WebSocket Essentials — Building
Apps with HTML5 WebSockets

Build your own real-time web applications using
HTML5 WebSockets

PACKT *

WebSocket Essentials — Building
Apps with HTMLS WebSockets

Build your own real-time web applications using
HTMLS WebSockets

Varun Chopra

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

WebSocket Essentials — Building Apps with
HTMLS5 WebSockets

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Production reference: 1270415

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-675-6

www . packtpub.com

www.packtpub.com

Credits

Author
Varun Chopra

Reviewers
Adir Amsalem

Sann-Remy Chea

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Sonali Vernekar

Content Development Editor
Mamata Walkar

Technical Editor
Siddhesh Patil

Copy Editors
Puja Lalwani

Vikrant Phadke

Project Coordinator
Shipra Chawhan

Proofreaders
Safis Editing

Paul Hindle

Indexer
Monica Mehta

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Varun Chopra has a lot of experience in the design and development of enterprise
applications. He has worked as a consultant and has extensive experience in
integrating different technologies. Besides his love of technology, he is also

a singer and a guitarist and loves gadgets.

About the Reviewers

Adir Amsalem is a software engineer from Israel. Since the age of 16, he has
loved developing websites and web apps, reading about technology, and solving
technological challenges. He currently works for a major financial institution, where
he leads web and frontend development of several products. Previously, he was

a web developer and frontend developer at several Israeli companies and was

also a freelancer.

Sann-Remy Chea works as a software engineer at Ubisoft Owlient, a video
game company specializing in web and mobile games, based in Paris, France. He
has also worked at IBM as an application architect intern. Fond of web application
development, he specializes in JavaScript and Nodejs.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[m PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface

Chapter 1: Introducing the World of Web App
What is the Web?
Web applications
Where does WebSockets fit?
WebSockets over other methods
Modern browsers
HTML
HTMLS - the modern Web standard
Media — audio/video
Canvas
Form elements
Semantics
Mobile first
Offline storage
Geolocation
Drag and drop
Web workers
JavaScript
Modern servers
WebSockets 10
Summary 10

Chapter 2: Getting Started with WebSockets 11

Why WebSockets? 1"
Importance of WebSockets 12
When to use? 13

OO OWOMONNOODODTUIABRDWWN== K

[il

Table of Contents

How it works? 13
WebSocket API 15
Ready states 16
Events 16
Echo Test 16
The WebSockets client app 17
Instantiation 20
Adding events 20
Sending messages 21
Receiving messages 21
Closing the connection 21
The WebSocket server 21
The Node.js server 22
Summary 25
Chapter 3: Configuring the Server and Transferring
Real-time Data 27
Full-duplex real-time data transfer 28
Foundation of real-time applications 28
Collaborative presentation application 28
The presentation library 29
Setting up the library 29
Adding collaboration 30
Code implementation 31
The client code 31
The server code 34
Do it yourself 40
Input username 41
The list of users 41
User-based authorization to change the presentation 41
Making the user the presenter 42
Tips and tricks 42
Summary 43
Chapter 4: Using WebSockets in Real Scenario 45
The real scenario 45
The JavaScript framework 45
AngularJS 46
Learn by doing 46
The collaborative drawing application 46
Requirements 46
The drawing library 47

Lii]

Table of Contents

The client application 48
Integrating with the server 51
The client code 52
The server code 59
Do it yourself 61
User registration 61
The list of users 62
Share with specific users 62
Save drawings 62
The application structure 63
Restructure the application 63
Model 63
View 63
Controller 63
Service 64
Summary 64
Chapter 5: WebSockets for Mobile and Tablet 65
Mobile devices and the WebSocket 65
Pusher 66
Socket.lO 66
Running server on mobile 67
Local server on mobile 69
Mobile output 70
Browser support 71
Do it yourself 71
Scenario 1 71
Scenario 2 72
Scenario 3 74
Summary 74
Chapter 6: Enhancing HTML5 Web Application Development
Using Modern Tools 75
Modern tools and techniques 75
Code editors 76
Boilerplates 77
Packaging tools 79
Build tools 80
Application frameworks 82
Modern servers 82

[iii]

Table of Contents

Responsive web design
The MEAN stack
Summary

Index

82
87
88

89

[iv]

Preface

HTML, the most important part of web development, was lacking somewhere, but
now developers are returning to HTML5 because of its enhancements and features,
giving them a new experience of development. WebSocket support on different
browsers made it easier to develop web applications with a lot of features.

Data communication between the client and the server is one of the most important
parts of any web application. Almost all browsers support WebSockets, which makes
it more powerful and available. Developers always want to build their application on
a concrete ground so that it is reliable for users. WebSocket makes this possible now.
With HTML5 enhancements, it is being accepted and appreciated widely in

the community.

In this book, you will learn and understand how WebSockets with HTMLS5 can create
great applications, especially applications where data needs to be pushed from both
the client side and the server side. With some basic sample applications that we will
create in this book, you will understand how the client can be set up and how the
Node.js-based WebSocket server can be created with ease.

This book is for developers who want to learn to create WebSocket-based
applications. It gives you real-world scenarios for implementing different aspects
of communication with WebSockets. It is simple to learn and easy to understand.

What this book covers

Chapter 1, Introducing the World of Web App, is an introduction to web applications,
covering the basics of the Web. This chapter introduces HTMLS5, its new features
and WebSockets.

Chapter 2, Getting Started with WebSockets, covers WebSockets in depth, including the
benefits of WebSockets and how to create a sample application. Here, you learn to
create your own basic WebSocket server using the Node.js platform.

[v]

Preface

Chapter 3, Configuring the Server and Transferring Real-time Data, shows how data can
be sent across different users connected to the server using WebSockets. This chapter
also covers the creation of an application using the JavaScript library to share a
presentation and collaboratively change slides between different users.

Chapter 4, Using WebSockets in Real Scenario, demonstrates another application to
explain more about how WebSockets can be used in real-world scenarios. This
chapter also talks about the JavaScript framework and its uses.

Chapter 5, WebSockets for Mobile and Tablet, covers how WebSockets behaves with
mobile devices, different libraries for mobile WebSockets, running the server on an
Android mobile phone, and the use of the Express.js package for delivering content
from within the server.

Chapter 6, Enhancing HTML5 Web Application Development Using Modern Tools,
explains different tools and techniques that can be used to enhance web application
development. This chapter illustrates speeding up development using different
tools such as editors, package mangers, version control, boilerplates, application
frameworks, responsive web design, and more.

What you need for this book

You will need a machine that has a modern browser installed on it, primarily a
browser that supports WebSockets and HTMLS5. You'll also require a text editor,
such as Sublime Text. Further, it is necessary to install Node js if you don't have it.

To check whether your browser supports WebSockets and HTML5 or not, go to

http://www.caniuse.com.

Who this book is for

This book is for web developers with a basic knowledge of HTML and JavaScript.
It focuses on implementing different applications and gives hands-on experience
to developers. It is a fast book and it equips you with the necessary tools and
techniques for developing WebSocket-based applications.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[vil

http://www.caniuse.com

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Here, Host is the name of the server that we are hitting."

A block of code is set as follows:

<html>

<head>

<meta charset="utf-8" >

<titles>WebSocket Test</titles>

<script language="javascript" type="text/javascript"s>
var wsUri = "ws://echo.websocket.org/";

var output;

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Take a
look at the Console log in the left-hand-side window."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[vii]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[viii]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introducing the World
of Web App

Web application development has reached the next level with HTML5 and
WebSockets. The revolutionary enhancements in web development technologies
have equipped developers with modern tools and techniques. Using WebSockets
they can create web applications which can send data not only from the client side
but from the server side as well. Web applications with real-time data transfer can be
created with a lot lower use of bandwidth. WebSockets by complementing HTML5
enhanced feature can make future applications powerful. Let's talk about the basics
of the Web before understanding WebSockets in detail.

What is the Web?

The foundation of the Web was laid in the late eighties. The Web works on interlinked
hypertext documents that we can access using the Internet. A browser plays a vital
role in reading and converting these hypertext documents into a readable and more
meaningful format, which we call web pages. HTMLS5 is the hypertext document
which the browser reads and renders for us. The browser not only reads and renders
but also creates a Document Object Model (DOM) for us so that we can read and
manipulate the structure easily. Dynamic manipulation of the DOM can be achieved
by the JavaScript language, which is a standard scripting language for HTML. A
server plays a vital role in the functioning of the Web. We mainly consider the Web
to be divided into two parts: client and server. Client is considered to be the browser
whereas server is the one who gives client the data.

[11]

Introducing the World of Web App

Let's see how the Web works:

1. Browser requests a URL from server.
2. Server checks and returns the HTML file.

3. Browser engine draws the page.

In a nutshell, this is how the Web works. Browsers and servers are the most
important entities of the Web. Browsers have engines that read HTML files and
render web applications in the way HTML files are described. Different browsers
such as Blink, Trident, Gecko, WebKit, and so on, have different engines to render
the HTML of a page. Now servers are the one who are storing all the data and
providing the same on user request.

Web applications

In the beginning of the Web, pages were static. They only used to show content
with minimal interactivity and functionality. But with the advancement in the
standards of the Web along with the evolution of computers, efficient browsers,
enhanced tools and libraries, creating web applications has now become very
easy, and a lot of functionalities can be added very quickly.

Here is a simple definition of web applications —any application that runs on a
browser is a web application. There are many web applications that we use in our
daily routine to check mails, read news, watch videos, and so on. Web applications
run in your browser and do not require much of your computer resources.

The Web is growing at a very high rate. Many companies are building their
applications on the Web. The first and most important benefit is that it is independent
of the operating system. You can run it on Windows, Mac, or Linux and it works the
same, because the work is mainly done by the browsers and they are available for
most operating systems.

Here are some of the examples of web applications:

* Gmail
* Dropbox
* Flickr

e Facebook

[2]

Chapter 1

Where does WebSockets fit?

As we have seen some examples of web applications, now the question here is
where does WebSockets fit in these applications or any web application? Let us first
understand something about application behavior; let us take an example of Gmail,
which is basically a mailing client. The work of a mailing client is to fetch mails and
display them. This sounds simple, but the problem arises when someone sends you
a mail and you want that mail to be displayed right away. To implement such a
functionality there are different ways, such as polling and long-polling, which are
not efficient. So WebSockets solves the problem here by providing a server push
facility. WebSockets provides functionality to push from both the client and server
side, which makes it stand out.

WebSockets comes with some good features and great benefits over other methods
of communication. Some of the features and benefits of WebSockets are:

* Full-duplex communication

* Low bandwidth consumption

* Security

* Low latency

* Works over Transmission Control Protocol (TCP) (although it needs
HTTP for initial handshake)

* Supported by almost all the web browsers and web servers including
mobile browsers

We can treat WebSockets as a feature which enhances the experience of web
applications. And with HTML5-enhanced features, we can create a dynamic
and real-time application.

WebSockets over other methods

There are different ways of implementing data communication between a client and
server. Flash, Comet, PusherApp, and so on provide us with the features needed to
implement the data communication which WebSockets provides. Then the question
arises that why should we go with WebSockets? There are many reasons for picking
WebSockets over other methods, some of which are as follows:

* In comparison to other means of data communication, WebSockets exhibits
low latency, which decreases from nearly 150 ms to 50 ms.

* WebSockets is a lightweight connection and uses low bandwidth.

[31]

Introducing the World of Web App

* It requires lesser developer effort in terms of learning and implementation in
different technologies.

* Ease of compilation when different technologies are used.
* Code maintenance becomes easy with WebSockets.

* WebSockets offers full-duplex connection support without much overhead.

Modern browsers

Modern browsers are equipped with advanced features to support web applications.

Web applications have a lot of different features, and to support those features,

we need browsers —not just ordinary but modern browsers. For a modern browser
to support the advanced features provided by HTMLS5, it has to implement the
HTMLS5 standard, because it has the latest features and functionalities. There are
some versions of browsers that do not support HTML5 majorly because they have
not implemented the HTMLS5 standards, either because they were developed earlier
or they choose not to.

Some of the advantages of modern browsers are as follows:

* Good performance

* Good security

* Lesser issues

* Faster page loading

* Experimental Application Programming Interface or API
* Support for latest features

e Access to native resources

HTML

HTML is a markup language which is used by browsers to render a webpage. It is
the standard fixed by the World Wide Web (W3). This standard has some defined
elements which different browsers implements.

[4]

Chapter 1

HTML5 - the modern Web standard

After eight years working on the HTMLS5 standard, W3 finalized the standard on
October 28, 2014. This standard is going to be revolutionary for the future of the
Web. The enhancements done to the HTML standard are revolutionary. Let us go
through the main features of HTML5, which makes it a great standard for the Web:

Media — audio/video

One of the big features introduced in the HTML5 standard is media playback.

We can now play audio/video directly using the browser. Earlier we used to use
some plugins in order to play audio and video, which added another layer onto
our web application. For example, YouTube used Flash player to play videos,

but now we can play the videos directly. This feature has been a bigger advantage
for applications which are completely built using HTML.

Along with playback of audio and video, we can also capture audio and video
resources of the device. Accessing the camera and microphone can be done using
the getUserMedia () API, but it is still not available to all browsers because it is an
experimental feature; it is, however, a feature that is greatly needed. This API not
only gives access to the desktop computer, but also to the camera and microphone in
mobile and tablet devices. This is another feature which will remove the dependency
on different plugins for media access and capturing.

Canvas

Canvas gives you per pixel access for manipulation at runtime. So you can draw
shapes, render graphs, color them, manipulate them, and even manipulate bitmap
images per pixel, along with many more features. The canvas feature gives us an
upper hand in drawing and making web applications just like Microsoft Paint
(formerly Microsoft Paintbrush) or Adobe Photoshop.

The canvas element has a different set of methods to create drawings using
lines, circles, boxes, text, graphics, and so on. JavaScript is used to draw in the
canvas container.

[51]

Introducing the World of Web App

Form elements

There are many enhancements in form elements which help us create a great
experience for the users and are easy to manage from the developers' perspective.
Validation was a big problem earlier; we had to write our own code for it, but now
it is a part of the elements. There are some enhancements which are made keeping
mobile devices in mind, such as field type keyboard —for example, a dedicated
keyboard for numeric fields. Some of the new elements are:

* Input: The following are the input types:
° type="email": A field with inbuilt email validator
° type="url": A field with inbuilt URL validator

° type="number": A field with inbuilt number input restriction
and validator

o

type="range": A range slider with max and min function
* Datalist: It specifies a predefined list of options for list control.

* Keygen: This element provides secure data submission using the
public/ private key method. From the security point of view, it is an
excellent enhancement.

* Output: This element helps in showing the output value during form filling.

Semantics

Semantics are elements which have a meaning. Every developer wants to code in

a language that is easy to understand and implement. Semantics is what makes it
easier to read and understand the code because it defines the meaning of that piece
of element or tag. Some examples of semantic elements are <audio>, <videos,
<forms>, and <table>. Examples of non-semantic elements include <divs> and
. We can see from the examples that non-semantic elements don't tell us
about the content, while semantic elements tell us clearly about the content.

Some of the new semantics in HTMLD5 are as follows:

® <section>
b <nav>

® <article>
® <aside>

® <hgroup>
® <header>

®* <footer>

[6]

Chapter 1

The addition of these new elements will help in making the code more readable
and meaningful. And now let me introduce you to custom elements. Yes, now we
can make our own custom elements using JavaScript, either by creating them from
scratch or extending the default set of DOM elements by adding new behaviors to
them. This way we can create different sets of reusable web components and use
them across our web application. This feature adds meaning to the code and is a
big advantage for large-scale applications to make reusable web components.

Mobile first

HTMLS5 and CSS3 standards are made keeping mobile devices in mind. There are
many enhancements that optimize the code for mobile/tablet devices. Mobiles have
evolved to an extent where they have become a part of our daily lives. We have
started browsing the Internet more on mobile/tablet devices. And HTMLS5 has given
a lot of power to the Web to match up to the modern Web requirements. HTML5 and
CSS3 have some excellent features which can deliver the same content for all devices:
desktop, mobile, and tablets. Some of the important features include the following:

* Viewport: This helps in adjusting the view of webpages based on devices.
We can set a different scale level and so on.

* Media queries: CSS as per the screen size; isn't it a brilliant feature? Now by
using media queries the CSS styling can be changed at runtime. Responsive
web design is a very important feature of modern Web. We need the content to
be displayed as per the screen size, and it should adapt and show appropriate
content eliminating the not so important content from the page for smaller
size devices.

* Touch events: These are vital events for mobile/tablet devices. Swipe is one
of the important events that is now a part of HTML5 DOM.

Offline storage

The world is emerging with different technologies and we widely use online and
web services in order to create an effective work space and a web world that will
cater to our professional and personal needs. There are scenarios where you need
websites to be accessible offline, that is, without an active internet connection on
your device. This can be achieved using the offline storage functionality. Once you
have opened a webpage, it is possible to put the data in cache so that next time you
open it or for some reason your connection is lost, you can still open and use it.

The offline system is quite important when the data needs to be stored locally for
the user. Mainly when it comes to reloading or restoring the pages if the system
is in offline mode.

[71

Introducing the World of Web App

So, whenever we open a URL, it basically hits the server and then the server returns
the requested file. Then, the browser renders the file which was given by the server.
Now in case we are offline, the browser will take control, and instead of hitting the
server to get the file, it loads the files from its local copy which was cached when we
opened it earlier. There is also an API which tells us that we are online or offline. It
is very helpful in case of mobile/tablet devices where the connectivity can be lost at
any point of time.

Geolocation

There are many applications which use geolocation, such as Twitter, Facebook,
Foursquare, Google Maps, and so on. The introduction of this feature as a part
of HTML5 has made it easier for developers to get the location of their device.

Mobile and tablet devices have Global Positioning System (GPS), and using

this API, the hardware of the device can be accessed. Let's take an example of an
application where you want to find nearby hotels. Using GPS, your location can

be detected and a corresponding list of nearby hotels can be provided. This feature
has reduced the effort of developers in implementing features related to geolocation.
And yes, it is a feature which needs users' permission to work. A prompt is given to
the user to allow the web application to access their location details.

Drag and drop

Drag and drop is a feature which was always there but could only be implemented
using some plugins. The good news is that now it is a part of HTML5 standard. By
leveraging this feature, a lot of new controls can be defined, as we also have the
custom semantics feature which we can use to define our own custom controls.

Web applications use a lot of different controls or widgets to display the data
in a more user-friendly way. For large-scale applications where lists and grids
are the most important controls to display the data, drag and drop plays a very
important role. Controls that show calendars or the timeline of a project need the
drag-and-drop feature to make it more usable. Some of the basic interactions are:

* Rearranging items in a list

* Moving items from one list to another

* Rearranging layouts

* Dragging items around the canvas

* Dragging a file from the computer to the browser

[8]

Chapter 1

There are many good examples of drag-and-drop features. Different companies
have implemented and made their own component library, which implements the
drag-and-drop feature. Some examples are Sencha, jQueryUI, Kinetic]S, Kendo UlI,
and so on.

Web workers

Web workers are just JavaScript running in background. JavaScript is mainly used
to manipulate the HTML of a webpage at runtime and uses only one main thread.
Web workers have made it possible to run a piece of JavaScript code in the
background without affecting the current process. Normally, whenever we run

a process in JavaScript, it runs in a queue fashion, which means that one process
is executed at a time. It blocks the whole UI for some time and you can't click on
buttons as well. This has had a huge impact on the application performance. That
is one of the reasons why bigger web applications hesitate in choosing HTML,

but web workers will surely change this.

JavaScript

HTML pages are static; to make them dynamic and interactive, JavaScript is used.
JavaScript is called the language of the Web. It is based on ECMAScript, and every
browser runs JavaScript. All the interactivity from the clicking of a button, navigation
to pages, calling services, and so on is done by JavaScript.

There are many frameworks built using JavaScript to make scripting easier to use:
one of the majorly used frameworks is jQuery. It gives a user the flexibility to use
DOM events, features, and API in a readable and meaningful way.

Modern servers

JavaScript is improving at a quick rate. Most developers are now using JavaScript
for client-side handling. Introduction of the Node.js server has changed the scope
of work of developers. Earlier, developers used different servers, and for that,
they had to learn lot of different languages. Node.js removed that gap and gave
developers a platform where they could build a server which is JavaScript based.

JavaScript servers built on the Node.js platform are quite simple to use and
increase productivity as well. Developers can make a server and run it in very
less time. Creating a server in Node.js is very easy and has many features, such
as real-time data transfer using different packages available. There are many
frameworks which are built for Node.js, such as Express.js, which helps in
speeding up the development process.

[o]

Introducing the World of Web App

Node js is free platform and provides a lot of different packages which can be
distributed freely. The Node Package Manager (NPM) manages the dependencies
for an application. It also is a version manager.

WebSockets

With the growth in web applications, the need for real-time data which supports
full-duplex communication has also increased. Real-time communication is always
hard to implement, and people used Flash for the same. The reason Flash-like plugins
are used is because this feature was missing in HTML standard. So whenever we
wanted to implement such mechanisms in HTML, we used the polling mechanism,
which is a very costly process in terms of performance.

HTMLS5 comes prepared for all the required features needs for a good web application.
WebSockets is a part of HTML5 standard and the WebSocket API is fully available to
be utilized.

WebSockets gives a full-duplex communication between the client and server, which
basically allows data transfer easily and on need basis, unlike the polling mechanism
where we keep hitting the server on an interval to check for changes. WebSockets
can send data from the server or client side —basically a connection bridge is opened
which allows data transfer from both sides. WebSockets has eliminated the use of
third-party plugins giving HTML developers the ability to implement it directly
using the WebSockets API.

Summary

We have seen what the important elements of modern Web are in this chapter,
and the enhanced features HTML5 standard has brought to us. We have been
introduced to WebSockets, and in the next chapter, we will see the implementation
of WebSockets from both the client and server side.

[10]

Getting Started with
WebSockets

Client server communication is one of the most important parts of any web
application. Data communication between the server and client has to be smooth and
fast so that the user can have an excellent experience. If we look into the traditional
methods of server communication, we will find that those methods were limited and
were not really the best solutions. These methods have been used by people for a long
period of time and made HTML the second choice for data communication.

Why WebSockets?

The answer to why we need WebSockets lies in the question —what are the problems
with the other methods of communication? Some of the methods used for server
communication are request/response, polling, and long-polling, which have been
explained as follows:

* Request/Response: This is a commonly used mechanisms in
which the client requests the server and gets a response. This process is
driven by some interaction like the click of a button on the webpage to
refresh the whole page. When AJAX came into the picture, it made the
webpages dynamic and helped in loading some part of the webpage
without loading the whole page.

* Polling: There are scenarios where we need the data to be reflected without
user interaction, such as the score of a football match. In polling, the data is
fetched after a period of time and it keeps hitting the server, regardless of
whether the data has changed or not. This causes unnecessary calls to the
server, opening a connection and then closing it every time.

[11]

Getting Started with WebSockets

* Long-polling: This is basically a connection kept open for a particular time
period. This is one of the ways of achieving real-time communication, but it
works only when you know the time interval.

The problems with these methods lead to the solution, which is WebSockets. It solves
all the problems faced during the use of the old methods.

Importance of WebSockets

WebSockets comes into the picture to save us from the old heavy methods of

server communication. WebSockets solved one of the biggest problems of server
communication by providing a full-duplex two-way communication bridge. It
provides both the server and client the ability to send data at any point of time,
which was not provided by any of the old methods. This has not only improved
performance but also reduced the latency of data. It creates a lightweight connection
which we can keep open for a long time without sacrificing the performance. It also
gives us full control to open and close the connection at any point of time.

WebSockets comes as a part of HTML5 standard, so we do not need to worry about
adding some extra plugin to make it work. WebSockets API is fully supported and
implemented by JavaScript. Almost all modern browsers now support WebSockets;
this can be checked using the website http://caniuse.com/#feat=websockets
which gives the following screenshot:

Y b Canluse Suppect tabile: % B0

€ A | [caniuse.com/#search=websocket

' Web Sockets B Global

unprefixed;

Bidirectional communication technology for web apps

‘ : . 2 Android Chrome for
IE Firefox Chrome Safari QOpera 105 Safar * Opera Mini * Broweer * Andraid

[12]

http://caniuse.com/#feat=websockets

Chapter 2

WebSockets need to be implemented on both the client and server side. On the client
side, the APl is a part of HTML5. But on the server side, we need to use a library that
implements WebSockets. There are many — or we can say almost all —servers that
support WebSockets API libraries now. Node.js, which is a modern JavaScript based
platform also supports WebSockets based server implementation using different
packages, which makes it really easy for developers to code both server and client-
side code without learning another language.

When to use?

WebSockets being a very powerful way of communication between the client and
server, it is really useful for applications which need a lot of server interaction. As
WebSockets gives us the benefit of real-time communication, applications that require
real-time data transfer, like chatting applications, can leverage WebSockets. It is not
only used for real-time communication but also for scenarios where we need only the
server to push the data to the client.

The decision to use WebSockets can be made when we know the exact purpose of
its usage. We should not use WebSockets when we just have to create a website
with static pages and hardly any interaction. We should use WebSockets where the
communication is higher in terms of data passing between the client and server.

There are many applications like stock applications where the data keeps updating
in real time. Collaborative applications need real-time data sharing, such as a game
of chess or a Ping-Pong game. WebSockets is majorly utilized in real-time gaming
web applications.

How it works?

WebSockets communicates using the TCP layer. The connection is established over
HTTP and is basically a handshake mechanism between the client and server. After
the handshake, the connection is upgraded to TCP. Let's see how it works through
this flow diagram:

] HTTP Upgrade Header Reguest]

invoke

Make Upgrade Header
return
HTTF Upgrade Header Response (S

A

Client -

[13]

Getting Started with WebSockets

The following steps will take you through the flow shown in the preceding diagram:

1.

The first step is the HTTP call that is initiated from the client side; the header
of the HTTP call looks like this:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

Origin: http://example.com

o

Here, Host is the name of the server that we are hitting.

[e]

Upgrade shows that it is an upgrade call for, in this case, WebSockets.
Connection defines that it is an upgrade call.

Sec-Websocket-Key is a randomly generated key which is further
used to authenticate the response. It is the authentication key of
the handshake.

Origin is also another important parameter which shows where
the call originated from; on the server side, it is used to check the
requester's authenticity.

Once the server checks the authenticity a response is sent back, which looks
like this:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sM1YUkAGmm50PpG2HaGWk=
Sec-WebSocket-Protocol: chat

[e]

Here, sec-WebSocket -Accept has a key which is decoded and
checked with the key sent for confirmation that the response is
coming to the right originator.

So, once the connection is open, the client and server can send the data to
each other.

The data is sent in the form of small packets using TCP protocol. These
calls are not HTTP so they are not visible directly under the Network
tab of Developer Tools of a browser.

[14]

Chapter 2

WebSocket API

WebSockets standard is defined by W3. The API interface for WebSockets looks

like this:

enum BinaryType { "blob",

[Constructor (DOMString url,
Exposed=Window, Worker]

protocols),
interface WebSocket
readonly attribute

// ready state

"arraybuffer" };

optional

EventTarget

DOMString url;

const unsigned short CONNECTING = 0;
const unsigned short OPEN = 1;

const unsigned short CLOSING = 2;
const unsigned short CLOSED = 3;

readonly attribute
readonly attribute

// networking

attribute
attribute
attribute
readonly attribute
readonly attribute

void close([Clamp]
DOMString reason) ;

// messaging
attribute
attribute

unsigned short readyState;
unsigned long bufferedAmount;

EventHandler onopen;
EventHandler onerror;
EventHandler onclose;
DOMString extensions;
DOMString protocol;

optional unsigned short code,

EventHandler onmessage;
BinaryType binaryType;

(DOMString or DOMStringl[])

optional

void send (DOMString data) ;

void send(Blob data) ;

void send (ArrayBuffer data);
(

void send(ArrayBufferView data) ;

Getting Started with WebSockets

We can see from the interface the types of ready states, networking events, and types
of messages that WebSockets API provides.

Downloading the example code
\ You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register
to have the files e-mailed directly to you.

Ready states

Following are the ready states:

* CONNECTING: The connection has not yet been established.

e OPEN: The WebSockets connection is established and communication
is possible.

* CLOSING: The connection is going through the closing handshake or
the close () method has been invoked.

* CLOSED: The connection has been closed or could not be opened.

Events

Following are the events triggered:

* onopen: Triggered when the connection is opened.
* onclose: Triggered when the connection is closed.
* onerror: Triggered when an error is encountered.

* onmessage: Triggered when a message is received from the server.

Echo Test

Let us start with the Echo Test application. Go to the URL https://www.websocket .
org/echo.html. Here you can see a readymade Ec