is allowed per document). Its primary purpose is to separate regular content from
the metadata in the head element.

As with the head element, you can omit the start and end tags for the body element in some cases and the
element is still implied to exist. The browser will generate a body element even if the tags are missing, but
you can avoid potential problems by including the start and end tags yourself, just to be safe and keep
things tidy. Any content that appears outside the body element—actual or implied—could make the
document invalid, and that content might not be displayed.

There aren’t any required attributes for the body element, nor any special optional attributes, but it can
carry the usual global attributes that apply to almost every other element. It can be especially useful to add
an id or class attribute to identify the specific page, or classify general types of pages. Listing 3-7 shows
a body element with the ID “home” and the class “landing”, indicating that this is a landing-type page and
that it's the home page, specifically.

Listing 3-7. The body element, identified and classified

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
</head>
<body id="home" class="landing"»
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

With these attributes in place on the body element, they can act as handy “hooks” from which to hang CSS
rules, differentiating common types of pages or specific, unique pages. Listing 3-8 shows a few style rules
for level one headings, the h1 element. The first rule applies to all h1 elements, the second to h1 elements
on landing pages (any pages with the “landing” class), and the third is specific to h1 elements on the home
page (with the ID “home”). Because every element on the page descends from the body element, these
rules with their descendant selectors will be in effect no matter where the h1 might occur in the document
or what other elements might surround it—unless they’re overridden by another style rule, of course.

LBﬂng38.U9ngbodyanﬂmnesaSQWehod@indeaﬁndmﬂsdedom

h1 {
font-size: 20px;

}

.landing h1 {
font-size: 26px;

57

Chapter 3

}

#thome h1 {
font-size: 34px;

}

The Document Tree

You can visualize the structure of an HTML document as a tree with elements for branches. If it helps you
picture it, invert the tree so it begins with the root element at the top and all other elements descending
downward, making it more like a family tree than the leafy, wooden sort. Because of this similarity,
developers use genealogy terms to refer to the relationships between elements. Figure 3-2 shows the
family tree of a simple document.

Figure 3-2. A simple document tree

In the diagram, the tree begins with the root html element, which has two child elements: the head and the
body. That body element has two children of its own: a level-one heading (the h1 element, covered in
Chapter 4) and a p element for a single paragraph (also covered in Chapter 4). Those two elements are
siblings of each other, sharing the body element as their common parent. They're also descendants of the
html element, which is their ancestor. The paragraph in turn contains an em element and an a element,
sibling children of their parent paragraph, descended from the ancestral body and html elements.

We'll use these terms—parents, children, siblings, descendants, and ancestors—often in this book when
we discuss the structure of an HTML document and the relationships between elements.

Connecting CSS

The HTML document contains all of the content that a browser will display. Every web browser in turn has
its own built-in CSS rules for how the HTML elements should be rendered, including rules for which fonts
to use and what sizes, what colors the page background, links, and regular text should be, and how much

58

The Document

space should be between elements on the page. These default styles aren’'t much to look at—really just
the bare minimum to make a page readable, but not especially attractive or memorable. If you want to
improve on the default presentation you'll need to add some style rules of your own.

CSS is a very different language from HTML, but is entirely dependent on HTML to work. The HTML layer
comes first and foremost, delivering content to the browser and surrounding it with a meaningful structure.
CSS adds a separate layer of presentation on top of that HTML structure, further describing what those
elements should look like. With CSS, the presentation layer is separated from the content layer, but the
two are intimately related. The HTML layer must exist so that CSS can enhance it; CSS can'’t survive on its
own. There are a few methods you can use to apply this layer of CSS styling to your HTML content, each
with its own benefits and some drawbacks.

Inline Styling

You can include CSS declarations within the optional style attribute of each element in your markup, like
you see in Listing 3-9. Chapter 2 showed you the anatomy of a CSS rule—with a selector and a
declaration consisting of properties and values—but inline styles aren’t constructed as rules. There's no
selector because the properties and values are attached directly to the element at hand. In terms of
specificity (also introduced in Chapter 2), an inline style is the most specific of all because it applies to
exactly one element and no others.

Listing 3-9. An example of inline styling

<h1 style="color: blue;">Welcome, Heroes!</h1>
<p style="color: gray;">Power Outfitters offers top of the line merchandise
at rock-bottom prices for the discerning costumed crime-fighter.</p>

However, you should avoid using inline styles. They mix presentation with your structural markup, negating
one of the main advantages of using CSS in the first place. Inline styling is also exceedingly redundant,
forcing you to declare the same style properties again and again to maintain consistent presentation
throughout a website. Should you ever want to update the site in the future—changing all your headings
from blue to red, for example—you would need to track down every single heading on every single page to
implement that change, a daunting task on a large and complex website.

Still, an inline style might be an efficient approach on some rare occasions, but those occasions are very
few and far between indeed. Inline styling is most useful for temporary, from-the-hip testing and
prototyping while you’re working on a page, not as a permanent method of styling content. For anything
meant to last, inline styles should be a last resort only when no other options are available.

Embedded Style Sheets

You can embed style rules within the head element of your document and those rules will be honored
throughout the document in which they reside. An embedded style sheet (sometimes called an internal
style sheet) is contained within a style element, shown in Listing 3-10 and covered in greater detail
earlier in this chapter.

Chapter 3

Listing 3-10. An example of an embedded style sheet

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<style>
hi { color: blue; }
p { color: gray; }
</style>
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

Embedding a style sheet in the header of your document does further separate presentation from your
structured content, and those rules will be applied throughout that document, but it isn't an efficient
approach if you're styling more than one page at a time. Other documents within the same website would
require embedded style sheets of their own, so making any future modifications to your site’s design would
entail updating every single document in the site. That is unless your documents are assembled on the
server-side, where you might be able to maintain a single file that gets included in the header of every
page. In those cases, there can be some small performance advantages to using embedded styles over
external style sheets (it's one less file to fetch from the server), but those advantages aren’t always
significant and might be negated by the additional code to download for each page.

A style element can validly appear in the body of a document if it carries a scoped
attribute, but that has yet to be implemented in any browsers at the time of this writing.
Once browsers support scoped, such an embedded style sheet would apply only to the
scoped element and not the entire document. See the section on the style element
earlier in this chapter for more about scoped embedded styles.

External Style Sheets

60

The third and best option is to place all your CSS rules in a separate, external style sheet, directly
connected to your document by way of a 1ink element. An external style sheet is a plain-text file that you
can edit using the same text editing software you use to create your HTML documents, saved with the file
extension .css. This approach completely separates presentation from content and structure—they’re not
even stored in the same file. A single external style sheet can be linked from and associated with any
number of HTML documents, allowing your entire website’s design to be controlled from one central file.
Changes to that file will propagate globally to every page that connects to it. It's by far the most flexible
and maintainable way to design your sites, exercising the true power of CSS.

The Document

An HTML document links to an external style sheet via a 1ink element in the document’s head, as you
learned earlier in this chapter. Listing 3-11 shows another example.

Listing 3-11. Linking to an external style sheet

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters Superhero Costume and Supply Co.</title>
<link rel="stylesheet" type="text/css" media="screen"” href="styles.css">
</head>
<body>
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.</p>
</body>
</html>

When a browser downloads and begins processing the document, it will follow that link to retrieve the
external style sheet and process it as well, automatically applying its rules to render the page. A browser
downloads an external style sheet only once, then it's cached in the browser's memory for use on
subsequent pages or even for future visits. This keeps your documents lighter and can improve the speed
and performance of your entire website.

You're not limited to a single external style sheet; you can link to several different CSS files in one
document, with each style sheet having its own 1ink element in the document’s head. Depending on the
complexity of your site, you might have one style sheet containing general rules for the entire site while
pages within a certain section can link to a second style sheet defining specific styles for that set of pages.
You might also prefer to break your styles apart into separate files based on their purpose: for example,
one style sheet defining colors and backgrounds and another style sheet defining your page layout.

You can also combine all three methods—inline, embedded, and external—to style your web pages,
although it's rarely advisable. If just one page on your site needs some additional rules, you might choose
to include an embedded style sheet for that page alone. You may even, very rarely, want to call out one
element for special treatment and use an inline style for just that element. In almost every case, external
style sheets are the best approach: they eliminate presentational markup, improve a site’s performance,
and are much easier to maintain.

With so many CSS rules being dictated from so many different sources, some overlap may be
unavoidable. You already have specificity on your side, with more specific selectors overruling general
selectors. But specificity alone isn’'t enough to resolve all the potential style conflicts a browser might run
into when it’s trying to render a web page. Where specificity fails, the cascade order steps in to sort things
out.

The Cascade Order

Browsers apply CSS rules in the order in which they're received; later rules override previous rules.
Browsers download separate style sheets in a particular order as well. In the case of external style sheets,

61

Chapter 3

their order is indicated by the order of the 1ink elements in the document; rules in later linked style sheets
override rules in previously linked style sheets (assuming equal specificity). If more than one style sheet is
embedded in a document—each in its own style element—later embedded style sheets override
previous ones. Inline declarations in an element’s style attribute are applied last.

The style sheets web designers create are author style sheets, designing the web page as the author
intends. Additionally, every graphical web browser has its own built-in style sheet to define the default
presentation of various elements. When you view a web page without any of the author's CSS applied,
you're simply seeing it rendered with the browser style sheet, which comes first in the cascade order, so all
the author’s styles override those defaults. To complicate matters just a bit further, most web browsers
allow the end user to attach their own customized style sheets—known as a user style sheet—which
comes second in the cascade order, thus overriding the browser’s default styles but not the author’s.

To break it down, the cascade order for multiple style sources is:
1. Browser style sheet
2. User style sheet
3. Author style sheets (in the order in which they're linked or embedded)
4. Inline author styles

And don't forget, the cascade works within each style sheet as well. To remember how the cascade works,
follow this rule of thumb: the declaration closest to the content wins. Whichever value is declared last will
be the one in effect when the content is finally rendered.

Style with Color

62

Color plays a pivotal role in everyday life, and is even integral to human survival. Our ability to recognize
color allows us to coordinate our outfits, to safely cross busy streets, and to avoid eating poisonous
mushrooms. Color, being so much a part of the visual sensory experience, is also a vital component in
visual design. Artful application of color can draw the viewer’s attention, clarify communication, and invoke
powerful emotional responses.

CSS makes it easy to inject color into an otherwise drab web page. The coloxr property declares a color
for an element's text, and the background-color property declares a solid color that fills the entire
element’s area. Text and other content inside the element will overlap that background color. For example,
the following rule sets the text (foreground) color to black and the background color to white for the entire
body element, which covers the entire page and fills the browser window:

body {
color: black;
background-color: white;

The color property is inherited, passed down from a parent element to all its child elements. A child
element that inherits its text color from its parent will pass that color down to its own children, and so on
down the document tree until some other color is declared to override it. Because every other element on

The Document

the rendered page descends from the body element, all regular text will be automatically displayed in black
as inherited from the ancestral body.

For any element that requires a different text color, another style rule can easily override that base body
color if the rule comes later in the cascade or if the style rule has a more specific selector, like this rule for
the “hero” class:

.hero {
color: blue;

}

The background-color property is not inherited by descendant elements; it applies only to the element
(or elements) selected by the CSS rule. Any element without a declared background color will simply
default to a transparent background (no color at all). If you need to, you can use the declaration
background-color: transparent; to override and reset a background color declared elsewhere.

Specifying Colors in CSS

There are two general approaches to specifying a color in CSS: by name or by value. Specifying by name
is very simple: blue is blue, red is red, and so on, but there aren’t very many predefined color names from
which to choose. Specifying a color value, on the other hand, offers a much broader palette. Furthermore,
there are a few ways to specify a color value, the two most common being RGB or hexadecimal notation.
These have been part of CSS from the beginning and every web browser supports them. CSS3 introduces
a few new options—RGBA, HSL, and HSLA—and browser support for these newer color models is a bit
less widespread so you'll need to use them wisely. We'll begin with the easy ones.

Color Name

The simplest and most self-explanatory way to indicate a color in CSS is by choosing from a set of
predefined color name keywords. There are 147 named colors in all: 17 “standard” color names that date
back to early versions of HTML (white, black, red, yellow, blue, green, orange, purple, gray, silver, aqua,
fuchsia, lime, maroon, navy, olive, and teal) and an additional 130 that were added in CSS level 2. We
won't list them all here but some of our favorites are Gainsboro, LemonChiffon, MintCream, PapayaWhip,
and FireBrick. Color names aren’t case sensitive, so “DarkSlateGray” is the same as “darkslategray.” You
can see the whole list in living color at html-color-names.com

RGB

Color televisions and computer screens create color by emitting different intensities of red, green, and blue
light. These are the primary colors of light that are visible to the human eye, and various combinations of
those same three colors produce every color you can see.

In CSS, you can represent the intensity of each of the three primary colors with a number ranging from 0
(no color) to 255 (full intensity). The rgbh keyword indicates that this value is an RGB color with the
individual color values contained in parentheses, separated by commas:

Chapter 3

body {
color: rgh(109,18,18); /* dark red */
background-color: rgb(255,250,210); /* pale yellow */

The order is always red, green, blue; easy to remember because the keyword “rgb” is right there to remind
you. You can also specify an RGB color as a set of three percentages from 0% to 100%, also using the
rgb keyword with the values in parentheses, separated by commas:

body {
color: rgh(43%,7%,7%); /* dark red */
background-color: rgb(100%,98%,82%); /* pale yellow */
}

Hexadecimal Notation

64

Perhaps the most common method to express a color value in CSS is as a six-digit hexadecimal number—
hex, for short—where each pair of digits represents a value of red, green, or blue (in that order). Hex color
values are preceded by an octothorpe (#):

body {
color: #6d1212; /* dark red */
background-color: #fffad2; /* pale yellow */

Hexadecimal notation is simply a way of counting up to 16 in the space of one character, with letters
representing numbers higher than 9. You can count from 0-9 normally, then use the letters A, B, C, D, E,
and F to represent 10-15 (with O, this brings it to 16 bits). Counting to 16 comes up a lot when you deal
with computers because all digital data is based on multiples of 8; 1 byte comprises 8 bits.

With hexadecimal notation, it's possible to specify up to 16 values of a single color with one digit (a
numeral or letter). Three hex digits—each representing a value of red, green, or blue—multiplies 16 by 16
by 16 to arrive at a palette of 256 possible colors. Using six hex digits cubes the number again (256 x 256
x 256) and the palette grows to over 16.7 million unique colors, approaching the limits of human vision.
And a tiny, 6-digit number can represent any one of them.

As an example, the hex number #000000 represents black because it has no color value at all; it's nothing
but zeros. At the other end of the scale (literally), the hex number #FFFFFF represents white; each color is
turned up to full blast, saturating the pixels as well as your eyes. As you probably learned in science class,
pure white light is made up of all three primary colors.

Specifying different intensities of the primary colors results in a mixed color. For example, #FF0000
represents the reddest red possible because that color is projected at full intensity, and isn't muddied by
any blue or green wavelengths. For a more complex color, the hex number #2C498F is a nice, medium-
dark, greenish-blue color made up of 17% red, 29% green, and 56% blue.

When a hexadecimal color value consists of three matched pairs of digits, you can abbreviate the value to
only three digits in CSS. Thus #000000 becomes #000 and #ff88aa becomes #f8a. The letters in a hex
number can be either upper- or lowercase in CSS; that's entirely a matter of personal preference.

The Document

But don’t be afraid: you'll never have to memorize the hexadecimal encoded values of all 16,777,216
unique colors. There are abundant free utilities and online color-pickers (such as colorpicker.com) that
allow you to visually mix or choose a color and find its RGB or hex value to use in your CSS. Any image
editing software you might use to create graphics for the Web (such as Adobe Photoshop) will also provide
both RGB and hex values in its built-in color-picker.

RGBA

RGBA color notation was introduced in CSS3 and is already widely supported in modern browsers. It's just
like RGB, but adds a fourth value for an alpha channel, setting the color’s opacity as a decimal between 0
(completely transparent) and 1 (completely opaque). For example, the following rule would fill an element
belonging to the “hero” class with a light blue color at 0.75 opacity (the O is optional), allowing whatever
color or content is behind the element to partially show through:

.hero { background-color: rgba(111,171,221,0.75); }

As with RGB, you can declare the color with either numeric values or percentages, but the alpha value
must always be a decimal. You can simply translate the decimal to a percentage in your head, if it helps
you to think of it that way—0.75 is 75% opaque:

.hero { background-color: rgba(44%,67%,87%,0.75); }

Older browsers don't support RGBA so you should use it carefully, with some consideration about how
those browsers will render your page. If you declare a color in RGBA, a non-supporting browser will ignore
the declaration entirely and render the element with no color at all, either defaulting to transparent (for
backgrounds) or carrying over an inherited foreground color. You can accommodate old browsers by
declaring colors twice; once with an opaque color using RGB or hex for older browsers, then again with
RGBA for newer browsers:

.hero {
background-color: #6fabdd;
background-color: rgba(111,171,221,0.75);

A browser that understands RGBA will take the second background-color declaration in place of the first
because it comes later in the cascade. A browser that only understands the hexadecimal value will ignore
the second declaration.

You can create some very cool and sophisticated effects with translucent RGBA colors, especially if you
layer them over other elements or textures. The annual web design advent calendar, 24 Ways to Impress
Your Friends (24ways.org), makes striking use of RGBA in its design, as you can see in Figure 3-3. (It
really looks much better in a browser; you should see it for yourself. Read it for the articles, too.)

65

Chapter 3

Figure 3-3. The 24 Ways website uses overlapping elements and translucent RGBA colors

HSL

66

The HSL color model expresses a color by three factors: hue, saturation, and lightness. A color’s hue is
represented by the color's angle on a color wheel, beginning and ending with red (so both 0 and 360 are
red). The angle of a radius drawn on that color wheel represents a different color. Green has an angle of
120 degrees, blue is at 240 degrees, and every other color falls somewhere else around that spectrum
wheel. Yellow is 60 degrees, cyan is 180 degrees, and 295 degrees is a sort of purplish pink, part way
between blue and magenta.

The color's saturation is a measure of its intensity, expressed as a percentage between 0% (no color) to
100% (full intensity). The color’'s lightness is its value or brightness, also a percentage between 0%
(completely dark) to 100% (full brightness). Once you form a mental picture of the color wheel, declaring
colors in HSL is really very intuitive, and much more naturalistic than RGB or hexadecimal. You can just
think of a color—a dark greenish-teal of medium brightness, perhaps—and even without using a color
picker, you can write it out in HSL and probably get something pretty close to the color you want:

.villain { color: hs1(155,55%,40%); }

The Document

HSL color was introduced with CSS3 and is supported by most current browsers, but not by older
browsers. To ensure your web page is suitably colorful in older browsers, you can declare the color twice;
once in regular RGB or hexadecimal, and again in HSL:

.villain {

color: #2e664f;

color: hsl(155,55%,40%);
}

However, there isn't much benefit to declaring two equivalent opaque colors, which may be why HSL
hasn’'t gained much popularity, despite its human friendliness. Alas, as long as there are still browsers that
don’t support HSL, you may be better off sticking with RGB and hex for opaque colors.

HSLA

Just like RGBA, HSLA specifies a color with hue, saturation, and lightness, plus an alpha value for its
opacity, with the alpha channel expressed as a decimal between 0 and 1:

.sidekick { background-color: hsla(268,66%,79%,0.65); }

Also like RGBA and HSL, HSLA colors aren’t supported by older browsers, so it's best to declare a simple
opaque color first, followed by an HSLA color as a progressive enhancement for browsers that support it:
.sidekick {

background-color: #a98dc9;

background-color: hsla(268,66%,79%,0.65);
}

Summary

This chapter has given you a solid grounding in what HTML documents are and how they're assembled.
You've learned about the all-important doctype, the root html element, and the head and body elements.
We went into some depth on the various metadata elements you can find in a document’s header, though
some of them are more useful than others (you'll use the 1link and script elements a lot, but might live
out the rest of your life without using the base element even once). You also started to get your feet wet
with CSS, learning how style sheets can be attached to your HTML documents and a few ways to declare
colors in CSS.

From here on, most of the markup examples we’ll show you in this book won't include the complete HTML
document around them, but you can assume they do indeed appear wrapped in a proper valid document.
You can also assume the CSS examples we show you are appearing in an embedded or external style
sheet associated with one of those complete, valid documents.

This has been a fairly intense chapter full of HTML elements you can't even see, but it's important to
establish this foundation early on. Don’t worry, Chapter 4 at last dives headlong into the real meat of
HTML: adding readable, meaningful content to your web pages.

Chapter 4

Constructing Content

Now that you've got a handle on the basics and have established a framework for your documents, the
real fun can begin: it's time to start adding content to your web pages. In this chapter, you'll learn about
most of the HTML elements you'll need to give your content an organized, meaningful structure. We've
divided the elements into general categories based on the purpose they serve, from dividing a document
into logical sections to highlighting individual words. Along the way, you'll see examples of how web
browsers render the different elements with their default styling. Then we’ll show you just a few ways you
can use CSS to enhance the presentation of your text.

Content and Structure

The content of your web page consists of everything your visitors will see, read, and use. However,
content is more than simply words and images; it's also the message, the thing your words and images are
actually about. Your content is the information that you're trying to communicate to your audience, and the
Web is a conduit for moving that information from one place (you) to another (them).

In Figure 4-1, the “before” image shows a sample of text as it would appear in a web browser without any
HTML structure. It's nothing but a large mass of words, all mashed together and hard to read (even if
you're fluent in pseudo-Latin filler text). There’s nothing to differentiate a headline from a list, nothing that
clearly separates different blocks of text that represent different ideas. You can break that blob of words
down into discernable, readable portions by adding a few bits of structural markup. The “after” image is
much more readable (the words are still nonsense, but we’re making a point here).

69

Chapter 4

Figure 4-1. Some example text, with and without structure

Semantics is the study of meaning in language. Web developers have borrowed the term from the field of
linguistics and use it to refer to the inherent meaning of an HTML element or attribute. Is this block of text a
quotation? Mark it as a quotation. Is this string of words the title for an article? There’s a tag for that. What
about that list: do the items have to be in a particular sequence, or is the order unimportant? HTML has
elements for both options. As you assemble your documents, consider the meaning and purpose of each
bit of content and choose the most semantically appropriate HTML element to suit that purpose.

Providing a solid structure for your content will make it stronger and more flexible. By using semantic
HTML to tell the browser that “this is a heading” and “this is a paragraph” and “this word is emphasized,”
you'll make your content work better, for both machines and people alike. In the course of organizing your
content logically with the proper elements, you'll also build in the sturdy framework you'll need to style your
pages with CSS.

Logical Sections

70

HTML elements describe the nature and purpose of their contents, with specific elements for headings,
paragraphs, quotations, lists, and so on, and we’ll cover most of those elements in this chapter. In addition
to marking up these bite-sized portions of text, you can also use HTML to divide your document into larger
blocks, collecting related content and elements together into logical sections. Your content might be an
article comprising several paragraphs as well as a title and a few subheadings, with some footnotes and
an author byline for good measure. You can gather all of that content together into one semantic unit with
the article element, declaring that not only do your various bits of text serve different purposes, but also
that all of them together form a cohesive whole.

If you like, you could further divide that article into distinct sections for each topic, and those sections
would still be part of the larger article that contains them. Or perhaps your document features several
separate articles—you could group all of them into one big section of the document, and still include lesser
sections within each article.

HTMLS5 introduces a number of special sectioning elements to help you organize your content and collect
elements together into unified, semantic chunks. These elements—section, article, aside, and nav—

Constructing Content

belong to the sectioning content model. HTML5 also introduces new elements for marking a header or
footer within one of these sections, or for the entire document.

Before the advent of HTML5, you would have probably used a generic division (the div element, covered
later in this chapter) in place of every one of these structural elements, and you still can. But a div
element is semantically shallow. It's useful for collecting related content into a nonspecific box, but a div
says nothing else about what that content means or what purpose it may serve. These new sectioning
elements each have a specific meaning and serve a specific purpose.

All of these elements require end tags, and there are no required or optional attributes for any of them,
apart from the standard global attributes.

section

The section element defines just what it says: a section of content. But rather than a completely generic
box, the section element groups thematically related content. It collects content that, when taken together
as a whole, serves a single purpose or is related to the same topic. That's still a pretty vague definition,
and deliberately so. The section element is multi-purpose, and can be applied in a number of situations.
It defines a section of thematically related content, but not any particular kind of content.

In Listing 4-1 you see a basic HTML document with its content divided into three sections: an introduction,
recent news, and some general information. This document is pretty light on content, but if you imagine it
filled with lengthy blocks of text, you can see how breaking it down into a few relevant chunks via section
elements could help you keep things organized. A section element should usually begin with a heading
(covered later in this chapter) to introduce the content, but that isn’t a requirement.

Listing 4-1. An HTML document split into three major sections

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Power Outfitters - Superhero Costume and Supply Company</title>
</head>
<body>

<section class="intro">
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.
From belts to boomerangs, we’re your one-stop shop for all
your specialized gadgetry and costuming needs.</p>
</section>

<section class="news">
<h2>Latest News</h2>
<p>Small things, big savings. All shrink rays are on sale,
this week only!</p>

</section>

71

Chapter 4

<section class="store-info">
<h3>Power Outfitters</h3>
<p>616 Kirby Ave, between Romita and Ditko

Open Mon-Thu: 8am-10pm, Fri-Sun: 8am-12pm

24-hour service and repair: call 555-1961</p>
</section>

</body>
</html>

The section element requires an end tag and may contain any flow elements, including other sectioning
elements. For example, you can nest sections within sections:

<section class="content">

<section class="intro">
<h1>Welcome, Heroes!</h1>
<p>Power Outfitters offers top of the line merchandise at
rock-bottom prices for the discerning costumed crime-fighter.
From belts to boomerangs, we’re your one-stop shop for all
your specialized gadgetry and costuming needs.</p>

</section>

<section class="news">
<h2>Latest News</h2>
<p>Small things, big savings. All shrink rays are on sale,
this week only!</p>
</section>
</section>

The section element's display property is block by default, so its contents begin on a new line and
occupy the full available width, but there is no other default styling. This makes the section element a
useful container for laying out pages with CSS, but don’t get too carried away. Use sections appropriately
to group related content, not merely for drawing boxes on screen. Think of these sectioning elements first
and foremost as content organization devices, not page layout devices.

Required Attributes

The section element doesn’t require any attributes.

Optional Attributes

There aren’t any optional attributes for the section element.

article

The article element is similar to the section element, though with a more refined definition. According
to the HTMLS5 specification (in its current form at the time we write this), an article element “represents a
self-contained composition in a document, page, application, or site and that is, in principle, independently
distributable or reusable, e.g. in syndication.” In other words, an article element’s content should stand
on its own and still make sense in different contexts. It might be a blog entry, a comment, a forum post, a

72

Constructing Content

letter, a review, a poem, a short story, or indeed an article. Listing 4-2 shows an example of a short, self-
contained article, complete with title, author byline, and date.

Listing 4-2. The article element containing a complete (if short) article

<article>
<h1>Where Do They Get Those Wonderful Toys?</h1>
<p>By Norm DePlume</p>

<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

<p>Posted on August 9, 2011</p>
</article>

Like the section element, article requires an end tag and is styled as a block-level element by default.
It can contain any flow elements, including other sectioning elements. When an article element contains
other article elements, the inner articles are still self-contained in their own right, but are also related
to (and part of) the outer article that contains them. For example, an advice column that consists of
letters from readers and responses from the author—the entire column could be wrapped in an article
element and each reader letter wrapped in a nested article element of its own.

Required Attributes

There are no required attributes for the article element.

Optional Attributes

The article element doesn't offer any optional attributes.

header

The header element contains introductory or navigational content for a section of a document. It typically
appears at the top of a section, but it doesn’t have to; calling it a “header” might imply a position at the top,
but it's an introduction to the section, and can actually appear anywhere within that section (also note that
a “section of content” doesn’t necessarily mean a section element). Even so, it makes plain sense that
introductions usually come first. You can use CSS to position a header anywhere on the page you like.

The term “header” also commonly refers to a website’s overall masthead—where you would usually find
the name and logo of the website, some navigation links, perhaps a search form, and so on. If the header
element’s closest sectioning ancestor is the document's body, and it isn't a descendant of some other
sectioning element, the header applies to the entire document and so it might be a suitable element for
such a masthead.

Chapter 4

When a header occurs within any sectioning element, such as an article, it acts as the introductory
header for that section of content only. The header in Listing 4-3 introduces the article, featuring the
article’s title in an h1 heading and an author byline marked up as a paragraph.

Listing 4-3. A header element introduces the article

<article>
<header>
<hi>Where Do They Get Those Wonderful Toys?</hi1»
<p>By Norm DePlume</p>
</header>

<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

<p>Posted on August 9, 2011</p>
</article>

The header element always requires an end tag and can contain any flow content except a footer
element or another header element.

Required Attributes

The header element doesn't have any required attributes.

Optional Attributes

There are no optional attributes for the header element.

footer

74

A counterpart to the header element, the footer element contains additional information about its parent
sectioning element, such as author contact information, copyright or licensing, related links, supplemental
navigation, footnotes, or disclaimers. It typically appears at the end of a section but that's not a
requirement. Like header, the name “footer” doesn’t necessarily refer to a location—this is footer content
by nature, not just by position.

Listing 4-4 shows the same article again, this time with a proper footer.

Listing 4-4. An article with a Tooter element, containing a publication date and copyright notice

<article>
<header>
<h1>Where Do They Get Those Wonderful Toys?</hi1>
<p>By Norm DePlume</p>
</header>

Constructing Content

<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

<footer>
<p>Posted on August 9, 2011</p>
<p>© copyright Cape and Cowl Quarterly</p>
</footer>
</article>

The footer element requires an end tag and can contain any flow elements, including sectioning
elements, but not a header or another footer. If it contains any sectioning elements (section, article,
aside, or nav), those sections might be appendices, bibliographies, lengthy license agreements, or
extensive footnotes. The footer element has no default styling except to display as a block-level element.

Also like the header element, if a footer appears inside a sectioning element, it relates only to that
section. If it appears in the document body without some other sectioning ancestor, it relates to the entire
document or even to the entire website.

Required Attributes

There are no required attributes for the footer element.

Optional Attributes

The footer element doesn’t have any optional attributes.

The header and footer elements aren't true sectioning elements in that they don't
necessarily define a self-contained block of content, don’t establish a new sectioning
root, and don’t belong to the sectioning content model. But they’re both so closely
associated with sectioning elements we felt it was sensible to cover them at this point in
the chapter.

aside

Another new element in HTML5, aside designates a section of tangential content—content that supports
and enhances the main content, but isn't an essential part of it. It's optional information that you could
easily remove without harming the reader’s understanding of the primary content. An aside element might
contain additional commentary, background information, a glossary of terms, a collection of related links, a
pull quote, or even advertising if the ads are relevant to the content.

The sort of secondary content you would include in an aside element is often called a sidebar in
publishing, and that term is common in web design as well, but the words “sidebar” and “aside” don't
necessarily mean a position on the left or right side of the main content. Use aside appropriately for

Chapter 4

tangential content, and don't get hung up on the name. With CSS, you can position the aside element
anywhere on the page: top, bottom, side, or smack in the middle.

If an aside element appears within an article or other sectioning element, its contents should relate
directly to that article or content section. If an aside appears in the body without another sectioning
ancestor, its contents are assumed to relate to the entire document or to the entire website. By the same
token, if it appears within a section that is itself within an article element, the aside should preferably
relate to that particular section of the article.

In Listing 4-5 we've added some supplemental content to the same article, contained in an aside element.

Listing 4-5. Using the aside elementin an article

<article>
<header>
<h1>Where Do They Get Those Wonderful Toys?</h1>
<p>By Norm DePlume</p>
</header>

<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

<aside>

<p>The historic building at 616 Kirby Ave. was the former
headquarters of Sinnott Inkworks, a leading printer of
comic books in America since 1956.</p>

</aside>

<footer>
<p>Posted on August 9, 2011</p>
<p>© copyright Cape and Cowl Quarterly</p>
</footer>
</article>

There is no default styling for the aside element except to display as a block-level element. It requires an
end tag and can contain any other flow content, including other sectioning elements. An aside element
might even contain a complete article in an article element, with header, footer and section
elements of its own. In theory, that aside article might have an aside of its own, which could also have an
aside, which has an aside, and so on, ad infinitum... but that way lies madness.

Required Attributes

The aside element doesn’t require any attributes.

Optional Attributes

76

There are no optional attributes for the aside element.

Constructing Content

nav

A nav element contains navigation—a group of links that lead to other pages on a website, or to sections
of the current page. In a sense, all links are navigation, but don’t use nav for every collection of links; the
nav element is intended only for major blocks of navigation. This element should be an important signpost
for your visitors to come to when they're trying to find their way to particular areas of interest.

Most websites have a global header or masthead, a prominent banner that features the site name, logo,
and usually the primary navigation for the website. That primary navigation almost certainly warrants a nav
element. Some lengthy articles may have an internal table of contents, listing the article headings and
subheadings with shortcut links to jump directly to that part of the page; that's a job for the nav element,
too. If content is spread across multiple pages, like search results or a catalog showing 20 items per page,
you'll want to include pagination links to reach those other pages—another perfect use for the nav
element.

But sometimes you’ll need to mark up a group of links that aren’t necessarily vital navigation aids for your
users. For example, a sidebar (possibly marked up with an aside element) might feature links to other
related articles; useful, yes, but maybe not what you'd consider “major navigation.” A footer element
might hold similar related links, or links to a privacy policy and contact page; those probably aren’t major
navigation either. Then again, perhaps they are. There’s no rule forbidding nav for such uses, but it's
usually not necessary. Think about what your links mean, how they relate to the document or the rest of
the website, and how your visitors will use them.

In Listing 4-6 you can see a site’s global header, including a list of links to the main pages of the website
wrapped in a nav element (the ul element—an unordered list—is covered elsewhere in this chapter).

Listing 4-6. The haVv element in a site’s global header

<header>
<hgroup>
<h1>Power Outfitters</hi>
<h2>Superhero Costume and Supply Company</h2>
</hgroup>

<nav»

Costuming</1i>
Gadgets and Gear
Non-lethal Weaponry</1i>
Armor and Defense</1li>
Lair and Vehicle</1i>

</nav»
</header>

Like other sectioning elements, nav has no default styling except display:block. It requires an end tag
and can contain any flow elements, including other sectioning elements, even another nav element if
necessary.

Chapter 4

Required Attributes

There aren’t any required attributes for the nav element.

Optional Attributes

The nav element doesn't offer any optional attributes.

Headings

Heading elements (h1 through h6, and the new hgroup element) act as titles to introduce a section of
content. They're flow content, but also belong to their own content model: heading content. The first child
heading element to appear within any sectioning element—section, article, aside, or nav—acts as the
heading for the entire parent element, introducing and establishing that block of content, even if other
content appears before the heading.

h1, h2, h3, h4, h5, and h6

78

HTML offers a range of six headings, with each level indicating the heading’s relative importance or its
rank in the document hierarchy (and, by association, the importance or rank of the content that heading
introduces). With these headings, you can organize your content into distinct topics or areas of interest,
sorted from the top down in order of importance, and with each section containing subsections of its own.

Listing 4-7 shows some content with headings and short paragraphs, where each heading introduces the
content that follows it. The different heading levels imply a clear hierarchy of importance; the top-level
heading introduces the entire section, whereas the subheadings beneath it introduce lesser sections within
that. The lower headings here simply imply subsections under the previous headings, they're not explicit
sections defined by nested sectioning elements.

Listing 4-7. Headings and paragraphs

<h1>Costume Accessories</hi>
<p>All the trappings and trimmings.</p>

<h2>Masks and Cowls</h2>
<p>Protect your secret identity.</p>

<h3>Masks</h3>
<p>Facial coverage.</p>

<h3>Cowls</h3>
<p>Head coverage.</p>

The hi1 element designates the top-level heading—the most important one in the section, or even in the
entire document. Because there can logically be only one “most important” heading, it's customary for only
one h1 to occur within a single section. This isn’'t a requirement of HTML, just a good semantic rule of
thumb. You should also try to keep your headings in the proper sequence—an h5 shouldn’t come before
an h2 unless you have a really good reason to break their natural order.

Constructing Content

Headings always require both a start tag and an end tag. They fall under their own content model—
heading content—but are also flow content, and can occur wherever flow content is allowed. Headings can
only contain text or phrase elements.

Figure 4-2 shows the previous markup as rendered by a browser with default styling. Graphical web
browsers will automatically display headings in a boldfaced font and at different sizes for each level, h1
being the largest and h6 being the smallest, establishing a visual hierarchy to match the semantic
hierarchy.

Figure 4-2. Different heading levels appear at different font sizes by default

Because of their default styling, headings have often been abused for their presentational effects. Avoid
this mistake and use headings in a meaningful way. An h2 is “the second-most important heading,” not
“the second largest font.” You can use CSS to alter the default appearance of headings, including their font
size.

Prior to HTML5 and the new sectioning elements, a document’s body acted as the sole sectioning root,
forming an outline based only on the hierarchy of its headings. This meant that, if you followed good
semantics, only a single h1 would occur per document (often reserved for the site’s name or page title),
and all other headings on the page ranked below that. It can be difficult to maintain an orderly outline
under such circumstances, and if any heading breaks rank—an h4 following an h2, for instance—it could
throw off the entire document outline.

But in HTMLS5, the first child heading within a sectioning element acts as the main heading for that entire
section, effectively starting a new hierarchy within that section alone. Now it can be rightly sensible to
include multiple his in a document, but you should still have only a single h1 per section. Though it might
look odd, the markup shown in Listing 4-8 is completely valid and semantically appropriate because each
top-level heading marks the beginning of a new section element.

79

Chapter 4

Listing 4-8. Headings within sections

<h1>Costume Accessories</h1>
<p>All the trappings and trimmings.</p>

<section>
<h1>Masks and Cowls</h1>
<p>Protect your secret identity.</p>

<section>
<h1yMasks</h1»
<p>Facial coverage.</p>
</section>

<section>
<h1yCowls</h1>
<p>Head coverage.</p>
</section>
</section>

This works because each sectioning element constitutes a new sectioning root, effectively starting a new
chain of command in the ranked headings. This nesting of sectioning elements still forms a hierarchical
outline even though all four headings are the same element; their rank is implied by the document tree,
with each section being a subsection of its parent.

However, older browsers—and some current browsers—will render all of these h1 elements at the same
size by default. The semantic hierarchy will still be there in the markup, but there will be no visual
hierarchy, at least not by default in those browsers. Rather than rely exclusively on default browser styles
to establish the sizes of ranked headings, you can use your own CSS to style these nested section
headings proportionally, as we’ll show you later in this chapter.

Always choose a heading element of the appropriate rank for its importance and position in the outline.
The first heading in any sectioning element should be the highest-level heading for that entire section. If
you begin an article with an h3, that heading acts as the title for the entire section of content so it should
be the only h3 in that article.

Required Attributes

There are no required attributes for heading elements.

Optional Attributes

Heading elements don't offer any optional attributes.

hgroup

80

The hgroup element can contain a group of headings (h1 to h6) that together act as a heading for a
section of content. The highest-level heading in an hgroup is taken as the heading for the section, and any

Constructing Content

other subheadings within the same hgroup don’t count towards the document outline. This is perfect for
subtitles like the one in Listing 4-9, but not much else.

Listing 4-9. An article’s title and subtitle in an hgroup element

<article>
<header>
<hgroup>
<h1>Where Do They Get Those Wonderful Toys?</h1>
<h2>An Insider’s Tour of the Cutting Edge Manufacturing
Wing at Power Outfitters</h2>
</hgroup>
<p>By Norm DePlume</p>
</header>

<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

<footer>
<p>Posted on August 9, 2011</p>
<p>© copyright Cape and Cowl Quarterly</p>
</footer>
</article>

Were it not for the hgroup in this example, the rest of the article would be associated directly with the h2
subtitle, and not with the actual title in the h1. The new hgroup element allows authors to include subtitle
headings between a heading and its content without throwing off the document’s natural outline.

There’s been some debate among web standards sticklers about the usefulness of the hgroup element. It
exists solely to hide subtitles from the document outline, and serves no greater semantic purpose. The
debate is still going as we write this book, and there are a few open proposals to remove hgroup from the
HTML5 spec (w3.org/html/wg/tracker/issues/164), possibly replacing it with another element
intended specifically for subtitles, or simply modifying the document outlining algorithm (more on that in a
minute) to make better use of the more meaningful header element. But hgroup is still in the spec for now
so we've covered it here. That may change by the time you read this so refer to the specs and validate
your markup to be certain.

The hgroup element is flow content, but also falls under the heading content model. It can only have
heading elements, h1 through hé, as its children; no other elements are allowed as direct children of an
hgroup, but those headings can still contain other phrasing elements. The hgroup element also requires
an end tag and has no default styling except to display as a block-level element. An hgroup doesn't have
to be wrapped in a header element, though it often should be if it's the main heading of a section or
article. Don't use an hgroup element at all if you have only a single heading.

Required Attributes

There are no required attributes for the hgroup element.

81

Chapter 4

Optional Attributes

The hgroup element has no optional attributes.

Outlines and Sectioning Roots

82

A well-structured HTML document should form an orderly outline, organized from the top down in a
hierarchy of headings, just like you probably learned when you wrote your first book report. For any given
document, the outline begins at the highest-level heading (usually an h1) and descends from there. To
begin a new subsection under that heading, simply introduce it with a heading of the next lower rank; if you
begin with an h1, follow it with an h2. Use lower-ranking headings for each subsection, creating a
hierarchy from h1 all the way down to hé.

User-agents can follow a standard outlining algorithm to find all the headings in a document and
automatically generate an outline, which might look something like this:

1. Costume Accessories

1.1 Masks and Cowls
1.1.1 Masks
1.1.2 Cowls

1.2 Belts and Pouches
1.2.1 Belts
1.2.2 Pouches

1.3 Gloves and Bracers
1.3.1 Gloves
1.3.2 Bracers

Before HTMLS5, such an outline was formed only by the h1 through h6 elements as they occurred in the
body element (and in many cases it still works that way in HTML5). Sections of content were merely
implied by the headings, and any and all content that came after a heading was assumed to belong to that
heading, whether or not the text itself actually related to the subject. This can make it hard to maintain a
logical outline while still using appropriate markup that serves the content. Look at the markup in Listing 4-
10, for example.

Listing 4-10. A sequence of ranked headings
<h1>Superhero Costume Basics</h1>
<p>Battle for justice in comfort and style.</p>

<h2>Unitards and Leotards</h2>
<p>Freedom of movement with a sleek profile.</p>

<h2>Capes and Cloaks</h2>
<p>For timeless majesty or ominous mystery.</p>

<p>We do tailoring and alterations, too! Fittings are
by appointment only, so please call ahead.</p>

Constructing Content

Everything seems to be in order until you reach the last paragraph: does that note about tailoring refer only
to Capes and Cloaks, or to all costumes? It seems like it should relate to the entire page, but its position in
the document hierarchy implies that it relates only to the preceding heading, at least as far as the
generated outline is concerned.

HTML5 addresses this problem by introducing sectioning roots. Nested sections and subsections could
only be implied by the order of headings in past versions of HTML, but now some elements in HTML5
explicitly define a discreet section of content that has its own internal outline. Rather than merely following
a straight line of headings from the top down, the new HTMLS5 outlining formula can also build a hierarchy
from the document tree of sections within sections.

Here’s the same content, now organized into a few nested section elements:

<section>
<h1>Costume Basics for Superheroes</h1>
<p>Battle for justice in comfort and style.</p>

<section>

<h2>Unitards and Leotards</h2>

<p>Freedom of movement and a sleek profile.</p>
</section>

<section>

<h2>Capes and Cloaks</h2>

<p>For timeless majesty or ominous mystery.</p>
</section>

<p>We do tailoring and alterations, too! Fittings are
by appointment only, so please call ahead.</p>
</section>

The last paragraph is now clearly and explicitly associated with the first heading because they belong to
the same sectioning root. In fact, that outermost section element might not be necessary because the
body element itself is a sectioning root. Elements that define new sectioning roots include:

» the body element, which you've already seen in Chapter 3
= the new sectioning elements: section, article, aside, and nav
» blockquote, figure, fieldset, details, and td—all covered elsewhere in this book

This is pretty cutting-edge stuff and none of the major browsers have fully implemented the new outlining
algorithm yet, but that will change in due time. Until then, there are some nagging accessibility concerns
about breaking up the heading hierarchy in nested sections.

Some assistive technologies—especially screen-readers for the vision impaired—rely on generating a
document outline to aid the user in navigating the document. They can read aloud the headings on a page
according to rank and allow the user to skip directly to the part of the page that interests him. But most of
those screen-readers haven't yet implemented the outlining algorithm proposed in HTML5, so for now
they'll still generate an outline the old-fashioned way, completely ignorant of these new-fangled sectioning
roots and their effect on heading hierarchy.

83

Chapter 4

To some extent this is really the problem of the people who make screen-reading software, and you as a
developer are still allowed to push the envelope until they catch up. Unfortunately, it's the users who suffer
in the interim. To improve accessibility for your web pages, you may prefer to follow a standard hierarchy
and choose headings that match their section’s nesting level.

If this wasn't quite dense enough for you and you'd like to read a technical breakdown of
the HTML5 outlining algorithm, consult the W3C's specification at
w3.0rg/TR/html5/sections. html#outlines

Meaningful Portions

84

Now that you're familiar with some of the elements you’ll use to divide your content into general sections
and arrange them in a clear order, it's time to delve into those sections and break that content down further
into manageable, readable portions.

As you probably learned in grammar school, a paragraph is one or more sentences expressing a single
thought or idea, or about one aspect of a topic. It's the standard unit of written prose. A <p> start tag marks
the beginning of a paragraph, and a </p> end tag marks its end, though the end tag is optional if the
element immediately following a paragraph is another paragraph, a heading, a list, a table, a form or
fieldset, any element that is sectioning content, or any of a few other elements (we won't list them all here).

Even though it's perfectly valid in HTML5 to omit the end tag under some circumstances, it's still a good
idea to include it. Should you add some other element after a paragraph in a future update, you could
easily introduce validation errors or other problems (unless you remember to end the paragraph when you
add the new element, of course). Always be considerate and cautious whenever you choose to omit end
tags. If in doubt, close your elements.

Listing 4-11 shows two paragraphs in HTML, and we've closed them both with end tags. Blank lines
between elements aren’t necessary, but they can help make your markup more readable as you work.
Paragraphs are flow content, and can only contain phrasing and interactive content.

Listing 4-11. Two paragraphs in HTML

<p>Power Outfitters offers top of the line merchandise at rock-bottom
prices for the discerning costumed crime-fighter. From belts to boomerangs,
we’re your one-stop shop for all your specialized gadgetry and costuming
needs.</p>

<p>Come browse our wide selection of capes, cowls, masks, boots, belts,
gloves, tights, unitards, and leotards in all the colors of the rainbow.
Our clothiers are on call 24 hours a day, always ready in a pinch to
replace a singed cloak or patch a ripped tunic, because we know crime
doesn’t sleep and justice can never rest.</p>

Constructing Content

Figure 4-3 shows what these paragraphs will look like in a browser. The p element is styled as block-level
by default, so each paragraph begins on a new line and is followed by a blank line of white space. In the
past, many web designers would inject empty paragraphs (<p></p>) into their documents to add more
vertical space on the page. This is the sort of presentational markup you should avoid—an empty
paragraph is meaningless. If you need to add vertical white space to your page layout, use CSS.

Figure 4-3. A browser displays the two paragraphs as separate blocks

Required Attributes

The p element doesn’t have any required attributes.

Optional Attributes

Apart from the standard global attributes, there are no optional attributes for the p element.

blockquote

The blockquote element designates a long quotation, such as a passage from a book or a blurb from a
review. This is a flow element that always requires an end tag. Any other flow elements can reside in a
blockquote (paragraphs, headings, lists, even other blockquotes), but all of its contents should come
from the quoted source.

If you're quoting an online source, even if the quotation is from elsewhere on your own website, you can
include the URL of the original source in the optional cite attribute. This attribute’s value must be a URL,
not a name or title. To mention a source by name, you can use the cite element covered later in this
chapter. Listing 4-12 shows a block quotation, including a source URL in the cite attribute.

Listing 4-12. A block quotation

<h1>Customer Testimonials</h1>
<p>We love our customers, and our customers love us! Here’s just a
small sampling of praise from some of our satisfied champions.</p>

<blockquote cite="http://example.com/blog/2011/manic-monday">
<p>Having foiled a jewelry store heist on my way to receive a
medal from the President, imagine my embarrassment to notice
a nasty laser burn on my cape. There was no time to fly back to
base and change into my spare costume, even at my speed. Thank
goodness for Power Outfitters! They had my size and style in stock,
in just the right shade of red, and at a great price, too. I went

http://example.com/blog/2011/manic-monday

Chapter 4

back after the ceremony and bought five more capes, plus matching
gauntlets!</p>
</blockquote>

Web browsers will display the blockquote element as an indented block of text, as you can see in Figure
4-4. In the past, some web designers misused this element to create wider margins around their text,
whether it was a quotation or not. Once again, that's presentational markup that confuses the content’s
meaning. You should only use a blockquote for actual quotations and use CSS to control margins.

Figure 4-4. The default rendering of a block quotation as an indented portion of text

HTML 4.01 and XHTML 1.0 specified that a blockquote element could only contain block-level children;
plain text or inline (phrasing) elements couldn’t appear as direct children of a blockquote. HTML5 has
done away with this restriction, but it's always best to use appropriate elements for the quoted content—
paragraphs, lists, headings, and so on. The blockquote element also constitutes a sectioning root in
HTML, so headings within a block quotation won't interfere with the outline of the surrounding section.

Required Attributes

The blockquote element doesn't have any required attributes.

Optional Attributes

= cite: The URL of the quotation’s original source.

address

86

Contrary to this element’s name, address isn't intended for just any postal address; its purpose is to
provide contact information for the person or organization responsible for its parent article element (if it
occurs within an article), or otherwise for the entire document. An address often belongs in a footer
element or possibly in a header, but neither is a requirement.

This element harkens back to the early days when primarily academics and programmers used the Web. A
researcher at a university might publish her findings on the Web and include her name, position, website,
and e-mail address to stake her claim. In that sense, think of the address element more like a byline or

Constructing Content

attribution than a physical location on a street in a town somewhere (though it can certainly include a
physical addresses as well). An address element says, “This is who is responsible for this article, and
here’s how to reach them.”

The address element is flow content, requires an end tag, and can contain any other flow elements except
heading content, sectioning content, or another address. Previous versions of HTML only permitted links
and inline phrasing elements within an address, but that restriction has been lifted in HTMLS5.

Listing 4-13 shows some contact information wrapped in an address element, with a few line breaks
(
) to provide some additional formatting.

Listing 4-13. Contact info marked up with the address element

<address>
<p>Cindy Li, Warrior Princess

1187 Hunterwasser, San Francisco, California

cindyli.com</p>
</address>

This example would be semantically appropriate in an article written by Cindy Li, or in an entire document
for which Cindy is responsible. If you simply wanted to include Cindy’'s contact information amidst content
she didn’t write, some other element would be called for, probably an ordinary paragraph.

Browsers usually display the contents of an address element in an italicized font by default (see Figure
4-5). Of course, if you don't like the looks of it, you can always change its presentation with CSS.

Figure 4-5. Most browsers display the address element in italics

Required Attributes

The address element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the address element.

pre

As you learned in Chapter 2, white space in HTML is “collapsed” when a browser renders the document;
multiple spaces are reduced to a single space, and carriage returns are ignored. However, you can use
the pre element to define a block of preformatted text in which white space and line breaks should be
preserved exactly as they appear in the markup. This element is especially useful for displaying computer
code or poetry where line breaks and indention are important, such as in the haiku in Listing 4-14.

87

http://cindyli.com

Chapter 4

Listing 4-14. Poetry wrapped in a pre element to preserve its formatting

<pre>
even little things
can have great impact if they’re
radioactive
</pre>

The pre element is flow content and it can only contain phrasing elements. Browsers typically render the
contents of a pre in a monospace typeface, as you can see in Figure 4-6.

Figure 4-6. The spaces and returns remain intact on the rendered page

Because the pre element preserves white space exactly as it's coded, long lines of text
will not automatically wrap to fit their container the way ordinary text in HTML does.

Required Attributes

There are no required attributes for the pre element.

Optional Attributes

hr

88

The pre element doesn’t offer any optional attributes.

The hr element creates a horizontal rule, a dividing line between sections of content. It's largely
presentational, but the semantic intent of an hr is to indicate a paragraph-level thematic break such as a
change of topic within a section, or a change of scene in a story. Now that HTML5 has given us the
specialized section element, you might use separate sections to indicate these topic changes, but the
hr element can still be preferable in some cases.

It's a replaced, void element that can hold no content and has no end tag, though you can optionally close
it with a trailing slash (<hr/>) as you would in XHTML. Listing 4-15 shows an hr element between two
paragraphs, marking a change in the story’s setting.

Listing 4-15. A horizontal rule marks a change of topic within a section

<p>And so the day was saved once again, and the sun sank slowly
in the west, casting its warming glow across a grateful city.</p>

<hr>

<p>Meanwhile, in dank caverns deep below the surface of the Earth,
unrest was stirring amongst the Mole People.</p>

Constructing Content

The hr element is styled as block-level by default so it will appear on its own line, but the amount of space
above and below it will vary slightly in different browsers, as will the appearance of the line itself. Figure
4-7 shows the hr element as Firefox renders it. You can use CSS to specify the top and bottom margins of
an hr for some improved consistency across browsers.

Figure 4-7. A horizontal rule rendered by a web browser

Required Attributes

The hr element doesn’'t have any required attributes.

Optional Attributes

No optional attributes exist for the hr element.

Older versions of HTML included a number of presentational attributes for horizontal
rules: align to specify the alignment of the rule to the left, right, or center; size to
specify the thickness of the rule; width to define its width in pixels; and noshade to
override the 3-D shading effect some browsers use when rendering an hr. These are all
obsolete in HTMLS5, and you can better achieve most of their effects with CSS.

div
The div element creates a general-purpose division in your document, grouping related content and
elements together. It's semantically neutral but not entirely meaningless; a div essentially states,

“Everything in here belongs together and is separate from everything else,” but says nothing specific about
the nature of the content within.

Prior to HTMLS5, the div element was a designer’s go-to tool for organizing content into related blocks that
could then be styled with CSS or manipulated with JavaScript. But HTML5 has introduced a number of
more semantically valuable sectioning elements (covered earlier in this chapter) that can take over that
role. Even so, you'll often need to group other elements or related bits of content together without adding
the extra layer of meaning that a section, article, aside, nav, or other elements might apply.

In Listing 4-16, a div classified as “legal” wraps around and contains a few related elements, as you might
see in a site’s footer. This div collects those related elements while also separating them from other
adjacent content.

Chapter 4

Listing 4-16. A block of content wrapped in a div element

<div class="legal">
<p class="copyright">© 2011-2012 Power Outfitters</p>
<ul class="nav-legal">
Terms of Use
Privacy Policy</1i>

</div>

A div is flow content and can contain text and any other elements. Although the div seems similar in
function to the section element, a div does not establish a new sectioning root in the document hierarchy
and doesn’t imply any thematic relationship of its contents. A div alone imparts no deeper semantics to its
contents, so any text within it should be wrapped in a more meaningful element of its own. The div
element’s only default styling is to behave as a block-level element; its contents begin on a new line and
occupy the full available width.

Because divs are so versatile and act as useful boxes to be styled with CSS, some web designers can
show a tendency to overuse them, crowding their markup with an excessive number of otherwise
meaningless divs strictly for presentational purposes. This bad habit is sometimes called “divitis” and you
should try to avoid it. Use divs wisely to support your content, and always prefer more semantically
valuable elements to semantically neutral elements. Like section, the div element is a content-
organization device, not just a page-layout device.

Required Attributes

The div element doesn't require any attributes.

Optional Attributes

There are no optional attributes for the div element.

figure

90

A new addition to HTMLS5, the 'Figure element represents an image, video, quotation, code listing, or
some other content, along with an optional caption, that is self-contained and might be referenced as a
single unit from the main flow of content. That isn't to say the figure could be removed entirely; it's not
optional content like you'd find in an aside element. A figure is still essential content, but it's the sort of
illustrative example that could potentially be removed from the normal flow of content or appear at a
different point in the document without harming the readability of the main text.

You've seen many prime examples of figures throughout this book: whenever we include a screen capture
or lengthy code listing, we give it a caption and refer to it from the main text. If we were writing this book in
HTML, every one of those could be wrapped in a figure element, with its caption in a figcaption
element (more on that one next).

Constructing Content

Listing 4-17 shows a minimal figure element containing a single image without a caption. We'll cover the
img element in detail in Chapter 5.

Listing 4-17. A figure element containing a single image with no caption

<p>A domino mask covers the area around and between the eyes, and may also
cover the eyebrows and part or all of the nose, as shown below.</p>

<figures

</figure>

In this case, the figure element might not seem necessary because it doesn't add a great deal of
structural value, but it does imply the figurative nature of the image where an inline image alone would lack
that semantic context. The figure element really comes into its own when you combine it with the
figcaption element.

The figure element is flow content and can contain any other flow content. It displays as block-level by
default, and typically has indented margins the same as blockquote (see Figure 4-8), but you can always
override those margins in your own style sheet. Also like blockquote, the figure element is a sectioning
root so any headings that appear within it won't affect the generated outline of the parent section.

Figure 4-8. The figure element is indented on each side by default

Required Attributes

The figure element doesn't require any attributes.

Optional Attributes

There aren't any optional attributes for the figure element but the usual global attributes still apply.

Chapter 4

figcaption

92

The figcaption element, also introduced in HTMLS5, represents a caption or legend for the other contents
of its parent figure element. It's a flow element and can contain any other flow elements. It can only
appear as a child of the figure element, and figcaption must be either the first child or last child of its
parent figure. A figure element may only contain a single-child figcaption element.

Listing 4-18 shows a figure element, this time using a code listing instead of an image, like you might see
in an online CSS tutorial. We've given it a descriptive figcaption, in this case adding the caption before
the rest of the figure content.

Listing 4-18. A code figure with a caption

<figure>
<figcaption>
These CSS rules will give figures and captions a bit of style
</figcaption»

<pre><code>

figure {
padding: 10px 15px;
border: 3px double #aaa;

figcaption {
font-style: italic;
text-align: center;
padding-bottom: .5em;
border-bottom: 1px solid #aaa;
margin-bottom: 1.5em;

</code></pre>
</figure>

The figcaption element displays as block-level by default, but has no other default styling so it's ripe for
some sprucing up. Figure 4-9 shows the code figure from Listing 4-18, styled with the CSS from that same
example (aren't we clever).

Constructing Content

Figure 4-9. A lightly styled figure and its caption

A figure element can contain any flow content, and so might actually consist of several elements that act
together as one figure with a single figcaption. To take it a step further, a figure could even hold
several nested figure elements, each with its own caption, such as the collection of images you see in
Listing 4-19. Any one figure element can still only have one child figcaption. All of the nested figure
elements together act as one figure, described by a single figcaption. Here the inner captions come
after the content they describe, but the group caption appears before its figure content.

Listing 4-19. Multiple figures, each with its own caption, collected as a single figure with another figcaption to
describe the group

<figure class="product-examples">
<figcaption>A few of our most popular domino mask designs</figcaption>

<figure class="product">

<figcaption>Model MDTS40
“The Colt”</figcaption>

</figure>

<figure class="product">

<figcaption>Model MDMV77
“The Danvers”</figcaption>

</figure>

<figure class="product">

<figcaption>Model MDDC59
“The Jordan”</figcaption>
</figure>
</figure>

With a bit of added styling, that markup can look something like Figure 4-10.

93

Chapter 4

Figure 4-10. Nested figures after a healthy dose of CSS

Before HTMLS5 there was no easy way to explicitly associate a picture with a caption. Each of these figures
might have been wrapped in a div or perhaps a list item, and each caption might be a heading or
paragraph, but the only thing that related each caption to its image was their proximity. Now the
figcaption element clearly and emphatically describes the content in its parent figure and can't be
mistaken for anything else.

Required Attributes

There aren’t any required attributes for the figcaption element.

Optional Attributes

The figcaption element doesn't offer any optional attributes.

iframe

94

The iframe element designates an inline frame, sometimes called a floating frame, that can display the
contents of a separate document—or even a completely separate website—within a confined space on the
rendered page. The spec refers to this as a nested browsing context, which is pretty much what it sounds
like: a browser within a browser. The content inside the frame exists independent of the surrounding page,
and the surrounding page is largely ignorant of anything happening within the frame. The two pages can
communicate with each other via JavaScript or server-side programming languages, but for all intents and
purposes, the iframe element forms a self-contained window onto another website.

A src attribute specifies the URL of the page to load into the frame, but the iframe element itself may
also contain other text or markup as fallback content to be displayed in browsers that don’t support the
iframe element (such as very old browsers, text browsers, and some mobile devices).

Any CSS styles that apply to the parent document or to the inline frame itself don’t apply to the content
within the frame, and styles that apply to the embedded content don’'t have any effect on the parent
document. You can embed pages from external websites, but you should only do so with the permission of

Constructing Content

the external site’s owner. Framing someone else’s website and passing it off as your own isn't a very nice
thing to do, and can be illegal in some cases.

You can specify the size of an inline frame with the optional width and height attributes, or with CSS.
The frame typically defaults to around 300 pixels wide and 150 pixels tall if no dimensions are specified,
but different browsers will vary. Most browsers also display iframes with a narrow inset border by default,
but you can modify or remove the border with CSS.

Listing 4-20 shows a minimal iframe bearing only a src attribute and some simple fallback content for
those few browsers that can't display inline frames. In this case, the fallback content includes a link to the
framed page so users can still reach that content, even if not in the manner originally intended.

Listing 4-20. A simple iframe with fallback content

<section class="news">
<h2>Latest News</h2>

<iframe src="newsfeed.html">
<p>We’re sorry, your browser can’t display this content in a frame.
You can still visit the page directly.</p>
</iframe>

</section>

When the contents of an iframe exceed the frame’s dimensions, scrollbars will appear allowing visitors to
scroll the page within the frame to bring the overflowing content into view. You can disable those scrollbars
with CSS and the declaration overflow:hidden, but that will obviously prevent your users from seeing
the hidden content. HTML5 has introduced the new seamless attribute, which instructs the browser to
render the iframe as if it were part of the parent page, without a border or scrollbars, but no browsers
support the seamless attribute at the time of this writing.

Figure 4-11 shows an iframe with only the default styling. This image is from Safari for Mac OSX, which
draws the frame at 300 pixels wide and 150 pixels tall by default, though some other browsers may vary
slightly.

Figure 4-11. An iframe with default styling

95

Chapter 4

An optional name attribute provides a name for the iframe’s browsing context, allowing links, forms, and
scripts to target the frame and load other pages in the same space, or to interact with the content within.

The optional sandbox attribute applies a set of extra restrictions on the frame’s contents as a security
measure in case the frame is displaying an untrusted website. When the sandbox attribute is present
without a value, the frame’s content is limited in its ability to affect the parent document, isolating the
framed page in a virtual sandbox so any malicious code within can’t harm the page that surrounds it, the
website hosting the parent document, the browser, or the user's computer. Supplying values in the
sandbox attribute can selectively allow some of the restricted actions: allow-same-origin, allow-top-
navigation, allow-forms, and allow-scripts. Only a few browsers have implemented support for the
sandbox attribute so far, but the others will catch up soon.

In lieu of a src attribute to provide the URL of the frame’s content, the new srcdoc attribute can carry the
HTML markup for the framed document. That's right, a complete HTML document acting as an attribute’s
value. If the src and srcdoc attributes are both defined, the srcdoc attribute takes precedence and the
src attribute can still provide a fallback URL for browsers that don't support srcdoc. Right now that's
every browser, because none of them have yet implemented the srcdoc attribute.

Required Attributes

The iframe element technically doesn’t require any attributes for validation, but without either a src or
srcdoc attribute, the frame will have no content to display, showing nothing but a blank, white void.

Optional Attributes

96

» height: The height of the frame in pixels.

= name: A name for the embedded browsing context (the frame). A valid name can be any single
word that does not begin with an underscore (_); names beginning with underscores are reserved
for special keywords. The frame name can be used as the value of the target attribute of an
anchor or form element, or the formtarget attribute of an input or button element.

= sandbox: If specified as an empty string, this attribute enables extra restrictions on the content
that can appear in the inline frame. The value of the attribute can be a space-separated list of
tokens that lift particular restrictions. Valid tokens are:

» allow-same-origin: Allows the content to be treated as being from the same origin as the
containing document. If this keyword isn't present, the embedded content is treated as being
from a unique origin.

» allow-top-navigation: Allows the embedded browsing context to load content from the
top-level browsing context. If this keyword isn't present, this operation isn’t allowed.

= allow-forms: Allows the embedded browsing context to submit forms. If this keyword isn’t
present, this operation isn't allowed.

» allow-scripts: Allows the embedded browsing context to run scripts (but not create pop-
up windows). If this keyword isn’t present, this operation isn’t allowed.

Constructing Content

= seamless: A Boolean attribute that, when present, indicates that the browser should render the
inline frame in a way that makes it appear to be part of the containing document. For example, a
seamless frame might apply CSS styles from the parent document before styles specified in the
framed document, and links in the contained document could open pages in the parent browsing
context rather than within the iframe (unless another setting prevents this). This effectively
embeds the external content into the rendered page, but does not embed the external markup
into the current HTML document. There aren’'t any browsers that support the seamless attribute
as of this writing.

= src: The URL of the page to embed. This can be either a relative or absolute URL, and doesn’t
have to be a page within the same domain as the parent document.

= srcdoc: The content of the page that the embedded context is to contain. If sTc and srcdoc are
both specified, srcdoc takes precedence and src acts as fallback for browsers that don’t support
the srcdoc attribute.

= width: The width of the frame in pixels.

The iframe element has been around for a long time, and older versions of HTML
offered other, similar framing devices as well. The frameset and frame elements were
introduced in HTML 4 and proved popular with web designers, but they were also
extremely problematic and inaccessible, and ultimately did more harm than good.
Window frames and inline frames were excluded entirely from XHTML 1.0 Strict. Old-
school frames are still dead in HTML5 (and good riddance), but iframe has been
renewed and revised, largely due to just how very useful it is and how commonplace it is
on the Web.

Lists

A list is simply a collection of two or more related items. A list consisting of a single item is perfectly valid
and may even be semantically correct in some cases, but normally a list groups several items together.
There are three types of lists in HTML: unordered lists, ordered lists, and description lists.

ul

An unordered list, designated by the ul element, is a list wherein the sequence of the items isn't especially
significant, such as a list of ingredients—the order in which you fetch them from the pantry doesn’t matter
so long as you get everything on the list. Each list item is in turn defined by its own 1i element, all
contained by the surrounding and tags. The ul element is flow content and only 1i elements
are allowed as its children; no text or other elements can appear in an unordered list unless an 1i contains
them.

Listing 4-21 shows the ingredients for a cake recipe in an unordered list, with each item living in its own 11
element (more on that one in a moment).

97

Chapter 4

Listing 4-21. An unordered listing of ingredients

<1i>1/2 cup butter</1i>
<1i>1/2 cup milk</1i>
<1i>2 eggs</1i>
<1li>2 teaspoons vanilla extract
1 1/2 cups all-purpose flour
<1i>1 3/4 teaspoons baking powder
<1i>1 cup white sugar

By default, unordered lists are displayed as slightly indented blocks with a bullet marking each list item, as
seen in Figure 4-8. Later in this chapter you'll see how you can change the default bullet using CSS,
replacing it with a different character or even an image.

Figure 4-12. A web browser renders the bullets automatically

Required Attributes

The ul element doesn't require any attributes.

Optional Attributes

The ul element doesn't feature any optional attributes.

ol

The ol element defines an ordered list, one in which the items are meant to be read or followed in a
specific sequence, such as the steps in a recipe. Listing 4-22 shows an example. Note that the items aren’t
numbered in the markup—the browser will do the numbering for you.

Listing 4-22. A deliberate sequence of steps marked up as an ordered list

Preheat oven to 350 degrees F (175 degrees C). Grease and
flour a 9x9 inch pan.</1i>
Cream together the sugar and butter. Beat in the eggs one
at a time, then add the vanilla. Combine flour and baking powder,
add to the creamed mixture and mix well. Finally, stir in the
milk until batter is smooth. Pour or spoon batter into the
prepared pan.

98

Constructing Content

Bake for 30 to 40 minutes in the preheated oven. Cake is done
when it springs back to the touch.</1i>

</ol»

As you can see in Figure 4-9, each item in an ordered list is displayed with a number beside it, with those
numbers created automatically by the browser. By default, the ol element displays as block-level with
some padding on the left side (or right side, in right-to-left languages) to make space for the numbering.

Figure 4-13. The web browser numbers the list items automatically.

Like unordered lists, the ol element is flow content, requires an end tag, and can only have lis as

children.

Required Attributes

There are no attributes required for the ol element.

Optional

Attributes

type: indicates the marker to use when rendering the list. Possible values are 1 (decimal, the
default, shows Arabic numerals), a (lowercase English alphabet), A (uppercase English alphabet),
i (lowercase Roman numerals), and I (uppercase Roman numerals). All of these have CSS
equivalents using the list-style-type property, but sometimes the type of list is essential to
the meaning of the content—an alphabetical list of names, for instance—and in those cases it
might be preferable to declare the list type in the markup rather than in a presentational style
sheet.

start: a numeral indicating the number from which the list should start counting. The value of

this attribute must be a whole integer. A list of five items with the attribute start="3" would be
numbered from 3 to 7 when the list is rendered.

reversed: a Boolean attribute that, when present, reverses the numbering order of the list. For
example, a list of five items would be numbered from 5 to 1 when a browser renders it. This is a
new attribute in HTML5 so not all browsers support it yet. One possible real-world application for
the reversed attribute would be a list that allows a user to sort its items by ascending or
descending order; a few lines of JavaScript could simply toggle the reversed attribute rather
than rewriting the entire list. If your list should only ever be read in reverse order, you should
probably just put the items in that order to begin with.

99

100

Chapter 4

The type and start attributes existed in older versions of HTML, but were phased out
in XHTML because they were considered presentational. They've been brought back in
HTML5 because they do have real meaning in some situations. You should only use
these attributes when the content demands it, and use CSS when you only want the
visual effect.

In both ordered and unordered lists, the 11 element defines individual list items. A list item can contain text
or any flow elements, including more lists. Listing 4-23 shows an elaborate unordered list with more lists
nested within it. The containing list has only a single item in this example, but you could add any number of
costume accessories within that list, each following the same pattern in its own 1i.

Listing 4-23. A complex unordered list

<h1>Costume Accessories</h1>
<p>All the trappings and trimmings.</p>

<liy
<h2>Masks and Cowls</h2>
<p>Protect your secret identity.</p>

<liyDomino mask</1iy
<lisHalf-mask

<liyTraditional upper face mask</1i»
<lislower face “surgical” mask</1i»

</1i>
Full face mask (eye lenses optional)</1i»
<1i>Cowl

<lisClassic loose cowl (hood)</1iy
Fitted cowl</1i»
Fitted cowl with integrated upper half-mask</1is>

</1i»

</1i>

When one list is nested within another, the inner list will, by default, be styled differently according to its
level of nesting. Figure 4-10 shows how this list is rendered, and you can see that each nested list is
indented a bit further and displayed with a different style of marker. Nested ordered lists inherit their
numbering style from their parent, but will begin a new numbering sequence.

Constructing Content

Figure 4-14. The list as it appears in a browser with default styling

You can choose to omit the end tag of a list item if it's immediately followed by another list item, or if there
is no more content in the parent element (meaning it's the last item in the list, in which case the very next
tag will be the parent list's end tag). An 1i element can only occur as a child of the ul and ol elements, or
as a child of the interactive menu element, which is new in HTML5 and covered in Chapter 8.

Required Attributes

There are no required attributes for the 1i element.

Optional Attributes

= value: If the 1i is a child of an ol element, this attribute can specify the item’s displayed number
in the list, but doesn’t change the actual list order. The attribute’s value must be a whole integer,
and subsequent items will continue the numbering after a previous item’s value. For example, in
an ordered list of five items where the third item has the attribute value="10", the first two items
will be numbered 1 and 2 and the last three items numbered 10, 11, and 12 (assuming they have
no value attributes of their own).

dl

A description list isn’t merely a collection of items; it's a collection of items and descriptions of each. Unlike
ordered and unordered lists, a description list doesn’t contain list item (1i) elements. Rather, items in a
description list are groupings of terms (dt) and descriptions (dd).

In past versions of HTML, the d1 element was a definition list, intended to list terms and their definitions
like you'd find in a glossary. There’s an implied semantic connection between a term and its definition, and
because of this semantic symbiosis, definition lists were frequently used to mark up content that wasn’t
technically a list of terms and definitions. A series of questions and their answers, a list of employees and

101

Chapter 4

their job titles, or a sequence of events and the dates on which they occurred were all common uses of
definition lists. HTML5 has formalized this real-world usage and redefined the definition list as a
description list, suitable for any case where content calls for a listing of name-value groups. You can still
use a d1 for a list of terms and definitions, of course.

The dl element is flow content, requires an end tag, and can only contain dt and dd elements as its
children. A single term may have several associated descriptions, or a single description may apply to
several terms grouped before it. The list is segmented wherever a dt immediately follows a dd, marking
the beginning of a new sequence of terms and descriptions.

Required Attributes

The d1 element doesn’'t have any required attributes.

Optional Attributes

dt

There are no optional attributes for the d1 element.

The dt element, which can only contain text and/or phrase elements, designates a term or item being
described. A description term (or sequence of terms) is associated with every description that follows it
until a new dt element appears to begin a new sequence, or until the list ends with a </d1> end tag. You
can omit the </dt> end tag if the element is immediately followed by another dt element or a dd element.

Required Attributes

There are no required attributes for the dt element.

Optional Attributes

The dt element doesn't offer any optional attributes.

dd

102

The dd element contains a description of the dt element (or elements) that immediately precedes it. In the
case of multiple descriptions for a single term, each one should be wrapped in its own dd element. The dd
element is flow content and can contain text or other flow elements. If your description spans several
paragraphs, mark them up as paragraphs (p) in a single dd rather than as separate dds—the entire
contents of one dd element should comprise one description. The dd’s end tag is optional if the next
element is another dd, a dt, or if the next tag is a </d1> end tag.

Listing 4-24 shows the markup for a brief description list. In the example, the first term’s description
consists of two paragraphs, whereas the second term has two distinct descriptions.

Constructing Content

Listing 4-24. A description list featuring two terms

<d1>

<dt>Domino mask</dt>

<dd>
<p>A domino mask covers the area around and between the eyes,
offering maximum comfort, freedom, and visibility, but minimal
obscurity.</p>
<p>The name comes from the Latin <i lang="la">dominus</i>, meaning “lord”
or “master.”</p>

</dd>

<dt>Cowl</dt>
<dd>A head covering combining a hood and a collar or mantle.</dd>

<dd>A streamlined covering around an aircraft engine or personal jetpack.</dd>
</dl>

Most browsers will display dd elements slightly indented from their corresponding dt. When a dd contains
other structural markup (such as paragraphs), the default margins of that nested element will apply. As you
can see in Figure 4-11, the paragraphs in the first term’s description have default margins above and
below them, whereas the second term’s two descriptions have no top and bottom margins at all. You can
modify all of this, of course, with CSS.

Figure 4-15. The description list rendered with default browser styling

Required Attributes

The dd element doesn’t require any attributes.

Optional Attributes

There are no optional attributes for the dd element.

Phrasing Elements

We've covered most of the common elements you'll use to organize your content into sections, and to
break it down further into readable portions. Headings, paragraphs, and lists are the basic building blocks

103

Chapter 4

of structured text. In this next section, we’ll move inside the blocks to pick out smaller morsels of content
for special attention.

These elements are called phrasing elements because they're intended to wrap around a short string of a
few words, or even a single word, to give it added meaning and formatting that sets it apart from the other
words that surround it. These elements are all displayed as inline by default, they can only contain text or
other phrase elements, and all of them require an end tag.

Emphasis and Importance: em and strong

104

The em element adds emphasis to a word or phrase, and browsers typically style it in an italicized font. The
strong element adds strong emphasis to highlight words or phrases of greater importance than the
surrounding text, and it's usually styled in a bold font. Though graphical browsers usually style these
elements in italics or bold, don’t focus only on appearances; other devices may apply emphasis differently.
For example, screen-reading software used by the visually impaired might read the contents of an em or
strong aloud with different vocal inflections. These elements have real meaning, not just font styling. A
strong element says, “this is important, pay attention,” not just, “this text is bold.”

Listing 4-25 shows a passage of text with some emphasized phrases. For yet another level of emphasis,
you can combine the strong and em elements, effectively declaring that the text is both emphasized and
important, displayed in a font that is both italicized and boldfaced (see Figure 4-12).

Listing 4-25. A paragraph containing some emphasized phrases

<p>Please note: due to the accelerated decay rate of
phlebotinum isotopes upon activation, we cannot accept returns</em»
of opened vials of youth, growth, intelligence, or strength serums.
<strongs>All sales are final.</p>

Figure 4-16. The contents of em are italicized, the contents of S‘tl’ong are boldfaced, and the combined elements have
a combined style.

You can also nest em or strong elements, and the number of parent em or strong elements indicates the
relative level of emphasis or importance, as shown in Listing 4-26. An em within an em is extra-emphasized
and a strong inside a strong is super-important. The layers of emphasis are purely semantic and
browsers don't style these nested elements any differently than their parents, but you can easily change
that in your own CSS.

Listing 4-26. Nested em and strong elements imply higher levels of emphasis and/or importance

<p>Warning! these premises are protected by
cyborg space gorillas with laser eyes.
Enter at your own risk!</p>

Constructing Content

Required Attributes

There are no required attributes for the em or strong elements.

Optional Attributes

The em and strong elements don’'t have any optional attributes.

time

Introduced in HTMLS5, the time element represents either a precise time on a 24-hour clock or a specific
date on the calendar (with an optional time as well). The element was introduced to standardize the way
dates and times are marked up, so that browsers and web apps can potentially detect and read encoded
dates/times and, for example, allow you to add an appointment to your calendar, or alert you when there
are five minutes remaining to bid in an online auction. The possible applications for machine-readable
dates and times are limitless.

Dates in a time element must follow a specific format that scripts and user-agents can interpret: a four-
digit year, two-digit month, and two-digit day, in that order, separated by hyphens (YYYY-MM-DD). Times
in a time element must be on a 24-hour clock, not a 12-hour clock, so “2:45 pm” would be written as
“14:45”. There’s no default styling of time elements; they appear as regular text in whatever style they
inherit from their parents. Listing 4-27 shows two examples of time elements, marking a date and a time,
respectively.

Listing 4-27. Two examples of the time element

<p>We’1l be closed on <time»2012-05-05</time> but will reopen
at <time>08:00</time> sharp the following morning.</p>

The optional datetime attribute can carry the specific date and/or time in a machine-readable format,
freeing you to be more vague and human-friendly with your text:

<p>We’1l be closed on <time datetime="2012-05-05">Saturday, May 5</time>
but will reopen at <time datetime="08:00">8 am</time> the day after.</p>

A datetime attribute can include both a date and time, with the time preceded by T:

<p>We will reopen on <time datetime="2012-05-06T08:00">Sunday</time>.</p>

There are very specific requirements for formatting dates and times in a datetime
attribute, conforming to international standards. See the spec for much more detail:
w3.0rg/TR/html5/common-microsyntaxes.html#dates-and-times

Even with a datetime attribute, you should only use the time element for specific, known dates and times
like “August 8, 1961" or “10:02", not for vague terms like “fifty years ago” or “an hour from now,” nor for
time spans like “77 nanoseconds” or “13.7 billion years.” Dates must also be complete—with date, month,
and year—so don’t use a time element for partial or nonspecific dates like “December 20” or “1690” or

105

Chapter 4

“November, 2019.” Furthermore, dates are limited to the modern Gregorian calendar, introduced in the 16"
century, so don’t use the time element to reference dates in the distant past unless you can accurately
convert those dates to the Gregorian calendar. It's hard to pinpoint a date like “October 1, 2975 BCE”
because the month of October didn’t actually exist back then.

Listing 4-28 is an example of a time element indicating an article’s publication date. The datetime
attribute has a value machines can interpret, whereas the element’s text contents are intended for human
readers.

Listing 4-28. A time element indicating a precise date and time

<footer>
<p>Posted on <time datetime="2012-05-05T15:35:42-07:00">-
Saturday, May 5, 2012 at 3:35 pm Pacific</time></p>
</footer>

Required Attributes

The time element doesn't require any attributes if its contents are properly formatted.

Optional Attributes

= datetime: The precise date and/or time represented, with optional time zone offset. This
attribute’s value must be a valid date string, a valid time string, or combination of the two.

In late October 2011, the WHAT Working Group announced that the time element was being removed
from their working version of the HTML5 specification, to be replaced by a new data element that would
allow for the inclusion of more general-purpose, machine-readable data beyond just dates and times.
There was a fair bit of public outcry from web developers, citing many real-world uses for encoding times
and dates in ways that the generic data element couldn’t readily serve as substitute. The decision was
quickly reversed and time was restored to the spec, though slightly revised and now lacking the pubdate
attribute.

mark

106

The mark element highlights a segment of text for reference, to indicate its relevance in some other
context. The element imparts no further semantic meaning to its contents; it only marks the text as a
passage of interest. For example, you might use the mark element in a block quotation to highlight the
particular part of the text you're discussing or referencing, to focus the reader’s attention on some detail
while still including the longer quotation to preserve the original context.

It has long been common practice in journalism and academic writing to mark relevant passages with
italics or bold text, along with a disclaimer like, “emphasis added,” just to clarify for the reader that the
original text didn't stress those phrases. On the Web, this always required some other element (usually em,
strong, i, b, or even a span), but now the authors of HTML5 have provided the mark element for just this
purpose. Listing 4-29 shows the mark element calling out one part of a longer quotation.

Constructing Content

Listing 4-29. Using the mark element in a blockquote

<p>After several hours trying to determine why the loom wasn’t
powering up, we finally read the instruction manual:</p>

<blockquote>
<p>Before initializing the fluxomolecular extrusion loom,
ensure that all interlocks are active and dynatherms are
properly connected. You may need to <mark>step on the primary
samoflange several times</mark> before it engages.</p>
</blockquote>

<p>The samoflange was the source of our trouble. Unfortunately,
none of us even knew what a “samoflange” was.</p>

When the mark element occurs in regular, unquoted prose, it should call attention to words or phrases that
are relevant to the user’s current activities. The most common example is a page of search results, where
the terms your visitor sought are highlighted with mark elements. Those words might not be of special
significance in the original text as it was written, but the mark element points them out because they’re the
words your searcher was looking for. Automated scripts or server-side applications should usually insert
such action-oriented mark elements, and they likely won't be part of any handcrafted markup you author
yourself.

This is a new element in HTML5 so not all browsers give it any default styling, but those that do will
typically display the contents of a mark with a bright yellow background color and black text color—shown
in Figure 4-17—as if the text had been marked with a highlighter pen (of course, this is printed in black and
white, but it's really yellow, honest).

Figure 4-17. Text highlighted with the mark element

Required Attributes

The mark element doesn’t require any attributes

Optional Attributes

There are no optional attributes for the mark element.

107

Chapter 4

cite

108

The cite element designates the title of a quoted or referenced work: a book, poem, song, painting,
movie, magazine article, blog post, Wikipedia entry, technical specification, or what have you. In previous
versions of HTML, the cite element was intended for any cited resource, including the names of people.
But cite has been redefined in HTML5 to expressly forbid its use for the names of people (or other
entities); now you can only use cite for titles of cited works.

This decree seems arhitrary and unnecessarily limiting, but even worse, it breaches backward
compatibility with existing documents that rightfully used cite for names. But we’re in luck: validators can’t
read. There’s no way for any user-agent—be it validator or browser—to tell whether the contents of a cite
element are a title or a name, so this is one case where you shouldn’t feel too guilty about bending the
rules. Use cite for names if you like.

“But what about following the rules?” you ask, shocked at the very suggestion of going against the HTML5
specification. Well, in the case of the cite element, the spec authors based the decision on somewhat
flawed reasoning. Because most browsers display cite elements in italics, and titles are usually italicized
but names are not, it was decided that cite shouldn't be used for names. This new restriction is based on
the typical default styling of the element, not on its semantic function or real-world usage.

If you're a stickler for adhering to the theoretical purity of technical specifications, then by all means use
cite only for titles and never for names. But if your content includes a citation of a person, group,
company, character, or any other entity, especially in the context of a quotation, the cite element is a
semantically appropriate choice to mark their name. Perhaps, in time, the spec will be corrected.

For more on the flawed reasoning behind this limitation of the cite element, and how
our civil disobedience can bring about change in the specs, read Jeremy Keith's
wonderful rant, Incite A Riot (24ways.org/2009/incite-a-riot)

We've used the cite element three times in Listing 4-30: for a person’s name, the title of an article, and
the name of a publication. Only the title is “correct” according to the current HTML5 specification, but all
three are semantically correct for the content at hand.

Listing 4-30. Three different applications of the cite element

<p>Famed reporter <cite»Norm Deplume</cite> had this to say about
our shop:</p>

<blockquote cite="http://example.com/gadgets/PowerOutfitters/">
<p>Power Outfitters Superhero Costume and Supply Company is
located in a nondescript building on Kirby Ave, a site that
once housed a large printing plant. Behind their modest
storefront is an expansive warehouse positively packed to
the portholes with paraphernalia.</p>

</blockquote>

<p class="source"><citesWhere Do They Get Those Wonderful Toys?</cite»,
<cite>Cape and Cowl Quarterly</cite», August 9, 2011</p>

http://example.com/gadgets/PowerOutfitters/

Constructing Content

Web browsers usually display the contents of a cite element in an italicized font, as shown in Figure 4-18,
but—wait for it—you can change that with CSS. In the case of names that should not be italicized, you
could use a class attribute to distinguish cited names from cited titles: <cite class="name">, for
example.

Figure 4-18. Browsers italicize the cite element by default

Required Attributes

No attributes are required for the cite element.

Optional Attributes

There are no optional attributes for the cite element.

The q element marks up short, inline quotations (as opposed to blockquote, which you should use for
longer quotations of more than a sentence or two). Like the blockquote element, a q element may carry a
cite attribute to include the URL of the quotation’s source, as you see in Listing 4-31.

Listing 4-31. The q element with a URL in a cite attribute

<p><cite>Norm Deplume</cite>, gadget reporter for <cite>Cape and Cowl-=
Quarterly</cite>, was impressed by our wide selection, saying that

our warehouse is <q cite="http://example.com/gadgets/PowerOutfitters/">-=
positively packed to the portholes with paraphernalia.</q></p>

A web browser should automatically render the opening and closing quotation marks at the beginning and
ending of a q element, so don’t add your own quotation marks with the quoted text. Furthermore, only use
the q element for actual quotations from a source, not simply to generate punctuation. Don’'t use a q
element to denote example terms or sarcasm; use regular quotation marks for so-called “mock quotes.”

Some older browsers (most notably Internet Explorer) didn’t generate any punctuation
around g elements, so for years many web authors avoided the element entirely. But all
current versions of major web browsers—including IE since version 8—display
automatic quotation marks for the g element.

109

http://example.com/gadgets/PowerOutfitters/

Chapter 4

Figure 4-19 shows the quotation from Listing 4-31, complete with automatic punctuation.

Figure 4-19. The browser generates the quotation marks before and after the q element

Required Attributes

The q element doesn’t have any required attributes.

Optional Attributes

= cite: The URL of the quotation’s original source.

dfn

The dfn element denotes the defining instance of a term, especially one that may reoccur throughout the
rest of the document. If the term is defined in context, the dfn element alone is enough to indicate that a
new word has been introduced. If the term’s meaning isn’'t made clear by the adjacent text, you should
include a brief definition in a title attribute. Browsers usually display a dfn in an italicized font to set it off
from the surrounding text.

Listing 4-32 shows an example of a dfn element that includes a short definition in its title attribute.

Listing 4-32. A dfn element with a definition in its tit1le attribute

<p>For added coverage, protection, and identity obfuscation, select

from our wide variety of <dfn title="A head covering combining a hood-
and a collaxr or mantle">cowl</dfn> designs. We have cowls with ears,
horns, wings, spikes, lightning bolts, or even plain; whatever your
motif, we can hide your face in style.</p>

Required Attributes

There are no required attributes for the dfn element.

Optional Attributes

The dfn element doesn't have any optional attributes.

abbr

The abbr element indicates an abbreviation—a shortened form of a lengthy term. For example, etc. is an
abbreviation of et cetera (the Latin phrase meaning “and so forth”), and Inc. is an abbreviation of
Incorporated. Abbreviations can also be formed from the initial letters of a multiword phrase such as ATM

110

Constructing Content

for Automatic Teller Machine or CSS for Cascading Style Sheets, or from initials extracted from the
syllables of a long word, such as DNA for deoxyribonucleic acid (these are also called initialisms).

An acronym is a specific type of abbreviation, being a pronounceable word formed from the first letters of a
multiword phrase—laser from light amplification by simulated emission of radiation and PIN from personal
identification number—or the first portion of each word, as in retcon from retroactive continuity and
sysadmin from system administrator.

Previous versions of HTML included an acronym element specifically for marking up acronyms as a
distinct type of abbreviation, but browser support for acronym is still inconsistent after all these years, and
web authors are often confused about when to use abbr or when to use acronym. HTML5 has eliminated
these problems by eliminating the acronym element altogether. Acronyms are abbreviations themselves,
so the more general abbr element covers acronyms as well.

Use the abbr element similarly to dfn to point out the defining instance of an abbreviation, the first time it's
introduced in a body of text. You can use the abbreviation in text thereafter without any special markup. Of
course, not every abbreviation needs to be called out: common ones such as etc. and Inc. probably don’t
require explanation. Use your best judgment based on your understanding of the content and your
audience.

An abbr element can (and usually should) include the expanded form of the term in a title attribute. As
with the dfn element, if the abbreviation is explained in the regular text, expanding it in a title attribute
isn't necessary. However, if a title attribute is present, its value must be the expanded form of the
abbreviation and nothing else.

Listing 4-33 shows two ways to introduce an abbreviation in text.

Listing 4-33. Abbreviations marked up with the abbr element

<blockquote>
<p>After the <abbr title="Electro-Magnetic Pulse">EMP</abbr> incapacitated
all my electronics, I feared I would be trapped on that rooftop without the
use of my anti-gravity belt. Luckily I still had my trusty Gravity-Assisted
Descent Grapple Extension Tool (<abbr>GADGET</abbry) from Power Outfitters.
Its double-braided polyfiber construction is purely analog, and thus immune
to all electro-magnetic disturbances. I rappelled down with easel</p>

</blockquote>

Some browsers (like Firefox for Mac, shown in Figure 4-20) display an abbr element with a dotted
underline if it carries a title attribute, and no decoration if the attribute is absent. Other browsers don't
apply any default styling to abbr elements at all. Most browsers do display the value of the title attribute
in a “tooltip” when the user’s pointer lingers over the element, to reveal the extended form of an
abbreviation.

111

Chapter 4

Figure 4-20. Some browsers add a dotted underline to abbreviations, and most show title attributes in tooltips

Required Attributes

The abbr element doesn't require any attributes.

Optional Attributes

There are no optional attributes for the abbr element apart from the standard global attributes.

small

112

The small element indicates a side note or fine print relating to the main text. This might be a disclaimer,
clarification, citation, attribution, restriction, or a copyright or licensing notice. It's not intended for long
passages of text, only short phrases inline with other text, or sometimes in a footnote at the end of an
article or document. The small element indicates that its contents are supplemental to the main text but
not any less important, and a small doesn't serve to “de-emphasize” phrases within a passage already
emphasized by the em or strong elements.

This element is a carryover from past versions of HTML, where it was essentially a presentational element
that only denoted small text. Authors often used the small element for such fine print, and so HTML5 has
adopted and standardized that practice, giving the element more semantic purpose. Use the small
element to include these meaningful notes in your content, but don't use it just to make your text appear
smaller; that would be presentational markup.

Previous versions of HTML offered a counterpart big element, which only denoted
larger text and served no purpose beyond presentation. The big element is obsolete in
HTMLS5.

Listing 4-34 shows a small element marking an inline disclaimer.

Listing 4-34. Small print in a small element

<p>We do tailoring and alterations, too! Our clothiers are the best
in the business and can accommodate even the most anomalous physiques.
<small>Fittings are by appointment only so please call ahead.</small></p>

As you'd probably expect, browsers render the contents of a small element at a slightly smaller font size
than the adjacent text (see Figure 4-21). This is proportional to the font size of the parent element; if you
declare a large font size in your style sheet for the parent element, a small will be slightly smaller than
that, whatever that size happens to be.

Constructing Content

Figure 4-21. The contents of small are proportionally smaller than the surrounding text

Required Attributes

There are no required attributes for the small element.

Optional Attributes

The small element doesn't offer any optional attributes.

span

The span element is a generic phrase element to set apart an arbitrary segment of text, whether to act as
a “hook” for CSS styling, or to carry additional information about its contents through attributes in the
opening tag. A span is semantically neutral, and imparts no further meaning to its contents except
to say, “this text is somehow different.” As with its cousin the div, you should use a span only when a
more semantically valuable element doesn't fit the bill.

Listing 4-35 shows a span within an h1 heading to distinguish the “last updated” date from the other
heading text. You could then style the contents of this span with CSS to appear different from the rest of
the heading. Other elements (i or b, perhaps) could serve the same purpose but they might imply
unwanted emphasis; this text isn’t special, it's just different.

Listing 4-35. A span in a heading

<h1>Latest News <spansLast updated on August 14</h1>

Required Attributes

No attributes are required for the span element.

Optional Attributes

The span element has no optional attributes.

Programming: code, kbd, samp, and var

HTML offers a number of elements specially intended for marking up computer code, allowing computer
scientists, programmers, and web developers to publish and share their work.

113

114

Chapter 4

The code element can designate any sort of computer code. It's not specific to any programming
language, so its contents could be HTML, CSS, JavaScript, Python, Perl, C#, or any computer language
that needs to be distinguished from surrounding human-language content:

<p>You can declare fonts in CSS with the <code>font-family</code> property.</p>

The kbd element defines text or commands that the user should enter (usually by keyboard, though it
could be a voice or menu command), whereas the samp element illustrates sample output of a program or
script:

<p>At the prompt, enter your username, <kbd>henchman21</kbd>,
and your password. If it’s accepted, the display will read
<samp>ACCESS GRANTED</samp> and the portal will activate.</p>

The var element designates a programming variable or argument, or a variable in a mathematical
expression. You can also use var in normal prose to mark a placeholder term:

<p><vars>Something</vars-Man, <vars>Something</var»-Man,
does whatever a <vars>something</var> can.</p>

The code, kbd, and samp elements are frequently combined with the pre element to preserve the
formatting of their contents, as you can see in Listing 4-36.

Listing 4-36. A JavaScript function marked up with a code element

<pre><code>
function helloWorld() {
var button = document.getElementById("button");
if (button) {
button.onclick = function(){
alert("Hello, World!");
}
}

</code></pre>

To aid readability, most browsers display code, kbd, and samp elements in a monospace typeface—one in
which every character is the same width, such as Courier. The var element is usually rendered in an
italicized font. Figure 4-22 shows all the previous examples together.

Constructing Content

Figure 4-22. Programming-related elements with default styling

Required Attributes

There are no required attributes for these programming-related elements.

Optional Attributes

These programming-related elements don’t feature any optional attributes.

Revisions: del and ins

There may be times when you need to update a phrase in your document but would like to clearly indicate
what was updated. This is a job for the del and ins elements: del indicates deleted text, and ins
indicates inserted text. Both del and ins may optionally include a cite attribute bearing the URL of a
page with details about the change and a datetime attribute to mark the date and time the revision was
made. You can also include a short note about the change in a title attribute, as Listing 4-37 shows.

Listing 4-37. Revisions noted with the del and ins elements

<p>We’1l be closed on <del datetime="2012-04-19">Friday
<ins datetime="2012-04-19" title="minoxr shipping delay"»>Saturday</ins>
for installation of a new fluxomolecular extrusion loom.</p>

Most web browsers display the contents of del as a strikethrough (a horizontal line drawn through the
text), and display the ins element as underlined text, as shown in Figure 4-23. It's conventional for
inserted text to follow the deleted text.

115

Chapter 4

Figure 4-23. Deleted text is displayed with a strikethrough, and inserted text is underlined

Required Attributes

There are no attributes required for the del and ins elements.

Optional Attributes

= cite: The URL of a document featuring information on why the change was made

= datetime: The date and/or time the change to the document was made

As covered earlier in this chapter (see the time element), there are strict rules dictating
the format of machine-readable dates and times in a datetime attribute. You can find
much more detailed information in the HTML5 specification:
w3.0rg/TR/html5/common-microsyntaxes.html#dates-and-times

Offset Text: i, b, u,and s

116

In the days of yore, before CSS was widely adopted, a number of elements existed in HTML strictly for
styling text: i for italic, b for bold, u for underline, and s for strikethrough. None of these elements carried
any additional meaning or imparted any real semantic value to their contents; they only affected visual
presentation.

Yet they were still sometimes useful, even after CSS came to the fore and authors learned to eschew
presentational markup. Sometimes you really do just want to style some text in an italicized font without
adding any deeper emphasis. Sometimes bold text is only bold, not important. In a noble effort to avoid all
outdated, presentational markup, some authors resort to things like , which just
completely misses the point.

HTMLS5 has resurrected these presentational elements and imbued them with new meaning. They're still
essentially stylistic, but with their newfound sense of purpose they're no longer semantically worthless.
The i, b, u, and s elements now represent offset text; a word or phrase that is different from the
surrounding text for a reason. Even so, you should only use these elements when they really are the most
appropriate for the content, and when a more meaningful element would add more meaning than you
intend.

The i element represents a word or phrase in an alternate voice, such as a few words in a foreign
language, a taxonomic or technical name, or a character’s inner monologue. This text is typically styled in
an italic font, but doesn’t warrant the greater stress or emphasis that the em element would apply.

<p>As the saying goes, <i lang="la"sQuis custodiet ipsos custodes?</i></p>

Constructing Content

The b element calls attention to a word or phrase, but doesn't imply the greater importance that a strong
element does, nor the alternate voice or mood that an i element indicates. You might use the b element to
mark the key words in a summary, the leading sentence in an article, a “drop cap” at the beginning of a
chapter, or product brand names in a review.

<p>Our shrink rays operate via transdimensional mass exchange, not
intra-molecular compression</b», so they’re safe for everyday use.</p>

The u element underlines text, and can be used for marking text with non-textual annotations such as
proper names in Chinese text, or for marking misspelled words. Because links are conventionally
underlined, avoid using the u element where it might be mistaken for a link. There are very few cases
where a u element would be appropriate at all; another element will almost always be more fitting.

<p>She wrote in her letter, <g>my compact <u class="sp" title="sic">lazer</u»
torch has helped me out of more jams than I can count.</q></p>

The s element indicates text that is no longer accurate or no longer relevant, and has thus been stricken
through or crossed out, like the original price of an item currently on sale. This isn’t the same as deleted or
replaced text, which calls for the similarly styled del element. Stricken text is still there for reading, it's just
outdated or inaccurate.

<p>V900 Shrink Ray: <s class="reg-price"»$10,799</s> marked down to
<strong class="sale-price">$9,799, this week only!</p>

Figure 4-24 shows the default styling for all four of these offset text elements. In keeping with their
newfound semantic significance, don’t assume these elements have to be styled according to the classic
browser defaults. A b element doesn’t have to be bold and a u element doesn’t have to be underlined; you
can change these default styles with CSS.

Figure 4-24. Offset text with default styling

Required Attributes

There aren’t any required attributes for the i, b, u, or s elements.

117

Chapter 4

Optional Attributes

The i, b, u, and s elements don’t have any optional attributes.

Superscript and Subscript: sup and sub

You may occasionally need to include superscript or subscript characters in your text, especially if you're
writing about mathematics or chemistry, or in certain languages that require it (French, for example). In
these cases, you can use the sup and sub elements, for superscript and subscript, respectively.
Superscript text is raised slightly higher than surrounding text, whereas subscripts are slightly lower.
Listing 4-38 shows an example of these elements: sup appears in the Pythagorean theorem for calculating
right triangles, and sub in the chemical formula for sulfuric acid.

Listing 4-38. Examples of the sup and sub elements

<p>a² + b² = c²</p>

<p>H¢sub>2</sub>S0₄</p>

Figure 4-25 shows how a browser renders these elements. The contents of both elements appear slightly
smaller than the ordinary text around them.

Figure 4-25. The sup and sub elements

Whereas the sup and sub elements may seem presentational, when used appropriately they communicate
more meaning than a span would. A superscript numeral in a mathematical formula can signify an
exponent, so wrapping that numeral in a sup element would be preferable to styling it strictly with CSS; the
sup element itself carries that stylistic meaning. The element in that context says, “this is an exponent,” not
merely “this is raised text.” Exercise your own judgment and use these elements only when the content
warrants it.

Required Attributes

The sup and sub elements don’t require any attributes.

Optional Attributes

There are no optional attributes for the sup or sub elements.

Text Annotations: ruby, rp, and rt

118

Ruby text is a small annotation that appears alongside other text, most commonly to act as a pronunciation
guide in logographic languages like Chinese, Japanese, and Korean. These languages may have

Constructing Content

thousands of written characters, and even life-long native speakers will often encounter unfamiliar
symbols. Furthermore, the same character may have very different meanings in different contexts or when
spoken in different tones, so pronunciation hints can be vital to understanding the written text.

You can see an example of Japanese ruby text in Figure 4-26, where the smaller characters act as a
pronunciation guide for the larger characters beneath them (ruby annotations are also called furigana in
Japanese).

Figure 4-26. An example of Japanese ruby text

HTMLS5 introduces a set of elements specifically to mark up ruby text. The ruby element indicates a word
or phrase that includes ruby text annotations, and an rt element indicates each annotation. Listing 4-39
shows an example in Chinese with pinyin phonetic pronunciation hints.

Listing 4-39. The Chinese name for San Francisco, with ruby annotations for each character

<p lang="zh">
<ruby>

[Hert>jiuc/rts
<rt>jine/rts

ti¢rtyshan</rt>

</1uby>
</p>

As you see in Figure 4-23, each annotation is rendered above the character(s) preceding it, and at a much
smaller font size by default.

Figure 4-27. Ruby text rendered in a supporting web browser (Chrome, in this case)

Ruby text can also offer translations or an explanation of a character’s meaning, instead of (or in addition
to) pronunciation hints:

<p lang="zh"><ruby>|H& Il <rt>San Francisco</xt></ruby></p>

These are new elements, so not every browser supports them yet, but there are ways to compensate for
lack of browser support and offer a readable fallback. The rp element indicates ruby parentheses, which

119

Chapter 4

are hidden in browsers that support the ruby, rt, and rp elements, but will be visible in browsers that
don’t recognize these elements. Each single parenthesis should be enclosed in an rp element, with the rt
element in between, as you see in Listing 4-40.

Listing 4-40. The Ip element hides Iuby parentheses from supporting browsers

<p lang="zh">
<ruby>

[Bexpy> (</xp><rt>jiuc/rto><rps) </rp>
Scxpy (</Tp><rt>jin</rt><xpy) </1p>

thi<xp> (</xp><rt>shan</rt><xp>) </rp>
</1uby>
</p>

In browsers that don’t recognize these elements and/or apply no default styling, the annotations will simply
appear inline after the base text they reference, just as if the ruby elements weren’t present at all (see
Figure 4-28).

Figure 4-28. Ruby text as rendered by a browser that doesn't recognize the It or Ip elements

For even more information on when, how, and why to use ruby text, along with more examples of practical
usage, see Oli Studholme’s indispensible article at HTML5 Doctor, The ruby Element and Her Hawt
Friends, rt and rp (html5doctor.com/ruby-rt-rp-element/)

Required Attributes

The Iuby, rt, and rp elements don’'t have any required attributes.

Optional Attributes

There aren’t any optional attributes for the ruby, rt, or rp elements.

The term “ruby text” is old British typesetter’s jargon referring to very small type, roughly
5.5 points, which was often used for between-the-lines annotations. Why they called this
particular type size “ruby” is a mystery lost to time. Other sizes of type had names like
diamond, pearl, brilliant, great primer, and paragon. Those old printers were an odd
bunch.

Bidirectional Text: bdi and bdo

Written languages are read either from left to right (like English, Spanish, German, Malay, or Hindi) or from
right to left (like Arabic, Persian, or Hebrew). Documents written predominantly in one language may still

120

Constructing Content

sometimes include words or phrases from other languages, and when that other language is read in
another direction from the surrounding text, the result is bidirectional text (also known as bidi text, for
short).

Unicode—a standard for digital text encoding—carries instructions for text direction encoded within the text
itself. A user-agent that supports Unicode will follow a standard algorithm to render text in the proper
direction. But there are some unusual circumstances in which this algorithm causes adjacent text to be
reordered incorrectly. These specialized HTML elements can compensate for calculation errors on those
rare occasions when the Unicode bidirectional algorithm produces the wrong rendering.

The bdi element (bidirectional isolate) isolates a portion of text so it can be automatically formatted in a
direction different from the text surrounding it. This element is most useful when the direction of the text
may be unknown, especially user-generated content like usernames or comments. Wrapping such content
in a bdi element instructs the browser to treat that span of text's directionality separately from the
directionality of its parent, setting the element’s direction to “auto” and allowing the Unicode directionality
of the content to take over. This is a new element in HTML5 and most browsers don't yet support it, but
they will soon.

For more on the bdi element, including some practical usage examples, see Richard
Ishida’s aptly-titled post, HTML5’s New <bdi> Element (rishida.net/blog/?p=564).

The bdo element (bidirectional override) defines a segment of text where the direction is explicitly reversed
from the direction of the text that surrounds it (as inherited from the parent element), or reversed from the
calculated direction (as determined by the Unicode bidirectional algorithm). The bdo element requires a
dir attribute to carry that explicit direction, with a value of either 1tr for “left to right” or rtl for “right to
left.” This element has been around much longer than bdi and current browsers support it fully.

Listing 4-41 shows the bdo element used as if the offset word were written in a different language from the
rest of the document. This example uses English text for demonstration purposes only—you would never
do this in reality.

Listing 4-41. The bdo element in action

<p>A passage containing one <i lang="en"><bdo dir="rtl"sreversed</bdo></i> word.</p>

Figure 4-29 shows that the web browser reverses the text automatically

Figure 4-29. The contents of the bdo element are displayed in the direction specified by the dir attribute, regardless of
language or text encoding

Both of these elements are uncommon (especially the brand new bdi element) and you may go your
entire life without ever using them. But if you work with multilingual documents or are building a site that
needs to accept bidirectional input from users, these elements may come in handy.

121

Chapter 4

Required Attributes

The bdi element doesn't require any attributes. The bdo element requires a dir attribute:

= dir: The direction in which the enclosed text should be read: either 1tr or rtl

Optional Attributes

The bdo and bdi elements don't have any optional attributes.

Line breaks: br and wbr

122

Long lines of text on a web page wrap naturally to a new line when they reach the edge of their container,
with the break occurring in the space between two words. However, you may sometimes need to force text
to wrap to a new line at a specific point. The br element creates a line break for just such occasions. It's a
void element, so it has no text content and consists of a single tag, which you can optionally close with a
trailing slash (<bx/>), XHTML-style.

You saw some line breaks when you read about the address element earlier in this chapter. Listing 4-42
shows another address, and this time its contents are all on a single line with brs inserted at strategic
points.

Listing 4-42. Contact information with inserted line breaks

<address>
Jon Hicks <brsIllustrator, cheese enthusiast
hicksdesign.co.uk
</address>

Browsers ignore carriage returns in markup, but will forcefully break a line of text where directed, as you
see in Figure 4-30.

Figure 4-30. The text wraps to a new line at the specified points

In the past, line breaks were often misused by stacking several in a row to increase white space between
elements on the rendered page, to form lists by breaking between items, and to simulate the appearance
of paragraphs by forcing line breaks between blocks of text. Don’t commit these presentational hacks. Use
CSS margins, padding, and positioning to add space, and mark up lists and paragraphs as lists and
paragraphs. You should use the br element sparingly and only when the text requires it.

The wbr element represents a line break opportunity, a point in an otherwise continuous word where
browsers may wrap it to a new line if necessary, to aid readability or prevent text from overflowing its
containing element on the rendered page. It's a new element in HTML5 so older browsers don’t support it,
but most current browsers do. This is also a void element that can’t hold any contents and has no end tag.

Constructing Content

Listing 4-43 shows a ridiculously long, continuous word with no breaks where a browser can automatically
wrap the text to a new line (we've had to force line breaks in this book, so just imagine this was a single
line of code). Without a breaking space where the text can wrap to a new line, this word will overflow its
container, as you can see in Figure 4-31.

Listing 4-43. A long, unbroken word

<section>
<p>Overcome with sorrow and rage, he broke free of the restraints-=
and bellowed to the heavens, “N0O0O00000000000000000000000000000000™*
00000000000000000000000000000000000! ! 17</p>

</section>

Figure 4-31. The non-breaking word overflows its container

This sort of non-breaking content doesn’'t come up often, but it does come up. Some URLs can be very
long, for example, and don’t contain spaces so they're treated as single words. HTML5 has at long last
provided a solution. In Listing 4-44, the wbr element adds points where a browser can break the word onto
a new line when it needs to. The element itself is completely invisible.

Listing 4-44. Adding WbT elements to an otherwise unbroken word

<section>
<p>Overcome with sorrow and rage, he broke free of the restraints-=
and bellowed to the heavens, “N0O00000000<wbxr>0000000000<wbx >
0000000000<wb1>0000000000<WbT >0000000000<WbT>0000000000<WbT >
0000000000! ' 1”</p>

</section>

You can see the result in Figure 4-32.

Figure 4-32. The word wraps to new lines where a WbT indicates a breaking point in the markup

Required Attributes

The br and wbr elements don’t have any required attributes.

123

Chapter 4

Optional Attributes

There are no optional attributes for the br or wbx elements.

Older versions of HTML featured a clear attribute for the br element, giving browsers
instruction on how text and other elements should flow around the line break. This
presentational attribute is obsolete now, replaced by the equivalent clear property in
CsS.

Special Characters

124

You know by now that an HTML document is simply plain text. There's nothing special at all about the file
format; it's just written in a language that web devices are programmed to understand. Tags within that
plain-text document are enclosed by angle brackets (< and ») to distinguish the tags from ordinary text.
When a browser encounters those symbols, it can assume it's dealing with markup and behave
accordingly. This raises one issue, of course: what if you need to use angle brackets in your text? If the
browser treats them as part of a tag, the entire page might fall apart.

HTML includes a large number of character references, which offer a way to encode special characters
that aren’t part of the regular English alphanumeric set of characters (A-Z, a-z, 0-9, and most common
punctuation). A character reference begins with an ampersand (8) and ends with a semicolon (;). Between
those symbols there are two different ways to invoke the special character you desire: with a character
entity name or a numeric character reference.

A character entity name is simply a predefined name referring to a particular symbol, like a nickname. The
entity for the “less than” symbol (<) is &1t ; and its counterpart, the “greater than” symbol (>), is > ;. You
can use these entities to render the symbols in your content and prevent them from being treated as tags.

Your other option, the numeric character reference, refers to a character by its assigned Unicode number,
and is specified by an octothorpe (#) after the ampersand. The numeric character reference for the “less
than” symbol is < and “greater than” is >. Most of the time, the much-easier-to-remember entity
names are sufficient, but some more obscure symbols may not have entity names.

In XML or XHTML, encoding special characters in this manner is known as escaping,
because these embedded codes are excluded from the regular XML parsing. If you're
authoring XHTML, one character you must be careful to escape is the ampersand itself;
a non-escaped ampersand in your XHTML markup will be treated as the beginning of a
character reference. In order to display an ampersand in an XHTML document, encode
it with the entity 8& or the numeric reference &. This also goes for ampersands
in URLs within an attribute (such as cite, src, or href). HTML5 is much more forgiving
and doesn'’t require escaping ampersands.

Constructing Content

Table 4-1 lists some of the most common (and useful) characters you may need,

and you can find more at

entitycode.com.
Table 4-1. Common character references
Character Description Entity Numeric Reference
& ampersand & &i38;
< less than < <
> greater than dgt; &i62;
left single quotation mark | 81squo; &18216;
' right single quotation ’ &18217;
mark (or apostrophe)
“ left double quotation “ &18220;
mark
right double quotation ” ”
mark
non-breaking space
horizontal ellipsis … …
. bullet • &18226;
- en dash – –
— em dash — —
© copyright © ©
™ trademark ™ ™
® registered trademark dreg; &t174;

Styling Content with CSS

A browser’s built-in default style sheet gives most content the simple styling it needs to be at least
readable. Headings will appear at different sizes, list items will each appear on their own line with a

marker, an em is italicized, a strong is bold, and so on. But these minimal styles are just that: minimal.

They're intended for functional, utilitarian purposes, and aren’t exactly attractive. You've seen many
examples of default browser styling in this chapter. It hasn’t been pretty.

125

Chapter 4

In this section, you'll learn how to override some of these default browser styles with style rules of your
own. This is only a starting point, and we can’t hope to teach you everything there is to know about CSS in
a single book—especially when we're also trying to teach you everything about HTML5 at the same time.
But one must walk before one can run.

Establishing New Elements

Every graphical web browser has a built in style sheet that defines the basic default styles for most
elements in HTML. That's assuming, of course, the browser recognizes the elements and includes rules
for it in its style sheet. The HTML5 standard is still taking shape, and introduces many new elements and
attributes that didn’t exist in any previous version. Many of the latest versions of web browsers are already
integrating support for these new elements, but older versions—and mind you, that “older version” might
be only a few weeks old—don't yet recognize the new elements and don't apply any default styling at all.

To make sure those older browsers can properly display your HTML5 pages, you should include a few
basic rules at the beginning of your style sheet, just to do what a newer browser’s default style sheet will
do automatically. The following simple style rule, added at the beginning of your style sheet, will establish
many of the new HTML5 elements as block-level elements, priming them for laying out your pages with
later style rules:

section, article, aside, header, footer,
nav, hgroup, figure, figcaption {
display: block;

As you can probably deduce, this simple rule declares that all these elements—section, article, aside,
header, footer, nav, hgroup, figure and figcaption—should be rendered on a new line and expand
to fill the available width.

The IE Problem

126

A rendering engine is the part of a graphical web browser’s program that interprets CSS, applying style
rules to elements in the HTML document and converting that code into an on-screen image. The rendering
engine reads a selector in a style rule to locate the HTML elements to which that rule applies. When the
browser finds a matching element in the document, it will try as hard as it can to style that element
according to your instructions. If it doesn’t find a matching element, the browser ignores that style rule and
moves on to the next one.

Most browsers and their built-in rendering engines are generally element-agnostic, and will happily apply
CSS to any element that matches a given selector, regardless of what else it may or may not know about
that element. You could, in theory, make up any elements you like—<animal>cat</animal>,
<spoiler>Rosebud is the sled</spoiler>, or <soundeffect>ZZZAP!</soundeffect>—and style
them with CSS and most browsers will happily oblige you. Go on, try it. The elements won't be valid and
won’t have any standardized function or semantic value, and you should never commit such shenanigans
in reality (unless you’re using an extensible markup language that allows that sort of thing). But when it
comes to a strictly visual rendering, the browser simply doesn'’t care.

Constructing Content

Internet Explorer for Windows is the notable exception. That browser’s rendering engine has a list of HTML
elements it recognizes, and if an element doesn’t appear on that list, IE will simply refuse to style it at all.
Older versions of IE prior to version 9 didn’t recognize the new elements introduced in HTML5 such as
section, article, nav, figure, time, mark, and so on. These elements didn't exist when those versions
of IE were released, so they're not on the list and IE won't let them into the style party.

But all is not lost! There’s an interesting quirk in IE’s rendering engine: if you use JavaScript to create an
element (via the createElement method), it's automatically registered in the document object model and
IE will suddenly become aware that elements by that name exist. IE will begin styling those previously
unrecognized elements just as it would a paragraph or div or any other element it already understands.
It's as simple as:

<script>

document.createElement("article");
</script>

This single line of JavaScript makes IE aware of any instances of the article element and it will apply
your CSS rules to those elements without complaint. You can repeat the same for all the other new
structural elements, but HTML5 wiz Remy Sharp has made it even easier for you. He’s concocted a simple
and tiny JavaScript library, dubbed the HTMLS5 shiv (http://code.google.com/p/html5shiv/), that you
can include in the head of any web pages you build with the new HTML5 elements and it will trigger
rendering support for all of those new elements in older versions of IE.

The unfortunate downside is that anyone using an outdated copy of Internet Explorer with JavaScript
disabled won't experience your website in its fully-rendered CSS glory. Think about your content and your
users, and test your pages thoroughly. If you need to offer fully-rendered pages to people using outdated
versions of IE who have also turned off JavaScript—a minority, perhaps, but they’re out there—you might
need to refrain from using these newer structural elements, or at least refrain from styling them with CSS.
You could still build them into the document for their semantic utility and for forward compatibility, but you
might need to direct your CSS rules to more established elements for your layout and design.

Declaring Base Font Styles

A graphical web browser draws text on-screen using font files installed on your visitor's computer.
Unfortunately, this usually limits your options to the few typefaces that are very common in most operating
systems—ones with familiar names such as Times New Roman, Helvetica, Arial, Verdana, Georgia,
Trebuchet, and Courier. CSS3 brings the @font-face rule, a means of embedding third-party fonts in a
style sheet that a browser can download and use temporarily to render the page.

We'll cover embedding web fonts in a later chapter, but you should first understand how to use and work
with the user’s native fonts. You can still achieve great things even with a limited palette. Good typography
is about more than just choosing a nice typeface; it's also about how you arrange text on the page.

Font Family

A font family is, well, a family of fonts. Also called a typeface, a font family consists of a set of variations on
a single type design. The typeface known as Times New Roman, for example, includes normal, italic, bold,

127

http://code.google.com/p/html5shiv/

128

Chapter 4

and bold italic versions in a range of sizes. Each of these variants is actually a distinct font—*12 point
Times New Roman bold” is one font within the Times New Roman font family. These days, the terms
“font,” “typeface,” and “font family” are often used interchangeably.

In CSS, a font family is declared using the font-family property, followed by a comma-separated list of
your desired typefaces, in order of preference. When a browser renders the page, it looks on the user’s
computer system for the first listed font family. If it doesn't find that one, it will continue to the next, and so
on until it finds a font in the stack that your visitor has installed. If it doesn't find any, the browser will simply
fall back on its default typeface.

Listing 4-45 shows an example of a CSS style rule declaring a sequence of font families for the body
element.

Listing 4-45. Declaring a font family

body {
font-family: Georgia, "Times New Roman", Times, serif;

}

The typeface Times New Roman has a name that includes spaces, so its name appears
in quotation marks to group those words together. Font families with single-word names
don't require quotes.

One very important aspect of CSS is the concept of inheritance. The values of some properties in CSS can
be passed down from an ancestor element to its descendant elements, including most font-related
properties. Because every element on the page is descended from the body element, they will all inherit
their font styles from that common ancestor, without the need to re-declare the same styles over and over.
You can then override or alter this base font family for different elements elsewhere in your style sheet.

Revisiting the style rule for the body element, perhaps you've decided you'd prefer a sans serif typeface,
such as Calibri. Although Calibri is fairly common, not every computer has it installed. If the browser
doesn't find Calibri the next best choice might be Helvetica, and if your reader doesn’t have Helvetica
installed, you might grudgingly accept Arial as a last resort. If your reader has none of these fonts, then
you'd at least like the text to be drawn in some kind of sans serif typeface, so you should end with the
generic family name, sans-serif (the phrase “sans serif” must be hyphenated in CSS). Listing 4-46
shows the revised rule.

Listing 4-46. The updated font-family declaration, now with sans serif typefaces

body {
font-family: Calibri, Helvetica, Arial, sans-serif;

You can see a “before and after” view of a sample web page in Figure 4-33. The left side shows the text in
the default browser font (Times, in this case), and the right shows the same text in Calibri after the new
CSS has been applied.

Constructing Content

Figure 4-33. Some text rendered in the browser’s default typeface, and then in Calibri

GENERIC FONT FAMILIES

There are five generic font family names built into the CSS language. Using any of these in a font-family
declaration will instruct the browser to render text in whatever default typeface it's configured to use for
that generic family.

serif: Atypeface featuring serifs, which are ornamental crosslines at the ends of
a character’s main strokes. Times New Roman and Georgia are serif typefaces.

sans-serif: Literally, “without serif”; a typeface that lacks those ornamental
flourishes. Helvetica and Arial are sans serif typefaces.

monospace: A typeface in which every character, including punctuation, occupies
the same width. Courier and Monaco are monospace typefaces.

cursive: Afancy typeface modeled after handwriting. Brush Script MT and Apple
Chancery are common cursive typefaces.

fantasy: A decorative or highly stylized typeface. Impact and Copperplate are
common fantasy typefaces.

Serif typefaces are best for print, as they remain readable at small sizes. On screen, however, the fine
points of the serifs tend to be lost or blocky when rendered in pixels, so sans serif typefaces are generally
easier to read on the Web (though serifs can be quite lovely at larger sizes). Monospace typefaces are best
for displaying computer code, where it's important to accurately make out each and every character.
Cursive and fantasy typefaces are more decorative and can be difficult to read so they should only be used
for large headings, or avoided entirely; never use a cursive or fantasy typeface for body text.

Font Size

We've changed the font family, but what about the size? Most browsers today render body text at a default
size of 16 pixels, which is a good average size, but might not be exactly what you want. You can change

129

Chapter 4

this with the font-size property, and by applying the declaration to the body element every other element
on the page will inherit the same value. Listing 4-47 shows the style rule with a font-size declaration
added, setting the base size to 14 pixels.

Listing 4-47. A font-size declaration has been added to the body style rule

body {
font-family: Calibri, Helvetica, Arial, sans-serif;
font-size: 14px;

}

Figure 4-34 shows the change in text size.

Figure 4-34. Text rendered at the browser’s default size, then at 14 pixels

The heading, an h1, is also just a bit smaller than it was previously. The default font size of headings is
relative to the base size for normal text. When the font size changes for the body element, the headings
change in proportion to that value. But if you're not happy with the heading at its default size, you can
modify it with a new style rule—this time for the h1 element, as you see in Listing 4-48. Thanks to
inheritance, there’s no need to restate the desired font family, only the font-size property with the new
size to use for h1 elements.

Listing 4-48. Adding a new rule to declare the font-size of the h1 element

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 14px;

}
h1 {

font-size: 160%;
}

You can see the results in Figure 4-35, with a slightly shrunken heading.

130

Constructing Content

Figure 4-35. The resized heading

The new rule specifies the font size as a percentage of whatever size was inherited from the element’s
ancestor—160% of 14 pixels in this case, which turns out to be around 22 pixels (22.4 pixels, to be exact,
but a browser will round to the nearest whole pixel).

You can declare font sizes using any of several units of measure: pixels, millimeters, centimeters, inches,
points, picas, ems (one em is the height of a capital letter from top to baseline), exes (one ex is the height
of a lowercase letter from top to baseline), rems (an em relative to the root font-size, skipping inheritance),
or a percentage. You can also declare font sizes using a predefined set of keywords: xx-small, x-small,
small, medium, large, x-large, and xx-large, or the special relative-size keywords: smaller and
larger.

Percentages, smaller, larger, em, rem, and ex are relative units, calculated as a proportion of a size
declared elsewhere. The others are all absolute units: a pixel is a pixel, and an inch is an inch. Some of
these units are less practical than others; you'll probably never need to specify a font size in inches,
millimeters, or centimeters, whereas points and picas are units used in printing that aren’t really
appropriate for screen display (though are perfect for an alternative printable style sheet). Most of the time,
you'll probably use ems, percentages, keywords, or pixels for font sizes.

Most web browsers allow a user to modify font sizes to suit their own preference, so any size you specify
in your CSS is more like a suggestion than a command. Always be aware that your visitors may see text
larger or smaller than you originally intended.

Line Height

Line height is the height of a line of text measured from its baseline to the baseline of the preceding line
(the baseline is the invisible line the text rests on; letters such as g and g have descenders that drop below
the baseline). Don't confuse line height with leading, which is the typographic term for added space
between two lines, measured from the bottom of one line to the top of the following line. CSS doesn’t offer
a means to specify true leading, but you can achieve the same effect by increasing or decreasing the line
height of the text.

Returning to the same example, maybe the default line height is a little too close for your tastes. Spreading
those lines further apart will help the eye move through the text a bit more easily, so you could add a

131

Chapter 4

line-height declaration to your CSS rule for the body element, as you see in Listing 4-49. Every other
element on the page will also inherit this value.

Listing 4-49. Adding a 1ine-height declaration to the body rule

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.5;

You can specify 1ine-height with a unit of measure, the same as you would for font-size, or omit the
unit entirely and the value will be a proportion of the element's font-size. A value of 1.5 means the line
height will be one and a half times an element’s font size, whatever that size happens to be. You could
achieve the same effect with the value 150% or 1.5em, but even proportional units can sometimes lead to
tricky inheritance issues down the line.

You can see the result in Figure 4-36—each line of text has a bit more breathing room.

Figure 4-36. Each line of text gets a little more white space by increasing the line height

A unitless line-height will always be proportional to the current element’s font size, not
the font size of the parent element. For a more in-depth and nerdy look at unitless line-
heights, see Eric Meyer's appropriately titled article, Unitless line-heights
(meyexweb.com/eric/thoughts/2006/02/08/unitless-1ine-heights)

Shorthand for Fonts

132

In addition to font-family, font-size, and 1line-height, there are a number of other CSS properties
that apply to typography. The font-weight property specifies whether the text is bold, light, or normal, or
for some typefaces (and browsers that support it), even a level of boldness. The font-style property
specifies normal, italic, or oblique text. The font-variant property specifies normal text or small-caps.

You can declare all of these properties separately, of course, but that can make for lengthy declaration
blocks. Instead, you can condense them to a single declaration with the shorthand font property. This

Constructing Content

single property can carry values for most font styles in a space-separated list, and those values must occur
in a specific sequence to be recognized: font-style, font-variant, font-weight, font-size/line-
height, and font-family. Note that a slash (/), not a space, separates the values for font-size and
line-height, binding the two values together.

Any values not declared with font will be inherited from an ancestral element, or else the browser will fall
back to its default value for that property. However, the font property always requires values for font-
size and font-family at a minimum; the declaration will be ignored without both of those values present.
Listing 4-50 shows the updated body rule, now with a single shorthand font declaration.

Listing 4-50. The shorthand font property

body {
font: 14px/1.5 "Trebuchet MS", Helvetica, Arial, sans-serif;

As another example, this rule sets all h5 elements as Trebuchet italic bold small caps, at 100% font-size
(inherited from the parent element) with an inherited line height (because we’ve omitted a value for that

property):

hs {
font: small-caps italic bold 100% "Trebuchet MS", sans-serif;

}
Heading Hierarchy

Earlier in the chapter you learned about sectioning roots and document outlines; an element that
establishes a new sectioning root “resets” the heading hierarchy within that element, and the overall
document outline can be generated from the nested sections. Visually, headings of descending rank
usually become progressively smaller as an indicator of that diminished rank. Some browsers do the same
for headings of the same level when they appear in nested sectioning elements, even when those
headings are of the same rank. Take the markup in Listing 4-51, for example (it's the same example you
saw way back in Listing 4-8).

Listing 4-51. Headings in nested sections

<h1>Costume Accessories</h1>
<p>All the trappings and trimmings.</p>

<section>
<h1>Masks and Cowls</h1>
<p>Protect your secret identity.</p>

<section>
<h1>Masks</h1>
<p>Facial coverage.</p>
</section>

<section>
<h1>Cowls</h1>

133

Chapter 4

<p>Head coverage.</p>
</section>
</section>

You can see how Firefox renders this markup in Figure 4-37, with each descendant heading displayed at a
smaller size, even though they're all h1 elements.

Figure 4-37. Firefox displays headings in nested sections at progressively smaller sizes

Figure 4-38 shows the same content rendered by Opera 12. Every h1 is the same size because this
version of Opera doesn't include any special default rules for headings in nested sections. That will
undoubtedly change in a future update to Opera, but the latest version (at the time we write this) still
displays all his at the same size.

Figure 4-38. The same markup rendered by Opera 12, with all the headings at the same size

134

Constructing Content

For better cross-browser consistency, you can first declare a set of base sizes for common headings in
your style sheet. For example:

h1 { font-size: 200%; }

h2 { font-size: 150%; }

h3 { font-size: 120%; }

ha { font-size: 100%; }

Then, to preserve some visual hierarchy when headings appear in nested elements, you could expand that
set of rules with a few descendant selectors:

h1 { font-size: 200%; }

h2, section hi1 { font-size: 150%; }

h3, section h2, section section hi { font-size: 120%; }
h4, section h3, section section h2 { font-size: 100%; }

The selector “section h1” selects any h1 element that occurs within any section element. Grouping that
descendant selector in the same rule with the h2 selector means any h1 within a section will be the same
size as a regular h2. Drilling down one more level with “section section h1” will make any hi that is a
descendant of a section that is itself a descendant of another section the same size as a regular h3.

Figure 4-39 is the same markup in Opera again, now with some visual hierarchy.

Figure 4-39. A few descendant selectors establish some visual hierarchy in nested sections

You could take this a lot further, adding complex descendant selectors for articles within sections,
sections within articles, articles within articles, asides within sections, and so on and so forth,
but there’s no reason to go crazy establishing base styles for every possible markup situation; only those
you actually need.

If your particular website frequently calls for nesting an article in an aside in a section in an article,
then you could include a descendant rule for a heading in that context (article section aside

135

Chapter 4

article h1). However, that's some pretty deep nesting and an overly complex selector. In those cases
you'd be better off using a class or ID selector on a parent element to establish that heading’s context.

For example, a deep-nested article in an aside might be marked up like this:

<article>
<section>

<aside class="notes">
<article>
<h1>Note Title</h1>
<p>Tangential note.</p>
</article>
</aside>
</section>
</article>

With the “notes” class as a selector, the style rule for those headings could be much simpler:
.notes hi { font-size: 100%; }

Rather than traversing a long series of nested elements, this rule simply styles any h1 that is a descendant
of any element belonging to the “notes” class, whether that element is an aside, a section, a div, or
anything else. A good rule of thumb: use the simplest and least specific selector possible to do the job.
Complex descendant selectors can be powerful and precise, but they can also be fragile because they
demand a very particular markup structure. Simply adding a (hopefully meaningful) class selector is
simpler, cleaner, and more flexible.

Styling Lists

Lists are useful elements in HTML. It's the right tool to reach for any time you need to arrange connected
portions of content into a sequence of memorable chunks. Unfortunately, lists aren’t terribly attractive by
default, but you have the power of CSS on your side to compensate for their aesthetic shortcomings.

Changing Unordered List Markers

136

A special character marks each item in an unordered list to help the reader distinguish one item from the
next. The list marker you're probably most familiar with is the bullet: a solid dot that's the same color as the
list's text. CSS includes a few predefined alternative list markers, declared using the list-style-type
property: disc (this is the default bullet), circle (an empty circle), or square (a solid square). The size of
the marker is proportional to the text size. Listing 4-52 demonstrates the 1list-style-type property,
replacing the standard round disc with a small square (see the results in Figure 4-40).

Listing 4-52. Using the 1ist-style-type property

ul {
list-style-type: square;
}

Constructing Content

Figure 4-40. Unordered lists now appear with a small square marking each item

If you like, the declaration list-style-type: none; will disable the item markers entirely without
affecting the format of the list.

Using an Image As a List Marker
If none of the standard list markers quite satisfies your creative desires, you can provide your own graphic
to use via the 1ist-style-image property, as shown in Listing 4-53.
Listing 4-53. Using the 1ist-style-image property

ul {
list-style-image: url("images/bullet.png");

The property’s value is the URL of the file’s location, denoted by the url keyword with the URL itself
contained in parentheses—the quotation marks are optional. The URL can be either absolute or relative
(you learned about absolute and relative URLs in Chapter 1). As you see in Figure 4-41, a browser will
load that image file in place of its standard bullet.

Figure 4-41. The image now appears next to each list item.

Images used for list markers should be small and certainly no taller than the text size. Large images might
push your list items apart to make room, as you can see in Figure 4-42.

Figure 4-42. The list items are forced apart by a large image

137

Chapter 4

Changing the Style of Ordered Lists

By default, items in an ordered list are numbered with Arabic numerals (1, 2, 3, etc.). You can change this
with CSS, once again using the 1ist-style-type property, and this time choosing from another set of
accepted values:

= decimal: Arabic numerals (this is the default)
= upper-roman: Uppercase Roman numerals (I, Il, lll, IV, etc.)
= lower-roman: Lowercase Roman numerals (i, ii, iii, iv, etc.)
* upper-alpha: Uppercase English letters (A, B, C, D, etc.)
» lower-alpha: Lowercase English letters (a, b, c, d, etc.)
You can see an example in Listing 4-54, with the rendered results in Figure 4-43.

Listing 4-54. Declaring ordered lists to render with uppercase Roman numerals

ol {
list-style-type: upper-roman;
}

Figure 4-43. The browser generates the Roman numerals automatically

As with unordered lists, the declaration 1ist-style-type: none; will override the display of any list item
markers, while the list remains intact.

Summary

Whew! We've covered a lot of ground in this chapter—a majority of the elements in the entire HTML
language, in fact. You learned how to organize your content into bite-sized pieces using meaningful
elements that will communicate the true intent of your words, how to insert some useful special characters,
and just a few ways you can use CSS to affect the presentation of text. You've also learned a few things
you should not do when you mark up your content. Be semantically responsible and choose elements for
what they mean, not how they look.

Most of this chapter has been about adding text content to your documents, but not all content is text. In
the next chapter, you'll learn how to add other media to your web pages—images, audio, video, and
plugins—to communicate ideas that text alone just can’t get across.

138

b

s

Chapter 5

Embedding Media

Chapter 4 was all about adding text content to your web pages, but now it's time to put the “multi” in
“multimedia” with pictures, sound, and motion.

The very first image appeared on the Web in 1992 and they've been with us ever since. It wasn’t long
before people started finding ways to put audio and video online too, but there has always been one
primary obstacle: web browsers couldn’t play them. Although the browsers could handle ordinary static
images natively, additional plug-in applications were required to handle richer media. That's changing in
HTML5. You'll meet the audio and video elements in this chapter, and see how they can join the time-
honored img element to enrich your pages with more than just words and pixels.

Playing sound and video without a plug-in is certainly a leap forward for the Web, but plug-ins still serve a
purpose for other, more complicated duties. Great things can be accomplished with programs like Adobe’s
Flash and Microsoft's Silverlight, creating dynamic, interactive, immersive experiences beyond simple
sound and motion. Plug-ins aren’t going extinct any time soon, and this chapter will show you how to
embed that external content into your web pages.

The third-party plug-in isn't dead, but HTML5 does add one more nail to its coffin. The canvas element
creates a live surface where, with the help of JavaScript, web authors can draw complex graphics native to
the browser, even duplicating some of those dynamic, interactive, immersive experiences that required a
plug-in not so long ago. We can’t possibly cover all there is to know about creating dynamic graphics with
canvas in the pages of this book, but we’ll give you a brief introduction to set you on your way.

But first: images.

139

140

Chapter 5

Imagery of some sort is an important part of most websites, making them more visually stimulating and
memorable. The graphical elements of a design can form the basis of your site’s branding and visual
identity and can set your site apart from the millions of others on the World Wide Web.

Images can decorate, but they can also communicate; pictures are content too, and some ideas are much
better communicated visually. Photos, illustrations, logos, icons, maps, charts, and graphs can get your
ideas across in ways that text alone might not accomplish.

How Digital Images Work

Like anything else that lives in a computer’s electronic memory, a digital image is nothing more than data
in the form of ones and zeros (binary code), collected into a virtual file. A computer reads that array of
digits (each binary digit is a bit) and translates each set of bits into a signal that can be sent to a display
device that turns that signal into tiny dots of colored light that human beings can see—bright red, dark
blue, pale gray, and so on. The file also includes encoded instructions about how these dots of light (called
pixels, short for “picture elements”) should be arranged, like a mosaic of tiles, to make up a discernable
image. You can see the individual pixels if you look closely at a computer or television screen, or you can
check out the extreme close-up in Figure 5-1.

Figure 5-1. Zooming in on a digital image reveals the tiny square pixels that comprise it

Because these images are assembled from a “map of bits,” they're called bitmapped images, and most
images on the Web are bitmaps. Storing the color and location of every single pixel adds up to a lot of
data, especially when there are hundreds of thousands of pixels in the typical snapshot and millions of
possible colors (up to 16,777,216 unique colors in a 24-bit image, to be exact).

Images for the Web are usually compressed to decrease the file size so that downloading a web page is
tolerable, even on slower Internet connections—and if you've ever downloaded a large file over a slow
connection you know how frustrating it can be. By either reducing the number of colors stored or reducing
the number of pixels memorized, you can greatly reduce the overall file size as well. The goal of
compressing an image is to achieve the smallest possible file without sacrificing too much of the original
picture quality.

Embedding Media

VECTOR GRAPHICS

In addition to bitmaps, there are also digital images whose data is stored as a set of mathematical
instructions that a computer can follow to draw shapes on the screen or on paper. These are called vector
graphics, and they can be rendered at any size without changing the original image’s appearance or
quality.

The W3C (and others) have developed a vector graphic format specifically for the Web. Based on XML, the
Scalable Vector Graphics (SVG) format still isn’t fully supported by some major web browsers, so its
practical applications are limited for the time being. Although you can use SVG images in some current
browsers, other browsers (including any older versions) won’t be able to display them properly. So for the
purposes of this book, we’ll only be focusing on the old reliable bitmaps. You can learn more about SVG at
the W3C website (w3.0rg/Graphics/SVG).

Web-Friendly Image Formats

You can compress digital images for the Web using three common formats: JPEG, GIF, and PNG. Each
uses a different means of compression, and each has its own particular benefits and drawbacks. Most web
browsers (those that can display images, that is) have built-in software that will interpret and render files in
these formats. Web browsers may not be able to render other types of images, so you should stick to
JPEG, GIF, and PNG, and almost any program you might use for creating or editing digital images will be
able to export files in all three formats.

JPEG

JPEG (pronounced “jay-peg”) stands for Joint Photographic Experts Group, the organization that invented
the format. The compression scheme reduces the size of the file by sampling the average color values of
the pixels and then removing excess redundant pixels from the image. When the image is later
decompressed and rendered, those deleted pixels are re-created based on the stored samples.

Because JPEG compression loses some information, the compression is considered lossy, and
decompressed JPEGs will never be quite the same quality as the originals. JPEG is actually a variable-
loss format and can be compressed at different levels—more compression means more pixels are
discarded to create a smaller file, but the price is paid in quality. Highly compressed JPEGs will tend to
appear blurry or with blocky smudges, called artifacts, where the pixels have been interpolated. In Figure
5-2 you see three pictures of Jolene, each the same JPEG image saved at a different level of compression
(shown here at twice the original size for clarity). The file gets smaller as the image is more compressed,
but the quality also declines.

141

Chapter 5

Figure 5-2. The same JPEG image at three different levels of compression. The version on the far right is the smallest
file, but the image quality has suffered a lot.

Furthermore, every time you edit and save a JPEG image, you're re-compressing an image that has
already been compressed, losing a bit more data in the process. Every generation of JPEG compression
will degrade the image quality a little more, like making a photocopy of a photocopy. You should keep
original, uncompressed versions of your images to work from, compressing to a JPEG file only when
you're ready to put your images on the Web.

The JPEG format saves disk space by sacrificing pixels but will store a lot of color information in a
relatively small file, making it ideal for photographs and other images with many different colors, or images
where one color blends smoothly into another (called continuous tone). JPEG files use the file extension
.jpeg or .jpg—the shorter version became customary because some older computer operating systems
don't allow four-letter (or more) file extensions.

GIF

142

GIF stands for Graphic Interchange Format; it compresses images by reducing the overall number of
colors saved in the file, but it preserves the color and location of every pixel. Because GIF is considered a
lossless format, it's a good choice for logos, icons, or graphics that feature text and need to maintain sharp
outlines for readability. A GIF image can contain a maximum of 256 different colors but may contain fewer
than that; storing fewer colors makes for a smaller file. Graphs, maps, line drawings, and any images with
large areas of solid color, or few colors overall, are ideal candidates for GIF.

GIF images may also have some areas that are transparent, allowing whatever is behind the image to
show through. Any given pixel is either completely transparent or completely opaque, so there will be a
jagged edge where the transparent and opaque areas border each other. Most graphic editing programs
enable you to specify a matte color for transparent GIFs, which can be the same as your page’s
background color to minimize “the jaggies.” Figure 5-3 shows a transparent GIF against a checkerboard
background. You can see the gray matte surrounding the image, which would blend seamlessly with a
solid gray background color.

Embedding Media

Figure 5-3. A transparent GIF with a gray matte, shown on a checkerboard background for demonstration

Another special feature of the GIF format is support for rudimentary animation. The image can consist of a
number of frames to be displayed in sequence, allowing for some very cool (but also some very annoying)
effects. Of course, each frame in an animated GIF is additional information to store that will increase the
overall size of the file.

GIF files use the .gif extension. The format and its compression formula were once patented, and the
patent holders demanded licensing fees from any software vendor that wanted to produce or display GIF
images. Those patents have since expired, but their existence at the time inspired the creation of a free
alternative image format: PNG.

There’s some difference of opinion about just how to pronounce the acronym GIF. Some
people (including the people who invented the format) pronounce it like “jif,” with a soft g
sound. But in common usage it’'s often pronounced with a hard g, as in “gift,” which is
arguably more phonetically correct, in English at least. The truth is both ways are equally
correct, so say it whichever way sounds most natural to you.

PNG

Portable Network Graphic (PNG) is a format invented as a free successor to the patented GIF, and it
improves on its predecessor in several ways. Like a GIF, a PNG image can also contain a maximum of
256 colors (known as 8-bit color, because 256 different values are the most that can be described using
only 8 bits of data per pixel), and it supports transparency the same as GIFs do. Thanks to a different
compression scheme, an 8-bit PNG file can sometimes be smaller than its GIF counterpart.

However, another variant of the PNG format can support 24-bit color to produce millions of unique colors;
it's similar to JPEG in that respect, though it frequently results in larger files than JPEGs. But the best
feature of 24-bhit PNG images is their capacity to include a transparent alpha channel, like an extra invisible
layer embedded in the image to define areas of partial transparency. Whereas the transparent pixels in a
GIF or 8-bit PNG are completely transparent, the pixels in a 24-bit PNG can also be partially transparent,

143

144

Chapter 5

allowing some of the background to show through the image like a translucent overlay. You can see alpha
transparency in action in Figure 5-4. The checkerboard background shows through the translucent parts of
the image, allowing this logo to blend smoothly and seamlessly with any background, either a solid color or
a pattern, or even overlaying other images.

Figure 5-4. A 24-bit PNG with a transparent alpha channel. The checkerboard background shows through the
translucent parts of the image, with no jagged edge.

Unfortunately, some much older browsers (namely Internet Explorer for Windows, prior to version 7) don'’t
fully support PNGs with alpha transparency. If your website needs to support IE 5 or 6, you'll need to be
careful if and when you use alpha-transparent PNGs.

Yet another variant of the PNG format allows frame-based animation, similar to animated GIFs, but
animated PNG (APNG) images are only supported by a few browsers at this time—others show only a
static image of the first frame.

PNG files use the extension .png, whimsically pronounced “ping.”

A BIT ABOUT BITS

All data in the world of computers consists of ones and zeros, the “digits” that give us the term digital.
Those ones and zeros represent two positions of a switch—1 for on, 0 for off—and form the basis of
binary code, the root language of computers. Each digit is called a bit (short for binary digit), and they’re
collected into groups of 8 bits called a byte. When dealing with larger collections of bytes, they’re
measured in multiples of 1,024 (itself a multiple of 8); 1,024 bytes is a kilobyte, 1,024 kilobytes is a
megabyte, 1,024 megabytes is a gigabyte, and so on. This is how we measure amounts of digital data.

The color value of every pixel in a bitmapped digital image is described with simple ones and zeros. More
colors can be produced as more bits are devoted to describing the color of each pixel. The simplest images
use only a single bit of data per pixel to describe two possible colors—each pixel is either 0 or 1, off or on,
black or white. Because each bit has two possible values, the total number of possible colors is always 2
to the power of the number of bits. As the number of bits per pixel increases, so does the number of
possible colors that can be described. Using 2 bits per pixel provides a total of four possible permutations

Embedding Media

(00, 01, 10, and 11), thus producing four possible colors (2°). Four bits expands the number of colors to 16
(2%). At 8 bits per pixel, the total possible colors number 256 (2°).

GIF images store color information at the rate of 8 bits per pixel and hence can contain only a maximum of
256 different colors. JPEGs use 24 bits per pixel and can thus produce 16,777,216 possible colors,
approaching the very limits of human vision. The PNG format supports either 8-bit color or 24-bit color.

In an 8-bit GIF or PNG, only a single digit is devoted to describing each pixel’s transparency, so any given
pixel is either visible or not visible. In a 24-bit transparent PNG, 8 of those bits can be devoted to
describing the transparency of the pixel, allowing 256 possible levels of translucency all the way from
completely transparent (0) to completely opaque (255).

Embedding Images

The text content of a web page is part of the HTML document, surrounded by tags that indicate the
meaning and purpose of each portion of words. Images, on the other hand, are external files and not
actually part of the document at all. You can embed an image in your document with the img element (or
the object element, though img is more common and reliable). Rendering a web page that includes
images is a two-stage process; first the browser downloads the markup, and then it downloads the
external images. Wherever the img element occurs in the document, the browser will fetch the referenced
file from the web server and display it on the page in place of the element.

Images that are strictly decorative—only for looks and not informative—should usually be applied as a
background image in CSS, keeping your presentation separate from your content.

img
The img element (an abbreviation of “‘image,” as you might have guessed) is considered a replaced
element; the element itself isn’t rendered, something else is rendered in its place. It's also a void element
with no text content and no end tag, though you can optionally close it XHTML-style with a trailing slash

(/>). The img element requires a src attribute to define the source of the graphic file as the URL (either
absolute or relative) where that file resides on a web server.

An alt attribute is required in most circumstances, to provide an alternative text equivalent of the image.
Browsers can display the alternative text if the image isn't available or if the browser is incapable of
displaying images, and the alt attribute is important to improve accessibility for the visually impaired.

Listing 5-1 shows an img element with only the src and alt attributes, the bare minimum required.
Browsers treat images as inline elements, so they appear alongside any adjacent text or other inline
elements (including other images) on the same baseline, with no other default styling.

145

Chapter 5

LBﬂng54"Theﬂmpbmnmammmnoﬂheimgebmem

Required Attributes

src: Specifies the URL where the graphic file resides on a web server.

alt: Provides an alternative text equivalent of the image. This attribute may be empty to indicate
nonessential images. It may be omitted under unusual circumstances, and only if a title
attribute is supplied or if the img is a child of a Tigure element that also includes a figcaption.

Optional Attributes

width: Specifies the width of the image in pixels.

height: Specifies the height of the image in pixels.

ismap: Declares that the image is used for a server-side image map.

usemap: Identifies a client-side image map to be used (see Chapter 6 to learn more about image
maps).

crossorigin: Cross-Origin Resource Sharing (CORS) settings, specifying that the image file
may or may not be served from other domains. This attribute can only have the values
anonymous (the default) or use-credentials. The attribute with an empty value is equivalent to
anonymous. The crossorigin attribute is new in HTML5 and mostly useful on secure websites.
For more on CORS, see w3.0rg/TR/cors.

The alt Attribute

The alt attribute provides a text alternative when the picture can't be seen or isn’t available. It could be
that your reader is visually impaired, or using a browser or device that doesn't display the image, or the
image file couldn’t be found at the source URL, or the file was corrupt or in an unsupported format.
Including a brief alternative text description preserves some of your image’s communicative intent when
the image itself isn't visible. There’s no explicit character limit for the value of an alt attribute, but
convention is to limit them to 1,024 characters (including spaces), and ideally less than 256 characters.
Shorter is better.

146

Some browsers, when they encounter a missing image, will display an icon and may show a border
indicating the image dimensions (if the dimensions are known), sometimes with the alternative text inside,
as Internet Explorer does in Figure 5-5. Other browsers show only the alt text as regular inline text, with
no border or extra space.

Embedding Media

Figure 5-5. Some browsers will display the alternative text if the image isn't available

An alt attribute should be a meaningful substitute for the image, so avoid unhelpful alt texts such as
“company logo.” Tell your visitors the name of the company, not just that your anonymous company has
some sort of logo they’re unable to see. If you like, you can specify that the unseen image is, in fact, a logo
with alt text like “CorpCo, Inc. (logo)” or something similar. It still replaces the image as well as passing
on the extra information that it's a logo. If it's practical, you could even go one better and describe the logo:
“CorpCo, Inc. (logo: a yellow sunburst rising behind a blue inverted crescent representing the Earth, above
the company name in dark blue, in a heavy, slab-serif font)”. Images that are pictures of text (for
typographic style) should include that text in their alt attributes.

Many people use the incorrect term “alt tag” to refer to the alt attribute. This is
confusing and misleading because alt isn't a tag at all; it's an attribute of the img
element.

A well-written alt attribute might inform the reader that the absent image is a logo, a photograph, an
illustration, a portrait, a landscape, a thumbnail, a close-up, a chart, a map, and so on, but you should
avoid restating the obvious: “a picture of my cat” tells the reader what it's a picture of but doesn't tell them
much else about the scene that picture captures. The alt attribute is a descriptive or functional
replacement for the image, so you should try to describe the subject if possible, not just the image itself.
And you shouldn’t use the image file name as the value of alt; “mycat.jpg” tells the reader nothing
meaningful about the picture.

If your web page features a photo of your cat asleep in a grocery bag (as cats are oft wont to do), the
appropriate alt text might be “my cat in a bag” or “my gray cat sleeping in a brown paper bag” or even
“my gray striped tabby curled up and fast asleep in a brown paper Trader Joe’s grocery bag on my red
Formica kitchen table.” These all describe the content of the picture to help your readers conjure the image
in their minds even if they can’t see it on their screens.

The rule of thumb for writing alternative text: the content should still make sense if every image on the
page were replaced with its text alternative. Imagine reading the page aloud to a friend over the phone. If
the picture is important, describe the picture. If it represents an idea, state that idea in words, as briefly as
you can. If it's a graph or chart, list the data the chart conveys. And if the image isn't essential to
understanding the content, don’t mention it at all.

147

148

Chapter 5

Inline images that aren’t essential content—meaning they're just for show and may enhance other content,
but aren't informative content themselves—still need alt attributes. But rather than describing their
ornamental function, including an empty alt attribute (alt="") will “hide” those nonessential graphics; it's
as if the image doesn't exist at all if its description is blank. An empty alt attribute effectively declares that
this image isn't vital to the page, so the reader needn’'t worry about understanding it (screen reading
software will also ignore it). For example, you might show a flag icon next to a country’s name:

> Australia</1i>
""s New Zealand</1li>
""> Papua New Guinea</1i»

<img src="/flags/australia.png" alt=
<img src="/flags/newzealand.png" alt=
<img src="/flags/papuanewguinea.png" alt=

This would be appropriate in a list of countries where the names are the important part and the flags just
enhance it. If this list were a gallery of international flags, on the other hand, the flag images would be
essential content and each one should carry an alt attribute describing the flag’s design.

For purely decorative, presentational images, you should use CSS to display them on the page as a
background attached to some meaningful element, as you'll see later in this chapter.

For many years, Internet Explorer for Windows, the most common browser on the most common operating
system on Earth, inexplicably displayed the contents of an alt attribute as a tooltip, a small text bubble
that appears when the user’'s mouse lingers over the image (shown in Figure 5-6).

Figure 5-6. Older versions of |E improperly displayed the value of the alt attribute as a tooltip

Because of this, many web designers in years past misused the alt attribute to inject the kind of
supplemental information they wanted to appear in a tooltip: “this is my favorite picture” or “my cat’'s name
is Neena.” Such supplemental information doesn’t necessarily describe the image or take its place, so it's
probably not a proper value for alt. Later versions of IE, starting with version 8, have at last corrected this
misbehavior and no longer show alt text in tooltips.

Embedding Media

The title attribute, on the other hand, will be displayed as a tooltip in most browsers, and that’s the more
correct place to include a description of the image’s contextual purpose, with the attribute acting as a
caption, legend, explanation, or indeed a title. When both alt and title are present, as in Listing 5-2,
even old versions of Internet Explorer will display the title text rather than the alt text.

Listing 5-2. An img element with descriptive alt and title attributes

<img src="images/mask.jpg" title="This heroine wears a domino mask (photo by Ben Hives)"'
alt="A heroic woman with curly brown hair and black eye mask peers around a corner">

Even worse than writing improper alt text, some web designers omitted the alt attribute entirely, just to
avoid unwanted tooltips in Internet Explorer. An img element without an alt attribute, in addition to being
invalid HTML in most cases, is also inaccessible. A screen reader or text browser might simply state
“IMAGE” without any further information, or may read/display the file name from the sxc attribute. Omitting
the alt attribute could render an important image meaningless.

Informative alt text is especially critical when you use images in links or as buttons in forms. Such images
are functional, not merely informative. If an image features text that acts as a link phrase like “learn more”
(or a form button like “buy now”), you must make the link accessible by including the same phrase in an
alt attribute. If the image doesn't show text and is the only content within the link or button (i.e., there’s no
other descriptive text), the image’s alt text should describe the purpose or destination of the link, or the
function of the button.

To demonstrate, Figure 5-7 shows a site’s navigation made up of linked images. A visitor with keen
eyesight (and who is able to download the images) can find her way around pretty well, and isn't
concerned about alt attributes.

Figure 5-7. This site’s navigation consists of linked image buttons

149

150

Chapter 5

However, Figure 5-8 shows the same site as it appears in Lynx, a text-only web browser that displays the
image file name when the alt attribute is missing. Without alt attributes for the images, the site’s
navigation is practically useless. Visually impaired people using screen readers, people using mobile
devices with less capable browsers, and even people with limited connections who turn off images to
spare their bandwidth—they’re all out of luck. The file names don't even provide any clues in this example,
and far too many websites are built like this. It's downright shameful.

Figure 5-8. Images without alt attributes, as seen in Lynx

The only situation in which you may validly omit the alt attribute is when you don’t know the image’s
content. For instance, you may leave out alt attributes on a web site that allows users to upload images,
where you as the host would have no way to describe its content. Even then, alt can only be omitted if
certain other conditions are met: if a non-empty title attribute is present (and its value should at least be
descriptive of the image’s purpose if it can’t describe the image itself) or if the image is a child of a figure
element that also contains a figcaption but no other content or images (so the figcaption can
describe only the one image it shares space with).

An automatic markup validator might not flag missing alt attributes as errors under these circumstances,
but remember: validators can’t read. Just because your markup might be technically valid doesn’t mean
your content is appropriately marked up. A title attribute or figcaption isn't really a substitute for
accurate, meaningful alt text, even if the validator lets it slide. An img element almost always requires an
alt attribute. In those very rare cases where alt is optional, it's a safer bet to include it with an empty
value (alt="").

For much more on writing proper alt text, as well as many different examples of usage,
see the HTMLS5 spec at w3.0rg/TR/html5/embedded-content-1. html#alt

Embedding Media

The width and height Attributes

Unless instructed otherwise, browsers will display images at their natural dimensions, but they can't
determine those dimensions until they download and analyze the image. Meanwhile, the browser has
probably already downloaded and rendered the markup and text, and the images will appear in place as
they're downloaded in a second pass. The text will often reflow to accommodate the image once its
dimensions are known, which can be jarring if your visitor has already started reading. You can include
width and height attributes in an img element to tell the browser to reserve space for the image and
draw the text where it should the first time around.

If the width and height attributes aren’t the same as the image’s natural dimensions, the browser will
scale the image to fit to those attributes. However, you should usually avoid resizing images this way.
When a web browser scales an image larger than its natural dimensions, it can appear blocky, showing off
the individual pixels. If it's scaled significantly smaller, it may still look sharp, but the file size will be larger
than necessary and take longer to download. Ideally, the width and height attributes should match the
image’s natural width and height, and you should do your resizing with a graphic editing program better
equipped for the task.

You can also use the CSS width and height properties to describe an image’s dimensions. When an img
element that includes a width and/or height attribute is further styled by CSS, the CSS dimensions will
override the HTML attributes.

The usemap and ismap Attributes

An image map is an image where certain areas are designated as hyperlinks, rather than the entire image
being contained in a single link. The usemap attribute identifies the specific map element to use when
rendering a client-side image map. The ismap attribute declares that this image will be used as a server-
side image map (which is an inherently inaccessible device that you should usually avoid). We'll cover
image maps in more depth in Chapter 6.

Obsolete Presentational Attributes

Older versions of HTML included a number of optional attributes for the img element that have since been
eliminated in favor of CSS. None of these are valid in XHTML or HTMLS5, but we're listing them here so
you'll recognize these attributes and know how to achieve their effects with modern CSS:

= align: Specifies how the image should be aligned with adjacent text using the values left,
right, top, middle, or bottom. You can achieve left or right alignment with the float property
in CSS; the vertical-align property achieves top, middle, or bottom alignment.

= border: Specifies the width of the border that will surround images that act as hyperlinks. This
has been supplanted by the border-width property in CSS.

» hspace: Specifies the horizontal space on the left and right sides of the image, replaced by the
CSS margin-left and margin-right properties.

= vspace: Specifies the vertical space at the top and bottom of the image, replaced by the CSS
margin-top and margin-bottom properties.

151

Chapter 5

Older versions of HTML also included a longdesc attribute for the img element. Its value was a URL
leading to a longer text alternative for the image, for those cases where a complete substitute simply
couldn’t fit into an alt attribute. A complex chart or graph might call for the same data presented in an
HTML table, a scan of a Civil War letter might lead to the letter’s full text, or a comic book page might need
detailed descriptions of the action in each panel along with all the dialog.

However, longdesc was rarely used properly, and many assistive devices (especially screen-readers) still
don't fully support it after all this time. And so, as potentially useful as it may be, the longdesc attribute
has been dropped from HTML5 simply because it was so often ignored or misused, and other methods
exist to fulfill the same need. You can still offer the lengthy text alternative on a separate page and just link
to it directly.

Embedding Audio and Video

Although web browsers have had native support for images from the earliest days, incorporating audio or
video into a web page has long required a plug-in, a separate software component that adds more
capabilities to the browser but isn't part of the browser itself, such as Adobe’s Flash, Apple’s QuickTime,
Microsoft's Windows Media Player or Silverlight, and RealNetworks’ RealPlayer. These plug-ins work
(fairly) well (for the most part) and fill a longstanding gap in the browser landscape, but that gap is closing
with HTMLS5.

The “plug-in” nature of a plug-in also means the application that plays the audio and video content isn't a
part of the web browser. A plug-in is locked into a virtual sandbox, with its program isolated from the
browser’s program, and isolated from other content on the page. Moreover, plug-ins are optional by
definition, so you can’t always be sure your visitor has the correct software to view your content.

HTML5 introduces the audio and video elements, allowing web authors to embed sound and moving
pictures into web pages without requiring proprietary plug-ins. Of course, it follows that the browser itself
must be able to play the embedded media, so only the latest browsers support these new elements, but
there are ways to provide fallback content for older browsers. There are also lingering issues around the
video and audio formats different browsers support, especially because some of the most popular formats
themselves are as closed and proprietary as the plug-ins that play them. This playing field should become
more level in time, but for the moment you'll have to jump through just a few more hoops to offer rich
media to your visitors.

Media Codecs and Formats

152

Digital audio or video data is processed through a codec, a formula that converts and compresses sound
or video into a stream of bits for transmission over the Internet (the term “codec” is an abbreviated
combination of the words “code” and “decode”). When the data gets to the other end, the player must
possess the same codec in order to decode the encoded signal and convert it back into sound or video.

Some media codecs are patent-encumbered, meaning they’re owned and patented by a single company
and aren’t open standards, and the patent owners typically charge licensing fees for use of their
algorithms. Browser makers like Apple, Google, and Microsoft have deep pockets and are willing to license

Embedding Media

patented codecs for their browsers. Other browser makers like Mozilla and Opera opt instead for open,
unencumbered codecs and don’t support the patented flavors. Even though the latest versions of all of
these browsers support HTML5 embedded media, they don't all agree on which codecs they support.

The codec is only one character in this story. Once the media data is encoded, it must then be
encapsulated and packaged for delivery in one of several formats. These container formats are the media
files that get sent around between servers and clients, carrying data that was encoded through a codec.
To play the embedded media, a web browser must first be able to read the container format and then be
able to decode the encoded data within it. Just as browsers support different codecs, they also support
different container formats for embedded media.

Embedded media must be served with the proper content type for each format, so both the client and the
server can know how to treat those files. The web server handles media types automatically, at least for
the more common formats. Some newer formats may need a helping hand on the server-side, usually just
by adding the new content type to a configuration file.

audio

The audio element embeds a sound file or audio stream in a web page. It's a replaced element, but not a
void element, so it may contain other content and elements (as you'll see), and requires an end tag. In its
simplest form, the audio element only needs a src attribute pointing to the audio file (or a stream, if it's a
streaming source):

<audio src="audio/thwip.mp3"></audio>

However, it's rarely quite that simple. By default, the audio element has no display properties at all, and is
completely invisible. It exists in the document, and can be accessed by the browser or by JavaScript, but
simply embedding a sound file doesn’t do much without a bit more effort. The optional, Boolean controls
attribute will tell a browser to display its native control bar:

<audio src="audio/thwip.mp3" controls></audio>

These controls, being native to the browser, tend to look very different in different browsers. Figure 5-9
shows the native controls from the latest versions of Firefox, Safari, Chrome, Opera, and Internet Explorer.
As you can see, there’s quite a variety in the interfaces, but they all offer the same basic functions—a
play/pause button, a seek bar with a position indicator, a time display, and a mute/volume control—and all
work in much the same way.

153

154

Chapter 5

Figure 5-9. Native audio controls from several browsers

You're not limited to the browser’s native controls, however. The audio element brings with it a JavaScript
APl—with methods like play() and pause(), and a volume property—so you can create your own player
interface with a bit of scripting and style it however you like. Furthermore, because the audio is now a free
resident of the document and no longer locked away in a plug-in, the sound data itself is exposed to the
browser and accessible to manipulation with JavaScript. But alas, that's a subject for another book, and
we've got more markup to show you.

The audio element also accepts the Boolean attributes autoplay and loop, which do just what they
say—the autoplay attribute triggers playback automatically when the page loads, and the loop attribute
will replay the audio over and over. One could easily use these attributes for nefarious purposes,
especially in combination, and most especially without a controls attribute so a visitor would have no way
to shut it off (short of hastily fleeing your website, never to return):

<audio src="audio/wilhelm-scream.mp3" autoplay loop></audio>

But you're a responsible citizen and a decent human being, so you'd never do such a thing. The Web
thanks you.

An optional preload attribute accepts the values auto, metadata, or none. The auto value simply leaves
it up to the browser (and hence the user) to determine whether it will begin downloading the sound file
before the user chooses to play it. This is left in the hands of the user-agent because different people and
devices have different needs. Someone using a mobile device—where transferring large amounts of data
is slow and expensive—might not want to preload any media, but someone on a desktop computer with a
fast connection might. A preload value of metadata tells the browser to fetch only the file's metadata
(title, artist, length, etc.) but not the sound itself, and none tells the browser to not preload any data (this is
the default). The preload attribute also accepts an empty value, equivalent to auto:

Embedding Media

<audio src="audio/snikt.mp3" controls preload></audio>

That all seems easy enough, and it is, except for one significant problem: browsers don't all agree on
which audio formats they support.

The most popular and ubiquitous audio format is MP3 (short for MPEG layer 3), which is patent-
encumbered. Safari, Chrome, and IE will play MP3 audio, but Firefox and Opera won't. Ogg Vorbis is a
free and open audio format, supported by Firefox, Opera, and Chrome, but not by Safari or IE (note that
Chrome supports both MP3 and Ogg Vorbis). The unfortunate consequence of all this format and codec
and patent business is that to reach the majority of web users, you'll have to offer your audio in at least two
formats.

The audio element may contain one or more source elements, like you see in Listing 5-3, each pointing
to a different audio source (you'll find more detail on the source element elsewhere in this chapter). A
browser will play the first audio source it supports and will simply ignore the rest, and if it doesn't support
any of the offered formats it will play nothing. This lets you offer the same piece of audio in both MP3 and
Ogg Vorhis formats, covering the majority of browsers on the market.

Listing 5-3. An audio element offering the same sound in two file formats

<audio controls preload="none">
<source src="audio/thooom.ogg" type="audio/ogg">
<source src="audio/thooom.mp3" type="audio/mpeg">
</audio>

This still doesn’t address the problem of older browsers that don’t support HTML5 embedded audio at all.
For them, you can still offer a Flash-based player using tried and true plug-in embedding, something like
you see in Listing 5-4 (you'll meet the object and param elements later in this chapter).

Listing 5-4. An audio element with a Flash fallback for older browsers

<audio controls preload="metadata">
<source src="audio/Townsville.ogg" type="audio/ogg">
<source src="audio/Townsville.mp3" type="audio/mpeg">
<object data="flash/audio-player.swf?soundFile=audio/Townsville.mp3"-
width="250" height="25" type="application/x-shockwave-flash">
<param name="movie" value="flash/player.swf?soundFile=audio/Townsville.mp3">
</object>
</audio>

Browsers that don't support the audio element will simply ignore it, and, assuming they have the Flash
plug-in installed, will instead embed the plug-in player. And for browsers that support neither HTML5 audio
nor Flash, you can at least provide an ordinary text link to download the file directly by including some
plain HTML content inside the object element, offering a fallback within a fallback:

<audio controls preload="metadata">

<source src="audio/Townsville.ogg" type="audio/ogg">
<source src="audio/Townsville.mp3" type="audio/mpeg">

<object data="flash/audio-player.swf?soundFile=audio/Townsville.mp3"-
width="250" height="25" type="application/x-shockwave-flash">

155

Chapter 5

<param name="movie" value="flash/player.swf?soundFile=audio/Townsville.mp3">

<p>Download this delightful tune in either
MP3 or
0gg Vorbis format.</p>
</object>
</audio>

You can find a number of Flash-based media players online, many of them free of charge. Just load up the
search engine of your choice and hunt down a player you like. Whatever Flash player you use will have its
own parameters for embedding in a web page so just follow the instructions that come with it.

This fallback content is not a fallback for browsers that support the audio element but not the particular
audio format. If you use an audio element and only offer MP3, for example, browsers that can't play MP3
audio won't fall back to the Flash player; they will still attempt to play the embedded MP3 and just fail
silently.

Apple’s Safari browser relies on the QuickTime application to process and play media
data. This is no problem for Safari on Mac OS X because QuickTime is already part of
OS X right out of the box. But Safari on Windows requires the QuickTime plug-in for
Windows in order to play embedded media, so it's not much different than using Flash
(though the Flash plug-in is probably more ubiquitous on Windows computers). If Safari
on Windows lacks the QuickTime plug-in, it can still fall back to Flash, and if it lacks
Flash, it can fall back to the download links. This is a perfect example of graceful
degradation.

Required Attributes

The audio element doesn't require any attributes, though it should carry a src attribute if it doesn’t contain
any source elements. If one or more child source elements are present, you should omit the src attribute
from the audio element. An audio element with no attributes is technically valid, but it won’t do anything
without a media source. Even with no media source, the element still exists in the document and
JavaScript can manipulate the object (dynamically adding a media source, for instance).

Optional Attributes

156

= src: Specifies the URL where the audio file or stream resides on a web server.

= controls: A Boolean attribute that, when present, invokes the browser's standard player
interface, typically including a play/pause button, volume control, a seek bar with a position
indicator, and the media length or time remaining.

» preload: Suggests to a browser that it may preload the audio data before a user initiates
playback. The attribute accepts the values auto (the user-agent, depending on its settings, can
preload the audio; this is the default), metadata (load only the audio file’s metadata, such as title,
artist, track length, etc.), or none (don't preload any data). The attribute with an empty value is
equivalent to auto.

Embedding Media

= autoplay: A Boolean attribute that, when present, instructs the browser to automatically begin
playing the audio when the page loads.

» mediagroup: Can associate multiple media elements (both audio and video) with a single
media controller object, allowing multiple sources to be synchronized. For example, a video could
be synchronized with a separate audio commentary track. The attribute’s value is any name you
wish to give to the media group, and all media elements in the group should share the same
name in their own mediagroup attributes.

= loop: A Boolean attribute that, when present, instructs the browser to automatically repeat
playback from the beginning each time the audio reaches the end, looping forever until you tell it
to stop.

= muted: A Boolean attribute that, when present, indicates that the audio defaults to a muted state
when it loads.

» crossorigin: Cross-Origin Resource Sharing (CORS) settings, specifying that the video file or
stream may or may not be served from other domains. This attribute can only have the values
anonymous (the default) or use-credentials. The attribute with an empty value is equivalent to
anonymous. The crossorigin attribute is most useful on secure websites. For more on CORS,
see w3.o0rg/TR/cors.

video

The video element embeds a digital video in a web page, and is very similar to the audio element, with
many of the same optional attributes. As with audio, the video element can include the URL of the video
file or stream in a sxc attribute, assuming there’s only a single source:

<video src="video/feature.mp4" controls></video>
As with audio, the controls attribute invokes the browser's native control bar, which tends to look the
same as each browser’s audio controls (Figure 5-10 is taken from Chrome). The video element also has a

similar set of JavaScript methods, so you can build your own custom control bar if the browser's native
controls don't suit you.

Figure 5-10. An embedded video showing Chrome’s built-in controls

157

158

Chapter 5

The video element may also contain one or more source elements, each pointing to a different video
source. The battle over competing video formats is as heated as it is for audio formats, and as usual the
browsers haven’t come to an agreement. The three leading formats are MP4 (which uses the patent-
encumbered H.264 codec), the open source Ogg Theora (Theora is the video codec, Ogg is the container
format) and WebM (a newer open format quickly gaining ground; it uses a codec called VP8). Safari, IE,
and Chrome support MP4, while Firefox, Opera, and Chrome support both Ogg Theora and WebM—once
again, Chrome covers all their bases. To reach the widest audience you'll have to offer at least two video
sources, if not all three, like you see in Listing 5-5.

Listing 5-5. A video element with three SOUTCe elements, offering the same video in three formats

<video controls>
<source src="video/laserblast.webm" type="video/webm">
<source src="video/laserblast.ogv" type="video/ogg">
<source src="video/laserblast.mp4" type="video/mpa">
</video>

A video element can also carry a preload attribute, just like audio, and it accepts the same values:
auto, metadata, or none. You should only preload media (either audio or video) if you're relatively certain
your users will want to play that media when they arrive at the page, perhaps if they've had to drill down
through some navigation to reach it and the media itself is the main reason they’re coming. Otherwise you
shouldn'’t tax their bandwidth by automatically sending a lot of data they may not need. You should also
avoid preloading media when there are multiple media elements on a page; it's a bit rude to make your
users download a dozen videos at once if they didn’t ask for it.

So far the video element works just like the audio element, with most of the same attributes. But unlike
an audio file, videos take up space on a rendered page. You can include the width and height of your
video, just as you would for an image, with the width and height attributes:

<video controls preload="auto" width="400" height="300">
<source src="video/Pod_People.webm" type="video/webm">
<source src="video/Pod_People.ogv" type="video/ogg">
<source src="video/Pod_People.mp4" type="video/mp4">
</video>

Unless you use the autoplay attribute to begin playback as soon as the page loads (usually a bad idea)
an embedded video will initially show the first frame of the source video. But more often than not, that first
frame won’t be much to look at, and may not be indicative of the video’s content. You can instead provide
a placeholder image with the poster attribute, the value of which is the URL of the image:

<video controls width="400" height="300" poster="images/Pod_People.jpg">
<source src="video/Pod People.webm" type="video/webm">
<source src="video/Pod_People.ogv" type="video/ogg">
<source src="video/Pod_People.mp4" type="video/mp4">

</video>

Like native audio, native embedded video is a new feature in HTML5 and only supported by the latest
browsers. But just like audio, you can offer a Flash-based fallback video player, as well as direct download
links for anyone without Flash. Listing 5-6 is a full-featured example of the video element, complete with
three formats and fallback content for older browsers or those without Flash.

Embedding Media

Listing 5-6. The video element with fallbacks for less capable browsers

<video controls width="468" height="350" poster="images/mechanical-monsters.jpg">
<source src="video/mechanical-monsters.webm" type="video/webm">
<source src="video/mechanical-monsters.ogv" type="video/ogg">
<source src="video/mechanical-monsters.mp4" type="video/mp4">

<object data="flash/video-player.swf" type="application/x-shockwave-flash" ‘=
width="468" height="350">

<param name="flashvars" value="file=video/mechanical-monsters.mp4">

<param name="allowfullscreen" value="true">

<param name="allowscriptaccess" value="always">

<p>Download this exciting video clip in
WebM,
0gg Theora or
MP4 format.</p>
</object>
</video>

Required Attributes

The video element doesn't require any attributes, though it should carry a src attribute if it doesn’t contain
any source elements. If one or more child source elements are present, you should omit the src attribute
from the video element. A video element with no attributes is technically valid, but it won’t do anything
without a media source. Even with no media source, the element still exists in the document and
JavaScript can manipulate the object (dynamically adding a source, for instance).

Optional Attributes
= src: Specifies the URL where the video file or stream resides on a web server.

= poster: The URL of a placeholder image to display before the video is played. Without a
specified poster image, browsers display the first frame of the video.

= controls: A Boolean attribute that, when present, invokes the browser's standard player
interface, typically including a play/pause button, volume control, a seek bar with a position
indicator, and the media length or time remaining

= width: The width of the video in pixels.
» height: The height of the video in pixels.

» preload: Suggests to a browser that it may preload the video data before a user initiates
playback. The attribute accepts the values auto (the user-agent, depending on its settings, can
preload the audio; this is the default), metadata (load only the audio file’s metadata, such as title,
artist, length, etc.), or none (don't preload any data). The attribute with an empty value is
equivalent to auto.

159

Chapter 5

= autoplay: A Boolean attribute that, when present, instructs the browser to automatically begin
playing the video when the page loads.

» mediagroup: Can associate multiple media elements (both audio and video) with a single
media controller object, allowing multiple sources to be synchronized. For example, a video could
be synchronized with a separate audio commentary track. The attribute’s value is any name you
wish to give to the media group, and all media elements in the group should share the same
name in their own mediagroup attributes.

= loop: A Boolean attribute that, when present, instructs the browser to automatically repeat
playback from the beginning each time the video reaches the end, looping forever until it's
commanded to stop.

= muted: A Boolean attribute that, when present, indicates that the video’s audio track defaults to a
muted state when it loads.

» crossorigin: Cross-Origin Resource Sharing (CORS) settings, specifying that the video file or
stream may or may not be served from other domains. This attribute can only have the values
anonymous (the default) or use-credentials. The attribute with an empty value is equivalent to
anonymous. The crossorigin attribute is mostly useful on secure websites. For more on CORS,
see w3.o0rg/TR/cors.

source

160

The source element specifies the address of an embedded media resource. This is a void element that
can't hold any content and has no end tag, though you can close it with a trailing slash (/>) if you prefer
XHTML syntax. The source element requires a src attribute to provide the media’s URL, which may be a
file or a stream. This element can only occur as a child of a media element, either audio or video, and
should come before any other flow content or track elements. You've seen several examples of source
elements already, but here’s one more:

<audio controls>
<source src="audio/thwip.ogg" type="audio/ogg">
<source src="audio/thwip.mp3" type="audio/mpeg">
</audio>

It's technically optional, but you should include a type attribute specifying the media’s content type
(content types were introduced in Chapter 3). This allows a browser to quickly determine if the media is in
a format it can play, and if not, it shouldn’t bother to download any resources. Without the type attribute,
user-agents have to download at least part of the media and analyze it before they can tell if it's something
they can play or not. Including a detailed type attribute can save on bandwidth and processing.

In addition to the content type, you can also include the specific codec the media uses. Remember that a
browser must use the same codec to decode the encoded media, so informing the browser which codecs
are in use is a good thing to do:

<audio controls>

<source src="audio/thwip.ogg" type="audio/ogg;codec=vorbis">
<source src="audio/thwip.mp3" type="audio/mpeg;codec=mpga">

Embedding Media

</audio>

Videos usually include two tracks in the same container file: a video track and an audio track. These two
tracks will use two different codecs, and a browser must support both if it's to play the complete media. If
you include both codecs in a type attribute, you can help the browser determine how to handle the media.
Multiple codecs appear in a type attribute separated by commas, but unfortunately it can be tricky to
include those commas without throwing validation errors. To pass validation (for the present, at least) the
codecs need to be wrapped in double quotation marks, and the complete value of the type attribute needs
to appear in single quotes, like this:

<video controls>

<source src="video/Pod People.webm" type='video/webm; codecs="vp8,vorbis"'>

<source src="video/Pod_People.ogv" type='video/ogg; codecs="theora,vorbis"'>

<source src="video/Pod_People.mp4" type='video/mpeg; codecs="avc1.42E01E,mp4a.40.2"">
</video>

It's a bit messy, but it's valid. If you prefer life on the edge, most browsers are happy to accept comma-
separated codecs without double quotes, though you'll instead need to omit any spaces, like
type="video/webm; codecs=vp8,vorbis". If you want to play it safe and are a stickler for validation, use
the nested quotation marks. It's all part of the media encoding thrill ride.

The source element can also carry an optional media attribute, indicating the media type (screen, print,
Braille, aural, handheld, etc.) for which the embedded media (audio or video) is intended. The value of a
media attribute is a comma-separated list of media queries, each consisting of a media type and one or
more expressions about the media features, such as screen width or aspect ratio. This way you can offer
different audio or video optimized for different displays or devices.

Media queries are a concept introduced in CSS3. They extend the functionality of media
types and allow a web developer to programmatically check for certain device or media
properties, delivering different content or style rules to meet different criteria. You'll learn
a bit more about media queries later in this book, and in the mean time you can also
read up on them in the CSS specification (w3.0rg/TR/css3-mediaqueries).

You can see an example of a media attribute in Listing 5-7. In this scenario, the first source element
targets screen media (as opposed to print or Braille, which would have very different needs) on devices at
least 600 pixels wide, which we can assume is a computer or tablet with a large enough screen to enjoy
the full-size video. The second source element targets screens less than 600 pixels wide, serving those
smaller displays a smaller, more mobile-friendly video. You would naturally include the usual multiple
formats and fallback content, but we left them out here for the sake of brevity.

Unfortunately, no browsers yet support this technique at the time we’re writing this, but it never hurts to
begin planning for the future.

Listing 5-7. A video element featuring different sources optimized for different media

<video controls poster="images/Gamera.jpg">
<source src="video/Gamera.ogv" media="screen and (min-device-width: 600px)" =
type="'video/ogg; codecs="theora,vorbis""'>

161

Chapter 5

<source src="video/Gamera-mobi.ogv" media="screen and (max-device-width: 600px)" =
type="video/ogg;codecs="theora,vorbis" ">
</video>

Required Attributes

= src: Specifies the URL where the media file or stream resides on a web server.

Optional Attributes

= type: The media source’s media type (also called a MIME type). This may optionally include the
specific codec(s) used to encode the media.

= media: The output media or devices for which the embedded media is optimized. This attribute’s
value is a comma-separated list of valid media queries, as taken from the CSS specification
(w3.0rg/TR/css3-mediaqueries). The default value is “all” if the attribute is empty or omitted.

track

162

A track element specifies the address of an external timed text track for a media element, either audio or
video. Such a text track can provide accessible captions for the hearing impaired, or subtitles for other
languages, additional text descriptions, annotations, or metadata about the media. This is a recent addition
to HTML5 and browsers don’t support text tracks yet.

The track element is a void element with no end tag, and it can only appear as a child of an audio or
video element. Within an audio or video element, track elements should come after all source
elements and before any other flow elements (such as an object, embed, or any other fallback content):

<video controls>
<source src="video/mechanical-monsters.ogv" type="video/ogg">
<source src="video/mechanical-monsters.mp4" type="video/mp4">

<track kind="subtitles" src="video/tracks/mechmon-en.vtt" =
srclang="en" label="English subtitles" default>

<track kind="subtitles" src="video/tracks/mechmon-ja.vtt" =
srclang="ja" label="Japanese subtitles">

<track kind="captions" src="video/tracks/mechmon-cap.vtt" =
srclang="en" label="English captions for the hearing impaired">

<p>Download this exciting video clip in

0gg Theora or

MP4 format.</p>
</video>

If there are multiple track elements present, you can mark one of them as the default text track with the
Boolean default attribute; without this attribute the first track acts as the default.

Each track element requires a sxc attribute supplying the URL of the text track data. Also important is the
kind attribute, specifying what kind of text track the browser is dealing with. There are only a few different
kinds of tracks:

Embedding Media

= Subtitles are a transcription or translation of dialogue, for cases when the sound is available but
may not be understood, especially if it's in another language.

= Captions are a transcription of dialogue but also describe any other sounds, music cues, or other
essential audio information. Unlike subtitles, captions are intended as a replacement for the audio
if the audio isn’t available, especially valuable to deaf viewers.

= Descriptions provide text descriptions of a video if the video isn't available, or for blind users, in
which case the text descriptions might be synthesized as audible speech or printed to a Braille
device.

= Chapters are titles meant to act as navigation points, to jump to a particular segment of the media
source, like the scene selection on a DVD.

= Metadata is information about the media, only intended for use by scripts or user-agents, not for
display.

The track element has an optional srclang attribute to declare the language of the text track. If the
track’s kind is set to subtitles, a srclang attribute must be present, though it may have an empty value
(srclang="") meaning the track has no language. An optional label attribute offers a title for each text
track, which could appear in a menu so your users can select one track from several options.

This is all brand new in HTML5, and is still very much in a state of flux as the specification marches toward
completion. As of this writing, only a few of the very latest browsers have implemented support for the
track element, but we can hope others add it soon. We've tried to boil it down to a brief introduction here,
and although the markup is simple, actually implementing text tracks for rich media is a much more
complex matter. One major tangle is defining and standardizing the format of the timed text tracks
themselves, and that part is still ongoing.

Required Attributes

= src: The URL of the text track data.

Optional Attributes

» kind: The kind of text track, specified by one of the keywords: subtitles, captions,
descriptions, chapters, or metadata. The track’s kind defaults to subtitles if the attribute
is missing.

» srclang: The language of the text track, specified by a valid language tag (see langtag.net for
more on language tags). This attribute must be present if the track element's kind is
subtitles, though srclang may have an empty value (in which case the track has no specified
language).

= label: A human-readable title for the text track, to assist the user in selecting which track to
render. This is especially helpful when there are multiple tracks.

= default: Indicates the default text track for the media element when there is more than one
track. This attribute can only appear in one track element per media element.

163

Chapter 5

If you'd like to dive much deeper into how text tracks work (or soon will), consult the
spec-in-progress at whatwg.org/specs/web-apps/current-work/multipage/the-
video-element.html#timed-text-tracks

Embedding Plug-ins and Other Content

Images have been web-native since the first graphical web browser in the early 1990s, and the new audio
and video elements in HTML5 are helping to make sound and moving pictures just as web-native as static
pictures. At long last, web users can enjoy musical interludes and funny cat antics without requiring third-
party plug-ins. And yet, HTML still can’t do everything on its own. Some user experiences simply can't be
produced with technology native to the browser environment, and browsers still often require some outside
assistance from plug-ins. Though HTML doesn’t quite give us unlimited power, it does give us
mechanisms to embed external content, for those challenges a browser just can’t face on its own.

object

164

The object element embeds a file or type of media that exists external to the HTML document. The
external content could be an image, a video, an audio file, or even an HTML page—but other elements
exist for embedding these types of content that a browser can handle natively (img, video, audio, and
iframe, respectively). The object element is most often used to embed content that requires a separate
plug-in application to render it, such as Flash movies or Java applets.

The object element requires an end tag and may contain one or more param elements, followed by any
other flow content. If the embedded content fails to render—if the browser lacks the requisite plug-in, for
instance—the nested content is displayed as a fallback.

Earlier in this chapter, you saw some examples of the object element used to embed Flash-based media
players inside the audio and video elements, providing a fallback player for browsers that don't support
those new elements. Listing 5-8 shows an inversion of that; in this example, the Flash player comes first
and a nested audio element provides a fallback for browsers that don't have the Flash plug-in installed but
do support native audio (such as every Apple iPad and iPhone).

Listing 5-8. An embedded Flash object with a nested audio element as fallback

<object data="flash/audio-player.swf?soundFile=audio/Townsville.mp3" =
width="250" height="25" type="application/x-shockwave-flash">
<param name="movie" value="flash/audio-player.swf?soundFile=audio/Townsville.mp3">
<param name="allowscriptaccess" value="always">
<param name="menu" value="false">
<param name="wmode" value="transparent">

<audio controls>
<source src="audio/Townsville.mp3" type="audio/mpeg;codec=mpeg">
<source src="audio/Townsville.ogg" type="audio/ogg;codec=vorbis">
<p>Download this tune in MP3
or 0gg Vorbis format.</p>

Embedding Media

</audio>
</object>

Required Attributes

The object element doesn't require any attributes. A data attribute is usually required to provide the
resource’s address, unless that address is provided in a nested param element instead.

Optional Attributes

param

data: The URL of the external resource to embed.

type: The content type of the embedded resource (also called a MIME type). This attribute’s
value should match the resource’s actual content type; a content type mismatch may cause the
browser invoke the wrong plug-in to handle the content, and the content may not work.

name: Provides the object’'s browsing context, primarily if the embedded object is another HTML
document (see w3.0xrg/TR/html5/browsers . html#windows).

form: Specifies the ID of the form element with which the object is associated (if it's associated
with a form). You'll learn more about forms in HTML in Chapter 8.

width: The width of the object in pixels.
height: The height of the object in pixels.

usemap: Identifies a client-side image map to be used, if the object is an image (see Chapter 6 to
learn more about image maps).

typemustmatch: A Boolean attribute that, when present, indicates that the resource specified in
the data attribute must match the content type specified in the type attribute; if the resource
doesn’t match the type, it shouldn’t be used or displayed. This is most useful when you're
embedding external content from a source you can’t control and may not trust, to help prevent the
remote host from passing through any malicious code. This attribute can only be present if both
the data and type attributes are present as well.

A param element appears within an object element to define various object parameters and pass along
additional information for the object to use. A single object can contain multiple param elements, though
they must appear first before any other nested content. The param element can only appear as a child of
an object element. This is a void element with no contents and no end tag. It requires a name attribute
and optionally (though usually) features a value attribute as well. This is a multi-purpose element that
represents nothing on its own, and actual usage will depend entirely on the particular object you're
embedding.

Required Attributes

name: The name of the parameter.

165

Chapter 5

Optional Attributes

= value: The value of the parameter.

embed

As the HTML5 spec states, the embed element is “an integration point for an external (typically non-HTML)
application or interactive content.” In simpler terms, this element embeds content that requires a plug-in.
It's similar to the object element in that regard, but unlike object, embed is a void element that can't hold
any contents, meaning you can't readily provide any fallback content within the element. If the browser
lacks the requisite plug-in to process the embedded resource, the embed element won't do anything at all.

Listing 5-9 shows an example of the embed element, here embedding an MP4 video file. Some browsers
can play MP4 video natively, but only in a video element. If you embed the file directly with an embed
element (or object), the browser will attempt to invoke the appropriate plug-in (such as QuickTime) to
handle the media.

Listing 5-9. An MP4 video clip embedded in a document with the embed element

<embed src="video/feature.mp4" type="video/mp4" width="394" height="298">

The video element is a far better way to embed videos in your web pages. However, you can use embed
within a video (or audio) element to include the fallback for older browsers—either embedding a Flash-
based media player or embedding the media directly—the same way you would use the object element:

<video controls width="468" height="350">
<source src="video/mechanical-monsters.mp4" type="video/mp4">
<source src="video/mechanical-monsters.webm" type="video/webm">

<embed src="flash/video-player.swf" flashvars="video/mechanical-monsters.mp4” -
type="application/x-shockwave-flash" width="468" height="350">
</video>

The embed element is newly standardized in HTMLS5, though it's actually been around for a long time as a
non-standard and invalid element. Not so long ago, embed enjoyed better cross-browser support than
object, even though embed wasn't part of any standardized HTML specification—it was introduced by
Netscape years ago and other browsers imitated Netscape'’s implementation.

The object element is fully supported in current browsers, but because so many websites used the non-
standard embed element for so long, embed became a de facto standard simply through common usage.
HTMLS5 has followed the “pave the cow paths” methodology: observe what people are using in the real
world, then tidy it up and make it official. The embed element is now valid in HTML5, but object is still
preferable.

Required Attributes

166

The embed element doesn't require any attributes, though a src attribute is usually required to provide the
resource’s address. An embed element with no attributes is technically valid, but represents nothing.

Embedding Media

Optional Attributes
= src: The URL of the external resource to embed.

= type: The content type of the embedded resource (also called a MIME type). This attribute’s
value should match the resource’s actual content type; a content type mismatch may cause the
browser invoke the wrong plug-in to handle the content, and the content may not work.

= width: The width of the embedded content in pixels.
» height: The height of the embedded content in pixels.

* Any other attribute that doesn’t have a namespace and isn’t one of name, align, hspace, or
vspace (these four are obsolete attributes, and are specifically excluded from embed because
they have effects beyond passing parameters to the plug-in).

Dynamic Drawings

One of the most exciting innovations in HTML5 is the canvas element and its associated scripting APIs,
allowing a browser—with the aid of JavaScript—to natively render imagery in real-time without requiring
additional plug-ins. The technology was first introduced by Apple and incorporated into WebKit, the
rendering engine that powers both Safari and Chrome. The canvas element was soon adopted by Firefox
and Opera, and finally by Internet Explorer as of version 9.

Images are static media—the picture lives on the server in a permanent, unchanging state, and users can
download the image to view it in their browsers. It's certainly possible to generate static images
programmatically, but once the file is made it remains forever static. Scalable Vector Graphics (SVG) is an
image format based on XML, and SVG imagery can be rendered dynamically, but for various reasons SVG
wasn't embraced as quickly or as widely as canvas has been. Although SVG offers many of the same
capabilities as canvas (and even a few advantages), the current generation of browsers has better support
for the canvas element.

canvas

The canvas element creates an empty drawing area for dynamically generated imagery—a metaphorical
blank canvas. The markup is incredibly simple:

<canvas></canvas>

That's it. On a rendered page, the canvas element designates a box 300 pixels wide by 150 pixels high by
default, but you can supply your own dimensions with the optional width and height attributes, or with
CSS. You may also want to include an ID attribute, to make it easier to target the element with JavaScript:

<canvas id="myCanvas" width="460" height="300"></canvas>

This is a new element in HTML5 so older browsers won'’t recognize it, and only the latest browsers support
the JavaScript methods for creating canvas drawings. The canvas element requires an end tag and, like
the audio and video elements, it can contain any other flow elements and content. Browsers that don’t

167

168

Chapter 5

support canvas will show the inner content just as if the outer canvas element didn't exist. The fallback
content should preferably be some usable replacement content, such as an image or text equivalent,
depending on what you're drawing. For example, if you're using canvas to render charts from numerical
data, the fallback content might be the same data presented in a table. If it's a diagram or illustration, you
could provide a static image version of it, like you see in Listing 5-10 (Figure 5-11 shows the result). If the
canvas drawing is decorative and not essential, leaving the element empty means older browsers won't
display anything at all.

Listing 5-10. A canvas element containing an image as fallback content for older browsers

<figure>
<canvas id="shrinkray" width="460" height="300">
<p>We’re terribly sorry, but your browser can’t display the original
interactive diagram. Please enjoy this static version instead.</p>

<img src="images/shrinkray-diagram.png" width="460" height="300" ‘=
alt="A line diagram labeling the key components of the Power Outfitters =
V900 portable shrink ray. It’s shaped like a pistol, with a rounded body,
a beam emitter (barrel), hand grip, and trigger. On the side of the body
casing are a mode switch and dial control for level adjustment.">

</canvas>

<figcaption>
The Power Outfitters V900 portable shrink ray

</figcaption>

</figure>

Figure 5-11. Older browsers that don’t support canvas will show the static image instead

Embedding Media

The canvas element is an ordinary citizen of the document so it can be styled similarly to any other
element, adding background colors, background images, fonts, borders, margins, padding, and so on.
Those CSS styles won't affect the drawings within the rendered box, only the box itself and any fallback
content inside it.

Although the markup for the canvas element is very simple, it offers a wide window into a very complex
realm. The element itself doesn’t do anything more than provide a space where JavaScript can draw, and
the script does all the real work. An instance of the canvas element opens up one or more rendering
contexts with a range of associated JavaScript methods. The only official rendering context at present is
2D, for two-dimensional drawings, but a 3D context is in the works, awaiting wider implementation in
browsers. Soon you’ll be able to dynamically draw three-dimensional shapes in virtual space, right there in
a web browser. But for now you're limited to a flat plane.

Each shape in a canvas drawing is generated and positioned in JavaScript code. For instance, these few
lines of script will draw a blue square:

var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");

context.fillStyle = "lightblue"; // Set the fill color
context.fillRect(50, 40, 150, 150); // Draw the filled rectangle

The first two lines establish some variables, first specifying the canvas element on which to draw, then
invoking that canvas’ 2D rendering context. The next two lines produce the drawing, first declaring a fill
color and then drawing the filled rectangle on the canvas, 50 pixels from the left, 40 pixels from the top,
150 pixels wide and 150 pixels tall. That's not so hard, is it? You can see the result in Figure 5-12 (we've
added a border to the canvas element here, just so you can see it; a rendered canvas has no border or
background by default).

Figure 5-12. A filled square drawn with Canvas and JavaScript

169

170

Chapter 5

Unfortunately, the only shape that's quite that easy to draw is a rectangle. More interesting shapes require
some slightly more complex code. We can add an outlined circle like so:

context.strokeStyle = "midnightblue"; // Set the stroke color
context.lineWidth = 8; // Set the stroke width
context.arc(125, 115, 40, 0, Math.PI*2, true); // Create the circle path
context.stroke(); // Add the stroke to that path

And you can see the result in Figure 5-13. Shapes are drawn in the order in which they appear in the
JavaScript, so the circle overlaps the square because it's drawn later in the script.

Figure 5-13. Adding a circle to the canvas

More complex shapes are possible, of course, with gradient fills and effects like drop shadows, and
integrated bitmap images. With the canvas element and a 2D rendering context, you can produce almost
any sort of shape-based illustration you might create with vector drawing software like Adobe lllustrator. It
follows that the more complex the drawing is, the more complex the code will be to generate it. It's
certainly not quite as easy as dragging a pencil across a sketchpad, but there are tools, frameworks, and
code libraries that can help ease the pain.

What's really cool about canvas is that these drawings are generated “on the fly” by JavaScript, and can
thus be manipulated by JavaScript in real time, interacting with data and user input. Because the imagery
is created before your eyes, a canvas graphic can move and react and respond. Even with two measly
dimensions the possibilities are infinite.

Figure 5-14 is a screen capture of a live drawing application called Ghostwriter Art Studio
(https://developer.mozilla.org/en-US/demos/detail/ghostwriter-art-studio). Just a few
years ago something like this could only be done with plug-ins like Flash or Silverlight, but this app works
directly in a browser. It's built entirely with HTML, CSS, and JavaScript, and uses the canvas element as,
well, a canvas.

https://developer.mozilla.org/en-US/demos/detail/ghostwriter-art-studio

Embedding Media

Figure 5-14. Ghostwriter Art Studio is an open-source demonstration of the canvas element, with a live drawing
surface where you can sketch and doodle by hand.

For something perhaps a bit more practical, Visualize (filamentgroup.com/examples/charting v2/)is
a JavaScript widget that reads a well-structured HTML table and automatically generates a chart in a
canvas element, like you see in Figure 5-15. This is a fine example of progressive enhancement. The
table is the original content, fully readable and accessible by any person or user-agent (you'll learn all
about tables in Chapter 7). The canvas-based chart then further enhances that content when the
conditions are right (a graphical browser that supports canvas and JavaScript).

171

Chapter 5

Figure 5-15. The chart on the right is generated in a Canvas element, derived from the table on the left

Although the possibilities of canvas are truly exciting, there are a few unfortunate drawbacks. For one
thing, it's entirely reliant on JavaScript, so people who disable JavaScript in their browsers (or are using
browsers that don’t support scripting) will be excluded from seeing the canvas. If the browser supports and
recognizes the element but JavaScript is disabled or some other error in the script stops it from running,
the browser will still render the canvas as a blank box, hiding any fallback content within it. It's a good idea
to include some checks in your JavaScript to test for canvas support, and it may even be best to generate
the canvas element itself with JavaScript and insert it into the DOM. That way, without scripting, the
canvas element won't exist at all and the fallback content can appear in its stead.

Anything drawn in a canvas element—including text—exists merely as pixels on screen, not as a true
object in the document. Scripts and applications can read and manipulate the code that draws the pixels,
but remain ignorant of the shapes those pixels represent. Because in-canvas objects aren't part of the
DOM, screen-reading software for the visually impaired has no way to read them, even if the objects are
letters and words. The canvas element is inaccessible for the time being, but a group within the W3C is
working to correct that shortcoming (w3.org/WAI/PF/html-task-force). Meanwhile, use canvas
responsibly and consider your audience. Provide usable, meaningful content and interaction first, and
enhance it with canvas when it's appropriate.

We've barely scratched the surface of what can be done with the canvas element here,
and there are entire books dedicated to the subject. If you'd like to learn more, a good
starting point is the canvas tutorial from the Mozilla Developer Network
(https://developer.mozilla.org/en/Canvas_tutorial).

Required Attributes

172

The canvas element doesn’t require any attributes.

https://developer.mozilla.org/en/Canvas_tutorial

Embedding Media

Optional Attributes
= width: the width of the canvas in pixels.

» height: the height of the canvas in pixels.

Images with Style, Styling with Images

Simply injecting an image into a web page rarely makes for the best visual experience unless you add a bit
more panache. With CSS, you can move and manipulate that image, incorporating it into the layout of your
content on the screen. You can also use images in CSS itself, filling HTML elements with background
patterns, or adding purely decorative images that won't interfere with the structure of your content.

Wrapping Text Around an Image

You've no doubt seen it in hundreds of books, magazines, and newspapers: an image placed in a column
of text where the text wraps around the image and continues on its way, like a stream flowing around a
boulder. In early versions of HTML, this was accomplished with the now-obsolete align attribute, but the
modern way to achieve the same effect is with the float property in CSS.

The float property accepts one of three values: left, right, or none. When an element is “floated,” it
will be shifted as far to one side (left or right) as possible until its edge comes up against the edge of its
containing block (or until it collides with another floating element). Any text or elements that come
afterward will then flow upward around the floated element. The default none value is most useful for
overriding any float properties that were granted to an element by another rule in your style sheet.

In Listing 5-11, you see the markup for an image followed by a block of text (both are contained in a single
paragraph). The img element features a class attribute that will make it easy to apply CSS.

Listing 5-11. An image in a paragraph of text

<p>

Having foiled a jewelry store heist on my way to receive a

medal from the President, imagine my embarrassment to notice

a nasty laser burn on my cape. There was no time to fly back to
base and change into my spare costume, even at my speed. Thank
goodness for Power Outfitters! They had my size and style in stock,
in just the right shade of red, and at a great price, too. I went
back after the ceremony and bought five more capes, plus matching
gauntlets!</p>

The image belongs to the “avatar” class, and Listing 5-12 shows a CSS rule for that class, declaring that
the element should float to the left.

Listing 5-12. The CSS rule for the “avatar” class

.avatar {
float: left;

}

173

174

Chapter 5

You can see the results in Figure 5-16; the image floats to the left side of the paragraph and the following
text flows upward around it.

Figure 5-16. The image floats to the left, allowing the text to wrap around it

An inline image rests on the same baseline as its neighboring text, but when that image floats to one side,
its top edge now rests at the top of the line it appears on, descending below the baseline. In the previous
example, you'll notice that the wrapped text rubs directly against the right edge of the image, making it
harder to read. To create a bit of spacing, you can apply margins to the floating image:

.avatar {
float: left;
margin-right: 1em;
margin-bottom: .5em;

Only the right and bottom sides need margins in this case because the top and left sides don't collide with
any text. Leaving those sides with the default margin value of 0 will make those edges press right against
the invisible edge of the containing paragraph. You can see in Figure 5-17 that the floating image now has
a bit more room to breathe; the margins extend the influence of the image’s float, and the text now wraps
around the margins as well.

Figure 5-17. Applying some margins to the floating image separates it from the text
You can float almost any element in HTML, not only images. For instance, a “pull quote” in an article:

<p>Power Outfitters Superhero Costume and Supply Company is located
in a nondescript building on Kirby Ave, a site that once housed a

large printing plant. Behind their modest storefront is an expansive
warehouse positively packed to the portholes with paraphernalia.</p>

Embedding Media

<aside class="pull"»

<q>… the most astounding super-science gadgetry ever conceived
on this planet, or several others.</q>
</aside>

<p>You can find all the standard costume components and accessories,
both off the rack and custom tailored. Capes, cowls, tights, belts,
boots, and of course masks in every shape and style. But what you’ll
also find at Power Outfitters is some of the most astounding
super-science gadgetry ever conceived on this planet, or several others.
I was lucky enough to receive a tour of the manufacturing wing to see
what goes into making some of their top selling items.</p>

With a quick float:right and a few more declarations, this pull quote can easily look something like
Figure 5-18.

Figure 5-18. A floating pull quote with some additional style

Background Images

With the CSS background-image property, you can add decorative imagery to your page and still avoid
mixing presentation with your content—images that are meaningful content belong in the HTML document
with your other content. Almost any element in HTML can carry a background image and the contents of
the element will overlay that background. The background image tiles in both directions by default,
beginning at the top-left corner of the element and replicating itself horizontally and vertically to fill the
space, like the tiles on a kitchen floor.

Listing 5-13 shows a CSS rule that will apply a background image to the body element. The image is
specified by its URL, contained in parentheses and denoted by the url keyword.

175

Chapter 5

Listing 5-13. A background image applied to the body element

body {
background-image: url(images/background.png);

The image tiles to fill the window on the rendered page, as you can see in Figure 5-19.

Figure 5-19. The background image tiles in both directions, repeating as many times as necessary to fill the element’s
area, the entire browser window in this case.

Relative URLs in CSS are relative to where the CSS file resides, not relative to where
the HTML document resides. Depending on how you organize your files on the server,
you may need to use up-level directives (../) in your CSS URLs, or use site-root-
relative URLs with leading slashes if your server is set up that way. If your background
image isn’t showing up in the browser, check the file path in your image URL.

You can modify the default tiling with the background-repeat property, specifying whether the image
should repeat only horizontally, only vertically, or not at all. Listing 5-14 expands the previous CSS rule,
declaring that the background image should only repeat horizontally along the x-axis.

Listing 5-14. Adding a background-repeat declaration

body {
background-image: url(images/background.gif);
background-repeat: repeat-x;

You can see in Figure 5-20 that the image now repeats across the top of the page but not downward.

176

Embedding Media

Figure 5-20. The background now tiles horizontally but not vertically
Likewise, a value of repeat-y will tile the image vertically but not horizontally:

body {
background-image: url(images/background.png);
background-repeat: repeat-y;

You can see the result in Figure 5-21, where the image now tiles vertically along the y-axis.

Figure 5-21. The background tiles vertically but not horizontally

177

Chapter 5

The default value of background-repeat is repeat, which you can use to override another value in
another rule if necessary. You can also disable tiling altogether with the value no-repeat:

body {
background-image: url(images/background.png);
background-repeat: no-repeat;

Figure 5-22 shows the effect of the no-repeat value; the image appears only once and doesn't tile in either
direction.

Figure 5-22. The background image appears only once and doesn't repeat

If your background image is larger than the element it decorates, the element’'s dimensions act like a
window defining the portion of the background that can be seen. In Figure 5-23, the background image is
much larger than the element in which it appears so part of the image is hidden.

Figure 5-23. Only part of the background image is visible because it's much larger than the element to which it's been
applied

178

Embedding Media

If the element expands—if you add more content, increase the text size, or resize the element with CSS—
more of the image becomes visible, as in Figure 5-24.

Figure 5-24. Adding another paragraph expands the container element, revealing more of the background image

Text can be difficult to read when it overlays a complicated background image or when there’s not enough
contrast between the foreground and background colors. Be wise in your use of background images,
ensuring they don't interfere too much with the readability of your text.

Also be sure to specify a solid background color (with the background-color property) that provides
enough contrast with the foreground text color in the event the image doesn't display. Most modern
browsers default to black text on a white background. If your design uses light-colored text against a dark
background image, you should declare a dark background color as well—otherwise the browser defaults
back to white if the image is missing and your light text could vanish.

Background images are rendered on top of background colors. If the image is opaque, the solid color will
show up when the image isn’t available. If parts of the background image are transparent, the background
color will show through those transparent pixels. You can create some pretty neat layered effects with
transparent PNG backgrounds overlaying different colors, or even overlaying other background images.

Positioning a Background Image

By default, a background image appears in the top-left corner of the element, which is also where the tiling
begins if the image is allowed to tile. The CSS background-position property controls the placement of
a background image. If the image is meant to repeat, the value of background-position will mark the
beginning of the tiling pattern.

The property takes two values: one for the horizontal position and one for the vertical position. The
horizontal value always comes before the vertical, and if only one value appears, it will be taken as the
horizontal position. Listing 5-15 shows the CSS to place a background image at the bottom of the right
side of an element with the class “intro”.

179

180

Chapter 5

Listing 5-15. Adding a background-position declaration

.intro {
background-image: url(images/background.png);
background-repeat: no-repeat;
background-position: right bottom;

Figure 5-25 shows the result—the image appears in the element’s bottom-right corner (we’ve added some
padding and a border so you can see the box).

Figure 5-25. The image now appears in the bottom-right corner (and still doesn’t repeat)

You can specify a value for background-position in a few ways: keywords, lengths, and percentages.
The keywords to use are left, center, or right for the horizontal position and top, center, or bottom
for the vertical. Note that you can use the keyword center for either horizontal or vertical positioning;
vertically, center is half the element’s height, and horizontally, center is half the element’s width.

A length is simply any number with any unit of measure available, such as 10px, 20mm, or 3.5em, and the
two values needn’t use the same unit. A unit isn’t required for lengths of 0. After all, Opx is the same as
0in or Oem—zero is always zero. Listing 5-16 shows two lengths for the background-position property,
placing the image 50 pixels from the left and 4 em spaces from the top.

Listing 5-16. Using lengths for background-position

.intro {
background-image: url(images/background.png);
background-repeat: no-repeat;
background-position: 50px 4em;

Figure 5-26 shows the rendered result, with the image positioned 50 pixels from the left side and 4 ems
from the top, just as declared in the CSS.

Embedding Media

Figure 5-26. The background image shows up exactly where the CSS told it to be

When you position a background image with percentages, you must factor in the size of the image as well
as the size of the element it decorates. A background image positioned 75% from the left side of the
element will move the reference point 75% from the left side of the image as well. This especially makes
sense when centering a background at 50%; the background is placed at a point halfway across the
element and halfway across the image, as illustrated in Figure 5-27.

Figure 5-27. A background image positioned 50% from the left and 50% from the top will be perfectly centered,
measuring the size of both the element and the image.

This isn't true for lengths; non-percentage lengths always measure the distance from the top and left sides
of the element to the top and left sides of the image, as shown in Figure 5-28.

181

Chapter 5

Figure 5-28. Non-percentage lengths position the top-left corner of the background image at the precise point specified
in your CSS. This example shows the result of background-position: 300px 8em;.

Shorthand for Backgrounds

182

Instead of writing out each background property separately, you can declare them all in one place with the
shorthand background property, to reduce the size of your CSS file and spare your carpal tendons from
the extra typing:

.intro {
background: #e6f2f9 url(images/background.png) 94% 20px no-repeat;

The order of the values doesn’t matter, with the exception of background-position; horizontal must still
come before vertical, and nothing else can appear between the two. Any properties not declared simply fall
back to their default value. For example, this rule only includes values for background-repeat and
background-image because that's all we need to create a repeating stripe pattern:

#sidebar {
background: repeat-y url(images/stripes.gif);

All the other, undeclared background properties remain in their default states—background-color
defaults to transparent (no color) and background-position defaults to the top left. However, if you have
different rules declaring different values for the same element, and both use the shorthand background
property, the later declaration can override the earlier one, resetting undeclared values back to their
defaults. For example:

.intro {
background: #e6f2f9 url(images/background.png) 94% 20px no-repeat;
}

.intro {
background: left bottom;
}

Embedding Media

In this instance, the second rule would set the background-position to the bottom left, but that doesn't
matter because it also completely wipes out the values for background-image, background-color, and
background-repeat. You'd end up with a box with no visible background at all. To override just a single
background property on an element without affecting any others, declare that property alone in the
“longhand” form:

.intro {
background: #e6f2f9 url(images/background.png) 94% 20px no-repeat;

}

.intro {
background-position: left bottom;

}

Summary

The Web is textual at heart, but it lives a multimedia lifestyle. Images, animation, sound, and video can
imbue a humble web page with an energy and vitality that text alone could never achieve. Images have
been native to the Web from the beginning, but more complex multimedia has always required some extra
help. HTMLS5 brings us the audio, video, and canvas elements, taking a great leap forward to making rich
media as web-native as images have been for years. In this chapter, we briefly introduced these powerful
new elements, and showed you how to use them with responsibility, offering accessible fallback content
for users and devices that may not be able to enjoy the original media.

Even with these new media elements, HTML still can’t do everything, and plug-ins can still add a lot of
value when they're used appropriately. This chapter showed you how to embed external plug-in content
into your web pages for the jobs a browser can’t handle on its own.

Imagery can be instrumental in a well-designed web page and is just one more way to make your site
unique and identifiable. But images can also convey meaning in ways words can't. You can embed
meaningful images into your content with the img element, always including an alternative text equivalent
to improve accessibility for people and devices that can't see the picture. You should separate
presentational images from your content by using CSS and the background-image property. CSS also
gives you the power to control the placement and repetition of background images, and the ability to
influence the placement of inline images (and other elements) to integrate them into the flow of your page.

You'll make frequent use of the elements and techniques we've covered in this chapter and the previous
one to give your content meaning, to make your pages visually attractive, and to bring them to life. But the
Web wouldn’t be the Web without one essential component: the hyperlink. Chapter 6 will introduce you to
hyperlinks and show you how to transform your documents into living, working parts of the World Wide
Web.

183

Chapter 6
Linking the Web

It's not entirely hyperbole when we tell you that links are the most important element in HTML. Without the
ability to link from one document to another, the Web wouldn't be the Web. The “H” in “HTML,” hypertext,
becomes meaningless without the concept of linked documents. Links are the thread that binds the
tapestry of the Web together. They allow us, for better or for worse, to spend hours reading articles on
Wikipedia, diving into one topic and falling out the other side of a completely different topic. Links are
beautiful in their simplicity and awesome in their power.

In this chapter, you'll learn about anchors and their many useful attributes and characteristics. We'll also
introduce you to the image map. Over the course of the chapter, there will be plenty of code examples,
tips, and tricks. Lastly, we'll show you some common CSS techniques you can employ to spruce up your
links.

Anchors

Linking the Web begins with the a, or anchor, element, one of the oldest elements—perhaps the oldest
element—in HTML. If you take a look at the oldest known HTML document on the Web, still available at
www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html, you'll see that the page
includes three elements: title, h1, and a. Functioning hyperlinks were a key component of the Web from
the very start!

That page, created by Tim Berners-Lee while in the midst of inventing the Web, amazingly still renders
properly in modern browsers. Even in this primordial form, HTML differentiated itself from SGML, the
arcane language from which it was loosely derived, by including a facility for linking documents. SGML,

185

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html

Chapter 6

itself a descendant of IBM’'s GML, includes no notion of linked documents. Therefore, linking is one of the
fundamental attributes of HTML and is a defining characteristic of hypertext.

The anchor element itself can link to any number of resources: other web pages, images, email addresses,
PDFs, and more. Essentially, anything on the Web can be accessed via a hyperlink. In the next section,
we’'ll walk you through a number of facets of the mighty anchor element.

The anchor element marks up hyperlinks, those clickable bits of text or images that exist in just about
every document on the Web. In previous versions of HTML, the anchor element’s content model restricted
its content to phrasing (or “inline”) content. The HTML5 spec, though, expands the anchor’s content model
to allow for the inclusion of flow (or “block”) content. We'll discuss the reasoning behind this decision later
in this chapter.

Thanks to the reworking of the anchor’s content model, few restrictions exist on the element. In order to be
valid, an anchor element must have both a start and an end tag. Additionally, the anchor element cannot
be the child of another anchor element or a child of a button element.

The most basic implementation of an anchor element is shown in Listing 6-1.
Listing 6-1. A sample placeholder hyperlink
<a>A placeholder hyperlink

As it lacks an href attribute, the example shown in Listing 6-1 is known as a placeholder hyperlink.
Hyperlinks of this type are functionally useless. However, this is perfectly valid HTML. Browsers will
typically render this code the same as plain text, as shown in Figure 6-1.

Figure 6-1. A sample placeholder hyperlink as rendered in the browser

Not terribly useful, right? Good thing, then, that we have...

The href attribute

186

The href attribute (“href” being short for “hypertext reference”) of the anchor element adds interactivity
and meaning to a placeholder hyperlink. Values for the href attribute are restricted to URLS, which we will
cover in great detail in the next section of this chapter. But first, Listing 6-2 illustrates a common anchor
element with an href attribute.

Listing 6-2. An anchor element with an href attribute

Back to homepage

Most browsers will render this code as a run of blue, underlined text (see Figure 6-2). Of course, the
default styling of a hyperlink can easily be changed using CSS. When you move your mouse over the
hyperlink, your computer's cursor will change from its default arrow to a pointer. If you've spent any time at

Linking the Web

all surfing the Web (and we imagine that you have if you're reading this book), you've no doubt seen this in

action.

Figure 6-2. A hyperlink as rendered by a browser

Required Attributes

There are no required attributes for the anchor element.

Optional Attributes

In addition to the global attributes, the anchor element supports the following attributes.

URLs

href: a URL that defines the destination of the hyperlink. This can be a relative URL, an absolute
URL, or a fragment identifier.

rel: a space-separated list of tokens that describe the destination document's relationship to the
current document.

type: the MIME type of the hyperlink's destination.

target: a name or keyword that is the browsing context that a browser should use when

following the hyperlink. Typical values are "_blank", "_self", " _parent”, or "_top".
media: defines the media for which the linked document was designed.

hreflang: the language of the linked document.

If you recall the “Introducing the URL” section in Chapter 1, you'll remember that properly formed URLs
generally fall into two categories: absolute URLs and relative URLSs.

Absolute URLs contain the complete path (including the protocol; http://, https://, etc.) to a web
page. You'll want to use absolute URLs when linking to a resource that exists on a domain other than your
own. For instance, Listing 6-3 demonstrates how you would link to a page on the Power Oultfitters website
from your own.

Listing 6-3. An anchor element with an absolute URL

About Power Outfitters

Relative URLs, as the name implies, are URLs that reference resources by their location relative to the
location of the current document. Assume for a moment that all of the pages of your site are located in the
root of your site, as outlined in Listing 6-4.

187

http://example.com/about.html

188

Chapter 6

Listing 6-4. A sample site structure

http://example.com/index.html
http://example.com/about.html
http://example.com/1links.html
http://example.com/contact.html

Creating a link from one page to another in this example is as easy as setting the link's href attribute to
the file name of the page to which you're linking (see Listing 6-5).

Listing 6-5. An anchor element with a relative URL

About Power Outfitters

This example site structure works great for smaller websites. Assume, though, that you are tasked with
creating a much larger website. For this larger web project, you may want to organize your pages in a
series of folders. Using that approach, you might organize your pages in a fashion similar to that shown in
Listing 6-6.

Listing 6-6. A sample site structure

http://example.com/index.html
http://example.com/about/index.html
http://example.com/about/history.html
http://example.com/1links/index.html
http://example.com/1links/archive.html

Let's say you want to add a link from the “links” folder's “index.html” page to the “about” folder's
“history.html” page. To accomplish this, you would create a link like that shown in Listing 6-7.

Listing 6-7. An anchor element with a relative URL

Our History

Including the “../"characters at the beginning of the relative URL indicates to the browser that it should
first navigate up a single directory. After that, the browser is instructed to navigate into the "about" folder
and find the file named "history.html." It is possible to chain together several “../" characters; each
occurrence will instruct the browser to navigate up another folder within the structure of your website.

Fragment identifiers are the third type of link that you can use with the href attribute. In the context of a
web page, a fragment identifier is a specialized reference to a portion of a page. They are placed at the
end of URLs preceded by a hash symbol, as shown in Listing 6-8.

Listing 6-8. A URL with a fragment identifier

http://example.com/about.html#products

The string "products” that appears after the hash symbol directly correlates to an element on the team.html
page that has an id attribute with the value "products." The browser recognizes the fragment identifier in
the URL and automatically scrolls the page to bring the linked portion into view. You've likely seen
fragment identifiers in action if you've ever clicked a "read more" link on a news article.

http://example.com/index.html
http://example.com/about.html
http://example.com/links.html
http://example.com/contact.html
http://example.com/index.html
http://example.com/about/index.html
http://example.com/about/history.html
http://example.com/links/index.html
http://example.com/links/archive.html
http://example.com/about.html#products

Linking the Web

Fragment identifiers can link to portions of the same page, as well. This technique works exceptionally well
if your page has a table of contents at the top with expanded content below. Listing 6-9 illustrates a sample
table of contents with some associated content.

Listing 6-9. A table of contents with links to fragment identifiers

About Our Products</1i>
Frequently Asked Questions</1li>
Villain Policy</1i>

<div id="products">

</&i&>
<div id="faq">
</&i§>
<div id="villain-policy">
</éi§>
The rel attribute

The rel attribute of the anchor element consists of a space-separated list of tokens that describe the
relationship of the current document to the destination document defined by the anchor's href attribute.
As such, the rel attribute relies on the href attribute being a non-empty string. In HTML specification
parlance, a token is any string that does not contain space characters. For example, "home" or "home-
page" are acceptable tokens, but "home page" is not. A rel attribute value of "home page" is interpreted
as two discrete tokens.

Listing 6-10 shows an example of an anchor element with a single rel attribute value.

Listing 6-10. A sample anchor element with a single rel attribute value

Secret Lair (don’t click here!)

The "nofollow" value of the rel attribute is interpreted by some search engines (most
notably Google) as a directive to not follow the hyperlink to its destination. It's important
to note, though, that this is not an effective means of hiding sensitive information from
search engines. You can find more information about the "nofollow" rel
attribute value on this Google Webmaster Tools Help page:
www.google.com/support/webmasters/bin/answer.py?answer=96569

Listing 6-11 shows another example of the rel attribute in action, this time with multiple attribute values.

Listing 6-11. A sample anchor element with multiple rel attribute values

Latest Products RSS Feed

189

http://www.google.com/support/webmasters/bin/answer.py?answer=96569

Chapter 6

The link in the above example, which points to an RSS feed, has two rel attribute values: "nofollow" and
"alternate." This tells browsers (and search engine spiders) two things. The first, "nofollow," is aimed at
search engine spiders. The second value, "alternate," implies that the linked document is an alternative
version of the current document. In this case, it's an RSS feed of the current document's content. If your
site is multilingual, any links to translated versions of the current page that you include should also use the
"alternate” rel attribute value.

At this point, it's worth pausing for a moment and discussing possible values for the rel attribute. In the
section on Link Types (available at www.w3.org/TR/html4/types.html#h-6.12), the HTML 4 specification
details a number of recognized values for the rel attribute. In HTML 4, these were referred to as "link
types." According to the spec, "user agents, search engines, etc. may interpret these link types in a variety
of ways." The implication there is that interpretation of these values is left entirely to the browser, search
engine, or other software or device.

The following is a list of common rel attribute values:

= alternate: Indicates that the linked document is an alternate version of the current document.
This value is frequently used to point to versions in different languages and syndicated versions
of a document (e.g. RSS or Atom feeds).

» stylesheet: Specifies that the linked document is to be used as a stylesheet for the current
document. This value is almost universally used on the link element. In fact, the WHATWG's
HTML Living Standard only allows this attribute value on 1ink elements.

= nofollow: Implies that the author of the current document does not endorse the linked
document. Search engines, in turn, may not follow the link. The WHATWG's HTML Living
Standard only allows this attribute value on the a and area elements.

= license: Indicates that the linked document contains information about the copyright or
ownership of the current document.

= next or prev: Specifies that the linked document is the next or previous document in an ordered
series of documents. This value is frequently used on pagination links.

= tag: Indicates that the link represents a tag that applies to the current document.

These are just a few possible values for the rel attribute. As the HTML5 specification does not enumerate
a list of potential values, the possibilities are endless. The WHATWG's HTML Living Standard, though,
provides a list of defined link types. That list is available at www.whatwg.org/specs/web-apps/current-
work/multipage/links.html#linkTypes. Although the WHATWG's HTML Living Standard is not the same as
the W3C's official HTML5 specification, you should feel comfortable using the rel attribute values
described in the Living Standard.

Au revoir, rev attribute

190

In earlier versions of HTML, there existed a rev attribute that was, in effect, the opposite of the rel
attribute. The rev attribute was intended to describe an external document's relationship to the current
document. However, due to infrequent and often incorrect usage, the attribute is rendered obsolete in the
HTMLS5 specification.

http://www.w3.org/TR/html4/types.html#h-6.12
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#linkTypes
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#linkTypes
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#linkTypes

Linking the Web

The current recommendation is to use the rel attribute with a value opposite of what would otherwise
have been used with the rev attribute. If that sounds confusing, don't worry; it is. That confusion is the
primary reason the rev attribute was removed from the HTML specification.

The type attribute

Often used in concert with the rel attribute, the type attribute describes the MIME type of the destination
of an anchor's hyperlink. The value of the type attribute must match a valid MIME type. Listing 6-12
illustrates how to use the type attribute, along with the rel attribute, to include a link to an RSS feed.

Listing 6-12. A sample anchor element with a type attribute

=
Latest Products RSS Feed

As you can imagine, including the type attribute on all of your anchors would be a tedious task.
Thankfully, such a task is entirely unnecessary. Browsers are smart enough to appropriately handle MIME

types.

Including the type attribute in your markup is entirely optional; no current browsers require you to specify
the MIME type of a linked resource. It is, however, a potentially useful inclusion and is one way to future-
proof your markup.

Inline vs. Block-level Links

Links are one of a handful of HTML elements that have what's known as a "transparent content model."
This means that, depending on context, the element can contain phrasing content or flow content. If the
anchor is a child of any element that can only contain phrasing content (such as a span), then the anchor
too can only contain phrasing content. This is the traditional, pre-HTML5 interpretation of the anchor
element (described in previous versions of HTML as being "inline").

Listing 6-13. An anchor with phrasing content

Go back to our homepage!

On the other hand, if the anchor is a child of any element that can contain flow content (such as a div), it
too can contain flow content. In this context, the anchor is what's commonly referred to as a "block-level
link."

Listing 6-14. An anchor with flow content

<h3>Utility belts</h3>

<p>For all of your utility belting needs!</p>

The anchor element's transparent content model is a great example of a guiding principle of HTML5: pave
the cow paths. For years, web page authors have wrapped anchors around block-level content and

191

Chapter 6

browsers have happily rendered those anchors as singular, clickable regions. This behavior, however, was
invalid according to the HTML specification. The authors of the HTML5 specification, in turn, deemed this
commonplace behavior worthy of codification. Thus, you may now wrap anchors around flow elements or
phrasing elements so long as the context is appropriate.

For more information on HTML5's design principles, check out: www.w3.0rg/TR/html-
design-principles/

Image Maps

The anchor isn't the only element for creating links in a document. You have another tool at your disposal:
the image map. Image maps define one or more clickable regions within an image that can be linked to
other documents or to other portions of the same document.

Just like real-world maps, image maps are best suited for conveying visual information. An image map is
an appropriate choice for creating, say, a clickable, interactive world map. Using an image map to mark up
a site's primary navigation, however, is not an appropriate use of an image map.

Image maps have quite a storied history. In the early days of web design, image maps were frequently
used to add interactivity to graphically rich designs. At the time, browser support for CSS-based layout was
largely non-existent, often resulting in designs that used very large images with complexly defined image
maps. As time passed, CSS support improved and the use of image maps fell by the wayside. In their
place, we have visually rich layouts that use CSS positioning to achieve similar effects.

Image maps, while still perfectly valid in HTML5, should be used with care. Although image maps are
relatively easy to implement, it's also quite easy to misuse them, leaving your users with a bad interactive
experience or, worse yet, an inaccessible site. As you know, it is of the utmost importance to always keep
accessibility and user experience in mind when considering using image maps—or any other feature of
HTML—in your page.

map

192

The map element, along with its descendant area elements, defines an image map. Unlike some elements
in HTML5, the map element must have both a start tag and an end tag. Additionally, the map element's
display property defaults to inline, meaning you needn't worry about a map element disrupting the
layout of your page. In fact, map elements are essentially hidden from view; browsers typically set a map
element's height and width to zero.

Depending on the context, a map element may contain either phrasing content or flow content. Much like
the anchor element discussed earlier in this chapter, the map element’s content model is transparent.
Basically, if the map element is a child of any element that can contain flow content (such as a div), it too
can contain flow content. If the map element is a child of any element that can only contain phrasing
content (such as a span), then the map element can also only contain phrasing content.

http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/

Linking the Web

At its most basic, an image map looks like:

<map name="crime-map"></map>

Currently, no regions exist within the map and it has no association with an image on the page. This image
map is ostensibly useless, but it's still perfectly valid.

Let's associate the image map with an img element:

<map name="crime-map"></map>

Easy, right? The usemap attribute of the img element associates the image map with the graphical image.
This means that any area elements added to the map will be applied to the crime map image. Note that the
usemap attribute's value must begin with a hash character.

Required Attributes

= name: gives the map a name that allows for association with an image via the usemap attribute.
The value of the name attribute must be a string at least one character long and can't contain
spaces.

Optional Attributes

Aside from the global attributes available to all elements, there are no additional optional attributes. There
is, however, the following caveat relating to the id attribute.

Should you define an id attribute on the map element, its value must be exactly the same as the value of
the name attribute:

<map name="crime-map" id="crime-map"></map>

The id attribute isn’'t required, but when it comes to the map element, if both the name and the id attributes
are present, their values must match exactly.

area

The area element represents an area on an image map. If the href attribute is specified on an area
element, the corresponding region on the image is clickable. Otherwise, the area element defines a dead
region on the image map.

area elements, like img elements, are void elements and don't have an end tag. If you are using HTML-
style syntax, you'd write an area element like this:

<area>

If you prefer XHTML-style syntax, you'd include a trailing slash:

<area />

Either method is appropriate, so long as you generally pick one and stick to it. Consistency counts! For the
examples in this chapter, we’ll be using the HTML-style syntax with no trailing slash.

193

Chapter 6

For details on the differences between the HTML syntax and the XHTML syntax in
HTML5, check out, “The HTML and XHTML Syntax,” on the W3C’'s website:
http://dev.w3.org/html5/html-author/#the-html-and-xhtml-syntax

An area element must always be a descendant of the map element but doesn't have to be an immediate
child of the map element. As we mentioned earlier, the map element can have any number of descendant
elements. If it makes sense within the context of your document, you may add additional markup around
area elements.

Required attributes

There are no required attributes for the area element.

Optional attributes

= shape and coords: specifies the shape of the area element and the coordinates of that shape.
The shape attribute accepts the following values: default, rect, circle, and polygon.

= href: a URL that, when present, makes the area a clickable hyperlink.

= alt: defines fallback content for the area. If the href attribute is present, the alt attribute must
also be present.

» media, rel, type, target, hreflang: These attributes follow the same conventions on area
elements as they do on a elements, as discussed in the previous section on anchors.

The shape and coords attributes

194

The area element has two important and related attributes that define its shape, size, and location in the
image map: shape and coords.

The shape attribute is an enumerated attribute with four possible values: default, rect, circle, and
poly. As this attribute is optional, you may choose not to include it. In this case, the value defaults to—wait
for it—default which, in turn, implies a rectangle that contains the entirety of the associated image. If you
explicitly set the shape attribute to default, you cannot include the coords attribute. For all other values
of the shape attribute, you must include the coords attribute and correctly specify values.

Listing 6-15 shows an image map with a single area.

Listing 6-15. An image map with a single area element

<map name="crime-map" id="crime-map">
<area>
</map>

Because no shape is specified for the image map's lone area, it becomes a rectangle containing the entire
image. If you want to make this area clickable, you'd add an href attribute as seen in Listing 6-16.

http://dev.w3.org/html5/html-author/#the-html-and-xhtml-syntax

Linking the Web

Listing 6-16. An image map with a single, clickable area element

<map name="crime-map" id="crime-map">
<area href="crime-junction.html" alt="Crime Junction">
</map>

The href attribute of the area element functions exactly as it does on the a element and can be a full
URL, a relative URL (as seen here), or a link to a portion of the current page. You are also encouraged,
when supplying an href, to include the alt attribute which specifies the text of the link.

Next, we'll introduce you to the different shapes you can create using the area element.

Rectangles

Creating a rectangular shape on your image map is as easy as setting the value of the shape attribute to
rect, as shown in Listing 6-17.

Listing 6-17. An image map with a rectangular area
<map name="crime-map" id="crime-map">

<area shape="rect" coords="10,5,100,50">
</map>

When adding rectangular areas to a map, the coords attribute must be given four integers. These values
are the coordinates, in pixels, of the top left corner of the rectangle (the first pair of integers) and the
bottom right of the rectangle (the second pair of integers). Both pairs of values are calculated with respect
to the top left corner of the image.

In the example above, we've created a rectangular region that begins ten pixels from the left edge and 5
pixels from the top of the image, extends 90 pixels wide, and is 45 pixels tall. It's important that the first
value be less than the third value and the second value be less than the fourth.

Circles
Creating a circular shape on your image map is similarly easy, as you see in Listing 6-18.
Listing 6-18. An image map with a circular area
<map name="crime-map" id="crime-map">
<area shape="circle" coords="50,30,20">
</map>

The above example, using the circle value of the shape attribute, creates a circle whose center point is
fifty pixels from the left edge of the image (the first value), is thirty pixels from the top edge of the image
(the second value), and has a radius of 20 pixels (the third value).

Polygons

As we've seen so far, creating rectangles and circles is fairly straightforward. Creating polygonal shapes
on an image can get very complicated very fast. Polygons, however, can be the most useful shapes.

195

Chapter 6

Listing 6-19 shows a basic example which will create a parallelogram.

Listing 6-19. An image map with a polygonal area

<map name="crime-map" id="crime-map">
<area shape="poly" coords="20,30,100,30,80,60,0,60">
</map>

In order to create a polygon, you must provide at least six values (three pairs of coordinates) and the
number of integers must be even. Aside from those two conditions, you are free to add as many
coordinates to the shape as you like.

Styling Anchors and Image Maps with CSS

Now that you've learned about the features of anchors and image maps, let's dive into some CSS for
changing their presentation. In this section, we’ll walk you through some common techniques for styling
links.

Styling Anchors

196

As we showed you earlier in this chapter, links, by default, appear as blue, underlined text in the browser.
This default styling may work well for Google search results pages, but it doesn’t serve the needs of most
designs you are likely to dream up or otherwise encounter. Luckily, CSS affords you plenty of opportunity
to style anchor elements. For starters, Listing 6-20 contains a little bit of CSS that changes some of the
basic presentation of a set of anchors.

Listing 6-20. CSS for styling the default state of an anchor element

a:link {
background: #ddd;
color: #cc0000;
font-weight: bold;
text-decoration: none;

}

The results of the code from Listing 6-20 are shown below in Figure 6-3.

Figure 6-3. Browser output of an anchor element styled with CSS

The selector used in Listing 6-20, a:1ink, instructs the browser to make the default state of links dark red,
bold, and underlined.

Linking the Web

“But,” you ask, “what is that extra code in the selector after the colon?” The :1ink portion of the selector is
what's referred to in CSS as a pseudo-class, which we introduced in Chapter 2. Pseudo-classes are the
mechanism by which we style various states of certain HTML elements. Anchor elements just happen to
be one of those HTML elements with multiple states. Next, we'll guide you through each of the anchor
element’s pseudo-classes.

Keeping it pseudo-classy

Visited links—anchors that you've previously clicked on in your browser—are generally colored purple (see
Figure 6-4). Your web browser will apply visited styling to links by drawing from its own stored history. If,
like us, you've ever tried to re-find a page you'd browsed to days or weeks ago, you know how helpful the
visited link state can be.

Figure 6-4. Browser output of the default styling of the visited state of an anchor element

The links in Figure 6-4 have no additional styling applied. As such, non-visited links render as blue,
underlined text and visited links (“Utility Belts” in this example) render as purple, underlined text. If you're
enjoying this example in the printed version of this book, odds are Figure 6-4 appears in various shades of
gray. You'll have to trust us that the “Utility Belts” link is purple!

To style the visited state of a link, use the :visited pseudo-class, as shown in Listing 6-21.

Listing 6-21. CSS for styling the visited state of an anchor element

a:link {
color: #cc0000;
font-weight: bold;
text-decoration: underline;

}

a:visited {
color: #00cc00;

}

In Listing 6-21, the a:visited selector instructs the browser to style visited links bright green. The visited
link state inherits the font-weight and text-decoration properties from the a:1link declaration. Figure
6-5 shows this CSS in action.

197

198

Chapter 6

Figure 6-5. Browser output of the visited state of an anchor element styled with CSS

Physically moving the mouse pointer over an anchor triggers the hover link state. Most browsers don’t
provide default styling for the hover state, so you'll want to make sure to declare some styles for this
pseudo-class (see Listing 6-22).

Listing 6-22. CSS for styling the hover state of an anchor element

a:link {
color: #cc0000;
font-weight: bold;
text-decoration: underline;

}

a:visited {
color: #00cc00;

}

a:hover {
color: #ccccoo;

}
With the above bit of code, anchors will turn yellow when hovered over with a mouse. Figure 6-6 shows
the output of this code.

Figure 6-6. Browser output of the hover state of an anchor element styled with CSS

Related to the hover state, a link’s focus state triggers when the browser gives an anchor focus. This
occurs when you use the keyboard's Tab key to cycle through the interactive elements on a page. By
default, most browsers will add a one pixel, dotted border to the focused link. Pressing the Enter key on a
focused link will activate that hyperlink. Listing 6-23 adds a rule for the : focus pseudo-class.

Linking the Web

Listing 6-23. CSS for styling the focus state of an anchor element

a:link {
color: #cc0000;
font-weight: bold;
text-decoration: underline;

a:visited {
color: #00cco00;
}

azhover {
color: #ccccoo;

}

a:focus {
outline: 1px dashed #cc0000;

The result of the code in Listing 6-23 is shown in Figure 6-7.

Figure 6-7. Browser output of the focus state of an anchor element styled with CSS

Although you may often style hover and focus states similarly, consider applying additional styles for the
focus state that call greater attention to the focused hyperlink. Visitors to your site that use keyboard or
other non-mouse navigation will thank you!

A link’s active state, the last of the bunch, occurs in the time during which you've pressed down on a link
using your mouse or keyboard. In this state, links typically appear styled with a bright red color and may
have a one pixel, dotted border. Listing 6-24 shows one example of styling the :active pseudo-class.

Listing 6-24. CSS for styling the active state of an anchor element

a:link {
color: #cc0000;
font-weight: bold;
text-decoration: underline;

}

a:visited {
color: #00cc00;

}

199

Chapter 6

a:hover {
color: #ccccoo;

}

a:focus {
outline: 1px dashed #cc0000;

}

a:active {
color: #0000cc;

}

Figure 6-8 shows that this code changes the color of an active link to blue.

Figure 6-8. Browser output of the active state of an anchor element styled with CSS
You'll also notice that the :focus styling gets applied to our active link.

It's important to note that the order in which you declare these pseudo-classes matters. It matters so
much, in fact, that there’s a mnemonic device to help you remember the ordering: LoVe/HAte. Or, LVHA,
short for :1ink, :visited, :hover, and :active. It's silly, yes, but we guarantee you'll remember it.

Ordering of link pseudo-classes is another example of using the cascading characteristics of CSS to our
advantage. Using the LVHA mnemonic, an anchor’'s :visited styles would override its default :1ink
styles and both of those styles would be overridden by :hover and :active styles.

The logic behind this ordering is actually quite simple. During the course of a user’s interaction with a
website, each link he or she interacts with goes through a particular life cycle. Assuming the user is new to
the site, each link exists in its default :1ink state. This state naturally precedes the :visited state.
Similarly, the :hover and :focus states naturally occur before the :active state.

Button-making

200

If you've spent any appreciable amount of time on the Web—and who hasn't at this point?—you've
undoubtedly noticed that not all links are styled as underlined text. The Web is chock full of ornately
designed buttons that you can click on. In a lot of these cases, there are anchor elements under the hood
styled to look like buttons.

In this example, we’ll show you how to style an anchor element to resemble a clickable button. Listing 6-25
and Listing 6-26 detail the markup and CSS needed for this example.

Linking the Web

Listing 6-25. An anchor element

Back to the Power Outfitters homepage

Listing 6-26. An anchor element styled using CSS

a{
border: 3px solid #111;
background: #666 url("arrow.png") no-repeat 15px 50%;
color: #fff;
display: inline-block;
font-family: Helvetica, Arial, sans-serif;
font-size: 14px;
padding: 15px 20px 15px 45px;
text-shadow: 1px 1px 0 #000;
text-decoration: none;

}

azhover {
background-color: #555;
border-color: #fff;
border-style: dashed;

}

a:active {
background-color: #c99;
border-color: #co00;
padding: 16px 19px 14px 46pX;
}

Figure 6-9 shows the output of the code in the previous two listings.

Figure 6-9. Browser output of an anchor element styled with CSS

The markup in Listing 6-25 should look familiar; there’'s nothing too crazy going on there. We have
introduced some interesting style properties in Listing 6-26, though. Let’s take a look.

201

Chapter 6

First, we've taken a shortcut in this example by using the a selector instead of declaring separate a:1link
and a:visited states. You should generally try and declare both states independently of one another, but
for the sake of this example, we've cut that corner. Do as we say, not as we... You know the rest.

Second, we're adding a background image using the shorthand background property. This property is a
rolled up version whose value contains the background-color, background-image, background-
repeat, and background-position properties.

Third, the display property has a value of inline-block. This property value allows an element to have
properties similar to that of a block-level element while still displaying inline and adjacent to other content.
Thus, you can add properties such as margin, padding, width, and height that are otherwise limited to
block-level elements. Support for this property value has only recently gained widespread support in all
major browsers.

Lastly, the text-shadow property, as you can probably divine, adds a text shadow to the button. This
property is new to CSS3 and, as such, may not render in every browser. Don’t worry, though: browsers
that don’t understand the text-shadow property will happily ignore it. The text-shadow property accepts
four values:

= A positive or negative integer (with an appropriate CSS unit of measure) defining the horizontal
offset of the shadow. Positive values place the shadow to the right of the text and negative values
place the shadow to the left of the text.

= A positive or negative integer (with an appropriate CSS unit of measure) defining the vertical
offset of the shadow. Positive values move the shadow down (relative to the text) and negative
values move the shadow up (relative to the text).

= A positive integer (with an appropriate CSS unit of measure) defining the blur radius of the
shadow. The larger the integer, the blurrier the shadow.

= A CSS color definition.

There you have it: an anchor element styled to resemble a button!

A Word of Caution

202

What you've done in this example is take one of the defining elements of the Web—the mighty anchor
element—and completely reconfigured its appearance. Gone is the underlined blue link of the past! In with
the flexibility of CSS!

With this power, though, comes a certain degree of responsibility. Users have grown to expect links on a
web page to look like, well... links. Particularly, the expectation is that links are underlined text of a color
different from that of the surrounding text. What we’ve introduced to you in this example breaks that mental
model.

Now, there’s nothing fundamentally wrong with styling certain links to look like buttons. In fact, well-
designed anchor elements can increase usability by providing clear calls to action. You do, however, have
to keep your users in mind. Always take care when choosing presentation styles for anchors.

Linking the Web

Styling Image Maps

Unfortunately, there exists no easy or consistent way of styling either the map or area elements using only
CSS. Google search results pertaining to styling either of these elements are littered with the shattered
hopes and dreams of many a poor soul. Techniques using JavaScript do exist, but fall outside the purview
of this book. Should you find yourself in a situation where you need to add styling or enhanced interactivity
to an image map, we encourage you to investigate some of the JavaScript solutions cooked up by intrepid
web developers.

Summary

In this chapter, you were introduced to one of the fundamental concepts of the Web: linking documents
together. You learned how to create anchor elements and how to appropriately point them to documents
both local and remote. You also learned about the history of the image map and about its place in modern
web development. As if that wasn't enough, we showed you some common styling techniques of links that
you can apply in your own work.

Thus far, you've learned the essentials of creating documents, marking up content, and linking documents
together. In the next chapter, we introduce you to data tables.

203

Chapter 7

Building Tables

In Chapter 4, you learned how to mark up all kinds of content: headings, paragraphs, lists, and more.
You've also learned how to embed images and other media into your web pages. So far, so good, right? If
you can believe it, we're still not done introducing ways to mark up content in HTML. In this chapter, we
introduce you to the powerful—and often maligned—data table.

But, before we do that: a brief history lesson.

The Table's Lament

From time to time, you may hear some seasoned developers decry the use of the table element. They
speak not out of ignorance of the table's legitimate use, but out of remembrance for a time long since
passed.

Beginning a scant five years after Tim Berners-Lee created the Web, the metaphorical Browser Wars
erupted when Microsoft, with its Internet Explorer browser, went toe-to-toe (and feature-for-feature), with
Netscape's Navigator browser. This "war," lasting from roughly 1995 through the early 2000s, marked a
period of incredibly rapid advances in web technology, particularly HTML.

In an effort to attract a larger share of the burgeoning web audience, browser makers invented their own,
non-standard HTML elements and attributes with reckless abandon. If Netscape added support for a new,
custom HTML element, Microsoft would add support for that element in addition to support for another of
their own creation.

205

Chapter 7

HTML was both the victor and the victim of this war. In some sense, the Web greatly benefited from the
rapid development sparked by fierce competition. Exciting new features meant web developers had more
tools at their disposal. On the other hand, developing the Web at such a rapid, haphazard place left web
developers with a difficult choice: to which browser do they cater? With the glut of non-standard features
and elements, HTML support was fragmented to such a degree that building effective websites often
meant choosing a side.

At the time, the newly formed W3C struggled to keep pace with the rapidly changing markup language. It
wasn't until long after the dust settled on the Browser Wars that the W3C caught up, made sense of the
situation, and codified some of the non-standard elements created by browser makers. The early W3C
was a reactive organization in this regard, folding features into new versions of the specification as those
features gained traction. Some features survived the war while others died on the battlefield.

The table element just happens to be one of the notable survivors of the Browser Wars.

table

206

Originally introduced by Netscape in early 1994, the table element provides a markup-based structure for
tabular data. "Tabular data" is the fancy way of referring to content that you might find in a spreadsheet,
calendar, quarterly sales report, or train schedule. Not just any data thrown into a table is tabular data,
though. Tabular data is data that belongs in a table so that it may be accurately understood.

HTML tables, like spreadsheets, are made up of cells organized into columns and rows. Based on the
elements outlined in the spec, HTML takes a row-centric approach to tabular data. There are, however, a
few elements that give you some degree of columnar control.

Earlier versions allowed for tables to be used for page layout. Before widespread support for CSS-based
layout, web developers had few options other than tables for creating complex visual designs. This led to
all manner of bad practices, less-than-accessible web pages, and bloated, hard-to-maintain code.
Thankfully, those days are behind us. The HTML5 specification explicitly states that the table element
represents tabular data.

Listing 7-1 shows the simplest possible data table.

Listing 7-1. A basic table with a single row

<table»
<tr>
<td>Utility Belts</td>
</tr>
</table»

Nothing too crazy, right? The table element, which must have both a start and an end tag, may be a child
of any element that can contain flow elements.

The table element acts as a container for a number of elements that organize the data within. We'll be
covering each of these elements and the rules surrounding their usage in the rest of this chapter.

Building Tables

Required Attributes

There are no required attributes for the table element.

Optional Attributes
In addition to the global attributes, the table element has the following optional attribute:

= border: indicates that its table element is not being used for layout. The value of
this attribute must be either an empty string or "1".

To be frank, the inclusion of this presentational attribute somewhat muddies the waters regarding proper
use of the table element. According to the specification, the entirely optional border attribute may be
used to explicitly declare that the table element is not being used for layout. But, as you know from earlier
in this section, tables are not to be used for layout anyway.

The HTML5 specification does indicate, however, that certain user agents use this attribute to determine
whether or not to draw borders around cells within the table. For completion's sake, we've included
information about this attribute but you'll rarely need to use it.

In previous versions of the HTML specification, the table element had a number of
presentational attributes: width, align, cellpadding, cellspacing, etc. Although
these attributes have been rendered obsolete in the HTML5 specification, you may still
encounter them in the wild. These attributes were at one time valid but are now
deprecated and shouldn’t be used.

tr

Tables are composed of cells organized into rows and columns. In HTML, you mark up tables one row at a
time using the tr element which is short for “table row.”

Listing 7-2. A basic table with a single row

<table>
<tr>
<td>Utility Belts</td>
</tr>
</table>

A tr element must have a start tag. The end tag, however, is optional if the tr element's next immediate
sibling is another tr element or if its parent contains no further content. For example, Listing 7-3 shows a
table with tr end tags omitted.

Listing 7-3. A table with an end-tag omitted row
<table>
<tr>

<td>Utility Belts</td>
</table>

207

Chapter 7

Throughout this chapter, we’ll make mention of rules regarding tag omissions you can take advantage of
when coding tables. However, tables can become very complex once you start dealing with large numbers
of rows and columns, so we recommend including both start and end tags whenever possible. You'll find
the resulting markup easier to read and less prone to errors of omission. For all remaining examples in this
chapter, we'll include both start and end tags while making note of opportunities for tag omissions.

Required Attributes

There are no required attributes for the tr element.

Optional Attributes

Aside from the global attributes, there are no additional attributes for the tr element.

td

The td element, the workhorse of any HTML table, represents an individual cell in a data table. The
element’s name, which is short for “table data,” gives you an indication of its expected content. Listing 7-4
marks up a table with a single row and a single cell.

Listing 7-4. A simple table with a single row and a single cell

<table>
<tr>
<td>Utility Belts</td>
</tr>
</table>

The example in Listing 7-4, a table with a single row and a single cell, is technically valid but doesn't really
represent tabular data. A proper table consists of multiple rows containing multiple cells of information that
relate to one another in some fashion. Listing 7-5 expands on the previous example by adding several
rows and cells to the table.

Listing 7-5. A table with three rows, each with two cells

<table>
<tr>
<td>Utility Belts</td>
<td>9</td>
</tr>
<tr>
<td>Grappling Hooks</td>
<td>27</td>
</tr>
<tr>
<td>Smoke Pellets</td>
<td>623</td>
</tr>
</table>

208

Building Tables

The td element must be a child of a tr element and must have a start tag. The end tag, though, is
optional, and the rules here are similar to those for the tr element. You may omit the end tag if the td
element is immediately followed by either another td element or by a th element (more on this one later!)
or if its parent contains no further content (meaning it's the last cell in its row).

Required Attributes

The td element has no required attributes.

Optional Attributes

In addition to the global attributes, the following are optional attributes of the td element.

» colspan: a positive integer indicating the number of adjacent columns to be
spanned by the table cell.

= rowspan: a positive integer indicating the number of adjacent rows to be spanned
by the table cell.

= headers: a space-separated list of unique IDs referencing th elements that act as
headers for the table cell.

The colspan attribute

The colspan attribute accepts a positive integer and instructs the browser to create a cell that spans as
many columns of the table as the attribute’s value indicates. Listing 7-6 demonstrates this.

Listing 7-6. A table demonstrating usage of the colspan attribute

<table>
<tr>
<td colspan="2">Utility Belts</td>
</tr>
<tr>
<td>New</td>
<td>Used</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
</tr>
</table>

Figure 7-1 shows the rendered output of this code. For illustrative purposes, we've added a background
color to the spanned cell.

209

Chapter 7

Utility Belts
New Used
g 27

Figure 7-1. Browser output of a table with a cell spanning two columns

As you can see, the first row contains a single cell whose colspan attribute is set to span two columns.
The second row still holds two cells, as does the third. Browsers, recognizing that the cell in the first row
should stretch across two columns, generally center content in spanned cells.

Introducing the colspan attribute into your table adds complexity to the design and layout of the table. In
the example shown here, that complication is minimal. But with larger data sets, and thus larger tables,
you can imagine how introducing multiple instances of spanned columns can complicate the markup.

We're certainly not trying to scare you away from using the colspan and rowspan attributes (we’ll be
discussing the rowspan attribute next)—quite the opposite, in fact. What we want to impress upon you is
the importance of planning out a table structure ahead of time so that you can make the best possible
markup decisions.

The rowspan attribute

210

Similar in usage to the colspan attribute, the rowspan attribute accepts a positive integer as its value. The
higher the specified value, the more rows your cell will span. Listing 7-7 shows an example of the rowspan
attribute in action.

Listing 7-7. A table demonstrating usage of the YOwspan attribute

<table>
<tr>
<td rowspan="2">Utility Belts</td>
<td>New</td>
<td>9</td>
</tr>
<tr>
<td>Used</td>
<td>27</td>
</tr>
</table>

Looking at the markup, you see that the first row has three cells, the first of which is set to span two rows.
The second row, accordingly, has only two cells. Because the first cell of the first row spans its row and the
following row, we've included one fewer cell in the subsequent row. The browser understands that what
would have been the first cell in the second row is occupied by the first cell from the first row.

Figure 7-2 shows the output of this code with a background color added to the spanned cell for clarity. By
default, most browsers will vertically center cells that span multiple rows. This default presentation can be
changed easily using a touch of CSS. We'll be demonstrating techniques for this and more near the end of
this chapter.

Building Tables

New 9
Utility Belts
Used 27

Figure 7-2. Browser output of a table with a cell spanning two rows

th

Any well-crafted spreadsheet, in addition to its cells, rows, and columns of data, has headers that describe
those cells, rows, and data. As luck would have it, HTML provides an element for marking up table
headers. The th element represents a table header cell. Listing 7-8 adds table headers to the same table
structure from earlier portions of this chapter.

Listing 7-8. A table demonstrating usage of the th element

<table>
<tr>
<thyProduct</thy
<thy»Quantity</th»
</tr>
<tr>
<td>Utility Belts</td>
<td>9</td>
</tr>
<tr>
<td>Grappling Hooks</td>
<td>27</td>
</tr>
<tr>
<td>Smoke Pellets</td>
<td>623</td>
</tr>
</table>

Figure 7-3 shows what this table looks like in a browser.

Product Quantity
Utility Belts 9
Grappling Hooks 27
Smoke Pellets 623

Figure 7-3. Browser output of a table with table column headings

By default, browsers tend to embolden header text and center it within its th element. We've added
column headers in this example to make it easier to understand the tabular data, clearly labeling the data
in each column. In Listing 7-9, we've added another set of headers, this time labeling the data in each row
by converting those td elements to th elements.

211

Chapter 7

Listing 7-9. Note that the first table cell in each row is now a table heading

<table>
<tr>
<thyProduct</thy
<th>Quantity</th>
</tr>
<tr>
<th>Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th>Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th>Smoke Pellets</th»
<td>623</td>
</tr>
</table>

Product Quantity
Utility Belts 9
Grappling Hooks 27
Smoke Pellets 623

Figure 7-4. Browser output of a table with table row headings

Required Attributes

Similar to the td element, the th element has no required attributes.

Optional Attributes

The th element has the following optional attributes in addition to the global attributes.

= scope: an enumerated attribute defining the scope of a table header. There are four
explicit values for this attribute and one implied, default state. Those values are:

= row: the table heading applies to some of the succeeding cells in the same row.

= col: the table heading applies to some of the succeeding cells in the same column.
= rowgroup: The table heading applies to the remaining cells in the same row.

= colgroup: The table heading applies to the remaining cells in the same column.

= auto: the table heading applies to a set of cells based on context. This attribute
value is implied in the absence of any of the other four attribute values and
shouldn’t be used explicitly.

212

Building Tables

» colspan: a positive integer indicating the number of adjacent columns to be
spanned by the table heading.

= rowspan: a positive integer indicating the number of adjacent rows to be spanned
by the table heading.

= headers: a space-separated list of unique IDs referencing th elements with those
IDs that act as headers for the table heading.

Setting scope

Looking back at Figure 7-4, you can see that the th elements are presented in a bold font and centered.
For sighted users, this makes comprehending a table's structure fairly easy. Unfortunately for other users,
including those with disabilities, our table structure lacks important cues as to the nature of its layout.
Luckily, there exists a helpful attribute unique to the th element that defines what it labels.

The scope attribute provides information about the context of a table header. From the example in Listing
7-8, you know that the table headers "Product" and "Quantity" act as column headers. As such, you would
use the value col with the scope attribute, as you see in Listing 7-10.

Listing 7-10. A table demonstrating usage of the SCope attribute’s col value

<table>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
<tr>
<th>Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th>Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th>Smoke Pellets</th>
<td>623</td>
</tr>
</table>

The browser now understands that the "Product" and "Quantity" table headings act as column headers.
Assistive software such as screen readers can take advantage of this attribute and better describe the
information presented in the table.

Similarly, you can add a scope attribute with a value of row to the remaining headers in the table (as
shown in Listing 7-11).

213

Chapter 7

Listing 7-11. A table demonstrating usage of the SCOpe attribute’s TOW value

<table>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</table>

While the scope attribute has no impact on the visual presentation of the table, it adds a healthy dose of
semantics and is a boon to assistive technologies. Remember, not every visitor to your website will be
using a visual web browser to interact with your content.

Table Row Groups

Now that you know how to build a basic table, we'll introduce you to a collection of elements whose job is
to increase the semantic value of your data tables. As an added bonus, using these grouping elements will
result in a more accessible data table. All of the elements in this section are optional, but given the
semantic and accessibility gains from their inclusion, we recommend that you use them whenever it's
practical.

Each of these row group elements—thead, tbody, and tfoot—must appear as direct children of their
parent table element.

thead

214

The thead element, also known as a table heading row group, contains the row or rows that act as column
headings for its parent table element. Based on its prescribed function, the thead element may only have
tr elements as its children. Listing 7-12 shows a table with a heading row group.

Listing 7-12. A table with a table heading row group

<table>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>

Building Tables

</tr>

</thead>

<tr>
<th scope="row">Utility Belts</th>
<td>9</td>

</tr>

<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>

</tr>

<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>

</tr>

</table>

The thead element adds semantic value to the data table by explicitly designating the headers that apply
to the entire table. As a child of the table element, the thead element should appear after any caption
and colgroup elements (more on these elements later in the chapter) and before any tbody, tfoot, or tr
elements. There can be only one thead element per table.

The thead element may contain multiple rows, so long as those rows contain headings that act as
headings for the entire table. Additional rows containing more headings or cells with supportive content are
also permitted. You could, for instance, add a second row containing td elements that provide more
information about the columns to which they belong.

You may choose to omit a thead element's end tag only if the thead is immediately followed by a tbody
or tfoot element. The end tag is required in other cases. But as we've mentioned before, including end
tags, even when optional, makes your code more readable and less prone to parsing errors.

As you can see in Figure 7-5, the thead element has no visual impact on the table to which it belongs. It
can, however, be used as a hook using descendant selectors to style its child elements. We'll show an
example of this technique near the end of this chapter.

Product Quantity
Utility Belts 9
Grappling Hooks 27
Smoke Pellets 623

Figure 7-5. Browser output of a table with a table heading row group

Required Attributes

There are no required elements for the thead element.

Optional Attributes

Aside from the global attributes, the thead element has no additional optional attributes.

215

Chapter 7

tbody

The tbody element, also known as a table row group, represents one or more rows that make up the body
of data of its parent table element. The tbody element may only have tr elements as its children and the
tbody itself must be a direct child of a table element. You can see an example in Listing 7-13.

Listing 7-13. A table with a table row group

<table>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</tbody>
</table>

The unique thing about this element is that there can be multiple tbody elements within a single table. You
may encounter a situation where, when dealing with a significantly large data set, it makes sense to break
that data set in distinct, logical groupings. To do so, you could simply wrap those groupings of table rows
into their own tbody elements. For example, an alphabetized list of names could be organized in separate
tbody elements for each letter of the alphabet.

If you add multiple tbody elements to your table, they must be siblings of one another; no nesting tbody
elements allowed! Another caveat worth noting: tbody elements and tr elements can’t be siblings. If your
table includes one tbody element, any other rows need to be grouped in their own tbody as well, even if
it's a single row. For instance, the code in Listing 7-14 isn’t valid.

Listing 7-14. An invalid table with sibling tx and tbody elements

<table>
<tr>
<td>Utility Belts</td>
<td>9</td>
</tr>
<tbody>
<tr>
<th scope="row">Grappling Hooks</th>

216

Building Tables

<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</tbody>
</table>

Basically, the rule to remember here is that if you're using table row groupings—thead, tbody, and
tfoot—try to use as many of them as makes sense for your table. We recommend using table row
groupings for all but the simplest tables; the organizational and accessibility benefits are worth it!

The tbody element, like the thead and tfoot elements, must appear as a direct child of its parent table
element. Additionally, tbody elements must be included after any caption, colgroup, and thead
elements, should they be present.

The rules governing start tag omission for the tbody element are slightly more elaborate than most tag
omission rules. The tbody element’s start tag may be omitted if its first child is a tr element and if the
immediately preceding tbody, thead, or tfoot element does not have its end tag omitted. Most browsers
will insert an implied tbody element into the DOM. Our best-practice recommendation to you is this: if
you're going to use the tbody element, always include the start tag, particularly if you're using the other
row grouping elements.

Less confusingly, the tbody element's end tag may be omitted if it is immediately followed by a tbody or
tfoot element, or if there is no more content in the table. But including end tags is always a safe bet.

Required Attributes

There are no required elements for the tbody element.

Optional Attributes

Beyond the global attributes, there are no additional optional attributes for the tbody element.

tfoot

The optional tfoot element, known as a table footer row group, represents a row or rows whose content
consists of the column summaries for its parent table element. A large table containing sales data for,
say, superhero supplies, may include a tfoot row grouping containing a row of cells with sums denoting
inventory, similar to that shown in Listing 7-15.

217

218

Chapter 7

Listing 7-15. A table demonstrating usage of the tfoot element

<table>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</tbody>
<tfoot>
<tr>
<th scope="row"»>Totals</ths
<td>659</td>
</tr>
</tfoot>
</table>

Figure 7-6 shows how a browser renders the code from Listing 7-15. Note that the tfoot element itself
doesn't add any particular visual styling to the resulting output; it's simply a grouping element that adds
semantic value and improves the table’s accessibility.

Product Quantity
Utility Belts 9
Grappling Hooks 27
Smoke Pellets 623
Totals 659

Figure 7-6. Browser output of a table with a table footer row group

Previous versions of HTML required that the tfoot element appear in markup immediately following a
thead element, despite the element being rendered visually at the bottom of the resulting table. As a
requirement, this was confusing for authors and, as such, has been amended in HTML5. The current
specification allows the tfoot element to appear in either of two places:

Building Tables

1. After any caption, colgroup, and thead elements but before any tbody or tr
elements, or

2. After any caption, colgroup, thead, tbody, and tr elements.

In either of the above cases, only one tfoot element is permitted per table. An example of the tfoot
element placed in code before a tbody element is shown in Listing 7-16.

Listing 7-16. A table demonstrating an alternative placement of the tfoot element

<table>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
</thead>
<tfoot>
<tr>
<th scope="row">Totals</th>
<td>659</td>
</tr>
</tfoot>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</tbody>
</table>

Figure 7-7 shows the output of the code from Listing 7-16. As you can see, the table renders exactly the
same as the code used in Listing 7-15 and shown in Figure 7-6. A tfoot element will always be rendered
at the bottom of the table to which it belongs.

Product Quantity
Utility Belts 9

Grappling Hooks 27
Smoke Pellets 623
Totals 659

Figure 7-7. Browser output of a table with a table footer row group

219

Chapter 7

Like the thead and tbody elements, the tfoot element may only have tr elements as children. Those tr
elements, in turn, may only have th or td elements as children. The tfoot element’s end tag is optional if
the element is immediately succeeded by a tbody element or if there is no more content in the table.

Like the thead element, the tfoot does not directly impose any styling on its children. It can, however, be
used as a hook for styling its child elements with descendant selectors in CSS.

Required Attributes

There are no required elements for the tfoot element.

Optional Attributes

There are no additional optional attributes for the tfoot element other than the global attributes.

Columns

This chapter has thus far dealt with the structure and semantics of tables largely in terms of rows. An
HTML table is composed of a collection of rows containing headers and cells that can be organized into
row groups. But what if you need to add information on a column-by-column basis? Or, what if you need to
style cells that appear in a particular column a certain way? For these cases, there are two elements at
your disposal that prescribe meaning to a table’s columns: colgroup and col.

colgroup

220

The colgroup element represents a logical grouping of one or more columns in a table. Defining one or
more column groups, when sensible, also provides you with an opportunity for richer styling of the table
element and its child elements. You can, for instance, define a column group that contains three or four
columns and use CSS to set the width of that column group. The browser would then take that width and
distribute it amongst the columns within the group.

The colgroup has a conditional content model, which means that the rules governing what elements the
colgroup can or can’t contain can change depending on the condition of the element. For instance, if the
span attribute is defined, then the element should be empty, as shown in Listing 7-17.

Listing 7-17. A table with an empty colgroup

<table>
<colgroup span="2">
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
</table>

If the span attribute is not defined, then the colgroup must contain one or more col elements (see Listing
7-18). We'll discuss the col element in detail shortly.

Building Tables

Listing 7-18. A table including a colgroup and two col elements

<table>
<colgroup>
<col>
<col>
</colgroup>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
</tr>
</table>

You may define multiple column groupings in your table if the size of the data set and organization of the
table warrants. Listing 7-19 shows an example of a complex table with multiple colgroup elements.

LSHng749.AcompbxdawtamekdemgnmmmeColgroupebmems

<table>
<colgroup>
<col>
</colgroup>
<colgroup span="2"»
<colgroup>
<col>
<col>
</colgroup>
<thead>
<tr>
<th scope="col">Product</th>
<th colspan="2" scope="col">Quantity</th>
<th colspan="2" scope="col">Price</th>
</tr>
<tr>
<td></td>
<th scope="col">New</th>
<th scope="col">Used</th>
<th scope="col">New</th>
<th scope="col">Used</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
<td>27</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

221

Chapter 7

Figure 7-8 shows the rendered output of the code from Listing 7-19. Column groupings, much like the row
groupings discussed in the previous section of this chapter, have no default visual impact on the table.

Product Quantity Price
New Used New Used
Utility Belts 9 27 6 23

Figure 7-8. Browser output of a table with column groupings

The start tag of the colgroup element may be optional if the first element within the colgroup is a col
element and if the element is not immediately preceded by another colgroup element whose end tag has
been omitted. A colgroup element's end tag may be omitted so long as it is not immediately succeeded
by a space character or an HTML comment. Phew! Remember what we were saying earlier about
confusing tag omission rules? These are generally odd cases, but they're worthy of note nonetheless.

The colgroup element must be an immediate child of the table element and should be included after the
caption element, if present, and before any thead, tbody, tfoot, and tr elements.

Required Attributes

There are no required attributes for the colgroup element.

Optional Attributes

In addition to the global attributes, the colgroup element has an additional optional attribute.

= span: a positive integer that describes how many columns the column group
contains.

col

The col element, a void element with no content, represents one or more columns in a column group. The
col element appears as a child of a colgroup element that lacks a span attribute as shown in Listing 7-19
in the previous section on the colgroup element.

Place as many col elements within a colgroup element as you need to create a logical column grouping.
The span attribute of a col element informs the browser of how many columns the element spans. You
can even combine col elements that have the span attribute set with those that don't.

As the col element is a void element, it must have a start tag and does not have an end tag. If you prefer
XHTML syntax, you can close the col element with a trailing slash: <col />.

Required Attributes

222

There are no required attributes for the col element.

Building Tables

Optional Attributes

In addition to the global attributes, the col element has an additional optional attribute.

* span: a positive integer that defines how many columns are spanned by the col
element. Properties of the col element are shared across all of the columns it
spans.

One more thing...

Did you ever imagine there could be so many unique elements needed to build a semantic, accessible
table? We've introduced you to rows, cells, headings, row groups, and column groups. The last two—row
groups and column groups—add great semantic and accessibility value to a table but largely function
behind the scenes. We have one last element to introduce to you that adds semantic value and increases
accessibility in a manner that is apparent to all.

caption

The caption element defines a title for its parent table element. The addition of a caption element can
provide clarity and context to a table that it may otherwise be lacking. The caption element, a part of
HTML since version 3.2, receives a bit of a promotion in HTML5. Previous versions of HTML limited its
content model to inline elements and recommended that authors keep its content relatively short. The
summary attribute of the table element was intended for longer descriptions of a table and its content.

HTML5 changes most of this. For starters, the summary attribute of the table element is no longer with us.
Farewell, dear summary attribute; we hardly used ye. As part of its promotion, the caption element now
accepts flow elements as children and has no implied restriction on the length of its content.

The caption element, if included, must be the first child of a table element and must have both a start
and an end tag. Listing 7-20 shows an example of the caption element in use.

Listing 7-20. A table with a caption

<table>
<caption>
<h2>Power Outfitters Inventory</h2»
<p>Power Qutfitters continues to stock only the finest products =
for all your crime-solving needs.</p>
</caption>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>

223

224

Chapter 7

</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
</tr>
</tbody>
<tfoot>
<tr>
<th scope="row">Totals</th>
<td>659</td>
</tr>
</tfoot>
</table>

Figure 7-9 shows the browser output of the code in Listing 7-20 using only the browser’s default styling.

Power QOutfitters
Inventory

Power Outfitters continues to
stock only the finest products
for all your crime-solving
needs.

Product Quantity
Utility Belts 9

Grappling Hooks 27
Smoke Pellets 623
Totals 639

Figure 7-9. Browser output of a table with a caption

In most browsers, the caption element appears above its table and with center-aligned text. Placement of
the caption element can be adjusted in CSS using the caption-side property and we'll show you
examples of this in the section on styling tables later in this chapter.

While the caption element is optional, we strongly recommended that you include one for accessibility
purposes and as a general best practice. You can sometimes get away with omitting the caption element
if the table is introduced in the content with an h1-h6 heading or in a preceding paragraph.

Building Tables

Required Attributes

There are no required attributes for the caption element.

Optional Attributes

There are no additional optional attributes for the caption element other than the global attributes.

Styling Tables with CSS

Tables, when processed by CSS, conform to a complicated set of algorithms referred to in the CSS
specification as the CSS table model. The CSS table model defines special display characteristics for each
of the elements within a table.

If you'd like to read through the CSS table model yourself, you can find it in the W3C'’s
CSS specification at w3. 0rg/TR/C5521/tables. html.

You're most familiar at this point with two possible values of the CSS display property: block and
inline. Unfortunately, tables in HTML don't fit neatly into either of these categories. Thus, a handful of
display property values exist that apply specifically to tables. The list of these property values includes:

= table

= inline-table

= table-header-group
= table-row-group

= table-footer-group
= table-row

= table-cell

= table-column

= table-column-group
= table-caption

As you can see from the list above, the property values map pretty closely in naming to the elements
we’'ve introduced in this chapter. In the examples in this section, we’ll be building up a data table featuring
a list of products for our favorite super hero supply store, Power Outfitters.

Styling Rows and Cells

We'll begin with the basic table shown in Listing 7-21.

225

Chapter 7

Listing 7-21. A simple table

<table>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
<th scope="col">Price</th>
<th scope="col">Totals</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
<td>$129.99</td>
<td>$1,169.91</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
<td>$79.99</td>
<td>$2,159.73</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
<td>$4.99</td>
<td>$3,108.77</td>
</tr>
</tbody>
<tfoot>
<tr>
<th scope="row">Totals</th>
<td>659</td>
<td></td>
<td>$6,438.41</td>
</tr>
</tfoot>
</table>

The output of that block of markup with only the default browser styling applied can be seen in Figure 7-10.

226

Building Tables

Product Quantity Price Totals

Utility Belts 9 $129.99 $1,169.91
Grappling Hooks 27 $79.99 $2,159.73
Smoke Pellets 623 $4.99 $3,108.77
Totals 639 $6.438.41

Figure 7-10. It's not much to look at, but it's a serviceable table.

Adding just the little bit of CSS, shown in Listing 7-22, will have a dramatic effect on the display of the
table.

Listing 7-22. Basic CSS for the table structure detailed in Listing 7-21

table {
width: 600px;
font-size: 14px;
font-family: Helvetica, Arial, sans-serif;
border-collapse: separate;
border-spacing: 10px 5px;
table-layout: auto;
empty-cells: hide;
}

thead th,

tfoot th,

tfoot td {
background: #eee;

th,

td {
border: 1px solid #ccc;
padding: 10px;

thead th:first-child {
text-align: left;

tbody th,
tfoot th {
text-align: left;

tbody tr:nth-child(even) {
background: #ddd;

Before diving into the particulars of the CSS you've just seen, take a look at the results in Figure 7-11. In
this example we're using basic element selectors, which means that these styles will be applied to all

227

Chapter 7

tables. If you want to be more specific, you could use a class attribute to distinguish some tables from
others or an id attribute to single out just one table.

Product Quantity Price Totals
Utility Belts 9 §129.99 $1,169.91
Grappling Hooks 27 $79.99 $2,159.73
Smoke Pellets 623 $4.99 $3,108.77
Totals 659 $6,438.41

Figure 7-11. A basic table transformed in grand fashion by some carefully applied CSS

Pretty impressive, right? There’s a lot going on here, so hang in there as we walk you through each rule in
our CSS. First up, the table rule and its declarations:

table {
width: 600px;
font-family: Helvetica, Arial, sans-serif;
font-size: 14px;
border-collapse: separate
border-spacing: 10px 5px;
table-layout: auto;
empty-cells: hide;
}

You're no doubt familiar with the font and width declarations, so no need to explain those. What's new—
and unique to tables—are the border-collapse, border-spacing, table-layout, and empty-cells
properties.

The border-collapse property

The border-collapse property determines the table’s border model. Possible values for this property are
collapse, separate, and the cascaded value inherit. Supplying a value of collapse will trigger the
table’'s collapsing border model, wherein the spacing between cells is collapsed and the browser re-
calculates any border property applied to table cells and headings. Declaring border-collapse:
separate—as the code in Listing 7-22 does—triggers the separated borders model, wherein each table
cell is spaced apart from its neighboring cells.

The border-spacing property

The border-spacing property controls the amount of separation between the borders of adjacent cells.
The property can accept one or two length values (or a value of inherit). If one value is present, then

228

Building Tables

cells are spaced apart evenly using that value around all four sides of the cell. If two values are supplied,
the first value represents the horizontal spacing between adjacent cells in the same row and the second
value represents the vertical spacing between rows. While there is no official default value for this
property, most browsers will add two pixels of spacing between cells if the border-spacing property is
not explicitly set.

The empty-cells property

The empty-cells property tells the browser whether or not to render styling on cells that have no content.
Possible values for this property are show, hide, and inherit. By default, most browsers opt for the show
value, so even empty cells will appear with whatever borders or background they would have if they
carried content. In the table resulting from the CSS laid out in Listing 7-22, though, empty table cells are
hidden and thus appear to be a completely empty break in the table.

The table-layout property

Lastly, the table-layout property determines which layout algorithm a browser should employ as it
renders the table. Possible values are fixed, auto, and inherit. Using a property value of fixed
triggers the fixed table layout algorithm which relies only on the table’s overall width—supplied in CSS or
inferred from the width of the table’s content—and divides the width equally amongst all columns. The
auto property value takes into account the overall width of the table, the contents of each of the table’s
cells, and any specified cell or column widths and divides width amongst columns as determined by the
browser’s own algorithm.

Browsers will render tables using table-layout: auto by default. This value triggers a more complex
layout algorithm that requires the browser to first load the entire contents of the table and scan over every
cell, generating a record of each cell’'s width. The table’s layout is then determined based on the browser’s
findings. While this method is more computationally complex, there’s no need to be concerned about
browser performance.

The :first-child and :nth-child pseudo-classes

If you look back at the code in Listing 7-22, you'll notice the following two declarations:

thead th:first-child {
text-align: left;

tbody tr:nth-child(even) {
background: #ddd;

}

In the example above, the :first-child and :nth-child pseudo-classes are structural pseudo-classes
that select elements based on where they occur in the markup. The :first-child pseudo-class is left-
aligning the text of the table heading that is a first-child descendant of the table heading row group. More
generally, the :first-child pseudo-class refers to an element that is the first direct child of another
element, such as the first 1i in an unordered list or the first paragraph in an article.

229

Chapter 7

The :nth-child pseudo-class matches an element or set of elements based on the keyword or formula
passed to it in parenthesis. In the example above, only even-numbered rows are matched by the selector.
As Figure 7-11 shows, the second table row in the body of the table has a background color. The
keywords even and odd are equivalent to the formulas 2n and 2n+1, respectively. Older browsers may not
support these selectors but should render the table in an attractive, usable format, just with slightly fewer
bells and whistles.

For a greatly detailed description of »first-child, :nth-child, and other pseudo-
class selectors, see the W3C's section on Pseudo-classes in the Selectors Level 3
module at w3.0rg/TR/css3-selectors/#pseudo-classes.

Styling Columns

230

Now that we've successfully styled a table and its rows, headings, and cells, we’ll show you some options
for styling columns. As we mentioned earlier in this chapter, tables in HTML and CSS are predominately
row-based creatures. Unfortunately, styling tables from a column-based approach is a bit more
complicated, with fewer options available.

The first step is to add some column information to our table, as shown in Listing 7-23.

Listing 7-23. A basic table with column groupings added

<table>
<colgroup>
<col id="products"»
<col id="quantities">
<col id="prices"»
<col id="totals"»
</colgroup>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
<th scope="col">Price</th>
<th scope="col">Totals</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
<td>$129.99</td>
<td>$1,169.91</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
<td>$79.99</td>
<td>$2,159.73</td>

Building Tables

</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
<td>$4.99</td>
<td>$3,108.77</td>
</tr>
</tbody>
<tfoot>
<tr>
<th scope="row">Totals</th>
<td>659¢</td>
<td></td>
<td>$6,438.41</td>
</tr>
</tfoot>
</table>

The browser’s output of this code is identical to that in Figure 7-10. The CSS in Listing 7-24 includes some
styling for our newly created column groups. For this example, we’ve dropped the borders on cells, left out
background colors on even rows, and omitted the empty—cells rule.

Listing 7-24. CSS with additional styling for column groupings

table {
width: 600px;
font-family: Helvetica, Arial, sans-serif;
font-size: 14px;
border-collapse: separate;
border-spacing: 5px;
table-layout: auto;
}

thead th,

tfoot th,

tfoot td {
background: #eee;

th,
td {
padding: 10px;

thead th:first-child {
text-align: left;

tbody th,

tfoot th {
text-align: left;

}

231

Chapter 7

#quantities {

width: 200px;

}

#prices {

background: #ddd;

The output of the CSS in Listing 7-24 is shown in Figure 7-12.

232

Product Quantity Price Totals
Utility Belts 9 $129.99 $1,169.91
Grappling Hooks 27 $79.99 $2,159.73
Smoke Pellets 623 $4.99 $3,108.77
Totals 659 $6,438.41

Figure 7-12. The quantities column and the prices column are both styled uniquely

In this example, the #quantities column is set to 200 pixels in width and the cells in the #prices column
are set to have a background color of #ddd. Note, though, that the cells in the thead and tfoot portion of
the table retain their background color of #eee. This is due to the influence of table layer stacking.

As it pertains to determining a table cell's background color, there are six layers of stacking. Assume for a
moment that each of the following six layers has a unique background color specified on one of its

elements:
1. The lowest layer, the table element itself, is superseded by column groups;
2. Column groups, in turn, are superseded by columns;
3. Columns lose out to row groups;
4. Row groups bow down before individual rows; and finally,

5. Cells are king of the mountain.

In the example code, cells—in this case, headings in the header and cells in the footer—beat out the
background color declaration on the column. This is one rare case where CSS specificity takes a back
seat to stack order. The column’s ID selector should overpower the cell’s generic element selector, but the
table layer model tells the browser to give preference to stacking order over specificity.

For a detailed explanation of the table layer model, including a handy diagram, see the
section on “Table Layers and Transparency” available on the W3C's website at
w3.0rg/TR/CSS521/tables. html#table-1ayers.

Building Tables

Styling Captions

The caption element, as you saw earlier, will typically appear above its parent table element. Its position
is determined by the caption-side property. Using the markup in Listing 7-25 and the CSS in Listing 7-
26, you'll see the ease with which you can style a table’s caption.

Listing 7-25. A table with an added caption element

<table>
<caption>
<h2>Power Outfitters Inventory</h2»
<p>Power Outfitters continues to stock only the finest products =
for all your crime-solving needs.</p>
</caption>
<colgroup>
<col id="products-column">
<col id="quantity-column">
<col id="price-column">
<col id="totals-column">
</colgroup>
<thead>
<tr>
<th scope="col">Product</th>
<th scope="col">Quantity</th>
<th scope="col">Price</th>
<th scope="col">Totals</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Utility Belts</th>
<td>9</td>
<td>$129.99</td>
<td>$1,169.91</td>
</tr>
<tr>
<th scope="row">Grappling Hooks</th>
<td>27</td>
<td>$79.99</td>
<td>$2,159.73</td>
</tr>
<tr>
<th scope="row">Smoke Pellets</th>
<td>623</td>
<td>$4.99</td>
<td>$3,108.77</td>
</tr>
</tbody>
<tfoot>
<tr>
<th scope="row">Totals</th>
<td>659</td>

233

Chapter 7

<td></td>
<td>$6,438.41</td>
</tr>
</tfoot>
</table>

Listing 7-26. CSS for styling the table and its caption from Listing 7-25

table {
width: 600px;
font-family: Helvetica, Arial, sans-serif;
font-size: 14px;
border-collapse: separate;
border-spacing: 5px;
table-layout: auto;
}

caption {
background: #444;
caption-side: top;
color: #fff;
font-weight: bold;
line-height: 1.4;
margin: O 5px;
padding: 15px;

}

caption h2 {
font-size: 20px;
margin: 0 0 10px 0;

}

caption p {
font-size: 16px;
margin: 0;

thead th,

tfoot th,

tfoot td {
background: #eee;

th,
td {
padding: 10px;

thead th:first-child {
text-align: left;

tbody th,

234

Building Tables

tfoot th {
text-align: left;

#quantity-column {
width: 200px;

}

#price-column {
background: #ddd;

Rendering the code from the previous two listings in a browser should look something like Figure 7-13.

Power Outfitters Inventory

Power Qutfitters continues to stock only the finest products for all your

crime-solving needs.

Product

Utility Belts
Grappling Hooks

Smoke Pellets

Totals

Quantity Price Totals
$129.99 $1,169.91
$79.99 $2,159.73
$4.99 £3,108.77

$6,438.41

Figure 7-13. That ominous-looking thing above the table? That's the caption element in action.

The caption-side property

The caption-side property accepts one of three possible values: top, bottom, and inherit. As most
browsers default to a value of top, you can safely leave out the caption-side declaration if you prefer to
let your table captions ride high. If, however, you want to reposition your table captions, simply supply the
table-caption property with a value of bottom and the caption moves below the table:

235

Chapter 7

Product Quantity Price Totals
Utility Belts g $129.99 $1,169.91
Grappling Hooks 27 $79.99 $2,159.73
Smoke Pellets 623 $4.99 $3,108.77
Totals 659 56,438.41

Power Outfitters Inventory

Power Outfitters continues to stock only the finest products for all your
crime-solving needs.

Figure 7-14. The caption now appears below the table.

Remember: regardless of the visual position of the table caption, the caption element must always be the
first child of its parent table element.

Summary

236

In this chapter, we introduced you to the table element and its supporting cast of child elements. You
learned about the differences between rows, columns, cells, and headings. We also introduced you to
logical row groupings and how to take advantage of column groupings.

While its history is marred by misuse, the table element remains a powerful means of conveying a wide
range of data. Whether you’re marking up a simple two-column, two-row table or the most complicated
sales spreadsheet you can imagine, you should always keep in mind the values of semantics and
accessibility. From what you've learned in this chapter, you now have the know-how to bring even the
most boring set of data to life.

Coming up in Chapter 8, we’ll introduce you to HTML forms, including some of the exciting new
developments in HTML5.

Chapter 8

Assembling Forms and Applications

We've referred to the Web as a conduit for the movement of information, distributing ideas around the
world to anyone who wants to find them. It's this far-reaching scope and wide-open range that makes the
Web so captivating and philosophically marvelous. But information doesn’t flow only downhill. Your visitors
might arrive at your website to passively absorb, but, if allowed, they can also participate in the exchange
of information, offering their own ideas and reactions.

But how can you receive such feedback from your visitors? How can readers and viewers become valued
contributors? The simplest, most common, and perhaps most powerful means of moving ideas uphill onto
the Web is through a form. In the analog world, a form is just a printed document with predefined, labeled
blanks where people can write information. Forms standardize the formatting of data for easier handling;
when a clerk knows exactly where to look to find a customer’s name on a slip of paper, it saves precious
time and makes his or her job that much easier. If you take this concept a step further, a web form
becomes more than just a stodgy way to force your formatting expectations onto your visitors. Forms are
the means by which an anonymous user becomes an active participant.

If you've ever used a search engine, made an online purchase, created a personalized login to a website,
posted a comment, uploaded a photo, or updated your status on a social network, you've already seen
and used web forms; the Web simply wouldn’'t be what it is without them. They're ubiquitous and a
fundamental cornerstone of online living, so you'll inevitably need to include forms in some of the pages
you build. This chapter explores the HTML elements you'll need to construct functional, usable, and
accessible forms for your web pages, as well as a few ways to use CSS to make your web forms more
visually appealing.

237

Chapter 8

The still-growing HTML5 specification first germinated as two other specifications, originally dubbed “Web
Forms 2.0” and “Web Applications 1.0.” Those early specs were an effort to extend and expand upon long-
standing HTML features that were becoming outdated in a Web desperately trying to innovate beyond
them. For example, before HTML5, there was no simple means for a form to validate that a required field
had been filled in, and no simple means for a user to enter something as common as a date of birth.

Another thing the spec authors of times past didn’t anticipate was the rise of web applications—dynamic
and interactive applications accessed through a web browser and built with browser-supported coding
languages (especially HTML, CSS, and JavaScript). Web developers have long had to use heavy-handed
scripts and semantically dubious markup to render common interface widgets like progress bars, boxes
that can open and close, and dropdown lists of suggested field values. HTML5 has at last answered the
call for more interactive elements, paving the way for the next generation of web apps.

As always, you should test your web pages thoroughly in as many different browsers as
you can get your hands on. That's especially important if you plan to use newer form
controls and interactive elements that may not be widely supported. Don't make your
forms and applications entirely dependent on the bleeding edge features of a still-in-
progress spec. Practice progressive enhancement and use these newer elements and
attributes wisely.

How Forms Work

238

Defined in simplest terms, a form is any section of a web page where a user can input information (though
sometimes form elements only display information rather than collect it). Your visitors can enter text into
blank fields, make choices by checking boxes, select options from menus, and then click a button to send
it all away for processing. These interactive devices are called controls, and each control's data is its
value.

To modify the value of a control, a user must first bring the control into focus so it becomes active and
primed to accept input. A control is usually given focus by clicking it with a mouse or using the Tab key to
move the cursor from one control to the next. Entering a value usually requires typing text or performing
some other deliberate action—clicking a mouse button, pressing the Enter key, and so on. Your visitor can
then shift her browser’'s focus to another control, enter another value, and continue on in that fashion,
modifying controls (or skipping over the optional ones) until she reaches the end of the form.

A form isn't really complete until the user submits it. The information she entered gets transmitted to the
server in a form data set comprising the names of all the form controls and their values. The job of
processing the data set falls to a form handler: a script or program designed to interpret and use the
submitted data. Many form handlers are also designed to validate the entered values, making sure all the
required information has been entered and properly formatted.

Handling submitted form data is another matter entirely; it delves into the complex subjects of scripting,
programming, database design, and application design, and raises issues of encryption, privacy, and
security. Such advanced topics are well beyond the scope of a book about front-end HTML and CSS.

Assembling Forms and Applications

Instead, the rest of this chapter focuses on the markup you'll need to be familiar with to assemble forms for
display and use. Actually making them work... well, that's a subject for another book.

The form Element

As its name implies, the form element defines a portion of an HTML document that can receive input from
the user. It acts as a container for other interactive form elements, as well as any other elements needed
to give the form structure. The form element is flow content and can contain any other flow elements
except another form. To include multiple, separate forms within a single document, each must be
contained by its own form element—you can’t nest a form within a form. However, as of HTML5, you can
now associate a control anywhere in the document with a different form elsewhere on the same page
using the form attribute.

The new form attribute for form controls compensates for the inability to nest forms.
Without it, any controls outside the form element aren’t included in that form’s data set.
A form attribute explicitly associates a control with a form, even when the control isn't
inside that form element. Many current browsers support form attributes already, but
alas, not yet all of them at the time we’re writing this. For the time being you should still
keep all your controls within the same form element.

The optional action attribute, if present, carries the URL of the form handler, or in other words, the
address where the data is going to end up. That form handler may be a document or script elsewhere on
the website, a back-end application, or the very same document the form resides in if its data will be
handled exclusively on the client side by JavaScript, or if the HTML document has been integrated with
some kind of scripting language such as PHP, Ruby, Python, or ASP.NET. If the action attribute is
missing from the <form> start tag, and if no other controls specify an action, then the browser assumes
the form’s handler is the current document. If the document lacks any form handling code and no other
form handler is specified, the form won’t do anything at all.

A method attribute is optional and can accept two values, get or post, to indicate the particular HTTP
method to use when the form is submitted. If the method attribute is missing, the default method is get.

When the form’s method is get, the submitted data will be appended to the form handler’'s URL (taken
from the action attribute, or else the current document’s URL) in a query string consisting of all the form’s
name-value pairs. You may have seen URLs with query strings that look something like
http://example.com/watch?video=funnycats.mp48width=480&height=320 (this is just an example
we made up; there are no funny cat videos on the Internet). The question mark (?) in the URL marks the
beginning of the query string, with each name-value pair connected by an equal sign (=), and additional
values are appended with an ampersand (&). A form handler can interpret and process that URL,
extracting values from the exposed query string.

The get method is best for requesting static data from the server for temporary use—for example,
searching the Web for a definition of the word “idempotent”—especially when the URL, including its query
string, might be reused in a link or bookmark.

239

http://example.com/watch?video=funnycats.mp4&width=480&height=320

240

Chapter 8

By contrast, the post method sends the data set directly to the form handler application (not in a visible
URL query string) for processing at the server. The post method sends data to the server where it can be
saved for use in the future, for example, submitting a comment or uploading a video. It can also be useful
when a URL with a visible query string isn't desirable for reasons of security and privacy, for instance
when you submit your password to log into a secure website.

HTTP stands for HyperText Transfer Protocol, the set of program rules used for
transferring electronic data over the Web. The two most basic methods of HTTP are
“get” to send data from a server to a client and “post” to send data from a client to a
server. Whenever you download something from a web server, be it an HTML
document, a cascading style sheet, a video, an image, or anything else, your browser
sends a request to “get” that file. Many forms use the opposite “post” method, sending
data from your browser to the server. Other HTTP methods exist, but “get” and “post”
are the only ones used with forms in HTML.

Listing 8-1 shows the markup for a simple form, including the action and method attributes in the opening
<form> tag. This example contains two input elements (an e-mail field and a submit button) and a text
label wrapped in a 1abel element. You'll learn more about all of these elements in this chapter.

Listing 8-1. A simple form with an e-mail field and a submit button

<foxrm method="post" action="/apps/subscribe.py”>
<p><label for="email">Enter your e-mail address to
subscribe to our newsletter.</label></p>

<p><input type="email" name="email" id="email" required>
<input type="submit" value="Subscribe"></p>
</form>

Figure 8-1 shows how this form is rendered in a web browser with default styling, Firefox for Mac OS X in
this case. Some form controls will look different in different browsers and on different operating systems,
but in the end they all send their data the same way.

Figure 8-1. The same simple form as it appears in Firefox for Mac OS X

The label element is extremely important in forms. It provides a text label for a form
control that assistive technologies can read to make the form more accessible and
easier to use. You'll learn about it in detail later in this chapter.

Assembling Forms and Applications

Required Attributes

The form element doesn’t require any attributes. Previous versions of HTML required an action attribute
to specify the form handler URL, but in HTML5 that attribute can appear on another control such as a
submit button, or it can be omitted entirely and the current document will act as the default form handler.

Optional Attributes

accept-charset: Specifies the accepted character encoding for data submitted through the
form. When the attribute is missing, the accepted character encoding is assumed to be the same
as that of the parent document.

action: Specifies the URL of the form handler, which is the script or application that will process
the submitted form data.

autocomplete: This attribute is new to HTML5 and specifies whether browsers should be
allowed to automatically complete the controls within the form. This attribute only accepts the
values on or off, with on being the default value if the attribute is missing.

enctype: Specifies the type of encoding to use when the form is submitted, one of three possible
values: application/x-www-form-urlencoded (the default), multipart/form-data (if the
submitted form will include files uploaded via an input type="file" control), or text/plain
(which performs no additional encoding).

method: Specifies which HTTP method will be used to submit the form data, either get or post.
The method defaults to get if this attribute is missing.

novalidate: Indicates that the form data should not be validated when submitted, bypassing any
field requirements or formatting rules, though any JavaScript or server-side validation might still
be performed. This Boolean attribute is new in HTML5, and doesn't require a value, but you can
provide a value in XHTML syntax as novalidate="novalidate".

Previous versions of HTML included an accept attribute for the form element that
indicated the file types accepted by the form via an input type="file" control,
covered later in this chapter. This attribute is obsolete for form elements in HTML5, but
can instead appear on the input element itself.

The input Element

Most common form controls are instances of the input element, with each type of input control indicated
by a corresponding type attribute. The input element is styled as inline by default so several can appear
on the same line. It's also a void element, so it can hold neither text nor any other elements. A browser
replaces the input element with a functional form control when it renders the page. This is a diverse
element that performs many different duties. It also has loads of optional attributes, though some are only
for use with certain input types.

241

Chapter 8

Every input element—those you intend to process, at least—requires a name attribute so it can be
associated with its value when a user submits the form. Technically, name is an optional attribute, and isn’t
required for a valid document so a validator may not indicate an error if it's missing. But a markup validator
won't know what you intend to do with the form data so it can’t automatically determine which inputs
require names.

The type attribute specifies the particular type of control the element represents, from simple text fields to
checkboxes to image buttons, tailored for particular types of data. A number of new input types (or states
of the input element, as the spec refers to them) have been introduced in HTML5, as well as many new
attributes that extend and enhance the functionality of the humble form field.

Browser support for some of the new input types is inconsistent at the time of this writing, but browsers are
updating rapidly and adding new features in every release. Even so, HTML5 has been designed from the
ground up to be backwards compatible with older user-agents, and any unrecognized input type simply
reverts to an ordinary text field that can still accept any value your users might enter. In this section we’ll
cover the full range of input types, both old and new.

Required Attributes

= name: Identifies the control so it can be matched with its value when the form is submitted. A
markup validator may not generate an error if this attribute is missing, but it's required in order to
successfully handle the form. Notable exceptions are input type="submit" or input
type="reset", which dont always require names because their values aren't necessarily
submitted with the data set.

Optional Attributes

242

» accept: Includes a comma-separated list of accepted file MIME types (only for input
type="file").

= alt: Specifies an alternative text description for an image when the image isn’t available (only for
input type="image").

» autocomplete: This attribute is new in HTML5 and specifies whether browsers should be
allowed to automatically complete the input field, either by filling in locally stored values or by
suggesting previously entered text as the user types. This will only work if you also enable auto-
completion for the parent form element. The attribute accepts the values on or off, with on being
the default when the attribute is missing. Auto-completion is really handy for often-entered
information such as a shipping address, but you could disable it for a more sensitive field such as
a credit card number.

= autofocus: This Boolean attribute is new in HTML5 and indicates that the control should
automatically receive focus when the page loads.

= checked: A Boolean attribute that, when present, sets an initial checked state for checkboxes or
radio buttons (only for input type="checkbox" and input type="radio").

Assembling Forms and Applications

disabled: A Boolean attribute that disables the control so it can't receive focus or be modified.
The value of a disabled control is not submitted. Many browsers will display disabled controls in a
“grayed-out” style by default.

form: This is new in HTML5 and allows the label to be associated with one or more additional
forms. The form attribute accepts a value of one or more form IDs, separated by spaces. This
feature allows authors to work around the lack of support for nested form elements.

formaction: This attribute is new to HTML5 and overrides the form’s action attribute in defining
the control's handler. The value is the URL of the form handler where the data is sent when a
user submits the form.

formenctype: This is a new attribute in HTML5 and overrides the form’s enctype attribute. It
specifies how the data from this control should be encoded before it's sent to the server. The
attribute only accepts the values application/x-www-form-urlencoded, multipart/form-
data (for input type="file"), or text/plain (the default if the attribute is missing).

formmethod: This is new to HTML5 and overrides the form’s method for sending data to the URL
defined in the action attribute. The two possible values are get and post.

formnovalidate: A new Boolean attribute in HTML5, this allows a form to be submitted while
bypassing the form’s validation (only for input type="submit"). Indicating this on an input
instead of for the entire form allows some buttons to bypass validation while others don't. For
example, a “save” button might submit a partially completed form to let users save their progress,
but without going through the validation process the form will undergo when it's finally submitted
at the end.

formtarget: This is new to HTML5 and overrides the form's target attribute, which specifies
the target window to use when the form is submitted. This attribute can only appear on input
type="submit" and its value is the name of the target window or frame, or one of the keywords
_blank, self, parent, or _top.

height: Specifies the height of an input type="image" in either pixels or as a percentage. This
is new in HTML5; image inputs couldn’t previously carry dimension attributes.

ismap: A Boolean attribute declaring that the control is a server-side image map (only for input
type="image").

list: This attribute is new to HTML5 and references the ID of a datalist element that contains
predefined options for the control.

max: Specifies the maximum value allowed for the control, either a number, a date, or a time. This
is new in HTML5 and only for use with a number input or any of the date and time input types. If a
min attribute is also present, the value of max can’t be less than the value of min.

maxlength: Specifies the maximum number of characters (including spaces) that can be entered
in a text field (any input type that can receive text). Browsers may not give any indication that a
field has a maximum length, and will simply stop accepting input when the limit is reached. If you

243

244

Chapter 8

include a maxlength attribute you should also provide some visible hint to your visitors to let
them know how many characters the control will accept.

min: Specifies the minimum value allowed for the control, either a number, a date, or a time. This
is new in HTML5 and only for use with a number input or any of the date input types. If a max
attribute is also present, the value of min can't exceed the value of max.

multiple: A Boolean attribute that, when present, indicates that multiple values can be entered.
This is new in HTML5 and typically appears in combination with a datalist element (covered
later in this chapter).

pattern: This is new to HTML5 and allows an author to define a regular expression against
which the input's value can be checked. For example, pattern="[1-5]" specifies that the
input's value must be an integer between 1 and 5, and pattern="[A-Za-z]" accepts only
upper- and lowercase letters (no numbers or other symbols). Far more complex patterns are

possible. See regular-expressions.info for a good starting point with regular expressions.

placeholder: This new attribute introduced in HTML5 allows the author to include a short text
hint to advise the user on what value is expected for the input. The browser hides the placeholder
label automatically when the control is in focus (or when the user begins typing) and, if there was
no value entered in its place, the placeholder reappears when the field loses focus.

readonly: Specifies that the control may only display an initial value and can’t be modified. This
differs from disabled in that a read-only control can still receive focus and its value is still
submitted with the form.

required: This Boolean attribute is new to HTML5 and indicates that the control must have a
value in order to submit the form.

size: Specifies the width of a rendered text control as a number of characters, so the actual
rendered width will depend on the font size. By default, most browsers will display text controls
around 20 or 25 characters wide.

src: Specifies the source URL of an image file (only for input type="image").

step: This is new in HTML5 and specifies the number intervals for a numeric input (input
type="number"). For example, given the attribute step="3", the number control will accept -3,
0, 3, 6,9, and so on, stepping in multiples of 3.

tabindex: Specifies, by number, the control’s position in the tabbing order when a user cycles
through active controls using the Tab key. Typically (and by default), the tabbing order follows the
source order, with each stroke of the Tab key advancing focus to the next active control in the
document. The tabindex attribute can change that natural order if needed. For example, a
control with tabindex="1" appears first in the tabbing order, regardless of where it might occur
in the document’s source order.

type: Specifies the type of form control the input element represents. The default input type is
text if the attribute is missing or if its value isn’t recognized. Older browsers that may not
recognize the new input types introduced in HTML5 will gracefully degrade to a text input.

Assembling Forms and Applications

» usemap: Specifies the URL of a client-side image map (only for input type="image").
= value: Specifies the initial value of a control before it has been modified by the user.

» width: Specifies the width of an input type="image" in either pixels or as a percentage. This is
new in HTML5; image inputs couldn’t previously carry dimension attributes.

Note that many of the optional attributes available for the input element are specific
only to certain types of form inputs (as indicated by the type attribute). Also, many of the
new attributes in HTML5 can override the equivalent attribute settings in the parent form
element.

Next we'll go through each of the different input types in more detail, one by one.

input type="text"

This type of input element creates a single-line field in which your visitor can type whatever text you
might require, such as a name, address, or a short answer to a question. It's usually rendered in browsers
as a white, rectangular box with a thin inset border, though CSS can easily change its appearance.

These single-line text fields are best for very short bits of text, no more than a few words. If the entered
text exceeds the width of the field, the excess characters will run off to one end of the field so the end of
the text string is visible and the first portion appears truncated. Rest assured that the complete value is still
there, it's just not all visible. Longer, multi-line passages of text call for the textarea element, covered
later in this chapter.

An input type="text" element may carry an optional maxlength attribute, defining the maximum
number of characters (including spaces) that can be entered into the field. Unfortunately, web browsers
offer no indication that a text field has a maximum allowed length; when you reach the limit, it simply stops
accepting anything you type. If you paste an overlong string of text into a field with a maxlength attribute,
the text will be truncated. If you need to use a maxlength attribute on a text field (for example, a username
field to log into a system that restricts usernames to 12 characters or less), it's helpful to indicate the
maximum length in a note near the form control.

An optional value attribute allows you to set the initial text of the field, which a user can delete or modify,
or she can it leave alone and the default value will be submitted with the form. It's especially useful for
automatically “prepopulating” forms with stored information that a user can edit. Text fields that are meant
to be blanks where your users can enter new information should, in fact, be blank when initially rendered.
You shouldn’t use value to provide hints or instructions; there are other elements and attributes for that,
as you’ll soon see.

Listing 8-2 shows the markup for a basic text control. We've included a maxlength attribute along with a
note about the maximum allowed length, as well as a size attribute. Because this example asks a user to
update previously saved information, we've also prepopulated the field using the value attribute.

245

Chapter 8

Listing 8-2. A text control with a prepopulated value attribute

<p><label for="zip">Update your ZIP code <i>(maximum 5 characters)</i></label>
<input type="text" id="zip" name="postcode" size="5" maxlength="5" value="94710"></p>

Figure 8-2 shows how this would look in a browser (this is in Firefox on Mac OS X; other browsers might
differ slightly).

Update your ZIP code (maximum 5 characters) | 94710

Figure 8-2. The text field as it appears in a browser with default styling

This example also has an optional (and largely presentational) size attribute, defining the width of the field
as a number of characters. By default, most browsers will display text fields around 20 or 25 characters
wide. You can also modify the width of a text field with the CSS width property using any unit you like
(ems, pixels, a percentage, etc.) and a CSS width will override the size attribute, if present.

input type="search"

246

The search input type is new in HTML5 and, as you might suspect, indicates a text field where visitors can
enter search terms. In years past this was accomplished with an ordinary input type="text", but by
adding a dedicated type for search fields, browsers can treat those fields differently than ordinary text
fields. For example, a browser might save terms you've previously searched for and offer to autocomplete
terms from your own search history as you type into the same field on later searches, which can be
especially handy on mobile devices where typing is cumbersome. Older browsers—as well as current
browsers that don't yet give any special treatment to search inputs—treat a search control as an ordinary
text control and it still works just as well, though without any extra features.

Listing 8-3 shows a search input with a placeholder attribute offering a suggestion of what you might
search for. An input type="text" would be just as functional and processed the same way by a form
handler, but using the new search type garners some special treatment in the latest browsers.

Listing 8-3: A search input bearing a placeholder attribute

<p><label for="search">Search for products</label>.
<input type="search" id="search" name="q" placeholder="utility belts"></p>

The placeholder attribute is also new in HTMLS5. It lets the author supply some short instructional text in
the control itself, suggesting a value to enter, or an example of how the user should format the data they
provide. The placeholder text disappears when the field is in focus, and reappears when the field loses
focus if there is no other value to display. If the element includes a value attribute, the supplied value will
override the placeholder.

In the past, many developers accomplished this feat using the value attribute and automatically clearing it
with JavaScript when the field was focused, but that meant the placeholder text could be submitted with
the form. The placeholder attribute eliminates that problem; placeholder text is never submitted, it's
strictly for visual feedback and improved accessibility. We're introducing the placeholder attribute here

Assembling Forms and Applications

with a search input, but you can also use it with any of the textual input types, including URL, e-mail, and
telephone controls, as well as the textarea element covered later in this chapter.

Figure 8-3 shows the search input showing off its placeholder text. This image is taken from Safari for OS
X, which also styles search inputs with rounded corners by default. Older browsers that don't support
placeholder will simply ignore the attribute and display a plain, empty field. Because some browsers
can't display it, always think of placeholder text as an optional hint, and you should display any really vital
information some other way (in a 1abel, perhaps).

Search our catalog

Figure 8-3. How the search field appears in Safari, including placeholder text. Safari styles search inputs with rounded
ends by default, in keeping with Apple’s general style for search boxes on OS X, but other browsers will differ.

Some browsers already recognize search inputs and will display a dropdown of recent search terms as
you type, matching the text you've entered and narrowing the suggestions as you enter more letters. Safari
and Chrome—and possibly other browsers in the near future—also add a small clearing button at the end
of search fields when a user enters a value (as in Figure 8-4). This makes it easy to empty the control with
a single click, clearing the field for the next search. Not every browser does this; it's just an extra touch
WebKit adds.

Figure 8-4. Safari adds a small clearing button to search fields, and recalls previous searches in a dropdown while also
offering to auto-complete the text as you type.

input type="password"

This control is similar to a text field; it's a single-line field and will usually appear as a rectangular box with
a white background and an inset border. But unlike a regular text field, a password field obscures the
entered text, usually as a series of solid dots or asterisks (*). This offers a bit of added security and
privacy, preventing someone from peering over your shoulder to sneak a peek at your secret password
when you're logging into a secure system. But this is very light security, protecting your password from a
casual glance only. A properly secured form should be encrypted when it's submitted to the server; don’t
count on just visually obscuring passwords to keep a determined crook at bay.

247

248

Chapter 8

Encryption is a means of mathematically scrambling data so that anyone who might
intercept it won't be able to read or use the information. Unscrambling, or decrypting,
encrypted data requires an encryption key that should be extremely difficult to guess.
Any sensitive information, such as passwords and credit card numbers, sent over the
Web through a form should be encrypted to protect the security and privacy of your
users. Encryption usually happens between the browser and the server, and is much too
complicated to be addressed in detail in this book.

Listing 8-4 shows an example of a simple login form, with a text field for a user name and a password field
for a password. We've also added some new attributes: autofocus and required.

Listing 8-4. Part of a typical login form, with both a text input and a password input

<p><label for="username">Your user name</label>
<input type="text" name="user" id="username" autofocus required></p>

<p><label for="password">Your password</label>
<input type="password" name="pass" id="password" required></p>

Figure 8-5 shows how a browser renders the markup, with the entered password obscured as a string of
dots.

Figure 8-5. Text entered into a password field is obscured from sneaky onlookers

The autofocus attribute is new in HTML5. It automatically sets focus to the control when the page loads.
This should usually appear in the first field of a form and only when that form is the primary content of the
page, such as a dedicated login page, or the front page of a search engine that only has one big field. It
should also only appear on one control in the document. If several controls carry an autofocus attribute
only the first one will actually receive focus; a browser can only focus on one control at a time. Try not to
annoy your visitors by automatically setting their browser’s focus into a form field they might not be
planning to use right away, such as a comment form at the end of a long article or a search field on a page
where someone may not want to begin searching immediately. Older browsers that don’t recognize the
autofocus attribute will simply ignore it and the form will still work as usual.

The required attribute is also a new addition to HTML5 and indicates that the form shouldn’t be submitted
unless the control in question has a value. When more than one field in a form is required, all of them must
have a value before the user can submit the form. However, because this is a new attribute in HTML5,
older browsers—and even some current browsers at the time we write this—don’t support the required
attribute, so it's still no substitute for proper form validation.

Assembling Forms and Applications

Special Text: URLs, E-mail Addresses, and Phone Numbers

Similar to the new input type for search controls, HTML5 introduces specialized input types for URLs
(input type="url"), e-mail addresses (input type="email"), and phone numbers (input
type="tel"). They typically look just like ordinary text fields, but browsers can give these special fields a
bit of special treatment. Older browsers that don’t recognize these new input types still fall back to a
standard text field.

A URL or e-mail address should follow a certain format: complete URLs should begin with a protocol such
as http:, https:, ftp:, mailto:, and so on, and e-mail addresses should comprise a username
followed by an @ symbol followed by a domain name (or possibly an IP number). Browsers that recognize
and support input type="url" and input type="email" can automatically check that the entered
value conforms to the expected format and display a warning if it doesn’t, preventing the user from
submitting the form until she corrects the field. It's up to the browser how it displays the errors, and
different browsers indicate errors in very different styles.

Listing 8-5 shows part of a comment form like you might find on a typical weblog, with fields for an e-malil
address and website URL. The e-mail field also carries a required attribute so browsers that recognize
this attribute won't allow the form to be submitted until all required controls carry a value. The URL field
isn’t required here, but if a commenter does enter a value, the browser will require that value to be a
complete URL before submitting the form.

Listing 8-5. A partial comment form featuring inputs for an e-mail address and a URL

<1i>
<label for="name">Your name (required)</label>
<input type="text" id="name" name="name" required>
</1i>
<1li>
<label for="email">Your e-mail address (required, not published)</labels>
<input type="email" id="email" name="email" required>
</1i>
<1li>
<label for="url">Your website</label>
<input type="url" id="url" name="url">
</1i>

This form can’t be submitted until the name and e-mail fields are filled, and the e-mail field must hold a
formatted e-mail address. However, a browser can't verify that the provided e-mail address actually exists
or that it belongs to the person entering it; the browser can only check that the data conforms to the
general format of an e-mail address (x@y). The URL field validation is even more rudimentary, only
requiring some kind of protocol prefix followed by a colon (:) and after that the field will accept any other
text; the browser won't verify that the rest of the URL is complete or if it's a working Internet address (and it
may not even be a real protocol—any character followed by a colon will usually pass the URL test).

249

Chapter 8

Because the browser-level validation for these input types is so simplistic and, more
importantly, because not all browsers yet support these elements and attributes, you
should still have some additional form validation in place, either client-side using
JavaScript or server-side when the form data is processed—ideally both.

Figure 8-6 shows how Chrome indicates an empty required field on the left, in the middle you see how
Opera indicates a malformed e-mail address, and on the right you see how Firefox indicates an incomplete
URL (these are all on Mac OS X). The styles vary widely across the different browsers, but they all
function the same way.

Figure 8-6. Different browsers indicate errors in very different styles. This shows the same form in Chrome, Opera, and
Firefox.

Another new input type—input type="tel"—is akin to the e-mail and URL inputs, though browsers may
not perform any checking of the value’s format. A phone number can be written in many different ways,
with many different telephone systems around the world, so a user-agent can't enforce one particular
format for a phone number input. That might lead you to think a standard input type="text" would be
best for entering phone numbers (and it had to be sufficient for many years). But a telephone number is a
special kind of data and well deserves its own input type.

With the ever-increasing number and popularity of sophisticated mobile devices, allowing millions of
people to access the Web from their phones, a specialized input type="tel" (like the one in Listing 8-6)
can differentiate a phone number field from an ordinary text field.

Listing 8-6. A telephone input
<p>
<label for="home">Your home phone number</label>

<input type="tel" id="home" name="tel-home">
</p>

250

Assembling Forms and Applications

When entering text into a telephone field, many touchscreen smartphones will automatically invoke a
numeric keypad—as you can see in Figure 8-7—instead of their usual onscreen keyboard. Otherwise a
telephone input behaves just like a text input, and desktop browsers may not give them any special
treatment at all (at least not yet; even less-mobile desktop and laptop computers can access telephone
networks electronically, so future desktop browsers could certainly support telephone inputs).

Figure 8-7. A telephone input invokes a numeric keypad in some mobile browsers, such as the iPhone’s Mobile Safari
on the left and Firefox for Android on the right.

Dates and Times

Like phone numbers, dates and times can be written many different ways: “19th of June, 1996", “May 22",
“10/24/1999", “2012-Mar-3", “4:15pm”, “09:44:16 PST”, “quarter past midnight on the autumnal equinox”...
the variations are endless. But web apps and databases tend to be very particular and require a
consistent, machine-readable format so they can accurately handle dates and times. It's always been
difficult to impose a standard date or time format on web users, and for years developers have made use
of JavaScript calendar widgets or forced users to step through multiple text fields or dropdown menus to
enter a year, month, and day separately. HTML5 makes a web developer's—and a web user’'s—life a little
bit easier with a number of input types built especially for collecting date and time data.

= input type="date": For a complete date comprising a year, month, and day. Example: 2012-
07-22

= input type="datetime": For year, month, day, hours, minutes, and coordinated universal time
zone (UTC). Example: 2012-07-22T08:45Z

251

252

Chapter 8

= input type="datetime-local": The same as datetime, but minus the time zone. This input
assumes the time given is in the user’s local time zone, whatever that may be (perhaps provided
separately or derived from geolocation data). Example: 2012-07-22T08:45

» input type="month": For the year and month. Example: 2012-07

= input type="week": For the year and calendar week, indicated as a number between 1 and
53). Example: 2012-W29 (the twenty-ninth week of 2012)

= input type="time": For hours and minutes, but not seconds, and without any time zone
information. Example: 08:45

Each of these new input types automatically carries its value in a machine-readable format while
presenting the user with a simplified, human-friendly interface. That is, in browsers that support these input
types, and that's a short list at the time we write this. Opera is farthest in the lead, having supported the
various date and time inputs since version 10.62 (released in late 2010). For example, current versions of
Opera display a pop-up calendar (Figure 8-8) for date, month, week, datetime, and datetime-local
inputs.

Figure 8-8. Opera displays a calendar interface when a date field receives focus. A user can select a year, month, and
day with a few clicks and the browser will automatically enter the date in a machine-readable format.

Some current browsers may recognize these input types but don't yet offer a special interface, and others
don't yet recognize these input types at all, falling back to a basic text field. Unfortunately this means older
and non-supporting browsers can’t automatically format the data and will just accept whatever text they're
given. Until browser support is more widespread and consistent, one interim solution is to offer a
JavaScript date or time picker (like the ones websites have been using for years) only to browsers that
don't support these new HTMLS5 inputs, and more advanced browsers can use their built-in interfaces. If
you use these new date and time inputs in your web forms, plan accordingly and test thoroughly

Date and time inputs can carry optional min and max attributes, specifying the control's minimum and
maximum values. The attribute’s value is a date or time (or full datetime) in the same format as the
particular input type accepts. Time inputs don't differentiate between AM and PM, so you may need to
specify a 24-hour clock instead of a 12-hour clock.

Assembling Forms and Applications

Listing 8-7 is an example of a reservation form with separate inputs for date and time. Because you can't
make an appointment in the past (unless you're a time traveler), the date field has a minimum value that is
the same as today’s date, which would probably need to be generated automatically by a script or server-
side code (just pretend you're reading this on July 22 of 2012... unless you're a time traveler).

Listing 8-7. Using date and time inputs in a reservation form

<fieldset>
<legend>Schedule a Costume Fitting</legend>
<p><label for="fit-date">Date</label>
<input type="date" id="fit-date" name="fit-date" min="2012-07-22"></p>
<p><label for="fit-time">Time</label>
<input type="time" id="fit-time" name="fit-time" min="08:00" max="18:00"></p>
</fieldset>

This time field has both a minimum and maximum value so this form can only accept appointments during
business hours. However, time inputs don’t carry any indication of AM or PM, so we've specified a 24-hour
clock instead of a 12-hour clock. Otherwise a maximum value of 06:00 (for 6 PM) would be treated as less
than the 08:00 (8 AM) minimum, which isn’t allowed. When the min and max attributes are both present, a
minimum can’t be greater than a maximum, and a maximum can'’t be less than a minimum. It just makes
sense.

input type="color"

This new-in-HTML5 input type allows a user to provide a color value via a handy color picker interface.
The input’s value is a hexadecimal color code, but the graphical interface of the control is left up to the
browser; the HTML5 spec doesn't prescribe any particular design for the color picker. At the time we write
this, Opera is the only major desktop browser that supports input type="color" and their picker
interface is quite simple (see Figure 8-9).

Figure 8-9. A color input as displayed by Opera (this is on OS X)

When the input is in focus, Opera displays a small dropdown palette of color swatches for a predetermined
set of common, basic colors (black, white, red, yellow, blue, etc.) or you can provide a customized set of
swatches using the datalist element, covered later in this chapter. The swatch palette also includes an
“Other...” button that invokes the operating system’s native color picker. The input's current hex code
value appears in the palette as well. The unfocused input manifests as a small selection control, filled with
a single swatch displaying the current color.

Browsers that don't support the color input fall back to a default text field that can still accept a
hexadecimal color code. In fact, the value of an input type="color" must be a hexadecimal color code;

253

Chapter 8

no other value is valid, so entering the word “blue” wouldn't be correct. For that reason, you might opt to
provide a JavaScript-based color picker such as JSColor (jscolor.com) for browsers that don’t support
color inputs, while browsers that do support it can use their native interface.

input type="number"

254

A number input is for—you guessed it—entering numbers. This input type is new in HTML5 but already
supported by several browsers, though not yet all of them. Some mobile browsers will automatically invoke
a numeric keyboard for number fields, and desktop browsers will typically render the field with a set of up
and down arrows (called a spinner control, shown in Figure 8-10) making it easy to increase or decrease
the value one digit at a time. You can also specify a different increment in the optional step attribute and
each click of the spinner will raise or lower the value by that number, though users can still enter a value
by hand. The optional min and max attributes can specify the minimum and maximum values, as you
would expect.

A number field won't accept any non-numeric characters, with just a few exceptions. If the number entered
begins with a minus symbol (-) it indicates a negative number, so that symbol is allowed but only as the
first character in the value. A valid number may also include a single period (.) as a decimal point. Any
other letters, symbols, or punctuation are invalid, but a browser might not indicate any error, instead opting
to just ignore and strip away those characters when the form is submitted.

A number input isn’t intended for any arbitrary numerals; it's specifically made for indicating a count for
calculation purposes, such as a number of items or an amount of currency. Use a number input for
numbers where an incremental spinner control would make sense. For other kinds of numeric input that
people would typically enter by hand, like addresses, measurements, or a credit card number, use an
ordinary text field.

Listing 8-8 shows a number input with a min attribute that prevents entering any negative numbers (values
less than 0 aren’t allowed) and a step attribute that increments (or decrements) the value by 2 with each
click of the spinner. The up and down arrow keys on a keyboard can also increment the value by the same
step.

Listing 8-8. A number input with min and step attributes

<label for="order-count">How many? (sold only in matched pairs)</label>
<input type="number" name="count" id="order-count" min="0" step="2"»

Figure 8-10 shows the rendered result, taken once again from Opera. Browsers that don’t support the
number input will fall back to an ordinary text field with no spinner control and no restrictions on what value
it will accept. Some additional client-side or server-side validation could catch any non-numeric characters
and either reformat the value or display an error so the user can correct it.

How many? (sold only in matched pairs) | 6|2

Figure 8-10. Opera displays a number input with a spinner control and the number aligned to the right within the field.

Assembling Forms and Applications

input type="range"

A range input generates a slider widget, useful for entering numbers where the precise value isn't
important. The default range is 0 to 100, but you can define your own range with the optional min and max
attributes, including negative numbers and decimals. Like a number input, a range control also accepts a
step attribute to specify the incremental value (the default step is 1 if the attribute is missing).

Moving the slider handle along the path automatically changes the control's value, but the user won't
necessarily see the actual number the slider represents—hence this control is best for approximate
numbers or estimates, not for precise values. In left-to-right languages, sliding the handle to the left
decreases the value and sliding it to the right increases it. Right-to-left languages reverse the direction.

Similar slider controls have been seen on the Web for years, but they always relied on JavaScript to
render the widget and pass a value into a separate field. The new input type="range" in HTML5 brings
this functionality to the masses without the need for fancy scripts or heavy code libraries.

Listing 8-9 shows an example of a range input, including min and max attributes. Omitting the step
attribute allows this control to fall back to the default step value (1); the control’'s value will be a positive
whole number in the range of 0 to 10.

Listing 8-9. A range input lets users enter an approximate numeric value within a given range

<p><label for="power">Indicate your power level</label>
<input type="range" id="power" name="power" min="0" max="10"></p>

At the time we're writing this, Opera, Safari, and Chrome all support range inputs, as will Internet Explorer
10 (which might be out by the time you read this). Firefox hasn't implemented range inputs yet, but
hopefully will soon. Meanwhile, non-supporting and older browsers still fall back to a regular text field, and
you might opt to provide a JavaScript-based slider interface for those browsers that don't provide a native
slider of their own.

Browsers that do fully support range inputs will render a slider widget like the one you see in Figure 8-11,
taken from Opera on OS X (other browsers and platforms will look a bit different). The rendered slider isn’'t
very susceptible to CSS; you can specify a width with the width property, but not much else. A browser
will automatically place the slider handle in the middle of the range, indicating a default mid-range value.
You can specify your own initial value with the value attribute.

Indicate your power level O

Figure 8-11. Opera renders range inputs as a slider widget. Sliders may look different in other browsers.

input type="checkbox"

A checkbox control is a choice toggle in the form of a small square filled with a check mark (or sometimes
an x) when the control is selected. Use checkboxes when several options are available and more than one
can be selected, in the sense of “check all that apply,” or to represent a single decisive action, like “check
this box to accept the terms.”

255

Chapter 8

A checkbox input may have a value attribute corresponding to whatever the selected option is, and this
value is passed along when the form is submitted. Without a specific value, all that will submit is the state
of the box—a value of “on” if it's checked or nothing at all if it's not checked. That could be enough
information in some cases, so an explicit value attribute might not always be necessary.

Once checked, a checkbox can be unchecked by simply selecting it again. Furthermore, it can be
“prechecked” using the Boolean checked attribute, which requires no value though you can write it as
checked="checked" if you prefer XHTML syntax.

Listing 8-10 shows an example of several checkbox input elements, two of which have been pre-
checked. This is a simple checklist and each control has a meaningful name attribute, so value attributes
probably aren’'t necessary here; just ticking an item tells us everything we need to know. We've also
organized these options in an unordered list for a bit of added structure.

Listing 8-10. A set of multiple-choice options using checkbox controls

<label><input type="checkbox" name="grapgun" checked> Grapple gun</label>
</1i>
<1i>
<label><input type="checkbox" name="minilaser"> Mini laser cutter</label>
</1i>
<1li>
<label><input type="checkbox" name="smokepel" checked> Smoke pellets</label>
</1i>
<1li>
<label><input type="checkbox" name="xrayspecs"> Terahertz imaging goggles</label>
</1i>
<1li>
<label><input type="checkbox" name="microcam"> Micro-camera</label>
</1i>

Figure 8-12 shows this checklist in a browser with default styling, Safari on Mac OS X in this case.
Checkboxes may look different in other browsers and on different platforms. You could, of course, remove
the default list item markers with CSS, as you learned in Chapter 4.

Figure 8-12. The list of checkboxes as it might appear in a browser (this is from Safari on OS X).

input type="radio"

A radio button control is somewhat like a checkbox, but only one option in a set can be selected. Radio
buttons get their name from the station preset buttons on old-fashioned car radios; since you can listen to
only one radio station at a time, pushing one button in would cause the previous button to pop back out.

256

Assembling Forms and Applications

The radio buttons in a web form work the same way; selecting a button will automatically deselect
whichever one in the list was previously selected. Hence, radio buttons are ideal when you need to offer a
multiple-choice list of options where only one choice is allowed (unlike checkboxes, which allow multiple
choices). Once a radio button has been checked, it can’t be unchecked unless another button in the set is
checked in its stead.

To define a set of radio buttons, each one must share the same name attribute, and the value of the
selected radio button is taken as the value for the entire set when the form is submitted. As with
checkboxes, each radio button control can carry a value attribute to pass along additional information
about the selected option, and in this case a value is essential. Without a value attribute, the submitted
value would simply be “on” for the entire set of options, without any indication of which option was
selected. You could have a set with only one option, but in that case a radio button probably isn’t the right
control for the job; use a checkbox for a single option.

Also like checkboxes, you can preselect a radio button by including the checked attribute. However, only
one radio button in a set may be preselected. In the event of multiple preselected radio buttons, only the
last one in the set will be checked when a browser renders the form.

Listing 8-11 shows a set of radio buttons, each with the same name attribute to define the set and a
different value attribute to distinguish the options.

Listing 8-11. A set of radio buttons

<label>
<input type="radio" name="cape-length" value="S"> Short (36")
</label>
</1i>
<1li>
<label>
<input type="radio" name="cape-length" value="M"> Medium (48")
</label>
</1i>
<1li>
<label>
<input type="radio" name="cape-length" value="L"> Long (72")
</label>
</1i>
<1i>
<label>
<input type="radio" name="cape-length" value="XL"> Extra-long (96")
</label>
</1i>

Figure 8-13 shows this set of radio buttons in Internet Explorer on Windows 7, and we've removed the list
item markers with a simple CSS rule (ul { list-style: none; }). As with most other form controls,
radio buttons may appear different in other browsers or on other operating systems. In this example, one

257

Chapter 8

of the options has been selected, filling the circle with a solid dot. Choosing a different option will
automatically uncheck the previous choice.

Figure 8-13. The set of radio buttons as it might be rendered in a browser, now with one option selected.

input type="file"

258

A file input renders a file upload control—usually consisting of a text field alongside a “choose file” or
“browse” button—allowing the user to locate a file on her computer's hard drive or local network and
upload that file when she submits the form. Clicking the button invokes a computer’s built-in file browser,
and once a file is located, the local file path appears in the text field (or some browsers show only the file
name without the full path). As with other text fields, an optional size attribute can specify the width of the
file field as a number of characters. Browsers that don't display a text field with a file input simply ignore
the size attribute.

An input type="file" control can include an optional accept attribute, where the value is a comma-
separated list of the accepted file types (specified by their MIME types). If you're asking your users to
upload an image, for example, the accept attribute can restrict the field to accept only standard image
formats; any other file type would be rejected.

Previous versions of HTML also allowed the accept attribute on the form element itself,
but that's no longer valid in HTMLS5, partly because file inputs are no longer required to
reside in a form element. HTML5 allows form controls to appear anywhere in the
document and be directly associated with a form elsewhere in the document by way of
the new form attribute.

Listing 8-12 presents the markup for a file control, including an accept attribute that limits uploaded files to
GIF, JPEG, or PNG images.

Listing 8-12. A file control with an accept attribute

<p>

<label for="photo">Send us your action shots and show off your new gear!</label>

<input name="photo" id="photo" type="file" accept="image/gif, image/jpeg, image/png">
</p>

Figure 8-14 shows how this looks in Firefox for Mac OS X. We've already selected a file by browsing the
local hard drive, and its path appears in the text field. Only the first portion is visible because the full path is
longer than what the text field can display. The button’s text is left up to the browser; you can’t supply your
own label. File controls are also largely immune to CSS, unfortunately, so you can only alter a few aspects
of their styling.

Assembling Forms and Applications

Figure 8-14. The file control as it appears in Firefox for OS X.

Some browsers display a file control like you see in Figure 8-14, as a text field with a button to its right.
However, Safari and Chrome—both based on the WebKit rendering engine—display file controls in a very
different way. As you can see in Figure 8-15, these browsers don’'t show a writable text field, instead
offering only the browse option with the button on the left side of the control. To the right of the button,
Safari and Chrome display only the name of the selected file (once the file has been selected) instead of
the full path. Along with the file name, Safari will also display a small icon to indicate the type of file, if the
type is known. As is usually the case, the function of the control is the same across browsers, even if its
presentation isn’t.

Figure 8-15. A file control as rendered by Chrome on top and Safari below, both on Mac OS X. They're practically
identical because both browsers are built on the same rendering engine. The buttons will look different on other
operating systems, including older versions of OS X.

input type="submit"

An input type="submit" control creates a button that will submit the entire form data set—all the data
entered in the various controls—when clicked. The control's value attribute sets the text label for the
rendered button, which defaults to “Submit” (or “Submit Query” in some browsers) if a value attribute is
omitted. The button’s value isn’t submitted with the rest of the form; it's strictly a label. When the button is
activated and the form is submitted, the form handler takes over to process the data.

You can see the markup for a simple login form with a submit button in Listing 8-13. In this example the
label “Log In” will appear on the rendered button rather than the default text.

Listing 8-13. A simple login form with a submit button

<label for="username">Your username:</label>
<input type="text" id="username" name="username" required>
</1i>
<1li>
<label for="password">Your password:</label>
<input type="password" id="password" name="password" required>
</1i>
<1li>

259

Chapter 8

<input type="submit" value="Log In"»>
</1i>

Figure 8-16 shows the rendered form. As you know by now, form elements may look different in other
browsers and on other operating systems, and that’'s especially true of buttons (this image is from Internet
Explorer on Windows 7).

Figure 8-16. The input element's value attribute specifies the button’s text label

input type="reset"

This control generates a button that, when clicked, resets the entire form, blanking out any data the user
has entered and setting all controls back to their initial values. Reset buttons were much more common in
the past, but a few years of practical use has shown them to rarely be of much value. It's far too likely that
a user will accidentally reset the form and irretrievably lose all the information he’s carefully entered—
especially frustrating when there’s no mechanism to undo such a mistake. These days reset buttons are
generally discouraged; if you decide to use one, do so with care and only when it can actually help people
use your forms.

As with a submit button, the reset button’s value attribute determines the button’s text label, usually
defaulting to “Reset” if the attribute is missing.

input type="button"

A button input is just that: a generic button. It has no inherent function; it merely serves as a clickable
widget that can trigger a client-side script. You can set the button’s text via the value attribute, or it
typically defaults to “Button” if you don’t provide a value. Instead of embedding these scripted buttons in
your markup, you might prefer to use JavaScript to generate the button itself. After all, the button won't
function without a client-side script to imbue it with purpose, and a control that only works with a script
needn't be displayed if the script isn’t available.

input type="image"

260

An image control behaves essentially like a submit button: activating the control will submit the form. But
an input type="image" allows you to substitute the standard button with a more decorative graphic. As
with other images in HTML, an image input requires a src attribute to specify the image file’s URL and an
alt attribute to provide an alternative text description when the image isn't available (see Chapter 5 for
more about the src and alt attributes). Alternative text is especially vital for image form controls, to
ensure that the form can be successfully completed even when the image can't be seen. Without a useful
alt attribute, people using text browsers or screen readers will have difficulty identifying the button,

Assembling Forms and Applications

making it nearly impossible for them to submit the form. You wouldn’t want to turn away thousands of
paying customers simply because they can't see your “Buy Now” button, would you?

When your visitor uses a mouse (or other pointing device) to click an image control, the precise location of
that click is included in the data set as X and Y coordinates (with the control identified by its name attribute,
if present). A script or form handler can use this information to determine exactly which part of the button
was clicked and thus treat an image control like an image map (which you learned about in Chapter 6),
with different regions of the button triggering different actions. However, since this requires the button to be
clicked by a pointing device, people using their keyboard to submit the form will be at a disadvantage. It's
usually best to use separate, distinct submit or image controls to trigger those different actions rather than
a single image button.

You can see the markup for an image control in Listing 8-14 and the rendered result in Figure 8-17. Like
the img element, the width and height attributes are optional here but it's usually best to include the
dimensions.

Listing 8-14. An image input offers more decorative choices than a standard submit button

<input type="image" src="images/order-button.png" alt="Place Your Order!" -
width="320" height="70">

Figure 8-17. An image control inserts a graphical button that might be more (or sometimes less) attractive than the
native buttons.

input type="hidden"

As you might have guessed, a hidden input isn't displayed on the rendered page. It exists simply as a
vehicle to pass along extra data with the submitted form that a user doesn’t need to see or modify—such
as an order number or internal tracking ID—via the element’s value attribute.

More Form Controls

As multitalented as the input element is with its wide variety of types—including all the fancy new ones
introduced in HTML5—it's not the only way to enter and submit data in a web form. In this section we’ll
round out the collection of form controls with selection menus, blocks of text, and more versatile buttons.

select

The select element creates a selection control—a menu of options from which to choose. The control
may be displayed either as a single line that can “drop down” and expand to show all the options or it may
occupy multiple lines as specified by the optional size attribute (the size defaults to 1 if the attribute is
missing). Each option in the select element is wrapped in its own option element, and we'll get to that
momentarily.

261

262

Chapter 8

A single-line selection control, often called a drop-down menu, will show the selected option when in its
collapsed, inactive state, with a small arrow at one end as a visual cue that the control can be expanded.
Selected options in a multi-line select are usually highlighted with a different background color.

A selection control will only allow one option to be selected by default, especially obvious if it's a single-line
drop-down menu. Adding the Boolean multiple attribute automatically converts the select element to a
multi-line control and also allows the user to choose more than one option, usually by holding down the
Shift, Control, or Command key while making his choices. In the absence of a size attribute, some
browsers will automatically expand the multi-line menu to show 10 or even 20 options, or to show all of
them if there are only a few. Other browsers only show three or four options regardless of how many are in
the list. You can achieve a bit more cross-browser consistency by including a size attribute whenever you
allow multiple selections, but it isn’t required. If the size attribute is greater than the number of options, the
rendered height honors the attribute and the remaining lines will be empty.

When a user submits the form, the selected options are passed as the value of the selection control. As
with most other form controls, a name attribute identifies the select element to associate the control with
its value (or values).

The display and behavior of a single-line selection can be somewhat unpredictable, largely dependent on
the browser and operating system, as well as the location of the control on the screen. If the control
appears near the bottom of the screen, the open menu will usually expand upward rather than downward
to prevent it from extending past the lower edge of the display where it can’'t be reached. A menu might
expand both up and down if the selected option is near the middle of the list. When expanded, a selection
control will overlap other content on the page and can even escape the boundaries of the browser window
if it needs to.

When the list of options is exceptionally long, a vertical scroll bar will appear in the expanded menu,
allowing the user to scroll up and down to see the entire list. The number of items visible in the expanded
list can change depending on the size of the screen or browser window, automatically determined by the
browser and operating system. A multi-line select element will display a vertical scroll bar if the number
of the options exceeds the number of visible lines, and many browsers reserve space on one side for a
scroll bar even when the box isn't scrollable.

So far we've been focusing on how desktop browsers render the select element, but
mobile phones and tablets may treat selection controls very differently, perhaps by
showing a scrolling popup dialog with radio buttons or checkboxes to make the
selection. Interacting with forms on a small touchscreen is a very different experience
from the traditional keyboard-and-mouse combination.

The width of a selection control is determined by the longest option in the list, even if that option isn’'t
selected. You can modify the element’s natural width with the CSS width property, and any text that
exceeds that declared width will appear truncated, but most browsers will automatically expand the width
of the menu when it's opened. Each option appears on a single line; text doesn’t wrap in a selection
control. Ideally, each option in the list should have a short text label of no more than a few words to avoid

Assembling Forms and Applications

overly wide menus. If your options require lengthy descriptions, then the select element probably isn't the
right choice and you should use a set of checkboxes or radio buttons instead.

The select element is a non-empty element that requires an end tag, and it acts as a container for one or
more option or optgroup elements; the select element must contain at least one option. Listing 8-15
shows a select element containing three option elements. Without a multiple or size attribute, this
control defaults to a single-line selection and only allows one option to be selected.

Listing 8-15. A select element containing four option elements

<select name="cape-length">
<option>Short (36")</option>
<option>Medium (48")</option>
<option>Long (72")</option>
<option>Extra-long (96)</option>
</select>

You can see what this control will look like in Figure 8-18. This image is from Safari for OS X, with the
selection closed on the left and expanded on the right. Some browsers (including Safari) also indicate the
currently selected option with a check mark to the side of the label, but other browsers don’t. The first
option in the list is the initial selection by default unless some other option is preselected (more on that
when we cover the option element next). In its open state, the focused option in the list—that is, the
option the user is about to select—is usually indicated with a highlight color.

Figure 8-18. The same selection control in both inactive and active states

Adding a multiple attribute to a select element, as in Listing 8-16, converts the control from a single-
line drop-down menu to a multi-line box and allows the user to choose more than one option. This example
also carries a size attribute to set the height of the menu at five lines (thus the actual rendered height
depends on the size of the text).

Listing 8-16. A select element with size and multiple attributes

<select name="suit-options" size="5" multiple>
<option>Thruster boots</option>
<option>Repulsor gauntlets</option>
<option>Multi-spectrum HUD</option>
<option>Therm-optic camouflage</option>
<option>Rust-proofing undercoat</option>
</select>

Figure 8-19 shows the result: a scrolling box displaying the options, with selected options highlighted on a
darker background color. A scroll bar isn’'t needed in this case because there are only five options in the
list, the same number of lines specified by the size attribute, but this browser (Firefox) reserves space for
a scroll bar anyway.

263

Chapter 8

Figure 8-19. A multi-line selection menu with two options selected

Required Attributes

name: Identifies the control so that it can be associated with its value when the form is submitted.
A markup validator may not generate an error if this attribute is missing, but it's required to
successfully handle the form.

Optional Attributes

option

264

autofocus: This Boolean attribute is new in HTML5 and specifies that the button should
automatically receive focus when the page loads.

disabled: A Boolean attribute that disables the control so it can’t receive focus or be changed.
Many browsers will display disabled controls in a “grayed-out” style.

form: This is new in HTML5 and allows the control to be associated with one or more additional
forms. The form attribute accepts a value of one or more form IDs, separated by spaces. This
feature allows authors to work around the lack of support for nested form elements.

multiple: A Boolean attribute that, when present, indicates that multiple options may be
selected, usually by holding down a Shift, Control, or Command key while selecting or
deselecting options.

required: This Boolean attribute is new to HTML5 and indicates that the control must have a
value in order to submit the form; i.e. at least one option must be selected.

size: Specifies the height of a multi-line selection control as a number of lines; the value must be
a positive whole numeral, such as size="15".

Each option in a select element is represented by an option element, though as of HTML5 the option
element may also appear within a datalist element, and there are some slightly different rules about its
use with datalists. We'll go into more detail on that later in this chapter when we cover the datalist
element, but for now let's focus on options within a selection control.

When it appears in a select element, option is a non-empty element that requires an end tag and can
only contain text, which acts as a label that will be displayed in the selection menu. Each option in the
selection control appears on a single, non-wrapping line within the menu. That text content is also the
value that will be sent with the form unless you specify a different value with an optional value attribute.

You can preselect an option by including a Boolean selected attribute, and you can preselect more than
one option, but only when the parent selection control has a multiple attribute.

Assembling Forms and Applications

We've given each of the option elements in Listing 8-17 a value attribute that will be submitted in place
of the element’s text label. This way a back-end system can receive whatever machine-friendly values it's
been programmed to handle while the user still sees sensible text labels. In this example, the first option
acts as a label for the control and shouldn't be submitted with the form (it's also been preselected by
adding a selected attribute). An empty value attribute prevents the first option’s text from being
submitted as its value, allowing the automatic validation indicated by the required attribute to kick in—a
user can't submit this form with an empty value (in browsers that support the required attribute for
select elements, at least).

Listing 8-17. option elements with value attributes; one is preselected

<select name="cape-length" required>
<option value="" selected>Choose a length</option>
<option value="S">Short (36")</option>
<option value="M">Medium (48")</option>
<option value="L">Long (72")</option>
<option value="XL">Extra-long (96")</option>
</select>

Required Attributes

The option element doesn’t require any attributes.

Optional Attributes

= disabled: When present, disables the option so it can't be selected. Many browsers will display
disabled options in a “grayed-out” style.

= label: Provides a shorter alternative text label, displayed in place of the element’s contents to
improve accessibility when the regular value is too verbose. Not every browser supports this
attribute so it's usually best to keep your option text short.

= selected: Indicates an initially selected option.

= value: Specifies a value to pass with submitted form data. If no value attribute is present, the
selected option element’s text contents are passed as the selection’s value.

optgroup

You can collect option elements into related sections or categories by enclosing them in an optgroup
element, so named because it forms a “group of options.” An option group can only contain option
elements; no other elements are allowed, and you can't nest an optgroup within an optgroup.

In browsers, the value of the required label attribute will be displayed as a title at the top of the group with
the options listed beneath it, usually indented. All browsers display optgroup labels in some distinctive
fashion, but the particular style varies and isn't very susceptible to CSS. Firefox and Internet Explorer
render them in a boldfaced and italicized font, while Chrome, Safari, and Opera render them in a gray
color. Furthermore, some browsers change the label's style when the select is multi-line instead of

265

Chapter 8

single-line—Chrome and Safari go from gray text in a single-line select to bold, black labels when the
selection is multi-line, and Opera goes from plain gray to bold, black, and italicized optgroup labels.

The optional disabled attribute will disable the entire group, preventing the user from selecting any of
those options. Most browsers will display disabled options as “grayed out” text, and some will gray out the
group label as well. The optgroup label itself isn't a selectable option.

You can see an example of optgroup elements in action in Listing 8-18, which groups different styles of
superhero masks into logical categories. Although the “Lower Half-masks” category is a group of one,
that's perfectly logical and semantically correct in this situation.

Listing 8-18. A select element containing several option groups

<select name="mask-style">

<option value="" selected disabled>Select a style</option>

<optgroup label="Domino Masks">
<option value="MDTS40">The Colt</option>
<option value="MDMV77">The Danvers</option>
<option value="MDRD66">The Gorshin</option>
<option value="MDDC40">The Grayson</option>
<option value="MDMV79">The Hardy</option>
<option value="MDDC59">The Jordan</option>

</optgroup>

<optgroup label="Upper Half-masks">
<option value="MUDC09">The Kane</option>
<option value="MUMV74">The Logan</option>
<option value="MUMV41">The Rogers</option>
<option value="MUDC37">The Wayne</option>

</optgroup>

<optgroup label="Lower Half-masks">
<option value="MLSH31">The Cranston</option>

</optgroup>

<optgroup label="Full Face Masks">
<option value="MFDC86">The Kovacs</option>
<option value="MFMV62">The Parker</option>

</optgroup>

</select>

Figure 8-20 shows the same selection control in two different browsers: Firefox and Opera. You can see
that it looks a very different in each, but they both work the same way.

266

Assembling Forms and Applications

Figures 8-20. The control in Firefox (left) and Chrome (right), both on OS X. The menus appear quite different, but both
browsers do make the group labels clearly distinguishable from the options beneath them.

Required Attributes

= label: Specifies a text label or title for the option group, usually displayed in some distinctive
style to set it apart from the selectable options.

Optional Attributes

= disabled: A Boolean attribute that, when present, disables the entire group so none of its
options can be selected. Most browsers will display disabled options in a “grayed-out” style, and
may gray out the group label as well.

textarea

The textarea element creates a multi-line field for entering passages of text too lengthy for a single-line
text field (input type="text"). You can define its rendered size with CSS, or with the optional rows and
cols attributes; the value of rows is the vertical number of text rows and cols is the number of characters
(or columns, hence the shortened name, cols) on a horizontal line. Left to its own devices, most browsers
will display a textarea as a white box, two or three rows tall and about 20 columns wide.

Because the size of the box is based on the size of the text, a larger or smaller font size will obviously
influence the dimensions of the textarea element. If the rows and cols attributes are present, CSS can
still override them and apply a different width or height. Vertical and horizontal scroll bars will appear if the
amount of text entered into a textarea exceeds what can fit within its given dimensions.

This is a non-empty element that requires an end tag. It can contain only text—no HTML allowed—that will
be displayed as the control’s initial value, and a user can easily delete or edit that initial text. Any initial text
within the textarea element will be displayed with all whitespace intact, including tabs and returns,

267

Chapter 8

exactly as it appears in the document's markup. This element also allows an optional placeholder
attribute to display instructions or hints about what content the user is expected to provide (placeholders
aren’t submitted as form values; they're for display only). If the element has no initial text content and no
placeholder attribute, the box will be blank when a browser renders it.

Some browsers render the text in a textarea in a monospace typeface—one in which every character is
the same width, such as Courier—but you can easily change the font with CSS if you prefer (and you'll see
how later in this chapter). Listing 8-19 shows a textarea element already filled with text as its initial value.

Listing 8-19. A textarea element containing initial text

<textarea name="message" rows="8" cols="50">
Dear Power Outfitters,

I recently had to replace my trusty grappling gun after years of faithful service =
(and I'm still kicking myself for leaving it in that cab, believe me). I ordered =
the latest model, the Dreiberg 4000, from your website and it arrived the very next =
day. Well I couldn't be more pleased! Not only is it smaller and lighter than my old =
one, but it has twice the range and the new winching system is three times faster. =
I'm scaling buildings like a teenaged sidekick again! I should have upgraded years ago.

Thanks!
</textarea>

You can see this box rendered with default styling in Figure 8-21. The scroll bar appears when the length
of the text exceeds the height of the box, and some browsers will automatically reserve some space for a
scroll bar along the box’s right edge even when scrolling isn't necessary. This image is taken is from
Firefox for Windows.

Figure 8-21. The textarea as seen in Firefox

Required Attributes

= name: Identifies the control so it can be associated with its value when the form is submitted. A
markup validator may not generate an error if this attribute is missing, but it's required in order to
successfully handle the form.

Optional Attributes

= autofocus: This Boolean attribute is new in HTML5 and indicates that the field should
automatically receive focus when the page loads.

268

Assembling Forms and Applications

cols: Specifies the number of characters to display on a single horizontal line, thus defining the
width of the rendered box. Text will automatically wrap to new lines as needed or will invoke a
horizontal scroll bar (crawl bar) if a long line doesn'’t include word spaces to facilitate wrapping.

dirname: This attribute, new in HTML5, allows the control to automatically indicate the
directionality of its text value when the form is submitted. For example, in a document with a
default left-to-right direction, a user could enter text in a right-to-left language into a form control.
The dirname attribute can carry that additional direction information so a form handler can
process or store text of a different directionality than that of the original form. This attribute’s value
is a secondary name for the control and the content direction is automatically assigned on
submission, either rtl or 1tr.

disabled: A Boolean attribute that disables the control so it can't receive focus or be modified.
The value of a disabled control is not submitted. Most browsers will display disabled controls in a
“grayed-out” style by default.

form: This is new in HTML5 and allows the control to be associated with one or more additional
forms. The form attribute accepts a value of one or more form IDs, separated by spaces. This
feature allows authors to work around the lack of support for nested form elements.

maxlength: Specifies the maximum number of characters (including spaces) that can be entered
in the textarea. Browsers may not give any indication that a field has a maximum length, and
will simply stop accepting input when the limit is reached. If you include a maxlength attribute
you should also provide some visible hint to your visitors to let them know how many characters
the control will accept.

placeholder: This new attribute introduced in HTML5 allows the author to include a short text
hint to advise the user on what value is expected for the text area. The browser hides the
placeholder label automatically when the control is in focus (or when the user begins typing) and,
if there was no value entered in its place, the placeholder reappears when the field loses focus.

readonly: A Boolean attribute specifying that the control may only display a value and can't be
modified. This differs from disabled in that a read-only control can still receive focus and its
value is still submitted with the form.

required: This Boolean attribute is new to HTML5 and indicates that the control must have a
value in order to submit the form.

rows: Specifies the number of lines of text to display before scrolling vertically, thus defining the
height of the rendered box. The browser will automatically produce a vertical scroll bar when the
length of the text exceeds this given height.

wrap: Specifies how the text value should be wrapped when the form is submitted. The wrap
attribute only accepts two values: soft (the text is not wrapped at submission, but may still be
wrapped when displayed) or hard (the browser inserts returns at the textarea’s column width to
force long lines to wrap). If the wrap value is hard, the cols attribute must be defined. This
attribute is new in HTML5, and the default value is soft if the attribute is missing.

269

Chapter 8

datalist

270

The datalist element, introduced in HTMLS5, contains a set of suggested, predefined values for an input
element that appear as a list of options. But unlike a select element, the control can still accept other
values besides those in the datalist. Using the datalist element with an input element effectively
combines the features of a freeform text field that accepts any text entered and a select element that
presents an explicit set of options.

In user interface terminology, such a combined text-entry-plus-list-component device is
commonly known as a combo box. They’ve been part of software and operating systems
for decades, but HTML didn’t have a web-ready equivalent until now.

You can associate an input element with a datalist element by way of the 1ist attribute, whose value
is the ID of the particular datalist element you're targeting (hence the datalist element requires a
unique id attribute). When a user activates the input, either by clicking the field with a pointer or by typing
into it, the list of options will appear. In most browsers—those that support the datalist element, at
least—the options shown will be pattern matches for the text typed, and the list updates automatically as
the user continues typing, narrowing the available options. If the list appears after a click instead of a
keystroke and the text field is still empty, the entire list will appear (usually with only five to ten options
visible, and a scroll bar to reach the full list).

Each option within a datalist element is an option element, formerly an exclusive child of the select
element but now serving double duty in HTML5. A datalist element can't contain any other elements
besides options, not even optgroup. When an option element appears in a datalist it takes on some
slightly different rules and properties. Inside a datalist, the option element no longer requires an end
tag, and can instead be treated as a void element, but only if it carries its value in a value attribute. If the
option contains text and also bears a value attribute, the text label will appear in the menu but, once
selected, the value attribute is inserted into the text field for submission with the form; an option
element’s value attribute always trumps its text label. Unlike most other void elements in HTML5, an
option element lacking an end tag cannot be self-closed with a trailing slash.

Listing 8-20 shows an example of an input element associated with its supporting datalist element.
Here we've omitted any text inside the option elements, treating them as void elements with value
attributes. A person filling in this form would be able to type the name of a city into the field and, if the first
few letters match some of the options in the datalist, that list would appear, saving the user a few
keystrokes.

Listing 8-20. A text input and its associated datalist

<label for="city">Base of operations</label>
<input type="text" name="city" id="city" list="citieslist">

<datalist id="citieslist">
<option value="Attilan">
<option value="Bludhaven">
<option value="Coast City">

Assembling Forms and Applications

<option value="Fawcett City">

<option value="Kandor"»

<option value="Mega-City One">

<option value="Neo-Tokyo">

<option value="Platinum Flats">
</datalist>

You can see this control in action in Figure 8-22, taken from Firefox. The datalist element isn't widely
supported by browsers yet, but those that don’t support it will still get the fully functional, tried-and-true text
input. It's another fine example of progressive enhancement—improving the utility of a simple form control
for those browsers that are capable, but less-capable browsers and devices aren't left out in the cold.

Figure 8-22. The datalist element holds suggested values for the text field, automatically matched to the text
already entered. A user can choose from the list or continue to enter a different value.

Required Attributes

» id: Identifies the datalist control so it can be associated with an input element by way of a
list attribute.

Optional Attributes

The datalist element doesn't offer any optional attributes apart from the standard global attributes that
apply to all elements.

button

The button element works just like a submit, reset, or button input, or even an input type="image"—
activating a button element (with the click of a mouse or press of a key) will submit or reset the form, or
trigger a scripted response.

The button element requires a type attribute with a value of submit, reset, or button. However, unlike
the input element, a button element is not empty; it can contain text or other elements, offering many
more design and semantic options than a void input element. In fact, a button must hold some content,
because an empty button element will have no default label. And because it contains text or other
elements, a button requires an end tag. Web developer Aaron Gustafson gives an informative overview
of the button element's usefulness and flexibility in his 2006 article, “Push My Button” (digital-
web.com/articles/push_my_button/).

Listing 8-21 shows an example of a button element like you might see in a multi-step “wizard” style form.
This button also bears a formnovalidate attribute, allowing the form to be submitted without checking for
required fields (controls with required attributes) or imposing any formatting rules (for e-mail or URL

271

Chapter 8

fields, or any controls with pattern attributes). Note that this button contains some emphasized text and
an image, something you couldn’t do with an ordinary input element.

Listing 8-21. A button element containing some emphasized text and an image

<p>
p<button type="submit" name="save" formnovalidate>
Save and continue

</button>
</p>
When a browser renders this on-screen (as shown in Figure 8-23), the entire element and its contents
becomes an active push-button to submit the form. By default, a button element will have the same
appearance as an input button, but because it can contain other HTML elements, it creates many more
opportunities for styling with CSS.

Figure 8-23. The button as it appears in Firefox for OS X without any additional styling

It's not much to look at with default styling, and because the button contains some non-text content (the
arrow image), OS X gives it a slightly different style than the typical rounded, glassy look most other
buttons receive. But with a bit of CSS enhancement this humble element can look like Figure 8-24, an
effect that would be impossible with an input element.

Figure 8-24. The same button element, now with more pizzazz

Required Attributes

» type: Specifies the type of button control the element represents—submit, reset, or button.

Optional Attributes

272

= autofocus: This Boolean attribute is new in HTML5 and indicates that the button should
automatically receive focus when the page loads.

= disabled: A Boolean attribute that disables the control so it can’t receive focus or be activated.
Many browsers will display disabled buttons in a “grayed-out” style by default.

= form: This is new in HTML5 and allows the control to be associated with one or more additional
forms. The form attribute accepts a value of one or more form IDs, separated by spaces. This
feature allows authors to work around the lack of support for nested form elements.

Assembling Forms and Applications

= formaction: This attribute is new to HTML5 and overrides the form’s action attribute in defining
the control's handler (only for button type="submit"). The attribute’s value is the URL of the
form handler where the data is sent when a user submits the form.

= formenctype: This is a new attribute in HTML5 and overrides the form's enctype attribute. It
specifies how the data should be encoded before it's sent to the server, but only when submitted
by the button bearing this attribute (and only for button type="submit"). The formenctype
attribute only accepts the values application/x-www-form-urlencoded, multipart/form-
data, or text/plain.

= formmethod: This is new to HTML5 and overrides the form’s method for sending data to the form
handler. The two possible values are get and post (only for button type="submit").

= formnovalidate: A new Boolean attribute in HTMLS5, this allows a form to be submitted while
bypassing the form’s validation (only for button type="submit"). Indicating this on a button
instead of for the entire form allows some buttons to bypass validation while others don't. For
example, a “save” button might submit a partially completed form to let users save their progress,
but without going through the validation process the form will undergo when it's finally submitted
at the end.

= formtarget: This is new to HTML5 and overrides the form’s target attribute, which specifies
the target window to use when the form is submitted. This attribute can only appear on a button
type="submit" and its value is the name of the target window or frame, or one of the keywords
_blank, self, parent, or _top.

= value: Specifies the value of the button to be submitted along with the form data. This value is
only submitted if the button itself is used to submit the form; another submit button or submitting a
form by pressing “Enter” won'’t submit this value.

keygen

The keygen element generates a matched pair of encryption keys when the form is submitted—one public,
sent to the form handler for use by the website or application, the other private and stored locally in the
browser. This mathematically matched pair of keys allows the browser and the original website or
application to securely identify each other on subsequent visits.

Netscape first introduced this element years ago and other browsers (apart from Internet Explorer) copied
Netscape’s implementation, but keygen wasn't part of any official HTML specification until it was included
in HTML5. Microsoft has stated that they have no plans to implement keygen support in Internet
Explorer—and have even asked for it to be taken out of the HTML5 specification—so this type of form
encryption won't work with any past, current, or future version of IE. You may prefer to use a more
universally supported encryption method, such as Transport Layer Security (TLS) or Secure Sockets Layer
(SSL).

We won't explain all the ins and outs of public key cryptography here, as it's well beyond the scope of this
book (see wikipedia.org/wiki/Public-key cryptography for a brief introduction, if you're still
curious). And because the keygen element is so specialized and obscure, you can have a long and fruitful

273

Chapter 8

career in web development without ever seeing it. We're not even going to cover the element in any further
depth in this book. You can learn more about keygen at the Mozilla Developer Network
(https://developer.mozilla.org/docs/HTML/Element/keygen).

Structuring Forms

Now that you've been introduced to all the myriad form controls you'll need, you might be thinking about
how to put them all together. Controls are merely component parts, and the form in its entirety is more than
the sum of its controls. A usable and accessible form needs a meaningful structure, just as the rest of your
document does. And because the form element can contain almost any structural markup, you have a
broad HTML arsenal at your disposal.

When you construct a form, as with any other content, you should think about the meaning and purpose of
the content and wrap it in the most semantically appropriate tags. A list of options with checkboxes or radio
buttons should probably be marked up as a list, with each option held in a separate list item (the 1i
element). If the order of those options is significant—option 1, option 2, option 3, and so on—the list should
probably be an ordered one (the ol element). If your form is split into distinct sections, perhaps each
section could be wrapped in a section element with a heading (h1 through h6) as its title. If each control
in that form represents a separate thought, it may be sensible to wrap them in paragraphs (the p element).

With that in mind, remember that forms aren’t actually read like normal content. They exist to engage the
user—to open the door and invite your visitors in. Think about the meaning behind the information you're
requesting of them, and consider the often-tedious procedure of stepping through a series of controls and
entering data into them. Arrange and organize your form with an eye toward optimal usability and
accessibility.

In addition to the headings, paragraphs, lists, and tables you already know, a few special elements are
designed specifically for use with forms.

fieldset

274

The fieldset element encompasses a set of related controls, collecting them into a logical group. The
fieldset can in turn contain any other structural markup you might need to further arrange and support
each control (paragraphs, lists, and so on), and even nested fieldset elements to establish groups within
groups (but keep nesting to a minimum). By default, most web browsers will display a thin border around a
fieldset, though the exact appearance of the border will vary from browser to browser. We’ll show you
how you can remove this default border with CSS later in this chapter.

The fieldset element doesn’t do much on its own, it's simply a container, but it has more semantic value
than the semantically neutral div element; if you're inclined to use a div or even a section to group
controls together, a fieldset might be a better choice. Consider the meaning and purpose of your fields
and gather them into sets appropriately.

Listing 8-22 demonstrates the markup for a simple form, much like the one you saw in Listing 8-1 way
back at the beginning of this chapter. This time, the two form controls have been wrapped in a fieldset

https://developer.mozilla.org/docs/HTML/Element/keygen

Assembling Forms and Applications

element to bind them together and establish their semantic relationship (we’ll introduce the legend
element next).

Listing 8-22. A simple form with its controls wrapped in a fieldset

<form method="post" action="/apps/subscribe.py">
<fieldset>
<legend>Subscribe to our newsletter</legend>
<p>
<input type="email" name="email" id="email" required>
<button type="submit">Subscribe</button>
</p>
</fieldset>
</form>

You can see how a browser displays this form in Figure 8-25. The browser draws the border automatically,
along with a bit of padding to create space between the border and its contents. You can adjust or remove
the border and padding with CSS.

Figure 8-25. The form as it appears in Chrome for OS X

Required Attributes

The fieldset element doesn't require any attributes.

Optional Attributes

There aren’t any optional attributes for the fieldset element, only the usual global attributes.

legend

The legend element provides a text title or caption for a set of form fields, hence it can appear only within
a fieldset element. When it does appear, it must be the first child of the fieldset, coming before any
other content or elements. It's a phrasing element that can only contain text and other phrasing elements,
but most browsers will position a legend so that it overlaps the fieldset’s top border (as shown in Figure
8-15), deviating from typical inline styling. Text in a legend element usually doesn’t wrap to multiple lines
like ordinary text, so keep your legends short.

Unfortunately, the legend element is notoriously difficult to style consistently with CSS. Browsers simply
refuse to apply some CSS properties to legends, even those they'll willingly apply to almost any other
element. You can usually influence a legend’s font family, size, weight, and color, but attempting to apply a
background image, border, margins or padding, or to reposition the legend via CSS will be next to
impossible in some common browsers, especially older versions.

275

276

Chapter 8

It's often best to leave the browsers to render form legends with most of their default styling intact, and
keep the CSS artistry to a minimum. If your design requires more stylistic power than the legend element
allows, you might opt for a heading instead, though the legend element is more semantically fitting and
improves your form’s accessibility. Styling limitations might not be a good enough justification to forego
such an otherwise useful element.

Listing 8-23 shows a fieldset featuring a 1legend element, in this case acting as both a title to announce
the purpose of the controls and some instructional text to help the visitor figure out what to do.

Listing 8-23. A set of form fields labeled by a Iegend element

<fieldset id="accessories">
<legend>Select additional accessories</legend>

<label><input type="checkbox" name="grapgun"> Grapple gun</label>
</1i>

<label><input type="checkbox" name="minilaser"> Mini laser cutter</label>
</1i>

<label><input type="checkbox" name="smokepel"> Smoke pellets</label>
</1i>

<label><input type="checkbox" name="xrayspecs"> Terahertz imaging goggles</label>
</1i>

<label><input type="checkbox" name="microcam"> Micro-camera</label>
</1i>

</fieldset>

Figure 8-26 shows a legend as rendered by Firefox, and most other browsers will display it much like this
with their default styling. The legend is indented from the edge and centered vertically over the fieldset’s
top border, with a small gap of white space on each side. One interesting oddity is that older versions of
Internet Explorer for Windows inexplicably colored legend elements blue by default, but you can override
that color easily with CSS.

Figure 8-26. The legend element as seen in Firefox for Windows with default styling. This rendering is fairly typical,
though you might see slight variations in some browsers.

Assembling Forms and Applications

Required Attributes

There are no required attributes for the legend element.

Optional Attributes

The legend element doesn’t have any optional attributes.

label

Perhaps the most useful and meaningful element for structuring forms, the label element designates a
text label for a specific control. A label element may enclose both the control and its text label, in which
case the connection between the two elements is implied only by context. Alternatively, the 1label element
may carry an optional for attribute whose value corresponds to the control’s unique ID, explicitly declaring
the connection between the two elements. Even if the label element encloses both the text and the
control, the for and id attributes reinforce the connection; neither attribute is required, but both are good
to have. It's possible (but rare) for more than one label to share the same for value, in which case all
those labels are associated with the same control.

When a label is properly associated with a control, most browsers will make the entire label area
clickable to give focus to the specified control. This feature especially makes checkboxes and radio
buttons easier to use because the text label enlarges the clickable area, and those controls can present
very small targets for a mouse pointer to land on. Screen readers will announce each field's label as the
user moves from control to control, and forms can be very difficult for visually impaired visitors to negotiate
without proper labels.

When laying out a form, labels for text fields and selection menus typically appear above or to the left of
the control, while labels for checkboxes and radio buttons should appear to the control’s right (in left-to-
right languages; right-to-left languages reverse the directions). These aren’t rules dictated by web
standards, just usability conventions established over time.

Listing 8-24 expands our newsletter subscription form, this time adding some more structural markup.
We’ve added options to choose either plain text or HTML e-mails and wrapped them in a nested fieldset
because those controls are a subset of the complete set. They're in an unordered list because it's a list of
two options in no particular order, so that markup makes good sense. We've added labels to identify the e-
mail address field as well as the radio buttons for choosing a format, and all of them are explicitly
connected to their controls with for attributes. It might look like a lot of extra markup for such a simple
form, but the benefits gained in improved usability, accessibility, and meaningful structure are worth it.

Listing 8-24. A form structured with fieldsets, lists, paragraphs, and labels

<form method="post" action="/apps/subscribe.py">
<fieldset>
<legend>Subscribe to our newsletter</legend>
<p>
<label for="email">Your e-mail address</label>
<input type="email" name="email" id="email" required>
</p>

277

Chapter 8

<fieldset>
<legend>Select your preferred format</legend>

<label for="text">
<input type="radio" id="text" name="format" value="text"> Plain text
</label>
</1i>

<label for="html">
<input type="radio" id="html" name="format" value="html"> HTML
</label>
</1i>

</fieldset>
<p><button type="submit">Subscribe</button></p>
</fieldset>
</form>

The label element describing the e-mail field doesn’'t enclose its associated input element, but they're
connected by the for and id attributes. The labels for the format options contain both their label text and
their inputs, so their for attributes aren't strictly necessary but are still worth including. A label element
that lacks a for attribute and doesn’t contain a control won't do much good at all; there’s nothing to relate
that 1abel to a form control.

You can see the final product in Figure 8-27. Alas, it's not very pretty when you see it with the browser’s
default styling. Fortunately you have the power of CSS on your side, and you'll learn just a few ways to
improve the looks of your forms before the end of this chapter.

Figure 8-27. The form isn’t the prettiest thing when rendered with a browser’s default style sheet, but its markup is
semantically sound and will be accessible to a wide range of people and devices.

Required Attributes

278

The label element doesn’t require any attributes.

Assembling Forms and Applications

Optional Attributes

for: Explicitly associates the label with a single control when the attribute’s value matches the
control’s unique ID.

form: This is new in HTML5 and allows the label to be associated with one or more additional
forms. The form attribute accepts a value of one or more form IDs, separated by spaces. This

feature allows authors to work around the lack of support for nested form elements.

INDICATING REQUIRED FIELDS

Not every control in every form is essential for the form’s completion. Some fields may be required while
others will be optional, so it’s polite and advisable to clearly indicate the difference. In the relatively short
life of the Web so far, it's become a convention to indicate required fields with an asterisk (*), a small
graphical dot or icon, or the word “required” next to the control (preferably in a 1abel element).

In addition to an indicator of some sort, you should also include an informational statement to introduce
that notation to anyone who might not be familiar with it. A sentence such as “Required fields are marked
with *” at the beginning of the form will suffice. If a particular form has no optional fields, it could become
redundant to indicate every single control as required, so simply stating “All fields are required” might be
preferable. An instructional statement probably isn’t necessary if required fields are individually flagged
with the word “required.”

Some web designers opt for indicating required fields with an italicized or boldfaced label, but that cue is
essentially visual and hence problematic for non-sighted users. If you choose to alter the presentation of
label text to indicate required fields, do so by wrapping the text in an em or strong element so even non-
visual devices can suitably emphasize it. If you use an image as a required field indicator, adding
alt="required" will assist non-sighted visitors using screen-reading software. You shouldn’t indicate
required fields purely through the use of color either; color-blind users might be unable to distinguish
them, and unsighted users will obviously run into problems. Don’t indicate required fields visually through
CSS alone (with a background image or some other decoration); the indicator has real meaning and it
belongs in the HTML.

Displaying Output

Along with all the new and interesting ways to input data into a form, HTML5 has introduced a few new
elements specifically intended for displaying data to users. These elements aren't strictly related to forms,
though they're often very useful in conjunction with forms to display and visualize the results of a user's

input.

279

Chapter 8

output

The output element displays the result of a calculation in a form, such as a total price in a virtual shopping
cart, or an interest rate adjusted for a credit score. In the past, web developers usually used an input
type="text" to display such results, but HTML5 has added the output element as a more appropriate
counterpart to the input element—especially complementary to the new number input type. The output
element by itself doesn’'t do much, but it's a much more semantically meaningful and accessible alternative
to an input element or a generic span or div.

Listing 8-25 shows a simple calculation form, adding two number inputs to arrive at a total, to be displayed
in the empty output element. A bit of basic JavaScript does the math (triggered by the oninput inline
event handler in the form’s start tag); these elements can't perform any calculations on their own. The
output element's optional for attribute carries the IDs of the two controls that contributed to its value,
establishing a semantic link and aiding accessibility.

Listing 8-25. A very simple calculation form, displaying the results in an output element

<form oninput="sum.value = parseInt(a.value) + parseInt(b.value)">

<input name="a" id="a" type="number"> +

<input name="b" id="b" type="number"> =

<output name="sum" for="a b"></output>
</form>

This is a phrasing element that requires an end tag and can only contain text and other phrasing elements.
The entire contents of the output element are the element’s value, so any initial value—including any
nested elements—is replaced when the value changes. An empty output element has no value. This is
also a form-associated element, but doesn’t necessarily have to appear within a form element—the
optional form attribute can associate an output element with one or more forms elsewhere in the same
document. It displays as an inline element but doesn’t have any default styling otherwise.

Figure 8-28 shows our simple calculator in Chrome on OS X, but it's not much to look at. The output
element has no default styling at all so its value is ordinary text. You could make this form a lot fancier with
a little CSS wizardry. In previous versions of HTML you might have used a simple span to display such
results, but output is much more semantically meaningful.

5 d o+ 18 =23

Figure 8-28. The simple addition form as seen in Chrome for Mac OS X. The output element has no default styling so
its value is just ordinary text.

Required Attributes

The output element doesn’t require any attributes.

Optional Attributes

280

= for: contains a space-separated list of IDs of form controls that contributed to the output
element’s value. This attribute establishes an explicit relationship between one output element

Assembling Forms and Applications

and one or more input elements and can aid accessibility, especially if the output appears
elsewhere in the document, separated from its associated controls.

= form: allows the output to be associated with one or more forms in the same document. The
form attribute accepts a value of one or more form IDs, separated by spaces. This feature allows
authors to work around the lack of support for nested form elements.

= name: the name of the output element, useful for targeting the element with JavaScript. The
output element holds a value but that value isn't submitted with the form; it's for display only.

meter

Introduced in HTMLS5, the meter element represents a measurement on any scale with a known range,
meaning the scale has both a minimum and a maximum. The measurement can be anything you like, and
the scale can be anything as well, so long as the ends of the scale are known figures. A meter element
could represent a distance in a range from 25 to 50 miles, a time interval between 0 and 60 seconds, the
temperature of a star between 1,000 and 3,700 degrees Kelvin, or the concentration of helium in the
atmosphere of Neptune between 0% and 100%—anything that can be expressed as a number on a finite
scale might be expressed with a meter element.

The meter element isn't appropriate for scales without a known minimum and maximum, as there's no
way to determine where one number falls on an infinite scale. Even assuming a minimum of zero, don’t
use meter for measurements without a specific maximum, such as a person’s height or weight, or how
long you've been waiting for your pizza—you could be waiting forever, and there’'s no way to represent that
on a scale.

The meter element falls into the phrasing content model, and requires both a start and an end tag along
with a value attribute specifying the measurement. This element can appear anywhere in the document
where flow content is allowed. It isn't exclusive to forms although it can be related to a form if it appears
within a form element or carries a form attribute. It can only contain text or other phrasing elements (but
not another meter element) and its contents should indicate the same measurement as its value attribute:

<p>Rating: <meter value="0.75">0.75¢</meter></p>

By default, the scale ranges from 0 and 1, so the measurement can be expressed as any decimal number
within that range (this also translates nicely to percentages from 0% to 100%). If decimals aren’t what you
want, you can instead specify your own minimum and maximum values with the optional min and max
attributes:

<p>Rating: <meter min="0" max="5" value="4">4 out of 5</meter></p>

The contents of the element don’t have to be a number, but they should reflect the same information as
the meter’s value. With the measurement explicitly declared in a value attribute, the element’s contents
could be some other, human-readable text that gets the same idea across:

<p>Rating: <meter min="0" max="5" value="4">pretty good, but not perfect</meter></p>

281

282

Chapter 8

If the specified value is less than 0, a min attribute must be present, and a max attribute must be present if
the value exceeds 1. As long as the minimum and maximum values are indicated, the actual value can be
any number within that range. You can even use negative numbers:

<p>Rating: <meter min="-1000" max="100" value="-1000">Worst. Episode. Ever.</meter></p>

The meter element also accepts optional high, low, and optimum attributes, so you can indicate not only
a measurement on a scale, but the relative quality of that measurement:

<p>Your score: <meter min="0" max="100" value="63" low="20" high="80" optimum="60">
63%, slightly above average</meter></p>

That's all well and good for marking up scalar measurements with semantically rich metadata, but now
comes the cool part: in place of the meter element’s text contents, a supporting browser will display the
measurement as a graphically rendered bar, like you see in Figure 8-29. The filled portion of the bar
represents the meter’s value.

Figure 8-29. A browser replaces meter elements with a rendered bar (this image is taken from Chrome on Windows)

Chrome and Opera both present meter gauges as a gray box filled with a green bar representing the
value. The bar turns yellow when the value is either high or low (if those attributes are present) or if it's
equal to the min or max attributes, to indicate that the gauge has crossed the specified threshold.
Unfortunately you won't have much influence over the bar’s styling, so bear that in mind when you use the
meter element. Different browsers render the bar in different ways, with differing levels of support for CSS
to change its appearance. You can declare a width and height for the bar and perhaps add a few other
decorations such as a border or a shadow, but for the most part you're stuck with the color and style the
browser gives you, at least for now.

For a more complete and elaborate example, Listing 8-26 presents a collection of scores rated on a scale
of zero to ten, where anything above 8 is considered a high score and anything below 2 is considered