
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

4th Edition

Beginning

JavaScript®

Paul Wilton, Jeremy McPeak

Beginning

Wilton, McPeak

 $39.99 USA
 $47.99 CANWeb Development/JavaScript

JavaScript
®

Step-by-step guidance to creating
powerful web apps with JavaScript

4th Edition

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

JavaScript allows you to enhance your web pages and web applications
by providing dynamic, personalized, and interactive content. Serving
as a great introduction to JavaScript, this book offers all you need
to start using JavaScript on your web pages right away. It’s fully
updated and covers utilizing JavaScript with the latest versions of the
Internet Explorer®, Firefox®, and Safari® browsers.

• Walks you through the basics of JavaScript: what it is, how it works,
and what you can do with it

• Covers the various tools needed to create JavaScript web applications

• Escorts you through selecting a single character from a string,
converting character codes to a string, and copying string parts

• Shows you how to join arrays, copy parts of an array, sort arrays,
and reverse an array’s order

• Explains how using a JavaScript framework (such as jQuery,
Prototype, and MooTools) makes JavaScript programming faster
and more efficient

• Offers an in-depth look at Ajax

• Reviews common mistakes, debugging, and error handling

Paul Wilton owns his own company, providing online booking systems to
vacation property owners, which is largely developed using JavaScript.

Jeremy McPeak is a self-taught programmer who began his career by tinkering
with web sites in 1998. He is the coauthor of Professional Ajax, 2nd Edition
and several online articles covering topics such as XSLT, ASP.NET Web Forms,
and C#. He is currently employed at an energy-based company
building in-house conventional and web applications.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

525937_cover_2.indd 1525937_cover_2.indd 1 12/18/09 2:29 PM12/18/09 2:29 PM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning CSS, 2nd Edition
ISBN: 978-0-470-17708-2
Updated and revised, this book offers a hands-on look at designing standards-based, large-scale, professional-level CSS web sites.
Understand designers’ processes from start to finish and gain insight into how designers overcome a site’s unique set of challenges and
obstacles. Become comfortable with solving common problems, learn the best practices for using XHMTL with CSS, orchestrate a new
look for a blog, tackle browser-compatibility issues, and develop functional navigational structures.

Beginning JavaScript and CSS Development with jQuery
ISBN: 978-0-470-22779-4
Beginning JavaScript and CSS Development with jQuery presents the world of dynamic web applications to web developers from the
standpoint of modern standards. The author shows new JavaScript developers how working with the standard jQuery library will help
them to do more with less code and fewer errors.

Concise Guide to Dojo
ISBN: 978-0-470-45202-8
Dojo has rapidly become one of the hottest JavaScript-based web development frameworks. It provides you with the power and flexibility
to create attractive and useful dynamic web applications quickly and easily. In this fast-paced, code-intensive guide, you’ll discover how
to quickly start taking advantage of Dojo. The pages are packed with useful information and insightful examples that will help you.

JavaScript Programmer’s Reference
ISBN: 978-0-470-34472-9
Both a tutorial and a reference guide for web developers, employ this complete JavaScript reference to help you understand JavaScript data
types, variables, operators, expressions, and statements, work with JavaScript frameworks and data, and improve performance with Ajax.

Professional Ajax, 2nd Edition
ISBN: 978-0-470-10949-6
Professional Ajax, 2nd Edition is written for web application developers looking to enhance the usability of their web sites and web
applications and intermediate JavaScript developers looking to further understand the language. This second edition is updated to cover
Prototype, jQuery, FireBug, Microsoft Fiddler, ASP.NET AJAX Extensions, and much more.

Professional JavaScript for Web Developers, 2nd Edition
ISBN: 978-0-470-22780-0
This updated bestseller offers an in-depth look at the JavaScript language and covers such topics as debugging tools in Microsoft Visual
Studio, FireBug, and Drosera; client-side data storage with cookies, the DOM, and Flash; client-side graphics with JavaScript including
SVG, VML, and Canvas; and design patterns including creational, structural, and behavorial patterns.

Professional JavaScript Frameworks: Prototype, YUI, ExtJS, Dojo and MooTools
ISBN: 978-0-470-38459-6
This book offers a selection of some of the most active and most used JavaScript frameworks available, replete with practical examples
and explanations of what each framework does best. You’ll look at common web development tasks and discover how each framework
approaches that set of tasks, as well as learn how to use the features of each framework and avoid potential pitfalls.

525937_cover_2.indd 2525937_cover_2.indd 2 12/18/09 2:29 PM12/18/09 2:29 PM

Beginning JavaScript®

Introduction . xxv

Chapter 1: Introduction to JavaScript and the Web . 1
Chapter 2: Data Types and Variables . 17
Chapter 3: Decisions, Loops, and Functions . 51
Chapter 4: Common Mistakes, Debugging, and Error Handling 87
Chapter 5: JavaScript — An Object-Based Language 133
Chapter 6: Programming the Browser . 189
Chapter 7: HTML Forms: Interacting with the User 219
Chapter 8: Windows and Frames . 263
Chapter 9: String Manipulation . 301
Chapter 10: Date, Time, and Timers . 347
Chapter 11: Storing Information: Cookies . 367
Chapter 12: Dynamic HTML and the W3C Document Object Model 391
Chapter 13: Using ActiveX and Plug-Ins with JavaScript 469
Chapter 14: Ajax . 491
Chapter 15: JavaScript Frameworks . 527
Appendix A: Answers to Exercises . 591
Appendix B: JavaScript Core Reference . 665
Appendix C: W3C DOM Reference . 697
Appendix D: Latin-1 Character Set . 725

Index . 733

25937ffirs.indd i25937ffirs.indd i 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

25937ffirs.indd ii25937ffirs.indd ii 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

Beginning JavaScript®

Fourth Edition

25937ffirs.indd iii25937ffirs.indd iii 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

25937ffirs.indd iv25937ffirs.indd iv 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

Beginning JavaScript®

Fourth Edition

Paul Wilton
Jeremy McPeak

25937ffirs.indd v25937ffirs.indd v 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

Beginning JavaScript® Fourth Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-52593-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Web site may provide or recommendations it may make. Further, readers should be
aware that Internet Web sites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009933758

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks
or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may
not be used without written permission. JavaScript is a registered trademark of Sun Microsystems Incorporated. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

25937ffirs.indd vi25937ffirs.indd vi 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

In memory of my mum, June Wilton, who in 2006 lost her brave battle against cancer.

She was always very proud of me and my books and showed my books

to anyone and everyone she happened to meet however briefl y and whether they

wanted to see them or not! She’s very much missed.

 — Paul Wilton

To my family: Starla, Hayden, and Evan (whom we haven’t yet met in person).

To my parents: Jerry and Judy.

Thank you all for your love and support.

 — Jeremy McPeak

25937ffirs.indd vii25937ffirs.indd vii 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

25937ffirs.indd viii25937ffirs.indd viii 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

About the Authors
Paul Wilton started as a Visual Basic applications programmer at the Ministry of Defense in the UK and
then found himself pulled into the Net. Having joined an Internet development company, he spent three
years helping create Internet solutions. He’s now running his own successful and rapidly growing com-
pany developing online holiday property reservation systems.

Jeremy McPeak is a self-taught programmer who began his career by tinkering with web sites in 1998.
He is the co-author of Professional Ajax, 2nd Edition (Wiley 2007) and several online articles covering top-
ics such as XSLT, ASP.NET WebForms, and C#. He is currently employed in an energy-based company
building in-house conventional and web applications.

Jeremy can be reached through his web site www.wdonline.com.

25937ffirs.indd ix25937ffirs.indd ix 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

25937ffirs.indd x25937ffirs.indd x 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

Credits
Acquisitions Editor
Scott Meyers

Project Editor
Maureen Spears

Technical Editor
David M. Karr

Production Editor
Rebecca Anderson

Copy Editor
C.M. Jones

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefi eld

Marketing Manager
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lindsay Stanford

Compositor
Craig Johnson, Happenstance Type-O-Rama

Proofreader
Kathryn Duggan

Indexer
J & J Indexing

Cover Image
© Photographer’s Choice/Punchstock

25937ffirs.indd xi25937ffirs.indd xi 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

25937ffirs.indd xii25937ffirs.indd xii 9/22/09 11:23:54 AM9/22/09 11:23:54 AM

Acknowledgments

First, a big thank you to my partner Beci, who, now that the book’s fi nished, will get to see me for more
than 10 minutes a week.

I’d also like to say a very big thank you to Maureen Spears, who has worked very effi ciently on getting
this book into print.

Thanks also to Jim Minatel for making this book happen.

Many thanks to everyone who’s supported and encouraged me over my many years of writing books.
Your help will always be remembered.

Finally, pats and treats to my German Shepherd Dog, Katie, who does an excellent job of warding off
disturbances from door-to-door salespeople.

 — Paul Wilton

First and foremost, a huge thank you to my wife for putting up with my late nights.

Just as huge thanks go to the people at Wiley Publishing: Jim Minatel and Scott Meyers for making this
happen; Maureen Spears who was absolutely wonderful to work with in getting this book into its fi nal,
printed form; and David M. Karr for keeping me honest.

Lastly, thank you Nicholas C. Zakas, author of Professional JavaScript, 2nd Edition (Wiley 2009) and
co-author of Professional Ajax, 2nd Edition (Wiley 2007), for getting me into this business.

 — Jeremy McPeak

25937ffirs.indd xiii25937ffirs.indd xiii 9/22/09 11:23:55 AM9/22/09 11:23:55 AM

25937ffirs.indd xiv25937ffirs.indd xiv 9/22/09 11:23:55 AM9/22/09 11:23:55 AM

Contents

Introduction xxv

Chapter 1: Introduction to JavaScript and the Web 1

Introduction to JavaScript 1
What Is JavaScript? 1
JavaScript and the Web 2
Why Choose JavaScript? 4
What Can JavaScript Do for Me? 4
Tools Needed to Create JavaScript Web Applications 5

Where Do My Scripts Go? 7
Linking to an External JavaScript File 7
Advantages of Using an External File 8

Your First Simple JavaScript Programs 8
A Brief Look at Browsers and Compatibility Problems 15
Summary 16

Chapter 2: Data Types and Variables 17

Types of Data in JavaScript 17
Numerical Data 18
Text Data 18
Boolean Data 20

Variables — Storing Data in Memory 20
Creating Variables and Giving Them Values 21
Assigning Variables with the Value of Other Variables 24

Using Data — Calculations and Basic String Manipulation 26
Numerical Calculations 26
Operator Precedence 30
Basic String Operations 34
Mixing Numbers and Strings 35

Data Type Conversion 37
Dealing with Strings That Won’t Convert 40

Arrays 40
A Multi-Dimensional Array 45

Summary 49
Exercise Questions 50

25937ftoc.indd xv25937ftoc.indd xv 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xvi

Contents

Chapter 3: Decisions, Loops, and Functions 51

Decision Making — The if and switch Statements 51
Comparison Operators 52
The if Statement 54
Logical Operators 58
Multiple Conditions Inside an if Statement 60
else and else if 64
Comparing Strings 66
The switch Statement 67

Looping — The for and while Statements 71
The for Loop 71
The for...in Loop 74
The while Loop 75
The do...while loop 77
The break and continue Statements 78

Functions 79
Creating Your Own Functions 79
Variable Scope and Lifetime 83

Summary 84
Exercise Questions 86

Chapter 4: Common Mistakes, Debugging, and Error Handling 87

D’oh! I Can’t Believe I Just Did That: Some Common Mistakes 87
Undefi ned Variables 88
Case Sensitivity 89
Incorrect Number of Closing Braces 90
Incorrect Number of Closing Parentheses 90
Using Equals (=) Rather than Is Equal To (==) 91
Using a Method as a Property and Vice Versa 91
Missing Plus Signs During Concatenation 92

Error Handling 93
Preventing Errors 93
The try … catch Statements 94

Debugging 103
Debugging in Firefox with Firebug 104
Debugging in Internet Explorer 116
Debugging in Safari 123
Using Dragonfl y: Opera’s Development Tools 127

Summary 131
Exercise Questions 131

25937ftoc.indd xvi25937ftoc.indd xvi 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xvii

Contents

Chapter 5: JavaScript — An Object-Based Language 133

Object-Based Programming 133
What Are Objects? 134
Objects in JavaScript 134
Using JavaScript Objects 135
Primitives and Objects 138

JavaScript’s Native Object Types 139
String Objects 139
Array Objects 150
New Array Methods 156
The Math Object 160
Number Object 167
The toFixed() Method 167
Date Objects 168

Creating New Types of Objects (Reference Types) 177
Summary 187
Exercise Questions 188

Chapter 6: Programming the Browser 189

Introduction to the Browser’s Objects 190
The window Object 191
The history Object 193
The location Object 194
The navigator Object 194
The screen Object 195
The document Object 195
Using the document Object 195
The images Collection 198
The links Collection 199

Responding to the User’s Actions with Events 199
What Are Events? 200
Connecting Code to Events 200
Determining the User’s Browser 206

Summary 215
Exercise Questions 217

Chapter 7: HTML Forms: Interacting with the User 219

HTML Forms 219
Other Form Object Properties and Methods 222

HTML Elements in Forms 223

25937ftoc.indd xvii25937ftoc.indd xvii 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xviii

Contents

Common Properties and Methods 224
Button Elements 226
Text Elements 229
The textarea Element 236
Check Boxes and Radio Buttons 239
Selection Boxes 247

Summary 260
Exercise Questions 262

Chapter 8: Windows and Frames 263

Frames and the window Object 264
Coding Between Frames 268
Code Access Between Frames 273

Opening New Windows 284
Opening a New Browser Window 284
Scripting Between Windows 292
Moving and Resizing Windows 297

Security 298
Summary 298
Exercise Questions 299

Chapter 9: String Manipulation 301

Additional String Methods 302
The split() Method 302
The replace() Method 305
The search() Method 305
The match() Method 306

Regular Expressions 306
Simple Regular Expressions 307
Regular Expressions: Special Characters 315
Covering All Eventualities 323
Grouping Regular Expressions 323
Reusing Groups of Characters 325

The String Object — split(), replace(), search(), and match() Methods 327
The split() Method 327
The replace() Method 329
The search() Method 332
The match() Method 333

25937ftoc.indd xviii25937ftoc.indd xviii 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xix

Contents

Using the RegExp Object’s Constructor 335
Telephone Number Validation 339
Validating a Postal Code 341
Validating an E-mail Address 342
Validating a Domain Name 342

Summary 345
Exercise Questions 345

Chapter 10: Date, Time, and Timers 347

World Time 348
Setting and Getting a Date Object’s UTC Date and Time 351

Timers in a Web Page 358
One-Shot Timer 359
Setting a Timer that Fires at Regular Intervals 363

Summary 364
Exercise Questions 365

Chapter 11: Storing Information: Cookies 367

Baking Your First Cookie 367
A Fresh-Baked Cookie 368
The Cookie String 374

Creating a Cookie 377
Getting a Cookie’s Value 381
Cookie Limitations 386

A User May Disable Cookies 386
Number and Information Limitation 387

Cookie Security and IE6+ 388
Summary 389
Exercise Questions 389

Chapter 12: Dynamic HTML and the W3C Document Object Model 391

The Web Standards 392
HTML 394
XML 394
XHTML 395
ECMAScript 396

25937ftoc.indd xix25937ftoc.indd xix 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xx

Contents

The Document Object Model 397
The DOM Standard 397
Differences Between the DOM and the BOM 399
Representing the HTML Document as a Tree Structure 399
The Core DOM Objects 402
DOM Objects and Their Properties and Methods 404

Manipulating the DOM 422
Accessing Elements 422
Changing Appearances 422
Positioning and Moving Content 429
Example: Animated Advertisement 432
DOM Event Handling 437
Event Handling in Internet Explorer 443

Writing Cross-Browser DHTML 447
JavaScript and XML 453

Manipulating XML with JavaScript 454
Retrieving an XML File in IE 454
Retrieving an XML File in Firefox and Opera 457
Retrieving an XML File (Cross-Browser) 458
Example: Displaying a Daily Message 459

Summary 467
Exercise Questions 468

Chapter 13: Using ActiveX and Plug-Ins with JavaScript 469

Checking for and Embedding Plug-ins (Non-IE Browsers) 470
Adding a Plug-in to the Page 470
Checking for and Installing Plug-ins 472

Checking for and Embedding ActiveX Controls on Internet Explorer 474
Adding an ActiveX Control to the Page 475
Installing an ActiveX Control 478

Using Plug-ins and ActiveX Controls 480
Determining Plug-in/ActiveX Control Availability 481
Finishing Up 482
Testing the Disabling of the Form 484
Potential Problems 485

Summary 488
Exercise Question 489

25937ftoc.indd xx25937ftoc.indd xx 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xxi

Contents

Chapter 14: Ajax 491

What Is Ajax? 491
What Can It Do? 492
Browser Support 493

Using the XMLHttpRequest Object 494
Cross-Browser Issues 494
Using the XMLHttpRequest Object 497
Asynchronous Requests 499

Creating a Simple Ajax Module 500
Planning the HttpRequest Module 500
The HttpRequest Constructor 501
Creating the Methods 502
The Full Code 503

Validating Form Fields with Ajax 505
Requesting Information 506
The Received Data 506
Before You Begin 506

Things to Watch Out For 515
Security Issues 515
Usability Concerns 516

Summary 525
Exercise Questions 525

Chapter 15: JavaScript Frameworks 527

Picking a Framework to Work With 527
Getting Started 528

Installing the Frameworks 529
Testing the Frameworks 530

Digging Deeper Into jQuery 537
Selecting Elements 537
Changing Style 539
Creating, Appending, and Removing Elements 541
The jQuery Event Model and Handling Events 543
Rewriting the DHTML Toolbar with jQuery 545
Using jQuery for Ajax 550

Diving into Prototype 558
Retrieving Elements 558
Manipulating Style 560
Creating, Inserting, and Removing Elements 561
Using Events 562
Rewriting the DHTML Toolbar with Prototype 563
Using Ajax Support 567

25937ftoc.indd xxi25937ftoc.indd xxi 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xxii

Contents

Delving into MooTools 575
Finding Elements 575
Altering Style 576
Creating, Inserting, and Removing Elements 577
Using and Handling Events 578
Rewriting the DHTML Toolbar with MooTools 579
Ajax Support in MooTools 584

Summary 590
Exercise Questions 590

Appendix A: Answers to Exercises 591

Chapter 2 591
Chapter 3 593
Chapter 4 597
Chapter 5 600
Chapter 6 604
Chapter 7 610
Chapter 8 616
Chapter 9 624
Chapter 10 628
Chapter 11 631
Chapter 12 634
Chapter 13 641
Chapter 14 643
Chapter 15 653

Appendix B: JavaScript Core Reference 665

Browser Reference 665
Reserved Words 666

Other Identifi ers to Avoid 667
JavaScript Operators 668

Assignment Operators 668
Comparison Operators 669
Arithmetic Operators 670
Bitwise Operators 671
Bitwise Shift Operators 672
Logical Operators 672
Miscellaneous Operators 673
Operator Precedence 674

25937ftoc.indd xxii25937ftoc.indd xxii 9/22/09 11:02:27 AM9/22/09 11:02:27 AM

xxiii

Contents

JavaScript Statements 675
Block 675
Conditional 676
Declarations 676
Loop 676
Execution Control Statements 677
Exception Handling Statements 677
Other Statements 678

Top-Level Properties and Functions 678
JavaScript and Jscript Core Objects 679

ActiveXObject 679
Array 680
Boolean 682
Date 682
Function 685
Math 687
Number 688
Object 689
RegExp 690
String 693

Appendix C: W3C DOM Reference 697

DOM Core Objects 697
Low-Level DOM Objects 697
High-Level DOM Objects 700

HTML DOM Objects 705
Miscellaneous Objects: The HTML Collection 705
HTML Document Objects: The HTML Document 706
HTML Element Objects 707
HTMLButtonElement 709

DOM Event Model and Objects 719
EventTarget 719
Event 720
MouseEvent 720

Miscellaneous Events 722

Appendix D: Latin-1 Character Set 725

Index 733

25937ftoc.indd xxiii25937ftoc.indd xxiii 9/22/09 11:02:28 AM9/22/09 11:02:28 AM

25937flast.indd xxiv25937flast.indd xxiv 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

Introduction

JavaScript is a scripting language that enables you to enhance static web applications by providing
dynamic, personalized, and interactive content. This improves the experience of visitors to your site and
makes it more likely that they will visit again. You must have seen the fl ashy drop-down menus, moving
text, and changing content that are now widespread on web sites — they are enabled through JavaScript.
Supported by all the major browsers, JavaScript is the language of choice on the Web. It can even be used
outside web applications — to automate administrative tasks, for example.

This book aims to teach you all you need to know to start experimenting with JavaScript: what it is,
how it works, and what you can do with it. Starting from the basic syntax, you’ll move on to learn how
to create powerful web applications. Don’t worry if you’ve never programmed before — this book will
teach you all you need to know, step by step. You’ll fi nd that JavaScript can be a great introduction to
the world of programming: with the knowledge and understanding that you’ll gain from this book,
you’ll be able to move on to learn newer and more advanced technologies in the world of computing.

Whom This Book Is For
To get the most out of this book, you’ll need to have an understanding of HTML and how to create a
static web page. You don’t need to have any programming experience.

This book will also suit you if you have some programming experience already and would like to turn
your hand to web programming. You will know a fair amount about computing concepts, but maybe
not as much about web technologies.

Alternatively, you may have a design background and know relatively little about the web and computing
concepts. For you, JavaScript will be a cheap and relatively easy introduction to the world of program-
ming and web application development.

Whoever you are, we hope that this book lives up to your expectations.

What This Book Covers
You’ll begin by looking at exactly what JavaScript is, and taking your fi rst steps with the underlying
language and syntax. You’ll learn all the fundamental programming concepts, including data and data
types, and structuring your code to make decisions in your programs or to loop over the same piece of
code many times.

Once you’re comfortable with the basics, you’ll move on to one of the key ideas in JavaScript — the object.
You’ll learn how to take advantage of the objects that are native to the JavaScript language, such as
dates and strings, and fi nd out how these objects enable you to manage complex data and simplify

25937flast.indd xxv25937flast.indd xxv 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

Introduction

xxvi

your programs. Next, you’ll see how you can use JavaScript to manipulate objects made available to you
in the browser, such as forms, windows, and other controls. Using this knowledge, you can start to cre-
ate truly professional-looking applications that enable you to interact with the user.

Long pieces of code are very hard to get right every time — even for the experienced programmer —
and JavaScript code is no exception. You look at common syntax and logical errors, how you can spot
them, and how to use the JavaScript debuggers for Firefox, Internet Explorer, Safari/Chrome, and
Opera to aid you with this task. Also, you need to examine how to handle the errors that slip through
the net, and ensure that these do not detract from the experience of the end user of your application.

From here, you’ll move on to more advanced topics, such as using cookies and jazzing up your web pages
with dynamic HTML and XML. Finally, you’ll be looking at a relatively new and exciting technology:
Ajax. This allows your JavaScript in a HTML page to communicate directly with a server, and useful for,
say, looking up information on a database sitting on your server. If you have the Google toolbar you’ll
have seen something like this in action already. When you type a search word in the Google toolbar, it
comes up with suggestions, which it gets via the Google search database.

Finally, you’ll explore some of the time saving JavaScript frameworks such as jQuery, Prototype, and
MooTools and seeing how they work and how they can help you create sophisticated JavaScript powered
applications.

All the new concepts introduced in this book will be illustrated with practical examples, which enable
you to experiment with JavaScript and build on the theory that you have just learned.

You’ll fi nd four appendixes at the end of the book. Appendix A provides solutions to the exercises included
at the end of most chapters throughout the book. The remaining appendixes contain the reference material
that your authors hope you fi nd useful and informational. Appendix B contains the JavaScript language’s
core reference. Appendix C contains a complete W3C DOM Core reference — as well as information on the
HTML DOM and DOM Level 2 Event model. Appendix D contains the decimal and hexadecimal character
codes for the Latin-1 character set.

What You Need to Use This Book
Because JavaScript is a text-based technology, all you really need to create documents containing
JavaScript is Notepad (or your equivalent text editor).

Also, in order to try out the code in this book, you will need a web browser that supports a modern
version of JavaScript. Ideally, this means Internet Explorer 8 or later and Firefox 3 or later. The book has
been extensively tested with these two browsers. However, the code should work in most modern web
browsers, although some of the code in later chapters, where you examine dynamic HTML and script-
ing the DOM, is specifi c to particular browsers; but the majority of the code presented is cross-browser.
Where there are exceptions, they will be clearly noted.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

25937flast.indd xxvi25937flast.indd xxvi 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

Introduction

xxvii

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

 1. It usually consists of a set of steps.

 2. Each step has a number.

 3. Follow the steps with your copy of the database.

As you work through each Try It Out, the code you’ve typed will be explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

We ❑ highlight in italic type new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

We show fi le names, URLs, and code within the text like so: ❑ persistence.properties.

We present code in two different ways: ❑

Important code in code examples is highlighted with a gray background.
The gray highlighting is not used for code that’s less important in the present
context, or that has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source-code fi les that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may fi nd it easiest to search by ISBN; this book’s ISBN is
978-0-470-52593-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

25937flast.indd xxvii25937flast.indd xxvii 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

Introduction

xxviii

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect,
and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or faulty piece of
code, we would be very grateful for your feedback. By sending in errata, you may save another reader hours
of frustration, and at the same time you will be helping us provide even higher-quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We’ll check the information and, if
appropriate, post a message to the book’s errata page and fi x the problem in subsequent editions of
the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system on which you can post messages relating to Wrox books and related technologies and interact
with other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works, as well as many common questions specifi c to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

25937flast.indd xxviii25937flast.indd xxviii 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

Beginning JavaScript®

Fourth Edition

25937flast.indd xxix25937flast.indd xxix 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

25937flast.indd xxx25937flast.indd xxx 9/22/09 11:02:45 AM9/22/09 11:02:45 AM

1
Introduction to JavaScript

and the Web

In this introductory chapter, you look at what JavaScript is, what it can do for you, and what you
need in order to use it. With these foundations in place, you will see throughout the rest of the
book how JavaScript can help you to create powerful web applications for your web site.

The easiest way to learn something is by actually doing it, so throughout the book you’ll create a
number of useful example programs using JavaScript. This process starts in this chapter, by the
end of which you will have created your fi rst piece of JavaScript code.

Introduction to JavaScript
In this section you take a brief look at what JavaScript is, where it came from, how it works, and
what sorts of useful things you can do with it.

What Is JavaScript?
Having bought this book, you are probably already well aware that JavaScript is some sort of com-
puter language, but what is a computer language? Put simply, a computer language is a series of
instructions that tell the computer to do something. That something can be one of a wide variety
of things, including displaying text, moving an image, or asking the user for information. Normally,
the instructions, or what is termed code, are processed from the top line downward. This simply
means that the computer looks at the code you’ve written, works out what action you want taken,
and then takes that action. The act of processing the code is called running or executing it.

In natural English, here are instructions, or code, you might write to make a cup of instant coffee:

 1. Put coffee crystals in cup.

 2. Fill kettle with water.

25937c01.indd 125937c01.indd 1 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

2

Chapter 1: Introduction to JavaScript and the Web

 3. Put kettle on to boil.

 4. Has the kettle boiled? If so, then pour water into cup; otherwise, continue to wait.

 5. Drink coffee.

You’d start running this code from the fi rst line (instruction 1), and then continue to the next (instruc-
tion 2), then the next, and so on until you came to the end. This is pretty much how most computer
languages work, JavaScript included. However, there are occasions when you might change the fl ow of
execution or even skip over some code, but you’ll see more of this in Chapter 3.

JavaScript is an interpreted language rather than a compiled language. What is meant by the terms
interpreted and compiled?

Well, to let you in on a secret, your computer doesn’t really understand JavaScript at all. It needs some-
thing to interpret the JavaScript code and convert it into something that it understands; hence it is an
interpreted language. Computers understand only machine code, which is essentially a string of binary
numbers (that is, a string of zeros and ones). As the browser goes through the JavaScript, it passes it to a
special program called an interpreter, which converts the JavaScript to the machine code your computer
understands. It’s a bit like having a translator translate English to Spanish, for example. The impor-
tant point to note is that the conversion of the JavaScript happens at the time the code is run; it has to
be repeated every time this happens. JavaScript is not the only interpreted language; there are others,
including VBScript.

The alternative compiled language is one in which the program code is converted to machine code before
it’s actually run, and this conversion has to be done only once. The programmer uses a compiler to convert
the code that he wrote to machine code, and this machine code is run by the program’s user. Compiled
languages include Visual Basic and C++. Using a real-world analogy, it’s a bit like having a Spanish
translator verbally tell you in English what a Spanish document says. Unless you change the document,
you can use it without retranslation as much as you like.

Perhaps this is a good point to dispel a widespread myth: JavaScript is not the script version of the Java
language. In fact, although they share the same name, that’s virtually all they do share. Particularly
good news is that JavaScript is much, much easier to learn and use than Java. In fact, languages like
JavaScript are the easiest of all languages to learn, but they are still surprisingly powerful.

JavaScript and the Web
For most of this book you’ll look at JavaScript code that runs inside a web page loaded into a browser.
All you need in order to create these web pages is a text editor — for example, Windows Notepad —
and a web browser, such as Firefox or Internet Explorer, with which you can view your pages. These
browsers come equipped with JavaScript interpreters.

In fact, the JavaScript language fi rst became available in the web browser Netscape Navigator 2. Initially,
it was called LiveScript. However, because Java was the hot technology of the time, Netscape decided
that JavaScript sounded more exciting. When JavaScript really took off, Microsoft decided to add its
own brand of JavaScript, called JScript, to Internet Explorer. Since then, Netscape, Microsoft, and oth-
ers have released improved versions and included them in their latest browsers. Although these dif-
ferent brands and versions of JavaScript have much in common, there are enough differences to cause
problems if you’re not careful. Initially you’ll be creating code that’ll work with most browsers, whether

25937c01.indd 225937c01.indd 2 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

3

Chapter 1: Introduction to JavaScript and the Web

Firefox, Internet Explorer, or Safari. Later chapters look at features available only to current browsers like
Firefox 3 or later and Internet Explorer 7 and 8. You’ll look into the problems with different browsers
and versions of JavaScript later in this chapter and see how to deal with them.

You’ll sometimes hear JavaScript referred to as ECMAScript. The ECMA (European Computer
Manufacturers Association) is a private organization that develops standards in information and com-
munication systems. One of the standards they control is for JavaScript, which they call ECMAScript.
Their standard controls various aspects of the language and helps ensure that different versions of
JavaScript are compatible. However, while the ECMA sets standards for the actual language, they
don’t specify how it’s used in particular hosts. By host, we mean hosting environment; in this book,
that will be the web browser. Other hosting environments include PDF fi les, web servers, Macromedia
Flash applications, and many, many other places. In this book, we discuss only its use within the web
browser. The organization that sets the standards for web pages is the World Wide Web Consortium
(W3C). They not only set standards for HTML, XHML, and XML, but also for how JavaScript interacts
with web pages inside a web browser. You’ll learn much more about this in later chapters of the book.
Initially, you’ll look at the essentials of JavaScript before the more advanced stuff. In the appendices
of this book, you’ll fi nd useful guides to the JavaScript language and how it interacts with the web
browser.

The majority of the web pages containing JavaScript that you create in this book can be stored on your
hard drive and loaded directly into your browser from the hard drive itself, just as you’d load any nor-
mal fi le (such as a text fi le). However, this is not how web pages are loaded when you browse web sites
on the Internet. The Internet is really just one great big network connecting computers. Access to web
sites is a special service provided by particular computers on the Internet; the computers providing this
service are known as web servers.

Basically, the job of a web server is to hold lots of web pages on its hard drive. When a browser, usually
on a different computer, requests a web page contained on that web server, the web server loads it from
its own hard drive and then passes the page back to the requesting computer via a special communica-
tions protocol called Hypertext Transfer Protocol (HTTP). The computer running the web browser that
makes the request is known as the client. Think of the client/server relationship as a bit like a customer/
shopkeeper relationship. The customer goes into a shop and says, “Give me one of those.” The shop-
keeper serves the customer by reaching for the item requested and passing it back to the customer. In
a web situation, the client machine running the web browser is like the customer, and the web server
providing the page requested is like the shopkeeper.

When you type an address into the web browser, how does it know which web server to get the page
from? Well, just as shops have addresses, say, 45 Central Avenue, Sometownsville, so do web servers.
Web servers don’t have street names; instead, they have Internet protocol (IP) addresses, which uniquely
identify them on the Internet. These consist of four sets of numbers, separated by dots (for example,
127.0.0.1).

If you’ve ever surfed the net, you’re probably wondering what on earth I’m talking about. Surely web
servers have nice www.somewebsite.com names, not IP addresses? In fact, the www.somewebsite.com
name is the “friendly” name for the actual IP address; it’s a whole lot easier for us humans to remember.
On the Internet, the friendly name is converted to the actual IP address by computers called domain
name servers, which your Internet service provider will have set up for you.

One last thing: Throughout this book, we’ll be referring to the Internet Explorer browser as IE.

25937c01.indd 325937c01.indd 3 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

4

Chapter 1: Introduction to JavaScript and the Web

Why Choose JavaScript?
JavaScript is not the only scripting language; there are others such as VBScript and Perl. So why choose
JavaScript over the others?

The main reason for choosing JavaScript is its widespread use and availability. Both of the most commonly
used browsers, IE and Firefox, support JavaScript, as do almost all of the less commonly used browsers.
So you can assume that most people browsing your web site will have a version of JavaScript installed,
though it is possible to use a browser’s options to disable it.

Of the other scripting languages already mentioned, VBScript, which can be used for the same pur-
poses as JavaScript, is supported only by Internet Explorer running on the Windows operating system,
and Perl is not used at all in web browsers.

JavaScript is also very versatile and not just limited to use within a web page. For example, it can be
used in Windows to automate computer-administration tasks and inside Adobe Acrobat PDF fi les to
control the display of the page just as in web pages, although Acrobat uses a more limited version of
JavaScript. However, the question of which scripting language is more powerful and useful has no real
answer. Pretty much everything that can be done in JavaScript can be done in VBScript, and vice versa.

What Can JavaScript Do for Me?
The most common uses of JavaScript are interacting with users, getting information from them, and
validating their actions. For example, say you want to put a drop-down menu on the page so that users
can choose where they want to go to on your web site. The drop-down menu might be plain old HTML,
but it needs JavaScript behind it to actually do something with the user’s input. Other examples of using
JavaScript for interactions are given by forms, which are used for getting information from the user. Again,
these may be plain HTML, but you might want to check the validity of the information that the user is
entering. For example, if you had a form taking a user’s credit card details in preparation for the online
purchase of goods, you’d want to make sure he had actually fi lled in those details before you sent the
goods. You might also want to check that the data being entered are of the correct type, such as a num-
ber for his age rather than text.

JavaScript can also be used for various tricks. One example is switching an image in a page for a differ-
ent one when the user rolls her mouse over it, something often seen in web page menus. Also, if you’ve
ever seen scrolling messages in the browser’s status bar (usually at the bottom of the browser window)
or inside the page itself and wondered how that works, this is another JavaScript trick that you’ll learn
about later in the book. You’ll also see how to create expanding menus that display a list of choices
when a user rolls his or her mouse over them, another commonly seen JavaScript-driven trick.

Advances in browser sophistication and JavaScript mean that modern JavaScript is used for much more
than a few clever tricks. In fact, quite advanced applications can be created. Examples of such applications
include Google Maps, Google Calendar, and even a full-fl edged word processor, Google Docs. These
applications provide a real service. With a little inventiveness, you’ll be amazed at what can be achieved.
Of course, while JavaScript powers the user interface, the actual data processing is done in the back-
ground on powerful servers. JavaScript is powerful but still has limits.

25937c01.indd 425937c01.indd 4 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

5

Chapter 1: Introduction to JavaScript and the Web

Tools Needed to Create JavaScript Web Applications
The great news is that getting started learning JavaScript requires no expensive software purchases; you
can learn JavaScript for free on any PC or Mac. You’ll learn in this section what tools are available and
how to obtain them.

Development Tools
All that you need to get started creating JavaScript code for web applications is a simple text editor, such
as Windows Notepad, or one of the many slightly more advanced text editors that provide line numbering,
search and replace, and so on. An alternative is a proper HTML editor; you’ll need one that enables you
to edit the HTML source code, because that’s where you need to add your JavaScript. A number of very
good tools specifi cally aimed at developing web-based applications, such as the excellent Dreamweaver
from Adobe, are also available. However, this book concentrates on JavaScript rather than any specifi c
development tool. When it comes to learning the basics, it’s often best to write the code by hand rather
than rely on a tool to do it for you. This helps you understand the fundamentals of the language before
you attempt the more advanced logic that is beyond a tool’s capability. When you have a good under-
standing of the basics, you can use tools as timesavers so that you can spend more time on the more
advanced and more interesting coding.

Once you become more profi cient, you may fi nd that a web page editor makes life easier by inclusion
of features such as checking the validity of your code, color-coding important JavaScript words, and
making it easier to view your pages before loading them into a web browser. One example of free web
development software is Microsoft’s Visual Web Developer 2008 Express Edition, which you can down-
load at http://www.microsoft.com/express/vwd/.

There are many other, equally good, free web page editors. A Google search on web editing software
will bring back a long list of software you can use. Perhaps the most famous paid-for software is
Adobe Dreamweaver.

As you write web applications of increasing complexity, you’ll fi nd useful tools that help you spot and
solve errors. Errors in code are what programmers call bugs, though when our programs go wrong, we
prefer to call them “unexpected additional features.” Very useful in solving bugs are development tools
called debuggers. Debuggers let you monitor what is happening in your code as it’s running. In Chapter 4,
you take an in-depth look at bugs and debugger development tools.

Web Browsers
In addition to software that lets you edit web pages, you’ll also need a browser to view your web pages.
It’s best to develop your JavaScript code on the sort of browsers you expect visitors to use to access your
web site. You’ll see later in the chapter that although browsers are much more standards based, there
are differences in how they view web pages and treat JavaScript code. All the examples provided in this
book have been tested on Firefox version 3+ and IE versions 7 and 8. Wherever a piece of code does not
work on any of these browsers, a note to this effect has been made in the text.

If you’re running Windows, you’ll almost certainly have IE installed. If not, a trip to
http://www.microsoft.com/windows/internet-explorer/default.aspx will get you the
latest version.

Firefox can be found at www.mozilla.com/firefox/all.html.

25937c01.indd 525937c01.indd 5 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

6

Chapter 1: Introduction to JavaScript and the Web

By default, most browsers have JavaScript support enabled. However, it is possible to disable this func-
tionality in the browser. So before you start on your fi rst JavaScript examples in the next section, you
should check to make sure JavaScript is enabled in your browser.

To do this in Firefox, choose Tools ➪ Options on the browser. In the window that appears, click
the Content tab. From this tab, make sure the Enable JavaScript check box is selected, as shown in
Figure 1-1.

Figure 1-1

It is harder to turn off scripting in Internet Explorer. Choose Tools ➪ Internet Options on the browser,
click the Security tab, and check whether the Internet or Local intranet options have custom security
settings. If either of them does, click the Custom Level button and scroll down to the Scripting section.
Check that Active Scripting is set to Enable.

A fi nal point to note is how to open the code examples in your browser. For this book, you simply need
to open the fi le on your hard drive in which an example is stored. You can do this in a number of ways.
One way in IE6 is to choose File ➪ Open and click the Browse button to browse to where you stored the
code. Similarly, in Firefox, choose File ➪ Open File, browse to the fi le you want, and click the Choose
File button.

IE7 and IE8, however, have a new menu structure, and this doesn’t include an Open File option. You can
get around this by typing the drive letter of your hard drive followed by a colon in the address bar (for
example, C: for your C drive). In Microsoft Windows, you can press Ctrl+O for the Open fi le menu to
appear. Alternatively, you can switch back to the Classic menu of earlier versions of IE. To do this, you
can click Tools ➪ Toolbars, and ensure the Menu Bar option is selected (see Figure 1-2).

25937c01.indd 625937c01.indd 6 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

7

Chapter 1: Introduction to JavaScript and the Web

Figure 1-2

Where Do My Scripts Go?
Enough talk about the subject of JavaScript; it’s time to look at how to put it into your web page. In this
section, you’ll fi nd out how you add JavaScript code to your web page.

Including the type attribute is good practice, but within a web page it can be left off. Browsers such
as IE and Firefox use JavaScript as their default script language. This means that if the browser
encounters a <script> tag with no type attribute set, it assumes that the script block is written in
JavaScript. However, use of the type attribute is specifi ed as mandatory by W3C (the World Wide Web
Consortium), which sets the standards for HTML.

Linking to an External JavaScript File
The <script> tag has another arrow in its quiver: the ability to specify that the JavaScript code is not
inside the web page but inside a separate fi le. Any external fi les should be given the fi le extension .js.
Though it’s not compulsory, it does make it easier for you to work out what is contained in each of your
fi les.

To link to an external JavaScript fi le, you need to create a <script> tag as described earlier and use its
src attribute to specify the location of the external fi le. For example, imagine you’ve created a fi le called
MyCommonFunctions.js that you wish to link to, and the fi le is in the same directory as your web page.
The <script> tag would look like this:

<script type=”text/javascript” src=”MyCommonFunctions.js”></script>

The web browser will read this code and include the fi le contents as part of your web page. When link-
ing to external fi les, you must not put any code within the <script> tags; for example, the following
would be invalid:

<script type=”text/javascript” src=”MyCommonFunctions.js”>
var myVariable;

25937c01.indd 725937c01.indd 7 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

8

Chapter 1: Introduction to JavaScript and the Web

if (myVariable == 1)
{
 // do something
}
</script>

If your web page is an XHTML document, you can omit the closing </script> tag and instead write this:

<script type=”text/javascript” src=”MyCommonFunctions.js” />

Generally, you use the <script> tag to load local fi les (those on the same computer as the web page
itself). However, you can load external fi les from a web server by specifying the web address of the fi le.
For example, if your fi le was called MyCommonFunctions.js and was loaded on a web server with the
domain name www.mysite.com, the <script> tag would look like this:

<script type=”text/javascript” src=”http://www.mysite.com/MyCommonFunctions.js”>
</script>

However, beware of linking to external fi les if they are controlled by other people. It would give those
people the ability to control and change your web page, so you need to be very sure you trust them!

Advantages of Using an External File
The biggest advantage of external fi les is code reuse. Say you write a complex bit of JavaScript that per-
forms a general function you might need in lots of pages. If you include the code inline (within the web
page rather than via an external fi le), you need to cut and paste the code into each of your web pages
that use it. This is fi ne as long as you never need to change the code, but the reality is you probably will
need to change or improve the code at some point. If you’ve cut and pasted the code to 30 different web
pages, you’ll need to update it in 30 different places. Quite a headache! By using one external fi le and
including it in all the pages that need it, you only need to update the code once and instantly all the 30 pages
are updated. So much easier!

Another advantage of using external fi les is the browser will cache them, much as it does with images
shared between pages. If your fi les are large, this could save download time and also reduce bandwidth
usage.

Your First Simple JavaScript Programs
Enough talk about the subject of JavaScript; it’s time to look at how to put it into your web page. In this
section, you write your fi rst piece of JavaScript code.

Inserting JavaScript into a web page is much like inserting any other HTML content; you use tags to
mark the start and end of your script code. The tag used to do this is <script>. This tells the browser
that the following chunk of text, bounded by the closing </script> tag, is not HTML to be displayed
but rather script code to be processed. The chunk of code surrounded by the <script> and </script>
tags is called a script block.

25937c01.indd 825937c01.indd 8 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

9

Chapter 1: Introduction to JavaScript and the Web

Basically, when the browser spots <script> tags, instead of trying to display the contained text to the
user, it uses the browser’s built-in JavaScript interpreter to run the code’s instructions. Of course, the
code might give instructions about changes to the way the page is displayed or what is shown in the
page, but the text of the code itself is never shown to the user.

You can put the <script> tags inside the header (between the <head> and </head> tags) or inside the
body (between the <body> and </body> tags) of the HTML page. However, although you can put them
outside these areas — for example, before the <html> tag or after the </html> tag — this is not permit-
ted in the web standards and so is considered bad practice.

The <script> tag has a number of attributes, but the most important one is type. As you saw earlier,
JavaScript is not the only scripting language available, and different scripting languages need to be
processed in different ways. You need to tell the browser which scripting language to expect so that it
knows how to process that language. Your opening script tag will look like this:

<script type=”text/javascript”>

Including the type attribute is good practice, but within a web page it can be left off. Browsers such as
IE and Firefox use JavaScript as their default script language. This means that if the browser encounters
a <script> tag with no type attribute set, it assumes that the script block is written in JavaScript.
However, use of the type attribute is specifi ed as mandatory by W3C, which sets the standards for HTML.

Okay, let’s take a look at the fi rst page containing JavaScript code.

Try It Out Painting the Page Red
This is a simple example of using JavaScript to change the background color of the browser. In your text
editor (we’re using Windows Notepad), type the following:

<html>
<body bgcolor=”WHITE”>
<p>Paragraph 1</p>
<script type=”text/javascript”>
 document.bgColor = “RED”;
</script>
</body>
</html>

Save the page as ch1_examp1.htm to a convenient place on your hard drive. Now load it into your web
browser. You should see a red web page with the text Paragraph 1 in the top-left corner. But wait —
don’t you set the <body> tag’s BGCOLOR attribute to white? Okay, let’s look at what’s going on here.

The page is contained within <html> and </html> tags. This block contains a <body> element. When
you defi ne the opening <body> tag, you use HTML to set the page’s background color to white.

<body bgcolor=”WHITE”>

Then you let the browser know that your next lines of code are JavaScript code by using the <script>
start tag.

<script type=”text/javascript”>

25937c01.indd 925937c01.indd 9 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

10

Chapter 1: Introduction to JavaScript and the Web

Everything from here until the close tag, </script>, is JavaScript and is treated as such by the browser.
Within this script block, you use JavaScript to set the document’s background color to red.

document.bgColor = “RED”;

What you might call the page is known as the document for the purpose of scripting in a web page. The
document has lots of properties, including its background color, bgColor. You can reference properties
of the document by writing document, followed by a dot, followed by the property name. Don’t worry
about the use of document at the moment; you look at it in greater depth later in the book.

Note that the preceding line of code is an example of a JavaScript statement. Every line of code between
the <script> and </script> tags is called a statement, although some statements may run on to more
than one line.

You’ll also see that there’s a semicolon (;) at the end of the line. You use a semicolon in JavaScript to
indicate the end of a statement. In practice, JavaScript is very relaxed about the need for semicolons, and
when you start a new line, JavaScript will usually be able to work out whether you mean to start a new
line of code. However, for good coding practice, you should use a semicolon at the end of statements of
code, and a single JavaScript statement should fi t onto one line rather than continue on to two or more
lines. Moreover, you’ll fi nd there are times when you must include a semicolon, which you’ll come to
later in the book.

Finally, to tell the browser to stop interpreting your text as JavaScript and start interpreting it as HTML,
you use the script close tag:

</script>

You’ve now looked at how the code works, but you haven’t looked at the order in which it works. When
the browser loads in the web page, the browser goes through it, rendering it tag by tag from top to bot-
tom of the page. This process is called parsing. The web browser starts at the top of the page and works
its way down to the bottom of the page. The browser comes to the <body> tag fi rst and sets the docu-
ment’s background to white. Then it continues parsing the page. When it comes to the JavaScript code, it
is instructed to change the document’s background to red.

Try It Out The Way Things Flow
Let’s extend the previous example to demonstrate the parsing of a web page in action. Type the follow-
ing into your text editor:

<html>
<body bgcolor=”WHITE”>
<p>Paragraph 1</p>
<script type=”text/javascript”>
 // Script block 1
 alert(“First Script Block”);
</script>
<p>Paragraph 2</p>
<script type=”text/javascript”>
 // Script block 2
 document.bgColor = “RED”;
 alert(“Second Script Block”);

25937c01.indd 1025937c01.indd 10 9/19/09 8:36:53 PM9/19/09 8:36:53 PM

11

Chapter 1: Introduction to JavaScript and the Web

</script>
<p>Paragraph 3</p>
</body>
</html>

Save the fi le to your hard drive as ch1_examp2.htm and then load it into your browser. When you load
the page, you should see the fi rst paragraph, Paragraph 1, followed by a message box displayed by the
fi rst script block. The browser halts its parsing until you click the OK button. As you see in Figure 1-3,
the page background is white, as set in the <body> tag, and only the fi rst paragraph is displayed.

Figure 1-3

Click the OK button, and the parsing continues. The browser displays the second paragraph, and the
second script block is reached, which changes the background color to red. Another message box is dis-
played by the second script block, as shown in Figure 1-4.

Figure 1-4

25937c01.indd 1125937c01.indd 11 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

12

Chapter 1: Introduction to JavaScript and the Web

Click OK, and again the parsing continues, with the third paragraph, Paragraph 3, being displayed.
The web page is complete, as shown in Figure 1-5.

Figure 1-5

The fi rst part of the page is the same as in our earlier example. The background color for the page is set
to white in the defi nition of the <body> tag, and then a paragraph is written to the page.

<html>
<body bgcolor=”WHITE”>
<p>Paragraph 1</p>

The fi rst new section is contained in the fi rst script block.

<script type=”text/javascript”>
 // Script block 1
 alert(“First Script Block”);
</script>

This script block contains two lines, both of which are new to you. The fi rst line —

 // Script block 1

is just a comment, solely for your benefi t. The browser recognizes anything on a line after a double for-
ward slash (//) to be a comment and does not do anything with it. It is useful for you as a programmer
because you can add explanations to your code that make it easier to remember what you were doing
when you come back to your code later.

The alert() function in the second line of code is also new to you. Before learning what it does, you
need to know what a function is.

Functions are defi ned more fully in Chapter 3, but for now you need only think of them as pieces of
JavaScript code that you can use to do certain tasks. If you have a background in math, you may already
have some idea of what a function is: A function takes some information, processes it, and gives you a
result. A function makes life easier for you as a programmer because you don’t have to think about how
the function does the task — you can just concentrate on when you want the task done.

25937c01.indd 1225937c01.indd 12 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

13

Chapter 1: Introduction to JavaScript and the Web

In particular, the alert() function enables you to alert or inform the user about something by display-
ing a message box. The message to be given in the message box is specifi ed inside the parentheses of
the alert() function and is known as the function’s parameter.

The message box displayed by the alert() function is modal. This is an important concept, which you’ll
come across again. It simply means that the message box won’t go away until the user closes it by click-
ing the OK button. In fact, parsing of the page stops at the line where the alert() function is used and
doesn’t restart until the user closes the message box. This is quite useful for this example, because it
enables you to demonstrate the results of what has been parsed so far: The page color has been set to
white, and the fi rst paragraph has been displayed.

When you click OK, the browser carries on parsing down the page through the following lines:

<p>Paragraph 2</p>
<script type=”text/javascript”>
 // Script block 2
 document.bgColor = “RED”;
 alert(“Second Script Block”);
</script>

The second paragraph is displayed, and the second block of JavaScript is run. The fi rst line of the script
block code is another comment, so the browser ignores this. You saw the second line of the script code
in the previous example — it changes the background color of the page to red. The third line of code
is the alert() function, which displays the second message box. Parsing is brought to a halt until you
close the message box by clicking OK.

When you close the message box, the browser moves on to the next lines of code in the page, displaying
the third paragraph and fi nally ending the web page.

<p>Paragraph 3</p>
</body>
</html>

Another important point raised by this example is the difference between setting properties of the page,
such as background color, via HTML and doing the same thing using JavaScript. The method of set-
ting properties using HTML is static: A value can be set only once and never changed again by means
of HTML. Setting properties using JavaScript enables you to dynamically change their values. The term
dynamic refers to something that can be changed and whose value or appearance is not set in stone.

This example is just that, an example. In practice, if you want the page’s background to be red, you can
set the <body> tag’s BGCOLOR attribute to “RED” and not use JavaScript at all. Where you want to use
JavaScript is where you want to add some sort of intelligence or logic to the page. For example, if the
user’s screen resolution is particularly low, you might want to change what’s displayed on the page;
with JavaScript, you can do this. Another reason for using JavaScript to change properties might be for
special effects — for example, making a page fade in from white to its fi nal color.

25937c01.indd 1325937c01.indd 13 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

14

Chapter 1: Introduction to JavaScript and the Web

Try it Out Displaying Results in a Web Page
In this fi nal example, you’ll discover how to write information directly to a web page using JavaScript.
This proves more useful when you’re writing the results of a calculation or text you’ve created using
JavaScript, as you’ll see in the next chapter. For now, you’ll just write “Hello World!” to a blank page
using JavaScript:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body >

<p id=”ResultsP”></p>

<script type=”text/javascript”>
 // Script block 1
 document.getElementById(‘ResultsP’).innerHTML = ‘Hello World!’;
</script>

</body>
</html>

Save the page as ch1_examp3.htm to a convenient place on your hard drive. Now load it into your web
browser and you’ll see Hello World! in the page. Although it would be easier to use HTML to do the
same thing, this technique will prove useful in later chapters.

The fi rst part of the page is the same as in our earlier examples, except the following line has been
added:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

This lets the web browser know that you’re using XHTML, the standard used throughout this book. It
doesn’t actually make any difference to the code; it would work just fi ne without the extra lines.

Consider this line:

<p id=”ResultsP”></p>

You’ll notice the <p> tag has been given an id using the id attribute. This id must be unique in the web
page, because it is used by the JavaScript to identify the specifi c HTML element in the following line:

document.getElementById(‘ResultsP’).innerHTML = ‘Hello World!’;

Don’t worry if this seems complex at the moment; you’ll learn more about how this works in later chap-
ters, especially Chapters 6 and 12. Basically, the code is saying, “Get me the document element with id
ResultsP and set the HTML inside that element to Hello World!”

It’s important in your example that the code accessing the paragraph is after the paragraph. Otherwise,
the code would be attempting to access a paragraph before it existed in the page and would throw an
error.

25937c01.indd 1425937c01.indd 14 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

15

Chapter 1: Introduction to JavaScript and the Web

A Brief Look at Browsers and Compatibility
Problems

You’ve seen in the preceding example that by using JavaScript you can change a web page’s document
background color using the bgColor property of the document. The example worked whether you used
a Netscape or Microsoft browser, because both types of browsers support a document with a bgColor
property. You can say that the example is cross-browser compatible. However, it’s not always the case that
the property or language feature available in one browser will be available in another browser. This is
even sometimes the case between versions of the same browser.

The version numbers for Internet Explorer and Firefox browsers are usually written as a decimal
number; for example, Firefox has a version 1.5. This book uses the following terminology to refer to
these versions: By version 1.x we mean all versions starting with the number 1; by version 1.0+ we
mean all versions with a number greater than or equal to 1.

One of the main headaches involved in creating web-based JavaScript is the differences between differ-
ent web browsers, the level of HTML they support, and the functionality their JavaScript interpreters
can handle. You’ll fi nd that in one browser you can move an image using just a couple of lines of code
but that in another it’ll take a whole page of code or even prove impossible. One version of JavaScript
will contain a method to change text to uppercase, and another won’t. Each new release of IE or Firefox
browsers sees new and exciting features added to its HTML and JavaScript support. The good news is
that to a much greater extent than ever before, browser creators are complying with standards set by
organizations such as the W3C. Also, with a little ingenuity, you can write JavaScript that will work
with both IE and Firefox browsers.

Which browsers you want to support really comes down to the browsers you think the majority of your
web site’s visitors, that is, your user base, will be using. This book is aimed at both IE7 and later and
Firefox 2 and later.

If you want your web site to be professional, you need to somehow deal with older browsers. You could
make sure your code is backward compatible — that is, it only uses features available in older browsers.
However, you may decide that it’s simply not worth limiting yourself to the features of older browsers. In
this case you need to make sure your pages degrade gracefully. In other words, make sure that although
your pages won’t work in older browsers, they will fail in a way that means the user is either never
aware of the failure or is alerted to the fact that certain features on the web site are not compatible with
his or her browser. The alternative to degrading gracefully is for your code to raise lots of error mes-
sages, cause strange results to be displayed on the page, and generally make you look like an idiot who
doesn’t know what you’re doing!

So how do you make your web pages degrade gracefully? You can do this by using JavaScript to deter-
mine which browser the web page is running in after it has been partially or completely loaded. You
can use this information to determine what scripts to run or even to redirect the user to another page
written to make best use of her particular browser. In later chapters, you see how to fi nd out what fea-
tures the browser supports and take appropriate action so that your pages work acceptably on as many
browsers as possible.

25937c01.indd 1525937c01.indd 15 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

16

Chapter 1: Introduction to JavaScript and the Web

Summary
At this point, you should have a feel for what JavaScript is and what it can do. In particular, this brief
introduction covered the following:

You looked into the process the browser follows when interpreting your web page. It goes ❑

through the page element by element (parsing) and acts upon your HTML tags and JavaScript
code as it comes to them.

Unlike many programming languages, JavaScript requires just a text editor to start creating ❑

code. Something like Windows Notepad is fi ne for getting started, though more extensive tools
will prove valuable once you get more experience.

JavaScript code is embedded into the web page itself, along with the HTML. Its existence ❑

is marked out by the use of <script> tags. As with HTML, script executes from the top of
the page and works down to the bottom, interpreting and executing the code statement by
statement.

25937c01.indd 1625937c01.indd 16 9/19/09 8:36:54 PM9/19/09 8:36:54 PM

2
Data Types and Variables

One of the main uses of computers is to process and display information. By processing, we mean
the information is modifi ed, interpreted, or fi ltered in some way by the computer. For example,
on an online banking web site, a customer may request details of all moneys paid out from his
account in the last month. Here the computer would retrieve the information, fi lter out any infor-
mation not related to payments made in the last month, and then display what’s left in a web
page. In some situations, information is processed without being displayed, and at other times,
information is obtained directly without being processed. For example, in a banking environment,
regular payments may be processed and transferred electronically without any human interaction
or display.

In computing, information is referred to as data. Data come in all sorts of forms, such as numbers,
text, dates, and times, to mention just a few. In this chapter, you look specifi cally at how JavaScript
handles data such as numbers and text. An understanding of how data are handled is fundamen-
tal to any programming language.

The chapter starts by looking at the various types of data JavaScript can process. Then you look at
how you can store these data in the computer’s memory so you can use them again and again in
the code. Finally, you see how to use JavaScript to manipulate and process the data.

Types of Data in JavaScript
Data can come in many different forms, or types. You’ll recognize some of the data types that
JavaScript handles from the world outside programming — for example, numbers and text. Other
data types are a little more abstract and are used to make programming easier; one example is the
object data type, which you won’t see in detail until Chapter 4.

Some programming languages are strongly typed. In these languages, whenever you use a piece
of data, you need to explicitly state what sort of data you are dealing with, and use of those data
must follow strict rules applicable to its type. For example, you can’t add a number and a word
together.

25937c02.indd 1725937c02.indd 17 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

18

Chapter 2: Data Types and Variables

JavaScript, on the other hand, is a weakly typed language and a lot more forgiving about how you
use different types of data. When you deal with data, you often don’t need to specify type; JavaScript
will work that out for itself. Furthermore, when you are using different types of data at the same time,
JavaScript will work out behind the scenes what it is you’re trying to do.

Given how easygoing JavaScript is about data, why talk about data types at all? Why not just cut to the
chase and start using data without worrying about their type?

First of all, while JavaScript is very good at working out what data it’s dealing with, there are occasions
when it’ll get things wrong or at least not do what you want it to do. In these situations, you need to
make it explicit to JavaScript what sort of data type you intended and how it should be used. To do that,
you fi rst need to know a little bit about data types.

A second reason is that data types enable you to use data effectively in your code. The things that can
be done with data and the results you’ll get depend on the type of data being used, even if you don’t
specify explicitly what type it is. For example, although trying to multiply two numbers together makes
sense, doing the same thing with text doesn’t. Also, the result of adding numbers is very different from
the result of adding text. With numbers you get the sum, but with text you get one big piece of text con-
sisting of the other pieces joined together.

Let’s take a brief look at some of the more commonly used data types: numerical, text, and Boolean. You
will see how to use them later in the chapter.

Numerical Data
Numerical data come in two forms:

Whole numbers, such as 145, which are also known as ❑ integers. These numbers can be positive
or negative and can span a very wide range in JavaScript: –253 to 253.

Fractional numbers, such as 1.234, which are also known as ❑ fl oating-point numbers. Like integers,
they can be positive or negative, and they also have a massive range.

In simple terms, unless you’re writing specialized scientifi c applications, you’re not going to face problems
with the size of numbers available in JavaScript. Also, although you can treat integers and fl oating-point
numbers differently when it comes to storing them, JavaScript actually treats them both as fl oating-
point numbers. It kindly hides the detail from you so you generally don’t need to worry about it. One
exception is when you want an integer but you have a fl oating-point number, in which case you’ll round
the number to make it an integer. You’ll take a look at rounding numbers later in this chapter.

Text Data
Another term for one or more characters of text is a string. You tell JavaScript that text is to be treated
as text and not as code simply by enclosing it inside quote marks (“). For example, “Hello World” and
“A” are examples of strings that JavaScript will recognize. You can also use the single quote marks (‘),
so ‘Hello World’ and ‘A’ are also examples of strings that JavaScript will recognize. However, you
must end the string with the same quote mark that you started it with. Therefore, “A’ is not a valid
JavaScript string, and neither is ‘Hello World”.

25937c02.indd 1825937c02.indd 18 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

19

Chapter 2: Data Types and Variables

What if you want a string with a single quote mark in the middle, say a string like Peter O’Toole?
If you enclose it in double quotes, you’ll be fi ne, so “Peter O’Toole” is recognized by JavaScript.
However, ‘Peter O’Toole’ will produce an error. This is because JavaScript thinks that your text
string is Peter O (that is, it treats the middle single quote as marking the end of the string) and falls
over wondering what the Toole’ is.

Another way around this is to tell JavaScript that the middle ‘ is part of the text and is not indicating
the end of the string. You do this by using the backslash character (\), which has special meaning in
JavaScript and is referred to as an escape character. The backslash tells the browser that the next character
is not the end of the string, but part of the text. So ‘Peter O\’Toole’ will work as planned.

What if you want to use a double quote inside a string enclosed in double quotes? Well, everything
just said about the single quote still applies. So ‘Hello “Paul”’ works, but “Hello “Paul”” won’t.
However, “Hello \”Paul\”” will also work.

JavaScript has a lot of other special characters, which can’t be typed in but can be represented using the
escape character in conjunction with other characters to create escape sequences. These work much the
same as in HTML. For example, more than one space in a row is ignored in HTML, so a space is repre-
sented by the term . Similarly, in JavaScript there are instances where you can’t use a character
directly but must use an escape sequence. The following table details some of the more useful escape
sequences.

Escape Sequences Character Represented

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\’ Single quote

\” Double quote

\\ Backslash

\xNN NN is a hexadecimal number that identifi es a character in the Latin-1
character set.

The least obvious of these is the last, which represents individual characters by their character num-
ber in the Latin-1 character set rather than by their normal appearance. Let’s pick an example: Say you
wanted to include the copyright symbol (©) in your string. What would your string need to look like?
The answer is “\xA9 Paul Wilton”.

Similarly, you can refer to characters using their Unicode escape sequence. These are written \uNNNN,
where NNNN refers to the Unicode number for that particular character. For example, to refer to the
copyright symbol using this method, you use the string \u00A9.

25937c02.indd 1925937c02.indd 19 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

20

Chapter 2: Data Types and Variables

Boolean Data
The use of yes or no, positive or negative, and true or false is commonplace in the physical world. The
idea of true and false is also fundamental to digital computers; they don’t understand maybes, only true
and false. In fact, the concept of “yes or no” is so useful it has its own data type in JavaScript: the Boolean
data type. The Boolean type has two possible values: true for yes and false for no.

The purpose of Boolean data in JavaScript is just the same as in the world outside programming: They
enable you to answer questions and make decisions based on the answer. For example, if you are asked,
“Is this book about JavaScript?” you would hopefully answer, “Yes it is,” or you might also say, “That’s
true.” Similarly you might say, “If it’s false that the subject of the book is JavaScript, then put it down.”
Here you have a Boolean logic statement (named after its inventor George Boole), which asks a ques-
tion and then does something based on whether the answer is true or false. In JavaScript, you can use
the same sort of Boolean logic to give our programs decision-making abilities. You’ll be taking a more
detailed look at Boolean logic in the next chapter.

Variables — Storing Data in Memory
Data can be stored either permanently or temporarily.

You will want to keep important data, such as the details of a person’s bank account, in a permanent
store. For example, when Ms. Bloggs takes ten dollars or pounds or euros out of her account, you want
to deduct the money from her account and keep a permanent record of the new balance. Information
like this might be stored in something called a database.

However, there are other cases where you don’t want to permanently store data, but simply want to
keep a temporary note of it. Let’s look at an example. Say Ms. Bloggs has a loan from BigBadBank Inc.,
and she wants to fi nd out how much is still outstanding on this loan. She goes to the online banking
page for loans and clicks a link to fi nd out how much she owes. This is data that will be stored per-
manently somewhere. However, suppose you also provide a facility for increasing loan repayments to
pay off the loan early. If Ms. Bloggs enters an increased repayment amount into the text box on the web
page, you might want to show how much sooner the loan will be paid. This will involve a few possibly
complex calculations, so to make it easier, you want to write code that calculates the result in several
stages, storing the result at each stage as you go along, before providing a fi nal result. After you’ve done
the calculation and displayed the results, there’s no need to permanently store the results for each stage,
so rather than use a database, you need to use something called a variable. Why is it called a variable?
Well, perhaps because a variable can be used to store temporary data that can be altered, or varied.

Another bonus of variables is that unlike permanent storage, which might be saved to disk or magnetic
tape, variables are held in the computer’s memory. This means that it is much, much faster to store and
retrieve the data.

So what makes variables good places for temporarily storing your data? Well, variables have a limited
lifetime. When your visitors close the page or move to a new one, your variables are lost, unless you
take some steps to save them somewhere.

Each variable is given a name so that you can refer to it elsewhere in your code. These names must fol-
low certain rules.

25937c02.indd 2025937c02.indd 20 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

21

Chapter 2: Data Types and Variables

As with much of JavaScript code, you’ll fi nd that variable names are case sensitive. For example,
myVariable is not the same as myvariable. You’ll fi nd that this is a very easy way for errors to slip
into your code, even when you become an expert at JavaScript.

Also, you can’t use certain names and characters for your variable names. Names you can’t use are
called reserved words. Reserved words are words that JavaScript keeps for its own use (for example, the
word var or the word with). Certain characters are also forbidden in variable names: for example, the
ampersand (&) and the percent sign (%). You are allowed to use numbers in your variable names, but the
names must not begin with numbers. So 101myVariable is not okay, but myVariable101 is. Let’s look
at some more examples.

Invalid names include:

with ❑

99variables ❑

my%Variable ❑

theGood&theBad ❑

Valid names include

myVariable99 ❑

myPercent_Variable ❑

the_Good_and_the_Bad ❑

You may wish to use a naming convention for your variables (for example, one that describes what sort
of data you plan to hold in the variable). You can notate your variables in lots of different ways — none
are right or wrong, but it’s best to stick with one of them. One common method is Hungarian notation,
where the beginning of each variable name is a three-letter identifi er indicating the data type. For
example, you may start integer variable names with int, fl oating-point variable names with flt, string
variable names with str, and so on. However, as long as the names you use make sense and are used
consistently, it really doesn’t matter what convention you choose.

Creating Variables and Giving Them Values
Before you can use a variable, you should declare its existence to the computer using the var keyword.
This warns the computer that it needs to reserve some memory for your data to be stored in later. To
declare a new variable called myFirstVariable, write the following:

var myFirstVariable;

Note that the semicolon at the end of the line is not part of the variable name but instead is used to indi-
cate to JavaScript the end of a statement. This line is an example of a JavaScript statement.

Once declared, a variable can be used to store any type of data. As we mentioned earlier, many other
programming languages, called strongly typed languages, require you to declare not only the variable
but also the type of data, such as numbers or text, that will be stored. However, JavaScript is a weakly
typed language; you don’t need to limit yourself to what type of data a variable can hold.

25937c02.indd 2125937c02.indd 21 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

22

Chapter 2: Data Types and Variables

You put data into your variables, a process called assigning values to your variables, by using the equals
sign (=). For example, if you want your variable named myFirstVariable to hold the number 101, you
would write this:

myFirstVariable = 101;

The equals sign has a special name when used to assign values to a variable; it’s called the assignment
operator.

Try It Out Declaring Variables
Let’s look at an example in which a variable is declared, store some data in it, and fi nally access its con-
tents. You’ll also see that variables can hold any type of data, and that the type of data being held can be
changed. For example, you can start by storing text and then change to storing numbers without JavaScript
having any problems. Type the following code into your text editor and save it as ch2_examp1.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
</head>
<body>

<script type=”text/javascript”>

var myFirstVariable;

myFirstVariable = “Hello”;
alert(myFirstVariable);

myFirstVariable = 54321;
alert(myFirstVariable);

</script>

</body>
</html>

As soon as you load this into your web browser, it should show an alert box with “Hello” in it, as
shown in Figure 2-1. This is the content of the variable myFirstVariable at that point in the code.

Figure 2-1

25937c02.indd 2225937c02.indd 22 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

23

Chapter 2: Data Types and Variables

Click OK and another alert box appears with 54321 in it, as shown in Figure 2-2. This is the new value
you assigned to the variable myFirstVariable.

Figure 2-2

Within the script block, you fi rst declare your variable.

var myFirstVariable;

Currently, its value is the undefined value because you’ve declared only its existence to the computer,
not any actual data. It may sound odd, but undefined is an actual primitive value in JavaScript, and it
enables you to do comparisons. (For example, you can check to see if a variable contains an actual value
or if it has not yet been given a value, that is, if it is undefi ned.) However, in the next line you assign
myFirstVariable a string value, namely the value Hello.

myFirstVariable = “Hello”;

Here you have assigned the variable a literal value (that is, a piece of actual data rather than data
obtained by a calculation or from another variable). Almost anywhere that you can use a literal string
or number, you can replace it with a variable containing number or string data. You see an example of
this in the next line of code, where you use your variable myFirstVariable in the alert() function
that you saw in the last chapter.

alert(myFirstVariable);

This causes the fi rst alert box to appear. Next you store a new value in your variable, this time a
number.

myFirstVariable = 54321;

The previous value of myFirstVariable is lost forever. The memory space used to store the value is
freed up automatically by JavaScript in a process called garbage collection. Whenever JavaScript detects
that the contents of a variable are no longer usable, such as when you allocate a new value, it performs
the garbage collection process and makes the memory available. Without this automatic garbage collec-
tion process, more and more of the computer’s memory would be consumed, until eventually the com-
puter would run out and the system would grind to a halt. However, garbage collection is not always as
effi cient as it should be and may not occur until another page is loaded.

Just to prove that the new value has been stored, use the alert() function again to display the vari-
able’s new contents.

alert(myFirstVariable);

25937c02.indd 2325937c02.indd 23 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

24

Chapter 2: Data Types and Variables

Assigning Variables with the Value of Other Variables
You’ve seen that you can assign a variable with a number or string, but can you assign a variable with
the data stored inside another variable? The answer is yes, very easily, and in exactly the same way as
giving a variable a literal value. For example, if you have declared the two variables myVariable and
myOtherVariable and have given the variable myOtherVariable the value 22, like this:

var myVariable;
var myOtherVariable;
myOtherVariable = 22;

then you can use the following line to assign myVariable the same value as myOtherVariable (that is,
22).

myVariable = myOtherVariable;

Try It Out Assigning Variables the Values of Other Variables
Let’s look at another example, this time assigning variables the values of other variables.

 1. Type the following code into your text editor and save it as ch2_examp2.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script language=”JavaScript” type=”text/javascript”>

var string1 = “Hello”;
var string2 = “Goodbye”;

alert(string1);
alert(string2);

string2 = string1;

alert(string1);
alert(string2);

string1 = “Now for something different”;

alert(string1);
alert(string2);

</script>

</body>
</html>

25937c02.indd 2425937c02.indd 24 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

25

Chapter 2: Data Types and Variables

 2. Load the page into your browser, and you’ll see a series of six alert boxes appear.

 3. Click OK on each alert box to see the next alert. The fi rst two show the values of string1
and string2 — Hello and Goodbye, respectively. Then you assign string2 the value that’s
in string1. The next two alert boxes show the contents of string1 and string2; this time
both are Hello.

 4. Finally, you change the value of string1. Note that the value of string2 remains unaffected.
The fi nal two alert boxes show the new value of string1 (Now for something different)
and the unchanged value of string2 (Hello).

The fi rst thing you do in the script block is declare your two variables: string1 and string2.
However, notice that you have assigned them values at the same time that you have declared them. This
is a shortcut, called initializing, that saves you typing too much code.

var string1 =”Hello”;
var string2 = “Goodbye”;

Note that you can use this shortcut with all data types, not just strings. The next two lines show the
current value of each variable to the user using the alert() function.

alert(string1);
alert(string2);

Then you assign string2 the value that’s contained in string1. To prove that the assignment has
really worked, you again show the user the contents of each variable using the alert() function.

string2 = string1;

alert(string1);
alert(string2);

Next, you set string1 to a new value.

string1 = “Now for something different”;

This leaves string2 with its current value, demonstrating that string2 has its own copy of the data
assigned to it from string1 in the previous step. You’ll see in later chapters that this is not always the
case. However, as a general rule, basic data types, such as text and numbers, are always copied when
assigned, whereas more complex data types, like the objects you come across in Chapter 4, are actually
shared and not copied. For example, if you have a variable with the string Hello and assign fi ve other
variables the value of this variable, you now have the original data and fi ve independent copies of the
data. However, if it was an object rather than a string and you did the same thing, you’d fi nd you still
have only one copy of the data, but that six variables share it. Changing the data using any of the six
variable names would change them for all the variables.

Finally, the alert() function is used to show the current values of each variable.

alert(string1);
alert(string2);

25937c02.indd 2525937c02.indd 25 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

26

Chapter 2: Data Types and Variables

Using Data — Calculations and Basic String
Manipulation

Now that you’ve seen how to cope with errors, you can get back to the main subject of this chapter: data
and how to use them. You’ve seen how to declare variables and how they can store information, but so
far you haven’t done anything really useful with this knowledge — so just why would you want to use
variables at all?

What variables enable you to do is temporarily hold information that you can use for processing in
mathematical calculations, in building up text messages, or in processing words that the user has
entered. Variables are a little bit like the Memory Store button on the average pocket calculator. Say you
were adding up your fi nances. You might fi rst add up all the money you needed to spend, and then
store it in temporary memory. After you had added up all your money coming in, you could deduct
the amount stored in the memory to fi gure out how much would be left over. Variables can be used in
a similar way: You can fi rst gain the necessary user input and store it in variables, and then you can do
your calculations using the values obtained.

In this section you’ll see how you can put the values stored in variables to good use in both number-
crunching and text-based operations.

Numerical Calculations
JavaScript has a range of basic mathematical capabilities, such as addition, subtraction, multiplication,
and division. Each of the basic math functions is represented by a symbol: plus (+), minus (-), star (*),
and forward slash (/), respectively. These symbols are called operators because they operate on the val-
ues you give them. In other words, they perform some calculation or operation and return a result to us.
You can use the results of these calculations almost anywhere you’d use a number or a variable.

Imagine you were calculating the total value of items on a shopping list. You could write this calcula-
tion as follows:

Total cost of shopping = 10 + 5 + 5

Or, if you actually calculate the sum, it’s

Total cost of shopping = 20

Now let’s see how to do this in JavaScript. In actual fact, it is very similar except that you need to use a
variable to store the fi nal total.

var TotalCostOfShopping;
TotalCostOfShopping = 10 + 5 + 5;
alert(TotalCostOfShopping);

First, you declare a variable, TotalCostOfShopping, to hold the total cost.

In the second line, you have the code 10 + 5 + 5. This piece of code is known as an expression. When
you assign the variable TotalCostOfShopping the value of this expression, JavaScript automatically

25937c02.indd 2625937c02.indd 26 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

27

Chapter 2: Data Types and Variables

calculates the value of the expression (20) and stores it in the variable. Notice that the equals sign tells
JavaScript to store the results of the calculation in the TotalCostOfShopping variable. This is called
assigning the value of the calculation to the variable, which is why the single equals sign (=) is called the
assignment operator.

Finally, you display the value of the variable in an alert box.

The operators for subtraction and multiplication work in exactly the same way. Division is a little
different.

Try It Out Calculations
Let’s take a look at an example using the division operator to see how it works.

 1. Enter the following code and save it as ch2_examp3.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script language=”JavaScript” type=”text/javascript”>
var firstNumber = 15;
var secondNumber = 10;
var answer;
answer = 15 / 10;
alert(answer);

alert(15 / 10);

answer = firstNumber / secondNumber;
alert(answer);

</script>

</body>
</html>

 2. Load this into your web browser. You should see a succession of three alert boxes, each con-
taining the value 1.5. These values are the results of three calculations.

 3. The fi rst thing you do in the script block is declare your three variables and assign the fi rst two
of these variables values that you’ll be using later.

var firstNumber = 15;
var secondNumber = 10;
var answer;

 4. Next, you set the answer variable to the results of the calculation of the expression 15/10. You
show the value of this variable in an alert box.

answer = 15 / 10;
alert(answer);

This example demonstrates one way of doing the calculation, but in reality you’d almost never do it
this way.

25937c02.indd 2725937c02.indd 27 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

28

Chapter 2: Data Types and Variables

To demonstrate that you can use expressions in places you’d use numbers or variables, you show the
results of the calculation of 15/10 directly by including it in the alert() function.

alert(15 / 10);

Finally, you do the same calculation, but this time using the two variables firstNumber, which was set
to 15, and secondNumber, which was set to 10. You have the expression firstNumber / secondNum-
ber, the result of which you store in our answer variable. Then, to prove it has all worked, you show
the value contained in answer by using your friend the alert() function.

answer = firstNumber / secondNumber;
alert(answer);

Most calculations will be done in the third way (that is, using variables, or numbers and variables, and
storing the result in another variable). The reason for this is that if the calculation used literal values
(actual values, such as 15 / 10), then you might as well program in the result of the calculation, rather
than force JavaScript to calculate it for you. For example, rather than writing 15 / 10, you might as well
just write 1.5. After all, the more calculations you force JavaScript to do, the slower it will be, though
admittedly just one calculation won’t tax it too much.

Another reason for using the result rather than the calculation is that it makes code more readable. Which
would you prefer to read in code: 1.5 * 45 – 56 / 67 + 2.567 or 69.231? Still better, a variable named for
example PricePerKG, makes code even easier to understand for someone not familiar with it.

Increment and Decrement Operators
A number of operations using the math operators are so commonly used that they have been given
their own operators. The two you’ll be looking at here are the increment and decrement operators, which
are represented by two plus signs (++) and two minus signs (--), respectively. Basically, all they do is
increase or decrease a variable’s value by one. You could use the normal + and – operators to do this, for
example:

myVariable = myVariable + 1;
myVariable = myVariable – 1;

You can assign a variable a new value that is the result of an expression involving its previous value.

However, using the increment and decrement operators shortens this to

myVariable++;
myVariable-- ;

The result is the same — the value of myVariable is increased or decreased by one — but the code is
shorter. When you are familiar with the syntax, this becomes very clear and easy to read.

Right now, you may well be thinking that these operators sound as useful as a poke in the eye. However,
in Chapter 3, when you look at how you can run the same code a number of times, you’ll see that these
operators are very useful and widely used. In fact, the ++ operator is so widely used it has a computer
language named after it: C++. The joke here is that C++ is one up from C. (Well, that’s programmer
humor for you!)

25937c02.indd 2825937c02.indd 28 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

29

Chapter 2: Data Types and Variables

As well as placing the ++ or -- after the variable, you can also place it before, like so:

++myVariable;
--myVariable;

When the ++ and -- are used on their own, as they usually are, it makes no difference where they are
placed, but it is possible to use the ++ and -- operators in an expression along with other operators. For
example:

myVar = myNumber++ - 20;

This code takes 20 away from myNumber and then increments the variable myNumber by one before
assigning the result to the variable myVar. If instead you place the ++ before and prefi x it like this:

myVar = ++myNumber - 20;

First, myNumber is incremented by one, and then myNumber has 20 subtracted from it. It’s a subtle differ-
ence but in some situations a very important one. Take the following code:

myNumber = 1;
myVar = (myNumber++ * 10 + 1);

What value will myVar contain? Well, because the ++ is postfi xed (it’s after the myNumber variable), it
will be incremented afterwards. So the equation reads: Multiply myNumber by 10 plus 1 and then incre-
ment myNumber by one.

myVar = 1 * 10 + 1 = 11

Then add 1 to myNumber to get 12, but this is done after the value 11 has been assigned to myVar. Now
take a look at the following code:

myNumber = 1;
myVar = (++myNumber * 10 + 1);

This time myNumber is incremented by one fi rst, then times 10 and plus 1.

myVar = 2 * 10 + 1 = 21

As you can imagine, such subtlety can easily be overlooked and lead to bugs in code; therefore, it’s usu-
ally best to avoid this syntax.

Before going on, this seems to be a good point to introduce another operator: +=. This operator can be
used as a shortcut for increasing the value held by a variable by a set amount. For example,

myVar += 6;

does exactly the same thing as

myVar = myVar + 6;

25937c02.indd 2925937c02.indd 29 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

30

Chapter 2: Data Types and Variables

You can also do the same thing for subtraction and multiplication, as shown here:

myVar -= 6;
myVar *= 6;

which is equivalent to

myVar = myVar – 6;
myVar = myVar * 6;

Operator Precedence
You’ve seen that symbols that perform some function — like +, which adds two numbers together, and -,
which subtracts one number from another — are called operators. Unlike people, not all operators are
created equal; some have a higher precedence — that is, they get dealt with sooner. A quick look at a
simple example will help demonstrate this point.

var myVariable;

myVariable = 1 + 1 * 2;

alert(myVariable);

If you were to type this, what result would you expect the alert box to show as the value of myVariable?
You might expect that since 1 + 1 = 2 and 2 * 2 = 4, the answer is 4. Actually, you’ll fi nd that the alert
box shows 3 as the value stored in myVariable as a result of the calculation. So what gives? Doesn’t
JavaScript add up right?

Well, you probably already know the reason from your understanding of mathematics. The way
JavaScript does the calculation is to fi rst calculate 1 * 2 = 2, and then use this result in the addition, so
that JavaScript fi nishes off with 1 + 2 = 3.

Why? Because * has a higher precedence than +. The = symbol, also an operator (called the assignment
operator), has the lowest precedence — it always gets left until last.

The + and – operators have an equal precedence, so which one gets done fi rst? Well, JavaScript works
from left to right, so if operators with equal precedence exist in a calculation, they get calculated in the
order in which they appear when going from left to right. The same applies to * and /, which are also
of equal precedence.

Try It Out Fahrenheit to Centigrade
Take a look at a slightly more complex example — a Fahrenheit to centigrade converter. (Centigrade is
another name for the Celsius temperature scale.) Type this code and save it as ch2_examp4.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

25937c02.indd 3025937c02.indd 30 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

31

Chapter 2: Data Types and Variables

<script type=”text/javascript”>
// Equation is °C = 5/9 (°F - 32).
var degFahren = prompt(“Enter the degrees in Fahrenheit”,50);
var degCent;

degCent = 5/9 * (degFahren - 32);

alert(degCent);

</script>

</body>
</html>

If you load the page into your browser, you should see a prompt box, like that shown in Figure 2-3, that
asks you to enter the degrees in Fahrenheit to be converted. The value 50 is already fi lled in by default.

Figure 2-3

If you leave it at 50 and click OK, an alert box with the number 10 in it appears. This represents 50
degrees Fahrenheit converted to centigrade.

Reload the page and try changing the value in the prompt box to see what results you get. For example,
change the value to 32 and reload the page. This time you should see 0 appear in the box.

As it’s still a fairly simple example, there’s no checking of data input so it’ll let you enter abc as the
degrees Fahrenheit. Later, in the “Data Type Conversion” section of this chapter, you’ll see how to spot
invalid characters posing as numeric data.

Try It Out Security Issues with Internet Explorer 8
When loading the page to Internet Explorer 8 (IE8), you may see the security warning issue shown in
Figure 2-4, and the prompt window doesn’t appear.

To help protect your security, Internet Explorer has restricted this webpage from running scripts or ActiveX controls that could
access your computer. Click here for options...

Figure 2-4

25937c02.indd 3125937c02.indd 31 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

32

Chapter 2: Data Types and Variables

If it does you’ll need change IE8’s security settings and add fi le://*..host as a trusted site. To do this:

 1. Open IE8 and select the Internet Options menu from the Tools menu bar, as shown in Figure 2-5.

Figure 2-5

 2. Click the Security tab and then click the green Trusted Sites button, as shown in Figure 2-6.

Figure 2-6

 3. Click the Sites button and enter fi le://*..host into the Add This Website to the Zone text box, as
shown in Figure 2-7.

Figure 2-7

25937c02.indd 3225937c02.indd 32 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

33

Chapter 2: Data Types and Variables

 4. Make sure the Require Server Verifi cation check box is unselected, click the Add button, and
then click the Close button.

 5. Click the OK button on the Internet Options dialog to return to the web page, refresh the page
by pressing the F5 key, and the example will now work.

The fi rst line of the script block is a comment, since it starts with two forward slashes (//). It contains
the equation for converting Fahrenheit temperatures to centigrade and is in the example code solely for
reference.

// Equation is °C = 5/9 (°F - 32).

Your task is to represent this equation in JavaScript code. You start by declaring your variables, degFahren
and degCent.

var degFahren = prompt(“Enter the degrees in Fahrenheit”,50);
var degCent;

Instead of initializing the degFahren variable to a literal value, you get a value from the user using the
prompt() function. The prompt() function works in a similar way to an alert() function, except that
as well as displaying a message, it also contains a text box in which the user can enter a value. It is this
value that will be stored inside the degFahren variable. The value returned is a text string, but this will
be implicitly converted by JavaScript to a number when you use it as a number, as discussed in the sec-
tion on data type conversion later in this chapter.

You pass two pieces of information to the prompt() function:

The text to be displayed — usually a question that prompts the user for input. ❑

The default value that is contained in the input box when the prompt dialog box fi rst appears. ❑

These two pieces of information must be specifi ed in the given order and separated by a comma. If you
don’t want a default value to be contained in the input box when the prompt box opens, use an empty
string (“”) for the second piece of information.

As you can see in the preceding code, the text is “Enter the degrees in Fahrenheit,” and the default
value in the input box is 50.

Next in the script block comes the equation represented in JavaScript. You store the result of the equa-
tion in the degCent variable. You can see that the JavaScript looks very much like the equation you
have in the comment, except you use degFahren instead of °F, and degCent rather than °C.

degCent = 5/9 * (degFahren - 32);

The calculation of the expression on the right-hand side of the equals sign raises a number of important
points. First, just as in math, the JavaScript equation is read from left to right, at least for the basic math
functions like +, -, and so on. Secondly, as you saw earlier, just as there is precedence in math, there is
in JavaScript.

Starting from the left, fi rst JavaScript works out 5/9 = .5556 (approximately). Then it comes to the mul-
tiplication, but wait . . . the last bit of our equation, degFahren – 32, is in parentheses. This raises the
order of precedence and causes JavaScript to calculate the result of degFahren – 32 before doing the
multiplication. For example, when degFahren is set to 50, (degFahren - 32) = (50 – 32) = 18. Now
JavaScript does the multiplication, .5556 * 18, which is approximately 10.

25937c02.indd 3325937c02.indd 33 9/19/09 8:46:16 PM9/19/09 8:46:16 PM

34

Chapter 2: Data Types and Variables

What if you didn’t use the parentheses? Then your code would be

degCent = 5/9 * degFahren - 32;

The calculation of 5/9 remains the same, but then JavaScript would have calculated the multiplication,
5/9 * degFahren. This is because the multiplication takes precedence over the subtraction. When
degFahren is 50, this equates to 5/9 * 50 = 27.7778. Finally, JavaScript would have subtracted the 32,
leaving the result as –4.2221; not the answer you want!

Finally, in your script block, you display the answer using the alert() function.

alert(degCent);

That concludes a brief look at basic calculations with JavaScript. However, in Chapter 4 you’ll be look-
ing at the Math object, which enables you to do more complex calculations.

Basic String Operations
In an earlier section, you looked at the text or string data type, as well as numerical data. Just as numeri-
cal data have associated operators, strings have operators too. This section introduces some basic string
manipulation techniques using such operators. Strings are covered in more depth in Chapter 4, and
advanced string handling is covered in Chapter 8.

One thing you’ll fi nd yourself doing again and again in JavaScript is joining two strings together to
make one string — a process termed concatenation. For example, you may want to concatenate the two
strings “Hello “ and “Paul” to make the string “Hello Paul”. So how do you concatenate? Easy! Use
the + operator. Recall that when applied to numbers, the + operator adds them up, but when used in the
context of two strings, it joins them together.

var concatString = “Hello “ + “Paul”;

The string now stored in the variable concatString is “Hello Paul”. Notice that the last character of
the string “Hello“ is a space — if you left this out, your concatenated string would be “HelloPaul”.

Try It Out Concatenating Strings
Let’s look at an example using the + operator for string concatenation.

 1. Type the following code and save it as ch2_examp5.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var greetingString = “Hello”;
var myName = prompt(“Please enter your name”, “”);
var concatString;

document.write(greetingString + “ “ + myName + “
”);

25937c02.indd 3425937c02.indd 34 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

35

Chapter 2: Data Types and Variables

concatString = greetingString + “ “ + myName;

document.write(concatString);

</script>

</body>
</html>

 2. If you load it into your web browser, you should see a prompt box asking for your name.

 3. Enter your name and click OK. You should see a greeting and your name displayed twice on
the web page.

You start the script block by declaring three variables. You set the fi rst variable, greetingString, to a
string value. The second variable, myName, is assigned to whatever is entered by the user in the prompt
box. You do not initialize the third variable, concatString, here. It will be used to store the result of
the concatenation that you’ll do later in the code.

var greetingString = “Hello”;
var myName = prompt(“Please enter your name”, “”);
var concatString;

In the last chapter, you saw how the web page was represented by the concept of a document and that
it had a number of different properties, such as bgColor. You can also use document to write text and
HTML directly into the page itself. You do this by using the word document, followed by a dot, and
then write(). You then use document.write() much as you do the alert() function, in that you
put the text that you want displayed in the web page inside the parentheses following the word write.
Don’t worry too much about this here, though, because it will all be explained in detail in Chapter 4.
However, you now make use of document.write() in your code to write the result of an expression to
the page.

document.write(greetingString + “ “ + myName + “
”);

The expression written to the page is the concatenation of the value of the greetingString variable,
a space (“ “), the value of the myName variable, and the HTML
 tag, which causes a line break. For
example, if you enter Paul into the prompt box, the value of this expression will be as follows:

Hello Paul

In the next line of code is a similar expression. This time it is just the concatenation of the value in the
variable greetingString, a space, and the value in the variable myName. You store the result of this
expression in the variable concatString. Finally, you write the contents of the variable concatString
to the page using document.write().

concatString = greetingString + “ “ + myName;
document.write(concatString);

Mixing Numbers and Strings
What if you want to mix text and numbers in an expression? A prime example of this would be in the
temperature converter you saw earlier. In the example, you just display the number without telling the
user what it actually means. What you really want to do is display the number with descriptive text
wrapped around it, such as “The value converted to degrees centigrade is 10.”

25937c02.indd 3525937c02.indd 35 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

36

Chapter 2: Data Types and Variables

Mixing numbers and text is actually very easy. You can simply join them together using the + opera-
tor. JavaScript is intelligent enough to know that when both a string and a number are involved, you’re
not trying to do numerical calculations, but rather that you want to treat the number as a string and
join it to the text. For example, to join the text My age is and the number 101, you could simply do the
following:

alert(“My age is “ + 101);

This would produce an alert box with “My age is 101” inside it.

Try It Out Making the Temperature Converter User-Friendly
You can try out this technique of concatenating strings and numbers in our temperature-converter
example. You’ll output some explanatory text, along with the result of the conversion calculation. The
changes that you need to make are very small, so load ch2_examp4.htm into your text editor and
change the following line. Then save it as ch2_examp6.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var degFahren = prompt(“Enter the degrees in Fahrenheit”, 50);
var degCent;

degCent = 5/9 * (degFahren - 32);

alert(degFahren + “\xB0 Fahrenheit is “ + degCent + “\xB0 centigrade”);

</script>

</body>
</html>

Load the page into your web browser. Click OK in the prompt box to submit the value 50, and this time
you should see the box shown in Figure 2-8.

Figure 2-8

This example is identical to ch2_examp4.htm, except for one line:

alert(degFahren + “\xB0 Fahrenheit is “ + degCent + “\xB0 centigrade”);

25937c02.indd 3625937c02.indd 36 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

37

Chapter 2: Data Types and Variables

So we will just look at this line here. You can see that the alert() function contains an expression.
Let’s look at that expression more closely.

First is the variable degFahren, which contains numerical data. You concatenate that to the string
“\xBO Fahrenheit is “. JavaScript realizes that because you are adding a number and a string, you
want to join them together into one string rather than trying to take their sum, and so automatically
converts the number contained in degFahren to a string. You next concatenate this string to the vari-
able degCent, containing numerical data. Again JavaScript converts the value of this variable to a
string. Finally, you concatenate to the string “\xBO centigrade”.

Note also the escape sequence used to insert the degree character into the strings. You’ll remember
from earlier in the chapter that \xNN can be used to insert special characters not available to type in
directly. (NN is a hexadecimal number representing a character from the Latin-1 character table). So
when JavaScript spots \xB0 in a string, instead of showing those characters it does a lookup to see what
character is represented by B0 and shows that instead.

Something to be aware of when using special characters is that they are not necessarily cross-platform-
compatible. Although you can use \xNN for a certain character on a Windows computer, you may fi nd
you need to use a different character on a Mac or a Unix machine.

You’ll look at more string manipulation techniques in Chapter 4 — you’ll see how to search strings
and insert characters in the middle of them, and in Chapter 8 you’ll see some very sophisticated string
techniques.

Data Type Conversion
As you’ve seen, if you add a string and a number, JavaScript makes the sensible choice and converts the
number to a string, then concatenates the two. Usually, JavaScript has enough sense to make data type
conversions like this whenever it needs to, but there are some situations in which you need to convert
the type of a piece of data yourself. For example, you may be given a piece of string data that you want
to think of as a number. This is especially likely if you are using forms to collect data from the user. Any
values input by the user are treated as strings, even though they may contain numerical data, such as the
user’s age.

Why is changing the type of the data so important? Consider a situation in which you collect two num-
bers from the user using a form and want to calculate their sum. The two numbers are available to you
as strings, for example “22” and “15”. When you try to calculate the sum of these values using “22” +
“15” you get the result “2215”, because JavaScript thinks you are trying to concatenate two strings
rather than trying to fi nd the sum of two numbers. To add to the possible confusion, the order also
makes a difference. So:

1 + 2 + ‘abc’

results in a string containing “3abc”, whereas:

‘abc’ + 1 + 2

would result in the string containing “abc12”.

25937c02.indd 3725937c02.indd 37 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

38

Chapter 2: Data Types and Variables

In this section you’ll look at two conversion functions that convert strings to numbers: parseInt() and
parseFloat().

Let’s take parseInt() fi rst. This function takes a string and converts it to an integer. The name is a
little confusing at fi rst — why parseInt() rather than convertToInt()? The main reason for the name
comes from the way that the function works. It actually goes through (that is, parses) each character of
the string you ask it to convert and sees if it’s a valid number. If it is valid, parseInt() uses it to build
up the number; if it is not valid, the command simply stops converting and returns the number it has
converted so far.

For example, if your code is parseInt(“123”), JavaScript will convert the string “123” to the number
123. For the code parseInt(“123abc”), JavaScript will also return the number 123. When the JavaScript
interpreter gets to the letter a, it assumes the number has ended and gives 123 as the integer version of
the string “123abc”.

The parseFloat() function works in the same way as parseInt(), except that it returns fl oating-point
numbers — fractional numbers — and that a decimal point in the string, which it is converting, is con-
sidered to be part of the allowable number.

Try It Out Converting Strings to Numbers
Let’s look at an example using parseInt() and parseFloat(). Enter the following code and save it as
ch2_examp7.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var myString = “56.02 degrees centigrade”;
var myInt;
var myFloat;

document.write(“\“” + myString + “\“ is “ + parseInt(myString) +
 “ as an integer” + “
”);

myInt = parseInt(myString);
document.write(“\“” + myString + “\“ when converted to an integer equals “ +
 myInt + “
”);

myFloat = parseFloat(myString);
document.write(“\“” + myString +
 “\“ when converted to a floating point number equals “ + myFloat);

</script>

</body>
</html>

25937c02.indd 3825937c02.indd 38 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

39

Chapter 2: Data Types and Variables

Load it into your browser, and you’ll see three lines written in the web page, as shown in Figure 2-9.

“56.02 degrees centigrade” is 56 as an integer
“56.02 degrees centigrade” when converted to an integer equals 56
“56.02 degrees centigrade” when converted to a floating point number equals 56.02

Figure 2-9

Your fi rst task in the script block is to declare some variables. The variable myString is declared and
initialized to the string you want to convert. You could just as easily have used the string directly in
this example rather than storing it in a variable, but in practice you’ll fi nd that you use variables more
often than literal values. You also declare the variables myInt and myFloat, which will hold the con-
verted numbers.

var myString = “56.02 degrees centigrade”;
var myInt;
var myFloat;

Next, you write to the page the converted integer value of myString displayed inside a user-friendly
sentence you build up using string concatenation. Notice that you use the escape sequence \” to display
quotes (“) around the string you are converting.

document.write(“\”” + myString + “\” is “ + parseInt(myString) +
 “ as an integer” + “
”);

As you can see, you can use parseInt() and parseFloat() in the same places you would use a
number itself or a variable containing a number. In fact, in this line the JavaScript interpreter is doing
two conversions. First, it converts myString to an integer, because that’s what you asked for by using
parseInt(). Then it automatically converts that integer number back to a string, so it can be concatenated
with the other strings to make up your sentence. Also note that only the 56 part of the myString variable’s
value is considered a valid number when you’re dealing with integers. Anything after the 6 is consid-
ered invalid and is ignored.

Next, you do the same conversion of myString using parseInt(), but this time you store the result in
the myInt variable. On the following line you use the result in some text you display to the user:

myInt = parseInt(myString);
document.write(“\”” + myString + “\” when converted to an integer equals “ +
 myInt + “
”);

Again, though myInt holds a number, the JavaScript interpreter knows that +, when a string and a
number are involved, means you want the myInt value converted to a string and concatenated to the
rest of the string so it can be displayed.

Finally, you use parseFloat() to convert the string in myString to a fl oating-point number, which
you store in the variable myFloat. This time the decimal point is considered to be a valid part of the
number, so it’s anything after the 2 that is ignored. Again you use document.write() to write the
result to the web page inside a user-friendly string.

myFloat = parseFloat(myString);
document.write(“\”” + myString +
 “\” when converted to a floating point number equals “ + myFloat);

25937c02.indd 3925937c02.indd 39 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

40

Chapter 2: Data Types and Variables

Dealing with Strings That Won’t Convert
Some strings simply are not convertible to numbers, such as strings that don’t contain any numerical
data. What happens if you try to convert these strings? As a little experiment, try changing the preced-
ing example so that myString holds something that is not convertible. For example, change the line

var myString = “56.02 degrees centigrade”;

to

var myString = “I’m a name not a number”;

Now reload the page in your browser and you should see what’s shown in Figure 2-10.

“I’m a name not a number” is NaN as an integer
“I’m a name not a number” when converted to an integer equals NaN
“I’m a name not a number” when converted to a floating point number equals NaN

Figure 2-10

You can see that in the place of the numbers you got before, you get NaN. What sort of number is that?
Well, it’s Not a Number at all!

If you use parseInt() or parseFloat() with any string that is empty or does not start with at least
one valid digit, you get NaN, meaning Not a Number.

NaN is actually a special value in JavaScript. It has its own function, isNaN(), which checks whether
something is NaN or not. For example,

myVar1 = isNaN(“Hello”);

will store the value true in the variable myVar1, since “Hello” is not a number, whereas

myVar2 = isNaN(“34”);

will store the value false in the variable myVar2, since 34 can be converted successfully from a string
to a number by the isNaN() function.

In Chapter 3 you’ll see how you can use the isNaN() function to check the validity of strings as num-
bers, something that proves invaluable when dealing with user input, as you’ll see in Chapter 7.

Arrays
Now we’re going to look at a new concept — something called an array. An array is similar to a normal
variable, in that you can use it to hold any type of data. However, it has one important difference, which
you’ll see in this section.

25937c02.indd 4025937c02.indd 40 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

41

Chapter 2: Data Types and Variables

As you have already seen, a normal variable can only hold one piece of data at a time. For example, you
can set myVariable to be equal to 25 like so:

myVariable = 25;

and then go and set it to something else, say 35:

myVariable = 35;

However, when you set the variable to 35, the fi rst value of 25 is lost. The variable myVariable now
holds just the number 35.

The following table illustrates the variable:

Variable Name Value

myVariable 35

The difference between such a normal variable and an array is that an array can hold more than one item
of data at the same time. For example, you could use an array with the name myArray to store both the
numbers 25 and 35. Each place where a piece of data can be stored in an array is called an element.

How do you distinguish between these two pieces of data in an array? You give each piece of data an
index value. To refer to that piece of data you enclose its index value in square brackets after the name
of the array. For example, an array called myArray containing the data 25 and 35 could be illustrated
using the following table:

ElementName Value

myArray[0] 25

myArray[1] 35

Notice that the index values start at 0 and not 1. Why is this? Surely 1 makes more sense — after all, we
humans tend to say the fi rst item of data, followed by the second item, and so on. Unfortunately, com-
puters start from 0, and think of the fi rst item as the zero item, the second as the fi rst item, and so on.
Confusing, but you’ll soon get used to this.

Arrays can be very useful since you can store as many (within the limits of the language, which speci-
fi es a maximum of two to the power of 32 elements) or as few items of data in an array as you want.
Also, you don’t have to say up front how many pieces of data you want to store in an array, though you
can if you wish.

So how do you create an array? This is slightly different from declaring a normal variable. To create a
new array, you need to declare a variable name and tell JavaScript that you want it to be a new array
using the new keyword and the Array() function. For example, the array myArray could be defi ned
like this:

var myArray = new Array();

25937c02.indd 4125937c02.indd 41 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

42

Chapter 2: Data Types and Variables

Note that, as with everything in JavaScript, the code is case-sensitive, so if you type array() rather than
Array(), the code won’t work. This way of defi ning an array will be explained further in Chapter 5.

As with normal variables, you can also declare your variable fi rst, and then tell JavaScript you want it to
be an array. For example:

var myArray;
myArray = new Array();

Earlier you learned that you can say up front how many elements the array will hold if you want to,
although this is not necessary. You do this by putting the number of elements you want to specify
between the parentheses after Array. For example, to create an array that will hold six elements, you
write the following:

var myArray = new Array(6);

You have seen how to declare a new array, but how do you store your pieces of data inside it? You can
do this when you defi ne your array by including your data inside the parentheses, with each piece of
data separated by a comma. For example:

var myArray = new Array(“Paul”,345,”John”,112,”Bob”,99);

Here the fi rst item of data, “Paul”, will be put in the array with an index of 0. The next piece of data,
345, will be put in the array with an index of 1, and so on. This means that the element with the name
myArray[0] contains the value “Paul”, the element with the name myArray[1] contains the value
345, and so on.

Note that you can’t use this method to declare an array containing just one piece of numerical data,
such as 345, because JavaScript assumes that you are declaring an array that will hold 345 elements.

This leads to another way of declaring data in an array. You could write the preceding line like this:

var myArray = new Array();
myArray[0] = “Paul”;
myArray[1] = 345;
myArray[2] = “John”;
myArray[3] = 112;
myArray[4] = “Bob”;
myArray[5] = 99;

You use each element name as you would a variable, assigning them with values. You’ll learn this
method of declaring the values of array elements in the following “Try It Out” section.

Obviously, in this example the fi rst way of defi ning the data items is much easier. However, there will
be situations in which you want to change the data stored in a particular element in an array after they
have been declared. In that case you will have to use the latter method of defi ning the values of the
array elements.

You’ll also spot from the preceding example that you can store different data types in the same array.
JavaScript is very fl exible as to what you can put in an array and where you can put it.

25937c02.indd 4225937c02.indd 42 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

43

Chapter 2: Data Types and Variables

Before going on to an example, note here that if, for example, you had defi ned your array called myArray
as holding three elements like this:

var myArray = new Array(3);

and then defi ned a value in the element with index 130 as follows:

myArray[130] = “Paul”;

JavaScript would not complain and would happily assume that you had changed your mind and
wanted an array that had (at least) 131 elements in it.

Try It Out An Array
In the following example, you’ll create an array to hold some names. You’ll use the second method
described in the preceding section to store these pieces of data in the array. You’ll then display the data
to the user. Type the code and save it as ch2_examp8.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var myArray = new Array();
myArray[0] = “Bob”;
myArray[1] = “Pete”;
myArray[2] = “Paul”;

document.write(“myArray[0] = “ + myArray[0] + “
”);
document.write(“myArray[2] = “ + myArray[2] + “
”);
document.write(“myArray[1] = “ + myArray[1] + “
”);

myArray[1] = “Mike”;
document.write(“myArray[1] changed to “ + myArray[1]);

</script>

</body>
</html>

If you load this into your web browser, you should see a web page that looks something like the one
shown in Figure 2-11.

myArray[0] = Bob
myArray[2] = Paul
myArray[1] = Pete
myArray[1] changed to Mike

Figure 2-11

25937c02.indd 4325937c02.indd 43 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

44

Chapter 2: Data Types and Variables

The fi rst task in the script block is to declare a variable and tell the JavaScript interpreter you want it to
be a new array.

var myArray = new Array();

Now that you have your array defi ned, you can store some data in it. Each time you store an item of
data with a new index, JavaScript automatically creates a new storage space for it. Remember that the
fi rst element will be at myArray[0].

Take each addition to the array in turn and see what’s happening. Before you add anything, your array
is empty. Then you add an array element with the following line:

myArray[0] = “Bob”;

Your array now looks like this:

Index Data Stored

0 Bob

Then you add another element to the array, this time with an index of 1.

myArray[1] = “Pete”;

Index Data Stored

0 Bob

1 Pete

Finally, you add another element to the array with an index of 2.

myArray[2] = “Paul”;

Your array now looks like this:

Index Data Stored

0 Bob

1 Pete

2 Paul

Next, you use a series of document.write() functions to insert the values that each element of the
array contains into the web page. Here the array is out of order just to demonstrate that you can access it
that way.

document.write(“myArray[0] = “ + myArray[0] + “
”);
document.write(“myArray[2] = “ + myArray[2] + “
”);
document.write(“myArray[1] = “ + myArray[1] + “
”);

25937c02.indd 4425937c02.indd 44 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

45

Chapter 2: Data Types and Variables

You can treat each particular position in an array as if it’s a standard variable. So you can use it to do
calculations, transfer its value to another variable or array, and so on. However, if you try to access the
data inside an array position before you have defi ned it, you’ll get undefined as a value.

Finally, you change the value of the second array position to “Mike”. You could have changed it to a
number because, just as with normal variables, you can store any data type at any time in each indi-
vidual data position in an array.

myArray[1] = “Mike”;

Now your array’s contents look like this:

Index Data Stored

0 Bob

1 Mike

2 Paul

Just to show that the change you made has worked, you use document.write() to display the second
element’s value.

document.write(“myArray[1] changed to “ + myArray[1]);

A Multi-Dimensional Array
Suppose you want to store a company’s personnel information in an array. You might have data such
as names, ages, addresses, and so on. One way to create such an array would be to store the information
sequentially — the fi rst name in the fi rst element of the array, then the corresponding age in the next
element, the address in the third, the next name in the fourth element, and so on. Your array could look
something like this:

Index Data Stored

0 Name1

1 Age1

2 Address1

3 Name2

4 Age2

5 Address2

6 Name3

7 Age3

8 Address3

25937c02.indd 4525937c02.indd 45 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

46

Chapter 2: Data Types and Variables

This would work, but there is a neater solution: using a multi-dimensional array. Up to now you have
been using single-dimension arrays. In these arrays each element is specifi ed by just one index — that
is, one dimension. So, taking the preceding example, you can see Name1 is at index 0, Age1 is at index 1,
and so on.

A multi-dimensional array is one with two or more indexes for each element. For example, this is how
your personnel array could look as a two-dimensional array:

Index 0 1 2

0 Name1 Name2 Name3

1 Age1 Age2 Age3

2 Address1 Address2 Address3

You’ll see how to create such multi-dimensional arrays in the following “Try It Out” section.

Try It Out A Two-Dimensional Array
The following example illustrates how you can create such a multi-dimensional array in JavaScript code
and how you can access the elements of this array. Type the code and save it as ch2_examp9.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var personnel = new Array();

personnel[0] = new Array();
personnel[0][0] = “Name0”;
personnel[0][1] = “Age0”;
personnel[0][2] = “Address0”;

personnel[1] = new Array();
personnel[1][0] = “Name1”;
personnel[1][1] = “Age1”;
personnel[1][2] = “Address1”;

personnel[2] = new Array();
personnel[2][0] = “Name2”;
personnel[2][1] = “Age2”;
personnel[2][2] = “Address2”;

document.write(“Name : “ + personnel[1][0] + “
”);
document.write(“Age : “ + personnel[1][1] + “
”);
document.write(“Address : “ + personnel[1][2]);

</script>

25937c02.indd 4625937c02.indd 46 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

47

Chapter 2: Data Types and Variables

</body>
</html>

If you load it into your web browser, you’ll see three lines written into the page, which represent the
name, age, and address of the person whose details are stored in the personnel[1] element of the
array, as shown in Figure 2-12.

Name : Name1
Age : Age1
Address : Address1

Figure 2-12

The fi rst thing to do in this script block is declare a variable, personnel, and tell JavaScript that you
want it to be a new array.

var personnel = new Array();

Then you do something new; you tell JavaScript you want index 0 of the personnel array, that is, the ele-
ment personnel[0], to be another new array.

personnel[0] = new Array();

So what’s going on? Well, the truth is that JavaScript doesn’t actually support multi-dimensional arrays,
only single ones. However, JavaScript enables us to fake multi-dimensional arrays by creating an array
inside another array. So what the preceding line is doing is creating a new array inside the element with
index 0 of our personnel array.

In the next three lines, you put values into the newly created personnel[0] array. JavaScript makes
it easy to do this: You just state the name of the array, personnel[0], followed by another index in
square brackets. The fi rst index (0) belongs to the personnel array; the second index belongs to the
personnel[0] array.

personnel[0][0] = “Name0”;
personnel[0][1] = “Age0”;
personnel[0][2] = “Address0”;

After these lines of code, your array looks like this:

Index 0

0 Name0

1 Age0

2 Address0

The numbers at the top, at the moment just 0, refer to the personnel array. The numbers going down
the side, 0, 1, and 2, are actually indices for the new personnel[0] array inside the personnel array.

25937c02.indd 4725937c02.indd 47 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

48

Chapter 2: Data Types and Variables

For the second person’s details, you repeat the process, but this time you are using the personnel array
element with index 1.

personnel[1] = new Array();
personnel[1][0] = “Name1”;
personnel[1][1] = “Age1”;
personnel[1][2] = “Address1”;

Now your array looks like this:

Index 0 1

0 Name0 Name1

1 Age0 Age1

2 Address0 Address1

You create a third person’s details in the next few lines. You are now using the element with index 2
inside the personnel array to create a new array.

personnel[2] = new Array();
personnel[2][0] = “Name2”;
personnel[2][1] = “Age2”;
personnel[2][2] = “Address2”;

The array now looks like this:

Index 0 1 2

0 Name0 Name1 Name2

1 Age0 Age1 Age2

2 Address0 Address1 Address2

You have now fi nished creating your multi-dimensional array. You end the script block by accessing
the data for the second person (Name1, Age1, Address1) and displaying it in the page by using document
.write(). As you can see, accessing the data is very much the same as storing them. You can use the
multi-dimensional array anywhere you would use a normal variable or single-dimension array.

document.write(“Name : “ + personnel[1][0] + “
”);
document.write(“Age : “ + personnel[1][1] + “
”);
document.write(“Address : “ + personnel[1][2]);

Try changing the document.write() commands so that they display the fi rst person’s details. The
code would look like this:

document.write(“Name : “ + personnel[0][0] + “
”);
document.write(“Age : “ + personnel[0][1] + “
”);
document.write(“Address : “ + personnel[0][2]);

25937c02.indd 4825937c02.indd 48 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

49

Chapter 2: Data Types and Variables

It’s possible to create multi-dimensional arrays of three, four, or even a hundred dimensions, but things
can start to get very confusing, and you’ll fi nd that you rarely, if ever, need more than two dimensions.
To give you an idea, here’s how to declare and access a fi ve-dimensional array:

var myArray = new Array();
myArray[0] = new Array();
myArray[0][0] = new Array();
myArray[0][0][0] = new Array();
myArray[0][0][0][0] = new Array();

myArray[0][0][0][0][0] = “This is getting out of hand”

document.write(myArray[0][0][0][0][0]);

That’s it for arrays for now, but you’ll return to them in Chapter 4, where you’ll fi nd out something
shocking about them. You’ll also learn about some of their more advanced features.

Summary
In this chapter you have built up knowledge of the fundamentals of JavaScript’s data types and vari-
ables and how to use them in operations. In particular, you saw that

JavaScript supports a number of types of data, such as numbers, text, and Booleans. ❑

Text is represented by strings of characters and is surrounded by quotes. You must match the ❑

quotes surrounding strings. Escape characters enable you to include characters in your string
that cannot be typed.

Variables are JavaScript’s means of storing data, such as numbers and text, in memory so that ❑

they can be used again and again in your code.

Variable names must not include certain illegal characters, like the percent sign (❑ %) and the
ampersand (&), or be a reserved word, like with.

Before you can give a value to a variable, you must declare its existence to the JavaScript ❑

interpreter.

JavaScript has the four basic math operators, represented by the symbols plus (❑ +), minus (-),
star (*), and forward slash (/). To assign values of a calculation to a variable, you use the equals
sign (=), termed the assignment operator.

Operators have different levels of precedence, so multiplication and division will be calculated ❑

before addition and subtraction.

Strings can be joined, or concatenated, to produce one big string by means of the ❑ + operator.
When numbers and strings are concatenated with the + operator, JavaScript automatically con-
verts the number into a string.

Although JavaScript’s automatic data conversion suits us most of the time, there are occasions ❑

when you need to force the conversion of data. You saw how parseInt() and parseFloat()
can be used to convert strings to numbers. Attempting to convert strings that won’t convert will
result in NaN (Not a Number) being returned.

Arrays are a special type of variable that can hold more than one piece of data. The data are ❑

inserted and accessed by means of a unique index number.

25937c02.indd 4925937c02.indd 49 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

50

Chapter 2: Data Types and Variables

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Write a JavaScript program to convert degrees centigrade into degrees Fahrenheit, and to write
the result to the page in a descriptive sentence. The JavaScript equation for Fahrenheit to centi-
grade is as follows:

degFahren = 9 / 5 * degCent + 32

 2. The following code uses the prompt() function to get two numbers from the user. It then adds
those two numbers together and writes the result to the page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<script language=”JavaScript” type=”text/javascript”>

var firstNumber = prompt(“Enter the first number”,””);
var secondNumber = prompt(“Enter the second number”,””);
var theTotal = firstNumber + secondNumber;
document.write(firstNumber + “ added to “ + secondNumber + “ equals “ +
 theTotal);

</script>
</body>
</html>

However, if you try the code out, you’ll discover that it doesn’t work. Why not? Change the
code so that it does work.

25937c02.indd 5025937c02.indd 50 9/19/09 8:46:17 PM9/19/09 8:46:17 PM

3
Decisions, Loops, and

Functions

So far, you’ve seen how to use JavaScript to get user input, perform calculations and tasks with
that input, and write the results to a web page. However, a pocket calculator can do all this, so
what is it that makes computers different? That is to say, what gives computers the appearance
of having intelligence? The answer is the capability to make decisions based on information
gathered.

How will decision-making help you in creating web sites? In the last chapter you wrote some
code that converted temperature in degrees Fahrenheit to centigrade. You obtained the degrees
Fahrenheit from the user using the prompt() function. This worked fi ne if the user entered a
valid number, such as 50. If, however, the user entered something invalid for the Fahrenheit
temperature, such as the string aaa, you would fi nd that your code no longer works as expected.
Now, if you had some decision-making capabilities in your program, you could check to see if
what the user has entered is valid. If it is, you can do the calculation, and if it isn’t, you can tell
the user why and ask him to enter a valid number.

Validation of user input is probably one of the most common uses of decision making in
JavaScript, but it’s far from being the only use.

In this chapter you’ll look at how decision making is implemented in JavaScript and how you can
use it to make your code smarter.

Decision Making — The if and switch
Statements

All programming languages enable you to make decisions — that is, they enable the program to
follow a certain course of action depending on whether a particular condition is met. This is what
gives programming languages their intelligence.

25937c03.indd 5125937c03.indd 51 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

52

Chapter 3: Decisions, Loops, and Functions

For example, in a situation in which you use JavaScript code that is compatible only with version 4 or
later browsers, the condition could be that the user is using a version 4 or later browser. If you discover
that this condition is not met, you could direct him to a set of pages that are compatible with earlier
browsers.

Conditions are comparisons between variables and data, such as the following:

Is ❑ A bigger than B?

Is ❑ X equal to Y?

Is ❑ M not equal to N?

For example, if the variable browserVersion held the version of the browser that the user was using,
the condition would be this:

Is browserVersion greater than or equal to 4?

You’ll notice that all of these questions have a yes or no answer — that is, they are Boolean based and
can only evaluate to true or false. How do you use this to create decision-making capabilities in
your code? You get the browser to test for whether the condition is true. If (and only if) it is true, you
execute a particular section of code.

Look at another example. Recall from Chapter 1 the natural English instructions used to demonstrate
how code fl ows. One of these instructions for making a cup of coffee is:

Has the kettle boiled? If so, then pour water into cup; otherwise, continue to wait.

This is an example of making a decision. The condition in this instruction is “Has the kettle boiled?” It
has a true or false answer. If the answer is true, you pour the water into the cup. If it isn’t true, you
continue to wait.

In JavaScript, you can change the fl ow of the code’s execution depending on whether a condition is
true or false, using an if statement or a switch statement. You will look at these shortly, but fi rst we
need to introduce some new operators that are essential for the defi nition of conditions — comparison
operators.

Comparison Operators
In Chapter 2 you saw how mathematical functions, such as addition and division, were represented by
symbols, such as plus (+) and forward slash (/), called operators. You also saw that if you want to give
a variable a value, you can assign to it a value or the result of a calculation using the equals sign (=),
termed the assignment operator.

Decision making also has its own operators, which enable you to test conditions. Comparison operators,
just like the mathematical operators you saw in the last chapter, have a left-hand side (LHS) and a right-
hand side (RHS), and the comparison is made between the two. The technical terms for these are the
left operand and the right operand. For example, the less-than operator, with the symbol <, is a compari-
son operator. You could write 23 < 45, which translates as “Is 23 less than 45?” Here, the answer would
be true (see Figure 3-1).

25937c03.indd 5225937c03.indd 52 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

53

Chapter 3: Decisions, Loops, and Functions

Is 23 (LHS) less than 45 (RHS)

Right-Hand Side (RHS)Left-Hand Side (LHS)

23 < 45

Figure 3-1

There are other comparison operators, the more useful of which are summarized in the following table:

Operator Symbol Purpose

== Tests if LHS is equal to RHS

< Tests if LHS is less than RHS

> Tests if LHS is greater than RHS

<= Tests if LHS is less than or equal to RHS

>= Tests if LHS is greater than or equal to RHS

!= Tests if LHS is not equal to RHS

You’ll see these comparison operators in use in the next section when you look at the if statement.

Precedence
Recall from Chapter 2 that operators have an order of precedence. This applies also to the comparison
operators. The == and != comparison operators have the lowest order of precedence, and the rest of the
comparison operators, <, >, <=, and >=, have an equal precedence.

All of these comparison operators have a precedence that is below operators, such as +, -, *, and /. This
means that if you make a comparison such as 3 * 5 > 2 * 5, the multiplication calculations are worked
out fi rst, before their results are compared. However, in these circumstances, it’s both safer and clearer
if you wrap the calculations on either side inside parentheses, for example, (3 * 5) > (2 * 5). As a
general rule, it’s a good idea to use parentheses to ensure that the precedence is clear, or you may fi nd
yourself surprised by the outcome.

Assignment versus Comparison
One very important point to mention is the ease with which the assignment operator (=) and the com-
parison operator (==) can be mixed up. Remember that the = operator assigns a value to a variable and
that the == operator compares the value of two variables. Even when you have this idea clear, it’s amaz-
ingly easy to put one equals sign where you meant to put two.

25937c03.indd 5325937c03.indd 53 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

54

Chapter 3: Decisions, Loops, and Functions

Assigning the Results of Comparisons
You can store the results of a comparison in a variable, as shown in the following example:

var age = prompt(“Enter age:”, “”);
var isOverSixty = parseInt(age) > 60;
 document.write(“Older than 60: “ + isOverSixty);

Here you obtain the user’s age using the prompt() function. This returns, as a string, whatever value
the user enters. You then convert that to a number using the parseInt() function you saw in the pre-
vious chapter and use the greater-than operator to see if it’s greater than 60. The result (either true or
false) of the comparison will be stored in the variable isOverSixty.

If the user enters 35, the document.write() on the fi nal line will write this to the page:

Older than 60: false

If the user entered 61, this will be displayed:

Older than 60: true

The if Statement
The if statement is one you’ll fi nd yourself using in almost every program that is more than a couple of
lines long. It works very much as it does in the English language. For example, you might say in English,
“If the room temperature is more than 80 degrees Fahrenheit, then I’ll turn the air conditioning on.” In
JavaScript, this would translate into something like this:

if (roomTemperature > 80)
{
 roomTemperature = roomTemperature – 10;
}

How does this work? See Figure 3-2.

Test Condition

If Test Condition is true, then
execute all the code inside the
curly braces if (roomTemperature > 80)

{
 roomTemperature = roomTemperature – 10;
}

Figure 3-2

Notice that the test condition is placed in parentheses and follows the if keyword. Also, note that there
is no semicolon at the end of this line. The code to be executed if the condition is true is placed in curly
braces on the line after the condition, and each of these lines of code does end with a semicolon.

25937c03.indd 5425937c03.indd 54 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

55

Chapter 3: Decisions, Loops, and Functions

The curly braces, {}, have a special purpose in JavaScript: They mark out a block of code. Marking out
lines of code as belonging to a single block means that JavaScript will treat them all as one piece of
code. If the condition of an if statement is true, JavaScript executes the next line or block of code fol-
lowing the if statement. In the preceding example, the block of code has only one statement, so we
could equally as well have written this:

if (roomTemperature > 80)
 roomTemperature = roomTemperature – 10;

However, if you have a number of lines of code that you want to execute, you need the braces to mark
them out as a single block of code. For example, a modifi ed version of the example with three statements
of code would have to include the braces.

if (roomTemperature > 80)
{
 roomTemperature = roomTemperature – 10;
 alert(“It’s getting hot in here”);
 alert(“Air conditioning switched on”);
}

A particularly easy mistake to make is to forget the braces when marking out a block of code to be
executed. Instead of the code in the block being executed when the condition is true, you’ll fi nd that
only the fi rst line after the if statement is executed. However, the other lines will always be executed
regardless of the outcome of the test condition. To avoid mistakes like these, it’s a good idea to always
use braces, even where there is only one statement. If you get into this habit, you’ll be less likely to leave
them out when they are actually needed.

Try It Out The if Statement
Let’s return to the temperature converter example from Chapter 2 and add some decision-making
functionality.

 1. Enter the following code and save it as ch3_examp1.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var degFahren = Number(prompt(“Enter the degrees Fahrenheit”,32));
var degCent;

degCent = 5/9 * (degFahren - 32);

document.write(degFahren + “\xB0 Fahrenheit is “ + degCent +
 “\xB0 centigrade
“);

if (degCent < 0)
{
 document.write(“That’s below the freezing point of water”);

25937c03.indd 5525937c03.indd 55 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

56

Chapter 3: Decisions, Loops, and Functions

}

if (degCent == 100)
 document.write(“That’s the boiling point of water”);

</script>

</body>
</html>

 2. Load the page into your browser and enter 32 into the prompt box for the Fahrenheit value to
be converted. With a value of 32, neither of the if statement’s conditions will be true, so the
only line written in the page will be that shown in Figure 3-3.

32° Fahrenheit is 0° centigrade

Figure 3-3

 3. Now reload the page and enter 31 for the Fahrenheit value. This time you’ll see two lines in the
page, as shown in Figure 3-4.

31° Fahrenheit is –0.5555555555555556° centigrade
That’s below the freezing point of water

Figure 3-4

 4. Finally, reload the page again, but this time, enter 212 in the prompt box. The two lines shown
in Figure 3-5 will appear in the page.

212° Fahrenheit is 100° centigrade
That’s the boiling point of water

Figure 3-5

The fi rst part of the script block in this page is taken from the example ch2_examp4.htm in Chapter 2.
You declare two variables, degFahren and degCent. The variable degFahren is given an initial value
obtained from the user with the prompt() function. Note the prompt() function returns a string value,
which you then explicitly convert to a numeric value using the Number() function. The variable degCent is
then set to the result of the calculation 5/9 * (degFahren - 32), which is the Fahrenheit-to-centigrade
conversion calculation.

var degFahren = Number(prompt(“Enter the degrees Fahrenheit”,32));
var degCent;

degCent = 5/9 * (degFahren - 32);

Then you write the result of your calculation to the page.

document.write(degFahren + “\xB0 Fahrenheit is “ + degCent +
 “\xB0 centigrade
”);

25937c03.indd 5625937c03.indd 56 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

57

Chapter 3: Decisions, Loops, and Functions

Now comes the new code; the fi rst of two if statements.

if (degCent < 0)
{
 document.write(“That’s below the freezing point of water”);
}

This if statement has the condition that asks, “Is the value of the variable degCent less than zero?” If
the answer is yes (true), the code inside the curly braces executes. In this case, you write a sentence to
the page using document.write(). If the answer is no (false), the processing moves on to the next
line after the closing brace. Also worth noting is the fact that the code inside the if statement’s opening
brace is indented. This is not necessary, but it is a good practice to get into because it makes your code
much easier to read.

When trying out the example, you started by entering 32, so that degFahren will be initialized to 32.
In this case the calculation degCent = 5/9 * (degFahren - 32) will set degCent to 0. So the answer
to the question “Is degCent less than zero?” is false, because degCent is equal to zero, not less than
zero. The code inside the curly braces will be skipped and never executed. In this case, the next line to
be executed will be the second if statement’s condition, which we’ll discuss shortly.

When you entered 31 in the prompt box, degFahren was set to 31, so the variable degCent will be
-0.55555555556. So how does your if statement look now? It evaluates to “Is –0.55555555556 less
than zero?” The answer this time is true, and the code inside the braces, here just a document.write()
statement, executes.

Finally, when you entered 212, how did this alter the if statement? The variable degCent is set to 100
by the calculation, so the if statement now asks the question, “Is 100 less than zero?” The answer is
false, and the code inside the braces will be skipped over.

In the second if statement, you evaluate the condition “Is the value of variable degCent equal to 100?”

if (degCent == 100)
 document.write(“That’s the boiling point of water”);

There are no braces here, so if the condition is true, the only code to execute is the fi rst line below the
if statement. When you want to execute multiple lines in the case of the condition being true, braces
are required.

You saw that when degFahren is 32, degCent will be 0. So your if statement will be “Is 0 equal to 100?”
The answer is clearly false, and the code won’t execute. Again, when you set degFahren to 31, degCent
will be calculated to be -0.55555555556; “Is –0.55555555556 equal to 100?” is also false, and the code
won’t execute.

Finally, when degFahren is set to 212, degCent will be 100. This time the if statement is “Is 100 equal
to 100?” and the answer is true, so the document.write() statement executes.

As you have seen already, one of the most common errors in JavaScript, even for experts, is using one
equals sign for evaluating, rather than the necessary two. Take a look at the following code extract:

if (degCent = 100)
 document.write(“That’s the boiling point of water”);

This condition will always evaluate to true, and the code below the if statement will always execute.
Worse still, your variable degCent will be set to 100. Why? Because a single equals sign assigns values
to a variable; only a double equals sign compares values. The reason an assignment always evaluates to

25937c03.indd 5725937c03.indd 57 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

58

Chapter 3: Decisions, Loops, and Functions

true is that the result of the assignment expression is the value of the right-hand side expression and
this is the number 100, which is then implicitly converted to a Boolean and any number besides 0 and
NaN converts to true.

Logical Operators
You should have a general idea of how to use conditions in if statements now, but how do you use a
condition such as “Is degFahren greater than zero but less than 100?” There are two conditions to test
here. You need to test whether degFahren is greater than zero and whether degFahren is less than 100.

JavaScript enables you to use such multiple conditions. To do this, you need to learn about three more
operators: the logical operators AND, OR, and NOT. The symbols for these are listed in the following table.

Operator Symbol

AND &&

OR ||

NOT !

Notice that the AND and OR operators are two symbols repeated: && and ||. If you type just one symbol,
& or |, strange things will happen because these are special operators called bitwise operators used in
binary operations — for logical operations you must always use two.

After you’ve learned about the three logical operators, you’ll take a look at how to use them in if state-
ments, with plenty of practical examples. So if it seems a bit confusing on fi rst read, don’t panic. All will
become clear. Let’s look at how each of these works, starting with the AND operator.

AND
Recall that we talked about the left-hand side (LHS) and the right-hand side (RHS) of the operator. The
same is true with the AND operator. However, now the LHS and RHS of the condition are Boolean values
(usually the result of a condition).

The AND operator works very much as it does in English. For example, you might say, “If I feel cold and I
have a coat, then I’ll put my coat on.” Here, the left-hand side of the “and” word is “Do I feel cold?” and
this can be evaluated as true or false. The right-hand side is “Do I have a coat?” which again is evalu-
ated to either true or false. If the left-hand side is true (I am cold) and the right-hand side is true (I do
have a coat), then you put your coat on.

This is very similar to how the AND operator works in JavaScript. The AND operator actually produces
a result, just as adding two numbers together produces a result. However, the AND operator takes two
Boolean values (on its LHS and RHS) and results in another Boolean value. If the LHS and RHS condi-
tions evaluate to true, the result will be true. In any other circumstance, the result will be false.

25937c03.indd 5825937c03.indd 58 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

59

Chapter 3: Decisions, Loops, and Functions

Following is a truth table of possible evaluations of left-hand sides and right-hand sides and the result
when AND is used.

Left-Hand Side Right-Hand Side Result

true true true

false true false

true false false

false false false

Although the table is, strictly speaking, true, it’s worth noting that JavaScript doesn’t like doing unnec-
essary work. Well, who does! If the left-hand side is false, even if the right-hand side does evaluate to
true, it won’t make any difference to the fi nal result — it’ll still be false. So to avoid wasting time, if
the left-hand side is false, JavaScript doesn’t even bother checking the right-hand side and just returns
a result of false.

OR
Just like AND, OR also works much as it does in English. For example, you might say that if it is raining or
if it is snowing, then you’ll take an umbrella. If either of the conditions “it is raining” or “it is snowing”
is true, you will take an umbrella.

Again, just like AND, the OR operator acts on two Boolean values (one from its left-hand side and one
from its right-hand side) and returns another Boolean value. If the left-hand side evaluates to true or
the right-hand side evaluates to true, the result returned is true. Otherwise, the result is false. The
following table shows the possible results.

Left-Hand Side Right-Hand Side Result

true true true

false true true

true false true

false false false

As with the AND operator, JavaScript likes to avoid doing things that make no difference to the fi nal
result. If the left-hand side is true, then whether the right-hand side is true or false makes no dif-
ference to the fi nal result — it’ll still be true. So, to avoid work, if the left-hand side is true, the right-
hand side is not evaluated, and JavaScript simply returns true. The end result is the same — the only
difference is in how JavaScript arrives at the conclusion. However, it does mean you should not rely on
the right-hand side of the OR operator to be executed.

25937c03.indd 5925937c03.indd 59 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

60

Chapter 3: Decisions, Loops, and Functions

NOT
In English, we might say, “If I’m not hot, then I’ll eat soup.” The condition being evaluated is whether
we’re hot. The result is true or false, but in this example we act (eat soup) if the result is false.

However, JavaScript is used to executing code only if a condition is true. So if you want a false condi-
tion to cause code to execute, you need to switch that false value to true (and any true value to false).
That way you can trick JavaScript into executing code after a false condition.

You do this using the NOT operator. This operator reverses the logic of a result; it takes one Boolean value
and changes it to the other Boolean value. So it changes true to false and false to true. This is some-
times called negation.

To use the NOT operator, you put the condition you want reversed in parentheses and put the ! symbol
in front of the parentheses. For example:

if (!(degCent < 100))
{
 // Some code
}

Any code within the braces will be executed only if the condition degCent < 100 is false.

The following table details the possible results when using NOT.

Right-Hand Side Result

true false

false true

Multiple Conditions Inside an if Statement
The previous section started by asking how you could use the condition “Is degFahren greater than
zero but less than 100?” One way of doing this would be to use two if statements, one nested inside
another. Nested simply means that there is an outer if statement, and inside this an inner if statement.
If the condition for the outer if statement is true, then (and only then) the nested inner if statement’s
condition will be tested.

Using nested if statements, your code would be:

if (degCent < 100)
{
 if (degCent > 0)
 {
 document.write(“degCent is between 0 and 100”);
 }
}

25937c03.indd 6025937c03.indd 60 9/20/09 11:41:32 PM9/20/09 11:41:32 PM

61

Chapter 3: Decisions, Loops, and Functions

This would work, but it’s a little verbose and can be quite confusing. JavaScript offers a better alterna-
tive — using multiple conditions inside the condition part of the if statement. The multiple conditions
are strung together with the logical operators you just looked at. So the preceding code could be rewritten
like this:

if (degCent > 0 && degCent < 100)
{
 document.write(“degCent is between 0 and 100”);
}

The if statement’s condition fi rst evaluates whether degCent is greater than zero. If that is true, the
code goes on to evaluate whether degCent is less than 100. Only if both of these conditions are true
will the document.write() code line execute.

Try It Out Multiple Conditions
This example demonstrates multi-condition if statements using the AND, OR, and NOT operators. Type
the following code, and save it as ch3_examp2.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var myAge = Number(prompt(“Enter your age”,30));

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10
“);
}

if (!(myAge >= 0 && myAge <= 10))
{
 document.write(“myAge is NOT between 0 and 10
“);
}

if (myAge >= 80 || myAge <= 10)
{
 document.write(“myAge is 80 or above OR 10 or below
“);
}

if ((myAge >= 30 && myAge <= 39) || (myAge >= 80 && myAge <= 89))
{
 document.write(“myAge is between 30 and 39 or myAge is between 80 and 89”);
}

</script>

</body>
</html>

25937c03.indd 6125937c03.indd 61 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

62

Chapter 3: Decisions, Loops, and Functions

When you load it into your browser, a prompt box should appear. Enter the value 30, then press Return,
and the lines shown in Figure 3-6 are written to the web page.

myAge is NOT between 0 and 10
myAge is between 30 and 39 or myAge is between 80 and 89

Figure 3-6

The script block starts by defi ning the variable myAge and initializing it to the value entered by the user
in the prompt box and converted to a number.

var myAge = Number(prompt(“Enter your age”,30));

After this are four if statements, each using multiple conditions. You’ll look at each in detail in turn.

The easiest way to work out what multiple conditions are doing is to split them up into smaller pieces
and then evaluate the combined result. In this example you have entered the value 30, which has been
stored in the variable myAge. You’ll substitute this value into the conditions to see how they work.

Here’s the fi rst if statement:

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10
”);
}

The fi rst if statement is asking the question “Is myAge between 0 and 10?” You’ll take the LHS of the
condition fi rst, substituting your particular value for myAge. The LHS asks “Is 30 greater than or equal
to 0?” The answer is true. The question posed by the RHS condition is “Is 30 less than or equal to 10?”
The answer is false. These two halves of the condition are joined using &&, which indicates the AND
operator. Using the AND results table shown earlier, you can see that if LHS is true and RHS is false,
you have an overall result of false. So the end result of the condition for the if statement is false,
and the code inside the braces won’t execute.

Let’s move on to the second if statement.

if (!(myAge >= 0 && myAge <= 10))
{
 document.write(“myAge is NOT between 0 and 10
”);
}

The second if statement is posing the question “Is myAge not between 0 and 10?” Its condition is similar
to that of the fi rst if statement, but with one small difference: You have enclosed the condition inside
parentheses and put the NOT operator (!) in front.

The part of the condition inside the parentheses is evaluated and, as before, produces the same result —
false. However, the NOT operator reverses the result and makes it true. Because the if statement’s
condition is true, the code inside the braces will execute this time, causing a document.write() to write
a response to the page.

What about the third if statement?

if (myAge >= 80 || myAge <= 10)
{
 document.write(“myAge is either 80 and above OR 10 or below
”);
}

25937c03.indd 6225937c03.indd 62 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

63

Chapter 3: Decisions, Loops, and Functions

The third if statement asks, “Is myAge greater than or equal to 80, or less than or equal to 10?” Taking
the LHS condition fi rst — ”Is 30 greater than or equal to 80?” — the answer is false. The answer to the
RHS condition — ”Is 30 less than or equal to 10?” — is again false. These two halves of the condition
are combined using ||, which indicates the OR operator. Looking at the OR result table earlier in this
section, you see that false OR false produces a result of false. So again the if statement’s condition
evaluates to false, and the code within the curly braces does not execute.

The fi nal if statement is a little more complex.

if ((myAge >= 30 && myAge <= 39) || (myAge >= 80 && myAge <= 89))
{
 document.write(“myAge is between 30 and 39 “ +
 “or myAge is between 80 and 89
”);
}

It asks the question, “Is myAge between 30 and 39 or between 80 and 89?” Let’s break the condition
down into its component parts. There is a left-hand-side and a right-hand-side condition, combined by
means of an OR operator. However, the LHS and RHS themselves have an LHS and RHS each, which
are combined using AND operators. Notice how parentheses are used to tell JavaScript which parts of
the condition to evaluate fi rst, just as you would do with numbers in a mathematical calculation.

Let’s look at the LHS of the condition fi rst, namely (myAge >= 30 && myAge <= 39). By putting the condi-
tion into parentheses, you ensure that it’s treated as a single condition; no matter how many conditions
are inside the parentheses, it only produces a single result, either true or false. Breaking down the
conditions in the parentheses, you have “Is 30 greater than or equal to 30?” with a result of true, and
“Is 30 less than or equal to 39?” again with a result of true. From the AND table, you know true AND
true produces a result of true.

Now let’s look at the RHS of the condition, namely (myAge >= 80 && myAge <= 89). Again breaking the
condition down, you see that the LHS asks, “Is 30 greater than or equal to 80?” which gives a false
result, and the RHS asks, “Is 30 less than or equal to 89?” which gives a true result. You know that
false AND true gives a false result.

Now you can think of your if statement’s condition as looking like (true || false). Looking at the
OR results table, you can see that true OR false gives a result of true, so the code within the braces
following the if statement will execute, and a line will be written to the page.

However, remember that JavaScript does not evaluate conditions where they won’t affect the fi nal
result, and the preceding condition is one of those situations. The LHS of the condition evaluated to
true. After that, it does not matter if the RHS of the condition is true or false because only one of the
conditions in an OR operation needs to be true for a result of true. Thus JavaScript does not actually
evaluate the RHS of the condition. We did so simply for demonstration purposes.

As you have seen, the easiest way to approach understanding or creating multiple conditions is to break
them down into the smallest logical chunks. You’ll fi nd that with experience, you will do this almost
without thinking, unless you have a particularly tricky condition to evaluate.

Although using multiple conditions is often better than using multiple if statements, there are times
when it makes your code harder to read and therefore harder to understand and debug. It’s possible to
have 10, 20, or more than 100 conditions inside your if statement, but can you imagine trying to read an
if statement with even 10 conditions? If you feel that your multiple conditions are getting too complex,
break them down into smaller logical chunks.

25937c03.indd 6325937c03.indd 63 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

64

Chapter 3: Decisions, Loops, and Functions

For example, imagine you want to execute some code if myAge is in the ranges 30–39, 80–89, or 100–115,
using different code in each case. You could write the statement like so:

if ((myAge >= 30 && myAge <= 39) || (myAge >= 80 && myAge <= 89) ||
 (myAge >= 100 && myAge <= 115))
{
 document.write(“myAge is between 30 and 39 “ +
 “or myAge is between 80 “ +
 “and 89 or myAge is between 100 and 115”);
}

There’s nothing wrong with this, but it is starting to get a little long and diffi cult to read. Instead, you
could create another if statement for the code executed for the 100–115 range.

else and else if
Imagine a situation where you want some code to execute if a certain condition is true and some other
code to execute if it is false. You can achieve this by having two if statements, as shown in the following
example:

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10”);
}

if (!(myAge >= 0 && myAge <= 10))
{
 document.write(“myAge is NOT between 0 and 10”);
}

The fi rst if statement tests whether myAge is between 0 and 10, and the second for the situation where
myAge is not between 0 and 10. However, JavaScript provides an easier way of achieving this: with an
else statement. Again, the use of the word else is similar to its use in the English language. You might
say, “If it is raining, I will take an umbrella; otherwise I will take a sun hat.” In JavaScript you can say
if the condition is true, then execute one block of code; else execute an alternative block. Rewriting
the preceding code using this technique, you would have the following:

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10”);
}
else
{
 document.write(“myAge is NOT between 0 and 10”);
}

Writing the code like this makes it simpler and therefore easier to read. Plus it also saves JavaScript from
testing a condition to which you already know the answer.

25937c03.indd 6425937c03.indd 64 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

65

Chapter 3: Decisions, Loops, and Functions

You could also include another if statement with the else statement. For example

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10”);
}
else if ((myAge >= 30 && myAge <= 39) || (myAge >= 80 && myAge <= 89))
{
 document.write(“myAge is between 30 and 39 “ +
 “or myAge is between 80 and 89”);
}
else
{
 document.write(“myAge is NOT between 0 and 10, “ +
 “nor is it between 30 and 39, nor is it between 80 and 89”);
}

The fi rst if statement checks whether myAge is between 0 and 10 and executes some code if that’s
true. If it’s false, an else if statement checks if myAge is between 30 and 39 or 80 and 89, and
executes some other code if either of those conditions is true. Failing that, you have a fi nal else state-
ment, which catches the situation in which the value of myAge did not trigger true in any of the earlier
if conditions.

When using if and else if, you need to be extra careful with your curly braces to ensure that the
if and else if statements start and stop where you expect, and you don’t end up with an else that
doesn’t belong to the right if. This is quite tricky to describe with words — it’s easier to see what we
mean with an example.

if (myAge >= 0 && myAge <= 10)
{
document.write(“myAge is between 0 and 10”);
if (myAge == 5)
{
document.write(“You’re 5 years old”);
}
else
{
document.write(“myAge is NOT between 0 and 10”);
}

Notice that we haven’t indented the code. Although this does not matter to JavaScript, it does make the
code more diffi cult for humans to read and hides the missing curly brace that should be before the fi nal
else statement.

Correctly formatted and with the missing bracket inserted, the code looks like this:

if (myAge >= 0 && myAge <= 10)
{
 document.write(“myAge is between 0 and 10
”);
 if (myAge == 5)
 {
 document.write(“You’re 5 years old”);
 }

25937c03.indd 6525937c03.indd 65 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

66

Chapter 3: Decisions, Loops, and Functions

}
else
{
 document.write(“myAge is NOT between 0 and 10”);
}

As you can see, the code is working now; it is also a lot easier to see which code is part of which if
block.

Comparing Strings
Up to this point, you have been looking exclusively at using comparison operators with numbers.
However, they work just as well with strings. All that’s been said and done with numbers applies to
strings, but with one important difference. You are now comparing data alphabetically rather than
numerically, so there are a few traps to watch out for.

In the following code, you compare the variable myName, which contains the string “Paul”, with the
string literal “Paul”.

var myName =”Paul”;
if (myName == “Paul”)
{
 alert(“myName is Paul”);
}

How does JavaScript deal with this? Well, it goes through each letter in turn on the LHS and checks it
with the letter in the same position on the RHS to see if it’s actually the same. If at any point it fi nds a
difference, it stops, and the result is false. If, after having checked each letter in turn all the way to the
end, it confi rms that they are all the same, it returns true. The condition in the preceding if statement
will return true, so you’ll see an alert box.

However, string comparison in JavaScript is case sensitive. So “P” is not the same as “p”. Taking the
preceding example, but changing the variable myName to “paul”, you fi nd that the condition is false
and the code inside the if statement does not execute.

var myName =”paul”;
if (myName == “Paul”)
{
 alert(“myName is Paul”);
}

The >=, >, <=, and < operators work with strings as well as with numbers, but again it is an alphabetical
comparison. So “A” < “B” is true, because A comes before B in the alphabet. However, JavaScript’s case
sensitivity comes into play again. “A” < “B” is true, but “a” < “B” is false. Why? Because uppercase
letters are treated as always coming before lowercase letters. Why is this? Each letter has a code number
in the ASCII and Unicode character sets, and the code numbers for uppercase letters are lower than the
code numbers for lowercase letters. This is something to watch out for when writing your own code.

The simplest way to avoid confusion with different cases is to convert both strings to either uppercase or
lowercase before you compare them. You can do this easily using the toUpperCase() or toLowerCase()
function, which you’ll learn about in Chapter 4.

25937c03.indd 6625937c03.indd 66 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

67

Chapter 3: Decisions, Loops, and Functions

The switch Statement
You saw earlier how the if and else if statements could be used for checking various conditions; if the
fi rst condition is not valid, then another is checked, and another, and so on. However, when you want
to check the value of a particular variable for a large number of possible values, there is a more effi cient
alternative, namely the switch statement. The structure of the switch statement is given in Figure 3-7.

The best way to think of the switch statement is “Switch to the code where the case matches.” The
switch statement has four important elements:

The test expression ❑

The ❑ case statements

The ❑ break statements

The ❑ default statement

Variable expression being checked

These curly braces mark out
the start and end of the switch
statement’s case statements. Checking for possible values.

If a match is found, then execution
starts below the case statement
and ends at the break statement.

This code executes when none of
the case statements match.

switch (myName)
{
 case “Paul”:
 // some code
 break;

 case “John”:
 // some other code
 break;

 default:
 //default code
 break;
}

Figure 3-7

The test expression is given in the parentheses following the switch keyword. In the previous example,
you are testing using the variable myName. Inside the parentheses, however, you could have any valid
expression.

Next come the case statements. The case statements do the condition checking. To indicate which
case statements belong to your switch statement, you must put them inside the curly braces follow-
ing the test expression. Each case statement specifi es a value, for example “Paul”. The case statement
then acts like if (myName == “Paul”). If the variable myName did contain the value “Paul”, execution
would commence from the code starting below the case “Paul” statement and would continue to the
end of the switch statement. This example has only two case statements, but you can have as many as
you like.

In most cases, you want only the block of code directly underneath the relevant case statement to
execute, not all the code below the relevant case statement, including any other case statements.

25937c03.indd 6725937c03.indd 67 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

68

Chapter 3: Decisions, Loops, and Functions

To achieve this, you put a break statement at the end of the code that you want executed. This tells
JavaScript to stop executing at that point and leave the switch statement.

Finally you have the default case, which (as the name suggests) is the code that will execute when
none of the other case statements match. The default statement is optional; if you have no default
code that you want to execute, you can leave it out, but remember that in this case no code will execute
if no case statements match. It is a good idea to include a default case, unless you are absolutely sure
that you have all your options covered.

Try It Out Using the switch Statement
Let’s take a look at the switch statement in action. The following example illustrates a simple guessing
game. Type the code and save it as ch3_examp3.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var secretNumber = prompt(“Pick a number between 1 and 5:”, “”);
secretNumber = parseInt(secretNumber);

switch (secretNumber)
{
case 1:
 document.write(“Too low!”);
 break;

case 2:
 document.write(“Too low!”);
 break;

case 3:
 document.write(“You guessed the secret number!”);
 break;

case 4:
 document.write(“Too high!”);
 break;

case 5:
 document.write(“Too high!”);
 break;

default:
 document.write(“You did not enter a number between 1 and 5.”);
 break;
}

25937c03.indd 6825937c03.indd 68 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

69

Chapter 3: Decisions, Loops, and Functions

document.write(“
Execution continues here”);

</script>

</body>
</html>

Load this into your browser and enter, for example, the value 1 in the prompt box. You should then see
something like what is shown in Figure 3-8.

Too low!
Execution continues here

Figure 3-8

If, on the other hand, you enter the value 3, you should see a friendly message letting you know that
you guessed the secret number correctly, as shown in Figure 3-9.

You guessed the secret number!
Execution continues here

Figure 3-9

First you declare the variable secretNumber and set it to the value entered by the user via the prompt
box. Note that you use the parseInt() function to convert the string that is returned from prompt()
to an integer value.

var secretNumber = prompt(“Pick a number between 1 and 5:”, “”);
secretNumber = parseInt(secretNumber);

Next you create the start of the switch statement.

switch (secretNumber)
{

The expression in parentheses is simply the variable secretNumber, and it’s this number that the case
statements will be compared against.

You specify the block of code encompassing the case statements using curly braces. Each case state-
ment checks one of the numbers between 1 and 5, because this is what you have specifi ed to the user
that she should enter. The fi rst simply outputs a message that the number she has entered is too low.

case 1:
 document.write(“Too low!”);
 break;

The second case statement, for the value 2, has the same message, so the code is not repeated here. The
third case statement lets the user know that she has guessed correctly.

case 3:
 document.write(“You guessed the secret number!”);
 break;

25937c03.indd 6925937c03.indd 69 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

70

Chapter 3: Decisions, Loops, and Functions

Finally, the fourth and fi fth case statements output a message that the number the user has entered is
too high.

case 4:
 document.write(“Too high!”);
 break;

You do need to add a default case in this example, since the user might very well (despite the instruc-
tions) enter a number that is not between 1 and 5, or even perhaps a letter. In this case, you add a mes-
sage to let the user know that there is a problem.

default:
 document.write(“You did not enter a number between 1 and 5.”);
 break;

A default statement is also very useful for picking up bugs — if you have coded some of the case
statements incorrectly, you will pick that up very quickly if you see the default code being run when it
shouldn’t be.

You fi nally have added the closing brace indicating the end of the switch statement. After this you out-
put a line to indicate where the execution continues.

}
document.write(“
Execution continues here”);

Note that each case statement ends with a break statement. This is important to ensure that execution
of the code moves to the line after the end of the switch statement. If you forget to include this, you
could end up executing the code for each case following the case that matches.

Executing the Same Code for Different Cases
You may have spotted a problem with the switch statement in this example — you want to execute the
same code if the user enters a 1 or a 2, and the same code for a 4 or a 5. However, in order to achieve
this, you have had to repeat the code in each case. What you want is an easier way of getting JavaScript
to execute the same code for different cases. Well, that’s easy! Simply change the code so that it looks
like this:

switch (secretNumber)
{
case 1:
case 2:
 document.write(“Too low!”);
 break;

case 3:
 document.write(“You guessed the secret number!”);
 break;

case 4:
case 5:

25937c03.indd 7025937c03.indd 70 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

71

Chapter 3: Decisions, Loops, and Functions

 document.write(“Too high!”);
 break;

default:
 document.write(“You did not enter a number between 1 and 5.”);
 break;
}

If you load this into your browser and experiment with entering some different numbers, you should
see that it behaves exactly like the previous code.

Here, you are making use of the fact that if there is no break statement underneath the code for a certain
case statement, execution will continue through each following case statement until a break statement
or the end of the switch is reached. Think of it as a sort of free fall through the switch statement until
you hit the break statement.

If the case statement for the value 1 is matched, execution simply continues until the break statement
under case 2, so effectively you can execute the same code for both cases. The same technique is used
for the case statements with values 4 and 5.

Looping — The for and while Statements
Looping means repeating a block of code when a condition is true. This is achieved in JavaScript with
the use of two statements, the while statement and the for statement. You’ll be looking at these shortly,
but why would you want to repeat blocks of code anyway?

Well, take the situation where you have a series of results, say the average temperature for each month
in a year, and you want to plot these on a graph. The code needed for plotting each point will most likely
be the same. So, rather than write the code 12 times (once for each point), it’s much easier to execute the
same code 12 times by using the next item of data in the series. This is where the for statement would
come in handy, because you know how many times you want the code to execute.

In another situation, you might want to repeat the same piece of code when a certain condition is true,
for example, while the user keeps clicking a Start Again button. In this situation, the while statement
would be very useful.

The for Loop
The for statement enables you to repeat a block of code a certain number of times. The syntax is illus-
trated in Figure 3-10.

Let’s look at the makeup of a for statement. You can see from Figure 3-10 that, just like the if and switch
statements, the for statement also has its logic inside parentheses. However, this time that logic split
into three parts, each part separated by a semicolon. For example, in Figure 3-10 you have the following:

(var loopCounter = 1; loopCounter <= 3; loopCounter++)

25937c03.indd 7125937c03.indd 71 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

72

Chapter 3: Decisions, Loops, and Functions

Increment loop variableLoop test condition

Code looped through

Initialize loop variable

for (loopCounter = 1; loopCounter <= 3; loopCounter++)
{
 // execute this code
}

Figure 3-10

The fi rst part of the for statement’s logic is the initialization part of the for statement. To keep track of
how many times you have looped through the code, you need a variable to keep count. It’s in the initial-
ization part that you initialize variables. In the example you have declared loopCounter and set it to
the value of 1. This part is only executed once during the execution of the loops, unlike the other parts.
You don’t need to declare the variable if it was declared earlier in the code.

var loopCounter;
for (loopCounter = 1; loopCounter <= 3; loopCounter++)

Following the semicolon, you have the test condition part of the for statement. The code inside the for
statement will keep executing for as long as this test condition evaluates to true. After the code is looped
through each time, this condition is tested. In Figure 3-10, you execute for as long as loopCounter is less
than or equal to 3. The number of times a loop is performed is often called the number of iterations.

Finally, you have the increment part of the for loop, where variables in our loop’s test condition have
their values incremented. Here you can see that loopCounter is incremented by one by means of the
++ operator you saw in Chapter 2. Again, this part of the for statement is repeated with every loop of
the code. Although we call it the increment part, it can actually be used to decrease or decrement the
value — for example, if you wanted to count down from the top element in an array to the fi rst.

After the for statement comes the block of code that will be executed repeatedly, as long as the test con-
dition is true. This block of code is contained within curly braces. If the condition is never true, even
at the fi rst test of the loop condition, then the code inside the for loop will be skipped over and never
executed.

Putting all this together, how does the for loop work?

 1. Execute initialization part of the for statement.

 2. Check the test condition. If true, continue; if not, exit the for statement.

25937c03.indd 7225937c03.indd 72 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

73

Chapter 3: Decisions, Loops, and Functions

 3. Execute code in the block after the for statement.

 4. Execute the increment part of the for statement.

 5. Repeat steps 2 through 4 until the test condition is false.

Try It Out Converting a Series of Fahrenheit Values
Let’s change the temperature converter so that it converts a series of values, stored in an array, from
Fahrenheit to centigrade. You will be using the for statement to go through each element of the array.
Type the code and save it as ch3_examp4.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var degFahren = new Array(212, 32, -459.15);
var degCent = new Array();
var loopCounter;

for (loopCounter = 0; loopCounter <= 2; loopCounter++)
{
 degCent[loopCounter] = 5/9 * (degFahren[loopCounter] - 32);
}

for (loopCounter = 2; loopCounter >= 0; loopCounter--)
{
 document.write(“Value “ + loopCounter + “ was “ + degFahren[loopCounter] +
 “ degrees Fahrenheit”);
 document.write(“ which is “ + degCent[loopCounter] +
 “ degrees centigrade
“);
}

</script>

</body>
</html>

On loading this into your browser, you’ll see a series of three lines in the page, containing the results of
converting our array of Fahrenheit values into centigrade (as shown in Figure 3-11).

Value 2 was –459.15 degrees Fahrenheit which is –272.8611111111111 degrees centigrade
Value 1 was 32 degrees Fahrenheit which is 0 degrees centigrade
Value 0 was 212 degrees Fahrenheit which is 100 degrees centigrade

Figure 3-11

The fi rst task is to declare the variables you are going to use. First, you declare and initialize degFahren
to contain an array of three values: 212, 32, and –459.15. Next, degCent is declared as an empty array.

25937c03.indd 7325937c03.indd 73 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

74

Chapter 3: Decisions, Loops, and Functions

Finally, loopCounter is declared and will be used to keep track of which array index you are accessing
during your looping.

var degFahren = new Array(212, 32, -459.15);
var degCent = new Array();
var loopCounter;

Following this comes our fi rst for loop.

for (loopCounter = 0; loopCounter <= 2; loopCounter++)
{
 degCent[loopCounter] = 5/9 * (degFahren[loopCounter] - 32);
}

In the fi rst line, you start by initializing the loopCounter to 0. Then the for loop’s test condition,
loopCounter <= 2, is checked. If this condition is true, the loop executes for the fi rst time. After the
code inside the curly braces has executed, the incrementing part of the for loop, loopCounter++, will
be executed, and then the test condition will be re-evaluated. If it’s still true, another execution of the
loop code is performed. This continues until the for loop’s test condition evaluates to false, at which
point looping will end, and the fi rst statement after the closing curly brace will be executed.

The code inside the curly braces is the equation you saw in earlier examples, only this time you are
placing its result into the degCent array, with the index being the value of loopCounter.

In the second for loop, you write the results contained in the degCent array to the screen.

for (loopCounter = 2; loopCounter >= 0; loopCounter--)
{
 document.write(“Value “ + loopCounter + “ was “ + degFahren[loopCounter] +
 “ degrees Fahrenheit”);
 document.write(“ which is “ + degCent[loopCounter] +
 “ degrees centigrade
”);
}

This time you’re counting down from 2 to 0. The variable loopCounter is initialized to 2, and the loop
condition remains true until loopCounter is less than 0. This time loopCounter is actually decremented
each time rather than incremented, by means of loopCounter-- . Again, loopCounter is serving a
dual purpose: It keeps count of how many loops you have done and also provides the index position in
the array.

Note that in these examples, you’ve used whole numbers in your loops. However, there is no reason why
you can’t use fractional numbers, although it’s much less common to do so.

The for...in Loop
This loop works primarily with arrays, and as you’ll see in the next chapter, it also works with something
called objects. It enables you to loop through each element in the array without having to know how many
elements the array actually contains. In plain English, what this loop says is “For each element in the array,
execute some code.” Rather than having to work out the index number of each element, the for...in loop
does it for you and automatically moves to the next index with each iteration (loop through).

25937c03.indd 7425937c03.indd 74 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

75

Chapter 3: Decisions, Loops, and Functions

Its syntax for use with arrays is:

for (index in arrayName)
{
 //some code
}

In this code extract, index is a variable you declare prior to the loop, which will automatically be popu-
lated with the next index value in the array. arrayName is the name of the variable holding the array
you want to loop through.

Let’s look at an example to make things clearer. You’ll defi ne an array and initialize it with three values.

var myArray = new Array(“Paul”,”Paula”,”Pauline”);

To access each element using a conventional for loop, you’d write this:

var loopCounter;
for (loopCounter = 0; loopCounter < 3; loopCounter++)
{
 document.write(myArray[loopCounter]);
}

To do exactly the same thing with the for...in loop, you write this:

var elementIndex;
for (elementIndex in myArray)
{
 document.write(myArray[elementIndex]);
}

As you can see, the code in the second example is a little clearer, as well as shorter. Both methods work
equally well and will iterate three times. However, if you increase the size of the array, for example,
by adding the element myArray[3] = “Philip”, the fi rst method will still loop only through the fi rst
three elements in the array, whereas the second method will loop through all four elements.

The while Loop
Whereas the for loop is used for looping a certain number of times, the while loop enables you to test a
condition and keep on looping while it’s true. The for loop is useful when you know how many times you
need to loop, for example when you are looping through an array that you know has a certain number of
elements. The while loop is more useful when you don’t know how many times you’ll need to loop. For
example, if you are looping through an array of temperature values and want to continue looping when the
temperature value contained in the array element is less than 100, you will need to use the while statement.

Let’s take a look at the structure of the while statement, as illustrated in Figure 3-12.

25937c03.indd 7525937c03.indd 75 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

76

Chapter 3: Decisions, Loops, and Functions

Condition—keep looping while this
condition is still true

Code looped through

while (degCent != 100)
{
 // some code
}

Figure 3-12

You can see that the while loop has fewer parts to it than the for loop. The while loop consists of a con-
dition which, if it evaluates to true, causes the block of code inside the curly braces to execute once; then
the condition is re-evaluated. If it’s still true, the code is executed again, the condition is re-evaluated,
and so on until the condition evaluates to false.

One thing to watch out for is that if the condition is false to start with, the while loop never executes.
For example:

degCent = 100;

while (degCent != 100)
{
 // some code
}

Here, the loop will run if degCent does not equal 100. However, since degCent is 100, the condition is
false, and the code never executes.

In practice you would normally expect the loop to execute once; whether it executes again will depend
on what the code inside the loop has done to variables involved in the loop condition. For example:

degCent = new Array();
degFahren = new Array(34, 123, 212);
var loopCounter = 0;
while (loopCounter < 3)
{
 degCent[loopCounter] = 5/9 * (degFahren[loopCounter] - 32);
 loopCounter++;
}

The loop will execute so long as loopCounter is less than 3. It’s the code inside the loop (loopCounter++;)
that increments loopCounter and will eventually cause loopCounter < 3 to be false so that the loop
stops. Execution will then continue on the fi rst line after the closing brace of the while statement.

25937c03.indd 7625937c03.indd 76 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

77

Chapter 3: Decisions, Loops, and Functions

Something to watch out for is the infi nite loop — a loop that will never end. Suppose you forgot to include
the loopCounter++; line in the code. Leaving this line out would mean that loopCounter will remain
at 0, so the condition (loopCounter < 3) will always be true, and the loop will continue until the user
gets bored and cross, and shuts down her browser. However, it is an easy mistake to make and one
JavaScript won’t warn you about.

It’s not just missing lines that can cause infi nite loops but also mistakes inside the loop’s code. For
example:

var testVariable = 0;
while (testVariable <= 10)
{
 alert(“Test Variable is “ + testVariable);
 testVariable++;
 if (testVariable = 10)
 {
 alert(“The last loop”);
 }
}

See if you can spot the deliberate mistake that leads to an infi nite loop — yes, it’s the if statement that will
cause this code to go on forever. Instead of using == as the comparison operator in the condition of the if
statement, you put =, so testVariable is set to 10 again in each loop, despite the line testVariable++.
This means that at the start of each loop, the test condition always evaluates to true, since 10 is less than or
equal to 10. Put the extra = in to make if (testVariable == 10), and everything is fi ne.

The do...while loop
With the while loop, you saw that the code inside the loop only executes if the condition is true; if
it’s false, the code never executes, and execution instead moves to the fi rst line after the while loop.
However, there may be times when you want the code in the while loop to execute at least once,
regardless of whether the condition in the while statement evaluates to true. It might even be that
some code inside the while loop needs to be executed before you can test the while statement’s condi-
tion. It’s situations like this for which the do...while loop is ideal.

Look at an example in which you want to get the user’s age via a prompt box. You want to show the
prompt box but also make sure that what the user has entered is a number.

var userAge;
do
{
 userAge = prompt(“Please enter your age”,””)
}
while (isNaN(userAge) == true);

The code line within the loop —

userAge = prompt(“Please enter your age”,””)

 — will be executed regardless of the while statement’s condition. This is because the condition is not
checked until one loop has been executed. If the condition is true, the code is looped through again. If
it’s false, looping stops.

25937c03.indd 7725937c03.indd 77 9/20/09 11:41:33 PM9/20/09 11:41:33 PM

78

Chapter 3: Decisions, Loops, and Functions

Note that within the while statement’s condition, you are using the isNaN() function that you saw in
Chapter 2. This checks whether the userAge variable’s value is NaN (not a number). If it is not a num-
ber, the condition returns a value of true; otherwise it returns false. As you can see from the example,
it enables you to test the user input to ensure the right data has been entered. The user might lie about
his age, but at least you know he entered a number!

The do...while loop is fairly rare; there’s not much you can’t do without it, so it’s best avoided unless
really necessary.

The break and continue Statements
You met the break statement earlier when you looked at the switch statement. Its function inside a
switch statement is to stop code execution and move execution to the next line of code after the closing
curly brace of the switch statement. However, the break statement can also be used as part of the for
and while loops when you want to exit the loop prematurely. For example, suppose you’re looping
through an array, as you did in the temperature conversion example, and you hit an invalid value. In
this situation, you might want to stop the code in its tracks, notify the user that the data is invalid, and
leave the loop. This is one situation where the break statement comes in handy.

Let’s see how you could change the example where you converted a series of Fahrenheit values
(ch3_examp4.htm) so that if you hit a value that’s not a number you stop the loop and let the user
know about the invalid data.

<script language=”JavaScript” type=”text/javascript”>
var degFahren = new Array(212, “string data”, -459.67);
var degCent = new Array();
var loopCounter;

for (loopCounter = 0; loopCounter <= 2; loopCounter++)
{
 if (isNaN(degFahren[loopCounter]))
 {
 alert(“Data ‘“ + degFahren[loopCounter] + “‘ at array index “ +
 loopCounter + “ is invalid”);
 break;
 }

 degCent[loopCounter] = 5/9 * (degFahren[loopCounter] - 32);
}

You have changed the initialization of the degFahren array so that it now contains some invalid data.
Then, inside the for loop, an if statement is added to check whether the data in the degFahren array
is not a number. This is done by means of the isNaN() function; it returns true if the value passed to
it in the parentheses, here degFahren[loopCounter], is not a number. If the value is not a number,
you tell the user where in the array you have the invalid data. Then you break out of the for loop alto-
gether, using the break statement, and code execution continues on the fi rst line after the end of the
for statement.

That’s the break statement, but what about continue? The continue statement is similar to break in
that it stops the execution of a loop at the point where it is found, but instead of leaving the loop, it starts

25937c03.indd 7825937c03.indd 78 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

79

Chapter 3: Decisions, Loops, and Functions

execution at the next iteration, starting with the for or while statement’s condition being re-evaluated,
just as if the last line of the loop’s code had been reached.

In the break example, it was all or nothing — if even one piece of data was invalid, you broke out of the
loop. It might be better if you tried to convert all the values in degFahren, but if you hit an invalid item
of data in the array, you notify the user and continue with the next item, rather than giving up as our
break statement example does.

 if (isNaN(degFahren[loopCounter]))
 {
 alert(“Data ‘“ + degFahren[loopCounter] + “‘ at array index “ +
 loopCounter + “ is invalid”);
 continue;
 }

Just change the break statement to a continue. You will still get a message about the invalid data, but
the third value will also be converted.

Functions
A function is something that performs a particular task. Take a pocket calculator as an example. It per-
forms lots of basic calculations, such as addition and subtraction. However, many also have function keys
that perform more complex operations. For example, some calculators have a button for calculating the
square root of a number, and others even provide statistical functions, such as the calculation of an average.
Most of these functions could be done with the basic mathematical operations of add, subtract, multiply,
and divide, but that might take a lot of steps — it’s much simpler for the user if she only needs to press
one button. All she needs to do is provide the data — numbers in this case — and the function key does
the rest.

Functions in JavaScript work a little like the function buttons on a pocket calculator: They encapsu-
late a block of code that performs a certain task. Over the course of the book so far, you have come
across a number of handy built-in functions that perform a certain task, such as the parseInt()
and parseFloat() functions, which convert strings to numbers, and the isNaN() function, which
tells you whether a particular value can be converted to a number. Some of these functions return data,
such as parseInt(), which returns an integer number; others simply perform an action but return no
data. You’ll also notice that some functions can be passed data, whereas others cannot. For example, the
isNaN() function needs to be passed some data, which it checks to see if it is NaN. The data that a func-
tion requires to be passed are known as its parameter(s).

As you work your way through the book, you’ll be coming across many more useful built-in functions,
but wouldn’t it be great to be able to write your own functions? After you’ve worked out, written, and
debugged a block of code to perform a certain task, it would be nice to be able to call it again and again
when you need it. JavaScript gives us the ability to do just that, and this is what you’ll be concentrating
on in this section.

Creating Your Own Functions
Creating and using your own functions is very simple. Figure 3-13 shows an example of a function.

25937c03.indd 7925937c03.indd 79 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

80

Chapter 3: Decisions, Loops, and Functions

function name

code that executes when
the function is called

function convertToCentigrade (degFahren)
{
 var degCent;
 degCent = 5/9 * (degFahren – 32);

 return degCent;
}

function parameter

Figure 3-13

You’ve probably already realized what this function does and how the code works. Yes, it’s the infa-
mous Fahrenheit-to-centigrade conversion code again.

Each function you defi ne in JavaScript must be given a unique name for that particular page. The name
comes immediately after the function keyword. To make life easier for yourself, try using meaningful
names so that when you see it being used later in your code, you’ll know exactly what it does. For example,
a function that takes as its parameters someone’s birthday and today’s date and returns the person’s age
could be called getAge(). However, the names you can use are limited, much as variable names are. For
example, you can’t use words reserved by JavaScript, so you can’t call your function with() or while().

The parameters for the function are given in parentheses after the function’s name. A parameter is just
an item of data that the function needs to be given in order to do its job. Usually, not passing the required
parameters will result in an error. A function can have zero or more parameters, though even if it has
no parameters, you must still put the open and close parentheses after its name. For example, the top of
your function defi nition must look like the following:

function myNoParamFunction()

You then write the code, which the function will execute when called on to do so. All the function code
must be put in a block with a pair of curly braces.

Functions also give you the ability to return a value from a function to the code that called it. You use
the return statement to return a value. In the example function given earlier, you return the value of
the variable degCent, which you have just calculated. You don’t have to return a value if you don’t want
to, but you should always include a return statement at the end of your function, although JavaScript is
a very forgiving language and won’t have a problem if you don’t use a return statement at all.

When JavaScript comes across a return statement in a function, it treats it a bit like a break statement
in a for loop — it exits the function, returning any value specifi ed after the return keyword.

You’ll probably fi nd it useful to build up a “library” of functions that you use frequently in JavaScript
code, which you can cut and paste into your page whenever you need them.

Having created your functions, how do you use them? Unlike the code you’ve seen so far, which executes
when JavaScript reaches that line, functions only execute if you ask them to, which is termed calling or

25937c03.indd 8025937c03.indd 80 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

81

Chapter 3: Decisions, Loops, and Functions

invoking the function. You call a function by writing its name at the point where you want it to be called
and making sure that you pass any parameters it needs, separated by commas. For example:

myTemp = convertToCentigrade(212);

This line calls the convertToCentigrade() function you saw earlier, passing 212 as the parameter
and storing the return value from the function (that is, 100) in the myTemp variable.

Have a go at creating your own functions now, taking a closer look at how parameters are passed.
Parameter passing can be a bit confusing, so you’ll fi rst create a simple function that takes just one param-
eter (the user’s name) and writes it to the page in a friendly welcome string. First, you need to think
of a name for your function. A short but descriptive name is writeUserWelcome(). Now you need to
defi ne what parameters the function expects to be passed. There’s only one parameter — the user name.
Defi ning parameters is a little like defi ning variables — you need to stick to the same rules for naming,
so that means no spaces, special characters, or reserved words. Let’s call your parameter userName. You
need to add it inside parentheses to the end of the function name (note that you don’t put a semicolon at
the end of the line).

function writeUserWelcome(userName)

Okay, now you have defi ned your function name and its parameters; all that’s left is to create the func-
tion body — that is, the code that will be executed when the function is called. You mark out this part of
the function by wrapping it in curly braces.

function writeUserWelcome(userName)
{
 document.write(“Welcome to my website “ + userName + “
”);
 document.write(“Hope you enjoy it!”);
}

The code is simple enough; you write out a message to the web page using document.write(). You
can see that userName is used just as you’d use any normal variable; in fact, it’s best to think of param-
eters as normal variables. The value that the parameter has will be that specifi ed by the JavaScript code
where the function was called.

Let’s see how you would call this function.

writeUserWelcome(“Paul”);

Simple, really — just write the name of the function you want to call, and then in parentheses add the
data to be passed to each of the parameters, here just one piece. When the code in the function is executed,
the variable userName, used in the body of the function code, will contain the text “Paul”.

Suppose you wanted to pass two parameters to your function — what would you need to change? Well,
fi rst you’d have to alter the function defi nition. Imagine that the second parameter will hold the user’s
age — you could call it userAge since that makes it pretty clear what the parameter’s data represents.
Here is the new code:

function writeUserWelcome(userName, userAge)
{
 document.write(“Welcome to my website” + userName + “
”);

25937c03.indd 8125937c03.indd 81 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

82

Chapter 3: Decisions, Loops, and Functions

 document.write(“Hope you enjoy it
”);
 document.write(“Your age is “ + userAge);
}

You’ve added a line to the body of the function that uses the parameter you have added. To call the
function, you’d write the following:

writeUserWelcome(“Paul”,31);

The second parameter is a number, so there is no need for quotes around it. Here the userName param-
eter will be Paul, and the second parameter, userAge, will be 31.

Try It Out Fahrenheit to Centigrade Function
Let’s rewrite the temperature converter page using functions. You can cut and paste most of this code
from ch3_examp4.htm — the parts that have changed have been highlighted. When you’ve fi nished,
save it as ch3_examp5.htm.

<html>
<body>

<script language=”JavaScript” type=”text/javascript”>

function convertToCentigrade(degFahren)
{
 var degCent;
 degCent = 5/9 * (degFahren - 32);

 return degCent;
}

var degFahren = new Array(212, 32, -459.15);
var degCent = new Array();
var loopCounter;

for (loopCounter = 0; loopCounter <= 2; loopCounter++)
{
 degCent[loopCounter] = convertToCentigrade(degFahren[loopCounter]);
}

for (loopCounter = 2; loopCounter >= 0; loopCounter--)
{
 document.write(“Value “ + loopCounter + “ was “ + degFahren[loopCounter] +
 “ degrees Fahrenheit”);
 document.write(“ which is “ + degCent[loopCounter] +
 “ degrees centigrade
”);
}

</script>

</body>
</html>

25937c03.indd 8225937c03.indd 82 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

83

Chapter 3: Decisions, Loops, and Functions

When you load this page into your browser, you should see exactly the same results that you had with
ch3_examp4.htm.

At the top of the script block you declare your convertToCentigrade() function. You saw this func-
tion earlier:

function convertToCentigrade(degFahren)
{
 var degCent;
 degCent = 5/9 * (degFahren - 32);

 return degCent;
}

If you’re using a number of separate script blocks in a page, it’s very important that the function be
defi ned before any script calls it. If you have a number of functions, you may want to put them all in
their own script block at the top of the page — between the <head> and </head> tags is good. That way
you know where to fi nd all your functions, and you can be sure that they have been declared before
they have been used.

You should be pretty familiar with how the code in the function works. You declare a variable degCent,
do your calculation, store its result in degCent, and then return degCent back to the calling code. The
function’s parameter is degFahren, which provides the information the calculation needs.

Following the function declaration is the code that executes when the page loads. First you defi ne the
variables you need, and then you have the two loops that calculate and then output the results. This is
mostly the same as before, apart from the fi rst for loop.

for (loopCounter = 0; loopCounter <= 2; loopCounter++)
{
 degCent[loopCounter] = convertToCentigrade(degFahren[loopCounter]);
}

The code inside the fi rst for loop puts the value returned by the function convertToCentigrade()
into the degCent array.

There is a subtle point to the code in this example. Notice that you declare the variable degCent
within your function convertToCentigrade(), and you also declare it as an array after the function
defi nition.

Surely this isn’t allowed?

Well, this leads neatly to the next topic of this chapter — variable scope.

Variable Scope and Lifetime
What is meant by scope? Well, put simply, it’s the scope or extent of a variable’s availability — which
parts of your code can access a variable and the data it contains. Any variables declared in a web page
outside of a function will be available to all script on the page, whether that script is inside a function or
otherwise — we term this a global or page-level scope. However, variables declared inside a function are

25937c03.indd 8325937c03.indd 83 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

84

Chapter 3: Decisions, Loops, and Functions

visible only inside that function — no code outside the function can access them. So, for example, you
could declare a variable degCent in every function you have on a page and once on the page outside
any function. However, you can’t declare the variable more than once inside any one function or more
than once on the page outside the functions. Note that reusing a variable name throughout a page in this
way, although not illegal, is not standard good practice — it can make the code very confusing to read.

Function parameters are similar to variables: They can’t be seen outside the function, and although you
can declare a variable in a function with the same name as one of its parameters, it would cause a lot of
confusion and might easily lead to subtle bugs being overlooked. It’s therefore bad coding practice and
best avoided, if only for the sake of your sanity when it comes to debugging!

So what happens when the code inside a function ends and execution returns to the point at which the
code was called? Do the variables defi ned within the function retain their value when you call the func-
tion the next time?

The answer is no: Variables not only have the scope property — where they are visible — but they also
have a lifetime. When the function fi nishes executing, the variables in that function die and their values are
lost, unless you return one of them to the calling code. Every so often JavaScript performs garbage collec-
tion (which we talked about in Chapter 2), whereby it scans through the code and sees if any variables
are no longer in use; if so, the data they hold are freed from memory to make way for the data of other
variables.

Given that global variables can be used anywhere, why not make all of them global? Global variables
are great when you need to keep track of data on a global basis. However, because they are available for
modifi cation anywhere in your code, it does mean that if they are changed incorrectly due to a bug, that
bug could be anywhere within the code, making debugging diffi cult. It’s best, therefore, to keep global
variable use to a minimum, though sometimes they are a necessary evil — for example, when you need
to share data among different functions.

Summary
In this chapter you have concluded your look at the core of the JavaScript language and its syntax.
Everything from now on builds on these foundations, and with the less interesting syntax under
your belt, you can move on to more interesting things in the remainder of the book.

The chapter looked at the following:

Decision making with the ❑ if and switch statements. The ability to make decisions is essen-
tially what gives the code its “intelligence.” Based on whether a condition is true or false, you
can decide on a course of action to follow.

Comparison operators. ❑ The comparison operators compare the value on the left of the opera-
tor (left-hand side, LHS) with the value on the right of the operator (right-hand side, RHS) and
return a Boolean value. Here is a list of the main comparison operators:

== ❑ is the LHS equal to the RHS?

!= ❑ is the LHS not equal to the RHS?

<= ❑ is the LHS less than or equal to the RHS?

25937c03.indd 8425937c03.indd 84 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

85

Chapter 3: Decisions, Loops, and Functions

>= ❑ is the LHS greater than or equal to the RHS?

< ❑ is the LHS less than the RHS?

> ❑ is the LHS greater than the RHS?

The ❑ if statement. Using the if statement, you can choose to execute a block of code (defi ned
by being in curly braces) when a condition is true. The if statement has a test condition, speci-
fi ed in parentheses. If this condition evaluates to true, the code after the if statement will
execute.

The ❑ else statement. If you want code to execute when the if statement is false, you can use
the else statement that appears after the if statement.

Logical operators. ❑ To combine conditions, you can use the three logical operators: AND, OR,
and NOT, represented by &&, ||, and !, respectively.

The AND operator returns ❑ true only if both sides of the expression are true.

The OR operator returns ❑ true when either one or both sides of an expression are true.

The NOT operator reverses the logic of an expression. ❑

The ❑ switch statement. This compares the result of an expression with a series of possible cases
and is similar in effect to a multiple if statement.

Looping with ❑ for, for...in, while, and do...while. It’s often necessary to repeat a block of
code a number of times, something JavaScript enables by looping.

The ❑ for loop. Useful for looping through code a certain number of times, the for loop
consists of three parts: the initialization, test condition, and increment parts. Looping
continues while the test condition is true. Each loop executes the block of code and
then executes the increment part of the for loop before re-evaluating the test condition
to see if the results of incrementing have changed it.

The ❑ for...in loop. This is useful when you want to loop through an array without
knowing the number of elements in the array. JavaScript works this out for you so that
no elements are missed.

The ❑ while loop. This is useful for looping through some code for as long as a test con-
dition remains true. It consists of a test condition and the block of code that’s executed
only if the condition is true. If the condition is never true, the code never executes.

The ❑ do...while loop. This is similar to a while loop, except that it executes the code
once and then keeps executing the code as long as the test condition remains true.

break ❑ and continue statements. Sometimes you have a good reason to break out of
a loop prematurely, in which case you need to use the break statement. On hitting a
break statement, code execution stops for the block of code marked out by the curly
braces and starts immediately after the closing brace. The continue statement is simi-
lar to break, except that when code execution stops at that point in the loop, the loop
is not broken out of but instead continues as if the end of that reiteration had been
reached.

Functions are reusable bits of code. ❑ JavaScript has a lot of built-in functions that provide pro-
grammers services, such as converting a string to a number. However, JavaScript also enables
you to defi ne and use your own functions using the function keyword. Functions can have
zero or more parameters passed to them and can return a value if you so wish.

25937c03.indd 8525937c03.indd 85 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

86

Chapter 3: Decisions, Loops, and Functions

Variable scope and lifetime. ❑ Variables declared outside a function are available globally — that
is, anywhere in the page. Any variables defi ned inside a function are private to that function
and can’t be accessed outside of it. Variables have a lifetime, the length of which depends on
where the variable was declared. If it’s a global variable, its lifetime is that of the page — while
the page is loaded in the browser, the variable remains alive. For variables defi ned in a function,
the lifetime is limited to the execution of that function. When the function has fi nished being
executed, the variables die, and their values are lost. If the function is called again later in the
code, the variables will be empty.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. A junior programmer comes to you with some code that appears not to work. Can you spot
where he went wrong? Give him a hand and correct the mistakes.

var userAge = prompt(“Please enter your age”);

if (userAge = 0);
{
 alert(“So you’re a baby!”);
}
else if (userAge < 0 | userAge > 200)
 alert(“I think you may be lying about your age”);
else
{
 alert(“That’s a good age”);
}

 2. Using document.write(), write code that displays the results of the 12 times table. Its output
should be the results of the calculations.

12 * 1 = 12
12 * 2 = 24
12 * 3 = 36
...
12 * 11 = 132
12 * 12 = 144

 3. Change the code of Question 2 so that it’s a function that takes as parameters the times table
required and the values at which it should start and end. For example, you might try the four
times table displayed starting with 4 * 4 and ending at 4 * 9.

 4. Modify the code of Question 3 to request the times table to be displayed from the user; the code
should continue to request and display times tables until the user enters -1. Additionally, do a
check to make sure that the user is entering a valid number; if the number is not valid, ask the
user to re-enter it.

25937c03.indd 8625937c03.indd 86 9/20/09 11:41:34 PM9/20/09 11:41:34 PM

4
Common Mistakes,

Debugging, and Error
Handling

Even a JavaScript guru makes mistakes, even if they are just annoying typos. In particular, when
code expands to hundreds of lines, the chance of something going wrong becomes much greater.
In proportion, the diffi culty in fi nding these mistakes, or bugs, also increases. In this chapter you
will look at various techniques that will help you minimize the problems that arise from this
situation.

You’ll start by taking a look at the top seven JavaScript coding mistakes. After you know what
they are, you’ll be able to look out for them when writing code, hopefully, so that you won’t make
them so often!

Then you’ll look at how you can cope with errors when they do happen, so that you prevent users
from seeing your coding mistakes.

Finally, you’ll look at the debugging tools in Microsoft’s Internet Explorer (IE8), Firebug (an add-on
for Firefox), Safari’s and Chrome’s Web Inspector, and Opera’s Dragonfl y. You’ll see how you can use
these tools to step through your code and check the contents of variables while the code is running,
a process that enables us to hunt for diffi cult bugs. You’ll also take a briefer look at the debugging
tools available for Firefox.

D’oh! I Can’t Believe I Just Did That:
Some Common Mistakes

There are seven common mistakes made by programmers. Some of these you’ll learn to avoid as
you become more experienced, but others may haunt you forever!

25937c04.indd 8725937c04.indd 87 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

88

Chapter 4: Common Mistakes, Debugging, and Error Handling

You’ll fi nd it very useful in this chapter if your browser is set up to show errors. You did this in
Chapter 2 in the section “Setting Up Your Browser for Errors.” So if you don’t already have error
display set up, now would be a good time to do so.

Undefi ned Variables
JavaScript is actually very easygoing when it comes to defi ning your variables before assigning values
to them. For example, the following will implicitly create the new global variable abc and assign it to the
value 23:

abc = 23;

Although strictly speaking, you should defi ne the variable explicitly with the var keyword like this:

var abc = 23;

Whether or not you use the var keyword to declare a variable has a consequence of what scope the
variable has; so it is always best to use the var keyword. If a variable is used before it has been defi ned,
an error will arise. For example, the following code will cause the error shown in Figure 4-1 in IE8 if the
variable abc has not been previously defi ned (explicitly or implicitly):

alert(abc);

Figure 4-1

In Firefox you’ll need to look in the JavaScript console, which you can view by choosing Tools ➪ Error
Console.

In addition, you must remember that function defi nitions also have parameters, which if not declared
correctly can lead to the same type of error.

Take a look at the following code:

function foo(parametrOne)
{
 alert(parameterOne);
}

25937c04.indd 8825937c04.indd 88 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

89

Chapter 4: Common Mistakes, Debugging, and Error Handling

If you call this function, you get an error message similar to the one shown in Figure 4-2.

Figure 4-2

The error here is actually a simple typo in the function defi nition. The fi rst parameter has the typo: it
should read parameterOne, not parametrOne. What can be confusing with this type of error is that
although the browser tells us the error is on one line, the source of the error is on another line.

Case Sensitivity
This is a major source of errors, particularly because it can be diffi cult to spot at times.

For example, spot the three case errors in the following code:

var myName = “Jeremy”;
If (myName == “jeremy”)
 alert(myName.toUppercase());

The fi rst error is the if keyword; the code above has If rather than if. However, JavaScript won’t tell
us that the error is an incorrect use of case, but instead IE will tell us Object expected and Firefox will
tell us that If is not defined. Although error messages give us some idea of what’s gone wrong, they
often do so in an oblique way. In this case IE thinks you are trying to use an object called an If object
and Firefox thinks you are trying to use an undefi ned function called If.

Okay, with that error cleared up, you come to the next error, not one of JavaScript syntax, but a logic
error. Remember that Jeremy does not equal jeremy in JavaScript, so myName == “jeremy” is false,
even though it’s quite likely that you didn’t care whether the word is jeremy or jeremy. This type of
error will result in no error message at all, just the code not executing as you’d planned.

The third fault is with the toUpperCase() method of the String object contained in myName. The
previous code uses toUppercase, with the C in lowercase. IE will give us the message Object doesn’t
support this property or method and Firefox will report that myName.toUppercase is not a
function. On fi rst glance it would be easy to miss such a small mistake and start checking your JavaScript
reference guide for that method. You might wonder why it’s there, but your code is not working. Again,
you always need to be aware of case, something that even experts get wrong from time to time.

25937c04.indd 8925937c04.indd 89 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

90

Chapter 4: Common Mistakes, Debugging, and Error Handling

Incorrect Number of Closing Braces
In the following code, you defi ne a function and then call it. However, there’s a deliberate mistake. See if
you can spot where it is.

function myFunction()
{
x = 1;
y = 2;
if (x <= y)
{
if (x == y)
{
alert(“x equals y”);
}
}
myFunction();

This is why formatting your code is important — you’ll have a much easier time spotting errors such
as this:

function myFunction()
{
 x = 1;
 y = 2;
 if (x <= y)
 {
 if (x == y)
 {
 alert(“x equals y”);
 }
 }
 myFunction();

Now you can see that the ending curly brace of the function is missing. When there are a lot of if, for,
or do while statements, it’s easy to have too many or too few closing braces. This type of problem is
much easier to spot with formatted code.

Incorrect Number of Closing Parentheses
Take a look at the following code:

if (myVariable + 12) / myOtherVariable < myString.length)

Spot the mistake? The problem is the missing parenthesis at the beginning of the condition. You want
myVariable + 12 to be calculated before the division by myOtherVariable is calculated, so quite
rightly you know you need to put it in parentheses.

(myVariable + 12) / myOtherVariable

25937c04.indd 9025937c04.indd 90 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

91

Chapter 4: Common Mistakes, Debugging, and Error Handling

However, the if statement’s condition must also be in parentheses. Not only is the initial parenthesis
missing, but there is one more closing parenthesis than opening parentheses. Like curly braces, each
opening parenthesis must have a closing parenthesis. The following code is correct:

if ((myVariable + 12) / myOtherVariable < myString.length)

It’s very easy to miss a parenthesis or have one too many when you have many opening and closing
parentheses.

Using Equals (=) Rather than Is Equal To (==)
Consider the following code:

var myNumber = 99;
if (myNumber = 101)
{
 alert(“myNumber is 101”);
}
else
{
 alert(“myNumber is “ + myNumber);
}

You’d expect, at fi rst glance, that the alert() method in the else part of the if statement would exe-
cute, telling us that the number in myNumber is 99, but it won’t. This code makes the classic mistake of
using the assignment operator (=) instead of the equality operator (==). Hence, instead of comparing
myNumber with 101, this code sets myNumber to equal 101. If you program in Visual Basic, or languages
like it that use only one equals sign for both comparison and assignment, you’ll fi nd that every so often
this mistake crops up. It’s just so easy to make.

What makes things even trickier is that no error message is raised; it is just your data and logic that will
suffer. Assigning a variable a value in an if statement may be perverse, but it’s perfectly legal, so there will
be no complaints from JavaScript. When embedded in a large chunk of code, a mistake like this is easily over-
looked. Just remember it’s worth checking for this error the next time your program’s logic seems crazy.

Using a Method as a Property and Vice Versa
Another common error is where either you forget to put parentheses after a method with no parameters,
or you use a property and do put parentheses after it.

When calling a method, you must always have parentheses following its name; otherwise, JavaScript
thinks that it must be a pointer to the method or a property. For example, examine the following code:

var nowDate = new Date();
alert(nowDate.getMonth);

The fi rst line creates an instance of the Date reference type. The second line attempts to call the getMonth()
method of the newly created Date object, except the parentheses are missing. The following is the cor-
rected code:

var nowDate = new Date();
alert(nowDate.getMonth());

25937c04.indd 9125937c04.indd 91 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

92

Chapter 4: Common Mistakes, Debugging, and Error Handling

Just as you should always have parentheses after a method, you should never have parentheses after a
property; otherwise, JavaScript thinks you are trying to use a method of that object:

var myString = “Hello, World!”;
alert(myString.length());

The second line adds parentheses after the length property, making JavaScript think it is a method.
This code should have been written like the following code:

var myString = new String(“Hello”);
alert(myString.length);

To compound the issue, it’s common for a function to be passed as a parameter to another function (or a
property as you’ll see in Chapter 6 when working with events). In these situations, you pass the function
without the opening and closing parentheses () at the end of the function name. Take a look at the
following code:

function foo()
{
 alert(“I’m in foo()!”).
}

function bar(fpToCall)
{
 alert(“Calling passed function”).
 fpToCall();
}

bar(foo);

This code defi nes two functions: foo() and bar(). The foo() function simply displays a message
box telling the user the foo() function is currently executing. The second function, bar(), accepts
one argument that is a function. It displays a message saying it’s calling the passed function, and then it
executes that function. The fi nal line calls the bar() function and passes a pointer of the foo() function.
A pointer is a reference to a location in memory (we’ll discuss memory references in the next chapter).

As a rule of thumb, use parentheses at the end of the function name when you want to execute the
function, and leave the parentheses off when passing the function to another function or property.

Missing Plus Signs During Concatenation
In the following code, there’s a deliberate concatenation mistake:

var myName = “Jeremy”;
var myString = “Hello”;
var myOtherString = “World”;
myString = myName + “ said “ + myString + “ “ myOtherString;
alert(myString);

There should be a + operator between “ “ and myOtherString in the fourth line of code.

25937c04.indd 9225937c04.indd 92 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

93

Chapter 4: Common Mistakes, Debugging, and Error Handling

Although easy to spot in just a few lines, this kind of mistake can be harder to spot in large chunks of code.
Also, the error message this type of mistake causes can be misleading. Load this code into a browser and
you’ll be told Error : Expected by IE and Missing ; before statement by Firefox. It’s surprising how
often this error crops up.

These most common mistakes are errors caused by the programmer. There are other types of errors, called
run-time errors, that occur when your code executes in the browser, and they aren’t necessarily caused
by a typo, missing curly brace, parenthesis, or other pitfalls discussed. These types of errors can still be
planned for, as you’ll see in the next section.

Error Handling
When writing your programs, you want to be informed of every error. However, the last thing you want
the user to see are error messages when you fi nally deploy the code to a web server for the whole world
to access. Of course, writing bug-free code would be a good start, but keep the following points in mind:

Occasions arise when conditions beyond your control lead to errors. A good example of this is ❑

when you are relying on something, such as a Java applet, that isn’t on the user’s computer and
that you have no way of checking for.

Murphy’s Law states that anything that can go wrong will go wrong! ❑

Preventing Errors
The best way to handle errors is to stop them from occurring in the fi rst place. That seems like stating
the obvious, but there are a number of things you should do if you want error-free pages.

Thoroughly check pages in as many browsers as possible. This is easier said than done on some ❑

operating systems. The alternative is for you to decide which browsers you want to support for
your web page, and then verify that your code works in them. Use the browser checking code
found earlier in the book to send unsupported users to a nice, safe, and probably boring web
page with reduced functionality, or maybe just supply them with a message that their browser
and/or platform is not supported.

Validate your data. If users can enter dud data that will cause your program to fail, then they ❑

will. Make sure that a textbox has data entered into it if your code fails if the text box is empty.
If you need a whole number, you must make sure the user entered one. Is the date the user just
entered valid? Is the e-mail address mind your own business the user just entered likely to be
valid? No, so you must check that it is in the format something@something.something.

Okay, so let’s say you carefully checked your pages and there is not a syntax or logic error in sight. You
added data validation that confi rms that everything the user enters is in a valid format. Things can still
go wrong, and problems may arise that you can do nothing about. Here’s a real-world example of some-
thing that can still go wrong.

One of your authors, Paul, created an online message board that relies on a small Java applet to enable
the transfer of data to and from the server without reloading the page. Paul checked the code and every-
thing was fi ne, and it continued to work fi ne after launching the board, except that in about fi ve percent

25937c04.indd 9325937c04.indd 93 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

94

Chapter 4: Common Mistakes, Debugging, and Error Handling

of cases the Java applet initialized but then caused an error due to the user being behind a particular
type of fi rewall (a fi rewall is a means of stopping hackers from getting into a local computer network).
There is no way of determining whether a user is behind a certain type of fi rewall, so there is nothing
that can be done in that sort of exceptional circumstance. Or is there?

In fact, JavaScript includes something called the try...catch statement. This enables you to try to run
your code; if it fails, the error is caught by the catch clause and can be dealt with as you wish. For the
message board, Paul used a try...catch clause to catch the Java applet’s failure and redirected the
user to a more basic page that still displayed messages, but without using the applet.

The try … catch Statements
The try...catch statements work as a pair; you can’t have one without the other. You use the try state-
ment to defi ne a block of code that you want to try to execute, and use the catch statement to defi ne
a block of code that will execute if an exception to the normal running of the code occurs in the block
of code defi ned by the try statement. The term exception is key here; it means a circumstance that is
extraordinary and unpredictable. Compare that with an error, which is something in the code that has
been written incorrectly. If no exception occurs, the code inside the catch statement is never executed.
The catch statement also enables you to get the contents of the exception message that would have
been shown to the user had you not caught it fi rst.

Let’s create a simple example of a try...catch clause.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Try/Catch</title>
</head>
<body>
<script type=”text/javascript”>
try
{
 alert(‘This is code inside the try clause’);
 alert(‘No Errors so catch code will not execute’);
}
catch(exception)
{
 alert(“The error is “ + exception.message);
}
</script>
</body>
</html>

Save this as trycatch.htm.

This code fi rst defi nes the try statement; as with all other blocks of code, you mark out the try block by
enclosing it in curly braces.

25937c04.indd 9425937c04.indd 94 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

95

Chapter 4: Common Mistakes, Debugging, and Error Handling

Next comes the catch statement. The code included exception in parentheses right after the catch
statement. This exception is simply a variable name. It will store an object, of type Error, containing
information about any exception thrown during code execution inside the try code block. We’ll call this
object the exception object. Although the word exception is used here, you can use any valid variable
name. For example, catch(exceptionObject) would be fi ne and certainly more descriptive.

The exception object contains several properties that provide information about the exception that
occurred. The bad news is the exception object in IE differs somewhat from the exception object in
other browsers (and even Firefox, Opera, Safari, and Chrome have differing properties from each
other!). The good news is there are similarities, and you don’t have to worry about writing cross-
browser code if you’re only concerned with the exception’s message and the type of exception.

All major browsers support the name and message properties. The name property contains the name
of the error type, and the message property contains the error message the user would normally see.
These properties are part of the ECMAScript 3 standard.

Back to the code at hand, within the curly braces after the catch statement is the code block that will
execute if and only if an exception occurs. In this case, the code within the try code block is fi ne, and
so the alert() method inside the catch block won’t execute.

Insert a deliberate error.

try
{
 alert(‘This is code inside the try clause’);
 ablert (‘Exception will be thrown by this code’);
}
catch(exception)
{
 alert(“The error is “ + exception.message);
}

Resave the document and reload the page in your browser. The fi rst alert() method in the try block
of code executes fi ne and the alert box will be displayed to the user. However, the second ablert()
statement will cause an error and code execution will start at the fi rst statement in the catch block.

If you’re using Internet Explorer, the error description displayed will be Object expected. If you’re
using another browser, the same error is interpreted differently and reported as ablert is not
defined.

If you change the code again, so that it has a different error, you’ll see something important.

try
{
 alert(‘This is code inside the try clause’);
 alert(‘This code won’t work’);
}
catch(exception)
{
 alert(“The error is “ + exception.message)
}

25937c04.indd 9525937c04.indd 95 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

96

Chapter 4: Common Mistakes, Debugging, and Error Handling

Loading this revised code in a browser results in a normal browser error message telling you Expected ‘)’
instead of displaying the alert box in the catch block. This happens because this code contains a syn-
tax error; the functions and methods are valid, but you have an invalid character. The single quote in
the word won’t has ended the string parameter being passed to the alert() method. At that point
JavaScript’s syntax rules specify that a closing parenthesis should appear, which is not the case in this
code. Before executing any code, the browser’s JavaScript engine goes through all the code and checks
for syntax errors, or code that breaches JavaScript’s rules. If the engine fi nds a syntax error, the browser
deals with it as usual; your try clause never runs and therefore cannot handle syntax errors.

Throwing Errors
The throw statement can be used within a try block of code to create your own run-time errors. Why
create a statement to generate errors, when a bit of bad coding will do the same?

Throwing errors can be very useful for indicating problems such as invalid user input. Rather than using
lots of if...else statements, you can check the validity of user input, then use throw to stop code execu-
tion in its tracks and cause the error-catching code in the catch block of code to take over. In the catch
clause, you can determine whether the error is based on user input, in which case you can notify the user
what went wrong and how to correct it. Alternatively, if it’s an unexpected error, you can handle it more
gracefully than with lots of JavaScript errors.

To use throw, type throw and include the error message after it.

throw “This is my error message”;

Remember that when you catch the exception object in the catch statement, you can get hold of the
error message that you have thrown. Although there’s a string in this example throw statement, you
can actually throw any type of data, including numbers and objects.

Try It Out try … catch and Throwing Errors
In this example you’ll be creating a simple factorial calculator. The important parts of this example are
the try...catch clause and the throw statements. It’s a frameset page to enable you to demonstrate
that things can go wrong that you can’t do anything about. In this case, the page relies on a function
defi ned within a frameset page, so if the page is loaded on its own, a problem will occur.

First let’s create the page that will defi ne the frameset and that also contains an important function.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Example</title>
<script type=”text/javascript”>
function calcFactorial(factorialNumber)
{
 var factorialResult = 1;
 for (; factorialNumber > 0; factorialNumber--)
 {
 factorialResult = factorialResult * factorialNumber;
 }

25937c04.indd 9625937c04.indd 96 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

97

Chapter 4: Common Mistakes, Debugging, and Error Handling

 return factorialResult;
}
</script>
</head>
<frameset cols=”100%,*“>
 <frame name=”fraCalcFactorial” src=”calcfactorial.htm” />
</frameset>
</html>

Save this page as calcfactorialtopframe.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Example</title>
<script type=”text/javascript”>
function butCalculate_onclick()
{
 try
 {
 if (window.top.calcFactorial == null)
 throw “This page is not loaded within the correct frameset”;
 if (document.form1.txtNum1.value == “”)
 throw “!Please enter a value before you calculate its factorial”;
 if (isNaN(document.form1.txtNum1.value))
 throw “!Please enter a valid number”;
 if (document.form1.txtNum1.value < 0)
 throw “!Please enter a positive number”;

 document.form1.txtResult.value =
 window.parent.calcFactorial(document.form1.txtNum1.value);
 }
 catch(exception)
 {
 if (typeof(exception) == “string”)
 {
 if (exception.charAt(0) == “!”)
 {
 alert(exception.substr(1));
 document.form1.txtNum1.focus();
 document.form1.txtNum1.select();
 }
 else
 {
 alert(exception);
 }
 }
 else
 {
 alert(“The following error occurred “ + exception.message);
 }
 }
}

25937c04.indd 9725937c04.indd 97 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

98

Chapter 4: Common Mistakes, Debugging, and Error Handling

</script>
</head>
<body>
<form action=”“ name=”form1”>
 <input type=”text” name=”txtNum1” size=”3” /> factorial is
 <input type=”text” name=”txtResult” size=”25” />

 <input type=”button” value=”Calculate Factorial”
 name=”butCalculate” onclick=”butCalculate_onclick()“ />
</form>
</body>
</html>

Save this page as calcfactorial.htm. Then load the fi rst page, calcfactorialtopframe.htm, into
your browser.

The page consists of a simple form with two text boxes and a button. Enter the number 4 into the fi rst
box and click the Calculate Factorial button. The factorial of 4, which is 24, will be calculated and put in
the second text box (see Figure 4-3.)

Figure 4-3

The factorial of a number is the product of all the positive integers less than or equal to that number.
For example, the factorial of 4 (written 4!) is 1 * 2 * 3 * 4 = 24. Factorials are used in various branches of
mathematics, including statistics. Here, you want only to create a function that does something complex
enough to be worthy of a function, but not so complex as to distract you from the main purpose of this
example: the try...catch and throw statements.

If you clear the fi rst text box and click the Calculate Factorial button, you’ll be told that a value needs
to be entered. If you enter an invalid non-numeric value into the fi rst text box, you’ll be told to enter a
valid value. If you enter a negative value, you’ll be told to enter a positive value.

Also, if you try loading the page calcfactorial.htm into your browser and enter a value in the text
box and click the Calculate Factorial button, you’ll be told that the page is not loaded into the correct
frameset.

25937c04.indd 9825937c04.indd 98 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

99

Chapter 4: Common Mistakes, Debugging, and Error Handling

As you’ll see, all of these error messages are created using the try...catch and throw statements.

Because this example is all about try...catch and throw, you’ll concentrate just on the
calcfactorial.htm page, in particular the butCalculate_onclick() function, which is con-
nected to the onclick event handler of the form’s only button.

Start by looking at the try clause and the code inside it. The code consists of four if statements and
another line of code that puts the calculated factorial into the second text box. Each of the if statements
checks for a condition that, if true, would cause problems for your code.

The fi rst if statement checks that the calcFactorial() function, in the top frameset window, actually
exists. If not, it throws an error, which is caught by the catch block. If the user loads the calcfactorial
.htm page rather than the frameset page calcfactorialtopframe.htm, then without this throw
statement your code will fail.

 try
 {
 if (window.top.calcFactorial == null)
 throw “This page is not loaded within the correct frameset”;

The next three if statements check the validity of the data entered into the text box by the user. First
make sure the user entered something into the text box; then make sure the user entered a number, and
then fi nally check that the value is not negative. Again if any of the if conditions is true, you throw an
error, will be caught by the catch block. Each of the error messages you defi ne starts with an exclama-
tion mark, the purpose of which is to mark the error as a user input error, rather than an error such as
not being in a frameset.

 if (document.form1.txtNum1.value == “”)
 throw “!Please enter a value before you calculate its factorial”;
 if (isNaN(document.form1.txtNum1.value))
 throw “!Please enter a valid number”;
 if (document.form1.txtNum1.value < 0)
 throw “!Please enter a positive number”;

If everything is fi ne, the calcFactorial() function will be executed and the results text box will be
fi lled with the factorial of the number entered by the user.

 document.form1.txtResult.value =
 window.parent.calcFactorial(document.form1.txtNum1.value);
 }

Finally, turn your attention to the catch part of the try...catch statement. First, any message thrown
by the try code will be caught by the exception variable.

 catch(exception)
 {

The type of data contained in exception will depend on how the error was thrown. If it was thrown
by the browser and not by your code, exception will be an object, the exception object. If it’s thrown by
your code, then in this instance you’ve thrown only primitive strings. So the fi rst thing you need to do
is decide what type of data exception contains. If it’s a string, you know it was thrown by your code
and can deal with it accordingly. If it’s an object, and given that you know none of your code throws

25937c04.indd 9925937c04.indd 99 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

100

Chapter 4: Common Mistakes, Debugging, and Error Handling

objects, you assume it must be the browser that has generated this exception and that exception is an
Exception object.

 if (typeof(exception) == “string”)
 {

If it was code that generated the exception using a throw (and so exception is a string), you now need
to determine whether the error is a user input error, such as the text box not containing a value to calcu-
late, or whether it was another type of error, such as the page not being loaded in your frameset. All the
user input exception messages had an exclamation mark at the beginning, so you use an if statement
to check the fi rst character. If it is a !, you notify the user of the error and then return focus to your con-
trol. If it’s not, you just display an error message.

 if (exception.charAt(0) == “!”)
 {
 alert(exception.substr(1));
 document.form1.txtNum1.focus();
 document.form1.txtNum1.select();
 }
 else
 {
 alert(exception);
 }
 }

If exception was not a string, you know you have an exception object and need to display the message
property:

 else
 {
 alert(“The following error occurred “ + exception.message);
 }
 }

Nested try...catch Statements
So far you’ve been using just one try...catch statement, but it’s possible to include a try...catch
statement inside another try statement. Indeed, you can go further and have a try...catch inside the
try statement of this inner try...catch, or even another inside that, the limit being what it’s actually
sensible to do.

So why would you use nested try...catch statements? Well, you can deal with certain errors inside
the inner try...catch statement. If, however, you’re dealing with a more serious error, the inner
catch clause could pass that error to the outer catch clause by throwing the error to it.

Here’s an example:

try
{
 try
 {
 ablurt(“This code has an error”);

25937c04.indd 10025937c04.indd 100 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

101

Chapter 4: Common Mistakes, Debugging, and Error Handling

 }
 catch(exception)
 {
 var eName = exception.name;

 if (eName == “TypeError” || eName == “ReferenceError”)
 {
 alert(“Inner try...catch can deal with this error”);
 }
 else
 {
 throw exception;
 }
 }
}
catch(exception)
{
 alert(“Error the inner try...catch could not handle occurred”);
}

In this code you have two try...catch pairs, one nested inside the other.

The inner try statement contains a line of code that contains an error. The catch statement of the
inner try...catch checks the value of the error’s name. If the exception’s name is either TypeError
or ReferenceError, the inner try...catch deals with it by way of an alert box (see Appendix B for
a full list of error types and their descriptions). Unfortunately, and unsurprisingly, the type of error
thrown by the browser depends on the browser itself. In the preceding example, IE reports the error as a
TypeError whereas the other browsers report it as a ReferenceError.

If the error caught by the inner catch statement is any other type of error, it is thrown up in the air
again for the catch statement of the outer try...catch to deal with.

Let’s change the butCalculate_onclick() function from the previous example, calcfactorial
.htm, so that it has both an inner and an outer try...catch.

function butCalculate_onclick()
{
 try
 {
 try
 {
 if (window.top.calcFactorial == null)
 throw (“This page is not loaded within the correct frameset”);
 if (document.form1.txtNum1.value == “”)
 throw(“!Please enter a value before you calculate its factorial”);
 if (isNaN(document.form1.txtNum1.value))
 throw(“!Please enter a valid number”);
 if (document.form1.txtNum1.value < 0)
 throw(“!Please enter a positive number”);
 document.form1.txtResult.value =
 window.parent.calcFactorial(document.form1.txtNum1.value);
 }

25937c04.indd 10125937c04.indd 101 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

102

Chapter 4: Common Mistakes, Debugging, and Error Handling

 catch(exception)
 {
 if (typeof(exception) == “string” && exception.charAt(0) == “!”)
 {
 alert(exception.substr(1));
 document.form1.txtNum1.focus();
 document.form1.txtNum1.select();
 }
 else
 {
 throw exception;
 }
 }
 }
 catch(exception)
 {
 switch (exception)
 {
 case “This page is not loaded within the correct frameset”:
 alert(exception);
 break;
 default :
 alert(“The following critical error has occurred \n” + exception);
 }
 }
}

The inner try...catch deals with user input errors. However, if the error is not a user input error
thrown by us, it is thrown for the outer catch statement to deal with. The outer catch statement has a
switch statement that checks the value of the error message thrown. If it’s the error message thrown by
us because the calcfactorialtopframe.htm is not loaded, the switch statement deals with it in the
fi rst case statement. Any other error is dealt with in the default statement. However, there may well
be occasions when there are lots of different errors you want to deal with in case statements.

fi nally Clauses
The try...catch statement has a finally clause that defi nes a block of code that will execute whether
or not an exception was thrown. The finally clause can’t appear on its own; it must be after a try block,
which the following code demonstrates:

try
{
 ablurt(“An exception will occur”);
}
catch(exception)
{
 alert(“Exception occurred”);
}
finally
{
 alert(“Whatever happens this line will execute”);
}

25937c04.indd 10225937c04.indd 102 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

103

Chapter 4: Common Mistakes, Debugging, and Error Handling

The finally part is a good place to put any cleanup code that needs to be executed regardless of any
errors that occurred previously.

You’ve seen the top mistakes made by developers, and you’ve also seen how to handle errors in your
code. Unfortunately, errors will still occur in your code, so let’s take a look at one way to make remedy-
ing them easier by using a debugger.

Debugging
JavaScript is traditionally looked upon as a diffi cult language to write and debug due to the lack of decent
development tools. This is not the case now, however, thanks to many tools made available to developers.
Most notably are the debugging tools available for Internet Explorer, Firefox, Safari, and Opera. With
these tools, you can halt the execution of your script with breakpoints and then step through code line
by line to see exactly what is happening.

You can also fi nd out what data is being held in variables and execute statements on the fl y. Without
debuggers, the best you can do is use the alert() method in your code to show the state of variables
at various points.

Debugging is generally universal across all browsers, and even languages. Some debugging tools
may offer more features than others, but for the most part, the following concepts can be applied to
any debugger:

Breakpoints tell the debugger it should break, or pause code execution, at a certain point. You ❑

can set a breakpoint anywhere in your JavaScript code, and the debugger will halt code execu-
tion when it reaches the breakpoint.

Watches allow you to specify variables that you want to inspect when your code pauses at a ❑

breakpoint.

The call stack is a record of what functions and methods have been executed to the breakpoint. ❑

The console allows you to execute JavaScript commands in the context of the page and within ❑

the scope of the breakpoint. In addition, it catalogs all JavaScript errors found in the page.

Stepping is the most common procedure in debugging. It allows you to execute one line of code ❑

at a time. There are three ways to step through code.

Step Into executes the next line of code. If that line is a function call, the debugger exe- ❑

cutes the function and halts at the fi rst line of the function.

Step Over, like Step Into, executes the next line of code. If that line is a function, Step ❑

Over executes the entire function and halts at the fi rst line outside the function.

Step Out returns to the calling function when you are inside a called function. Step Out ❑

resumes the execution of code until the function returns. It then breaks at the return
point of the function.

Before delving into the various debuggers, let’s create a page you can debug. Note the deliberate typo in
line 16. Be sure to include this typo if creating the page from scratch.

25937c04.indd 10325937c04.indd 103 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

104

Chapter 4: Common Mistakes, Debugging, and Error Handling

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Debug: Times Table</title>
 <script type=”text/javascript”>
 function writeTimesTable(timesTable)
 {
 var counter;
 var writeString;
 for (counter = 1; counter < 12; counter++)
 {
 writeString = counter + “ * “ + timesTable + “ = “;
 writeString = writeString + (timesTable * counter);
 writeString = writeString + “
”;
 documents.write(writeString);
 }
 }
 </script>

</head>
<body>
 <script type=”text/javascript”>
 writeTimesTable(2);
 </script>
</body>
</html>

Save this as debug_timestable.htm.

The next section walks you through the features and functionality of the Firebug add-on for Firefox.
Because of the universal nature of debugging and debuggers, the sections for Internet Explorer, Safari,
and Opera will merely familiarize you with the UI for each browser’s debugger and point out any
differences.

Debugging in Firefox with Firebug
For years, the only JavaScript debugger for Firefox was a Mozilla project codenamed Venkman. Its
feature-set resembled that of Microsoft’s Script Editor, but many developers felt Venkman wasn’t user-
friendly. One such developer, Joe Hewitt, decided to write his own debugger using the built-in debugging
API (application programming interface) in Firefox. He christened his creation Firebug, and the rest, as
they say, is history. Today, Firebug is the defacto JavaScript debugger (and much more!) for Firefox, and
all other JavaScript (and web development) tools for other browsers are based, in principle, on Firebug.

Unfortunately, Firebug does not come with Firefox by default. Instead, you have to install the Firebug
addon. You can download the latest version of Firebug from http://www.getfirebug.com, from
Joe Hewitt’s website at http://www.joehewitt.com/software/firebug/, or from Mozilla’s add-on
site at https://addons.mozilla.org/en-US/firefox/addon/1843.

To install Firebug, open Firefox and go to either of the provided URLs. Click the Install button on the
web page, and follow the instructions. Be sure to restart Firefox after Firebug’s installation.

25937c04.indd 10425937c04.indd 104 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

105

Chapter 4: Common Mistakes, Debugging, and Error Handling

You can access Firebug a couple of ways. You can click the Firebug icon in the status bar in the lower-
right corner of the Firefox window. If you do not have Firefox’s status bar visible, you can open Firebug
by selecting Firebug ➪ Open Firebug from the Tools menu in Firefox. By default, Firebug opens as a
panel in Firefox (see Figure 4-4).

Figure 4-4

You can pop it out to its own window by clicking the up arrow next to the Close button.

Open debug_timestable.htm in Firefox. If the status bar is visible, you should see red text in the
lower-right corner of the Firefox window stating “1 Error.” Click that message (or go through the Tools
menu to open Firebug), and Firebug will open to the console. The console serves multiple purposes in
Firebug; it lists JavaScript errors, and it also allows you to execute JavaScript code on the fl y. We’ll play
with the console later.

The JavaScript debugger is contained in the Script tab, and it is made up of two panels. The left
panel contains the source code, and the right panel contains three different views to choose from:
Breakpoints, Watch, and Stack.

Breakpoints: ❑ Lists all breakpoints that you’ve created for the code in the current page.

Watch: ❑ Lists the variables in scope and their values at the breakpoint. You can also add other
variables to watch.

Stack: ❑ Displays the call stack.

25937c04.indd 10525937c04.indd 105 9/19/09 9:05:24 PM9/19/09 9:05:24 PM

106

Chapter 4: Common Mistakes, Debugging, and Error Handling

The source code in the left panel is read-only; if you want to change it, you have to edit the fi le in your
text editor. Let’s do so and change the offending documents in line 16 to document. Save it, and reload
the web page.

Having corrected the mistake and reloaded the page, you should see the times table in your web page,
as shown in Figure 4-5.

Figure 4-5

Also notice that the source code in Firebug’s left panel updated to refl ect your changes.

Setting Breakpoints
As mentioned earlier, breakpoints tell the debugger to pause code execution at a specifi c point in your
code. This is handy when you want to inspect your code while it executes. Creating breakpoints in
Firebug is straightforward; simply left-click in the gray area to the left of the source code’s line numbers
(the gutter). Breakpoints are denoted by a red circle in the gutter where you clicked.

You can also create a breakpoint when writing your code by using the debugger keyword (we’ll use
this a bit later).

25937c04.indd 10625937c04.indd 106 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

107

Chapter 4: Common Mistakes, Debugging, and Error Handling

Keeping the corrected debug_timestable.htm loaded in Firefox, create a breakpoint on line 14.

writeString = writeString + (timesTable * counter);

Reload the page, and notice Firebug stopped code execution at the breakpoint you just created. Firebug
highlights the current line of code in light yellow and puts a yellow arrow in the gutter. This line hasn’t
been executed yet.

Click the Breakpoints tab in the right panel; it shows you the list of breakpoints (only one in this case).
Each entry in the list consists of a checkbox to enable/disable the breakpoint, the containing function’s
name, the fi le name and line number of the source fi le, the source text of the breakpoint, and a Delete
button.

Now click the Watch tab.

Watches
The Watch tab displays variables and their values currently in scope at the current line while code exe-
cution is paused. Figure 4-6 shows the contents of the Watch tab at this breakpoint.

Figure 4-6

Notice that the counter, timesTable, and writeString variables are visible (as is this).

25937c04.indd 10725937c04.indd 107 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

108

Chapter 4: Common Mistakes, Debugging, and Error Handling

You can also add your own variables to watch, inspecting their values as you step through code. To add
a watch, simply click “New watch expression... ,” type the variable name you want to watch, and press
the Enter key. Watches that you add have a gray background, and moving your mouse over them reveals
a red Delete button.

You can watch any variable you want. If the variable is in scope, the variable’s value is displayed. If the
variable is out of scope, a ReferenceError is displayed as its value.

Although this information is helpful when you want to see what exactly is going on in your code, it’s
not very helpful if you can’t control code execution. It’s impractical to set a breakpoint and reload the
page multiple times just to advance to the next line, so we use a process called stepping.

Stepping Through Code
Code stepping is controlled by four buttons in the upper-right of the window, next to the source code
search box (see Figure 4-7).

Continue
Step
Into

Step Over
Step
Out

Figure 4-7

Continue ❑ (shortcut key is F8): Its function is to continue code execution until either the next
breakpoint or the end of all code is reached.

Step Into ❑ (shortcut key is F11): Executes the current line of code and moves to the next state-
ment. If the current line is a function, then it steps to the fi rst line of the function.

Step Over ❑ (F10): Like Step Into, this executes the current line of code and moves to the next state-
ment. However, if the statement is a function, it executes the function and steps to the next line
after the function call.

Step Out ❑ : Returns to the calling function.

Let’s do some stepping; follow these steps:

 1. Step Into the code by clicking the icon or pressing F11. The debugger executes the currently
highlighted line of code and moves to the next line.

 2. Look in the Watch tab and at the value of writeString; it is “1 * 2 = 2”. As you can see, the
values displayed in the Watch tab are updated in real time.

 3. One nice feature of Firebug is the page updates, if necessary, as you step through code. Click
Step Into two more times to see this in action. Figure 4-8 shows the page updated while step-
ping through code.

25937c04.indd 10825937c04.indd 108 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

109

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-8

You may fi nd that the function you stepped into is not the source of the bug and want to execute the
remaining lines of code in the function to continue step by step from the point at which the function was
called. Do so by clicking the Step Out icon to step out of the code. However, if you’re in a loop and the
breakpoint is set inside the loop, you will not step out of the function until you iterate through the loop.

There may also be times when you have some code with a bug in it that calls a number of functions. If
you know that some of the functions are bug-free, then you may want to just execute those functions
instead of stepping into them and seeing them executed line by line. Use Step Over in these situations
to execute the code within a function but without going through it line by line.

Alter your times-table code in debug_timestable.htm as follows so you can use it for the three kinds
of stepping:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>Av
 <title>Debug: Times Table 2</title>

 <script type=”text/javascript”>

25937c04.indd 10925937c04.indd 109 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

110

Chapter 4: Common Mistakes, Debugging, and Error Handling

 function writeTimesTable(timesTable)
 {
 var counter;
 var writeString;
 for (counter = 1; counter < 12; counter++)
 {
 writeString = counter + “ * “ + timesTable + “ = “;
 writeString = writeString + (timesTable * counter);
 writeString = writeString + “
”;
 document.write(writeString);
 }
 }
 </script>

</head>
<body>
 <script type=”text/javascript”>
 var timesTable;
 for (timesTable = 1; timesTable <= 12; timesTable++)
 {
 document.write(“<p>”)
 writeTimesTable(timesTable)
 document.write(“</p>”)
 }
 </script>
</body>
</html>

Save this as debug_timestable2.htm. Note that there are no errors in this HTML fi le.

The following instructions will walk you through the process of stepping through code.

 1. Set a breakpoint in line 26, the for loop in the body of the page, and reload the page.

 2. Click the Step Into icon and code execution will move to the next statement. Now the fi rst
statement inside the for loop, document.write(“<p>”), is up for execution.

 3. When you click the Step Into icon again, it will take you to the fi rst calling of the
writeTimesTable() function.

 4. You want to see what’s happening inside that function, so click Step Into again and you’ll step
into the function. Your screen should look like the one shown in Figure 4-9.

 5. Click the Step Into icon a few times to get the gist of the fl ow of execution of the function. In
fact, stepping through code line by line can get a little tedious. So let’s imagine you’re happy
with this function and want to run the rest of it.

 6. Use Step Out to run the rest of the code. The function has been fully executed, and you’re back
the calling line, as you can see from Figure 4-10.

 7. Click the Step Into icon twice to execute document.write() (it won’t be visible because it’s a
closing tag).

 8. Click Step Into four more times. Execution will continue through the condition and increment-
ing parts of the for loop, ending back at the line that calls the writeTimesTable() function.

25937c04.indd 11025937c04.indd 110 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

111

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-9

Figure 4-10

25937c04.indd 11125937c04.indd 111 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

112

Chapter 4: Common Mistakes, Debugging, and Error Handling

 9. You’ve already seen this in action, so really you want to step over it and go to the next line.
Well, no prizes for guessing that Step Over is what you need to do. Click the Step Over icon (or
press the F10 key) and the function will be executed, but without stepping through it statement
by statement. You should fi nd yourself back at the document.write(“</p>”) line.

If you’ve fi nished debugging, you can run the rest of the code without stepping through each line by
clicking the Continue icon (or pressing F8) on the toolbar. You should see a page of times tables from
1*1=1 to 11*12=132 in the browser.

The Console
While you’re stepping through code and checking its fl ow of execution, what would be really useful is the
ability to evaluate conditions and even to change things on the fl y. You can do these things using the console.

Follow these steps:

 1. Remove the previously set breakpoint by clicking the red circle in the source code panel and
set a new breakpoint at line 17:

document.write(writeString);

 2. Let’s see how you can fi nd out the value currently contained in the variable writeString.
Reload the page. When the debugger stops at the breakpoint, click the Console tab, click in the
“>>>” fi eld, and type the name of the variable you want to examine, in this case writeString.
Press the Enter key. This will cause the value contained in the variable to be printed below
your command in the command window, as shown in Figure 4-11.

Figure 4-11

25937c04.indd 11225937c04.indd 112 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

113

Chapter 4: Common Mistakes, Debugging, and Error Handling

 3. If you want to change a variable, you can write a line of JavaScript into the command window
and press Enter. Try it with the following code:

writeString = “Changed on the Fly
”

 4. Click the Script tab, and remove the breakpoint by clicking the red circle and then clicking the
Continue icon. You see the results of your actions: where the 1*1 times table result should be,
the text you changed on the fl y has been inserted.

This alteration does not change your actual HTML source fi le, just the page currently loaded in the
browser.

The console can also evaluate conditions. Recreate the breakpoint on line 26 and reload the page. Leave
execution stopped at the breakpoint, and Step Into the for loop’s condition.

Type the following into the command window and press Enter:

timesTable <= 12

Because this is the fi rst time the loop has been run, as shown in Figure 4-12, timesTable is equal to 1
so the condition timesTable <= 12 evaluates to true.

Figure 4-12

You can also use the console to access properties of the Browser Object Model (something we’ll cover
in Chapter 6). For example, if you type window.location.href into the command window and press
Enter, it will tell you the web page’s URL.

25937c04.indd 11325937c04.indd 113 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

114

Chapter 4: Common Mistakes, Debugging, and Error Handling

The console isn’t limited to single lines of JavaScript. Click the up arrow on the right side of the screen
and you can enter multiple statements to execute.

Call Stack Window
When you are single-stepping through the code, the call stack window keeps a running list of which
functions have been called to get to the current point of execution in the code.

Let’s create an example web page that demonstrates the call stack very nicely.

 1. Enter this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Debugging: Callstack</title>
 <script type=”text/javascript”>
 function firstCall()
 {
 secondCall();
 }

 function secondCall()
 {
 thirdCall();
 }

 function thirdCall()
 {
 //
 }

 function button1_onclick()
 {
 debugger
 firstCall();
 }
 </script>
</head>
<body>
 <input type=”button” value=”Button” name=”button1”
 onclick=”return button1_onclick()“ />
</body>
</html>

 2. Save this page as debug_callstack.htm, and load it into Firefox. All you’ll see is a blank web
page with a button.

 3. Click the button and the debugger will open at the debugger statement in the button1_
onclick() function, which is connected to the button’s onclick event handler.

 4. Click the Call Stack tab in the right panel. Your debugger now looks like what is shown in
Figure 4-13.

25937c04.indd 11425937c04.indd 114 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

115

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-13

Firebug adds the function to the top of the call stack for every function call. You can already
see that the fi rst function called was actually the code attached to the onclick event handler
of your button. Next, added to the call stack is the function called by the onclick event
handler, which is the function button1_onclick() shown at the top of the call stack.

 5. If you want to see where each function was fi rst entered, just click the function name in the call
stack window. Click onclick and the calling code (that is, the code connected to the onclick
attribute of the <input/> element) will be shown. Now click the top line, button1_onclick,
and that will take you back to the current execution point.

 6. Now Step Into twice. The fi rst step is to the line that calls the firstCall() function. The sec-
ond step takes you into that function itself. The function is immediately added to the call stack,
as shown in Figure 4-14.

 7. Step Into again to enter the second function, secondCall(). Again this is added to the call
stack. One more step takes you into the third function, thirdCall(), again with its name
being added to the top of the call stack.

25937c04.indd 11525937c04.indd 115 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

116

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-14

 8. Step Into again, and as you leave the function thirdCall() you will see that its name is
removed from the top of the call stack. Yet another step takes you out of the second function
secondCall(), whose name is also now removed from the stack. Each additional click takes
you out of a function, and removes its name from the call stack, until eventually all the code
has been executed and you’re back to the browser again.

This demo page was very simple to follow, but with complex pages, especially multi-frame pages, the
call stack can prove very useful for tracking where you are, where you have been, and how you got
there.

As mentioned earlier, most other developer tools for other browsers are based upon Firebug, and you’ll
soon see this with IE8’s built-in tools.

Debugging in Internet Explorer
Before version 8, developers had to download and install the Microsoft Script Debugger for any type
of script debugging. Thankfully, Microsoft built a debugger into IE8, but it is turned off by default. To
enable it, follow these steps:

 1. Click Tools ➪ Internet Options.

 2. Click the Advanced tab, and uncheck the box next to “Disable script debugging (Internet
Explorer)” under the Browsing section (see Figure 4-15).

 3. Click OK to save the settings and exit the Internet Options dialog box.

25937c04.indd 11625937c04.indd 116 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

117

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-15

You can access the debugger in a couple of ways now that it is enabled:

You can bring up the debugger by clicking Tools ❑ ➪ Developer Tools. The Developer Tools
contains a variety of tools you might fi nd useful (like Firebug, it’s much more than a JavaScript
debugger). For easy access, consider modifying the command bar to include the Developer Tools
button. Once the Developer Tools window appears, click the Script tab as shown in Figure 4-16.

Figure 4-16

25937c04.indd 11725937c04.indd 117 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

118

Chapter 4: Common Mistakes, Debugging, and Error Handling

This method is probably the easiest way to begin debugging. Simply navigate to the desired ❑

page. If any errors occur, a dialog box appears asking if you want to debug (see Figure 4-17).

Figure 4-17

Click the Yes button, and the Developer Tools window appears with the Script tab already selected.
The debugger stops on the line where the error is and highlights it in yellow, although this may
not be obvious from the black-and-white screenshot in Figure 4-18. Go ahead and load the original
version of debug_timestable.htm in IE8 (the one with the error) to see this in action. Click Yes
to start debugging.

Figure 4-18

25937c04.indd 11825937c04.indd 118 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

119

Chapter 4: Common Mistakes, Debugging, and Error Handling

One of the primary differences in IE8’s debugger is it must be in debugging mode if you want to debug.
This may seem obvious, but if you recall, Firebug didn’t have a debugging mode.

As you can see in Figure 4-18, the debugger is made up of two panels. The left displays the source code
of the fi le that contains the error. If multiple fi les contain JavaScript, you can select those fi les by using
the pull-down menu next to the Stop Debugging button.

The right panel contains fi ve tabs:

Console ❑ : Consists of an upper and lower panel. The lower panel allows you to enter and run
JavaScript code. It has a single-line mode and a multi-line mode for larger blocks of code. The
upper panel is a log of commands you entered along with their results.

Breakpoints ❑ : Lists all breakpoints that you’ve created for the code in the current page.

Locals ❑ : Lists the variables and their values in scope of the breakpoint.

Watches ❑ : Lists the variables and their values you specify to watch at the breakpoint.

Call Stack ❑ : Displays the call stack.

Another difference in IE8’s Developer Tools is the additional Locals tab. Microsoft took Firebug’s Watch
tab and broke it into the Locals and Watches tabs.

The source code in the left panel is read-only, so changing it requires editing the fi le in your text editor.
Do so, and change the offending documents in line 16 to document. Save it and try to reload the web
page. Notice you cannot do so. This is because the debugger is currently running and stopped at an
error. In order to reload the page, you must click the Stop Debugging button. With the debugger now
stopped, you can reload the page.

Having corrected the mistake and reloaded the page, you should see the times table in your web page.

Setting Breakpoints
Creating a breakpoint in IE8 is as simple and straightforward as it is in Firebug; simply click in the gut-
ter on the line you want the debugger to break at. After creating a breakpoint, you’ll notice a red circle
next to the line number.

Upon creating a breakpoint, an entry is added in the list of breakpoints found by clicking the
Breakpoints tab. Each entry consists of a checkbox to enable/disable the breakpoint, the fi le name of
the source fi le, and the line number the breakpoint is on. Figure 4-19 shows a breakpoint on line 17 of
debug_timestable2.htm.

25937c04.indd 11925937c04.indd 119 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

120

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-19

IE8’s JavaScript debugger also supports the debugger keyword. However, you must be in debugging
mode in order for IE8’s debugger to pause on that line. Otherwise, you’ll be greeted with the old selec-
tion screen. If you use the debugger keyword in your code and see Figure 4-20, then you need to turn
on debugging mode.

Figure 4-20

25937c04.indd 12025937c04.indd 120 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

121

Chapter 4: Common Mistakes, Debugging, and Error Handling

Adding Watches
The Watch tab’s sole purpose is to list the variables you want to watch and display their values and
type. Adding a watch is slightly different in IE8 than it is in Firebug: You must be in debugging mode
and stopped at a breakpoint to add a watch.

If you are in debugging mode and stopped at a breakpoint, simply click “Click to Add… ,” type the
variable you want to watch, and press the Enter key (see Figure 4-21).

Figure 4-21

Stepping Through Code
At the top of the debugger window, and to the left of the Debugging button, are six buttons that control
code execution (see Figure 4-22).

Continue
Break on

Error

Break All Step
Into

Step
Out

Step
Over

Figure 4-22

25937c04.indd 12125937c04.indd 121 9/19/09 9:05:25 PM9/19/09 9:05:25 PM

122

Chapter 4: Common Mistakes, Debugging, and Error Handling

The Continue option (shortcut key F5) continues code execution until either the next breakpoint or the
end of all code. The second option, Break All, ensures that the debugger breaks before the execution of
the next statement. Break on Error tells the debugger to break whenever an error occurs. Step Into (F11),
Step Over (F10), and Step Out (Shift+11) behave as they do in Firebug.

IE8’s debugger denotes the current line by highlighting the line in yellow and adds a yellow arrow in
the gutter.

Unlike Firefox and Firebug, stepping through code does not update the web page. The JavaScript exe-
cutes, but you will not see the results until all code is executed.

The Console
Unlike Firebug’s console, IE8’s Developer Tools console is located with the rest of the JavaScript tools
and is accessed via the Console tab, but that’s where the primary differences end.

The console logs JavaScript errors and allows you to execute code within the context of the line the
debugger is stopped at. Figure 4-23 shows the “Changed on the Fly” example from the Firebug section
recreated in IE8.

By default, the console accepts only single lines of JavaScript code. You can change this by clicking the
Multi Line Mode button.

Figure 4-23

25937c04.indd 12225937c04.indd 122 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

123

Chapter 4: Common Mistakes, Debugging, and Error Handling

Debugging in Safari
Safari’s debugging tool’s story is similar to that of IE’s. Safari’s rendering engine is called Webkit, and
the folks that write and maintain Webkit built a separate tool, codenamed Drosera, that contained the
tools similar to Firebug and IE8’s Developer Tools. It was a separate download, and it required you to
attach it to a specifi c Safari/Webkit window.

Safari 3 includes a tool called Web Inspector, but it does not have any JavaScript debugging capability.
Starting with Safari 4, the Web Inspector has a built-in JavaScript debugger, which we’ll cover in this
section.

Chrome also uses Webkit, but only version 3 beta includes the script debugger at the time of this
writing.

Like IE8, the Web Inspector is disabled by default. To enable it, follow these steps:

 1. Click the Settings menu button and choose the Preferences option (see Figure 4-24).

Figure 4-24

 2. In the Preferences window, click the Advanced tab and select the Show Develop Menu in Menu
Bar option (see Figure 4-25). Close the Preferences window.

25937c04.indd 12325937c04.indd 123 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

124

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-25

 3. Click the Settings menu button and select the Show Menu Bar option. This will display the tra-
ditional menus at the top of the window.

 4. To open the debugger, select Develop ➪ Start Debugging JavaScript from the menu bar.

When the window opens, you’ll see some code that defi nitely isn’t yours. That’s OK — you can change that in
a bit. First, let’s look at the window and identify the separate parts. Figure 4-26 shows the JavaScript debugger
when it was fi rst opened on the debug_timestable2.htm fi le. The code displayed may vary on your computer.

File Selector

Show/Hide
Console

Figure 4-26

25937c04.indd 12425937c04.indd 124 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

125

Chapter 4: Common Mistakes, Debugging, and Error Handling

Unlike the tools you looked at previously, Safari’s Web Inspector doesn’t use tabs to partition the various
features. Instead, it organizes everything within the window so you have easy access to all features. You
can see the Call Stack and Scope Variables are not tabs, but rather individual sections you can view at
the same time as you debug. Click the Console button, and you’ll see that it adds a panel to the bottom
of the window (see Figure 4-27).

Figure 4-27

Everything is here, readily available and visible to you; so load debug_timestable2.htm in Safari and
go back to the Web Inspector window. Click the fi le selection drop-down menu and choose the HTML
fi le to display the source code of the fi le. Like the previous tools, the source code is read-only, but you
can set breakpoints.

Setting Breakpoints
Creating a breakpoint follows the same procedure in Web Inspector as the other tools: click in the gutter
on the line you want the debugger to break at. Breakpoints in Web Inspector are denoted by a blue tag
(see Figure 4-28). Create one on line 17.

Unlike Firebug and IE’s Developer Tools, Web Inspector does not list the breakpoints you set in a sepa-
rate area, so remember where your breakpoints are if you use Safari and Web Inspector as your browser
and debugger of choice.

Reload the page so the debugger can break and we can walk through the features.

Web Inspector supports the debugger keyword.

25937c04.indd 12525937c04.indd 125 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

126

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-28

No Watches for You!
Web Inspector does not allow you to add your own variables to watch, but the Scope Variables section
displays all variables in scope. Figure 4-29 shows how the variables are divided into local and global
variables.

Figure 4-29

25937c04.indd 12625937c04.indd 126 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

127

Chapter 4: Common Mistakes, Debugging, and Error Handling

Stepping Through Code
The code-stepping buttons are at the top of the right panel and underneath the search box (see
Figure 4-30).

Continue Step Into

Step Over Step Out

Execution Status

Figure 4-30

These buttons perform the same functions as in Firebug and IE; however, they are in a slightly different
order. The fi rst button continues code execution until either the next breakpoint or the end of all code.
The second button is Step Over, the third is Step Into, and the fourth is Step Out.

Like Firefox and Firebug, Safari and Web Inspector update the page as you step through code. So you
can see the results as each line executes.

The Console
The console serves the same purpose as it does in the previous tools. You can check the value of a vari-
able by typing the variable and pressing the Enter key. You can also execute code in the context of the
current line of code. Try the “Changed on the Fly” example from the Firebug section to see it in action.

Unlike the previous tools, the Web Inspector console does not allow for multi-line input.

Although the Web Inspector’s UI is sleek and tab-less (and some would say cluttered), it’s time to ven-
ture back into the world of tabs with Opera’s Dragonfl y.

Using Dragonfl y: Opera’s Development Tools
Opera’s Dragonfl y is a latecomer to the realm of browser-based development tools. At the time of this
writing, it is currently pre-beta software, but it comes included with Opera as of version 9.5.

There are two ways to open Dragonfl y:

Through the Tools menu: Tools ❑ ➪ Advanced ➪ Developer Tools.

Through the Debug menu, which can be installed by opening the following URL in Opera: ❑

http://dragonfly.opera.com/app/debugmenu/DebugMenu.ini.

Figure 4-31 shows Dragonfl y open with debug_timestable2.htm loaded in Opera.

25937c04.indd 12725937c04.indd 127 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

128

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-31

Dragonfl y follows the popular two-panel layout. The left panel contains a few tabs at the top that con-
trol the several different tools offered by Dragonfl y. The debugging tools are located under the Scripts
tab, and it’s the default tab when you open Dragonfl y.

At the bottom of the left panel are more tabs: Scripts, Source, and Command Line. The Source and
Command Line tabs provide the same functionality found in the other debuggers:

Scripts: ❑ Displays the HTML fi les currently loaded into the browser and the JavaScript code they
contain or reference. Figure 4-31 shows two inline scripts, meaning they are not contained in
external fi les.

Source: ❑ Displays source code. Unlike other tools, it displays only the code you select from the
Script tab.

Go to the Scripts tab and click the fi rst inline script. Doing so opens the Source tab and displays
the contents of the <script /> element in the HTML fi le’s head (see Figure 4-32).

25937c04.indd 12825937c04.indd 128 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

129

Chapter 4: Common Mistakes, Debugging, and Error Handling

Figure 4-32

Go back to the Scripts tab (at the bottom of the window), and you’ll see a pair of square brackets
([]) surrounding the inline script you clicked. This denotes the script that is currently displayed
in the Source tab. Click the second inline script to view the contents of the <script /> element
in the HTML document’s body.

Command Line: ❑ This is Dragonfl y’s console. Like the consoles of Firebug, IE8’s Developer Tools,
and Safari’s Web Inspector, this console allows you to check variables’ values and execute
JavaScript commands within the context of the currently paused line.

The right panel contains the Call Stack, Inspection, and Thread Log tabs:

Call Stack: ❑ Displays the call stack.

Inspection: ❑ Displays the variables and their values in scope at the paused line.

Thread Log: ❑ This is an advanced debugging tool that provides the information on the process-
ing and execution of JavaScript code. This section will not cover the Thread Log tab.

25937c04.indd 12925937c04.indd 129 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

130

Chapter 4: Common Mistakes, Debugging, and Error Handling

Setting Breakpoints
Setting breakpoints in Dragonfl y is as straightforward as in the other tools we’ve discussed thus far.
Click one of the inline scripts in the Scripts tab to load it into the Source panel, and click to the left of the
line numbers. A little black dot appears on the line number, indicating that a breakpoint is set for that
line. Figure 4-33 shows a breakpoint set on line 11 of the fi rst inline script.

Figure 4-33

Stepping Through Code
Code stepping is controlled by a row of icons above the source code (see Figure 4-34).

Continue Step Into

Step Over Step Out

Figure 4-34

25937c04.indd 13025937c04.indd 130 9/19/09 9:05:26 PM9/19/09 9:05:26 PM

131

Chapter 4: Common Mistakes, Debugging, and Error Handling

These icons perform the same functions as in Firebug, IE’s Developer Tools, and Web Inspector. They
are, in order:

Continue (F8) ❑

Step Into (F11) ❑

Step Over (F10) ❑

Step Out (Shift + F11). ❑

Like Firefox and Firebug as well as Safari and Web Inspector, Opera and Dragonfl y update the page as
you step through code, allowing you to see the results of each line of code as it executes.

Summary
In this chapter you looked at the less exciting part of coding, namely bugs. In an ideal world you’d get
things right the fi rst time, every time, but in reality any code more than a few lines long is likely to suffer
from bugs.

You fi rst looked at some of the more common errors, those made not just by JavaScript begin- ❑

ners, but also by experts with lots of experience.

Some errors are not necessarily bugs in your code, but in fact exceptions to the normal circum- ❑

stances that cause your code to fail. (For example, a Java applet might fail because a user is
behind a fi rewall.) You saw that the try...catch statements are good for dealing with this
sort of error, and that you can use the catch clause with the throw statement to deal with likely
errors, such as those caused by user input. Finally, you saw that if you want a block of code to
execute regardless of any error, you can use the finally clause.

You looked at Firebug for Firefox, IE8’s Developer Tools, the Web Inspector for Safari, and ❑

Opera’s Dragonfl y. With these tools you can analyze code as it’s being run, which enables you
to see its fl ow step by step, and to check variables and conditions. Although these debuggers
have different interfaces, their principles and feature sets are pretty much the same.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. The example debug_timestable2.htm has a deliberate bug. For each times table it creates
only multipliers with values from 1 to 11.

Use the script debugger to work out why this is happening, and then correct the bug.

 2. The following code contains a number of common errors. See if you can spot them:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

25937c04.indd 13125937c04.indd 131 9/19/09 9:05:27 PM9/19/09 9:05:27 PM

132

Chapter 4: Common Mistakes, Debugging, and Error Handling

 <title>Chapter 4, Question 2</title>
</head>
<body>
<script type=”text/javascript”>
function checkForm(theForm)
{
 var formValid = true;
 var elementCount = 0;
 while(elementCount =<= theForm.length)
 {
 if (theForm.elements[elementcount].type == “text”)
 {
 if (theForm.elements[elementCount].value() = “”)
 alert(“Please complete all form elements”)
 theForm.elements[elementCount].focus;
 formValid = false;
 break;
 }
 }
 return formValid;
}
</script>
<form name=”form1” onsubmit=”return checkForm(document.form1)“ action=””>
 <input type=”text” id=”text1” name=”text1” />

 CheckBox 1<input type=”checkbox” id=”checkbox2” name=”checkbox2” />

 CheckBox 1<input type=”checkbox” id=”checkbox1” name=”checkbox1” />

 <input type=”text” id=”text2” name=”text2” />
 <p>
 <input type=”submit” value=”Submit” id=”submit1” name=”submit1” />
 </p>
</form>
</body>
</html>

25937c04.indd 13225937c04.indd 132 9/19/09 9:05:27 PM9/19/09 9:05:27 PM

5
JavaScript — An Object-

Based Language

In this chapter, you look at a concept that is central to JavaScript, namely objects. But what are
objects, and why are they useful?

First, we have to break it to you: You have been using objects throughout this book (for example,
an array is an object). JavaScript is an object-based language, and therefore most of what you do
involves manipulating objects. You’ll see that when you make full use of these objects, the range
of things you can do with JavaScript expands immensely.

We’ll start this chapter by taking a look at the idea of what objects are and why they are impor-
tant. We’ll move on to what kinds of objects are used in JavaScript, how to create them and
use them, and how they simplify many programming tasks for you. Finally, you’ll see in more
detail some of the most useful objects that JavaScript provides and how to use these in practical
situations.

Not only does the JavaScript language consist of a number of these things called objects (which
are also called native JavaScript objects), but also the browser itself is modeled as a collection of
objects available for your use. You’ll learn about these objects in particular in the next chapter.

Object-Based Programming
Object-based programming is a slightly scarier way of saying “programming using objects.” But
what are these objects that you will be programming with? Where are they and how and why
would you want to program with them? In this section, you’ll look at the answers to these ques-
tions, both in general programming terms and more specifi cally within JavaScript.

25937c05.indd 13325937c05.indd 133 9/20/09 11:46:42 PM9/20/09 11:46:42 PM

134

Chapter 5: JavaScript — An Object-Based Language

What Are Objects?
To start the introduction to objects, let’s think about what is meant by an object in the “real world” out-
side computing. The world is composed of things, or objects, such as tables, chairs, and cars (to name
just a few!). Let’s take a car as an example, to explore what an object really is.

How would you defi ne the car? You might say it’s a blue car with four-wheel drive. You might specify the
speed at which it’s traveling. When you do this, you are specifying properties of the object. For example,
the car has a color property, which in this instance has the value blue.

How do you use the car? You turn the ignition key, press the gas pedal, beep the horn, change the gear
(that is, choose between 1, 2, 3, 4, and reverse on a manual car, or drive and reverse on an automatic),
and so on. When you do this, you are using methods of the object.

You can think of methods as being a bit like functions. Sometimes, you may need to use some informa-
tion with the method, or pass it a parameter, to get it to work. For example, when you use the changing-
gears method, you need to say which gear you want to change to. Other methods may pass information
back to the owner. For example, the dipstick method will tell the owner how much oil is left in the car.

Sometimes using one or more of the methods may change one or more of the object’s properties. For
example, using the accelerator method will probably change the car’s speed property. Other properties
can’t be changed: for example, the body-shape property of the car (unless you hit a brick wall with the
speed property at 100 miles per hour!).

You could say that the car is defi ned by its collection of methods and properties. In object-based pro-
gramming, the idea is to model real-world situations by objects, which are defi ned by their methods
and properties.

Objects in JavaScript
You should now have a basic idea of what an object is — a “thing” with methods and properties. But
how do you use this concept in JavaScript?

In the previous chapters you have (for the most part) been dealing with primitive data (that is, you’ve
been working with actual data). This type of data is not too complex and is fairly easy to deal with.
However, not all information is as simple as primitive data. Let’s look at an example to clarify things
a little.

Suppose you had written a web application that displayed timetable information for buses or trains.
Once the user has selected a journey, you might want to let him know how long that journey will take.
To do that, you need to subtract the arrival time from the departure time.

However, that’s not quite as simple as it may appear at fi rst glance. For example, consider a departure
time of 14:53 (for 2:53 p.m.) and an arrival time of 15:10 (for 3:10 p.m.). If you tell JavaScript to evaluate
the expression 15.10–14.53, you get the result 0.57, which is 57 minutes. However, you know that the real
difference in time is 17 minutes. Using the normal mathematical operators on times doesn’t work!

What would you need to do to calculate the difference between these two times? You would fi rst need
to separate the hours from the minutes in each time. Then, to get the difference in minutes between the

25937c05.indd 13425937c05.indd 134 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

135

Chapter 5: JavaScript — An Object-Based Language

two times, you would need to check whether the minutes of the arrival time were greater than the min-
utes of the departure. If so, you can simply subtract the departure time minutes from the arrival time
minutes. If not, you need to add 60 to the arrival time minutes and subtract one from the arrival time
hours to compensate, before taking the departure time minutes from the arrival time minutes. You then
need to subtract the departure time hours from the arrival time hours, before putting the minutes and
hours that you have arrived at back together.

This would work okay so long as the two times were in the same day. It wouldn’t work, for example,
with the times 23:45 and 04:32.

This way of working out the time difference obviously has its problems, but it also seems very complex.
Is there an easier way to deal with more complex data such as times and dates?

This is where objects come in. You can defi ne your departure and arrival times as Date objects. Because
they are Date objects, they come with a variety of properties and methods that you can use when you need
to manipulate or calculate times. For example, you can use the getTime() method to get the number of
milliseconds between the time in the Date object and January 1, 1970, 00:00:00. Once you have these
millisecond values for the arrival and departure times, you can simply subtract one from the other and
store the result in another Date object. To retrieve the hours and minutes of this time, you simply use the
getHours() and getMinutes() methods of the Date object. You’ll see more examples of this later in
the chapter.

The Date object is not the only type of object that JavaScript has to offer. Another object type was
introduced in Chapter 2, but to keep things simple, we didn’t tell you what it was at the time: the Array
object. Recall that an array is a way of holding a number of pieces of data at the same time.

Array objects have a property called length that tells you how many pieces of data, or rather how many
elements, the array holds. You actually used this property in the trivia quiz in Chapter 3 to work out how
many times you needed to loop through the array.

Array objects also have a number of methods. One example is the sort() method, which can be used
to sort the elements within the array into alphabetical order.

You should now have an idea why objects are useful in JavaScript. You have seen the Date and Array
objects, but there are many other types of objects that JavaScript makes available so that you can achieve
more with your code. These include the Math and String objects, which we will talk more about later in
the chapter.

Using JavaScript Objects
Now that you have seen the why of JavaScript objects, you need to look at the what and the how.

Each of JavaScript’s objects has a collection of related properties and methods that can be used to manipu-
late a certain kind of data. For example, the Array object consists of methods to manipulate arrays and
properties to fi nd out information from them. In most cases, to make use of these methods and properties,
you need to defi ne your data as one of these objects. In other words, you need to create an object.

In this section, you’ll look at how to go about creating an object and, having done that, how you use its
properties and methods.

25937c05.indd 13525937c05.indd 135 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

136

Chapter 5: JavaScript — An Object-Based Language

Creating an Object
You have already seen an example of an Array object being created. To create an Array object, you used
the following JavaScript statement:

var myArray = new Array();

So how is this statement made up?

The fi rst half of the statement is familiar to you. You use the var keyword to defi ne a variable called
myArray. This variable is initialized, using the equals sign assignment operator (=), to the right-hand
side of the statement.

The right-hand side of the statement consists of two parts. First you have the operator new. This tells
JavaScript that you want to create a new object. Next you have Array(). This is the constructor for an
Array object. It tells JavaScript what type of object you want to create. Most objects have constructors
like this. For example, the Date object has the Date() constructor. The only exception you see in this
book is the Math object, and this will be explained in a later part of the chapter.

You also saw in Chapter 2 that you can pass parameters to the constructor Array() to add data to your
object. For example, the following code creates an Array object that has three elements containing the
data “Paul”, “Jeremy”, and “Nick”:

var myArray = new Array(“Paul”, “Jeremy”, “Nick”);

Let’s see some more examples, this time creating a Date object. The simplest way to do so is like this:

var myDate = new Date();

This will create a Date object containing the date and time when it was created. However, the following
line creates a Date object containing the date 1 January 2010:

var myDate = new Date(“1 Jan 2010”);

How object data are stored in variables differs from how primitive data, such as text and numbers, are
stored. (Primitive data are the most basic data possible in JavaScript.) With primitive data, the variable
holds the data’s actual value. For example:

var myNumber = 23;

This code means that the variable myNumber holds the data 23. However, variables assigned to objects
don’t hold the actual data, but rather a reference to the memory address where the data can be found.
This doesn’t mean you can get hold of the memory address — this is something only JavaScript has
details of and keeps to itself in the background. All you need to remember is that when you say that a
variable references an object, you mean it references a memory address. This is shown in the following
example:

var myArrayRef = new Array(0, 1, 2);
var mySecondArrayRef = myArrayRef;
myArrayRef[0] = 100;
alert(mySecondArrayRef[0]);

25937c05.indd 13625937c05.indd 136 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

137

Chapter 5: JavaScript — An Object-Based Language

First you set variable myArrayRef reference to the new array object, and then you set mySecondArrayRef
to the same reference — for example, now mySecondArrayRef is set to reference the same array object.
So when you set the fi rst element of the array to 100, as shown here:

myArrayRef [0] = 100;

and display the contents of the fi rst element of the array referenced in mySecondArrayRef as follows:

alert(mySecondArrayRef[0]);

you’ll see it has also magically changed to 100! However, as you now know, it’s not magic; it’s because
both variables reference the same array object, because when it comes to objects, it’s a reference to the
object and not the object itself that is stored in a variable. When you did the assignment, it didn’t make a
copy of the array object, it simply copied the reference. Contrast that with the following:

var myVariable = “ABC”;
var mySecondVariable = myVariable;
myVariable = “DEF”;
alert(mySecondVariable);

In this case you’re dealing with a string, which is primitive data type, as are numbers. This time the
actual values are stored in the variable, so when you do this:

var mySecondVariable = myVariable;

mySecondVariable gets its own separate copy of the data in myVariable. So the alert at the end will
still show mySecondVariable as holding “ABC”.

To summarize this section, you create JavaScript objects using the following basic syntax:

var myVariable = new ConstructorName(optional parameters);

Using an Object’s Properties
Accessing the values contained in an object’s properties is very simple. You write the name of the
variable containing (or referencing) your object, followed by a dot, and then the name of the object’s
property.

For example, if you defi ned an Array object contained in the variable myArray, you could access its
length property like this:

myArray.length

But what can you do with this property now that you have it? You can use it as you would any other
piece of data and store it in a variable:

var myVariable = myArray.length;

Or you can show it to the user:

alert(myArray.length);

25937c05.indd 13725937c05.indd 137 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

138

Chapter 5: JavaScript — An Object-Based Language

In some cases, you can even change the value of the property, like this:

myArray.length = 12;

However, unlike variables, some properties are read-only — you can get information from them, but
you can’t change information inside them.

Calling an Object’s Methods
Methods are very much like functions in that they can be used to perform useful tasks, such as getting
the hours from a particular date or generating a random number. Again like functions, some methods
return a value, such as a Date object’s getHours() method, while others perform a task, but return no
data, such as an Array object’s sort() method.

Using the methods of an object is very similar to using properties, in that you put the object’s variable
name fi rst, then a dot, and then the name of the method. For example, to sort the elements of an Array
in the variable myArray, you may use the following code:

myArray.sort();

Just as with functions, you can pass parameters to some methods by placing the parameters between
the parentheses following the method’s name. However, whether or not a method takes parameters,
you must still put parentheses after the method’s name, just as you did with functions. As a general
rule, anywhere you can use a function, you can use a method of an object.

Primitives and Objects
You should now have a good idea about the difference between primitive data, such as numbers and
strings, and object data, such as Dates and Arrays. However, as was mentioned earlier, there is also a
String object. Where does this fi t in?

In fact there are String, Number, and Boolean objects corresponding to the string, number, and
Boolean primitive data types. For example, to create a String object containing the text “I’m a String
object” you can use the following code:

var myString = new String(“I’m a String object”);

String objects have the length property just as Array objects do. This returns the number of characters
in the String object. For example,

var lengthOfString = myString.length;

would store the value 19 in the variable lengthOfString (remember that spaces are referred to as
characters too).

But what if you had declared a primitive string called mySecondString holding the text “I’m a
primitive string” like this:

var mySecondString = “I’m a primitive string”;

and wanted to know how many characters could be found in this primitive string?

25937c05.indd 13825937c05.indd 138 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

139

Chapter 5: JavaScript — An Object-Based Language

This is where JavaScript helps you out. Recall from previous chapters that JavaScript can handle the
conversion of one data type to another automatically. For example, if you tried to add a string primitive
to a number primitive, like this:

theResult = “23” + 23;

JavaScript would assume that you want to treat the number as a string and concatenate the two
together, the number being converted to text automatically. The variable theResult would contain
“2323” — the concatenation of 23 and 23, and not the sum of 23 and 23, which would be 46.

The same applies to objects. If you declare a primitive string and then treat it as an object, such as by
trying to access one of its methods or properties, JavaScript will know that the operation you’re trying
to do won’t work. The operation will only work with an object; for example, it would be valid with a
String object. In this case, JavaScript converts the plain-text string into a temporary String object, just
for that operation, and destroys the object when it’s fi nished the operation.

So, for your primitive string mySecondString, you can use the length property of the String object
to fi nd out the number of characters it contains. For example:

var lengthOfSecondString = mySecondString.length;

This would store the data 22 in the variable lengthOfSecondString.

The same ideas expressed here are also true for number and Boolean primitives and their corresponding
Number and Boolean objects. However, these objects are not used very often, so we will not be discuss-
ing them further in this book.

JavaScript’s Native Object Types
So far, you have just been looking at what objects are, how to create them, and how to use them. Now
take a look at some of the more useful objects that are native to JavaScript — that is, those that are built-
in to the JavaScript language.

You won’t be looking at all of the native JavaScript objects, just some of the more commonly used ones,
namely the String object, the Math object, the Array object, and the Date object. Later in the book, a
whole chapter is devoted to each of the more complex objects, such as the String object (Chapter 9)
and the Date object (Chapter 10).

String Objects
Like most objects, String objects need to be created before they can be used. To create a String object,
you can write this:

var string1 = new String(“Hello”);
var string2 = new String(123);
var string3 = new String(123.456);

25937c05.indd 13925937c05.indd 139 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

140

Chapter 5: JavaScript — An Object-Based Language

However, as you have seen, you can also declare a string primitive and use it as if it were a String
object, letting JavaScript do the conversion to an object for you behind the scenes. For example:

var string1 = “Hello”;

Using this technique is preferable so long as it’s clear to JavaScript what object you expect to have cre-
ated in the background. If the primitive data type is a string, this won’t be a problem and JavaScript
will work it out. The advantages to doing it this way are that there is no need to create a String object
itself and you avoid the troubles with comparing string objects. When you try to compare string objects
with primitive string values, the actual values are compared, but with String objects, the object refer-
ences are compared.

The String object has a vast number of methods and properties. In this section, you’ll be looking only
at some of the less complex and more commonly used methods. However, in Chapter 9 you’ll look at
some of the trickier but very powerful methods associated with strings and the regular expression
object (RegExp). Regular expressions provide a very powerful means of searching strings for patterns
of characters. For example, if you want to fi nd “Paul” where it exists as a whole word in the string
“Pauline, Paul, Paula”, you need to use regular expressions. However, they can be a little tricky to
use, so we won’t discuss them further in this chapter — we want to save some fun for later!

With most of the String object’s methods, it helps to remember that a string is just a series of individual
characters and that, as with arrays, each character has a position, or index. Also as with arrays, the fi rst
position, or index, is labeled 0 and not 1. So, for example, the string “Hello World” has the character
positions shown in the following table:

Character Index 0 1 2 3 4 5 6 7 8 9 10

Character H e l l o W o r l d

The length Property
The length property simply returns the number of characters in the string. For example,

var myName = new String(“Jeremy”);
document.write(myName.length);

will write the length of the string “Jeremy” (that is, 6) to the page.

Finding a String Inside Another String — The indexOf() and
lastIndexOf() Methods

The methods indexOf() and lastIndexOf() are used for searching for the occurrence of one string
inside another. A string contained inside another is usually termed a substring. They are useful when
you have a string of information but only want a small part of it. For example, in the trivia quiz, when
someone enters a text answer, you want to check if certain keywords are present within the string.

Both indexOf() and lastIndexOf() take two parameters:

The string you want to fi nd ❑

The character position you want to start searching from (optional) ❑

25937c05.indd 14025937c05.indd 140 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

141

Chapter 5: JavaScript — An Object-Based Language

Character positions start at 0. If you don’t include the second parameter, searching starts from the
beginning of the string.

The return value of indexOf() and lastIndexOf() is the character position in the string at which the
substring was found. Again, it’s zero-based, so if the substring is found at the start of the string, then 0
is returned. If there is no match, the value -1 is returned.

For example, to search for the substring “Jeremy” in the string “Hello jeremy. How are you Jeremy”,
you may use the following code:

<script type=”text/javascript”>
var myString = “Hello jeremy. How are you Jeremy”;
var foundAtPosition;

foundAtPosition = myString.indexOf(“Jeremy”);
alert(foundAtPosition);
</script>

This code should result in a message box containing the number 26, which is the character position
of “Jeremy”. You might be wondering why it’s 26, which clearly refers to the second “Jeremy” in the
string, rather than 6 for the fi rst “jeremy”. Well, this is due to case sensitivity again. It’s laboring the
point a bit, but JavaScript takes case sensitivity very seriously, both in its syntax and when making com-
parisons. If you type IndexOf() instead of indexOf(), JavaScript will complain. Similarly, “jeremy”
is not the same as “Jeremy”. Remember that mistakes with case are very common and so easy to make,
even for experts, that it’s best to be very aware of case when programming.

You’ve seen indexOf() in action, but how does lastIndexOf() differ? Well, whereas indexOf()
starts searching from the beginning of the string, or the position you specifi ed in the second parameter,
and works towards the end, lastIndexOf() starts at the end of the string, or the position you speci-
fi ed, and works towards the beginning of the string.

In the current example, you fi rst search using indexOf(), which fi nds the fi rst
“Jeremy” (changed to the correct case from the last example). The alert box displays
this result, which is character position 6. Then you search using lastIndexOf().
This starts searching at the end of the string, and so the fi rst “Jeremy” it comes to
is the last one in the string at character position 26. Therefore, the second alert box
displays the result 26.

<script type=”text/javascript”>
var myString = “Hello Jeremy. How are you Jeremy”;
var foundAtPosition;

foundAtPosition = myString.indexOf(“Jeremy”);
alert(foundAtPosition);

foundAtPosition = myString.lastIndexOf(“Jeremy”);
alert(foundAtPosition);
</script>

25937c05.indd 14125937c05.indd 141 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

142

Chapter 5: JavaScript — An Object-Based Language

Try It Out Counting Occurrences of Substrings
In this example, you look at how to use the “start character position” parameter of indexOf(). Here
you will count how many times the word Wrox appears in the string.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 1</title>
</head>
<body>
<script type=”text/javascript”>
var myString = “Welcome to Wrox books. “;
myString = myString + “The Wrox website is www.wrox.com. “;
myString = myString + “Visit the Wrox website today. Thanks for buying Wrox”;

var foundAtPosition = 0;
var wroxCount = 0;

while (foundAtPosition != -1)
{
 foundAtPosition = myString.indexOf(“Wrox”,foundAtPosition);
 if (foundAtPosition != -1)
 {
 wroxCount++;
 foundAtPosition++;
 }
}

document.write(“There are “ + wroxCount + “ occurrences of the word Wrox”);

</script>
</body>
</html>

Save this example as ch5_examp1.htm. When you load the page into your browser, you should see the
following sentence: There are 4 occurrences of the word Wrox.

At the top of the script block, you built up a string inside the variable myString, which you then want
to search for the occurrence of the word Wrox. You also defi ne two variables: wroxCount will contain
the number of times Wrox is found in the string, and foundAtPosition will contain the position in the
string of the current occurrence of the substring Wrox.

You then used a while loop, which continues looping all the while you are fi nding the word Wrox in
the string — that is, while the variable foundAtPosition is not equal to -1. Inside the while loop, you
have this line:

foundAtPosition = myString.indexOf(“Wrox”,foundAtPosition);

Here you search for the next occurrence of the substring Wrox in the string myString. How do you make
sure that you get the next occurrence? You use the variable foundAtPosition to give you the starting
position of your search, because this contains the index after the index position of the last occurrence
of the substring Wrox. You assign the variable foundAtPosition to the result of your search, the index
position of the next occurrence of the substring Wrox.

25937c05.indd 14225937c05.indd 142 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

143

Chapter 5: JavaScript — An Object-Based Language

Each time Wrox is found (that is, each time foundAtPosition is not -1) you increase the variable
wroxCount, which counts how many times you have found the substring, and you increase
foundAtPosition so that you continue the search at the next position in the string.

 if (foundAtPosition != -1)
 {
 wroxCount++;
 foundAtPosition++;
 }

Finally, you document.write() the value of the variable wroxCount to the page.

Chapter 3 talked about the danger of infi nite loops, and you can see that there is a danger of one here.
If foundAtPosition++ were removed, you’d keep searching from the same starting point and never
move to fi nd the next occurrence of the word Wrox.

The indexOf() and lastIndexOf() methods are more useful when coupled with the substr() and
substring() methods, which you’ll be looking at in the next section. Using a combination of these
methods enables you to cut substrings out of a string.

Copying Part of a String — The substr() and substring() Methods
If you wanted to cut out part of a string and assign that cut-out part to another variable or use it in an
expression, you would use the substr() and substring() methods. Both methods provide the same
end result — that is, a part of a string — but they differ in the parameters they require.

The method substring() accepts two parameters: the character start position and the character after
the last character desired in the substring. The second parameter is optional; if you don’t include it, all
characters from the start position to the end of the string are included.

For example, if your string is “JavaScript” and you want just the text “Java”, you could call the
method like so:

var myString = “JavaScript”;
var mySubString = myString.substring(0,4);
alert(mySubString);

Character Position 0 1 2 3 4 5 6 7 8 9

Character J a v a S c r i p t

Like substring(), the method substr() again takes two parameters, the fi rst being the start position
of the fi rst character you want included in your substring. However, this time the second parameter
specifi es the length of the string of characters that you want to cut out of the longer string. For example,
you could rewrite the preceding code like this:

var myString = “JavaScript”;
var mySubString = myString.substr(0,4);
alert(mySubString);

25937c05.indd 14325937c05.indd 143 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

144

Chapter 5: JavaScript — An Object-Based Language

As with the substring() method, the second parameter is optional. If you don’t include it, all the char-
acters from the start position onward will be included.

The substring() method is supported by pre-version 4 browsers, and the substr() method is
supported by version 4 (and later) browsers. Most of the time, you will use the substr() method.

Let’s look at the use of the substr() and lastIndexOf() methods together. In the next chapter, you’ll
see how you can retrieve the fi le path and name of the currently loaded web page. However, there is
no way of retrieving the fi le name alone. So if, for example, your fi le is http://mywebsite/temp/
myfile.htm, you may need to extract the myfile.htm part. This is where substr() and lastIndexOf()
are useful.

var fileName = window.location.href;
fileName = fileName.substr(fileName.lastIndexOf(“/”) + 1);
document.write(“The file name of this page is “ + fileName);

The fi rst line sets the variable fileName to the current fi le path and name, such as /mywebsite/temp/
myfile.htm. Don’t worry about understanding this line; you’ll be looking at it in the next chapter.

The second line is where the interesting action is. You can see that this code uses the return value
of the lastIndexOf() method as a parameter for another method, something that’s perfectly cor-
rect and very useful. The goal in using fileName.lastIndexOf(“/”) is to fi nd the position of the
fi nal forward slash (/), which will be the last character before the name of the fi le. You add one to this
value, because you don’t want to include that character, and then pass this new value to the substr()
method. There’s no second parameter here (the length), because you don’t know it. As a result, sub-
str() will return all the characters right to the end of the string, which is what you want.

This example retrieves the name of the page on the local machine, because you’re not accessing the page
from a web server. However, don’t let this mislead you into thinking that accessing fi les on a local hard
drive from a web page is something you’ll be able to do with JavaScript alone. To protect users from
malicious hackers, JavaScript’s access to the user’s system, such as access to fi les, is very limited. You’ll
learn more about this later in the book.

Converting Case — The toLowerCase() and toUpperCase() Methods
If you want to change the case of a string (for example, to remove case sensitivity when comparing
strings), you need the toLowerCase() and toUpperCase() methods. It’s not hard to guess what these
two methods do. Both of them return a string that is the value of the string in the String object, but with
its case converted to either upper or lower depending on the method invoked. Any non-alphabetical
characters remain unchanged by these functions.

In the following example, you can see that by changing the case of both strings you can compare them
without case sensitivity being an issue.

var myString = “I Don’t Care About Case”

if (myString.toLowerCase() == “i don’t care about case”)
{
 alert(“Who cares about case?”);
}

25937c05.indd 14425937c05.indd 144 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

145

Chapter 5: JavaScript — An Object-Based Language

Even though toLowerCase() and toUpperCase() don’t take any parameters, you must remember to
put the two empty parentheses — that is, () — at the end, if you want to call a method.

Selecting a Single Character from a String — The charAt() and
charCodeAt() Methods

If you want to fi nd out information about a single character within a string, you need the charAt()
and charCodeAt() methods. These methods can be very useful for checking the validity of user input,
something you’ll see more of in Chapter 7 when you look at HTML forms.

The charAt() method accepts one parameter: the index position of the character you want in the
string. It then returns that character. charAt() treats the positions of the string characters as starting at
0, so the fi rst character is at index 0, the second at index 1, and so on.

For example, to fi nd the last character in a string, you could use this code:

var myString = prompt(“Enter some text”,”Hello World!”);
var theLastChar = myString.charAt(myString.length - 1);
document.write(“The last character is “ + theLastChar);

In the fi rst line, you prompt the user for a string, with the default of “Hello World!”, and store this
string in the variable myString.

In the next line, you use the charAt() method to retrieve the last character in the string. You use the
index position of (myString.length - 1). Why? Let’s take the string “Hello World!” as an example.
The length of this string is 12, but the last character position is 11 because the indexing starts at 0.
Therefore, you need to subtract one from the length of the string to get the last character’s position.

In the fi nal line, you write the last character in the string to the page.

The charCodeAt() method is similar in use to the charAt() method, but instead of returning the
character itself, it returns a number that represents the decimal character code for that character in the
Unicode character set. Recall that computers only understand numbers — to the computer, all your
strings are just numeric data. When you request text rather than numbers, the computer does a conver-
sion based on its internal understanding of each number and provides the respective character.

For example, to fi nd the character code of the fi rst character in a string, you could write this:

var myString = prompt(“Enter some text”,”Hello World!”);
var theFirstCharCode = myString.charCodeAt(0);
document.write(“The first character code is “ + theFirstCharCode);

This will get the character code for the character at index position 0 in the string given by the user, and
write it out to the page.

Character codes go in order, so, for example, the letter A has the code 65, B 66, and so on. Lowercase let-
ters start at 97 (a is 97, b is 98, and so on). Digits go from 48 (for the number 0) to 57 (for the number 9).
You can use this information for various purposes, as you’ll see in the next example.

25937c05.indd 14525937c05.indd 145 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

146

Chapter 5: JavaScript — An Object-Based Language

Try It Out Checking a Character’s Case
The following is an example that detects the type of the character at the start of a given string — that is,
whether the character is uppercase, lowercase, numeric, or other.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 2</title>
 <script type=”text/javascript”>
 function checkCharType(charToCheck)
 {
 var returnValue = “O”;
 var charCode = charToCheck.charCodeAt(0);

 if (charCode >= “A”.charCodeAt(0) && charCode <= “Z”.charCodeAt(0))
 {
 returnValue = “U”;
 }
 else if (charCode >= “a”.charCodeAt(0) && charCode <= “z”.charCodeAt(0))
 {
 returnValue = “L”;
 }
 else if (charCode >= “0”.charCodeAt(0) && charCode <= “9”.charCodeAt(0))
 {
 returnValue = “N”;
 }

 return returnValue;
 }
 </script>
</head>

<body>
<script type=”text/javascript”>

var myString = prompt(“Enter some text”,”Hello World!”);
switch (checkCharType(myString))
{
 case “U”:
 document.write(“First character was upper case”);
 break;
 case “L”:
 document.write(“First character was lower case”);
 break;
 case “N”:
 document.write(“First character was a number”);
 break;
 default:
 document.write(“First character was not a character or a number”);
}
</script>

25937c05.indd 14625937c05.indd 146 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

147

Chapter 5: JavaScript — An Object-Based Language

</body>
</html>

Type the code and save it as ch5_examp2.htm.

When you load the page into your browser, you will be prompted for a string. A message will then be
written to the page informing you of the type of the fi rst character that you entered — whether it is
uppercase, lowercase, a number, or something else, such as a punctuation mark.

To start with, you defi ne a function checkCharType(), which is used in the body of the page. You start
this function by declaring the variable returnValue and initializing it to the character “O” to indicate
it’s some other character than a lowercase letter, uppercase letter, or numerical character.

function checkCharType(charToCheck)
{
 var returnValue = “O”;

You use this variable as the value to be returned at the end of the function, indicating the type of char-
acter. It will take the values U for uppercase, L for lowercase, N for number, and O for other.

The next line in the function uses the charCodeAt() method to get the character code of the fi rst char-
acter in the string stored in charToCheck, which is the function’s only parameter. The character code is
stored in the variable charCode.

 var charCode = charToCheck.charCodeAt(0);

In the following lines, you have a series of if statements, which check within what range of values the
character code falls. You know that if it falls between the character codes for A and Z, it’s uppercase,
and so you assign the variable returnValue the value U. If the character code falls between the char-
acter codes for a and z, it’s lowercase, and so you assign the value L to the variable returnValue. If the
character code falls between the character codes for 0 and 9, it’s a number, and you assign the value N to
the variable returnValue. If the value falls into none of these ranges, then the variable retains its ini-
tialization value of O for other, and you don’t have to do anything.

 if (charCode >= “A”.charCodeAt(0) && charCode <= “Z”.charCodeAt(0))
 {
 returnValue = “U”;
 }
 else if (charCode >= “a”.charCodeAt(0) && charCode <= “z”.charCodeAt(0))
 {
 returnValue = “L”;
 }
 else if (charCode >= “0”.charCodeAt(0) && charCode <= “9”.charCodeAt(0))
 {
 returnValue = “N”;
 }

This probably seems a bit weird at fi rst, so let’s see what JavaScript is doing with your code. When you
write

“A”.charCodeAt(0)

it appears that you are trying to use a method of the String object on a string literal, which is the same
as a primitive string in that it’s just characters and not an object. However, JavaScript realizes what you
are doing and does the necessary conversion of literal character “A” into a temporary String object

25937c05.indd 14725937c05.indd 147 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

148

Chapter 5: JavaScript — An Object-Based Language

containing “A”. Then, and only then, does JavaScript perform the charCodeAt() method on the
String object it has created in the background. When it has fi nished, the String object is disposed of.
Basically, this is a shorthand way of writing the following:

var myChar = new String(“A”);
myChar.charCodeAt(0);

In either case, the fi rst (and, in this string, the only) character’s code is returned to you. For example,
“A”.charCodeAt(0) will return the number 65.

Finally you come to the end of the function and return the returnValue variable to where the function
was called.

 return returnValue;
}

You might wonder why you bother using the variable returnValue at all, instead of just returning its
value. For example, you could write the code as follows:

 if (charCode >= “A”.charCodeAt(0) && charCode <= “Z”.charCodeAt(0))
 {
 return “U”;
 }
 else if (charCode >= “a”.charCodeAt(0) && charCode <= “z”.charCodeAt(0))
 {
 return “L”;
 }
 else if (charCode >= “0”.charCodeAt(0) && charCode <= “9”.charCodeAt(0))
 {
 return “N”;
 }
 return “O”;

This would work fi ne, so why not do it this way? The disadvantage of this way is that it’s diffi cult to fol-
low the fl ow of execution of the function, which is not that bad in a small function like this, but can get
tricky in bigger functions. With the original code you always know exactly where the function execu-
tion stops: It stops at the end with the only return statement. The version of the function just shown
fi nishes when any of the return statements is reached, so there are four possible places where the func-
tion might end.

In the body of your page, you have some test code to check that the function works. You fi rst use the
variable myString, initialized to “Hello World!” or whatever the user enters into the prompt box, as
your test string.

var myString = prompt(“Enter some text”,”Hello World!”);

Next, the switch statement uses the checkCharType() function that you defi ned earlier in its com-
parison expression. Depending on what is returned by the function, one of the case statements will
execute and let the user know what the character type was.

switch (checkCharType(myString))
{
 case “U”:
 document.write(“First character was upper case”);
 break;
 case “L”:
 document.write(“First character was lower case”);

25937c05.indd 14825937c05.indd 148 9/20/09 11:46:43 PM9/20/09 11:46:43 PM

149

Chapter 5: JavaScript — An Object-Based Language

 break;
 case “N”:
 document.write(“First character was a number”);
 break;
 default:
 document.write(“First character was not a character or a number”);
}

That completes the example, but before moving on, it’s worth noting that this example is just that — an
example of using charCodeAt(). In practice, it would be much easier to just write

if (char >= “A” && char <= “Z”)

rather than

if (charCode >= “A”.charCodeAt(0) && charCode <= “Z”.charCodeAt(0))

which you have used here.

Converting Character Codes to a String — The fromCharCode() Method
The method fromCharCode() can be thought of as the opposite of charCodeAt(), in that you pass it a
series of comma-separated numbers representing character codes, and it converts them to a single string.

However, the fromCharCode() method is unusual in that it’s a static method — you don’t need to have
created a String object to use it with, it’s always available to you.

For example, the following lines put the string “ABC” into the variable myString:

var myString;
myString = String.fromCharCode(65,66,67);

The fromCharCode() method can be very useful when used with variables. For example, to build up a
string consisting of all the uppercase letters of the alphabet, you could use the following code:

var myString = “”;
var charCode;

for (charCode = 65; charCode <= 90; charCode++)
{
 myString = myString + String.fromCharCode(charCode);
}

document.write(myString);

You use the for loop to select each character from A to Z in turn and concatenate this to myString.
Note that while this is fi ne as an example, it is more effi cient and less memory-hungry to simply write
this instead:

var myString = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

25937c05.indd 14925937c05.indd 149 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

150

Chapter 5: JavaScript — An Object-Based Language

Array Objects
You saw how to create and use arrays in Chapter 2, and this chapter mentioned earlier that they are
actually objects.

In addition to storing data, Array objects provide a number of useful properties and methods you can
use to manipulate the data in the array and fi nd out information such as the size of the array.

Again, this is not an exhaustive look at every property and method of Array objects but rather just
some of the more useful ones.

This book uses constructor syntax when creating arrays: var myArray = new Array(). But it’s
possible to create arrays with much shorter syntax: var myArray = []. Simply use the opening and
closing square brackets instead of new Array(). Your authors will continue to use the constructor, for
clarity’s sake, throughout the book.

Finding Out How Many Elements Are in an Array — The length Property
The length property gives you the number of elements within an array, which you have already seen in
the trivia quiz in Chapter 3. Sometimes you know exactly how long the array is, but there are situations
where you may have been adding new elements to an array with no easy way of keeping track of how
many have been added.

The length property can be used to fi nd the index of the last element in the array. This is illustrated in
the following example:

var names = new Array();

names[0] = “Paul”;
names[1] = “Jeremy”;
names[11] = “Nick”;

document.write(“The last name is “ + names[names.length - 1]);

Note that you have inserted data in the elements with index positions 0, 1, and 11. The array index
starts at 0, so the last element is at index length - 1, which is 11, rather than the value of the
length property, which is 12.

Another situation in which the length property proves useful is where a JavaScript method returns
an array it has built itself. For example, in Chapter 9, on advanced string handling, you’ll see that the
String object has the split() method, which splits text into pieces and passes back the result as an
Array object. Because JavaScript created the array, there is no way for you to know, without the length
property, what the index is of the last element in the array.

Joining Arrays — The concat() Method
If you want to take two separate arrays and join them together into one big array, you can use the Array
object’s concat() method. The concat() method returns a new array, which is the combination of the
two arrays: the elements of the fi rst array, then the elements of the second array. To do this, you use the
method on your fi rst array and pass the name of the second array as its parameter.

25937c05.indd 15025937c05.indd 150 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

151

Chapter 5: JavaScript — An Object-Based Language

For example, say you have two arrays, names and ages, and separately they look like the following
tables:

names array

Element Index 0 1 2

Value Paul Jeremy Nick

ages array

Element Index 0 1 2

Value 31 30 31

If you combine them using names.concat(ages), you will get an array like the one in the following
table:

Element Index 0 1 2 3 4 5

Value Paul Jeremy Nick 31 30 31

In the following code, this is exactly what you are doing:

var names = new Array(“Paul”,”Jeremy”,”Nick”);
var ages = new Array(31,30,31);

var concatArray = names.concat(ages);

It’s also possible to combine two arrays into one but assign the new array to the name of the existing
fi rst array, using names = names.concat(ages).

If you were to use ages.concat(names), what would be the difference? Well, as you can see in the
following table, the difference is that now the ages array elements are fi rst, and the elements from the
names array are concatenated on the end.

Element Index 0 1 2 3 4 5

Value 31 30 31 Paul Jeremy Nick

Copying Part of an Array — The slice() Method
When you just want to copy a portion of an array, you can use the slice() method. Using the slice()
method, you can slice out a portion of the array and assign it to a new variable name. The slice()
method has two parameters:

The index of the fi rst element you want copied ❑

The index of the element marking the end of the portion you are slicing out (optional) ❑

25937c05.indd 15125937c05.indd 151 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

152

Chapter 5: JavaScript — An Object-Based Language

Just as with string copying with substring(), the start point is included in the copy, but the end point
is not. Again, if you don’t include the second parameter, all elements from the start index onward are
copied.

Suppose you have the array names shown in the following table:

Index 0 1 2 3 4

Value Paul Sarah Jeremy Adam Bob

If you want to create a new array with elements 1, Sarah, and 2, Jeremy, you would specify a start
index of 1 and an end index of 3. The code would look something like this:

var names = new Array(“Paul”,”Sarah”,”Jeremy”,”Adam”,”Bob”);
var slicedArray = names.slice(1,3);

When JavaScript copies the array, it copies the new elements to an array in which they have indexes 0
and 1, not their old indexes of 1 and 2.

After slicing, the slicedArray looks the following table:

Index 0 1

Value Sarah Jeremy

The fi rst array, names, is unaffected by the slicing.

Converting an Array into a Single String — The join() Method
The join() method concatenates all the elements in an array and returns them as a string. It also
enables you to specify any characters you want to insert between elements as they are joined together.
The method has only one parameter, and that’s the string you want between elements.

An example will help explain things. Imagine that you have your weekly shopping list stored in an
array, which looks something like this:

Index 0 1 2 3 4

Value Eggs Milk Potatoes Cereal Banana

Now you want to write out your shopping list to the page using document.write(). You want each
item to be on a different line, so this means you need to use the
 tag between each element. First,
you need to declare your array.

var myShopping = new Array(“Eggs”,”Milk”,”Potatoes”,”Cereal”,”Banana”);

Now, convert the array into one string with the join() method.

var myShoppingList = myShopping.join(“
”);

25937c05.indd 15225937c05.indd 152 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

153

Chapter 5: JavaScript — An Object-Based Language

Now the variable myShoppingList will hold the following text:

“Eggs
Milk
Potatoes
Cereal
Banana”

which you can write out to the page with document.write().

document.write(myShoppingList);

The shopping list will appear in the page with each item on a new line, as shown in Figure 5-1.

Figure 5-1

Putting Your Array in Order — The sort() Method
If you have an array that contains similar data, such as a list of names or a list of ages, you may want
to put them in alphabetical or numerical order. This is something that the sort() method makes very
easy. In the following code, you defi ne your array and then put it in ascending alphabetical order using
names.sort(). Finally, you output it so that you can see that it’s in order.

var names = new Array(“Paul”,”Sarah”,”Jeremy”,”Adam”,”Bob”);
var elementIndex;

names.sort();
document.write(“Now the names again in order” + “
”);

for (elementIndex = 0; elementIndex < names.length; elementIndex++)
{
 document.write(names[elementIndex] + “
”);
}

Don’t forget that the sorting is case sensitive, so Paul will come before paul. Remember that JavaScript
stores letters encoded in their equivalent Unicode number, and that sorting is done based on Unicode

25937c05.indd 15325937c05.indd 153 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

154

Chapter 5: JavaScript — An Object-Based Language

numbers rather than actual letters. It just happens that Unicode numbers match the order in the alphabet.
However, lowercase letters are given a different sequence of numbers, which come after the uppercase
letters. So the array with elements Adam, adam, Zoë, zoë, will be sorted to the order Adam, Zoë, adam, zoë.

Note that in your for statement you’ve used the Array object’s length property in the condition state-
ment, rather than inserting the length of the array (5), like this:

for (elementIndex = 0; elementIndex < 5; elementIndex++)

Why do this? After all, you know in advance that there are fi ve elements in the array. Well, what would
happen if you altered the number of elements in the array by adding two more names?

var names = new Array(“Paul”,”Sarah”,”Jeremy”,”Adam”,”Bob”,”Karen”,”Steve”);

If you had inserted 5 rather than names.length, your loop code wouldn’t work as you want it to. It
wouldn’t display the last two elements unless you changed the condition part of the for loop to 7. By
using the length property, you’ve made life easier, because now there is no need to change code else-
where if you add array elements.

Okay, you’ve put things in ascending order, but what if you wanted descending order? That is where
the reverse() method comes in.

Putting Your Array into Reverse Order — The reverse() Method
The fi nal method you’ll look at for the Array object is the reverse() method, which, no prizes for
guessing, reverses the order of the array so that the elements at the back are moved to the front. Let’s
take the shopping list again as an example.

Index 0 1 2 3 4

Value Eggs Milk Potatoes Cereal Banana

If you use the reverse() method

var myShopping = new Array(“Eggs”,”Milk”,”Potatoes”,”Cereal”,”Banana”);
myShopping.reverse();

you end up with the array elements in this order:

Index 0 1 2 3 4

Value Banana Cereal Potatoes Milk Eggs

To prove this, you could write it to the page with the join() method you saw earlier.

var myShoppingList = myShopping.join(“
”)
document.write(myShoppingList);

25937c05.indd 15425937c05.indd 154 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

155

Chapter 5: JavaScript — An Object-Based Language

Try It Out Sorting an Array
When used in conjunction with the sort() method, the reverse() method can be used to sort an
array so that its elements appear in reverse alphabetical or numerical order. This is shown in the follow-
ing example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 3</title>
</head>
<body>
<script type=”text/javascript”>

var myShopping = new Array(“Eggs”,”Milk”,”Potatoes”,”Cereal”,”Banana”);

var ord = prompt(“Enter 1 for alphabetical order, and -1 for reverse order”, 1);

if (ord == 1)
{
 myShopping.sort();
 document.write(myShopping.join(“
”));
}
else if (ord == -1)
{
 myShopping.sort();
 myShopping.reverse();
 document.write(myShopping.join(“
”));
}
else
{
 document.write(“That is not a valid input”);
}
</script>
</body>
</html>

Save the example as ch5_examp3.htm. When you load this into your browser, you will be asked to
enter some input depending on whether you want the array to be ordered in forward or backward
order. If you enter 1, the array will be displayed in forward order. If you enter –1, the array will be dis-
played in reverse order. If you enter neither of these values, you will be told that your input was invalid.

At the top of the script block, you defi ne the array containing your shopping list. Next you defi ne the
variable ord to be the value entered by the user in a prompt box.

var ord = prompt(“Enter 1 for alphabetical order, and -1 for reverse order”, 1);

This value is used in the conditions of the if statements that follow. The fi rst if checks whether the
value of ord is 1 — that is, whether the user wants the array in alphabetical order. If so, the following
code is executed:

myShopping.sort();
document.write(myShopping.join(“
”));

25937c05.indd 15525937c05.indd 155 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

156

Chapter 5: JavaScript — An Object-Based Language

The array is sorted and then displayed to the user on separate lines using the join() method. Next, in
the else if statement, you check whether the value of ord is -1 — that is, whether the user wants the
array in reverse alphabetical order. If so, the following code is executed:

myShopping.sort();
myShopping.reverse();
document.write(myShopping.join(“
”));

Here, you sort the array before reversing its order. Again the array is displayed to the user by means of
the join() method.

Finally, if ord has neither the value 1 nor the value -1, you tell the user that his input was invalid.

document.write(“That is not a valid input”);

New Array Methods
In 2005, Mozilla updated the JavaScript engine in Firefox. In doing so, they added seven new methods
to the Array object. These seven methods can be divided into two categories: location methods and
iterative methods.

The following seven methods do not work Internet Explorer. They do, however, work in Firefox, Safari,
Opera, and Chrome.

Finding Array Elements — The indexOf() and lastIndexOf() Methods
As you can probably guess by their names, these two methods resemble the functionality of the String
object’s indexOf() and lastIndexOf() methods — they return the index of an item’s fi rst and last
occurrence in an array. Consider the following code:

var colors = new Array(“red”, ”blue”, “green”, “blue”);
alert(colors.indexOf(“red”));
alert(colors.lastIndexOf(“blue”));

The fi rst line of code creates an array called colors. It has four elements (two of which are blue). The
second line alerts 0 to the user, as red is the fi rst element of the array.

Remember the String object’s lastIndexOf() method searches the array backwards and returns the
index of the fi rst matching character. The lastIndexOf() method of the Array object behaves similarly,
so the third line shows the user the value of 3.

Also similar to the String object’s methods of the same name, these two methods return a value of -1
if the element could not be found in the array.

Iterating Through an Array Without Loops
The remaining fi ve methods are called iterative methods because they iterate, or loop, through the array.
In addition, these methods execute a function you defi ne on every element while they iterate through the

25937c05.indd 15625937c05.indd 156 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

157

Chapter 5: JavaScript — An Object-Based Language

array. The function these methods use must follow one rule. The function must accept three arguments
like the following code.

function functionName(value, index, array) {
 // do something here
}

When this function is executed, JavaScript passes three arguments to your function. The fi rst is the
value of the element, next is the index of the element, and fi nally is the array itself. With these param-
eters, you should be able to perform any operation or comparison you need.

Testing Each Element — The every(), some(), and fi lter() Methods
Let’s look at the every() and some() methods fi rst. These are testing methods. The every() method
tests whether all elements in the array pass the test in your function. Consider the following code:

var numbers = new Array(1, 2, 3, 4, 5);

function isLessThan3(value, index, array)
{
 var returnValue = false;

 if (value < 3)
 {
 returnValue = true;
 }

 return returnValue;
}

alert(numbers.every(isLessThan3));

The fi rst line shows the creation of an array called numbers; its elements hold the values 1 through
5. The next line defi nes the isLessThan3() function. It accepts the three mandatory arguments and
determines if the value of each element is less than 3. The last line alerts the outcome of the every()
test. Because not every value in the array is less than 3, the result of the every() test is false.

Contrast this with the some() method. Unlike every(), the some() test only cares if some of the ele-
ments pass the test in your function. Using the same numbers array and isLessThan3() function, con-
sider this line of code:

alert(numbers.some(isLessThan3));

The result is true because some of the elements in the array are less than 3. It’s easy to keep these two
methods straight. Just remember the every() method returns true if, and only if, all elements in the
array pass the test in your function; the some() method returns true if, and only if, some of the ele-
ments in the array pass your function’s test.

Let’s assume you want to retrieve the elements that have a value less than 3. You already know some
elements meet this criterion, but how do you identify those elements and retrieve them? This is where
the filter() method becomes useful.

25937c05.indd 15725937c05.indd 157 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

158

Chapter 5: JavaScript — An Object-Based Language

The filter() method executes your function on every element in the array, and if your function
returns true for a particular element, that element is added to another array the filter() method
returns. Keeping that in mind, look at the following code:

var numbers = new Array(1, 2, 3, 4, 5);

function isLessThan3(value, index, array)
{
 var returnValue = false;

 if (value < 3)
 {
 returnValue = true;
 }

 return returnValue;
}

if (numbers.some(isLessThan3))
{
 var result = numbers.filter(isLessThan3);
 alert(“These numbers are less than 3: ” + result);
}

This code defi nes the numbers array and the isLessThan3 function used previously. The new code
determines if any elements in the numbers array contain a value less than 3. If so, the filter()
method is called and returns those elements in a new array. The result of this code can be seen in
Figure 5-2.

Figure 5-2

As you can see, the filter() method in combination with the some() method can be quite useful!

Before moving on, let’s revisit the isLessThan3() function. As you have seen, the function works as is
without any modifi cation. However, the function’s body can be simplifi ed and made more effi cient. The
following code shows you this simplifi ed version:

function isLessThan3(value, index, array)
{
 return (value < 3);
}

Isn’t that much easier? JavaScript, like most other languages, returns conditional statements as true or
false, and you can assign the returned value to a variable. In this case, the value returned from the
conditional statement is simply returned to the calling code.

25937c05.indd 15825937c05.indd 158 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

159

Chapter 5: JavaScript — An Object-Based Language

For clarity’s sake, your authors opt to use longer, but easier to follow, approaches to code as opposed to
their shorthand equivalents.

Operating on Elements — The forEach() and map() Methods
The fi nal two methods are the forEach() and map() methods. Unlike the previous iterative methods,
these two methods do not test each element in the array with your function; instead, the function you write
should perform some kind of operation that uses the element in some way. Look at the following code:

var numbers = new Array(1, 2, 3, 4, 5);

for (var i = 0; i < numbers.length; i++)
{
 var result = numbers[i] * 2;
 alert(result);
}

As a programmer, you’ll often see and use this type of code. It defi nes an array of numbers and loops
through it to perform some kind of operation on each element. In this case, the value of each element
is doubled, and the result is shown in an alert box to the user. Wouldn’t it be great if you could do this
without writing a loop?

With the forEach() method, you can. All you need to do is write a function to double a given value
and output the result in an alert box, like this:

var numbers = new Array(1, 2, 3, 4, 5);

function doubleAndAlert(value, index, array)
{
 var result = value * 2;
 alert(result);
}

numbers.forEach(doubleAndAlert);

Notice that the doubleAndAlert() function doesn’t return a value like the testing methods. It cannot
return any value; its only purpose is to perform an operation on every element in the array. While this
is useful in some cases, it’s almost useless when you want the results of the operation. That’s where the
map() method comes in.

The premise of the map() method is similar to that of forEach(), except that the results of every opera-
tion are stored in another array that the map() method returns.

Let’s modify the previous example. The doubleAndAlert() function still needs to double the array
element’s value, but it now needs to return the result of that operation in order to be stored in map()’s
returning array.

var numbers = new Array(1, 2, 3, 4, 5);

function doubleAndAlert(value, index, array)
{
 var result = value * 2;

25937c05.indd 15925937c05.indd 159 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

160

Chapter 5: JavaScript — An Object-Based Language

 return result;
}

var doubledNumbers = numbers.map(doubleAndAlert);
alert(“The doubled numbers are: “ + doubledNumbers);

Figure 5-3 shows the results of this code. You can see that there is very little difference between this code
and the code for the forEach() method. The doubleAndAlert() function now returns the product of
the element’s value and 2 (instead of outputting it in an alert box), and you show the user the full result
set after calling the map() method.

Figure 5-3

As you can see, these seven methods can come in handy when you need to fi nd elements in an array, or
you want to perform the same operation on all elements.

The only downside to these methods is that they are not supported in Internet Explorer, and Microsoft
has not yet indicated if or when they will be added. One thing is for sure, though: Our jobs as developers
will become much easier the day Microsoft does add support for them.

The Math Object
The Math object provides a number of useful mathematical functions and number manipulation meth-
ods. You’ll be taking a look at some of them here, but you’ll fi nd the rest described in detail at the W3C
site: www.w3schools.com/jsref/default.asp.

The Math object is a little unusual in that JavaScript automatically creates it for you. There’s no need to
declare a variable as a Math object or defi ne a new Math object before being able to use it, making it a
little bit easier to use.

The properties of the Math object include some useful math constants, such as the PI property (giving
the value 3.14159 and so on). You access these properties, as usual, by placing a dot after the object
name (Math) and then writing the property name. For example, to calculate the area of a circle, you may
use the following code:

var radius = prompt(“Give the radius of the circle”, “”);
var area = Math.PI * radius * radius;
document.write(“The area is “ + area);

The methods of the Math object include some operations that are impossible, or complex, to perform
using the standard mathematical operators (+, –, *, and /). For example, the cos() method returns the
cosine of the value passed as a parameter. You’ll look at a few of these methods now.

25937c05.indd 16025937c05.indd 160 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

161

Chapter 5: JavaScript — An Object-Based Language

The abs() Method
The abs() method returns the absolute value of the number passed as its parameter. Essentially, this
means that it returns the positive value of the number. So -1 is returned as 1, -4 as 4, and so on. However,
1 would be returned as 1 because it’s already positive.

For example, the following code writes the number 101 to the page.

var myNumber = -101;
document.write(Math.abs(myNumber));

Finding the Largest and Smallest Numbers: the min() and max()
Methods

Let’s say you have two numbers, and you want to fi nd either the largest or smallest of the two. To aid
you in this task, the Math object provides the min() and max() methods. These methods both accept at
least two arguments, all of which must obviously be numbers. Look at this example code:

var max = Math.max(21,22); // result is 22
var min = Math.min(30.1, 30.2); // result is 30.1

The min() method returns the number with the lowest value, and max()returns the number with the
highest value. The numbers you pass to these two methods can be whole or fl oating point numbers.

The max() and min() methods can accept many numbers; you’re not limited to two.

Rounding Numbers
The Math object provides a few methods to round numbers, each with its own specifi c purpose.

The ceil() Method
The ceil() method always rounds a number up to the next largest whole number or integer. So 10.01
becomes 11, and –9.99 becomes –9 (because –9 is greater than –10). The ceil() method has just one
parameter, namely the number you want rounded up.

Using ceil() is different from using the parseInt() function you saw in Chapter 2, because parseInt()
simply chops off any numbers after the decimal point to leave a whole number, whereas ceil() rounds
the number up.

For example, the following code writes two lines in the page, the fi rst containing the number 102 and
the second containing the number 101:

var myNumber = 101.01;
document.write(Math.ceil(myNumber) + “
”);
document.write(parseInt(myNumber));

The fl oor() Method
Like the ceil() method, the floor() method removes any numbers after the decimal point, and
returns a whole number or integer. The difference is that floor() always rounds the number down. So
if you pass 10.01 you will be returned 10, and if you pass –9.99 you will see –10 returned.

25937c05.indd 16125937c05.indd 161 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

162

Chapter 5: JavaScript — An Object-Based Language

The round() Method
The round() method is very similar to ceil() and floor(), except that instead of always rounding
up or always rounding down, it rounds up only if the decimal part is .5 or greater, and rounds down
otherwise.

For example:

var myNumber = 44.5;
document.write(Math.round(myNumber) + “
”);

myNumber = 44.49;
document.write(Math.round(myNumber));

This code would write the numbers 45 and 44 to the page.

Summary of Rounding Methods
As you have seen, the ceil(), floor(), and round() methods all remove the numbers after a deci-
mal point and return just a whole number. However, which whole number they return depends on the
method used: floor() returns the lowest, ceil() the highest, and round() the nearest equivalent inte-
ger. This can be a little confusing, so the following is a table of values and what whole number would be
returned if these values were passed to the parseInt() function, and ceil(), floor(), and round()
methods.

Parameter parseInt() returns ceil() returns fl oor() returns round() returns

10.25 10 11 10 10

10.75 10 11 10 11

10.5 10 11 10 11

–10.25 –10 –10 –11 –10

–10.75 –10 –10 –11 –11

–10.5 –10 –10 –11 –10

Remember that parseInt() is a native JavaScript function, not a method of the Math object, like the
other methods presented in this table.

Try It Out Rounding Methods Results Calculator
If you’re still not sure about rounding numbers, the following example should help. Here, you’ll look at
a calculator that gets a number from the user, and then writes out what the result would be when you
pass that number to parseInt(), ceil(), floor(), and round().

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c05.indd 16225937c05.indd 162 9/20/09 11:46:44 PM9/20/09 11:46:44 PM

163

Chapter 5: JavaScript — An Object-Based Language

<head>
 <title>Chapter 5: Example 4</title>
</head>
<body>
<script type=”text/javascript”>

var myNumber = prompt(“Enter the number to be rounded”,”“);

document.write(“<h3>The number you entered was “ + myNumber + “</h3>
”);
document.write(“<p>The rounding results for this number are</p>”);
document.write(“<table width=’150’ border=’1’>”);
document.write(“<tr><th>Method</th><th>Result</th></tr>”);
document.write(“<tr><td>parseInt()</td><td>”+ parseInt(myNumber) +”</td></tr>”);
document.write(“<tr><td>ceil()</td><td>” + Math.ceil(myNumber) + “</td></tr>”);
document.write(“<tr><td>floor()</td><td>”+ Math.floor(myNumber) + “</td></tr>”);
document.write(“<tr><td>round()</td><td>” + Math.round(myNumber) +”</td></tr>”);
document.write(“</table>”)

</script>
</body>
</html>

Save this as ch5_examp4.htm and load it into a web browser. In the prompt box, enter a number, for
example 12.354, and click OK. The results of this number being passed to parseInt(), ceil(),
floor(), and round() will be displayed in the page formatted inside a table, as shown in Figure 5-4.

Figure 5-4

The fi rst task is to get the number to be rounded from the user.

var myNumber = prompt(“Enter the number to be rounded”,””);

25937c05.indd 16325937c05.indd 163 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

164

Chapter 5: JavaScript — An Object-Based Language

Then you write out the number and some descriptive text.

document.write(“<h3>The number you entered was “ + myNumber + “</h3>
”);
document.write(“<p>The rounding results for this number are</p>”);

Notice how this time some HTML tags for formatting have been included — the main header being in
<h3> tags, and the description of what the table means being inside a paragraph <p> tag.

Next you create the table of results.

document.write(“<table width=150 border=1>”);
document.write(“<tr><th>Method</th><th>Result</th></tr>”);
document.write(“<tr><td>parseInt()</td><td>”+ parseInt(myNumber) +”</td></tr>”);
document.write(“<tr><td>ceil()</td><td>” + Math.ceil(myNumber) + “</td></tr>”);
document.write(“<tr><td>floor()</td><td>”+ Math.floor(myNumber) + “</td></tr>”);
document.write(“<tr><td>round()</td><td>” + Math.round(myNumber) +”</td></tr>”);
document.write(“</table>”)

You create the table header fi rst before actually displaying the results of each rounding function on a
separate row. You can see how easy it is to dynamically create HTML inside the web page using just
JavaScript. The principles are the same as with HTML in a page: You must make sure your tag’s syntax
is valid or otherwise things will appear strange or not appear at all.

Each row follows the same principle but uses a different rounding function. Let’s look at the fi rst row,
which displays the results of parseInt().

document.write(“<tr><td>parseInt()</td><td>”+ parseInt(myNumber) +”</td></tr>”);

Inside the string to be written out to the page, you start by creating the table row with the <tr> tag.
Then you create a table cell with a <td> tag and insert the name of the method from which the results
are being displayed on this row. Then you close the cell with </td> and open a new one with <td>.
Inside this next cell you are placing the actual results of the parseInt() function. Although a number
is returned by parseInt(), because you are concatenating it to a string, JavaScript automatically con-
verts the number returned by parseInt() into a string before concatenating. All this happens in the
background without you needing to do a thing. Finally, you close the cell and the row with </td></tr>.

The random() Method
The random() method returns a random fl oating-point number in the range between 0 and 1, where 0
is included and 1 is not. This can be very useful for displaying random banner images or for writing a
JavaScript game.

Let’s look at how you would mimic the roll of a single die. In the following page, 10 random numbers
are written to the page. Click the browser’s Refresh button to get another set of random numbers.

<html>
<body>
<script type=”text/javascript”>
var throwCount;
var diceThrow;
for (throwCount = 0; throwCount < 10; throwCount++)
{

25937c05.indd 16425937c05.indd 164 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

165

Chapter 5: JavaScript — An Object-Based Language

 diceThrow = (Math.floor(Math.random() * 6) + 1);
 document.write(diceThrow + “
”);
}

</script>
</body>
</html>

You want diceThrow to be between 1 and 6. The random() function returns a fl oating-point number
between 0 and just under 1. By multiplying this number by 6, you get a number between 0 and just
under 6. Then by adding 1, you get a number between 1 and just under 7. By using floor() to always
round it down to the next lowest whole number, you can ensure that you’ll end up with a number
between 1 and 6.

If you wanted a random number between 1 and 100, you would just change the code so that Math.
random() is multiplied by 100 rather than 6.

The pow() Method
The pow() method raises a number to a specifi ed power. It takes two parameters, the fi rst being the
number you want raised to a power, and the second being the power itself. For example, to raise 2 to the
power of 8 (that is, to calculate 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2), you would write Math.pow(2,8) — the result
being 256. Unlike some of the other mathematical methods, like sin(), cos(), and acos(), which are
not commonly used in web programming unless it’s a scientifi c application you’re writing, the pow()
method can often prove very useful.

Try It Out Using pow()
In the following example, you write a function using pow(), which fi xes the number of decimal places
in a number — a function that’s missing from earlier versions of JavaScript, though it has now been
added to JScript 5.5 and JavaScript 1.5, as you’ll see later in this chapter. This helps demonstrate that
even when a function is missing from JavaScript, you can usually use existing functions to create what
you want.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 5</title>
</head>
<head>
<script type=”text/javascript”>

function fix(fixNumber, decimalPlaces)
{
 var div = Math.pow(10,decimalPlaces);
 fixNumber = Math.round(fixNumber * div) / div;
 return fixNumber;
}
</script>
</head>
<body>

25937c05.indd 16525937c05.indd 165 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

166

Chapter 5: JavaScript — An Object-Based Language

<script type=”text/javascript”>

var number1 = prompt(“Enter the number with decimal places you want to fix”,”“);
var number2 = prompt(“How many decimal places do you want?”,”“);

document.write(number1 + “ fixed to “ + number2 + “ decimal places is: “);
document.write(fix(number1,number2));

</script>
</body>
</html>

Save the page as ch5_examp5.htm. When you load the page into your browser, you will be presented with
two prompt boxes. In the fi rst, enter the number for which you want to fi x the number of decimal places,
for example 2.2345. In the second, enter the number of decimal places you want fi xed, for example 2. Then
the result of fi xing the number you have entered to the number of decimal places you have chosen will be
written to the page, as shown in Figure 5-5. For the example numbers, this will be 2.23.

Figure 5-5

In the head of the page, you defi ne the function fix(). This function will fi x its fixNumber parameter
to a maximum of its decimalPlaces parameter’s number of digits after the decimal place. For example,
fi xing 34.76459 to a maximum of three decimal places will return 34.765.

The fi rst line of code in the function sets the variable div to the number 10 raised to the power of the
number of decimal places you want.

function fix(fixNumber, decimalPlaces)
{
 var div = Math.pow(10,decimalPlaces);

Then, in the next line, you calculate the new number.

 fixNumber = Math.round(fixNumber * div) / div;

25937c05.indd 16625937c05.indd 166 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

167

Chapter 5: JavaScript — An Object-Based Language

What the code Math.round(fixNumber * div) does is move the decimal point in the number that you
are converting to after the point in the number that you want to keep. So for 2.2345, if you want to
keep two decimal places, you convert it to 223.45. The Math.round() method rounds this number to
the nearest integer (in this case 223) and so removes any undesired decimal part.

You then convert this number back into the fraction it should be, but of course only the fractional part you
want is left. You do this by dividing by the same number (div) that you multiplied by. In this example,
you divide 223 by 100, which leaves 2.23. This is 2.2345 fi xed to two decimal places. This value is
returned to the calling code in the line

 return fixNumber;
}

In the body of the page, you use two prompt boxes to get numbers from the user. You then display the
results of using these numbers in your fix() function to the user using document.write().

Number Object
As with the String object, Number objects need to be created before they can be used. To create a
Number object, you can write the following:

var firstNumber = new Number(123);
var secondNumber = new Number(‘123’);

However, as you have seen, you can also declare a number as primitive and use it as if it were a Number
object, letting JavaScript do the conversion to an object for you behind the scenes. For example:

var myNumber = 123.765;

As with the String object, this technique is preferable so long as it’s clear to JavaScript what object you
expect to have created in the background. So, for example,

var myNumber = “123.567”;

will lead JavaScript to assume, quite rightly, that it’s a string, and any attempts to use the Number
object’s methods will fail.

You’ll look at just the toFixed() method of the Number object because that’s the most useful method
for everyday use.

The toFixed() Method
The toFixed() method cuts a number off after a certain point. Let’s say you want to display a price
after sales tax. If your price is $9.99 and sales tax is 7.5 percent, that means the after-tax cost will be
$10.73925. Well, this is rather an odd amount for a money transaction — what you really want to do is
fi x the number to no more than two decimal places. Let’s create an example.

var itemCost = 9.99;
var itemCostAfterTax = 9.99 * 1.075;
document.write(“Item cost is $” + itemCostAfterTax + “
”);

25937c05.indd 16725937c05.indd 167 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

168

Chapter 5: JavaScript — An Object-Based Language

itemCostAfterTax = itemCostAfterTax.toFixed(2);
document.write(“Item cost fixed to 2 decimal places is $“ + itemCostAfterTax);

The fi rst document.write()outputs the following to the page:

Item cost is $10.73925

However, this is not the format you want; instead you want two decimal places, so on the next line,
enter this:

itemCostAfterTax = itemCostAfterTax.toFixed(2);

You use the toFixed() method of the Number object to fi x the number variable that itemCostAfterTax
holds to two decimal places. The method’s only parameter is the number of decimal places you want
your number fi xed to. This line means that the next document.write displays this:

Item cost fixed to 2 decimal places is $10.74

The fi rst thing you might wonder is why 10.74 and not 10.73? Well, the toFixed() method doesn’t
just chop off the digits not required; it also rounds up or down. In this case, the number was 10.739,
which rounds up to 10.74. If it’d been 10.732, it would have been rounded down to 10.73.

Note that you can only fi x a number from 0 to 20 decimal places.

Date Objects
The Date object handles everything to do with date and time in JavaScript. Using it, you can fi nd out the
current date and time, store your own dates and times, do calculations with these dates, and convert the
dates into strings.

The Date object has a lot of methods and can be a little tricky to use, which is why Chapter 10 is dedi-
cated to the date, time, and timers in JavaScript. You’ll also see in Chapter 12 how you can use dates to
determine if there’s been anything new added to the web site since the user last visited it. However, in
this section you’ll focus on how to create a Date object and some of its more commonly used methods.

Creating a Date Object
You can declare and initialize a Date object in four ways. In the fi rst method, you simply declare a new
Date object without initializing its value. In this case, the date and time value will be set to the current
date and time on the PC on which the script is run.

var theDate1 = new Date();

Secondly, you can defi ne a Date object by passing the number of milliseconds since January 1, 1970, at
00:00:00 GMT. In the following example, the date is 31 January 2000 00:20:00 GMT (that is, 20 minutes
past midnight).

var theDate2 = new Date(949278000000);

25937c05.indd 16825937c05.indd 168 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

169

Chapter 5: JavaScript — An Object-Based Language

It’s unlikely that you’ll be using this way of defi ning a Date object very often, but this is how JavaScript
actually stores the dates. The other formats for giving a date are simply for convenience.

Next, you can pass a string representing a date, or a date and time. In the following example, you have
“31 January 2010”.

var theDate3 = new Date(“31 January 2010”);

However, you could have written 31 Jan 2010, Jan 31 2010, or any of a number of valid variations
you’d commonly expect when writing down a date normally — if in doubt, try it out. Note that Firefox
doesn’t support the string “01-31-2010” as a valid date format.

If you are writing your web pages for an international audience outside the United States, you need to
be aware of the different ways of specifying dates. In the United Kingdom and many other places, the
standard is day, month, year, whereas in the United States the standard is month, day, year. This can
cause problems if you specify only numbers — JavaScript may think you’re referring to a day when you
mean a month. The easiest way to avoid such headaches is to, where possible, always use the name of
the month. That way there can be no confusion.

In the fourth and fi nal way of defi ning a Date object, you initialize it by passing the following param-
eters separated by commas: year, month, day, hours, minutes, seconds, and milliseconds. For example:

var theDate4 = new Date(2010,0,31,15,35,20,20);

This date is actually 31 January 2010 at 15:35:20 and 20 milliseconds. You can specify just the date part if
you wish and ignore the time.

Something to be aware of is that in this instance January is month 0, not month 1, as you’d expect, and
December is month 11. It’s very easy to make a mistake when specifying a month.

Getting Date Values
It’s all very nice having stored a date, but how do you get the information out again? Well, you just use
the get methods. These are summarized in the following table.

Method Returns

getDate() The day of the month

getDay() The day of the week as an integer, with Sunday as 0, Monday as 1, and so on

getMonth() The month as an integer, with January as 0, February as 1, and so on

getFullYear() The year as a four-digit number

toDateString() Returns the full date based on the current time zone as a human-readable
string. For example, “Wed 31 Dec 2003”.

For example, if you want to get the month in ourDateObj, you can simply write the following:

theMonth = myDateObject.getMonth();

25937c05.indd 16925937c05.indd 169 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

170

Chapter 5: JavaScript — An Object-Based Language

All the methods work in a very similar way, and all values returned are based on local time, meaning
time local to the machine the code is running on. It’s also possible to use Universal Time, previously
known as GMT, which we’ll discuss in Chapter 9.

Try It Out Using the Date Object to Retrieve the Current Date
In this example, you use the get date type methods you have been looking at to write the current day,
month, and year to a web page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 6</title>
</head>
<body>

<script type=”text/javascript”>

var months = new Array(“January”,”February”,”March”,”April”,”May”,”June”,”July”,
 “August”, “September”, “October”, “November”, “December”);

var dateNow = new Date();
var yearNow = dateNow.getFullYear();
var monthNow = months[dateNow.getMonth()];
var dayNow = dateNow.getDate();
var daySuffix;

switch (dayNow)
{
 case 1:
 case 21:
 case 31:
 daySuffix = “st”;
 break;
 case 2:
 case 22:
 daySuffix = “nd”;
 break;
 case 3:
 case 23:
 daySuffix = “rd”;
 break;
 default:
 daySuffix = “th”;
 break;
}

document.write(“It is the “ + dayNow + daySuffix + “ day “);
document.write(“in the month of “ + monthNow);
document.write(“ in the year “ + yearNow);

</script>

25937c05.indd 17025937c05.indd 170 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

171

Chapter 5: JavaScript — An Object-Based Language

</body>
</html>

Save the code as ch5_examp6.htm. If you load up the page, you should see a correctly formatted sen-
tence telling you what the current date is.

The fi rst thing you do in the code is declare an array and populate it with the months of a year. Why
do this? Well, there is no method of the Date object that’ll give you the month by name instead of as a
number. However, this poses no problem; you just declare an array of months and use the month num-
ber as the array index to select the correct month name.

var months = new Array(“January”,”February”,”March”,”April”,”May”,”June”,”July”,
 “August”,”September”,”October”,”November”,”December”);

Next you create a new Date object, and by not initializing it with your own value, you allow it to initial-
ize itself to the current date and time.

var dateNow = new Date();

Following this you set the yearNow variable to the current year, as returned by the getFullYear()
method.

var yearNow = dateNow.getFullYear();

You then populate your monthNow variable with the value contained in the array element with an index
of the number returned by getMonth(). Remember that getMonth() returns the month as an integer
value, starting with 0 for January — this is a bonus because arrays also start at 0, so no adjustment is
needed to fi nd the correct array element.

var monthNow = months[dateNow.getMonth()];

Finally, the current day of the month is put into variable dayNow.

var dayNow = dateNow.getDate();

Next you use a switch statement, which you learned about in the Chapter 3. This is a useful technique
for adding the correct suffi x to the date that you already have. After all, your application will look more
professional if you can say “it is the 1st day”, rather than “it is the 1 day”. This is a little tricky,
however, because the suffi x you want to add depends on the number that precedes it. So, for the fi rst,
twenty-fi rst, and thirty-fi rst days of the month, you have this:

switch (dayNow)
{
 case 1:
 case 21:
 case 31:
 daySuffix = “st”;
 break;

For the second and twenty-second days, you have this:

 case 2:
 case 22:
 daySuffix = “nd”;
 break;

25937c05.indd 17125937c05.indd 171 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

172

Chapter 5: JavaScript — An Object-Based Language

and for the third and twenty-third days, you have this:

 case 3:
 case 23:
 daySuffix = “rd”;
 break;

Finally, you need the default case for everything else. As you will have guessed by now, this is simply
“th”.

 default:
 daySuffix = “th”;
 break;
}

In the fi nal lines you simply write the information to the HTML page, using document.write().

Setting Date Values
To change part of the date in a Date object, you have a group of set functions, which pretty much repli-
cate the get functions described earlier, except that you are setting, not getting, the values. These functions
are summarized in the following table.

Method Description

setDate() The date of the month is passed in as the parameter to set the date

setMonth() The month of the year is passed in as an integer parameter, where 0 is January,
1 is February, and so on

setFullYear() This sets the year to the four-digit integer number passed in as a parameter

Note that for security reasons, there is no way for web-based JavaScript to change the current date and
time on a user’s computer.

So, to change the year to 2009, the code would be as follows:

myDateObject.setFullYear(2009);

Setting the date and month to the twenty-seventh of February looks like this:

myDateObject.setDate(27);
myDateObject.setMonth(1);

One minor point to note here is that there is no direct equivalent of the getDay() method. After the
year, date, and month have been defi ned, the day is automatically set for you.

25937c05.indd 17225937c05.indd 172 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

173

Chapter 5: JavaScript — An Object-Based Language

Calculations and Dates
Take a look at the following code:

var myDate = new Date(“1 Jan 2010”);
myDate.setDate(32);
document.write(myDate);

Surely there is some error — since when has January had 32 days? The answer is that of course
it doesn’t, and JavaScript knows that. Instead JavaScript sets the date to 32 days from the fi rst of
January — that is, it sets it to the fi rst of February.

The same also applies to the setMonth() method. If you set it to a value greater than 11, the date auto-
matically rolls over to the next year. So if you use setMonth(12), that will set the date to January of the
next year, and similarly setMonth(13) is February of the next year.

How can you use this feature of setDate() and setMonth() to your advantage? Well, let’s say you want
to fi nd out what date it will be 28 days from now. Given that different months have different numbers of
days and that you could roll over to a different year, it’s not as simple a task as it might fi rst seem. Or at
least that would be the case if it were not for setDate(). The code to achieve this task is as follows:

var nowDate = new Date();
var currentDay = nowDate.getDate();
nowDate.setDate(currentDay + 28);

First you get the current system date by setting the nowDate variable to a new Date object with no initial-
ization value. In the next line, you put the current day of the month into a variable called currentDay.
Why? Well, when you use setDate() and pass it a value outside of the maximum number of days for
that month, it starts from the fi rst of the month and counts that many days forward. So, if today’s date
is the January 15 and you use setDate(28), it’s not 28 days from the fi fteenth of January, but 28 days
from the fi rst of January. What you want is 28 days from the current date, so you need to add the cur-
rent date to the number of days ahead you want. So you want setDate(15 + 28). In the third line, you
set the date to the current date, plus 28 days. You stored the current day of the month in currentDay,
so now you just add 28 to that to move 28 days ahead.

If you want the date 28 days prior to the current date, you just pass the current date minus 28. Note that
this will most often be a negative number. You need to change only one line, and that’s the third one,
which you change to the following:

nowDate.setDate(currentDay - 28);

You can use exactly the same principles for setMonth() as you have used for setDate().

Getting Time Values
The methods you use to retrieve the individual pieces of time data work much like the get methods for
date values. The methods you use here are:

getHours() ❑

getMinutes() ❑

25937c05.indd 17325937c05.indd 173 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

174

Chapter 5: JavaScript — An Object-Based Language

getSeconds() ❑

getMilliseconds() ❑

toTimeString() ❑

These methods return respectively the hours, minutes, seconds, milliseconds, and full time of the
specifi ed Date object, where the time is based on the 24-hour clock: 0 for midnight and 23 for 11 p.m.
The last method is similar to the toDateString() method in that it returns an easily readable string,
except that in this case it contains the time (for example, “13:03:51 UTC”).

Try It Out Writing the Current Time into a Web Page
Let’s look at an example that writes out the current time to the page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 7</title>
</head>
<body>
<script type=”text/javascript”>

var greeting;

var nowDate = new Date();
var nowHour = nowDate.getHours();
var nowMinute = nowDate.getMinutes();
var nowSecond = nowDate.getSeconds();

if (nowMinute < 10)
{
 nowMinute = “0” + nowMinute;
}

if (nowSecond < 10)
{
 nowSecond = “0” + nowSecond;
}

if (nowHour < 12)
{
 greeting = “Good Morning”;
}
else if (nowHour < 17)
{
 greeting = “Good Afternoon”;
}
else
{
 greeting = “Good Evening”;
}

25937c05.indd 17425937c05.indd 174 9/20/09 11:46:45 PM9/20/09 11:46:45 PM

175

Chapter 5: JavaScript — An Object-Based Language

document.write(“<h4>” + greeting + “ and welcome to my website</h4>”)
document.write(“According to your clock the time is “);
document.write(nowHour + “:” + nowMinute + “:” + nowSecond);

</script>
</body>
</html>

Save this page as ch5_examp7.htm. When you load it into a web browser, it writes a greeting based on
the time of day as well as the current time, as shown in Figure 5-6.

Figure 5-6

The fi rst two lines of code declare two variables — greeting and nowDate.

var greeting;
var nowDate = new Date();

The greeting variable will be used shortly to store the welcome message on the web site, whether this
is “Good Morning”, “Good Afternoon”, or “Good Evening”. The nowDate variable is initialized to a
new Date object. Note that the constructor for the Date object is empty, so JavaScript will store the cur-
rent date and time in it.

Next, you get the information on the current time from nowDate and store it in various variables. You
can see that getting time data is very similar to getting date data, just using different methods.

var nowHour = nowDate.getHours();
var nowMinute = nowDate.getMinutes();
var nowSecond = nowDate.getSeconds();

You may wonder why the following lines are included in the example:

if (nowMinute < 10)
{
 nowMinute = “0” + nowMinute;

25937c05.indd 17525937c05.indd 175 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

176

Chapter 5: JavaScript — An Object-Based Language

}

if (nowSecond < 10)
{
 nowSecond = “0” + nowSecond;
}

These lines are there just for formatting reasons. If the time is nine minutes past 10, then you expect to see
something like 10:09. You don’t expect 10:9, which is what you would get if you used the getMinutes()
method without adding the extra zero. The same goes for seconds. If you’re just using the data in cal-
culations, you don’t need to worry about formatting issues — you do here because you’re inserting the
time the code executed into the web page.

Next, in a series of if statements, you decide (based on the time of day) which greeting to create for
displaying to the user.

if (nowHour < 12)
{
 greeting = “Good Morning”;
}
else if (nowHour < 17)
{
 greeting = “Good Afternoon”;
}
else
{
 greeting = “Good Evening”;
}

Finally, you write out the greeting and the current time to the page.

document.write(“<h4>” + greeting + “ and welcome to my website</h4>”);
document.write(“According to your clock the time is “);
document.write(nowHour + “:” + nowMinute + “:” + nowSecond);

In Chapter 10 you’ll see how you can write a continuously updating time to the web page, making it
look like a clock.

Setting Time Values
When you want to set the time in your Date objects, you have a series of methods similar to those used
for getting the time:

setHours() ❑

setMinutes() ❑

setSeconds() ❑

setMilliseconds() ❑

These work much like the methods you use to set the date, in that if you set any of the time parameters
to an illegal value, JavaScript assumes you mean the next or previous time boundary. If it’s 9:57 and you
set minutes to 64, the time will be set to 10:04 — that is, 64 minutes from 9:00.

25937c05.indd 17625937c05.indd 176 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

177

Chapter 5: JavaScript — An Object-Based Language

This is demonstrated in the following code:

var nowDate = new Date();
nowDate.setHours(9);
nowDate.setMinutes(57);
alert(nowDate);

nowDate.setMinutes(64);
alert(nowDate);

First you declare the nowDate variable and assign it to a new Date object, which will contain the cur-
rent date and time. In the following two lines, you set the hours to 9 and the minutes to 57. You show
the date and time using an alert box, which should show a time of 9:57. The minutes are then set to
64 and again an alert box is used to show the date and time to the user. Now the minutes have rolled
over the hour so the time shown should be 10:04.

If the hours were set to 23 instead of 9, setting the minutes to 64 would not just move the time to
another hour but also cause the day to change to the next date.

Creating New Types of Objects (Reference Types)
This section’s focus is on some advanced stuff. It’s not essential stuff, so you may want to move on and
come back to it later.

You’ve seen that JavaScript provides a number of objects built into the language and ready for us to
use. It’s a bit like a house that’s built already and you can just move on in. However, what if you want to
create your own house, to design it for your own specifi c needs? In that case you’ll use an architect to
create technical drawings and plans that provide the template for the new house — the builders use the
plans to tell them how to create the house.

So what does any of this have to do with JavaScript and objects? Well, JavaScript enables you to be an
architect and create the templates for your own objects to your own specifi cation, to fi t your specifi c
needs. Let’s say, for example, you were creating a cinema booking system. JavaScript doesn’t come with
any built-in cinema booking objects, so you’d have to design your own. What you need to do is cre-
ate objects modeled around the real world. So for a simple cinema booking system, you might have an
object representing customers’ booking details and an object for the cinema where the bookings have
been made. As well as being able to store information, you can create your own methods for an object.
So for a booking system, you might want an “add new booking” method or a method that gets the
details of all the bookings currently made.

Where you have no need to store data but simply want functionality, such as the fix() function you
saw before, it’s generally easier just to have a code library rather than to create a special object.

Just as a builder of a house needs an architect’s plans to know what to build and how it should be laid
out, you need to provide blueprints telling JavaScript how your object should look. For example, you
need to defi ne its methods and provide the code for those methods. The key to this is JavaScript’s sup-
port for the defi nition of reference types. Reference types are essentially templates for an object, as the

25937c05.indd 17725937c05.indd 177 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

178

Chapter 5: JavaScript — An Object-Based Language

architect’s drawings are the template used to build a house. Before you can use your new object type,
you need to defi ne it along with its methods and properties. The important distinction is that when you
defi ne your reference type, no object based on that type is created. It’s only when you create an instance
of your reference type using the new keyword that an object of that type, based on your blueprint or
prototype, is created.

Before you start, an important distinction must be made. Many developers refer to reference types as
classes and use the two terms interchangeably. While this is correct for many object-oriented languages
such as Java, C#, and C++, it is not correct for JavaScript. JavaScript has no formal class construct, even
though the logical equivalent, reference types, are fully supported by the language.

It’s also important to point out that the built-in objects discussed thus far in this chapter are also refer-
ence types. String, Array, Number, Date, and even Object are all reference types, and the objects you
created are instances of these types.

A reference type consists of three things:

A constructor ❑

Method defi nitions ❑

Properties ❑

A constructor is a method that is called every time one of your objects based on this reference type is
created. It’s useful when you want to initialize properties or the object in some way. You need to create
a constructor even if you don’t pass any parameters to it or it contains no code. (In that case it’d just be
an empty defi nition.) As with functions, a constructor can have zero or more parameters.

You used methods when you used JavaScript’s built-in reference types; now you get the chance to build
your own type to defi ne your own methods performing specifi c tasks. Your reference type will specify
what methods you have and the code that they execute. Again, you have used properties of built-in
objects before and now get to defi ne your own. You don’t need to declare your type’s properties. You
can simply go ahead and use properties without letting JavaScript know in advance.

Let’s create a simple reference type based on the real-world example of a cinema booking system.

Defi ning a Reference Type
Let’s start by creating a type for a customer’s booking. It will be called CustomerBooking. The fi rst
thing you need to do is create the constructor, which is shown here:

function CustomerBooking (bookingId, customerName, film, showDate)
{
 this.customerName = customerName;
 this.bookingId = bookingId;
 this.showDate = showDate;
 this.film = film;
}

Your fi rst thought might be that what you have here is simply a function, and you’d be right. It’s not
until you start defi ning the properties and methods that it becomes something more than a function.
This is in contrast to some programming languages, which have a more formal way of defi ning types.

25937c05.indd 17825937c05.indd 178 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

179

Chapter 5: JavaScript — An Object-Based Language

Typically, a reference type is defi ned with an uppercase letter. Doing so makes it easy to differentiate a
function from a reference type easily and quickly.

When you look at the code, the important thing to note is that the constructor function’s name must
match that of the type you are defi ning — in this case CustomerBooking. That way, when a new
instance of your type as an object (termed an object instance) is created, this function will be called auto-
matically. Note this constructor function has four parameters, and that these are used inside the defi ni-
tion itself. However, note that you use the this keyword. For example:

this.customerName = customerName;

Inside a constructor function or within a method, the this keyword refers to that object instance of
your reference type. This code refers to the customerName property of this instance object, and you
set it to equal the customerName parameter. If you have used other object-oriented programming lan-
guages, you might wonder where you defi ned this customerName property. The answer is that you
didn’t; simply by assigning a property a value, JavaScript creates it for you. There is no check that the
property exists; JavaScript creates it as it needs to. The same is true if you use the object with a property
never mentioned in your type defi nition. All this free property creation might sound great, but it has
drawbacks, the main one being that JavaScript won’t tell you if you accidentally misspell a property
name; it’ll just create a new property with the misspelled name, something that can make it diffi cult to
track bugs. One way around this problem is to create methods that get a property’s value and enable
you to set a property’s value. Now this may sound like hard work, but it can reduce bugs or at least
make them easier to spot. Let’s create a few property get/set methods for the CustomerBooking ref-
erence type.

CustomerBooking.prototype.getCustomerName = function()
{
 return this.customerName;
}

CustomerBooking.prototype.setCustomerName = function(customerName)
{
 this.customerName = customerName;
}

CustomerBooking.prototype.getShowDate = function()
{
 return this.showDate;
}

CustomerBooking.prototype.setShowDate = function(showDate)
{
 this.showDate = showDate;
}

CustomerBooking.prototype.getFilm = function()
{
 return this.film;
}

CustomerBooking.prototype.setFilm = function(film)
{
 this.film = film;

25937c05.indd 17925937c05.indd 179 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

180

Chapter 5: JavaScript — An Object-Based Language

}

CustomerBooking.prototype.getBookingId = function()
{
 return this.bookingId;
}

CustomerBooking.prototype.setBookingId = function(bookingId)
{
 this.bookingId = bookingId;
}

Now you have defi ned a set and get method for each of your four properties: bookingId,
film, customerName, and showDate. Let’s look at how you created one of the methods:
getCustomerName().

CustomerBooking.prototype.getCustomerName = function()
{
 return this.customerName;
}

The fi rst thing you notice is that this is a very odd way of defi ning a function. On the left you set the
type’s prototype property’s getCustomerName to equal a function, which you then defi ne immediately
afterwards. In fact, JavaScript supplies most reference types with a prototype property, which allows
new properties and methods to be created. So whenever you want to create a method for your type, you
simply write the following:

typeName.prototype.methodName = function(method parameter list)
{
 // method code
}

You’ve created your type, but how do you now create new objects based on it?

Creating and Using Reference Type Instances
You create instances of your reference type in the same way you created instances of JavaScript’s built-in
types: using the new keyword. So to create a new instance of CustomerBooking, you’d write this:

var firstBooking = new
 CustomerBooking(1234, “Robert Smith”,”Raging Bull”, “25 July 2004 18:20”);

var secondBooking = new
 CustomerBooking(1244, “Arnold Palmer”,”Toy Story”, “27 July 2004 20:15”);

Here, as with a String object, you have created two new objects and stored them in variables,
firstBooking and secondBooking, but this time it’s a new object based on the CustomerBooking type.

The use of the new keyword is very important when creating an object with a constructor. The browser
does not throw an error if you do not use the new keyword, but your script will not work correctly.
Instead of creating a new object, you actually add properties to the global window object. The problems
caused by not using the new keyword can be hard to diagnose, so make sure you specify the new keyword
when creating objects with a constructor.

25937c05.indd 18025937c05.indd 180 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

181

Chapter 5: JavaScript — An Object-Based Language

Let’s call the getCustomerName() method of each of the two objects and write the results to the page.

document.write(“1st booking person’s name is “ +
 firstBooking.getCustomerName() + “
”);
document.write(“2nd booking person’s name is “ +
 secondBooking.getCustomerName());

And you’ll see the following written into the page from information contained in these objects:

1st booking person’s name is Robert Smith
2nd booking person’s name is Arnold Palmer

Now let’s put this together in a page.

<html>
<body>

<script type=”text/javascript”>

// CustomerBooking type

function CustomerBooking(bookingId, customerName, film, showDate)
{

 this.customerName = customerName;
 this.bookingId = bookingId;
 this.showDate = showDate;
 this.film = film;
}

CustomerBooking.prototype.getCustomerName = function()
{
 return this.customerName;
}

CustomerBooking.prototype.setCustomerName = function(customerName)
{
 this.customerName = customerName;
}

CustomerBooking.prototype.getShowDate = function()
{
 return this.showDate;
}

CustomerBooking.prototype.setShowDate = function(showDate)
{
 this.showDate = showDate;
}

CustomerBooking.prototype.getFilm = function()
{
 return this.film;
}

25937c05.indd 18125937c05.indd 181 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

182

Chapter 5: JavaScript — An Object-Based Language

CustomerBooking.prototype.setFilm = function(film)
{
 this.film = film;
}

CustomerBooking.prototype.getBookingId = function()
{
 return this.bookingId;
}

CustomerBooking.prototype.setBookingId = function(bookingId)
{
 this.bookingId = bookingId;
}

var firstBooking = new CustomerBooking(1234,
 “Robert Smith”,”Raging Bull”, “25 July 2004 18:20”);
var secondBooking = new CustomerBooking(1244,
 “Arnold Palmer”,”Toy Story”, “27 July 2004 20:15”);
document.write(“1st booking persons name is “ +
 firstBooking.getCustomerName() + “
”);
document.write(“2nd booking persons name is “ +
 secondBooking.getCustomerName());

</script>

</body>
</html>

At the top of the page is the <script /> element, inside of which is the code that defi nes your refer-
ence type. You must include type defi nition code in every page that uses your type to create objects. For
convenience, you may therefore decide to put your defi nitions in a separate fi le and import that fi le into
each page that uses the reference type. You can do this using the <script /> element, but instead of
putting the code inside the open and close tags, you’ll use the script element’s src attribute to point to
the fi le containing the JavaScript. For example, if you create a fi le called MyCinemaBookingTypes.js
and put your type code in there, you can import it into a page as shown here:

<script src=”MyCinemaBookingTypes.js”></script>

The src attribute points to the URL of your JavaScript fi le containing your type defi nition, which in
this case assumes the .js fi le is in the same directory as your page.

An Array of Items
So far you have a reference type for items that you can put a single booking into, but no type represent-
ing all the bookings taken by a cinema. So how can you create a cinema type that supports the storage
of zero or more items? The answer is using an array, which we discussed earlier in this chapter and in
Chapter 3.

Let’s start by defi ning this new type, called Cinema, and add to the script block with the
CustomerBooking defi nition.

25937c05.indd 18225937c05.indd 182 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

183

Chapter 5: JavaScript — An Object-Based Language

// Cinema type

function Cinema()
{
 this.bookings = new Array();
}

This code defi nes the constructor. Inside the constructor, you initialize the bookings property that
holds all the CustomerBooking instance objects.

Next you need to add a way of making bookings for the cinema; for this you create the addBooking()
method.

cinema.prototype.addBooking = function(bookingId, customerName, film, showDate)
{
 this.bookings[bookingId] = new CustomerBooking(bookingId,
 customerName, film, showDate);
}

The method accepts four parameters, the details needed to create a new booking. Then, inside the
method, you create a new object of type CustomerBooking. A reference to this object is stored inside
the bookings array, using the unique bookingId to associate the place in which the new object is
stored.

Let’s look at how you can access the items in the array. In the following method, called
getBookingsTable(), you go through each booking in the cinema and create the HTML
necessary to display all the bookings in a table.

Cinema.prototype.getBookingsTable = function()
{
 var booking;
 var bookingsTableHTML = “<table border=1>”;

 for (booking in this.bookings)
 {
 bookingsTableHTML += “<tr><td>”;
 bookingsTableHTML += this.bookings[booking].getBookingId();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;
 bookingsTableHTML += this.bookings[booking].getCustomerName();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;
 bookingsTableHTML += this.bookings[booking].getFilm();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;
 bookingsTableHTML += this.bookings[booking].getShowDate();
 bookingsTableHTML += “</td>”;
 bookingsTableHTML += “</tr>”;

25937c05.indd 18325937c05.indd 183 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

184

Chapter 5: JavaScript — An Object-Based Language

 }

 bookingsTableHTML += “</table>”;
 return bookingsTableHTML;
}

You can access each booking by its unique bookingId, but what you want to do is simply loop through
all the bookings for the cinema, so you use a for...in loop, which loops through each item in the
items array. Each time the loop executes, booking will be set by JavaScript to contain the bookingId
of the next booking; it doesn’t contain the item itself but its associated keyword.

Since you have the associated keyword, you can access the item objects in the array like this:

this.bookings[booking]

Remember that this refers to the object instance of your reference type. You then use the
CustomerBooking object’s get methods to obtain the details for each booking. Finally, on the last line,
you return the HTML — with your summary of all the bookings — to the calling code.

Let’s put this all together in a page and save the page as ch5_examp8.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Example 8</title>
</head>
<body>

<h2>Summary of bookings</h2>

<script type=”text/javascript”>

// CustomerBooking type

function CustomerBooking(bookingId, customerName, film, showDate)
{
 this.customerName = customerName;
 this.bookingId = bookingId;
 this.showDate = showDate;
 this.film = film;
}

CustomerBooking.prototype.getCustomerName = function()
{
 return this.customerName;
}

CustomerBooking.prototype.setCustomerName = function(customerName)
{
 this.customerName = customerName;
}

CustomerBooking.prototype.getShowDate = function()

25937c05.indd 18425937c05.indd 184 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

185

Chapter 5: JavaScript — An Object-Based Language

{
 return this.showDate;
}

CustomerBooking.prototype.setShowDate = function(showDate)
{
 this.showDate = showDate;
}

CustomerBooking.prototype.getFilm = function()
{
 return this.film;
}

CustomerBooking.prototype.setFilm = function(film)
{
 this.film = film;
}

CustomerBooking.prototype.getBookingId = function()
{
 return this.bookingId;
}

CustomerBooking.prototype.setBookingId = function(bookingId)
{
 this.bookingId = bookingId;
}

// Cinema type

function Cinema()
{
 this.bookings = new Array();
}

Cinema.prototype.addBooking = function(bookingId, customerName, film, showDate)
{
 this.bookings[bookingId] = new CustomerBooking(bookingId,
 customerName, film, showDate);
}

Cinema.prototype.getBookingsTable = function()
{
 var booking;
 var bookingsTableHTML = “<table border=1>”;

 for (booking in this.bookings)
 {
 bookingsTableHTML += “<tr><td>”;
 bookingsTableHTML += this.bookings[booking].getBookingId();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;

25937c05.indd 18525937c05.indd 185 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

186

Chapter 5: JavaScript — An Object-Based Language

 bookingsTableHTML += this.bookings[booking].getCustomerName();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;
 bookingsTableHTML += this.bookings[booking].getFilm();
 bookingsTableHTML += “</td>”;

 bookingsTableHTML += “<td>”;
 bookingsTableHTML += this.bookings[booking].getShowDate();
 bookingsTableHTML += “</td>”;
 bookingsTableHTML += “</tr>”;
 }

 bookingsTableHTML += “</table>”;
 return bookingsTableHTML;
}

var londonOdeon = new Cinema();
londonOdeon.addBooking(342, “Arnold Palmer”,”Toy Story”, “15 July 2009 20:15”);
londonOdeon.addBooking(335, “Louise Anderson”,
 “The Shawshank Redemption”, “27 July 2009 11:25”);
londonOdeon.addBooking(566, “Catherine Hughes”,
 “Never Say Never”, “27 July 2009 17:55”);
londonOdeon.addBooking(324, “Beci Smith”,”Shrek”, “29 July 2009 20:15”);

document.write(londonOdeon.getBookingsTable());
</script>

</body>
</html>

Your new code is

var londonOdeon = new cinema();
londonOdeon.addBooking(342, “Arnold Palmer”,”Toy Story”, “15 July 2009 20:15”);
londonOdeon.addBooking(335, “Louise Anderson”,
 “The Shawshank Redemption”, “27 July 2009 11:25”);
londonOdeon.addBooking(566, “Catherine Hughes”,
 “Never Say Never”, “27 July 2009 17:55”);
londonOdeon.addBooking(324, “Beci Smith”,”Shrek”, “29 July 2009 20:15”);

document.write(londonOdeon.getBookingsTable());

These create a new cinema object and store a reference to it in the variable londonOdeon. You then cre-
ate four new bookings using the Cinema type’s addBooking() method. On the fi nal line, you write the
HTML returned by the getBookingsTable() method to the page.

Your page should now look like that shown in Figure 5-7.

25937c05.indd 18625937c05.indd 186 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

187

Chapter 5: JavaScript — An Object-Based Language

Figure 5-7

The cinema booking system you have created is very basic to say the least! However, it gives you an
idea of how creating your own reference types can be used to help make code more maintainable and
be used to model real-world problems and situations.

Summary
In this chapter you’ve taken a look at the concept of objects and seen how vital they are to an under-
standing of JavaScript, which represents virtually everything with objects. You also looked at some of
the various native reference types that the JavaScript language provides to add to its functionality.

You saw that:

JavaScript is object-based — it represents things, such as strings, dates, and arrays, using the ❑

concept of objects.

Objects have properties and methods. For example, an ❑ Array object has the length property
and the sort() method.

To create a new object, you simply write ❑ new ObjectType(). You can choose to initialize an
object when you create it.

To set an object’s property’s value or get that value, you simply write ❑ ObjectName.
ObjectProperty.

Calling the methods of an object is similar to calling functions. Parameters may be passed, and ❑

return values may be passed back. Accessing the methods of an object is identical to accessing a
property, except that you must remember to add parentheses at the end, even when there are no
parameters. For example, you would write ObjectName.ObjectMethod().

25937c05.indd 18725937c05.indd 187 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

188

Chapter 5: JavaScript — An Object-Based Language

The ❑ String type provides lots of handy functionality for text and gives you ways of fi nding out
how long the text is, searching for text inside the string, and selecting parts of the text.

The ❑ Math type is created automatically and provides a number of mathematical properties
and methods. For example, to obtain a ra¡ndom number between 0 and 1, you use the method
Math.random().

The ❑ Array type provides ways of manipulating arrays. Some of the things you can do are fi nd
the length of an array, sort its elements, and join two arrays together.

The ❑ Date type provides a way of storing, calculating with, and later accessing dates and times.

JavaScript enables you to create your own types of objects using reference types. These can be ❑

used to model real-world situations and for making code easier to create and more maintainable,
though they do require extra effort at the start.

In the next chapter, you’ll turn your attention to the web browser itself and, particularly, the various
objects that it makes available for your JavaScript programming. You’ll see that the use of browser
objects is key to creating powerful web pages.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Using the Date type, calculate the date 12 months from now and write this into a web page.

 2. Obtain a list of names from the user, storing each name entered in an array. Keep getting
another name until the user enters nothing. Sort the names in ascending order and then write
them out to the page, with each name on its own line.

 3. In this chapter, you learned about how you can use the pow() method inventively to fi x a
number to a certain number of decimal places. However, there is a fl aw in the function you cre-
ated. A proper fix() function should return 2.1 fi xed to three decimal places like this:

2.100

However, your fix() function instead returns it like this:

2.1

Change the fix() function so that the additional zeros are added where necessary.

25937c05.indd 18825937c05.indd 188 9/20/09 11:46:46 PM9/20/09 11:46:46 PM

6
Programming the Browser

Over the past few chapters, you’ve examined the core JavaScript language. You’ve seen how to
work with variables and data, perform operations on those data, make decisions in your code,
loop repeatedly over the same section of code, and even how to write your own functions. In the
preceding chapter you moved on to learn how JavaScript is an object-based language, and you
saw how to work with the native JavaScript objects. However, you are not interested only in the
language itself; you want to fi nd out how to write script for the web browser. Using this ability,
you can start to create more impressive web pages.

Not only is JavaScript object-based, but the browser is also made up of objects. When JavaScript is
running in the browser, you can access the browser’s objects in exactly the same way that you
used JavaScript’s native objects in the last chapter. But what kinds of objects does the browser
provide?

The browser makes available a remarkable number of objects. For example, there is a window
object corresponding to the window of the browser. You have already been using two methods of
this object, namely the alert() and prompt() methods. For simplicity, we previously referred to
these as functions, but they are in fact methods of the browser’s window object.

Another object made available by the browser is the page itself, represented by the document
object. Again, you have already used methods and properties of this object. Recall from Chapter 1
that you used the document object’s bgColor property to change the background color of the
page. You have also been using the write() method of the document object to write information
to the page.

A variety of other objects exist, representative of the HTML you write in the page. For example,
there is an img object for each element that you use to insert an image into your
document.

The collection of objects that the browser makes available to you for use with JavaScript is gener-
ally called the Browser Object Model (BOM).

25937c06.indd 18925937c06.indd 189 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

190

Chapter 6: Programming the Browser

You will often see this termed the Document Object Model (DOM); it is incorrect to do so. Throughout
this book, we’ll use the term DOM to refer to the W3C’s standard Document Object Model, which is
discussed in Chapter 12.

All this added functionality of JavaScript comes with a potential downside: there is no standard BOM
implementation. Which collections of objects are made available to you is highly dependent on the brand
and version of the browser that you are using. Some objects are made available in some browsers and not
in others, whereas other objects have different properties and methods in different browsers. The good
news is that browser makers typically do not change much of their browser’s BOM, as doing so would
create a rift in interoperability. This means if you stick to the core functionality of the BOM (the common
objects in all browsers), your code is more likely to work between the different browsers and versions.
This chapter’s focus is the BOM core functionality. You can achieve a lot in JavaScript by just sticking to
the core. You can fi nd more information on the core objects online at http://www.w3schools.com/dhtml/
dhtml_domreference.asp and http://msdn.microsoft.com/en-us/library/ms952605.aspx.

Introduction to the Browser’s Objects
In this section, we introduce the objects of the BOM that are common to all browsers.

In Chapter 5, you saw that JavaScript has a number of native objects that you have access to and can
make use of. Most of the objects are those that you need to create yourself, such as the String and Date
objects. Others, such as the Math object, exist without you needing to create them and are ready for use
immediately when the page starts loading.

When JavaScript is running in a web page, it has access to a large number of other objects made avail-
able by the web browser. Rather like the Math object, these are created for you rather than your needing
to create them explicitly. As mentioned, the objects, their methods, properties, and events are all
mapped out in the BOM.

The BOM is very large and potentially overwhelming at fi rst. However, you’ll fi nd that initially you won’t
be using more than 10 percent of the available objects, methods, and properties in the BOM. You’ll start
in this chapter by looking at the more commonly used parts of the BOM, shown in Figure 6-1. These parts
of the BOM are, to a certain extent, common across all browsers. Later chapters will build on this so that
by the end of the book you’ll be able to really make the BOM work for you.

window object

document object

images object

history object

forms object

location object screen objectnavigator object

links object

Figure 6-1

25937c06.indd 19025937c06.indd 190 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

191

Chapter 6: Programming the Browser

The BOM has a hierarchy. At the very top of this hierarchy is the window object. You can think of this as
representing the frame of the browser and everything associated with it, such as the scrollbars, navigator
bar icons, and so on.

Contained inside the window frame is the page. The page is represented in the BOM by the document
object. You can see these two objects represented in Figure 6-2.

Browser window or
frame, represented in

the BOM by the window
object

HTML page,
represented in the BOM

by the document object

Figure 6-2

Now let’s look at each of these objects in more detail.

The window Object
The window object represents the browser’s frame or window, in which your web page is contained. To
some extent, it also represents the browser itself and includes a number of properties that are there simply
because they don’t fi t anywhere else. For example, via the properties of the window object, you can fi nd
out what browser is running, the pages the user has visited, the size of the browser window, the size of
the user’s screen, and much more. You can also use the window object to access and change the text in
the browser’s status bar, change the page that is loaded, and even open new windows.

The window object is a global object, which means you don’t need to use its name to access its properties
and methods. In fact, the global functions and variables (the ones accessible to script anywhere in a page)
are all created as properties of the global object. For example, the alert() function you have been using
since the beginning of the book is, in fact, the alert() method of the window object. Although you have
been using this simply as this:

alert(“Hello!”);

You could write this with the same, exact results:

window.alert(“Hello!”);

However, since the window object is the global object, it is perfectly correct to use the fi rst version.

25937c06.indd 19125937c06.indd 191 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

192

Chapter 6: Programming the Browser

Some of the properties of the window object are themselves objects. Those common to all browsers include
the document, navigator, history, screen, and location objects. The document object represents
your page, the history object contains the history of pages visited by the user, the navigator object
holds information about the browser, the screen object contains information about the display capa-
bilities of the client, and the location object contains details on the current page’s location. You’ll look
at these important objects individually later in the chapter.

Let’s start with a nice, simple example in which you change the default text shown in the browser’s
status bar. The status bar (usually in the bottom left of the browser window) is usually used by the
browser to show the status of any document loading into the browser. For example, on IE and Firefox,
after a document has loaded, you’ll normally see Done in the status bar. Let’s change that so it says
“Hello and Welcome.”

To change the default message in the window’s status bar, you need to use the window object’s
defaultStatus property. To do this, you can write the following:

window.defaultStatus = “Hello and Welcome”;

Or, because the window is the global object, you can just write this:

defaultStatus = “Hello and Welcome”;

Either way works, and both are valid; however, writing window in front makes it clear exactly where the
defaultStatus property came from. Otherwise it might appear that defaultStatus is a variable name.
This is particularly true for less common properties and methods, such as defaultStatus. You’ll fi nd
yourself becoming so familiar with more common ones, such as document and alert(), that you don’t
need to put window in front to remind you of their context.

Let’s put the code in a page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 1</title>
 <script type=”text/javaScript”>
 window.defaultStatus = “Hello and Welcome”;
 </script>
</head>
<body>
</body>
</html>

Save the page as ch6_examp1.htm and load it into your browser. You should see the specifi ed message
in the status bar.

At this point, it’s worth highlighting the point that within a web page you shouldn’t use names for your
functions or variables that confl ict with names of BOM objects or their properties and methods. If you do,

25937c06.indd 19225937c06.indd 192 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

193

Chapter 6: Programming the Browser

you may not get an error, but instead get unexpected results. For example, the following code declares a
variable named defaultStatus, and tries to set the defaultStatus property of the window object to
“Welcome to my website”. However, this won’t change the default message in the status bar; instead the
value in the defaultStatus variable will change.

var defaultStatus;
defaultStatus = “Welcome to my website”;

In this situation you need to use a different variable name. This happens because any function or vari-
able you defi ne within the global scope actually gets appended to the window object. Look at this code
as an example:

var myVariable = “Hello, World!”;
alert(window.myVariable);

If you were to execute this code in a browser, the alert window will display the message “Hello, World.”

As with all the BOM objects, you can look at lots of properties and methods for the window object. However,
in this chapter you’ll concentrate on the history, location, navigator, screen, and document prop-
erties. All fi ve of these properties contain objects (the history, location, navigator, screen, and
document objects), each with its own properties and methods. In the next few pages, you’ll look at each
of these objects in turn and fi nd out how they can help you make full use of the BOM.

The history Object
The history object keeps track of each page that the user visits. This list of pages is commonly called
the history stack for the browser. It enables the user to click the browser’s Back and Forward buttons to
revisit pages. You have access to this object via the window object’s history property.

Like the native JavaScript Array type, the history object has a length property. You can use this to
fi nd out how many pages are in the history stack.

As you might expect, the history object has the back() and forward() methods. When they are called,
the location of the page currently loaded in the browser is changed to the previous or next page that the
user has visited.

The history object also has the go() method. This takes one parameter that specifi es how far forward
or backward in the history stack you want to go. For example, if you wanted to return the user to the
page before the previous page, you’d write this:

history.go(-2);

To go forward three pages, you’d write this:

history.go(3);.

Note that go(-1) and back() are equivalent, as are go(1) and forward().

25937c06.indd 19325937c06.indd 193 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

194

Chapter 6: Programming the Browser

The location Object
The location object contains lots of potentially useful information about the current page’s location.
Not only does it contain the Uniform Resource Locator (URL) for the page, but also the server hosting
the page, the port number of the server connection, and the protocol used. This information is made
available through the location object’s href, hostname, port, and protocol properties. However,
many of these values are only really relevant when you are loading the page from a server and not, as
you are doing in the present examples, loading the page directly from a local hard drive.

In addition to retrieving the current page’s location, you can use the methods of the location object to
change the location and refresh the current page.

You can navigate to another page in two ways. You can either set the location object’s href property to
point to another page, or you can use the location object’s replace() method. The effect of the two is
the same; the page changes location. However, they differ in that the replace() method removes the
current page from the history stack and replaces it with the new page you are moving to, whereas using
the href property simply adds the new page to the top of the history stack. This means that if the
replace() method has been used and the user clicks the Back button in the browser, the user can’t go
back to the original page loaded. If the href property has been used, the user can use the Back button
as normal.

For example, to replace the current page with a new page called myPage.htm, you’d use the replace()
method and write the following:

window.location.replace(“myPage.htm”);

This will load myPage.htm and replace any occurrence of the current page in the history stack with
myPage.htm.

To load the same page and to add it to the history of pages navigated to, you use the href property:

window.location.href = “myPage.htm”;

and the page currently loaded is added to the history. In both of the preceding cases, window is in front of
the expression, but as the window object is global throughout the page, you could have written one of the
following:

location.replace(“myPage.htm”);
location.href = “myPage.htm”;

The navigator Object
The navigator object is another object that is a property of window and is available in all browsers. Its
name is more historical than descriptive. Perhaps a better name would be the “browser object,” because
the navigator object contains lots of information about the browser and the operating system in which
it’s running.

Probably the most common use of the navigator object is for handling browser differences. Using its
properties, you can fi nd out which browser, version, and operating system the user has. You can then

25937c06.indd 19425937c06.indd 194 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

195

Chapter 6: Programming the Browser

act on that information and make sure users are directed to pages that will work with their browsers.
The last section in this chapter is dedicated to this important subject, so we will not discuss it further here.

The screen Object
The screen object property of the window object contains a lot of information about the display capabili-
ties of the client machine. Its properties include the height and width properties, which indicate the
vertical and horizontal range of the screen, respectively, in pixels.

Another property of the screen object, which you will be using in an example later, is the colorDepth
property. This tells you the number of bits used for colors on the client’s screen.

The document Object
Along with the window object, the document object is probably one of the most important and com-
monly used objects in the BOM. Via this object you can gain access to the HTML elements, their proper-
ties and methods inside your page.

Unfortunately, it’s here, at the document object, that browsers can differ greatly. This chapter concen-
trates on the properties and methods that are common to all browsers. More advanced manipulation of
the document object will appear in Chapter 12.

The document object has a number of properties associated with it, which are also array-like structures
called collections. The main collections are the forms, images, and links collections. IE supports a
number of other collection properties, such as the all collection property, which is an array of all the
elements represented by objects in the page. However, you’ll be concentrating on using objects that
have cross-browser support, so that you are not limiting your web pages to just one browser.

You’ll be looking at the images and links collections shortly. A third collection, the forms collection,
will be one of the topics of the next chapter when you look at forms in web browsers. First, though,
you’ll look at a nice, simple example of how to use the document object’s methods and properties.

Using the document Object
You’ve already come across some of the document object’s properties and methods, for example the
write() method and the bgColor property.

Try It Out Setting Colors According to the User’s Screen Color Depth
In this example, you set the background color of the page according to how many colors the user’s
screen supports. This is termed screen color depth. If the user has a display that supports just two colors
(black and white), there’s no point in you setting the background color to bright red. You accommodate
different depths by using JavaScript to set a color the user can actually see.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c06.indd 19525937c06.indd 195 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

196

Chapter 6: Programming the Browser

<head>
 <title>Chapter 6: Example 2</title>
</head>
<body>
<script type=”text/javaScript”>
switch (window.screen.colorDepth)
{
 case 1:
 case 4:
 document.bgColor = “white”;
 break;
 case 8:
 case 15:
 case 16:
 document.bgColor = “blue”;
 break;
 case 24:
 case 32:
 document.bgColor = “skyblue”;
 break;
 default:
 document.bgColor = “white”;
}

document.write(“Your screen supports “ + window.screen.colorDepth +
 “bit color”);
</script>
</body>
</html>

Save the page as ch6_examp2.htm. When you load it into your browser, the background color of the
page will be determined by your current screen color depth. Also, a message in the page will tell you
what the color depth currently is.

You can test that the code is working properly by changing the colors supported by your screen. On
Windows XP, you can do this by right-clicking on the desktop and choosing the Properties option. Under
the Settings tab, there is a section called “Color quality” in which you can change the number of colors
supported. By refreshing the browser, you can see what difference this makes to the color of the page.

In Firefox, Safari, and Chrome browsers, it’s necessary to shut down and restart the browser to observe
any effect.

As you saw earlier, the window object has the screen object property. One of the properties of this
object is the colorDepth property, which returns a value of 1, 4, 8, 15, 16, 24, or 32. This represents
the number of bits assigned to each pixel on your screen. (A pixel is just one of the many dots that your
screen is made up of.) To work out how many colors you have, you just calculate the value of 2 to the
power of the colorDepth property. For example, a colorDepth of 1 means that there are two colors
available, a colorDepth of 8 means that there are 256 colors available, and so on. Currently, most
people have a screen color depth of at least 8, but usually 24 or 32.

The fi rst task of the script block is to set the color of the background of the page based on the number of
colors the user can actually see. You do this in a big switch statement. The condition that is checked for
in the switch statement is the value of window.screen.colorDepth.

switch (window.screen.colorDepth)

25937c06.indd 19625937c06.indd 196 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

197

Chapter 6: Programming the Browser

You don’t need to set a different color for each colorDepth possible, because many of them are simi-
lar when it comes to general web use. Instead, you set the same background color for different, but similar,
colorDepth values. For a colorDepth of 1 or 4, you set the background to white. You do this by declaring
the case 1: statement, but you don’t give it any code. If the colorDepth matches this case statement, it
will fall through to the case 4: statement below, where you do set the background color to white. You
then call a break statement, so that the case matching will not fall any further through the switch
statement.

{
 case 1:
 case 4:
 document.bgColor = “white”;
 break;

You do the same with colorDepth values of 8, 15, and 16, setting the background color to blue as
follows:

 case 8:
 case 15:
 case 16:
 document.bgColor = “blue”;
 break;

Finally, you do the same for colorDepth values of 24 and 32, setting the background color to sky blue.

 case 24:
 case 32:
 document.bgColor = “skyblue”;
 break;

You end the switch statement with a default case, just in case the other case statements did not
match. In this default case, you again set the background color to white.

 default:
 document.bgColor = “white”;
}

In the next bit of script, you use the document object’s write() method, something you’ve been using
in these examples for a while now. You use it to write to the document — that is, the page — the num-
ber of bits the color depth is currently set at, as follows:

 document.write(“Your screen supports “ + window.screen.colorDepth +
 “bit color”)

You’ve already been using the document object in the examples throughout the book so far. You used
its bgColor property in Chapter 1 to change the background color of the page, and you’ve also made
good use of its write() method in the examples to write HTML and text out to the page.

Now let’s look at some of the slightly more complex properties of the document object. These properties
have in common the fact that they all contain collections. The fi rst one you look at is a collection con-
taining an object for each image in the page.

25937c06.indd 19725937c06.indd 197 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

198

Chapter 6: Programming the Browser

The images Collection
As you know, you can insert an image into an HTML page using the following tag:

The browser makes this image available for you to manipulate with JavaScript by creating an img object
for it with the name myImage. In fact, each image on your page has an img object created for it.

Each of the img objects in a page is stored in the images collection, which is a property of the document
object. You use this, and other collections, as you would an array. The fi rst image on the page is found
in the element document.images[0], the second in document.images[1], and so on.

If you want to, you can assign a variable to reference an img object in the images collection. It can make
code easier to read. For example, the following code assigns a reference to the img object at index posi-
tion 1 to the myImage2 variable:

var myImage2 = document.images[1];

Now you can write myImage2 instead of document.images[1] in your code, with exactly the same effect.

You can also access img objects in the images collection by name. For example, the img object created
by the element, which has the name myImage, can be accessed in the document object’s images
collection property like this:

document.images[“myImage”]

Because the document.images property is a collection, it has the properties similar to the native
JavaScript Array type, such as the length property. For example, if you want to know how many
images there are on the page, the code document.images.length will tell you.

Try It Out Image Selection
The img object itself has a number of useful properties. The most important of these is its src property.
By changing this, you can change the image that’s loaded. The next example demonstrates this.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 3</title>
</head>
<body>

<script type=”text/javaScript”>
 var myImages = new Array(“usa.gif”,”canada.gif”,”jamaica.gif”,”mexico.gif”);
 var imgIndex = prompt(“Enter a number from 0 to 3”,””);
 document.images[“img1”].src = myImages[imgIndex];
</script>
</body>
</html>

25937c06.indd 19825937c06.indd 198 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

199

Chapter 6: Programming the Browser

Save this as ch6_examp3.htm. You will also need four image fi les, called usa.gif, canada.gif,
jamaica.gif, and mexico.gif. You can create these images yourself or obtain the ones provided with
the code download for the book.

A prompt box asks you to enter a number from 0 to 3 when this page loads into the browser. A different
image will be displayed depending on the number you enter.

At the top of the page you have your HTML element. Notice that the src attribute is left empty
and is given the name value img1.

Next you come to the script block where the image to be displayed is decided. On the fi rst line, you defi ne
an array containing a list of image sources. In this example, the images are in the same directory as the
HTML fi le, so a path is not specifi ed. If yours are not, make sure you enter the full path (for example,
C:\myImages\mexico.gif).

Then you ask the user for a number from 0 to 3, which will be used as the array index to access the
image source in the myImages array.

 var imgIndex = prompt(“Enter a number from 0 to 3”,””);

Finally, you set the src property of the img object to the source text inside the myImages array element
with the index number provided by the user.

 document.images[“img1”].src = myImages[imgIndex];

Don’t forget that when you write document.images[“img1”], you are accessing the img object stored
in the images collection. You’ve used the image’s name, as defi ned in the name attribute of the
element, but you could have used document.images[0]. It’s an index position of 0, because it’s the fi rst
(and only) image on this page.

The links Collection
For each hyperlink element <a/> defi ned with an href attribute, the browser creates an a object. The most
important property of the a object is the href property, corresponding to the href attribute of the tag. Using
this, you can fi nd out where the link points to, and you can change this even after the page has loaded.

The collection of all a objects in a page is contained within the links collection, much as the img
objects are contained in the images collection, as you saw earlier.

Responding to the User’s Actions with Events
There’s no doubt that JavaScript is a useful tool in web programming. As you’ve seen thus far, it’s capa-
ble of limited data processing. In most web applications, however, data processing is typically relegated
to the server, as it is better suited for that task. The user uses the web application through the browser,
and as such, the browser is responsive to the user’s actions. Wouldn’t it be great if you could execute
code for a specifi c user action? Well, you can with events.

25937c06.indd 19925937c06.indd 199 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

200

Chapter 6: Programming the Browser

What Are Events?
Events occur when something in particular happens. For example, the user clicking on the page, clicking
on a hyperlink, or moving the mouse pointer over some text all cause events to occur. Another example,
which is used quite frequently, is the load event for the page: the window raises (or fi res) a notifi cation
when the page is completely loaded in the browser.

Why should you be interested in events?

Take as an example the situation in which you want to make a menu pop up when the user clicks any-
where in your web page. Assuming that you can write a function that will make the pop-up menu
appear, how do you know when to make it appear, or in other words, when to call the function? You
somehow need to intercept the event of the user clicking in the document, and make sure your function
is called when that event occurs.

To do this, you need to use something called an event handler or listener. You associate this with the
code that you want to execute when the event occurs. This provides you with a way of intercepting
events and making your code execute when they have occurred. You will fi nd that adding an event
handler to your code is often known as “connecting your code to the event.” It’s a bit like setting an
alarm clock — you set the clock to make a ringing noise when a certain event happens. With alarm
clocks, the event is when a certain time is reached.

Connecting Code to Events
Chapter 5 introduced objects defi ned by their methods and properties. However, objects also have
events associated with them. This was not mentioned before, because native JavaScript objects do not
have these events, but the objects of the BOM (and Document Object Model, or DOM, which you’ll
see in Chapter 12) do.

Event handlers are made up of the word on and the event that they will handle. For example, the click
event has the onclick event handler, and the load event has the onload event handler.

A number of ways exist to connect your code to an event using event handlers. In this chapter you’ll
look at two of the easiest ways to add events, ways that have been around a very long time and are sup-
ported even by older browsers, as well as by current ones. In Chapter 12 you’re going to look at newer
and standards-friendly ways of adding events.

Handling Events via HTML Attributes
The fi rst and most common method is to add the event handler’s name and the code you want to exe-
cute to the HTML element’s attributes.

Let’s create a simple HTML page with a single hyperlink, given by the element <a/>. Associated to this
element is the a object. One of the events the a object has is the click event. The click event fi res, not
surprisingly, when the user clicks the hyperlink.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c06.indd 20025937c06.indd 200 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

201

Chapter 6: Programming the Browser

<head>
 <title>Connecting Events Using HTML Attributes</title>
</head>
<body>

 Click Me

</body>
</html>

As it stands, this page does nothing a normal hyperlink doesn’t do. You click it, and it navigates the
window to another page, called somepage.htm, which would need to be created. There’s been no event
handler added to the link — yet!

As mentioned earlier, one very common and easy way of connecting the event to your code is to add it
directly to the opening tag of the element object whose event you are capturing. In this case, it’s the
click event of the a object, as defi ned by the <a/> element. On clicking the link, you want to capture
the event and connect it to your code. You need to add the event handler, in this case onclick, as an
attribute to the opening <a> tag. You set the value of the attribute to the code you want to have executed
when the event occurs.

Let’s rewrite the opening <a> tag to do this as follows:

 Click Me

This code adds onclick=”alert(‘You Clicked?’)” to the defi nition of the opening <a> tag. Now,
when the link is clicked, you see an alert box. After this, the hyperlink does its usual stuff and takes
you to the page defi ned in the href attribute.

This is fi ne if you have only one line of code to connect to the event handler, but what if you want a
number of lines to execute when the link is clicked?

Well, all you need to do is defi ne the function you want to execute and call it in the onclick code. Let’s
do that now.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Connecting Events using HTML Attributes</title>
</head>
<body>
<script type=”text/javascript”>
function linkSomePage_onclick()
{
 alert(‘You Clicked?’);
 return true;
}
</script>

25937c06.indd 20125937c06.indd 201 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

202

Chapter 6: Programming the Browser

<a href=”somepage.htm” name=”linkSomePage”
 onclick=”return linkSomePage_onclick()”>
 Click Me

</body>
</html>

Within the script block, you have created a standard function, and given it a descriptive name to help
you when reading the code. Here we’re using ObjectName_event()as the function name. That way you
can instantly see what object on the page this relates to and which event is being connected to. So, in the
preceding example, the function is called linkSomePage_onclick(), because you are referring to
the onclick event handler for the a object with name linkSomePage. Note that this naming conven-
tion is simply something created by your authors; it’s not compulsory, and you can use whatever
convention you prefer as long as you are consistent.

The onclick attribute is now connected to some code that calls the function linkSomePage_onclick().
Therefore, when the user clicks the hyperlink, this function will be executed.

You’ll also see that the function returns a value, true in this case. Also, where you defi ne your onclick
attribute, you return the return value of the function by using the return statement before the function
name. Why do this?

The value returned by onclick=”return linkSomePage_onclick()” is used by JavaScript to decide
whether the normal action of the link — that is, going to a new page — should occur. If you return true,
the action continues, and you go to somepage.htm. If you return false, the normal chain of events (that
is, going to somepage.htm) does not happen. You say that the action associated with the event is canceled.
Try changing the function to this:

function linkSomePage_onclick()
{
 alert(“This link is going nowhere”);
 return false;
}

Now you’ll fi nd that you just get a message, and no attempt is made to go to somepage.htm.

Not all objects and their events make use of the return value, so sometimes it’s redundant. Also, it’s not
always the case that returning false cancels the action. For reasons of browser history rather than logic,
it’s sometimes true that cancels the action. Generally speaking, it’s best to return true and deal with the
exceptions as you fi nd them.

Some events are not directly linked with the user’s actions as such. For example, the window object has
the load event, which fi res when a page is loaded, and the unload event, which fi res when the page is
unloaded (that is, when the user either closes the browser or moves to another page).

Event handlers for the window object actually go inside the opening <body> tag. For example, to add an
event handler for the load and unload events, you’d write the following:

<body onload=”myOnLoadfunction()”
 onunload=”myOnUnloadFunction()”>

25937c06.indd 20225937c06.indd 202 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

203

Chapter 6: Programming the Browser

Handling Events via Object Properties
Now let’s look at the second way to connect to events.

With this method, you fi rst need to defi ne the function that will be executed when the event occurs.
Then you need to set that object’s event handler property to the function you defi ned.

This is illustrated in the following example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 4</title>
</head>
<body>
<script type=”text/javascript”>
function linkSomePage_onclick()
{
 alert(‘This link is going nowhere’);
 return false;
}
</script>

 Click Me

<script type=”text/javaScript”>
 window.document.links[0].onclick = linkSomePage_onclick;
</script>
</body>
</html>

Save this as ch6_examp4.htm.

You defi ne the function linkSomePage_onclick(), much as you did previously. As before, you can
return a value indicating whether you want the normal action of that object to happen.

Next you have the <a/> element, whose object’s event you are connecting to. You’ll notice there is no
mention of the event handler or the function within the attributes of the tag.

The connection is made between the object’s event and the function on the fi nal lines of script, as
shown in the following code:

<script type=”text/javaScript”>
 document.links[0].onclick = linkSomePage_onclick;
</script>

As you saw before, document.links[0] returns the a object corresponding to the fi rst link in your
web page, which is your linkSomePage hyperlink. You set this object’s onclick property to reference
your function — this makes the connection between the object’s event handler and your function. Note
that no parentheses are added after the function name. Now whenever you click the link, your function
gets executed.

25937c06.indd 20325937c06.indd 203 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

204

Chapter 6: Programming the Browser

The fi rst method of connecting code to events is easier, so why would you ever want to use the second?

Perhaps the most common situation in which you would want to do this is one in which you want to
capture an event for which there is no HTML element to write your event handler as an attribute. It is
also useful if you want the code attached to an event handler to be changed dynamically.

Try It Out Displaying a Random Image when the Page Loads
Let’s look at another example in which you connect to a hyperlink’s click event to randomly change the
image loaded in a page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 5</title>
 <script type=”text/javascript”>
 var myImages = new Array(“usa.gif”,”canada.gif”,”jamaica.gif”,”mexico.gif”);

 function changeImg(that)
 {
 var newImgNumber = Math.round(Math.random() * 3);

 while (that.src.indexOf(myImages[newImgNumber]) != -1)
 {
 newImgNumber = Math.round(Math.random() * 3);
 }

 that.src = myImages[newImgNumber];

 return false;
 }
 </script>
</head>
<body>
 <img name=”img0” src=”usa.gif” border=”0”
 onclick=”return changeImg(this)“ />

 <img name=”img1” src=”mexico.gif” border=”0”
 onclick=”return changeImg(this)“ />
</body>
</html>

Save the page as ch6_examp5.htm. Again, you will need four image fi les for the example, which you
can create or retrieve from the code download available with this book.

Load the page into your browser. You should see a page like that shown in Figure 6-3.

If you click an image, you’ll see it change to a different image, which is selected randomly.

25937c06.indd 20425937c06.indd 204 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

205

Chapter 6: Programming the Browser

Figure 6-3

The fi rst line in the script block at the top of the page defi nes a variable with page-level scope. This is an
array that contains your list of image sources.

var myImages = new Array(“usa.gif”,”canada.gif”,”jamaica.gif”,”mexico.gif”);

Next you have the changeImg() function, which will be connected to the onclick event handler of the
 elements defi ned in the page. You are using the same function for both images’ onclick event
handlers and indeed can connect one function to as many event handlers as you like. This function
accepts one parameter called that. It is called that because you pass the this keyword to the function
which gives you immediate access to the img object you click. You can actually name the parameter
whatever you want, but most developers use the word “that” when it references this.

In the fi rst line of the function, you set the newImgNumber variable to a random integer between 0 and 3:

function changeImg(that)
{
 var newImgNumber = Math.round(Math.random() * 3);

The Math.random() method provides a random number between 0 and 1, and you multiply that by
three to get a number between 0 and 3. This number is rounded to the nearest whole number (0, 1, 2, or
3) by means of Math.round(). This integer will provide the index for the image src that you will
select from the myImages array.

The next lines are a while loop, the purpose of which is to ensure that you don’t select the same image
as the current one. If the string contained in myImages[newImgNumber] is found inside the src prop-
erty of the current image, you know it’s the same and that you need to get another random number. You

25937c06.indd 20525937c06.indd 205 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

206

Chapter 6: Programming the Browser

keep looping until you get a new image, at which point myImages[newImgNumber] will not be found
in the existing src and -1 will be returned by the indexOf() method, breaking out of the loop.

 while (imgClicked.src.indexOf(myImages[newImgNumber]) != -1)
 {
 newImgNumber = Math.round(Math.random() * 3);
 }

Next, you set the src property of the img object to the new value contained in your myImages array.
You return false to stop the link from trying to navigate to another page; remember that the HTML
link is only there to provide a means of capturing an onclick event handler.

 that.src = myImages[newImgNumber];

 return false;
}

Now you connect the onclick event of the fi rst element to the changeImg() function:

And now to the second element:

Passing this in the changeImg() function gives the function direct access to this element’s
corresponding object. When you pass this to an HTML element’s attribute event handler, the corre-
sponding object of that element is passed to the function. It’s a nice, clean way of accessing the element’s
object in your JavaScript code.

Events are an important matter for web developers — your authors wager that a good bulk of your code will
handle events. Chapter 12 covers events again, but let’s switch gears to another topic: the user’s browser.

Determining the User’s Browser
Many browsers, versions of those browsers, and operating systems are out there on the Internet, each
with its own version of the BOM and its own particular quirks. It’s therefore important that you make
sure your pages will work correctly on all browsers, or at least degrade gracefully, such as by displaying a
message suggesting that the user upgrade their browser.

Although you can go a long way with cross-browser-compatible code, there may come a time when you
want to add extra features that only one browser supports. The solution is to write script that determines
the user’s browser and executes script that is compatible with the browser.

You can check for browser details in two main ways. The fi rst is to see if the object and property you
use in your code are actually available in the user’s browser. Let’s say for example that your code relies
on the all collection of the document object in Internet Explorer (IE). If you write

if (window.all)
{

25937c06.indd 20625937c06.indd 206 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

207

Chapter 6: Programming the Browser

 // our code using the document.all collection
}

the if statement’s condition will evaluate to true if the property returns a valid value. If the property
is not supported, its value will be undefined, and the if statement will evaluate to false.

To check whether a particular method is supported, you can do the following:

if (document.getElementById)
{
 // code using document.getElementById()
}
else
{
 // code for browsers that do not have that method
}

You’ve “tested” the existence of the method as you did with properties. Just remember not to include
the opening or closing parentheses after the method even if it normally has a number of parameters.
The getElementById method, for example, has one parameter, and you’ll look at it in Chapter 12.

Functions (and methods) are actually objects in the JavaScript language. While this advanced topic
isn’t covered in this book, Professional JavaScript for Web Developers by Nicholas Zakas (published
by Wrox) provides an in-depth discussion on the topic.

The next example shows how to use object checking to ensure that you execute the right code for the
right browser; this technique is not foolproof but can be very useful.

Try It Out Checking for Supported Browser Properties

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 6</title>
</head>
<body>

<script type=”text/javascript”>
var browser = “Unknown”;
var version = “0”;

if (window.opera)
{
 browser = “Opera”;
 version = “5+”;

 if (window.opera.setPreference)
 {
 version = “9”;
 }
}

25937c06.indd 20725937c06.indd 207 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

208

Chapter 6: Programming the Browser

else if (document.all)
{
 browser = “Internet Explorer”;
 version = “6-”;+

 if (window.XMLHttpRequest)
 {
 version = “7+”;
 }
}
else if (window.sidebar)
{
 browser = “Firefox”;
 version = “1+”;
}

document.write(browser + “ “ + version);
</script>

</body>
</html>

Save this example as ch6_examp6.htm.

The page looks at which BOM and JavaScript properties the browser supports and, based on that, makes
a rough guess as to the browser type. So the fi rst lines checks to see if the browser’s window object has
the opera property.

if (window.opera)
{
 browser = “Opera”;
 version = “5+”;

 if (window.opera.setPreference)
 {
 version = “9”;
 }
}

Because only Opera supports the opera property, it is safe to assume this is at least Opera version 5.
The inner if statement looks to see if the window.opera object supports the setPreference method;
this method is only supported by Opera version 9.

Next you have a test for the document object’s all property, a property supported by IE 4+ and Opera 7+.

else if (document.all)
{
 browser = “Internet Explorer”;
 version = “6-”;

 if (window.XMLHttpRequest)
 {
 version = “7+”;
 }
}

Since you’ve already tested for Opera, you don’t have to worry about false results from this script. To
see if the browser is an IE 7+ browser, check the window object’s XMLHttpRequest property. The only

25937c06.indd 20825937c06.indd 208 9/19/09 9:19:37 PM9/19/09 9:19:37 PM

209

Chapter 6: Programming the Browser

Microsoft browsers to support the XMLHttpRequest property are IE versions 7 and above (IE6 and
below support the functionality of XMLHttpRequest, but not the window.XMLHttpRequest property).

The fi nal bit of checking is for the sidebar property supported by Firefox, which deals with the side-
bar tool.

// Firefox
else if (window.sidebar)
{
 browser = “Firefox”;
 version = “1+”;
}

The last line writes out the results of the browser object checking.

document.write(browser + “ “ + version);

Hopefully, this example demonstrates how to use object checking to see if a particular feature is sup-
ported by a browser. In the example, you haven’t actually used the various features; it’s simply a way of
demonstrating how to check for browser-specifi c objects. When writing your own code, be sure to double-
check whether a particular feature you’re using is supported by all the browsers you expect to visit your
web site. If some of the browsers you expect to visit don’t support a particular feature, then test for the
feature and write alternative code for the browsers that don’t support it.

You’ll be seeing much more advanced object checking in Chapter 12.

No Script at All
Sometimes people switch off JavaScript in their browsers, or use a browser that doesn’t support JavaScript,
though that’s quite rare these days. To cover this situation, you can use the <noscript/> element. Any
HTML inside opening and closing tags will be displayed only to browsers that don’t support JavaScript
or on which JavaScript has been disabled:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>No Script</title>
</head>
<body>
<noscript>
 This website requires JavaScript to be enabled.
</noscript>
</body>
<html>

Browser Checking Using the Navigator Object
The second method of checking browser details is using the navigator object property of the window
object. In particular, you use the appName and userAgent properties of the navigator object. The main
problem with this method is that a less common browser may well declare itself to be a particular version

25937c06.indd 20925937c06.indd 209 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

210

Chapter 6: Programming the Browser

of one of the major browsers but not actually support all the JavaScript or BOM objects, properties, or
methods of that browser. Therefore this method of “browser sniffi ng” has fallen out of favor and is not
the recommended way of checking for compatibility. It’s really a last resort when all other methods have
failed, such as when two different browsers support the same object and property but implement them
so that they work in two different ways. Object checking wouldn’t help you in that circumstance, so
you’d have to fall back on using the navigator object.

The appName property returns the model of the browser, such as “Microsoft Internet Explorer” for IE,
“Opera” for Opera, or “Netscape” for Firefox, Safari, and Chrome.

The userAgent property returns a string containing various bits of information, such as the browser
version, operating system, and browser model. However, the value returned by this property varies
from browser to browser, so you have to be very, very careful when using it. For example, the browser’s
version is embedded in different locations of the string.

Try It Out Checking for and Dealing with Different Browsers
In this example, you create a page that uses the aforementioned properties to discover the client’s
browser and browser version. The page can then take action based upon the client’s specifi cations.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example 7</title>
 <script type=”text/javaScript”>

 function getBrowserName()
 {
 var lsBrowser = navigator.userAgent;
 if (lsBrowser.indexOf(“MSIE”) >= 0)
 {
 lsBrowser = “MSIE”;
 }
 else if (lsBrowser.indexOf(“Firefox”) >= 0)
 {
 lsBrowser = “Firefox”;
 }
 else if (lsBrowser.indexOf(“Chrome”) >= 0)
 {
 lsBrowser = “Chrome”;
 }
 else if (lsBrowser.indexOf(“Safari”) >= 0)
 {
 lsBrowser = “Safari”;
 }
 else if (lsBrowser.indexOf(“Opera”) >= 0)
 {
 lsBrowser = “Opera”;
 }
 else
 {

25937c06.indd 21025937c06.indd 210 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

211

Chapter 6: Programming the Browser

 lsBrowser = “UNKNOWN”;
 }
 return lsBrowser;
 }

 function getBrowserVersion()
 {
 var findIndex;
 var browserVersion = 0;
 var browser = getBrowserName();

 browserVersion = navigator.userAgent;
 findIndex = browserVersion.indexOf(browser) + browser.length + 1;
 browserVersion = parseFloat(browserVersion.substring(findIndex,
 findIndex + 3));

 return browserVersion;
 }
 </script>
</head>
<body>
<script type=”text/javaScript”>

var browserName = getBrowserName();
var browserVersion = getBrowserVersion();

if (browserName == “MSIE”)
{
 if (browserVersion < 7)
 {
 document.write(“Your version of Internet Explorer is too old”);
 }
 else
 {
 document.write(“Your version of Internet Explorer is fully supported”);
 }

}
else if (browserName == “Firefox”)
{
 document.write(“Firefox is fully supported”);
}
else if (browserName == “Safari”)
{
 document.write(“Safari is fully supported”);
}
else if (browserName == “Chrome”)
{
 document.write(“Chrome is fully supported”);
}
else if (browserName == “Opera”)
{
 document.write(“Opera is fully supported”);
}

25937c06.indd 21125937c06.indd 211 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

212

Chapter 6: Programming the Browser

else
{
 document.write(“<h2>Sorry this browser version is not supported</h2>”);
}
</script>
<noscript>
 <h2>This website requires a browser supporting scripting</h2>
</noscript>
</body>
</html>

Save this script as ch6_examp7.htm.

If the browser is Firefox, IE7+, Safari, Chrome, or Opera, a message appears telling the user that the
browser is supported. If it’s an earlier version of IE, the user sees a message telling them the version of
that browser is not supported.

If it’s not one of those browsers, the user sees a message saying the browser is unsupported. This is not
particularly friendly, so in practice you could have available a plain and simple version of the page
without scripting — something with as much functionality as possible without JavaScript.

If the browser doesn’t support JavaScript or the user has turned off support, the user will see a message
that the web site needs JavaScript to work.

The script block in the head of the page defi nes two important functions. The getBrowserName() func-
tion fi nds out the name of the browser and the getBrowserVersion() function fi nds out the browser
version.

The key to the browser checking code is the value returned by the navigator.userAgent property.
Here are a few example user agent strings from current browsers:

 1. Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR
2.0.50727; .NET CLR 1.0.3705; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729)

 2. Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.10) Gecko/2009042316 Firefox/3.0.10
(.NET CLR 3.5.30729)

 3. Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/530.17 (KHTML, like Gecko)
Version/4.0 Safari/530.17

 4. Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/531.0 (KHTML, like Gecko)
Chrome/3.0.183.1 Safari/531.0

 5. Opera/9.63 (Windows NT 5.1; U; en) Presto/2.1.1

Here each line of the userAgent string has been numbered. Looking closely at each line it’s not hard to
guess which browser each agent string relates to. In order:

 1. Microsoft IE8

 2. Firefox 3.0.10

 3. Safari 4.0

 4. Chrome 3.0.183.1

 5. Opera 9.63

25937c06.indd 21225937c06.indd 212 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

213

Chapter 6: Programming the Browser

Using this information, let’s start on the fi rst function, getBrowserName(). First you get the name of
the browser, as found in navigator.userAgent, and store it in the variable lsBrowser. This will also
be used as the variable to store the return value for the function.

function getBrowserName()
{
 var lsBrowser = navigator.userAgent;

The string returned by this property tends to be quite long and does vary slightly sometimes. However,
by checking for the existence of certain keywords, such as MSIE or Firefox, you can determine the
browser name. Start with the following lines:

 if (lsBrowser.indexOf(“MSIE”) >= 0)
 {
 lsBrowser = “MSIE”;
 }

These lines search the lsBrowser string for MSIE. If the indexOf value of this substring is 0 or greater,
you know you have found it, and so you set the return value to MSIE.

The following else if statement does the same, except that it is modifi ed for Firefox.

 else if (lsBrowser.indexOf(“Firefox”) >= 0)
 {
 lsBrowser = “Firefox”;
 }

This principle carries on for another three if statements, in which you also check for Chrome, Safari,
and Opera. If you have a browser you want to check for, this is the place to add its if statement. Just
view the string it returns in navigator.userAgent and look for its name or something that uniquely
identifi es it.

If none of the if statements match, you return UNKNOWN as the browser name.

 else
 {
 lsBrowser = “UNKNOWN”;
 }

The value of lsBrowser is then returned to the calling code.

 return lsBrowser;
}

Now turn to the fi nal function, getBrowserVersion().

The browser version details often appear in the userAgent string right after the name of the browser.
For these reasons, your fi rst task in the function is to fi nd out which browser you are dealing with. You
declare and initialize the browser variable to the name of the browser, using the getBrowserName()
function you just wrote.

function getBrowserVersion()
{
 var findIndex;
 var browserVersion = 0;
 var browser = getBrowserName();

25937c06.indd 21325937c06.indd 213 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

214

Chapter 6: Programming the Browser

If the browser is MSIE (Internet Explorer), you need to use the userAgent property again. Under IE, the
userAgent property always contains MSIE followed by the browser version. So what you need to do is
search for MSIE, then get the number following that.

You set findIndex to the character position of the browser name plus the length of the name, plus one.
Doing this ensures you to get the character after the name and after the following space or / character
that follows the name and is just before the version number. browserVersion is set to the fl oating-point
value of that number, which you obtain using the substring() method. This selects the character
starting at findIndex, your number, and whose end is one before findIndex, plus three. This ensures
that you just select three characters for the version number.

 browserVersion = navigator.userAgent;
 findIndex = browserVersion.indexOf(browser) + browser.length + 1;
 browserVersion = parseFloat(browserVersion.substring(findIndex,findIndex + 3));

If you look back to the userAgent strings, you see that IE8’s is similar to this:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; .NET CLR 2.0.40607)

So findIndex will be set to the character index of the number 8 following the browser name.
browserVersion will be set to three characters from and including the 8, giving the version number
as 8.0.

At the end of the function, you return browserVersion to the calling code, as shown here:

 return browserVersion;
}

You’ve seen the supporting functions, but how do you make use of them? Well, in the following code, which
executes as the page is loaded, you obtain two bits of information — browser name and version — and use
these to fi lter which browser the user is running.

var browserName = getBrowserName();
var browserVersion = getBrowserVersion();

if (browserName == “MSIE”)
{
 if (browserVersion < 7)
 {
 document.write(“Your version of Internet Explorer is too old”);
 }
 else
 {
 document.write(“Your version of Internet Explorer is fully supported”);
 }
}

The fi rst of the if statements is shown in the preceding code and checks to see if the user has IE. If true,
it then checks to see if the version is lower than 7. If it is, the user sees the message stating their browser
is too old. If it is 7+, the message tells the user their browser is fully supported.

You do this again for Firefox, Chrome, Safari, and Opera. The versions of these browsers aren’t checked
in this example, but you can do so if you want to:

else if (browserName == “Firefox”)
{

25937c06.indd 21425937c06.indd 214 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

215

Chapter 6: Programming the Browser

 document.write(“Firefox is fully supported”);
}
else if (browserName == “Safari”)
{
 document.write(“Safari is fully supported”);
}
else if (browserName == “Chrome”)
{
 document.write(“Chrome is fully supported”);
}
else if (browserName == “Opera”)
{
 document.write(“Opera is fully supported”);
}
else
{
 document.write(“<h2>Sorry this browser version is not supported</h2>”);
}

On the fi nal part of the if statements is the else statement that covers all other browsers and tells the
user the browser is not supported.

Finally, there is an <noscript/> element for early browsers and for users who have chosen to disable
JavaScript. This displays a message informing the user their browser isn’t JavaScript-enabled.

<noscript>
 <h2>This website requires a browser supporting scripting</h2>
</noscript>

As mentioned earlier, although this script works fi ne at the moment, it’s possible that browsers will
change their userAgent strings and you’ll need to update the function to keep track of this. Also, some
browsers pretend to be other browsers even if they don’t function 100 percent the same, which can leave
your code showing errors.

For these reasons, stick to the object checking method detailed earlier in the chapter.

Summary
You’ve covered a lot in this chapter, but now you have all the grounding you need to move on to more
useful things such as forms and user input and later to more advanced areas of text and date
manipulation.

You turned your attention to the browser, the environment in which JavaScript exists. Just as ❑

JavaScript has native objects, so do web browsers. The objects within the web browser, and the
hierarchy they are organized in, are described by something called the Browser Object Model
(BOM). This is essentially a map of a browser’s objects. Using it, you can navigate your way
around each of the objects made available by the browser, together with their properties, meth-
ods, and events.

25937c06.indd 21525937c06.indd 215 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

216

Chapter 6: Programming the Browser

The fi rst of the main objects you looked at was the ❑ window object. This sits at the very top of
the BOM’s hierarchy. The window object contains a number of important sub-objects, including
the location object, the navigator object, the history object, the screen object, and the
document object.

The ❑ location object contains information about the current page’s location, such as its fi le name,
the server hosting the page, and the protocol used. Each of these is a property of the location
object. Some properties are read-only, but others, such as the href property, not only enable us
to fi nd the location of the page but can be changed so that we can navigate the page to a new
location.

The ❑ history object is a record of all the pages the user has visited since opening his or her
browser. Sometimes pages are not noted (for example, when the location object’s replace()
method is used for navigation). You can move the browser forward and backward in the history
stack and discover what pages the user has visited.

The ❑ navigator object represents the browser itself and contains useful details of what type of
browser, version, and operating system the user has. These details enable you to write pages
dealing with various types of browsers, even where they may be incompatible.

The ❑ screen object contains information about the display capabilities of the user’s computer.

The ❑ document object is one of the most important objects. It’s an object representation of your
page and contains all the elements, also represented by objects, within that page. The differences
between the various browsers are particularly prominent here, but there are similarities between
the browsers that enable you to write cross-browser code.

The ❑ document object contains three properties that are actually collections. These are the links,
images, and forms collections. Each contains all the objects created by the <a/>, , and
<form/> elements on the page, and it’s a way of accessing those elements.

The ❑ images collection contains an img object for each element on the page. You found
that even after the page has loaded, you can change the properties of images. For example, you
can make the image change when clicked. The same principles for using the images collection
apply to the links collection.

You next saw that BOM objects have events as well as methods and properties. You handle ❑

these events in JavaScript by using event handlers, which you connect to code that you want to
have executed when the event occurs. The events available for use depend on the object you are
dealing with.

Connecting a function that you have written to an event handler is simply a matter of adding an ❑

attribute to the element corresponding to the particular object you are interested in. The attri-
bute has the name of the event handler you want to capture and the value of the function you
want to connect to it.

In some instances, such as for the ❑ document object, a second way of connecting event handlers
to code is necessary. Setting the object’s property with the name of the event handler to your
function produces the same effect as if you did it using the event handler as an attribute.

In some instances, returning values from event functions enables you to cancel the action associ- ❑

ated with the event. For example, to stop a clicked link from navigating to a page, you return
false from the event handler’s code.

25937c06.indd 21625937c06.indd 216 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

217

Chapter 6: Programming the Browser

Finally, you looked at how you can check what type of browser the users have so that you can ❑

make sure the users see only those pages or parts of a page that their browser is compatible
with. The navigator object provides you with the details you need, in particular the appName
and userAgent properties. You can also check specifi c BOM properties to see if they are sup-
ported before using them. If a browser doesn’t support a specifi c property needed for your code
to work, you can either write alternative code or let users know to upgrade their browsers.

That’s it for this chapter. In the next chapter, you move on to more exciting form scripting, where you
can add various controls to your page to help you gather information from the user.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A. Exercise 1 Question

 1. Create a page with a number of links. Then write code that fi res on the window load event,
displaying the href of each of the links on the page. (Hint: Remember that event handlers begin
with on.)

 2. Create two pages, one called ieonly.htm and the other called notieonly.htm. Each page
should have a heading telling you what page is loaded. For example:

<H2>Welcome to the Internet Explorer only page</H2>

Using the functions for checking browser type, connect to the window object’s onload event
handler and detect what browser the user has. Then, if it’s the wrong page for that browser,
redirect to the other page.

 3. Insert an image in the page with the element. When the mouse pointer rolls over the
image, it should switch to a different image. When the mouse pointer rolls out (leaves the
image), it should swap back again. (Hint: These events are mouseover and mouseout.)

25937c06.indd 21725937c06.indd 217 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

25937c06.indd 21825937c06.indd 218 9/19/09 9:19:38 PM9/19/09 9:19:38 PM

7
HTML Forms: Interacting

with the User

Web pages would be very boring if you could not interact with or obtain information from the user,
such as text, numbers, or dates. Luckily, with JavaScript this is possible. You can use this information
within the web page, or it can be posted to the web server where you can manipulate it and store
it in a database if you wish. This chapter concentrates on using the information within the web
browser, which is called client-side processing.

You’re quite accustomed to various user interface elements. For example, the Windows operating
system has a number of standard elements, such as buttons you can click; lists, drop-down list
boxes, and radio buttons you can select from; and boxes you can check. The same applies with
any graphical user interface (GUI) operating system, whether it’s a Mac, Unix, or Linux system.
These elements are the means by which you now interface with applications. The good news is
that you can include many of these types of elements in your web page — and even better, it’s
very easy to do so. When you have such an element — say, a button — inside your page, you can
then tie code to its events. For example, when the button is clicked, you can fi re off a JavaScript
function you created.

It’s important to note at this point that the elements discussed in this chapter are the common ele-
ments made available by HTML, and not ActiveX elements, Java Applets, or plug-ins. You’ll look
at some of these in Chapter 13.

All of the HTML elements used for interaction should be placed inside an HTML form. Let’s start
by taking a look at HTML forms and how you interact with them in JavaScript.

HTML Forms
Forms provide you with a way of grouping together HTML interaction elements with a common
purpose. For example, a form may contain elements that enable the input of a user’s data for regis-
tering on a web site. Another form may contain elements that enable the user to ask for a car insur-
ance quote. It’s possible to have a number of separate forms in a single page. You don’t need to

25937c07.indd 21925937c07.indd 219 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

220

Chapter 7: HTML Forms: Interacting with the User

worry about pages containing multiple forms until you have to submit information to a web server — then
you need to be aware that the information from only one of the forms on a page can be submitted to the
server at one time.

To create a form, use the <form> and </form> tags to declare where it starts and where it ends. The
<form/> element has a number of attributes, such as thè action attribute, which determines where the
form is submitted to; the method attribute, which determines how the information is submitted; and
the target attribute, which determines the frame to which the response to the form is loaded.

Generally speaking, for client-side scripting where you have no intention of submitting information to
a server, these attributes are not necessary. They will come into play in a later chapter when you look
at programming server pages. For now the only attribute you need to set in the <form/> element is the
name attribute, so that you can reference the form.

So, to create a blank form, the tags required would look something like this:

<form name=”myForm”>
</form>

You won’t be surprised to hear that these tags create a Form object, which you can use to access the
form. You can access this object in two ways.

First, you can access the object directly using its name — in this case document.myForm. Alternatively,
you can access the object through the document object’s forms collection property. Remember that
the last chapter included a discussion of the document object’s images collection and how you can
manipulate it like any other array. The same applies to the forms collection, except that instead of each
element in the collection holding an IMG object, it now holds a Form object. For example, if it’s the fi rst
Form in the page, you reference it using document.forms[0].

Many of the attributes of the <form/> element can be accessed as properties of the Form object. In par-
ticular, the name property of the Form object mirrors the name attribute of the <form/> element.

Try It Out The forms Collection
Let’s have a look at an example that uses the forms collection. Here you have a page with three forms
on it. Using the forms collection, you access each Form object in turn and show the value of its name
property in a message box.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 1</title>
 <script type=”text/javascript”>
 function window_onload()
 {
 var numberForms = document.forms.length;
 var formIndex;
 for (formIndex = 0; formIndex < numberForms; formIndex++)
 {
 alert(document.forms[formIndex].name);
 }

25937c07.indd 22025937c07.indd 220 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

221

Chapter 7: HTML Forms: Interacting with the User

 }
 </script>
</head>
<body onload=”window_onload()“>
 <form action=”“ name=”form1”>
 <p>
 This is inside form1.
 </p>
 </form>
 <form action=”“ name=”form2”>
 <p>
 This is inside form2
 </p>
 </form>
 <form action=”“ name=”form3”>
 <p>
 This is inside form3
 </p>
 </form>
</body>
</html>

Save this as ch7_examp1.htm. When you load it into your browser, you should see three alert boxes,
each of which shows the name of a form.

Within the body of the page you defi ne three forms. Each form is given a name and contains a paragraph
of text.

Within the defi nition of the <body/> element, the window_onload() function is connected to the
window object’s onload event handler.

<body onload=”window_onload()“>

This means that when the page is loaded, your window_onload() function will be called.

The window_onload() function is defi ned in a script block in the head of the page. Within this func-
tion you loop through the forms collection. Just like any other JavaScript array, the forms collection
has a length property, which you can use to determine how many times you need to loop. Actually,
because you know how many forms there are, you can just write the number in. However, this example
uses the length property, since that makes it easier to add to the collection without having to change
the function. Generalizing your code like this is a good practice to get into.

The function starts by getting the number of Form objects within the forms array and storing that
number in the variable numberForms.

function window_onload()
{
 var numberForms = document.forms.length;

Next you defi ne a variable, formIndex, to be used in the for loop.

 var formIndex;
 for (formIndex = 0; formIndex < numberForms; formIndex++)
 {
 alert(document.forms[formIndex].name);
 }
}

25937c07.indd 22125937c07.indd 221 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

222

Chapter 7: HTML Forms: Interacting with the User

Remember that because the indexes for arrays start at 0, your loop needs to go from an index of 0 to an
index of numberForms – 1. You enable this by initializing the formIndex variable to 0, and setting the
condition of the for loop to formIndex < numberForms.

Within the for loop’s code, you pass the index of the form you want (that is, formIndex) to document
.forms[], which gives you the Form object at that index in the forms collection. To access the Form
object’s name property, you put a dot at the end of the name of the property, name.

Other Form Object Properties and Methods
The HTML form controls commonly found in forms, which you will look at in more detail shortly, also
have corresponding objects. One way to access these is through the elements property of the Form object,
another collection. The elements collection contains all the objects corresponding to the HTML interac-
tion elements within the form, with the exception of the little-used <input type=”image”/> element.
As you’ll see later, this property is very useful for looping through each of the elements in a form. For
example, you can loop through each element to check that it contains valid data prior to submitting a form.

Being a collection, the elements property of the Form object has the length property, which tells you
how many elements are in the form. The Form object also has the length property, which also gives
you the number of elements in the form. Which of these you use is up to you because both do the same
job, although writing document.myForm.length is shorter, and therefore quicker to type and less
lengthy to look at in code, than document.myForm.elements.length.

When you submit data from a form to a server, you normally use the Submit button, which you will
come to shortly. However, the Form object also has the submit() method, which does nearly the same
thing.

The submit() method submits the form, but it does not fi re the submit event of the Form object;
thus, the onsubmit event handler is not called when submitting the form with submit().

Recall that in Chapter 6 you saw how return values passed back from an event handler’s code can affect
whether the normal course of events continues or is canceled. You saw, for example, that returning
false from a hyperlink’s onclick event handler causes the link’s navigation to be canceled. Well, the
same principle applies to the Form object’s onsubmit event handler, which fi res when the user submits
the form. If you return true to this event handler, the form submission goes ahead; if you return false,
the submission is canceled. This makes the onsubmit event handler’s code a great place to do form vali-
dation — that is, to check that what the user has entered into the form is valid. For example, if you ask
for the users’ ages and they enter mind your own business, you can spot that this is text rather than a
valid number and stop them from continuing.

In addition to there being a Reset button, which is discussed later in the chapter, the Form object has the
reset() method, which clears the form, or restores default values if these exist.

Creating blank forms is not exactly exciting or useful, so now let’s turn our attention to the HTML ele-
ments that provide interaction functionality inside forms.

25937c07.indd 22225937c07.indd 222 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

223

Chapter 7: HTML Forms: Interacting with the User

HTML Elements in Forms

About 10 elements are commonly found within <form/> elements. The most useful are shown in
Figures 7-1, 7-2, 7-3, and 7-4, ordered into general types. Each type name is given and, in parentheses,
the HTML needed to create it, though note this is not the full HTML but only a portion.

Figure 7-1

Figure 7-2

Figure 7-3

25937c07.indd 22325937c07.indd 223 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

224

Chapter 7: HTML Forms: Interacting with the User

Figure 7-4

As you can see, most form elements are created by means of the <input/> element. One of the <input/>
element’s attributes is the type attribute. It’s this attribute that decides which of the form elements this
element will be. Examples of values for this attribute include button (to create a button) and text (to
create a text box).

Each form element inside the web page is made available to you as — yes, you guessed it — an object.
As with all the other objects you have seen, each element’s object has its own set of distinctive properties,
methods, and events. You’ll be taking a look at each form element in turn and how to use its particular
properties, methods, and events, but before you do that, let’s look at properties and methods that the
objects of the form elements have in common.

Common Properties and Methods
Because most form elements are created by the <input/> element, it would be correct to guess that all
form elements share several properties and methods in common.

Here are a few.

The name Property
One property that all the objects of the form elements have in common is the name property. You can use
the value of this property to reference that particular element in your script. Also, if you are sending the
information in the form to a server, the element’s name property is sent along with any value of the form
element, so that the server knows what the value relates to.

The value Property
Most form element objects also have the value property, which returns the value of the element. For
example, for a text box, the value property returns the text that the user entered in the text box. Also,
setting the value of the value property enables you to put text inside the text box. However, the use of
the value property is specifi c to each element, so you’ll look at what it means as you look at each indi-
vidual element.

The form Property
All form element objects also have the form property, which returns the Form object in which the element
is contained. This can be useful in cases where you have a generic routine that checks the validity of data

25937c07.indd 22425937c07.indd 224 9/20/09 11:51:04 PM9/20/09 11:51:04 PM

225

Chapter 7: HTML Forms: Interacting with the User

in a form. For example, when the user clicks a Submit button, you can pass the Form object referenced by
the form property of the Submit button to your data checker, which can use it to loop through each ele-
ment on the form in turn, checking that the data in the element are valid. This is handy if you have more
than one form defi ned on the page or where you have a generic data checker that you cut and paste to
different pages — this way you don’t need to know the form’s name in advance.

The type Property
Sometimes it’s useful to know what type of element you’re dealing with, particularly where you’re
looping through the elements in a form using the elements collection property. This information can
be retrieved by means of the type property, which each element’s object has. This property returns the
type of the element (for example, button or text).

The focus() and blur() Methods
All form element objects also have the focus() and blur() methods. Focus is a concept you might not
have come across yet. If an element is the center of the focus, any key presses made by the user will be
passed directly to that element. For example, if a text box has focus, pressing keys will enter values into
the text box. Also, if a button has the focus, pressing the Enter key will cause the button’s onclick event
handler code to fi re, just as if a user had clicked the button with his mouse.

The user can set which element currently has the focus by clicking it or by using the Tab key to select
it. However, you as the programmer can also decide which element has the focus by using the form ele-
ment’s object’s focus() method. For example, if you have a text box for the user to enter his age and he
enters an invalid value, such as a letter rather than a number, you can tell him that his input is invalid
and send him back to that text box to correct his mistake.

Blur, which perhaps could be better called “lost focus,” is the opposite of focus. If you want to remove
a form element from being the focus of the user’s attention, you can use the blur() method. When used
with a form element, the blur() method usually results in the focus shifting to the page containing
the form.

In addition to the focus() and blur() methods, all the form element’s objects have the onfocus and
onblur event handlers. These are fi red, as you’d expect, when an element gets or loses the focus, respec-
tively, due to user action or the focus() and blur() methods. The onblur event handler can be a good
place to check the validity of data in the element that has just lost the focus. If the data are invalid, you
can set the focus back to the element and let the user know why the data he entered are wrong.

Remember that the submit() method behaves differently than focus() and blur() in that it does
not fi re the submit event and onsubmit event handler.

One thing to be careful of is using the focus() and blur() methods in the onfocus or onblur event
handler code. There is the danger of an infi nite loop occurring. For example, consider two elements,
each of whose onfocus events passes the focus to the other element. Then, if one element gets the
focus, its onfocus event will pass the focus to the second element, whose onfocus event will pass the
focus back to the fi rst element, and so on until the only way out is to close the browser down. This is not
likely to please your users!

Also be very wary of using the focus() and blur() methods to put focus back in a problem fi eld if
that fi eld or others depend on some of the user’s input. For example, say you have two text boxes: one

25937c07.indd 22525937c07.indd 225 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

226

Chapter 7: HTML Forms: Interacting with the User

in which you want users to enter their city and the other in which you want them to enter their state.
Also say that the input into the state text box is checked to make sure that the specifi ed city is in that
state. If the state does not contain the city, you put the focus back on the state text box so that the user can
change the name of the state. However, if the user actually input the wrong city name and the right state
name, she may not be able to go back to the city text box to rectify the problem.

Button Elements
We’re starting our look at form elements with the standard button element because it’s probably the most
commonly used and is fairly simple. The HTML element to create a button is <input/>. For example,
to create a button called myButton, which has the words “Click Me” on its face, the <input/> element
would need to be as follows:

<input type=”button” name=”myButton” value=”Click Me” />

The type attribute is set to button, and the value attribute is set to the text you want to appear on the
face of the button. You can leave the value attribute off, but you’ll end up with a blank button, which
will leave your users guessing as to its purpose.

This element creates an associated Button object; in this example it is called myButton. This object has
all the common properties and methods described earlier, including the value property. This property
enables you to change the text on the button face using JavaScript, though this is probably not something
you’ll need to do very often. What the button is really all about is the click event.

You connect to the button’s onclick event handler just as you did with the onclick events of other
HTML elements such as the <a/>. All you need to do is defi ne a function that you want to have executed
when the button is clicked (say, button_onclick()) and then add the onclick event handler as an
attribute of the <input/> element as follows:

<input type=”button” onclick=”button_onclick()” />

Try It Out Counting Button Clicks
In the following example, you use the methods described previously to record how often a button has
been clicked.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 2</title>
 <script type=”text/javascript”>
 var numberOfClicks = 0;
 function myButton_onclick()
 {
 numberOfClicks++;
 document.form1.myButton.value = “Button clicked “ +
 numberOfClicks + “ times”;
 }
 </script>
</head>
<body>

25937c07.indd 22625937c07.indd 226 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

227

Chapter 7: HTML Forms: Interacting with the User

 <form action=”“ name=”form1”>
 <input type=”button” name=”myButton” value=”Button clicked 0 times”
 onclick=”myButton_onclick()“ />
 </form>
</body>
</html>

Save this page as ch7_examp2.htm. If you load this page into your browser, you will see a button with
“Button clicked 0 times” on it. If you repeatedly press this button, you will see the number of button
clicks recorded on the text of the button.

You start the script block in the head of the page by defi ning a global variable, accessible anywhere
inside your page, called numberOfClicks. You record the number of times the button has been clicked
in this variable and use this information to update the button’s text.

The other piece of code in the script block is the defi nition of the function myButton_onclick(). This
function is connected to the onclick event handler in the <input/> element in the body of the page.
This element is for a button element called myButton and is contained within a form called form1.

<form action=”“ name=”form1”>
 <input type=”button” name=”myButton” value=”Button clicked 0 times”
 onclick=”myButton_onclick()“ />
</form>

Let’s look at the myButton_onclick() function a little more closely. First, the function increments the
value of the variable numberOfClicks by one.

function myButton_onclick()
{
 numberOfClicks++;

Next, you update the text on the button face using the Button object’s value property.

 document.form1.myButton.value = “Button clicked “ +
 numberOfClicks + “ times”;
}

The function in this example is specifi c to this form and button, rather than a generic function you’ll
use in other situations. Therefore, the code in this example refers to the form and button directly using
document.form1.myButton. Remember the document object holds all the elements in a page, includ-
ing the <form/> element, and that the button is embedded inside your form.

Try It Out onmouseup and onmousedown
Two less commonly used events supported by the Button object are the mousedown and mouseup
events. You can see these two events in action in the next example.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 3</title>
 <script type=”text/javascript”>

25937c07.indd 22725937c07.indd 227 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

228

Chapter 7: HTML Forms: Interacting with the User

 function myButton_onmouseup()
 {
 document.form1.myButton.value = “Mouse Goes Up”
 }
 function myButton_onmousedown()
 {
 document.form1.myButton.value = “Mouse Goes Down”
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <input type=”button” name=”myButton” value=”Mouse Goes Up”
 onmouseup=”myButton_onmouseup()“
 onmousedown=”myButton_onmousedown()“ />
 </form>
</body>
</html>

Save this page as ch7_examp3.htm and load it into your browser. If you click the button with your left
mouse button and keep it held down, you’ll see the text on the button change to “Mouse Goes Down.”
As soon as you release the button, the text changes to “Mouse Goes Up.”

In the body of the page, you defi ne a button called myButton within a form called form1; you attach
the function myButton_onmouseup() to the onmouseup event handler, and the function myButton_
onmousedown() to the onmousedown event handler.

<form action=”“ name=”form1”>
 <input type=”button” name=”myButton” value=”Mouse Goes Up”
 onmouseup=”myButton_onmouseup()“
 onmousedown=”myButton_onmousedown()“ />
</form>

The myButton_onmouseup() and myButton_onmousedown() functions are defi ned in a script block
in the head of the page. Each function consists of just a single line of code, in which you use the value
property of the Button object to change the text that is displayed on the button’s face.

An important point to note is that events like mouseup and mousedown are triggered only when the
mouse pointer is actually over the element in question. For example, if you click and hold down the
mouse button over your button, then move the mouse away from the button before releasing the
mouse button, you’ll fi nd that the mouseup event does not fi re and the text on the button’s face does not
change. In this instance it would be the document object’s onmouseup event handler code that would
fi re, if you’d connected any code to it.

Don’t forget that, like all form element objects, the Button object also has the onfocus and onblur
events, though they are rarely used in the context of buttons.

Two additional button types are the Submit and Reset buttons. You defi ne these buttons just as you do a
standard button, except that the type attribute of the <input> tag is set to submit or reset rather than
to button. For example, the Submit and Reset buttons in Figure 7-4 were created using the following code:

<input type=”submit” value=”Submit” name=”submit1” />
<input type=”reset” value=”Reset” name=”reset1” />

25937c07.indd 22825937c07.indd 228 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

229

Chapter 7: HTML Forms: Interacting with the User

These buttons have special purposes, which are not related to script.

When the Submit button is clicked, the form data from the form that the button is inside gets sent to the
server automatically, without the need for any script.

When the Reset button is clicked, all the elements in a form are cleared and returned to their default
values (the values they had when the page was fi rst loaded).

The Submit and Reset buttons have corresponding objects called Submit and Reset, which have
exactly the same properties, methods, and events as a standard Button object.

Text Elements
The standard text element enables users to enter a single line of text. This information can then be used
in JavaScript code or submitted to a server for server-side processing.

The Text Box
A text box is created by means of the <input/> element, much as the button is, but with the type attri-
bute set to text. Again, you can choose not to include the value attribute, but if you do include it this
value will appear inside the text box when the page is loaded.

In the following example the <input/> element has two additional attributes, size and maxlength.
The size attribute determines how many characters wide the text box is, and maxlength determines
the maximum number of characters the user can enter in the box. Both attributes are optional and use
defaults determined by the browser.

For example, to create a text box 10 characters wide, with a maximum character length of 15, and ini-
tially containing the words Hello World, your <input/> element would be as follows:

<input type=”text” name=”myTextBox” size=”10” maxlength=”15” value=”Hello World” />

The Text object that this element creates has a value property, which you can use in your scripts to set
or read the text contained inside the text box. In addition to the common properties and methods we
discussed earlier, the Text object also has the select() method, which selects or highlights all the text
inside the text box. This may be used if the user has entered an invalid value, and you can set the focus
to the text box and select the text inside it. This then puts the user’s cursor in the right place to cor-
rect the data and makes it very clear to the user where the invalid data is. The value property of Text
objects always returns a string data type, even if number characters are being entered. If you use the
value as a number, JavaScript normally does a conversion from a string data type to a number data type
for you, but this is not always the case. For example, JavaScript won’t do the conversion if the operation
you’re performing is valid for a string. If you have a form with two text boxes and you add the values
returned from these, JavaScript concatenates rather than adds the two values, so 1 plus 1 will be 11 and
not 2. To fi x this, you need to convert all the values involved to a numerical data type, for example by
using parseInt() or parseFloat() or Number(). However, if you subtract the two values, an opera-
tion only valid for numbers, JavaScript says “Aha, this can only be done with numbers, so I’ll convert
the values to a number data type.” Therefore, 1 minus 1 will be returned as 0 without your having to
use parseInt() or parseFloat(). This is a tricky bug to spot, so it’s best to get into the habit of con-
verting explicitly to avoid problems later.

25937c07.indd 22925937c07.indd 229 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

230

Chapter 7: HTML Forms: Interacting with the User

In addition to the common event handlers, such as onfocus and onblur, the Text object has the
onchange, onselect, onkeydown, onkeypress, and onkeyup event handlers.

The onselect event fi res when the user selects some text in the text box.

More useful is the onchange event, which fi res when the element loses focus if (and only if) the value
inside the text box is different from the value it had when it got the focus. This enables you to do things
like validity checks that occur only if something has changed.

You can use the readonly attribute of the <input/> element or the readOnly property of the Text
object to prevent the contents from being changed.

<input type=”text” name=”txtReadonly” value=”Look but don’t change”
 onfocus=”document.form1.txtReadonly.blur()”
 readonly=”readonly”>

The onkeypress, onkeydown, and onkeyup events fi re, as their names suggest, when the user presses a
key, when the user presses a key down, and when a key that is pressed down is let back up, respectively.

Try It Out A Simple Form with Validation
Let’s put all the information on text boxes and buttons together into an example. In this example, you
have a simple form consisting of two text boxes and a button. The top text box is for the users’ name,
and the second is for their age. You do various validity checks. You check the validity of the age text
box when it loses focus. However, the name and age text boxes are only checked to see if they are empty
when the button is clicked.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 4</title>
 <script type=”text/javascript”>
 function btnCheckForm_onclick()
 {
 var myForm = document.form1;
 if (myForm.txtAge.value == “” || myForm.txtName.value == “”)
 {
 alert(“Please complete all the form”);
 if (myForm.txtName.value == “”)
 {
 myForm.txtName.focus();
 }
 else
 {
 myForm.txtAge.focus();
 }
 }
 else
 {
 alert(“Thanks for completing the form “ + myForm.txtName.value);
 }

25937c07.indd 23025937c07.indd 230 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

231

Chapter 7: HTML Forms: Interacting with the User

 }

 function txtAge_onblur()
 {
 var txtAge = document.form1.txtAge;
 if (isNaN(txtAge.value) == true)
 {
 alert(“Please enter a valid age”);
 txtAge.focus();
 txtAge.select();
 }
 }

 function txtName_onchange()
 {
 window.status = “Hi “ + document.form1.txtName.value;
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 Please enter the following details:
 <p>
 Name:

 <input type=”text” name=”txtName” onchange=”txtName_onchange()“ />
 </p>
 <p>
 Age:

 <input type=”text” name=”txtAge” onblur=”txtAge_onblur()“
 size=”3” maxlength=”3” />
 </p>
 <p>
 <input type=”button” value=”Check Details”
 name=”btnCheckForm” onclick=”btnCheckForm_onclick()“>
 </p>
 </form>
</body>
</html>

After you’ve entered the text, save the fi le as ch7_examp4.htm and load it into your web browser.

In the text box shown in Figure 7-5, type your name. When you leave the text box, you’ll see Hi yourname
appear in the status bar at the bottom of the window.

Enter an invalid value into the age text box, such as aaaa, and when you try to leave the box, it’ll tell
you of the error and send you back to correct it.

Finally, click the Check Details button and both text boxes will be checked to see that you have com-
pleted them. If either is empty, you’ll get a message telling you to complete the whole form, and it’ll
send you back to the box that’s empty.

If everything is fi lled in correctly, you’ll get a message thanking you, as shown in Figure 7-5.

25937c07.indd 23125937c07.indd 231 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

232

Chapter 7: HTML Forms: Interacting with the User

Figure 7-5

This example does not work properly on Firefox; we’ll discuss this shortly.

Within the body of the page, you create the HTML elements that defi ne your form. Inside your form, which
is called form1, you create three form elements with the names txtName, txtAge, and btnCheckForm.

<form action=”“ name=”form1”>
 Please enter the following details:
 <p>
 Name:

 <input type=”text” name=”txtName” onchange=”txtName_onchange()“ />
 </p>
 <p>
 Age:

 <input type=”text” name=”txtAge” onblur=”txtAge_onblur()“
 size=”3” maxlength=”3” />
 </p>
 <p>
 <input type=”button” value=”Check Details”
 name=”btnCheckForm” onclick=”btnCheckForm_onclick()“>
 </p>
</form>

You’ll see that for the second text box (the txtAge text box), you have included the size and maxlength
attributes inside the <input/> element. Setting the size attribute to 3 gives the user an idea of how
much text you are expecting, and setting the maxlength attribute to 3 helps ensure that you don’t get
overly large numbers entered for the age value.

25937c07.indd 23225937c07.indd 232 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

233

Chapter 7: HTML Forms: Interacting with the User

The fi rst text box’s onchange event handler is connected to the function txtName_onchange(), the
second text box’s onblur event handler is connected to the function txtAge_onblur(), and the but-
ton’s onclick event handler is connected to the function btnCheckForm_onclick(). These functions
are defi ned in a script block in the head of the page. You will look at each of them in turn, starting with
btnCheckForm_onclick().

The fi rst thing you do is defi ne a variable, myForm, and set it to reference the Form object created by the
<form/> element later in the page.

function btnCheckForm_onclick()
{
 var myForm = document.form1;

Doing this reduces the size of your code each time you want to use the form1 object. Instead of
document.form1, you can just type myForm. It makes your code a bit more readable and therefore easier
to debug, and it saves typing. When you set a variable to be equal to an existing object, you don’t (in
this case) actually create a new form1 object; instead you just point your variable to the existing form1
object. So when you type myForm.name, JavaScript checks your variable, fi nds it’s actually storing the
location in memory of the object form1, and uses that object instead. All this goes on behind the scenes
so you don’t need to worry about it and can just use myForm as if it were document.form1.

After getting the reference to the Form object, you then use it in an if statement to check whether the
value in the text box named txtAge or the text box named txtName actually contains any text.

 if (myForm.txtAge.value == “” || myForm.txtName.value == “”)
 {
 alert(“Please complete all the form”);
 if (myForm.txtName.value == “”)
 {
 myForm.txtName.focus();
 }
 else
 {
 myForm.txtAge.focus();
 }
 }

If you do fi nd an incomplete form, you alert the user. Then in an inner if statement, you check which
text box was not fi lled in. You set the focus to the offending text box, so that the user can start fi lling it
in straightaway without having to move the focus to it herself. It also lets the user know which text box
your program requires her to fi ll in. To avoid annoying your users, make sure that text in the page tells
them which fi elds are required.

If the original outer if statement fi nds that the form is complete, it lets the user know with a thank-you
message.

 else
 {
 alert(“Thanks for completing the form “ + myForm.txtName.value);
 }
}

In this sort of situation, it’s probably more likely to submit the form to the server than to let the user
know with a thank-you message. You can do this using the Form object’s submit() method or using a
normal Submit button.

25937c07.indd 23325937c07.indd 233 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

234

Chapter 7: HTML Forms: Interacting with the User

The next of the three functions is txtAge_onblur(), which connects to the onblur event of the
txtAge text box. This function’s purpose is to check that the string value the user entered into the age
box actually consists of number characters.

function txtAge_onblur()
{
 var txtAge = document.form1.txtAge;

Again at the start of the function, you declare a variable and set it to reference an object; this time it’s the
Text object created for the txtAge text box that you defi ne further down the page. Now, instead of having
to type document.form1.txtAge every time, you just type txtAge, and it does the same thing. It certainly
helps save those typing fi ngers, especially since it’s a function with multiple use of the txtAge object.

The following if statement checks to see whether what has been entered in the txtAge text box can
be converted to a number. You use the isNaN() function to do this for you. If the value in the txtAge
text box is not a number, it tells the user and sets the focus back to the text box by calling the focus()
method. Additionally, this time you highlight the text by using the Text object’s select() method.
This makes it even clearer to the user what they need to fi x. It also allows them to rectify the problem
without needing to delete text fi rst.

 if (isNaN(txtAge.value) == true)
 {
 alert(“Please enter a valid age”);
 txtAge.focus();
 txtAge.select();
 }
}

You could go further and check that the number inside the text box is actually a valid age — for example,
191 is not a valid age, nor is 255 likely to be. You just need to add another if statement to check for these
possibilities.

This function is connected to the onblur event handler of the txtAge text box, but why didn’t you
use the onchange event handler, with its advantage that it only rechecks the value when the value has
actually been changed? The onchange event would not fi re if the box was empty both before focus
was passed to it and after focus was passed away from it. However, leaving the checking of the form
completion until just before the form is submitted is probably best because some users prefer to fi ll in
information out of order and come back to some form elements later.

The fi nal function is for the txtName text box’s onchange event. Its use here is a little fl ippant and
intended primarily as an example of the onchange event.

function txtName_onchange()
{
 window.status = “Hi “ + document.form1.txtName.value;
}

When the onchange event fi res (when focus is passed away from the name text box and its contents
have changed), you take the value of the txtName box and put it into the window’s status bar at the
bottom of the window. It simply says Hi yourname. You access the status bar using the window object’s
status property, although you could just enter the following:

 status = “Hi “ + document.form1.txtName.value;

25937c07.indd 23425937c07.indd 234 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

235

Chapter 7: HTML Forms: Interacting with the User

Here window is in front just to make it clear what you are actually accessing. It would be very easy when
reading the code to mistake status for a variable, so in this situation, although it isn’t strictly necessary,
putting window in front does make the code easier to read, understand, and therefore debug.

Problems with Firefox and the blur Event
The previous example will fail with Firefox if you enter a name in the name text box and then an invalid
age into the age box (for example, if you enter abc and then click the Check Form button). With Internet
Explorer (IE) the blur event fi res and displays an alert box if the age is invalid, but the button’s click event
doesn’t fi re. However, in Firefox, both events fi re with the result that the invalid age alert is hidden by the
“form completed successfully” alert box.

In addition, if you enter an invalid age for both IE and Firefox browsers and then switch to a different
program altogether, the “invalid age” alert box appears, which is annoying for the user. It could be that
the user was opening up another program to check the details.

Although this is a fi ne example, it is not great for the real world. A better option would be to check the
form when it’s fi nally submitted and not while the user is entering data. Or, alternatively, you can check
the data as they are entered but not use an alert box to display errors. Instead you could write out a
warning in red next to the erroneous input control, informing the user of the invalid data, and then also
get your code to check the form when it’s submitted. In Chapter 12 you’ll see how to write to the page
after it’s been loaded.

The Password Text Box
The only real purpose of the password box is to enable users to type in a password on a page and to
have the password characters hidden, so that no one can look over the user’s shoulder and discover his
or her password. However, this protection is visual only. When sent to the server, the text in the pass-
word is sent as plain text — there is no encryption or any attempt at hiding the text (unless the page is
served over a secure connection from the server).

Defi ning a password box is identical to defi ning a text box, except that the type attribute is password.

<input name=”password1” type=”password” />

This form element creates an associated Password object, which is identical to the Text object in its
properties, methods, and events.

The Hidden Text Box
The hidden text box can hold text and numbers just like a normal text box, with the difference being that
it’s not visible to the user. A hidden element? It may sound as useful as an invisible painting, but in fact
it proves to be very useful.

To defi ne a hidden text box, you use the following HTML:

<input type=”hidden” name=”myHiddenElement” />

25937c07.indd 23525937c07.indd 235 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

236

Chapter 7: HTML Forms: Interacting with the User

The hidden text box creates a Hidden object. This is available in the elements array property of the
Form object and can be manipulated in JavaScript like any other object, although you can actually set
its value only through its HTML defi nition or through JavaScript. As with a normal text box, its value is
submitted to the server when the user submits the form.

So why are hidden text boxes useful? Imagine you have a lot of information that you need to obtain
from the user, but to avoid having a page stuffed full of elements and looking like the control panel of
the space shuttle, you decide to obtain the information over more than one page. The problem is, how
do you keep a record of what was entered in previous pages? Easy — you use hidden text boxes and put
the values in there. Then, in the fi nal page, all the information is submitted to the server — it’s just that
some of it is hidden.

The textarea Element
The <textarea/> element allows multi-line input of text. Other than this, it acts very much like the text
box element.

However, unlike the text box, the textarea element has its own tag, the <textarea> tag. It also has two
additional attributes: cols and rows. The cols attribute defi nes how many characters wide the text
area will be, and the rows attribute defi nes how many character rows there will be. You set the text
inside the element by putting it between the start and closing tags, rather than by using the value attri-
bute. So if you want a <textarea/> element 40 characters wide by 20 rows deep with initial text Hello
World on the fi rst line and Line 2 on the second line, you defi ne it as follows:

<textarea name=”myTextArea” cols=”40” rows=”20”>Hello World
Line 2
</textarea>

Another attribute of the <textarea/> element is the wrap attribute, which determines what happens
when the user types to the end of a line. The default value for this is soft, so the user does not have to
press Return at the end of a line, though this can vary from browser to browser. To turn wrapping on,
you can use one of two values: soft and hard. As far as client-side processing goes, both do the same
thing: they switch wrapping on. However, when you come to server-side processing, they do make a
difference in terms of which information is sent to the server when the form is posted.

If you set the wrap attribute on by setting it to soft, wrapping will occur on the client side, but the car-
riage returns won’t be posted to the server, just the text. If the wrap attribute is set to hard, any carriage
returns caused by wrapping will be converted to hard returns — it will be as if the user had pressed
the Enter key, and these returns will be sent to the server. Also, you need to be aware that the carriage-
return character is determined by the operating system that the browser is running on — for example,
in Windows a carriage return is \r\n, whereas on a Macintosh the carriage return is \r and on Unix a
carriage return is \n. To turn off wrapping client-side, set wrap to off.

The Textarea object created by the <textarea/> element has the same properties, methods, and
events as the Text object you saw previously, except that the text area doesn’t have the maxlength attri-
bute. Note that there is a value property even though the <textarea/> element does not have a value
attribute. The value property simply returns the text between the <textarea> and </textarea>
tags. The events supported by the Textarea object include the onkeydown, onkeypress, onkeyup, and
onchange event handlers.

25937c07.indd 23625937c07.indd 236 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

237

Chapter 7: HTML Forms: Interacting with the User

Try It Out Event Watching
To help demonstrate how the keydown, keypress, keyup, and change events work (in particular, the
order in which they fi re), you’ll create an example that tells you what events are fi ring.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 5</title>
 <script type=”text/javascript”>

 function DisplayEvent(eventName)
 {
 var myMessage = window.document.form1.textarea2.value;
 myMessage = myMessage + eventName;
 document.form1.textarea2.value = myMessage;
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <textarea rows=”15” cols=”40” name=”textarea1”
 onchange=”DisplayEvent(‘onchange\n’);”
 onkeydown=”DisplayEvent(‘onkeydown\n’);”
 onkeypress=”DisplayEvent(‘onkeypress\n’);”
 onkeyup=”DisplayEvent(‘onkeyup\n\n’);”></textarea>

 <textarea rows=”15” cols=”40” name=”textarea2”></textarea>

 <input type=”button” value=”Clear Event TextArea” name=”button1”
 onclick=”document.form1.textarea2.value=’‘“ />
 </form>
</body>
</html>

Save this page as ch7_examp5.htm. Load the page into your browser and see what happens when you
type any letter into the fi rst text area box. You should see the events being fi red listed in the second text
area box (onkeydown, onkeypress, and onkeyup), as shown in Figure 7-6. When you click outside the
fi rst text area box, you’ll see the onchange event fi re.

Experiment with the example to see what events fi re and when.

Within a form called form1 in the body of the page, you defi ne two text areas and a button. The fi rst text
area is the one whose events you are going to monitor. You attach code that calls the displayEvent()
function to each of the onchange, onkeydown, onkeypress, and onkeyup event handlers. The value
passed to the function refl ects the name of the event fi ring.

<textarea rows=”15” cols=”40” name=”textarea1”
 onchange=”DisplayEvent(‘onchange\n’);”
 onkeydown=”DisplayEvent(‘onkeydown\n’);”
 onkeypress=”DisplayEvent(‘onkeypress\n’);”
 onkeyup=”DisplayEvent(‘onkeyup\n\n’);”></textarea>

25937c07.indd 23725937c07.indd 237 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

238

Chapter 7: HTML Forms: Interacting with the User

Figure 7-6

Next, you have an empty text area the same size as the fi rst.

 <textarea rows=”15” cols=”40” name=”textarea2”></textarea>

Finally, you have your button element.

 <input type=”button” value=”Clear Event TextArea” name=”button1”
 onclick=”document.form1.textarea2.value=’‘“ />

Notice that the onclick event handler for the button is not calling a function, but just executing a line
of JavaScript code. Although you normally call functions, it’s not compulsory; if you have just one
line of code to execute, it’s easier just to insert it rather than create a function and call it. In this case, the
onclick event handler is connected to some code that clears the contents of the second text area by
setting its value property to an empty string (‘’).

Now let’s look at the displayEvent() function. This is defi ned in a script block in the head of the page.
It adds the name of the event handler that has been passed as a parameter to the text already contained
in the second text area.

function displayEvent(eventName)
{
 var myMessage = document.form1.textarea2.value;
 myMessage = myMessage + eventName;
 document.form1.textarea2.value = myMessage;
}

25937c07.indd 23825937c07.indd 238 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

239

Chapter 7: HTML Forms: Interacting with the User

Check Boxes and Radio Buttons
The discussions of check boxes and radio buttons are together because their objects have identical prop-
erties, methods, and events. A check box enables the user to check and uncheck it. It is similar to the
paper surveys you may get where you are asked to “check the boxes that apply to you.” Radio buttons
are basically a group of check boxes where only one can be checked at a time. Of course, they also look
different, and their group nature means that they are treated differently.

Creating check boxes and radio buttons requires our old friend the <input/> element. Its type attri-
bute is set to “checkbox” or “radio” to determine which box or button is created. To set a check box
or a radio button to be checked when the page is loaded, you simply insert the attribute checked into
the <input> tag and assign its value as checked. This is handy if you want to set a default option like,
for example, those “Check this box if you want our junk mail” forms you often see on the Net, which
are usually checked by default, forcing you to uncheck them. So to create a check box that is already
checked, your <input> tag will be the following:

<input type=”checkbox” name=”chkDVD” checked=”checked” value=”DVD” />

To create a checked radio button, the <input> tag would be as follows:

<input type=”radio” name=”radCPUSpeed” checked=”checked” value=”1 GHz” />

As previously mentioned, radio buttons are group elements. In fact, there is little point in putting just
one on a page, because the user won’t be able to choose between any alternative boxes.

To create a group of radio buttons, you simply give each radio button the same name. This creates an
array of radio buttons going by that name that you can access, as you would with any array, using its
index.

For example, to create a group of three radio buttons, your HTML would be as follows:

<input type=”radio” name=”radCPUSpeed” checked=”checked” value=”800 MHz” />
<input type=”radio” name=”radCPUSpeed” value=”1 GHz” />
<input type=”radio” name=”radCPUSpeed” value=”1.5 GHz” />

You can put as many groups of radio buttons in a form as you want, by just giving each group its own
unique name. Note that you have only used one checked attribute, since only one of the radio buttons
in the group can be checked. If you had used the checked attribute in more than one of the radio but-
tons, only the last of these would have actually been checked.

Using the value attribute of the check box and radio button elements is not the same as with previous
elements you’ve looked at. It tells you nothing about the user’s interaction with an element because it’s
predefi ned in your HTML or by your JavaScript. Whether a check box or radio button is checked or not,
it still returns the same value.

Each check box has an associated Checkbox object, and each radio button in a group has a separate
Radio object. As mentioned earlier, with radio buttons of the same name you can access each Radio
object in a group by treating the group of radio buttons as an array, with the name of the array being
the name of the radio buttons in the group. As with any array, you have the length property, which
will tell you how many radio buttons are in the group.

25937c07.indd 23925937c07.indd 239 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

240

Chapter 7: HTML Forms: Interacting with the User

For determining whether a user has actually checked or unchecked a check box, you need to use the
checked property of the Checkbox object. This property returns true if the check box is currently
checked and false if not.

Radio buttons are slightly different. Because radio buttons with the same name are grouped together,
you need to test each Radio object in the group in turn to see if it has been checked. Only one of the
radio buttons in a group can be checked, so if you check another one in the group, the previously
checked one will become unchecked, and the new one will be checked in its place.

Both Checkbox and Radio have the event handlers onclick, onfocus, and onblur, and these operate
as you saw for the other elements, although they can also be used to cancel the default action, such as
clicking the check box or radio button.

Try It Out Check Boxes and Radio Buttons
Let’s look at an example that makes use of all the properties, methods, and events we have just dis-
cussed. The example is a simple form that enables a user to build a computer system. Perhaps it could
be used in an e-commerce situation, to sell computers with the exact specifi cations determined by the
customer.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 6</title>
 <script type=”text/javascript”>

 var radCpuSpeedIndex = 0;

 function radCPUSpeed_onclick(radIndex)
 {
 var returnValue = true;
 if (radIndex == 1)
 {
 returnValue = false;
 alert(“Sorry that processor speed is currently unavailable”);
 // Next line works around a bug in IE that doesn’t cancel the
 // Default action properly
 document.form1.radCPUSpeed[radCpuSpeedIndex].checked = true;
 }
 else
 {
 radCpuSpeedIndex = radIndex;
 }
 return returnValue;
 }

 function btnCheck_onclick()
 {
 var controlIndex;
 var element;
 var numberOfControls = document.form1.length;
 var compSpec = “Your chosen processor speed is “;

25937c07.indd 24025937c07.indd 240 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

241

Chapter 7: HTML Forms: Interacting with the User

 compSpec = compSpec + document.form1.radCPUSpeed[radCpuSpeedIndex].value;
 compSpec = compSpec + “\nWith the following additional components\n”;
 for (controlIndex = 0; controlIndex < numberOfControls; controlIndex++)
 {
 element = document.form1[controlIndex];
 if (element.type == “checkbox”)
 {
 if (element.checked == true)
 {
 compSpec = compSpec + element.value + “\n”;
 }
 }
 }
 alert(compSpec);
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <p>
 Tick all of the components you want included on your computer
 </p>
 <table>
 <tr>
 <td>
 DVD-ROM
 </td>
 <td>
 <input type=”checkbox” name=”chkDVD” value=”DVD-ROM” />
 </td>
 </tr>
 <tr>
 <td>
 CD-ROM
 </td>
 <td>
 <input type=”checkbox” name=”chkCD” value=”CD-ROM” />
 </td>
 </tr>
 <tr>
 <td>
 Zip Drive
 </td>
 <td>
 <input type=”checkbox” name=”chkZip” value=”ZIP Drive” />
 </td>
 </tr>
 </table>
 <p>
 Select the processor speed you require
 </p>
 <table>
 <tr>
 <td>
 <input type=”radio” name=”radCPUSpeed” checked=”checked”
 value=”3.8 GHz” onclick=”return radCPUSpeed_onclick(0)“ />

25937c07.indd 24125937c07.indd 241 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

242

Chapter 7: HTML Forms: Interacting with the User

 </td>
 <td>
 3.8 GHz
 </td>
 <td>
 <input type=”radio” name=”radCPUSpeed” value=”4.8 GHz”
 onclick=”return radCPUSpeed_onclick(1)“ />
 </td>
 <td>
 4.8 GHz
 </td>
 <td>
 <input type=”radio” name=”radCPUSpeed” value=”6 Ghz”
 onclick=”return radCPUSpeed_onclick(2)“ />
 </td>
 <td>
 6 GHz
 </td>
 </tr>
 </table>
 <input type=”button” value=”Check Form” name=”btnCheck”
 onclick=”return btnCheck_onclick()“ />
 </form>
</body>
</html>

Save the page as ch7_examp6.htm and load it into your web browser. You should see a form like the
one shown in Figure 7-7.

Figure 7-7

25937c07.indd 24225937c07.indd 242 9/20/09 11:51:05 PM9/20/09 11:51:05 PM

243

Chapter 7: HTML Forms: Interacting with the User

Check some of the check boxes, change the processor speed, and click the Check Form button. A mes-
sage box appears and lists the components and processor speed you selected. For example, if you select
a DVD-ROM and a Zip drive and a 6 GHz processor speed, you will see something like what is shown
in Figure 7-8.

Figure 7-8

Note that the 4.8 GHz processor is out of stock, so if you choose that, a message box tells you it’s out
of stock, and the 4.8 GHz processor speed radio button won’t be selected. The previous setting will be
restored when the user dismisses the message box.

Let’s fi rst look at the body of the page, where you defi ne the check boxes and radio buttons and a stan-
dard button inside a form called form1. You start with the check boxes. They are put into a table simply
for formatting purposes. No functions are called, and no events are connected to.

<table>
 <tr>
 <td>
 DVD-ROM
 </td>
 <td>
 <input type=”checkbox” name=”chkDVD” value=”DVD-ROM” />
 </td>
 </tr>
 <tr>
 <td>
 CD-ROM
 </td>
 <td>
 <input type=”checkbox” name=”chkCD” value=”CD-ROM” />
 </td>
 </tr>
 <tr>
 <td>
 Zip Drive
 </td>
 <td>
 <input type=”checkbox” name=”chkZip” value=”ZIP Drive” />
 </td>
 </tr>
</table>

25937c07.indd 24325937c07.indd 243 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

244

Chapter 7: HTML Forms: Interacting with the User

Next come the radio buttons for selecting the required CPU speed, and these are a little more complex.
Again they are put into a table for formatting purposes.

<table>
 <tr>
 <td>
 <input type=”radio” name=”radCPUSpeed” checked=”checked”
 value=”3.8 GHz” onclick=”return radCPUSpeed_onclick(0)“ />
 </td>
 <td>
 3.8 GHz
 </td>
 <td>
 <input type=”radio” name=”radCPUSpeed” value=”4.8 GHz”
 onclick=”return radCPUSpeed_onclick(1)“ />
 </td>
 <td>
 4.8 GHz
 </td>
 <td>
 <input type=”radio” name=”radCPUSpeed” value=”6 Ghz”
 onclick=”return radCPUSpeed_onclick(2)“ />
 </td>
 <td>
 6 GHz
 </td>
 </tr>
</table>

The radio button group name is radCPUSpeed. Here, the fi rst one is set to be checked by default by the
inclusion of the word checked inside the <input/> element’s defi nition. It’s a good idea to ensure that
you have one radio button checked by default, because if you do not and the user doesn’t select a but-
ton, the form will be submitted with no value for that radio group.

You make use of the onclick event of each Radio object, and each button connects to the same function,
radCPUSpeed_onclick(). But for each radio button, you pass a value — the index of that particular
button in the radCPUSpeed radio button group collection. This makes it easy to determine which radio
button was selected. You’ll look at this function a little later, but fi rst let’s look at the standard button that
completes your form.

<input type=”button” value=”Check Form” name=”btnCheck”
 onclick=”return btnCheck_onclick()“ />

This button’s onclick event handler is connected to the btnCheck_onclick() function and is for the
user to click when they complete the form.

So you have two functions: radCPUSpeed_onclick() and btnCheck_onclick(). These are both
defi ned in the script block in the head of the page. Let’s look at this script block now. It starts by declaring
a variable radCpuSpeedIndex. This will be used to store the currently selected index of the radCPUSpeed
radio button group.

var radCpuSpeedIndex = 0;

25937c07.indd 24425937c07.indd 244 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

245

Chapter 7: HTML Forms: Interacting with the User

Next you have the radCPUSpeed_onclick() function, which is called by the onclick event handler
in each radio button. Your function has one parameter, namely the index position in the radCPUSpeed
collection of the radio object selected.

function radCPUSpeed_onclick(radIndex)
{
 var returnValue = true;

The fi rst thing you do in the function is declare the returnValue variable and set it to true. You’ll be
returning this as your return value from the function. In this case the return value is important because
it decides whether the radio button remains checked as a result of the user clicking it. If you return
false, that cancels the user’s action, and the radio button remains unchecked. In fact no radio button
becomes checked, which is why you keep track of the index of the checked radio button so you can
track which button was the previously checked one. To allow the user’s action to proceed, you return
true.

As an example of this in action, you have an if statement on the next line. If the radio button’s index
value passed is 1 (that is, if the user checked the box for a 4.8 GHz processor), you tell the user that it’s
out of stock and cancel the clicking action by setting returnValue to false.

 if (radIndex == 1)
 {
 returnValue = false;
 alert(“Sorry that processor speed is currently unavailable”);
 // Next line works around a bug in IE that doesn’t cancel the
 // Default action properly
 document.form1.radCPUSpeed[radCpuSpeedIndex].checked = true;
 }

As previously mentioned, canceling the clicking action results in no radio buttons being checked. To
rectify this, you set the previously checked box to be checked again in the following line:

document.form1.radCPUSpeed[radCpuSpeedIndex].checked = true;

What you are doing here is using the collection for the radCpuSpeed radio group. Each element
in the collection actually contains an object, namely each of your three Radio objects. You use the
radCpuSpeedIndex variable as the index of the Radio object that was last checked, since this is what
it holds.

Finally, in the else statement, you set radCpuSpeedIndex to the new checked radio button’s index
value.

 else

 {
 radCpuSpeedIndex = radIndex;
 }

In the last line of the function, the value of returnValue is returned to where the function was called
and will either cancel or allow the clicking action.

 return returnValue;
}

25937c07.indd 24525937c07.indd 245 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

246

Chapter 7: HTML Forms: Interacting with the User

The second function, btnCheck_onclick(), is connected to the button’s onclick event. In a real
e-commerce situation, this button would be the place where you’d check your form and then submit it
to the server for processing. Here you use the form to show a message box confi rming which boxes you
have checked (as if you didn’t already know)!

At the top you declare four local variables to use in the function. The variable numberOfControls is set
to the form’s length property, which is the number of elements on the form. The variable compSpec is
used to build the string that you’ll display in a message box.

function btnCheck_onclick()
{
 var controlIndex;
 var element;
 var numberOfControls = document.form1.length;
 var var compSpec = “Your chosen processor speed is “;
 compSpec = compSpec + document.form1.radCPUSpeed[radCpuSpeedIndex].value;
 compSpec = compSpec + “\nWith the following additional components\n”;

In the following line, you add the value of the radio button the user has selected to your message string:

compSpec = compSpec + document.form1.radCPUSpeed[radCpuSpeedIndex].value;

The global variable radCpuSpeedIndex, which was set by the radio button group’s onclick event, con-
tains the index of the selected radio button.

An alternative way of fi nding out which radio button was clicked would be to loop through the radio
button group’s collection and test each radio button in turn to see if it was checked. The code would
look something like this:

var radIndex;
for (radIndex = 0; radIndex < document.form1.radCPUSpeed.length; radIndex++)
{
 if (document.form1.radCPUSpeed[radIndex].checked == true)
 {
 radCpuSpeedIndex = radIndex;
 break;
 }
}

But to get back to the actual code, you’ll notice a few new-line (\n) characters thrown into the message
string for formatting reasons.

Next, you loop through the form’s elements.

for (controlIndex = 0; controlIndex < numberOfControls; controlIndex++)
{
 element = document.form1[controlIndex];
 if (element.type == “checkbox”)
 {
 if (element.checked == true)
 {
 compSpec = compSpec + element.value + “\n”;
 }
 }

 alert(compSpec);
}

25937c07.indd 24625937c07.indd 246 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

247

Chapter 7: HTML Forms: Interacting with the User

It’s here that you loop through each element on the form using document.form1[controlIndex],
which returns a reference to the element object stored at the controlIndex index position.

You’ll see that in this example the element variable is set to reference the object stored in the form1
collection at the index position stored in variable controlIndex. Again, this is for convenient short-
hand purposes; now to use that particular object’s properties or methods, you just type element, a
period, and then the method or property name, making your code easier to read and debug, which also
saves on typing.

You only want to see which check boxes have been checked, so you use the type property, which every
HTML form element object has, to see what element type you are dealing with. If the type is checkbox,
you go ahead and see if it’s a checked check box. If so, you append its value to the message string in
compSpec. If it is not a check box, it can be safely ignored.

Finally, you use the alert() method to display the contents of your message string.

Selection Boxes
Although they look quite different, the drop-down list and the list boxes are actually both elements cre-
ated with the <select> tag, and strictly speaking they are both select elements. The select element has
one or more options in a list that you can select from; each of these options is defi ned by means of one or
more <option/> elements inside the opening and closing <select> tags.

The size attribute of the <select/> element is used to specify how many of the options are visible to
the user.

For example, to create a list box fi ve rows deep and populate it with seven options, your HTML would
look like this:

<select name=”theDay” size=”5”>
 <option value=”0” selected=”selected”>Monday</option>
 <option value=”1”>Tuesday</option>
 <option value=”2”>Wednesday</option>
 <option value=”3”>Thursday</option>
 <option value=”4”>Friday</option>
 <option value=”5”>Saturday</option>
 <option value=”6”>Sunday</option>
</select>

Notice that the <option/> element for Monday also contains the attribute selected; this will make
this option selected by default when the page is loaded. The values of the options have been defi ned as
numbers, but text would be equally valid.

If you want this to be a drop-down list, you just need to change the size attribute in the <select/>
element to 1, and presto, it’s a drop-down list.

If you want to let the user choose more than one item from a list at once, you simply need to add the
multiple attribute to the <select/> defi nition.

The <select/> element creates a Select object. This object has an options collection property, which
is made up of Option objects, one for each <option/> element inside the <select/> element associated

25937c07.indd 24725937c07.indd 247 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

248

Chapter 7: HTML Forms: Interacting with the User

with the Select object. For instance, in the preceding example, if the <select/> element was contained
in a form called theForm with the following:

document.theForm.theDay.options[0]

you would access the option created for Monday.

How can you tell which option has been selected by the user? Easy: You use the Select object’s
selectedIndex property. You can use the index value returned by this property to access the selected
option using the options collection.

The Option object also has index, text, and value properties. The index property returns the index
position of that option in the options collection. The text property is what’s displayed in the list, and
the value property is the value defi ned for the option, which would be posted to the server if the form
were submitted.

If you want to fi nd out how many options there are in a select element, you can use the length prop-
erty of either the Select object itself or of its options collection property.

Let’s see how you could loop through the options for the preceding select box:

var theDayElement = window.document.form1.theDay;
document.write(“There are “ + theDayElement.length + “options
”);
var optionCounter;
for (optionCounter = 0; optionCounter < theDayElement.length; optionCounter++)
{
 document.write(“Option text is “ +
 theDayElement.options[optionCounter].text)
 document.write(“ and its value is “);
 document.write(theDayElement.options[optionCounter].value);
 document.write(“
“)
}

First, you set the variable theDayElement to reference the Select object. Then you write the number of
options to the page, in this case 7.

Next you use a for loop to loop through the options collection, displaying the text of each option,
such as Monday, Tuesday, and so on, and its value, such as 0, 1, and so on. If you create a page based on
this code, it must be placed after the <select/> element’s defi nition.

It’s also possible to add options to a select element after the page has fi nished loading. You’ll look at
how this is done next.

Adding and Removing Options
To add a new option to a select element, you simply create a new Option object using the new operator
and then insert it into the options collection of the Select object at an empty index position.

When you create a new Option object, there are two parameters to pass: The fi rst is the text you want to
appear in the list, and the second the value to be assigned to the option.

var myNewOption = new Option(“TheText”,”TheValue”);

25937c07.indd 24825937c07.indd 248 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

249

Chapter 7: HTML Forms: Interacting with the User

You then simply assign this Option object to an empty array element, for example:

document.theForm.theSelectObject.options[0] = myNewOption;

If you want to remove an option, you simply set that part of the options collection to null. For example,
to remove the element you just inserted, you need the following:

document.theForm.theSelectObject.options[0] = null;

When you remove an Option object from the options collection, the collection is reordered so that the
array index value of each of the options above the removed one has its index value decremented by one.

When you insert a new option at a certain index position, be aware that it will overwrite any Option
object that is already there.

Try It Out Adding and Removing List Options
Use the list-of-days example you saw previously to demonstrate adding and removing list options.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 7</title>
 <script type=”text/javascript”>
 function btnRemoveWed_onclick()
 {
 if (document.form1.theDay.options[2].text == “Wednesday”)
 {
 document.form1.theDay.options[2] = null;
 }
 else
 {
 alert(‘There is no Wednesday here!’);
 }
 }

 function btnAddWed_onclick()
 {
 if (document.form1.theDay.options[2].text != “Wednesday”)
 {
 var indexCounter;
 var days = document.form1.theDay;
 var lastoption = new Option();
 days.options[days.options.length] = lastoption;
 for (indexCounter = days.options.length - 1;
 indexCounter > 2; indexCounter--)
 {
 days.options[indexCounter].text =
 days.options[indexCounter - 1].text;
 days.options[indexCounter].value =
 days.options[indexCounter - 1].value;
 }
 var option = new Option(“Wednesday”, 2);
 days.options[2] = option;

25937c07.indd 24925937c07.indd 249 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

250

Chapter 7: HTML Forms: Interacting with the User

 }
 else
 {
 alert(“Do you want to have TWO Wednesdays?????”);
 }
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <select name=”theDay” size=”5”>
 <option value=”0” selected=”selected”>Monday</option>
 <option value=”1”>Tuesday</option>
 <option value=”2”>Wednesday</option>
 <option value=”3”>Thursday</option>
 <option value=”4”>Friday</option>
 <option value=”5”>Saturday</option>
 <option value=”6”>Sunday</option>
 </select>

 <input type=”button” value=”Remove Wednesday” name=”btnRemoveWed”
 onclick=”btnRemoveWed_onclick()“ />
 <input type=”button” value=”Add Wednesday” name=”btnAddWed”
 onclick=”btnAddWed_onclick()“ />

 </form>
</body>
</html>

Save this as ch7_examp7.htm. If you type the page in and load it into your browser, you should see the
form shown in Figure 7-9. Click the Remove Wednesday button, and you’ll see Wednesday disappear
from the list. Add it back by clicking the Add Wednesday button. If you try to add a second Wednesday
or remove a nonexistent Wednesday, you’ll get a polite warning telling you that you can’t do that.

Figure 7-9

25937c07.indd 25025937c07.indd 250 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

251

Chapter 7: HTML Forms: Interacting with the User

Within the body of the page, you defi ne a form with the name form1. This contains the select element,
which includes day-of-the-week options that you have seen previously. The form also contains two but-
tons, as shown here:

<input type=”button” value=”Remove Wednesday” name=”btnRemoveWed”
 onclick=”btnRemoveWed_onclick()“ />
<input type=”button” value=”Add Wednesday” name=”btnAddWed”
 onclick=”btnAddWed_onclick()“ />

Each of these buttons has its onclick event handler connected to some code that calls one of two func-
tions: btnRemoveWed_onclick() and btnAddWedc`_onclick(). These functions are defi ned in a
script block in the head of the page. You’ll take a look at each of them in turn.

At the top of the page you have the fi rst function, btnRemoveWed_onclick(), which removes the
Wednesday option.

function btnRemoveWed_onclick()
{
 if (document.form1.theDay.options[2].text == “Wednesday”)
 {
 document.form1.theDay.options[2] = null;
 }
 else
 {
 alert(‘There is no Wednesday here!’);
 }
}

The fi rst thing you do in the function is a sanity check: You must try to remove the Wednesday option
only if it’s there in the fi rst place! You make sure of this by seeing if the third option in the collection
(with index 2 because arrays start at index 0) has the text “Wednesday”. If it does, you can remove
the Wednesday option by setting that particular option to null. If the third option in the array is not
Wednesday, you alert the user to the fact that there is no Wednesday to remove. Although this code
uses the text property in the if statement’s condition, you could just as easily have used the value
property; it makes no difference.

Next you come to the btnAddWed_onclick() function, which, as the name suggests, adds the Wednesday
option. This is slightly more complex than the code required to remove an option. First, you use an if
statement to check that there is not already a Wednesday option.

function btnAddWed_onclick()
{
 if (document.form1.theDay.options[2].text != “Wednesday”)
 {
 var indexCounter;
 var days = document.form1.theDay;
 var lastoption = new Option();
 days.options[days.options.length] = lastoption;
 for (indexCounter = days.options.length - 1;
 indexCounter > 2; indexCounter--)
 {
 days.options[indexCounter].text =
 days.options[indexCounter - 1].text;
 days.options[indexCounter].value =
 days.options[indexCounter - 1].value;
 }

25937c07.indd 25125937c07.indd 251 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

252

Chapter 7: HTML Forms: Interacting with the User

If there is no Wednesday option, you then need to make space for the new Wednesday option to be
inserted.

Before you do this, you defi ne two variables: indexCounter and days (which refers to theDay select
element and is a shorthand reference for your convenience). At this point, there are six options (the last
element is as index 5), so next you create a new option with the variable name lastoption and assign
it to the element at the end of the collection. This new element is assigned at index position 6 by using
the length property of the options collection, which previously had no contents. You next assign the
text and value properties of each of the Option objects from Thursday to Sunday to the Option at an
index value higher by one in the options array, leaving a space in the options array at position 2 to
put Wednesday in. This is the task for the for loop within the if statement.

Next, you create a new Option object by passing the text “Wednesday” and the value 2 to the Option
constructor. The Option object is then inserted into the options collection at position 2, and presto, it
appears in your select box.

 var option = new Option(“Wednesday”, 2);
 days.options[2] = option;
 }

You end the function by alerting the user to the fact that there is already a Wednesday option in the list,
if the condition in the if statement is false.

 else
 {
 alert(“Do you want to have TWO Wednesdays?????”);
 }
}

This example works in every browser; however, all modern browsers provide additional methods to
make adding and removing options easier.

Adding New Options with Standard Methods
In particular, the Select object you are interested in has additional add() and remove() methods,
which add and remove options. These make life a little simpler.

Before you add an option, you need to create it. You do this just as before, using the new operator.

The Select object’s add() method enables you to insert an Option object that you have created
and accepts two parameters. The fi rst parameter is the Option object you want to add. The second
parameter, unfortunately, varies depending on the browser. In Firefox, Safari, Chrome, Opera, and IE8
Standards mode, the second parameter is the Option object you want to place the new Option object
before. In IE7 (or IE8 non-standards mode), the second parameter is the index position you want to add
the option in. In all browsers, you can pass null as the second parameter, and the added Option object
will be added at the end of the options collection.

The add() method won’t overwrite any Option object already at that position, but instead will simply
move the Option objects up in the collection to make space. This is basically the same as what you had
to code into the btnAddWed_onclick() function using your for loop.

25937c07.indd 25225937c07.indd 252 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

253

Chapter 7: HTML Forms: Interacting with the User

Using the add() method, you can rewrite the btnAddWed_onclick() function in your
ch7.examp7.htm example to look like this:

function btnAddWed_onclick()
{
 var days = document.form1.theDay;

 if (days.options[2].text != “Wednesday”)
 {
 var option = new Option(“Wednesday”, 2);
 var thursdayOption = theDay.options[2];

 try
 {
 days.add(option, thursdayOption);
 }
 catch (error)
 {
 days.add(option, 2);
 }
 }
 else
 {
 alert(“Do you want to have TWO Wednesdays?????”);
 }
}

In IE7 (or IE8 in non-standards mode), the browser will throw an error if you pass an Option object as
the second parameter. So use a try...catch statement to catch the error and pass a number to the sec-
ond argument, as this code shows.

The Select object’s remove() method accepts just one parameter, namely the index of the option you
want removed. When an option is removed, the options at higher index positions are moved down in
the collection to fi ll the gap.

Using the remove() method, you can rewrite the btnRemoveWed_onclick() function in your
ch7_examp7.htm example to look like this:

function btnRemoveWed_onclick()
{
 var days = document.form1.theDay;

 if (days.options[2].text == “Wednesday”)
 {
 days.remove(2);
 }
 else
 {
 alert(“There is no Wednesday here!”);
 }
}

Modify the previous example and save it as ch7_examp8.htm before loading it into your browser.
You’ll see that it works just as the previous version did.

25937c07.indd 25325937c07.indd 253 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

254

Chapter 7: HTML Forms: Interacting with the User

Select Element Events
Select elements have three event handlers, onblur, onfocus, and onchange. You’ve seen all these
events before. You saw the change event with the text box element, where it fi red when focus was
moved away from the text box and the value in the text box had changed. Here it fi res when the user
changes which option in the list is selected.

Try It Out Using the Select Element for Date Difference Calculations
Let’s take a look at an example that uses the change event and makes good use of the select element in
its drop-down list form. Its purpose is to calculate the difference, in days, between two dates set by the
user via drop-down list boxes.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Example 8</title>
 <script type=”text/javascript”>
 function writeOptions(startNumber, endNumber)
 {
 var optionCounter;
 for (optionCounter = startNumber;
 optionCounter <= endNumber; optionCounter++)
 {
 document.write(“<option value=” + optionCounter + “>” +
 optionCounter);
 }
 }

 function writeMonthOptions()
 {
 var theMonth;
 var monthCounter;
 var theDate = new Date(1);
 for (monthCounter = 0; monthCounter < 12; monthCounter++)
 {
 theDate.setMonth(monthCounter);
 theMonth = theDate.toString();
 theMonth = theMonth.substr(4, 3);
 document.write(“<option value=” + theMonth + “>” + theMonth);
 }
 }

 function recalcDateDiff()
 {
 var myForm = document.form1;
 var firstDay =
 myForm.firstDay.options[myForm.firstDay.selectedIndex].value;
 var secondDay =
 myForm.secondDay.options[myForm.secondDay.selectedIndex].value;
 var firstMonth =
 myForm.firstMonth.options[myForm.firstMonth.selectedIndex].value;
 var secondMonth =
 myForm.secondMonth.options[myForm.secondMonth.selectedIndex].value;

25937c07.indd 25425937c07.indd 254 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

255

Chapter 7: HTML Forms: Interacting with the User

 var firstYear =
 myForm.firstYear.options[myForm.firstYear.selectedIndex].value;
 var secondYear =
 myForm.secondYear.options[myForm.secondYear.selectedIndex].value;
 var firstDate = new Date(firstDay + “ “ + firstMonth + “ “ + firstYear);
 var secondDate = new Date(secondDay + “ “ + secondMonth + “ “ +
 secondYear);
 var daysDiff = (secondDate.valueOf() - firstDate.valueOf());

 daysDiff = Math.floor(Math.abs((((daysDiff / 1000) / 60) / 60) / 24));
 myForm.txtDays.value = daysDiff;
 }

 function window_onload()
 {
 var theForm = document.form1;
 var nowDate = new Date();
 theForm.firstDay.options[nowDate.getDate() - 1].selected = true;
 theForm.secondDay.options[nowDate.getDate() - 1].selected = true;
 theForm.firstMonth.options[nowDate.getMonth()].selected = true;
 theForm.secondMonth.options[nowDate.getMonth()].selected = true;
 theForm.firstYear.options[nowDate.getFullYear() - 1970].selected = true;
 theForm.secondYear.options[nowDate.getFullYear() - 1970].selected = true;
 }
 </script>
</head>
<body onload=”window_onload()“>
 <form action=”“ name=”form1”>
 <p>
 First Date

 <select name=”firstDay” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1, 31);
 </script>
 </select>
 <select name=”firstMonth” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeMonthOptions();
 </script>
 </select>
 <select name=”firstYear” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1970, 2020);
 </script>
 </select>
 </p>
 <p>
 Second Date

 <select name=”secondDay” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1, 31);
 </script>
 </select>
 <select name=”secondMonth” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeMonthOptions();
 </script>
 </select>

25937c07.indd 25525937c07.indd 255 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

256

Chapter 7: HTML Forms: Interacting with the User

 <select name=”secondYear” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1970, 2020);
 </script>
 </select>
 </p>
 <p>
 Total difference in days:
 <input type=”text” name=”txtDays” value=”0” readonly=”readonly” />
 </p>
 </form>
</body>
</html>

Call the example ch7_examp9.htm and load it into your web browser. You should see the form shown
in Figure 7-10, but with both date boxes set to the current date.

If you change any of the select boxes, the difference between the days will be recalculated and shown in
the text box.

Figure 7-10

In the body of the page, the form in is built up with six drop-down list boxes and one text box. Let’s look
at an example of one of these select elements: Take the fi rst <select/> element, the one that allows the
user to choose the day part of the fi rst date.

<select name=”firstDay” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1, 31);
 </script>
</select>

25937c07.indd 25625937c07.indd 256 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

257

Chapter 7: HTML Forms: Interacting with the User

This select box renders as a drop-down list box in the browser; by default, a <select/> element’s size
attribute is set to 1. The onchange event handler connects to the recalcDateDiff() function that
you’ll be looking at shortly.

However, no <option/> elements are defi ned within the <select/> element. The drop-down list boxes
need to be populated with too many options for you to enter them manually. Instead you populate the
options using the functions, which make use of the document.write() method.

The date and year options are populated using the writeOptions() function declared in the head of
the page. The function is passed two values: the start number and the end number of the options that
you want the select element to be populated with. Let’s look at the writeOptions() function.

function writeOptions(startNumber, endNumber)
{
 var optionCounter;
 for (optionCounter = startNumber;
 optionCounter <= endNumber; optionCounter++)
 {
 document.write(“<option value=” + optionCounter + “>” +
 optionCounter);
 }
}

The function is actually quite simple, consisting of a for loop that loops from the fi rst number
(startNumber) through to the last (endNumber) using the variable optionCounter and writes out the
HTML necessary for each <option/> element. The text for the option and the value attribute of the
<option/> element are specifi ed to be the value of the variable optionCounter. It’s certainly a lot
quicker than typing out the 31 <option/> elements necessary for the dates in a month.

For the year select box, the same function can be reused. You just pass 1970 and 2020 as parameters to
the writeOptions() function to populate the year select box.

<select name=”firstYear” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeOptions(1970, 2020);
 </script>
</select>

To populate the month select box with the names of each month, you will need a different function.
However, the principle behind populating the <select/> element remains the same: You do it using
document.write(). The function in this case is writeMonthOptions(), as you can see from the fol-
lowing month select element:

<select name=”firstMonth” onchange=”recalcDateDiff()“>
 <script type=”text/javascript”>
 writeMonthOptions();
 </script>
</select>

The new function, writeMonthOptions(), is defi ned in the head of the page. Let’s take a look at it now.
You start the function by defi ning three variables and initializing the variable, theDate, to the current date.

function writeMonthOptions()
{

25937c07.indd 25725937c07.indd 257 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

258

Chapter 7: HTML Forms: Interacting with the User

 var theMonth;
 var monthCounter;
 var theDate = new Date();

You use the Date object contained in the theDate variable to get the months as text (Jan, Feb...Dec). You
get these months by setting the month in the theDate variable from 0 up to 11 using the setMonth()
method in a for loop. Although the Date object does not provide a method for returning the date as
anything other than a number, it does have the toString() method, which returns the value, as a
string, of the date stored in the variable. It returns the date in the format of day of the week, month, day
of the month, time, and fi nally year; for example, Wed Jul 15 2009 16:11:10 GMT-0500. This string
varies from browser to browser, but they all start the month at the fi fth character. With this information,
you can easily use the String object’s substr() method to extract the month.

 for (monthCounter = 0; monthCounter < 12; monthCounter++)
 {
 theDate.setMonth(monthCounter);
 theMonth = theDate.toString();
 theMonth = theMonth.substr(4, 3);
 document.write(“<option value=” + theMonth + “>” + theMonth);
 }
}

Now that you have your month as a string of three characters, you can create the <option/> element
and populate its text and value with the month.

For user convenience, it would be nice during the loading of the page to set both of the dates in the
select elements to today’s date. This is what you do in the window_onload() function, which handles
the window’s load event by means of the opening <body> tag.

<body onload=”window_onload()”>

The window_onload() function, defi ned in the head of the page, starts by setting the theForm variable
to reference your Form object, because it shortens the reference needed in your code. Next, you create a
variable to hold a Date object to store today’s date.

function window_onload()
{
 var theForm = document.form1;
 var nowDate = new Date();

Setting each of the <select/> box’s initial values is easy; the value returned by the Date object nowDate
can be modifi ed to provide the required index of the options collection. For the day, the correct index
is simply the day of the month minus one — remember that arrays start at 0, so day 1 is actually at
index 0. The selected property is set to true to make that day the currently selected option in the list.

 theForm.firstDay.options[nowDate.getDate() - 1].selected = true;
 theForm.secondDay.options[nowDate.getDate() - 1].selected = true;

The month is even easier because the getMonth() function returns a value from 0 to 11 for the month,
which exactly matches the necessary index value for the options collection.

 theForm.firstMonth.options[nowDate.getMonth()].selected = true;
 theForm.secondMonth.options[nowDate.getMonth()].selected = true;

25937c07.indd 25825937c07.indd 258 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

259

Chapter 7: HTML Forms: Interacting with the User

For the year, because you are starting with 1970 as your fi rst year, you need to take 1970 from the current
year to get the correct index value.

 theForm.firstYear.options[nowDate.getFullYear() - 1970].selected = true;
 theForm.secondYear.options[nowDate.getFullYear() - 1970].selected = true;
}

The fi nal part of your code that you need to look at is the function connected to the change event of
each select element, namely the recalcDateDiff() function. Your fi rst task with this function is to
build up the two dates the user has selected using the drop-down lists.

function recalcDateDiff()
{
 var myForm = document.form1;
 var firstDay = myForm.firstDay.options[myForm.firstDay.selectedIndex].value;
 var secondDay =
 myForm.secondDay.options[myForm.secondDay.selectedIndex].value;
 var firstMonth =
 myForm.firstMonth.options[myForm.firstMonth.selectedIndex].value;
 var secondMonth =
 myForm.secondMonth.options[myForm.secondMonth.selectedIndex].value;
 var firstYear =
 myForm.firstYear.options[myForm.firstYear.selectedIndex].value;
 var secondYear =
 myForm.secondYear.options[myForm.secondYear.selectedIndex].value;

You go through each select element and retrieve the value of the selected Option object. The
selectedIndex property of the Select object provides the index you need to reference the selected
Option object in the options collection. For example, in the following line, the index is provided by
myForm.firstDay.selectedIndex:

var firstDay = myForm.firstDay.options[myForm.firstDay.selectedIndex].value;

You then use that value inside the square brackets as the index value for the options collection of the
firstDay select element. This provides the reference to the selected Option object, whose value prop-
erty you store in the variable firstDay.

You use this technique for all the remaining select elements.

You can then create new Date objects based on the values obtained from the select elements and store
them in the variables firstDate and secondDate.

 var firstDate = new Date(firstDay + “ “ + firstMonth + “ “ + firstYear);
 var secondDate = new Date(secondDay + “ “ + secondMonth + “ “ + secondYear);

Finally, you need to calculate the difference in days between the two dates.

 var daysDiff = (secondDate.valueOf() - firstDate.valueOf());
 daysDiff = Math.floor(Math.abs((((daysDiff / 1000) / 60) / 60) / 24));

The Date object has a method, valueOf(), which returns the number of milliseconds from the fi rst
of January, 1970, to the date stored in the Date object. You subtract the value of the valueOf property
of firstDate from the value of the valueOf property of secondDate and store this in the variable
daysDiff. At this point, it holds the difference between the two dates in milliseconds, so you convert
this value to days in the following line. By dividing by 1,000 you make the value seconds, dividing the

25937c07.indd 25925937c07.indd 259 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

260

Chapter 7: HTML Forms: Interacting with the User

resulting number by 60 makes it minutes, by 60 again makes it hours, and fi nally you divide by 24 to
convert to your fi nal fi gure of difference in days. The Math object’s abs() method makes negative num-
bers positive. The user may have set the fi rst date to a later date than the second, and since you want to
fi nd only the difference between the two, not which is earlier, you make any negative results positive.
The Math.floor() method removes the fractional part of any result and returns just the integer part
rounded down to the nearest whole number.

Finally, you write the difference in days to the txtDays text box in the page.

 myForm.txtDays.value = daysDiff;

Summary
In this chapter, you looked at how to add a user interface onto your JavaScript so that you can interact with
your users and acquire information from them. Let’s look at some of the things we discussed in this chapter.

The HTML form is where you place elements making up the interface in a page. ❑

Each HTML form groups together a set of HTML elements. When a form is submitted to a ❑

server for processing, all the data in that form are sent to the server. You can have multiple
forms on a page, but only the information in one form can be sent to the server.

A form is created with the opening tag ❑ <form> and ends with the close tag </form>. All the
elements you want included in that form are placed in between the open and close <form> tags.
The <form/> element has various attributes — for client-side scripting, the name attribute is the
important one. You can access forms with either their name attribute or their ID attribute.

Each ❑ <form> element creates a Form object, which is contained within the document object. To
access a form named myForm, you write document.myForm. The document object also has a
forms property, which is a collection containing every form inside the document. The fi rst form
in the page is document.forms[0], the second is document.forms[1], and so on. The length
property of the forms property (document.forms.length) tells you how many forms are on
the page.

Having discussed forms, we then went on to look at the different types of HTML elements that ❑

can be placed inside forms, how to create them, and how they are used in JavaScript.

The objects associated with the form elements have a number of properties, methods, and ❑

events that are common to them all. They all have the name property, which you can use to
reference them in your JavaScript. They also all have the form property, which provides a ref-
erence to the Form object in which that element is contained. The type property returns a text
string telling you what type of element this is; types include text, button, and radio.

You also saw that the methods ❑ focus() and blur(), and the events focus and blur, are avail-
able to every form element object. Such an element is said to receive the focus when it becomes
the active element in the form, either because the user has selected that element or because you
used the focus() method. However an element got the focus, its focus event will fi re. When
another element is set as the currently active element, the previous element is said to lose its
focus, or to blur. Again, loss of focus can be the result of the user selecting another element or
the use of the blur() method; either way, when it happens the blur event fi res. You saw that
the fi ring of focus and blur can, if used carefully, be a good place to check things like the
validity of data entered by a user into an element.

25937c07.indd 26025937c07.indd 260 9/20/09 11:51:06 PM9/20/09 11:51:06 PM

261

Chapter 7: HTML Forms: Interacting with the User

All elements return a value, which is the string data assigned to that element. The meaning of ❑

the value depends on the element; for a text box, it is the value inside the text box, and for a but-
ton, it’s the text displayed on its face.

Having discussed the common features of elements, we then looked at each of the more com- ❑

monly used elements in turn, starting with the button element.

The button element’s purpose in life is to be clicked by the user, where that clicking fi res some ❑

script you have written. You can capture the clicking by connecting to the button’s click event.
A button is created by means of the <input/> element with the type attribute set to button.
The value attribute determines what text appears on the button’s face. Two variations on a
button are the submit and reset buttons. In addition to acting as buttons, they also provide a
special service not linked to code. The submit button will automatically submit the form to the
server; the reset button clears the form back to its default state when loaded in the page.

The text element allows the user to enter a single line of plain text. A text box is created by ❑

means of the <input/> element with the type attribute set to text. You can set how many
characters the user can enter and how wide the text box is with the maxlength and size attri-
butes, respectively, of the <input/> element. The text box has an associated object called Text,
which has the additional events select and change. The select event fi res when the user
selects text in the box, and the more useful change event fi res when the element loses focus and
its contents have changed since the element gained the focus. The fi ring of the change event is a
good place to do validation of what users has just entered. If they entered illegal values, such as
letters when you wanted numbers, you can let the user know and send her back to correct her
mistake. A variation on the text box is the password box, which is almost identical to the text
box except that the values typed into it are hidden and shown as an asterisk. Additionally, the
text box also has the keydown, keypress, and keyup events.

The next element you looked at was the text area, which is similar to the text box except that it ❑

allows multiple lines of text to be entered. This element is created with the open tag <textarea>
and closed with the </textarea> tag, the width and height in characters of the text box being
determined by the cols and rows attributes respectively. The wrap attribute determines
whether the text area wraps text that reaches the end of a line and whether that wrapping is
sent when the contents are posted to the server. If this attribute is left out, or set to off, no
wrapping occurs; if set to soft, it causes wrapping client-side, but is not sent to the server when
the form is sent; if set to hard, it causes wrapping client-side and is sent to the server. The asso-
ciated Textarea object has virtually the same properties, methods, and events as a Text object.

You then looked at the check box and radio button elements together. Essentially they are the ❑

same type of element, except that the radio button is a grouped element, meaning that only
one in a group can be checked at once. Checking another one causes the previously checked
button to be unchecked. Both elements are created with the <input/> element, the type attri-
bute being checkbox or radio. If checked is put inside the <input> tag, that element will be
checked when the page is loaded. Creating radio buttons with the same name creates a radio
button group. The name of a radio button actually refers to an array, and each element within
that array is a radio button defi ned on the form to be within that group. These elements have
associated objects called Checkbox and Radio. Using the checked property of these objects,
you can fi nd out whether a check box or radio button is currently checked. Both objects also
have the click event in addition to the common events focus and blur.

25937c07.indd 26125937c07.indd 261 9/20/09 11:51:07 PM9/20/09 11:51:07 PM

262

Chapter 7: HTML Forms: Interacting with the User

Next in your look at elements were the drop-down list and list boxes. Both, in fact, are the same ❑

select element, with the size attribute determining whether it’s a drop-down or list box. The
<select> tag creates these elements, the size attribute determining how many list items are
visible at once. If a size of 1 is given, a drop-down box rather than a list box is created. Each
item in a select element is defi ned by the <option/> element, or added to later by means of
the Select object’s options collection property, which is an array-like structure containing
each Option object for that element. However, adding options after the page is loaded differs
slightly between IE7 and other browsers. The Select object’s selectedIndex property tells
you which option is selected; you can then use that value to access the appropriate option in the
options collection and use the Option object’s value property. The Option object also has the
text and index properties, text being the displayed text in the list and index being its position
in the Select object’s options collection property. You can loop through the options collec-
tion, fi nding out its length from the Select object’s length property. The Select object has
the change event, which fi res when the user selects another item from the list.

In the next chapter, you’ll look at how, once you have created a frameset in a page, you can access code
and variables between frames. You’ll also look at how to open new windows using JavaScript, and
methods of manipulating them when they are open. You’ll see the trivia quiz become a frame-based
application.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Using the code from the temperature converter example you saw in Chapter 2, create a user
interface for it and connect it to the existing code so that the user can enter a value in degrees
Fahrenheit and convert it to centigrade.

 2. Create a user interface that allows the user to pick the computer system of their dreams, simi-
lar in principle to the e-commerce sites selling computers over the Internet. For example, they
could be given a choice of processor type, speed, memory, and hard drive size, and the option
to add additional components like a DVD-ROM drive, a sound card, and so on. As the user
changes their selections, the price of the system should update automatically and notify them
of the cost of the system as they specifi ed it, either by using an alert box or by updating the con-
tents of a text box.

25937c07.indd 26225937c07.indd 262 9/20/09 11:51:07 PM9/20/09 11:51:07 PM

8
Windows and Frames

Until now, the pages you have been looking at have just been single pages. However, many web
applications use frames to split up the browser’s window, much as panes of glass split up a real
window. It’s quite possible that you’ll want to build web sites that make use of such frames. The
good news is that JavaScript enables the manipulation of frames and allows functions and vari-
ables you create in one frame to be used from another frame. One advantage of this is that you can
keep common variables and functions in one place but use them from many places. This chapter
starts by looking at how you can script across such frames.

A number of other good reasons exist for wanting to access variables and functions in another
frame. Two important reasons are to make your code modular and to gain the ability to maintain
information between pages.

What does modular mean? In other programming languages, like C, C++, or Visual Basic, you can
create a module — an area to hold general functions and variables — and reuse it from different
places in your program. When using frames, you can put all of your general functions and vari-
ables into one area, such as the top frame, which you can think of as your code module. Then you
can call the functions repeatedly from different pages and different frames.

If you put the general functions and variables in a page that defi nes the frames that it contains
(that is, a frameset-defi ning page), then if you need to make changes to the pages inside the
frames, any variables defi ned in the frameset page will retain their value. This provides a very
useful means of holding information even when the user is navigating your web site. A further
advantage is that any functions defi ned in the frameset-defi ning page can be called by subse-
quent pages and have to be loaded into the browser only once, making your page’s loading faster.

The second subject of this chapter is how you can open up and manipulate new browser windows.
There are plenty of good uses for new windows. For example, you may wish to open up an external
web site in a new window from your web site, but still leave your web site open for the user.
External here means a web site created and maintained by another person or company. Let’s
say you have a web site about cars — well, you may wish to have a link to external sites, such

25937c08.indd 26325937c08.indd 263 9/20/09 11:58:37 PM9/20/09 11:58:37 PM

264

Chapter 8: Windows and Frames

as manufacturing web sites (for example, that of Ford or General Motors). Perhaps even more useful is
using small windows as dialog boxes, which you can use to obtain information from the user. Just as you
can script between frames, you can do similar things between certain windows. You fi nd out how later
in the chapter, but let’s start by looking at scripting between frames.

Frames and the window Object
Frames are a means of splitting up the browser window into various panes, into which you can then
load different HTML documents. The frames are defi ned in a frameset-defi ning page by the <frameset/>
and <frame/> elements. The <frameset/> element contains <frame/> elements and specifi es how
the frames should look on the page. The <frame/> elements are then used to specify each frame and to
include the required documents in the page.

You saw in Chapter 6 that the window object represents the browser’s frame on your page or document.
If you have a page with no frames, there will be just one window object. However, if you have more than
one frame, there will be one window object for each frame. Except for the very top-level window of a
frameset, each window object is contained inside another.

The easiest way to demonstrate this is through an example in which you create three frames, a top
frame with two frames inside it.

Try It Out Multiple Frames
For this multi-frame example, you’ll need to create three HTML fi les. The fi rst is the frameset-
defi ning page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 1</title>
</head>
<frameset row=”50%, *” id=”topWindow”>
 <frame name=”upperWindow” src=”ch08_examp1_upper.htm” />
 <frame name=”lowerWindow” src=”ch08_examp1_lower.htm” />
</frameset>
</html>

Save this as ch08_examp1.htm. Note that the src attributes for the two <frame /> elements in this
page are ch08_examp1_upper.htm and ch08_examp1_lower.htm. You will create these next.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 1 Upper Frame</title>
 <script type=”text/javascript”>

25937c08.indd 26425937c08.indd 264 9/20/09 11:58:37 PM9/20/09 11:58:37 PM

265

Chapter 8: Windows and Frames

 function window_onload()
 {
 alert(“The name of the upper frame’s window object is “ +
 window.name);

 alert(“The location of upperWindow’s parent is “ +
 window.parent.location.href);
 }
 </script>
</head>
<body onload=”window_onload()”>
 <p>
 Upper Frame
 </p>
</body>
</html>

The preceding code block is the source page for the top frame with the name upperWindow and needs
to be saved as ch08_examp1_upper.htm. The fi nal page is very similar to it:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 1 Lower Frame</title>
 <script type=”text/javascript”>
 function window_onload()
 {
 alert(“The name of the lower frame’s window object is “ +
 window.name);

 alert(“The location of lowerWindow’s parent is “ +
 window.parent.location.href);
 }
 </script>
</head>
<body onload=”window_onload()”>
 <p>
 Lower Frame
 </p>
</body>
</html>

This is the source page for the lower frame; save it as ch08_examp1_lower.htm.

These three pages fi t together so that ch08_examp1_upper.htm and ch08_examp1_lower.htm are
contained within the ch08_examp1.htm page.

When you load them into the browser, you have three window objects. One is the parent window
object and contains the fi le ch08_examp1.htm, and two are child window objects, containing the fi les
ch08_examp1_upper.htm and ch08_examp1_lower.htm. The two child window objects are contained
within the parent window, as shown in Figure 8-1.

25937c08.indd 26525937c08.indd 265 9/20/09 11:58:37 PM9/20/09 11:58:37 PM

266

Chapter 8: Windows and Frames

The parent window
object—defined in page
ch08_examp1.htm

First child window
object—name

upperWindow, file
ch08_exampl_upper.htm

Second child window
object—name

lowerWindow, file
ch08_exampl_lower.htm

Figure 8-1

If any of the frames had frames contained inside them, these would have window objects that were
children of the window object of that frame.

When you load ch08_examp1.htm into your browser, you’ll see a series of four message boxes, as shown
in Figures 8-2 through 8-5. These are making use of the window object’s properties to gain information
and demonstrate the window object’s place in the hierarchy.

Figure 8-2

Figure 8-3

25937c08.indd 26625937c08.indd 266 9/20/09 11:58:37 PM9/20/09 11:58:37 PM

267

Chapter 8: Windows and Frames

Figure 8-4

Figure 8-5

The paths in Figures 8-3 and 8-5 will vary depending upon where the fi les are stored on your computer.

Look at the frameset-defi ning page, starting with ch08_examp1.htm, as shown in the following
snippet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 1</title>
</head>
<frameset rows=”50%, *” id=”topWindow”>
 <frame name=”upperWindow” src=”ch08_examp1_upper.htm” />
 <frame name=”lowerWindow” src=”ch08_examp1_lower.htm” />
</frameset>
</html>

The frameset is defi ned with the <frameset /> element. You use two attributes: rows and id. The rows
attribute takes the value “50%,*” meaning that the fi rst frame should take up half of the height of the
window, and the second frame should take up the rest of the room. The id attribute is used to give a
name that you can use to reference the page.

The two child windows are created using <frame /> elements; each of which contains a name attribute
by which the window objects will be known and a src attribute of the page that will be loaded into the
newly created windows.

Let’s take a look at the ch08_examp1_upper.htm fi le next. In the <body /> element, you attach the
window_onload() function to the window object’s onload event handler. This event handler is called

25937c08.indd 26725937c08.indd 267 9/20/09 11:58:37 PM9/20/09 11:58:37 PM

268

Chapter 8: Windows and Frames

when the browser has fi nished loading the window, the document inside the window, and all the objects
within the document. It’s a very useful place to put initialization code or code that needs to change things
after the page has loaded but before control passes back to the user.

<body onload=”window_onload()”>

This function is defi ned in a script block in the head of the page as follows:

function window_onload()
{

 alert(“The name of the upper frame’s window object is “ + window.name);
 alert(“The location of UpperWindow’s parent is “ +

 window.parent.location.href);
}

The window_onload() function makes use of two properties of the window object for the frame that
the page is loaded in: its name and parent properties. The name property is self-explanatory — it’s the
name you defi ned in the frameset page. In this case, the name is upperWindow.

The second property, the parent property, is very useful. It gives you access to the window object of the
frame’s parent. This means you can access all of the parent window object’s properties and methods.
Through these, you can access the document within the parent window as well as any other frames
defi ned by the parent. Here, you display a message box giving details of the parent frame’s fi le name
or URL by using the href property of the location object (which itself is a property of the window
object).

The code for ch08_examp1_lower.htm is identical to the code for ch08_examp1_upper.htm, but with
different results because you are accessing a different window object. The name of the window object this
time is lowerWindow. However, it shares the same parent window as upperWindow, and so when you
access the parent property of the window object, you get a reference to the same window object as in
upperWindow. The message box demonstrates this by displaying the fi le name/URL or href property,
and this matches the fi le name of the page displayed in the upperWindow frame.

The order of display of messages may vary among different types of browsers and even different operat-
ing systems. This may not be important here, but there will be times when the order in which events fi re
is important and affects how your code works. It’s an incompatibility that’s worth noting and watching
out for in your own programs.

Coding Between Frames
You’ve seen that each frame exists as a different window and gets its own window object. In addition,
you saw that you can access the window object of a frameset-defi ning page from any of the frame pages
it specifi es, by using the window object’s parent property. When you have a reference to the parent
window’s window object, you can access its properties and methods in the same way that you access the
window object of the current page. In addition, you have access to all the JavaScript variables and func-
tions defi ned in that page.

25937c08.indd 26825937c08.indd 268 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

269

Chapter 8: Windows and Frames

Try It Out Using the Frameset Page as a Module
Let’s look at a more complex example, wherein you use the top frame to keep track of pages as the user
navigates the web site. You’re creating fi ve pages in this example, but don’t panic; four of them are almost
identical. The fi rst page that needs to be created is the frameset-defi ning page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 2</title>
 <script type=”text/javascript”>
 var pagesVisited = new Array();
 function returnPagesVisited()
 {
 var returnValue = “So far you have visited the following pages\n”;
 var pageVisitedIndex;
 var numberOfPagesVisited = pagesVisited.length;
 for (pageVisitedIndex = 0; pageVisitedIndex < numberOfPagesVisited;
 pageVisitedIndex++)
 {
 returnValue = returnValue + pagesVisited[pageVisitedIndex] + “\n”;
 }
 return returnValue;
 }

 function addPage(fileName)
 {
 var fileNameStart = fileName.lastIndexOf(“/”) + 1;
 fileName = fileName.substr(fileNameStart);
 pagesVisited[pagesVisited.length] = fileName;

 return true;
 }
 </script>
</head>
<frameset cols=”50%,*”>
 <frame name=”fraLeft” src=”ch08_examp2_a.htm”>
 <frame name=”fraRight” src=”ch08_examp2_b.htm”>
</frameset>
</html>

Save this page as ch08_examp2.htm.

Notice that the two frames have the src attributes initialized as ch08_examp2_a.htm and ch08_examp2_b
.htm. However, you also need to create ch08_examp2_c.htm and ch08_examp2_d.htm because you
will be allowing the user to choose the page loaded into each frame from these four pages. You’ll create
the page_a.htm page fi rst, as shown in the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c08.indd 26925937c08.indd 269 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

270

Chapter 8: Windows and Frames

<head>
 <title>Chapter 8: Example 2 Page A</title>
 <script type=”text/javascript”>
 function btnShowVisited_onclick()
 {
 document.form1.txtaPagesVisited.value =
 window.parent.returnPagesVisited();
 }
 </script>
</head>
<body onload=”window.parent.addPage(window.location.href)”>
 <h2>This is Page A</h2>
 <p>
 Page A
 Page B
 Page C
 Page D
 </p>
<form name=”form1” action=”“>
 <textarea rows=”10” cols=”35” name=”txtaPagesVisited”></textarea>

 <input type=”button” value=”List Pages Visited” name=”btnShowVisited”
 onclick=”btnShowVisited_onclick()” />
 </form>
</body>
</html>

Save this page as ch08_examp2_a.htm.

The other three pages are identical to ch08_examp2_a.htm, except for the page’s title and the <h2/>
element, so you can just cut and paste the text from ch08_examp2_a.htm. Change the HTML that dis-
plays the name of the page loaded to the following:

<h2>This is Page B</h2>

Then save this as ch08_examp2_b.htm.

Do the same again, to create the third page (page C):

<h2>This is Page C</h2>

Save this as ch08_examp2_c.htm.

The fi nal page is again a copy of ch08_examp2_a.htm except for the following lines:

<h2>This is Page D</h2>

Save this as ch08_examp2_d.htm.

Load ch08_examp2.htm into your browser and navigate to various pages by clicking the links. Then
click the List Pages Visited button in the left-hand frame, and you should see a screen similar to the one
shown in Figure 8-6.

25937c08.indd 27025937c08.indd 270 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

271

Chapter 8: Windows and Frames

Figure 8-6

Click the links in either frame to navigate to a new location. For example, click the Page C link in the
right frame, then the Page D link in the left frame. Click the left frame’s List Pages Visited button and
you’ll see that ch08_examp2_c.htm and ch08_examp2_d.htm have been added to the list.

Normally when a new page is loaded, any variables and their values in the previous page are lost, but
when using frameset pages as modules, it does not matter which page is loaded into each frame — the
top frame remains loaded and its variables keep their values. What you are seeing in this example is
that, regardless of which page is loaded in each frame, some global variable in the top frame is keeping
track of the pages that have been viewed and the top frame’s variables and functions can be accessed by
any page loaded into either frame.

There are restrictions when the pages you load into the frames are from external sources — more on
this later in the chapter.

Let’s fi rst look at the JavaScript in ch08_examp2.htm, which is the frameset-defi ning page. The head of
the page contains a script block. The fi rst thing in this script block is the declaration of the pagesVisited
variable, and set it to reference a new Array object. In the array, you’ll be storing the fi le name of each
page visited as the user navigates the site.

var pagesVisited = new Array();

You then have two functions. The fi rst of the two functions, returnPagesVisited(), does what its name
suggests — it returns a string containing a message and a list of each of the pages visited. It does this by
looping through the pagesVisited array, building up the message string inside the returnValue vari-
able, which is then returned to the calling function.

25937c08.indd 27125937c08.indd 271 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

272

Chapter 8: Windows and Frames

function returnPagesVisited()
{
 var returnValue = “So far you have visited the following pages\n”;
 var pageVisitedIndex;
 var numberOfPagesVisited = pagesVisited.length;
 for (pageVisitedIndex = 0; pageVisitedIndex < numberOfPagesVisited;
 pageVisitedIndex++)
 {
 returnValue = returnValue + pagesVisited[pageVisitedIndex]
 + “\n”;
 }
 return returnValue;
}

The second function, addPage(), adds the name of a page to the pagesVisited array.

function addPage(fileName)
{
 var fileNameStart = fileName.lastIndexOf(“/”) + 1;
 fileName = fileName.substr(fileNameStart);
 pagesVisited[pagesVisited.length] = fileName;

 return true;
}

The fileName parameter passed to this function is the full fi le name and path of the visited page, so
you need to strip out the path to get just the fi le name. The format of the string will be something like
file:///D:/myDirectory/ch08_examp2_b.htm, and you need just the bit after the last / character.
So in the fi rst line of code, you fi nd the position of that character and add one to it because you want to
start at the next character.

Then, using the String’s substr() method in the following line, you extract everything from char-
acter position fileNameStart right up to the end of the string. Remember that the substr() method
accepts two parameters, namely the starting character you want and the length of the string you want
to extract, but if the second parameter is missing, all characters from the start position to the end are
extracted.

You then add the fi le name into the array, the length property of the array providing the next free
index position.

You’ll now turn to look collectively at the frame pages, namely ch08_examp2_a.htm, ch08_examp2_b
.htm, ch08_examp2_c.htm, and ch08_examp2_d.htm. In each of these pages, you create a form called
form1.

<form name=”form1” action=”“>
 <textarea rows=”10” cols=”35” name=”txtaPagesVisited”></textarea>

 <input type=”button” value=”List Pages Visited”
 name=”btnShowVisited” onclick=”btnShowVisited_onclick()” />
</form>

This contains the textarea control that displays the list of visited pages, and a button the user can
click to populate the <textarea /> element.

25937c08.indd 27225937c08.indd 272 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

273

Chapter 8: Windows and Frames

When one of these pages is loaded, its name is put into the pagesVisited array defi ned in ch08_
examp2.htm by the window object’s onload event handler’s being connected to the addPage() function
that you also created in ch08_examp2.htm. You connect the code to the event handler in the <body />
element of the page as follows:

<body onload=”window.parent.addPage(window.location.href)”>

Recall that all the functions you declare in a page are contained, like everything else in a page, inside
the window object for that page; because the window object is the global object, you don’t need to prefi x
the name of your variables or functions with window.

However, this time the function is not in the current page, but in the ch08_examp2.htm page. The
window containing this page is the parent window to the window containing the current page. You
need, therefore, to refer to the parent frame’s window object using the window object’s parent property.
The code window.parent gives you a reference to the window object of ch08_examp2.htm. With this
reference, you can now access the variables and functions contained in ch08_examp2.htm. Having stated
which window object you are referencing, you just add the name of the function you are calling, in this
instance the addPage() function. You pass this function the location.href string, which contains
the full path and fi le name of the page, as the value for its one parameter.

As you saw earlier, the button on the page has its onclick event handler connected to a function called
btnShowVisited_onclick(). This is defi ned in the head of the page.

function btnShowVisited_onclick()
{
 document.form1.txtaPagesVisited.value =
 window.parent.returnPagesVisited();
}

In this function, you call the parent window object’s returnPagesVisited() function, which, as you
saw earlier, returns a string containing a list of pages visited. The value property of the textarea object
is set to this text.

That completes your look at the code in the frame pages, and as you can see, there’s not much of it because
you have placed all the general functions in the frameset page. Not only does this code reuse make for
less typing, but it also means that all your functions are in one place. If there is a bug in a function, fi xing
the bug for one page also fi xes it for all other pages that use the function. Of course, it only makes sense to
put general functions in one place; functions that are specifi c to a page and are never used again outside
it are best kept in that page.

Code Access Between Frames
You’ve just seen how a child window can access its parent window’s variables and functions, but how
can frames inside a frameset access each other?

You saw a simple example earlier in this chapter, so this time let’s look at a much more complex example.
When created, your page will look like the one shown in Figure 8-7.

25937c08.indd 27325937c08.indd 273 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

274

Chapter 8: Windows and Frames

Figure 8-7

A diagram of the frame layout is shown in Figure 8-8. The text labels indicate the names that each frame
has been given in the <frameset/> and <frame/> elements, with the exception of the top frame, which
is simply the window at the top of the frameset hierarchy.

frameTop

frameMain

frameBottomframeMenu

Top Window

Figure 8-8

25937c08.indd 27425937c08.indd 274 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

275

Chapter 8: Windows and Frames

The easiest way to think of the hierarchy of such a frames-based web page is in terms of familial relation-
ships, which can be shown in a family tree. If you represent your frameset like that, it looks something
like the diagram in Figure 8-9.

Top Window

frameMainframeMenu

frameBottomframeTop

Figure 8-9

From the diagram you can see that frameBottom, the right-hand frame’s bottom frame, has a parent
frame called frameMain, which itself has a parent, the top window. Therefore, if you wanted to access a
function in the top window from the frameBottom window, you would need to access frameBottom’s
parent’s parent’s window object. You know that the window object has the parent property, which is a
reference to the parent window of that window object. So let’s use that and create the code to access a
function, for example, called myFunction(), in the top window.

window.parent.parent.myFunction();

Let’s break this down. The following code gets you a reference to the parent window object of the win-
dow in which the code is running.

window.parent

The code is in frameBottom, so window.parent will be frameMain. However, you want the top window,
which is frameMain’s parent, so you add to the preceding code to make this:

window.parent.parent

Now you have a reference to the top window. Finally, you call myFunction() by adding that to the end
of the expression.

window.parent.parent.myFunction();

What if you want to access the window object of frameMenu from code in frameBottom? Well, you have
most of the code you need already. You saw that window.parent.parent gives you the top window,
so now you want that window’s child window object called frameMenu. You can get it in three ways, all
with identical results.

You can use its index in the frames collection property of the window object as follows:

window.parent.parent.frames[0]

Alternatively, you can use its name in the frames collection like this:

window.parent.parent.frames[“frameMenu”]

25937c08.indd 27525937c08.indd 275 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

276

Chapter 8: Windows and Frames

Finally, you can reference it directly by using its name as you can with any window object:

window.parent.parent.frameMenu

The third method is the easiest unless you don’t know the name of a frame and need to access it by its
index value in the frames collection, or are looping through each child frame in turn.

Since window.parent.parent.frameMenu gets you a reference to the window object associated with
frameMenu, to access a function myFunction() or variable myVariable, you would just type one of
these lines:

window.parent.parent.frameMenu.myFunction

or

window.parent.parent.frameMenu.myVariable

What if you want to access not a function or variable in a page within a frame, but a control on a form
or even the links on that page? Well, let’s imagine you want to access, from the frameBottom page, a
control named myControl, on a form called myForm in the frameMenu page.

You found that window.parent.parent.frameMenu gives you the reference to frameMenu’s window
object from frameBottom, but how do you reference a form there?

Basically, it’s the same as how you access a form from the inside of the same page as the script, except
that you need to reference not the window object of that page but the window object of frameMenu, the
page you’re interested in.

Normally you write document.myForm.myControl.value, with window being assumed since it is the
global object. Strictly speaking, it’s window.document.myForm.myControl.value.

Now that you’re accessing another window, you just reference the window you want and then use
the same code. So you need this code if you want to access the value property of myControl from
frameBottom:

window.parent.parent.frameMenu.document.myForm.myControl.value

As you can see, references to other frames can get pretty long, and in this situation it’s a very good idea
to store the reference in a variable. For example, if you are accessing myForm a number of times, you
could write this:

var myFormRef = window.parent.parent.frameMenu.document.myForm;

Having done that, you can now write

myFormRef.myControl.value;

rather than

window.parent.parent.frameMenu.document.myForm.myControl.value;

25937c08.indd 27625937c08.indd 276 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

277

Chapter 8: Windows and Frames

The top Property
Using the parent property can get a little tedious when you want to access the very top window from
a frame quite low down in the hierarchy of frames and window objects. An alternative is the window
object’s top property. This returns a reference to the window object of the very top window in a frame
hierarchy. In the current example, this is top window.

For instance, in the example you just saw, this code:

window.parent.parent.frameMenu.document.myForm.myControl.value;

could be written like this:

window.top.frameMenu.document.myForm.myControl.value;

Although, because the window is a global object, you could shorten that to just this:

top.frameMenu.document.myForm.myControl.value;

So when should you use top rather than parent, or vice versa?

Both properties have advantages and disadvantages. The parent property enables you to specify
window objects relative to the current window. The window above this window is window.parent, its
parent is window.parent.parent, and so on. The top property is much more generic; top is always
the very top window regardless of the frameset layout being used. There will always be a top, but
there’s not necessarily going to always be a parent.parent. If you put all your global functions and
variables that you want accessible from any page in the frameset in the very top window, window.top will
always be valid regardless of changes to framesets beneath it, whereas the parent property is dependent
on the frameset structure above it. However, if someone else loads your web site inside a frameset page
of his own, then suddenly the top window is not yours but his, and window.top is no longer valid. You
can’t win, or can you?

One trick is to check to see whether the top window contains your page; if it doesn’t, reload the top
page again and specify that your top page is the one to be loaded. For example, check to see that the
fi le name of the top page actually matches the name you expect. The window.top.location.href
will give you the name and path — if they don’t match what you want, use window.top.location
.replace(“myPagename.htm”) to load the correct top page. However, as you’ll see later, this will
cause problems if someone else is loading your page into a frameset they have created — this is where
something called the same-origin policy applies. More on this later in the chapter.

Try It Out Scripting Frames
Let’s put all you’ve learned about frames and scripting into an example based on the frameset you last
looked at in ch08_examp2.htm. You’re going to be reusing a lot of the pages and code from the previous
example in this chapter.

The fi rst page you’re creating is the top window page. The highlighted lines of code show changes
made to ch08_examp2.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c08.indd 27725937c08.indd 277 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

278

Chapter 8: Windows and Frames

<head>
 <title>Chapter 8: Example 3</title>
 <script type=”text/javascript”>
 var pagesVisited = new Array();
 function returnPagesVisited()
 {
 var returnValue = “So far you have visited the following pages\n”;
 var pageVisitedIndex;
 var numberOfPagesVisited = pagesVisited.length;
 for (pageVisitedIndex = 0; pageVisitedIndex < numberOfPagesVisited;
 pageVisitedIndex++)
 {
 returnValue = returnValue + pagesVisited[pageVisitedIndex] + “\n”;
 }
 return returnValue;
 }

 function addPage(fileName)
 {
 var fileNameStart = fileName.lastIndexOf(“/”) + 1;
 fileName = fileName.substr(fileNameStart);
 pagesVisited[pagesVisited.length] = fileName;

 return true;
 }
 </script>
</head>
<frameset cols=”200,*”>
 <frame name=”frameMenu” src=”ch08_examp3_menu.htm”>
 <frame name=”frameMain” src=”ch08_examp3_main.htm”>
</frameset>
</html>

As you can see, you’ve reused a lot of the code from ch08_examp2.htm, so you can cut and paste the script
block from there. Only the different code lines are highlighted. Save this page as ch08_examp3.htm.

Next, create the page that will be loaded into frameMenu, namely ch08_examp3_menu.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 3 Menu</title>
 <script type=”text/javascript”>
 function choosePage_onchange()
 {
 var choosePage = document.form1.choosePage;
 var windowobject;
 if (document.form1.radFrame[0].checked == true)
 {
 windowobject = window.parent.frameMain.frameTop;
 }
 else
 {
 windowobject = window.parent.frameMain.frameBottom;

25937c08.indd 27825937c08.indd 278 9/20/09 11:58:38 PM9/20/09 11:58:38 PM

279

Chapter 8: Windows and Frames

 }
 windowobject.location.href =
 choosePage.options[choosePage.selectedIndex].value;
 return true;
 }
 </script>
</head>
<body>
 <form name=”form1” action=”“>
 Select frame

 Top
 <input name=”radFrame” checked=”checked” type=”radio” />
 Bottom
 <input name=”radFrame” type=”radio” />

 <select name=”choosePage” onchange=”choosePage_onchange()”>
 <option value=”ch08_examp3_a.htm”>Page A</option>
 <option value=”ch08_examp3_b.htm”>Page B</option>
 <option value=”ch08_examp3_c.htm”>Page C</option>
 <option value=”ch08_examp3_d.htm”>Page D</option>
 </select>
 </form>
</body>
</html>

Save this as ch08_examp3_menu.htm.

The frameMain frame contains a page that is simply a frameset for the frameTop and frameBottom pages.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 3 Main</title>
</head>
<frameset rows=”50%,*”>
 <frame name=”frameTop” src=”ch08_examp3_a.htm”>
 <frame name=”frameBottom” src=”ch08_examp3_b.htm”>
</frameset>
</html>

Save this as ch08_examp3_main.htm.

The next four pages are mainly copies of the four pages — ch08_examp2_a.htm, ch08_examp2_b.htm,
ch08_examp2_c.htm, and ch08_examp2_d.htm — from example two. You’ll need to make a few changes,
as highlighted in the following code. (Again, all the pages are identical except for the text shown in the
page, so only modifi cations to ch08_examp2_a.htm are shown. Amend the rest in a similar way.)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c08.indd 27925937c08.indd 279 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

280

Chapter 8: Windows and Frames

<head>
 <title>Chapter 8: Example 3 Page A</title>
 <script type=”text/javascript”>
 function btnShowVisited_onclick()
 {
 document.form1.txtaPagesVisited.value =
 window.top.returnPagesVisited();
 }

 function setFrameAndPageControls(linkIndex)
 {
 var formobject = window.parent.parent.frameMenu.document.form1;
 formobject.choosePage.selectedIndex = linkIndex;

 if (window.parent.frameTop == window.self)
 {
 formobject.radFrame[0].checked = true;
 }
 else
 {
 formobject.radFrame[1].checked = true;
 }

 return true;
 }
 </script>
</head>
<body onload=”window.top.addPage(window.location.href)”>
 <h2>This is Page A</h2>
 <p>
 <a href=”ch08_examp3_a.htm” name=”pageALink”
 onclick=”return setFrameAndPageControls(0)”>Page A
 <a href=”ch08_examp3_b.htm” name=”pageBLink”
 onclick=”return setFrameAndPageControls(1)”>Page B
 <a href=”ch08_examp3_c.htm” name=”pageCLink”
 onclick=”return setFrameAndPageControls(2)”>Page C
 <a href=”ch08_examp3_d.htm” name=”pageDLink”
 onclick=”return setFrameAndPageControls(3)”>Page D
 </p>
 <form name=”form1” action=”“>
 <textarea rows=”10” cols=”35” name=”txtaPagesVisited”></textarea>

 <input type=”button” value=”List Pages Visited” name=”btnShowVisited”
 onclick=”btnShowVisited_onclick()” />
 </form>
</body>

</html>

Save the pages as ch08_examp3_a.htm, ch08_examp3_b.htm, ch08_examp3_c.htm, and
ch08_examp3_d.htm.

Load ch08_examp3.htm into your browser, and you’ll see a screen similar to the one shown in
Figure 8-7.

25937c08.indd 28025937c08.indd 280 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

281

Chapter 8: Windows and Frames

The radio buttons allow the user to determine which frame he wants to navigate to a new page. When
he changes the currently selected page in the drop-down list, that page is loaded into the frame selected
by the radio buttons.

If you navigate using the links in the pages inside the frameTop and frameBottom frames, you’ll notice
that the selected frame radio buttons and the drop-down list in frameMenu on the left will be automati-
cally updated to the page and frame just navigated to. Note that as the example stands, if the user loads
ch08_examp3_a.htm into a frame the select list doesn’t allow it to load the same page in the other frame.
You could improve on this example by adding a button that loads the currently selected page into the
chosen frame.

The List Pages Visited buttons display a list of visited pages, as they did in the previous example.

You’ve already seen how the code defi ning the top window in ch08_examp3.htm works, as it is very
similar to the previous example. However, look quickly at the <frameset/> element, where, as you can
see, the names of the windows are defi ned in the names of the <frame/> elements.

<frameset cols=”200,*”>
 <frame name=”frameMenu” src=”ch08_examp3_menu.htm”>
 <frame name=”frameMain” src=”ch08_examp3_main.htm”>
</frameset>

Notice also that the cols attribute of the <frameset/> element is set to “200,*”. This means that the
fi rst frame will occupy a column 200 pixels wide, and the other frame will occupy a column taking up
the remaining space.

Let’s look in more detail at the frameMenu frame containing ch08_examp3_menu.htm. At the top of the
page, you have your main script block. This contains the function choosePage_onchange(), which is
connected to the onchange event handler of the select box lower down on the page. The select box has
options containing the various page URLs.

The function starts by defi ning two variables. One of these, choosePage, is a shortcut reference to the
choosePage Select object further down the page.

function choosePage_onchange()
{
 var choosePage = document.form1.choosePage;
 var windowobject;

The if...else statement then sets your variable windowobject to reference the window object of
whichever frame the user has chosen in the radFrame radio button group.

 if (document.form1.radFrame[0].checked == true)
 {
 windowobject = window.parent.frameMain.fraTop;
 }
 else
 {
 windowobject = window.parent.frameMain.fraBottom;
 }

As you saw earlier, it’s just a matter of following through the references, so window.parent gets you a
reference to the parent window object. In this case, window.top would have done the same thing. Then
window.parent.frameMain gets you a reference to the window object of the frameMain frame. Finally,
depending on which frame you want to navigate in, you reference the frameTop or frameBottom window

25937c08.indd 28125937c08.indd 281 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

282

Chapter 8: Windows and Frames

objects contained within frameMain, using window.parent.frameMain.frameTop or window.parent
.frameMain.frameBottom.

Now that you have a reference to the window object of the frame in which you want to navigate, you
can go ahead and change its location.href property to the value of the selected drop-down list item,
causing the frame to load that page.

 windowobject.location.href =

 choosePage.options[choosePage.selectedIndex].value;
 return true;
}

As you saw before, ch08_examp3_main.htm is simply a frameset-defi ning page for frameTop and
frameBottom. Let’s now look at the pages you’re actually loading into frameTop and frameBottom.
Because they are all the same, you’ll look only at ch08_examp3_a.htm.

Let’s start by looking at the top script block. This contains two functions, btnShowVisited_onclick()
and setFrameAndPageControls(). You saw the function btnShowVisited_onclick() in the previ-
ous example.

function btnShowVisited_onclick()
{
 document.form1.txtaPagesVisited.value = window.top.returnPagesVisited();
}

However, because the frameset layout has changed, you do need to change the code. Whereas previously
the returnPagesVisited() function was in the parent window, it’s now moved to the top window. As
you can see, all you need to do is change the reference from window.parent.returnPagesVisited();
to window.top.returnPagesVisited();.

As it happens, in the previous example the parent window was also the top window, so if you had
written your code in this way in the fi rst place, there would have been no need for changes here. It’s
often quite a good idea to keep all your general functions in the top frameset page. That way all your
references can be window.top, even if the frameset layout is later changed.

The new function in this page is setFrameAndPageControls(), which is connected to the onclick
event handler of the links defi ned lower down on the page. This function’s purpose is to make sure that if
the user navigates to a different page using the links rather than the controls in the frameMenu window,
those controls will be updated to refl ect what the user has done.

The fi rst thing you do is set the formobject variable to reference the form1 in the frameMenu page, as
follows:

function setFrameAndPageControls(linkIndex)
{
 var formobject = window.parent.parent.frameMenu.document.form1;

Let’s break this down.

window.parent

gets you a reference to the frameMain window object. Moving up the hierarchy, you use the following
code to get a reference to the window object of the top window:

window.parent.parent

25937c08.indd 28225937c08.indd 282 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

283

Chapter 8: Windows and Frames

Yes, you’re right. You could have used window.top instead, and this would have been a better way to
do it. We’re doing it the long way here just to demonstrate how the hierarchy works.

Now you move down the hierarchy, but on the other side of your tree diagram, to reference the
frameMenu’s window object.

window.parent.parent.frameMenu

Finally, you are interested only in the form and its controls, so you reference that object like this:

window.parent.parent.frameMenu.document.form1

Now that you have a reference to the form, you can use it just as you would if this were code in
frameMenu itself.

The function’s parameter linkIndex tells you which of the four links was clicked, and you use this
value in the next line of the function’s code to set which of the options is selected in the drop-down list
box on frameMenu’s form.

formobject.choosePage.selectedIndex = linkIndex;

The if...else statement is where you set the frameMenu’s radio button group radFrame to the frame
the user just clicked on, but how can you tell which frame this is?

 if (window.parent.frameTop == window.self)

 {
 formobject.radFrame[0].checked = true
 }
 else
 {
 formobject.radFrame[1].checked = true
 }

You check to see whether the current window object is the same as the window object for frameTop. You
do this using the self property of the window object, which returns a reference to the current window
object, and window.parent.frameTop, which returns a reference to frameTop’s window object. If one
is equal to the other, you know that they are the same thing and that the current window is frameTop.
If that’s the case, the radFrame radio group in the frameMenu frame has its fi rst radio button checked.
Otherwise, you check the other radio button for frameBottom.

The last thing you do in the function is return true. Remember that this function is connected to an
A object, so returning false cancels the link’s action, and true allows it to continue, which is what
you want.

 return true;
}

Scripting IFrames
Inline frames (iframes), introduced by Microsoft in Internet Explorer (IE) 3, became a part of the HTML
standard in HTML 4. They’re a unique element in that you can add a frame to a web page without using
a frameset, and they’re much simpler to add to the page because of it. For example:

<iframe name=”myIFrame” src=”child_frame.htm” />

25937c08.indd 28325937c08.indd 283 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

284

Chapter 8: Windows and Frames

This HTML adds a frame with the name myIFrame to the page, which loads the child_frame.htm
fi le. As you may guess, this simplicity carries over to your JavaScript. Accessing the iframe’s document
object of the page loaded in it is straightforward. For example:

window.myIFrame.document.bgColor = “red”;

As you can see, it’s very similar to conventional frames within a frameset (you can also use the frames
collection like window.frames[“myIFrame”]). Accessing the parent window from within the iframe
is also familiar; use the parent property. For example:

window.parent.document.bgColor = “yellow”;

Opening New Windows
So far in this chapter, you have been looking at frames and scripting between them. In this section,
you’ll change direction slightly and look at how you can open up additional browser windows.

Why would you want to bother opening up new windows? Well, they can be useful in all sorts of dif-
ferent situations, such as the following:

You might want a page of links to web sites, in which clicking a link opens up a new window ❑

with that web site in it.

Additional windows can be useful for displaying information. For example, if you had a page ❑

with products on it, the user could click a product image to bring up a new small window list-
ing the details of that product. This can be less intrusive than navigating the existing window to
a new page with product details, and then requiring the user to click Back to return to the list of
products. You’ll be creating an example demonstrating this later in this chapter.

Dialog windows can be very useful for obtaining information from users, although overuse may ❑

annoy them.

The latest versions of all modern browsers include a pop-up blocking feature. By default, new windows
created automatically when a page loads are usually blocked. However, windows that open only when
the user must perform an action, for example clicking a link or button, are not normally blocked by
default, but the user may change the browser settings to block them.

Opening a New Browser Window
The window object has an open() method, which opens up a new window. It accepts three parameters,
although the third is optional, and it returns a reference to the window object of the new browser window.

The fi rst parameter of the open() method is the URL of the page that you want to open in the new win-
dow. However, you can pass an empty string for this parameter and get a blank page and then use the
document.write() method to insert HTML into the new window dynamically. You’ll see an example
of this later in the chapter.

25937c08.indd 28425937c08.indd 284 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

285

Chapter 8: Windows and Frames

The second parameter is the name you want to allocate to the new window. This is not the name you
use for scripting, but instead is used for the target attribute of things such as hyperlinks and forms.
For example, if you set this parameter to myWindow and set the target attribute of a hyperlink on the
original page to the same value (like in the following code example), clicking that hyperlink will cause
the hyperlink to act on the new window opened.

Test3.htm

This means that test3.htm loads into the new window and not the current window when the user
clicks the link. The same applies to the <form /> element’s target attribute. In this case, if a form is
submitted from the original window, the response from the server can be made to appear in the new
window.

When a new window is opened, it is opened (by default) with a certain set of properties, such as width
and height, and with the normal browser-window features. Browser-window features include things
such as a location entry fi eld and a menu bar with navigation buttons.

The third parameter of the open() method can be used to specify values for the height and width
properties. Also, because by default most of the browser window’s features are switched off, you can
switch them back on using the third parameter of the open() method. You’ll look at browser features in
more detail shortly.

Let’s fi rst look at an example of the code you need to open a basic window. You’ll name this window
myWindow and give it a width and height of 250 pixels. You want the new window to open with the
test2.htm page inside.

var newWindow = window.open(“test2.htm”,”myWindow”,”width=250,height=250”);

You can see that test2.htm has been passed as the fi rst parameter; that is the URL of the page you
want to open. The window is named myWindow in the second parameter. In the third parameter, you’ve
set the width and height properties to 250.

Also notice that you’ve set the variable newWindow to the return value returned by the open() method,
which is a reference to the window object of the newly opened window. You can now use newWindow to
manipulate the new window and gain access to the document contained inside it using the newWindow
.document property. You can do everything with this reference that you did when dealing with frames
and their window objects. For example, if you wanted to change the background color of the document
contained inside the new window, you would type this:

newWindow.document.bgColor = “red”;

How would you close the window you just opened? Easy, just use the window object’s close() method
like this:

newWindow.close();

25937c08.indd 28525937c08.indd 285 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

286

Chapter 8: Windows and Frames

Try It Out Opening New Windows
Let’s look at the example mentioned earlier of a products page in which clicking a product brings up a
window listing the details of that product. In a shameless plug, you’ll be using a couple of Wrox books
as examples — though with just two products on your page, it’s not exactly the world’s most extensive
online catalog.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 4</title>
 <script type=”text/javascript”>
 var detailsWindow;
 function showDetails(bookURL)
 {
 detailsWindow = window.open(bookURL, “bookDetails”,
 “width=400,height=350”);
 detailsWindow.focus();
 }
 </script>
</head>
<body>
 <h2>Online Book Buyer</h2>
 <p>
 Click any of the images below for more details
 </p>
 <h4>Professional Ajax</h4>
 <p>
 <img src=”pro_ajax.jpg” alt=”Professional Ajax, 2nd Edition” border=”0”
 onclick=”showDetails(‘pro_ajax_details.htm’)” />
 </p>
 <h4>Professional JavaScript for Web Developers</h4>
 <p>
 <img src=”pro_js.jpg” alt=”Professional JavaScript, 2nd Edition”
 border=”0” onclick=”showDetails(‘pro_js_details.htm’)” />
 </p>
</body>
</html>

Save this page as ch08_examp4.htm. You’ll also need to create two images and name them pro_ajax
.jpg and pro_js.jpg. Alternatively, you can fi nd these fi les in the code download.

Note that the window will not open if the user disabled JavaScript — effectively breaking your web
page. You can, however, get around this by surrounding the element with an <a/> element,
assigning the href attribute to the book details page, and using the <a/> element’s onclick event
handler to return false after launching the new window as follows:

<a href=”pro_ajax_details.htm”
 onclick=”showDetails(this.href); return false;”>

25937c08.indd 28625937c08.indd 286 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

287

Chapter 8: Windows and Frames

In a JavaScript-enabled browser, clicking the link results in a new window containing the pro_ajax_
details.htm page, and because the onclick handler returns false, the browser does not navigate the
main window to the page defi ned in the link’s href attribute. However, in browsers that have JavaScript
disabled, the browser ignores and does not execute the code within the link’s onclick event handler,
thus navigating the user’s browser to the book details page because it is defi ned in the href attribute.

You now need to create the two details pages, both plain HTML.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Professional ASP.NET 2.0</title>
</head>
<body>
 <h3>Professional Ajax, 2nd Edition</h3>
 Subjects

 Ajax

 Internet

 JavaScript

 ASP.NET

 PHP

 XML

 <hr color=”#cc3333” />
 <h3>Book overview</h3>
 <p>
 A comprehensive look at the technologies and techniques used in Ajax,
 complete with real world examples and case studies. A must have for
 any Web professional looking to build interactive Web sites.
 </p>
</body>
</html>

Save this as pro_ajax_details.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Professional JavaScript</title>
</head>
<body>
 <h3>Professional JavaScript, 2nd Edition</h3>
 Subjects

 ECMAScript

 Internet

 JavaScript

 XML and Scripting

 <hr color=”#cc3333” />
 <p>
 This book takes a comprehensive look at the JavaScript language
 and prepares the reader in-depth knowledge of the languages.
 </p>

25937c08.indd 28725937c08.indd 287 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

288

Chapter 8: Windows and Frames

 <p>
 It includes a guide to the language - when where and how to get
 the most out of JavaScript - together with practical case studies
 demonstrating JavaScript in action. Coverage is bang up-to-date,
 with discussion of compatability issues and version differences,
 and the book concludes with a comprehensive reference section.
 </p>
</body>
</html>

Save the fi nal page as pro_js_details.htm.

Load ch08_examp4.htm into your browser and click either of the two images. A new window contain-
ing the book’s details should appear above the existing browser window. Click the other book image,
and the window will be replaced by one containing the details of that book.

The fi les pro_ajax_details.htm and pro_js_details.htm are both plain HTML fi les, so you won’t
look at them. However, in ch08_examp4.htm you fi nd some scripting action, which you will look at here.

In the script block at the top of the page, you fi rst defi ne the variable detailsWindow.

var detailsWindow;

You then have the function that actually opens the new windows.

function showDetails(bookURL)
{
 detailsWindow = window.open(bookURL,”bookDetails”,”width=400,height=350”);
 detailsWindow.focus();

}

This function is connected to the onclick event handlers of book images that appear later in the page.
The parameter bookURL is passed by the code in the onclick event handler and will be either pro_
ajax_details.htm or pro_js_details.htm.

You create the new window with the window.open() method. You pass the bookURL parameter as the
URL to be opened. You pass bookDetails as the name you want applied to the new window. If the
window already exists, another new window won’t be opened, and the existing one will be navigated
to the URL that you pass. This only occurs because you are using the same name (bookDetails) when
opening the window for each book. If you had used a different name, a new window would be opened.

By storing the reference to the window object just created in the variable detailsWindow, you can access
its methods and properties. On the next line, you’ll see that you use the window object, referenced by
detailsWindow, to set the focus to the new window — otherwise it will appear behind the existing
window if you click the same image in the main window more than once.

Although you are using the same function for each of the image’s onclick event handlers, you pass a
different parameter for each, namely the URL of the details page for the book in question.

<h4>Professional Ajax</h4>
<p>
 <img src=”pro_ajax.jpg” alt=”Professional Ajax, 2nd Edition” border=”0”
 onclick=”showDetails(‘pro_ajax_details.htm’)” />

25937c08.indd 28825937c08.indd 288 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

289

Chapter 8: Windows and Frames

</p>
<h4>Professional JavaScript for Web Developers</h4>
<p>
 <img src=”pro_js.jpg” alt=”Professional JavaScript, 2nd Edition” border=”0”
 onclick=”showDetails(‘pro_js_details.htm’)” />
</p>

Adding HTML to a New Window
You learned earlier that you can pass an empty string as the fi rst parameter of the window object’s
open() method and then write to the page using HTML. Let’s see how you would do that.

First, you need to open a blank window by passing an empty value to the fi rst parameter that specifi es
the fi le name to load.

var newWindow = window.open(“”,”myNewWindow”,”width=150,height=150”);

Now you can open the window’s document to receive your HTML.

newWindow.document.open();

This is not essential when a new window is opened, because the page is blank; but with a document
that already contains HTML, it has the effect of clearing out all existing HTML and blanking the page,
making it ready for writing.

Now you can write out any valid HTML using the document.write() method.

newWindow.document.write(“<h4>Hello</h4>”);
newWindow.document.write(“<p>Welcome to my new little window</p>”);

Each time you use the write() method, the text is added to what’s already there until you use the
document.close() method.

newWindow.document.close();

If you then use the document.write() method again, the text passed will replace existing HTML
rather than adding to it.

Adding Features to Your Windows
As you have seen, the window.open() method takes three parameters, and it’s the third of these param-
eters that you’ll be looking at in this section. Using this third parameter, you can control things such
as the size of the new window created, its start position on the screen, whether the user can resize it,
whether it has a toolbar, and so on.

25937c08.indd 28925937c08.indd 289 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

290

Chapter 8: Windows and Frames

Features such as menu bar, status bar, and toolbar can be switched on or off with yes or 1 for on and no
or 0 for off. You can also switch these features on by including their names without specifying a value.

The list of possible options shown in the following table is not complete, and not all of them work with
both IE and Firefox browsers.

Window Feature Possible Values Description

copyHistory yes, no Copy the history of the window doing the opening to
the new window

directories yes, no Show directory buttons

height integer Height of new window in pixels

left integer Window’s offset from left of screen.

location yes, no Show location text fi eld

menubar yes, no Show menu bar

resizable yes, no Enable the user to resize the window after it has been
opened

scrollbars yes, no Show scrollbars if the page is too large to fi t in the
window

status yes, no Show status bar

toolbar yes, no Show toolbar

top integer Window’s offset from top of screen.

width integer Width of new window in pixels

As mentioned earlier, this third parameter is optional. If you don’t include it, then all of the window
features default to yes, except the window’s size and position properties, which default to preset val-
ues. For example, if you try the following code, you’ll see a window something like the one shown in
Figure 8-10:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <script type=”text/javascript”>
 var newWindow;
 newWindow = window.open(“”,”myWindow”);
 </script>
</head>
<body>
</body>
</html>

25937c08.indd 29025937c08.indd 290 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

291

Chapter 8: Windows and Frames

Location

Status
Figure 8-10

Figure 8-10 is of IE8. The default UI hides the menu and toolbars; so as long as the default settings are
in effect, opened windows will not show the menu and toolbars.

However, if you specify even one of the features, all the others (except size and position properties)
are set to no by default. For example, although you have defi ned its size, the following code produces a
window with no features, as shown in Figure 8-11:

var newWindow = window.open(“”,”myWindow”,”width=200,height=120”)

The larger window is the original page, and the smaller one on top (shown in Figure 8-11) is the pop-up
window.

Figure 8-11

25937c08.indd 29125937c08.indd 291 9/20/09 11:58:39 PM9/20/09 11:58:39 PM

292

Chapter 8: Windows and Frames

Let’s see another example. The following creates a resizable 250-by-250-pixel window, with a location
fi eld and menu bar:

var newWindow = window.open(“”,”myWindow”,
 ”width=250,height=250,location,menubar,resizable”);

A word of warning, however: Never include spaces inside the features string; otherwise some browsers
will consider the string invalid and ignore your settings.

Scripting Between Windows
You’ve taken a brief look at how you can manipulate the new window’s properties and methods, and
access its document object using the return value from the window.open() method. Now you’re going
to look at how the newly opened window can access the window that opened it and, just as with frames,
how it can use functions there.

The key to accessing the window object of the window that opened the new window is the window
object’s opener property. This returns a reference to the window object of the window that opened the
new window. So the following code will change the background color of the opener window to red:

window.opener.document.bgColor = “red”;

You can use the reference pretty much as you used the window.parent and window.top properties
when using frames.

Try It Out Inter-Window Scripting
Let’s look at an example wherein you open a new window and access a form on the opener window
from the new window.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 5</title>
 <script type=”text/javascript”>
 var newWindow;
 function btnOpenWin_onclick()
 {
 var winTop = (screen.height / 2) - 125;
 var winLeft = (screen.width / 2) - 125;
 var windowFeatures = “width=250,height=250,”;
 windowFeatures = windowFeatures + “left=” + winLeft + “,”;
 windowFeatures = windowFeatures + “top=” + winTop;
 newWindow = window.open(“ch08_examp5_popup.htm”, “myWindow”,
 windowFeatures);
 }
 function btnGetText_onclick()
 {

25937c08.indd 29225937c08.indd 292 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

293

Chapter 8: Windows and Frames

 if (typeof (newWindow) == “undefined” || newWindow.closed == true)
 {
 alert(“No window is open”);
 }
 else
 {
 document.form1.text1.value = newWindow.document.form1.text1.value;
 }
 }

 function window_onunload()
 {
 if (typeof (newWindow) != “undefined” && newWindow.closed == false)
 {
 newWindow.close();
 }
 }
 </script>
</head>
<body onunload=”window_onunload()”>
 <form name=”form1” action=”“>
 <input type=”button” value=”Open newWindow” name=”btnOpenWin”
 onclick=”btnOpenWin_onclick()” />
 <p>
 newWindow’s Text:

 <input type=”text” name=”text1” />
 <input type=”button” value=”Get Text” name=”btnGetText”
 onclick=”btnGetText_onclick()” />
 </p>
 </form>
</body>
</html>

This is the code for your original window. Save it as ch08_examp5.htm. Now you’ll look at the page
that will be loaded by the opener window.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Example 5 Popup</title>
 <script type=”text/javascript”>
 function btnGetText_onclick()
 {
 document.form1.text1.value = window.opener.document.form1.text1.value;
 }
 </script>
</head>
<body>
 <form name=”form1” action=”“>
 Opener window’s text

 <input type=”text” name=”text1” />

25937c08.indd 29325937c08.indd 293 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

294

Chapter 8: Windows and Frames

 <input type=”button” value=”Get Text” name=”btnGetText”
 onclick=”btnGetText_onclick()” />
 </form>
</body>
</html>

Save this as ch08_examp5_popup.htm.

Open ch08_examp5.htm in your browser, and you’ll see a page with the simple form shown in
Figure 8-12.

Figure 8-12

Click the Open newWindow button, and you’ll see the window shown in Figure 8-13 open above the
original page.

Figure 8-13

25937c08.indd 29425937c08.indd 294 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

295

Chapter 8: Windows and Frames

Type something into the text box of the new window. Then return to the original opener window, click
the Get Text button, and you’ll see what you just typed into newWindow appear in the text box on the
opener window’s form.

Change the text in the opener window’s text box and then return to the newWindow and click the Get Text
button. The text you typed into the opener window’s text box will appear in newWindow’s text box.

Let’s look at the opener window fi rst. In the head of the page is a script block in which a variable and
three functions are defi ned. At the top you have declared a new variable, newWindow, which will hold
the window object reference returned by the window.open() method you’ll use later. Being outside any
function gives this variable a global scope, so you can access it from any function on the page.

var newWindow;

Then you have the fi rst of the three functions in this page, btnOpenWin_onclick(), which is connected
further down the page to the Open newWindow button’s onclick event handler. Its purpose is simply
to open the new window.

Rather than have the new window open up anywhere on the page, you use the built-in screen object,
which is a property of the window object, to fi nd out the resolution of the user’s display and place the
window in the middle of the screen. The screen object has a number of read-only properties, but you’re
interested here in the width and height properties. You initialize the winTop variable to the vertical
position onscreen at which you want the top edge of the popup window to appear. The winLeft vari-
able is set to the horizontal position onscreen at which you want the left edge of the pop-up window
to appear. In this case, you want the position to be in the middle of the screen both horizontally and
vertically.

function btnOpenWin_onclick()
{
 var winTop = (screen.height / 2) - 125;
 var winLeft = (screen.width / 2) - 125;

You build up a string for the window features and store it in the windowFeatures variable. You set the
width and height to 250 and then use the winLeft and winTop variables you just populated to create
the initial start positions of the window.

 var windowFeatures = “width=250,height=250,”;
 windowFeatures = windowFeatures + “left=” + winLeft + “,”;
 windowFeatures = windowFeatures + “top=” + winTop;

Finally, you open the new window, making sure you put the return value from window.open() into
global variable newWindow so you can manipulate it later.

 newWindow = window.open(“newWindow.htm”,”myWindow”,windowFeatures);
}

The next function is used to obtain the text from the text box on the form in newWindow.

In this function you use an if statement to check two things. First, you check that newWindow is defi ned
and second, that the window is actually open. You check because you don’t want to try to access a non-
existent window, for example if no window has been opened or a window has been closed by the user.
The typeof operator returns the type of information held in a variable, for example number, string,
Boolean, object, and undefined. It returns undefined if the variable has never been given a value, as
newWindow won’t have been if no new window has been opened.

25937c08.indd 29525937c08.indd 295 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

296

Chapter 8: Windows and Frames

Having confi rmed that a window has been opened at some point, you now need to check whether it’s
still open, and the window object’s closed property does just that. If it returns true, the window is
closed, and if it returns false, it’s still open. (Do not confuse this closed property with the close()
method you saw previously.)

In the if statement, you’ll see that checking if newWindow is defi ned comes fi rst, and this is no accident.
If newWindow really were undefi ned, newWindow.closed would cause an error, because there are no
data inside newWindow. However, you are taking advantage of the fact that if an if statement’s condition
will be true or false at a certain point regardless of the remainder of the condition, the remainder of
the condition is not checked.

function butGetText_onclick()
{
 if (typeof(newWindow) == “undefined” || newWindow.closed == true)
 {
 alert(“No window is open”);
 }

If newWindow exists and is open, the else statement’s code will execute. Remember that newWindow
will contain a reference to the window object of the window opened. This means you can access the
form in newWindow, just as you’d access a form on the page the script’s running in, by using the docu-
ment object inside the newWindow window object.

 else
 {
 document.form1.text1.value = newWindow.document.form1.text1.value;
 }
}

The last of the three functions is window_onunload(), which is connected to the onunload event of this
page and fi res when either the browser window is closed or the user navigates to another page. In the
window_onunload() function, you check to see if newWindow is valid and open in much the same way
that you just did. You must check to see if the newWindow variable is defi ned fi rst. With the && operator,
JavaScript checks the second part of the operation only if the fi rst part evaluates to true. If newWindow
is defi ned, and does therefore hold a window object (even though it’s possibly a closed window), you can
check the closed property of the window. However, if newWindow is undefi ned, the check for its closed
property won’t happen, and no errors will occur. If you check the closed property fi rst and newWindow
is undefi ned, an error will occur, because an undefi ned variable has no closed property.

function window_onunload()
{
 if (typeof(newWindow) != “undefined” && newWindow.closed == false)
 {
 newWindow.close();
 }
}

If newWindow is defi ned and open, you close it. This prevents the newWindow’s Get Text button from
being clicked when there is no opener window in existence to get text from (since this function fi res
when the opener window is closed).

25937c08.indd 29625937c08.indd 296 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

297

Chapter 8: Windows and Frames

Let’s now look at the code for the page that will be loaded in the newWindow: ch08_examp5_popup.htm.
This page contains one function, btnGetText_onclick(), which is connected to the onclick event
handler of the Get Text button in the page. It retrieves the text from the opener window’s text box.

function btnGetText_onclick()
{
 document.form1.text1.value = window.opener.document.form1.text1.value;
}

In this function, you use the window.opener property to get a reference to the window object of the
window that opened this one, and then use that reference to get the value out of the text box in the form
in that window. This value is placed inside the text box in the current page.

Moving and Resizing Windows
In addition to opening and closing windows, it’s also possible to move and resize windows.

After opening a window, you can change its onscreen position and its size using the window object’s
resizeTo() and moveTo() methods, both of which take two arguments in pixels.

Consider the following code that opens a new window:

var newWindow = window.open(myURL,”myWindow”,”width=125,height=150,resizable”);

You want to make it 350 pixels wide by 200 pixels high and move it to a position 100 pixels from the left
of the screen and 400 pixels from the top. What code would you need?

newWindow.resizeTo(350,200);
newWindow.moveTo(100,400);

You can see that you can resize your window to 350 pixels wide by 200 pixels high using resizeTo().
Then you move it so it’s 100 pixels from the left of the screen and 400 pixels from the top of the screen
using moveTo().

The window object also has resizeBy() and moveBy() methods. Both of these methods accept two
parameters, in pixels. For example:

newWindow.resizeBy(100,200);

This code will increase the size of newWindow by 100 pixels horizontally and 200 pixels vertically.
Similarly, the following code moves the newWindow by 20 pixels horizontally and 50 pixels vertically:

newWindow.moveBy(20,50);

When using these methods, you must bear in mind that users can manually resize these windows if
they so wish. In addition, the size of the client’s screen in pixels will vary between users.

25937c08.indd 29725937c08.indd 297 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

298

Chapter 8: Windows and Frames

Security
Browsers put certain restrictions on what information scripts can access between frames and windows.

If all the pages in these frames and windows are served from the same server, or on the same computer
when you’re loading them into the browser locally, as you are in these examples, you have a reasonably
free rein over what your scripts can access and do. However, some restrictions do exist. For example,
if you try to use the window.close() method in a script page loaded into a browser window that the
user opened, as opposed to a window opened by your script, a message box will appear giving the user
the option of canceling your close() method and keeping the window open.

When a page in one window or frame hosted on one server tries to access the properties of a window
or frame that contains a page from a different server, the same-origin policy comes into play, and you’ll
fi nd yourself very restricted as to what your scripts can do.

Imagine you have a page hosted on a web server whose URL is http://www.myserver.com. Inside the
page is the following script:

var myWindow =
 window.open(“http://www.anotherserver.com/anotherpage.htm”,”myWindow”);

Now you have two windows, one that is hosted at www.myserver.com and another that is hosted on a
different server, www.anotherserver.com. Although this code does work, the same-origin policy pre-
vents any access to the document object of one page from another. For example, the following code in
the opener page will cause a security problem and will be prevented by the browser:

var myVariable = myWindow.document.form1.text1.value;

Although you do have access to the window object of the page on the other server, you have access to a
limited subset of its properties and methods.

The same-origin restriction applies to frames (conventional and iframes) and windows equally. The idea
behind it is very sound: It is there to prevent hackers from putting your pages inside their own and extract-
ing information by using code inside their pages. However, the restrictions are fairly severe, perhaps too
severe, and mean that you should avoid scripting across frames or windows if the pages are hosted on
different servers.

Summary
For various reasons, having a frame-based web site can prove very useful. Therefore, you need to be able
to create JavaScript that can interact with frames and with the documents and code within those frames.

You saw that an advantage of frames is that, by putting all of your general functions in a single ❑

frame, you can create a JavaScript code module that all of your web site can use.

You saw that the key to coding with frames is getting a reference to the ❑ window objects of
other frames. You saw two ways of accessing frames higher in the hierarchy, using the window
object’s parent property and its top property.

25937c08.indd 29825937c08.indd 298 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

299

Chapter 8: Windows and Frames

The ❑ parent property returns the window object that contains the current window object, which
will be the page containing the frameset that created the window. The top property returns the
window object of the window containing all the other frames.

Each frame in a frameset can be accessed through three methods. One is to use the name of the ❑

frame. The second is to use the frames collection and specify the index of the frame. The third
way is to access the frame by its name in the frames collection — for example, parent.frames
.frameName. This the safest way, because it avoids any collision with global variables.

If the frame you want to access is defi ned in another window, you need the ❑ parent or top
property to get a reference to the window object defi ning that frame, and then you must specify
the name or position in the frames collection.

You then looked at how you can open new, additional browser windows using script.

Using the ❑ window object’s open() method, you can open new windows. The URL of the page
you want to open is passed as the fi rst parameter; the name of the new window is passed as the
second parameter; the optional third parameter enables you to defi ne what features the new
window will have.

The ❑ window.open() method returns a value, which is a reference to the window object of the
new window. Using this reference, you can access the document, script, and methods of that
window, much as you do with frames. You need to make sure that the reference is stored inside
a variable if you want to do this.

To close a window, you simply use the ❑ window.close() method. To check if a window is closed,
you use the closed property of the window object, which returns true if it’s closed and false if
it’s still open.

For a newly opened ❑ window object to access the window that opened it, you need to use the
window.opener property. Like window.parent for frames, this gives a reference to the window
object that opened the new one and enables you to access the window object and its properties for
that window.

After a window is opened, you can resize it using ❑ resizeTo(x,y) and resizeBy(x,y), and
move it using moveTo(x,y) and moveBy(x,y).

You also looked briefl y at security restrictions for windows and frames that are not of the same origin.
By “not of the same origin,” you’re referring to a situation in which the document in one frame is hosted
on one server and the document in the other is hosted on a different server. In this situation, very severe
restrictions apply, which limit the extent of scripting between frames or windows.

In the next chapter, you look at advanced string manipulation.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. In the previous chapter’s exercise questions, you created a form that allowed the user to pick
a computer system. They could view the details of their system and its total cost by clicking a
button that wrote the details to a textarea. Change the example so it’s a frames-based web

25937c08.indd 29925937c08.indd 299 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

300

Chapter 8: Windows and Frames

page; instead of writing to a text area, the application should write the details to another frame.
Hint: use about:blank as the src of the frame you write to. Hint: use the document object’s
close() and open() methods to clear the details frame from previously written data.

 2. The fourth example (ch08.examp4.htm) was a page with images of books, in which clicking
on a book’s image brought up information about that book in a pop-up window. Amend this
so that the pop-up window also has a button or link that, when clicked, adds the item to a shop-
ping basket. Also, on the main page, give the user some way of opening up a shopping basket
window with details of all the items they have purchased so far, and give them a way of delet-
ing items from this basket.

25937c08.indd 30025937c08.indd 300 9/20/09 11:58:40 PM9/20/09 11:58:40 PM

9
String Manipulation

In Chapter 4 you looked at the String object, which is one of the native objects that JavaScript
makes available to you. You saw a number of its properties and methods, including the following:

length ❑ — The length of the string in characters

charAt() ❑ and charCodeAt() — The methods for returning the character or character
code at a certain position in the string

indexOf() ❑ and lastIndexOf() — The methods that allow you to search a string for the
existence of another string and that return the character position of the string if found

substr() ❑ and substring() — The methods that return just a portion of a string

toUpperCase() ❑ and toLowerCase() — The methods that return a string converted to
upper- or lowercase

In this chapter you’ll look at four new methods of the String object, namely split(), match(),
replace(), and search(). The last three, in particular, give you some very powerful text-
manipulation functionality. However, to make full use of this functionality, you need to learn
about a slightly more complex subject.

The methods split(), match(), replace(), and search() can all make use of regular expressions,
something JavaScript wraps up in an object called the RegExp object. Regular expressions enable
you to defi ne a pattern of characters, which can be used for text searching or replacement. Say, for
example, that you have a string in which you want to replace all single quotes enclosing text with
double quotes. This may seem easy — just search the string for ‘ and replace it with “ — but what
if the string is Bob O’Hara said “Hello”? You would not want to replace the single-quote
character in O’Hara. You can perform this text replacement without regular expressions, but it
would take more than the two lines of code needed if you do use regular expressions.

Although split(), match(), replace(), and search() are at their most powerful with regular
expressions, they can also be used with just plain text. You’ll take a look at how they work in this
simpler context fi rst, to become familiar with the methods.

25937c09.indd 30125937c09.indd 301 9/21/09 12:02:54 AM9/21/09 12:02:54 AM

302

Chapter 9: String Manipulation

Additional String Methods
In this section you will take a look at the split(), replace(), search(), and match() methods, and
see how they work without regular expressions.

The split() Method
The String object’s split() method splits a single string into an array of substrings. Where the string
is split is determined by the separation parameter that you pass to the method. This parameter is simply
a character or text string.

For example, to split the string “A,B,C” so that you have an array populated with the letters between
the commas, the code would be as follows:

var myString = “A,B,C”;
var myTextArray = myString.split(‘,’);

JavaScript creates an array with three elements. In the fi rst element it puts everything from the start of
the string myString up to the fi rst comma. In the second element it puts everything from after the fi rst
comma to before the second comma. Finally, in the third element it puts everything from after the sec-
ond comma to the end of the string. So, your array myTextArray will look like this:

A B C

If, however, your string were “A,B,C,” JavaScript would split it into four elements, the last element
containing everything from the last comma to the end of the string; in other words, the last string
would be an empty string.

A B C

This is something that can catch you off guard if you’re not aware of it.

Try It Out Reversing the Order of Text
Let’s create a short example using the split() method, in which you reverse the lines written in a
<textarea> element.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Example 1</title>
<script language=”JavaScript” type=”text/JavaScript”>
function splitAndReverseText(textAreaControl)
{

25937c09.indd 30225937c09.indd 302 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

303

Chapter 9: String Manipulation

 var textToSplit = textAreaControl.value;
 var textArray = textToSplit.split(‘\n’);
 var numberOfParts = 0;
 numberOfParts = textArray.length;
 var reversedString = “”;
 var indexCount;
 for (indexCount = numberOfParts - 1; indexCount >= 0; indexCount--)
 {
 reversedString = reversedString + textArray[indexCount];
 if (indexCount > 0)
 {
 reversedString = reversedString + “\n”;
 }
 }

 textAreaControl.value = reversedString;
}
</script>
</head>
<body>
<form name=”form1”>
<textarea rows=”20” cols=”40” name=”textarea1” wrap=”soft”>Line 1
Line 2
Line 3
Line 4</textarea>

<input type=”button” value=”Reverse Line Order” name=”buttonSplit”
 onclick=”splitAndReverseText(document.form1.textarea1)“>
</form>
</body>
</html>

Save this as ch9_examp1.htm and load it into your browser. You should see the screen shown in
Figure 9-1.

Figure 9-1

Clicking the Reverse Line Order button reverses the order of the lines, as shown in Figure 9-2.

25937c09.indd 30325937c09.indd 303 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

304

Chapter 9: String Manipulation

Figure 9-2

Try changing the lines within the text area to test it further.

Although this example works on Internet Explorer (IE) as it is, an extra line gets inserted. If this troubles
you, you can fi x it by replacing each instance of \n with \r\n for IE.

The key to how this code works is the function splitAndReverseText(). This function is defi ned in
the script block in the head of the page and is connected to the onclick event handler of the button
further down the page.

<input type=”button” value=”Reverse Line Order” name=buttonSplit
 onclick=”splitAndReverseText(document.form1.textarea1)”>

As you can see, you pass a reference of the text area that you want to reverse as a parameter to the func-
tion. By doing it this way, rather than just using a reference to the element itself inside the function, you
make the function more generic, so you can use it with any textarea element.

Now, on with the function. You start by assigning the value of the text inside the textarea element to
the textToSplit variable. You then split that string into an array of lines of text using the split()
method of the String object and put the resulting array inside the textArray variable.

function splitAndReverseText(textAreaControl)
{
 var textToSplit = textAreaControl.value;
 var textArray = textToSplit.split(‘\n’);

So what do you use as the separator to pass as a parameter for the split() method? Recall from
Chapter 2 that the escape character \n is used for a new line. Another point to add to the confusion is
that IE seems to need \r\n rather than \n.

You next defi ne and initialize three more variables.

 var numberOfParts = 0;
 numberOfParts = textArray.length;
 var reversedString = “”;
 var indexCount;

Now that you have your array of strings, you next want to reverse them. You do this by building up a
new string, adding each string from the array, starting with the last and working toward the fi rst. You

25937c09.indd 30425937c09.indd 304 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

305

Chapter 9: String Manipulation

do this in the for loop, where instead of starting at 0 and working up as you usually do, you start at a
number greater than 0 and decrement until you reach 0, at which point you stop looping.

 for (indexCount = numberOfParts - 1; indexCount >= 0; indexCount--)
 {
 reversedString = reversedString + textArray[indexCount];
 if (indexCount > 0)
 {
 reversedString = reversedString + “\n”;
 }
 }

Finally, you assign the text in the textarea element to the new string you’ve built.

 textAreaControl.value = reversedString;
}

After you’ve looked at regular expressions, you’ll revisit the split() method.

The replace() Method
The replace() method searches a string for occurrences of a substring. Where it fi nds a match for this
substring, it replaces the substring with a third string that you specify.

Let’s look at an example. Say you have a string with the word May in it, as shown in the following:

var myString = “The event will be in May, the 21st of June”;

Now, say you want to replace May with June. You can use the replace() method like so:

myCleanedUpString = myString.replace(“May”,”June”);

The value of myString will not be changed. Instead, the replace() method returns the value of myString
but with May replaced with June. You assign this returned string to the variable myCleanedUpString,
which will contain the corrected text.

“The event will be in June, the 21st of June”

The search() Method
The search() method enables you to search a string for a particular piece of text. If the text is found,
the character position at which it was found is returned; otherwise -1 is returned. The method takes
only one parameter, namely the text you want to search for.

When used with plain text, the search() method provides no real benefi t over methods like indexOf(),
which you’ve already seen. However, you’ll see later that it’s when you use regular expressions that the
power of this method becomes apparent.

25937c09.indd 30525937c09.indd 305 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

306

Chapter 9: String Manipulation

In the following example, you want to fi nd out if the word Java is contained within the string called
myString.

var myString = “Beginning JavaScript, Beginning Java, Professional JavaScript”;
alert(myString.search(“Java”));

The alert box that occurs will show the value 10, which is the character position of the J in the fi rst
occurrence of Java, as part of the word JavaScript.

The match() Method
The match() method is very similar to the search() method, except that instead of returning the posi-
tion at which a match was found, it returns an array. Each element of the array contains the text of each
match that is found.

Although you can use plain text with the match() method, it would be completely pointless to do so.
For example, take a look at the following:

var myString = “1997, 1998, 1999, 2000, 2000, 2001, 2002”;
myMatchArray = myString.match(“2000”);
alert(myMatchArray.length);

This code results in myMatchArray holding an element containing the value 2000. Given that you
already know your search string is 2000, you can see it’s been a pretty pointless exercise.

However, the match() method makes a lot more sense when you use it with regular expressions. Then
you might search for all years in the twenty-fi rst century — that is, those beginning with 2. In this
case, your array would contain the values 2000, 2000, 2001, and 2002, which is much more useful
information!

Regular Expressions
Before you look at the split(), match(), search(), and replace() methods of the String object
again, you need to look at regular expressions and the RegExp object. Regular expressions provide a
means of defi ning a pattern of characters, which you can then use to split, search for, or replace charac-
ters in a string when they fi t the defi ned pattern.

JavaScript’s regular expression syntax borrows heavily from the regular expression syntax of Perl, another
scripting language. The latest versions of languages, such as VBScript, have also incorporated regular
expressions, as do lots of applications, such as Microsoft Word, in which the Find facility allows regu-
lar expressions to be used. The same is true for Dreamweaver. You’ll fi nd that your regular expression
knowledge will prove useful even outside JavaScript.

Regular expressions in JavaScript are used through the RegExp object, which is a native JavaScript object,
as are String, Array, and so on. There are two ways of creating a new RegExp object. The easier is with
a regular expression literal, such as the following:

var myRegExp = /\b’|’\b/;

25937c09.indd 30625937c09.indd 306 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

307

Chapter 9: String Manipulation

The forward slashes (/) mark the start and end of the regular expression. This is a special syntax that
tells JavaScript that the code is a regular expression, much as quote marks defi ne a string’s start and end.
Don’t worry about the actual expression’s syntax yet (the \b’|’\b) — that will be explained in detail
shortly.

Alternatively, you could use the RegExp object’s constructor function RegExp() and type the following:

var myRegExp = new RegExp(“\\b’|’\\b”);

Either way of specifying a regular expression is fi ne, though the former method is a shorter, more effi cient
one for JavaScript to use and therefore is generally preferred. For much of the remainder of the chapter,
you’ll use the fi rst method. The main reason for using the second method is that it allows the regular
expression to be determined at runtime (as the code is executing and not when you are writing the code).
This is useful if, for example, you want to base the regular expression on user input.

Once you get familiar with regular expressions, you will come back to the second way of defi ning them,
using the RegExp() constructor. As you can see, the syntax of regular expressions is slightly different
with the second method, so we’ll return to this subject later.

Although you’ll be concentrating on the use of the RegExp object as a parameter for the String object’s
split(), replace(), match(), and search() methods, the RegExp object does have its own methods
and properties. For example, the test() method enables you to test to see if the string passed to it as
a parameter contains a pattern matching the one defi ned in the RegExp object. You’ll see the test()
method in use in an example shortly.

Simple Regular Expressions
Defi ning patterns of characters using regular expression syntax can get fairly complex. In this section you’ll
explore just the basics of regular expression patterns. The best way to do this is through examples.

Let’s start by looking at an example in which you want to do a simple text replacement using the
replace() method and a regular expression. Imagine you have the following string:

var myString = “Paul, Paula, Pauline, paul, Paul”;

and you want to replace any occurrence of the name “Paul” with “Ringo.”

Well, the pattern of text you need to look for is simply Paul. Representing this as a regular expression,
you just have this:

var myRegExp = /Paul/;

As you saw earlier, the forward-slash characters mark the start and end of the regular expression. Now
let’s use this expression with the replace() method.

myString = myString.replace(myRegExp, “Ringo”);

You can see that the replace() method takes two parameters: the RegExp object that defi nes the pat-
tern to be searched and replaced, and the replacement text.

25937c09.indd 30725937c09.indd 307 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

308

Chapter 9: String Manipulation

If you put this all together in an example, you have the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
<script language=”JavaScript” type=”text/JavaScript”>
 var myString = “Paul, Paula, Pauline, paul, Paul”;
 var myRegExp = /Paul/;
 myString = myString.replace(myRegExp, “Ringo”);
 alert(myString);
</script>
</body>
</html>

If you load this code into a browser, you will see the screen shown in Figure 9-3.

Figure 9-3

You can see that this has replaced the fi rst occurrence of Paul in your string. But what if you wanted all
the occurrences of Paul in the string to be replaced? The two at the far end of the string are still there,
so what happened?

By default, the RegExp object looks only for the fi rst matching pattern, in this case the fi rst Paul, and then
stops. This is a common and important behavior for RegExp objects. Regular expressions tend to start at
one end of a string and look through the characters until the fi rst complete match is found, then stop.

What you want is a global match, which is a search for all possible matches to be made and replaced. To
help you out, the RegExp object has three attributes you can defi ne. You can see these listed in the follow-
ing table.

Attribute Character Description

G Global match. This looks for all matches of the pattern rather than stop-
ping after the fi rst match is found.

I Pattern is case-insensitive. For example, Paul and paul are considered the
same pattern of characters.

M Multi-line fl ag. Only available in IE 5.5+ and NN 6+, this specifi es that the
special characters ^ and $ can match the beginning and the end of lines as
well as the beginning and end of the string. You’ll learn about these char-
acters later in the chapter.

25937c09.indd 30825937c09.indd 308 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

309

Chapter 9: String Manipulation

If you change the RegExp object in the code to the following, a global case-insensitive match will be made.

var myRegExp = /Paul/gi;

Running the code now produces the result shown in Figure 9-4.

Figure 9-4

This looks as if it has all gone horribly wrong. The regular expression has matched the Paul substrings
at the start and the end of the string, and the penultimate paul, just as you wanted. However, the Paul
substrings inside Pauline and Paula have also been replaced.

The RegExp object has done its job correctly. You asked for all patterns of the characters Paul to be
replaced and that’s what you got. What you actually meant was for all occurrences of Paul, when it’s
a single word and not part of another word, such as Paula, to be replaced. The key to making regular
expressions work is to defi ne exactly the pattern of characters you mean, so that only that pattern can
match and no other. So let’s do that.

 1. You want paul or Paul to be replaced.

 2. You don’t want it replaced when it’s actually part of another word, as in Pauline.

How do you specify this second condition? How do you know when the word is joined to other charac-
ters, rather than just joined to spaces or punctuation or the start or end of the string?

To see how you can achieve the desired result with regular expressions, you need to enlist the help of
regular expression special characters. You’ll look at these in the next section, by the end of which you
should be able to solve the problem.

Try It Out Regular Expression Tester
Getting your regular expression syntax correct can take some thought and time, so in this exercise
you’ll create a simple regular expression tester to make life easier.

Type the following code in to your text editor and save it as ch9_examp2.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Regular Expression Tester</title>
<style type=”text/css”>

body,td,th {
 font-family: Arial, Helvetica, sans-serif;

25937c09.indd 30925937c09.indd 309 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

310

Chapter 9: String Manipulation

}

</style>

<script type=”text/javascript”>

function getRegExpFlags()
{
 var regExpFlags = ‘’;
 if (document.form1.chkGlobal.checked)
 {
 regExpFlags = ‘g’;
 }

 if (document.form1.chkCaseInsensitive.checked)
 {
 regExpFlags += ‘i’;
 }

 if (document.form1.chkMultiLine.checked)
 {
 regExpFlags += ‘m’;
 }

 return regExpFlags;

}

function doTest()
{
 var testRegExp = new RegExp(document.form1.txtRegularExpression.value,
 getRegExpFlags());
 if (testRegExp.test(document.form1.txtTestString.value))
 {
 document.form1.txtTestResult.value = “Match Found!”;
 }
 else
 {
 document.form1.txtTestResult.value = “Match NOT Found!”;
 }
}

function findMatches()
{
 var testRegExp = new RegExp(document.form1.txtRegularExpression.value,
getRegExpFlags());
 var myTestString = new String(document.form1.txtTestString.value)
 var matchArray = myTestString.match(testRegExp);

 document.form1.txtTestResult.value = matchArray.join(‘\n’);

}

</script>

</head>

25937c09.indd 31025937c09.indd 310 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

311

Chapter 9: String Manipulation

<body>

<form id=”form1” name=”form1” method=”post” action=”“>
 <p>
 Regular Expression:

<label>
 <input name=”txtRegularExpression” type=”text” id=”txtRegularExpression”
size=”100” value=”“/>

 Global
 <input name=”chkGlobal” type=”checkbox” id=”chkGlobal” value=”true” />
</label>

 Case Insensitive
 <label>
 <input name=”chkCaseInsensitive” type=”checkbox” id=”chkCaseInsensitive”
value=”true” />
 </label>

 Multi Line
 <label>
 <input name=”chkMultiLine” type=”checkbox” id=”chkMultiLine” value=”true” />
 </label>
 </p>
 <p>
 <label>
 Test Text:

 <textarea name=”txtTestString” id=”txtTestString” cols=”100”
rows=”8”></textarea>
 </label>
 </p>
 <p>Result:

 <textarea name=”txtTestResult” id=”txtTestResult” cols=”100”
rows=”8”></textarea>
 </p>
 <p>
 <label>
 <input type=”button” name=”cmdTest” id=”cmdTest” value=”TEST”
onclick=”doTest();”/>
 </label>
 <label>
 <input type=”button” name=”cmdMatch” id=”cmdMatch” value=”MATCH”
onclick=”findMatches();” />
 </label>
 <label>
 <input type=”reset” name=”cmdClearForm” id=”cmdClearForm” value=”Reset Form”
 />
 </label>
 </p>
 <p> </p>
</form>
</body>
</html>

25937c09.indd 31125937c09.indd 311 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

312

Chapter 9: String Manipulation

Load the page into your browser, and you’ll see the screen shown in Figure 9-5.

Figure 9-5

In the top box, you enter your regular expression. You can set the attributes such as global and case sen-
sitivity by ticking the tick boxes. The text to test the regular expression against goes in the Test Text box,
and the result is displayed in the Result box.

As a test, enter the regular expression \d{3}, which as you’ll discover shortly, will match three digits.
Also tick the Global box so all the matches will be found. Finally, your test text is ABC123DEF456GHI789.

If you click the Test button, the code will test to see if there are any matches (that is, if the test text con-
tains three numbers). The result, as you can see in Figure 9-6, is that a match is found.

Figure 9-6

25937c09.indd 31225937c09.indd 312 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

313

Chapter 9: String Manipulation

Now to fi nd all the matches, click the Match button, and this results in the screen shown in Figure 9-7.

Figure 9-7

Each match of your regular expressions found in Test Text box is put on a separate line in the Results box.

The buttons cmdTest and cmdMatch have their click events linked to the doTest() and findMatches()
functions. Let’s start by looking at what happens in the doTest() function.

First, the regular expression object is created.

var testRegExp = new RegExp(document.form1.txtRegularExpression.value,
 getRegExpFlags());

The fi rst parameter of the object constructor is your regular expression as contained in the
txtRegularExpression text box. This is easy enough to access, but the second parameter contains the
regular expression fl ags, and these are generated via the tick boxes in the form. To convert the tick boxes
to the correct fl ags, the function getRegExpFlags() has been created, and the return value from this
function provides the fl ags value for the regular expressions constructor. The function getRegExpFlags()
is used by both the doTest() and getMatches() functions. The getRegExpFlags() function is fairly
simple. It starts by declaring regExpFlags and setting it to an empty string.

var regExpFlags = ‘’;

Then for each of the tick boxes, it checks to see if the tick box is ticked. If it is, the appropriate fl ag is
added to regExpFlags as shown here for the global fl ag:

 if (document.form1.chkGlobal.checked)
 {
 regExpFlags = ‘g’;
 }

25937c09.indd 31325937c09.indd 313 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

314

Chapter 9: String Manipulation

The same principle is used for the case-insensitive and multi-line fl ags.

Okay, back to the doTest() function. The regular expression object has been created and its fl ags have
been set, so now you test to see if the regular expression matches anything in the Test Text box.

 if (testRegExp.test(document.form1.txtTestString.value))
 {
 document.form1.txtTestResult.value = “Match Found!”;
 }
 else
 {
 document.form1.txtTestResult.value = “Match NOT Found!”;
 }

If a match is found, “Match Found!” is written to the Results box; otherwise “Match NOT Found!” is
written.

The regular expression object’s test() method is used to do the actual testing for a match of the regu-
lar expression with the test string supplied as the method’s only parameter. It returns true when a
match is found or false when it’s not. The global fl ag is irrelevant for the test() method, because it
simply looks for the fi rst match and returns true if found.

Now let’s look at the findMatches() function, which runs when the cmdMatches button is clicked.
As with the doTest() function, the fi rst line creates a new regular expression object with the regular
expression entered in the Regular Expression text box in the form and the fl ags being set via the
getRegExpFlags() function.

var testRegExp = new RegExp(document.form1.txtRegularExpression.value,
 getRegExpFlags());

Next, a new String object is created, and you then use the String object’s match() method to fi nd the
matches.

var myTestString = new String(document.form1.txtTestString.value)
var matchArray = myTestString.match(testRegExp);

The match() method returns an array with all the matches found in each element of the array. The
variable matchArray is used to store the array.

Finally, the match results are displayed in the Results box on the form:

document.form1.txtTestResult.value = matchArray.join(‘\n’);

The String object’s join() method joins all the elements in an array and returns them as a single
string. Each element is separated by the value you pass as the join() method’s only parameter. Here \n
or the newline character has been passed, which means when the string is displayed in the Results box,
each match is on its own individual line.

25937c09.indd 31425937c09.indd 314 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

315

Chapter 9: String Manipulation

Regular Expressions: Special Characters
You will be looking at three types of special characters in this section.

Text, Numbers, and Punctuation
The fi rst group of special characters you’ll look at contains the character class’s special characters.
Character class means digits, letters, and whitespace characters. The special characters are displayed in
the following table.

Character
Class

Characters It Matches Example

\d Any digit from 0 to 9 \d\d matches 72, but not aa or 7a

\D Any character that is not a digit \D\D\D matches abc, but not 123 or 8ef

\w Any word character; that is, A–Z, a–z, 0–9,
and the underscore character (_)

\w\w\w\w matches Ab_2, but not £$%*
or Ab_@

\W Any non-word character \W matches @, but not a

\s Any whitespace character \s matches tab, return, formfeed, and
vertical tab

\S Any non-whitespace character \S matches A, but not the tab character

. Any single character other than the new-
line character (\n)

. matches a or 4 or @

[...] Any one of the characters between the
brackets[a-z] will match any character in
the range a to z

[abc] will match a or b or c, but noth-
ing else

[^...] Any one character, but not one of those
inside the brackets

[^abc] will match any character
except a or b or c
[^a-z] will match any character that
is not in the range a to z

Note that uppercase and lowercase characters mean very different things, so you need to be extra care-
ful with case when using regular expressions.

Let’s look at an example. To match a telephone number in the format 1-800-888-5474, the regular expres-
sion would be as follows:

\d-\d\d\d-\d\d\d-\d\d\d\d

You can see that there’s a lot of repetition of characters here, which makes the expression quite unwieldy.
To make this simpler, regular expressions have a way of defi ning repetition. You’ll see this a little later
in the chapter, but fi rst let’s look at another example.

25937c09.indd 31525937c09.indd 315 9/21/09 12:02:55 AM9/21/09 12:02:55 AM

316

Chapter 9: String Manipulation

Try It Out Checking a Passphrase for Alphanumeric Characters
You’ll use what you’ve learned so far about regular expressions in a full example in which you check
that a passphrase contains only letters and numbers — that is, alphanumeric characters, not punctua-
tion or symbols like @, %, and so on.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Example 3</title>

<script type=”text/JavaScript”>
function regExpIs_valid(text)
{
 var myRegExp = /[^a-z\d]/i;
 return !(myRegExp.test(text));
}
function butCheckValid_onclick()
{
 if (regExpIs_valid(document.form1.txtPhrase.value) == true)
 {
 alert(“Your passphrase contains only valid characters”);
 }
 else
 {
 alert(“Your passphrase contains one or more invalid characters”);
 }
}
</script>

</head>
<body>

<form name=”form1”>
Enter your passphrase:

<input type=”text” name=”txtPhrase”>

<input type=”button” value=”Check Character Validity” name=”butCheckValid”
 onclick=”butCheckValid_onclick()“>
</form>

</body>
</html>

Save the page as ch9_examp3.htm, and then load it into your browser. Type just letters, numbers, and
spaces into the text box; click the Check Character Validity button, and you’ll be told that the phrase
contains valid characters. Try putting punctuation or special characters like @, ^, $, and so on into the
text box, and you’ll be informed that your passphrase is invalid.

25937c09.indd 31625937c09.indd 316 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

317

Chapter 9: String Manipulation

Let’s start by looking at the regExpIs_valid() function defi ned at the top of the script block in the
head of the page. That does the validity checking of the passphrase using regular expressions.

function regExpIs_valid(text)
{
 var myRegExp = /[^a-z\d]/i;
 return !(myRegExp.test(text));
}

The function takes just one parameter: the text you want to check for validity. You then declare a variable,
myRegExp, and set it to a new regular expression, which implicitly creates a new RegExp object.

The regular expression itself is fairly simple, but fi rst think about what pattern you are looking for. What
you want to fi nd out is whether your passphrase string contains any characters that are not letters between
A and Z or between a and z, numbers between 0 and 9, or spaces. Let’s see how this translates into a
regular expression:

 1. You use square brackets with the ^ symbol.

[^]

This means you want to match any character that is not one of the characters specifi ed inside the
square brackets.

 2. You add a-z, which specifi es any character in the range a through z.

[^a-z]

So far, your regular expression matches any character that is not between a and z. Note that,
because you added the i to the end of the expression defi nition, you’ve made the pattern case-
insensitive. So your regular expression actually matches any character not between A and Z or
a and z.

 3. Add \d to indicate any digit character, or any character between 0 and 9.

[^a-z\d]

 4. Your expression matches any character that is not between a and z, A and Z, or 0 and 9. You
decide that a space is valid, so you add that inside the square brackets.

[^a-z\d]

Putting this all together, you have a regular expression that will match any character that is not
a letter, a digit, or a space.

 5. On the second and fi nal line of the function, you use the RegExp object’s test() method to
return a value.

return !(myRegExp.test(text));

The test() method of the RegExp object checks the string passed as its parameter to see if the char-
acters specifi ed by the regular expression syntax match anything inside the string. If they do, true
is returned; if not, false is returned. Your regular expression will match the fi rst invalid character
found, so if you get a result of true, you have an invalid passphrase. However, it’s a bit illogical for an
is_valid function to return true when it’s invalid, so you reverse the result returned by adding the
NOT operator (!).

25937c09.indd 31725937c09.indd 317 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

318

Chapter 9: String Manipulation

Previously you saw the two-line validity checker function using regular expressions. Just to show how
much more coding is required to do the same thing without regular expressions, here is a second func-
tion that does the same thing as regExpIs_valid() but without regular expressions.

function is_valid(text)
{
 var isValid = true;
 var validChars = “abcdefghijklmnopqrstuvwxyz1234567890 “;
 var charIndex;
 for (charIndex = 0; charIndex < text.length;charIndex++)
 {
 if (validChars.indexOf(text.charAt(charIndex).toLowerCase()) < 0)
 {
 isValid = false;
 break;
 }
 }
 return isValid;
}

This is probably as small as the non-regular expression version can be, and yet it’s still 15 lines long.
That’s six times the amount of code for the regular expression version.

The principle of this function is similar to that of the regular expression version. You have a variable,
validChars, which contains all the characters you consider to be valid. You then use the charAt()
method in a for loop to get each character in the passphrase string and check whether it exists in your
validChars string. If it doesn’t, you know you have an invalid character.

In this example, the non-regular expression version of the function is 15 lines, but with a more complex
problem you could fi nd it takes 20 or 30 lines to do the same thing a regular expression can do in
just a few.

Back to your actual code: The other function defi ned in the head of the page is butCheckValid_onclick().
As the name suggests, this is called when the butCheckValid button defi ned in the body of the page is
clicked.

This function calls your regExpis_valid() function in an if statement to check whether the pass-
phrase entered by the user in the txtPhrase text box is valid. If it is, an alert box is used to inform
the user.

function butCheckValid_onclick()
{
 if (regExpIs_valid(document.form1.txtPhrase.value) == true)
 {
 alert(“Your passphrase contains valid characters”);
 }

If it isn’t, another alert box is used to let users know that their text was invalid.

 else
 {
 alert(“Your passphrase contains one or more invalid characters”);
 }
}

25937c09.indd 31825937c09.indd 318 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

319

Chapter 9: String Manipulation

Repetition Characters
Regular expressions include something called repetition characters, which are a means of specifying
how many of the last item or character you want to match. This proves very useful, for example, if you
want to specify a phone number that repeats a character a specifi c number of times. The following table
lists some of the most common repetition characters and what they do.

Special
Character

Meaning Example

{n} Match n of the previous item x{2} matches xx

{n,} Match n or more of the previous item x{2,} matches xx, xxx, xxxx, xxxxx,
and so on

{n,m} Match at least n and at most m of the
previous item

x{2,4} matches xx, xxx, and xxxx

? Match the previous item zero or one
time

x? matches nothing or x

+ Match the previous item one or more
times

x+ matches x, xx, xxx, xxxx, xxxxx, and
so on

* Match the previous item zero or more
times

x* matches nothing, or x, xx, xxx,
xxxx, and so on

You saw earlier that to match a telephone number in the format 1-800-888-5474, the regular expression
would be \d-\d\d\d-\d\d\d-\d\d\d\d. Let’s see how this would be simplifi ed with the use of the
repetition characters.

The pattern you’re looking for starts with one digit followed by a dash, so you need the following:

\d-

Next are three digits followed by a dash. This time you can use the repetition special characters —
\d{3} will match exactly three \d, which is the any-digit character.

\d-\d{3}-

Next, there are three digits followed by a dash again, so now your regular expression looks like this:

\d-\d{3}-\d{3}-

Finally, the last part of the expression is four digits, which is \d{4}.

\d-\d{3}-\d{3}-\d{4}

You’d declare this regular expression like this:

var myRegExp = /\d-\d{3}-\d{3}-\d{4}/

25937c09.indd 31925937c09.indd 319 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

320

Chapter 9: String Manipulation

Remember that the fi rst / and last / tell JavaScript that what is in between those characters is a regular
expression. JavaScript creates a RegExp object based on this regular expression.

As another example, what if you have the string Paul Paula Pauline, and you want to replace Paul
and Paula with George? To do this, you would need a regular expression that matches both Paul and
Paula.

Let’s break this down. You know you want the characters Paul, so your regular expression starts as

Paul

Now you also want to match Paula, but if you make your expression Paula, this will exclude a match
on Paul. This is where the special character ? comes in. It enables you to specify that the previous char-
acter is optional — it must appear zero (not at all) or one time. So, the solution is

Paula?

which you’d declare as

var myRegExp = /Paula?/

Position Characters
The third group of special characters you’ll look at are those that enable you to specify either where the
match should start or end or what will be on either side of the character pattern. For example, you might
want your pattern to exist at the start or end of a string or line, or you might want it to be between two
words. The following table lists some of the most common position characters and what they do.

Position Character Description

^ The pattern must be at the start of the string, or if it’s a multi-line string,
then at the beginning of a line. For multi-line text (a string that contains
carriage returns), you need to set the multi-line fl ag when defi ning the
regular expression using /myreg ex/m. Note that this is only applicable to
IE 5.5 and later and NN 6 and later.

$ The pattern must be at the end of the string, or if it’s a multi-line string,
then at the end of a line. For multi-line text (a string that contains carriage
returns), you need to set the multi-line fl ag when defi ning the regular
expression using /myreg ex/m. Note that this is only applicable to IE 5.5
and later and NN 6 and later.

\b This matches a word boundary, which is essentially the point between a
word character and a non-word character.

\B This matches a position that’s not a word boundary.

25937c09.indd 32025937c09.indd 320 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

321

Chapter 9: String Manipulation

For example, if you wanted to make sure your pattern was at the start of a line, you would type the
following:

^myPattern

This would match an occurrence of myPattern if it was at the beginning of a line.

To match the same pattern, but at the end of a line, you would type the following:

myPattern$

The word-boundary special characters \b and \B can cause confusion, because they do not match
characters but the positions between characters.

Imagine you had the string “Hello world!, let’s look at boundaries said 007.” defi ned in the
code as follows:

var myString = “Hello world!, let’s look at boundaries said 007.”;

To make the word boundaries (that is, the boundaries between the words) of this string stand out, let’s
convert them to the | character.

var myRegExp = /\b/g;
myString = myString.replace(myRegExp, “|”);
alert(myString);

You’ve replaced all the word boundaries, \b, with a |, and your message box looks like the one in
Figure 9-8.

Figure 9-8

You can see that the position between any word character (letters, numbers, or the underscore char-
acter) and any non-word character is a word boundary. You’ll also notice that the boundary between
the start or end of the string and a word character is considered to be a word boundary. The end of
this string is a full stop. So the boundary between the full stop and the end of the string is a non-word
boundary, and therefore no | has been inserted.

If you change the regular expression in the example, so that it replaces non-word boundaries as follows:

var myRegExp = /\B/g;

you get the result shown in Figure 9-9.

25937c09.indd 32125937c09.indd 321 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

322

Chapter 9: String Manipulation

Figure 9-9

Now the position between a letter, number, or underscore and another letter, number, or underscore
is considered a non-word boundary and is replaced by an | in the example. However, what is slightly
confusing is that the boundary between two non-word characters, such as an exclamation mark and a
comma, is also considered a non-word boundary. If you think about it, it actually does make sense, but
it’s easy to forget when creating regular expressions.

You’ll remember this example from when you started looking at regular expressions:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
<script language=”JavaScript” type=”text/JavaScript”>

 var myString = “Paul, Paula, Pauline, paul, Paul”;
 var myRegExp = /Paul/gi;
 myString = myString.replace(myRegExp, “Ringo”);
 alert(myString);

</script>
</body>
</html>

You used this code to convert all instances of Paul or paul to Ringo.

However, you found that this code actually converts all instances of Paul to Ringo, even when the
word Paul is inside another word.

One way to solve this problem would be to replace the string Paul only where it is followed by a non-
word character. The special character for non-word characters is \W, so you need to alter the regular
expression to the following:

var myRegExp = /Paul\W/gi;

This gives the result shown in Figure 9-10.

Figure 9-10

25937c09.indd 32225937c09.indd 322 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

323

Chapter 9: String Manipulation

It’s getting better, but it’s still not what you want. Notice that the commas after the second and third
Paul substrings have also been replaced because they matched the \W character. Also, you’re still not
replacing Paul at the very end of the string. That’s because there is no character after the letter l in the
last Paul. What is after the l in the last Paul? Nothing, just the boundary between a word character
and a non-word character, and therein lies the answer. What you want as your regular expression is
Paul followed by a word boundary. Let’s alter the regular expression to cope with that by entering the
following:

var myRegExp = /Paul\b/gi;

Now you get the result you want, as shown in Figure 9-11.

Figure 9-11

At last you’ve got it right, and this example is fi nished.

Covering All Eventualities
Perhaps the trickiest thing about a regular expression is making sure it covers all eventualities. In the
previous example your regular expression works with the string as defi ned, but does it work with the
following?

var myString = “Paul, Paula, Pauline, paul, Paul, JeanPaul”;

Here the Paul substring in JeanPaul will be changed to Ringo. You really only want to convert the
substring Paul where it is on its own, with a word boundary on either side. If you change your regular
expression code to

var myRegExp = /\bPaul\b/gi;

you have your fi nal answer and can be sure only Paul or paul will ever be matched.

Grouping Regular Expressions
The fi nal topic under regular expressions, before you look at examples using the match(), replace(),
and search() methods, is how you can group expressions. In fact, it’s quite easy. If you want a number of
expressions to be treated as a single group, you just enclose them in parentheses, for example, /(\d\d)/.
Parentheses in regular expressions are special characters that group together character patterns and are
not themselves part of the characters to be matched.

Why would you want to do this? Well, by grouping characters into patterns, you can use the special
repetition characters to apply to the whole group of characters, rather than just one.

25937c09.indd 32325937c09.indd 323 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

324

Chapter 9: String Manipulation

Let’s take the following string defi ned in myString as an example:

var myString = “JavaScript, VBScript and Perl”;

How could you match both JavaScript and VBScript using the same regular expression? The only
thing they have in common is that they are whole words and they both end in Script. Well, an easy
way would be to use parentheses to group the patterns Java and VB. Then you can use the ? special
character to apply to each of these groups of characters to make the pattern match any word having
zero or one instances of the characters Java or VB, and ending in Script.

var myRegExp = /\b(VB)?(Java)?Script\b/gi;

Breaking this expression down, you can see the pattern it requires is as follows:

 1. A word boundary: \b

 2. Zero or one instance of VB: (VB)?

 3. Zero or one instance of Java: (Java)?

 4. The characters Script: Script

 5. A word boundary: \b

Putting these together, you get this:

var myString = “JavaScript, VBScript and Perl”;
var myRegExp = /\b(VB)?(Java)?Script\b/gi;
myString = myString.replace(myRegExp, “xxxx”);
alert(myString);

The output of this code is shown in Figure 9-12.

Figure 9-12

If you look back at the special repetition characters table, you’ll see that they apply to the item preceding
them. This can be a character, or, where they have been grouped by means of parentheses, the previous
group of characters.

However, there is a potential problem with the regular expression you just defi ned. As well as matching
VBScript and JavaScript, it also matches VBJavaScript. This is clearly not exactly what you meant.

To get around this you need to make use of both grouping and the special character |, which is the
alternation character. It has an or-like meaning, similar to || in if statements, and will match the
characters on either side of itself.

25937c09.indd 32425937c09.indd 324 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

325

Chapter 9: String Manipulation

Let’s think about the problem again. You want the pattern to match VBScript or JavaScript. Clearly
they have the Script part in common. So what you want is a new word starting with Java or starting
with VB; either way, it must end in Script.

First, you know that the word must start with a word boundary.

\b

Next you know that you want either VB or Java to be at the start of the word. You’ve just seen that
in regular expressions | provides the “or” you need, so in regular expression syntax you want the
following:

\b(VB|Java)

This matches the pattern VB or Java. Now you can just add the Script part.

\b(VB|Java)Script\b

Your fi nal code looks like this:

var myString = “JavaScript, VBScript and Perl”;
var myRegExp = /\b(VB|Java)Script\b/gi;
myString = myString.replace(myRegExp, “xxxx”);
alert(myString);

Reusing Groups of Characters
You can reuse the pattern specifi ed by a group of characters later on in the regular expression. To refer
to a previous group of characters, you just type \ and a number indicating the order of the group. For
example, the fi rst group can be referred to as \1, the second as \2, and so on.

Let’s look at an example. Say you have a list of numbers in a string, with each number separated by a
comma. For whatever reason, you are not allowed to have two instances of the same number in a row,
so although

009,007,001,002,004,003

would be okay, the following:

007,007,001,002,002,003

would not be valid, because you have 007 and 002 repeated after themselves.

How can you fi nd instances of repeated digits and replace them with the word ERROR? You need to use
the ability to refer to groups in regular expressions.

First, let’s defi ne the string as follows:

var myString = “007,007,001,002,002,003,002,004”;

25937c09.indd 32525937c09.indd 325 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

326

Chapter 9: String Manipulation

Now you know you need to search for a series of one or more number characters. In regular expressions
the \d specifi es any digit character, and + means one or more of the previous character. So far, that gives
you this regular expression:

\d+

You want to match a series of digits followed by a comma, so you just add the comma.

\d+,

This will match any series of digits followed by a comma, but how do you search for any series of digits
followed by a comma, then followed again by the same series of digits? As the digits could be any dig-
its, you can’t add them directly into the expression like so:

\d+,007

This would not work with the 002 repeat. What you need to do is put the fi rst series of digits in a group;
then you can specify that you want to match that group of digits again. This can be done with \1, which
says, “Match the characters found in the fi rst group defi ned using parentheses.” Put all this together, and
you have the following:

(\d+),\1

This defi nes a group whose pattern of characters is one or more digit characters. This group must be
followed by a comma and then by the same pattern of characters as in the fi rst group. Put this into some
JavaScript, and you have the following:

var myString = “007,007,001,002,002,003,002,004”;
var myRegExp = /(\d+),\1/g;
myString = myString.replace(myRegExp,”ERROR”);
alert(myString);

The alert box will show this message:

ERROR,1,ERROR,003,002,004

That completes your brief look at regular expression syntax. Because regular expressions can get a little
complex, it’s often a good idea to start simple and build them up slowly, as was done in the previous
example. In fact, most regular expressions are just too hard to get right in one step — at least for us
mere mortals without a brain the size of a planet.

If it’s still looking a bit strange and confusing, don’t panic. In the next sections, you’ll be looking at the
String object’s split(), replace(), search(), and match() methods with plenty more examples of
regular expression syntax.

25937c09.indd 32625937c09.indd 326 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

327

Chapter 9: String Manipulation

The String Object — split (), replace(),
search(), and match() Methods

The main functions making use of regular expressions are the String object’s split(), replace(),
search(), and match() methods. You’ve already seen their syntax, so you’ll concentrate on their use
with regular expressions and at the same time learn more about regular expression syntax and usage.

The split() Method
You’ve seen that the split() method enables us to split a string into various pieces, with the split being
made at the character or characters specifi ed as a parameter. The result of this method is an array with
each element containing one of the split pieces. For example, the following string:

var myListString = “apple, banana, peach, orange”

could be split into an array in which each element contains a different fruit, like this:

var myFruitArray = myListString.split(“, “);

How about if your string is this instead?

var myListString = “apple, 0.99, banana, 0.50, peach, 0.25, orange, 0.75”;

The string could, for example, contain both the names and prices of the fruit. How could you split
the string, but retrieve only the names of the fruit and not the prices? You could do it without regular
expressions, but it would take many lines of code. With regular expressions you can use the same code
and just amend the split() method’s parameter.

Try It Out Splitting the Fruit String
Let’s create an example that solves the problem just described — it must split your string, but include
only the fruit names, not the prices.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/JavaScript”>
var myListString = “apple, 0.99, banana, 0.50, peach, 0.25, orange, 0.75”;
var theRegExp = /[^a-z]+/i;
var myFruitArray = myListString.split(theRegExp);
document.write(myFruitArray.join(“
”));

</script>
</body>
</html>

Save the fi le as ch9_examp4.htm and load it in your browser. You should see the four fruits from your
string written out to the page, with each fruit on a separate line.

25937c09.indd 32725937c09.indd 327 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

328

Chapter 9: String Manipulation

Within the script block, fi rst you have your string with fruit names and prices.

var myListString = “apple, 0.99, banana, 0.50, peach, 0.25, orange, 0.75”;

How do you split it in such a way that only the fruit names are included? Your fi rst thought might be
to use the comma as the split() method’s parameter, but of course that means you end up with the
prices. What you have to ask is, “What is it that’s between the items I want?” Or in other words, what
is between the fruit names that you can use to defi ne your split? The answer is that various characters
are between the names of the fruit, such as a comma, a space, numbers, a full stop, more numbers, and
fi nally another comma. What is it that these things have in common and makes them different from the
fruit names that you want? What they have in common is that none of them are letters from a through z.
If you say “Split the string at the point where there is a group of characters that are not between a and z,”
then you get the result you want. Now you know what you need to create your regular expression.

You know that what you want is not the letters a through z, so you start with this:

[^a-z]

The ^ says “Match any character that does not match those specifi ed inside the square brackets.” In this
case you’ve specifi ed a range of characters not to be matched — all the characters between a and z. As
specifi ed, this expression will match only one character, whereas you want to split wherever there is a
single group of one or more characters that are not between a and z. To do this you need to add the +
special repetition character, which says “Match one or more of the preceding character or group specifi ed.”

[^a-z]+

The fi nal result is this:

var theRegExp = /[^a-z]+/i

The / and / characters mark the start and end of the regular expression whose RegExp object is stored
as a reference in the variable theRegExp. You add the i on the end to make the match case-insensitive.

Don’t panic if creating regular expressions seems like a frustrating and less-than-obvious process. At
fi rst, it takes a lot of trial and error to get it right, but as you get more experienced, you’ll fi nd creating
them becomes much easier and will enable you to do things that without regular expressions would be
either very awkward or virtually impossible.

In the next line of script you pass the RegExp object to the split() method, which uses it to decide
where to split the string.

var myFruitArray = myListString.split(theRegExp);

After the split, the variable myFruitArray will contain an Array with each element containing the fruit
name, as shown here:

Array Element Index 0 1 2 3

Element value apple banana peach orange

You then join the string together again using the Array object’s join() methods, which you saw in
Chapter 4.

document.write(myFruitArray.join(“
”))

25937c09.indd 32825937c09.indd 328 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

329

Chapter 9: String Manipulation

The replace() Method
You’ve already looked at the syntax and usage of the replace() method. However, something unique
to the replace() method is its ability to replace text based on the groups matched in the regular expres-
sion. You do this using the $ sign and the group’s number. Each group in a regular expression is given a
number from 1 to 99; any groups greater than 99 are not accessible. Note that in earlier browsers, groups
could only go from 1 to 9 (for example, in IE 5 or earlier or Netscape 4 and earlier). To refer to a group, you
write $ followed by the group’s position. For example, if you had the following:

var myRegExp = /(\d)(\W)/g;

then $1 refers to the group(\d), and $2 refers to the group (\W). You’ve also set the global fl ag g to
ensure that all matching patterns are replaced — not just the fi rst one.

You can see this more clearly in the next example. Say you have the following string:

var myString = “1999, 2000, 2001”;

If you wanted to change this to “the year 1999, the year 2000, the year 2001”, how could you do
it with regular expressions?

First, you need to work out the pattern as a regular expression, in this case four digits.

var myRegExp = /\d{4}/g;

But given that the year is different every time, how can you substitute the year value into the replaced
string?

Well, you change your regular expression so that it’s inside a group, as follows:

var myRegExp = /(\d{4})/g;

Now you can use the group, which has group number 1, inside the replacement string like this:

myString = myString.replace(myRegExp, “the year $1”);

The variable myString now contains the required string “the year 1999, the year 2000, the year
2001”.

Let’s look at another example in which you want to convert single quotes in text to double quotes. Your
test string is this:

‘Hello World’ said Mr. O’Connerly.
He then said ‘My Name is O’Connerly, yes that’s right, O’Connerly’.

One problem that the test string makes clear is that you want to replace the single-quote mark with a
double only where it is used in pairs around speech, not when it is acting as an apostrophe, such as in
the word that’s, or when it’s part of someone’s name, such as in O’Connerly.

25937c09.indd 32925937c09.indd 329 9/21/09 12:02:56 AM9/21/09 12:02:56 AM

330

Chapter 9: String Manipulation

Let’s start by defi ning the regular expression. First you know that it must include a single quote, as
shown in the following code:

var myRegExp = /’/;

However, as it is this would replace every single quote, which is not what you want.

Looking at the text, you should also notice that quotes are always at the start or end of a word — that is,
at a boundary. On fi rst glance it might be easy to assume that it would be a word boundary. However,
don’t forget that the ‘ is a non-word character, so the boundary will be between it and another non-word
character, such as a space. So the boundary will be a non-word boundary or, in other words, \B.

Therefore, the character pattern you are looking for is either a non-word boundary followed by a single
quote or a single quote followed by a non-word boundary. The key is the “or,” for which you use | in
regular expressions. This leaves your regular expression as the following:

var myRegExp = /\B’|’\B/g;

This will match the pattern on the left of the | or the character pattern on the right. You want to replace
all the single quotes with double quotes, so the g has been added at the end, indicating that a global
match should take place.

Try It Out Replacing Single Quotes with Double Quotes
Let’s look at an example using the regular expression just defi ned.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>example</title>
<script type=”text/JavaScript”>
function replaceQuote(textAreaControl)
{
 var myText = textAreaControl.value;
 var myRegExp = /\B’|’\B/g;
 myText = myText.replace(myRegExp,’“‘);
 textAreaControl.value = myText;
}
</script>
</head>
<body>
<form name=”form1”>
<textarea rows=”20” cols=”40” name=”textarea1”>
‘Hello World’ said Mr O’Connerly.
He then said ‘My Name is O’Connerly, yes that’s right, O’Connerly’.
</textarea>

<input type=”button” VALUE=”Replace Single Quotes” name=”buttonSplit”
 onclick=”replaceQuote(document.form1.textarea1)“>
</form>

</body>
</html>

25937c09.indd 33025937c09.indd 330 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

331

Chapter 9: String Manipulation

Save the page as ch9_examp5.htm. Load the page into your browser and you should see what is shown
in Figure 9-13.

Figure 9-13

Click the Replace Single Quotes button to see the single quotes in the text area replaced as in
Figure 9-14.

Figure 9-14

Try entering your own text with single quotes into the text area and check the results.

You can see that by using regular expressions, you have completed a task in a couple of lines of simple
code. Without regular expressions, it would probably take four or fi ve times that amount.

Let’s look fi rst at the replaceQuote() function in the head of the page where all the action is.

function replaceQuote(textAreaControl)
{
 var myText = textAreaControl.value;
 var myRegExp = /\B’|’\B/g;

25937c09.indd 33125937c09.indd 331 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

332

Chapter 9: String Manipulation

 myText = myText.replace(myRegExp,’“‘);
 textAreaControl.value = myText;
}

The function’s parameter is the textarea object defi ned further down the page — this is the text area
in which you want to replace the single quotes. You can see how the textarea object was passed in the
button’s tag defi nition.

<input type=”button” value=”Replace Single Quotes” name=”buttonSplit”
 onclick=”replaceQuote(document.form1.textarea1)”>

In the onclick event handler, you call replaceQuote() and pass document.form1.textarea1 as the
parameter — that is the textarea object.

Returning to the function, you get the value of the textarea on the fi rst line and place it in the variable
myText. Then you defi ne your regular expression (as discussed previously), which matches any non-
word boundary followed by a single quote or any single quote followed by a non-word boundary. For
example, ‘H will match, as will H’, but O’R won’t, because the quote is between two word boundaries.
Don’t forget that a word boundary is the position between the start or end of a word and a non-word
character, such as a space or punctuation mark.

In the function’s fi nal two lines, you fi rst use the replace() method to do the character pattern search
and replace, and fi nally you set the textarea object’s value to the changed string.

The search() Method
The search() method enables you to search a string for a pattern of characters. If the pattern is found,
the character position at which it was found is returned, otherwise -1 is returned. The method takes
only one parameter, the RegExp object you have created.

Although for basic searches the indexOf() method is fi ne, if you want more complex searches, such as
a search for a pattern of any digits or one in which a word must be in between a certain boundary, then
search() provides a much more powerful and fl exible, but sometimes more complex, approach.

In the following example, you want to fi nd out if the word Java is contained within the string.
However, you want to look just for Java as a whole word, not part of another word such as
JavaScript.

var myString = “Beginning JavaScript, Beginning Java 2, Professional JavaScript”;
var myRegExp = /\bJava\b/i;
alert(myString.search(myRegExp));

First, you have defi ned your string, and then you’ve created your regular expression. You want to fi nd
the character pattern Java when it’s on its own between two word boundaries. You’ve made your
search case-insensitive by adding the i after the regular expression. Note that with the search()
method, the g for global is not relevant, and its use has no effect.

On the fi nal line, you output the position at which the search has located the pattern, in this case 32.

25937c09.indd 33225937c09.indd 332 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

333

Chapter 9: String Manipulation

The match() Method
The match() method is very similar to the search() method, except that instead of returning the posi-
tion at which a match was found, it returns an array. Each element of the array contains the text of a
match made.

For example, if you had the string

var myString = “The years were 1999, 2000 and 2001”;

and wanted to extract the years from this string, you could do so using the match() method. To match
each year, you are looking for four digits in between word boundaries. This requirement translates to
the following regular expression:

var myRegExp = /\b\d{4}\b/g;

You want to match all the years so the g has been added to the end for a global search.

To do the match and store the results, you use the match() method and store the Array object it returns
in a variable.

var resultsArray = myString.match(myRegExp);

To prove it has worked, let’s use some code to output each item in the array. You’ve added an if statement
to double-check that the results array actually contains an array. If no matches were made, the results
array will contain null — doing if (resultsArray) will return true if the variable has a value and
not null.

if (resultsArray)
{
 var indexCounter;
 for (indexCounter = 0; indexCounter < resultsArray.length; indexCounter++)
 {
 alert(resultsArray[indexCounter]);
 }
}

This would result in three alert boxes containing the numbers 1999, 2000, and 2001.

Try It Out Splitting HTML
In the next example, you want to take a string of HTML and split it into its component parts. For
example, you want the HTML <P>Hello</P> to become an array, with the elements having the follow-
ing contents:

<P> Hello </P>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c09.indd 33325937c09.indd 333 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

334

Chapter 9: String Manipulation

<head>
<title>example 6</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<script type=”text/JavaScript”>
function button1_onclick()
{
 var myString = “<table align=center><tr><td>”;
 myString = myString + “Hello World</td></tr></table>”;
 myString = myString +”
<h2>Heading</h2>”;
 var myRegExp = /<[^>\r\n]+>|[^<>\r\n]+/g;
 var resultsArray = myString.match(myRegExp);
 document.form1.textarea1.value = “”;
 document.form1.textarea1.value = resultsArray.join (“\r\n”);
}
</script>
</head>
<body>
<form name=”form1”>
 <textarea rows=”20” cols=”40” name=”textarea1”></textarea>
 <input type=”button” value=”Split HTML” name=”button1”
 onclick=”return button1_onclick();”>
</form>

</body>
</html>

Save this fi le as ch9_examp6.htm. When you load the page into your browser and click the Split HTML
button, a string of HTML is split, and each tag is placed on a separate line in the text area, as shown in
Figure 9-15.

Figure 9-15

The function button1_onclick() defi ned at the top of the page fi res when the Split HTML button is
clicked. At the top, the following lines defi ne the string of HTML that you want to split:

function button1_onclick()
{
 var myString = “<table align=center><tr><td>”;

25937c09.indd 33425937c09.indd 334 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

335

Chapter 9: String Manipulation

 myString = myString + “Hello World</td></tr></table>”;
 myString = myString +”
<h2>Heading</h2>”;

Next you create your RegExp object and initialize it to your regular expression.

var myRegExp = /<[^>\r\n]+>|[^<>\r\n]+/g;

Let’s break it down to see what pattern you’re trying to match. First, note that the pattern is broken up
by an alternation symbol: |. This means that you want the pattern on the left or the right of this symbol.
You’ll look at these patterns separately. On the left, you have the following:

The pattern must start with a ❑ <.

In ❑ [^>\r\n]+, you specify that you want one or more of any character except the > or a \r
(carriage return) or a \n (linefeed).

> ❑ specifi es that the pattern must end with a >.

On the right, you have only the following:

[^<>\r\n]+ ❑ specifi es that the pattern is one or more of any character, so long as that character
is not a <, >, \r, or \n. This will match plain text.

After the regular expression defi nition you have a g, which specifi es that this is a global match.

So the <[^>\r\n]+> regular expression will match any start or close tags, such as <p> or </p>. The
alternative pattern is [^<>\r\n]+, which will match any character pattern that is not an opening or
closing tag.

In the following line, you assign the resultsArray variable to the Array object returned by the
match() method:

var resultsArray = myString.match(myRegExp);

The remainder of the code deals with populating the text area with the split HTML. You use the Array
object’s join() method to join all the array’s elements into one string with each element separated by a
\r\n character, so that each tag or piece of text goes on a separate line, as shown in the following:

 document.form1.textarea1.value = “”;
 document.form1.textarea1.value = resultsArray.join(“\r\n”);
}

Using the RegExp Object’s Constructor
So far you’ve been creating RegExp objects using the / and / characters to defi ne the start and end of the
regular expression, as shown in the following example:

var myRegExp = /[a-z]/;

25937c09.indd 33525937c09.indd 335 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

336

Chapter 9: String Manipulation

Although this is the generally preferred method, it was briefl y mentioned that a RegExp object can also
be created by means of the RegExp() constructor. You might use the fi rst way most of the time. However,
there are occasions, as you’ll see in the trivia quiz shortly, when the second way of creating a RegExp object
is necessary (for example, when a regular expression is to be constructed from user input).

As an example, the preceding regular expression could equally well be defi ned as

var myRegExp = new RegExp(“[a-z]”);

Here you pass the regular expression as a string parameter to the RegExp() constructor function.

A very important difference when you are using this method is in how you use special regular expres-
sion characters, such as \b, that have a backward slash in front of them. The problem is that the backward
slash indicates an escape character in JavaScript strings — for example, you may use \b, which means a
backspace. To differentiate between \b meaning a backspace in a string and the \b special character in
a regular expression, you have to put another backward slash in front of the regular expression special
character. So \b becomes \\b when you mean the regular expression \b that matches a word boundary,
rather than a backspace character.

For example, say you have defi ned your RegExp object using the following:

var myRegExp = /\b/;

To declare it using the RegExp() constructor, you would need to write this:

var myRegExp = new RegExp(“\\b”);

and not this:

var myRegExp = new RegExp(“\b”);

All special regular expression characters, such as \w, \b, \d, and so on, must have an extra \ in front
when you create them using RegExp().

When you defi ned regular expressions with the / and / method, you could add after the fi nal / the spe-
cial fl ags m, g, and i to indicate that the pattern matching should be multi-line, global, or case-insensitive,
respectively. When using the RegExp() constructor, how can you do the same thing?

Easy. The optional second parameter of the RegExp() constructor takes the fl ags that specify a global
or case-insensitive match. For example, this will do a global case-insensitive pattern match:

var myRegExp = new RegExp(“hello\\b”,”gi”);

You can specify just one of the fl ags if you wish — such as the following:

var myRegExp = new RegExp(“hello\\b”,”i”);

or

var myRegExp = new RegExp(“hello\\b”,”g”);

25937c09.indd 33625937c09.indd 336 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

337

Chapter 9: String Manipulation

Try It Out Form Validation Module
In this Try It Out, you’ll create a set of useful JavaScript functions that use regular expressions to vali-
date the following:

Telephone numbers ❑

Postal codes ❑

E-mail addresses ❑

The validation only checks the format. So, for example, it can’t check that the telephone number actually
exists, only that it would be valid if it did.

First is the .js code fi le with the input validation code. Please note that the lines of code in the follow-
ing block are too wide for the book — make sure each regular expression is contained on one line.

function isValidTelephoneNumber(telephoneNumber)
{
 var telRegExp = /^(\+\d{1,3} ?)?(\(\d{1,5}\)|\d{1,5}) ?\d{3}
 ?\d{0,7}((x|xtn|ext|extn|pax|pbx|extension)?\.? ?\d{2-5})?$/i
 return telRegExp.test(telephoneNumber);
}

function isValidPostalCode(postalCode)
{
 var pcodeRegExp = /^(\d{5}(-\d{4})?|([a-z][a-z]?\d\d?|[a-z{2}\d[a-z])
 ?\d[a-z][a-z])$/i
 return pcodeRegExp.test(postalCode);
}

function isValidEmail(emailAddress)
{
 var emailRegExp = /^(([^<>()\[\]\\.,;:@“\x00-\x20\x7F]|\\.)+|(“”“
([^\x0A\x0D”\\]|\\\\)+”“”))@(([a-z]|#\d+?)([a-z0-9-]|#\d+?)*
([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$/i
 return emailRegExp.test(emailAddress);
}

Save this as ch9_examp7_module.js.

To test the code, you need a simple page with a text box and three buttons that validate the telephone
number, postal code, or e-mail address.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>example 7</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<script type=”text/javascript” src=”ch9_examp7_module.js”></script>
</head>
<body>
<form name=”form1”>
 <p>
 <label>

25937c09.indd 33725937c09.indd 337 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

338

Chapter 9: String Manipulation

 <input type=”text” name=”txtString” id=”txtString” />
 </label>
 </p>
 <p>
 <label>
 <input type=”button” name=”cmdIsValidTelephoneNumber”
 id=”cmdIsValidTelephoneNumber”
 value=”Is Valid Telephone Number?”
onclick=”alert(‘Is valid is ‘ +
 isValidTelephoneNumber(document.form1.txtString.value))“
 />

 <input type=”button” name=”cmdIsValidPostalCode”
 id=”cmdIsValidPostalCode”
 value=”Is Valid Postal Code?”
 onclick=”alert(‘Is valid is ‘
+ isValidPostalCode(document.form1.txtString.value))“ />
 <input type=”button” name=”cmdIsEmailValid” id=”cmdIsEmailValid”
value=”Is Valid Email?”
onclick=”alert(‘Is valid is ‘
+ isValidEmail(document.form1.txtString.value))“ />
 </label>
 </p>
</form>

</body>
</html>

Save this as ch9_examp7.htm and load it into your browser, and you’ll see a page with a text box and
three buttons. Enter a valid telephone number (the example uses +1 (123) 123 4567), click the Is Valid
Telephone Number button, and the screen shown in Figure 9-16 is displayed.

Figure 9-16

If you enter an invalid phone number, the result would be Is Valid is false. This is pretty basic but
it’s suffi cient for testing your code.

25937c09.indd 33825937c09.indd 338 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

339

Chapter 9: String Manipulation

The actual code is very simple, but the regular expressions are tricky to create, so let’s look at those in
depth starting with telephone number validation.

Telephone Number Validation
Telephone numbers are more of a challenge to validate. The problems are:

Phone numbers differ from country to country. ❑

There are different ways of entering a valid number (for example, adding the national or inter- ❑

national code or not).

For this regular expression, you need to specify more than just the valid characters; you also need to
specify the format of the data. For example, all of the following are valid:

+1 (123) 123 4567

+1123123 456

+44 (123) 123 4567

+44 (123) 123 4567 ext 123

+44 20 7893 4567

The variations that our regular expression needs to deal with (optionally separated by spaces) are
shown in the following table:

The international number “+“ followed by one to three digits (optional)

The local area code Two to fi ve digits, sometimes in parentheses (compulsory)

The actual subscriber number Three to 10 digits, sometimes with spaces (compulsory)

An extension number Two to fi ve digits, preceded by x, xtn, extn, pax, pbx, or
extension, and sometimes in parentheses

Obviously, there will be countries where this won’t work, which is something you’d need to deal with
based on where your customers and partners would be. The following regular expression is rather com-
plex, its length meant it had to be split across two lines; make sure you type it in on one line.

^(\+\d{1,3} ?)?(\(\d{1,5}\)|\d{1,5}) ?\d{3} ?\d{0,7}
((x|xtn|ext|extn|pax|pbx|extension)?\.? ?\d{2-5})?$

You will need to set the case-insensitive fl ag with this, as well as the explicit capture option. Although
this seems complex, if broken down, it’s quite straightforward.

Let’s start with the pattern that matches an international dialing code:

(\+\d{1,3} ?)?

25937c09.indd 33925937c09.indd 339 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

340

Chapter 9: String Manipulation

So far, you’ve matching a plus sign (\+) followed by one to three digits (\d{1,3}) and an optional
space (?). Remember that since the + character is a special character, you add a \ character in front of it
to specify that you mean an actual + character. The characters are wrapped inside parentheses to spec-
ify a group of characters. You allow an optional space and match this entire group of characters zero or
one times, as indicated by the ? character after the closing parenthesis of the group.

Next is the pattern to match an area code:

(\(\d{1,5}\)|\d{1,5})

This pattern is contained in parentheses, which designate it as a group of characters, and matches either
one to fi ve digits in parentheses ((\d{1,5})) or just one to fi ve digits (\d{1,5}). Again, since the paren-
thesis characters are special characters in regular expression syntax and you want to match actual
parentheses, you need the \ character in front of them. Also note the use of the pipe symbol (|), which
means “OR” or “match either of these two patterns.”

Next, let’s match the subscriber number:

 ?\d{3,4} ?\d{0,7}

Note that there is a space before the fi rst ? symbol: this space and question mark mean “match zero
or one space.“ This is followed by three or four digits (\d{3,4}) — although there are always three
digits in the U.S., there are often four in the UK. Then there’s another “zero or one space,“ and fi nally
between zero and seven digits (\d{0,7}).

Finally, add the part to cope with an optional extension number:

((x|xtn|ext|extn|extension)?\.? ?\d{2-5})?

This group is optional, since its parentheses are followed by a question mark. The group itself checks
for a space, optionally followed by x, ext, xtn, extn, or extension, followed by zero or one periods
(note the \ character, since . is a special character in regular expression syntax), followed by zero or
one space, followed by between two and fi ve digits. Putting these four patterns together, you can con-
struct the entire regular expression, apart from the surrounding syntax. The regular expression starts
with ^ and ends with $. The ^ character specifi es that the pattern must be matched at the beginning of
the string, and the $ character specifi es that the pattern must be matched at the end of the string. This
means that the string must match the pattern completely; it cannot contain any other characters before
or after the pattern that is matched.

Therefore, with the regular expression explained, you can now add it to your JavaScript module
ch9_examp7_module.js as follows:

function isValidTelephoneNumber(telephoneNumber)
{
 var telRegExp = /^(\+\d{1,3} ?)?
 (\(\d{1,5}\)|\d{1,5}) ?\d{3} ?\d{0,7}
 ((x|xtn|ext|extn|pax|pbx|extension)?
 \.? ?\d{2-5})?$/i
 return telRegExp.test(telephoneNumber);
}

25937c09.indd 34025937c09.indd 340 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

341

Chapter 9: String Manipulation

Note in this case that it is important to set the case-insensitive fl ag by adding an i on the end of the
expression defi nition; otherwise, the regular expression could fail to match the ext parts. Please also
note that the regular expression itself must be on one line in your code — it’s shown in four lines here due
to the page-width restrictions of this book.

Validating a Postal Code
We just about managed to check worldwide telephone numbers, but doing the same for postal codes
would be something of a major challenge. Instead, you‘ll create a function that only checks for U.S. zip
codes and UK postcodes. If you needed to check for other countries, the code would need modifying. You
may fi nd that checking more than one or two postal codes in one regular expression begins to get unman-
ageable, and it may well be easier to have an individual regular expression for each country’s postal code
you need to check. For this purpose though, let’s combine the regular expression for the UK and the U.S.:

^(\d{5}(-\d{4})?|[a-z][a-z]?\d\d? ?\d[a-z][a-z])$

This is actually in two parts: The fi rst part checks for zip codes, and the second part checks UK post-
codes. Start by looking at the zip code part.

Zip codes can be represented in one of two formats: as fi ve digits (12345), or fi ve digits followed by a
dash and four digits (12345-1234). The zip code regular expression to match these is as follows:

\d{5}(-\d{4})?

This matches fi ve digits, followed by an optional non-capturing group that matches a dash, followed by
four digits.

For a regular expression that covers UK postcodes, let’s consider their various formats. UK postcode
formats are one or two letters followed by either one or two digits, followed by an optional space, fol-
lowed by a digit, and then two letters. Additionally, some central London postcodes look like this: SE2V
3ER, with a letter at the end of the fi rst part. Currently, it is only some of those postcodes starting with
SE, WC, and W, but that may change. Valid examples of UK postcode include: CH3 9DR, PR29 1XX, M27
1AE, WC1V 2ER, and C27 3AH.

Based on this, the required pattern is as follows:

([a-z][a-z]?\d\d?|[a-z]{2}\d[a-z]) ?\d[a-z][a-z]

These two patterns are combined using the | character to “match one or the other” and grouped using
parentheses. You then add the ^ character at the start and the $ character at the end of the pattern to be
sure that the only information in the string is the postal code. Although postal codes should be upper-
case, it is still valid for them to be lowercase, so you also set the case-insensitive option as follows when
you use the regular expression:

^(\d{5}(-\d{4})?|([a-z][a-z]?\d\d?|[a-z{2}\d[a-z]) ?\d[a-z][a-z])$

The following function needed for your validation module is much the same as it was with the previous
example:

function isValidPostalCode(postalCode)
{

25937c09.indd 34125937c09.indd 341 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

342

Chapter 9: String Manipulation

 var pcodeRegExp = /^(\d{5}(-\d{4})?|
([a-z][a-z]?\d\d?|[a-z{2}\d[a-z]) ?\d[a-z][a-z])$/i
 return pcodeRegExp.test(postalCode);
}

Again please remember that the regular expression must be on one line in your code.

Validating an E-mail Address
Before working on a regular expression to match e-mail addresses, you need to look at the types of valid
e-mail addresses you can have. For example:

someone@mailserver.com ❑

someone@mailserver.info ❑

someone.something@mailserver.com ❑

someone.something@subdomain.mailserver.com ❑

someone@mailserver.co.uk ❑

someone@subdomain.mailserver.co.uk ❑

someone.something@mailserver.co.uk ❑

someone@mailserver.org.uk ❑

some.one@subdomain.mailserver.org.uk ❑

Also, if you examine the SMTP RFC (http://www.ietf.org/rfc/rfc0821.txt), you can have the
following:

someone@123.113.209.32 ❑

“”“Paul Wilton”“”@somedomain.com ❑

That’s quite a list and contains many variations to cope with. It’s best to start by breaking it down. First,
there are a couple of things to note about the two immediately above. The latter two versions are excep-
tionally rate and not provided for in the regular expression you’ll create.

You need to break up the e-mail address into separate parts, and you will look at the part after the @
symbol, fi rst.

Validating a Domain Name
Everything has become more complicated since Unicode domain names have been allowed. However,
the e-mail RFC still doesn’t allow these, so let’s stick with the traditional defi nition of how a domain can
be described using ASCII. A domain name consists of a dot-separated list of words, with the last word
being between two and four characters long. It was often the case that if a two-letter country word was
used, there would be at least two parts to the domain name before it: a grouping domain (.co, .ac,
and so on) and a specifi c domain name. However, with the advent of the .tv names, this is no longer
the case. You could make this very specifi c and provide for the allowed top-level domains (TLDs), but
that would make the regular expression very large, and it would be more productive to perform a DNS
lookup instead.

25937c09.indd 34225937c09.indd 342 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

343

Chapter 9: String Manipulation

Each part of a domain name has certain rules it must follow. It can contain any letter or number or a
hyphen, but it must start with a letter. The exception is that, at any point in the domain name, you can
use a #, followed by a number, which represents the ASCII code for that letter, or in Unicode, the 16-bit
Unicode value. Knowing this, let’s begin to build up the regular expression, fi rst with the name part,
assuming that the case-insensitive fl ag will be set later in the code.

([a-z]|#\d+)([a-z0-9-]|#\d+)*([a-z0-9]|#\d+)

This breaks the domain into three parts. The RFC doesn’t specify how many digits can be contained
here, so neither will we. The fi rst part must only contain an ASCII letter; the second must contain zero
or more of a letter, number, or hyphen; and the third must contain either a letter or number. The top-
level domain has more restrictions, as shown here:

[a-z]{2,4}

This restricts you to a two, three, or four letter top-level domain. So, putting it all together, with the
periods you end up with this:

^(([a-z]|#\d+?)([a-z0-9-]|#\d+?)*([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$

Again, the domain name is anchored at the beginning and end of the string. The fi rst thing is to add
an extra group to allow one or more name. portions and then anchor a two-to-four-letter domain name
at the end in its own group. We have also made most of the wildcards lazy. Because much of the pat-
tern is similar, it makes sense to do this; otherwise, it would require too much backtracking. However,
you have left the second group with a “greedy” wildcard: It will match as much as it can, up until it
reaches a character that does not match. Then it will only backtrack one position to attempt the third
group match. This is more resource-effi cient than a lazy match is in this case, because it could be con-
stantly going forward to attempt the match. One backtrack per name is an acceptable amount of extra
processing.

Validating a Person’s Address
You can now attempt to validate the part before the @ sign. The RFC specifi es that it can contain any ASCII
character with a code in the range from 33 to 126. You are assuming that you are matching against ASCII
only, so you can assume that there are only 128 characters that the engine will match against. This being
the case, it is simpler to just exclude the required values as follows:

[^<>()\[\],;:@“\x00-\x20\x7F]+

Using this, you’re saying that you allow any number of characters, as long as none of them are those
contained within the square brackets. The [,], and \ characters have to be escaped. However, the RFC
allows for other kinds of matches.

Validating the Complete Address
Now that you have seen all the previous sections, you can build up a regular expression for the entire
e-mail address. First, here’s everything up to and including the @ sign:

^([^<>()\[\],;:@“\x00-\x20\x7F]|\\.)+@

25937c09.indd 34325937c09.indd 343 9/21/09 12:02:57 AM9/21/09 12:02:57 AM

344

Chapter 9: String Manipulation

That was straightforward. Now for the domain name part.

^([^<>()\[\],;:@“\x00-\x20\x7F]|\\.)+@(([a-z]|#\d+?)([a-z0-9-]
|#\d+?)*([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$

We’ve had to put it on two lines to fi t this book’s page width, but in your code this must all be on one line.

Finally, let’s create the function for the JavaScript module.

function isValidEmail(emailAddress)
{
 var emailRegExp = /^([^<>()\[\],;:@“\x00-\x20\x7F]|\\.)+
@(([a-z]|#\d+?)([a-z0-9-]|
#\d+?)*([a-z0-9]|#\d+?)\.)+([a-z]{2,4})$/i
 return emailRegExp.test(emailAddress);
}

Please note the regular expression must all be on one line in your code.

With the module completed, let’s take a look at the code to test the module.

First, the module is linked to the test page like this:

<script type=”text/javascript” src=”ch9_examp7_module.js”></script>

Then each of the three test buttons has its click events linked to the validation functions in the module
as follows:

<input type=”button” name=”cmdIsValidTelephoneNumber”
 id=”cmdIsValidTelephoneNumber“
 value=”Is Valid Telephone Number?”
onclick=”alert(‘Is valid is ‘ +
isValidTelephoneNumber(document.form1.txtString.value))“ />
 <input type=”button” name=”cmdIsValidPostalCode” id=”cmdIsValidPostalCode”
 value=”Is Valid Postal Code?”
onclick=”alert(‘Is valid is ‘ +
isValidPostalCode(document.form1.txtString.value))“ />
 <input type=”button” name=”cmdIsEmailValid” id=”cmdIsEmailValid”
value=”Is Valid Email?”
onclick=”alert(‘Is valid is ‘ + isValidEmail(document.form1.txtString.value))“ />

So taking telephone validation test button, an onclick event handler is added.

onclick=”alert(‘Is valid is ‘ +
isValidTelephoneNumber(document.form1.txtString.value))“

This shows an alert box returning the true or false value from the isValidTelephoneNumber() func-
tion in your validation module. In a non-test situation, you’d want a more user-friendly message. The
other two test buttons work in the same way but just call different validation functions.

25937c09.indd 34425937c09.indd 344 9/21/09 12:02:58 AM9/21/09 12:02:58 AM

345

Chapter 9: String Manipulation

Summary
In this chapter you’ve looked at some more advanced methods of the String object and how you can
optimize their use with regular expressions.

To recap, the chapter covered the following points:

The ❑ split() method splits a single string into an array of strings. You pass a string or a regular
expression to the method that determines where the split occurs.

The ❑ replace() method enables you to replace a pattern of characters with another pattern that
you specify as a second parameter.

The ❑ search() method returns the character position of the fi rst pattern matching the one given
as a parameter.

The ❑ match() method matches patterns, returning the text of the matches in an array.

Regular expressions enable you to defi ne a pattern of characters that you want to match. Using ❑

this pattern, you can perform splits, searches, text replacement, and matches on strings.

In JavaScript the regular expressions are in the form of a ❑ RegExp object. You can create
a RegExp object using either myRegExp = /myRegularExpression/ or myRegExp = new
RegExp(“myRegularExpression”). The second form requires that certain special characters
that normally have a single \ in front now have two.

The ❑ g and i characters at the end of a regular expression (as in, for example, myRegExp =
/Pattern/gi;) ensure that a global and case-insensitive match is made.

As well as specifying actual characters, regular expressions have certain groups of special char- ❑

acters, which allow any of certain groups of characters, such as digits, words, or non-word
characters, to be matched.

Special characters can also be used to specify pattern or character repetition. Additionally, you ❑

can specify what the pattern boundaries must be, for example at the beginning or end of the
string, or next to a word or non-word boundary.

Finally, you can defi ne groups of characters that can be used later in the regular expression or in ❑

the results of using the expression with the replace() method.

In the next chapter, you’ll take a look at using and manipulating dates and times using JavaScript, and
time conversion between different world time zones. Also covered is how to create a timer that executes
code at regular intervals after the page is loaded.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. What problem does the following code solve?

var myString = “This sentence has has a fault and and we need to fix it.”
var myRegExp = /(\b\w+\b) \1/g;
myString = myString.replace(myRegExp,”$1”);

25937c09.indd 34525937c09.indd 345 9/21/09 12:02:58 AM9/21/09 12:02:58 AM

346

Chapter 9: String Manipulation

Now imagine that you change that code, so that you create the RegExp object like this:

var myRegExp = new RegExp(“(\b\w+\b) \1”);

Why would this not work, and how could you rectify the problem?

 2. Write a regular expression that fi nds all of the occurrences of the word “a” in the following sen-
tence and replaces them with “the”:

 “a dog walked in off a street and ordered a fi nest beer”

The sentence should become:

“the dog walked in off the street and ordered the fi nest beer”

 3. Imagine you have a web site with a message board. Write a regular expression that would
remove barred words. (You can make up your own words!)

25937c09.indd 34625937c09.indd 346 9/21/09 12:02:58 AM9/21/09 12:02:58 AM

10
Date, Time, and Timers

Chapter 5 discussed that the concepts of date and time are embodied in JavaScript through the
Date object. You looked at some of the properties and methods of the Date object, including the
following:

The methods ❑ getDate(), getDay(), getMonth(), and getFullYear() enable you to
retrieve date values from inside a Date object.

The ❑ setDate(), setMonth(), and setFullYear() methods enable you to set the date
values of an existing Date object.

The ❑ getHours(), getMinutes(), getSeconds(), and getMilliseconds() methods
retrieve the time values in a Date object.

The ❑ setHours(), setMinutes(), setSeconds(), and setMilliseconds() methods
enable you to set the time values of an existing Date object.

One thing not covered in that chapter is the idea that the time depends on your location around
the world. In this chapter you’ll be correcting that omission by looking at date and time in relation
to world time.

For example, imagine you have a chat room on your web site and want to organize a chat for a
certain date and time. Simply stating 15:30 is not good enough if your web site attracts interna-
tional visitors. The time 15:30 could be Eastern Standard Time, Pacifi c Standard Time, the time
in the United Kingdom, or even the time in Kuala Lumpur. You could of course say 15:30 EST
and let your visitors work out what that means, but even that isn’t foolproof. There is an EST in
Australia as well as in the United States. Wouldn’t it be great if you could automatically convert
the time to the user’s time zone? In this chapter you’ll see how.

In addition to looking at world time, you’ll also be looking at how to create a timer in a web page.
You’ll see that by using the timer you can trigger code, either at regular intervals or just once (for
example, fi ve seconds after the page has loaded). You’ll see how you can use timers to add a real-
time clock to a web page and how to create scrolling text in the status bar. Timers can also be useful
for creating animations or special effects in your web applications. Finally, you’ll be using the timer
to enable the users of your trivia quiz to give themselves a time limit for answering the questions.

25937c10.indd 34725937c10.indd 347 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

348

Chapter 10: Date, Time, and Timers

World Time
The concept of now means the same point in time everywhere in the world. However, when that point
in time is represented by numbers, those numbers differ depending on where you are. What is needed
is a standard number to represent that moment in time. This is achieved through Coordinated Universal
Time (UTC), which is an international basis of civil and scientifi c time and was implemented in 1964.
It was previously known as GMT (Greenwich Mean Time), and, indeed, at 0:00 UTC it is midnight in
Greenwich, London.

The following table shows local times around the world at 0:00 UTC time.

San
ÅtFrancisco

New York
(EST)

Greenwich,
London

Berlin,
Germany

Tokyo,
Japan

4:00 pm 7:00 pm 0:00 (midnight) 1:00 am 9:00 am

Note that the times given are winter times — no daylight savings hours are taken into account.

The support for UTC in JavaScript comes from a number of methods of the Date object that are similar
to those you have already seen. For each of the set-date- and get-date–type methods you’ve seen so
far, there is a UTC equivalent. For example, whereas setHours() sets the local hour in a Date object,
setUTCHours() does the same thing for UTC time. You’ll be looking at these methods in more detail in
the next section.

In addition, three more methods of the Date object involve world time.

You have the methods toUTCString() and toLocaleString(), which return the date and time
stored in the Date object as a string based on either UTC or local time. Most modern browsers also
have these additional methods: toLocaleTimeString(), toTimeString(), toLocaleDateString(),
and toDateString().

If you simply want to fi nd out the difference in minutes between the current locale’s time and UTC,
you can use the getTimezoneOffset() method. If the time zone is behind UTC, such as in the United
States, it will return a positive number. If the time zone is ahead, such as in Australia or Japan, it will
return a negative number.

Try It Out The World Time Method of the Date Object
In the following code you use the toLocaleString(), toUTCString(), getTimezoneOffset(),
toLocaleTimeString(), toTimeString(), toLocaleDateString(), and toDateString() methods
and write their values out to the page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>example 1</title>

</head>

25937c10.indd 34825937c10.indd 348 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

349

Chapter 10: Date, Time, and Timers

<body>
<div id=”DisplayResultsDiv”></div>

<script type=”text/javascript”>
 var localTime = new Date();
 var resultsHTML = ‘<p>UTC Time is ‘ + localTime.toUTCString() + ‘</p>’;
 resultsHTML += ‘Local Time is ‘ + localTime.toLocaleString() + ‘</p>’;

 resultsHTML += ‘<p>Time Zone Offset is ‘ + localTime.getTimezoneOffset() +
 ‘</p>’;
 resultsHTML += ‘<p>Using toLocalTimeString() gives: ‘
 + localTime.toLocaleTimeString() + ‘</p>’;
 resultsHTML += ‘<p>Using toTimeString() gives: ‘
 + localTime.toTimeString() + ‘</p>’;
 resultsHTML += ‘<p>Using toLocaleDateString() gives: ‘
 + localTime.toLocaleDateString() + ‘</p>’;
 resultsHTML += ‘<p>Using toDateString() gives: : ‘
 + localTime.toDateString() + ‘</p>’;
 document.getElementById(‘DisplayResultsDiv’).innerHTML = resultsHTML;

</script>

</body>
</html>

Save this as timetest.htm and load it into your browser. What you see, of course, depends on which
time zone your computer is set to, but your browser should show something similar to Figure 10-1.

UTC Time is Mon, 18 May 2009 09:13:32 UTC

Local Time is 18 May 2009 05:13:32

Time Zone Offset is 240

Using toLocalTimeString() gives: 05:13:32

Using toTimeString() gives: 05:13:32 EDT

Using toLocaleDateString() gives: 18 May 2009

Using toDateString() gives: : Mon May 18 2009

Figure 10-1

Here the computer’s time is set to 05:13:32 a.m. on May 18, 2009, in America’s Eastern Standard Time
(for example, New York).

So how does this work? At the top of the page’s script block, you have just:

var localTime = new Date();

This creates a new Date object and initializes it to the current date and time based on the client com-
puter’s clock. (Note that the Date object simply stores the number of milliseconds between the date and
time on your computer’s clock and midnight UTC on January 1, 1970.)

25937c10.indd 34925937c10.indd 349 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

350

Chapter 10: Date, Time, and Timers

Within the rest of the script block, you obtain the results from various time and date functions. The
results are stored in variable resultsHTML, and this is then displayed in the page using the last line
and the innerHTML property.

In the following line, you store the string returned by the toUTCString() method in the resultsHTML
variable:

var resultsHTML = ‘<p>UTC Time is ‘ + localTime.toUTCString() + ‘</p>’;

This converts the date and time stored inside the localTime Date object to the equivalent UTC date
and time.

Then the following line stores a string with the local date and time value:

resultsHTML += ‘Local Time is ‘ + localTime.toLocaleString() + ‘</p>’;

Since this time is just based on the user’s computer’s clock, the string returned by this method also adjusts
for Daylight Savings Time (as long as the clock adjusts for it).

Next, this code stores a string with the difference, in minutes, between the local time zone’s time and
that of UTC.

 resultsHTML += ‘<p>Time Zone Offset is ‘ + localTime.getTimezoneOffset() +
 ‘</p>’;

You may notice in Figure 10-1 that the difference between New York time and UTC time is written to be
240 minutes, or 4 hours. Yet in the previous table, you saw that New York time is 5 hours behind UTC.
So what is happening?

Well, in New York on May 18, daylight savings hours are in use. While in the summer it’s 8:00
p.m. in New York when it’s 0:00 UTC, in the winter it’s 7:00 p.m. in New York when it’s 0:00 UTC.
Therefore, in the summer the getTimezoneOffset() method returns 240, whereas in the winter
the getTimezoneOffset() method returns 300.

To illustrate this, compare Figure 10-1 to Figure 10-2, where the date on the computer’s clock has been
advanced to December, which is in the winter when daylight savings is not in effect:

UTC Time is Fri, 18 Dec 2009 10:23:08 UTC

Local Time is 18 December 2009 05:23:08

Time Zone Offset is 300

Using toLocalTimeString() gives: 05:23:08

Using toTimeString() gives: 05:23:08 EST

Using toLocaleDateString() gives: 18 December 2009

Using toDateString() gives: : Fri Dec 18 2009

Figure 10-2

The next two methods are toLocaleTimeString() and toTimeString(), as follows:

 resultsHTML += ‘<p>Using toLocalTimeString() gives: ‘ +
 localTime.toLocaleTimeString() + ‘</p>’;
 resultsHTML += ‘<p>Using toTimeString() gives: ‘ +
 localTime.toTimeString() + ‘</p>’;

25937c10.indd 35025937c10.indd 350 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

351

Chapter 10: Date, Time, and Timers

These methods display just the time part of the date and time held in the Date object. The
toLocaleTimeString() method displays the time as specifi ed by the user on his computer. The sec-
ond method displays the time but also gives an indication of the time zone (in the example, EST for
Eastern Standard Time in America).

The fi nal two methods display the date part of the date and time. The toLocaleDateString() dis-
plays the date in the format the user has specifi ed on his computer. On Windows operating systems,
this is set in the regional settings of the PC’s Control Panel. However, because it relies on the user’s PC
setup, the look of the date varies from computer to computer. The toDateString() method displays
the current date contained in the PC date in a standard format.

Of course, this example relies on the fact that the user’s computer’s clock is set correctly, not something
you can be 100 percent sure of — it’s amazing how many users have their local time zone settings set
completely wrong.

Setting and Getting a Date Object’s UTC Date and Time
When you create a new Date object, you can either initialize it with a value or let JavaScript set it to the
current date and time. Either way, JavaScript assumes you are setting the local time values. If you want
to specify UTC time, you need to use the setUTC type methods, such as setUTCHours().

The following are the seven methods for setting UTC date and time:

setUTCDate() ❑

setUTCFullYear() ❑

setUTCHours() ❑

setUTCMilliseconds() ❑

setUTCMinutes() ❑

setUTCMonth() ❑

setUTCSeconds() ❑

The names pretty much give away exactly what each of the methods does, so let’s launch straight into a
simple example, which sets the UTC time.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>example 2</title>

</head>
<body>
<div id=”DisplayResultsDiv”></div>

<script type=”text/javascript”>

25937c10.indd 35125937c10.indd 351 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

352

Chapter 10: Date, Time, and Timers

 var myDate = new Date();
 myDate.setUTCHours(12);
 myDate.setUTCMinutes(0);
 myDate.setUTCSeconds(0);
 var resultsHTML = ‘<p>’ + myDate.toUTCString() + ‘</p>’;
 resultsHTML += ‘<p>’ + myDate.toLocaleString() + ‘</p>’;

 document.getElementById(‘DisplayResultsDiv’).innerHTML = resultsHTML;

</script>

</body>
</html>

Save this as settimetest.htm. When you load it in your browser, you should see something like that
shown in Figure 10-3 in your web page, although the actual date will depend on the current date and
where you are in the world.

Mon, 18 May 2009 12:00:00 UTC

18 May 2009 08:00:00

Figure 10-3

You might want to change your computer’s time zone and time of year to see how it varies in differ-
ent regions and with daylight savings changes. For example, although I’m in the United Kingdom, I
have changed the settings on my computer for this example to Eastern Standard Time in the U.S. In
Windows you can make the changes by opening the Control Panel and then double-clicking the Date/
Time icon.

So how does this example work? You declare a variable, myDate, and set it to a new Date object. Because
you haven’t initialized the Date object to any value, it contains the local current date and time.

Then, using the setUTC methods, you set the hours, minutes, and seconds so that the time is 12:00:00 UTC
(midday, not midnight).

Now, when you write out the value of myDate as a UTC string, you get 12:00:00 and today’s date. When
you write out the value of the Date object as a local string, you get today’s date and a time that is the
UTC time 12:00:00 converted to the equivalent local time. The local values you’ll see, of course, depend
on your time zone. For example, New Yorkers will see 08:00:00 during the summer and 07:00:00 during
the winter because of daylight savings. In the United Kingdom, in the winter you’ll see 12:00:00, but in
the summer you’ll see 13:00:00.

For getting UTC dates and times, you have the same functions you would use for setting UTC dates
and times, except that this time, for example, it’s getUTCHours() , not setUTCHours().

getUTCDate() ❑

getUTCDay() ❑

25937c10.indd 35225937c10.indd 352 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

353

Chapter 10: Date, Time, and Timers

getUTCFullYear() ❑

getUTCHours() ❑

getUTCMilliseconds() ❑

getUTCMinutes() ❑

getUTCMonth() ❑

getUTCSeconds() ❑

Notice that this time there is an additional method, getUTCDay(). This works in the same way as the
getDay() method and returns the day of the week as a number, from 0 for Sunday to 6 for Saturday.
Because the day of the week is decided by the day of the month, the month, and the year, there is no
setUTCDay() method.

Before moving on to look at timers, let’s use your newly gained knowledge of the Date object and world
time to create a world time converter. Later in this chapter, when you’ve learned how to use timers,
you’ll update the example to produce a world time clock.

Try It Out World Time Converter (Part I)
The World Time Converter lets you calculate the time in different countries:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>example 3</title>

<script type=”text/javascript”>
var timeDiff;
var selectedCity;
var daylightSavingAdjust = 0;
function updateTimeZone()
{
 var lstCity = document.form1.lstCity;
 timeDiff = lstCity.options[lstCity.selectedIndex].value;
 selectedCity = lstCity.options[lstCity.selectedIndex].text;
 updateTime();
}
function getTimeString(dateObject)
{
 var timeString;
 var hours = dateObject.getHours();
 if (hours < 10)
 hours = “0” + hours;
 var minutes = dateObject.getMinutes();
 if (minutes < 10)
 minutes = “0” + minutes;
 var seconds = dateObject.getSeconds()
 if (seconds < 10)
 seconds = “0” + seconds;
 timeString = hours + “:” + minutes + “:” + seconds;
 return timeString;

25937c10.indd 35325937c10.indd 353 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

354

Chapter 10: Date, Time, and Timers

}
function updateTime()
{
 var nowTime = new Date();
 var resultsText = ‘<p>Local Time is ‘ + getTimeString(nowTime) + ‘</p>’;

 nowTime.setMinutes(nowTime.getMinutes() + nowTime.getTimezoneOffset() +
 parseInt(timeDiff) + daylightSavingAdjust);

 resultsText += ‘<p>’ + selectedCity + ‘ time is ‘ +
 getTimeString(nowTime) + ‘</p>’;

 document.getElementById(‘ConversionResultsDIV’).innerHTML = resultsText;

}
function chkDaylightSaving_onclick()
{
 if (document.form1.chkDaylightSaving.checked)
 {
 daylightSavingAdjust = 60;
 }
 else
 {
 daylightSavingAdjust = 0;
 }
 updateTime();
}
</script>
</head>
<body onload=”updateTimeZone()“>

<div id=”ConversionResultsDIV”></div>

<form name=”form1”>
<select size=”5” name=”lstCity” onchange=”updateTimeZone();”>
<option value=”60” selected>Berlin
<option value=”330”>Bombay
<option value=”0”>London
<option value=”180”>Moscow
<option value=”-300”>New York (EST)
<option value=”60”>Paris
<option value=”-480”>San Francisco (PST)
<option value=”600”>Sydney
</select>
<p>
It’s summertime in the selected city
and its country adjusts for summertime daylight saving
<input type=”checkbox” name=”chkDaylightSaving”
 onclick=”return chkDaylightSaving_onclick()“>
</p>
</form>

</body>
</html>

25937c10.indd 35425937c10.indd 354 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

355

Chapter 10: Date, Time, and Timers

Save this page as WorldTimeConverter.htm and then load the page into your browser.

The form layout looks something like the one shown in Figure 10-4. Whenever the user clicks a city in
the list, her local time and the equivalent time in the selected city are shown. In the example shown in
Figure 10-4, the local region is set to Eastern Standard Time in the U.S. (for a city such as New York),
and the selected city is Berlin, with the daylight savings box checked.

Figure 10-4

It’s worth pointing out that this is just an example and not a totally foolproof one, because of the prob-
lems presented by daylight savings. Some countries don’t have it, others do at fi xed times of year, and
yet others do but at varying times of the year. This makes it diffi cult to predict accurately when a coun-
try will have its daylight savings period. You have tried to solve this problem by adding a check box for
the user to click if the city she chooses from the list is using daylight savings hours (which you assume
will put the time in the city forward by one hour).

In addition, don’t forget that some users may not even have their regional settings set correctly —
there’s no easy way around this problem.

In the body of the World Time Converter page is a form in which you’ve defi ned a list box using a
<select> element.

<select size=”5” name=”lstCity” onchange=”updateTimeZone();”>
<option value=”60” selected>Berlin
<option value=”330”>Bombay
<option value=”0”>London
<option value=”180”>Moscow
<option value=”-300”>New York (EST)
<option value=”60”>Paris
<option value=”-480”>San Francisco (PST)
<option value=”600”>Sydney
</select>

Each of the options displays the city’s name in the list box and has its value set to the difference in min-
utes between that city’s time zone (in winter) and UTC. So London, which uses UTC, has a value of 0.
Paris, which is an hour ahead of UTC, has a value of 60 (that is, 60 minutes). New York, which is fi ve
hours behind UTC, has a value of -300.

You’ll see that you have captured the change event of the <select> element and connected it to the
function updateTimeZone() defi ned in a script block in the head of the page. This function involves
three global variables defi ned at the top of the script block.

var timeDiff;
var selectedCity;
var daylightSavingAdjust = 0;

25937c10.indd 35525937c10.indd 355 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

356

Chapter 10: Date, Time, and Timers

The function updateTimeZone() updates two of these, setting the variable timeDiff to the value of
the list’s selected option (that is, the time difference between the selected city and UTC time) and the
variable selectedCity to the text shown for the selected option (that is, the selected city).

function updateTimeZone()
{
 var lstCity = document.form1.lstCity;
 timeDiff = lstCity.options[lstCity.selectedIndex].value;
 selectedCity = lstCity.options[lstCity.selectedIndex].text;

In the fi nal part of the function updateTimeZone(), the function updateTime() is called, as shown in
the following:

 updateTime();
}

Before you go on to look at this function, you return to the fi nal part of the form on the page. This is a
check box, which the user clicks if the city she has chosen from the select list is in the summertime of a
country that uses daylight savings hours.

<input type=”checkbox” name=”chkDaylightSaving”
 onclick=”return chkDaylightSaving_onclick()“>

As you can see, this check box’s click event is connected to another function,
chkDaylightSaving_onclick().

function chkDaylightSaving_onclick()
{
 if (document.form1.chkDaylightSaving.checked)
 {
 daylightSavingAdjust = 60;
 }
 else
 {
 daylightSavingAdjust = 0;
 }

Inside the if statement, the code accesses the check box’s checked property, which returns true if it is
checked and false otherwise. If it has been checked, you set the global variable daylightSavingAdjust
to 60 for summertime daylight savings; otherwise it’s set to 0.

 updateTime();
}

At the end of this function (as at the end of the function updateTimeZone() you saw earlier), the
updateTime() function is called. You’ll look at that next.

In the function updateTime(), you write the current local time and the equivalent time in the selected
city to the results DIV with ID ConversionResultsDIV, which you defi ned in the frameset page.

You start at the top of the function by creating a new Date object, which is stored in the variable nowTime.
The Date object will be initialized to the current local time.

function updateTime()
{
 var nowTime = new Date();

25937c10.indd 35625937c10.indd 356 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

357

Chapter 10: Date, Time, and Timers

Next, to make your code more compact and easier to understand, you defi ne a variable, resultsText,
which will store the conversion results prior to them being written to the /ConversionResultsDIV
DIV object contained in the page.

The fi rst thing you store in variable resultsText is the local time based on the new Date object you just
created. However, you want the time to be nicely formatted as hours:minutes:seconds, so you’ve written
another function, getTimeString(), which does this for you. You’ll look at that shortly.

var resultsText = ‘<p>Local Time is ‘ + getTimeString(nowTime) + ‘</p>’;

Having stored the current time to your resultsText variable, you now need to calculate what the time
would be in the selected city before also storing that to the resultsText variable.

You saw in Chapter 5 that if you set the value of a Date object’s individual parts (such as hours, minutes,
and seconds) to a value beyond their normal range, JavaScript assumes you want to adjust the date,
hours, or minutes to take this into account. For example, if you set the hours to 36, JavaScript simply
changes the hours to 12 and adds one day to the date stored inside the Date object. You use this to your
benefi t in the following line:

 nowTime.setMinutes(nowTime.getMinutes() + nowTime.getTimezoneOffset() +
 parseInt(timeDiff) + daylightSavingAdjust);

Let’s break this line down to see how it works. Suppose that you’re in New York, with the local summer
time of 5:11, and you want to know what time it is in Berlin. How does your line of code calculate this?

First, you get the minutes of the current local time; it’s 5:11, so nowTime.getMinutes() returns 11.

Then you get the difference, in minutes, between the user’s local time and UTC using nowTime
.getTimezoneOffset(). If you are in New York, which is different from UTC by 4 hours during the
summer, this is 240 minutes.

Then you get the integer value of the time difference between the standard winter time in the selected
city and UTC time, which is stored in the variable timeDiff. You’ve used parseInt()here because
it’s one of the few situations where JavaScript gets confused and assumes you want to join two strings
together rather than treat the values as numbers and add them together. Remember that you got
timeDiff from an HTML element’s value, and that an HTML element’s values are strings, even when
they hold characters that are digits. Since you want the time in Berlin, which is 60 minutes different
from UTC time, this value will be 60.

Finally, you add the value of daylightSavingsAdjust. This variable is set in the function
chkdaylightsaving_onclick(), which was discussed earlier. Since it’s summer where you are and
Berlin uses daylight savings hours, this value is 60.

So you have the following:

11 + 240 + 60 + 60 = 371

Therefore nowTime.setMinutes() is setting the minutes to 371. Clearly, there’s no such thing as
371 minutes past the hour, so instead JavaScript assumes you mean 6 hours and 11 minutes after 5:00,
that being 11:11 — the time in Berlin that you wanted.

Finally, the updateTime() function updates the resultsText variable and then writes the results to
the ConversionResultsDIV.

 resultsText += ‘<p>’ + selectedCity + ‘ time is ‘ +
 getTimeString(nowTime) + ‘</p>’;

 document.getElementById(‘ConversionResultsDIV’).innerHTML = resultsText;
}

25937c10.indd 35725937c10.indd 357 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

358

Chapter 10: Date, Time, and Timers

In the updateTime() function, you saw that it uses the function getTimeString() to format the time
string. Let’s look at that function now. This function is passed a Date object as a parameter and uses it
to create a string with the format hours:minutes:seconds.

function getTimeString(dateObject)
{
 var timeString;
 var hours = dateObject.getHours();
 if (hours < 10)
 hours = “0” + hours;
 var minutes = dateObject.getMinutes();
 if (minutes < 10)
 minutes = “0” + minutes;
 var seconds = dateObject.getSeconds()
 if (seconds < 10)
 seconds = “0” + seconds;
 timeString = hours + “:” + minutes + “:” + seconds;
 return timeString;
}

Why do you need this function? Well, you can’t just use this:

getHours() + “:” + getMinutes() + “:” + getSeconds()

That won’t take care of those times when any of the three results of these functions is less than 10. For
example, 1 minute past noon would look like 12:1:00 rather than 12:01:00.

The function therefore gets the values for hours, minutes, and seconds and checks each to see if it is
below 10. If it is, a zero is added to the front of the string. When all the values have been retrieved, they
are concatenated in the variable timeString before being returned to the calling function.

In the next section, you’re going to look at how, by adding a timer, you can make the displayed time
update every second like a clock.

Timers in a Web Page
You can create two types of timers: one-shot timers and continually fi ring timers. The one-shot timer triggers
just once after a certain period of time, and the second type of timer continually triggers at set intervals. You
will investigate each of these types of timers in the next two sections.

Within reasonable limits, you can have as many timers as you want and can set them going at any point
in your code, such as at the window onload event or at the click of a button. Common uses for timers
include advertisement banner pictures that change at regular intervals or display the changing time in
a web page. Also all sorts of animations done with DHTML need setTimeout() or setInterval() —
you’ll be looking at DHTML later on in the book.

25937c10.indd 35825937c10.indd 358 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

359

Chapter 10: Date, Time, and Timers

One-Shot Timer
Setting a one-shot timer is very easy: you just use the window object’s setTimeout() method.

window.setTimeout(“your JavaScript code”, milliseconds_delay)

The method setTimeout() takes two parameters. The fi rst is the JavaScript code you want executed,
and the second is the delay, in milliseconds (thousandths of a second), until the code is executed.

The method returns a value (an integer), which is the timer’s unique ID. If you decide later that you
want to stop the timer fi ring, you use this ID to tell JavaScript which timer you are referring to.

For example, to set a timer that fi res three seconds after the page has loaded, you could use the follow-
ing code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script type=”text/javascript”>
var timerID;
function window_onload()
{
 timerID = setTimeout(“alert(‘Times Up!’)“,3000);
 alert(‘Timer Set’);
}
</script>
</head>
<body onload=”window_onload()“>
</body>
</html>

Save this fi le as timertest.htm, and load it into your browser. In this page a message box appears
3,000 milliseconds (that is, 3 seconds) after the onload event of the window has fi red.

The setTimeout() method can also take a direct reference to a function instead of a JavaScript string.
For example if you have a function called myFunction then you call setTimeout() like this:

window.setTimeout(myFunction, milliseconds_delay)

Although setTimeout() is a method of the window object, you’ll remember that because the window
object is at the top of the hierarchy, you don’t need to use its name when referring to its properties and
methods. Hence, you can use setTimeout() instead of window.setTimeout().

It’s important to note that setting a timer does not stop the script from continuing to execute. The timer
runs in the background and fi res when its time is up. In the meantime the page runs as usual, and any
script after you start the timer’s countdown will run immediately. So, in this example, the alert box telling
you that the timer has been set appears immediately after the code setting the timer has been executed.

What if you decided that you wanted to stop the timer before it fi red?

25937c10.indd 35925937c10.indd 359 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

360

Chapter 10: Date, Time, and Timers

To clear a timer you use the window object’s clearTimeout() method. This takes just one parameter,
the unique timer ID that the setTimeout() method returns.

Let’s alter the preceding example and provide a button that you can click to stop the timer.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script type=”text/javascript”>
var timerID;
function window_onload()
{
 timerID = setTimeout(“alert(‘Times Up!’)“,3000);
 alert(‘Timer Set’);
}

function butStopTimer_onclick()
{
 clearTimeout(timerID);
 alert(“Timer has been cleared”);
}

</script>
</head>
<body onload=”window_onload()“>

<form name=”form1”>
<input type=”button” value=”Stop Timer” name=”butStopTimer”
 onclick=”return butStopTimer_onclick()“ />
</form>

</body>
</html>

Save this as timertest2.htm and load it into your browser. Now if you click the Stop Timer button
before the three seconds are up, the timer will be cleared. This is because the button is connected to the
butStopTimer_onclick() function, which uses the timer’s ID timerID with the clearTimeout()
method of the window object.

Try It Out Updating a Banner Advertisement
You’ll now look at a bigger example using the setTimeout() method. The following example creates a
web page with an image banner advertisement that changes every few seconds.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script language=JavaScript type=”text/javascript”>
var currentImgNumber = 1;
var numberOfImages = 3;

25937c10.indd 36025937c10.indd 360 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

361

Chapter 10: Date, Time, and Timers

function window_onload()
{
 setTimeout(“switchImage()“,3000);
}
function switchImage()
{
 currentImgNumber++;
 document.imgAdvert.src = ‘AdvertImage’ + currentImgNumber + ‘.jpg’;
 if (currentImgNumber < numberOfImages)
 {
 setTimeout(“switchImage()“,3000); }
 }
</script>
</head>
<body onload=”window_onload()“>

</body>
</html>

After you’ve typed in the code, save the page as adverts.htm. You’ll also need to create three images
named AdvertImage1.jpg, AdvertImage2.jpg, and AdvertImage3.jpg (alternatively, the three
images are supplied with the downloadable code for the book).

When the page is loaded, you start with a view of AdvertImage1.jpg, as shown in Figure 10-5.

Figure 10-5

In three seconds, this changes to the second image, shown in Figure 10-6.

Figure 10-6

25937c10.indd 36125937c10.indd 361 9/19/09 10:35:56 PM9/19/09 10:35:56 PM

362

Chapter 10: Date, Time, and Timers

Finally, three seconds later, a third and fi nal image loads, shown in Figure 10-7.

Figure 10-7

When the page loads, the tag has its src attribute set to the fi rst image.

Within the <body> tag, you connect the window object’s onload event handler to the function
window_onload().

function window_onload()
{
 setTimeout(“switchImage()”,3000)
}

In this function, you use the setTimeout() method to start a timer running that will call the function
switchImage() in three seconds. Since you don’t have to clear the timer, you haven’t bothered to save
the timer ID returned by the setTimeout() method.

The switchImage() function changes the value of the src property of the img object corresponding to
the tag in your page.

function switchImage()
{
 currentImgNumber++;
 document.imgAdvert.src = ‘AdvertImage’ + currentImgNumber + ‘.jpg’;

Your advertisement images are numbered from one to three: AdvertImage1.jpg, AdvertImage2.jpg,
and AdvertImage3.jpg. You keep track of the number of the advertisement image currently loaded in
the page in the global variable currentImgNumber, which you defi ned at the top of the script block and
initialized to 1. To get the next image you simply increment that variable by one, and then update the
image loaded by setting the src property of the img object, using the variable currentImgNumber to
build up its full name.

 if (currentImgNumber < numberOfImages)
 {
 setTimeout(‘switchImage()’,3000);
 }
}

You have three advertisement images you want to show. In the if statement you check to see whether
currentImgNumber, which is the number of the current image, is less than three. If it is, it means there

25937c10.indd 36225937c10.indd 362 9/19/09 10:35:57 PM9/19/09 10:35:57 PM

363

Chapter 10: Date, Time, and Timers

are more images to show, and so you set another timer going, identical to the one you set in the window
object’s onload event handler. This timer will call this function again in three seconds.

In earlier browsers, this was the only method of creating a timer that fi red continually at regular intervals.
However, in most current browsers such as IE6+ and Firefox, you’ll see next that there’s an easier way.

Setting a Timer that Fires at Regular Intervals
Modern browsers saw new methods added to the window object for setting timers, namely the
setInterval() and clearInterval() methods. These work in a very similar way to setTimeout()
and clearTimeout(), except that the timer fi res continually at regular intervals rather than just once.

The method setInterval() takes the same parameters as setTimeout(), except that the second
parameter now specifi es the interval, in milliseconds, between each fi ring of the timer, rather than just
the length of time before the timer fi res.

For example, to set a timer that fi res the function myFunction() every fi ve seconds, the code would be
as follows:

var myTimerID = setInterval(“myFunction()”,5000);

As with setTimeout(), the setInterval() method returns a unique timer ID that you’ll need if you
want to clear the timer with clearInterval(), which works identically to clearTimeout(). So to
stop the timer started in the preceding code, you would use the following:

clearInterval(myTimerID);

Try It Out World Time Converter (Part 2)
Let’s change the world time example that you saw earlier, so that it displays a local time and selected
city time as a continually updating clock.

You’ll be making changes to the WorldTimeConverter.htm fi le, so open that in your text editor. Add
the following function before the functions that are already defi ned:

var daylightSavingAdjust = 0;
function window_onload()
{
 updateTimeZone();
 window.setInterval(“updateTime()”,1000);
}
function updateTimeZone()
{

Next edit the <body> tag so it looks like this:

<body onload=”return window_onload()”>

Resave the fi le, and then load WorldTimeConverter.htm into your browser. The page should look the
same as the previous version of the time converter, except that the time is updated every second.

25937c10.indd 36325937c10.indd 363 9/19/09 10:35:57 PM9/19/09 10:35:57 PM

364

Chapter 10: Date, Time, and Timers

The changes you made were short and simple. In the function window_onload(), you have added a
timer that will call the updateTime() function every 1,000 milliseconds — that is, every second. It’ll
keep doing this until you leave the page. Previously your updateTime() function was called only
when the user clicked either a different city in the list box or the summertime check box.

The window_onload() function is connected to the window object’s onload event in the <body> tag,
so after the page has loaded your clock starts running.

That completes your look at this example and also your introduction to timers.

Summary
You started the chapter by looking at Coordinated Universal Time (UTC), which is an international stan-
dard time. You then looked at how to create timers in web pages.

The particular points covered were the following:

The ❑ Date object enables you to set and get UTC time in a way similar to setting a Date object’s
local time by using methods (such as setUTCHours() and getUTCHours()) for setting and get-
ting UTC hours with similar methods for months, years, minutes, seconds, and so on.

A useful tool in international time conversion is the ❑ getTimezoneOffset() method, which
returns the difference, in minutes, between the user’s local time and UTC. One pitfall of this
is that you are assuming the user has correctly set his time zone on his computer. If not,
getTimezoneOffset() is rendered useless, as will be any local date and time methods if the
user’s clock is incorrectly set.

Using the ❑ setTimeout() method, you found you could start a timer going that would fi re just
once after a certain number of milliseconds. setTimeout() takes two parameters: the fi rst is the
code you want executed, and the second is the delay before that code is executed. It returns a
value, the unique timer ID that you can use if you later want to reference the timer; for example,
to stop it before it fi res, you use the clearTimeout() method.

To create a timer that fi res at regular intervals, you used the ❑ setInterval() method, which
works in the same way as setTimeout(), except that it keeps fi ring unless the user leaves the
page or you call the clearInterval() method.

In the next chapter, you’ll be looking at a way of storing information on the user’s computer using
something called a cookie. Although they may not be powerful enough to hold a user’s life history,
they are certainly enough for us to keep track of a user’s visits to the website and what pages they view
when they visit. With that information, you can provide a more customized experience for the user.

25937c10.indd 36425937c10.indd 364 9/19/09 10:35:57 PM9/19/09 10:35:57 PM

365

Chapter 10: Date, Time, and Timers

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Create a web page with an advertisement image at the top. When the page loads, select a ran-
dom image for that advertisement. Every four seconds, make the image change to a different
one and ensure a different advertisement is selected until all the advertisement images have
been seen.

 2. Create a form that gets the user’s date of birth. Then, using that information, tell them on what
day of the week they were born.

25937c10.indd 36525937c10.indd 365 9/19/09 10:35:57 PM9/19/09 10:35:57 PM

25937c10.indd 36625937c10.indd 366 9/19/09 10:35:57 PM9/19/09 10:35:57 PM

11
Storing Information:

Cookies

Our goal as web site programmers should be to make the web site experience as easy and pleasant
for the user as possible. Clearly, well-designed pages with easily navigable layouts are central to
this, but they’re not the whole story. You can go one step further by learning about your users and
using information gained about them to personalize the web site.

For example, imagine a user, whose name you asked on the fi rst visit, returns to your web site. You
could welcome her back to the web site by greeting her by name. Another good example is given
by a web site, such as Amazon’s, that incorporates the one-click purchasing system. By already
knowing the user’s purchasing details, such as credit-card number and delivery address, you can
allow the user to go from viewing a book to buying it in just one click, making the likelihood of the
user purchasing it that much greater. Also, based on information, such as the previous purchases
and browsing patterns of the user, it’s possible to make book suggestions.

Such personalization requires that information about users be stored somewhere in between their
visits to the web site. Previous chapters have mentioned that accessing the user’s local fi le system
from a web application is pretty much off limits because of security restrictions included in brows-
ers. However, you, as a web site developer, can store small amounts of information in a special
place on the user’s local disk, using what is called a cookie. There may be a logical reason why they
are named cookies, but it also provides authors with the opportunity to make a lot of second-rate,
food-related jokes!

Baking Your First Cookie
The key to cookies is the document object’s cookie property. Using this property, you can create
and retrieve cookie data from within your JavaScript code.

You can set a cookie by setting document.cookie to a cookie string. You’ll be looking in detail at
how this cookie string is made up later in the chapter, but let’s fi rst create a simple example of a
cookie and see where the information is stored on the user’s computer.

25937c11.indd 36725937c11.indd 367 9/19/09 10:38:25 PM9/19/09 10:38:25 PM

368

Chapter 11: Storing Information: Cookies

A Fresh-Baked Cookie
The following code will set a cookie with the UserName set as Paul and an expiration date of
28 December, 2020.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script language=”JavaScript” type=”text/javascript”>
 document.cookie = ‘UserName=Paul;expires=Tue, 28 Dec 2020 00:00:00;’;
</script>
</head>
<body>
<p>This page just created a cookie</p>
</body>

</html>

Save the page as FreshBakedCookie.htm. You’ll see how the code works as you learn the parts of a
cookie string, but fi rst let’s see what happens when a cookie is created.

How you view cookies without using code varies with the browser you are using. You’ll see how to do
it fi rst in IE and then in Firefox (FF).

Viewing Cookies in IE
In this section, you’ll see how to look at the cookies that are already stored by IE on your computer. You’ll
then load the cookie-creating page you just created with the preceding code to see what effect this has.

 1. First, you need to open IE. The examples in this chapter use IE 8, so if you’re using an earlier
version of IE you may fi nd the screenshots and menus in slightly different places.

 2. Before you view the cookies, you’ll fi rst clear the temporary Internet fi le folder for the browser,
because this will make it easier to view the cookies that your browser has stored. In IE, select
Tools ➪ Internet Options, which is shown in Figure 11-1.

Figure 11-1

25937c11.indd 36825937c11.indd 368 9/19/09 10:38:25 PM9/19/09 10:38:25 PM

369

Chapter 11: Storing Information: Cookies

Having selected this option, you’ll be presented with the Internet Options dialog box shown in
Figure 11-2.

Figure 11-2

 3. Click the Delete button under Browsing history. Another dialog box appears, as shown in
Figure 11-3.

Figure 11-3

25937c11.indd 36925937c11.indd 369 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

370

Chapter 11: Storing Information: Cookies

 4. Make sure to just the select the tick box next to Temporary Internet Files and then click the Delete
button. You now have a nice clean cache, which makes it easy to see when you create a cookie.

 5. You can now close the dialog box and return to the main Internet Options dialog box.

Let’s have a look at the cookies you have currently residing on your machine.

 6. From the Internet Options dialog box, click the Settings button next to the Delete button
grouped under Browsing history. You should see the dialog box shown in Figure 11-4.

Figure 11-4

 7. Now click the View fi les button, and a list of all the temporary pages and cookie fi les on your
computer will be displayed. If you followed the previous instructions and deleted all tempo-
rary Internet fi les, there should be nothing listed, as shown in Figure 11-5.

The actual cookies, their names, and their values, may look slightly different depending on your com-
puter’s operating system.

You can examine the contents of the cookies by double-clicking them. Note that you may get a warning
about the potential security risk of opening a text fi le, although you are fairly safe with cookies because
they are simply text fi les. In Figure 11-6 you can see the contents of the cookie fi le named google set by
the search engine Google.

As you can see, a cookie is just a plain old text fi le. Each web site, or domain name, has its own text fi le
where all the cookies for that web site are stored. In this case, there’s just one cookie currently stored for
google.co.uk. Domains like amazon.com will almost certainly have many cookies set.

In Figure 11-6, you can see the cookie’s details. Here, the name of the cookie is PREF; its value is a series
of characters, which although indecipherable to you make sense to the Google web site. It was set by the
domain google.co.uk, and it relates to the root directory /. The contents probably look like a mess of
characters, but don’t worry: When you learn how to program cookies, you’ll see that you don’t need to
worry about setting the details in this format.

25937c11.indd 37025937c11.indd 370 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

371

Chapter 11: Storing Information: Cookies

Figure 11-5

Figure 11-6

25937c11.indd 37125937c11.indd 371 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

372

Chapter 11: Storing Information: Cookies

After you have fi nished, close the cookie and click OK on the dialog boxes to return to the browser.

Now let’s load the FreshBakedCookie.htm page into your IE browser. This will set a cookie. Let’s see
how it has changed things:

 1. Return to the Internet Options dialog box (by choosing Tools ➪ Internet Options).

 2. Click the Settings button.

 3. Click View Files. Your computer now shows something like the information in Figure 11-7.

Figure 11-7

Because you are creating a cookie from a web page stored on the local hard drive rather than a server,
its domain name has been set to the name of the directory the web page is stored in. Obviously, this is a
little artifi cial. In reality, people will be loading your web pages from your web site on the Internet and
not off your local hard drive. The Internet address is based on the directory the FreshBakedCookie.htm
fi le was in. You can also see that it expires on December 28, 2020, as you specifi ed when you created the
cookie. Double-click the cookie to view its contents, which look like those in Figure 11-8.

You can see the name you gave to the cookie at the left, UserName, its value, Paul, and also the direc-
tory it’s applicable to. The expiration date is there as well; it’s just not in an easily recognizable form.
Note that you may sometimes need to close the browser and reopen it before you see the cookie fi le.

25937c11.indd 37225937c11.indd 372 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

373

Chapter 11: Storing Information: Cookies

Figure 11-8

Viewing Cookies in Firefox
There is no sharing of cookies between browsers, so the cookies stored when you visited web sites using
an IE browser won’t be available to Firefox and vice versa.

FF keeps its cookies in a totally different place from IE, and the contents are viewed by a different
means. To view cookies in Firefox:

 1. Choose Tools ➪ Internet Options.

 2. Select the Privacy option.

 3. Click the Show Cookies button and you should see the dialog box shown in Figure 11-9.

Figure 11-9

25937c11.indd 37325937c11.indd 373 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

374

Chapter 11: Storing Information: Cookies

 4. Click Close to get back to the browser, and load FreshBakedCookie.htm.

 5. Repeat the process you followed previously to get to the Cookie Manager, and you should fi nd
that the UserName cookie has been added to the box. Because it’s loaded from a fi le on your PC
and not the Internet, the cookie has a blank web address. The expanded cookie details are shown
in Figure 11-10.

Figure 11-10

Note that buttons are provided at the bottom of the Cookie Manager to remove the cookie selected or all
of the cookies that are stored.

Now that you’ve seen how to view cookies manually, let’s look at how you create them and read them
using code. You’ll start by looking at each of the parts making up a cookie string.

The Cookie String
When you are creating a cookie there are six parts you can set: name, value, expires, path, domain,
and secure, although the latter four of these are optional. You’ll now look at each of these in turn.

name and value
The fi rst part of the cookie string consists of the name and value of the cookie. The name is used so that
you can reference the cookie later, and the value is the information part of the cookie.

This name/value part of the cookie string is compulsory; it sort of defeats the point of the cookie if you
don’t store a name or value, because storing information is what cookies are all about. You should make
sure that this part comes fi rst in the cookie string.

25937c11.indd 37425937c11.indd 374 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

375

Chapter 11: Storing Information: Cookies

The value for the cookie is a primitive string, although the string can hold number characters if it is
numerical data that you want to store. If you are storing text, certain characters, such as semicolons,
cannot be used inside the value, unless you use a special encoding, which you’ll see later. In the case of
semicolons, this is because they are used to separate the different parts of the cookie within the cookie
string.

In the following line of code, you set a cookie with the name UserName and the value Paul.

document.cookie = “UserName=Paul;”;

This cookie has a very limited lifespan, which is the length of time the information will continue to
exist. If you don’t set an expiration date, a cookie will expire when the user closes the browser. The
next time the user opens the browser the cookie will be gone. This is fi ne if you just want to store
information for the life of a user session, which is a single visit by the user to your web site. However,
if you want to ensure that your cookie is available for longer, you must set its expiration date, which
you’ll look at next.

expires
If you want a cookie to exist for longer than just a single user session, you need to set an expiration date
using the second part of the cookie string, expires, as follows:

document.cookie = “UserName=Paul;expires=Tue, 28 Dec 2020 00:00:00 GMT; “;

The cookie set by the previous line of code will remain available for future use right up until
December 28, 2020.

Note that the format of the expiration date is very important, especially for IE browsers. It should be
the same format the cookie is given by the toGMTString() method. This method is similar to the
toUTCString() method that you saw in Chapter 10.

In practice, you’ll probably use the Date object to get the current date, and then set a cookie to
expire three or six months after this date. Otherwise, you’re going to need to rewrite your pages
on December 28, 2020.

For example, you could write the following:

var expireDate = new Date();
expireDate.setMonth(expireDate.getMonth() + 6);
document.cookie = “UserName=Paul;expires=” + expireDate.toGMTString() + “;”;

This will create a new cookie called UserName with the value of Paul, which will expire six months
from the current date. Note that other factors can cause a cookie to expire before its expiration date,
such as the user deleting the cookie or the upper cookie limit being reached.

path
You’ll fi nd that 99 percent of the time you will only need to set the name, value, and expires parts of a
cookie. However, at times the other three parts, such as the path part that you are looking at in this

25937c11.indd 37525937c11.indd 375 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

376

Chapter 11: Storing Information: Cookies

section, need to be set. The fi nal two parts, domain and secure, are for advanced use beyond the scope
of a beginners’ book, but you’ll look at them briefl y just for completeness.

You’re probably used to the idea of there being directories on your hard drive. Rather than storing every-
thing on your computer in one place on the hard drive, you divide it into these directories. For example,
you might keep your word-processing fi les in My Documents, your image fi les in My Images, and so on.
You probably also subdivide your directories, so under My Images you might have subdirectories called
My Family and My Holiday.

Well, web servers use the same principle. Rather than putting the whole web site into one web directory,
it’s common and indeed sensible to divide it into various different directories. For example, if you visit
the Wrox web site at www.wrox.com and then click one of the book categories, you’ll fi nd that the path
to the page navigated to is now www.wrox.com/Books/.

This is all very interesting, but why is it relevant to cookies?

The problem is that cookies are specifi c not only to a particular web domain, such as www.wrox.com,
but also to a particular path on that domain. For example, if a page in www.wrox.com/Books/ sets a
cookie, then only pages in that directory or its subdirectories will be able to read and change the cookie.
If a page in www.wrox.com/academic/ tried to read the cookie, it would fail. Why are cookies restricted
like this?

Take the common example of free web space. A lot of companies on the Web enable you to sign up for
free web space. Usually everyone who signs up for this web space has a site at the same domain. For
example, Bob’s web site might be at www.freespace.com/members/bob/. Belinda might have hers at
www.freespace.com/members/belinda. If cookies could be retrieved and changed regardless of the
path, then any cookies set on Bob’s web site could be viewed by Belinda and vice versa. This is clearly
something neither of them would be happy about. Not only is there a security problem, but if, unknown
to each other, they both have a cookie named MyHotCookie, there would be problems with each of
them setting and retrieving the same cookie. When you think how many users a free web space pro-
vider often has, you can see that there is potential for chaos.

Okay, so now you know that cookies are specifi c to a certain path, but what if you want to view
your cookies from two different paths on your server? Say, for example, you have an online store at
www.mywebsite.com/mystore/ but you subdivide the store into subdirectories, such as /Books and
/Games. Now let’s imagine that your checkout is in the directory www.mywebsite.com/mystore/
Checkout. Any cookies set in the /Books and /Games directories won’t be visible to each other or pages
in the /Checkout directory. To get around this you can either set cookies only in the /mystore directory,
since these can be read by that directory and any of its subdirectories, or you can use the path part of
the cookie string to specify that the path of the cookie is /mystore even if it’s being set in the /Games
or /Books or /Checkout subdirectories.

For example, you could do this like so:

document.cookie = “UserName=Paul;expires=Tue, 28 Dec 2020 00:00:00” +
“;path=/mystore;”;

Now, even if the cookie is set by a page in the directory /Books, it will still be accessible to fi les in the
/mystore directory and its subdirectories, such as /Checkout and /Games.

25937c11.indd 37625937c11.indd 376 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

377

Chapter 11: Storing Information: Cookies

If you want to specify that the cookie is available to all subdirectories of the domain it is set in, you can
specify a path of the root directory using the / character.

document.cookie = “UserName=Paul;expires=Tue, 28 Dec 2020 00:00:00;path=/;”;

Now, the cookie will be available to all directories on the domain it is set from. If the web site is just one
of many at that domain, it’s best not to do this because everyone else will also have access to your
cookie information.

It’s important to note that although Windows computers don’t have case-sensitive directory names,
many other operating systems do. For example, if your web site is on a Unix- or Linux-based server, the
path property will be case-sensitive.

domain
The fourth part of the cookie string is the domain. An example of a domain is wrox.com or pawilton.
com. Like the path part of the cookie string, the domain part is optional and it’s unlikely that you’ll fi nd
yourself using it very often.

By default, cookies are available only to pages in the domain they were set in. For example, if you have
your fi rst web site running on a server with the domain MyPersonalWebSite.MyDomain.Com and you
have a second web site running under MyBusinessWebSite.MyDomain.Com, a cookie set in one web
site will not be available to pages accessed under the other domain name, and vice versa. Most of the
time, this is exactly what you want, but if it is not, you can use the domain part of the cookie string to
specify that a cookie is available to all subdomains of the specifi ed domain. For example, the following
sets a cookie that can be shared across both subdomains:

document.cookie = “UserName=Paul;expires=Tue, 28 Dec 2020 00:00:00;path=/” +
“;domain=MyDomain.Com;”;

Note that the domain must be the same: You can’t share www.SomeoneElsesDomain.com with
www.MyDomain.com.

secure
The fi nal part of the cookie string is the secure part. This is simply a Boolean value; if it’s set to true
the cookie will be sent only to a web server that tries to retrieve it using a secure channel. The default
value, which is false, means the cookie will always be sent, regardless of the security. This is only
applicable where you have set up a server with SSL (Secure Sockets Layer).

Creating a Cookie
To make life easier for yourself, you’ll write a function that enables you to create a new cookie and set
certain of its attributes with more ease. This is the fi rst of a number of useful functions you’ll create and
add to a separate .js fi le so you can easily re-use the code in your future projects. You’ll look at the code
fi rst and create an example using it shortly. First create a fi le called CookieFunctions.js and add the
following to it:

function setCookie(cookieName, cookieValue, cookiePath, cookieExpires)
{

25937c11.indd 37725937c11.indd 377 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

378

Chapter 11: Storing Information: Cookies

 cookieValue = escape(cookieValue);
 if (cookieExpires == “”)
 {
 var nowDate = new Date();
 nowDate.setMonth(nowDate.getMonth() + 6);
 cookieExpires = nowDate.toGMTString();
 }
 if (cookiePath != “”)
 {
 cookiePath = “;Path=” + cookiePath;
 }
 document.cookie = cookieName + “=” + cookieValue +
 “;expires=” + cookieExpires + cookiePath;
}

The secure and domain parts of the cookie string are unlikely to be needed, so you allow just the name,
value, expires, and path parts of a cookie to be set by the function. If you don’t want to set a path or
expiration date, you just pass empty strings for those parameters. If no path is specifi ed, the current
directory and its subdirectories will be the path. If no expiration date is set, you just assume a date six
months from now.

The fi rst line of the function introduces the escape() function, which you’ve not seen before.

cookieValue = escape(cookieValue);

When we talked about setting the value of a cookie, we mentioned that certain characters cannot be used
directly, such as a semicolon. (This also applies to the name of the cookie.) To get around this problem,
you can use the built-in escape() and unescape() functions. The escape() function converts charac-
ters that are not text or numbers into the hexadecimal equivalent of their character in the Latin-1
character set, preceded by a % character.

For example, a space has the hexadecimal value 20, and the semicolon the value 3B. So the following
code produces the output shown in Figure 11-11:

alert(escape(“2001 a space odyssey;”));

Figure 11-11

You can see that each space has been converted to %20, the % indicating that it represents an escape or
special character rather than an actual character, and that 20 is the ASCII value of the actual character.
The semicolon has been converted to %3B, as you’d expect.

25937c11.indd 37825937c11.indd 378 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

379

Chapter 11: Storing Information: Cookies

As you’ll see later, when retrieving cookie values you can use the unescape() function to convert from
the encoded version to plain text.

Back to your function; next you have an if statement.

 if (cookieExpires == “”)
 {
 var nowDate = new Date();
 nowDate.setMonth(nowDate.getMonth() + 6);
 cookieExpires = nowDate.toGMTString();
 }

This deals with the situation in which an empty string (“”) has been passed for the cookieExpires
parameter of the function. Because most of the time you want a cookie to last longer than the session it’s
created in, you set a default value for expires that is six months after the current date.

Next, if a value other than an empty string (“”) has been passed to the function for the cookiePath
parameter, you need to add that value when you create the cookie. You simply put “path=” in front of
any value that has been passed in the cookiePath parameter.

 if (cookiePath != “”)
 {
 cookiePath = “;Path=” + cookiePath;
 }

Finally, on the last line you actually create the cookie, putting together the cookieName, cookieValue,
cookieExpires, and cookiePath parts of the string.

 document.cookie = cookieName + “=” + cookieValue +
 “;expires=” + cookieExpires + cookiePath;

You’ll be using the setCookie() function whenever you want to create a new cookie because it makes
setting a cookie slightly easier than having to remember all the parts you want to set. More important,
it can be used to set the expiration date to a date six months ahead of the current date.

For example, to use the function and set a cookie with default values for expires and path, you just
type the following:

setCookie(“cookieName”,”cookieValue”,””,””)

Try It Out Using setCookie()
You’ll now put all this together in a simple example in which you use your setCookie() function to set
three cookies named Name, Age, and FirstVisit. You then display what is in the document.cookie
property to see how it has been affected.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<script language=”JavaScript” type=”text/JavaScript”>

25937c11.indd 37925937c11.indd 379 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

380

Chapter 11: Storing Information: Cookies

function setCookie (cookieName, cookieValue, cookiePath, cookieExpires)
{
 cookieValue = escape(cookieValue);
 if (cookieExpires == “”)
 {
 var nowDate = new Date();
 nowDate.setMonth(nowDate.getMonth() + 6);
 cookieExpires = nowDate.toGMTString();
 }
 if (cookiePath != “”)
 {
 cookiePath = “;Path=” + cookiePath;
 }
 document.cookie = cookieName + “=” + cookieValue +
 “;expires=” + cookieExpires + cookiePath;
}
setCookie(“Name”,”Bob”,””,””);
setCookie(“Age”,”101”,””,””);
setCookie(“FirstVisit”,”10 May 2007”,””,””);
alert(document.cookie);
</script>
</head>
<body>
</body>
</html>

Save the example as CreateCookie.htm and load it into a web browser.

You’ll see the alert box shown in Figure 11-12. Note that all three cookies are displayed as name/value
pairs separated from the others by semicolons, and also that the expiration date is not displayed. If you
had set the path parameter, this also would not have been displayed. The UserName cookie from a pre-
vious example is also displayed.

Figure 11-12

You’ve already seen how the setCookie() function works, so let’s look at the three lines that use the
function to create three new cookies.

setCookie(“Name”,”Bob”,””,””);
setCookie(“Age”,”101”,””,””);
setCookie(“FirstVisit”,”10 May 2007”,””,””);

It is all fairly simple. The fi rst parameter is the name that you’ll give the cookie. (You’ll see shortly how
you can retrieve a value of a cookie based on the name you gave it.) It’s important that the names you
use be only alphanumeric characters, with no spaces, punctuation, or special characters. Although you
can use cookie names with these characters, doing so is more complex and best avoided. Next you have

25937c11.indd 38025937c11.indd 380 9/19/09 10:38:26 PM9/19/09 10:38:26 PM

381

Chapter 11: Storing Information: Cookies

the value you want to give the cookie. The third parameter is the path, and the fourth parameter is the
date you want the cookie to expire on.

For example, take the fi rst line where you use the setCookie() function. Here you are setting a cookie
that will be named Name and have the value Bob. You don’t want to set the path or expires parts, so you
just pass an empty string (“”). Note that you must pass the empty string. You can’t pass nothing at all.

The remaining two lines in the previous code snippet set the cookies named Age and FirstVisit and
set their values to 101 and 10 May 2007, respectively.

If you did want to set the path and the expiration date, how might you change your code?

Well, imagine that you want the path to be /MyStore and the expiration date to be one year in the
future. Then you can use the setCookie() function in the following way:

var expireDate = new Date();
expireDate.setMonth(expireDate.getMonth() + 12);
setCookie(“Name”,”Bob”,”/MyStore”,expireDate.toGMTString());

First, you create a new Date object, and by passing no parameter to its constructor, you let it initialize
itself to the current date. In the next line, you add 12 months to that date. When setting the cookie using
setCookie() you pass “/MyStore” as the path and expireDate.toGMTString() as the expires
parameter.

What about the situation in which you’ve created your cookie, say, one named Name with a value of Bob,
and you want to change its value? To do this, you can simply set the same cookie again, but with the
new value. To change the cookie named Name from a value of Bob to a value of Bobby you’d need the
following code:

setCookie(“Name”,”Bobby”,””,””);

What if you want to delete an existing cookie? Well, that’s easy. Just make it expire by changing its
value and setting its expiration date to a date in the past, as in the following example:

setCookie(“Name”,””,””,”Mon, 1 Jan 1990 00:00:00”);

Getting a Cookie’s Value
In the preceding example, you used document.cookie to retrieve a string containing information about
the cookies that have been set. However, this string has two limitations.

The cookies are retrieved in name/value pairs, with each individual cookie separated by a semi- ❑

colon. The expires, path, domain, and secure parts of the cookie are not available to you and
cannot be retrieved.

The ❑ cookie property enables you to retrieve only all the cookies set for a particular path and,
when they are hosted on a web server, that web server. So, for example, there’s no simple way
of just getting the value of a cookie with the name Age. To do this you’ll have to use the string
manipulation techniques you learned in previous chapters to cut the information you want out
of the returned string.

25937c11.indd 38125937c11.indd 381 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

382

Chapter 11: Storing Information: Cookies

A lot of different ways exist to get the value of an individual cookie, but the way you’ll use has the
advantage of working with all cookie-enabled browsers. You use the following function, which needs
to be added to your CookieFunctions.js fi le:

function getCookieValue(cookieName)
{
 var cookieValue = document.cookie;
 var cookieStartsAt = cookieValue.indexOf(“ “ + cookieName + “=”);
 if (cookieStartsAt == -1)
 {
 cookieStartsAt = cookieValue.indexOf(cookieName + “=”);
 }
 if (cookieStartsAt == -1)
 {
 cookieValue = null;
 }
 else
 {
 cookieStartsAt = cookieValue.indexOf(“=”, cookieStartsAt) + 1;
 var cookieEndsAt = cookieValue.indexOf(“;”, cookieStartsAt);
 if (cookieEndsAt == -1)
 {
 cookieEndsAt = cookieValue.length;
 }
 cookieValue = unescape(cookieValue.substring(cookieStartsAt,
 cookieEndsAt));
 }
 return cookieValue;
}

The fi rst task of the function is to get the document.cookie string and store it in the variable
cookieValue.

 var cookieValue = document.cookie;

Next, you need to fi nd out where the cookie with the name passed as a parameter to the function is
within the cookieValue string. You use the indexOf() method of the String object to fi nd this infor-
mation, as shown in the following line:

 var cookieStartsAt = cookieValue.indexOf(“ “ + cookieName + “=”);

The method will return either the character position where the individual cookie is found or -1 if no
such name, and therefore no such cookie, exists. You search on “ “ + cookieName + “=” so that you
don’t inadvertently fi nd cookie names or values containing the name that you require. For example, if
you have xFoo, Foo, and yFoo as cookie names, a search for Foo without a space in front would match
xFoo fi rst, which is not what you want!

If cookieStartsAt is -1, the cookie either does not exist or it’s at the very beginning of the cookie
string so there is no space in front of its name. To see which of these is true, you do another search, this
time with no space.

 if (cookieStartsAt == -1)
 {

25937c11.indd 38225937c11.indd 382 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

383

Chapter 11: Storing Information: Cookies

 cookieStartsAt = cookieValue.indexOf(cookieName + “=”);
 }

In the next if statement, you check to see whether the cookie has been found. If it hasn’t, you set the
cookieValue variable to null.

 if (cookieStartsAt == -1)
 {
 cookieValue = null;
 }

If the cookie has been found, you get the value of the cookie you want from the document.cookie
string in an else statement. You do this by fi nding the start and the end of the value part of that cookie.
The start will be immediately after the equals sign following the name. So in the following line, you
fi nd the equals sign following the name of the cookie in the string by starting the indexOf() search for
an equals sign from the character at which the cookie name/value pair starts.

 else
 {
 cookieStartsAt = cookieValue.indexOf(“=”, cookieStartsAt) + 1;

You then add one to this value to move past the equals sign.

The end of the cookie value will either be at the next semicolon or at the end of the string, whichever
comes fi rst. You do a search for a semicolon, starting from the cookieStartsAt index, in the next line.

 var cookieEndsAt = cookieValue.indexOf(“;”, cookieStartsAt);

If the cookie you are after is the last one in the string, there will be no semicolon and the cookieEndsAt
variable will be -1 for no match. In this case you know the end of the cookie value must be the end of
the string, so you set the variable cookieEndsAt to the length of the string.

 if (cookieEndsAt == -1)
 {
 cookieEndsAt = cookieValue.length;
 }

You then get the cookie’s value using the substring() method to cut the value that you want out of the
main string. Because you have encoded the string with the escape() function, you need to unescape it
to get the real value, hence the use of the unescape() function.

 cookieValue = unescape(cookieValue.substring(cookieStartsAt,
 cookieEndsAt));
 }

Finally you return the value of the cookie to the calling function.

 return cookieValue;

25937c11.indd 38325937c11.indd 383 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

384

Chapter 11: Storing Information: Cookies

Try It Out What’s New?
Now you know how to create and retrieve cookies. Let’s use this knowledge in an example in which
you check to see if any changes have been made to a web site since the user last visited it.

You’ll be creating two pages for this example. The fi rst is the main page for a web site; the second is the
page with details of new additions and changes to the web site. A link to the second page will appear
on the fi rst page only if the user has visited the page before (that is, if a cookie exists) but has not visited
since the page was last updated.

Let’s create the fi rst page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Cookie Example</title>
<script language=”JavaScript” type=”text/JavaScript”
src=”CookieFunctions.js”></script>
<script language=”JavaScript” type=”text/javascript”>
var lastUpdated = new Date(“Tue, 28 Dec 2020”);

</script>
</head>
<body>
<h1 align=center>Welcome to my website</h1>

<div align=”center” id=”WhatsNewDiv”></div>
<script>
var lastVisit = getCookieValue(“LastVisit”);
if (lastVisit != null)
{
 lastVisit = new Date(lastVisit);
 if (lastVisit < lastUpdated)
 {
 document.getElementById(‘WhatsNewDiv’).innerHTML = ‘’
 }
}
var nowDate = new Date();
setCookie(“LastVisit”, nowDate.toGMTString(),”“,”“)
</script>

<body>
</body>
</html>

This page needs to be saved as MainPage.htm. Note that it contains the two functions, setCookie()
and getCookieValue(), that you created earlier. Also note that the image WhatsNew.jpg is referenced
by this page; either create such an image, or retrieve the image from the code download.

Next, you’ll just create a simple page to link to for the What’s New details.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

25937c11.indd 38425937c11.indd 384 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

385

Chapter 11: Storing Information: Cookies

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Untitled Document</title>
</head>
<body>
<h2 align=center>Here’s what’s new on this website</h2>
</body>
</html>

Save this page as WhatsNew.htm.

Load MainPage.htm into a browser. The fi rst time you go to the main page, there will be nothing but
a heading saying “Welcome to my website.” Obviously, if this were a real web site, it would have a bit
more than that, but it suffi ces for this example. However, refresh the page and suddenly you’ll see the
page shown in Figure 11-13.

Figure 11-13

If you click the image you’re taken to the WhatsNew.htm page detailing all the things added to the web
site since you last visited. Obviously nothing has actually changed in your example web site between
you loading the page and then refreshing it. You got around this for testing purposes by setting the
date when the web site last changed, stored in variable lastUpdated, to a date in the future (here,
December 28, 2020).

The WhatsNew.htm page is just a simple HTML page with no script, so you will confi ne your attention
to MainPage.htm. In the head of the page in the fi rst script block, you declare the variable
lastUpdated.

var lastUpdated = new Date(“Tue, 28 Dec 2020”);

Whenever you make a change to the web site, this variable needs to be changed. It’s currently set to
Tue, 28 Dec 2020, just to make sure you see a What’s New image when you refresh the page. A better
alternative for live pages would be the document.lastModified property, which returns the date on
which the page was last changed.

25937c11.indd 38525937c11.indd 385 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

386

Chapter 11: Storing Information: Cookies

The rest of the fi rst script block contains the two functions getCookieValue() and setCookie() that
you looked at earlier. These haven’t changed, so they’re not discussed in detail here.

The interesting material is in the second script block within the body of the page. First you get the date
of the user’s last visit from the LastVisit cookie using the getCookieValue() function.

var lastVisit = getCookieValue(“LastVisit”);

If it’s null, the user has either never been here before, or it has been six or more months since the last
visit and the cookie has expired. Either way, you won’t put a What’s New image up because everything
is new if the user is a fi rst-time visitor, and a lot has probably changed in the last six months — more
than what your What’s New page will detail.

If lastVisit is not null, you need to check whether the user visited the site before it was last updated,
and if so to direct the user to a page that shows what is new. You do this within the if statement.

if (lastVisit != null)
{
 lastVisit = new Date(lastVisit);
 if (lastVisit < lastUpdated)
 {
 document.getElementById(‘WhatsNewDiv’).innerHTML = ‘’ +
‘’
 }
}

You fi rst create a new Date object based on the value of lastVisit and store that back into the
lastVisit variable. Then, in the condition of the inner if statement, you compare the date of the user’s
last visit with the date on which you last updated the web site. If things have changed since the user’s last
visit, you write the What’s New image to the page, so the user can click it and fi nd out what’s new.
Finally, at the end of the script block, you reset the LastVisit cookie to today’s date and time using
the setCookie() function.

var nowDate = new Date();
setCookie(“LastVisit”, nowDate.toGMTString(),””,””)

Cookie Limitations
You should be aware of a number of limitations when using cookies.

A User May Disable Cookies
The fi rst limitation is that although all modern browsers support cookies, the user may have disabled
them. In Firefox you can do this by selecting the Options menu, followed by the privacy tab and the
cookies tab. In IE you select Internet Options on the Tools menu. Select the Privacy tab and you can
change the level with the scroll control. Most users have session cookies enabled by default. Session
cookies are cookies that last for as long as the user is browsing your web site. After he’s closed the

25937c11.indd 38625937c11.indd 386 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

387

Chapter 11: Storing Information: Cookies

browser the cookie will be cleared. More permanent cookies are also normally enabled by default.
However, third-party cookies, those from a third-party site, are usually disabled. These are the cookies
used for tracking people from site to site and hence the ones that raise the most privacy concerns.

Both the functions that you’ve made for creating and getting cookies will cause no errors when cookies
are disabled, but of course the value of any cookie set will be null and you need to make sure your
code can cope with this.

You could set a default action for when cookies are disabled. In the previous example, if cookies are
disabled, the What’s New image will never appear.

Alternatively, you can let the user know that your web site needs cookies to function by putting a mes-
sage to that effect in the web page.

Another tactic is to actively check to see whether cookies are enabled and, if not, to take some action to
cope with this, such as by directing the user to a page with less functionality that does not need cook-
ies. How do you check to see if cookies are enabled?

In the following script, you set a test cookie and then read back its value. If the value is null, you know
cookies are disabled.

setCookie(“TestCookie”,”Yes”,””,””);
if (getCookieValue(“TestCookie”) == null)
 {
 alert(“This website requires cookies to function”);
 }

Number and Information Limitation
A second limitation is on the number of cookies you can set on the user’s computer for your web site and
how much information can be stored in each. In older browsers for each domain it was common you
could store only up to 20 cookies, and each cookie pair — that is, the name and value of the cookie com-
bined — must not be more than 4,096 characters in size. It’s also important to be aware that all browsers
do set some upper limit for the number of cookies stored. When that limit is reached, older cookies,
regardless of expiration date, are often deleted. Modern, for example IE7+ and Firefox browsers have
a 50-cookie limit, though this may vary between browsers.

To get around the cookie limits, you can store more than one piece of information per cookie. This
example uses multiple cookies:

setCookie(“Name”,”Karen”,””,””)
setCookie(“Age”,”44”,””,””)
setCookie(“LastVisit”,”10 Jan 2001”,””,””)

You could combine this information into one cookie, with each detail separated by a semicolon.

setCookie(“UserDetails”,”Karen;44;10 Jan 2001”,””,””)

Because the setCookie() function escapes the value of the cookie, there is no confusion between the
semicolons separating pieces of data in the value of the cookie, and the semicolons separating the parts

25937c11.indd 38725937c11.indd 387 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

388

Chapter 11: Storing Information: Cookies

of the cookie. When you get the cookie value back using getCookieValue(), you just split it into its
constituent parts; however, you must remember the order you stored it in.

var cookieValues = getCookieValue(“UserDetails”);
cookieValues = cookieValues.split(“;”)
alert(“Name = “ + cookieValues[0]);
alert(“Age = “ + cookieValues[1]);
alert(“Last Visit = “ + cookieValues[2]);

Now you have acquired three pieces of information and still have 19 cookies left in the jar.

Cookie Security and IE6+
IE6 introduced a new security policy for cookies based on the P3P an initiative set up by the World Wide
Web Consortium (W3C), a web standards body that deals with not only cookies but HTML, XML, and var-
ious other browser standards. (You’ll learn more about W3C in Chapter 13. Its web site is at www.w3.org
and http://www.w3.org/P3P/ and contains a host of information, though it’s far from being an easy
read.) The general aim of P3P is to reassure users who are worried that cookies are being used to obtain
personal information about their browsing habits. In IE 6+ you can select Tools ➪ Internet Options and
click the Privacy tab to see where you can set the level of privacy with regards to cookies (see Figure 11-14).
You have to strike a balance between setting it so high that no web site will work and so low that your
browsing habits and potentially personal data may be recorded.

Figure 11-14

25937c11.indd 38825937c11.indd 388 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

389

Chapter 11: Storing Information: Cookies

Generally, by default session cookies — cookies that last for only as long as the user is browsing your
web site — are allowed. As soon as the user closes the browser, the session ends. However, if you want
cookies to outlast the user’s visit to your web site, you need to create a privacy policy in line with the
P3P recommendations. This sounds a little complex, and certainly the fi ne details of the policy can be.
However, IBM has created software that makes creating the XML for the policy fairly easy. It’s not
cheap, but there is a 90-day free trial. It can be downloaded from www.alphaworks.ibm.com/tech/
p3peditor.

Plenty of other policy creation software is available; this just happens to be quite easy to use. P3PEdit is
available for much lower cost from http://policyeditor.com/.

Summary
In this chapter, you looked at how you can store information on the user’s computer and use this infor-
mation to personalize the web site. In particular you found the following:

The key to cookies is the ❑ document object’s cookie property.

Creating a cookie simply involves setting the ❑ document.cookie property. Cookies have six
different parts you can set. These are the name, the value, when it expires, the path it is avail-
able on, the domain it’s available on, and fi nally whether it should be sent only over secure
connections.

Although setting a new cookie is fairly easy, you found that retrieving its value actually gets all ❑

the cookies for that domain and path, and that you need to split up the cookie name/value pairs
to get a specifi c cookie using String object methods.

Cookies have a number of limitations. First, the user can set the browser to disable cookies, and ❑

second, you are limited to 50 cookies per domain in IE7+ and Firefox and a maximum of 4,096
characters per cookie name/value pair.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Create a page that keeps track of how many times the page has been visited by the user in the
last month.

 2. Use cookies to load a different advertisement every time a user visits a web page.

25937c11.indd 38925937c11.indd 389 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

25937c11.indd 39025937c11.indd 390 9/19/09 10:38:27 PM9/19/09 10:38:27 PM

12
Dynamic HTML and the W3C

Document Object Model

JavaScript’s primary role in web development is to interact with the user, to add some kind of behav-
ior to your web page. You’ve seen this in previous chapters, especially Chapter 7 and Chapter 8
when you were scripting forms, frames, and windows. User interaction doesn’t stop there, though.
In fact, JavaScript gives you the ability to completely change all aspects of a web page after it’s
loaded in the browser, a technique called Dynamic HTML (DHTML). What gives JavaScript this power
over a web page is the Document Object Model (DOM), a tree-like representation of the web page.

The DOM is one of the most misunderstood standards set forth by the World Wide Web
Consortium (W3C), a body of developers who recommend standards for browser makers and
web developers to follow. The DOM gives developers a way of representing everything on a
web page so that it is accessible via a common set of properties and methods in JavaScript. By
everything, I mean everything. You can literally change anything on the page: the graphics, tables,
forms, and even text itself by altering a relevant DOM property with JavaScript.

The DOM should not be confused with the Browser Object Model (BOM) that was introduced
in Chapter 6. You’ll see the differences between the two in detail shortly. For now, though, think
of the BOM as a browser-dependent representation of every feature of the browser, from the
browser buttons, URL address line, and title bar to the browser window controls, as well as parts
of the web page, too. The DOM, however, deals only with the contents of the browser window
or web page (in other words, the HTML document). It makes the document available in such a
way that any browser can use exactly the same code to access and manipulate the content of the
document. To summarize, the BOM gives you access to the browser and some of the document,
whereas the DOM gives you access to all of the document, but only the document.

The great thing about the DOM is that it is browser- and platform-independent. This means that
developers can fi nally consider the possibility of writing a piece of JavaScript code that dynami-
cally updates the page, and that will work on any DOM-compliant browser without any tweak-
ing. You should not need to code for different browsers or take excessive care when coding.

The DOM achieves this independence by representing the contents of the page as a generic tree
structure. Whereas in the BOM you might expect to access something by looking up a property

25937c12.indd 39125937c12.indd 391 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

392

Chapter 12: Dynamic HTML and the W3C Document Object Model

relevant to that part of the browser and adjusting it, the DOM requires navigation through its represen-
tation of the page through nodes and properties that are not specifi c to the browser. You’ll explore this
structure a little later.

However, to use the DOM standard, ultimately developers require browsers that completely implement
the standard, something that no browser does 100 percent effi ciently, unfortunately. To make matters
worse, no one browser implements the exact same DOM features that other browsers support, but
don’t be scared off yet. All modern browsers support many of the same features outlined by the DOM
standard.

To provide a true perspective on how the DOM fi ts in, I need to take a brief look at its relationship
with some of the other currently existing web standards. I should also talk about why there is more
than one version of the DOM standard, and why there are different sections within the standard itself.
(Microsoft, in particular, added a number of extensions to the W3C DOM.) After understanding the
relationships, you can look at using JavaScript to navigate the DOM and to dynamically change content
on web pages in more than one browser, in a way that used to be impossible with pure DHTML. The
following items are on your agenda:

The (X)HTML, ECMAScript, and XML Web standards ❑

The DOM standards ❑

Manipulating the DOM ❑

Writing cross-browser DHTML ❑

Remember that the examples within this chapter are targeted only at the DOM (with very few excep-
tions) and will be supported only by IE 8+, Firefox 1+, Opera, Safari 3+, and Chrome.

The Web Standards
When Tim Berners-Lee created HTML in 1991, he probably had little idea that this technology for mark-
ing up scientifi c papers via a set of tags for his own global hypertext project, known as the World Wide
Web, would within a matter of years become a battleground between the two giants of the software
business of the mid-1990s. HTML was a simple derivation from the meta-language Standard Generalized
Markup Language (SGML) that had been kicking around academic institutions for decades. Its purpose
was to preserve the structure of the documents created with it. HTML depends on a protocol, HyperText
Transfer Protocol (HTTP), to transmit documents back and forth between the resource and the viewer (for
example, the server and the client computer). These two technologies formed the foundation of the Web,
and it quickly became obvious in the early 1990s that there needed to be some sort of policing of both
specifi cations to ensure a common implementation of HTML and HTTP so that communications could be
conducted worldwide.

In 1994, Tim founded the World Wide Web Consortium (W3C), a body that set out to oversee the techni-
cal evolution of the Web. It has three main aims:

To provide universal access, so that anybody can use the Web ❑

To develop a software environment to allow users to make use of the Web ❑

To guide the development of the Web, taking into consideration the legal, social, and commer- ❑

cial issues that arise

25937c12.indd 39225937c12.indd 392 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

393

Chapter 12: Dynamic HTML and the W3C Document Object Model

Each new version of a specifi cation of a web technology has to be carefully vetted by W3C before it can
become a standard. The HTML and HTTP specifi cations are subject to this process, and each new set of
updates to these specifi cations yields a new version of the standard. Each standard has to go through
a working draft, a candidate recommendation, and a proposed recommendation stage before it can be
considered a fully operational standard. At each stage of the process, members of the W3C consortium
vote on which amendments to make, or even on whether to cancel the standard completely and send it
back to square one.

It sounds like a very painful and laborious method of creating a standard format, and not something
you’d think of as spearheading the cutting edge of technical revolution. Indeed, the software companies
of the mid-1990s found the processes involved too slow, so they set the tone by implementing new inno-
vations themselves and then submitting them to the standards body for approval. Netscape started by
introducing new elements in its browser, such as the element, to add presentational content
to the web pages. This proved popular, so Netscape added a whole raft of elements that enabled users
to alter aspects of presentation and style on web pages. Indeed, JavaScript itself was such an innovation
from Netscape.

When Microsoft entered the fray, it was playing catch up for the fi rst two iterations of its Internet
Explorer browser. However, with Internet Explorer 3 in 1996, they established a roughly equal set of
features to compete with Netscape and so were able to add their own browser-specifi c elements. Very
quickly, the Web polarized between these two browsers, and pages viewable on one browser quite
often wouldn’t appear on another. One problem was that Microsoft had used its much stronger position
in the market to give away its browser for free, whereas Netscape still needed to sell its own browser
because it couldn’t afford to freely distribute its fl agship product. To maintain a competitive position,
Netscape needed to offer new features to make the user want to purchase its browser rather than use
the free Microsoft browser.

Things came to a head with both companies’ version 4 browsers, which introduced dynamic page func-
tionality. Unfortunately, Netscape did this by the means of a <layer /> element, whereas Microsoft
chose to implement it via scripting language properties and methods. The W3C needed to take a fi rm
stand here, because one of its three principal aims had been compromised: that of universal access.
How could access be universal if users needed a specifi c vendor’s browser to view a particular set of
pages? They decided on a solution that used existing standard HTML elements and Cascading Style
Sheets, both of which had been adopted as part of the Microsoft solution. As a result, Microsoft gained
a dominant position in the browser war. It hasn’t relinquished this position; the Netscape Navigator
browser never had a counter to Internet Explorer’s constant updates, and its replacement, Firefox, was
slow to expand its user base. Other browsers, such as Opera, Safari, and Chrome, along with Firefox
continue to chip away at Microsoft’s dominance in the market. However, Microsoft’s Internet Explorer
is still the most widely used browser today.

With a relatively stable version of the HTML standard in place with version 4.01, which boasts a set of
features that will take any browser manufacturer a long time to implement completely, attention was
turned to other areas of the Web. A new set of standards was introduced in the late 1990s to govern the
means of presenting HTML (style sheets) and the representation of the HTML document in script (the
Document Object Model or DOM). Other standards emerged, such as Extensible Markup Language
(XML), which offers a common format for representing data in a way that preserves its structure.

The W3C web site (www.w3.org) has a huge number of standards in varying stages of creation. Not
all of these standards concern us, and not all of the ones that concern us can be found at this web site.
However, the vast majority of standards that do concern us can be found there.

25937c12.indd 39325937c12.indd 393 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

394

Chapter 12: Dynamic HTML and the W3C Document Object Model

You’re going to take a brief look now at the technologies and standards that have an impact on JavaScript
and fi nd out a little background information about each. Some of the technologies may be unfamiliar,
but you need to be aware of their existence at the very least.

HTML
The HTML standard is maintained by W3C. This standard might seem fairly straightforward, given
that each version should have introduced just a few new elements, but in reality the life of the standards
body was vastly complicated by the browser wars. The versions 1.0 and 2.0 of HTML were simple, small
documents, but when W3C came to debate HTML version 3.0, they found that much of the new func-
tionality it was discussing had already been superseded by new additions, such as the <applet /> and
<style /> elements, to the version 3.0 browser’s appletstyle. Version 3.0 was discarded, and a new
version, 3.2, became the standard.

However, a lot of the features that went into HTML 3.2 had been introduced at the behest of the browser
manufacturers and ran contrary to the spirit of HTML, which was intended solely to defi ne structure.
The new features, stemming from the element, just confused the issue and added unneces-
sary presentational features to HTML. These features really became redundant with the introduction
of style sheets. So suddenly, in the version 3 browsers, there were three distinct ways to defi ne the style
of an item of text. Which was the correct way? And if all three ways were used, which style did the text
ultimately assume? Version 4.0 of the HTML standard was left with the job of unmuddling this chaotic
mess and designated a lot of elements for deprecation (removal) in the next version of the standards.
It was the largest version of the standard so far and included features that linked it to style sheets and
the Document Object Model, and also added facilities for the visually impaired and other unfairly
neglected minority interest areas. The current version of the HTML standard is 4.01.

XML
Extensible Markup Language, or XML, is a standard for creating markup languages (such as HTML). XML
itself has been designed to look as much like HTML as possible, but that’s where the similarities end.

HTML is actually an application of the meta-language SGML, which is also a standard for generating
markup languages. SGML has been used to create many markup languages, but HTML is the only one
that enjoys universal familiarity and popularity. XML, on the other hand, is a direct subset of SGML.
SGML is generally considered to be too complex for people to be able to accurately represent it on a
computer, so XML is a simplifi ed subset of SGML. XML is also much easier to read than SGML.

XML’s main use is for the creation of customized markup languages that are very similar in look and
structure to HTML. One main use of XML is in the representation of data. Whereas a normal database
can store information, databases don’t allow individual stored items to contain information about their
structure. XML can use the element structure of markup languages to represent any kind of data in
which information contained in the structure might otherwise be lost, from mathematical and chemical
notations to the entire works of Shakespeare. For instance, an XML document could be used to record
that Mark Antony doesn’t appear until Scene II Act I of Shakespeare’s play Julius Caesar, whereas a rela-
tional database would struggle to do this without a lot of extra fi elds, as the following example shows:

<play>
 <act1>

25937c12.indd 39425937c12.indd 394 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

395

Chapter 12: Dynamic HTML and the W3C Document Object Model

 <scene1>
 ...
 </scene1>
 <scene2>
 <mark_anthony>
 Caesar, my lord?
 </mark_anthony>
 </scene2>
 <scene3>
 ...
 </scene3>
 </act1>
 <act2>
 ...
 </act2>
 <act3>
 ...
 </act3>
 <act4>
 ...
 </act4>
 <act5>
 ...
 </act5>
</play>

XML is also completely cross-platform, because it contains just text. This means that an application on
Windows can package up the data in this format, and a completely different application on Unix should
be able to unravel and read that data.

XHTML
XHTML 1.0 is where the XML and HTML standards meet. XHTML is just a respecifi cation of the HTML
4.01 standard as an XML application. The advantages of this allow XHTML to get around some of the
problems caused by a browser’s particular interpretation of HTML, and more importantly to provide
a specifi cation that allows the Web to be used by clients other than browsers, such as those provided
on handheld computers, mobile phones, or any software device that might be connected to the Internet
(perhaps even your refrigerator!).

XHTML also offers a common method for specifying your own elements, instead of just adding
them randomly. You can specify new elements via a common method using an XML Document Type
Declaration and an XML name-space. (A namespace is a means of identifying one set of elements
uniquely from any other set of elements.) This is particularly useful for the new markup languages,
such as Wireless Markup Language (WML), which are geared toward mobile technology and require a
different set of elements to be able to display on the reduced interfaces.

That said, anyone familiar with HTML should be able to look at an XHTML page and understand
what’s going on. There are differences, but not ones that add new elements or attributes.

25937c12.indd 39525937c12.indd 395 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

396

Chapter 12: Dynamic HTML and the W3C Document Object Model

The following is a list of the main differences between XHTML and HTML:

XHTML recommends an XML declaration to be placed at the top of the fi le in the following form: ❑

<?xml version=’1.0’?>.

You also have to provide a DTD declaration at the top of the fi le, referencing the version of the ❑

DTD standard you are using.

You have to include a reference to the XML namespace within the HTML element. ❑

You need to supply all XHTML element names in lowercase, because XML is case-sensitive. ❑

The ❑ <head/> and <body/> elements must always be included in an XHTML document.

Tags must always be closed and nested correctly. When only one tag is required, such as with ❑

line breaks, the tag is closed with a slash (for example,
).

Attribute values must always be denoted by quotation marks. ❑

This set of rules makes it possible to keep a strict hierarchical structure to the elements, which in
turn makes it possible for the Document Object Model to work correctly. This also makes it possible
to standardize markup languages across all device types, so that the next version of WML (the markup
language of mobile devices) will also be compliant with the XHTML standard. You should now be cre-
ating your HTML documents according to the previously specifi ed rules. If you do so, you will fi nd it
much, much easier to write JavaScript that manipulates the page via the DOM and works in the way it
was intended.

ECMAScript
JavaScript itself followed a trajectory similar to that of HTML. It was fi rst used in Netscape Navigator
and then added to Internet Explorer. The Internet Explorer version of JavaScript was christened Jscript and
wasn’t far removed from the version of JavaScript found in Netscape Navigator. However, once again,
there were differences between the two implementations and a lot of care had to be taken in writing script
for both browsers.

Oddly enough, it was left to the European Computer Manufacturers Association (ECMA) to propose a
standard specifi cation for JavaScript. This didn’t appear until a few versions of JavaScript had already
been released. Unlike HTML, which had been developed from the start with the W3C consortium,
JavaScript was a proprietary creation. This is the reason that it is governed by a different standards body.
Microsoft and Netscape both agreed to use ECMA as the standards vehicle/debating forum, because of
its reputation for fast-tracking standards and perhaps also because of its perceived neutrality. The name
ECMAScript was chosen so as not to be biased toward either vendor’s creation and also because the
“Java” part of JavaScript was a trademark of Sun licensed to Netscape. The standard, named ECMA-262,
laid down a specifi cation that was roughly equivalent to the JavaScript 1.1 specifi cation.

That said, the ECMAScript standard covers only core JavaScript features, such as the primitive data types
of numbers, strings, and Booleans, native objects like the Date, Array, and Math objects, and the procedural
statements like for and while loops, and if and else conditionals. It makes no reference to client-side
objects or collections, such as window, document, forms, links, and images. So, although the standard
helps to make core programming tasks compatible when both JavaScript and JScript comply with it, it is

25937c12.indd 39625937c12.indd 396 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

397

Chapter 12: Dynamic HTML and the W3C Document Object Model

of no use in making the scripting of client-side objects compatible between the main browsers. Some
incompatibilities remain.

All current implementations of JavaScript are expected to conform to the current ECMAScript stan-
dard, which is ECMAScript edition 3, published in December 1999. As of November 2006, ECMAScript
edition 4 is under development.

Although there used to be quite a few irregularities between the Microsoft and Netscape dialects of
JavaScript, they’re now similar enough to be considered the same language. The Opera and Safari browsers
also support and offer the same kind of support for the standard. This is a good example of how standards
have provided a uniform language across browser implementations, although a feature was similar to the
one that took place over HTML still rages to a lesser degree over JavaScript.

It’s now time for you to consider the Document Object Model itself.

The Document Object Model
The Document Object Model (DOM) is, as previously mentioned, a way of representing the document
independent of browser type. It allows a developer to access the document via a common set of objects,
properties, methods, and events, and to alter the contents of the web page dynamically using scripts.

Several types of script languages, such as JavaScript and VBScript, are available. Each requires a dif-
ferent syntax and therefore a different approach when you’re programming. Even when you’re using a
language common to all browsers, such as JavaScript, you should be aware that some small variations
are usually added to the language by the browser vendor. So, to guarantee that you don’t fall afoul of a
particular implementation, the W3C has provided a generic set of objects, properties, and methods that
should be available in all scripting languages, in the form of the DOM standard.

The DOM Standard
We haven’t talked about the DOM standard so far, and for a particular reason: It’s not the easiest stan-
dard to follow. Supporting a generic set of properties and methods has proved to be a very complex
task, and the DOM standard has been broken down into separate levels and sections to deal with the
different areas. The different levels of the standard are all at differing stages of completion.

Level 0
Level 0 is a bit of a misnomer, as there wasn’t really a level 0 of the standard. This term in fact refers to
the “old way” of doing things — the methods implemented by the browser vendors before the DOM
standard. Someone mentioning level 0 properties is referring to a more linear notation of accessing prop-
erties and methods. For example, typically you’d reference items on a form with the following code:

document.forms[0].elements[1].value = “button1”;

We’re not going to cover such properties and methods in this chapter, because they have been super-
seded by newer methods.

25937c12.indd 39725937c12.indd 397 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

398

Chapter 12: Dynamic HTML and the W3C Document Object Model

Level 1
Level 1 is the fi rst version of the standard. It is split into two sections: one is defi ned as core (objects,
properties, and methods that can apply to both XML and HTML) and the other as HTML (HTML-
specifi c objects, properties, and methods). The fi rst section deals with how to go about navigating and
manipulating the structure of the document. The objects, properties, and methods in this section are
very abstract. The second section deals with HTML only and offers a set of objects corresponding to
all the HTML elements. This chapter mainly deals with the second section — level 1 of the standard.

In 2000, level 1 was revamped and corrected, though it only made it to a working draft and not to a full
W3C recommendation.

Level 2
Level 2 is complete and many of the properties, methods, and events have been implemented by today’s
browsers. It has sections that add specifi cations for events and style sheets to the specifi cations for core
and HTML-specifi c properties and events. (It also provides sections on views and traversal ranges, nei-
ther of which will be covered in this book; you can fi nd more information at www.w3.org/TR/2000/
PR-DOM-Level-2-Views-20000927/ and www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-
Range-20000927/.) You will be making use of some of the features of the event and style sections of
this level of the DOM later in this chapter because they have been implemented in the latest versions of
both browsers.

Level 3
Level 3 achieved recommendation status in 2004. It is intended to resolve a lot of the complications that
still exist in the event model in level 2 of the standard, and adds support for XML features, such as con-
tents models and being able to save the DOM as an XML document. Only a few browsers support some
features of Level 3.

Browser Compliance with the Standards
Almost no browser has 100 percent compliance with any standard, although some, such as Firefox,
Opera, and Safari/Chrome, come pretty close with the DOM. Therefore, there is no guarantee that
all the objects, properties, and methods of the DOM standard will be available in a given version of a
browser, although a few level 1 and level 2 objects, properties, and methods have been available in all
the browsers for some time.

Much of the material in the DOM standards has only recently been clarifi ed, and a lot of DOM features
and support have been added to only the latest browser versions. For this reason, examples in this
chapter will be guaranteed to work on only the latest versions of IE, Firefox, Opera, Safari, and Chrome.
Although cross-browser scripting is a realistic goal, backwards compatible support isn’t at all.

Although the standards might still not be fully implemented, they do give you an idea as to how a
particular property or method should be implemented, and provide a guideline for all browser manu-
facturers to agree to work toward in later versions of their browsers. The DOM doesn’t introduce any
new HTML elements or style sheet properties to achieve its ends. The idea of the DOM is to make use
of the existing technologies, and quite often the existing properties and methods of one or other of the
browsers.

25937c12.indd 39825937c12.indd 398 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

399

Chapter 12: Dynamic HTML and the W3C Document Object Model

Differences Between the DOM and the BOM
As mentioned earlier, there are two main differences between the Document Object Model and the
Browser Object Model. However, complicating the issue is the fact that a BOM is sometimes referred to
under the name DOM. Look out for this in any literature on the subject.

First, the DOM covers only the document of the web page, whereas the BOM offers scripting access ❑

to all areas of the browsers, from the buttons to the title bar, including some parts of the page.

Second, the BOM is unique to a particular browser. This makes sense if you think about it: You ❑

can’t expect to standardize browsers, because they have to offer competitive features. Therefore,
you need a different set of properties and methods and even objects to be able to manipulate
them with JavaScript.

Representing the HTML Document as a Tree Structure
Because HTML is standardized so that web pages can contain only the standard features supported in
the language, such as forms, tables, images, and the like, a common method of accessing these features is
needed. This is where the DOM comes in. It provides a uniform representation of the HTML document,
and it does this by representing the entire HTML document/web page as a tree structure.

In fact, it is possible to represent any HTML document (or any XML document for that matter) as a tree
structure. The only precondition is that the HTML document should be well formed. Different browsers
might be tolerant, to a greater or lesser extent, of quirks such as unclosed tags, or HTML form controls
not being enclosed within a <form/> element; however, for the structure of the HTML document to be
accurately depicted, you need to be able to always predict the structure of the document. Abuses of the
structure, such as unclosed tags, stop you from depicting the structure as a true hierarchy, and there-
fore cannot be allowed. The ability to access elements via the DOM depends on the ability to represent
the page as a hierarchy.

What Is a Tree Structure?
If you’re not familiar with the concept of trees, don’t worry. They’re just a diagrammatic means of repre-
senting a hierarchical structure.

Let’s consider the example of a book with several chapters. If instructed to, you could fi nd the third
line on page 543 after a little searching. If an updated edition of the book were printed with extra
chapters, more likely than not you’d fail to fi nd the same text if you followed those same instructions.
However, if the instructions were changed to, say, “Find the chapter on still-life painting, the section on
using watercolors, and the paragraph on positioning light sources,” you’d be able to fi nd that even in
a reprinted edition with extra pages and chapters, albeit with perhaps a little more effort than the fi rst
request required.

Books aren’t particularly dynamic examples, but given something like a web page, where the informa-
tion could be changed daily, or even hourly, can you see why it would be of more use to give the second
set of directions than the fi rst? The same principle applies with the DOM. Navigating the DOM in a
hierarchical fashion, rather than in a strictly linear way, makes much more sense. When you treat the
DOM as a tree, it becomes easy to navigate the page in this fashion. Consider how you locate fi les on
Windows using Windows Explorer, which creates a tree view of folders through which you can drill
down. Instead of looking for a fi le alphabetically, you locate it by going into a particular folder.

25937c12.indd 39925937c12.indd 399 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

400

Chapter 12: Dynamic HTML and the W3C Document Object Model

The rules for creating trees are simple. You start at the top of the tree with the document and the ele-
ment that contains all other elements in the page. The document is the root node. A node is just a point
on the tree representing a particular element or attribute of an element, or even the text that an element
contains. The root node contains all other nodes, such as the DTD declaration, the XML declaration if
applicable, and the root element (the HTML or XML element that contains all other elements). The root
element should always be the <html/> element in an HTML document. Underneath the root element
are the HTML elements that the root element contains. Typically an HTML page will have <head/> and
<body/> elements inside the <html/> element. These elements are represented as nodes underneath
the root element’s node, which itself is underneath the root node at the top of the tree (see Figure 12-1).

<HTML>

<BODY><HEAD>

Figure 12-1

The two nodes representing the <head/> and <body/> elements are examples of child nodes, and the
<html/> element’s node above them is a parent node. Since the <head/> and <body/> elements are both
child nodes of the <html/> element, they both go on the same level underneath the parent node <html/>
element. The <head/> and <body/> elements in turn contain other child nodes/HTML elements, which
will appear at a level underneath their nodes. So child nodes can also be parent nodes. Each time you
encounter a set of HTML elements within another element, they each form a separate node at the same
level on the tree. The easiest way of explaining this clearly is with an example.

An Example HTML Page
Let’s consider a basic HTML page such as this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
</head>
<body>
 <h1>My Heading</h1>
 <p>This is some text in a paragraph.</p>
</body>
</html>

The <html/> element contains <head/> and <body/> elements. Only the <body/> element actually
contains anything. It contains an <h1/> element and a <p/> element. The <h1/> element contains the
text My Heading. When you reach an item, such as text, an image, or an element, that contains no others,
the tree structure will terminate at that node. Such a node is termed a leaf node. You then continue to the
<p/> node, which contains some text, which is also a node in the document. You can depict this with
the tree structure shown in Figure 12-2.

25937c12.indd 40025937c12.indd 400 9/22/09 9:21:06 AM9/22/09 9:21:06 AM

401

Chapter 12: Dynamic HTML and the W3C Document Object Model

<HTML>

<BODY><HEAD>

<P><H1>

'This is some
text in a

paragraph'

'My Heading'

Figure 12-2

Simple, eh? This example is almost too straightforward, so let’s move on to a slightly more complex one
that involves a table as well.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>This is a test page</title>
</head>
<body>
 Below is a table...
 <table border=”1”>
 <tr>
 <td>Row 1 Cell 1</td>
 <td>Row 1 Cell 2</td>
 </tr>
 <tr>
 <td>Row 2 Cell 1</td>
 <td>Row 2 Cell 2</td>
 </tr>
 </table>
</body>
</html>

There is nothing out of the ordinary here; the document contains a table with two rows with two cells
in each row. You can once again represent the hierarchical structure of your page (for example, the fact
that the <html/> element contains a <head/> and a <body/> element, and that the <head/> element
contains a <title/> element, and so on) using your tree structure, as shown in Figure 12-3.

25937c12.indd 40125937c12.indd 401 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

402

Chapter 12: Dynamic HTML and the W3C Document Object Model

<HTML>

<BODY><HEAD>

<TABLE>

'Below is
a table'

<TR><TR>

<TD><TD> <TD><TD>

<TITLE>

'This is a
test page'

'Row1
Cell2'

'Row1
Cell1'

'Row2
Cell2'

'Row2
Cell1'

Figure 12-3

The top level of the tree is simple enough; the <html/> element contains <head/> and <body/> ele-
ments. The <head/> element in turn contains a <title/> element and the <title/> element contains
some text. This text node is a child node that terminates the branch (a leaf node). You can then go back
to the next node, the <body/> element node, and go down that branch. Here you have two elements con-
tained within the <body/> element, the and <table/> elements. Although the element
contains only text and terminates there, the <table/> element contains two rows (<tr/>), and the two
<tr/> elements contain two table cell (<td/>) elements. Only then do you get to the bottom of the tree
with the text contained in each table cell. Your tree is now a complete representation of your HTML code.

The Core DOM Objects
What you have seen so far has been highly theoretical, so let’s get a little more practical now.

The DOM provides you with a concrete set of objects, properties, and methods that you can access through
JavaScript to navigate the tree structure of the DOM. Let’s start with the set of objects, within the DOM,
that is used to represent the nodes (elements, attributes, or text) on your tree.

Base DOM Objects
Three objects, shown in the following table, are known as the base DOM objects.

Object Description

Node Each node in the document has its own Node object

NodeList This is a list of Node objects

NamedNodeMap This provides access by name rather than by index to all the Node objects

25937c12.indd 40225937c12.indd 402 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

403

Chapter 12: Dynamic HTML and the W3C Document Object Model

This is where the DOM differs from the BOM quite extensively. The BOM objects have names that
relate to a specifi c part of the browser, such as the window object, or the forms and images collections.
As mentioned earlier, to be able to navigate in the web page as though it were a tree, you have to do it
abstractly. You can have no prior knowledge of the structure of the page; everything ultimately is just
a node. To move around from HTML element to HTML element, or element to attribute, you have to go
from node to node. This also means you can add, replace, or remove parts of your web page without
affecting the structure as a whole, as you’re just changing nodes. This is why you have three rather
obscure-sounding objects that represent your tree structure.

I’ve already mentioned that the top of your tree structure is the root node, and that the root node con-
tains the XML declaration, the DTD, and the root element. Therefore you need more than just these three
objects to represent your document. In fact there are different objects to represent the different types of
nodes on the tree.

High-Level DOM Objects
Since everything in the DOM is a node, it’s no wonder that nodes come in a variety of types. Is the node
an element, an attribute, or just plain text? The Node object has different objects to represent each possible
type of node. The following is a complete list of all the different node type objects that can be accessed via
the DOM. A lot of them won’t concern you in this book, because they’re better suited for XML documents
and not HTML documents, but you should notice that your three main types of nodes, namely element,
attribute, and text, are all covered.

Object Description

Document The root node of the document

DocumentType The DTD or schema type of the XML document

DocumentFragment A temporary storage space for parts of the document

EntityReference A reference to an entity in the XML document

Element An element in the document

Attr An attribute of an element in the document

ProcessingInstruction A processing instruction

Comment A comment in an XML document or HTML document

Text Text that must form a child node of an element

CDATASection A CDATA section within the XML document

Entity An unparsed entity in the DTD

Notation A notation declared within a DTD

We won’t go over most of these objects in this chapter, but if you need to navigate the DOM of an XML
document, you will have to use them.

25937c12.indd 40325937c12.indd 403 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

404

Chapter 12: Dynamic HTML and the W3C Document Object Model

Each of these objects inherits all the properties and methods of the Node object, but also has some prop-
erties and methods of its own. You will be looking at some examples in the next section.

DOM Objects and Their Properties and Methods
If you tried to look at the properties and methods of all the objects in the DOM, it would take up half
the book. Instead you’re going to actively consider only three of the objects, namely the Node object, the
Element object, and the Document object. This is all you’ll need to be able to create, amend, and navi-
gate your tree structure. Also, you’re not going to spend ages trawling through each of the properties
and methods of these objects, but rather look only at some of the most useful properties and methods and
use them to achieve specifi c ends.

Appendix C contains a relatively complete reference to the DOM, its objects, and their properties.

The Document Object and its Methods
The Document reference type exposes various properties and methods that are very helpful to someone
scripting the DOM. Its methods allow you to fi nd individual or groups of elements and create new elements,
attributes, and text nodes. Any DOM scripter should know these methods and properties, as they’re
used quite frequently.

The Document object’s methods are probably the most important methods you’ll learn. While many
tools are at your disposal, the Document object’s methods let you fi nd, create, and delete elements in
your page.

Finding Elements or an Element
Let’s say you have an HTML web page — how do you go about getting back a particular element on the
page in script? The Document reference type exposes the follow methods to perform this task:

Methods of the Document Object Description

getElementById(idValue) Returns a reference (a node) to an element, when supplied
with the value of the id attribute of that element

getElementsByTagName(tagName) Returns a reference (a node list) to a set of elements that
have the same tag as the one supplied in the argument

The fi rst of the two methods, getElementById(), requires you to ensure that every element you want
to quickly access in the page uses an id attribute, otherwise a null value (a word indicating a missing
or unknown value) will be returned by your method. Let’s go back to the fi rst example and add some
id attributes to the elements.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”><head>
 <title>example</title>
</head>

25937c12.indd 40425937c12.indd 404 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

405

Chapter 12: Dynamic HTML and the W3C Document Object Model

<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
</body>
</html>

Now you can use the getElementById() method to return a reference to any of the HTML elements
with id attributes on your page. For example, if you add the following code in the shaded section, you
can fi nd and reference the <h1/> element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 alert(document.getElementById(“heading1”));
 </script>
</body>
</html>

Figure 12-4 shows the result of this code in Firefox.

Figure 12-4

HTMLHeadingElement is an object of the HTML DOM. All HTML elements have a corresponding
reference type in the DOM. See Appendix C for more objects of the HTML DOM.

You might have been expecting it to return something along the lines of <h1/> or <h1 id=”heading1”>,
but all it’s actually returning is a reference to the <h1/> element. This reference to the <h1/> element is

25937c12.indd 40525937c12.indd 405 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

406

Chapter 12: Dynamic HTML and the W3C Document Object Model

more useful though, as you can use it to alter attributes of the element, such as by changing the color or
size. You can do this via the style object.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var h1Element = document.getElementById(“heading1”);
 h1Element.style.color = “red”;
 </script>
</body>
</html>

If you display this in the browser, you see that you can directly infl uence the attributes of the <h1/>
element in script, as you have done here by changing its text color to red.

The style object points to the style attribute of an element; it allows you to change the CSS style
assigned to an element. The style object will be covered later in the chapter.

The second of the two methods, getElementsByTagName(), works in the same way, but, as its name
implies, it can return more than one element. If you were to go back to the example HTML document
with the table and use this method to return the table cells (<td/>) in your code, you would get a node
list containing a total of four table. You’d still have only one object returned, but this object would be a
collection of elements. Remember that collections are array-like structures, so specify the index num-
ber for the specifi c element you want from the collection. You can use the square brackets if you wish;
another alternative is to use the item() method of the NodeList object, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>This is a test page</title>
</head>
<body>
 Below is a table...
 <table border=”1”>
 <tr>
 <td>Row 1 Cell 1</td>
 <td>Row 1 Cell 2</td>
 </tr>
 <tr>
 <td>Row 2 Cell 1</td>
 <td>Row 2 Cell 2</td>
 </tr>
 </table>

25937c12.indd 40625937c12.indd 406 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

407

Chapter 12: Dynamic HTML and the W3C Document Object Model

 <script type=”text/javascript”>
 var tdElement = document.getElementsByTagName(“td”).item(0);
 tdElement.style.color = “red”;
 </script>
</body>
</html>

If you ran this example, once again using the style object, it would alter the style of the contents of
the fi rst cell in the table. If you wanted to change the color of all the cells in this way, you could loop
through the node list, like this:

<script type=”text/javascript”>
 var tdElements = document.getElementsByTagName(“td”);
 var length = tdElements.length;

 for (var i = 0; i < length; i++)
 {
 tdElements[i].style.color = “red”;
 }
</script>

One thing to note about the getElementsByTagName() method is that it takes the element names
within quotation marks and without the angle brackets <> that normally surround tags.

Creating Elements and Text
The Document object also boasts some methods for creating elements and text, shown in the following table.

Methods of the Document Object Description

createElement(elementName) Creates an element node with the specifi ed tag name.
Returns the created element.

createTextNode(text) Creates and returns a text node with the supplied text.

The following code demonstrates the use of these methods:

var pElement = document.createElement(“p”);
var text = document.createTextNode(“This is some text.”);

This code creates a <p/> element and stores its reference in the pElement variable. It then creates a text
node containing the text This is some text. and stores its reference in the text variable.

It’s not enough to create nodes, however; you have to add them to the document. We’ll discuss how to
do this in just a bit.

Property of the Document Object: Getting the Document’s Root Element
You’ve now got a reference to individual elements on the page, but what about the tree structure men-
tioned earlier? The tree structure encompasses all the elements and nodes on the page and gives them
a hierarchical structure. If you want to reference that structure, you need a particular property of the

25937c12.indd 40725937c12.indd 407 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

408

Chapter 12: Dynamic HTML and the W3C Document Object Model

document object that returns the outermost element of your document. In HTML, this should always be
the <html/> element. The property that returns this element is documentElement, as shown in the fol-
lowing table.

Property of the
Document Object

Description

documentElement Returns a reference to the outermost element of the document (the root
element, for example <html/>)

You can use documentElement as follows. If you go back to the simple HTML page, you can transfer
your entire DOM into one variable like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var container = document.documentElement;
 </script>
</body>
</html>

The variable container now contains the root element, which is <html/>. The documentElement
property returned a reference to this element in the form of an object, an Element object to be precise.
The Element object has its own set of properties and methods. If you want to use them, you can refer to
them by using the variable name, followed by the method or property name.

container.elementObjectProperty

Fortunately, the Element object has only one property.

The Element Object
The Element object is quite simple, especially compared to the Node object (which you’ll be introduced
to later). It exposes only a handful of members (properties and methods).

Member Name Description

tagName Gets the element’s tag name

getAttribute() Gets the value of an attribute

setAttribute() Sets an attribute with a specifi ed value

removeAttribute() Removes a specifi c attribute and its value from the element

25937c12.indd 40825937c12.indd 408 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

409

Chapter 12: Dynamic HTML and the W3C Document Object Model

Getting the Element’s Tag Name: The tagName Property
The sole property of the Element object is a reference to the tag name of the element: the tagName
property.

In the previous example, the variable container contained the <html/> element. Add the following
highlighted line, which makes use of the tagName property.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var container = document.documentElement;
 alert(container.tagName);
 </script>
</body>
</html>

This code will now return proof that your variable container holds the outermost element, and by
implication all other elements within it (see Figure 12-5).

Figure 12-5

25937c12.indd 40925937c12.indd 409 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

410

Chapter 12: Dynamic HTML and the W3C Document Object Model

Methods of the Element Object: Getting and Setting Attributes
If you want to set any element attributes, other than the style attribute, you should use the DOM-
specifi c methods of the Element object.

The three methods you can use to return and alter the contents of an HTML element’s attributes are
getAttribute(), setAttribute(), and removeAttribute(), as shown in the following table.

Methods of the Element Object Description

getAttribute(attributeName) Returns the value of the supplied attribute. Returns
null or an empty string if the attribute does not exist.

setAttribute(attributeName,
value)

Sets the value of an attribute.

removeAttribute(attributeName) Removes the value of an attribute and replaces it with
the default value.

Let’s take a quick look at how these methods work now.

Try It Out Playing with Attributes
Open your text editor and type the following code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 1</title>
</head>
<body>
 <p id=”paragraph1”>This is some text.</p>
 <script type=”text/javascript”>
 var pElement = document.getElementById(“paragraph1”);
 pElement.setAttribute(“align”, “center”);

 alert(pElement.getAttribute(“align”));

 pElement.removeAttribute(“align”);
 </script>
</body>
</html>

Save this as ch12_examp1.htm and open it in a browser. You’ll see the text of the <p/> element in the
center of the screen and an alert box displaying the text center (Figure 12-6).

25937c12.indd 41025937c12.indd 410 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

411

Chapter 12: Dynamic HTML and the W3C Document Object Model

Figure 12-6

When you click the OK button, you’ll see the text become left-aligned (Figure 12-7).

Figure 12-7

25937c12.indd 41125937c12.indd 411 9/22/09 9:21:07 AM9/22/09 9:21:07 AM

412

Chapter 12: Dynamic HTML and the W3C Document Object Model

This HTML page contains one <p/> element with an id value of paragraph1. You use this value in
the JavaScript code to fi nd the element node and store its reference in the pElement variable with the
getElementById() method.

var pElement = document.getElementById(“paragraph1”);

Now that you have a reference to the element, you use the setAttribute() method to set the align
attribute to center.

pElement.setAttribute(“align”, “center”);

The result of this code moves the text to the center of the browser’s window.

You then use the getAttribute() method to get the align attribute’s value and display it in an alert box:

alert(pElement.getAttribute(“align”));

This code displays the value “center” in the alert box.

Finally, you remove the align attribute with the removeAttribute() method, effectively making the
text left-aligned.

Strictly speaking, the align attribute is deprecated under HTML 4.0, but you used it because it works
and because it has one of the most easily demonstrable visual effects on a web page.

The Node Object
You now have your element or elements from the web page, but what happens if you want to move
through your page systematically, from element to element or from attribute to attribute? This is where
you need to step back to a lower level. To move among elements, attributes, and text, you have to move
among nodes in your tree structure. It doesn’t matter what is contained within the node, or rather, what
sort of node it is. This is why you need to go back to one of the objects of the core DOM specifi cation.
Your whole tree structure is made up of these base-level Node objects.

The Node Object: Navigating the DOM
The following table lists some common properties of the Node object that provide information about the
node, whether it is an element, attribute, or text, and enable you to move from one node to another.

Properties of the Node Object Description of Property

firstChild Returns the fi rst child node of an element

lastChild Returns the last child node of an element

previousSibling Returns the previous child node of an element at the same level
as the current child node

nextSibling Returns the next child node of an element at the same level as
the current child node

25937c12.indd 41225937c12.indd 412 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

413

Chapter 12: Dynamic HTML and the W3C Document Object Model

Properties of the Node Object Description of Property

ownerDocument Returns the root node of the document that contains the node
(note this is not available in IE 5 or 5.5)

parentNode Returns the element that contains the current node in the tree
structure

nodeName Returns the name of the node

nodeType Returns the type of the node as a number

nodeValue Gets or sets the value of the node in plain text format

Let’s take a quick look at how some of these properties work. Consider this familiar example:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var h1Element = document.getElementById(“heading1”);
 h1Element.style.color = “red”;
 </script>
</body>
</html>

You can now use h1Element to navigate your tree structure and make whatever changes you desire. The
following code uses h1Element as a starting point to fi nd the <p/> element and change its text color:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var h1Element = document.getElementById(“heading1”);
 h1Element.style.color = “red”;

 var pElement;
 if (h1Element.nextSibling.nodeType == 1)
 {

25937c12.indd 41325937c12.indd 413 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

414

Chapter 12: Dynamic HTML and the W3C Document Object Model

 pElement = h1Element.nextSibling;
 }
 else
 {
 pElement = h1Element.nextSibling.nextSibling;
 }
 pElement.style.color = “red”;
 </script>
</body>
</html>

This code demonstrates a fundamental difference between IE’s DOM and the DOM present in other
browsers. Firefox’s, Safari’s, Chrome’s, and Opera’s DOM treat everything as a node in the DOM
tree, including the whitespace between elements. On the other hand, IE strips out this unnecessary
whitespace. So to locate the <p/> element in the previous example, a sibling to the <h1/> element, it is
required to check the next sibling’s nodeType property. An element’s node type is 1 (text nodes are 3).
If the nextSibling’s nodeType is 1, then you assign that sibling’s reference to pElement. If not, you get
the next sibling (the <p/> element) of h1Element’s sibling (the whitespace text node).

In effect, you are navigating through the tree structure as shown in Figure 12-8.

<BODY>

<P><H1>

'This is
some text in
a paragraph'

'My Heading'

Figure 12-8

The same principles also work in reverse. You can go back and change the code to navigate from the
<p/> element to the <h1/> element.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>example</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>
 <script type=”text/javascript”>
 var pElement = document.getElementById(“paragraph1”);

25937c12.indd 41425937c12.indd 414 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

415

Chapter 12: Dynamic HTML and the W3C Document Object Model

 pElement.style.color = “red”;

 var h1Element;
 if (pElement.previousSibling.nodeType == 1)
 {
 h1Element = pElement.previousSibling;
 }
 else
 {
 h1Element = pElement.previousSibling.previousSibling;
 }
 h1Element.style.color = “red”;
 </script>
</body>
</html>

What you’re doing here is the exact opposite; you fi nd the <p/> by passing the value of its id attribute
to the getElementById() method and storing the returned element reference to the pElement vari-
able. You then fi nd the correct previous sibling so that your code works in all browsers, and you change
its text color to red.

Try It Out Navigating Your HTML Document Using the DOM
Up until now, you’ve been cheating, because you haven’t truly navigated your HTML document. You’ve
just used document.getElementById() to return an element and navigated to different nodes from
there. Now let’s use the documentElement property of the document object and do this properly. You’ll
start at the top of your tree and move down through the child nodes to get at those elements; then
you’ll navigate through your child nodes and change the properties in the same way as before.

Type the following into your text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 2</title>
</head>
<body>
 <h1 id=”heading1”>My Heading</h1>
 <p id=”paragraph1”>This is some text in a paragraph</p>

 <script type=”text/javascript”>
 var htmlElement; // htmlElement stores reference to <html>
 var headElement; // headingElement stores reference to <head>
 var bodyElement; // bodyElement stores reference to <body>
 var h1Element; // h1Element stores reference to <h1>
 var pElement; // pElement stores reference to <p>

 htmlElement = document.documentElement;
 headElement = htmlElement.firstChild;

 alert(headElement.tagName);

 if (headElement.nextSibling.nodeType == 3)

25937c12.indd 41525937c12.indd 415 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

416

Chapter 12: Dynamic HTML and the W3C Document Object Model

 {
 bodyElement = headElement.nextSibling.nextSibling;
 }
 else
 {
 bodyElement = headElement.nextSibling;
 }

 alert(bodyElement.tagName);

 if (bodyElement.firstChild.nodeType == 3)
 {
 h1Element = bodyElement.firstChild.nextSibling;
 }
 else
 {
 h1Element = bodyElement.firstChild;
 }

 alert(h1Element.tagName);
 h1Element.style.fontFamily = “Arial”;

 if (h1Element.nextSibling.nodeType == 3)
 {
 pElement = h1Element.nextSibling.nextSibling;
 }
 else
 {
 pElement = h1Element.nextSibling;
 }

 alert(pElement.tagName);
 pElement.style.fontFamily = “Arial”;

 if (pElement.previousSibling.nodeType==3)
 {
 h1Element = pElement.previousSibling.previousSibling
 }
 else
 {
 h1Element = pElement.previousSibling
 }
 h1Element.style.fontFamily = “Courier”
 </script>
</body>
</html>

Save this as ch12_examp2.htm. Then open the page in your browser, clicking OK in each of the mes-
sage boxes until you see the page shown in Figure 12-9 (unfortunately, IE does not render the style
changes until all alert boxes have been opened and closed).

25937c12.indd 41625937c12.indd 416 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

417

Chapter 12: Dynamic HTML and the W3C Document Object Model

Figure 12-9

You’ve hopefully made this example very transparent by adding several alerts to demonstrate where
you are along each section of the tree. You’ve also named the variables with their various elements, to
give a clearer idea of what is stored in each variable. (You could just as easily have named them a, b, c,
d, and e, so don’t think you need to be bound by this naming convention.)

You start at the top of the script block by retrieving the whole document using the documentElement
property.

var htmlElement = document.documentElement;

The root element is the <html/> element, hence the name of your fi rst variable. Now if you refer to your
tree, you’ll see that the HTML element must have two child nodes: one containing the <head/> element
and the other containing the <body/> element. You start by moving to the <head/> element. You get
there using the firstChild property of the Node object, which contains your <html/> element. You
use your fi rst alert to demonstrate that this is true.

alert(headingElement.tagName);

Your <body/> element is your next sibling across from the <head/> element, so you navigate across by
creating a variable that is the next sibling from the <head/> element.

if (headingElement.nextSibling.nodeType == 3)
{
 bodyElement = headingElement.nextSibling.nextSibling;
}

25937c12.indd 41725937c12.indd 417 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

418

Chapter 12: Dynamic HTML and the W3C Document Object Model

else
{
 bodyElement = headingElement.nextSibling;
}

alert(bodyElement.tagName);

Here you check to see what the nodeType of the nextSibling of headingElement is. If it returns
3, (remember that nodeType 3 is a text node), you set bodyElement to be the nextSibling of the
nextSibling of headingElement; otherwise you just set it to be the nextSibling of headingElement.

You use an alert to prove that you are now at the <body/> element.

alert(bodyElement.tagName);

The <body/> element in this page also has two children, the <h1/> and <p/> elements. Using the
firstChild property, you move down to the <h1/> element. Again you check whether the child node
is whitespace for non-IE browsers. You use an alert again to show that you have arrived at <h1/>.

if (bodyElement.firstChild.nodeType == 3)
{
 h1Element = bodyElement.firstChild.nextSibling;
}
else
{
 h1Element = bodyElement.firstChild;
}

alert(h1Element.tagName);

After the third alert, the style will be altered on your fi rst element, changing the font to Arial.

h1Element.style.fontFamily = “Arial”;

You then navigate across to the <p/> element using the nextSibling property, again checking for
whitespace.

if (h1Element.nextSibling.nodeType == 3)
{
 pElement = h1Element.nextSibling.nextSibling;
}
else
{
 pElement = h1Element.nextSibling;
}

alert(pElement.tagName);

You change the <p/> element’s font to Arial also.

pElement.style.fontFamily = “Arial”;

25937c12.indd 41825937c12.indd 418 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

419

Chapter 12: Dynamic HTML and the W3C Document Object Model

Finally, you use the previousSibling property to move back in your tree to the <h1/> element and
this time change the font to Courier.

if (pElement.previousSibling.nodeType==3)
{
 h1Element = pElement.previousSibling.previousSibling
}
else
{
 h1Element = pElement.previousSibling
}

h1Element.style.fontFamily = “Courier”;

This is a fairly easy example to follow because you’re using the same tree structure you created with
diagrams, but it does show how the DOM effectively creates this hierarchy and that you can move
around within it using script.

Methods of the Node Object
While the Node object’s properties enable you to navigate the DOM, its methods provide the completely
different ability to add and remove nodes from the DOM, thus fundamentally altering the structure of
the HTML document. The following table lists these methods.

Methods of Node Objects Description

appendChild(newNode) Adds a new node object to the end of the list of child nodes.
This method returns the appended node.

cloneNode(cloneChildren) Returns a duplicate of the current node. It accepts a Boolean
value. If the value is true, then the method clones the cur-
rent node and all child nodes. If the value is false, only the
current node is cloned and child nodes are left out of the
clone.

hasChildNodes() Returns true if a node has any child nodes and false
if not.

insertBefore(newNode,
referenceNode)

Inserts a new node object into the list of child nodes before
the node stipulated by referenceNode. Returns the
inserted node.

removeChild(childNode) Removes a child node from a list of child nodes of the node
object. Returns the removed node.

25937c12.indd 41925937c12.indd 419 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

420

Chapter 12: Dynamic HTML and the W3C Document Object Model

Try It Out Creating HTML Elements and Text with DOM Methods
You’ll create a web page with just paragraph <p/> and heading <h1/> elements, but instead of HTML
you’ll use the DOM properties and methods to place these elements on the web page. Start up your pre-
ferred text editor and type the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 3</title>
</head>
<body>
 <script type=”text/javascript”>
 var newText = document.createTextNode(“My Heading”);
 var newElem = document.createElement(“h1”);

 newElem.appendChild(newText);
 document.body.appendChild(newElem);

 newText = document.createTextNode(“This is some text in a paragraph”);
 newElem = document.createElement(“p”);

 newElem.appendChild(newText);
 document.body.appendChild(newElem);
 </script>
</body>
</html>

Save this page as ch12_examp3.htm and open it in a browser (Figure 12-10).

It all looks a bit dull and tedious, doesn’t it? And yes, you could have done this much more simply with
HTML. That isn’t the point, though. The idea is that you use DOM properties and methods, accessed
with JavaScript, to insert these features. The fi rst two lines of the script block are used to defi ne the
variables in your script, which are initialized to hold the text you want to insert into the page and the
HTML element you wish to insert.

var newText = document.createTextNode(“My Heading”);
var newElem = document.createElement(“h1”);

You start at the bottom of your tree fi rst, by creating a text node with the createTextNode() method.
Then use the createElement() method to create an HTML heading.

At this point, the two variables are entirely separate from each other. You have a text node, and you have
an <h1/> element, but they’re not connected. The next line enables you to attach the text node to your
HTML element. You reference the HTML element you have created with the variable name newElem, use
the appendChild() method of your node, and supply the contents of the newText variable you created
earlier as a parameter.

newElem.appendChild(newText);

25937c12.indd 42025937c12.indd 420 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

421

Chapter 12: Dynamic HTML and the W3C Document Object Model

Figure 12-10

Let’s recap. You created a text node and stored it in the newText variable. You created an <h1/> element
and stored it in the newElem variable. Then you appended the text node as a child node to the <h1/>
element. That still leaves you with a problem: You’ve created an element with a value, but the element
isn’t part of your document. You need to attach the entirety of what you’ve created so far to the docu-
ment body. Again, you can do this with the appendChild() method, but this time supply it to the
document.body object (which, too, is a Node).

document.body.appendChild(newElem);

This completes the fi rst part of your code. Now all you have to do is repeat the process for the <p/>
element.

newText = document.createTextNode(“This is some text in a paragraph”);
newElem = document.createElement(“p”);

newElem.appendChild(newText);
document.body.appendChild(newElem);

You create a text node fi rst; then you create an element. You attach the text to the element, and fi nally
you attach the element and text to the body of the document.

25937c12.indd 42125937c12.indd 421 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

422

Chapter 12: Dynamic HTML and the W3C Document Object Model

It’s important to note that the order in which you create nodes does not matter. This example had you
create the text nodes before the element nodes; if you wanted, you could have created the elements fi rst
and the text nodes second.

However, the order in which you append nodes is very important for performance reasons. Updating
the DOM can be an expensive process, and performance can suffer if you make many changes to
the DOM. For example, this example updated the DOM only two times by appending the completed
elements to the document’s body. It would require four updates if you appended the element to the
document’s body and then appended the text node to the element. As a rule of thumb, only append
completed element nodes (that is, the element, its attributes, and any text) to the document whenever
you can.

Now that you can navigate and make changes to the DOM, let’s look further into manipulating DOM
nodes.

Manipulating the DOM
As mentioned at the very beginning of this chapter, Dynamic HTML is the manipulation of an HTML
page after it’s loaded into the browser. Up to this point, you’ve examined the properties and methods of
the basic DOM objects and learned how to traverse the DOM through JavaScript.

Throughout the previous section, you saw some examples of manipulating the DOM; more specifi cally,
you saw that you can change the color and font family of text contained within an element. In this sec-
tion, you’ll expand on that knowledge.

Accessing Elements
As you saw in the previous section, the DOM holds the tools you need to fi nd and access HTML ele-
ments; you used the getElementById() method quite frequently, and through examples you saw how
easy it was to fi nd specifi c elements in the page.

When scripting the DOM, chances are you have a pretty good idea of what elements you want to manip-
ulate. The easiest way to fi nd those elements is to use the id attribute and thus the getElementById()
method. Don’t be afraid to assign id attributes to your HTML elements; it is by far the easiest and most
effi cient way to fi nd elements within the page.

Changing Appearances
Probably the most common DOM manipulation is to change the way an element looks. Such a change
can create an interactive experience for visitors to your web site and can even be used to alert them to
important information or that an action is required by them. Changing the way an element looks con-
sists almost exclusively of changing CSS properties for an HTML element. You can do this two ways
through JavaScript:

Change each CSS property with the ❑ style property.

Change the value of the element’s ❑ class attribute.

25937c12.indd 42225937c12.indd 422 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

423

Chapter 12: Dynamic HTML and the W3C Document Object Model

Using the style Property
In order to change specifi c CSS properties, you must look to the style property. All modern browsers
implement this object, which maps directly to the element’s style attribute. This object contains CSS
properties, and by using it you can change any CSS property that the browser supports. You’ve already
seen the style property in use, but here’s a quick refresher:

element.style.cssProperty = value;

The CSS property names generally match those used in a CSS style sheet; therefore, changing the text
color of an element requires the use of the color property, like this:

var divAdvert = document.getElementById(“divAdvert”); //Get the desired element

divAdvert.style.color = “blue”; //Change the text color to blue

There are some cases, however, in which the property name is a little different from the one seen in a
CSS fi le. CSS properties that contain a hyphen (-) are a perfect example of this exception. In the case
of these properties, you remove the hyphen and capitalize the fi rst letter of the word that follows the
hyphen. The following code shows the incorrect and correct ways to do this:

divAdvert.style.background-color = “gray”; //Wrong

divAdvert.style.backgroundColor = “gray”; //Correct

You can also use the style object to retrieve styles that have previously been declared. However, if the
style property you try to retrieve has not been set with the style attribute (inline styles) or with the
style object, you will not retrieve the property’s value. Consider the following HTML containing a
style sheet and <div/> element:

<style type=”text/css”>
#divAdvert
{
 background-color: gray;
}
</style>

<div id=”divAdvert” style=”color: green”>I am an advertisement.</div>

When the browser renders this element, it will have green text on a gray background. If you had used
the style object to retrieve the value of both the background-color and color properties, you’d get
the following mixed results:

var divAdvert = document.getElementById(“divAdvert”); // Get the desired element
alert(divAdvert.style.backgroundColor); // Alerts an empty string
alert(divAdvert.style.color); // Alerts green

25937c12.indd 42325937c12.indd 423 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

424

Chapter 12: Dynamic HTML and the W3C Document Object Model

You get these results because the style object maps directly to the style attribute of the element. If the
style declaration is set in the <style/> block, you cannot retrieve that property’s value with the style
object.

Try It Out Using the style Object
Let’s look at a simple example of changing the appearance of some text by using the style object.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 4</title>
 <style type=”text/css”>
 #divAdvert
 {
 font: 12pt arial;
 }
 </style>
 <script type=”text/javascript”>
 function divAdvert_onMouseOver()
 {
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.style.fontStyle = “italic”;
 divAdvert.style.textDecoration = “underline”;
 }

 function divAdvert_onMouseOut()
 {
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.style.fontStyle = “normal”;
 divAdvert.style.textDecoration = “none”;
 }
 </script>
</head>
<body>
 <div id=”divAdvert” onmouseover=”divAdvert_onMouseOver()”
 onmouseout=”divAdvert_onMouseOut()”>
 Here is an advertisement.
 </div>
</body>
</html>

Save this as ch12_examp4.htm. When you run this in your browser, you should see a single line of text,
as shown in Figure 12-11.

25937c12.indd 42425937c12.indd 424 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

425

Chapter 12: Dynamic HTML and the W3C Document Object Model

Figure 12-11

Roll your mouse over the text, and you’ll see it become italicized and underlined, as shown in
Figure 12-12.

Figure 12-12

25937c12.indd 42525937c12.indd 425 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

426

Chapter 12: Dynamic HTML and the W3C Document Object Model

And when you move your mouse off of the text, it returns to normal.

In the page’s body, a <div/> element is defi ned with an id of divAdvert. Hook up the mouseover
and mouseout events to the divAdvert_onMouseOver() and divAdvert_onMouseOut() functions,
respectively, which are defi ned in the <script/> block in the head of the page.

When the mouse pointer enters the <div/> element, the divAdvert_onMouseOver() function is
called.

function divAdvert_onMouseOver()
{
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.style.fontStyle = “italic”;
 divAdvert.style.textDecoration = “underline”;
}

Before you can do anything to the <div/> element, you must fi rst retrieve it. You do this simply by using the
getElementById() method. Now that you have the element, you manipulate its style by fi rst italicizing
the text with the fontStyle property. Next, you underline the text by using the textDecoration property
and assigning its value to underline.

Naturally, you do not want to keep the text italicized and underlined; so the mouseout event allows you
to change the text back to its original state. When this event fi res, the divAdvert_onMouseOut() func-
tion is called.

function divAdvert_onMouseOut()
{
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.style.fontStyle = “normal”;
 divAdvert.style.textDecoration = “none”;
}

The code for this function resembles the code for the divAdvert_onMouseOver() function. First, you
retrieve the divAdvert element and then set the fontStyle property to normal, thus removing the
italics. Then you set the textDecoration to none, which removes the underline from the text.

Changing the class Attribute
You can assign a CSS class to elements by using the element’s class attribute. This attribute is exposed
in the DOM by the className property and can be changed through JavaScript to associate a different
style rule with the element.

element.className = sNewClassName;

Using the className property to change an element’s style is advantageous in two ways:

It reduces the amount of JavaScript you have to write, which no one is likely to complain about. ❑

It keeps style information out of the JavaScript fi le and puts it into the CSS fi le where it belongs. ❑

Making any type of changes to the style rules is easier because you do not have to have several
fi les open in order to change them.

25937c12.indd 42625937c12.indd 426 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

427

Chapter 12: Dynamic HTML and the W3C Document Object Model

Try It Out Using the className Property
Let’s revisit the code from ch12_examp4.htm from the previous section and make some revisions.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 5</title>
 <style type=”text/css”>
 .defaultStyle
 {
 font: normal 12pt arial;
 text-decoration: none;
 }
 .newStyle
 {
 font: italic 12pt arial;
 text-decoration: underline;
 }
 </style>
 <script type=”text/javascript”>
 function divAdvert_onMouseOver()
 {
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.className = “newStyle”;
 }

 function divAdvert_onMouseOut()
 {
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.className = “defaultStyle”;
 }
 </script>
</head>
<body>
 <div id=”divAdvert” class=”defaultStyle” onmouseover=”divAdvert_onMouseOver()”
 onmouseout=”divAdvert_onMouseOut()”>
 Here is an advertisement.
 </div>
</body>
</html>

Save this fi le as ch12_examp5.htm. This page behaves in the exact same manner as ch12_examp4.htm.
When you place your mouse pointer over the text, it becomes italicized and underlined; when you move
your pointer off of the text, it changes back to normal.

There are a few key differences between this HTML page and the one created using the style object.
For starters, the #divAdvert style rule is removed and replaced with two CSS classes:

.defaultStyle
{
 font: normal 12pt arial;
 text-decoration: none;

25937c12.indd 42725937c12.indd 427 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

428

Chapter 12: Dynamic HTML and the W3C Document Object Model

}

.newStyle
{
 font: italic 12pt arial;
 text-decoration: underline;
}

The fi rst class, called defaultStyle, is the rule fi rst applied to the <div/> element. It declares a nor-
mal 12-point Arial font with no underlining. The second class is called newStyle. This class contains
style declarations to specify 12-point italic Arial that is underlined. With these changes, the <div/>
element defi nition is changed to use the defaultStyle CSS class:

<div id=”divAdvert” class=”defaultStyle” onmouseover=”divAdvert_onMouseOver()”
 onmouseout=”divAdvert_onMouseOut()”>
 Here is an advertisement.
</div>

Notice that the id attribute is the same; you still need to access the element in order to change its
className property. The onmouseover and onmouseout event handlers remain the same, as you need
the same behavior in the style object example.

The fi nal change is in the JavaScript itself. When the mouseover event fi res on the element, the
divAdvert_onMouseOver() function is called. This function consists of two lines of code as opposed
to the three lines you used for the style object.

function divAdvert_onMouseOver()
{
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.className = “newStyle”;
}

The fi rst statement retrieves the <div/> element by using the getElementById() method. The function
then changes the className property to the value newStyle. With this line, the divAdvert element
takes on a new style rule and the browser changes the way it looks.

When you move your mouse pointer off of the text, the mouseout event fi res and divAdvert_
onMouseOut() executes. This function is almost identical to divAdvert_onMouseOver(), except
that the className is set back to its original value:

function divAdvert_onMouseOut()
{
 var divAdvert = document.getElementById(“divAdvert”);
 divAdvert.className = “defaultStyle”;
}

By setting className back to defaultStyle, the browser displays the <div/> element as it previously
did, with no italics or underlining.

Although it wasn’t demonstrated here, the HTML class attribute, and thus the className property,
can contain multiple CSS class names. You’ll see more about multiple class names in Chapter 15.

25937c12.indd 42825937c12.indd 428 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

429

Chapter 12: Dynamic HTML and the W3C Document Object Model

Positioning and Moving Content
Changing the appearance of an element is an important pattern in DHTML, and it fi nds its place in
many DHTML scripts. However, there is more to DHTML than just changing the way content appears
on the page; you can also change the position of an element with JavaScript.

Moving content with JavaScript is just as easy as using the style object. You use the position prop-
erty to change the type of position desired, and by using the left and top properties, you can position
the element.

var divAdvert = document.getElementById(“divAdvert”);

divAdvert.style.position = “absolute”;
divAdvert.style.left = “100px”; //Set the left position
divAdvert.style.top = “100px”; //Set the right position

This code fi rst retrieves the divAdvert element. Then it sets the element’s position to absolute and
moves the element 100 pixels from the left and top edges. Notice the addition of px to the value
assigned to the positions. Many browsers require you to specify a unit when assigning a positional
value; otherwise, the browser will not position the element.

Note that positioning elements requires the position of absolute or relative.

Try It Out Moving an Element Around
Moving an element around on the page, as you’ve seen, is quite similar to changing other styles with
the style object. However, the ability to move an element on the page is used quite often, and you will
defi nitely see it later in the chapter. Therefore, you are going to build a page that enables you to specify
the location of an element through form fi elds.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 6</title>
 <style type=”text/css”>
 #divBox
 {
 position: absolute;
 background-color: silver;
 width: 150px;
 height: 150px;
 }
 input
 {
 width: 100px;
 }
 </style>
 <script type=”text/javascript”>
 function moveBox() {
 var divBox = document.getElementById(“divBox”);
 var inputLeft = document.getElementById(“inputLeft”);

25937c12.indd 42925937c12.indd 429 9/22/09 9:21:08 AM9/22/09 9:21:08 AM

430

Chapter 12: Dynamic HTML and the W3C Document Object Model

 var inputTop = document.getElementById(“inputTop”);

 divBox.style.left = parseInt(inputLeft.value) + “px”;
 divBox.style.top = parseInt(inputTop.value) + “px”;
 }
 </script>
</head>
<body>
 <div id=”divBox”>
 <form id=”formBoxController” onsubmit=”moveBox(); return false;”
 action=”“>
 <p>
 Left:
 <input type=”text” id=”inputLeft” />
 </p>
 <p>
 Top:
 <input type=”text” id=”inputTop” />
 </p>
 <p>
 <input type=”submit” value=”Move The Box” />
 </p>
 </form>
 </div>
</body>
</html>

Save this fi le as ch12_examp6.htm. When you load the page into your browser, you should see a silver
box in the upper-left corner of the screen. Inside this box, you’ll see a form with two fi elds and a button,
as shown in Figure 12-13.

Figure 12-13

25937c12.indd 43025937c12.indd 430 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

431

Chapter 12: Dynamic HTML and the W3C Document Object Model

When you enter numerical values in the text fi elds and click the button, the box will move to the coordi-
nates you specifi ed. Figure 12-14 shows the box moved to 100,100.

Figure 12-14

In the body of the page, you defi ne a <div/> tag with an id of divBox.

<div id=”divBox”></div>

Inside this element is a form consisting of three <input/> elements. Two of these are text boxes in which
you can input the left and top positions to move the <div/> to, and these have ids of inputLeft and
inputTop, respectively. The third <input/> is a Submit button.

<div id=”divBox”>
 <form id=”formBoxController” onsubmit=”moveBox(); return false;” action=”“>
 <p>Left: <input type=”text” value=”0” id=”inputLeft” /></p>
 <p>Top: <input type=”text” value=”0” id=”inputTop” /></p>
 <p><input type=”submit” value=”Move The Box” /></p>
 </form>
</div>

When you click the Submit button, the browser fi res the submit event for the form. When a submit
button is pressed, the browser attempts to send data to the web server. This attempt at communica-
tion causes the browser to reload the page, making any change you made through DHTML reset itself.
Therefore, you must force the browser to not reload the page. You do this by setting the submit event to
return a value of false.

In order for the <div/> element to be moved around on the page, it needs to be positioned. This example
positions the element absolutely, although it would be possible to position it relatively as well.

#divBox
{
 position: absolute;

25937c12.indd 43125937c12.indd 431 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

432

Chapter 12: Dynamic HTML and the W3C Document Object Model

 background-color: silver;
 width: 150px;
 height: 150px;
}

Aside from the position, you also specify the box to have a background color of silver, and set the height
and width to be 150 pixels each, to make it a square. At this size, however, the text boxes in the form
actually extend past the box’s borders. In order to fi x this, set a rule for the <input/> element as well.

input
{
 width: 100px;
}

By setting the <input/> elements to be 100 pixels wide, you can fi t everything nicely into the box. So at
this point, the HTML is primarily fi nished and it’s styled. All that remains is to write the JavaScript to
retrieve the values from the form fi elds and move the box to the coordinates provided by the form.

The function responsible for this is called moveBox(), and it is the only function on this page.

function moveBox() {
 var divBox = document.getElementById(“divBox”); //Get the box
 var inputLeft = document.getElementById(“inputLeft”); //Get one form field
 var inputTop = document.getElementById(“inputTop”); //Get the other one

The function starts by retrieving the HTML elements needed to move the box. First it gets the <div/>
element itself, followed by the text boxes for the left and top positions, and stores them in the
inputLeft and inputTop variables, respectively. With the needed elements selected, you can now
move the box.

 divBox.style.left = parseInt(inputLeft.value) + “px”;
 divBox.style.top = parseInt(inputTop.value) + “px”;
}

These two new lines to moveBox() do just that. In the fi rst line, you use the value property to retrieve
the value of the text box for the left position. You pass that value to the parseInt() function because
you want to make sure that value is an integer. Then append px to the number, making sure that all
browsers will position the box correctly. Now do the same thing for positioning the top: get the value
from the inputTop text box, pass it to parseInt(), and append px to it.

As you can see, moving an element around the page is quite simple and is a building block toward
another effect: animation.

Example: Animated Advertisement
Changing the appearance and position of an element are important patterns in DHTML, and they fi nd
their places in many DHTML scripts. Perhaps the most creative use of DHTML is in animating con-
tent on the page. You can perform a variety of animations with DHTML. You can fade text elements or
images in and out, give them a swipe animation (making it look like as if they are wiped onto the page),
and animate them to move around on the page.

25937c12.indd 43225937c12.indd 432 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

433

Chapter 12: Dynamic HTML and the W3C Document Object Model

Animation can give important information the fl air it needs to be easily recognized by your reader, as
well as adding a “that’s cool” factor. Performing animation with DHTML follows the same principles
of any other type of animation: You make seemingly insignifi cant changes one at a time in a sequential
order until you reach the end of the animation. Essentially, with any animation, you have the following
requisites:

 1. The starting state

 2. The movement towards the fi nal goal

 3. The end state; stopping the animation

Animating an absolutely positioned element, as you’re going to do in this section, is no different. First,
with CSS, position the element at the start location. Then perform the animation up until you reach the
end point, which signals the end of the animation.

In this section, you’ll learn how to animate content to bounce back and forth between two points. To do
this, you need one important piece of information: the content’s current location.

Are We There Yet?
The DOM in modern browsers exposes the offsetTop and offsetLeft properties of an HTML ele-
ment object. These two properties return the calculated position relative to the element’s parent element:
offsetTop tells you the top location, and offsetLeft tells you the left position. The values returned
by these properties are numerical values, so you can easily check to see where your element currently is
in the animation. For example:

var endPointX = 394;

if (element.offsetLeft < endPointX)
{
 // Continue animation
}

The preceding code specifi es the end point (in this case, 394) and assigns it to the endPointX variable.
You can then check to see if the element’s offsetLeft value is currently less than that of the end point.
If it is, you can continue the animation. This example brings us to the next topic in content movement:
performing the animation.

Performing the Animation
In order to perform an animation, you need to modify the top and left properties of the style object
incrementally and quickly. In DHTML, you do this with periodic function execution until it’s time to end
the animation. To do this, use one of two methods of the window object: setTimeout() or setInterval().
This example uses the setInterval() method to periodically move an element.

Try It Out Animating Content
The following HTML page moves an element across the page from right to left:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

25937c12.indd 43325937c12.indd 433 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

434

Chapter 12: Dynamic HTML and the W3C Document Object Model

<head>
 <title>Moving Content</title>
 <style type=”text/css”>
 #divAdvert
 {
 position: absolute;
 font: 12px Arial;
 top: 4px;
 left: 0px;
 }
 </style>
 <script type=”text/javascript”>
 var switchDirection = false;

 function doAnimation() {
 var divAdvert = document.getElementById(“divAdvert”);
 var currentLeft = divAdvert.offsetLeft;
 var newLocation;

 if (switchDirection == false)
 {
 newLocation = currentLeft + 2;

 if (currentLeft >= 400)
 {
 switchDirection = true;
 }
 }
 else
 {
 newLocation = currentLeft - 2;

 if (currentLeft <= 0)
 {
 switchDirection = false;
 }
 }

 divAdvert.style.left = newLocation + “px”;
 }
 </script>
</head>
<body onload=”setInterval(doAnimation, 10)”>
 <div id=”divAdvert”>Here is an advertisement.</div>
</body>
</html>

Save this page as ch12_examp7.htm and load it into your browser. When you load the page into the
browser, the content should start moving from left to right, starting at the left edge of the viewport.
When the content reaches a left position of 400 pixels, the content switches directions and begins to
move back toward the left edge. This animation is continuous, so it should bounce between the two
points (0 and 400) perpetually.

25937c12.indd 43425937c12.indd 434 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

435

Chapter 12: Dynamic HTML and the W3C Document Object Model

Inside the body of the page is a <div/> element. This element has an id of divAdvert so that you can
retrieve it with the getElementById() method, as this is the element you want to animate.

<div id=”divAdvert”>Here is an advertisement.</div>

There are no style attributes in this element because all the style information is inside the style sheet
located in the head of the page. In the style sheet, you defi ne a starting point for this <div/>. You want
the animation to go fi rst from left to right, and you want it to start at the left edge of the browser.

#divAdvert
{
 position: absolute;
 font: 12pt arial;
 top: 4px;
 left: 0px;
}

The fi rst style declaration positions the element absolutely, and the second specifi es the font as 12-point
Arial. The next declaration positions the element four pixels from the top of the browser’s viewport.
Setting the top position away from the topmost edge makes the text a little easier to read. Finally, the
last line positions the divAdvert element along the left edge of the viewport with the left property.

Within the script block is a global variable called switchDirection.

var switchDirection = false;

This variable keeps track of the direction in which the content is currently going. If switchDirection
is false, then the content is moving from left to right, which is the default. If switchDirection is
true, then the content is moving from right to left.

Next in the script block is the doAnimation() function, which performs the animation.

function doAnimation()
{
 var divAdvert = document.getElementById(“divAdvert”); //Get the element
 var currentLeft = divAdvert.offsetLeft; //Get the current left position
 var newLocation; //Will store the new location

First, you retrieve the divAdvert element with the getElementById() method; you also retrieve the
offsetLeft property and assign its value to the currentLeft variable. You use this variable to check
the content’s current position. Next, create a variable called newLocation which will contain the new
left position, but before you assign its value you need to know the direction in which the content is
moving.

 if (switchDirection == false)
 {
 newLocation = currentLeft + 2;

 if (currentLeft >= 400)
 {
 switchDirection = true;
 }
 }

25937c12.indd 43525937c12.indd 435 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

436

Chapter 12: Dynamic HTML and the W3C Document Object Model

First, check the direction by checking the switchDirection variable. Remember, if it is false, the
animation is moving from left to right; so assign newLocation to contain the content’s current position
and add 2, thus moving the content 2 pixels to the right.

You then need to check if the content has reached the left position of 400 pixels. If it has, then you
need to switch the direction of the animation, and you do this by changing switchDirection to true.
So the next time doAnimation() runs, it will begin to move the content from right to left.

The code to move the element in this new direction is similar to the previous code, except for a few key
differences.

 else
 {
 newLocation = currentLeft - 2;

 if (currentLeft <= 0)
 {
 switchDirection = false;
 }
 }

The fi rst difference is the value assigned to newLocation; instead of adding 2 to the current location,
you subtract 2, thus moving the content 2 pixels to the left. Next, check if currentLeft is less than or
equal to 0. If it is, you know you’ve reached the ending point of the right-to-left movement and need to
switch directions again by assigning switchDirection to be false.

Finally, set the new position of the content:

 divAdvert.style.left = newLocation + “px”;
}

This fi nal line of the function sets the element’s left property to the value stored in the newLocation
variable plus the string “px”.

To run the animation, use the onload event handler in the <body/> element, and use the
window.setInterval() method to continuously execute doAnimation(). The following code
runs doAnimation() every 10 milliseconds:

<body onload=”setInterval(doAnimation, 10)”>

At this speed, the content moves at a pace that is easily seen by those viewing the page. If you
wanted to speed up or slow down the animation, simply change how often the setInterval()
function calls doAnimation() by changing the second parameter.

What have you seen so far? Well, you’ve seen the DOM hierarchy and how it represents the HTML
document as a tree-like structure. You navigated through the different parts of it via DOM objects (the
Node objects) and their properties, and you changed the properties of objects, thus altering the content
of the web page. This leaves just one area of the DOM to cover: the event model.

25937c12.indd 43625937c12.indd 436 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

437

Chapter 12: Dynamic HTML and the W3C Document Object Model

DOM and Events
The two major browsers in the late 1990s were Internet Explorer 4 and Netscape 4 — the fi rst browser
war. Not surprising, both browser vendors implemented vastly different DOMs and event models, frag-
menting the web into two groups: websites that catered to Netscape only, and websites that catered to
IE only. Very few developers chose the frustrating task of cross-browser development.

Obviously, a need for a standard grew from this fragmentation and frustration. So the W3C introduced
the DOM standard, which grew into DOM level 2, which included a standard event model.

The DOM event model is a way of handling events and providing information about these events to the
script. It provides a set of guidelines for a standard way of determining what generated an event, what
type of event it was, and when and where the event occurred. It introduces a basic set of objects, proper-
ties, and methods, and makes some important distinctions.

Despite this attempt at standardization, developers still have to work with multiple event models.
While browsers like Firefox, Chrome, Safari, and Opera implement the standard event model, Internet
Explorer does not, and extra effort is required to build cross-browser event-driven applications. Don’t
fret, though; despite the different implementations, the DOM and IE event models share some common
properties, and many non-shared properties are easily translated to other properties.

In this section, you’ll learn about the two models. Later in the chapter, you’ll put this information to use
in writing cross-browser DHTML.

DOM Event Handling
The DOM standard describes an Event object, which provides information about the element that has
generated an event and enables you to retrieve it in script. If you want to make it available in script, it
must be passed as a parameter to the function connected to the event handler.

Internet Explorer does not implement the DOM event model. The code in this section will not work in
IE because of this.

Accessing the Event Object
You learned in Chapter 6 how to handle events using HTML attributes. However, you did not learn
how to access an Event object, something that proves very useful a majority of the time. It’s very simple
to do so, and all you have to do is query the event object created by the individual element that raised
the event. For example, in the following code the <p/> element will raise a dblclick event:

<p ondblclick=”handle(event)”>Paragraph</p>

<script type=”text/javascript”>
function handle(e)
{
 alert(e.type);
}
</script>

Notice that event is passed to the handle() function in the ondblclick attribute. This event variable is
special in that it is not defi ned anywhere; instead, it is an argument used only with event handlers that are
connected through HTML attributes. It passes a reference to the current event object when the event fi res.

25937c12.indd 43725937c12.indd 437 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

438

Chapter 12: Dynamic HTML and the W3C Document Object Model

If you ran the previous example, it would just tell you what kind of event raised your event-handling
function. This might seem self-evident in the preceding example, but if you had included the following
extra lines of code, any one of three elements could have raised the function:

<p ondblclick=”handle(event)”>Paragraph</p>
<h1 onclick=”handle(event)”>Heading 1</h1>
Special Text

<script type=”text/javascript”>
function handle(e)
{
 alert(e.type);
}
</script>

This makes the code much more useful. In general, you will use relatively few event handlers to deal
with any number of events, and you can use the event properties as a fi lter to determine what type of
event happened and what HTML element triggered it, so that you can treat each event differently.

In the following example, you see that you can take different courses of action depending on what type
of event is returned:

<p ondblclick=”handle(event)”>Paragraph</p>
<h1 onclick=”handle(event)”>Heading 1</h1>
Special Text

<script type=”text/javascript”>
function handle(e)
{
 if (e.type == “mouseover”)
 {
 alert(“You moved over the Special Text”);
 }
}
</script>

This code uses the type property to determine what type of event occurred. If the user moused over
the element, then an alert box tells them so.

Accessing event information is relatively straightforward if you’re using HTML attributes to assign
event handlers. Thankfully, accessing event data when assigning event handlers using JavaScript objects’
properties are even more straightforward: the browser automatically passes the event object to the
handling function when the event fi res. Consider the following code:

<p id=”p”>Paragraph</p>
<h1 id=”h1”>Heading 1</h1>
Special Text

<script type=”text/javascript”>
function handle(e)
{
 if (e.type == “mouseover”)

25937c12.indd 43825937c12.indd 438 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

439

Chapter 12: Dynamic HTML and the W3C Document Object Model

 {
 alert(“You moved over the Special Text”);
 }
}

document.getElementById(“p”).ondblclick = handle;
document.getElementById(“h1”).onclick = handle;
document.getElementById(“span”).onmouseover = handle;
</script>

This code is slightly different from the last example using HTML attributes. The elements are given id
attributes to allow easy access to their objects in the DOM with the getElementById() method. Each
element is assigned an event handler, which calls handle() when their respective events fi re. The result
is the same as before; the user sees an alert box telling them they moved their mouse pointer over the
Special Text.

Using Event Data
The standard outlines several properties of the Event object that offer information about that event: what
element it happened at, what type of event took place, and what time it occurred? These are all pieces of
data offered by the Event object. The following table lists the properties outlined in the specifi cation.

Properties of the Event Object Description

bubbles Indicates whether an event can bubble — passing control from
one element to another starting from the event target and bub-
bling up the hierarchy.

cancelable Indicates whether an event can have its default action canceled.

currentTarget Indicates which the event target whose event handlers are cur-
rently being processed.

eventPhase Indicates which phase of the event fl ow an event is in.

target Indicates which element caused the event; in the DOM event
model, text nodes are a possible target of an event.

timestamp Indicates at what time the event occurred.

type Indicates the name of the event.

Secondly, the DOM event model introduces a MouseEvent object, which deals with events generated
specifi cally by the mouse. This is useful because you might need more specifi c information about the
event, such as the position in pixels of the cursor, or the element the mouse has come from.

Properties of the
MouseEvent Object

Description

altKey Indicates whether the Alt key was pressed when the event was generated.

button Indicates which button on the mouse was pressed.

Continued

25937c12.indd 43925937c12.indd 439 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

440

Chapter 12: Dynamic HTML and the W3C Document Object Model

Properties of the
MouseEvent Object

Description

clientX Indicates where in the browser window, in horizontal coordinates, the
mouse pointer was when the event was generated.

clientY Indicates where in the browser window, in vertical coordinates, the
mouse pointer was when the event was generated.

ctrlKey Indicates whether the Ctrl key was pressed when the event was
generated.

metaKey Indicates whether the meta key was pressed when the event was
generated.

relatedTarget Used to identify a secondary event target. For mouseover events,
this property references the element the mouse pointer exited. For
mouseout events, this property references the element the mouse
pointer entered.

screenX Indicates the horizontal coordinates relative to the origin in the screen
coordinates, the mouse pointer was when the event was generated.

screenY Indicates the vertical coordinates relative to the origin in the screen coor-
dinates, the mouse pointer was when the event was generated.

shiftKey Indicates whether the Shift key was pressed when the event was
generated.

Although any event might create an Event object, only a select set of events can generate a MouseEvent
object. On the occurrence of a MouseEvent event, you’d be able to access properties from the Event
object and the MouseEvent object. With a non-mouse event, none of the MouseEvent object properties
in the preceding table would be available. The following mouse events can create a MouseEvent event
object:

click ❑ occurs when a mouse button is clicked (pressed and released) with the pointer over an
element or text.

mousedown ❑ occurs when a mouse button is pressed with the pointer over an element or text.

mouseup ❑ occurs when a mouse button is released with the pointer over an element or text.

mouseover ❑ occurs when a mouse button is moved onto an element or text.

mousemove ❑ occurs when a mouse button is moved and it is already on top of an element or text.

mouseout ❑ occurs when a mouse button is moved out and away from an element or text.

25937c12.indd 44025937c12.indd 440 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

441

Chapter 12: Dynamic HTML and the W3C Document Object Model

Try It Out Using the DOM Event Model
Take a quick look at an example that uses some properties of the MouseEvent object.

 Open a text editor and type the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 8</title>
 <style type=”text/css”>
 .underline
 {
 color: red;
 text-decoration: underline;
 }
 </style>
 <script type=”text/javascript”>
 function handleEvent(e)
 {
 if (e.target.tagName == “P”)
 {
 if (e.type == “mouseover”)
 {
 e.target.className = “underline”;
 }

 if (e.type == “mouseout”)
 {
 e.target.className = “”;
 }
 }

 if (e.type == “click”)
 {
 alert(“You clicked the mouse button at the X:”
 + e.clientX + “ and Y:” + e.clientY + “ coordinates”);
 }
 }

 document.onmouseover = handleEvent;
 document.onmouseout = handleEvent;
 document.onclick = handleEvent;
 </script>
</head>
<body>
<p>This is paragraph 1.</p>
<p>This is paragraph 2.</p>
<p>This is paragraph 3.</p>
</body>
</html>

Save this as ch12_examp8.htm and run it in your browser. When you move your mouse over one of the
paragraphs, you’ll notice its text changes color to red and it becomes underlined. Click anywhere in the
page, and you’ll see an alert box like Figure 12-15.

25937c12.indd 44125937c12.indd 441 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

442

Chapter 12: Dynamic HTML and the W3C Document Object Model

Figure 12-15

Now click OK, move the pointer in the browser window, and click again. A different result appears.

This example is consistent with the event-handling behavior: The browser waits for an event, and every
time that event occurs it raises the corresponding function. It will continue to wait for the event until
you exit the browser or that particular web page. In this example, you assign event handlers for the
mouseover, mouseout, and click events on the document object.

document.onmouseover = handleEvent;
document.onmouseout = handleEvent;
document.onclick = handleEvent;
One function, handleEvent() handles all three of these events.

Whenever any of these events fi re, the handleClick() function is raised and a new MouseEvent object
is generated. Remember that MouseEvent objects give you access to Event object properties as well as
MouseEvent object properties, and you use some of them in this example.

The function accepts the MouseEvent event object and assigns it the reference e.

function handleEvent(e)
{
 if (e.target.tagName == “P”)
 {

Inside the function, the fi rst thing you do is check if the event target (the element that caused the event)
has a tagName of P. If the target is a paragraph element, then the next bit of information you need to
fi nd is what kind of event took place by using the type property.

 if (e.type == “mouseover”)
 {
 e.target.className = “underline”;

25937c12.indd 44225937c12.indd 442 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

443

Chapter 12: Dynamic HTML and the W3C Document Object Model

 }

 if (e.type == “mouseout”)
 {
 e.target.className = “”;
 }
 }

If the event is a mouseover, then the paragraph’s CSS class is assigned the underline class defi ned in
the page’s style sheet. If the event type is mouseout, then the element’s className property is cleared,
which returns the text to its original style. This style-changing code runs only if the element that
caused the event is a paragraph element.

Next, the function determines if the user clicked their mouse by again checking the type property.

if (e.type == “click”)
 {
 alert(“You clicked the mouse button at the X:”
 + e.clientX + “ and Y:” + e.clientY + “ coordinates”);
 }
}

If the user did indeed click somewhere in the page, then you use the alert() method to display the
contents of the clientX and clientY properties of the mouse event object on the screen.

The MouseEvent object supplied to this function is overwritten and re-created every time you generate
an event, so the next time you click the mouse or move the pointer it creates a new MouseEvent object
containing the coordinates for the x and y positions and the information on the element that caused the
event to fi re. One problem that precludes greater discussion of the DOM event model is the fact that not
all browsers support it in any detail. Specifi cally, IE, the most popular browser, doesn’t fully support it.
Despite the lack of support for the DOM standard, you can still acquire the same useful information on
a given event with IE’s event model.

Event Handling in Internet Explorer
IE’s event model remains relatively unchanged since the introduction of IE4 in 1997. It incorporates the
use of a global event object (it is a property of the window object), and one such object exists for each
open browser window. The browser updates the event object every time the user causes an event to
occur, and it provides information similar to that of the standard DOM Event object.

Accessing the event Object
Because the event object is a property of window, it is very simple to access.

<p ondblclick=”handle()”>Paragraph</p>

<script type=”text/javascript”>
function handle()
{
 alert(window.event.type);
}
</script>

25937c12.indd 44325937c12.indd 443 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

444

Chapter 12: Dynamic HTML and the W3C Document Object Model

This code assigns the handle() function to handle the <p/> element’s dblclick event. When the
function executes, it gets the type of event that caused the handle() function’s execution. Because the
event object is global, there is no need to pass the object to the handling function like the DOM event
model. Also note that like other properties of the window object, it’s not required that you precede the
event object with window.

The same holds true when you assign event handlers through JavaScript using object properties.

<p id=”p”>Paragraph</p>
<h1 id=”h1”>Heading 1</h1>
Special Text

<script type=”text/javascript”>
function handle()
{
 if (event.type == “mouseover”)
 {
 alert(“You moved over the Special Text”);
 }
}

document.getElementById(“p”).ondblclick = handle;
document.getElementById(“h1”).onclick = handle;
document.getElementById(“span”).onmouseover = handle;
</script>

Using Event Data
As you can see, IE’s event object is straightforward and simple to use; however, it does provide differ-
ent properties from the DOM standard’s Event and MouseEvent objects, although they typically pro-
vide you with similar data.

The following table lists some of the properties of IE’s event object.

Properties of the
event Object

Description

altKey Indicates whether the Alt key was pressed when the event was generated.

button Indicates which button on the mouse was pressed.

cancelBubble Gets or sets whether the current event should bubble up the hierarchy of
event handlers.

clientX Indicates where in the browser window, in horizontal coordinates, the
mouse pointer was when the event was generated.

clientY Indicates where in the browser window, in vertical coordinates, the mouse
pointer was when the event was generated.

ctrlKey Indicates whether the Ctrl key was pressed when the event was generated.

fromElement Gets the element object the mouse pointer is exiting.

25937c12.indd 44425937c12.indd 444 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

445

Chapter 12: Dynamic HTML and the W3C Document Object Model

Properties of the
event Object

Description

keyCode Gets the Unicode keycode associated with the key that caused the event.

screenX Indicates where in the browser window, in horizontal coordinates relative
to the origin in the screen coordinates, the mouse pointer was when the
event was generated.

screenY Indicates where in the browser window, in vertical coordinates relative to
the origin in the screen coordinates, the mouse pointer was when the event
was generated.

shiftKey Indicates whether the Shift key was pressed when the event was generated.

srcElement Gets the element object that caused the event.

toElement Gets the element object that the mouse pointer is entering.

type Retrieves the event’s name.

Let’s revisit Example eight where you wrote a page to take advantage of the DOM event model and
change it to work in IE.

Try it Out Using the IE Event Model
Open your text editor and type the following. Feel free to copy and paste the elements within the body
and the style sheet from Example eight.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 9</title>
 <style type=”text/css”>
 .underline
 {
 color: red;
 text-decoration: underline;
 }
 </style>
 <script type=”text/javascript”>
 function handleEvent()
 {
 if (event.srcElement.tagName == “P”)
 {
 if (event.type == “mouseover”)
 {
 event.srcElement.className = “underline”;
 }

25937c12.indd 44525937c12.indd 445 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

446

Chapter 12: Dynamic HTML and the W3C Document Object Model

 if (event.type == “mouseout”)
 {
 event.srcElement.className = “”;
 }
 }

 if (event.type == “click”)
 {
 alert(“You clicked the mouse button at the X:”
 + event.clientX + “ and Y:” + event.clientY + “ coordinates”);
 }
 }

 document.onmouseover = handleEvent;
 document.onmouseout = handleEvent;
 document.onclick = handleEvent;
 </script>
</head>
<body>
<p>This is paragraph 1.</p>
<p>This is paragraph 2.</p>
<p>This is paragraph 3.</p>
</body>
</html>

Save this as ch12_examp9.htm, and load it into IE. It’ll look and behave exactly like Example eight;
the paragraph text will change to red and have an underline as you move your mouse pointer over the
paragraphs. When your mouse pointer leaves a paragraph, the text returns to the original state. When
you click your mouse, an alert box tells you the coordinates of where your mouse pointer was when you
clicked.

You assign the handleEvent() function to handle the mouseover, mouseout, and click events on the
document object.

document.onmouseover = handleEvent;
document.onmouseout = handleEvent;
document.onclick = handleEvent;

When you cause any of these events to fi re, the browser updates the event object and calls the
handleClick() function.

function handleEvent()
{
 if (event.srcElement.tagName == “P”)
 {

First, check the source element’s tagName property and see if it is P. If it is, then you check what kind of
event occurred by using the type property.

 if (event.type == “mouseover”)
 {
 event.srcElement.className = “underline”;
 }

 if (event.type == “mouseout”)
 {

25937c12.indd 44625937c12.indd 446 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

447

Chapter 12: Dynamic HTML and the W3C Document Object Model

 event.srcElement.className = “”;
 }
 }

For mouseover events, you change the paragraph’s CSS class to underline. If the event type is
mouseout, then the element’s className property is set to an empty string — returning the text to
its original style.

The next bit of code displays the mouse pointer’s location if the mouse button was clicked.

 if (event.type == “click”)
 {
 alert(“You clicked the mouse button at the X:”
 + event.clientX + “ and Y:” + event.clientY + “ coordinates”);
 }
}

If you compare Example eight with Example nine, you will notice the two primary differences are how
the event information is accessed, and how to retrieve the element that caused the event to occur. Most
everything else is shared between the standard DOM event model and IE’s event model.

In the next section, you’ll learn how to handle the fundamental differences between both event models
and write cross-browser DHTML code.

Writing Cross-Browser DHTML
By now you’ve written two versions of the same DHTML script: one for IE and one for browsers that
support the standard DOM event model (Firefox, Safari, Chrome, and Opera). In the real world, creating
separate versions of web sites is rarely considered best practice, and it’s much, much easier to write a
cross-browser version of the web page. In this section, you’ll use the knowledge you’ve gained of the
DOM, the standard DOM event model, and IE’s event model to write a cross-browser DHTML script.
This script will consist of a tab strip containing three tabs. Clicking any tab dynamically adds content to
the web page. It is a very crude and incomplete tab strip. You’ll have the opportunity to add more func-
tionality to it for one of this chapter’s questions.

Try It Out A Crude, Cross-Browser Tab Strip
Open your text editor and type the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Example 10</title>
 <style type=”text/css”>
 .tabStrip
 {

25937c12.indd 44725937c12.indd 447 9/22/09 9:21:09 AM9/22/09 9:21:09 AM

448

Chapter 12: Dynamic HTML and the W3C Document Object Model

 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
 }

 .tabStrip div
 {
 float: left;
 font: 14px arial;
 cursor: pointer;
 }

 .tabStrip-tab
 {
 padding: 3px;
 }

 .tabStrip-tab-hover
 {
 border: 1px solid #316AC5;
 background-color: #C1D2EE;
 padding: 2px;
 }

 .tabStrip-tab-click
 {
 border: 1px solid #facc5a;
 background-color: #f9e391;
 padding: 2px;
 }
 </style>
 <script type=”text/javascript”>
 function handleEvent(e)
 {
 var eSrc;

 if (window.event)
 {
 e = window.event;
 eSrc = e.srcElement;
 }
 else
 {
 eSrc = e.target;
 }

 if (e.type == “mouseover”)
 {
 if (eSrc.className == “tabStrip-tab”)
 {
 eSrc.className = “tabStrip-tab-hover”;
 }
 }

25937c12.indd 44825937c12.indd 448 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

449

Chapter 12: Dynamic HTML and the W3C Document Object Model

 if (e.type == “mouseout”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 eSrc.className = “tabStrip-tab”;
 }
 }

 if (e.type == “click”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 eSrc.className = “tabStrip-tab-click”;
 var num = eSrc.id.substr(eSrc.id.lastIndexOf(“-”) + 1);

 showDescription(num);
 }
 }
 }

 function showDescription(num)
 {
 var descContainer = document.getElementById(“descContainer”);

 var div = document.createElement(“div”);
 var text = document.createTextNode(“Description for Tab “ + num);

 div.appendChild(text);
 descContainer.appendChild(div);
 }

 document.onclick = handleEvent;
 document.onmouseover = handleEvent;
 document.onmouseout = handleEvent;
 </script>
</head>
<body>
 <div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
 </div>
 <div id=”descContainer”></div>
</body>
</html>

Save this fi le as ch12_examp10.htm. Open it in multiple browsers, and you’ll see that the page looks
and behaves the same in all browsers. When you move your mouse pointer over a tab, its style changes
to a blue background with a darker blue border. When you click a tab, its style changes yet again to
make the tab’s background color a light orange with a darker orange border color. Also, when you click
a tab, text is added to the page. For example, clicking tab 3 results in the text “Description for Tab 3”
being added to the page.

25937c12.indd 44925937c12.indd 449 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

450

Chapter 12: Dynamic HTML and the W3C Document Object Model

Let’s look at the HTML in the body, and its style, fi rst.

<div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
</div>
<div id=”descContainer”></div>

The fi rst <div/> element has a CSS class of tabStrip. The three <div/> elements contained within it
represent three tabs. Each tab <div/> element has a value assigned to its id attribute, and a CSS class of
tabStrip-tab.

The tab strip <div/> element has a sibling <div/> element with an id value of descContainer. It
doesn’t contain any children (yet), and it doesn’t have a CSS class associated with it.

In this example, the tab strip is visually set apart from the rest of the page by giving it a gray
background.

.tabStrip
{
 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
}

It’s given an actual height of 28 pixels (height + top padding + bottom padding). This height and pad-
ding vertically centers the tab <div/> elements within the tab strip.

The tabs have several CSS rules to defi ne the way they are rendered in the browser because they have
three states: normal, hover, and click. Despite these three states, they are still tabs and thus share some
visual characteristics. The fi rst rule dictates these shared properties.

.tabStrip div
{
 float: left;
 font: 14px arial;
 cursor: pointer;
}

The selector tells the browser to apply these properties to all <div/> elements inside the tab strip. The
elements are set to fl oat left to give them an inline appearance (<div/> elements are block elements,
and appear on a new line by default).

The next rule, the tabStrip-tab class, defi nes the normal state.

.tabStrip-tab
{
 padding: 3px;
}

All this rule adds is a padding of three pixels on all sides of the element. Next is the hover state, as
defi ned by the tabStrip-tab-hover class.

.tabStrip-tab-hover
{

25937c12.indd 45025937c12.indd 450 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

451

Chapter 12: Dynamic HTML and the W3C Document Object Model

 border: 1px solid #316AC5;
 background-color: #C1D2EE;
 padding: 2px;
}

This rule reduces the padding to two pixels, adds a one-pixel-wide border, and changes the background
color to a shade of blue. Borders, like padding, add to the actual dimensions of an element; reducing the
padding while adding a border keeps the element in a hover state the same height and width as it was
in the normal state.

The fi nal rule declares the tabStrip-tab-click class.

.tabStrip-tab-click
{
 border: 1px solid #facc5a;
 background-color: #f9e391;
 padding: 2px;
}

This class is similar to the hover class; the only difference is the dark orange border color and light
orange background color.

Now let’s look at the JavaScript code that performs the magic. The code consists of the handleEvent()
function, which is assigned to the document object’s onmouseover, onmouseout, and onclick event
handlers.

document.onclick = handleEvent;
document.onmouseover = handleEvent;
document.onmouseout = handleEvent;

The function begins by declaring a variable called eSrc (short for element source; it doesn’t matter what
you call this variable as long as it’s meaningful to you). This variable should contain the srcElement
and target properties for IE and browsers that implement the DOM event model, respectively.

function handleEvent(e)
{
 var eSrc;

 if (window.event)
 {
 e = window.event;
 eSrc = e.srcElement;
 }
 else
 {
 eSrc = e.target;
 }

After the variable declaration, you check for the window.event object to determine which event model
the browser implements. If window.event exists, then the browser is IE, and you assign the e variable
to hold a reference to the window.event object. Remember that e is defi ned as a parameter to the func-
tion, and since IE doesn’t pass a parameter to event handlers, it is undefi ned. Assigning it a reference
to window.event allows you to use the properties shared between the IE event object and the DOM

25937c12.indd 45125937c12.indd 451 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

452

Chapter 12: Dynamic HTML and the W3C Document Object Model

Event and MouseEvent objects easily (as you’ll see later with the type property). Next, you assign the
srcElement object to the eSrc variable. If the browser isn’t a version of IE, then assign the DOM Event
object’s target property to eSrc. Regardless of the browser used to view this page, you now have a
reference to the element that caused the event to occur with the eSrc variable.

Now you need to determine what type of event took place and make the appropriate changes to the
DOM. First, check for the mouseover event.

 if (e.type == “mouseover”)
 {
 if (eSrc.className == “tabStrip-tab”)
 {
 eSrc.className = “tabStrip-tab-hover”;
 }
 }

If the element that caused the event has a class name of tabStrip-tab, a tab in its normal state, then
change the element’s className property to tabStrip-tab-hover. In doing so, the tab is now in the
hover state.

If a mouseout event occurred, you also need to make changes to the DOM.

 if (e.type == “mouseout”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 eSrc.className = “tabStrip-tab”;
 }
 }

This code changes the tab’s className property to tabStrip-tab (the normal state) only when the tab
the mouse pointer exited is in the hover state.

The last event you need to look for is the click event, so check for it now with the following code:

 if (e.type == “click”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 eSrc.className = “tabStrip-tab-click”;

This code changes the tab element’s className to tabStrip-tab-click, thus putting it into the click
state. Next, you need to add the tab’s description to the page, and you start this process by getting the
tab’s number from the <div/> element’s id attribute. Remember the id values for the tab elements are
in the format of tabStrip-tab-1. So all you need to retrieve is the number of the tab. Do so by using
the substr() method.

 var num = eSrc.id.substr(eSrc.id.lastIndexOf(“-”) + 1);

 showDescription(num);
 }
 }
}

25937c12.indd 45225937c12.indd 452 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

453

Chapter 12: Dynamic HTML and the W3C Document Object Model

This code gets the index of the last “-” character in the id string, adds 1 to it, and passes that value to
the substr() method. If you didn’t add 1 to the value returned by lastIndexOf(), the result from
substr() would be “-1”. Now that you have the tab’s number, you pass it to the showDescription()
function.

function showDescription(num)
{
 var descContainer = document.getElementById(“descContainer”);

The tabs’ descriptions are added to the <div/> element with an id of descContainer, so as this code
shows, you fi rst retrieve that element using the getElementById() method.

The descriptions are dynamically created by this function, so now you need to create the DOM nodes to
add to the descCounter element. First, create a <div/> element using the createElement() method
of the document object.

 var div = document.createElement(“div”);

Now create a text node containing the description for the tab. In this example, the description is simple
and includes the tab’s number.

 var text = document.createTextNode(“Description for Tab “ + num);

Finally, add the text node to the newly created <div/> element, and then append that element to
descContainer. Use the Node object’s appendChild() method to perform both operations.

 div.appendChild(text);
 descContainer.appendChild(div);
}

JavaScript’s usefulness doesn’t end with HTML; there are times when you may want or need to open an
XML fi le and read it with JavaScript. Because of the similarities between (X)HTML and XML (namely
that they are structured documents), it’s not surprising that you use the DOM to load and read XML
documents, too.

JavaScript and XML
The W3C developed XML for the purpose of describing data rather than to actually display information
in any particular format, which is the purpose of HTML. There is nothing overly special about XML. It is
just plain text with the addition of some XML tags enclosed in angle brackets. You can use any software
that can handle plain text to create and edit XML.

XML is a data-centric language. It not only contains data, but it describes those data by using semantic
element names. The document’s structure also plays a part in the description. Unlike HTML, XML is
not a formatting language; in fact, a properly structured XML document is devoid of any formatting
elements. This concept is often referred to as the separation of content and style, and is part of XML’s suc-
cess, as it makes the language simple and easy to use.

For example, you can use XML as a data store like a database. In fact, XML is well suited for large and
complex documents because the data are structured; you design the structure and implement it using

25937c12.indd 45325937c12.indd 453 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

454

Chapter 12: Dynamic HTML and the W3C Document Object Model

your own elements to describe the data enclosed in the element. The ability to defi ne the structure and
elements used in an XML document is what makes XML a self-describing language. That is, the ele-
ments describe the data they contain, and the structure describes how data are related to each other.

Another method in which XML has become useful is in retrieving data from remote servers. Probably
the most widely known applications of this method are the RSS and Atom formats for web syndication.
These XML documents, and others like them, contain information readily available to anyone. Web
sites or programs can connect to the remote server, download a copy of the XML document, and use the
information however needed.

A third and extremely helpful application of XML is the ability to transfer data between incompatible
systems. An XML document is a plain text document; therefore, all operating systems can read and
write to XML fi les. The only major requirement is an application that understands the XML language
and the document structure. For example, Microsoft recently released details on Microsoft Offi ce Open
XML, the fi le format used in Microsoft Offi ce 2007. The fi les themselves are actually Zip fi les. However,
any program written to read the XML fi les contained in the Zip fi le can display the data with no prob-
lem; it doesn’t matter whether they were written under Windows, Mac OS X, any fl avor of Linux, or any
other operating system.

Manipulating XML with JavaScript
As previously mentioned, you use the DOM to load, read, and manipulate XML data; so you learned
most of what you need to manipulate XML within the web browser from the previous sections in the
chapter.

The fi rst task is to read the XML document. This is where most cross-browser problems are located
because IE, you guessed it, doesn’t follow the DOM standard, whereas Firefox, Safari, Chrome, and
Opera do. The good news is that once the XML document is loaded, the differences between the
browsers are smaller, although Microsoft has added a lot of useful (but nonstandard) extensions to its
implementation.

Retrieving an XML File in IE
Internet Explorer relies upon the ActiveXObject()object and the MSXML library to fetch and open
XML documents. A variety of ActiveX objects are available for scripting; to create an ActiveX object,
simply call the ActiveXObject() constructor and pass a string containing the version of the ActiveX
object you wish to create.

var xmlDoc = new ActiveXObject(“Microsoft.XMLDOM”);
xmlDoc.load(“myfile.xml”);

This code creates an XML DOM object that enables you to load and manipulate XML documents by
using the version string “Microsoft.XMLDOM”. When the XML DOM object is created, load an XML
document by using the load() method. This code loads a fi ctitious fi le called myfile.xml.

There are multiple versions of the Microsoft MSXML library, with each newer version offering more
features and better performance than the one before. However, the user’s computer must have these

25937c12.indd 45425937c12.indd 454 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

455

Chapter 12: Dynamic HTML and the W3C Document Object Model

versions installed before you can use them, and the version selection code can become complex.
Thankfully, Microsoft recommends checking for only two versions of MSXML. Their version strings
are as follows:

Msxml2.DOMDocument.6.0 ❑

Msxml2.DOMDocument.3.0 ❑

You want to use the latest version possible when creating an XML DOM, and the following function
does this:

function createDocument()
{
 var xmlDoc;

 if (window.ActiveXObject)
 {
 var versions =
 [
 “Msxml2.DOMDocument.6.0”,
 “Msxml2.DOMDocument.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 return xmlDoc;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }

 return null;
}

This code defi nes the createDocument() function. Its fi rst line creates the xmlDoc variable. This is a
temporary variable used in the creation of an XML DOM. The next line of code is an if statement, and
it checks to see if the browser is IE by seeing if window.ActiveXObject exists. If the condition is true,
then an array called versions is created, and the two MSXML versions are added as elements to the
array.

var versions =
[
 “Msxml2.DOMDocument.6.0”,
 “Msxml2.DOMDocument.3.0”
];

25937c12.indd 45525937c12.indd 455 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

456

Chapter 12: Dynamic HTML and the W3C Document Object Model

The order in which they’re added is important; you want to always check for the latest version fi rst, so
the version strings are added with the newest at index 0.

Next is a for loop to loop through the elements of the versions array. Inside the loop is a try...
catch statement.

for (var i = 0; i < versions.length; i++)
{
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 return xmlDoc;
 }
 catch (error)
 {
 //do nothing here
 }
}

If the ActiveXObject object creation fails in the try block, then code execution drops to the catch
block. Nothing happens at this point: The loop iterates to the next index in versions and attempts to
create another ActiveXObject object with the other MSXML version strings. If every attempt fails,
then the loop exits and returns null. Use the createDocument() function like this:

var xmlDoc = createDocument();

By using this function, you can create the latest MSXML XML DOM object easily.

Before you actually attempt to manipulate the XML fi le, make sure it has completely loaded into the
client’s browser cache. Otherwise, you’re rolling the dice each time the page is viewed and running the
risk of a JavaScript error being thrown whenever the execution of your script precedes the complete
downloading of the XML fi le in question. Fortunately, there are ways to detect the current download
state of an XML fi le.

The async property denotes whether the browser should wait for the specifi ed XML fi le to fully load
before proceeding with the download of the rest of the page. This property, whose name stands for
asynchronous, is set by default to true, meaning the browser will not wait on the XML fi le before ren-
dering everything else that follows. Setting this property to false instructs the browser to load the fi le
fi rst and then, and only then, to load the rest of the page.

var xmlDoc = createDocument();
xmlDoc.async = false; //Download XML file first, then load rest of page.
xmlDoc.load(“myfile.xml”);

The simplicity of the async property is not without its fl aws. When you set this property to false,
IE will stall the page until it makes contact and has fully received the specifi ed XML fi le. When the
browser is having trouble connecting and/or downloading the fi le, the page is left hanging like a

25937c12.indd 45625937c12.indd 456 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

457

Chapter 12: Dynamic HTML and the W3C Document Object Model

monkey on a branch. This is where the onreadystatechange event handler and readyState property
can help (as long as the async property is true).

The readyState property of IE exists for XML objects and many HTML objects, and returns the cur-
rent loading status of the object. The following table shows the four possible return values.

Return Values for the
readyState Property

Description

1 The object is initializing, but no data are being read (loading).

2 Data are being loaded into the object and parsed (loaded).

3 Parts of the object’s data have been read and parsed, so the object
model is available. However, the complete object data are not yet ready
(interactive).

4 The object has been loaded and its content parsed (completed).

The value you’re interested in here is the last one, 4, which indicates the object has fully loaded. To use
the readyState property, assign a function to handle the readystatechange event, which fi res every
time the readyState changes.

function xmlDoc_readyStateChange()
{
 //Check for the readyState. If it’s 4, it’s loaded!
 if (xmlDoc.readyState == 4)
 {
 alert(“XML file loaded!”);
 }
}

var xmlDoc = createDocument();
xmlDoc.onreadystatechange = xmlDoc_readyStateChange;

xmlDoc.load(“myfile.xml”);

This code fi rst creates a function called xmlDoc_readyStateChange(). Use this function to handle
the readystatechange event. Inside the function, check the readyState property to see if its value
is equal to 4. If it is, then the XML fi le is completely loaded and the alert text “XML file loaded!” is
displayed. Next, create the XML DOM object and assign the xmlDoc_readyStateChange() function to
the onreadystatechange event handler. The last line of code initiates the loading of myfile.xml.

Retrieving an XML File in Firefox and Opera
Loading an XML document in Firefox and Opera is a little different from doing the same thing in IE, as
these browsers use a more standards-centric approach. Creating an XML DOM doesn’t require the use
of an add-on as it does in IE; the DOM is a part of the browser and JavaScript implementation.

var xmlDoc = document.implementation.createDocument(“”,””,null);
xmlDoc.load(“myfile.xml”);

25937c12.indd 45725937c12.indd 457 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

458

Chapter 12: Dynamic HTML and the W3C Document Object Model

Safari and Chrome do not support loading XML fi les into a DOM object in the way covered in this
section. Instead, you must use the XMLHttpRequest object to request the XML document from the
server. This object is covered in Chapter 14.

This code creates an empty DOM object by using the createDocument() method of the document
.implementation object. After the DOM object is created, use the load() method to load an XML
document; it is supported by Firefox and Opera as well.

Safari and Chrome support the createDocument() method, but they do not support the load()
method.

Much like IE, Firefox and Opera support the async property, which allows the fi le to be loaded asyn-
chronously or synchronously. The behavior of loading synchronously is the same in these browsers as
in IE. However, things change when you want to load a fi le asynchronously.

Not surprising, Firefox and Opera use a different implementation from IE when it comes to checking
the load status of an XML fi le. In fact, these browsers do not enable you to check the status with some-
thing like the readyState property. Instead, they expose an onload event handler that executes when
the fi le is loaded and the DOM object is ready to use.

function xmlDoc_load()
{
 alert(“XML is loaded!”);
}

var xmlDoc = document.implementation.createDocument(“”,””,null);
xmlDoc.onload = xmlDoc_load;
xmlDoc.load(“myfile.xml”);

This code loads the fi ctitious fi le myfile.xml in asynchronous mode. When the load process completes,
the load event fi res and calls xmlDoc_load(), which then shows the text XML is loaded! to the user.

Retrieving an XML File (Cross-Browser)
As you can see, the different ways of creating XML DOM objects require you to seek a cross-browser
solution. You can easily do this with object detection to determine which browser is in use. In fact, you
can easily edit the createDocument() function to include Firefox and Opera support. Look at the
following code:

function createDocument()
{
 var xmlDoc;

 if (window.ActiveXObject)
 {
 var versions =
 [
 “Msxml2.DOMDocument.6.0”,
 “Msxml2.DOMDocument.3.0”
];

25937c12.indd 45825937c12.indd 458 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

459

Chapter 12: Dynamic HTML and the W3C Document Object Model

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 return xmlDoc;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }
 else if (document.implementation && document.implementation.createDocument)
 {
 xmlDoc = document.implementation.createDocument(“”,””,null);
 return xmlDoc;
 }
 return null;
}

The code highlighted in gray is the only new code added to the function. It fi rst checks if the
implementation object and implementation.createDocument method exist, and, if so, it creates an
XML DOM for DOM supporting browsers with document.implementation.createDocument() and
returns the DOM object to the caller. Using the function is exactly as you saw earlier, but now it works
across IE, Firefox, and Opera.

var xmlDoc = createDocument();
xmlDoc.async = false;
xmlDoc.load(“myfile.xml”);

Example: Displaying a Daily Message
Now that you know how to load XML documents, let’s jump right into building your fi rst XML-enabled
JavaScript application, a message-of-the-day display.

To begin, use the following simple XML fi le. You’ll retrieve the fi le and then display the daily message
using DHTML. Following is the XML fi le called motd.xml:

<?xml version=”1.0”?>

<messages>
 <daily>Today is Sunday.</daily>
 <daily>Today is Monday.</daily>
 <daily>Today is Tuesday.</daily>
 <daily>Today is Wednesday.</daily>
 <daily>Today is Thursday.</daily>
 <daily>Today is Friday.</daily>
 <daily>Today is Saturday.</daily>
</messages>

25937c12.indd 45925937c12.indd 459 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

460

Chapter 12: Dynamic HTML and the W3C Document Object Model

As you can see, this basic XML fi le is populated with a different message for each day of the week.

Next is the HTML page, with the createDocument() function added in the script block.

<html>
<head>
 <title>Message of the Day</title>
 <script type=”text/javascript”>
 function createDocument()
 {
 var xmlDoc;

 if (window.ActiveXObject)
 {
 var versions =
 [
 “Msxml2.DOMDocument.6.0”,
 “Msxml2.DOMDocument.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 return xmlDoc;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }
 else if (document.implementation
 && document.implementation.createDocument)
 {
 xmlDoc = document.implementation.createDocument(“”,””,null);
 return xmlDoc;
 }

 return null;
 }

 //More code to come
 </script>
</head>

Before you dig into the body of the page, there’s one more function to add to the head of the page. This
function is called getDailyMessage(), which retrieves and returns the message of the day. Add it
below the createDocument() function defi nition.

 function getDailyMessage()
 {

25937c12.indd 46025937c12.indd 460 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

461

Chapter 12: Dynamic HTML and the W3C Document Object Model

 var messages = xmlDoc.getElementsByTagName(“daily”);
 var dateobj = new Date();
 var today = dateobj.getDay();

 return messages[today].firstChild.nodeValue;
 }

First, use the getElementsByTagName() method to retrieve the <daily/> elements. As you already
know, this will return a node list of all the <daily/> elements. The next task is to fi nd a numerical
representation of the day of the week. Do this by fi rst creating a Date object and using its getDay()
method. This gives you a digit between 0 and 6, with 0 being Sunday, 1 being Monday, and so on; the
digit is assigned to the today variable. Finally, use that variable as an index of the messages node list
to select the correct <daily/> element and retrieve its text.

You may have noticed that xmlDoc in getDailyMessage() isn’t declared anywhere in the head of the
HTML document. It is used in createDocument(), but that variable is declared within the context of
the function. You actually declare the global xmlDoc in the body of the HTML page.

<body>
<div id=”messageContainer”></div>

<script type=”text/javascript”>
 var xmlDoc = createDocument();
 xmlDoc.async = false;
 xmlDoc.load(“motd.xml”);

 document.getElementById(“messageContainer”).innerHTML = getDailyMessage();
</script>
</body>
</html>

The fi rst HTML element found in the body is a <div/> element with an id of messageContainer. Use
this <div/> to display the message of the day.

Following the <div/> is the last <script/> element in the page. In this code block, you create a DOM
document and assign it to the global xmlDoc variable. Then load the motd.xml fi le synchronously and
set the message container’s innerHTML to the message of the day by calling getDailyMessage().

Try It Out Tabulating Doggie Data
In this example, you will write an application that uses an XML document containing data about one of
your author’s dogs. Open your text editor and type the following:

<html>
<head>
 <title>Chapter 12: Example 11</title>
 <script type=”text/javascript”>
 function createDocument()
 {
 var xmlDoc;

 if (window.ActiveXObject)
 {
 var versions =

25937c12.indd 46125937c12.indd 461 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

462

Chapter 12: Dynamic HTML and the W3C Document Object Model

 [
 “Msxml2.DOMDocument.6.0”,
 “Msxml2.DOMDocument.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 return xmlDoc;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }
 else if (document.implementation &&
 document.implementation.createDocument)
 {
 xmlDoc = document.implementation.createDocument(“”,””,null);
 return xmlDoc;
 }

 return null;
 }

 var xmlDocument = createDocument();
 xmlDocument.load(“ch12_examp11.xml”);

 function displayDogs()
 {
 var dogNodes = xmlDocument.getElementsByTagName(“dog”);

 var table = document.createElement(“table”);
 table.setAttribute(“cellPadding”,5); //Give the table some cell padding.
 table.setAttribute(“width”, “100%”);
 table.setAttribute(“border”, “1”);

 var tableHeader = document.createElement(“thead”);
 var tableRow = document.createElement(“tr”);

 for (var i = 0; i < dogNodes[0].childNodes.length; i++)
 {
 var currentNode = dogNodes[0].childNodes[i];

 if (currentNode.nodeType == 1)
 {

 var tableHeaderCell = document.createElement(“th”);

 var textData = document.createTextNode(currentNode.nodeName);

 tableHeaderCell.appendChild(textData);

25937c12.indd 46225937c12.indd 462 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

463

Chapter 12: Dynamic HTML and the W3C Document Object Model

 tableRow.appendChild(tableHeaderCell);
 }
 }

 tableHeader.appendChild(tableRow);

 table.appendChild(tableHeader);

 var tableBody = document.createElement(“tbody”);

 for (var i = 0; i < dogNodes.length; i++)
 {
 var tableRow = document.createElement(“tr”);

 for (var j = 0; j < dogNodes[i].childNodes.length; j++)
 {
 var currentNode = dogNodes[i].childNodes[j];
 if (currentNode.nodeType == 1)
 {
 var tableDataCell = document.createElement(“td”);
 var textData = document.createTextNode
 (
 currentNode.firstChild.nodeValue
);

 tableDataCell.appendChild(textData);

 tableRow.appendChild(tableDataCell);
 }
 }

 tableBody.appendChild(tableRow);
 }

 table.appendChild(tableBody);

 document.body.appendChild(table);
 }
 </script>
</head>
<body>
 Display Dogs
</body>
</html>

Save this as ch12_examp11.htm. Now type the following XML into another fi le and save it as ch12_
examp11.xml.

<?xml version=”1.0” encoding=”iso-8859-1”?>

<myDogs>
 <dog>
 <name>Morgan</name>
 <breed>Labrador Retriever</breed>

25937c12.indd 46325937c12.indd 463 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

464

Chapter 12: Dynamic HTML and the W3C Document Object Model

 <age>4 years</age>
 <fullBlood>yes</fullBlood>
 <color>chocolate</color>
 </dog>
 <dog>
 <name>Molly</name>
 <breed>Labrador Retriever</breed>
 <age>12 years</age>
 <fullBlood>yes</fullBlood>
 <color>yellow</color>
 </dog>
 <dog>
 <name>Madison</name>
 <breed>Labrador Retriever</breed>
 <age>10 years</age>
 <fullBlood>yes</fullBlood>
 <color>chocolate</color>
 </dog>
</myDogs>

When you open the HTML page in your browser, you’ll see a web page with only a link visible. When
you click the link, you should see something like what is shown in Figure 12-16.

Figure 12-16

The fi rst thing you do is create a DOM object and load an XML document into it.

var xmlDocument = createDocument();

25937c12.indd 46425937c12.indd 464 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

465

Chapter 12: Dynamic HTML and the W3C Document Object Model

xmlDocument.load(“ch12_examp11.xml”);

The workhorse of this page is the next function, displayDogs(). Its job is to build a table and populate
it with the information from the XML fi le.

function displayDogs()
{
 var dogNodes = xmlDocument.getElementsByTagName(“dog”);
 var table = document.createElement(“table”);
 table.setAttribute(“cellPadding”,5); //Give the table some cell padding.
 table.setAttribute(“width”, “100%”);
 table.setAttribute(“border”, “1”);

The fi rst thing this function does is use the getElementsByTagName() method to retrieve the <dog/>
elements and assign the resulting node list to dogNodes. Next, create a <table/> element by using the
document.createElement() method, and set its cellPadding, width, and border attributes using
setAttribute().

Next, create the table header and heading cells. For the column headers, use the element names of the
<dog/> element’s children (name, breed, age, and so on).

 var tableHeader = document.createElement(“thead”);
 var tableRow = document.createElement(“tr”);

 for (var i = 0; i < dogNodes[0].childNodes.length; i++)
 {
 var currentNode = dogNodes[0].childNodes[i];

 //Loop code here.
 }

 tableHeader.appendChild(tableRow);
 table.appendChild(tableHeader);

The fi rst few lines of this code create <thead/> and <tr/> elements. Then the code loops through the
fi rst <dog/> element’s child nodes (more on this later). After the loop, append the <tr/> element to the
table header and add the header to the table. Now let’s look at the loop.

 for (var i = 0; i < dogNodes[0].childNodes.length; i++)
 {
 var currentNode = dogNodes[0].childNodes[i];
 if (currentNode.nodeType == 1)
 {
 var tableHeaderCell = document.createElement(“th”);
 var textData = document.createTextNode(currentNode.nodeName);

 tableHeaderCell.appendChild(textData);
 tableRow.appendChild(tableHeaderCell);
 }
 }

The goal is to use the element names as headers for the column. However, you’re looping through
every child node of a <dog/> element, so any instance of whitespace between elements is counted as a
child node in DOM supported browsers. To solve this problem, check the current node’s type with the

25937c12.indd 46525937c12.indd 465 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

466

Chapter 12: Dynamic HTML and the W3C Document Object Model

nodeType property. If it’s equal to 1, then the child node is an element. Next, create a <th/> element,
and a text node containing the current node’s nodeName, which you append to the header cell. And
fi nally, append the <th/> element to the row.

The second part of displayDogs() builds the body of the table and populates it with data. It is similar
in look and function to the header-generation code.

 var tableBody = document.createElement(“tbody”);

 for (var i = 0; i < dogNodes.length; i++)
 {
 var tableRow = document.createElement(“tr”);

 //Inner loop code here

 tableBody.appendChild(tableRow);
 }

 table.appendChild(tableBody);

First, create the <tbody/> element, and then loop through the dogNodes node list, cycling through the
<dog/> elements. Inside this loop, create a <tr/> element and append it to the table’s body. When the
loop exits, append the <tbody/> element to the table. Now look at the inner loop, which adds data cells
to the row.

 for (var j = 0; j < dogNodes[i].childNodes.length; j++)
 {
 var currentNode = dogNodes[i].childNodes[j];

 if (currentNode.nodeType == 1)
 {
 var tableDataCell = document.createElement(“td”);
 var textData = document.createTextNode(
 currentNode.firstChild.nodeValue
);

 tableDataCell.appendChild(textData);

 tableRow.appendChild(tableDataCell);
 }

 tableBody.appendChild(tableRow);
 }

This inner loop cycles through the child elements of <dog/>. First, assign the currentNode variable to
reference the current node. This enables you to access this node a little more easily (much less typing!).
Next, check the node’s type. Again, DOM-based browsers count whitespace as child nodes, so you need
to make sure the current node is an element. When it’s confi rmed that the current node is an element,
create a <td/> element and a text node containing the text of currentNode. Append the text node to
the data cell, and append the data cell to the table row created in the outer for loop.

At this point, the table is completed, so add it to the HTML page. You do this with the following:

 document.body.appendChild(table);
}

25937c12.indd 46625937c12.indd 466 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

467

Chapter 12: Dynamic HTML and the W3C Document Object Model

Now all you have to do is invoke the displayDogs() function. To do this, place a hyperlink in the
page’s body to call the function when clicked.

Display Dogs

Summary
This chapter has featured quite a few diversions and digressions, but these were necessary to demon-
strate the position and importance of the Document Object Model in JavaScript.

This chapter covered the following points:

You started by outlining four of the main standards — HTML, ECMAScript, XML, and ❑

XHTML — and examined the relationships among them. You saw that a common aim emerg-
ing from these standards was to provide guidelines for coding HTML web pages. Those
guidelines in turn benefi ted the Document Object Model, making it possible to access and
manipulate any item on the web page using script if web pages were coded according to these
guidelines.

You examined the Document Object Model and saw that it offered a browser- and language- ❑

independent means of accessing the items on a web page, and that it resolved some of the
problems that dogged older browsers. You saw how the DOM represents the HTML document
as a tree structure and how it is possible for you to navigate through the tree to different ele-
ments and use the properties and methods it exposes in order to access the different parts of
the web page.

Although sticking to the standards provides the best method for manipulating the contents ❑

of the web page, none of the main browsers yet implements it in its entirety. You looked at
the most up-to-date examples and saw how they provided a strong basis for the creation of
dynamic, interoperable web pages because of their support of the DOM.

Despite leaps and bounds by browser makers, some discrepancies still exist. You learned how ❑

to cope with two different event objects by branching your code to consolidate two different
APIs into one.

DHTML enables you to change a page after it is loaded into the browser, and you can perform ❑

a variety of user interface tricks to add some fl air to your page.

You learned how to change a tag’s style by using the ❑ style and className properties.

You also learned the basics of animation in DHTML and made text bounce back and forth ❑

between two points.

Finally, you learned how to load an XML fi le and then manipulate its document with JavaScript. ❑

25937c12.indd 46725937c12.indd 467 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

468

Chapter 12: Dynamic HTML and the W3C Document Object Model

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

 1. Here’s some HTML code that creates a table. Re-create this table using only JavaScript and the
core DOM objects to generate the HTML. Test your code in all browsers available to you to
make sure it works in them. Hint: Comment each line as you write it to keep track of where you
are in the tree structure, and create a new variable for every element on the page (for example,
not just one for each of the TD cells but nine variables).

<table>
 <thead>
 <tr>
 <td>Car</td>
 <td>Top Speed</td>
 <td>Price</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Chevrolet</td>
 <td>120mph</td>
 <td>$10,000</td>
 </tr>
 <tr>
 <td>Pontiac</td>
 <td>140mph</td>
 <td>$20,000</td>
 </tr>
 </tbody>
</table>

 2. It was mentioned that Example 10 is an incomplete tab strip DHTML script. Make it not so
incomplete by making the following changes:

Only one tab should be active at a time. ❑

Only the active tab’s description should be visible. ❑

25937c12.indd 46825937c12.indd 468 9/22/09 9:21:10 AM9/22/09 9:21:10 AM

13
Using ActiveX and Plug-Ins

with JavaScript

Today’s browsers provide a lot of built-in functionality; however, there are many things they can-
not do unaided, such as playing video or sound. Functionality of this sort is quite common on the
Internet, and plug-ins and their ability to extend browser functionality make it possible to enjoy a
richer web experience.

Plug-ins are downloaded applications and, as their name suggests, “plugged into” the browser.
Many different plug-ins exist today; the more common ones include Adobe Flash Player, Microsoft’s
Silverlight, and Apple’s QuickTime player.

Essentially, plug-ins are objects that encapsulate all the functionality they need to perform their
tasks, such as playing audio fi les, in a way that hides the complexity from the website author.
They are usually written in languages such as C++ and Java.

Plug-ins usually, but not always, have some sort of user interface. For example, the QuickTime plug-in
has a user interface that displays buttons to play/pause the audio or video fi le, a seek bar to go to a
precise point in the playback, and a volume control (see Figure 13-1).

Figure 13-1

Some plug-ins make objects with various methods and properties available to you to access with
JavaScript, much as you access the methods and properties of the window object or the Document
Object Model. For example, the QuickTime player plug-in exposes the Play() method that you
can use to play a sound or video clip.

Plug-ins have been around for quite some time; in fact, Netscape supported them as early as ver-
sion 3. You probably won’t be shocked to fi nd out that Microsoft does things differently from the
other browser makers. Internet Explorer (IE) does not support plug-ins, but IE 4.0+ running on
Windows does support ActiveX controls, which provide the same functionality.

25937c13.indd 46925937c13.indd 469 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

470

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Fortunately, as you’ll see, using ActiveX controls is similar to using plug-ins in other browsers, and with
a few tweaks can be done with almost the same code. The main difference is actually making sure that
the plug-in or ActiveX control is available for use and ready to run in the user’s browser in the fi rst place.
This problem is covered in more detail for Firefox and IE before going on to discuss using the plug-ins
and ActiveX controls.

Checking for and Embedding Plug-ins
(Non-IE Browsers)

It’s nice to create a script to use a specifi c plug-in for the web page experience of a lifetime, but unless
the visitor to your web page also has the same plug-in installed on their computer, their experience of
the web page is going to be one full of bugs and error messages. It is therefore important that you not
only correctly add the HTML required to use the plug-in in your page but also use JavaScript to check if
the user’s browser has the plug-in installed that your page makes use of. You look at both these topics
in this section.

Even though this section focuses on Firefox, the same principles can be applied to Safari, Opera, and
Chrome.

Adding a Plug-in to the Page
To make use of a plug-in that is installed in the user’s browser, you need to use HTML to tell the browser
where and when in your page you want to use it. This process is called embedding the plug-in.

In Firefox, the key to embedding plug-ins is the non-standard <embed/> element. This inserts the vis-
ible interface, if any, of the plug-in at that point in the page. The <embed/> element supports a number
of general attributes applicable to all plug-ins, such as height, width, pluginspage, src, and type.
You’ll look at the last two of these attributes, src and type, in more detail here. You will also look at
the pluginspage attribute in the next section.

Most plug-ins display content that is stored on a web server. For example, a plug-in for sound, such as
QuickTime player, will play music from a fi le with a variety of extensions, notably the .mp3 and .aac
extensions, and the Flash plug-in will play Flash movies (fi les with the .swf extension). The <embed/>
element’s src attribute enables you to specify the initial fi le for the plug-in to load and play. This will be
a URL pointing to the fi le, usually hosted on the same web server as the HTML page. It’s from this fi le
that the browser determines what sort of plug-in is required. For example, if the src is http://www
.myserver.com/myflashmovie.swf, then by checking the type of the fi le, the browser can see that a
Flash player plug-in needs to be used.

However, not all plug-ins require data from an external source and therefore a value for the src attri-
bute. In such situations, how can the browser tell what plug-in to load? Well, that’s where the <embed/>
element’s type attribute comes in. The actual value for the type attribute will be specifi c to the plug-in.
You can fi nd out this information by typing about:plugins in the location bar. The plug-in informa-
tion loads into the browser, as shown in Figure 13-2.

25937c13.indd 47025937c13.indd 470 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

471

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Figure 13-2

You’ll see a list of all the plug-ins installed on your browser. The value required for the type attribute
is listed as the Multipurpose Internet Mail Extensions (MIME) type, which specifi es a type of content
such as a web page, an image, or a Flash fi le. For example, the MIME type for Flash is application/
x-shockwave-flash.

In addition to a number of attributes common to all plug-ins, you can also use the <embed/> element to
specify properties specifi c to a particular plug-in. For example, the Flash plug-in supports the quality
attribute, which determines the image quality of the Flash movie. To set this attribute in the <embed/>
element, you just add it to the list of attributes set, as shown in the following example:

<embed id=”FlashPlugIn1”
 src=”topmenu.swf”
 border=0
 height=100
 width=500
 quality=high
 type=”application/x-shockwave-flash” />

Although Firefox supports the <embed/> element, it also supports the use of the HTML standard <object/>
element for embedding plug-ins into the page, in a similar way to IE, which you will see shortly.

25937c13.indd 47125937c13.indd 471 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

472

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Checking for and Installing Plug-ins
After you decide what type of plug-in you want to embed into the page, what happens if the browser
fi nds that this particular plug-in does not exist on the user’s computer?

To solve this problem you can set the pluginspage attribute of <embed/> to point to a URL on the
plug-in creator’s page. If the plug-in is not on the user’s computer, a link to the URL specifi ed in the
pluginspage attribute will be displayed within the web page. The user can click the link and load
the plug-in so that your web page will function properly.

For example, with Flash the value for the pluginspage attribute needed is this:

http://www.adobe.com/shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash

However, if the user doesn’t have the plug-in installed, you might prefer to send them to a version of
your web site that doesn’t rely on that plug-in. How do you know whether a plug-in is installed?

The navigator object, introduced in Chapter 6, has a property called plugins, which is a collection
of Plugin objects, one for each plug-in installed on that browser. You can access a Plugin object in the
plugins array either by using an index value that indexes all the plug-ins installed on the user’s
browser or by using the name of the plug-in application.

Internet Explorer has a navigator.plugins collection, but it is always empty.

Each Plugin object has four properties: description, filename, length, and name. You can fi nd
these values by viewing the plug-ins information page that you saw earlier.

Let’s use Flash as an example. Type about:plugins in the location bar and press enter. Figure 13-3 shows
the Installed plug-ins page in Chrome, but this page remains largely the same for all non-IE browsers.
Flash has “Shockwave Flash” as its name property. The filename and description properties have
obvious meanings. The length property gives the number of MIME types supported by the plug-in.

As mentioned earlier, the name property can be used to reference the Plugin object in the plugins
array. So, the following code will set the variable shockWavePlugin to the Plugin object for Flash, if
it’s installed:

var shockWavePlugIn = navigator.plugins[“Shockwave Flash”];

If it’s not, navigator.plugins[“Shockwave Flash”] will return as undefined.

You can use the following to redirect users on browsers that do not have installed the plug-in you need:

if (navigator.plugins[“Shockwave Flash”])
{
 window.location.replace(“my_flash_enabled_page.htm”);
}
else
{
 window.location.replace(“my_non_flash_page.htm”);
}

25937c13.indd 47225937c13.indd 472 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

473

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Length

Name

Description

File Name

Figure 13-3

If the Flash plug-in is not installed, navigator.plugins[“Shockwave Flash”] will be undefined,
which JavaScript considers to be false, thereby causing the else statement to execute. If Flash is installed,
navigator.plugins[“Shockwave Flash”] will return the Flash Plugin object, which JavaScript treats
as true, and the main if statement will execute.

The problem with this method of detection is that the name given to a plug-in may vary from operating
system to operating system. For example, the name of the Windows XP version of the plug-in may vary
from the name of the Mac version, which in turn may vary from the name of the Linux version. Some
plug-ins, such as RealPlayer, will not work reliably at all with this detection method, because the name
is not simply RealPlayer but something that contains the word “RealPlayer.”

An alternative method for determining whether a plug-in is installed is to loop through the plugins[]
array and check each name for certain keywords. If you fi nd them, you can assume that the control is
installed. For example, to check for QuickTime, you may use the following:

var pluginsLength = navigator.plugins.length;
for (var i = 0; i < pluginslength; plugInCounter++)
{
 var name = navigator.plugins[i].name.toLowerCase();
 if (name.indexOf(“quicktime”) > -1)
 {
 alert(“QuickTime is installed”);

25937c13.indd 47325937c13.indd 473 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

474

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

 break;
 }
}

The for loop iterates through the navigator.plugins collection, starting from index 0 and continuing
up to the last element. Each plug-in in the collection has its name property checked to see if it contains
the text quicktime. If it does, you know QuickTime is installed and break out of the loop; if not,
QuickTime is clearly not installed.

An alternative to using navigator object’s plugins[] collection is using the navigator object’s
mimeTypes[], which is a collection of mimeType objects representing the MIME types supported by the
browser. You can use this array to check whether the browser supports a specifi c type of media.

You have already come across MIME types before — the type attribute of the <embed/> element can
be used to specify a MIME type so that the browser knows which plug-in to embed. Again, using the
Installed plug-ins page can give you the MIME types for a particular plug-in. In fact, one plug-in may
well support more than one MIME type. When you check for a particular MIME type, you are checking
that the browser supports a particular type of fi le format rather than necessarily a particular plug-in.

For example, you may use the mimeTypes array to check for the Flash plug-in as follows:

if (navigator.mimeTypes[“application/x-shockwave-flash”] &&
 navigator.mimeTypes[“application/x-shockwave-flash”].enabledPlugin)
{
 window.location.replace(“my_flash_enabled_page.htm”);
}
else
{
 window.location.replace(“my_non_flash_page.htm”);
}

The if statement’s condition has two parts separated by the AND operator &&.

The fi rst part checks that the specifi ed MIME type is supported by trying to access a specifi c mimeType
object in the mimeTypes collection. If there such object exists, then undefined is returned, which eval-
uates to false.

The second part of the condition checks to see if a plug-in to handle this MIME type is enabled. Although
unusual, it is possible for a MIME type to be supported, or recognized, by the browser, but for no plug-
in to be installed. For example, if the user has Microsoft Word installed, the MIME type application/
msword would be valid, but that does not mean a plug-in exists to display it in the browser! The
enabledPlugin property of the mimeType object actually returns a Plugin object unless it does not exist.

Checking for and Embedding ActiveX
Controls on Internet Explorer

Although IE does support plug-ins to a certain extent, its support for ActiveX controls is more complete.
The main difference between an ActiveX control and a plug-in is how they are embedded into a page and
how they are installed. Once they are embedded and installed, their use, as far as scripting goes, will be
very similar to that for plug-ins.

25937c13.indd 47425937c13.indd 474 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

475

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

ActiveX controls are a little like mini-programs, usually created in languages like C++ or Visual Basic. Unlike
normal programs, like Notepad or Microsoft Word, ActiveX controls cannot run on their own; they need to
be sited in a container program. Not all programs can act as containers for ActiveX controls, only those specifi -
cally designed to do so, such as Microsoft Access and, of course, Internet Explorer. When the creators of the
ActiveX control compile their code, they also assign it a unique identifi cation string that enables program-
mers like you to specify exactly which control you want to embed in your IE ActiveX container.

Adding an ActiveX Control to the Page
Adding an ActiveX control to a page for an IE browser requires the use of the <object/> element. Two
very important attributes of the <object/> element are common to all controls, namely classid and
codebase. The classid attribute is the unique ID that the creator of the control gave to it when it was
compiled. The codebase attribute gives a URL where the ActiveX control can be found — you’ll look at
this attribute in more detail in the next section.

How can you fi nd out the classid? Well, one way to do this is by checking the documentation that
came with the control or is available on the control creator’s web site. If you have the control installed,
another way to do this is via IE itself, which will tell you which controls are installed on the computer
and available to IE. Also, IE gives you additional information such as classid, though it won’t inform
you about any controls that were installed with the operating system. For example, Flash 3 is installed
with Windows 98 and therefore won’t appear.

To get this information, open up IE and select Internet Options from the Tools menu, as shown in
Figure 13-4.

Figure 13-4

25937c13.indd 47525937c13.indd 475 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

476

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

This opens up the window shown in Figure 13-5. In the Browsing history area, click the Settings
button.

Figure 13-5

In the next window that opens, click the View objects button, shown in Figure 13-6.

Figure 13-6

This will display a list of all the ActiveX controls IE has installed from the Internet. The list shown in
Figure 13-7 will most likely be different from that on your own computer.

25937c13.indd 47625937c13.indd 476 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

477

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Figure 13-7

You can see lots of information about each control, such as when it was created and its version number.
To fi nd out the classid, right-click the name of the control you’re interested in and select Properties
from the menu that pops up.

The information shown in Figure 13-8 is displayed, though this may be slightly different on your
system.

Figure 13-8

25937c13.indd 47725937c13.indd 477 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

478

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

You can see that the classid attribute, listed as just ID, and the codebase attribute, listed as CodeBase,
are both displayed, although for codebase you may need to select the line and then scroll using the
arrow keys to see all the information.

From this information, you see that to insert a Flash ActiveX control in your web page you need to add
the following <object/> element:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
 id=”flashPlayer1”
 width=”500”
 height=”100” />

You can also set attribute or parameter values for the control itself. For example, with Flash you need to
set the src attribute to point to the .swf fi le you want loaded, and you may also want to set the quality
attribute, which determines the quality of appearance of the Flash movie. However, to set the parameters
of the ActiveX control such as these (as opposed to the attributes of the <object/> element), you need
to insert the <param/> element between the start <object> tag and the close </object> tag.

In each <param/> element you need to specify the name of the parameter you want to set and the value
you want it set to. For example, if you want to set the src attribute to myFlashMovie.swf, you need to
add a <param/> element like this:

<param name=”src” value=”myFlashMovie.swf”>

Let’s add this to the full <object/> element defi nition and also defi ne the quality attribute at the
same time.

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
 id=”flashPlayer1”
 width=”500”
 height=”100”>
 <param name=”src” value=”myFlashMovie.swf”>
 <param name=”quality” value=”high”>
</object>

Installing an ActiveX Control
You’ve seen how to insert an ActiveX control into your page, but what happens if the user doesn’t have
that control installed on their computer?

This is where the codebase attribute of the <object/> element comes in. If the browser fi nds that the
ActiveX control is not installed on the user’s computer, it will try to download and install the control
from the URL pointed to by the codebase attribute.

The creator of the ActiveX control will usually have a URL you can use as a value for the codebase
attribute. The information under the Internet Options option of the Tools menu you saw earlier provides
the codebase for the control that was installed on your computer, though this may not necessarily be the
best URL to use, particularly if it’s not a link to the creator of the control.

25937c13.indd 47825937c13.indd 478 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

479

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

For Flash, the codebase is http://fpdownload.macromedia.com/get/shockwave/cabs/flash/
swflash.cab, so your <object> tag will look like this:

<object classid=”clsid:D27CDB6E-AE6D-11CF-96B8-444553540000”
codebase=”http://fpdownload.macromedia.com/get/shockwave/cabs/flash/swflash.cab”
 id=”flashPlayer1”
 width=”500”
 height=”100”>
 <param name=”src” value=”myFlashMovie.swf”>
 <param name=”quality” value=”high”>
</object>

Subject to license agreements, you may be able to download the .cab fi le that installs the control to
your own server and point the codebase attribute to that.

Unfortunately, there is no easy foolproof way of checking which ActiveX controls are installed on the
user’s computer. However, the Object object of the <object/> element does have the readyState
property. This returns 0, 1, 2, 3, or 4, indicating the object’s operational status. The possible values are
as follows:

0 ❑ — Control is un-initialized and not ready for use

1 ❑ — Control is still loading

2 ❑ — Control has fi nished loading its data

3 ❑ — User can interact with control even though it is not fully loaded

4 ❑ — Control is loaded and ready for use

You need to give the control time to load before checking its readyState property, so any checking is
best left until the window’s onload event handler or even the document object’s onreadystatechange
event handler fi res.

To redirect the user to another page that doesn’t need the control, you need to write this:

function window_onload() {
 var flashPlayer1;

 // code to retrieve ActiveX plug-in

 if (flashPlayer1.readyState == 0)
 {
 window.location.replace(“NoControlPage.htm”);
 }
}

onload = window_onload;

This code checks to see if the ActiveX control’s readyState is 0. Since this code executes after the
browser loads the page, it’s safe to assume the ActiveX control isn’t installed on the computer.

25937c13.indd 47925937c13.indd 479 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

480

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Using Plug-ins and ActiveX Controls
When you have the plug-ins or ActiveX controls embedded into the page, their actual use is very uniform.
To make life easier for you, most plug-in and ActiveX developers make the properties, methods, and
events supported by each plug-in and ActiveX control similar. However, it’s important to check the
developer’s documentation because it’s likely that there will be some idiosyncrasies.

Inside the <embed/> or <object/> element, you give your plug-in or control a unique id value. You
can then access the corresponding object’s methods, properties, and events just as you would for any
other element. The actual properties, methods, and events supported by a plug-in or control will be spe-
cifi c to that control, but let’s look at one of the more commonly available controls, Apple’s QuickTime
player, which comes in both plug-in form for non-IE browsers and ActiveX control form for IE. You can
fi nd more information on this control at the following URL:

http://developer.apple.com/documentation/QuickTime/Conceptual/QTScripting_
JavaScript/bQTScripting_JavaScri_Document/QuickTimeandJavaScri.html

To run the examples in this chapter, you need the free QuickTime player from
http://www.apple.com/quicktime/.

Note that you can buy a version with more features, but it is not necessary for this book.

First, you need to embed the control in a web page. Type the following into a text editor:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Using JavaScript to Interface with Quicktime</title>
</head>
<body>
 <object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
 codebase=”http://www.apple.com/qtactivex/qtplugin.cab”
 id=”audioPlayer” width=”0” height=”0”>
 <param name=”src” value=”sound1.mp3” />
 <embed height=”0” width=”0” type=”audio/mpeg” src=”sound1.mp3”
 pluginspage=”www.apple.com/quicktime/download”
 enablejavascript=”true” name=”audioPlayer” />
 </object>
 <form id=”form1” name=”form1” action=”“>
 <input type=”button” value=”Play” id=”buttonPlay” name=”buttonPlay”
 onclick=”buttonPlay_onclick()“ />
 <input type=”button” value=”Stop” id=”buttonStop” name=”buttonStop”
 onclick=”buttonStop_onclick()“ />
 </form>
</body>
</html>

Save this code as quicktime.htm.

The fi rst thing to note is the <embed/> element (for non-IE browsers) resides as a child of the <object/>
element. Firefox, Opera, Safari, and Chrome ignore the <object/> element and display only the plug-
in defi ned by <embed/>. IE ignores the <embed/> element within the <object/> element, even though
the browser supports <embed/>. If you placed the <embed/> element outside of <object/>, IE would

25937c13.indd 48025937c13.indd 480 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

481

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

recognize both the <object/> and <embed/> elements and get confused — particularly over the id
values, because both have the same id of audioPlayer.

Beneath the <object/> element is a form with two buttons. The fi rst has an id and name value of
buttonPlay and executes the buttonPlay_onclick() function when the user clicks it. The second
button is called buttonStop, and it executes the buttonStop_onclick() function when clicked.

Determining Plug-in/ActiveX Control Availability
You want to make sure that users without QuickTime don’t see error messages when they attempt to
use the scripted controls. In this exercise, let’s disable the buttons used to control the audio playback.
Add the following <script/> element to the HTML page’s head; it defi nes a function to do disable the
buttons and attaches it to the window object’s onload event handler.

<script type=”text/javascript”>
 function window_onload() {
 var plugInInstalled = false;
 if (!window.ActiveXObject) {
 var pluginsLength = navigator.plugins.length;
 for (var i = 0; i < pluginsLength; i++) {
 var pluginName = navigator.plugins[i].name.toLowerCase();
 if (pluginName.indexOf(“quicktime”) > -1) {
 plugInInstalled = true;
 break;
 }
 }
 } else {
 if (document.audioPlayer.readyState == 4) {
 plugInInstalled = true;
 }
 }

 if (!plugInInstalled) {
 document.forms[0].buttonPlay.disabled = true;
 document.forms[0].buttonStop.disabled = true;
 alert(“You need Quicktime to play the audio file!”);
 }
 }

 onload = window_onload;
</script>

In the window_onload() function, you fi rst defi ne a variable, plugInInstalled, and initialize it as
false. Next, since checking for plug-ins or controls is browser-dependent, you check to see if this is a
Microsoft browser. A simple check for the ActiveXObject property of the window object will suffi ce.

If the browser is a non-IE browser, use a for loop to iterate over the navigator object’s plugins collec-
tion, checking each installed plug-in’s name for the word quicktime (note that you’re checking the lower-
case version of the word; this is to provide a more accurate search). Set the variable plugInInstalled to
true and break out of the for loop if this name is found.

25937c13.indd 48125937c13.indd 481 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

482

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

If this is a Microsoft browser, use the readyState property of the <object/> element’s Object object
to see if the ActiveX control is loaded, initialized successfully, and now ready for action. If its value is 4,
you know all systems are ready to go, so you set the variable plugInInstalled to true.

Finally, the last if statement in the function checks to see if plugInInstalled is true or false. If
false, the buttons are disabled and an alert box tells the user they need QuickTime in order to play the
audio fi le.

Finishing Up
The last step in creating this audio player is adding functionality to the buttons. As mentioned earlier,
these buttons start and stop the audio fi le’s playback. Add the following functions to the script element:

function buttonPlay_onclick() {
 document.audioPlayer.Play();
}

function buttonStop_onclick() {
 document.audioPlayer.Stop();
}

The QuickTime plug-in control exposes Play() and Stop() methods to play and pause playback
respectively. So the play button should call Play() and the stop button Stop().

You completed the page with this last bit of code. The HTML and JavaScript should now look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Using JavaScript to Interface with Quicktime</title>

 <script type=”text/javascript”>
 function buttonPlay_onclick() {
 document.audioPlayer.Play();
 }

 function buttonStop_onclick() {
 document.audioPlayer.Stop();
 }

 function window_onload() {
 var plugInInstalled = false;
 if (!window.ActiveXObject) {
 var pluginsLength = navigator.plugins.length;
 for (var i = 0; i < pluginsLength; i++) {
 var pluginName = navigator.plugins[i].name.toLowerCase();
 if (pluginName.indexOf(“quicktime”) > -1) {
 plugInInstalled = true;
 break;
 }
 }

25937c13.indd 48225937c13.indd 482 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

483

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

 } else {
 if (document.audioPlayer.readyState == 4) {
 plugInInstalled = true;
 }
 }

 if (!plugInInstalled) {
 document.forms[0].buttonPlay.disabled = true;
 document.forms[0].buttonStop.disabled = true;
 alert(“You need Quicktime to play the audio file!”);
 }
 }

 onload = window_onload;
 </script>
</head>
<body>
 <object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
 codebase=”http://www.apple.com/qtactivex/qtplugin.cab”
 id=”audioPlayer” width=”0” height=”0”>
 <param name=”src” value=”sound1.mp3” />
 <embed height=”0” width=”0” type=”audio/mpeg” src=”sound1.mp3”
 pluginspage=”www.apple.com/quicktime/download”
 enablejavascript=”true” name=”audioPlayer” />
 </object>
 <form id=”form1” name=”form1” action=”“>
 <input type=”button” value=”Play” id=”buttonPlay” name=”buttonPlay”
 onclick=”buttonPlay_onclick()“ />
 <input type=”button” value=”Stop” id=”buttonStop” name=”buttonStop”
 onclick=”buttonStop_onclick()“ />
 </form>
</body>
</html>

Load quicktime.htm into your browser. As long as your browser supports plug-ins or ActiveX controls
and the QuickTime plug-in is installed, you should see something like what is shown in Figure 13-9.

Figure 13-9

25937c13.indd 48325937c13.indd 483 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

484

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

When the browser loads the page, the provided .mp3 fi le begins to play automatically. Use the play and
stop buttons to demonstrate the functionality of your audio player.

So how does this work?

The form in the body of the page contains two standard buttons that are connected to JavaScript func-
tions via the onclick event handlers. Inside these functions, you access the QuickTime plug-in and
plug-in controls that you embedded into the page by using its name prefi xed with document. The play
function calls the plug-in’s and plug-in control’s Play() method to play the sound, and the stop func-
tion calls Stop()pause the sound. This script works in all major browsers, though IE accesses the
ActiveX control defi ned in the <object/> element, and non-IE browsers access the plug-in defi ned in
the <embed/> element.

Testing the Disabling of the Form
It’s quite likely that if you plan to use an ActiveX control or plug-in, you’re going to make sure it’s installed
on your computer. The problem is that while that’s great for testing pages to see if they work when there is
a control installed, it can become diffi cult to test scripts for users without that control. You have the follow-
ing possible options:

Get a second computer with a clean install of an operating system and browser; then load your ❑

pages on that computer. This is the only sure way of checking your pages.

Uninstall the plug-in. Depending on how the plug-in or control was installed, there may be an ❑

uninstall program for it. Windows users can use the Add/Remove programs option in the
Control Panel.

For non-IE browsers, install a different version of the browser. For example, if you have Firefox 3 ❑

installed, try installing an older version, say Firefox 2 or even a beta version if you can fi nd it.
The plug-ins currently installed are not normally available to a browser installed later, though
this may not be true all the time.

With IE, you can only have one version of the browser installed at once. However, IE does make ❑

it quite easy to remove ActiveX controls. In IE 5+, choose Internet Options from the Tools menu.
Click the Settings button under Temporary Internet Files (Browsing History in IE7), followed by
the View Objects button. From here you need to right-click the name of the control you want
removed and select Remove from the pop-up menu.

Thankfully, this situation is rather easy to test. Recall the end of the window_onload() function; you
tested the pluginInstalled variable to determine whether or not the form should be disabled. Simply
reversing that check will allow you to see what happens when a user without QuickTime installed on
their computer visits the page. So change the last bit of code of window_onload() to look like this:

if (plugInInstalled) {
 document.forms[0].buttonPlay.disabled = true;
 document.forms[0].buttonStop.disabled = true;
 alert(“You need Quicktime to play the audio file!”);
}

Resave the HTML document and refresh the page in your browser. Figure 13-10 shows what happens in
Chrome.

25937c13.indd 48425937c13.indd 484 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

485

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Figure 13-10

Potential Problems
Plug-ins and ActiveX controls provide a great way to extend a browser’s functionality, but they do so
at a price — compatibility problems. Some of the problems you may face are discussed in the following
sections.

Similar but Not the Same — Differences Among Browsers
Although a plug-in for non-IE browsers and the equivalent ActiveX control for IE may support many
similar properties and methods, you will often fi nd signifi cant, and sometimes subtle, differences.

For example, both the plug-in and ActiveX control versions of RealPlayer support the SetSource()
method. The following code works in IE:

document.real1.SetSource(“D:\\MyDir\\MyFile.ra”)

This code, however, will cause problems with the other browsers. To work with Firefox and the like,
specify the protocol by which the fi le will be loaded. If it is a URL, specify http://, but for a fi le on a
user’s local hard drive, use file:///.

To make the code work across platforms, you must type this:

document.real1.SetSource(“file:///D:\MyDir\MyFile.ra”)

Differences in the Scripting of Plug-ins
When scripting the QuickTime plug-in for non-IE browsers, you embedded it like this:

<embed height=”0” width=”0” type=”audio/mpeg” src=”sound1.mp3”
 pluginspage=”www.apple.com/quicktime/download”
 enablejavascript=”true” name=”audioPlayer” />

25937c13.indd 48525937c13.indd 485 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

486

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

You then accessed it via script just by typing this:

document.audioPlayer.Play()

However, if you are scripting a Flash player, you need to add the following attribute to the <embed/>
defi nition in the HTML:

swliveconnect=”true”

Otherwise, any attempts to access the plug-in will result in errors.

<embed name=”map” swLiveConnect=”true” src=”topmenu.swf”
 width=”300” height=”200”
 pluginspage=”http://http://www.macromedia.com/go/getflashplayer”>

It’s very important to study any available documentation that comes with a plug-in to check that there
are no subtle problems.

Differences Between Operating Systems
Support for ActiveX controls varies greatly between different operating systems. IE for the Mac supports
it, but not as well as under Win32 operating systems, such as Windows 2000, XP, and Vista. You also need
to be aware that an ActiveX control written for Win32 will not work on the Mac; you need to make sure a
Mac-specifi c control is downloaded.

IE on the Mac supports plug-ins as well as ActiveX controls; so, for example, Flash is a plug-in on the
Mac and an ActiveX control on Win32. Clearly, if you want to support both Mac and Windows users,
you need to write more complex code.

It’s very important to check which operating system the user is running (for example, using the scripts
given at the end of Chapter 6) and deal with any problems that may arise.

Differences Between Different Versions of the Same Plug-in or
ActiveX Control

Creators of plug-ins and controls will often periodically release new versions with new features. If you
make use of these new features, you need to make sure not only that the user has the right plug-in or
ActiveX control loaded, but also that it is the right version.

ActiveX Controls
With ActiveX controls, you can add version information in the codebase attribute of the <object/>
element.

<object classid=clsid:AAA03-8BE4-11CF-B84B-0020AFBBCCFA
 id=”myControl”
 codebase=”http://myserver/mycontrol.cab#version=3,0,0,0”>
</object>

Now, not only will the browser check that the control is installed on the user’s system, but it also checks
that the installed version is version 3 or greater.

25937c13.indd 48625937c13.indd 486 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

487

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

What if you want to check the version and then redirect to a different page if it’s a version that is earlier
than your page requires?

With ActiveX controls there’s no easy way of using JavaScript code to check the ActiveX control version.
One way is to fi nd a property that the new control supports but that older versions don’t, and then com-
pare that to null. For example, imagine you have a control whose latest version introduces the property
BgColor. To check if the installed version is the one you want, you type the following:

if (document.myControl.BgColor == null)
{
 alert(“This is an old version”);
}

It’s also possible that the ActiveX creator has added to his control’s object a version property of some
sort that you can check against, but this will vary from control to control.

Plug-ins
With plug-ins you need to make use of the Plugin objects in the navigator object’s plugins[] array
property. Each Plugin object in the array has a name, filename, and description property, which
may provide version information. However, this will vary between plug-ins.

For example, for Flash Player 10 on Win32, the description for the following code is Shockwave Flash
10.0 r12.

navigator.plugins[“Shockwave Flash”].description

Using regular expressions, which were introduced in Chapter 9, you could extract the version number
from this string:

var myRegExp = /\d{1,}.\d{1,}/;
var flashVersion = navigator.plugins[“Shockwave Flash”].description;
flashVersion = parseFloat(flashVersion.match(myRegExp)[0]);

The fi rst line of code defi nes a regular expression that matches one or more digits, followed by a dot, and
then one or more numbers. Next, you store the description of the Flash plug-in in the variable flashVersion.
Finally you search the variable for the regular expression, returning an array of all the matches made. Then
use the parseFloat() function on the contents of the element in the array at index 0 (in other words, the
fi rst element in the array).

Changes to Internet Explorer 6 Service Pack 1b and ActiveX Controls
For mostly legal reasons, Microsoft made changes to how ActiveX controls work in IE. Whenever a user
browses to a page with an ActiveX control, she gets a warning about the control, and by default it’s
blocked unless she chooses to unblock it. There are two ways around this:

 1. Don’t access any external data or have any <param/> elements in the defi nition, as the follow-
ing example demonstrates:

<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”></object>

25937c13.indd 48725937c13.indd 487 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

488

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

 2. Use the new noexternaldata attribute to specify that no external access of data is used.

<object noexternaldata=”true” classid=”CLSid:6BF52A52-394A-11d3-B153-00C04F79FAA6”>
 <param name=”URL”
 value=”http://msdn.microsoft.com/workshop/samples/author/dhtml/media/drums.wav”/>
</object>

The URL parameter will be ignored, and no external data from the URL, in this case a .wav fi le, will be
accessed.

Summary
In this chapter you looked at how you can use plug-ins and ActiveX controls to extend a browser’s func-
tionality. You saw that:

Internet Explorer supports ActiveX controls, and to some extent plug-ins, on Windows oper- ❑

ating systems. Non-IE browsers have good support for plug-ins but do not support ActiveX
controls.

Most creators of plug-ins also provide an ActiveX control equivalent. Internet Explorer and ❑

other browsers are incompatible as far as the installation of plug-ins and ActiveX controls goes.

Plug-ins are embedded in a web page by means of the ❑ <embed/> element. You let non-IE
browsers know which plug-in to embed by specifying either a source fi le or a MIME type using
the src and type attributes of the <embed/> element. If you defi ne a value for the <embed/>
element’s pluginspage attribute, users who don’t have that plug-in installed will be able to
click a link and install it.

You can fi nd detailed information about what plug-ins are installed on your non-IE browser, as ❑

well as their descriptions and types, by typing about:plugins in the location bar.

To use script to check if a user has a certain plug-in, you can use the ❑ navigator object’s
plugins collection. For each plug-in installed, there will be a Plugin object defi ned in this col-
lection. Each Plugin object has the properties name, description, filename, and length,
which you can use to determine if a plug-in exists on the user’s computer. You can also use the
navigator object’s mimeTypes collection property to check if a certain type of fi le is supported.

Internet Explorer supports ActiveX controls as an alternative to plug-ins. These are embedded ❑

into a web page using the <object/> element. Specify which ActiveX control you want by
using the classid attribute. If you want to have controls automatically install for users who
don’t have a particular control already installed, you need to specify the codebase attribute.

Any parameters particular to the control are specifi ed by means of the ❑ <param/> element,
which is inserted between the opening and closing <object> tags.

You can check whether a control has loaded successfully using the ❑ readyState property of the
Object object, which returns a number: 0 if the control is not installed, 1 if it’s still loading, 2 if
it has loaded, 3 if you can interact with it, and 4 if it’s installed and ready for use.

25937c13.indd 48825937c13.indd 488 9/19/09 11:40:27 PM9/19/09 11:40:27 PM

489

Chapter 13: Using ActiveX and Plug-Ins with JavaScript

Virtually every different type of plug-in and ActiveX control has its own interface, for which the ❑

control’s documentation will provide the details. You looked briefl y at Apple’s QuickTime control.

You also saw that while plug-ins and controls are great for extending functionality, they are ❑

subject to potential pitfalls. These include differences in the way plug-ins and ActiveX controls
are scripted, differences in operating systems, and differences between versions of the same
plug-in or control.

In Chapter 14, you change direction to cover a “new” JavaScript technique that has rekindled web appli-
cation development.

Exercise Question
A suggested solution to this question can be found in Appendix A.

 1. Using the Quicktime plug-in or ActiveX control, create a page with three links, so that when
you click any of them a sound is played. Use an alert box to tell the users who do not have
QuickTime installed that they must install it when they click a link.

The page should work in IE, Firefox, Safari, Chrome, and Opera. The method to tell QuickTime
what fi le to play is SetURL().

25937c13.indd 48925937c13.indd 489 9/19/09 11:40:28 PM9/19/09 11:40:28 PM

25937c13.indd 49025937c13.indd 490 9/19/09 11:40:28 PM9/19/09 11:40:28 PM

14
Ajax

Since its inception, the Internet has used a transaction-like communication model; a browser sends
a request to a server, which sends a response back to the browser, which (re)loads the page. This is
typical HTTP communication, and it was designed to be this way. But this model is rather cumber-
some for developers, as it requires web applications to consist of several pages. The resulting user
experience becomes disjointed and interrupted due to these separate page loads.

In the early 2000s, a movement began to look for and develop new techniques to enhance the user’s
experience; to make Web applications behave more like conventional applications. These new tech-
niques offered the performance and usability usually associated with conventional desktop applica-
tions. It wasn’t long before developers began to refi ne these processes to offer richer functionality to
the user.

At the heart of this movement was one language: JavaScript, and its ability to make HTTP requests
transparent to the user.

What Is Ajax?
Essentially, Ajax allows client-side JavaScript to request and receive data from a server without
refreshing the web page. This technique enables the developer to create an application that is
uninterrupted, making only portions of the page reload with new data.

The term Ajax was originally coined by Jesse James Garrett in 2005. He wrote an article entitled
“Ajax: A New Approach to Web Applications” (www.adaptivepath.com/publications/
essays/archives/000385.php). In it, Garrett states that the interactivity gap between web and
desktop applications is becoming smaller, and he cites applications such as Google Maps and
Google Suggest as proof of this. The term originally stood for Asynchronous JavaScript + XML
(XML was the format in which the browser and server communicated with each other). Today,
Ajax simply refers to the pattern of using JavaScript to send and receive data from the web server
without reloading the entire page.

25937c14.indd 49125937c14.indd 491 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

492

Chapter 14: Ajax

Although the term Ajax was derived in 2005, the underlying methodology was used years before. Early
Ajax techniques consisted of using hidden frames/iframes, dynamically adding <script/> elements to
the document, and/or using JavaScript to send HTTP requests to the server; the latter has become quite
popular in the last few years. These new techniques refresh only portions of a page, both cutting the
size of data sent to the browser and making the web page feel more like a conventional application.

What Can It Do?
Ajax opened the doors for advanced web applications — ones that mimic desktop applications in form
and in function. A variety of commercial web sites employ the use of Ajax. These sites look and behave
more like desktop applications than web sites. The most notable Ajax-enabled web applications come
from the search giant Google: Google Maps and Google Suggest.

Google Maps
Designed to compete with existing commercial mapping sites (and using images from its Google Earth),
Google Maps (http://maps.google.com) uses Ajax to dynamically add map images to the web page.
When you enter a location, the main page does not reload at all; the images are dynamically loaded in
the map area. Google Maps also enables you to drag the map to a new location, and once again, the map
images are dynamically added to the map area (see Figure 14-1).

Figure 14-1

25937c14.indd 49225937c14.indd 492 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

493

Chapter 14: Ajax

Google Suggest
Google Suggest (http://labs.google.com/suggest/) is another Google innovation that employs the
use of Ajax. Upon fi rst glance, it appears to be a normal Google search page. When you start typing, how-
ever, a drop-down box displays suggestions for search terms that might interest you. To the right of the
suggested word or phrase is the number of results the search term returns (see Figure 14-2).

Figure 14-2

Browser Support
Ajax is limited to the browser that runs the web application, and like every other advanced JavaScript
concept covered in this book, Ajax capabilities differ from browser to browser. Thankfully, the most
common forms of Ajax work in the following browsers:

Internet Explorer 5+ ❑

Firefox 1+ ❑

Opera 9+ ❑

Safari 2+ ❑

Chrome 1+ ❑

25937c14.indd 49325937c14.indd 493 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

494

Chapter 14: Ajax

When using hidden frames, a popular Ajax approach, with these browsers, you’ll notice few differences
in the code, as each Browser Object Model (BOM) handles frames the same way (frame-based Ajax is cov-
ered later in the chapter). However, when you start using other forms of Ajax, such as XMLHttpRequest,
the differences in code become apparent.

Using the XMLHttpRequest Object
As stated before, there are a variety of ways you can create Ajax-enabled applications. However, probably
the most popular Ajax technique incorporates the JavaScript XMLHttpRequest object, which is present in
all major browsers.

Despite its name, you can retrieve other types of data, like plain text, with XMLHttpRequest.

The XMLHttpRequest object originated as a Microsoft component, called XmlHttp, in the MSXML
library fi rst released with IE 5. It offered developers an easy way to open HTTP connections and
retrieve XML data. Microsoft improved the component with each new version of MSXML, making it
faster and more effi cient.

As the popularity of the Microsoft XMLHttpRequest object grew, Mozilla decided to include its own
version of the object with Firefox. The Mozilla version maintained the same properties and methods
used in Microsoft’s ActiveX component, making cross-browser usage possible. Soon after, Opera
Software and Apple copied the Mozilla implementation, thus bringing the easy-to-use object to all
modern browsers.

Cross-Browser Issues
The XMLHttpRequest object is no different from other web standards supported by the browsers, and
the differences can be divided into two camps: ActiveX (for IE 5 and 6) and native support (for all other
browsers). Thankfully, the two browser types only differ when you need to create an XMLHttpRequest
object. After the object’s creation, the remainder of the code is compatible for every browser.

Using ActiveX
Because the XMLHttpRequest object originated as a part of the MSXML library, an ActiveX XML parser,
instantiating an XMLHttpRequest under these browsers, requires the creation of an ActiveX object. In
Chapter 12, you created ActiveX objects to traverse the XML DOM. Creating an XMLHttp object isn’t
much different.

var oHttp = new ActiveXObject(“Microsoft.XMLHttp”);

This line creates the fi rst version of Microsoft’s XMLHttpRequest. There are many other versions of
Microsoft’s XmlHttp, but Microsoft recommends using one of the following versions:

MSXML2.XmlHttp.6.0 ❑

MSXML2.XmlHttp.3.0 ❑

25937c14.indd 49425937c14.indd 494 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

495

Chapter 14: Ajax

You want to use the latest version possible when creating an XmlHttpRequest object as it contains bug
fi xes and enhanced performance. The downside is that not everyone will have the same version installed
on their computer. However, you can write a function to use the latest version of XmlHttp installed on
the user’s computer.

With the previous version information, write a function called createXmlHttpRequest() to create an
XMLHttpRequest object with the latest version supported by the user’s computer.

function createXmlHttpRequest()
{
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];
 //more code here
}

This code defi nes the createXmlHttpRequest() function. Inside it, an array called versions contains
the different version names recommended by Microsoft. Notice that the version names are listed starting
with the newest fi rst. This is done because you always want to check for the newest version fi rst and
continue with the next newest version until you fi nd the version installed on the computer.

To decide what version to use, use a for loop to iterate through the elements in the array and then
attempt to create an XMLHttpRequest object.

function createXmlHttpRequest()
{
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 var oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 //more code here
}

An error is thrown if a specifi c version isn’t installed on the user’s computer. Therefore, use a try...
catch block inside the loop to catch the error; this is the only way to determine if a version is installed on
the computer. Code execution drops to the catch block if a version doesn’t exist. Since nothing happens

25937c14.indd 49525937c14.indd 495 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

496

Chapter 14: Ajax

in this block, the loop iterates to the next element in the array. If no version is found on the computer, then
the function returns null, like this:

function createXmlHttpRequest()
{
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 var oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }

 return null;
}

Now you don’t have to worry about ActiveX objects to create an XMLHttp object. If you call this func-
tion, it’ll do all the work for you.

var oHttp = createXmlHttpRequest();

Calling the Native Constructor: The Other Browsers
IE 7+, Firefox, Opera, Safari, and Chrome boast a native implementation of the XMLHttpRequest object;
it is an object located in the window object. Creating an XMLHttpRequest object is as simple as calling its
constructor.

var oHttp = new XMLHttpRequest();

This line creates an XMLHttpRequest object, which you can use to connect to, and request and receive
data from, a server. Unlike the ActiveX object in the previous section, XMLHttpRequest does not have
different versions. Simply calling the constructor creates a ready to use XMLHttpRequest object.

Playing Together: One Function to Create them All
Just as with all other cross-browser issues, a solution can be found to create an XMLHttpRequest object
for all browsers. You already wrote the createXmlHttpRequest() function, so expand it to provide
cross-browser functionality.

function createXmlHttpRequest()
{
 if (window.XMLHttpRequest)

25937c14.indd 49625937c14.indd 496 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

497

Chapter 14: Ajax

 {
 var oHttp = new XMLHttpRequest();
 return oHttp;
 }
 else if (window.ActiveXObject)
 {
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 var oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }

 return null;
}

This new code fi rst checks to see if window.XMLHttpRequest exists. If it does, then the function creates
an XMLHttpRequest object with the XMLHttpRequest constructor. If not, the code checks for window
.ActiveXObject for IE 5 and 6 and tries to create an object with the latest XMLHttp version. If no
XMLHttpRequest object can be created any browser, then the function returns null.

The order in which browsers are tested is important; test for window.XMLHttpRequest fi rst because
IE 7+ supports both window.XMLHttpRequest and window.ActiveXObject.

Regardless of the user’s browser, if it supports XMLHttpRequest, this revised function creates an
XMLHttpRequest object.

Using the XMLHttpRequest Object
Once you create the XMLHttpRequest object, you are ready to start requesting data with it. The fi rst step
in this process is to call the open() method to initialize the object.

oHttp.open(requestType, url, async);

This method accepts three arguments. The fi rst, requestType, is a string value consisting of the type
of request to make. The values can be either GET or POST. The second argument is the URL to send the
request to, and the third is a true or false value indicating whether the request should be made in
asynchronous or synchronous mode. For more on synchronous and asynchronous modes, see

25937c14.indd 49725937c14.indd 497 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

498

Chapter 14: Ajax

Chapter 12; as a refresher, requests made in synchronous mode halt all JavaScript code from executing
until a response is received from the server.

Asynchronous mode is preferred for real applications.

The next step is to send the request; do this with the send() method. This method accepts one argument,
which is a string that contains the request body to send along with the request. GET requests do not contain
any information, so pass null as the argument.

var oHttp = createXmlHttpRequest();
oHttp.open(“GET”, “http://localhost/myTextFile.txt”, false);
oHttp.send(null);

This code makes a GET request to retrieve a fi le called myTextFile.txt in synchronous mode. Calling
the send() method sends the request to the server.

The send() method requires an argument to be passed; even if it is null.

Each XMLHttpRequest object has a status property. This property contains the HTTP status code sent
with the server’s response. The server returns a status of 200 for a successful request, and one of 404 if
it cannot fi nd the requested fi le. With this in mind, consider the following example:

var oHttp = createXmlHttpRequest();
oHttp.open(“GET”, “http://localhost/myTextFile.txt”, false);
oHttp.send(null);

if (oHttp.status == 200)
{
 alert(“The text file was found!”);
}
else if (oHttp.status == 404)
{
 alert(“The text file could not be found!”);
}
else
{
 alert(“The server returned a status code of ” + oHttp.status);
}

This code checks the status property to determine what message to display to the user. If successful (a
status of 200), an alert box tells the user the request fi le exists. If the fi le doesn’t exist (status 404), then
the user sees a message stating that the server cannot fi nd the fi le. Finally, an alert box tells the user the
status code if it equals something other than 200 or 404.

There are many different HTTP status codes, and checking for every code is not feasible. Most of the
time, you should only be concerned with whether your request is successful. Therefore, you can cut the
previous code down to this:

var oHttp = createXmlHttpRequest();
oHttp.open(“GET”, “http://localhost/myTextFile.txt”, false);

25937c14.indd 49825937c14.indd 498 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

499

Chapter 14: Ajax

oHttp.send(null);

if (oHttp.status == 200)
{
 alert(“The text file was found!”);
}
else
{
 alert(“The server returned a status code of ” + oHttp.status);
}

This code performs the same basic function, but it only checks for a status code of 200 and alert a
generic message to the user for other status codes.

Asynchronous Requests
The previous code samples demonstrate the simplicity of synchronous requests. Asynchronous requests,
on the other hand, add some complexity to your code because you have to handle the readystatechange
event. In asynchronous requests, the XMLHttpRequest object exposes a readyState property, which
holds a numeric value; each value refers to a specifi c state in a request’s lifespan, as follows:

0 ❑ — The object has been created, but the open() method hasn’t been called

1 ❑ — The open() method has been called, but the request hasn’t been sent

2 ❑ — The request has been sent; headers and status are received and available

3 ❑ — A response has been received from the server

4 ❑ — The requested data has been fully received

The readystatechange event fi res every time the readyState property changes, calling the
onreadystatechange event handler. The fourth and fi nal state is the most important; it lets you
know that the request completed.

It is important to note that even if the request was successful, you may not have the information you
wanted. An error may have occurred on the server’s end of the request (a 404, 500, or some other
error). Therefore, you still need to check the status code of the request.

Code to handle the readystatechange event could look like this:

var oHttp = createXmlHttpRequest();

function oHttp_readyStateChange()
{
 if (oHttp.readyState == 4)
 {
 if (oHttp.status == 200)
 {
 alert(oHttp.responseText);
 }
 else
 {

25937c14.indd 49925937c14.indd 499 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

500

Chapter 14: Ajax

 alert(“The server returned a status code of ” + oHttp.status);
 }
 }
}

oHttp.open(“GET”, “http://localhost/myTextFile.txt”, true);
oHttp.onreadystatechange = oHttp_readyStateChange;

oHttp.send(null);

This code fi rst defi nes the oHttp_readyStateChange() function, which handles the readystatechange
event; it fi rst checks if the request completed by comparing readyState to 4. The function then checks
the request’s status to make sure the server returned the requested data. Once these two criteria are met,
the code alerts the value of the responseText property (the actual requested data in plain text format).
Note the open() method’s call; the fi nal argument passed to the method is true. This makes the
XMLHttpRequest object request data asynchronously.

The benefi ts of using asynchronous communication are well worth the added complexity of the
readystatechange event, as the browser can continue to load the page and execute your other JavaScript
code while the request object sends and receives data. Perhaps a user-defi ned module that wraps an
XMLHttpRequest object could make asynchronous requests easier to use and manage.

An XMLHttpRequest object also has a property called responseXML, which attempts to load the
received data into an XML DOM (whereas responseText returns plain text). This is the only way
Safari 2 can load XML data into a DOM.

Creating a Simple Ajax Module
The concept of code reuse is important in programming; it is the reason why functions are defi ned to
perform specifi c, common, and repetitive tasks. Chapter 5 introduced you to the object-oriented construct
of code reuse: reference types. These constructs contain properties that contain data and/or methods that
perform actions with that data.

In this section, you write your own Ajax module called HttpRequest, thereby making asynchronous
requests easier to make and manage. Before getting into writing this module, let’s go over the proper-
ties and methods the HttpRequest reference type exposes.

Planning the HttpRequest Module
There’s only one piece of information that you need to keep track of: the underlying XMLHttpRequest
object. Therefore, this module will have only one property: request, which contains the underlying
XMLHttpRequest object.

The methods are equally easy to identify.

createXmlHttpRequest() ❑ — Creates the XMLHttpRequest object for all supporting browsers.
It is essentially a copy of the function of the same name written earlier in the chapter.

send() ❑ — Sends the request to the server.

25937c14.indd 50025937c14.indd 500 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

501

Chapter 14: Ajax

With the properties and methods identifi ed, let’s begin to write the module.

The HttpRequest Constructor
A reference type’s constructor defi nes its properties and performs any logic needed to function properly.

function HttpRequest(sUrl, fpCallback)
{
 this.request = this.createXmlHttpRequest();

 //more code here
}

The constructor accepts two arguments. The fi rst, sUrl, is the URL the XMLHttpRequest object will
request. The second, fpCallback, is a callback function; it will be called when the server’s response is
received (when the request’s readyState is 4 and its status is 200). The fi rst line of the constructor
initializes the request property, assigning an XMLHttpRequest object to it.

With the request property created and ready to use, it’s time to prepare the request for sending.

function HttpRequest(sUrl, fpCallback)
{
 this.request = this.createXmlHttpRequest();
 this.request.open(“GET”, sUrl, true);

 function request_readystatechange()
 {
 //more code here
 }

 this.request.onreadystatechange = request_readystatechange;
}

The fi rst line of the new code uses the XMLHttpRequest object’s open() method to initialize the
request object. Set the request type to GET, use the sUrl parameter to specify the URL you want
to request, and set the request object to use asynchronous mode. The next few lines defi ne the request_
readystatechange() function. Defi ning a function within a function may seem weird, but it is perfectly
legal to do so; it’s an advanced technique called a closure. Closures, like the request_readystatechange()
function, cannot be accessed outside their containing function (the constructor in this case), but they have
access to the variables and parameters of the containing function. This function handles the request object’s
readystatechange event, and you bind it to do so by assigning it to the onreadystatechange event
handler.

function HttpRequest(sUrl, fpCallback)
{
 this.request = this.createXmlHttpRequest();
 this.request.open(“GET”, sUrl, true);

 var tempRequest = this.request;
 function request_readystatechange()
 {

25937c14.indd 50125937c14.indd 501 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

502

Chapter 14: Ajax

 if (tempRequest.readyState == 4)
 {
 if (tempRequest.status == 200)
 {
 fpCallback(tempRequest.responseText);
 }
 else
 {
 alert(“An error occurred trying to contact the server.”);
 }
 }
 }

 this.request.onreadystatechange = request_readystatechange;
}

The new lines of code may again look strange. The fi rst new line creates the tempRequest variable.
This variable is a pointer to the current object’s request property, and it’s used within the request_
readystatechange() function. This is a technique to get around scoping issues. Ideally, you would
use this.request inside the request_readystatechange() function. However, the this keyword
points to the request_readystatechange() function instead of to the XMLHttpRequest object, which
would cause the code to not function properly. So when you see tempRequest, think this.request.

Inside the request_readystatechange() function, you see the following line:

fpCallback(tempRequest.responseText);

This line calls the callback function specifi ed by the constructor’s fpCallback parameter, and you pass
the responseText property to this function. This will allow the callback function to use the information
received from the server.

Creating the Methods
There are two methods in this reference type: one is used inside the constructor, and the other enables
you to send the request to the server.

Cross-Browser XMLHttpRequest Creation … Again
The fi rst method is createXmlHttpRequest(). The inner workings of cross-browser object creation
were covered earlier in the chapter, so let’s just see the method defi nition.

HttpRequest.prototype.createXmlHttpRequest = function ()
{
 if (window.XMLHttpRequest)
 {
 var oHttp = new XMLHttpRequest();
 return oHttp;
 }
 else if (window.ActiveXObject)
 {
 var versions =
 [

25937c14.indd 50225937c14.indd 502 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

503

Chapter 14: Ajax

 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 var oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }

 alert(“Your browser doesn’t support XMLHttp”);
}

In Chapter 5, you learned that user-defi ned reference type methods are assigned through the prototype
object. This code follows that rule when writing the createXmlHttpRequest() method and the next
method.

Sending the Request
Sending a request to the server involves the XMLHttpRequest object’s send() method. This send() is
similar, with the difference being that it doesn’t accept arguments.

HttpRequest.prototype.send = function ()
{
 this.request.send(null);
}

This version of send() is simple in that all you do is call the XMLHttpRequest object’s send() method
and pass it null.

The Full Code
Now that the code’s been covered, open your text editor and type the following:

function HttpRequest(sUrl, fpCallback)
{
 this.request = this.createXmlHttpRequest();
 this.request.open(“GET”, sUrl, true);

 var tempRequest = this.request;
 function request_readystatechange()
 {
 if (tempRequest.readyState == 4)
 {

25937c14.indd 50325937c14.indd 503 9/20/09 12:01:52 AM9/20/09 12:01:52 AM

504

Chapter 14: Ajax

 if (tempRequest.status == 200)
 {
 fpCallback(tempRequest.responseText);
 }
 else
 {
 alert(“An error occurred trying to contact the server.”);
 }
 }
 }

 this.request.onreadystatechange = request_readystatechange;
}

HttpRequest.prototype.createXmlHttpRequest = function ()
{
 if (window.XMLHttpRequest)
 {
 var oHttp = new XMLHttpRequest();
 return oHttp;

 }
 else if (window.ActiveXObject)
 {
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 var oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }

 return null;
}

HttpRequest.prototype.send = function ()
{
 this.request.send(null);
}

Save this fi le as httprequest.js. You’ll use it later in the chapter.

25937c14.indd 50425937c14.indd 504 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

505

Chapter 14: Ajax

The goal of this module was to make asynchronous requests easier to use, so let’s look at a brief code-
only example and see if that goal was accomplished.

The fi rst thing you need is a function to handle the data received from the request; this function gets
passed to the HttpRequest constructor.

function handleData(sResponseText)
{
 alert(sResponseText);
}

This code defi nes a function called handleData()that accepts one argument called sResponseText.
When executed, the function merely alerts the data passed to it. Now create an HttpRequest object and
send the request.

var request = new HttpRequest(“http://localhost/myTextFile.txt”, handleData);
request.send();

Pass the text fi le’s location and a pointer of the handleData() function to the constructor, and send the
request with the send() method. The handleData() function is called in the event of a successful request.

This module encapsulates the code related to asynchronous XMLHttpRequest requests nicely. You don’t
have to worry about creating the request object, handling the readyStateChange event, or checking
the request’s status; the HttpRequest module does it all for you.

Validating Form Fields with Ajax
You’ve probably seen it many times: registering as a new user on a web site’s forum or signing up for
web-based e-mail, only to fi nd that your desired user name is taken. Of course, you don’t fi nd this out
until after you’ve fi lled out the entire form, submitted it, and watched the page reload with new data
(not to mention that you’ve lost some of the data you entered). As you can attest, form validation can be
a frustrating experience; thankfully, Ajax can soften this experience by sending data to the server before
submitting the form — allowing the server to validate the data, and letting the user know the outcome
of the validation without reloading the page!

In this section, you’ll create a form that uses Ajax techniques to validate form fi elds. It’s possible to
approach building such a form in a variety of ways; the easiest of which to implement provides a link
that initiates an HTTP request to the server application to check whether the user’s desired information
is available to use.

The form you’ll build will resemble typical forms used today; it will contain the following fi elds:

Username ❑ (validated) — The fi eld where the user types their desired user name

Email ❑ (validated) — The fi eld where the user types their e-mail

Password ❑ (not validated) — The fi eld where the user types their password

Verify ❑ Password (not validated) — The fi eld where the user verifi es their password

25937c14.indd 50525937c14.indd 505 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

506

Chapter 14: Ajax

Note that the Password and Verify Password fi elds are just for show in this example. Verifying a
password is certainly something the server application can do; however, it is far more effi cient to let
JavaScript perform that verifi cation. Doing so adds more complexity to this example, and I want to keep
this as simple as possible to help you get a grasp of using Ajax.

Next to the Username and Email fi elds will be a hyperlink that calls a JavaScript function to query the
server with the HttpRequest module you built earlier in this chapter.

As mentioned earlier, Ajax is communication between the browser and server. So this example needs a
simple server application to validate the form fi elds. PHP programming is beyond the scope of this book.
However, I should discuss how to request data from the PHP application, as well as look at the response
the application sends back to JavaScript.

Requesting Information
The PHP application looks for one of two arguments in the query string: username and email.

To check the availability of a user name, use the username argument. The URL to do this looks like the
following:

http://localhost/formvalidator.php?username=[usernameToSearchFor]

When searching for a user name, replace [usernameToSearchFor] with the actual name.

Searching for an e-mail follows the same pattern. The e-mail URL looks like this:

http://localhost/formvalidator.php?email=[emailToSearchFor]

The Received Data
A successful request will result in one of two values:

available ❑ — Means that the user name and/or e-mail is available for use.

not ❑ available — Signifi es that the user name and/or e-mail is in use and therefore not
available.

These values are sent to the client in plain text format. A simple comparison will enable you to tell the
user whether their name or e-mail is already in use.

Before You Begin
This is a live-code Ajax example; therefore, your computer must meet a few requirements if you wish to
run this example.

A Web Server
First, you need a web server. If you are using Windows 2000 (Server or Professional), Windows XP
Professional, Windows Server 2003, Windows Vista Business or higher, or Windows Server 2008, you

25937c14.indd 50625937c14.indd 506 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

507

Chapter 14: Ajax

have Microsoft’s web server software, Internet Information Services, freely available to you. To install it
on Windows XP, open Add/Remove Programs in the Control Panel and click Add/Remove Windows
Components. Figure 14-3 shows the Windows Component Wizard in Windows XP Professional.

Figure 14-3

Check the box next to IIS and click Next to install. In Windows Vista, open the Programs and
Features applet in the Control Panel and click the Turn Windows Features On or Off link in the side panel.
Expand Internet Information Services and check the features you want to install. World Wide Web
Services must be checked (Figure 14-4). You may need your operating system’s installation CD to com-
plete the installation.

Figure 14-4

If your operating system isn’t in the preceding list, or you wish to use another web server application,
you can install Apache HTTP Server (www.apache.org). This is an open-source web server and can
run on a variety of operating systems, such as Linux, Unix, and Windows, to list only a few.

25937c14.indd 50725937c14.indd 507 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

508

Chapter 14: Ajax

PHP
PHP is a popular open source server-side scripting language and must be installed on your computer if
you wish to run PHP scripts. You can download PHP in a variety of forms (binaries, Windows installation
wizards, and source code) at www.php.net. The PHP code used in this example was written in PHP 5.

Try It Out XMLHttpRequest Smart Form
Open your text editor and type the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <title>Form Field Validation</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”httprequest.js”></script>
 <script type=”text/javascript”>
 function checkUsername()
 {
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

 var url = “formvalidator.php?username=” + userValue;

 var request = new HttpRequest(url, checkUsername_callBack);
 request.send();
 }

 function checkUsername_callBack(sResponseText)
 {
 var userValue = document.getElementById(“username”).value;

 if (sResponseText == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {

25937c14.indd 50825937c14.indd 508 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

509

Chapter 14: Ajax

 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
 }

 function checkEmail()
 {
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var url = “formvalidator.php?email=” + emailValue;

 var request = new HttpRequest(url, checkEmail_callBack);
 request.send();
 }

 function checkEmail_callBack(sResponseText)
 {
 var emailValue = document.getElementById(“email”).value;

 if (sResponseText == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
 }
 </script>
</head>
<body>
 <form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>

25937c14.indd 50925937c14.indd 509 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

510

Chapter 14: Ajax

 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />
 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
 </form>
</body>
</html>

Save this fi le in your web server’s root directory. If you’re using IIS for your web server, save it as
c:\inetpub\wwwroot\validate_form.htm. If you’re using Apache, you’ll want to save it inside the
htdocs folder: pathTohtdocs\htdocs\validate_form.htm.

You also need to place httprequest.js (the HttpRequest module) and the formvalidator.php fi le
(from the code download) into the same directory as validate_form.htm.

Now open your browser and navigate to http://localhost/formvalidator.php. If everything is
working properly, you should see the text “PHP is working correctly. Congratulations!” as in
Figure 14-5.

Now point your browser to http://localhost/validate_form.htm, and you should see something
like Figure 14-6.

25937c14.indd 51025937c14.indd 510 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

511

Chapter 14: Ajax

Figure 14-5

Figure 14-6

25937c14.indd 51125937c14.indd 511 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

512

Chapter 14: Ajax

Type jmcpeak into the Username fi eld and click the Check Availability link next to it. You’ll see an alert
box like the one shown in Figure 14-7.

Figure 14-7

Now type someone@xyz.com in the Email fi eld and click the Check Availability link next to it. Again,
you’ll be greeted with an alert box stating that the e-mail’s already in use. Now input your own user
name and e-mail into these fi elds and click the appropriate links. Chances are an alert box will tell you
that your user name and/or e-mail is available (the user names jmcpeak and pwilton and the e-mails
someone@xyz.com and someone@zyx.com are the only ones used by the application).

The body of this HTML page is a simple form whose fi elds are contained within a table. Each form fi eld
exists in its own row in the table. The fi rst two rows contain the fi elds you’re most interested in, the
Username and Email fi elds.

<form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <!-- HTML to be continued later -- >

The fi rst column contains text identifi ers for the fi elds. The second column contains the <input/> ele-
ments themselves. Each of these tags has an id attribute, username for the Username fi eld and email
for the Email fi eld. This enables you to easily fi nd the <input/> elements and get the text entered into
them. The third column contains an <a/> element. The hyperlinks use the javascript: protocol to
call JavaScript code. In this case, the checkUsername() and checkEmail() functions are called when
the user clicks the links. You’ll examine these functions in a few moments.

25937c14.indd 51225937c14.indd 512 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

513

Chapter 14: Ajax

The remaining three rows in the table contain two password fi elds and the Submit button (the smart
form currently does not use these fi elds).

 <!-- HTML continued from earlier -- >
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />
 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
</form>

The CSS in this HTML page consists of only a couple of CSS rules.

.fieldname
{
 text-align: right;
}

.submit
{
 text-align: right;
}

These rules align the fi elds to give the form a clean and unifi ed look.

As stated earlier, the hyperlinks are key to the Ajax functionality, as they call JavaScript functions when
clicked. The fi rst function, checkUsername(), retrieves the text the user entered into the Username
fi eld and performs an HTTP request using that information.

function checkUsername()
{
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {

25937c14.indd 51325937c14.indd 513 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

514

Chapter 14: Ajax

 alert(“Please enter a user name to check!”);
 return;
 }

 var url = “formvalidator.php?username=” + userValue;

 var request = new HttpRequest(url, checkUsername_callBack);
 request.send();
}

Use the document.getElementById() method to fi nd the <input/> element and use the value prop-
erty to retrieve the text typed into the text box. Then check to see if the user typed any text by comparing
the userValue variable to an empty string (“”). If the text box is empty, the function alerts the user to
input a user name and stops the function from processing further. The application would make unnec-
essary requests to the server if the code didn’t do this.

Next construct the URL to make the request to the PHP application and assign it to the url variable.
The fi nal steps in this function create an HttpRequest object, pass the URL and the callback function
to the constructor, and send the request.

The checkUsername_callBack() function executes when the HttpRequest object receives a complete
response from the server. This function uses the requested information to tell the user whether the user
name is available. Remember, there are two possible values sent from the server, available and not
available; therefore, you only need to check for one of these values.

function checkUsername_callBack(sResponseText)
{
 var userValue = document.getElementById(“username”).value;

 if (sResponseText == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
}

If the server’s response is available, the function tells the user that their desired user name is okay to
use. If not, the alert box says that his user name is taken.

Checking the e-mail’s availability follows an almost identical process. The checkEmail() function
retrieves the text typed in the Email fi eld, and passes that information to the server application.

function checkEmail()
{
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var url = “formvalidator.php?email=” + emailValue;

25937c14.indd 51425937c14.indd 514 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

515

Chapter 14: Ajax

 var request = new HttpRequest(url, checkEmail_callBack);
 request.send();
}

The checkEmail_callBack() function uses the same logic as checkUsername_callBack(), but it is
based on the Email fi eld’s value.

function checkEmail_callBack(sResponseText)
{
 var emailValue = document.getElementById(“email”).value;

 if (sResponseText == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
}

Once again, the function checks to see if the server’s response is available, and lets the user know
that the e-mail address is currently not being used. If the address is not available, a different message
tells the user his e-mail is not available.

Things to Watch Out For
Using JavaScript to communicate between server and client adds tremendous power to the language’s
abilities. However, this power does not come without its share of caveats. The two most important
issues are security and usability.

Security Issues
Security is a hot topic in today’s Internet, and as a Web developer you must consider the security restric-
tions placed on Ajax. Knowing the security issues surrounding Ajax can save you development and
debugging time.

The Same-Origin Policy
Since the early days of Netscape Navigator 2.0, JavaScript cannot access scripts or documents from a dif-
ferent origin. This is a security measure that browser makers adhere to; otherwise, malicious coders could
execute code wherever they wanted. The same-origin policy dictates that two pages are of the same origin
only if the protocol (HTTP), port (the default is 80), and host are the same.

Consider the following two pages:

Page 1 is located at ❑ http://www.site.com/folder/mypage1.htm

Page 2 is located at ❑ http://www.site.com/folder10/mypage2.htm

25937c14.indd 51525937c14.indd 515 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

516

Chapter 14: Ajax

According to the same-origin policy, these two pages are of the same origin. They share the same host
(www.site.com), use the same protocol (HTTP), and are accessed on the same port (none is specifi ed;
therefore, they both use 80). Since they are of the same origin, JavaScript on one page can access the
other page.

Now consider the next two pages:

Page 1 is located at ❑ http://www.site.com/folder/mypage1.htm

Page 2 is located at ❑ https://www.site.com/folder/mypage2.htm

These two pages are not of the same origin. The host is the same.. However, their protocols and ports
are different. Page 1 uses HTTP (port 80) while Page 2 uses HTTPS (port 443). This difference, while
slight, is enough to give the two pages two separate origins. Therefore, JavaScript on one of these pages
cannot access the other page.

So what does this have to do with Ajax? Everything because a large part of Ajax is JavaScript. For example,
because of this policy, an XMLHttpRequest object cannot retrieve any fi le or document from a different
origin. You can easily overcome this hurdle by using the server in the page’s origin as a proxy to retrieve
data from servers of a different origin. This policy also affects the hidden frame/iframe technique.
JavaScript cannot interact with two pages of different origins, even if they are in the same frameset.

ActiveX
One of the downsides of XMLHttpRequest is in ActiveX, and only affects Internet Explorer on Windows;
however, IE currently has the highest market share of all browsers, and it seems that isn’t going to
change anytime soon. Over the past few years, more security concerns have been raised with ActiveX,
especially since many adware and spyware companies have used the technology to install their wares
onto trusting user’s computers.

Because of this rise in the awareness of security concerns, Microsoft (and users) is taking steps to make
the browser more secure from hijacking attempts by restricting access to ActiveX plug-ins and objects.
If a user turns off ActiveX completely, or your site is fl agged for a certain security zone, ActiveX objects
cannot be created, rendering your XMLHttpRequest-based Ajax applications dead in the water.

Usability Concerns
Ajax breaks the mold of traditional web applications and pages. It enables developers to build applica-
tions that behave in a more conventional, non-“webbish” way. This, however, is also a drawback, as the
Internet has been around for many, many years, and users are accustomed to traditional web pages.

Therefore, it is up to developers to ensure that the user can use their web pages, and use them as they
expect to, without causing frustration.

The Browser’s Back Button
One of the advantages of XMLHttpRequest is its ease of use. You simply create the object, send the
request, and await the server’s response. Unfortunately, this object does have a downside: most brows-
ers do not log a history of requests made with the object. Therefore, XMLHttpRequest essentially breaks

25937c14.indd 51625937c14.indd 516 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

517

Chapter 14: Ajax

the browser’s Back button. This might be a desired side-effect for some Ajax-enabled applications or
components, but it can cause serious usability problems for the user.

At the time of this writing, IE 8 is the only browser that logs requests made with an XMLHttpRequest
object in the history. One thing you have to keep in mind is that the Internet and browsers have been
around much longer than Ajax, and users have come to expect certain behavior when they click the
Back and Forward buttons. Breaking that behavior causes frustration for the user, and that’s something
a responsible developer must take into account when designing their application.

Creating a Back/Forward-Capable Form with an IFrame
It’s possible to avoid breaking the browser’s navigational buttons by using an older Ajax technique:
using hidden frames/iframes to facilitate client-server communication. You must use two frames in
order for this method to work properly. One must be hidden, and one must be visible.

Note that when you are using an iframe, the document that contains the iframe is the visible frame.

The hidden-frame technique consists of a four-step process.

 1. The user initiates a JavaScript call to the hidden frame. This can be done by the user clicking a
link in the visible frame or some other form of user interaction. This call is usually nothing
more complicated that redirecting the hidden frame to a different web page. This redirection
automatically triggers the second step.

 2. The request is sent to the server, which processes the data.

 3. The server sends its response (a web page) back to the hidden frame.

 4. The browser loads the web page in the hidden frame and executes any JavaScript code to con-
tact the visible frame.

The example in this section is based upon the form validator built earlier in the chapter, but you’ll use a
hidden iframe to facilitate the communication between the browser and the server instead of an
XMLHttpRequest object. Before getting into the code, you should fi rst know about the data received
from the server.

The following example does not work in Safari 2, as it does not log the history of
an iframe.

The Server Response
You expected only a few words as the server’s response when using XMLHttpRequest to get data from
the server. The response in this example is different and must consist of two things:

The data, which must be in HTML format ❑

A mechanism to contact the parent document when the iframe receives the HTML response ❑

25937c14.indd 51725937c14.indd 517 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

518

Chapter 14: Ajax

The following code is an example of the response HTML page:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Returned Data</title>
</head>
<body>
 <script type=”text/javascript”>
 //more code here
 </script>
</body>
</html>

This simple HTML page contains a single <script/> element in the body of the document. The
JavaScript code contained in this script block is generated by the PHP application, calling either
checkUsername_callBack() or checkEmail_callBack() in the visible frame and passing
available or not available as their arguments. Therefore, the following HTML document is a
valid response from the PHP application:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Returned Data</title>
</head>
<body>
 <script type=”text/javascript”>
 top.checkUsername_callBack(“available”, “some_username”);
 </script>
</body>
</html>

The user name is available in this sample response. Therefore, the HTML page calls the
checkUsername_callBack() function in the parent window and passes the string available.
Also, the searched user name (or e-mail) is sent back to the client because the client application will
display the correct user name or e-mail when the Back or Forward button is pressed. With the response
in this format, you can keep a good portion of the JavaScript code the same.

Try It Out Iframe Smart Form
The code for this revised smart form is very similar to the code used previously with the XMLHttpRequest
example. There are, however, a few changes. Open up your text editor and type the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Form Field Validation</title>

25937c14.indd 51825937c14.indd 518 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

519

Chapter 14: Ajax

 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }

 #hiddenFrame
 {
 display: none;
 }
 </style>
 <script type=”text/javascript”>
 function checkUsername()
 {
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

 var url = “iframe_formvalidator.php?username=” + userValue;

 frames[“hiddenFrame”].location = url;
 }

 function checkUsername_callBack(data, userValue)
 {
 if (data == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
 }

 function checkEmail()
 {
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var url = “iframe_formvalidator.php?email=” + emailValue;

 frames[“hiddenFrame”].location = url;

25937c14.indd 51925937c14.indd 519 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

520

Chapter 14: Ajax

 }

 function checkEmail_callBack(data, emailValue)
 {
 if (data == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“We’re sorry, but “ + emailValue
 + “ is in use by another user.”);
 }
 }
 </script>
</head>
<body>
 <form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>

25937c14.indd 52025937c14.indd 520 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

521

Chapter 14: Ajax

 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />
 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
 </form>
 <iframe src=”about:blank” id=”hiddenFrame” name=”hiddenFrame” />
</body>
</html>

Save this fi le as validate_iframe_form.htm, and save it in your web server’s root directory. Also
locate the iframe_formvalidator.php fi le from the code download and place it in the same directory.

Open your web browser and navigate to http://localhost/validate_iframe_form.htm. You
should see something like what is shown in Figure 14-8.

Figure 14-8

Check for three user names and e-mail addresses. After you clear the fi nal alert box, press the browser’s
Back button a few times. You’ll notice that it is cycling through the information you previously entered.
The text in the text box will not change; however, the alert box will display the names and e-mails you
entered. You can do the same thing with the Forward button.

25937c14.indd 52125937c14.indd 521 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

522

Chapter 14: Ajax

The HTML in the body of the page remains unchanged except for the addition of the <iframe/> tag
after the closing <form/> tag.

<iframe src=”about:blank” id=”hiddenFrame” name=”hiddenFrame” />

This frame is initialized to have a blank HTML page loaded. Its name and id attributes contain the
value of hiddenFrame. Use the value of the name attribute later to retrieve this frame from the frames
collection in the BOM. Next, I set the CSS for the frame.

#hiddenFrame
{
 display: none;
}

This rule contains one style declaration to hide the iframe from view.

Hiding an iframe through CSS enables you to easily show it if you need to debug the server-side
application.

Next up, the JavaScript.

function checkUsername()
{
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

 var url = “iframe_formvalidator.php?username=” + userValue;

 frames[“hiddenFrame”].location = url;
}

The checkUsername() function has undergone a small change: It makes a request via the iframe
instead of using XMLHttpRequest. It starts by retrieving the value of the Username text box. It then
checks to see if the user typed anything into the box; if not, an alert box displays a message to the user
telling her to enter a user name. If the value isn’t an empty string, then the function continues and con-
structs the request URL. The fi nal step is to load the URL into the hidden iframe by using the frames
collection and the location property.

The second function, checkUsername_callBack(), is also slightly changed. It now accepts two argu-
ments: the fi rst will contain either available or not available, and the second will contain the user
name sent in the request.

function checkUsername_callBack(data, userValue)
{
 if (data == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {

25937c14.indd 52225937c14.indd 522 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

523

Chapter 14: Ajax

 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
}

The function fi rst checks to see if the user name is available. If so, an alert box tells the user that the
user name is available. If not, the user sees an alert box stating that the user name is not available.

The functions for searching e-mail addresses follow the same pattern as those for searching user
names.

function checkEmail()
{
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var url = “iframe_formvalidator.php?email=” + emailValue;

 frames[“hiddenFrame”].location = url;
}

function checkEmail_callBack(data, emailValue)
{
 if (data == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“We’re sorry, but “ + emailValue + “ is in use by another user.”);
 }
}

The checkEmail() function retrieves the text box’s value, checks to see if the user entered data, con-
structs the URL, and loads the URL into the iframe.

The checkEmail_callBack() function contains changes similar to those made to checkUsername_
callBack(). The function now accepts two arguments, checks to see if the e-mail is available, and dis-
plays a message accordingly.

Dealing with Delays
The web browser is just like any other conventional application in that user interface (UI) cues tell the
user that something is going on. When a user clicks a link, the throbber animation runs, an hourglass
appears next to the cursor (in Windows), and a status bar usually shows the browser’s progress in load-
ing the page.

25937c14.indd 52325937c14.indd 523 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

524

Chapter 14: Ajax

This is another area in which Ajax solutions, and XMLHttpRequest specifi cally, miss the mark. This
problem, however, is simple to overcome: Simply add UI elements to tell the user something is going on
and remove them when the action is completed. Consider the following code:

function requestComplete(sResponseText)
{

 //do something with the data here

 document.getElementById(“divLoading”).style.display = “none”;
}

var myRequest = new HttpRequest(“http://localhost/myfile.txt”, requestComplete);
document.getElementById(“divLoading”).style.display = “block”;//show that we’re
loading
myRequest.send();

This code uses the HttpRequest module built earlier to request a text fi le. Before sending the request,
retrieve an HTML element in the document with an id of divLoading. This <div/> element tells the
user that data is loading; hide it when the request completes, which lets the user know that the loading
process is completed.

Offering this information to your users lets them know the application is performing some operation
that they requested. Otherwise, they may wonder if the application is working correctly when they click
something and see nothing instantly happen.

Degrade Gracefully When Ajax Fails
In a perfect world, the code you write would work every time it runs. Unfortunately, you have to face
the fact that many times Ajax-enabled web pages will not use the Ajax-enabled goodness because a user
turned off JavaScript in his browser.

The only real answer to this problem is to build an old-fashioned web page with old-fashioned forms,
links, and other HTML elements. Then, using JavaScript, you can disable the default behavior of those
HTML elements and add Ajax functionality. Consider this hyperlink as an example:

Wrox Publishing

This is a normal, run-of-the-mill hyperlink. When the user clicks it, it will take them to http://
www.wrox.com. By using JavaScript, you can override this action and replace it with your own.

<a href=”http://www.wrox.com” title=”Wrox Publishing”
 onclick=”return false;”>Wrox Publishing

The key to this functionality is the onclick event handler, highlighted in this code, and returning a
value of false. You can execute any code you wish with the event handler; just remember to return
false at the end. This tells the browser to not perform its default action when the link is clicked. If the
user’s JavaScript is turned off, the onclick event handler is ignored, and the link behaves as it nor-
mally should.

As a rule of thumb, build your web page fi rst and add Ajax later.

25937c14.indd 52425937c14.indd 524 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

525

Chapter 14: Ajax

Summary
This chapter introduced you to Ajax, and it barely scratched the surface of Ajax and its many uses.

You looked at the ❑ XMLHttpRequest object, and how it differed between IE 5 & 6, and the other
browsers. You learned how to make both synchronous and asynchronous requests to the server
and how to use the onreadystatechange event handler.

You built your own Ajax module to make asynchronous HTTP requests easier for you to code. ❑

You used our new Ajax module in a smarter form, one that checks user names and e-mails to ❑

see if they are already in use.

You discussed how ❑ XMLHttpRequest breaks the browser’s Back and Forward buttons, and
addressed this problem by rebuilding the same form by using a hidden iframe to make requests.

You looked at some of the downsides to Ajax, the security issues and the gotchas. ❑

Exercise Questions
Suggested solutions for these questions can be found in Appendix A.

 1. Extend the HttpRequest module to include synchronous requests in addition to the asynchro-
nous requests the module already makes. You’ll have to make some adjustments to your code
to incorporate this functionality. (Hint: Create an async property for the module.)

 2. It was mentioned earlier in the chapter that the smart forms could be modifi ed to not use hyper-
links. Change the form that uses the HttpRequest module so that the user name and e-mail
fi elds are checked when the user submits the form. Use the form’s onsubmit event handler and
cancel the submission if a user name or e-mail is taken. Also use the updated HttpRequest
module from Question 1 and use synchronous requests. The only time you need to alert the
user is when the user name or e-mail is taken, so make sure to return true if the user name
and e-mail pass muster.

25937c14.indd 52525937c14.indd 525 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

25937c14.indd 52625937c14.indd 526 9/20/09 12:01:53 AM9/20/09 12:01:53 AM

15
JavaScript Frameworks

As you’ve seen in several examples in this book, especially the latter chapters, the problem with
client-side development is the many different web browsers you have to account for. Be it writing
event-driven code or an Ajax application, somewhere down the line you’ll run into the incompati-
bilities between the browsers.

Many professional developers found cross-browser development to be too time-consuming and
cumbersome to deal with on a daily basis, so they set out to develop frameworks or libraries to
aid in their cross-browser development. Some framework authors released their frameworks to
the public, and a few of them gained quite a following, like jQuery, Prototype, and MooTools.

In this chapter, you’ll take a look at three of the many JavaScript frameworks available on the
Internet, and you’ll learn how to use them to make your cross-browser development much easier.

Before beginning, a word of note from your authors: There is no doubt that JavaScript frame-
works add benefi t to your development time and process. But they are no substitute for a solid
understanding of the JavaScript language and the intricacies of the different browsers you have to
develop for. Frameworks and libraries come and go, but knowledge is forever.

Picking a Framework to Work With
Over the course of several years, the web has seen many JavaScript frameworks, and they can
typically be categorized into two groups: general and specialty.

The aim of general frameworks is to balance the differences between browsers by creating a new,
unifi ed API to perform general tasks like DOM manipulation and Ajax functionality. Specialty
frameworks, on the other hand, focus on a specifi c ability, such as animation. So identify what it is
you want to achieve and choose a framework based on that. For example, if you wanted to perform
animations and only animations, the script.aculo.us framework (http://script.aculo.us/)
would be a good choice for you.

25937c15.indd 52725937c15.indd 527 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

528

Chapter 15: JavaScript Frameworks

This chapter focuses on general frameworks, and even general frameworks differ in their goals. When
deciding which framework to use, look at the framework’s browser support, documentation, and com-
munity involvement. The frameworks covered in this chapter are a few years old, stable, and popular
and are compatible with every major modern browser (and even some old ones like IE6). They are as
follows:

jQuery: ❑ A framework whose primary emphasis is the ability to use CSS selectors to select and
work with DOM objects. It also provides a plug-in architecture, as well as a companion UI
framework. (http://jquery.com)

Prototype: ❑ A framework that provides a simple API to perform web tasks. While it offers ways
of manipulating the DOM, Prototype’s primary aim is to enhance the JavaScript language by
providing class defi nition and inheritance. (http://www.prototypejs.org)

MooTools: ❑ A framework whose aim is to be compact while offering a simple API to make common
tasks easier. Like Prototype, MooTools also aims to enhance the JavaScript languages — not just
make DOM manipulation and Ajax easier. It also includes a lightweight effects component origi-
nally called moo.fx. (http://www.mootools.net)

These three frameworks are just a sampling of what is available for you to use in your web pages. Other
general frameworks not covered in this chapter are the following:

Yahoo! User Interface Framework (YUI): ❑ A framework that ranges from basic JavaScript utili-
ties to complete DHTML widgets. Yahoo! has a team devoted to developing YUI. (http://
developer.yahoo.com/yui/)

Ext JS: ❑ This framework started as an extension to the YUI. It offers customizable UI widgets for
building rich Internet applications. (http://www.extjs.com)

Dojo: ❑ A toolkit designed around a package system. The core functionality resembles that of
any other framework (DOM manipulation, event normalization, DHTML widgets, etc.), but
it provides and allows a way to add more functionality by adding more packages.
(http://www.dojotoolkit.org)

MochiKit: ❑ A framework that prides itself on its well-testedness (hundreds of tests accord-
ing to the MochiKit site) and its compatibility with other JavaScript frameworks and libraries.
(http://www.mochikit.com)

Getting Started
Once you choose the framework you want to develop with, you need to install the framework and verify
its installation before you do any work with the framework.

Installing a framework is very different from installing an application on your computer; there is no
setup program, and the installation doesn’t change any portion of your system. Basically, all you do is
download a fi le and reference the fi le in your web page. The following sections will walk you through
this process.

25937c15.indd 52825937c15.indd 528 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

529

Chapter 15: JavaScript Frameworks

Installing the Frameworks
First, you need to acquire the framework’s JavaScript fi le. Most frameworks come in at least two versions:
compressed and uncompressed.

Compressed versions: These are ❑ minifi ed (all comments and unnecessary white space are
removed) in order to make their fi le size as small as possible; doing so makes them faster to
download when someone visits your web page. Unfortunately, the minifi cation process makes
the JavaScript code diffi cult to read if you open it in a text editor, but that’s a reasonable tradeoff
in a production environment.

Uncompressed versions: These are not minifi ed; they are simply normal JavaScript code fi les ❑

with their white space and comments intact. It’s perfectly OK to use uncompressed JavaScript
fi les. Since they are easier to read than compressed fi les, you can learn much from the gurus
who design and develop these frameworks. However, if you plan to roll out a web page using a
framework, be sure to download and use the compressed version, as their fi le sizes are smaller
and download faster.

Downloading the Frameworks
Unlike other downloads on the web, jQuery, Prototype, and MooTools do not use a compression algo-
rithm (like ZIP or RAR) for their downloadable fi les; instead you download the JavaScript fi le itself.
These fi les have an extension of .js.

First you need to acquire a copy of jQuery as follows:

 1. Open your browser and go to http://jquery.com.

 2. Find the Download button on the site’s front page.

 3. Before clicking the Download button, choose the version you want — either the production
version (compressed) or the development version (uncompressed). jQuery will work the same
regardless of what version you choose. At the time of this writing, jQuery project downloads
are actually housed at Google code, so clicking the Download link will take you away from
jquery.com.

 4. Download the JavaScript fi le and save it in a location you can easily get to.

You can also see a list of all downloadable fi les at http://code.google.com/p/jqueryjs/
downloads/list.

The production version of jQuery 1.3.2 is provided in the code download from Wrox.

 5. Now point your browser to Prototype’s download page at http://www.prototypejs.org/
download. Here, you’ll be given the choice to download a bleeding edge version, a version still
in testing, or the latest stable version. You can download the in-testing version if you’d like, but
the examples in this book will use the stable version.

The stable version of Prototype 1.6.0.3 is provided in the code download from Wrox.

25937c15.indd 52925937c15.indd 529 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

530

Chapter 15: JavaScript Frameworks

Now let’s download MooTools. The download URL for MooTools is http://www.mootools.net/
download. Like jQuery, the folks at MooTools offer you compressed and uncompressed versions of their
framework. Of the compressed versions, you can choose a version compressed with YUI Compressor or
JSMin. The current version at the time of this writing is MooTools 1.2.3, and the smallest-sized down-
load is the YUI Compressor version, so download it. Smaller is typically better, since it takes less time to
download.

The YUI compressed version of MooTool 1.2.3 is included in the code download.

Adding the Frameworks to Your Pages
Now that you’ve acquired the JavaScript framework fi les for each framework, you need to add them
to a web page before you can use them. This is as simple as adding an HTML <script/> element to
your page.

Keep in mind that you do not want to add each framework to the same page. It would certainly be noth-
ing but awesomeness to have every framework work together seamlessly to give you all the features of
every framework at the same time. Unfortunately, frameworks are notorious for stepping on each others’
toes, so create a separate HTML page for each framework.

The following HTML page, called ch15_examp1_jq.htm, shows you how easy it is to add jQuery, or
any other framework, to a web page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 1 jQuery</title>
 <script type=”text/javascript” src=”jquery-1.3.2.min.js”></script>
</head>
<body>

</body>
</html>

Simply use the <script/> element’s src attribute, and set its value as the path to the JavaScript fi le.
In this example, the jquery-1.3.2.min.js fi le is in the same directory as the HTML document. It is
absolutely imperative that the value of the src attribute is correct; otherwise, the browser will not be
able to fi nd the framework fi le, download it, and load it — meaning that your code will not work.

Go ahead and type this page and save it. Then create two similar pages for MooTools and Prototype,
and name them ch15_examp1_mt.htm and ch15_examp1_p.htm respectively. Don’t forget to change
the <script/> element’s src attribute to point to the appropriate JavaScript fi le!

Testing the Frameworks
Now that you downloaded each library and added them to their respective pages, you should run
through a quick test to ensure that everything works correctly. Because each library is different, you’ll
have to perform a similar test for each library. Start with jQuery.

25937c15.indd 53025937c15.indd 530 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

531

Chapter 15: JavaScript Frameworks

Testing Your jQuery Installation
At the heart of jQuery is the $() function (called the jQuery function), which returns jQuery objects.
The jQuery function is quite powerful because it allows you to select elements by passing CSS selectors,
create elements by passing HTML, and wrap jQuery functionality around DOM objects by passing the
DOM objects you want to add functionality to.

To illustrate the jQuery function and the objects it returns, assume you want to run some code when the
page loads. In plain JavaScript, you know you can assign a function to handle the window’s load event.
The jQuery equivalent is quite different:

function document_ready()
{
 alert(“Hello, jQuery World!”);
}

// the normal way
onload = document_ready;

// the jquery way
$(document).ready(document_ready);

Look at the last line of this code, which calls the jQuery function and passes the document DOM object
to it. The jQuery function returns a jQuery object, of which ready() is a method. By passing a DOM
object to the jQuery function, you’ve actually created a new object that wraps itself around the DOM object.
This might be better understood with the following code:

var jDocument = $(document);
jDocument.ready(document_ready);

This code achieves the same results as the previous code, except you have a jQuery object contained in
the jDocument variable, which you can reuse.

It’s important to note that jQuery objects cannot be used in place of DOM objects. In the previous
example, the jQuery function returns a completely different object than the document object it was
passed.

This type of reuse — assigning a variable and reusing it later — is perfectly fi ne to use with jQuery
objects, but jQuery adds the ability to chain method calls together. If the idea of method chaining is
new to you, then consider the following code:

$(document.body).attr(“bgColor”, “yellow”).html(“<h1>Hello, jQuery World</h1>”);

The jQuery object has many methods, and nearly all of them return the current jQuery object. Because
of this, you can call one method after another, thus enhancing readability while writing less code. This
code uses the jQuery function and passes the document.body DOM object to it. Immediately after the
function call, you call the attr() method to set the bgColor attribute to yellow. Since the jQuery func-
tion returns a jQuery object encapsulating a reference to the document.body DOM object, the bgColor
attribute is set on the document.body DOM object.

After the attr() method call is yet another method call because attr() returns the same jQuery
object encapsulating the document.body DOM object. The second method is the html() method,

25937c15.indd 53125937c15.indd 531 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

532

Chapter 15: JavaScript Frameworks

which accepts a string of HTML that is written to the page. The way in which html() writes HTML
into the page is different from document.write(). Instead, jQuery’s html() method uses the
innerHTML DOM property to set the HTML inside a DOM object (in this case document.body).

As you can see from this example, chaining is a handy way of performing multiple tasks on one object,
and jQuery is built around this concept.

Use this code to test your jQuery installation. Open ch15_examp1_jq.htm and add in the second
<script/> element shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 2 jQuery</title>
 <script type=”text/javascript” src=”jquery-1.3.2.min.js”></script>
 <script type=”text/javascript”>
 function document_ready($)
 {
 $(document.body).attr(“bgColor”, “yellow”)
 .html(“<h1>Hello, jQuery World!</h1>”);
 }

 $(document).ready(document_ready);
 </script>
</head>
<body>

</body>
</html>

Save this as ch15_examp2_jq.htm, and open it in your browser. You should see something like
Figure 15-1.

Figure 15-1

25937c15.indd 53225937c15.indd 532 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

533

Chapter 15: JavaScript Frameworks

If the page’s background color is not yellow and you don’t see the Hello World message, then something is
wrong with your installation. Make sure the jQuery .js fi le is in the same directory as your HTML fi le.

Now let’s test your Prototype installation. Don’t worry; you’ll revisit jQuery soon enough.

Testing Your Prototype Installation
The largest portion of the Prototype library is its DOM extensions. Like jQuery, it provides you a variety of
helpful utility functions to make DOM programming a bit easier; it even has its own $() function (unlike
jQuery, Prototype doesn’t have a special name for this function; it’s simply called the dollar function).

Prototype’s $() function only accepts element id attribute values or DOM element objects to select and
add extra functionality to DOM objects.

Prototype does have a function that allows you to use CSS selectors to select elements, and you’ll see
that in a later section.

Also unlike jQuery, there is no ready() method, or an equivalent method, to take the place of
window.onload. Instead, you can take advantage of one of the many extensions that Prototype adds
to the browser and DOM: the Event.observe() method.

function window_onload()
{
 alert(“Hello, Prototype World!”);
}

Event.observe(window, “load”, window_onload);

The Event.observe() method accepts three arguments; the fi rst is the DOM or BOM object you want
to add an event handler to, the second is the event you want to handle, and the third is the function to
call when the event fi res. Event.observe() can be used to add an event handler to any DOM or BOM
object that allows you to handle events. You’ll look at this method, and other ways to handle events in
Prototype, later in this chapter.

Like jQuery, you can chain method calls together on wrapper objects created with the $() function,
although the method names are more verbose than jQuery’s.

function window_onload()
{
 $(document.body).writeAttribute(“bgColor”, “yellow”).
 insert(“<h1>Hello, Prototype World!</h1>”);
}

Event.observe(window, “load”, window_onload);

The new body of the window_onload() function changes the page’s background color to yellow and
adds HTML to the page. The writeAttribute() method sets an attribute’s value and accepts two
arguments: the attribute name and the attribute value. The next method call, the insert() method,
inserts the provided content into the document.body element, as specifi ed by the DOM object passed
to the initial $() function.

25937c15.indd 53325937c15.indd 533 9/21/09 12:06:17 AM9/21/09 12:06:17 AM

534

Chapter 15: JavaScript Frameworks

Use this code to test your Prototype installation. Open ch15_examp1_p.htm and add the second
<script/> element as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 2 Prototype</title>
 <script type=”text/javascript” src=”prototype-1.6.0.3.js”></script>
 <script type=”text/javascript”>
 function window_onload()
 {
 $(document.body).writeAttribute(“bgColor”, “yellow”)
 .insert(“<h1>Hello, Prototype World!</h1>”);
 }

 Event.observe(window, “load”, window_onload);
 </script>
</head>
<body>

</body>
</html>

Save this as ch15_examp2_p.htm, and open it in your browser. You should see something like
Figure 15-2. If you do not, make sure that Prototype JavaScript fi le is in the same directory as the
HTML fi le.

Figure 15-2

25937c15.indd 53425937c15.indd 534 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

535

Chapter 15: JavaScript Frameworks

You’ll dig deeper into Prototype in a moment; let’s do one fi nal test with MooTools to make sure your
installation is correct.

Testing Your MooTools Installation
Testing the MooTools installation will look similar to the jQuery and Prototype tests. Like those two
frameworks, MooTools defi nes a dollar function, and its functionality is similar to Prototype’s.

$(“myDiv”)

Like Prototype, MooTool’s dollar function accepts either a string containing an element’s id or a DOM
element, and returns the element or DOM object with an extended set of methods. One such method is
the addEvent() method. This method accepts two arguments: the fi rst is the event to watch for, and
the second is the function to call when the event fi res. The MooTools framework adds the addEvent()
method to the window and document objects. So simply call the addEvent() method to add a domready
event handler, like this:

function window_domready()
{
 alert(“Hello, MooTools World!”);
}

window.addEvent(“domready”, window_domready);

The domready event is also added by the MooTools framework, and it fi res when the DOM is com-
pletely loaded.

Also like jQuery and Prototype, you can chain MooTools methods to perform multiple operations on an
element with less code than if you didn’t use a framework. Look at the following code:

function window_domready()
{
 $(document.body).setProperty(“bgColor”, “yellow”)
 .set(“html”, “<h1>Hello, MooTools World!</h1>”);
}

window.addEvent(“domready”, window_domready);

The new function body of window_domready() passes the document.body object to the dollar func-
tion. Then, by using the setProperty() method, it sets the bgColor attribute to yellow. It then calls
the set() method and passes the string “html” as the fi rst parameter to set the second parameter’s
value as the HTML within the page’s body.

Use this code to test your MooTools installation. Open the ch15_examp1_mt.htm fi le and change it to
look like the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937c15.indd 53525937c15.indd 535 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

536

Chapter 15: JavaScript Frameworks

<head>
 <title>Chapter 15: Example 2 MooTools</title>
 <script type=”text/javascript” src=”mootools-1.2.3-core-yc.js”></script>
 <script type=”text/javascript”>
 function window_domready()
 {
 $(document.body).setProperty(“bgColor”, “yellow”)
 .set(“html”, “<h1>Hello, MooTools World!</h1>”);
 }

 window.addEvent(“domready”, window_domready);
 </script>
</head>
<body>

</body>
</html>

Save this as ch15_examp2_mt.htm. Load it into your browser, and the page should look like
Figure 15-3.

Figure 15-3

If you get the results shown in Figure 15-3, then you’ve set up MooTools correctly. If not, make sure the
MooTools JavaScript fi le is located in the same directory as your HTML page.

Now that you have jQuery, Prototype, and MooTools installed and working correctly, you can begin to
delve deeper into the frameworks to get a better understanding of how you can benefi t by using them.

So come, young padawan, and take the crash course on jQuery, Prototype, and MooTools.

25937c15.indd 53625937c15.indd 536 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

537

Chapter 15: JavaScript Frameworks

Digging Deeper Into jQuery
The code you wrote to test your jQuery installation gave you just a small taste of what the framework is
capable of. You saw how easy it was to change property values and add HTML to the page; well, pretty
much all operations are about as simple. Whether you’re creating HTML elements and appending them
to the page or making Ajax calls to the server, jQuery lets you do it in an easy fashion.

jQuery is a DOM-centered framework, and to do any DOM manipulation you fi rst need to locate and
retrieve specifi c elements.

Selecting Elements
The W3C DOM standard gives you the getElementById() and getElementsByTagName() methods
to fi nd and retrieve elements in the DOM. These methods work perfectly fi ne, but their most obvious
drawback is they limit you on how you can select elements. You can either select elements by id attri-
bute value or by tag name. There may be times you want to select elements based on their CSS class
name or their relationship to other elements.

This is one area where jQuery truly shines; using CSS selectors, you can select elements based on their
CSS class name, their relationship with other elements, their id attribute value, or simply their tag
name. Let’s start with something simple like this:

$(“a”)

This code selects all <a/> elements within the page and returns them in an array. Because it is an array,
you can use the length property to fi nd out how many elements were selected, like this:

alert($(“a”).length);

jQuery was designed to make DOM manipulation easy, and because of this design philosophy, you
can make changes to several elements at the same time. For example, you built a web page with over 100
links in the document, and one day you decide you want them to open in a new window by setting the
target attribute to _blank. That’s a tall task to take on, but it is something you can easily achieve with
jQuery. Because you can retrieve all <a/> elements in the document by calling $(“a”), you can call the
attr() method to set the target attribute. The following code does this:

$(“a”).attr(“target”, “_blank”);

Calling $(“a”) results in a jQuery object, but this object also doubles as an array. Any method you
call on this particular jQuery object will perform the same operation on all elements in the array. By
executing this line of code, you set the target attribute to _blank on every <a/> element in the page,
and you didn’t even have to use a loop!

The next way you can select elements is with CSS id syntax; that is, the value of an element’s id attribute
prepended with the pound sign (#). You could use the DOM’s getElementById() method to perform
the same task, but using the jQuery function requires less keystrokes, and you have the benefi t of
returning a jQuery object.

$(“#myDiv”)

25937c15.indd 53725937c15.indd 537 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

538

Chapter 15: JavaScript Frameworks

Even though you know only one element can be selected with this code, you can still use the length
property to make sure the element was found in the page. If the element wasn’t found, length will be 0.
You can apply the same logic to select elements by their CSS class name. Simply pass the CSS selector to
the jQuery function like this:

$(“.myCssClass”)

Because jQuery uses CSS selectors to select elements, you can easily select elements based on their hier-
archy. Consider the following HTML:

<p>
 <div>Div 1</div>
 <div>Div 2</div>
 Span 1</div>
</p>
Span 2

This HTML code defi nes a <p/> element that contains two <div/> elements and a element.
Outside the <p/> element is another element. You would have to write several lines of code to
identify and retrieve the element inside the <p/> element if you use traditional DOM methods
and properties. With jQuery, you only need to write one:

$(“p > span”)

This line of code uses the parent > child CSS selector syntax to select all elements that are
children to <p/> elements.

Internet Explorer 6 does not natively support this specifi c CSS selector; however, you would fi nd it still
works if you ran this code in that browser. JQuery and other frameworks support a wide array of CSS
selectors — even if the selector is not supported by the browser. See the framework’s web site for a com-
plete list of supported CSS selectors.

The jQuery function also grants you the ability to use multiple selectors in one function call. Look at the
following code as an example:

$(“a, #myDiv, .myCssClass, p > span”)

Simply delimit each selector with a comma. This code retrieves all <a/> elements, an element with an
id of myDiv, elements with the CSS class myCssClass, and all children of <p/> elements. If
you wanted to set the text color of these elements to red, you could simply use the following code:

$(“a, #myDiv, .myCssClass, p > span”).attr(“style”, “color:red;”);

This isn’t the best way to change an element’s style. In fact, jQuery provides you with many methods to
alter an element’s style.

For a complete list of supported selectors, see http://docs.jquery.com/Selectors.

25937c15.indd 53825937c15.indd 538 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

539

Chapter 15: JavaScript Frameworks

Changing Style
As with the DOM, you change an element’s style by changing individual CSS properties or by changing
an element’s CSS class. To do so, you use the css() method. This method can accept two arguments: the
property’s name and its value.

$(“#myDiv”).css(“color”, “red”);

This code sets the color property to red, thus making the text’s color red. The property names you pass
to the css() method can be in either style sheet format or in script format. That means if you wanted to
change an element’s background color, you can pass background-color or backgroundColor to the
method, like this:

$(“#myDiv”).css(“background-color”, “yellow”); // CORRECT!!!
$(“#myDiv”).css(“backgroundColor”, “yellow”); // CORRECT, TOO!!!

Typically, though, if you want to change an element’s style (that isn’t animation-based), it’s better to
change the element’s CSS class instead of the individual style properties. Doing so keeps the style con-
tent in the style sheet where it belongs.

Using Multiple CSS classes
The jQuery object exposes several methods to manipulate an element’s className property. Before
looking at them, you should know that it’s legal for an element to have multiple CSS classes. Look at the
following HTML:

<div class=”myClass1 myClass2”>
 My div with two CSS classes!
</div>

To apply two or more CSS classes to an element, simply separate the class names with spaces. In
this HTML snippet, the style of two CSS classes are applied to the <div/> element: myClass1 and
myClass2. This concept is being introduced to you because jQuery’s methods to manipulate class
names are built around this concept.

The fi rst method, addClass(), adds the specifi ed CSS class(es) to the element.

$(“#myDiv”).addClass(“myClass1”)
 .addClass(“myClass2”);

This code adds the myClass1 and myClass2 CSS classes to the element. You can shorten this code by
simply passing both class names to the addClass() method in one call:

$(“#myDiv”).addClass(“myClass1 myClass2”);

Just make sure you separate the class names with a space. When you want to remove a specifi c class or
classes from the element, use the removeClass() method.

$(“#myDiv”).removeClass(“myClass2”);

25937c15.indd 53925937c15.indd 539 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

540

Chapter 15: JavaScript Frameworks

This code removes the myClass2 CSS class from the element, leaving myClass1 as the only CSS class
applied to the element. The arguments passed to the removeClass() method are optional; all CSS
classes are removed from the element if you do not pass an argument to the method. The following
code removes all CSS classes from the element:

$(“#myDiv”).removeClass();

Using the toggleClass Method
The next method is the toggleClass() method. Unlike the previous CSS class methods, this method
accepts only one class name. It checks if the specifi ed class is present, and removes it if it is. If the class
isn’t present, then it adds the class to the element. Look at the following example:

$(“#myDiv”).addClass(“myClass1 myClass2”)
 .toggleClass(“myClass2”)
 .toggleClass(“myClass2”);

This code fi rst adds the myClass1 and myClass2 CSS classes to the element. The fi rst toggleClass()
call removes myClass2 from the element, and the second call adds it back. This method is handy when
you need to add or remove a specifi c class from the element. For example, the following code is plain
old JavaScript and DOM coding to add and remove a specifi c CSS class depending on the type of event:

if (e.type == “mouseover”)
{
 eSrc.className = “mouseover”;
}
else if (e.type == “mouseout”)
{
 eSrc.className = “”;
}

With the toggleClass() method, you can cut this code down to the following four lines:

if (e.type == “mouseover” || e.type == “mouseout”)
{
 $(eSrc).toggleClass(“mouseover”);
}

Using the toggleClass() method can make your code more effi cient and quicker to download thanks
to a reduced size, which is always a noble goal to shoot for.

Using the hasClass Method
The last CSS class method is the hasClass() method, and it returns true or false value depending on
if the specifi ed CSS class is applied to the element.

$(“#myDiv”).addClass(“myClass1 myClass2”)
 .hasClass(“myClass1”);

Like toggleClass(), this method accepts only one class name. In this code, hasClass() returns true
because the element does indeed have the myClass1 CSS class applied to it. This example isn’t very
practical because you know exactly what classes are assigned to the element; it was merely provided to
demonstrate how it can be used.

25937c15.indd 54025937c15.indd 540 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

541

Chapter 15: JavaScript Frameworks

It’s important to note that since this method returns true or false, you cannot chain any more
methods after calling it.

jQuery makes other types of DOM manipulation easy, as you’ll see by creating, adding, and removing
objects from the DOM.

Creating, Appending, and Removing Elements
Think back to Chapter 12 and how you create and append elements to the page. The following code will
refresh your memory:

function window_onload()
{
 var a = document.createElement(“a”);
 a.id = “myLink”;
 a.setAttribute(“href”, “http://jquery.com”);
 a.setAttribute(“title”, “jQuery’s Website”);

 var text = document.createTextNode(“Click to go to jQuery’s website”);

 a.appendChild(text);
 document.body.appendChild(a);
}

onload = window_onload;

This code defi nes the window_onload() function, which is called when the browser completely loads
the page. When window_onload() executes, it creates an <a/> element, assigns it an id, and sets the
href and title attributes. Then you create a text node and assign the object to the text variable. Finally,
you append the text node to the <a/> element, and then append the <a/> element to the document’s
<body/> element.

Creating Elements
There’s technically nothing wrong with this code; it is standard DOM element creation, population, and
insertion. However, it is rather long and verbose. You can do the same thing with less typing with jQuery,
and the following code shows you how:

function document_ready()
{
 var a = $(document.createElement(“a”));
 $(document.body).append
 (
 a.attr(“id”, “myLink”)
 .attr(“href”, “http://jquery.com”)
 .attr(“title”, “jQuery’s Website”)
 .text(“Click here to go to jQuery’s website.”)
);
}

$(document).ready(document_ready);

25937c15.indd 54125937c15.indd 541 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

542

Chapter 15: JavaScript Frameworks

Let’s break the document_ready() function down to get a better understanding of what’s taking place.
First, you create the <a/> element with the document.createElement() method.

var a = $(document.createElement(“a”));

Instead of simply assigning the element to a variable, you pass it to the jQuery function so you can use
the jQuery methods to populate it with attributes and text. Next, you pass the document.body object
to the jQuery function and call the append() method.

$(document.body).append
(

Appending Elements
The append() method is similar to the DOM appendChild() method in that it appends child nodes
to the DOM object. The append() method accepts a DOM object, a jQuery object, or a string containing
HTML content. Regardless of what you pass as the parameter to append(), it will append the content
to the DOM object. In the case of this code, you pass the jQuery object that references the <a/> element
you created earlier, and you assign attributes to the element.

 a.attr(“id”, “myLink”)
 .attr(“href”, “http://jquery.com”)
 .attr(“title”, “jQuery’s Website”)

After you assign the id, href, and title attributes, you then add text to the link, and there are a couple
of ways you can do this. You could use the append() method and pass the text to it, or you could use the
text() method. Either method would result in the same outcome, but use text() in this case simply
because you haven’t used it yet.

 .text(“Click here to go to jQuery’s website.”)
);

Remember what makes method chaining possible in jQuery is that most methods return the jQuery
object you called the method on. So the text() method returns the jQuery object referencing the <a/>
element object to the append() method called on the jQuery object referencing the document.body
object.

You could rewrite this code in a couple of other ways. First, you could do this:

function document_ready()
{
 var a = $(document.createElement(“a”))
 .attr(“id”, “myLink”)
 .attr(“href”, “http://jquery.com”)
 .attr(“title”, “jQuery’s Website”)
 .text(“Click here to go to jQuery’s website.”);

 $(document.body).append(a);
}

25937c15.indd 54225937c15.indd 542 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

543

Chapter 15: JavaScript Frameworks

This code results in the same outcome, and it’s a little bit easier to understand. However, if you wanted
to save even more lines, you could do something like the following code:

function document_ready()
{
 $(document.body).append($(document.createElement(“a”))
 .attr(“id”, “myLink”).attr(“href”, “http://jquery.com”)
 .attr(“title”, “jQuery’s Website”)
 .text(“Click here to go to jQuery’s website.”));
}

This code certainly is smaller and more compact, and it is the type of code you’d see if you looked at lots
of the jQuery-based code out on the Internet (and it’s the type of code you’d see your authors write).
You do lose some readability, however. The important thing is to code in a manner that you feel comfort-
able with. Method chaining can get a little confusing if several methods are chained together. For this
purpose, the remainder of the code examples will put each method call on a separate line.

Removing Elements
Removing elements from the DOM is also much easier with jQuery than with the traditional DOM
methods. Using the latter, you have to fi nd at least two elements in the DOM tree: the element you want
to remove and its parent element. With jQuery, you only need to fi nd the element you want to remove
and call the remove() method, like this:

$(“#myLink”).remove();

This code fi nds the <a/> element you created in the previous code example and removes it from the
DOM. You can also remove all of a parent’s child nodes by calling the empty() method.

$(document.body).empty();

This code empties the <body/> element, thus removing all content from the page.

Most DOM changes you’ll make are in response to something the user did, whether it be moving their
mouse over a particular element or clicking somewhere on the page. So naturally, you’ll have to handle
events at some point.

The jQuery Event Model and Handling Events
All jQuery objects expose a method called bind(), which you use to assign event handlers to specifi c
events.

function myButton_click(event)
{
 alert(“You clicked me!”);
}

$(“#myButton”).bind(“click”, myButton_click);

25937c15.indd 54325937c15.indd 543 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

544

Chapter 15: JavaScript Frameworks

This code assigns the myButton_click() function to handle the click event for an element with an
id value of myButton element.

jQuery passes a jQuery.Event object to the function handling the event. Because of the extreme differ-
ence between the IE and W3C DOM event models, John Resig, the creator of jQuery, decided to merge
both event models into his own, which is based on the W3C event model’s Event and MouseEvent
objects. That means you do not have to worry about checking for window.event or using any property
of the IE event model; the jQuery.Event object provides you the same information as window.event,
and you’ll use the W3C Mouse and MouseEvent objects’ properties to get at that information.

All this means is you have one unifi ed object that works across all supported browsers, to work with
events. To demonstrate, you can write something like the following code, and it’ll work in every sup-
ported browser:

function myButton_click(event)
{
 alert(event.target.tagName + “ clicked at X:“ + event.pageX
 + “ and Y:” + event.pageY);
}

$(“#myButton”).bind(“click”, myButton_click);

Figure 15-4 shows the results of this code in IE, and Figure 15-5 shows the results in Firefox.

Figure 15-4

25937c15.indd 54425937c15.indd 544 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

545

Chapter 15: JavaScript Frameworks

Figure 15-5

Because of the jQuery.Event object, you code using the W3C model, and it simply works in all
browsers.

For a complete list of supported events, see jQuery’s web site at http://docs.jquery.com/
Events.

Rewriting the DHTML Toolbar with jQuery
You have learned how to retrieve elements in the DOM, change an element’s style by adding and
removing classes, add and remove elements from the page, and use events with jQuery.

Now you’ll put this newfound knowledge to work by refactoring the DHTML toolbar from Chapter 12
(the answer to Chapter 12’s second exercise question at the end of the chapter, to be exact).

Try It Out Revisiting the Toolbar with jQuery
Open your text editor and type the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 3 with jQuery</title>
 <style type=”text/css”>

25937c15.indd 54525937c15.indd 545 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

546

Chapter 15: JavaScript Frameworks

 .tabStrip
 {
 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
 }

 .tabStrip-tab
 {
 float: left;
 font: 14px arial;
 cursor: pointer;
 padding: 2px;

 border: 1px solid transparent;
 }

 .tabStrip-tab-hover
 {
 border-color: #316AC5;
 background-color: #C1D2EE;
 }

 .tabStrip-tab-click
 {
 border-color: #facc5a;
 background-color: #f9e391;
 }
 </style>
 <script type=”text/javascript” src=”jquery-1.3.2.min.js”></script>
 <script type=”text/javascript”>
 var currentNum = 0;
 function handleEvent(e)
 {
 var el = $(e.target);

 if (e.type == “mouseover” || e.type == “mouseout”)
 {
 if (el.hasClass(“tabStrip-tab”) && !el.hasClass(“tabStrip-tab-click”))
 {
 el.toggleClass(“tabStrip-tab-hover”);
 }
 }

 if (e.type == “click”)
 {
 if (el.hasClass(“tabStrip-tab-hover”))
 {
 var id = e.target.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

 if (currentNum != num)
 {

25937c15.indd 54625937c15.indd 546 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

547

Chapter 15: JavaScript Frameworks

 deactivateTab();

 el.toggleClass(“tabStrip-tab-hover”)
 .toggleClass(“tabStrip-tab-click”);
 showDescription(num);
 currentNum = num;
 }
 }
 }
 }

 function showDescription(num)
 {
 var div = $(document.createElement(“div”));

 $(“#descContainer”).append
 (
 div.attr(“id”, “tabStrip-desc-” + num)
 .text(“Description for tab “ + num)
);
 }

 function deactivateTab()
 {
 var descEl = $(“#tabStrip-desc-” + currentNum);

 if (descEl.length > 0)
 {
 descEl.remove();

 $(“#tabStrip-tab-”+ currentNum).toggleClass(“tabStrip-tab-click”);
 }
 }

 $(document).bind(“click mouseover mouseout”, handleEvent);
 </script>
</head>
<body>
 <div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
 </div>
 <div id=”descContainer”></div>
</body>
</html>

Save this as ch15_examp3.htm and feel free to compare it to ch12_q2.htm. Open ch15_examp3.htm in
any browser you choose, as long as it’s supported by jQuery, and notice that its behavior is identical to
that of ch12_q2.htm.

The fi rst major change in this new version is the CSS because jQuery’s CSS class methods are more geared
to adding and removing CSS classes than simply changing the className property. This ability allows

25937c15.indd 54725937c15.indd 547 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

548

Chapter 15: JavaScript Frameworks

you to layer styles on top of each other; so instead of changing an element’s style completely with the
className property, you simply add or remove a layer of style. This reduces the amount of CSS you
have to write.

.tabStrip-tab
{
 float: left;
 font: 14px arial;
 cursor: pointer;
 padding: 2px;
 border: 1px solid transparent;
}

.tabStrip-tab-hover
{
 border-color: #316AC5;
 background-color: #C1D2EE;
}

.tabStrip-tab-click
{
 border-color: #facc5a;
 background-color: #f9e391;
}

The fi rst notable change is the removal of the .tabStrip div selector, and its style properties were moved
to the tabStrip-tab class. The second change is that the tabStrip-tab class reduces the padding to two
pixels (down from three pixels), and adds a transparent one-pixel-width border. The fi nal CSS changes
were to the tabStrip-tab-hover and tabStrip-tab-click classes. Formerly, they added a border,
changed the background color, and reduced the padding to two pixels. Because tabStrip-tab now
applies its own border to the element, the hover and click classes only need to change the border and
background colors.

Now turn your attention to the JavaScript code. This version of the DHTML toolbar still incorporates
the use of the currentNum global variable to keep track of the active tab’s number.

var currentNum = 0;

Next is the handleEvent() function. Remember in the original version you had to code for both the IE
and W3C DOM event models. You don’t have to here!

function handleEvent(e)
{
 var el = $(e.target);

All you need to do is create a jQuery object referencing the jQuery.Event.target property — the
element that caused the event to occur. Next, you determine if the mouse was moved over or out of
an element.

 if (e.type == “mouseover” || e.type == “mouseout”)
 {
 if (el.hasClass(“tabStrip-tab”) && !el.hasClass(“tabStrip-tab-click”))
 {
 el.toggleClass(“tabStrip-tab-hover”);
 }
 }

25937c15.indd 54825937c15.indd 548 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

549

Chapter 15: JavaScript Frameworks

This code is also different from the original version of the script. In the original version, you checked
for the mouseover and mouseout events separately. You don’t have to do that with this new version due
to the CSS design change.

You do, however, still need to determine if the element has the tabStrip-tab CSS class as one of its
classes to make sure this particular element is a tab in the tab strip. Since the handleEvent() function
handles the mouseover, mouseout, and mouseclick events of the document object, these events can
fi re off any element in the page. You want to make sure the element that caused the event to fi re is, in
fact, a tab, and you can do so by seeing if the element has the tabStrip-tab CSS class applied to it.

You also want to ensure that the element doesn’t have the tabStrip-tab-click CSS class, either.
Otherwise, the jQuery toggleClass() method will actually add the tabStrip-tab-hover CSS
class when you move your mouse out of an element with the click class applied. So by making
sure the tabStrip-tab-click class isn’t applied to the element, you can be sure that the tabStrip-
tab-hover class will be toggled correctly; it’ll be added when you move your mouse pointer over the
element, and it will be removed when your pointer leaves the element.

Now look at what happens when you click your mouse on a tab.

 if (e.type == “click”)
 {
 if (el.hasClass(“tabStrip-tab-hover”))
 {
 var id = e.target.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

 if (currentNum != num)
 {
 deactivateTab();

Not much new happens here. A new variable, id, is declared and assigned the event target’s id. This
change is primarily a convenience, as id is easier to type than e.target.id. The next lines are relatively
the same:

 el.toggleClass(“tabStrip-tab-hover”)
 .toggleClass(“tabStrip-tab-click”);

 showDescription(num);
 currentNum = num;
 }
 }
 }

The only thing different here is the change to use jQuery’s toggleClass() method two times. The
fi rst toggleClass() call removes the tabStrip-tab-hover CSS class, and the second call adds the
tabStrip-tab-click CSS class to the element.

The code in showDescription() completely changed, even though it performs the same operations
of creating a <div/> element, giving it text, and appending it to the <div/> element with an id of
descContainer.

function showDescription(num)
{
 var div = $(document.createElement(“div”));

 $(“#descContainer”).append
 (

25937c15.indd 54925937c15.indd 549 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

550

Chapter 15: JavaScript Frameworks

 div.attr(“id”, “tabStrip-desc-” + num)
 .text(“Description for tab “ + num)
);
}

Using jQuery objects to perform these operations cuts down on the amount of code you have to write,
which is also evident with the following deactivateTab() function:

function deactivateTab()
{
 var descEl = $(“#tabStrip-desc-” + currentNum);

 if (descEl.length > 0)
 {

The fi rst line uses the jQuery function to select the <div/> element containing the tab’s description.
You then use the length property to make sure jQuery found an element. Doing so ensures you won’t
try to remove a nonexistent object from the DOM, which would result in an error.

If an element was found, then you use jQuery’s remove() method to remove the element from
the DOM as follows:

 descEl.remove();

 $(“#tabStrip-tab-”+ currentNum).toggleClass(“tabStrip-tab-click”);
 }
}

You then select the active tab’s <div/> element and remove the tabStrip-tab-click CSS class with
the toggleClass() method.

Finally, you assign the handleEvent() function to handle the mouseover, mouseout, and click
events on the document object. The following code does this:

$(document).bind(“click mouseover mouseout”, handleEvent);

As you can see from this example, jQuery can make DOM manipulation much easier and requires less
typing from you. In this particular example, you wrote 28 less lines of CSS and JavaScript. That’s well
worth the time of learning a framework, isn’t it?!

DOM manipulation isn’t the only area in which a framework such as jQuery can help you. In fact, it can
greatly reduce the amount of work you have to do to make XMLHttpRequest objects and requests.

Using jQuery for Ajax
The previous chapter walked you through the creation of a module to enable you to create and use
XMLHttpRequest objects to retrieve data from the web server. The module you created certainly made
Ajax requests easier to code, but Ajax requests are even easier with jQuery.

25937c15.indd 55025937c15.indd 550 9/21/09 12:06:18 AM9/21/09 12:06:18 AM

551

Chapter 15: JavaScript Frameworks

Understanding the jQuery Function
The jQuery function ($()) is the doorway into all things jQuery, and you’ve used it quite a bit through-
out this chapter. However, there are other uses for this function. It was mentioned only once in this
book, and it was as an aside comment, but functions are objects, too. If you look back at the end of
Chapter 5, you created your own objects and reference types. When you did so, you used the prototype
object, which is a property of the Function object.

Just like all other objects, you access a Function object’s properties and methods using the
object.property or object.method() syntax. As such, jQuery’s Ajax functionality is provided by
methods of the $ function object. For example, to make a request to the server, you use the get()
method, as the following code shows:

$.get(“textFile.txt”);

This code makes a request to the server to retrieve the textFile.txt text fi le, but it isn’t useful, as you
can’t do anything with the data you retrieved. So like the HttpRequest module you built in the previous
chapter, the $.get() method lets you assign a callback function that is called when the request success-
fully contacts the server and retrieves your specifi ed data.

function get_callBack(data, status)
{
 alert(data);
}

$.get(“textFile.txt”, get_callBack);

This code adds a function called get_callBack(), which jQuery calls on a successful request. When
jQuery executes an Ajax callback function, it passes two parameters to it. The fi rst, data, is the data you
requested from the server. The second, status, is the status of the request. Because jQuery only calls
the callback function on a successful request, status is always “success”.

Many developers forego using the second status parameter, because it’s only possible value at this
time is success. You can forego it as well.

Using jQuery’s Ajax Event Handling
jQuery’s Ajax event handling is quite different from what you might expect. There are local events (that
is, events of a specifi c request object) and global Ajax events. Global events are easier to use, and you can
use them to add UI cues to enhance the user’s experience. You set the global events to fi re on any valid
DOM object. One specifi c global event is the ajaxError event, and you set it to call an event handler
with the jQuery object’s ajaxError() method, or you can use the bind() method. The following code
demonstrates the use of the ajaxError() method:

function request_ajaxError(event, request, settings)
{
 alert(“An Ajax error occurred.”);
}

$(document).ajaxError(request_ajaxError);

25937c15.indd 55125937c15.indd 551 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

552

Chapter 15: JavaScript Frameworks

Ajax event handlers are passed the following three parameters:

An ❑ event object that has information about the event.

The ❑ XMLHttpRequest object that is used to make the request.

An object containing the settings used for the request. With the ❑ settings object, you can
retrieve the URL of the request, its HTTP method, whether or not the request was sent in asyn-
chronous mode, and much more.

You can build some pretty thorough error messages between the request and settings parameters.

Visit http://docs.jquery.com/Ajax for a complete list of Ajax events.

Remember the examples from the previous chapter? You created a form that checked if user names and
e-mail addresses were available using Ajax, and you sent those values to the server as parameters in the
URL. For example, when you wanted to test a user name, you used the username parameter, like this:

phpformvalidator.php?username=jmcpeak

With the $.get() method, you can do the same thing by passing an object containing the key/value
pairs to the method.

var parms = new Object();
parms.username = “jmcpeak”;

function get_callBack(data, status)
{
 alert(data);
}

$.get(“phpformvalidator.php”, parms, get_callBack);

In this code, you create a new object called parms and add the username property to the object, assign-
ing it the value of jmcpeak. You then write the get_callBack() function, and afterwards, you call
$.get() and pass the URL, the parms object, and the callback function.

Sending Multiple Parameters
You can send multiple parameters to the URL by simply adding more properties to the object, like this:

var parms = new Object();
parms.username = “jwmcpeak”;
parms.email = “someone@xyz.com”;

You can send as many parameters you want or need in a single request.

By default, the $.get() method sends requests in asynchronous mode, and in most cases, this is desired.
However, you may fi nd situations, like the answer to Question 2 in Chapter 14, where you want to use
synchronous communication. You cannot specify what type of communication mode you want to use with

25937c15.indd 55225937c15.indd 552 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

553

Chapter 15: JavaScript Frameworks

$.get(), but jQuery does provide the $.ajaxSetup() method. This method accepts an object containing
a number of properties to set options that affects all Ajax requests. One such option is the async option.

var options = new Object();
options.async = false;

$.ajaxSetup(options);

This code sets all Ajax calls to use synchronous mode. Again, only set this option to false when you
absolutely need it. Most (about 99.9 percent) of the time, you want to use asynchronous communication.

Let’s revisit the form validator script using XMLHttpRequest from the previous chapter, and you’ll
replace the HttpRequest module code with the Ajax capabilities of jQuery.

The $.get() method is quite simple to use and provides basic functionality. jQuery offers
much more advanced, low-level Ajax functionality, and you can fi nd out more at http://
docs.jquery.com/Ajax.

Try It Out Revisiting the Form Validator
Open your text editor and type the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <title>Chapter 15: Example 4 with jQuery</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”jquery-1.3.2.min.js”></script>
 <script type=”text/javascript”>
 function checkUsername()
 {
 var userValue = $(“#username”).val();

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

 var parms = new Object();

25937c15.indd 55325937c15.indd 553 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

554

Chapter 15: JavaScript Frameworks

 parms.username = userValue;

 $.get(“formvalidator.php”, parms, checkUsername_callBack);
 }

 function checkUsername_callBack(data, status)
 {
 var userValue = $(“#username”).val();

 if (data == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
 }

 function checkEmail()
 {
 var emailValue = $(“#email”).val();

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var parms = new Object();
 parms.email = emailValue;

 $.get(“formvalidator.php”, parms, checkEmail_callBack);
 }

 function checkEmail_callBack(data, status)
 {
 var emailValue = $(“#email”).val();

 if (data == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
 }

 function request_error(event, request, settings)
 {
 alert(“An error occurred with the following URL:\n”
 + settings.url +”.\nStatus code: “ + request.status);
 }

 $(document).ajaxError(request_error);

25937c15.indd 55425937c15.indd 554 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

555

Chapter 15: JavaScript Frameworks

 </script>
</head>
<body>
 <form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />
 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
 </form>
</body>
</html>

25937c15.indd 55525937c15.indd 555 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

556

Chapter 15: JavaScript Frameworks

Save this as ch15_examp4.htm in your web server’s root directory. Like the examples using XMLHttpRequest
in the previous chapter, this fi le must be hosted on a web server in order to work correctly. Open your
web browser to http://yourserver/ch15_examp4.htm. Type jmcpeak into the Username fi eld and
click the Check Availability link next to it. You’ll see an alert box telling you the user name is taken.

Now type someone@xyz.com in the Email fi eld and click the Check Availability link next to it. Again,
you’ll be greeted with an alert box stating that the e-mail is already in use. Now input your own user
name and e-mail into these fi elds and click the appropriate links. Chances are an alert box will tell you
that your user name and/or e-mail is available (the user names jmcpeak and pwilton and the e-mails
someone@xyz.com and someone@zyx.com are the only ones used by the application).

This page works exactly like validate_form.htm from Chapter 14 does, and the code is the same for
the most part.

The fi rst change is the removal of httprequest.js and the inclusion of the jQuery JavaScript fi le
jquery-1.3.2.min.js.

The second change is located in the checkUsername() function.

function checkUsername()
{
 var userValue = $(“#username”).val();

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

The fi rst line retrieves the Username text box’s value by selecting the element and calling the val()
method. The val() method retrieves the value property <input/> elements. You then check to make
sure the user input something into the text box and politely ask them to enter a user name if they did not.

Next, you make the following request:

 var parms = new Object();
 parms.username = userValue;

 $.get(“formvalidator.php”, parms, checkUsername_callBack);
}

You fi rst create an object called parms and create a username property. You pass this object to the
$.get() method, along with the URL and the name of the function to call back.

Upon a successful request, jQuery calls the checkUsername_callBack() function. The parameters
to this function changed to refl ect the two parameters that jQuery passes the function upon a successful
request.

function checkUsername_callBack(data, status)
{
 var userValue = $(“#username”).val();

 if (data == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }

25937c15.indd 55625937c15.indd 556 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

557

Chapter 15: JavaScript Frameworks

 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
}

Other than the parameters, the only change to this function is the use of the val() method to retrieve
the textbox’s value. Everything else remains the same; the function compares the data returned from
the server and displays a message to the user telling them the results of the user name query.

The changes to checkEmail() resemble those made to checkUsername().

function checkEmail()
{
 var emailValue = $(“#email”).val();

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var parms = new Object();
 parms.email = emailValue;

 $.get(“formvalidator.php”, parms, checkEmail_callBack);
}

You use the jQuery function to select the Email text box and retrieve its value with the val() method.
You then determine if the user entered data, and ask them to do so if they didn’t. Next, you create the
parms object, create and assign a value to the email property, and make the request with the $.get()
method.

On a successful request, the checkEmail_callBack() function executes, and the changes to this func-
tion mirror that of checkUsername_callBack().

function checkEmail_callBack(data, status)
{
 var emailValue = $(“#email”).val();

 if (data == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
}

In case an Ajax error occurs, you register an Ajax event handler for the ajaxError event. The event
handler function is called ajax_error(), and it displays an error message to the user. Its defi nition
follows:

function ajax_error(event, request, settings)
{

25937c15.indd 55725937c15.indd 557 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

558

Chapter 15: JavaScript Frameworks

 alert(“An error occurred with the following URL:\n”
 + settings.url +”.\nStatus code: “ + request.status);
}

$(document).ajaxError(ajax_error);

The message tells the user that an error occurred, what the URL of the request was, and the HTTP status
code the server returned. With this information, you can begin to debug the error if one should arise.

jQuery is an extensive framework, and providing in-depth coverage and information requires more
than this section can provide. However, the jQuery documentation is quite good, and you can view it
at http://docs.jquery.com. jQuery’s web site also lists a variety of tutorials, so don’t forget to check
them out at http://docs.jquery.com/Tutorials. The inclusion of its effects/animation components
and the optional UI library makes jQuery a very versatile framework.

Diving into Prototype
jQuery is probably the most popular framework today, but that crown used to sit upon Prototype’s head.
Unlike jQuery, Prototype’s focus is augmenting the way you program with JavaScript by providing
classes and inheritance. It does, however, also provide a robust set of tools for working with the DOM
and Ajax support.

You were briefl y introduced to Prototype, so let’s dive a little deeper into this library and see what it can
do for you with cross-browser scripting.

Retrieving Elements
When testing your Prototype installation, you were introduced to the dollar function $(). This function
is different from the jQuery function in that it simply extends the element you want to retrieve by adding
many new methods. If you pass an element’s id value, then it retrieves that element and extends it with
more methods and properties.

$(“myDiv”)

This code retrieves the element with an id of myDiv from the DOM and extends it. So you can use this
extended object just like you would any other Element object, like this:

alert($(“myDiv”).tagName);

You can also pass it an Element object, which results in an extended version of that element. The fol-
lowing code passes the document.body object to the dollar function:

$(document.body)

25937c15.indd 55825937c15.indd 558 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

559

Chapter 15: JavaScript Frameworks

By doing this, you can use both native DOM methods and properties as well as the methods provided
by Prototype.

Prototype’s dollar function returns null if the specifi ed element cannot be found. This is unlike
jQuery’s $() function because Prototype returns an extended DOM element object; even though it is
extended, it is still a DOM element object.

Selecting Elements With CSS Selectors
Another difference between Prototype’s dollar function and jQuery’s $() function is that it does not
accept CSS selectors; it only accepts element id values and Element objects. Prototype does, however,
have another function that behaves similarly to jQuery’s $() function, and that is the $$() function.

You can pass several selector types to the $$() function to locate and retrieve elements that match the
selector. For example, the following code retrieves all <div/> elements in the page and returns them in
an array, so you can use the length property:

$$(“div”)

The $$() function always returns an array, so even if you use an id selector, you’ll get an array with
one element in it if the element is found. One downside to the double dollar function is that it returns
an array of extended elements. If you want to perform an operation on every element in the array, you
have to either loop through them or iterate over them with the Prototype-provided each() method.

Performing an Operation on Elements Selected With $$()
The each() method is similar to the new Array.every() method you learned about in Chapter 5. It
accepts a function as a parameter and executes that function on every element in the array. The follow-
ing code demonstrates this:

function insertText(item)
{
 item.insert(“This text inserted using the each() method.”);
}

$$(“div”).each(insertText);

The jQuery object also has an each() method that performs the same function.

You can use several CSS selector types to select elements with the double dollar function, and you can
select elements based upon multiple selectors, although it is different from how you did it with jQuery.

$$(“#myDiv”, “p > span, .myCssClass”);

Instead of passing one string with commas separating each selector, you pass multiple strings with
each string containing one selector. Once you retrieve an element (or elements), you can then begin to
manipulate them, such as changing their style.

For more information on the CSS selector supported in Prototype, see http://www.prototypejs.org/
api/utility/dollar-dollar.

25937c15.indd 55925937c15.indd 559 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

560

Chapter 15: JavaScript Frameworks

Manipulating Style
Prototype provides you several methods to change an element’s style, and they are not unlike those
found in the jQuery framework.

The setStyle() method lets you set individual style properties. To set style in this way, you must create
an object, and create properties for this object whose names are those of CSS properties. For example, the
following code sets an element’s text color to red and underlines it:

var styles = new Object();
styles.color = “red”;
styles.textDecoration = “underline”;

$(“myDiv”).setStyle(styles);

As previously mentioned in the jQuery section, changing an element’s style in this manner is
undesirable because style should be defi ned in the page’s style sheet. A better alternative is to manipu-
late an element’s CSS class, and Prototype allows you to easily do that with the addClassName(),
removeClassName(), toggleClassName(), and hasClassName() methods.

The fi rst method, addClassName(), adds a CSS class name to the element. Simply pass the class name
to the method, and it is applied to the element.

$(“myDiv”).addClassName(“someClass”);

The second method, removeClassName(), removes the specifi ed class from the element. The following
code adds a class name and then removes it:

$(“myDiv”).addClassName(“someClass”)
 .removeClassName(“someClass”);

This code isn’t very practical, but it demonstrates how both methods are used. Next is the
toggleClassName() method. This method checks if the specifi ed class is applied to the element
and removes it if so. If the class name isn’t found, then it applies the class to the element.

$(“myDiv”).hasClassName(“someClass”);
$(“myDiv”).toggleClassName(“someClass”);
$(“myDiv”).hasClassName(“someClass”);

This code demonstrates the toggleClassName() method and the fourth method: hasClassName().
The fi rst line of code checks if the someClass CSS class is applied to the element. Since it’s not, this method
returns false. The second line calls the toggleClassName() method, which adds the someClass
CSS class to the element. The fi nal line calls hasClassName() again, which now returns true since
someClass was added in the previous line.

These CSS methods closely resemble those of jQuery. However, other types of DOM manipulation such
as creating and inserting elements are areas where Prototype differs greatly from jQuery. However, as
you’ll soon see, removing DOM objects is very similar.

25937c15.indd 56025937c15.indd 560 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

561

Chapter 15: JavaScript Frameworks

Creating, Inserting, and Removing Elements
Manipulating the DOM with Prototype is a simple process. The framework extends the Element object and
allows you to create an element using a constructor, populate it with data, and remove it from the DOM.

Creating an Element
The Element object’s constructor accepts two arguments: the tag name and an object containing attri-
butes and their values. The following code demonstrates creating an <a/> element and adds it to the
document’s body:

var attributes = new Object();
attributes.id = “myLink”;
attributes.href = “http://www.prototypejs.org”;
attributes.target = “_blank”;

var a = new Element(“a”, attributes);

The fi rst few lines of this code create an object called attributes. You create the id, href, and target
properties and assign their values. You then create an <a/> element by using the Element object’s con-
structor. You pass the string “a” as the fi rst parameter and the attributes object as the second.

Inserting an Element
The update() and insert() methods both add content to the Element object. The difference is
update() replaces all existing content while insert() simply adds the content to the existing content.
Both methods can accept a string value, containing simple text or HTML, or an Element object.

The following code creates the <a/> element from the previous code example, adds content to it, and
inserts it into the page:

var attributes = new Object();
attributes.id = “myLink”;
attributes.href = “http://www.prototypejs.org”;
attributes.target = “_blank”;

var a = new Element(“a”, attributes).update(“Go to Prototype’s Website”);
$(document.body).insert(a);

This code calls the update() method, which replaces the element’s existing content with the new
content as specifi ed by the data passed to it (in this example, there was no existing content). Because
the update() method returns the Element object you created, you assign the object to the variable a,
which you then pass to the insert() method of the document.body object.

Removing an Element
Removing elements from the DOM is even easier, and in fact is the same as in jQuery. You fi rst fi nd the
element you want to remove from the DOM and then call the remove() method.

$(“myLink”).remove();

25937c15.indd 56125937c15.indd 561 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

562

Chapter 15: JavaScript Frameworks

This code fi nds the element with an id of myLink and removes it from the DOM. There’s no need to
fi nd the element’s parent and call the removeChild() method.

Using Events
When you extend an Element object with the dollar sign function, you gain access to the observe()
method, which registers an event handler on a DOM element. This method accepts two arguments: the
name of the event to observe for and the function to call when the event fi res.

function myDiv_click(event)
{
 // do something
}

$(“myDiv”).observe(“click”, myDiv_click);

This code registers the myDiv_click() function to handle the click event on the element with an id
of myDiv. This isn’t the only way to assign event handlers; you can use the Event.observe() method,
too. The following code writes the previous code using Event.observe():

function myDiv_click(event)
{
 // do something
}

Event.observe(“myDiv”, “click”, myDiv_click);

The fi rst argument to Event.observe() can be a string value containing an element’s id, or a BOM/
DOM object you want to assign an event handler to, like window or document. This method is particularly
useful for objects like window; you cannot pass window to the dollar function and use the observe()
method because the browser will throw an error. Instead, you have to use Event.observe().

Unlike jQuery, Prototype doesn’t emulate the W3C DOM event model. In fact, it doesn’t aim to create a
separate, unifying event model at all. Instead, it extends the event objects of both browsers and gives
you a set of utility methods to obtain the information you want to acquire.

These methods are of the extended browser’s Event object. For example, the element() method accepts
an IE or W3C event object as a parameter and returns the value of the srcElement and target proper-
ties for IE and W3C DOM browsers, respectively.

For example, the following code gets the element that fi red the event and toggles a CSS class called
someClass:

function myDiv_click(event)
{
 var eSrc = event.element();
 eSrc.toggleClassName(“someClass”);
}

$(“myDiv”).observe(“click”, myDiv_click);

25937c15.indd 56225937c15.indd 562 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

563

Chapter 15: JavaScript Frameworks

In order for this to work properly, the parameter your event handling function accepts needs to be
called event. That way, IE’s window.event object is referenced when you call the element() method
as well as the event object passed to the function by W3C DOM browsers.

Rewriting the DHTML Toolbar with Prototype
You now know how to retrieve elements, change an element’s style, add and remove elements from
the DOM, and wire up events, and get the element that fi red the event with Prototype. Let’s apply that
knowledge and rewrite the DHML toolbar.

Try It Out Revisiting the Toolbar with Prototype
Open your text editor and type the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 5 with Prototype</title>
 <style type=”text/css”>
 .tabStrip
 {
 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
 }

 .tabStrip-tab
 {
 float: left;
 font: 14px arial;
 cursor: pointer;
 padding: 2px;
 border: 1px solid transparent;
 }

 .tabStrip-tab-hover
 {
 border-color: #316AC5;
 background-color: #C1D2EE;
 }

 .tabStrip-tab-click
 {
 border-color: #facc5a;
 background-color: #f9e391;
 }
 </style>
 <script type=”text/javascript” src=”prototype-1.6.0.3.js”></script>
 <script type=”text/javascript”>
 var currentNum = 0;

25937c15.indd 56325937c15.indd 563 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

564

Chapter 15: JavaScript Frameworks

 function handleEvent(event)
 {
 var el = event.element();

 if (event.type == “mouseover” || event.type == “mouseout”)
 {
 if (el.hasClassName(“tabStrip-tab”) &&
 !el.hasClassName(“tabStrip-tab-click”))
 {
 el.toggleClassName(“tabStrip-tab-hover”);
 }
 }

 if (event.type == “click”)
 {
 if (el.hasClassName(“tabStrip-tab-hover”))
 {
 var id = el.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

 if (currentNum != num)
 {
 deactivateTab();

 el.toggleClassName(“tabStrip-tab-hover”)
 .toggleClassName(“tabStrip-tab-click”);
 showDescription(num);
 currentNum = num;
 }
 }
 }
 }

 function showDescription(num)
 {
 var attributes = new Object();
 attributes.id = “tabStrip-desc-” + num;

 var div = new Element(“div”, attributes)
 .update(“Description for tab “ + num);

 $(“descContainer”).update(div);
 }

 function deactivateTab()
 {
 var currentTab = $(“tabStrip-tab-”+ currentNum);

 if (currentTab)
 {
 currentTab.toggleClassName(“tabStrip-tab-click”);
 }

25937c15.indd 56425937c15.indd 564 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

565

Chapter 15: JavaScript Frameworks

 }

 $(document).observe(“click”, handleEvent);
 $(document).observe(“mouseover”, handleEvent);
 $(document).observe(“mouseout”, handleEvent);
 </script>
</head>
<body>
 <div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
 </div>
 <div id=”descContainer”></div>
</body>
</html>

Save this fi le as ch15_examp5.htm and load it into your browser. You’ll notice it behaves the same as
Chapter 12’s Question 2 answer, and as the rewritten version with jQuery.

Because the CSS and markup remains unchanged from ch15_examp3.htm (the jQuery version), you’ll
focus on the JavaScript functions and how they changed, and you’ll start with the handleEvent()
function.

function handleEvent(event)
{
 var el = event.element();

The fi rst thing to notice about this function is the parameter’s name being changed to event. You did this
for the purpose of calling the element() method. Had you used another name for the parameter, you
would need to determine the user’s browser and call the element() method on the window.event
object and the W3C event object. In other words, it would require more work from you, and look like
the cross-browser version in Chapter 12.

Next, you determine the type of event that took place. You fi rst check for mouseover and mouseout
events.

 if (event.type == “mouseover” || event.type == “mouseout”)
 {
 if (el.hasClassName(“tabStrip-tab”) &&
 !el.hasClassName(“tabStrip-tab-click”))
 {

If either of these events take place, you have to check whether or not the element that fi red the event is
a tab in the tab strip. To do that, you determine if the element has the tabStrip-tab class name with
the hasClassName() method. You also need to make sure the element does not have the tabStrip-
tab-click class name. Failing to do so would result in improper style changes.

If the element meets all your requirements, then toggle the tabStrip-tab-hover class name.

 el.toggleClassName(“tabStrip-tab-hover”);
 }
 }

25937c15.indd 56525937c15.indd 565 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

566

Chapter 15: JavaScript Frameworks

Use the toggleClassName() method to perform that task. Now when you move your mouse pointer
over a tab element, the tabStrip-tab-hover class will be applied to the element. When you move
your mouse pointer off the element, your code removes the hover class and returns the element to its
original state.

Next, determine if the click event fi red, and if so, determine if the element has the tabStrip-tab-hover
class.

 if (event.type == “click”)
 {
 if (el.hasClassName(“tabStrip-tab-hover”))
 {

If so, then you know that this element should change its style to that of a clicked tab. To start this process,
get the number associated with this particular tab element.

 var id = el.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

To do this, you get the element’s id value and use the substr() method to retrieve all the text after the
last hyphen and assign the result of substr() to the num variable.

Next, you determine if the element clicked is a different one in the tab strip by comparing num to
currentNum.

 if (currentNum != num)
 {
 deactivateTab();

If it is a different tab element, then you call the deactivateTab() function. Then you use the
toggleClassName() method to remove the tabStrip-tab-hover class and add the tabStrip-
tab-click class to the element.

 el.toggleClassName(“tabStrip-tab-hover”)
 .toggleClassName(“tabStrip-tab-click”);

You then call the showDescription() function, passing it the value of the element’s number. You then
assign the currentNum variable the value contained within the num variable. Doing so tells your script
that this new tab element is the currently active tab.

 showDescription(num);
 currentNum = num;
 }
 }
 }
}

Now look at the showDescription() function, which adds the tab’s description to the page. The fi rst
thing you do in this function is create the attributes object and then create an id property.

function showDescription(num)
{
 var attributes = new Object();
 attributes.id = “tabStrip-desc-” + num;

25937c15.indd 56625937c15.indd 566 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

567

Chapter 15: JavaScript Frameworks

Then you create the new <div/> element by using the Element object’s constructor. You specify that
you want to create a <div/> element and you pass the attributes object. After the constructor call,
you chain a call to the update() method, giving the element some text.

 var div = new Element(“div”, attributes)
 .update(“Description for tab “ + num);

The fi nal step of this function is to add the element to the page. Do so with the update() method.

 $(“descContainer”).update(div);
}

Using the update() method here means you do not have to remove the currently displaying description
in deactivateTab() because the update() method removes all preexisting content and replaces it with
the content you pass to the method.

Because you use the update() method in showDescription(), you simplify the function body of
deactivateTab().

function deactivateTab()
{
 var currentTab = $(“tabStrip-tab-”+ currentNum);

 if (currentTab)
 {
 currentTab.toggleClassName(“tabStrip-tab-click”);
 }
}

You fi rst attempt to retrieve the currently active tab element by its id. If it can be found in the document,
then the code within the if block executes and removes the tabStrip-tab-click class from the element.
If the element cannot be found in the document, then currentTab is null and the function exits with-
out doing anything else.

Like jQuery, Prototype isn’t just about DOM manipulation and language enhancement. It, too, provides
you with Ajax capabilities that are easy to learn and use.

Using Ajax Support
The Ajax support in Prototype isn’t as straightforward as the high-level $.get() method in jQuery.
Prototype’s Ajax functionality centers on its Ajax object, which contains a variety of methods you can use
to make Ajax calls. This object is much like the native Math object in that you do not create an instance of
the Ajax object; you simply use the methods made available by the object.

At the heart of the Ajax object is the Ajax.Request() constructor. This constructor accepts two argu-
ments: the fi rst being the URL to make the request to and the second an object containing a set of

25937c15.indd 56725937c15.indd 567 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

568

Chapter 15: JavaScript Frameworks

options that the object uses when making a request. The options object can contain a variety of option
properties to alter the behavior of Ajax.Request(); the following table describes just a few of them.

Option Description

asynchronous Determines whether the XMLHttpRequest object makes the request in asyn-
chronous mode or not. The default is true.

method The HTTP method used for the request. The default is “post”. “get” is
another valid value.

onSuccess A callback function invoked when the request completes successfully.

onFailure A callback function invoked when the request completes, but results in an
error status code.

parameters Either a string containing the parameters to send with the request, or an
object containing the parameters and their values.

For a complete list of options, visit the Prototype documentation at http://www.prototypejs.org/
api/ajax/options.

All callback functions are executed and passed a parameter containing the XMLHttpRequest object
used to make the request. Making a request with Prototype looks something like the following code:

function request_onsuccess(request)
{
 alert(request.responseText);
}

function request_onfailure(request)
{
 alert(“An error occurred! HTTP status code is “ + request.status);
}

var options = new Object();
options.method = “get”;
options.onSuccess = request_onsuccess;
options.onFailure = request_onfailure;

new Ajax.Request(“someTextFile.txt”, options);

The fi rst few lines of code defi ne the request_onsuccess() and request_onfailure() functions.
These functions all accept one parameter called request. The value of this parameter will be the
XMLHttpRequest object used to make the request.

Prototype actually passes an Ajax.Response object to all Ajax request callbacks. It is very similar
to the XMLHttpRequest object and adds extra functionality. To access the XMLHttpRequest object
directly, use the transport property; for example, request.transport. After the function defi ni-
tion, you create an options object The fi rst option you set is the method option, which you set to get.
The next option is the onSuccess option, and you assign the request_onsuccess() function to
this option. The fi nal option is onFailure, which you assign the request_onfailure() function.

25937c15.indd 56825937c15.indd 568 9/21/09 12:06:19 AM9/21/09 12:06:19 AM

569

Chapter 15: JavaScript Frameworks

Once all preparation is made, you fi nally make the request for the someTextFile.txt fi le, and you
pass the options object to the Ajax.Request() constructor (don’t forget the new keyword!!).

If you need to send parameters with your request, you’ll have to do a bit more preparation before call-
ing new Ajax.Request(). Like jQuery, you can create an object whose property names match those of
the parameter names. For example, if your URL requires you to pass two parameters named name and
state, you can do something like the following code:

var parms = new Object();
parms.name = “Jeremy”;
parms.state = “Texas”;

options.parameters = parms;

By adding parameters and then calling new Ajax.Request(), the parameters are added to the URL
before the request is sent to the server.

Now that you’ve been given a crash course in Prototype’s Ajax function, alter the form validator script
from Chapter 14 to use Prototype instead of the HttpRequest module.

Try It Out Revisiting the Form Validator with Prototype
Open your text editor and type the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <title>Chapter 15: Example 6 with jQuery</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”prototype-1.6.0.3.js”></script>
 <script type=”text/javascript”>
 function checkUsername()
 {
 var userValue = $F(“username”);

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

 var parms = new Object();

25937c15.indd 56925937c15.indd 569 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

570

Chapter 15: JavaScript Frameworks

 parms.username = userValue;

 var options = getBasicOptions();
 options.onSuccess = checkUsername_callBack;
 options.parameters = parms;

 new Ajax.Request(“formvalidator.php”, options);
 }

 function checkUsername_callBack(request)
 {
 var userValue = $F(“username”);

 if (request.responseText == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
 }

 function checkEmail()
 {
 var emailValue = $F(“email”);

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var parms = new Object();
 parms.email = emailValue;

 var options = getBasicOptions();
 options.onSuccess = checkEmail_callBack;
 options.parameters = parms;

 new Ajax.Request(“formvalidator.php”, options);
 }

 function checkEmail_callBack(request)
 {
 var emailValue = $F(“email”);

 if (request.responseText == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {

25937c15.indd 57025937c15.indd 570 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

571

Chapter 15: JavaScript Frameworks

 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
 }

 function request_onfailure(request)
 {
 alert(“An error occurred. HTTP Status Code: “ + request.status);
 }

 function getBasicOptions()
 {
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;

 return options;
 }
 </script>
</head>
<body>
 <form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>

25937c15.indd 57125937c15.indd 571 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

572

Chapter 15: JavaScript Frameworks

 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />
 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
 </form>
</body>
</html>

Save this as ch15_examp6.htm in your web server’s root directory, as this fi le must be hosted on a web
server in order to work correctly. Point your browser to http://youserver/ch15_examp6.htm and
test out the form.

This page works exactly like ch15_examp4.htm (the jQuery version) and the original validate_form
.htm, but quite a few changes were made to this version. The fi rst major change is the addition of two
new functions called getBasicOptions() and request_onfailure().

The purpose of the fi rst function is to create an object containing the basic options needed for the
Ajax.Request() constructor to check the user name and e-mail the user wants to use.

function getBasicOptions()
{
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;

 return options;
}

This function fi rst creates an object called options. You then add a method property and assign it a
value containing the string “get”.

Next, you add another property, called onFailure, and assign a pointer to the request_onfailure()
function to it. You return the options object to the caller, thus creating the basic options for the
Ajax.Request() constructor. This function is primarily for convenience; instead of having to type
these lines of code twice (one in checkUsername() and one in checkEmail()), you simply have to
type it once here and call this function to return these options.

The second new function, request_onfailure(), is used for both the user name and e-mail check
requests. If the request fails for some reason, the request_onfailure() function executes.

function request_onfailure(request)
{
 alert(“An error occurred. HTTP Status Code: “ + request.status);
}

25937c15.indd 57225937c15.indd 572 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

573

Chapter 15: JavaScript Frameworks

This is a simple function; it lets the user know an error occurred.

Turn your attention to the checkUsername() function, as many changes were made in it.

function checkUsername()
{
 var userValue = $F(“username”);

The fi rst line of code inside the function changed. It now uses Prototype’s $F() function. This function
is used for form elements; you pass the element’s id to the function, and it retrieves the element’s value.
So $F(“username”) is the equivalent of document.getElementById(“username”).value. The for-
mer is defi nitely easier to type.

Now you determine if the user entered information into the Username fi eld. Simply compare the
userValue variable to an empty string.

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;
 }

If the user didn’t enter data into the text box, ask them to in an alert box, and return from the function.

Now gather the information you need in preparation for making the request to the server. Create a
parms object, make a username property, and assign it the value contained in userValue.

 var parms = new Object();
 parms.username = userValue;

Now create your options object to pass to the Ajax.Request() constructor.

 var options = getBasicOptions();
 options.onSuccess = checkUsername_callBack;
 options.parameters = parms;

You fi rst call getBasicOptions() to create the basic options. Then you create the onSuccess and
parameters properties; you set the former’s value to a pointer to checkUsername_callback() and the
latter to the parms object you previously created.

 new Ajax.Request(“formvalidator.php”, options);
}

As the last step in this function, you call the Ajax.Request() constructor, prepended by the new key-
word, and pass the URL to formvalidator.php and the options object.

If this request fails, then request_onfailure() executes. However, checkUsername_callback()
executes on a successful request, and this function saw a few changes.

The fi rst change is the parameter name; instead of data, it is now request to better refl ect that it now
contains the XMLHttpRequest-like Ajax.Response object.

function checkUsername_callBack(request)
{

25937c15.indd 57325937c15.indd 573 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

574

Chapter 15: JavaScript Frameworks

Next, you get the value of the Username fi eld by using the $F() function and passing the string
username to it.

 var userValue = $F(“username”);

Next, you use the responseText property of the XMLHttpRequest object to get the server applica-
tion’s response and check to see if the user name is available.

 if (request.responseText == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
}

Based upon the outcome of the if statement, you tell the user either their desired user name is or isn’t
available for them to use.

The checkEmail() function saw similar changes as checkUsername().

function checkEmail()
{
 var emailValue = $F(“email”);

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

This code retrieves the value from the Email text box and determines if the user entered any informa-
tion into it. If they didn’t, an alert box asks them to enter information and the function exits.

Next, go through the preparation steps for sending a request with Prototype. First create the parms
object.

 var parms = new Object();
 parms.email = emailValue;

You create an email property and assign it the value contained within the emailValue variable. Now
create the options object.

 var options = getBasicOptions();
 options.onSuccess = checkEmail_callBack;
 options.parameters = parms;

You once again call the getBasicOptions() function to create the basic options for this request. Next,
you create and assign values for the onSuccess and parameters option properties.

Before the function exits, you perform the request by calling the Ajax.Request() constructor.

 new Ajax.Request(“formvalidator.php”, options);
}

25937c15.indd 57425937c15.indd 574 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

575

Chapter 15: JavaScript Frameworks

On a successful request, the Prototype Ajax component calls checkEmail_callBack() and passes it
the XMLHttpRequest object used to make the request to the server.

function checkEmail_callBack(request)
{
 var emailValue = $F(“email”);

 if (request.responseText == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
}

You fi rst get the value of the Email text box and store it in the emailValue variable. Next, you deter-
mine if the e-mail is available for the user to use by comparing the request’s responseText property
with the string “available”. You then display a message to the user, telling them their e-mail is or
isn’t available, based upon the result of the if statement.

Prototype is a powerful framework that provides a rich set of utilities to change the way you write
JavaScript. Like jQuery, a simple section such as this is far too small to cover the framework adequately.
For further information on Prototype and the utility it offers, see the API documentation at http://
www.prototypejs.org/api and the tutorials at http://www.prototypejs.org/learn.

Delving into MooTools
At fi rst glance, MooTools looks identical to Prototype, and rightly so. MooTools was fi rst developed to
work with Prototype, so it shouldn’t be surprising to see some of the utility provided by MooTools is
almost identical to that of Prototype.

However, MooTools is more of a cross between jQuery and Prototype as far as DOM manipulation is
concerned. Like Prototype, MooTools’ goal is to augment the way you write JavaScript, providing tools
to write classes and inherit from them. Also like Prototype, MooTools adds in a rich set of extensions to
make DOM manipulation easier, and you’ll fi nd that selecting DOM objects in MooTools is exactly the
same as Prototype. But as you’ll see in the following sections, the extension method names and the way
in which you use them is reminiscent of jQuery.

Finding Elements
When testing your MooTools installation, you saw the dollar function used, and you learned that it was
similar to Prototypes. Well, let’s clear it up now; they are exactly the same. They fi nd the element and
extend it, albeit with different methods that you’ll see in the following sections.

$(“myDiv”)

25937c15.indd 57525937c15.indd 575 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

576

Chapter 15: JavaScript Frameworks

This code fi nds an element with an id of myDiv, extends it with MooTools’ methods, and returns the
extended element. You can use the methods and properties of the DOM Element object, as well as
the methods provided to you by MooTools.

MooTools also gives you the double dollar function $$() and you use it, you guessed it, to retrieve ele-
ments using CSS selectors, and you can use multiple selectors by passing them as a parameter to the
double dollar function.

$$(“.myClass”);
$$(“div”, “.myClass”, “p > div”)

One huge difference between MooTools and Prototype is you don’t have to iterate over the returned
array to perform operations on them.

$$(“div”, “a”).setStyle(“color”, “red”);

This code selects all <div/> and <a/> elements in the page and sets their text color to red. Contrast that
with Prototype in the following code example:

function changeColor(item)
{
 var styles = new Object();
 styles.color = “red”;

 item.setStyle(styles);
}

$$(“div”, “a”).each(changeColor);

So the $$() function is kind of a cross between Prototype’s $$() function and jQuery’s $().

MooTools has an each() method, too, if you wanted to perform an operation on every element in the
array.

Altering Style
The previous MooTools code example introduced you to the setStyle() method. It accepts two argu-
ments: the fi rst is the CSS property, and the second is its value. Like jQuery, you can use the CSS prop-
erty used in a style sheet or the camel-case version used in script:

$(“myDiv”).setStyle(“background-color”, “red”);
$(“myDiv”).setStyle(“backgroundColor”, “red”);

Both lines of this code set the element’s background color to red; so you can use either property name to
set individual style properties.

This is, of course, not the ideal means of changing an element’s style. MooTools adds the addClass(),
removeClass(), toggleClass(), and hasClass() methods to Element objects.

25937c15.indd 57625937c15.indd 576 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

577

Chapter 15: JavaScript Frameworks

The addClass() and removeClass() methods do just what their names imply. They add and remove
the specifi ed class to the element, as in the following code:

$(“myDiv”).addClass(“someClass”).removeClass(“someClass”);

The toggleClass() method works as you would expect; if the element has the CSS class specifi ed by
the passed parameter, then toggleClass() removes the CSS class from the element. If the element
doesn’t have the CSS class, then toggleClass() adds it to the element.

$(“myDiv”).toggleClass(“myClass”).toggleClass(“myClass”);

This code fi rst adds the myClass CSS class to the element because you removed it in the previous
example. The second toggleClass() call removes it again because you just added it to the element.

The hasClass() method returns a true or false value depending on whether the element has the
CSS class or not.

$(“myDiv”).hasClass(“myClass”);

This code returns false, since the CSS class myClass isn’t applied to the element.

Changing an element’s style is only part of the DOM manipulation equation, and MooTools fi lls in the
other part with the ability to create, insert, and remove elements from the DOM.

Creating, Inserting, and Removing Elements
Creating elements with MooTools is very similar to creating them with Prototype. You simply use the
Element object’s constructor and pass it the type of element you want to create along with an object
containing the attributes you want the element to have. The following code creates an <a/> element;
assigns its id, href, and target attributes; and adds the element to the document.

var attributes = new Object();
attributes.id = “myLink”;
attributes.href = “http://www.prototypejs.org”;
attributes.target = “_blank”;

var a = new Element(“a”, attributes).appendText(“Go to Prototype’s Website”);
$(document.body).adopt(a);

The fi rst four lines of this code create an attributes object and its id, href, and target properties
and assign their values. Then a new <a/> element is created with the Element object constructor, and
text is added to the element with the appendText() method. Finally, the element is appended to the
document.body object with the adopt() method.

Removing Element objects from the DOM is quite simple and straightforward; simply call the dispose()
method. The following code demonstrates this:

$(“myLink”).dispose();

25937c15.indd 57725937c15.indd 577 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

578

Chapter 15: JavaScript Frameworks

This code fi nds the element with an id of myLink and then removes it from the DOM by calling the
dispose() method.

Using and Handling Events
When you extend an Element object with the $() function, MooTools adds the addEvent() method to
the element. This method attaches an event handler to the element for a specifi ed event. The following
code is an example of its use:

function myDiv_click(event)
{
 alert(“You clicked me!”);
}

$(“myDiv”).addEvent(“click”, myDiv_click);

The addEvent() method accepts two arguments: the fi rst is the event to watch for, and the second is a
function to handle the event when it fi res.

The window and document objects automatically have the addEvent() method added to them by
MooTools.

You can register multiple event handlers at one time with the addEvents() method. This method
accepts an object whose property names mirror those of event types, and their values are the functions
you want to handle the events with.

For example, the following code registers event handlers for the mouseover and mouseout events on an
element:

function eventHandler(e)
{
 // do something with the event here
}

var handlers = new Object();
handlers.mouseover = eventHandler;
handlers.mouseout = eventHandler;

$(“myDiv”).addEvents(handlers);

When an event fi res, and if the handler was set via the addEvent() or addEvents() method, MooTools
passes its own Event object to the event handling function. This object has its own set of proprietary
properties, some like the W3C Event and MouseEvent objects, and some unlike any property from
either the IE or W3C event models even though they offer the same information. The following table lists
some of the properties available with MooTools’ Event object.

Property Description

page.x The horizontal position of the mouse relative to the browser window.

page.y The vertical position of the mouse relative to the browser window.

25937c15.indd 57825937c15.indd 578 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

579

Chapter 15: JavaScript Frameworks

Property Description

client.x The horizontal position of the mouse relative to the client area.

client.y The vertical position of the mouse relative to the client area.

target The event target.

relatedTarget The element related to the event target.

type The type of event that called the event handler.

Visit http://mootools.net/docs/core/Native/Event for a complete list of properties of
MooTools’ Event object.

For example, the following code registers an event handler for the click event on an element with an
id of myDiv:

function myDiv_onclick(e)
{
 var eSrc = $(e.target).addClass(“myClass”);

 alert(“You clicked at X:” + e.client.x + “ Y:” + e.client.y);
}

$(“myDiv”).addEvent(“click”, myDiv_onclick);

When the event fi res and executes myDiv_onclick(), a MooTools Event object is passed to the func-
tion. The fi rst line of the function extends the event target element and calls the addClass() method,
adding the myClass CSS class to the element. The addClass() method returns the extended Element
object, which you store in the eSrc variable. You then use an alert box to display the mouse pointer’s
coordinates relative to the viewport by using the client.x and client.y properties.

Rewriting the DHTML Toolbar with MooTools
You’ve been introduced to MooTools DOM manipulation capabilities, so let’s put them to good use and
rewrite the DHTML toolbar from Chapter 12 (again!).

Try It Out Revisiting the Toolbar with MooTools
Open your text editor and type the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 15: Example 7 with MooTools</title>
 <style type=”text/css”>
 .tabStrip
 {

25937c15.indd 57925937c15.indd 579 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

580

Chapter 15: JavaScript Frameworks

 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
 }

 .tabStrip-tab
 {
 float: left;
 font: 14px arial;
 cursor: pointer;
 padding: 2px;
 border: 1px solid transparent;
 }

 .tabStrip-tab-hover
 {
 border-color: #316AC5;
 background-color: #C1D2EE;
 }

 .tabStrip-tab-click
 {
 border-color: #facc5a;
 background-color: #f9e391;
 }
 </style>
 <script src=”mootools-1.2.3-core-yc.js” type=”text/javascript”>
 </script>
 <script type=”text/javascript”>
 var currentNum = 0;
 function handleEvent(e)
 {
 var el = $(e.target);

 if (e.type == “mouseover” || e.type == “mouseout”)
 {
 if (el.hasClass(“tabStrip-tab”) &&
 !el.hasClass(“tabStrip-tab-click”))
 {
 el.toggleClass(“tabStrip-tab-hover”);
 }
 }

 if (e.type == “click”)
 {
 if (el.hasClass(“tabStrip-tab-hover”))
 {
 var id = el.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

 if (currentNum != num)
 {
 deactivateTab();

 el.toggleClass(“tabStrip-tab-hover”)
 .toggleClass(“tabStrip-tab-click”);

25937c15.indd 58025937c15.indd 580 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

581

Chapter 15: JavaScript Frameworks

 showDescription(num);
 currentNum = num;
 }
 }
 }
 }

 function showDescription(num)
 {
 var attributes = new Object();
 attributes.id = “tabStrip-desc-” + num;

 var div = new Element(“div”, attributes)
 .appendText(“Description for tab “ + num);

 $(“descContainer”).adopt(div);
 }

 function deactivateTab()
 {
 var descEl = $(“tabStrip-desc-” + currentNum);

 if (descEl)
 {
 descEl.dispose();
 $(“tabStrip-tab-” + currentNum)
 .toggleClass(“tabStrip-tab-click”);
 }
 }

 var handlers = new Object();
 handlers.mouseover = handleEvent;
 handlers.mouseout = handleEvent;
 handlers.click = handleEvent;

 document.addEvents(handlers);
 </script>
</head>
<body>
 <div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
 </div>
 <div id=”descContainer”></div>
</body>
</html>

Save this fi le as ch15_examp7.htm, and open it in any browser supported by MooTools. Notice that this
page works just like all the other versions.

Let’s jump right into the code, starting with the handleEvent() function.

function handleEvent(e)
{
 var el = $(e.target);

25937c15.indd 58125937c15.indd 581 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

582

Chapter 15: JavaScript Frameworks

MooTools passes its Event object to this function. One property of this object is the target property.
Exactly like the W3C event model’s Event object, it contains the element that caused the event. You pass
the target to the dollar method to add MooTools’ extensions and save the resulting extended Element
object to the el variable.

Next you check what type of event took place. In this case, you’re primarily interested in mouseover
and mouseout events.

 if (e.type == “mouseover” || e.type == “mouseout”)
 {
 if (el.hasClass(“tabStrip-tab”) &&
 !el.hasClass(“tabStrip-tab-click”))
 {
 el.toggleClass(“tabStrip-tab-hover”);
 }
 }

In either case, you determine if the event target is a tab element by checking if it has the tabStrip-tab
CSS class. If so, and only if the tab doesn’t have the tabStrip-tab-click class, you toggle the tab-
Strip-tab-hover class.

Next, you determine if a click event caused the event handler’s execution, and you determine if the
event target is a tab with the tabStrip-tab-hover CSS class applied to it.

 if (e.type == “click”)
 {
 if (el.hasClass(“tabStrip-tab-hover”))
 {

If so, you retrieve the number associated with the tab and assign it to the num variable, as the following
code shows:

 var id = el.id;
 var num = id.substr(id.lastIndexOf(“-”) + 1);

The next step is to determine if the tab is currently the active tab. If it isn’t, you deactivate the current
active tab.

 if (currentNum != num)
 {
 deactivateTab();

Then you toggle the hover class off of the element while turning the click class on.

 el.toggleClass(“tabStrip-tab-hover”)
 .toggleClass(“tabStrip-tab-click”);

The fi nal steps of this function are to show the description for this newly clicked tab and store the value
contained in num to the currentNum variable.

 showDescription(num);
 currentNum = num;
 }
 }
 }
}

25937c15.indd 58225937c15.indd 582 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

583

Chapter 15: JavaScript Frameworks

Because of the similarities between Prototype and MooTools, the showDescription() function is very
similar to that of the Prototype version.

function showDescription(num)
{
 var attributes = new Object();
 attributes.id = “tabStrip-desc-” + num;

You fi rst create the attributes object, assigning the id property the value you want the new <div/>
element to have. Next, you create the <div/> element by calling the Element constructor and chaining
the appendText() method. You assign the returned value of appendText(), the Element object, to the
div variable.

 var div = new Element(“div”, attributes)
 .appendText(“Description for tab “ + num);

And lastly, at least for this function, you append the new element to the <div/> element with an id of
descContainer by using the adopt() method.

 $(“descContainer”).adopt(div);
}

Unlike showDescription(), the deactivateTab() function resembles more of the jQuery version
than the Prototype version.

function deactivateTab()
{
 var descEl = $(“tabStrip-desc-” + currentNum);

You fi rst get the <div/> element containing the currently active tab’s description. This element may, or
may not, be in the DOM. In order to stave off errors, you need to check if the element was found or not.
The dollar function returns null if the element cannot be found, and null is a false-y value, so simply
use the descEl variable as the condition of the if statement.

 if (descEl)
 {
 descEl.dispose();
 $(“tabStrip-tab-” + currentNum)
 .toggleClass(“tabStrip-tab-click”);
 }
}

If the element is found, use the dispose() method to remove it from the DOM. Then retrieve the cur-
rently active tab <div/> element and remove the tabStrip-tab-click class with the toggleClass()
method.

Finally, register your event handler to handle the mouseover, mouseout, and click events.

var handlers = new Object();
handlers.mouseover = handleEvent;
handlers.mouseout = handleEvent;
handlers.click = handleEvent;

document.addEvents(handlers);

25937c15.indd 58325937c15.indd 583 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

584

Chapter 15: JavaScript Frameworks

You create a handlers object, and create its properties to have the same names as the events you
want to handle. Assign these properties a pointer to the handleEvent() function, and then pass the
handlers object to the addEvents() method of the document object.

Ajax Support in MooTools
The Ajax utilities of MooTools are quite different from jQuery and somewhat different from Prototype.
The MooTools Ajax utility revolves around the Request reference type. Like Prototype’s Ajax.Request,
you create an instance of Request, and pass it an object that contains a set of options. The following
table lists some of these options.

Option Description

async Determines whether the XMLHttpRequest object makes the request in asyn-
chronous mode or not. The default is true.

method The HTTP method used for the request. The default is “post”. “get” is
another valid value.

onSuccess A callback function invoked when the request completes successfully.

onFailure A callback function invoked when the request completes, but results in an error
status code.

url The URL to send the request to.

Visit http://mootools.net/docs/core/Request/Request for a complete list of options and
callback functions.

All callback functions are executed and passed varying parameters. The onSuccess callback func-
tion is passed two parameters, the fi rst being the XMLHttpRequest object’s responseText and the
second being the responseXML. The onFailure callback is simply passed the XMLHttpRequest object.
Making a request using the Request reference type looks something like the following code:

function request_onsuccess(text, xml)
{
 alert(text);
}

function request_onfailure(request)
{
 alert(“An error occurred! HTTP status code is “ + request.status);
}

var options = new Object();
options.method = “get”;
options.onSuccess = request_onsuccess;

25937c15.indd 58425937c15.indd 584 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

585

Chapter 15: JavaScript Frameworks

options.onFailure = request_onfailure;
options.url = “someTextFile.txt”;

var request = new Request(options).send();

The fi rst few lines of code defi ne the request_onsuccess() and request_onfailure() functions.
After the function defi nitions, you create an options object. The fi rst option you set is the method
option, which you set to get. The next two options are the onSuccess and onFailure options, and you
assign them the request_onsuccess() and request_onfailure() functions. The fi nal option is url,
which you assign someTextFile.txt.

Once you have all the options created, you call the Request constructor and pass the options object to
it. You then chain the send() method, which sends the request.

You can send parameters by using the send() method. Simply pass it a string containing the param-
eters, as the following code shows:

var request = new Request(options).send(“name=Jeremy”);

Let’s use MooTools’ Ajax utilities to modify the form validator from the previous chapter one last time!

Try It Out Revisiting the Form Validator with MooTools
Open your text editor and type the following:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <title>Chapter 15: Example 8 with MooTools</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script src=”mootools-1.2.3-core-yc.js” type=”text/javascript”></script>
 <script type=”text/javascript”>
 function checkUsername()
 {
 var userValue = $(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return;

25937c15.indd 58525937c15.indd 585 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

586

Chapter 15: JavaScript Frameworks

 }

 var options = getBasicOptions();
 options.onSuccess = checkUsername_callBack;

 new Request(options).send(“username=” + userValue);
 }

 function checkUsername_callBack(text, xml)
 {
 var userValue = $(“username”).value;

 if (text == “available”)
 {
 alert(“The username “ + userValue + “ is available!”);
 }
 else
 {
 alert(“We’re sorry, but “ + userValue + “ is not available.”);
 }
 }

 function checkEmail()
 {
 var emailValue = $(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return;
 }

 var options = getBasicOptions();
 options.onSuccess = checkEmail_callBack;

 new Request(options).send(“email=” + emailValue);
 }

 function checkEmail_callBack(text, xml)
 {
 var emailValue = $(“email”).value;

 if (text == “available”)
 {
 alert(“The email “ + emailValue + “ is currently not in use!”);
 }
 else
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 }
 }

 function request_onfailure(request)
 {

25937c15.indd 58625937c15.indd 586 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

587

Chapter 15: JavaScript Frameworks

 alert(“An error occurred. HTTP Status Code: “ + request.status);
 }

 function getBasicOptions()
 {
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;
 options.url = “formvalidator.php”;

 return options;
 }
 </script>
</head>
<body>
 <form>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 <td>
 Check Availability
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>
 <td />
 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>
 <td />

25937c15.indd 58725937c15.indd 587 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

588

Chapter 15: JavaScript Frameworks

 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 <td />
 </tr>
 </table>
 </form>
</body>
</html>

Save this fi le as ch15_examp8.htm, and save it in your web server’s root directory. Open and point your
browser to http://yourserver/ch15_examp8.htm and test it. You’ll fi nd that it behaves just as all the
previous versions did.

The usual suspects, checkUsername(), checkUsername_callback(), checkEmail(), and
checkEmail_callback(), all consist of changes. You also added two new functions:
request_onfailure() and getBasicOptions().

Let’s examine the new functions fi rst, starting with getBasicOptions(). Like the Prototype version
of this script, you created this function to generate an options object with the settings all requests
will use. This saves you time and keystrokes, as you only have to write them once and call the function
whenever you need it. The function defi nition follows:

function getBasicOptions()
{
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;
 options.url = “formvalidator.php”;

 return options;
}

In this function, you create the options object and create the method, onFailure, and url proper-
ties. You assign them the following values: get, request_onfailure, and formvalidator.php. The
XMLHttpRequest object will make a GET request to formvalidator.php, and the request_onfailure()
function will execute only when the request object encounters an error.

The request_onfailure() function simply tells the user an error occurred, as the following code
shows:

function request_onfailure(request)
{
 alert(“An error occurred. HTTP Status Code: “ + request.status);
}

You display the status code, as it could be helpful debugging the script if an error does indeed occur
with the request.

The checkUsername() and checkUsername_callback() functions underwent the same changes as in
the previous versions. So you’ll only look at the lines that changed. The fi rst change in checkUsername()
is how the information entered into the Username fi eld is retrieved.

var userValue = $(“username”).value;

25937c15.indd 58825937c15.indd 588 9/21/09 12:06:20 AM9/21/09 12:06:20 AM

589

Chapter 15: JavaScript Frameworks

With MooTools, you simply use the dollar function to retrieve the element and use the value property.

The next change is at the end of the function when you make the request. First, you use the
getBasicOptions() function to return an options object with the predefi ned options you want to
use for the request. Then you add the onSuccess option and assign it a pointer to the checkUsername_
callback() function.

var options = getBasicOptions();
options.onSuccess = checkUsername_callBack;

You then make the request by creating a new Request object with its constructor, passing it the
options object, and sending the request with the username parameter.

new Request(options).send(“username=” + userValue);

On a successful request, the checkUsername_callback() function is called. The fi rst change you
made to this function is the parameters. MooTools passes the XMLHttpRequest’s responseText and
responseXML properties, respectively, to the Request object’s callback functions.

function checkUsername_callBack(text, xml)

Here they are simply called text and xml. Next, you retrieve the text in the Username text box again,
using the dollar function and the value property.

var userValue = $(“username”).value;

The fi nal change of this function is the condition of the if statement.

if (text == “available”)

Compare the value of the text parameter with the string “available”, and display a message to the
user either stating that the user name is or isn’t available.

The checkEmail() and checkEmail_callback() functions underwent the same changes as
checkUsername() and checkUsername_callback(). Again, you’ll focus only on the changes
made to these functions starting with checkEmail().

The fi rst change to this function is the retrieval of the Email text box:

var emailValue = $(“email”).value;

Use the dollar function, pass it the id of the <input/> element, and use the value property to retrieve
the text. The next change is making the request, but before you can make the request, you must create
the options object, populate it with the basic settings, and add the onSuccess option.

var options = getBasicOptions();
options.onSuccess = checkEmail_callBack;

Now that all options are set, simply call the Request constructor, pass it the options object, and send
the email parameter and its value to the server.

new Request(options).send(“email=” + emailValue);

On a successful request, the Request object calls checkEmail_callback() and passes it the
XMLHttpRequest object’s reponseText and responseXML properties.

function checkEmail_callBack(text, xml)

25937c15.indd 58925937c15.indd 589 9/21/09 12:06:21 AM9/21/09 12:06:21 AM

590

Chapter 15: JavaScript Frameworks

You again retrieve the value in the Email text box by selecting the element and using the value property.

var emailValue = $(“email”).value;

You then determine if the response from the server designates that the e-mail is available for the user to use.

if (text == “available”)

MooTools is a popular framework because it offers you utility similar to jQuery while maintaining
aspects of traditional DOM programming like Prototype. MooTools also has an animation/effects
component, making it a well-rounded framework. This section can hardly do the framework justice,
so make sure to visit the API documentation at http://www.mootools.net/docs/core.

Summary
This chapter introduced you into the rather large world of JavaScript frameworks.

You learned that JavaScript frameworks were the answer to cross-browser development. ❑

You learned that there are two types of frameworks: general and specifi c. You were also given a ❑

short list of the popular frameworks available today.

You learned where to obtain the fi les needed to use the jQuery, Prototype, and MooTools ❑

frameworks.

You installed jQuery, Prototype, and MooTools and tested each installation with an identical ❑

test page.

You learned how to select and retrieve elements, manipulate the DOM, and work with events ❑

with the jQuery, Prototype, and MooTools frameworks; and you rewrote the DHTML toolbar
script using all three of the frameworks.

Finally, you learned how to make basic Ajax requests using the Ajax components of jQuery, ❑

Prototype, and MooTools; you also rewrote the form validator script using the Ajax capabilities
of the three frameworks.

Exercise Questions
Suggested solutions for these questions can be found in Appendix A.

 1. Modify the answer to Chapter 14’s Question 2 using jQuery. Also add error reporting for when
an error occurs with the Ajax request.

 2. Alter the answer to Chapter 14’s Question 2 using Prototype. Add error reporting for when an
error occurs with the Ajax request.

 3. If you guessed that this question would be: “Change the answer to Chapter 14’s Question 2
using MooTools, and add error reporting for when an error occurs with the Ajax request” then
you won!! Your prize is… completing the exercise.

25937c15.indd 59025937c15.indd 590 9/21/09 12:06:21 AM9/21/09 12:06:21 AM

A
Answers to Exercises

This Appendix provides the answers to the questions you fi nd at the end of each chapter in this book.

Chapter 2

Exercise 1 Question
Write a JavaScript program to convert degrees centigrade into degrees Fahrenheit, and to write the
result to the page in a descriptive sentence. The JavaScript equation for Fahrenheit to centigrade is
as follows:

degFahren = 9 / 5 * degCent + 32

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var degCent = prompt(“Enter the degrees in centigrade”,0);
var degFahren = 9 / 5 * degCent + 32;

document.write(degCent + “ degrees centigrade is “ + degFahren +
 “ degrees Fahrenheit”);

</script>

</body>
</html>

Save this as ch2_q1.htm.

25937bapp01.indd 59125937bapp01.indd 591 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

592

Appendix A: Answers to Exercises

Exercise 2 Question
The following code uses the prompt() function to get two numbers from the user. It then adds those
two numbers together and writes the result to the page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<script language=”JavaScript” type=”text/javascript”>

var firstNumber = prompt(“Enter the first number”,””);
var secondNumber = prompt(“Enter the second number”,””);
var theTotal = firstNumber + secondNumber;
document.write(firstNumber + “ added to “ + secondNumber + “ equals “ +
 theTotal);

</script>
</body>
</html>

However, if you try the code out, you’ll discover that it doesn’t work. Why not? Change the code so that
it does work.

Exercise 2 Solution
The data that the prompt() actually obtains is a string. So both firstNumber and secondNumber
contain text that happens to be number characters. When we use the + symbol to add the two variables
together, JavaScript assumes that since it’s string data, we must want to concatenate the two together
and not sum them.

To make it explicit to JavaScript that we want to add the numbers together, we need to convert the data
to numbers using the parseFloat() function.

var firstNumber = parseFloat(prompt(“Enter the first number”,”“));
var secondNumber = parseFloat(prompt(“Enter the second number”,”“));
var theTotal = firstNumber + secondNumber;
document.write(firstNumber + “ added to “ + secondNumber + “ equals “ +
 theTotal);

Save this as ch2_q2.htm.

Now the data returned by the prompt() function is converted to a fl oating-point number before being
stored in the firstNumber and secondNumber variables. Then, when we do the addition that is stored
in theTotal, JavaScript makes the correct assumption that, because both the variables are numbers, we
must mean to add them up and not concatenate them.

The general rule is that where we have expressions with only numerical data, the + operator means “do
addition.” If there is any string data, the + will mean concatenate.

25937bapp01.indd 59225937bapp01.indd 592 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

593

Appendix A: Answers to Exercises

Chapter 3

Exercise 1 Question
A junior programmer comes to you with some code that appears not to work. Can you spot where he
went wrong? Give him a hand and correct the mistakes.

var userAge = prompt(“Please enter your age”);

if (userAge = 0);
{
 alert(“So you’re a baby!”);
}
else if (userAge < 0 | userAge > 200)
 alert(“I think you may be lying about your age”);
else
{
 alert(“That’s a good age”);
}

Exercise 1 Solution
Oh dear, our junior programmer is having a bad day! There are two mistakes on the line

if (userAge = 0);

First, he has only one equals sign instead of two in the if’s condition, which means userAge will be
assigned the value of 0 rather than userAge being compared to 0. The second fault is the semicolon at the
end of the line — statements such as if and loops such as for and while don’t require semicolons. The
general rule is that if the statement has an associated block (that is, code in curly braces) then no semi-
colon is needed. So the line should be

if (userAge == 0)
The next fault is with these lines:
else if (userAge < 0 | userAge > 200)
 alert(“I think you may be lying about your age”);
else

The junior programmer’s condition is asking if userAge is less than 0 OR userAge is greater than 200.
The correct operator for a Boolean OR is ||, but the programmer has only used one |.

Exercise 2 Question
Using document.write(), write code that displays the results of the 12 times table. Its output should
be the results of the calculations.

12 * 1 = 12
12 * 2 = 24
12 * 3 = 36
...

25937bapp01.indd 59325937bapp01.indd 593 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

594

Appendix A: Answers to Exercises

12 * 11 = 132
12 * 12 = 144

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

var timesTable = 12;
var timesBy;

for (timesBy = 1; timesBy < 13; timesBy++)
{
 document.write(timesTable + “ * “ + timesBy + “ = “ + timesBy * timesTable +
 “
”);
}

</script>

</body>
</html>

Save this as ch3_q2.htm.

You use a for loop to calculate from 1 * 12 up to 12 * 12. The results are written to the page with
document.write(). What’s important to note here is the effect of the order of precedence; the concat-
enation operator (the +) has a lower order of precedence than the multiplication operator, *. This means
that the timesBy * timesTable is done before the concatenation, which is the result you want. If this
were not the case, you’d have to put the calculation in parentheses to raise its order of precedence.

Exercise 3 Question
Change the code of Question 2 so that it’s a function that takes as parameters the times table required
and the values at which it should start and end. For example, you might try the four times table displayed
starting with 4 * 4 and ending at 4 * 9.

Exercise 3 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

function writeTimesTable(timesTable, timesByStart, timesByEnd)

25937bapp01.indd 59425937bapp01.indd 594 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

595

Appendix A: Answers to Exercises

{
 for (;timesByStart <= timesByEnd; timesByStart++)
 {
 document.write(timesTable + “ * “ + timesByStart + “ = “ +
 timesByStart * timesTable + “
”);
 }
}

writeTimesTable(4,4,9);

</script>

</body>
</html>

Save this as ch3_q3.htm.

You’ve declared your function, calling it writeTimesTable(), and given it three parameters. The fi rst
is the times table you want to write, the second is the start point, and the third is the number it should
go up to.

You’ve modifi ed your for loop. First you don’t need to initialize any variables, so the initialization part
is left blank — you still need to put a semicolon in, but there’s no code before it. The for loop continues
while the timesByStart parameter is less than or equal to the timesByEnd parameter. You can see
that, as with a variable, you can modify parameters — in this case, timesByStart is incremented by
one for each iteration through the loop.

The code to display the times table is much the same. For the function’s code to be executed, you now
actually need to call it, which you do in the line

writeTimesTable(4,4,9);

This will write the 4 times table starting at 4 times 4 and ending at 9 times 4.

Exercise 4 Question
Modify the code of Question 3 to request the times table to be displayed from the user; the code should
continue to request and display times tables until the user enters -1. Additionally, do a check to make
sure that the user is entering a valid number; if the number is not valid, ask the user to re-enter it.

Exercise 4 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>

<script type=”text/javascript”>

function writeTimesTable(timesTable, timesByStart, timesByEnd)

25937bapp01.indd 59525937bapp01.indd 595 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

596

Appendix A: Answers to Exercises

{
 for (;timesByStart <= timesByEnd; timesByStart++)
 {
 document.write(timesTable + “ * “ + timesByStart + “ = “ +
 timesByStart * timesTable + “
”);
 }
}

var timesTable;

while ((timesTable = prompt(“Enter the times table”,-1)) != -1)
{
 while (isNaN(timesTable) == true)
 {
 timesTable = prompt(timesTable + “ is not a valid number, please retry”,-1);
 }

 if (timesTable == -1)
 {
 break;
 }

 document.write(“
The “ + timesTable + “ times table
”);
 writeTimesTable(timesTable,1,12);

}

</script>

</body>
</html>

Save this as ch3_q4.htm.

The function remains the same, so let’s look at the new code. The fi rst change from Question 3 is that
you declare a variable, timesTable, and then initialize it in the condition of the fi rst while loop. This
may seem like a strange thing to do at fi rst, but it does work. The code in parentheses inside the while
loop’s condition

(timesTable = prompt(“Enter the times table”,-1))

is executed fi rst because its order of precedence has been raised by the parentheses. This will return a
value, and it is this value that is compared to -1. If it’s not –1, then the while condition is true, and the
body of the loop executes. Otherwise it’s skipped over, and nothing else happens in this page.

In a second while loop nested inside the fi rst, you check to see that the value the user has entered is
actually a number using the function isNaN(). If it’s not, then you prompt the user to try again, and
this will continue until a valid number is entered.

If the user had entered an invalid value initially, then in the second while loop, that user may have
entered –1, so following the while is an if statement that checks to see if -1 has been entered. If it has,
you break out of the while loop; otherwise the writeTimesTable() function is called.

25937bapp01.indd 59625937bapp01.indd 596 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

597

Appendix A: Answers to Exercises

Chapter 4

Exercise 1 Question
The example debug_timestable2.htm has a deliberate bug. For each times table it creates only multi-
pliers with values from 1 to 11.

Use the script debugger to work out why this is happening, and then correct the bug.

Exercise 1 Solution
The problem is with the code’s logic rather than its syntax. Logic errors are much harder to spot and
deal with because, unlike with syntax errors, the browser won’t inform you that there’s such and such
error at line so and so but instead just fails to work as expected. The error is with this line:

for (counter = 1; counter < 12; counter++)

You want the loop to go from 1 to 12 inclusive. Your counter < 12 statement will be true up to and
including 11 but will be false when the counter reaches 12; hence 12 gets left off. To correct this, you
could change the code to the following:

for (counter = 1; counter <= 12; counter++)

Exercise 2 Question
The following code contains a number of common errors. See if you can spot them:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 4, Question 2</title>
</head>
<body>
<script type=”text/javascript”>
function checkForm(theForm)
{
 var formValid = true;
 var elementCount = 0;
 while(elementCount =< theForm.length)
 {
 if (theForm.elements[elementcount].type == “text”)
 {
 if (theForm.elements[elementCount].value() = “”)
 alert(“Please complete all form elements”)
 theForm.elements[elementCount].focus;
 formValid = false;
 break;
 }

25937bapp01.indd 59725937bapp01.indd 597 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

598

Appendix A: Answers to Exercises

 }
 return formValid;
}
</script>
<form name=”form1” onsubmit=”return checkForm(document.form1)” action=””>
 <input type=”text” id=”text1” name=”text1” />

 CheckBox 1<input type=”checkbox” id=”checkbox2” name=”checkbox2” />

 CheckBox 1<input type=”checkbox” id=”checkbox1” name=”checkbox1” />

 <input type=”text” id=”text2” name=”text2” />
 <p>
 <input type=”submit” value=”Submit” id=”submit1” name=”submit1” />
 </p>
</form>
</body>
</html>

Exercise 2 Solution
The bug-free version looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 4, Question 2: Answer</title>
</head>
<body>
<script type=”text/javascript”>
function checkForm(theForm)
{
 var formValid = true;
 var elementCount = 0;

 while(elementCount < theForm.length)
 {
 if (theForm.elements[elementCount].type == “text”)
 {
 if (theForm.elements[elementCount].value == “”)
 {
 alert(“Please complete all form elements”)
 theForm.elements[elementCount].focus();
 formValid = false;
 break;
 }
 }

 elementCount++;
 }

 return formValid;

25937bapp01.indd 59825937bapp01.indd 598 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

599

Appendix A: Answers to Exercises

}
</script>
<form name=”form1” onsubmit=”return checkForm(document.form1)” action=”“>
 <input type=”text” id=”text1” name=”text1” />

 CheckBox 1<input type=”checkbox” id=”checkbox2” name=”checkbox2” />

 CheckBox 1<input type=”checkbox” id=”checkbox1” name=”checkbox1” />

 <input type=”text” id=”text2” name=”text2” />
 <p>
 <input type=”submit” value=”Submit” id=”submit1” name=”submit1” />
 </p>
</form>
</body>
</html>

Let’s look at each error in turn.

The fi rst error is a logic error.

while(elementCount =< theForm.length)

Arrays start at 0 so the fi rst Form object is at index array 0, the second at 1, and so on. The last Form
object has an index value of 4. However, theForm.length will return 5 because there are fi ve elements
in the form. So the while loop will continue until elementCount is less than or equal to 5, but as the
last element has an index of 4, this is one past the limit. You should write either this:

while(elementCount < theForm.length)

or this:

while(elementCount <= theForm.length - 1)

Either is fi ne, though the fi rst is shorter.

You come to your second error in the following line:

if (theForm.elements[elementcount].type == “text”)

On a quick glance it looks fi ne, but it’s JavaScript’s strictness on case sensitivity that has caused the
downfall. The variable name is elementCount, not elementcount with a lowercase c. So this line
should read as follows:

if (theForm.elements[elementCount].type == “text”)

The next line with an error is this:

if (theForm.elements[elementCount].value() = “”)

25937bapp01.indd 59925937bapp01.indd 599 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

600

Appendix A: Answers to Exercises

This has two errors. First, value is a property and not a method, so there is no need for parentheses
after it. Second, you have the all-time classic error of one equals sign instead of two. Remember that one
equals sign means “Make it equal to,” and two equals signs mean “Check if it is equal to.” So with the
changes, the line is:

if (theForm.elements[elementCount].value == “”)

The next error is the failure to put your block of if code in curly braces. Even though JavaScript won’t
throw an error since the syntax is fi ne, the logic is not so fi ne, and you won’t get the results you expect.
With the braces, the if statement should be as follows:

if (theForm.elements[elementCount].value == “”)
{
 alert(“Please complete all form elements”)
 theForm.elements[elementCount].focus;
 formValid = false;
 break;
}

The penultimate error is in this line:

theForm.elements[elementCount].focus;

This time you have a method but with no parentheses after it. Even methods that have no parameters
must have the empty parentheses after them if you intend to execute that method. So, corrected, the line
is as follows:

theForm.elements[elementCount].focus();

Now you’re almost done; there is just one more error. This time it’s not something wrong with what’s
there, but rather something very important that should be there but is missing. What is it? It’s this:

elementCount++;

This line should be in your while loop, otherwise elementCount will never go above 0 and the while
loop’s condition will always be true, resulting in the loop continuing forever: a classic infi nite loop.

Chapter 5

Exercise 1 Question
Using the Date type, calculate the date 12 months from now and write this into a web page.

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937bapp01.indd 60025937bapp01.indd 600 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

601

Appendix A: Answers to Exercises

<head>
 <title>Chapter 5: Question 1</title>
</head>
<body>
<script type=”text/javascript”>

var months = new Array(“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,”Aug”,
 “Sep”,”Oct”,”Nov”,”Dec”);
var nowDate = new Date();

nowDate.setMonth(nowDate.getMonth() + 12);
document.write(“Date 12 months ahead is “ + nowDate.getDate());
document.write(“ “ + months[nowDate.getMonth()]);
document.write(“ “ + nowDate.getFullYear());

</script>
</body>
</html>

Save this as ch05_q1.htm.

Because the getMonth() method returns a number between 0 and 11 for the month rather than
its name, an array called months has been created that stores the name of each month. You can use
getMonth() to get the array index for the correct month name.

The variable nowDate is initialized to a new Date object. Because no initial value is specifi ed, the new
Date object will contain today’s date.

To add 12 months to the current date you simply use setMonth(). You get the current month value
with getMonth(), and then add 12 to it.

Finally you write the result out to the page.

Exercise 2 Question
Obtain a list of names from the user, storing each name entered in an array. Keep getting another name
until the user enters nothing. Sort the names in ascending order and then write them out to the page,
with each name on its own line.

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Question 2</title>
</head>
<body>
<script type=”text/javascript”>
var inputName = “”;

25937bapp01.indd 60125937bapp01.indd 601 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

602

Appendix A: Answers to Exercises

var namesArray = new Array();

while ((inputName = prompt(“Enter a name”,”“)) != “”)
{
 namesArray[namesArray.length] = inputName;
}

namesArray.sort();

var namesList = namesArray.join(“
”)
document.write(namesList);
</script>
</body>
</html>

Save this as ch05_q2.htm.

First you declare two variables: inputName, which will hold the name entered by the user, and
namesArray, which holds an Array object that stores each of the names entered.

You use a while loop to keep getting another name from the user as long as the user hasn’t left the
prompt box blank. Note that the use of parentheses in the while condition is essential. By placing the
following code inside parentheses, you ensure that this is executed fi rst and that a name is obtained
from the user and stored in the inputName variable.

 (inputName = prompt(“Enter a name”,””))

Then you compare the value returned inside the parentheses — whatever was entered by the user —
with an empty string (denoted by “”). If they are not equal — that is, if the user did enter a value, you
loop around again.

Now, to sort the array into order, you use the sort() method of the Array object.

namesArray.sort();

Finally, to create a string containing all values contained in the array elements with each being on a
new line, you use the HTML
 element and write the following:

var namesList = namesArray.join(“
”)
document.write(namesList);

The code namesArray.join(“
”) creates the string of array elements with a
 between
each. Finally, you write the string into the page with document.write().

Exercise 3 Question
In this chapter, you learned how you can use the pow() method inventively to fi x a number to a certain
number of decimal places. However, there is a fl aw in the function you created. A proper fix() function
should return 2.1 fi xed to three decimal places like this:

2.100

25937bapp01.indd 60225937bapp01.indd 602 9/20/09 12:20:19 AM9/20/09 12:20:19 AM

603

Appendix A: Answers to Exercises

However, your fix() function instead returns it like this:

2.1

Change the fix() function so that the additional zeros are added where necessary.

Exercise 3 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 5: Question 3</title>
 <script type=”text/javascript”>
 function fix(fixNumber, decimalPlaces)
 {
 var div = Math.pow(10,decimalPlaces);
 fixNumber = new String(Math.round(fixNumber * div) / div);
 if (fixNumber.lastIndexOf(“.”)==-1)
 {
 fixNumber = fixNumber + “.”;
 }

 var zerosRequired = decimalPlaces -
 (fixNumber.length - fixNumber.lastIndexOf(“.”) - 1);

 for (; zerosRequired > 0; zerosRequired--)
 {
 fixNumber = fixNumber + “0”;
 }
 return fixNumber;
 }
 </script>
</head>
<body>
<script type=”text/javascript”>
var number1 = prompt(“Enter the number with decimal “ +
 “places you want to fix”,”“);
var number2 = prompt(“How many decimal places do you “ +
 “want?”,”“);

document.write(number1 + “ fixed to “ + number2 +
 “ decimal places is: “);
document.write(fix(number1,number2));
</script>
</body>
</html>

Save this as ch05_q3.htm.

The function declaration and the fi rst line remain the same as in the fix() function you saw earlier in
the chapter. However, things change after that.

25937bapp01.indd 60325937bapp01.indd 603 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

604

Appendix A: Answers to Exercises

You create the fi xed number as before, using Math.round(fixNumber * div) / div. What is new is
that you pass the result of this as the parameter to the String() constructor that creates a new String
object, storing it back in fixNumber.

Now you have your number fi xed to the number of decimal places required, but it will still be in the form
2.1 rather than 2.100, as required. Your next task is therefore to add the extra zeros required. To do this
you need to subtract the number of digits after the decimal point from the number of digits required after
the decimal point as specifi ed in decimalPlaces. First, to fi nd out how many digits are after the decimal
point, you write this:

 (fixNumber.length - fixNumber.lastIndexOf(“.”) - 1)

For your number of 2.1, fixNumber.length will be 3. fixNumber.lastIndexOf(“.”) will return 1;
remember that the fi rst character is 0, the second is 1, and so on. So fixNumber.length - fixNumber
.lastIndexOf(“.”) will be 2. Then you subtract 1 at the end, leaving a result of 1, which is the
number of digits after the decimal place.

The full line is as follows:

var zerosRequired = decimalPlaces -
 (fixNumber.length - fixNumber.lastIndexOf(“.”) - 1);

You know the last bit (fixNumber.length - fixNumber.lastIndexOf(“.”) - 1) is 1 and that the
decimalPlaces parameter passed is 3. Three minus one leaves two zeros that must be added.

Now that you know how many extra zeros are required, let’s add them.

for (; zerosRequired > 0; zerosRequired--)
{
 fixNumber = fixNumber + “0”;
}

Now you just need to return the result from the function to the calling code.

 return fixNumber;

Chapter 6

Exercise 1 Question
Create a page with a number of links. Then write code that fi res on the window load event, displaying
the href of each of the links on the page. (Hint: Remember that event handlers begin with on.)

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

25937bapp01.indd 60425937bapp01.indd 604 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

605

Appendix A: Answers to Exercises

<head>
 <title>Chapter 6: Question 1</title>
 <script type=”text/javascript”>
 function displayLinks()
 {
 var linksCounter;

 for (linksCounter = 0; linksCounter < document.links.length;
linksCounter++)
 {
 alert(document.links[linksCounter].href);
 }
 }
 </script>
</head>
<body onload=”displayLinks()”>
Link 0
Link 2
Link 2
</body>
</html>

Save this as ch06_q1.htm.

You connect to the window object’s onload event handler by adding an attribute to the opening
<body> tag.

<body onload=”displayLinks()”>

On the onload event fi ring, this will run the script in quotes calling the displayLinks() function.

In this function you use a for loop to cycle through each a object in the document object’s links
collection.

function displayLinks()
{
 var linksCounter

 for (linksCounter = 0; linksCounter < document.links.length; linksCounter++)
 {
 alert(document.links[linksCounter].href);
 }
}

You used the length property of the links collection in your condition to determine how many times
you need to loop. Then, using an alert box, you display each a object’s href property. You can’t use
document.write() in the load event because it occurs when the page has fi nished loading.

25937bapp01.indd 60525937bapp01.indd 605 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

606

Appendix A: Answers to Exercises

Exercise 2 Question
Create two pages, one called ieonly.htm and the other called notieonly.htm. Each page should have
a heading telling you what page is loaded. For example:

<H2>Welcome to the Internet Explorer only page</H2>

Using the functions for checking browser type, connect to the window object’s onload event handler and
detect what browser the user has. Then, if it’s the wrong page for that browser, redirect to the other page.

Exercise 2 Solution
The notieonly.htm page is as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example Question 2</title>
 <script type=”text/javaScript”>
 function getBrowserName()
 {
 var lsBrowser = navigator.userAgent;
 if (lsBrowser.indexOf(“MSIE”) >= 0)
 {
 lsBrowser = “MSIE”;
 }
 else if (lsBrowser.indexOf(“Firefox”) >= 0)
 {
 lsBrowser = “Firefox”;
 }
 else if (lsBrowser.indexOf(“Chrome”) >= 0)
 {
 lsBrowser = “Chrome”;
 }
 else if (lsBrowser.indexOf(“Safari”) >= 0)
 {
 lsBrowser = “Safari”;
 }
 else if (lsBrowser.indexOf(“Opera”) >= 0)
 {
 lsBrowser = “Opera”;
 }
 else
 {
 lsBrowser = “UNKNOWN”;
 }
 return lsBrowser;
 }

 function getBrowserVersion()
 {

25937bapp01.indd 60625937bapp01.indd 606 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

607

Appendix A: Answers to Exercises

 var findIndex;
 var browserVersion = 0;
 var browser = getBrowserName();

 browserVersion = navigator.userAgent;
 findIndex = browserVersion.indexOf(browser) + browser.length + 1;
 browserVersion = parseFloat(browserVersion.substring(findIndex,
 findIndex + 3));

 return browserVersion;
 }

 function checkBrowser()
 {
 if (getBrowserName() == “MSIE”)
 {
 window.location.replace(“ieonly.htm”);
 }
 }
 </script>
</head>
<body onload=”checkBrowser()”>
<h2>Welcome to the Not-IE only page</h2>
</body>
</html>

The ieonly.htm page is very similar:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Example Question 2</title>
 <script type=”text/javaScript”>
 function getBrowserName()
 {
 var lsBrowser = navigator.userAgent;
 if (lsBrowser.indexOf(“MSIE”) >= 0)
 {
 lsBrowser = “MSIE”;
 }
 else if (lsBrowser.indexOf(“Firefox”) >= 0)
 {
 lsBrowser = “Firefox”;
 }
 else if (lsBrowser.indexOf(“Chrome”) >= 0)
 {
 lsBrowser = “Chrome”;
 }
 else if (lsBrowser.indexOf(“Safari”) >= 0)
 {
 lsBrowser = “Safari”;
 }

25937bapp01.indd 60725937bapp01.indd 607 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

608

Appendix A: Answers to Exercises

 else if (lsBrowser.indexOf(“Opera”) >= 0)
 {
 lsBrowser = “Opera”;
 }
 else
 {
 lsBrowser = “UNKNOWN”;
 }
 return lsBrowser;
 }

 function getBrowserVersion()
 {
 var findIndex;
 var browserVersion = 0;
 var browser = getBrowserName();

 browserVersion = navigator.userAgent;
 findIndex = browserVersion.indexOf(browser) + browser.length + 1;
 browserVersion = parseFloat(browserVersion.substring(findIndex,
 findIndex + 3));

 return browserVersion;
 }

 function checkBrowser()
 {
 if (getBrowserName() != “MSIE”)
 {
 window.location.replace(“notieonly.htm”);
 }
 }
 </script>
</head>
<body onload=”checkBrowser()”>
<h2>Welcome to the Internet Explorer only page</h2>
</body>
</html>

Starting with the ieonly.htm page, fi rst you add an onload event handler, connected to the
checkBrowser() function, so that the function is called when the page loads.

 <body onload=”checkBrowser()”>

Then, in checkBrowser(), you use your getBrowserName() function to tell you which browser the
user has. If it’s not IE, you replace the page loaded with the notieonly.htm page. Note that you use
replace() rather than href, because you don’t want the user to be able to click the browser’s Back button.
This way it’s less easy to spot that a new page is being loaded.

function checkBrowser()
{
 if (getBrowserName() != “MSIE”)

25937bapp01.indd 60825937bapp01.indd 608 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

609

Appendix A: Answers to Exercises

 {
 window.location.replace(“notieonly.htm”);
 }
}

The notieonly.htm page is identical, except that in your if statement you check if the browser is MSIE
and redirect to ieonly.htm if it is.

function checkBrowser()
{
 if (getBrowserName() == “MSIE”)
 {
 window.location.replace(“ieonly.htm”);
 }
}

Exercise 3 Question
Insert an image in the page with the element. When the mouse pointer rolls over the image, it
should switch to a different image. When the mouse pointer rolls out (leaves the image), it should swap
back again. (Hint: These events are mouseover and mouseout.)

Exercise 3 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 6: Question 3</title>
 <script type=”text/javascript”>
 function mouseOver(that)
 {
 that.src = “Img2.jpg”;
 }

 function mouseOut(that)
 {
 that.src = “Img1.jpg”;
 }
 </script>
</head>
<body>
<img src=”Img1.jpg” name=”myImage” onmouseover=”mouseOver(this)”
 onmouseout=”mouseOut(this)” />
</body>
</html>

Save this as ch06_q3.htm.

25937bapp01.indd 60925937bapp01.indd 609 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

610

Appendix A: Answers to Exercises

At the top of the page you defi ne your two functions to handle the mouseover and mouseout events.

function mouseOver(that)
{
 that.src = “Img2.jpg”;
}

function mouseOut(that)
{
 that.src = “Img1.jpg”;
}

The function names tell you what events they will be handling. You access the img object for your
 element by passing a reference to the img object to the function. In the mouseover event you
change the src property of the image to Img2.tif, and in the mouseout event you change it back to
img1.tif, the image you specifi ed when the page was loaded.

In the page itself you have your element.

<img src=”Img1.jpg” name=”myImage” onmouseover=”mouseOver(this)”
 onmouseout=”mouseOut(this)” />

Chapter 7

Exercise 1 Question
Using the code from the temperature converter example you saw in Chapter 2, create a user interface for
it and connect it to the existing code so that the user can enter a value in degrees Fahrenheit and convert it
to centigrade.

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Question 1</title>
 <script type=”text/javascript”>
 function convertToCentigrade(degFahren)
 {
 var degCent = 5 / 9 * (degFahren - 32);

 return degCent;
 }

 function btnToCent_onclick()
 {

25937bapp01.indd 61025937bapp01.indd 610 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

611

Appendix A: Answers to Exercises

 var calcBox = document.form1.txtCalcBox;

 if (isNaN(calcBox.value) == true || calcBox.value == “”)
 {
 calcBox.value = “Error Invalid Value”;
 }
 else
 {
 calcBox.value = convertToCentigrade(calcBox.value);
 }
 }
 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <p>
 <input type=”text” name=”txtCalcBox” value=”0.0” />
 </p>
 <input type=”button” value=”Convert to centigrade”
 name=”btnToCent” onclick=”btnToCent_onclick()” />
 </form>
</body>
</html>

Save this as ch07_q1.htm.

The interface part is simply a form containing a text box into which users enter the Fahrenheit value
and a button they click to convert that value to centigrade. The button has its onclick event handler set
to call a function named btnToCent_onclick().

The fi rst line of btnToCent_onclick() declares a variable and sets it to reference the object represent-
ing the text box.

 var calcBox = document.form1.txtCalcBox;

Why do this? Well, in your code when you want to use document.form1.txtCalcBox, you can now
just use the much shorter calcBox; it saves typing and keeps your code shorter and easier to read.

So

alert(document.form1.txtCalcBox.value);

is the same as

alert(calcBox.value);

In the remaining part of the function you do a sanity check — if what the user has entered is a number
(that is, it is not NotANumber) and the text box does contain a value, you use the Fahrenheit-to-centigrade
conversion function you saw in Chapter 2 to do the conversion, the results of which are used to set the
text box’s value.

25937bapp01.indd 61125937bapp01.indd 611 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

612

Appendix A: Answers to Exercises

Exercise 2 Question
Create a user interface that allows the user to pick the computer system of their dreams, similar in prin-
ciple to the e-commerce sites selling computers over the Internet. For example, they could be given a
choice of processor type, speed, memory, and hard drive size, and the option to add additional compo-
nents like a DVD-ROM drive, a sound card, and so on. As the user changes their selections, the price of
the system should update automatically and notify them of the cost of the system as they specifi ed it,
either by using an alert box or by updating the contents of a text box.

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 7: Question 1</title>
 <script type=”text/javascript”>
 var compItems = new Array();
 compItems[100] = 1000;
 compItems[101] = 1250;
 compItems[102] = 1500;

 compItems[200] = 35;
 compItems[201] = 65;
 compItems[202] = 95;

 compItems[300] = 50;
 compItems[301] = 75;
 compItems[302] = 100;

 compItems[400] = 10;
 compItems[401] = 15;
 compItems[402] = 25;
 function updateOrderDetails()
 {
 var total = 0;
 var orderDetails = “”;
 var formElement;
 var theForm = document.form1;
 formElement = theForm.cboProcessor[theForm.cboProcessor.selectedIndex];
 total = parseFloat(compItems[formElement.value]);
 orderDetails = “Processor : “ + formElement.text;
 orderDetails = orderDetails + “ $” + compItems[formElement.value] + “\n”;

 formElement = theForm.cboHardDrive[theForm.cboHardDrive.selectedIndex];
 total = total + parseFloat(compItems[formElement.value]);
 orderDetails = orderDetails + “Hard Drive : “ + formElement.text;
 orderDetails = orderDetails + “ $” + compItems[formElement.value] + “\n”;

 formElement = theForm.chkCDROM;
 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “CD-ROM : $” +

25937bapp01.indd 61225937bapp01.indd 612 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

613

Appendix A: Answers to Exercises

 compItems[formElement.value] + “\n”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.chkDVD;
 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “DVD-ROM : $” +
 compItems[formElement.value] + “\n”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.chkScanner;
 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “Scanner : $” +
 compItems[formElement.value] + “\n”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.radCase;
 if (formElement[0].checked == true)
 {
 orderDetails = orderDetails + “Desktop Case : $” +
 compItems[formElement[0].value];
 total = total + parseFloat(compItems[formElement[0].value]);
 }
 else if (formElement[1].checked == true)
 {
 orderDetails = orderDetails + “Mini Tower Case : $” +
 compItems[formElement[1].value];
 total = total + parseFloat(compItems[formElement[1].value]);
 }
 else
 {
 orderDetails = orderDetails + “Full Tower Case : $” +
 compItems[formElement[2].value];
 total = total + parseFloat(compItems[formElement[2].value]);
 }

 orderDetails = orderDetails + “\n\nTotal Order Cost is $” + total;

 theForm.txtOrder.value = orderDetails;
 }

 </script>
</head>
<body>
 <form action=”“ name=”form1”>
 <table>
 <tr>
 <td width=”300”>
 Processor

25937bapp01.indd 61325937bapp01.indd 613 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

614

Appendix A: Answers to Exercises

 <select name=”cboProcessor”>
 <option value=”100”>MegaPro 10ghz</option>
 <option value=”101”>MegaPro 12</option>
 <option value=”102”>MegaPro 15ghz</option>
 </select>

 Hard drive

 <select name=”cboHardDrive”>
 <option value=”200”>30tb</option>
 <option value=”201”>40tb</option>
 <option value=”202”>60tb</option>
 </select>

 CD-ROM
 <input type=”checkbox” name=”chkCDROM” value=”300” />

 DVD-ROM
 <input type=”checkbox” name=”chkDVD” value=”301” />

 Scanner
 <input type=”checkbox” name=”chkScanner” value=”302” />

 Desktop Case
 <input type=”radio” name=”radCase” checked value=”400” />

 Mini Tower
 <input type=”radio” name=”radCase” value=”401” />

 Full Tower
 <input type=”radio” name=”radCase” value=”402” />

 <input type=”button” value=”Update” name=”butUpdate”
 onclick=”updateOrderDetails()” />
 </td>
 <td>
 <textarea rows=”20” cols=”35” id=”txtOrder”
 name=”txtOrder”></textarea>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Save this as ch07_q2.htm.

This is just one of many ways to tackle this question — you may well have thought of a better way.

25937bapp01.indd 61425937bapp01.indd 614 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

615

Appendix A: Answers to Exercises

Here you are displaying the results of the user’s selection as text in a textarea box, with each item and
its cost displayed on separate lines and a fi nal total at the end.

Each form element has a value set to hold a stock ID number. For example, a full tower case is stock ID 402.
The actual cost of the item is held in arrays defi ned at the beginning of the page. Why not just store the
price in the value attribute of each form element? Well, this way is more fl exible. Currently your array just
holds price details for each item, but you could modify it that so it holds more data — for example price,
description, number in stock, and so on. Also, if this form is posted to a server the values passed will be
stock IDs, which you could then use for a lookup in a stock database. If the values were set to prices and the
form were posted, you’d have no way of telling what the customer ordered — all you’d know is how much
it all cost.

This solution includes an Update button which, when clicked, updates the order details in the textarea
box. However, you may want to add event handlers to each form element and update when anything
changes.

Turning to the function that actually displays the order summary, updateOrderDetails(), you can
see that there is a lot of code, and although it looks complex, it’s actually fairly simple. A lot of it is
repeated with slight modifi cation.

To save on typing and make the code a little more readable, this solution declares two variables: theForm
to contain the Form object, and formElement, which will be set to each element on the form in turn and
used to extract the stock ID and, from that, the price. After the variable’s declaration, you then fi nd out
which processor has been selected, calculate the cost, and add the details to the textarea.

formElement = theForm.cboProcessor[document.form1.cboProcessor.selectedIndex];
total = parseFloat(compItems[formElement.value]);
orderDetails = “Processor : “ + formElement.text;
orderDetails = orderDetails + “ $” + compItems[formElement.value] + “\n”;

The selectedIndex property tells us which Option object inside the select control has been selected
by the user, and you set the formElement variable to reference that.

The same principle applies when you fi nd the hard drive size selected, so let’s turn next to the check
boxes for the optional extra items, looking fi rst at the CD-ROM check box.

formElement = theForm.chkCDROM
if (formElement.checked == true)
{
 orderDetails = orderDetails + “CD-ROM : $” +
 compItems[formElement.value] + “\n”;
 total = total + parseFloat(compItems[formElement.value]);
}

Again, set the formElement variable to now reference the chkCDROM check box object. Then, if the
check box is checked, you add a CD-ROM to the order details and update the running total. The same
principle applies for the DVD and scanner check boxes.

25937bapp01.indd 61525937bapp01.indd 615 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

616

Appendix A: Answers to Exercises

Finally, you have the case type. Because only one case type out of the options can be selected, you used
a radio button group. Unfortunately, there is no selectedIndex for radio buttons as there is for check
boxes, so you have to go through each radio button in turn and fi nd out if it has been selected.

formElement = theForm.radCase
if (formElement[0].checked == true)
{
 orderDetails = orderDetails + “Desktop Case : $” +
 compItems[formElement[0].value];
 total = total + parseFloat(compItems[formElement[0].value]);
}
else if (formElement[1].checked == true)
{
 orderDetails = orderDetails + “Mini Tower Case : $” +
 compItems[formElement[1].value];
 total = total + parseFloat(compItems[formElement[1].value]);
}
else
{
 orderDetails = orderDetails + “Full Tower Case : $” +
 compItems[formElement[2].value]
 total = total + parseFloat(compItems[formElement[2].value]);
}

You check to see which radio button the user selected and add its details to the textarea and its price
to the total. If the array of stock defi ned at the beginning of the code block had further details, such
as description as well as price, you could have looped through the radio button array and added the
details based on the compItems array.

Finally, set the textarea to the details of the system the user has selected.

orderDetails = orderDetails + “\n\nTotal Order Cost is “ + total;
theForm.txtOrder.value = orderDetails;

Chapter 8

Exercise 1 Question
In the previous chapter’s exercise questions, you created a form that allowed the user to pick a computer
system. They could view the details of their system and its total cost by clicking a button that wrote the
details to a textarea. Change the example so it’s a frames-based web page; instead of writing to a text
area, the application should write the details to another frame. Hint: use about:blank as the src of the
frame you write to. Hint: use the document object’s close() and open() methods to clear the details
frame from previously written data.

Exercise 1 Solution
The solution shown here involves a frameset that divides the page into left and right frames. In the left
frame displays the form that allows the user to pick their system. A summarization of the user’s choices
display in the right frame when the user clicks an Update button.

25937bapp01.indd 61625937bapp01.indd 616 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

617

Appendix A: Answers to Exercises

The fi rst page is the frameset page, which the browser loads fi rst.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Chapter 8: Question 1 Answer</title>
</head>
<frameset cols=”55%,*”>
 <frame src=”ch8_q1_picksystem.htm” name=”pickSystem”>
 <frame src=”about:blank” name=”systemSummary”>
</frameset>
</html>

Save this as ch8_q1_frameset.htm.

Finally, you come to the page loaded into the left frame; it allows the user to choose their computer
system and its components. This is very similar to the solution to Question 2 in the previous chapter, so
this example shows only what changed. All the changes are within the updateOrderDetails() func-
tion, and they’re highlighted in the following code:

function updateOrderDetails()
{
 var total = 0;
 var orderDetails = “”;
 var formElement;
 var theForm = document.form1;
 formElement = theForm.cboProcessor[theForm.cboProcessor.selectedIndex];
 total = parseFloat(compItems[formElement.value]);
 orderDetails = “Processor : “ + formElement.text;
 orderDetails = orderDetails + “ $” + compItems[formElement.value] + “
”;

 formElement = theForm.cboHardDrive[theForm.cboHardDrive.selectedIndex];
 total = total + parseFloat(compItems[formElement.value]);
 orderDetails = orderDetails + “Hard Drive : “ + formElement.text;
 orderDetails = orderDetails + “ $” + compItems[formElement.value] + “
”;

 formElement = theForm.chkCDROM;
 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “CD-ROM : $”
 + compItems[formElement.value] + “
”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.chkDVD;
 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “DVD-ROM : $”
 + compItems[formElement.value] + “
”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.chkScanner;

25937bapp01.indd 61725937bapp01.indd 617 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

618

Appendix A: Answers to Exercises

 if (formElement.checked == true)
 {
 orderDetails = orderDetails + “Scanner : $”
 + compItems[formElement.value] + “
”;
 total = total + parseFloat(compItems[formElement.value]);
 }

 formElement = theForm.radCase;
 if (formElement[0].checked == true)
 {
 orderDetails = orderDetails + “Desktop Case : $”
 + compItems[formElement[0].value] + “
”;
 total = total + parseFloat(compItems[formElement[0].value]);
 }
 else if (formElement[1].checked == true)
 {
 orderDetails = orderDetails + “Mini Tower Case : $”
 + compItems[formElement[1].value] + “
”;
 total = total + parseFloat(compItems[formElement[1].value]);
 }
 else
 {
 orderDetails = orderDetails + “Full Tower Case : $”
 + compItems[formElement[2].value] + “
”;
 total = total + parseFloat(compItems[formElement[2].value]);
 }

 orderDetails = orderDetails + “<p>Total Order Cost is $” + total + “</p>”;

 top.systemSummary.document.close();
 top.systemSummary.document.open();
 top.systemSummary.document.write(orderDetails);
}

Remove the <textarea/> element from the page, as you no longer need it. Save the fi le as ch8_q1_
picksystem.htm, and load ch8_q1_frameset.htm into your browser to try out the code.

The fi rst difference between this version and the version from Question 2 in the last chapter is that
when creating the text summarizing the system, you are creating HTML rather than plain text, so
rather than \n for new lines you use the
 element.

The main change, however, is the following three lines:

 top.systemSummary.document.close();
 top.systemSummary.document.open();
 top.systemSummary.document.write(orderDetails);

Instead of setting the value of a <textarea/> box as you did in the solution to Question 2 in the last
chapter, this time you write the order summary to an HTML page, the page contained in the right-hand
frame, systemSummary. First you close the document with the close() method. Otherwise, subsequent
updates result in HTML being appended to the page as opposed to replacing the current contents. Then
you open the document for writing with open(), and you write out the summarization string.

25937bapp01.indd 61825937bapp01.indd 618 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

619

Appendix A: Answers to Exercises

Exercise 2 Question
The fourth example (ch08_examp4.htm) was a page with images of books, in which clicking on a book’s
image brought up information about that book in a pop-up window. Amend this so that the pop-up win-
dow also has a button or link that, when clicked, adds the item to a shopping basket. Also, on the main
page, give the user some way of opening up a shopping basket window with details of all the items they
have purchased so far, and give them a way of deleting items from this basket.

Exercise 2 Solution
This is the most challenging exercise so far, but by the end you’ll see how a more complex application
can be created using JavaScript. The solution to this exercise involves four pages: two that display the
book’s details (very similar to the pages you created in the example), a third that displays the book’s
images and opens the new windows, and a fourth, totally new page, which holds the shopping basket.

Let’s look at the main page to be loaded, called ch8_q2_online_books.htm.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 8: Question 2</title>
 <script type=”text/javascript”>
 var detailsWindow;
 var basketWindow;

 var stockItems = new Array();
 stockItems[0] = new StockItem(“Professional Ajax, 2nd Edition”, “$39.99”);
 stockItems[1] = new StockItem(“Professonal JavaScript, 2nd Edition”, “$46.99”);

 function removeItem(stockId)
 {
 stockItems[stockId].quantity = 0;
 alert(“Item Removed”);
 showBasket();
 return false;
 }

 function addBookToBasket(stockId)
 {
 stockItems[stockId].quantity = 1;
 alert(“Item added successfully”);
 detailsWindow.close();
 }

 function showDetails(bookURL)
 {
 detailsWindow = window.open(bookURL, “bookDetails”,
“width=400,height=500”);
 detailsWindow.focus();
 return false;

25937bapp01.indd 61925937bapp01.indd 619 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

620

Appendix A: Answers to Exercises

 }

 function showBasket()
 {
 basketWindow = window.open(‘about:blank’, ‘shoppingBasket’,
 ‘width=400,height=350’);
 basketWindow.document.open();
 var basketItem;
 var containsItems = false;
 basketWindow.document.write(“<h4>Your shopping basket contains :</h4>”);

 for (var i = 0; i < stockItems.length; i++)
 {
 var stockItem = stockItems[i];

 if (stockItem.quantity > 0)
 {
 basketWindow.document.write(stockItem.title + “ at “);
 basketWindow.document.write(stockItem.price);
 basketWindow.document.write(“ ”);
 basketWindow.document.write(“<a href=’’ onclick=’return “
 + “window.opener.removeItem(“ + i + “)’>”);
 basketWindow.document.write(“Remove Item
”);
 containsItems = true;
 }
 }

 if (!containsItems)
 {
 basketWindow.document.write(“<h4>No items</h4>”);
 }

 basketWindow.document.close();
 basketWindow.focus();
 }

 function StockItem(title, price)
 {
 this.title = title;
 this.price = price;
 this.quantity = 0;
 }
 </script>
</head>
<body>
 <h2 align=”center”>
 Online Book Buyer</h2>
 <form name=”form1” action=”“>
 <input type=”button” value=”Show Shopping Basket” onclick=”showBasket()”
name=”btnShowBasket” />
 </form>
 <p>
 Click any of the images below for more details
 </p>

25937bapp01.indd 62025937bapp01.indd 620 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

621

Appendix A: Answers to Exercises

 <h4>Professional Ajax</h4>
 <p>
 <img src=”pro_ajax.jpg” alt=”Professional Ajax, 2nd Edition” border=”0”
 onclick=”showDetails(‘pro_ajax_details.htm’)” />
 </p>
 <h4>Professional JavaScript for Web Developers</h4>
 <p>
 <img src=”pro_js.jpg” alt=”Professional JavaScript, 2nd Edition” border=”0”
 onclick=”showDetails(‘pro_js_details.htm’)” />
 </p>
</body>
</html>

The details of the books are stored in the stockItems array, which will contain StockItem objects, a
reference type you defi ne with the StockItem() constructor function.

function StockItem(title, price)
{
 this.title = title;
 this.price = price;
 this.quantity = 0;
}

Objects created by this function have title, price, and quantity properties. The fi rst two are
assigned values from the two parameters of the same name, and the third initializes as 0.

So you populate the stockItems array fi rst, with each element containing a StockItem object as the
following code shows:

 var stockItems = new Array();
 stockItems[0] = new StockItem(“Professional Ajax, 2nd Edition”, “$39.99”);
 stockItems[1] = new StockItem(“Professonal JavaScript, 2nd Edition”, “$46.99”);

The fi rst function defi ned in the code is removeItem().

function removeItem(stockId)
{
 stockItems[stockId].quantity = 0;
 alert(“Item Removed”);
 showBasket();
 return false;
}

This removes a book from the shopping basket. It accepts one parameter called stockId, the array
element index of that book, which you use to set the quantity property to 0.

Next, you have the function that adds a book to the shopping basket, addBookToBasket().

function addBookToBasket(stockId)
{
 stockItems[stockId].quantity = 1;
 alert(“Item added successfully”);

25937bapp01.indd 62125937bapp01.indd 621 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

622

Appendix A: Answers to Exercises

 detailsWindow.close();
}

The fi nal function displays the contents of the shopping basket in a new window.

function showBasket()
{
 basketWindow = window.open(‘about:blank’,’shoppingBasket’,
 ‘width=400,height=350’);
 basketWindow.document.open();
 var basketItem;
 var containsItems = false;
 basketWindow.document.write(“<h4>Your shopping basket contains :</h4>”);

 for (var i = 0; i < stockItems.length; i++)
 {
 var stockItem = stockItems[i];

 if (stockItem.quantity > 0)
 {
 basketWindow.document.write(stockItem.title + “ at “);
 basketWindow.document.write(stockItem.price);
 basketWindow.document.write(“ ”);
 basketWindow.document.write(“<a href=’’ onclick=’return “
 + “window.opener.removeItem(“ + i + “)’>”);
 basketWindow.document.write(“Remove Item
”);
 containsItems = true;
 }
 }

 if (!containsItems)
 {
 basketWindow.document.write(“<h4>No items</h4>”);
 }

 basketWindow.document.close();
 basketWindow.focus();
}

First, you open a new window and store its window object reference in basketWindow. You then write
a heading to the new window’s document, and then you loop through each item in the stockItems
array and check the quantity property of the StockItem object. If it is greater than zero, you write the
book’s details to the shopping list window. You also write out a link to the shopping basket that when
clicked calls your removeItem() function.

Finally, you need to create the book description pages. First you have pro_ajax_details.htm. This
is identical to the version you created for the example, except for the addition of the form and button
inside. When clicked, the button calls the addToBasket() function in the window that opened this
window — that is, ch8_q2_online_books.htm. The highlighted portion of the following code shows
the changes made to this fi le:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

25937bapp01.indd 62225937bapp01.indd 622 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

623

Appendix A: Answers to Exercises

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Professional ASP.NET 2.0</title>
</head>
<body>
 <h3>Professional Ajax, 2nd Edition</h3>
 <form name=”form1” action=”“>
 <input type=”button” value=”Add to basket” name=”btnAddBook”
 onclick=”window.opener.addBookToBasket(0)” />
 </form>
 Subjects

 Ajax

 Internet

 JavaScript

 ASP.NET

 PHP

 XML

 <hr color=”#cc3333” />
 <h3>Book overview</h3>
 <p>
 A comprehensive look at the technologies and techniques used in Ajax,
 complete with real world examples and case studies. A must have for
 any Web professional looking to build interactive Web sites.
 </p>
</body>
</html>

Finally, you create the pro_js_details.htm page. Again, it is identical to the version created in the
example, with a form and button to add the book to the shopping basket, as in the pro_ajax_details
.htm page. The highlighted portion of the following code shows the changes made to this fi le:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Professional JavaScript</title>
</head>
<body>
 <h3>Professional JavaScript, 2nd Edition</h3>
 <form name=”form1”>
 <input type=”button” value=”Add to basket” name=”btnAddBook”
 onclick=”window.opener.addBookToBasket(1)” />
 </form>
 Subjects
 ECMAScript

 Internet

 JavaScript

 XML and Scripting

 <hr color=”#cc3333” />
 <p>
 This book takes a comprehensive look at the JavaScript language
 and prepares the reader with in-depth knowledge of the languages.
 </p>

25937bapp01.indd 62325937bapp01.indd 623 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

624

Appendix A: Answers to Exercises

 <p>
 It includes a guide to the language - when where and how to get
 the most out of JavaScript - together with practical case studies
 demonstrating JavaScript in action. Coverage is bang up-to-date, with
 discussion of compatability issues and version differences, and the
 book concludes with a comprehensive reference section.
 </p>
</body>
</html>

Chapter 9

Exercise 1 Question
What problem does the following code solve?

var myString = “This sentence has has a fault and and we need to fix it.”
var myRegExp = /(\b\w+\b) \1/g;
myString = myString.replace(myRegExp,”$1”);

Now imagine that you change that code, so that you create the RegExp object like this:

var myRegExp = new RegExp(“(\b\w+\b) \1”);

Why would this not work, and how could you rectify the problem?

Exercise 1 Solution
The problem is that the sentence has “has has” and “and and” inside it, clearly a mistake. A lot of word
processors have an autocorrect feature that fi xes common mistakes like this, and what your regular
expression does is mimic this feature.

So the erroneous myString

“This sentence has has a fault and and we need to fi x it.”

will become

“This sentence has a fault and we need to fi x it.”

Let’s look at how the code works, starting with the regular expression.

/(\b\w+\b) \1/g;

By using parentheses, you have defi ned a group, so (\b\w+\b) is group 1. This group matches the pat-
tern of a word boundary followed by one or more alphanumeric characters, that is, a–z, A–Z, 0–9, and _,
followed by a word boundary. Following the group you have a space then \1. What \1 means is match

25937bapp01.indd 62425937bapp01.indd 624 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

625

Appendix A: Answers to Exercises

exactly the same characters as were matched in pattern group 1. So, for example, if group 1 matched
“has,” then \1 will match “has” as well. It’s important to note that \1 will match the exact previous
match by group 1. So when group 1 then matches the “and,” the \1 now matches “and” and not the
“has” that was previously matched.

You use the group again in your replace() method; this time the group is specifi ed using the $
symbol, so $1 matches group 1. It’s this that causes the two matched “has” and “and” to be replaced by
just one.

Turning to the second part of the question, how do you need to change the following code so that it
works?

var myRegExp = new RegExp(“(\b\w+\b) \1”);

Easy; now you are using a string passed to the RegExp object’s constructor, and you need to use two
slashes (\\) rather than one when you mean a regular expression syntax character, like this:

var myRegExp = new RegExp(“(\\b\\w+\\b) \\1”,”g”);

Notice you’ve also passed a g to the second parameter to make it a global match.

Exercise 2 Question
Write a regular expression that fi nds all of the occurrences of the word “a” in the following sentence and
replaces them with “the”:

 “a dog walked in off a street and ordered a fi nest beer”

The sentence should become:

“the dog walked in off the street and ordered the fi nest beer”

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
<script language=”JavaScript” type=”text/javascript”>
var myString = “a dog walked in off a street and ordered a finest beer”;
var myRegExp = /\ba\b/gi;
myString = myString.replace(myRegExp,”the”);
alert(myString);
</script>
</body>
</html>

Save this as ch09_q2.htm.

25937bapp01.indd 62525937bapp01.indd 625 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

626

Appendix A: Answers to Exercises

With regular expressions, it’s often not just what you want to match, but also what you don’t want to
match that is a problem. Here you want to match the letter a, so why not just write

var myRegExp = /a/gi;

Well, that would work, but it would also replace the “a” in “walked,” which you don’t want. You want to
replace the letter “a” but only where it’s a word on its own and not inside another word. So when does
a letter become a word? The answer is when it’s between two word boundaries. The word boundary is
represented by the regular expression special character \b so the regular expression becomes

var myRegExp = /\ba\b/gi;

The gi at the end ensures a global, case-insensitive search.

Now with your regular expression created, you can use it in the replace() method’s fi rst parameter.

myString = myString.replace(myRegExp,”the”);

Exercise 3 Question
Imagine you have a web site with a message board. Write a regular expression that would remove
barred words. (You can make up your own words!)

Exercise 3 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<body>
<script language=”JavaScript” type=”text/javascript”>
 var myRegExp = /(sugar)?candy|choc(olate|oholic)?/gi;
 var myString = “Mmm, I love chocolate, I’m a chocoholic. “ +
 “I love candy too, sweet, sugar candy”;
 myString = myString.replace(myRegExp,”salad”);
 alert(myString)
</script>
</body>
</html>

Save this as ch09_q3.htm.

For this example, pretend you’re creating script for a board on a dieting site where text relating to candy
is barred and will be replaced with a much healthier option, salad.

The barred words are

chocolate ❑

choc ❑

25937bapp01.indd 62625937bapp01.indd 626 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

627

Appendix A: Answers to Exercises

chocoholic ❑

sugar candy ❑

candy ❑

Let’s examine the regular expression to remove the offending words.

 1. Start with the two basic words, so to match “choc” or “candy,” you use

candy|choc

 2. Add the matching for “sugar candy.” Since the “sugar” bit is optional, you group it by placing it
in parentheses and adding the “?” after it. This means match the group zero times or one time.

 (sugar)?candy|choc

 3. You need to add the optional “olate” and “oholic” end bits. You add these as a group after the
“choc” word and again make the group optional. You can match either of the endings in the
group by using the | character.

 (sugar)?candy|choc(olate|oholic)?/gi

 4. You, then, declare it as

 var myRegExp = /(sugar)?candy|choc(olate|oholic)?/gi

The gi at the end means the regular expression will fi nd and replace words on a global, case-insensitive
basis.

So, to sum up

/(sugar)?candy|choc(olate|oholic)?/gi

reads as:

Either match zero or one occurrences of “sugar” followed by “candy.” Or alternatively match “choc”
followed by either one or zero occurrences of “olate” or match “choc” followed by zero or one occur-
rence of “oholic.”

Finally, the following:

 myString = myString.replace(myRegExp,”salad”);

replaces the offending words with “salad” and sets myString to the new clean version:

 “Mmm, I love salad, I’m a salad. I love salad too, sweet, salad.”

25937bapp01.indd 62725937bapp01.indd 627 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

628

Appendix A: Answers to Exercises

Chapter 10

Exercise 1 Question
Create a web page with an advertisement image at the top. When the page loads, select a random image
for that advertisement. Every four seconds, make the image change to a different one and ensure a dif-
ferent advertisement is selected until all the advertisement images have been seen.

Exercise 1 Solution
The solution below displays three images but changes them via a timer:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<script type=”text/javascript”>

var imagesSelected = new Array(false,false,false);
var noOfImages = 3;
var totalImagesSelected = 0;

function window_onload()
{
 setInterval(“switchImage()”,4000);
}

function switchImage()
{

 var imageIndex;

 if (totalImagesSelected == noOfImages)
 {
 for (imageIndex = 0; imageIndex < noOfImages; imageIndex++)
 {
 imagesSelected[imageIndex] = false;
 }

 totalImagesSelected = 0;
 }

var selectedImage = Math.floor(Math.random() * noOfImages) + 1;
while (imagesSelected[selectedImage - 1] == true)
{
 selectedImage = Math.floor(Math.random() * noOfImages) + 1;
 }
 totalImagesSelected++;
 imagesSelected[selectedImage - 1] = true;

25937bapp01.indd 62825937bapp01.indd 628 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

629

Appendix A: Answers to Exercises

 document.imgAdvert.src = “AdvertImage” + selectedImage + “.jpg”;

}

</script>
</head>
<body onload=”window_onload()”>

</body>
</html>

Save this as ch10_q1.htm.

This solution is based on the example in the chapter, Adverts.htm, where you displayed three images
at set intervals one after the other. The fi rst difference is that you select a random image each time,
rather than the images in sequence. Second, you make sure you don’t select the same image twice in
one sequence by having an array, imagesSelected, with each element of that array being true or
false depending on whether the image has been selected before. Once you’ve shown each image, you
reset the array and start the sequence of selecting images randomly again.

The fi nal difference between this solution and the example in the chapter is that you set the timer going
continuously with setInterval(). So, until the user moves to another page, your random display of
images will continue.

Exercise 2 Question
Create a form that gets the user’s date of birth. Then, using that information, tell them on what day of
the week they were born.

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script type=”text/javascript”>

var days = new Array();
days[0] = “Sunday”;
days[1] = “Monday”;
days[2] = “Tuesday”;
days[3] = “Wednesday”;
days[4] = “Thursday”;
days[5] = “Friday”;
days[6] = “Saturday”;

function dayOfWeek()
{

 var form = document.form1;

25937bapp01.indd 62925937bapp01.indd 629 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

630

Appendix A: Answers to Exercises

 var date = parseInt(form.txtDate.value)
 var year = parseInt(form.txtYear.value)

 if (isNaN(date) || isNaN(year))
 {
 alert(“Please enter a valid whole number”);
 }
 else
 {
 if (date < 1 || date > 31)
 {
 alert(“Day of the month must be between 1 and 31”);
 }
 else
 {
 userDate = date + “ “;
 userDate = userDate +
 form.selMonth.options[form.selMonth.selectedIndex].value;
 userDate = userDate + “ “ + year;
 var dateThen = new Date(userDate);
 alert(days[dateThen.getDay()]);
 }
 }
}
</script>
</head>
<body>
<p>Find the day of your birth</p>
<p>
<form name=”form1”>
<input type=”text” name=”txtDate” size=”2” maxlength=”2”>
<select name=selMonth>
 <option selected value=”Jan”>Jan</option>
 <option selected value=”Feb”>Feb</option>
 <option selected value=”Mar”>Mar</option>
 <option selected value=”Apr”>Apr</option>
 <option selected value=”May”>May</option>
 <option selected value=”Jun”>Jun</option>
 <option selected value=”Jul”>Jul</option>
 <option selected value=”Aug”>Aug</option>
 <option selected value=”Sept”>Sept</option>
 <option selected value=”Oct”>Oct</option>
 <option selected value=”Nov”>Nov</option>
 <option selected value=”Dec”>Dec</option>
</select>
<input type=”text” name=”txtYear” size=”4” maxlength=”4” />

<input type=”button” value=”Day of the week”
 onclick=”dayOfWeek()” name=”button1” />
</form>
</p>

</body>
</html>

Save this as ch10_q2.htm.

25937bapp01.indd 63025937bapp01.indd 630 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

631

Appendix A: Answers to Exercises

The solution is surprisingly simple. You create a new Date object based on the date entered by the user.
Then you get the day of the week using the Date object’s getDay() method. This returns a number, but
by defi ning an array of days of the week to match this number, you can use the value of getDay() as
the index to your days array.

You also do some basic sanity checking to make sure that the user has entered numbers and that in
the case of the date, it’s between 1 and 31. You could have defi ned a select element as the method of
getting the date and only including numbers from 1 to 31. Of course, neither of these methods checks
whether invalid dates are entered (for example, the 31st of February). You might want to try this as an
additional exercise.

Hint: To get the last day of the month, get the fi rst day of the next month, and then subtract 1.

Chapter 11

Exercise 1 Question
Create a page that keeps track of how many times the page has been visited by the user in the last
month.

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script language=”JavaScript”
type=”text/JavaScript”
src=”CookieFunctions.js”></script>
<script type=”text/javascript”>
var pageViewCount = getCookieValue(“pageViewCount”);
var pageFirstVisited = getCookieValue(“pageFirstVisited”);

if (pageViewCount == null)
{
 pageViewCount = 1;
 pageFirstVisited = new Date();
 pageFirstVisited.setMonth(pageFirstVisited.getMonth());
 pageFirstVisited = pageFirstVisited.toGMTString();
 setCookie(“pageFirstVisited”,pageFirstVisited,”“,”“)
}
else
{
 pageViewCount = Math.floor(pageViewCount) + 1;

25937bapp01.indd 63125937bapp01.indd 631 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

632

Appendix A: Answers to Exercises

}

setCookie(“pageViewCount”,pageViewCount,”“,”“)

</script>
</head>
<body>
<script>
var pageHTML = “You’ve visited this page “ + pageViewCount;
pageHTML = pageHTML + “ times since “ + pageFirstVisited;
document.write(pageHTML);
</script>
</body>
</html>

Save this as ch11_q1.htm.

You looked at the cookie functions in Chapter 11, so let’s turn straight to the new code.

The fi rst two lines get two cookies and store them in variables. The fi rst cookie holds the number of vis-
its, the second the date the page was fi rst visited.

var pageViewCount = getCookieValue(“pageViewCount”);
var pageFirstVisited = getCookieValue(“pageFirstVisited”);

If the pageViewCount cookie does not exist, it’s either because the cookie expired (remember you are
counting visits in the last month) or because the user has never visited the site before. Either way you
need to set the pageViewCount to 1 and store the date the page was fi rst visited plus one month in the
pageFirstVisited variable. You’ll need this value later when you want to set the expires value for
the pageViewCount cookie you’ll create because there is no way of using code to fi nd out an existing
cookie’s expiration date.

if (pageViewCount == null)
{
 pageViewCount = 1;
 pageFirstVisited = new Date();
 pageFirstVisited.setMonth(pageFirstVisited.getMonth() + 1)
 pageFirstVisited = pageFirstVisited.toGMTString();
 setCookie(“pageFirstVisited”,pageFirstVisited,”“,”“)
}

In the else statement, increase the value of pageViewCount.

else
{
 pageViewCount = Math.floor(pageViewCount) + 1;
}

You then set the cookie keeping track of the number of page visits by the user.

setCookie(“pageViewCount”,pageViewCount,”“,”“)

25937bapp01.indd 63225937bapp01.indd 632 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

633

Appendix A: Answers to Exercises

Finally, later on in the page, write the number of page visits and the date since the counter was reset.

var pageHTML = “You’ve visited this page “ + pageViewCount;
pageHTML = pageHTML + “ times since “ + pageFirstVisited;
document.write(pageHTML);

Exercise 2 Question
Use cookies to load a different advertisement every time a user visits a web page.

Exercise 2 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<script language=”JavaScript” type=”text/JavaScript” src=”CookieFunctions.js”></
script>
</head>
<body>

<script type=”text/javascript”>

var imageNumber = getCookieValue(“displayedImages”);
var totalImages = 3;

if (imageNumber == null)
{
 imageNumber = “1”;
}
else
{
 imageNumber = Math.floor(imageNumber) + 1;
}

if (totalImages == imageNumber)
{
 setCookie(“displayedImages”,”“,”“,”Mon, 1 Jan 1970 00:00:00”);
}
else
{
 setCookie(“displayedImages”,imageNumber,”“,”“);
}

document.imgAdvert.src = “AdvertImage” + imageNumber + “.jpg”;
</script>
</body>
</html>

Save this as ch11_q2.htm.

25937bapp01.indd 63325937bapp01.indd 633 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

634

Appendix A: Answers to Exercises

This solution is based on similar questions in previous chapters, such as Chapter 10, which displayed a
randomly selected image. In this case you display a different image in the page each time the user visits
it, as far as our selection of images allows.

You’ve seen the cookie setting and reading functions before in the chapter, so let’s look at the new code.

Store the number of the previously displayed image in a cookie named displayedImages. The next
image you display is that image number + 1. Once all of the images have been displayed, you start
again at 1. If the user has never been to the web site, no cookie will exist so null will be returned from
getCookieValue(), in which case you set imageNumber to 1.

Most of the code is fairly self-explanatory, except perhaps this line:

if (totalImages == imageNumber)
{
 setCookie(“displayedImages”,”“,”“,”Mon, 1 Jan 1970 00:00:00”)
}

What this bit of code does is delete the cookie by setting the cookie’s expiration date to a date that has
already passed.

Chapter 12

Exercise 1 Question
Here’s some HTML code that creates a table. Re-create this table using only JavaScript and the core DOM
objects to generate the HTML. Test your code in all browsers available to you to make sure it works in
them. Hint: Comment each line as you write it to keep track of where you are in the tree structure, and
create a new variable for every element on the page (for example, not just one for each of the TD cells
but nine variables).

<table>
 <thead>
 <tr>
 <td>Car</td>
 <td>Top Speed</td>
 <td>Price</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Chevrolet</td>
 <td>120mph</td>
 <td>$10,000</td>
 </tr>
 <tr>
 <td>Pontiac</td>

25937bapp01.indd 63425937bapp01.indd 634 9/20/09 12:20:20 AM9/20/09 12:20:20 AM

635

Appendix A: Answers to Exercises

 <td>140mph</td>
 <td>$20,000</td>
 </tr>
 </tbody>
</table>

Exercise 2 Solution
It seems a rather daunting example, but rather than being diffi cult, it is just a conjunction of two areas,
one building a tree structure and the other navigating the tree structure. You start by navigating to the
<body/> element and creating a <table/> element. Now you can navigate to the new <table/> element
you’ve created and create a new <thead/> element and carry on from there. It’s a lengthy and repetitious
process, so that’s why it’s a good idea to comment your code to keep track of where you are.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Question 1 Answer</title>
</head>
<body>
<script type=”text/javascript”>
var tableElem = document.createElement(“table”)
var thElem = document.createElement(“thead”)
var trElem1 = document.createElement(“tr”)
var trElem2 = document.createElement(“tr”)
var trElem3 = document.createElement(“tr”)
var tdElem1 = document.createElement(“td”)
var tdElem2 = document.createElement(“td”)
var tdElem3 = document.createElement(“td”)
var tdElem4 = document.createElement(“td”)
var tdElem5 = document.createElement(“td”)
var tdElem6 = document.createElement(“td”)
var tdElem7 = document.createElement(“td”)
var tdElem8 = document.createElement(“td”)
var tdElem9 = document.createElement(“td”)
var tbodyElem = document.createElement(“tbody”)
var textNodeA1 = document.createTextNode(“Car”)
var textNodeA2 = document.createTextNode(“Top Speed”)
var textNodeA3 = document.createTextNode(“Price”)
var textNodeB1 = document.createTextNode(“Chevrolet”)
var textNodeB2 = document.createTextNode(“120mph”)
var textNodeB3 = document.createTextNode(“$10,000”)
var textNodeC1 = document.createTextNode(“Pontiac”)
var textNodeC2 = document.createTextNode(“140mph”)
var textNodeC3 = document.createTextNode(“$14,000”)

docNavigate = document.documentElement; //Starts with HTML document
docNavigate = docNavigate.firstChild.nextSibling; //Moves to the head
 // then body element
docNavigate.appendChild(tableElem); //Adds the table element
docNavigate = docNavigate.lastChild; //Moves to the table element

25937bapp01.indd 63525937bapp01.indd 635 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

636

Appendix A: Answers to Exercises

docNavigate.appendChild(thElem); //Adds the thead element
docNavigate = docNavigate.firstChild; //Moves to the thead element
docNavigate.appendChild(trElem1); //Adds the TR element
docNavigate = docNavigate.firstChild; //Moves the TR element
docNavigate.appendChild(tdElem1); //Adds the first TD element in the
 // heading
docNavigate.appendChild(tdElem2); //Adds the second TD element in the
 // heading
docNavigate.appendChild(tdElem3); //Adds the third TD element in the
 // heading
docNavigate = docNavigate.firstChild; //Moves to the first TD element
docNavigate.appendChild(textNodeA1); //Adds the second text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeA2); //Adds the second text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeA3); //Adds the third text node

docNavigate = docNavigate.parentNode; //Moves back to the TR element
docNavigate = docNavigate.parentNode; //Moves back to the thead element
docNavigate = docNavigate.parentNode; //Moves back to the table element
docNavigate.appendChild(tbodyElem); //Adds the tbody element
docNavigate = docNavigate.lastChild; //Moves to the tbody element
docNavigate.appendChild(trElem2); //Adds the second TR element
docNavigate = docNavigate.lastChild; //Moves to the second TR element
docNavigate.appendChild(tdElem4); //Adds the TD element
docNavigate.appendChild(tdElem5); //Adds the TD element
docNavigate.appendChild(tdElem6); //Adds the TD element
docNavigate = docNavigate.firstChild; //Moves to the first TD element
docNavigate.appendChild(textNodeB1); //Adds the first text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeB2); //Adds the second text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeB3); //Adds the third text node
docNavigate = docNavigate.parentNode; //Moves back to the TR element
docNavigate = docNavigate.parentNode; //Moves back to the tbody element
docNavigate.appendChild(trElem3); //Adds the TR element
docNavigate = docNavigate.lastChild; //Moves to the TR element
docNavigate.appendChild(tdElem7); //Adds the TD element
docNavigate.appendChild(tdElem8); //Adds the TD element
docNavigate.appendChild(tdElem9); //Adds the TD element
docNavigate = docNavigate.firstChild; //Moves to the TD element
docNavigate.appendChild(textNodeC1); //Adds the first text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeC2); //Adds the second text node
docNavigate = docNavigate.nextSibling; //Moves to the next TD element
docNavigate.appendChild(textNodeC3); //Adds the third text node
</script>
</body>
</html>

25937bapp01.indd 63625937bapp01.indd 636 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

637

Appendix A: Answers to Exercises

Exercise 2 Question
It was mentioned that Example 10 is an incomplete tab strip DHTML script. Make it not so incomplete
by making the following changes:

Only one tab should be active at a time. ❑

Only the active tab’s description should be visible. ❑

Exercise 2 Solution
Example 10 is incomplete because the script doesn’t keep track of which tab is active. Probably the
simplest way to add state recognition to the script is to add a global variable that keeps track of
the tab number that was last clicked. This particular solution uses this idea. Changed lines of code
are highlighted.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 12: Question 2 Answer</title>
 <style type=”text/css”>
 .tabStrip
 {
 background-color: #E4E2D5;
 padding: 3px;
 height: 22px;
 }

 .tabStrip div
 {
 float: left;
 font: 14px arial;
 cursor: pointer;
 }

 .tabStrip-tab
 {
 padding: 3px;
 }

 .tabStrip-tab-hover
 {
 border: 1px solid #316AC5;
 background-color: #C1D2EE;
 padding: 2px;
 }

 .tabStrip-tab-click
 {
 border: 1px solid #facc5a;

25937bapp01.indd 63725937bapp01.indd 637 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

638

Appendix A: Answers to Exercises

 background-color: #f9e391;
 padding: 2px;
 }
 </style>
 <script type=”text/javascript”>
 var currentNum = 0;
 function handleEvent(e)
 {
 var eSrc;

 if (window.event)
 {
 e = window.event;
 eSrc = e.srcElement;
 }
 else
 {
 eSrc = e.target;
 }

 if (e.type == “mouseover”)
 {
 if (eSrc.className == “tabStrip-tab”)
 {
 eSrc.className = “tabStrip-tab-hover”;
 }
 }

 if (e.type == “mouseout”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 eSrc.className = “tabStrip-tab”;
 }
 }

 if (e.type == “click”)
 {
 if (eSrc.className == “tabStrip-tab-hover”)
 {
 var num = eSrc.id.substr(eSrc.id.lastIndexOf(“-”) + 1);

 if (currentNum != num)
 {
 deactivateTab();

 eSrc.className = “tabStrip-tab-click”;
 showDescription(num);
 currentNum = num;
 }
 }
 }
 }

 function showDescription(num)

25937bapp01.indd 63825937bapp01.indd 638 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

639

Appendix A: Answers to Exercises

 {
 var descContainer = document.getElementById(“descContainer”);

 var div = document.createElement(“div”);
 div.id = “tabStrip-desc-” + num;
 var text = document.createTextNode(“Description for tab “ + num);

 div.appendChild(text);
 descContainer.appendChild(div);
 }

 function deactiveTab()
 {
 var descContainer = document.getElementById(“descContainer”);
 var descEl = document.getElementById(“tabStrip-desc-” + currentNum);

 if (descEl)
 {
 descContainer.removeChild(descEl);

 document.getElementById(“tabStrip-tab-”
 + currentNum).className = “tabStrip-tab”;
 }
 }

 document.onclick = handleEvent;
 document.onmouseover = handleEvent;
 document.onmouseout = handleEvent;
 </script>
</head>
<body>
 <div class=”tabStrip”>
 <div id=”tabStrip-tab-1” class=”tabStrip-tab”>Tab 1</div>
 <div id=”tabStrip-tab-2” class=”tabStrip-tab”>Tab 2</div>
 <div id=”tabStrip-tab-3” class=”tabStrip-tab”>Tab 3</div>
 </div>
 <div id=”descContainer”></div>
</body>
</html>

Let’s go over these new lines one at a time. First look at the new line in the showDescription() func-
tion in the following code:

div.id = “tabStrip-desc-” + num;

This line of code simply adds an id to the <div/> element that contains the tab’s description. This is
done so that you can easily fi nd this element when a different tab is clicked and you need to change the
description.

The next line to look at is the fi rst new line of the script; it adds a global variable called currentNum
and gives it the value of 0.

 var currentNum = 0;

25937bapp01.indd 63925937bapp01.indd 639 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

640

Appendix A: Answers to Exercises

When you click a tab, the code that handles the click event checks to see if the clicked tab’s number
is different from the value contained in currentNum. If it is, then you know the clicked tab is different
from the currently active tab, and you can begin to go through the process of deactivating the current
tab and making the new tab the active tab.

var num = eSrc.id.substr(eSrc.id.lastIndexOf(“-”) + 1);

if (currentNum != num)
{
 deactivateTab();

 eSrc.className = “tabStrip-tab-click”;
 showDescription(num);
 currentNum = num;
}

The fi rst line in the if statement calls the deactivateTab() function, which deactivates the current
tab (you’ll look at it later). The className property of the tab is changed to refl ect that it was clicked,
the description is added to the page, and the currentNum variable is changed to contain the value of
the new active tab’s number.

Now turn your attention to the deactivateTab() function. Its job is to remove the currently active
tab’s description from the page and change the active tab’s style back to normal.

function deactiveTab()
{
 var descContainer = document.getElementById(“descContainer”);
 var descEl = document.getElementById(“tabStrip-desc-” + currentNum);

The fi rst line of his function gets the <div/> element with an id of descContainer, and the second
line attempts to locate the description element by using the id value the showDescription() function
assigned it.

The word “attempts” is key here; remember that currentNum was initialized with a value of 0, and
there is no tab with a number of 0. Yet when you fi rst click any tab, deactivateTab() is called
because 0 does not equal to the clicked tab’s number. So the fi rst time you click a tab, your code
attempts to fi nd an element with an id value of tabStrip-desc-0, which obviously doesn’t exist,
and getElementById() returns null if it cannot fi nd the element with the specifi ed id. This is a
potential problem because the browser will throw an error if you attempt to do anything with the
descEl variable if it is null.

The solution to this problem is rather simple; check if the descEl variable has a value, and only
perform operations when it does.

 if (descEl)
 {
 descContainer.removeChild(descEl);

 document.getElementById(“tabStrip-tab-”
 + currentNum).className = “tabStrip-tab”;
 }
}

25937bapp01.indd 64025937bapp01.indd 640 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

641

Appendix A: Answers to Exercises

When descEl contains a value, you remove it from the descContainer element and change the
className property of the active tab to tabStrip-tab, changing its style to that of a tab in the normal
state.

Chapter 13

Exercise 1 Question
Using the Quicktime plug-in or ActiveX control, create a page with three links, so that when you click
any of them a sound is played. Use an alert box to tell the users who do not have QuickTime installed
that they must install it when they click a link.

The page should work in IE, Firefox, Safari, Chrome, and Opera. The method to tell QuickTime what
fi le to play is SetURL().

Exercise 1 Solution
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Chapter 13: Question Answer</title>
 <script type=”text/javascript”>
 var plugInInstalled = false;
 function play(fileName)
 {
 if (plugInInstalled)
 {
 document.audioPlayer.SetURL(fileName);
 document.audioPlayer.Play();
 }
 else
 {
 alert(“You must have QuickTime installed to play this file.”);
 }

 return false;
 }

 function window_onload()
 {
 if (!window.ActiveXObject)
 {
 var pluginsLength = navigator.plugins.length;
 for (var i = 0; i < pluginsLength; i++)
 {
 var pluginName = navigator.plugins[i].name.toLowerCase();
 if (pluginName.indexOf(“quicktime”) > -1)
 {
 plugInInstalled = true;

25937bapp01.indd 64125937bapp01.indd 641 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

642

Appendix A: Answers to Exercises

 break;
 }
 }
 }
 else
 {
 if (document.audioPlayer.readyState == 4)
 {
 plugInInstalled = true;
 }
 }

 if (!plugInInstalled)
 {
 alert(“You need Quicktime to play the audio files!”);
 }
 }

 onload = window_onload;
 </script>
</head>
<body>
 <object id=”audioPlayer”
 classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
 codebase=”http://www.apple.com/qtactivex/qtplugin.cab”
 width=”320” height=”260”>
 <param name=”src” value=”sound1.mp3” />
 <param name=”controller” value=”false” />
 <param name=”autoplay” value=”false” />
 <embed name=”audioPlayer”
 height=”260”
 width=”320”
 src=”sound1.mp3”
 type=”video/quicktime”
 pluginspage=”www.apple.com/quicktime/download”
 controller=”false”
 autoplay=”false”
 />
 </object>
 Sound 1
 Sound 2
 Sound 3
</body>
</html>

Save this as ch13_q1.htm.

This solution is based on the QuickTime example in the chapter. Note that the three sound fi les,
sound1.mp3, sound2.mp3, and sound3.mp3, can be found in the code download for this book.

25937bapp01.indd 64225937bapp01.indd 642 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

643

Appendix A: Answers to Exercises

The fi rst line of JavaScript code declares the plugInInstalled variable; this is the same variable
that was declared within the window_onload() function in the original example. Verify that the
user has the ability to use the QuickTime plug-in in the window’s onload event handler, which calls
the window_onload() function.

Because the support for plug-ins is different between IE and other browsers, the means of checking for
plug-ins is also different. For Firefox, Safari, Chrome, and Opera, go through the navigator object’s
plugins collection and check each installed plug-in for the name quicktime; if it’s found, you know
the user has the QuickTime player installed.

With IE, simply use the ActiveX control’s readyState property to see if it’s installed and initialized
correctly.

To play the sounds, a function called play() is defi ned whose parameter is the fi le name of the sound fi le
to be played. This function checks whether or not the QuickTime plug-in or ActiveX control is installed.

function play(fileName)
{
 if (plugInInstalled)
 {
 document.audioPlayer.SetURL(fileName);
 document.audioPlayer.Play();
 }
 else
 {
 alert(“You must have QuickTime installed to play this file.”);
 }

 return false;
}

If it is installed, then the function makes use of the QuickTime player’s SetURL() method to set the
sound fi le to be played and the Play() method to start playing the clip. If it isn’t installed, an alert box
tells the user they must have QuickTime installed in order to hear the sound fi le.

You have used different sounds for each link by simply specifying a different fi le name each time as the
parameter for the play() function. The onclick event handler starts playing the sound when you click
the link.

Sound 1

Chapter 14

Exercise 1 Question
Extend the HttpRequest module to include synchronous requests in addition to the asynchronous
requests the module already makes. You’ll have to make some adjustments to your code to incorporate
this functionality. (Hint: Create an async property for the module.)

25937bapp01.indd 64325937bapp01.indd 643 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

644

Appendix A: Answers to Exercises

Exercise 1 Solution
function HttpRequest(sUrl, fpCallback)
{
 this.url = sUrl;
 this.callBack = fpCallback;
 this.async = true;
 this.request = this.createXmlHttpRequest();
}

HttpRequest.prototype.createXmlHttpRequest = function () {
 if (window.XMLHttpRequest)
 {
 var oHttp = new XMLHttpRequest();
 return oHttp;
 }
 else if (window.ActiveXObject)
 {
 var versions =
 [
 “MSXML2.XmlHttp.6.0”,
 “MSXML2.XmlHttp.3.0”
];

 for (var i = 0; i < versions.length; i++)
 {
 try
 {
 oHttp = new ActiveXObject(versions[i]);
 return oHttp;
 }
 catch (error)
 {
 //do nothing here
 }
 }
 }
 return null;
}

HttpRequest.prototype.send = function()
{
 this.request.open(“GET”, this.url, this.async);

 if (this.async)
 {
 var tempRequest = this.request;
 var fpCallback = this.callBack;

 function request_readystatechange()
 {
 if (tempRequest.readyState == 4)
 {

25937bapp01.indd 64425937bapp01.indd 644 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

645

Appendix A: Answers to Exercises

 if (tempRequest.status == 200)
 {
 fpCallback(tempRequest.responseText);
 }
 else
 {
 alert(“An error occurred while attempting to “ +
 “contact the server.”);
 }
 }
 }

 this.request.onreadystatechange = request_readystatechange;
 }

 this.request.send(null);

 if (!this.async)
 {
 this.callBack(this.request.responseText);
 }
}

It’s possible to add synchronous communication to your HttpRequest module in a variety of ways.
The approach in this solution refactors the code to accommodate a new property called async, which
contains either true or false. If it contains true, then the underlying XMLHttpRequest object uses
asynchronous communication to retrieve the fi le. If false, the module uses synchronous communica-
tion. In short, this property resembles an XML DOM’s async property for determining how an XML
document is loaded.

The fi rst change made to the module is in the constructor itself. The original constructor initializes
and readies the XMLHttpRequest object to send data. This will not do for this new version, however.
Instead, the constructor merely initializes all the properties.

function HttpRequest(sUrl, fpCallback)
{
 this.url = sUrl;
 this.callBack = fpCallback;
 this.async = true;
 this.request = this.createXmlHttpRequest();
}

There are three new properties here. The fi rst, url, contains the URL that the XMLHttpRequest object
should attempt to request from the server. The callBack property contains a reference to the callback
function, and the async property determines the type of communication the XMLHttpRequest object
uses. Setting async to true in the constructor gives the property a default value. Therefore, you can
send the request in asynchronous mode without setting the property externally.

The new constructor and properties are actually desirable, as they enable you to reuse the same
HttpRequest object for multiple requests. If you wanted to make a request to a different URL, all

25937bapp01.indd 64525937bapp01.indd 645 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

646

Appendix A: Answers to Exercises

you would need to do is assign the url property a new value. The same can be said for the callback
function as well.

The createXmlHttpRequest() method remains untouched. This is a helper method and doesn’t really
have anything to do with sending the request.

The majority of changes to the module are in the send() method. It is here that the module decides
whether to use asynchronous or synchronous communication. Both types of communication have
very little in common when it comes to making a request; asynchronous communication uses
the onreadystatechange event handler, and synchronous communication allows access to the
XMLHttpRequest object’s properties when the request is complete. Therefore, code branching is
required.

HttpRequest.prototype.send = function()
{
 this.request.open(“GET”, this.url, this.async);

 if (this.async)
 {
 //more code here
 }

 this.request.send(null);

 if (!this.async)
 {
 //more code here
 }
}

The fi rst line of this method uses the open() method of the XMLHttpRequest object. The async prop-
erty is used as the fi nal parameter of the method. This determines whether or not the XHR object uses
asynchronous communication. Next, an if statement tests to see if this.async is true; if it is, the
asynchronous code will be placed in this if block. Next, the XMLHttpRequest object’s send() method
is called, sending the request to the server. The fi nal if statement checks to see whether this.async is
false. If it is, synchronous code is placed within the code block to execute.

HttpRequest.prototype.send = function()
{
 this.request.open(“GET”, this.url, this.async);

 if (this.async)
 {
 var tempRequest = this.request;
 var fpCallback = this.callBack;

 function request_readystatechange()
 {
 if (tempRequest.readyState == 4)
 {
 if (tempRequest.status == 200)
 {

25937bapp01.indd 64625937bapp01.indd 646 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

647

Appendix A: Answers to Exercises

 fpCallback(tempRequest.responseText);
 }
 else
 {
 alert(“An error occurred while attempting to “ +
 “contact the server.”);
 }
 }
 }

 this.request.onreadystatechange = request_readystatechange;
 }

 this.request.send(null);

 if (!this.async)
 {
 this.callBack(this.request.responseText);
 }
}

This new code fi nishes off the method. Starting with the fi rst if block, a new variable called fpCallback
is assigned the value of this.callBack. This is done for the same reasons as with the tempRequest
variable — scoping issues — as this points to the request_readystatechange() function instead
of the HttpRequest object. Other than this change, the asynchronous code remains the same. The
request_readystatechange() function handles the readystatechange event and calls the call-
back function when the request is successful.

The second if block is much simpler. Because this code executes only if synchronous communica-
tion is desired, all you have to do is call the callback function and pass the XMLHttpRequest object’s
responseText property.

Using this newly refactored module is quite simple. The following code makes an asynchronous
request for a fi ctitious text fi le called test.txt.

function request_callback(sResponseText)
{
 alert(sResponseText);
}

var oHttp = new HttpRequest(“test.txt”, request_callback);

oHttp.send();

Nothing has really changed for asynchronous requests. This is the exact same code used earlier in the
chapter. If you want to use synchronous communication, simply set async to false, like this:

function request_callback(sResponseText)
{
 alert(sResponseText);
}

var oHttp = new HttpRequest(“test.txt”, request_callback);

25937bapp01.indd 64725937bapp01.indd 647 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

648

Appendix A: Answers to Exercises

oHttp.async = false;

oHttp.send();

You now have an Ajax module that requests information in both asynchronous and synchronous
communication!

Exercise 2 Question
It was mentioned earlier in the chapter that the smart forms could be modifi ed to not use hyperlinks.
Change the form that uses the HttpRequest module so that the user name and e-mail fi elds are checked
when the user submits the form. Use the form’s onsubmit event handler and cancel the submission if a
user name or e-mail is taken. Also use the updated HttpRequest module from Question 1 and use syn-
chronous requests. The only time you need to alert the user is when the user name or e-mail is taken, so
make sure to return true if the user name and e-mail pass muster.

Exercise 2 Solution
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Form Field Validation</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”HttpRequest.js”></script>
 <script type=”text/javascript”>
 var isUsernameTaken;
 var isEmailTaken;

 function checkUsername_callBack(sResponseText)
 {
 if (sResponseText == “available”)
 {
 isUsernameTaken = false;
 }
 else
 {
 isUsernameTaken = true;
 }
 }

 function checkEmail_callBack(sResponseText)
 {

25937bapp01.indd 64825937bapp01.indd 648 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

649

Appendix A: Answers to Exercises

 if (sResponseText == “available”)
 {
 isEmailTaken = false;
 }
 else
 {
 isEmailTaken = true;
 }
 }

 function form_submit()
 {
 var request = new HttpRequest();
 request.async = false;

 //First check the username
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 request.url = “formvalidator.php?username=” + userValue;
 request.callBack = checkUsername_callBack;
 request.send();

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //Now check the email
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return false;
 }

 request.url = “formvalidator.php?email=” + emailValue;
 request.callBack = checkEmail_callBack;
 request.send();

 if (isEmailTaken)
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by “ +
 “another user.”);
 return false;
 }

25937bapp01.indd 64925937bapp01.indd 649 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

650

Appendix A: Answers to Exercises

 //If the code’s made it this far, everything’s good
 return true;
 }
 </script>
</head>
<body>
 <form onsubmit=”return form_submit()”>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>

 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>

 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Beginning with the HTML: the links were removed, as well as the third column of the table. The key
difference in this new HTML is the onsubmit event handler in the opening <form> tag. Ideally, the

25937bapp01.indd 65025937bapp01.indd 650 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

651

Appendix A: Answers to Exercises

form should submit its data only when the form fi elds have been validated. Therefore, the onsubmit
event handler is set to return form_submit(). The form_submit() function returns either true or
false, making the browser submit the form’s data if everything is okay and not submit if a fi eld is not
validated.

The JavaScript code holds the most changes; in this new implementation, two global variables, called
isUsernameTaken and isEmailTaken, are declared. These variables hold true or false values: true
if the user name or e-mail is taken, or false if it is not.

var isUsernameTaken;
var isEmailTaken;

function checkUsername_callBack(sResponseText)
{
 if (sResponseText == “available”)
 {
 isUsernameTaken = false;
 }
 else
 {
 isUsernameTaken = true;
 }
}

function checkEmail_callBack(sResponseText)
{
 if (sResponseText == “available”)
 {
 isEmailTaken = false;
 }
 else
 {
 isEmailTaken = true;
 }
}

The fi rst two functions, checkUsername_callBack() and checkEmail_callBack(), are somewhat
similar to their original versions. Instead of alerting information to the user, however, they simply assign
the isUsernameTaken and isEmailTaken variables their values.

The function that performs most of the work is form_submit(). It is responsible for making the
requests to the server and determines if the data in the form fi elds are ready for submission.

function form_submit()
{
 var request = new HttpRequest();
 request.async = false;

 //more code here
}

This code creates the HttpRequest object and sets it to synchronous communication. There are times
when synchronous communication is appropriate to use, and during form validation is one of those

25937bapp01.indd 65125937bapp01.indd 651 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

652

Appendix A: Answers to Exercises

times. Validating fi elds in a form is a sequential process, and its submission depends upon the outcome
of the onsubmit event handler. Using synchronous communication forces the function to wait for infor-
mation to be retrieved from the server before attempting to validate the fi eld. If you used asynchronous
communication, form_submit() would execute and return a value before the username and email could
be validated. Also note that the HttpRequest constructor received no arguments. This is because you
can explicitly set the url and callBack properties with the new version.

The fi rst fi eld to check is the Username fi eld.

function form_submit()
{
 var request = new HttpRequest();
 request.async = false;

 //First check the username
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 request.url = “formvalidator.php?username=” + userValue;
 request.callBack = checkUsername_callBack;
 request.send();

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //more code here
}

This code retrieves the value of the Username fi eld and checks to see whether any information was
entered. If none was entered, a message is alerted to the user informing them to enter data. If the user
entered information in the Username fi eld, then code execution continues. The url and callBack prop-
erties are assigned their values and the request is sent to the server. If it turns out that the user’s desired
user name is taken, an alert box tells them so. Otherwise, the code continues to execute and checks the
e-mail information.

function form_submit()
{
 var request = new HttpRequest();
 request.async = false;

 //First check the username
 var userValue = document.getElementById(“username”).value;

 if (userValue == “”)

25937bapp01.indd 65225937bapp01.indd 652 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

653

Appendix A: Answers to Exercises

 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 request.url = “formvalidator.php?username=” + userValue;
 request.callBack = checkUsername_callBack;
 request.send();

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //Now check the email
 var emailValue = document.getElementById(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return false;
 }

 request.url = “formvalidator.php?email=” + emailValue;
 request.callBack = checkEmail_callBack;
 request.send();

 if (isEmailTaken)
 {
 alert(“I’m sorry, but “ + emailValue + “ is in use by another user.”);
 return false;
 }

 //If the code’s made it this far, everything’s good
 return true;
}

The e-mail-checking code goes through the same process that was used to check the user name. The
value of the Email fi eld is retrieved and checked to determine whether the user typed anything into
the text box. Then that value is used to make another request to the server. Notice again that the url
and callBack properties are explicitly set. If isEmailTaken is true, an alert box shows the user that
another user has taken the e-mail address and the function returns false. If the address is available,
the function returns true, thus making the browser submit the form.

Chapter 15

Exercise 1 Question
Modify the answer to Chapter 14’s Question 2 using jQuery. Also add error reporting for when an error
occurs with the Ajax request.

25937bapp01.indd 65325937bapp01.indd 653 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

654

Appendix A: Answers to Exercises

Exercise 1 Solution
The key to this solution is synchronous communication. Without it, the form validation fails. Make sure
you set the async setting. The highlighted lines in the following code were changed to work with jQuery:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Chapter 15: Question 1 Answer with jQuery</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”jquery-1.3.2.min.js”></script>
 <script type=”text/javascript”>
 var isUsernameTaken;
 var isEmailTaken;

 function checkUsername_callBack(data, status)
 {
 if (data == “available”)
 {
 isUsernameTaken = false;
 }
 else
 {
 isUsernameTaken = true;
 }
 }

 function checkEmail_callBack(data, status)
 {
 if (data == “available”)
 {
 isEmailTaken = false;
 }
 else
 {
 isEmailTaken = true;
 }
 }

 function form_submit()
 {
 //First check the username

25937bapp01.indd 65425937bapp01.indd 654 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

655

Appendix A: Answers to Exercises

 var userValue = $(“#username”).val();

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 var userParms = new Object();
 userParms.username = userValue;

 $.get(“formvalidator.php”, userParms, checkUsername_callBack);

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //Now check the email
 var emailValue = $(“#email”).val();

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return false;
 }

 var emailParms = new Object();
 emailParms.email = emailValue;

 $.get(“formvalidator.php”, emailParms, checkEmail_callBack);

 if (isEmailTaken)
 {
 alert(“I’m sorry, but “ + emailValue +
 “ is in use by another user.”);
 return false;
 }

 //If the code’s made it this far, everything’s good
 return true;
 }

 var ajaxOptions = new Object();
 ajaxOptions.async = false;

 $.ajaxSetup(ajaxOptions);

 function request_error(event, request, settings)
 {
 alert(“An error occurred with the following URL:\n”
 + settings.url + “.\nStatus code: “ + request.status);
 }

25937bapp01.indd 65525937bapp01.indd 655 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

656

Appendix A: Answers to Exercises

 $(document).ajaxError(request_error);
 </script>
</head>
<body>
 <form onsubmit=”return form_submit()”>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>

 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>

 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

25937bapp01.indd 65625937bapp01.indd 656 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

657

Appendix A: Answers to Exercises

Exercise 2 Question
Modify the answer to Chapter 14’s Question 2 using Prototype. Also add error reporting for when an
error occurs with the Ajax request.

Exercise 2 Solution
As with the answer to Question 1, synchronous communication is key to the script working correctly, so
add it to the request options. The highlighted lines make Prototype work with this script.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Chapter 15: Question 2 Answer with Prototype</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script type=”text/javascript” src=”prototype-1.6.0.3.js”></script>
 <script type=”text/javascript”>
 var isUsernameTaken;
 var isEmailTaken;

 function checkUsername_callBack(request)
 {
 if (request.responseText == “available”)
 {
 isUsernameTaken = false;
 }
 else
 {
 isUsernameTaken = true;
 }
 }

 function checkEmail_callBack(request)
 {
 if (request.responseText == “available”)
 {
 isEmailTaken = false;
 }
 else
 {
 isEmailTaken = true;

25937bapp01.indd 65725937bapp01.indd 657 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

658

Appendix A: Answers to Exercises

 }
 }

 function form_submit()
 {
 //First check the username
 var userValue = $F(“username”);

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 var userParms = new Object();
 userParms.username = userValue;

 var options = getBasicOptions();
 options.onSuccess = checkUsername_callBack;
 options.parameters = userParms;

 new Ajax.Request(“formvalidator.php”, options);

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //Now check the email
 var emailValue = $F(“email”);

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return false;
 }

 var emailParms = new Object();
 emailParms.email = emailValue;

 options.onSuccess = checkEmail_callBack;
 options.parameters = emailParms;

 new Ajax.Request(“formvalidator.php”, options);

 if (isEmailTaken)
 {
 alert(“I’m sorry, but “ + emailValue +
 “ is in use by another user.”);
 return false;
 }

 //If the code’s made it this far, everything’s good

25937bapp01.indd 65825937bapp01.indd 658 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

659

Appendix A: Answers to Exercises

 return true;
 }

 function request_onfailure(request)
 {
 alert(“An error occurred. HTTP Status Code: “ + request.status);
 }

 function getBasicOptions()
 {
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;
 options.asynchronous = false;

 return options;
 }
 </script>
</head>
<body>
 <form onsubmit=”return form_submit()”>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>

 </tr>
 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />

25937bapp01.indd 65925937bapp01.indd 659 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

660

Appendix A: Answers to Exercises

 </td>

 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Exercise 3 Question
If you guessed that this question would be: “Change the answer to Chapter 14’s Question 2 using
MooTools, and add error reporting for when an error occurs with the Ajax request” then you won!!
Your prize is… completing the exercise.

Exercise 3 Solution
You guessed it! Synchronous communication!

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<html>
<head>
 <title>Chapter 15: Question 3 Answer with MooTools</title>
 <style type=”text/css”>
 .fieldname
 {
 text-align: right;
 }

 .submit
 {
 text-align: right;
 }
 </style>
 <script src=”mootools-1.2.3-core-yc.js” type=”text/javascript”></script>
 <script type=”text/javascript”>
 var isUsernameTaken;
 var isEmailTaken;

 function checkUsername_callBack(text, xml)
 {
 if (text == “available”)
 {
 isUsernameTaken = false;
 }

25937bapp01.indd 66025937bapp01.indd 660 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

661

Appendix A: Answers to Exercises

 else
 {
 isUsernameTaken = true;
 }
 }

 function checkEmail_callBack(text, xml)
 {
 if (text == “available”)
 {
 isEmailTaken = false;
 }
 else
 {
 isEmailTaken = true;
 }
 }

 function form_submit()
 {
 //First check the username
 var userValue = $(“username”).value;

 if (userValue == “”)
 {
 alert(“Please enter a user name to check!”);
 return false;
 }

 var options = getBasicOptions();
 options.onSuccess = checkUsername_callBack;

 new Request(options).send(“username=” + userValue);

 if (isUsernameTaken)
 {
 alert(“The username “ + userValue + “ is not available!”);
 return false;
 }

 //Now check the email
 var emailValue = $(“email”).value;

 if (emailValue == “”)
 {
 alert(“Please enter an email address to check!”);
 return false;
 }

 options.onSuccess = checkEmail_callBack;

 new Request(options).send(“email=” + emailValue);

 if (isEmailTaken)

25937bapp01.indd 66125937bapp01.indd 661 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

662

Appendix A: Answers to Exercises

 {
 alert(“I’m sorry, but “ + emailValue +
 “ is in use by another user.”);
 return false;
 }

 //If the code’s made it this far, everything’s good
 return true;
 }

 function request_onfailure(request)
 {
 alert(“An error occurred. HTTP Status Code: “ + request.status);
 }

 function getBasicOptions()
 {
 var options = new Object();
 options.method = “get”;
 options.onFailure = request_onfailure;
 options.url = “formvalidator.php”;
 options.async = false;

 return options;
 }
 </script>
</head>
<body>
 <form onsubmit=”return form_submit()”>
 <table>
 <tr>
 <td class=”fieldname”>
 Username:
 </td>
 <td>
 <input type=”text” id=”username” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Email:
 </td>
 <td>
 <input type=”text” id=”email” />
 </td>
 </tr>
 <tr>
 <td class=”fieldname”>
 Password:
 </td>
 <td>
 <input type=”text” id=”password” />
 </td>

 </tr>

25937bapp01.indd 66225937bapp01.indd 662 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

663

Appendix A: Answers to Exercises

 <tr>
 <td class=”fieldname”>
 Verify Password:
 </td>
 <td>
 <input type=”text” id=”password2” />
 </td>

 </tr>
 <tr>
 <td colspan=”2” class=”submit”>
 <input type=”submit” value=”Submit” />
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

25937bapp01.indd 66325937bapp01.indd 663 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

25937bapp01.indd 66425937bapp01.indd 664 9/20/09 12:20:21 AM9/20/09 12:20:21 AM

B
JavaScript Core Reference

This appendix outlines the syntax of all the JavaScript core language functions and objects with
their properties and methods. If changes have occurred between versions, they have been noted.

Browser Reference
The following table outlines which JavaScript version is in use and in which browser it is used.
Note that Internet Explorer implements Jscript, Microsoft’s version of JavaScript. However,
Jscript’s features are relatively the same as JavaScript.

JavaScript
Version

Netscape
Navigator

Mozilla
Firefox

Internet
Explorer

Safari /
Chrome

Opera

1.0 2.x 3.0

1.1 3.x

1.2 4.0–4.05

1.3 4.06–4.7x 4.0

1.4 5.0

1.5 6.x 1.0 5.5, 6, 7, 8 3.0, 3.1 6, 7, 8, 9

1.6 6.2 1.5 3.2, 4.0 1.0

1.7 2.0

1.8 3.0

1.8.1 3.5

25937bapp02.indd 66525937bapp02.indd 665 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

666

Appendix B: JavaScript Core Reference

Reserved Words
Various words and symbols are reserved by JavaScript. These words cannot be used as variable names,
nor can the symbols be used within them. They are listed in the following table.

abstract boolean break

byte case catch

char class const

continue debugger default

delete do double

else enum export

extends false final

finally float for

function goto if

implements import in

instanceof int interface

long native new

null package private

protected public return

short static super

switch synchronized this

throw throws transient

true try typeof

var void volatile

while with

- ! ~

% / *

> < =

& ^ |

+ ?

25937bapp02.indd 66625937bapp02.indd 666 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

667

Appendix B: JavaScript Core Reference

Other Identifi ers to Avoid
It is best to avoid the use of the following identifi ers as variable names.

JavaScript 1.0
abs acos anchor asin atan atan2 big blink bold ceil charAt comment cos Date E
escape eval exp fixed floor fontcolor fontsize getDate getDay getHours getMinutes
getMonth getSeconds getTime getTimezoneOffset getYear indexOf isNaN italics
lastIndexOf link log LOG10E LOG2E LN10 LN2 Math max min Object parse parseFloat
parseInt PI pow random round,,c setDate setHours setMinutes setMonth setSeconds
setTime setYear sin slice small sqrt SQRT1_2 SQRT2 strike String sub substr
substring sup tan toGMTString toLocaleString toLowerCase toUpperCase unescape UTC

JavaScript 1.1
caller className constructor java JavaArray JavaClass JavaObject JavaPackage
join length MAX_VALUE MIN_VALUE NaN NEGATIVE_INFINITY netscape Number
POSITIVE_INFINITY prototype reverse sort split sun toString valueOf

JavaScript 1.2
arity callee charCodeAt compile concat exec fromCharCode global ignoreCase index
input label lastIndex lastMatch lastParen leftContext match multiline Number
Packages pop push RegExp replace rightContext search shift slice splice source
String test unshift unwatch watch

JavaScript 1.3
apply call getFullYear getMilliseconds getUTCDate getUTCDay getUTCFullYear
getUTCHours getUTCMilliseconds getUTCMinutes getUTCMonth getUTCSeconds Infinity
isFinite NaN setFullYear setMilliseconds setUTCDate setUTCFullYear setUTCHours
setUTCMilliseconds setUTCMinutes setUTCMonth setUTCSeconds toSource toUTCString
undefined

25937bapp02.indd 66725937bapp02.indd 667 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

668

Appendix B: JavaScript Core Reference

JavaScript Operators
The following sections list the various operators available to you in JavaScript.

Assignment Operators
Assignment operators allow you to assign a value to a variable. The following table lists the different
assignment operators you can use.

Name Introduced Meaning

Assignment JavaScript 1.0 Sets variable v1 to the value of variable v2.
var v1 = v2;

Shorthand addition
or
Shorthand concatenation
same as
v1 = v1 + v2

JavaScript 1.0 v1 += v2

Shorthand subtraction
same as
v1 = v1 - v2

JavaScript 1.0 v1 -= v2

Shorthand multiplication
same as
v1 = v1 * v2

JavaScript 1.0 v1 *= v2

Shorthand division
same as
v1 = v1 / v2

JavaScript 1.0 v1 /= v2

Shorthand modulus
same as
v1 = v1 % v2

JavaScript 1.0 v1 %= v2

Shorthand left-shift
same as
v1 = v1 << v2

JavaScript 1.0 v1 <<= v2

Shorthand right-shift
same as
v1 = v1 >> v2

JavaScript 1.0 v1 >>= v2

25937bapp02.indd 66825937bapp02.indd 668 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

669

Appendix B: JavaScript Core Reference

Name Introduced Meaning

Shorthand zero-fi ll
right-shift
same as
v1 = v1 >>> v2

JavaScript 1.0 v1 >>>= v2

Shorthand AND
same as
v1 = v1 & v2

JavaScript 1.0 v1 &= v2

Shorthand XOR
same as
v1 = v1 ^ v2

JavaScript 1.0 v1 ^= v2

Shorthand OR
same as
v1 = v1 | v2

JavaScript 1.0 v1 |= v2

Comparison Operators
Comparison operators allow you to compare one variable or value with another. Any comparison state-
ment returns a Boolean value.

Name Introduced Meaning

Equal JavaScript 1.0 v1 == v2

True if two operands are strictly equal or equal once cast to
the same type.

Not equal JavaScript 1.0 v1 != v2

True if two operands are not strictly equal or not equal once
cast to the same type.

Greater than JavaScript 1.0 v1 > v2

True if left-hand side (LHS) operand is greater than right-
hand side (RHS) operand.

Greater than or
equal to

JavaScript 1.0 v1 >= v2

True if LHS operand is greater than or equal to RHS
operand.

Less than JavaScript 1.0 v1 < v2

True if LHS operand is less than RHS operand.

Continued

25937bapp02.indd 66925937bapp02.indd 669 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

670

Appendix B: JavaScript Core Reference

Name Introduced Meaning

Less than or
equal to

JavaScript 1.0 v1 <= v2

True if LHS operand is less than or equal to RHS operand.

Strictly equal JavaScript 1.3 v1 === v2

True if operands are equal and of the same type.

Not strictly
equal

JavaScript 1.3 v1 !== v2

True if operands are not strictly equal.

Arithmetic Operators
Arithmetic operators allow you to perform arithmetic operations between variables or values.

Name Introduced Meaning

Addition JavaScript 1.0 v1 + v2

Sum of v1 and v2.
(Concatenation of v1 and v2, if either operand is a string.)

Subtraction JavaScript 1.0 v1 - v2

Difference between v1 and v2.

Multiplication JavaScript 1.0 v1 * v2

Product of v1 and v2.

Division JavaScript 1.0 v1 / v2

Quotient of v2 into v1.

Modulus JavaScript 1.0 v1 % v2

Integer remainder of dividing v1 by v2.

Prefi x increment JavaScript 1.0 ++v1 * v2

(v1 + 1) * v2.
Note: v1 will be left as v1 + 1.

Postfi x increment JavaScript 1.0 v1++ * v2

(v1 * v2); v1 is then incremented by 1.

Comparison Operators (continued)

25937bapp02.indd 67025937bapp02.indd 670 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

671

Appendix B: JavaScript Core Reference

Name Introduced Meaning

Prefi x decrement JavaScript 1.0 — v1 * v2

(v1 – 1) * v2.
Note: v1 is left as v1 - 1.

Postfi x decrement JavaScript 1.0 v1 — * v2

(v1 * v2); v1 is then decremented by 1.

Bitwise Operators
Bitwise operators work by converting values in v1 and v2 to 32-bit binary numbers and then comparing
the individual bits of these two binary numbers. The result is returned as a normal decimal number.

Name Introduced Meaning

Bitwise
AND

JavaScript 1.0 v1 & v2

The bitwise AND lines up the bits in each operand and performs
an AND operation between the two bits in the same position. If
both bits are 1, the resulting bit in this position of the returned
number is 1. If either bit is 0, the resulting bit in this position of the
returned number is 0.

Bitwise
OR

JavaScript 1.0 v1 | v2

The bitwise OR lines up the bits in each operand and performs an
OR operation between the two bits in the same position. If either
bit is 1, the resulting bit in this position of the returned number is
1. If both bits are 0, the resulting bit in this position of the returned
number is 0.

Bitwise
XOR

JavaScript 1.0 v1 ^ v2

The bitwise XOR lines up the bits in each operand and performs
an XOR operation between the two bits in the same position. The
resulting bit in this position is 1 only if one bit from both operands
is 1. Otherwise, the resulting bit in this position of the returned
number is 0.

Bitwise
NOT

JavaScript 1.0 v1 ~ v2

Inverts all the bits in the number.

25937bapp02.indd 67125937bapp02.indd 671 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

672

Appendix B: JavaScript Core Reference

Bitwise Shift Operators
These work by converting values in v1 to 32-bit binary numbers and then moving the bits in the number
to the left or the right by the specifi ed number of places.

Name Introduced Meaning

Left-shift JavaScript 1.0 v1 << v2

Shifts v1 to the left by v2 places, fi lling the new gaps in with zeros.

Sign-
propagating
right-shift

JavaScript 1.4 v1 >> v2

Shifts v1 to the right by v2 places, ignoring the bits shifted off the
number.

Zero-fi ll
right-shift

JavaScript 1.0 v1 >>> v2

Shifts v1 to the right by v2 places, ignoring the bits shifted off the
number and adding v2 zeros to the left of the number.

Logical Operators
These should return one of the Boolean literals, true or false. However, this may not happen if v1 or
v2 is neither a Boolean value nor a value that easily converts to a Boolean value, such as 0, 1, null, the
empty string, or undefined.

Name Introduced Meaning

Logical
AND

JavaScript 1.0 v1 && v2

Returns true if both v1 and v2 are true, or false otherwise. Will
not evaluate v2 if v1 is false.

Logical
OR

JavaScript 1.0 v1 || v2

Returns false if both v1 and v2 are false, or true if one operand
is true. Will not evaluate v2 if v1 is true.

Logical
NOT

JavaScript 1.0 !v1

Returns false if v1 is true, or true otherwise.

Object Operators
JavaScript provides a number of operators to work with objects. The following table lists them.

25937bapp02.indd 67225937bapp02.indd 672 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

673

Appendix B: JavaScript Core Reference

Name Introduced Meaning

delete JavaScript 1.2 delete obj

Deletes an object, one of its properties, or the element of
an array at the specifi ed index. Also deletes variables not
declared with the var keyword.

in JavaScript 1.4 for (prop in somObj)

Returns true if someObj has the named property.

instanceof JavaScript 1.4 someObj instanceof ObjType

Returns true if someObj is of type ObjType; otherwise,
returns false.

new JavaScript 1.0 new ObjType()

Creates a new instance of an object with type ObjType.

this JavaScript 1.0 this.property

Refers to the current object.

Miscellaneous Operators
The following table lists miscellaneous operators.

Name Introduced Meaning

Conditional
operator

JavaScript 1.0 (evalquery) ? v1 : v2;

If evalquery is true, the operator returns v1; otherwise it
returns v2.

Comma
operator

JavaScript 1.0 var v3 = (v1 + 2, v2 * 2)

Evaluates both operands while treating the two as one expres-
sion. Returns the value of the second operand. In this example,
v3 holds the resulting value of v2 * 2.

typeof JavaScript 1.1 typeof v1

Returns a string holding the type of v1, which is not evaluated.

void JavaScript 1.1 void(eva1)

Evaluates eval1 but does not return a value.

25937bapp02.indd 67325937bapp02.indd 673 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

674

Appendix B: JavaScript Core Reference

Operator Precedence
Does 1 + 2 * 3 = 1 + (2 * 3) = 7 or does it equal (1 + 2) * 3 = 9?

Operator precedence determines the order in which operators are evaluated. For example, the multipli-
cative operator (*) has a higher precedence than the additive operator (+). Therefore, the correct answer
to the previous question is

1 + (2 * 3)

The following table lists the operator precedence in JavaScript from highest to lowest. The third column
explains whether to read 1+2+3+4 as ((1+2)+3)+4 (left to right) or 1+(2+(3+(4))) (right to left).

Operator Type Operators Evaluation Order for Like Elements

Member . or [] Left to right

Create instance new Right to left

Function call () Left to right

Increment ++ N/a

Decrement — N/a

Logical not ! Right to left

Bitwise not ~ Right to left

Unary + + Right to left

Unary - - Right to left

Type of typeof Right to left

Void void Right to left

Delete delete Right to left

Multiplication * Left to right

Division / Left to right

Modulus % Left to right

Addition + Left to right

Subtraction - Left to right

Bitwise shift <<, >>, >>> Left to right

Relational <, <=, >, >= Left to right

25937bapp02.indd 67425937bapp02.indd 674 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

675

Appendix B: JavaScript Core Reference

Operator Type Operators Evaluation Order for Like Elements

In in Left to right

Instance of instanceof Left to right

Equality ==, !=, ===, !=== Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment =, +=, -=, *=, /=,
%=, <<=, >>=, >>>=,
&=, ^=, |=

Right to left

Comma , Left to right

JavaScript Statements
The following tables describe core JavaScript statements.

Block
JavaScript blocks start with an opening curly brace ({) and end with a closing curly brace (}). Block
statements are meant to make the contained single statements execute together, such as the body of a
function or a condition.

Statement Introduced Description

{ } JavaScript 1.5 Used to group statements as delimited by the curly brackets.

25937bapp02.indd 67525937bapp02.indd 675 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

676

Appendix B: JavaScript Core Reference

Conditional
The following table lists conditional statements for JavaScript as well as the version in which they were
introduced.

Statement Introduced Description

if JavaScript 1.2 Executes a block of code if a specifi ed condition is true.

else JavaScript 1.2 The second half of an if statement. Executes a block of code if the
result of the if statement is false.

switch JavaScript 1.2 Specifi es various blocks of statements to be executed depending
on the value of the expression passed in as the argument.

Declarations
These keywords declare variables or functions in JavaScript code.

Statement Introduced Description

var JavaScript 1.0 Used to declare a variable. Initializing it to a value is optional at
the time of declaration.

function JavaScript 1.0 Used to declare a function with the specifi ed parameters, which
can be strings, numbers, or objects. To return a value, the func-
tion must use the return statement.

Loop
Loops execute a block of code while a specifi ed condition is true.

Statement Introduced Description

do…while JavaScript 1.2 Executes the statements specifi ed until the test condition after
the while evaluates to false. The statements are executed at
least once because the test condition is evaluated last.

for JavaScript 1.0 Creates a loop controlled according to the three optional expres-
sions enclosed in the parentheses after the for and separated
by semicolons. The fi rst of these three expressions is the initial-
expression, the second is the test condition, and the third is the
increment-expression.

for…in JavaScript 1.0 Used to iterate over all the properties of an object using a vari-
able. For each property the specifi ed statements within the loop
are executed.

25937bapp02.indd 67625937bapp02.indd 676 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

677

Appendix B: JavaScript Core Reference

Statement Introduced Description

while JavaScript 1.0 Executes a block of statements if a test condition evaluates to
true. The loop then repeats, testing the condition with each
repeat, ceasing if the condition evaluates to false.

break JavaScript 1.0 Used within a while or for loop to terminate the loop and
transfer program control to the statement following the loop.
Can also be used with a label to break to a particular program
position outside of the loop.

label JavaScript 1.2 An identifi er that can be used with break or continue state-
ments to indicate where the program should continue execution
after the loop execution is stopped.

Execution Control Statements
Code execution is controlled in a variety of ways. In addition to the conditional and loop statements, the
following statements also contribute to execution control.

Statement Introduced Description

continue JavaScript 1.0 Used to stop execution of the block of statements in the current
iteration of a while or for loop; execution of the loop contin-
ues with the next iteration.

return JavaScript 1.0 Used to specify the value to be returned by a function.

with JavaScript 1.0 Specifi es the default object for a block of code.

Exception Handling Statements
Errors are a natural part of programming, and JavaScript provides you the means to catch errors and
handle them gracefully.

Statement Introduced Description

throw JavaScript 1.4 Throws a custom exception defi ned by the user.

try…catch
…finally

JavaScript 1.4 Executes the statements in the try block; if any exceptions
occur, these are handled in the catch block. The finally
block allows you to stipulate statements that will be executed
after both the try and catch statements.

25937bapp02.indd 67725937bapp02.indd 677 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

678

Appendix B: JavaScript Core Reference

Other Statements
The following table lists other JavaScript statements and when they were introduced.

Statement Introduced Description

comment JavaScript 1.0 Notes that are ignored by the script engine and that can be used
to explain the code. There are two types of comments: single-line
and multi-line.

// single line comment

/* multi
 line
 comment */

Top-Level Properties and Functions
These are core properties and functions, which are not associated with any lower-level object, although
in the terminology used by ECMAScript and by Jscript, they are described as properties and methods of
the global object.

The top-level properties were introduced in JavaScript 1.3, but in previous versions, Infinity and NaN
existed as properties of the Number object.

Top-Level Properties

Property Introduced Description

Infinity JavaScript 1.3 Returns infi nity.

NaN JavaScript 1.3 Returns a value that is not a number.

undefined JavaScript 1.3 Indicates that a value has not been assigned to a variable.

Top-Level Functions

Function Introduced Description

decodeURI() JavaScript 1.5 Used to decode a URI encoded with
encodeURI().

decodeURIcomponent() JavaScript 1.5 Used to decode a URI encoded with
encodeURIComponent().

encodeURI() JavaScript 1.5 Used to compose a new version of a complete
URI, replacing each instance of certain charac-
ters. It is based on the UTF-8 encoding of the
characters.

25937bapp02.indd 67825937bapp02.indd 678 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

679

Appendix B: JavaScript Core Reference

Function Introduced Description

encodeURIComponent() JavaScript 1.5 Used to compose a new version of a complete
URI by replacing each instance of the specifi ed
character with escape sequences. Representation
is via the UTF encoding of the characters.

escape() JavaScript 1.0 Used to encode a string in the ISO Latin-1 char-
acter set; for example, to add to a URL.

eval() JavaScript 1.0 Returns the result of the JavaScript code, which
is passed in as a string parameter.

isFinite() JavaScript 1.3 Indicates whether the argument is a fi nite number.

isNaN() JavaScript 1.1 Indicates if the argument is not a number.

Number() JavaScript 1.2 Converts an object to a number.

parseFloat() JavaScript 1.0 Parses a string and returns it as a fl oating-point
number.

parseInt() JavaScript 1.0 Parses a string and returns it as an integer. An
optional second parameter specifi es the base of
the number to be converted.

String() JavaScript 1.2 Converts an object to a string.

unescape() JavaScript 1.0 Returns the ASCII string for the specifi ed hexa-
decimal encoding value.

JavaScript and Jscript Core Objects
This section describes the objects available in the JavaScript and Jscript core languages and their meth-
ods and properties.

ActiveXObject
The ActiveXObject object represents an ActiveX object when accessed from within Microsoft’s
JScript code. Introduced in Jscript 3.0, it’s not available in ECMAScript or JavaScript. It is created with
the ActiveXObject constructor; for example, to create a Microsoft Word document, you would write

var objActiveX = new ActiveXObject(“Word.Document”);

The properties and methods of this object will be those of the ActiveX object thus created. For example,
the following code opens a Word document and writes some text to it and to the HTML page:

var objActiveX = new ActiveXObject(“Word.Document”);
strText=”This is being written both to the HTML page and to the Word document.”;
objActiveX.application.selection.typeText(strText);
document.write(strText);

25937bapp02.indd 67925937bapp02.indd 679 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

680

Appendix B: JavaScript Core Reference

Array
The Array object represents an array of variables. It was introduced in JavaScript 1.1. An Array object
can be created with the Array constructor.

var objArray = new Array(10) // an array of 11 elements
var objArray = new Array(“1”, “2”, “4”) // an array of 3 elements

Arrays can also be created using array literal syntax.

var objArray = [];

Literal syntax is the preferred method of creating an array.

Properties

Property Introduced Description

constructor JavaScript 1.1 Used to reference the constructor function for
the object.

length JavaScript 1.1 Returns the number of elements in the array.

prototype JavaScript 1.1 Returns the prototype for the object, which
can be used to extend the object’s interface.

Methods
Square brackets ([]) surrounding a parameter means that parameter is optional.

Method Introduced Description

concat(value1 [, value2,…]) JavaScript 1.2 Concatenates two arrays and returns
the new array thus formed.

every(testFn(element, index,
array))

JavaScript 1.6 Iterates over the array, executing
testFn() on every element. Returns
true if all iterations return true.
Otherwise, it returns false.

filter(testFn(element, index,
array))

JavaScript 1.6 Iterates over the array, executing
testFn() on every element. Returns
a new array of elements that pass
testFn().

foreach(fn(element, index,
array))

JavaScript 1.6 Iterates over the array, executing fn()
on every element.

indexOf(element
[, startIndex])

JavaScript 1.6 Returns an index of the specifi ed
element if found, or -1 if not found.
Starts at startIndex if specifi ed.

25937bapp02.indd 68025937bapp02.indd 680 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

681

Appendix B: JavaScript Core Reference

Method Introduced Description

join([separator]) JavaScript 1.1 Joins all the elements of an array into a
single string delimited by separator if
specifi ed.

lastIndexOf(element
[, startIndex])

JavaScript 1.6 Searches an array starting at last ele-
ment and moves backwards. Returns
an index of the specifi ed element if
found, or -1 if not found. Starts at
startIndex if specifi ed.

map(fn(element, index,
array))

JavaScript 1.6 Iterates over the array, executing fn()
on every element. Returns a new array
based on the outcome of fn().

pop() JavaScript 1.2 Pops the last element from the end of
the array and returns that element.

push(value1 [, value2, …]) JavaScript 1.2 Pushes one or more elements onto the
end of the array and returns the new
length of the array. The array’s new
length is returned.

reverse() JavaScript 1.1 Reverses the order of the elements in
the array, so the fi rst element becomes
the last and the last becomes the fi rst.

shift() JavaScript 1.2 Removes the fi rst element from the
beginning of the array and returns
that element.

slice(startIndex [, endIndex]) JavaScript 1.2 Returns a slice of the array starting at
the start index and ending at the ele-
ment before the end index.

some(testFn(element, index,
array))

JavaScript 1.6 Iterates over the array, executing
testFn() on every element. Returns
true if at least one result of testFn()
is true.

sort([sortFn(a,b)]) JavaScript 1.1 Sorts the elements of the array.
Executes sortFn() for sorting if it is
provided.

splice(startIndex [, length,
value1, …)

JavaScript 1.2 Removes the amount of elements
denoted by length starting at
startIndex. Provided values replace
the deleted elements. Returns the
deleted elements.

toString() JavaScript 1.1 Converts the Array object into a string.

Continued

25937bapp02.indd 68125937bapp02.indd 681 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

682

Appendix B: JavaScript Core Reference

Method Introduced Description

unshift(value1 [, value2, …]) JavaScript 1.2 Adds elements to the beginning of the
array and returns the new length.

valueOf() JavaScript 1.1 Returns the primitive value of the array.

Boolean
The Boolean object is used as a wrapper for a Boolean value. It was introduced in JavaScript 1.1. It is
created with the Boolean constructor, which takes as a parameter the initial value for the object (if this
is not a Boolean value, it will be converted into one).

False-y values are null, undefined, “”, and 0. All other values are considered truth-y.

Properties

Property Introduced Description

constructor JavaScript 1.1 Specifi es the function that creates an object’s
prototype.

prototype JavaScript 1.1 Returns the prototype for the object, which can
be used to extend the object’s interface.

Methods

Method Introduced Description

toString() JavaScript 1.1 Converts the Boolean object into a string.

valueOf() JavaScript 1.1 Returns the primitive value of the Boolean object.

Date
The Date object is used to represent a given date-time. It was introduced in JavaScript 1.0.

Properties

Property Introduced Description

constructor JavaScript 1.1 Used to reference the constructor function for the object.

prototype JavaScript 1.1 Returns the prototype for the object, which can be used to
extend the object’s interface.

Methods (continued)

25937bapp02.indd 68225937bapp02.indd 682 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

683

Appendix B: JavaScript Core Reference

Methods

Method Introduced Description

getDate() JavaScript 1.0 Retrieves the date in the month
from the Date object.

getDay() JavaScript 1.0 Retrieves the day of the week from
the Date object.

getFullYear() JavaScript 1.3 Retrieves the full year from the
Date object.

getHours() JavaScript 1.0 Retrieves the hour of the day from
the Date object.

getMilliseconds() JavaScript 1.3 Retrieves the number of millisec-
onds from the Date object.

getMinutes() JavaScript 1.0 Retrieves the number of minutes
from the Date object.

getMonth() JavaScript 1.0 Retrieves the month from the Date
object.

getSeconds() JavaScript 1.0 Retrieves the number of seconds
from the Date object.

getTime() JavaScript 1.0 Retrieves the number of millisec-
onds since January 1 1970 00:00:00
from the Date object.

getTimezoneOffset() JavaScript 1.0 Retrieves the difference in minutes
between the local time zone and
universal time (UTC).

getUTCDate() JavaScript 1.3 Retrieves the date in the month
from the Date object adjusted to
universal time.

getUTCDay() JavaScript 1.3 Retrieves the day of the week from
the Date object adjusted to univer-
sal time.

getUTCFullYear() JavaScript 1.3 Retrieves the year from the Date
object adjusted to universal time.

getUTCHours() JavaScript 1.3 Retrieves the hour of the day from
the Date object adjusted to univer-
sal time.

getUTCMilliseconds() JavaScript 1.3 Retrieves the number of millisec-
onds from the Date object adjusted
to universal time.

Continued

25937bapp02.indd 68325937bapp02.indd 683 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

684

Appendix B: JavaScript Core Reference

Method Introduced Description

getUTCMinutes() JavaScript 1.3 Retrieves the number of minutes
from the Date object adjusted to
universal time.

getUTCMonth() JavaScript 1.3 Retrieves the month from the Date
object adjusted to universal time.

getUTCSeconds() JavaScript 1.3 Retrieves the number of seconds
from the Date object adjusted to
universal time.

getYear() JavaScript 1.0 Retrieves the year from the Date
object.

parse(dateString) JavaScript 1.0 Retrieves the number of millisec-
onds in a date since January 1 1970
00:00:00, local time.

setDate(dayOfMonth) JavaScript 1.0 Sets the date in the month for the
Date object.

setFullYear(year [, month, day]) JavaScript 1.3 Sets the full year for the Date
object.

setHours(hours [, minutes,
seconds, milliseconds])

JavaScript 1.0 Sets the hour of the day for the
Date object.

setMilliseconds(milliseconds) JavaScript 1.3 Sets the number of milliseconds for
the Date object.

setMinutes(minutes [, seconds,
milliseconds])

JavaScript 1.0 Sets the number of minutes for the
Date object.

setMonth(month [, day]) JavaScript 1.0 Sets the month for the Date object.

setSeconds(seconds
[, milliseconds])

JavaScript 1.0 Sets the number of seconds for the
Date object.

setTime(milliseconds) JavaScript 1.0 Sets the time for the Date object
according to the number of mil-
liseconds since January 1 1970
00:00:00.

setUTCDate(dayOfMonth) JavaScript 1.3 Sets the date in the month for
the Date object according to
universal time.

setUTCFullYear(year [, month,
day])

JavaScript 1.3 Sets the full year for the Date object
according to universal time.

Methods (continued)

25937bapp02.indd 68425937bapp02.indd 684 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

685

Appendix B: JavaScript Core Reference

Method Introduced Description

setUTCHours(hours [, minutes,
seconds, milliseconds])

JavaScript 1.3 Sets the hour of the day for the
Date object according to
universal time.

setUTCMilliseconds(milliseconds) JavaScript 1.3 Sets the number of milliseconds for
the Date object according to uni-
versal time.

setUTCMinutes(mintes [, seconds,
milliseconds])

JavaScript 1.3 Sets the number of minutes for
the Date object according to
universal time.

setUTCMonth(month [, day]) JavaScript 1.3 Sets the month for the Date object
according to universal time.

setUTCSeconds() JavaScript 1.3 Sets the number of seconds for the
Date object according to universal
time.

setYear(year) JavaScript 1.0 Sets the year for the Date
object. Deprecated in favor of
setFullYear().

toGMTString() JavaScript 1.0 Converts the Date object to a string
according to Greenwich Mean
Time. Replaced by toUTCString.

toLocaleString() JavaScript 1.0 Converts the Date object to a string
according to the local time zone.

toString() JavaScript 1.1 Converts the Date object into a
string.

toUTCString() JavaScript 1.3 Converts the Date object to a string
according to universal time.

UTC(year, month [, day, hours,
minutes, seconds, milliseconds])

JavaScript 1.0 Retrieves the number of millisec-
onds in a date since January 1 1970
00:00:00, universal time.

valueOf() JavaScript 1.1 Returns the primitive value of the
Date object.

Function
ActiveXObject functions represent a block of JavaScript code that is called on demand. Introduced in
JavaScript 1.1, a Function object is created with the Function constructor.

25937bapp02.indd 68525937bapp02.indd 685 9/20/09 12:35:53 AM9/20/09 12:35:53 AM

686

Appendix B: JavaScript Core Reference

Functions can be defi ned in a variety of ways. You can create a function using the following standard
function statement:

function functionName() {
 // code here
}

You can also create an anonymous function and assign it to a variable. The following code demonstrates
this approach:

var functionName = function() {
 // code here
};

The trailing semi-colon is not a typo because this statement is an assignment operation, and all assign-
ment operations should end with a semi-colon.

Functions are objects, and thus they have a constructor. It’s possible to create a function using the
Function object’s constructor as shown in the following code:

var functionName = new Function(“arg1”, “arg2”, “return arg1 + arg2”);

The fi rst arguments to the constructor are the names of the function’s parameters — you can add as
many parameters as you need. The last parameter you pass to the constructor is the function’s body.
The previous code creates a function that accepts two arguments and returns their sum.

There are very few instances where you will use the Function constructor. It is preferred to defi ne a
function using the standard function statement or by creating an anonymous function and assigning
it to a variable.

Properties

Property Introduced Description

arguments JavaScript 1.1 An array containing the parameters passed into the
function.

arguments.length JavaScript 1.1 Returns the number of parameters passed into the
function.

constructor JavaScript 1.1 Used to reference the constructor function for the object.

length JavaScript 1.1 Returns the number of parameters expected by the
function. This differs from arguments.length, which
returns the number of parameters actually passed into
the function.

prototype JavaScript 1.1 Returns the prototype for the object, which can be used
to extend the object’s interface.

25937bapp02.indd 68625937bapp02.indd 686 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

687

Appendix B: JavaScript Core Reference

Methods

Method Introduced Description

apply(thisObj,
arguments)

JavaScript 1.3 Calls a function or method as if it belonged to thisObj
and passes arguments to the function or method.
arguments must be an array.

call(thisObj,
arg1, …)

JavaScript 1.3 Identical to apply(), except arguments are passed indi-
vidually instead of in an array.

toString() JavaScript 1.1 Converts the Function object into a string.

valueOf() JavaScript 1.1 Returns the primitive value of the Function object.

Math
The Math object provides methods and properties used for mathematical calculations. Introduced in
JavaScript 1.0, the Math object is a top-level object, which can be accessed without a constructor.

Properties

Property Introduced Description

E JavaScript 1.0 Returns Euler’s constant (the base of natural logarithms;
approximately 2.718).

LN10 JavaScript 1.0 Returns the natural logarithm of 10 (approximately 2.302).

LN2 JavaScript 1.0 Returns the natural logarithm of 2 (approximately 0.693).

LOG10E JavaScript 1.0 Returns the base 10 logarithm of E (approximately 0.434).

LOG2E JavaScript 1.0 Returns the base 2 logarithm of E (approximately 1.442).

PI JavaScript 1.0 Returns pi, the ratio of the circumference of a circle to its diameter
(approximately 3.142).

SQRT1_2 JavaScript 1.0 Returns the square root of 1/2 (approximately 0.707).

SQRT2 JavaScript 1.0 Returns the square root of 2 (approximately 1.414).

Methods

Method Introduced Description

abs(x) JavaScript 1.0 Returns the absolute (positive) value of a number.

acos(x) JavaScript 1.0 Returns the arccosine of a number (in radians).

asin(x) JavaScript 1.0 Returns the arcsine of a number (in radians).

Continued

25937bapp02.indd 68725937bapp02.indd 687 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

688

Appendix B: JavaScript Core Reference

Method Introduced Description

atan(x) JavaScript 1.0 Returns the arctangent of a number (in radians).

atan2(y, x) JavaScript 1.0 Returns the angle (in radians) between the x-axis and the
position represented by the y and x coordinates passed in as
parameters.

ceil(x) JavaScript 1.0 Returns the value of a number rounded up to the nearest
integer.

cos(x) JavaScript 1.0 Returns the cosine of a number.

exp(x) JavaScript 1.0 Returns E to the power of the argument passed in.

floor(x) JavaScript 1.0 Returns the value of a number rounded down to the nearest
integer.

log(x) JavaScript 1.0 Returns the natural logarithm (base E) of a number.

max(a, b) JavaScript 1.0 Returns the greater of two numbers passed in as parameters.

min(a, b) JavaScript 1.0 Returns the lesser of two numbers passed in as parameters.

pow(x, y) JavaScript 1.0 Returns the fi rst parameter raised to the power of the second.

random() JavaScript 1.1 Returns a pseudo-random number between 0 and 1.

round(x) JavaScript 1.0 Returns the value of a number rounded up or down to the
nearest integer.

sin(x) JavaScript 1.0 Returns the sine of a number.

sqrt(x) JavaScript 1.0 Returns the square root of a number.

tan(x) JavaScript 1.0 Returns the tangent of a number.

Number
The Number object acts as a wrapper for primitive numeric values. Introduced in JavaScript 1.1, a
Number object is created using the Number constructor with the initial value for the number passed in as
a parameter.

Properties

Property Introduced Description

constructor JavaScript 1.1 Used to reference the constructor function for the object.

MAX_VALUE JavaScript 1.1 Returns the largest number that can be represented in
JavaScript (approximately 1.79E+308).

Methods (continued)

25937bapp02.indd 68825937bapp02.indd 688 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

689

Appendix B: JavaScript Core Reference

Property Introduced Description

MIN_VALUE JavaScript 1.1 Returns the smallest number that can be represented in
JavaScript (5E-324).

NaN JavaScript 1.1 Returns a value that is “not a number.”

NEGATIVE_
INFINITY

JavaScript 1.1 Returns a value representing negative infi nity.

POSITIVE_
INFINITY

JavaScript 1.1 Returns a value representing (positive) infi nity.

prototype JavaScript 1.1 Returns the prototype for the object, which can be used to
extend the object’s interface.

Methods

Method Introduced Description

toExponential(fractionDigits) JavaScript 1.5 Returns a string containing the
exponent notation of a number. The
parameter should be between 0 and 20
and determines the number of digits
after the decimal.

toFixed([digits]) JavaScript 1.5 The format number for digits num-
ber of digits. The number is rounded
up, and 0s are added after the decimal
point to achieve the desired decimal
length.

toPrecision([precision]) JavaScript 1.5 Returns a string representing the
Number object to the specifi ed
precision.

toString() JavaScript 1.1 Converts the Number object into a
string.

valueOf() JavaScript 1.1 Returns the primitive value of the
Number object.

Object
Object is the primitive type for JavaScript objects, from which all other objects are descended (that is,
all other objects inherit the methods and properties of the Object object). Introduced in JavaScript 1.0,
an Object object can be created using the Object constructor as follows:

var obj = new Object();

25937bapp02.indd 68925937bapp02.indd 689 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

690

Appendix B: JavaScript Core Reference

You can also create an object using object literal notation like this:

var obj = {};

Literal notation is the preferred method of creating an object.

Properties

Property Introduced Description

constructor JavaScript 1.1 Used to reference the constructor function for the object.

prototype JavaScript 1.1 Returns the prototype for the object, which can be used to
extend the object’s interface.

Methods

Method Introduced Description

hasOwnProperty(propertyName) JavaScript 1.5 Checks whether the specifi ed
property is inherited. Returns
true if not inherited; false if
inherited.

isPrototypeOf(obj) JavaScript 1.5 Determines if the specifi ed
object is the prototype of
another object.

propertyIsEnumerable(propertyName) JavaScript 1.5 Determines if the specifi ed
property can be seen by a for
in loop.

toString() JavaScript 1.0 Converts the Object object into
a string.

valueOf() JavaScript 1.1 Returns the primitive value of
the Object object.

RegExp
The RegExp object is used to fi nd patterns within string values. RegExp objects can be created in two
ways: using the RegExp constructor or a text literal. It was introduced in JavaScript 1.2.

Some of the properties in the following table have both long and short names. The short names are
derived from the Perl programming language.

25937bapp02.indd 69025937bapp02.indd 690 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

691

Appendix B: JavaScript Core Reference

Properties

Property Introduced Description

constructor JavaScript 1.2 Used to reference the constructor function for the object.

global JavaScript 1.2 Indicates whether all possible matches in the string are to be
made, or only the fi rst. Corresponds to the g fl ag.

ignoreCase JavaScript 1.2 Indicates whether the match is to be case-insensitive.
Corresponds to the i fl ag.

input JavaScript 1.2 The string against which the regular expression is matched.

lastIndex JavaScript 1.2 The position in the string from which the next match is to be
started.

multiline JavaScript 1.2 Indicates whether strings are to be searched across multiple
lines. Corresponds with the m fl ag.

prototype JavaScript 1.2 Returns the prototype for the object, which can be used to
extend the object’s interface.

source JavaScript 1.2 The text of the pattern for the regular expression.

Methods

Method Introduced Description

exec(stringToSearch) JavaScript 1.2 Executes a search for a match in the string param-
eter passed in.

test(stringToMatch) JavaScript 1.2 Tests for a match in the string parameter passed in.

toString() JavaScript 1.2 Converts the RegExp object into a string.

valueOf() JavaScript 1.2 Returns the primitive value of the RegExp object.

Special Characters Used in Regular Expressions

Character Examples Function

\ /n/ matches n;
/\n/ matches a linefeed
character;
/^/ matches the start of a
line; and
/\^/ matches ^

For characters that are by default treated as normal
characters, the backslash indicates that the next char-
acter is to be interpreted with a special value.

For characters that are usually treated as special
characters, the backslash indicates that the next char-
acter is to be interpreted as a normal character.

Continued

25937bapp02.indd 69125937bapp02.indd 691 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

692

Appendix B: JavaScript Core Reference

Character Examples Function

^ /^A/ matches the fi rst but
not the second A in “A man
called Adam“

Matches the start of a line or of the input.

$ /r$/ matches only the last
r in “horror“

Matches the end of a line or of the input.

* /ro*/ matches r in
“right,“ ro in “wrong,“
and “roo“ in “room“

Matches the preceding character zero or more times.

+ /l+/ matches l in “life,“
ll in “still,“ and lll in
“stilllife“

Matches the preceding character one or more times.

For example, /a+/ matches the a in “candy“ and all
the a‘s in “caaaaaaandy.”

? /Smythe?/ matches
“Smyth” and “Smythe”

Matches the preceding character once or zero times.

. /.b/ matches the second
but not the fi rst ob in
“blob“

Matches any character apart from the newline
character.

 (x) /(Smythe?)/ matches
“Smyth“ and “Smythe“ in
“John Smyth and Rob
Smythe“ and allows the
substrings to be retrieved
as RegExp.$1 and
RegExp.$2 respectively.

Matches x and remembers the match. The matched
substring can be retrieved from the elements of the
array that results from the match, or from the RegExp
object’s properties $1, $2 ... $9, or lastParen.

x|y /Smith|Smythe/ matches
“Smith” and “Smythe”

Matches either x or y (where x and y are blocks of
characters).

{n} /l{2}/ matches ll in
“still“ and the fi rst two
ls in “stilllife“

Matches exactly n instances of the preceding charac-
ter (where n is a positive integer).

{n,} /l{2,}/ matches ll
in “still” and lll in
“stilllife”

Matches n or more instances of the preceding charac-
ter (where n is a positive integer).

{n,m} /l{1,2}/ matches l in
“life“, ll in “still,“
and the fi rst two ls in
“stilllife“

Matches between n and m instances of the preceding
character (where n and m are positive integers).

[xyz] [ab] matches a and b;
[a-c] matches a, b and c

Matches any one of the characters in the square
brackets. A range of characters in the alphabet can be
matched using a hyphen.

Special Characters Used in Regular Expressions (continued)

25937bapp02.indd 69225937bapp02.indd 692 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

693

Appendix B: JavaScript Core Reference

Character Examples Function

[^xyz] [^aeiouy] matches s in
“easy“;
[^a-y] matches z in “lazy“

Matches any character except those enclosed in the
square brackets. A range of characters in the alphabet
can be specifi ed using a hyphen.

[\b] Matches a backspace.

\b /t\b/ matches the fi rst t
in “about time“

Matches a word boundary (for example, a space or
the end of a line).

\B /t\Bi/ matches ti in “it
is time”

Matches when there is no word boundary in this
position.

\cX /\cA/ matches Ctrl-A Matches a control character.

\d /IE\d/ matches IE4, IE5,
etc.

Matches a digit character. This is identical to [0-9].

\D /\D/ matches the decimal
point in “3.142“

Matches any character that is not a digit. This is iden-
tical to [^0-9].

\f Matches a form-feed character.

\n Matches a line-feed character.

\r Matches a carriage return character.

\s /\s/ matches the space in
“not now“

Matches any white space character, includ-
ing space, tab, line-feed, etc. This is identical to
[\f\n\r\t\v].

\S /\S/ matches a in “ a “ Matches any character other than a white space char-
acter. This is identical to [^ \f\n\r\t\v].

\t Matches a tab character.

\v Matches a vertical tab character.

\w /\w/ matches O in “O?!“
and 1 in “$1“

Matches any alphanumeric character or the under-
score. This is identical to [A-Za-z0-9_].

\W /\W/ matches $ in
“$10million” and @ in
“j_smith@wrox”

Matches any non-alphanumeric character (excluding
the underscore). This is identical to [^A-Za-z0-9_].

()\n /(Joh?n) and \1/
matches John and John
in “John and John’s
friend” but does not
match “John and Jon”

Matches the last substring that matched the nth
match placed in parentheses and remembered
(where n is a positive integer).

\octal
\xhex

/\x25/ matches % Matches the character corresponding to the specifi ed
octal or hexadecimal escape value.

25937bapp02.indd 69325937bapp02.indd 693 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

694

Appendix B: JavaScript Core Reference

String
The String object is used to contain a string of characters. It was introduced in JavaScript 1.0. This
must be distinguished from a string literal, but the methods and properties of the String object can also
be accessed by a string literal, since a temporary object will be created when they are called.

The HTML methods in the last table are not part of any ECMAScript standard, but they have been part of
the JavaScript language since version 1.0. They can be useful because they dynamically generate HTML.

Properties

Property Introduced Description

constructor JavaScript 1.1 Used to reference the constructor function for the object.

length JavaScript 1.0 Returns the number of characters in the string.

prototype JavaScript 1.1 Returns the prototype for the object, which can be used to
extend the object’s interface.

Methods

Method Introduced Description

charAt(index) JavaScript 1.0 Returns the character at the specifi ed position in
the string.

charCodeAt(index) JavaScript 1.2 Returns the Unicode value of the character at the
specifi ed position in the string.

concat(value1,
value2, ...)

JavaScript 1.2 Concatenates the strings supplied as arguments
and returns the string thus formed.

fromCharCode(value1,
value2, ...)

JavaScript 1.2 Returns the string formed from the concatena-
tion of the characters represented by the sup-
plied Unicode values.

indexOf(substr
[, startIndex])

JavaScript 1.0 Returns the position within the String object
of the fi rst match for the supplied substring.
Returns -1 if the substring is not found. Starts
the search at startIndex if specifi ed.

lastIndexOf(substr
[, startIndex])

JavaScript 1.0 Returns the position within the String object
of the last match for the supplied substring.
Returns -1 if the substring is not found. Starts
the search at startIndex if specifi ed.

match(regexp) JavaScript 1.2 Searches the string for a match to the supplied
pattern. Returns an array or null if not found.

25937bapp02.indd 69425937bapp02.indd 694 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

695

Appendix B: JavaScript Core Reference

Method Introduced Description

replace(regexp,
newValue)

JavaScript 1.2 Used to replace a substring that matches a regu-
lar expression with a new value.

search(regexp) JavaScript 1.2 Searches for a match between a regular expres-
sion and the string. Returns the index of the
match, or -1 if not found.

slice(startIndex
[, endIndex])

JavaScript 1.0 Returns a substring of the String object.

split(delimiter) JavaScript 1.1 Splits a String object into an array of strings by
separating the string into substrings.

substr(startIndex
[, length])

JavaScript 1.0 Returns a substring of the characters from the
given starting position and containing the speci-
fi ed number of characters.

substring(startIndex
[, endIndex])

JavaScript 1.0 Returns a substring of the characters between
two positions in the string. The character at
endIndex is not included in the substring.

toLowerCase() JavaScript 1.0 Returns the string converted to lowercase.

toUpperCase() JavaScript 1.0 Returns the string converted to uppercase.

HTML Methods

Method Introduced Description

anchor(name) JavaScript 1.0 Returns the string surrounded by <a>… tags with
the name attribute assigned the passed parameter.

big() JavaScript 1.0 Encloses the string in <big>…</big> tags.

blink() JavaScript 1.0 Encloses the string in <blink>…</blink> tags.

bold() JavaScript 1.0 Encloses the string in … tags.

fixed() JavaScript 1.0 Encloses the string in <tt>…</tt> tags.

fontcolor(color) JavaScript 1.0 Encloses the string in … tags with the
color attribute assigned a parameter value.

fontsize(size) JavaScript 1.0 Encloses the string in … tags with the
size attribute assigned a parameter value.

italics() JavaScript 1.0 Encloses the string in <i>…</i> tags.

Methods (continued)

Continued

25937bapp02.indd 69525937bapp02.indd 695 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

696

Appendix B: JavaScript Core Reference

Method Introduced Description

link(url) JavaScript 1.0 Encloses the string in <a>… tags with the href
attribute assigned a parameter value.

small() JavaScript 1.0 Encloses the string in <small>…</small> tags.

strike() JavaScript 1.0 Encloses the string in <strike>…</strike> tags.

sub() JavaScript 1.0 Encloses the string in _… tags.

sup() JavaScript 1.0 Encloses the string in […] tags and causes
a string to be displayed as superscript.

HTML Methods (continued)

25937bapp02.indd 69625937bapp02.indd 696 9/20/09 12:35:54 AM9/20/09 12:35:54 AM

C
W3C DOM Reference

Because JavaScript is primarily used to program the browser and add behavior to web pages, it’s
only natural to include a reference to the W3C DOM.

The following pages lists the objects made available by the W3C DOM.

DOM Core Objects
This section describes and lists objects defi ned by the DOM standards — starting with the lowest
level of DOM objects. All objects are in alphabetical order.

Low-Level DOM Objects
The DOM specifi cation describes the Node, NodeList, and NamedNodeMap objects. These are the
lowest-level objects in the DOM, and are the primary building blocks of higher-level objects.

Node
Defi ned in DOM Level 1, the Node object is the primary datatype for the entire DOM. All objects in
the DOM inherit from Node. There are 12 different types of Node objects; each type has an associated
integer value. The following tables list the Node object’s type values, properties, and methods.

Node Types

Type Name Integer Value Introduced Associated Data Type

ELEMENT_NODE 1 Level 1 Element

ATTRIBUTE_NODE 2 Level 1 Attr

TEXT_NODE 3 Level 1 Text

Continued

25937bapp03.indd 69725937bapp03.indd 697 9/20/09 12:36:59 AM9/20/09 12:36:59 AM

698

Appendix C: W3C DOM Reference

Type Name Integer Value Introduced Associated Data Type

CDATA_SECTION_
NODE

4 Level 1 CDATASection

ENTITY_
REFERENCE_NODE

5 Level 1 EntityReference

ENTITY_NODE 6 Level 1 Entity

PROCESSING_
INSTRUCTION_
NODE

7 Level 1 ProcessingInstruction

COMMENT_NODE 8 Level 1 Comment

DOCUMENT_NODE 9 Level 1 Document

DOCUMENT_TYPE_
NODE

10 Level 1 DocumentType

DOCUMENT_
FRAGMENT_NODE

11 Level 1 DocumentFragment

NOTATION_NODE 12 Level 1 Notation

Properties

Property Name Description Introduced

attributes A NamedNodeMap containing the attributes of this node if it
is an Element, or null otherwise.

Level 1

childNodes A NodeList containing all children of this node. Level 1

firstChild Gets the fi rst child of this node. Returns null if no child
exists.

Level 1

lastChild Gets the last child of this node. Returns null if no child
exists.

Level 1

localName Returns the local part of the node’s qualifi ed name (the part
after the colon of the qualifi ed name when namespaces are
used). Used primarily in XML DOMs.

Level 2

namespaceURI The namespace URI of the node, or null if not specifi ed. Level 2

nextSibling Gets the node immediately following this node. Returns
null if no following sibling exists.

Level 1

nodeName Gets the name of this node. Level 1

Node Types (continued)

25937bapp03.indd 69825937bapp03.indd 698 9/20/09 12:36:59 AM9/20/09 12:36:59 AM

699

Appendix C: W3C DOM Reference

Property Name Description Introduced

nodeType An integer representing the type of this node. See previous
table.

Level 1

nodeValue Gets the value of this node, depending on the type. Level 1

ownerDocument Gets the Document object this node is contained in. If this
node is a Document node, it returns null.

Level 1

parentNode Gets the parent node of this node. Returns null for nodes
that are currently not in the DOM tree.

Level 1

prefix Returns the namespace prefi x of this node, or null if not
specifi ed.

Level 2

previousSibling Gets the node immediately before this node. Returns null if
no previous sibling.

Level 1

Methods

Method Name Description Introduced

appendChild(newChild) Adds the newChild to the end of the list of
children.

Level 1

cloneNode(deep) Returns a duplicate of the node. The returned
node has no parent. If deep is true, this clones all
nodes contained within the node.

Level 1

hasAttributes() Returns a Boolean value based on if the node has
any attributes (if the node is an element).

Level 2

hasChildNodes() Returns a Boolean value based on whether the
node has any child nodes.

Level 1

insertBefore(newChild,
refChild)

Inserts the newChild node before the existing
child referenced by refChild. If refChild is
null, newChild is added at the end of the list of
children.

Level 1

removeChild(oldChild) Removes the specifi ed child node and returns it. Level 1

replaceChild(newChild,
oldChild)

Replaces oldChild with newChild and returns
oldChild.

Level 1

NodeList
The NodeList object is an ordered collection of nodes. The items contained in the NodeList are acces-
sible via an index starting from 0.

25937bapp03.indd 69925937bapp03.indd 699 9/20/09 12:36:59 AM9/20/09 12:36:59 AM

700

Appendix C: W3C DOM Reference

A NodeList is a live snapshot of nodes. Any change made to the nodes within the DOM are immedi-
ately refl ected in every reference of the NodeList.

Properties

Property Name Description Introduced

length The number of nodes in the list. Level 1

Methods

Method Name Description Introduced

item(index) Returns the item at the specifi ed index. Returns null if the
index is greater than or equal to the list’s length.

Level 1

NamedNodeMap
Objects referred to as NamedNodeMaps represent collections of nodes that can be accessed by name. This
object does not inherit from NodeList. An element’s attribute list is an example of a NamedNodeMap.

Properties

Property Name Description Introduced

length The number of nodes in the map. Level 1

Methods

Method Name Description Introduced

getNamedItem(name) Retrieves a node by the specifi ed name. Level 1

removeNamedItem(name) Removes an item by the specifi ed name. Level 1

setNamedItem(node) Adds a node to the list by using its nodeName
property as its key.

Level 1

High-Level DOM Objects
These objects inherit Node and are the basis for even higher-level DOM objects as specifi ed by the HTML
DOM. These objects mirror the different node types.

The following objects are listed in alphabetical order. The CDATASection, Comment, DocumentType,
Entity, EntityReference, Notation, and ProcessingInstruction objects are purposefully
omitted from this section.

25937bapp03.indd 70025937bapp03.indd 700 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

701

Appendix C: W3C DOM Reference

Attr
The Attr object represents an Element object’s attribute. Even though Attr objects inherit from Node,
they are not considered children of the element they describe, and thus are not part of the DOM tree.
The Node properties of parentNode, previousSibling, and nextSibling return null for Attr
objects.

Properties

Property Name Description Introduced

ownerElement Returns the Element object the attribute is attached to. Level 2

name Returns the name of the attribute. Level 1

value Returns the value of the attribute. Level 1

Document
The Document object represents the entire HTML or XML document. It is the root of the document tree.
The Document is the container for all nodes within the document, and each Node object’s ownerDocument
property points to the Document.

Properties

Property Name Description Introduced

docType The DocType object associated with this document.
Returns null for HTML and XML documents without a
document type declaration.

Level 1

documentElement Returns the root element of the document. For HTML
documents, the documentElement is the <html/>
element.

Level 1

implementation The DOMImplementation object associated with the
Document.

Level 1

Methods

Method Name Description Introduced

createAttribute(name) Returns a new Attr object with
the specifi ed name.

Level 1

createAttributeNS(namespaceURI,
qualifiedName)

Returns an attribute with the
given qualifi ed name and
namespace URI. Not for
HTML DOMs.

Level 2

Continued

25937bapp03.indd 70125937bapp03.indd 701 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

702

Appendix C: W3C DOM Reference

Method Name Description Introduced

createComment(data) Returns a new Comment object
with the specifi ed data.

Level 1

createCDATASection(data) Returns a new CDATASection
object whose value is the speci-
fi ed data.

Level 1

createDocumentFragment() Returns an empty
DocumentFragment object.

Level 1

createElement(tagName) Returns a new Element object
with the specifi ed tag name.

Level 1

createElementNS(namespaceURI,
qualifiedName)

Returns an element of the
specifi ed qualifi ed name and
namespace URI. Not for
HTML DOMs.

Level 2

createTextNode(text) Returns a new Text object con-
taining the specifi ed text.

Level 1

getElementById(elementId) Returns the Element with the
specifi ed ID value. Returns null
if the element does not exist.

Level 2

getElementsByTagName(tagName) Returns a NodeList of all
Element objects with the specifi ed
tag name in the order in which
they appear in the DOM tree.

Level 1

getElementsByTagNameNS(namespaceURI,
localName)

Returns a NodeList of all ele-
ments with the specifi ed local
name and namespace URI.
Elements returned are in the
order they appear in the DOM.

Level 2

importNode(importedNode, deep) Imports a node from another
document. The source node is
not altered or removed from its
document. A copy of the source
is created. If deep is true, all
child nodes of the imported node
are imported. If false, only the
node is imported.

Level 2

DocumentFragment
The DocumentFragment object is a lightweight Document object. Its primary purpose is effi ciency.
Making many changes to the DOM tree, such as appending several nodes individually, is an expensive

Methods (continued)

25937bapp03.indd 70225937bapp03.indd 702 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

703

Appendix C: W3C DOM Reference

process. It is possible to append Node objects to a DocumentFragment object, which allows you to easily
and effi ciently insert all nodes contained within the DocumentFragment into the DOM tree.

The following code shows the use of a DocumentFragment:

var documentFragment = document.createDocumentFragment();

for (var i = 0; i < 1000; i++) {
 var element = document.createElement(“div”);
 var text = document.createTextNode(“Here is test for div #” + i);

 element.setAttribute(“id”, i);

 documentFragment.appendChild(element);
}

document.body.appendChild(documentFragment);

Without the DocumentFragment object, this code would update the DOM tree 1,000 times, thus degrad-
ing performance. With the DocumentFragment object, the DOM tree is updated only once.

The DocumentFragment object inherits the Node object, and as such has Node’s properties and meth-
ods. It does not have any other properties or methods.

Element
Elements are the majority of objects, other than text, that you will encounter in the DOM.

Properties

Property Name Description Introduced

tagName Returns the name of the element. The same as
Node.nodeName for this node type.

Level 1

Methods

Method Name Description Introduced

getAttribute(name) Retrieves the attribute’s value by
the specifi ed name.

Level 1

getAttributeNS(namespaceURI,
localName)

Returns the Attr object by local
name and namespace URI. Not
for HTML DOMs.

Level 2

getAttributeNode(name) Returns the Attr object associ-
ated with the specifi ed name.
Returns null if no attribute by
that name exists.

Level 1

Continued

25937bapp03.indd 70325937bapp03.indd 703 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

704

Appendix C: W3C DOM Reference

Method Name Description Introduced

getElementsByTagName(tagName) Returns a NodeList of all descen-
dant elements with the specifi ed
tagName in the order in which
they appear in the tree.

Level 1

getElementsByTagNameNS(namespaceURI,
localName)

Returns a NodeList of all the
descendant Element objects
with the specifi ed local name
and namespace URI. Not for
HTML DOMs.

Level 2

hasAttribute(name) Returns a Boolean value based on
whether or not the element has an
attribute with the specifi ed name.

Level 2

hasAttributeNS(namespaceURI,
localName)

Returns a Boolean value based
on whether the Element has an
attribute with the given local
name and namespace URI. Not
for HTML DOMs.

Level 2

removeAttribute(name) Removes the attribute with the
specifi ed name.

Level 1

removeAttributeNS(namespaceURI,
localName)

Removes an attribute specifi ed
by the local name and namespace
URI. Not for HTML DOMs.

Level 2

removeAttributeNode(oldAttr) Removes and returns the speci-
fi ed attribute.

Level 1

setAttribute(name, value) Creates and adds a new attribute,
or changes the value of an exist-
ing attribute. The value is a simple
string.

Level 1

setAttributeNS(namespaceURI,
qualifiedName, value)

Creates and adds a new attribute
with the specifi ed namespace
URI, qualifi ed name, and value.

Level 2

setAttributeNode(newAttr) Adds the specifi ed attribute to
the element. Replaces the existing
attribute with the same name if
it exists.

Level 1

setAttributeNodeNS(newAttr) Adds the specifi ed attribute to the
element.

Level 2

Methods (continued)

25937bapp03.indd 70425937bapp03.indd 704 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

705

Appendix C: W3C DOM Reference

Text
The Text object represents text content of an Element or Attr object.

Methods

Method Name Description Introduced

splitText(indexOffset) Breaks the Text node into two nodes at the
specifi ed offset. The new nodes stay in the DOM
tree as siblings.

Level 1

HTML DOM Objects
In order to adequately interface with the DOM, the W3C extends the DOM Level 1 and 2 specifi cations
to describe objects, properties, and methods, specifi c to HTML documents.

Most of the objects you’ll interface with as a front-end developer are contained in this section.

Miscellaneous Objects: The HTML Collection
The HTMLCollection object is a list of nodes, much like NodeList. It does not inherit from NodeList,
but HTMLCollections are considered live, like NodeLists, and are automatically updated when
changes are made to the document.

Properties

Property Name Description Introduced

length Returns the number of elements in the collection. Level 1

Methods

Method Name Description Introduced

item(index) Returns the element at the specifi ed index. Returns null if
index it larger than the collection’s length.

Level 1

namedItem(name) Returns the element using a name. It fi rst searches for an
element with a matching id attribute value. If none are
found, it searches for elements with a matching name attri-
bute value.

Level 1

25937bapp03.indd 70525937bapp03.indd 705 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

706

Appendix C: W3C DOM Reference

HTML Document Objects: The HTML Document
The HTMLDocument object is the root of HTML documents and contains the entire content.

Properties

Property Name Description Introduced

anchors Returns an HTMLCollection of all <a/> elements in the docu-
ment that have a value assigned to their name attribute.

Level 1

applets Returns an HTMLCollection of all <applet/> elements and
<object/> elements that include applets in the document.

Level 1

body Returns the element that contains the document’s content.
Returns the <body/> element, or the outermost <frameset/>
element depending on the document.

Level 1

cookie Returns the cookies associated with the document. Returns an
empty string if none.

Level 1

domain Returns the domain name of the server that served the docu-
ment. Returns null if the domain name cannot be identifi ed.

Level 1

forms Returns an HTMLCollection of all <form/> elements in the
document.

Level 1

images Returns an HTMLCollection object containing all
elements in the document.

Level 1

links Returns an HTMLCollection of all <area/> and <a/>
elements (with an href value) in the document.

Level 1

referrer Returns the URL of the page that linked to the page. Returns
an empty string if the user navigated directly to the page.

Level 1

title The title of the document as specifi ed by the <title/>
element in the document’s <head/> element.

Level 1

URL The complete URL of the document. Level 1

Methods

Method Name Description Introduced

close() Closes a document and opened with open()
forces page rendering.

Level 1

getElementById(elementId) Returns the element with the given elementId or
null if no element could be found. Removed in
DOM Level 2 and added to the Document object.

Level 1

25937bapp03.indd 70625937bapp03.indd 706 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

707

Appendix C: W3C DOM Reference

Method Name Description Introduced

getElementsByName(name) Returns an HTMLCollection of elements with
the specifi ed name attribute value.

Level 1

open() Opens a document for writing. Level 1

write() Writes a string of text to the document. Level 1

writeln() Writes a string of text to the document followed
by a newline.

Level 1

HTML Element Objects
HTML element attributes are exposed as properties of the various HTML element objects. Their data
type is determined by the attribute’s type in the HTML 4.0 specifi cation.

Other than HTMLElement, all HTML element objects are described here in alphabetical order. The fol-
lowing pages do not contain a complete list of HTML element object types. Instead, only the following
element object types are listed:

HTMLAnchorElement ❑

HTMLBodyElement ❑

HTMLButtonElement ❑

HTMLDivElement ❑

HTMLFormElement ❑

HTMLFrameElement ❑

HTMLFrameSetElement ❑

HTMLIFrameElement ❑

HTMLImageElement ❑

HTMLInputElement ❑

HTMLOptionElement ❑

HTMLParagraphElement ❑

HTMLSelectElement ❑

HTMLTableCellElement ❑

HTMLTableElement ❑

HTMLTableRowElement ❑

HTMLTableSectionElement ❑

HTMLTextAreaElement ❑

25937bapp03.indd 70725937bapp03.indd 707 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

708

Appendix C: W3C DOM Reference

HTMLElement
HTMLElement is the base object for all HTML elements, much like how Node is the base object for all
DOM nodes. Therefore, all HTML elements have the following properties.

Properties

Property Name Description Introduced

className Gets or sets the value of the element’s class attribute. Level 1

id Gets or sets the value of the element’s id attribute. Level 1

HTMLAnchorElement
Represents the HTML <a/> element.

Properties

Property Name Description Introduced

accessKey Gets or sets the value of the accessKey attribute Level 1

href Gets or sets the value of the href attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

target Gets or set the value of the target attribute. Level 1

Methods

Method Name Description Introduced

blur() Removes the keyboard focus from the element. Level 1

focus() Gives keyboard focus to the element. Level 1

HTMLBodyElement
Represents the <body/> element.

Properties

Property Name Description Introduced

aLink Deprecated. Gets or sets the value of the alink attribute. Level 1

background Deprecated. Gets or sets the value of the background
attribute.

Level 1

25937bapp03.indd 70825937bapp03.indd 708 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

709

Appendix C: W3C DOM Reference

Property Name Description Introduced

bgColor Deprecated. Gets or sets the value of the bgColor
attribute.

Level 1

link Deprecated. Gets or sets the value of the link attribute. Level 1

text Deprecated. Gets or sets the value of the text attribute. Level 1

vLink Deprecated. Gets or sets the value of the vlink attribute. Level 1

HTMLButtonElement
Represents <button/> elements.

Properties

Property Name Description Introduced

accessKey Gets or sets the value of the accessKey attribute. Level 1

disabled Gets or sets the value of the disabled attribute. Level 1

form Gets the HTMLFormElement object containing the button.
Returns null if the button is not inside a form.

Level 1

name Gets or sets the value of the name attribute. Level 1

type Gets the value of the type attribute. Level 1

value Gets or sets the value of the value attribute. Level 1

HTMLDivElement
Represents the <div/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

25937bapp03.indd 70925937bapp03.indd 709 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

710

Appendix C: W3C DOM Reference

HTMLFormElement
Represents the <form/> element.

Properties

Property Name Description Introduced

action Gets or sets the value of the action attribute. Level 1

elements Returns an HTMLCollection object containing all form
control elements in the form.

Level 1

enctype Gets or sets the value of the enctype attribute. Level 1

length Returns the number of form controls within the form. Level 1

method Gets or sets the value of the method attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

target Gets or sets the value of the target attribute. Level 1

Methods

Method Name Description Introduced

reset() Resets all form control elements contained within the form to
their default values.

Level 1

submit() Submits the form. Does not fi re the submit event. Level 1

HTMLFrameElement
Represents the <frame/> element.

Properties

Property Name Description Introduced

contentDocument Gets the Document object for the frame. Returns null if
one isn’t available.

Level 2

frameBorder Gets or sets the value of the frameBorder attribute. Level 1

marginHeight Gets or sets the value of the marginHeight attribute. Level 1

marginWidth Gets or sets the value of the marginWidth attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

25937bapp03.indd 71025937bapp03.indd 710 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

711

Appendix C: W3C DOM Reference

Property Name Description Introduced

noResize Gets or sets the value of the noResize attribute. Level 1

scrolling Gets or sets the value of the scrolling attribute. Level 1

src Gets or sets the value of the src attribute. Level 1

HTMLFrameSetElement
Represents the <frameset/> element.

Properties

Property Name Description Introduced

cols Gets or sets the value of the cols attribute. Level 1

rows Gets or sets the value of the rows attribute. Level 1

HTMLIFrameElement
Represents the <iframe/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

contentDocument Gets the Document object of the frame. Returns null if one
doesn’t exist.

Level 2

frameBorder Gets or sets the value of the frameBorder attribute. Level 1

height Gets or sets the value of the height attribute. Level 1

marginHeight Gets or sets the value of the marginHeight attribute. Level 1

marginWidth Gets or sets the value of the marginWidth attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

noResize Gets or sets the value of the noResize attribute. Level 1

scrolling Gets or sets the value of the scrolling attribute. Level 1

src Gets or sets the value of the src attribute. Level 1

width Gets or sets the value of the width attribute. Level 1

25937bapp03.indd 71125937bapp03.indd 711 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

712

Appendix C: W3C DOM Reference

HTMLImageElement
Represents the element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

alt Gets or sets the value of the alt attribute. Level 1

border Deprecated. Gets or sets the value of the border attribute. Level 1

height Gets or sets the value of the height attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

src Gets or sets the value of the src attribute. Level 1

width Gets or sets the value of the width attribute. Level 1

HTMLInputElement
Represents the <input/> element.

Properties

Property Name Description Introduced

accessKey Gets or sets the value of the accessKey attribute. Level 1

align Deprecated. Gets or sets the value of the align attribute. Level 1

alt Gets or sets the value of the alt attribute. Level 1

checked Used when type is checkbox or radio. Returns a Boolean
value depending on whether or not the checkbox or radio
button is checked.

Level 1

default-
Checked

Used when type is checkbox or radio. Gets or sets the
checked attribute. The value does not change when other
checkboxes or radio buttons are checked.

Level 1

disabled Gets or sets the value of the disabled attribute. Level 1

form Gets the HTMLFormElement object containing the <input/>
element. Returns null if the element is not inside a form.

Level 1

maxLength Gets or sets the value of the maxLength attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

readOnly Used only if type is text or password. Gets or sets the value
of the readonly attribute.

Level 1

25937bapp03.indd 71225937bapp03.indd 712 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

713

Appendix C: W3C DOM Reference

Property Name Description Introduced

size Gets or sets the value of the size attribute. Level 1

src If type is image, this gets or sets the value of the src attribute. Level 1

type Gets the value of the type attribute. Level 1

value Gets or sets the value of the value attribute. Level 1

Methods

Method Name Description Introduced

blur() Removes keyboard focus from the element. Level 1

click() Simulates a mouse click for <input/> elements with type
button, checkbox, radio, reset, and submit.

Level 1

focus() Gives keyboard focus to the element. Level 1

select() Selects content of <input/> elements with type text, password,
and file.

Level 1

HTMLOptionElement
Represents the <option/> element.

Properties

Property Name Description Introduced

defaultSelected Gets or sets the selected attribute. The value of this prop-
erty does not change as other <option/> elements in the
<select/> element are selected.

Level 1

disabled Gets or sets the value of the disabled attribute. Level 1

form Gets the HTMLFormElement object containing the
<option/> element. Returns null if the element is not
inside a form.

Level 1

index Gets the index position of the <option/> element in its con-
taining <select/> element. Starts at 0.

Level 1

label Gets or sets the value of the label attribute. Level 1

selected Returns a Boolean value depending on whether or not the
<option/> element is currently selected.

Level 1

Continued

25937bapp03.indd 71325937bapp03.indd 713 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

714

Appendix C: W3C DOM Reference

Property Name Description Introduced

text Gets the text contained within the <option/> element. Level 1

value Gets or sets the value of the value attribute. Level 1

HTMLOptionCollection
The HTMLOptionCollection object was introduced in DOM Level 2. It contains a list of <option/>
elements.

Property Name Description Introduced

length Gets the number of <option/> elements in the list. Level 2

Methods

Method Name Description Introduced

item(index) Retrieves the <option/> element at the specifi ed index. Level 2

namedItem(name) Retrieves the <option/> element by the specifi ed name. It
fi rst attempts to fi nd an <option/> element with the speci-
fi ed id. If none can be found, it looks for <option/> ele-
ments with the specifi ed name attribute.

Level 2

HTMLParagraphElement
Represents the <p/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

HTMLSelectElement
Represents the <select/> element.

Properties

Property Name Description Introduced

disabled Gets or sets the value of the disabled attribute. Level 1

form Gets the HTMLFormElement object containing the <select/>
element. Returns null if the element is not inside a form.

Level 1

Properties (continued)

25937bapp03.indd 71425937bapp03.indd 714 9/20/09 12:37:00 AM9/20/09 12:37:00 AM

715

Appendix C: W3C DOM Reference

Property Name Description Introduced

length Returns the number of <option/> elements. Level 1

multiple Gets or sets the value of the multiple attribute. Level 1

name Gets or sets the value of the name attribute. Level 1

options Returns an HTMLOptionsCollection object containing the list
of the <option/> elements.

Level 1

selectedIndex Returns the index of the currently selected <option/> ele-
ment. Returns -1 if nothing is selected and returns the fi rst
<option/> element selected if multiple items are selected.

Level 1

size Gets or sets the value of the size attribute. Level 1

type Gets the value of the type attribute. Level 1

value Gets or sets the current form control’s value. Level 1

Methods

Method Name Description Introduced

add(element[,
before])

Adds an <option/> element to the <select/> element. If
before is null, then element is added at the end of the list.

Level 1

blur() Removes keyboard focus from the elements. Level 1

focus() Gives keyboard focus to the element. Level 1

remove(index) Removes the <option/> element at the given index. Does
nothing if index is out of range.

Level 1

HTMLTableCellElement
Represents the <td/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

bgColor Deprecated. Gets or sets the value of the bgcolor attribute. Level 1

cellIndex The index of the cell in the row in DOM tree order. Level 1

colSpan Gets or sets the value of the colspan attribute. Level 1

height Deprecated. Gets or sets the value of the height attribute. Level 1

Continued

25937bapp03.indd 71525937bapp03.indd 715 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

716

Appendix C: W3C DOM Reference

Property Name Description Introduced

noWrap Deprecated. Gets or sets the value of the nowrap attribute. Level 1

rowSpan Gets or sets the value of the rowSpan attribute. Level 1

vAlign Gets or sets the value of the valign attribute. Level 1

width Deprecated. Gets or sets the value of the width attribute. Level 1

HTMLTableElement
Represents the <table/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

bgColor Deprecated. Gets or sets the value of the bgcolor attribute. Level 1

border Gets or sets the value of the border attribute. Level 1

cellPadding Gets or sets the value of the cellPadding attribute. Level 1

cellSpacing Gets or sets the value of the cellSpacing attribute. Level 1

rows Returns an HTMLCollection containing all rows in the table. Level 1

tBodies Returns an HTMLCollection of the defi ned <tbody/> element
objects in the table.

Level 1

tFoot Returns the table’s <tfoot/> element object
(HTMLTableSectionElement), or null if one doesn’t exist.

Level 1

tHead Returns the table’s <thead/> element object
(HTMLTableSectionElement), or null if one doesn’t exist.

Level 1

width Gets or sets the value of the width attribute. Level 1

Methods

Method Name Description Introduced

createTFoot() Creates and returns a <tfoot/> element if one does not
exist. Returns the existing <tfoot/> element if it exists.

Level 1

createTHead() Creates and returns a <thead/> element if one does not
exist. Returns the existing <thead/> element if it exists.

Level 1

Properties (continued)

25937bapp03.indd 71625937bapp03.indd 716 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

717

Appendix C: W3C DOM Reference

Method Name Description Introduced

deleteRow(index) Deletes the row at the specifi ed index. Level 1

deleteTFoot() Deletes the table’s footer if one exists. Level 1

deleteTHead() Deletes the table’s header if one exists. Level 1

insertRow(index) Inserts and returns a new row at the specifi ed index. If
index is -1 or equal to the number of rows, the new row
is appended to the end of the row list.

Level 1

HTMLTableRowElement
Represents the <tr/> element.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

bgColor Deprecated. Gets or sets the value of the bgcolor attribute. Level 1

cells Returns an HTMLCollection containing the cells in the row. Level 1

rowIndex The index of the row in the table. Level 1

sectionRowIndex The index of the row relative to the section it belongs to
(<thead/>, <tfoot/>, or <tbody/>).

Level 1

vAlign Gets or sets the value of the valign attribute. Level 1

Methods

Method Name Description Introduced

deleteCell(index) Deletes the cell at the specifi ed index. Level 1

insertCell(index) Inserts and returns an empty <td/> element. If index
is -1 or equal to the number of cells in the row, then the
new cell is appended to the end of the list.

Level 1

25937bapp03.indd 71725937bapp03.indd 717 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

718

Appendix C: W3C DOM Reference

HTMLTableSectionElement
Represents the <thead/>, <tbody/>, and <tfoot/> elements.

Properties

Property Name Description Introduced

align Deprecated. Gets or sets the value of the align attribute. Level 1

rows Returns an HTMLCollection containing the rows of the
section.

Level 1

vAlign Gets or sets the value of the valign attribute. Level 1

Methods

Method Name Description Introduced

deleteRow(index) Deletes the row at the specifi ed index relative to the
section.

Level 1

insertRow(index) Inserts and returns a new row into the section at the
specifi ed index (relative to the section). If index is -1 or
equal to the number of rows, the row is appended to the
end of the list.

Level 1

HTMLTextAreaElement
Represents the <textarea/> element.

Properties

Property Name Description Introduced

accessKey Gets or sets the value of the accessKey attribute. Level 1

cols Gets or sets the value of the cols attribute. Level 1

defaultValue Gets or sets the contents of the element. The value does not
change when the content changes.

Level 1

disabled Gets or sets the value of the disabled attribute. Level 1

form Gets the HTMLFormElement object containing the <textarea/>
element. Returns null if the element is not inside a form.

Level 1

name Gets or sets the value of the name attribute. Level 1

25937bapp03.indd 71825937bapp03.indd 718 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

719

Appendix C: W3C DOM Reference

Property Name Description Introduced

readOnly Used only if type is text or password. Gets or sets the value
of the readonly attribute.

Level 1

rows Gets or sets the value of the rows attribute. Level 1

type Gets the value of the type attribute. Always set to textarea. Level 1

value Gets or sets the current value of the element. Level 1

Methods

Method Name Description Introduced

blur() Removes keyboard focus from the element. Level 1

focus() Gives keyboard focus to the element. Level 1

select() Selects the contents of the element. Level 1

DOM Event Model and Objects
The DOM event model was introduced in DOM Level 2. It describes an event system where every event
has an event target. When an event reaches an event target, all registered event handlers on the event
target are triggered for that specifi c event. The following objects are described by the DOM event model.

EventTarget
The EventTarget object is inherited by all HTMLElement objects in the DOM. This object provides the
means for the registration and removal of event handlers on the event target.

Methods

Method Name Description

addEventListener(type,
listener, useCapture)

Registers an event handler on an element. type is the event
type to listen for, listener is the JavaScript function to call
when the event is fi red, and useCapture determines whether
the event is captured or bubbles.

removeEventListener(type,
listener, useCapture)

Removes a listener from the element.

25937bapp03.indd 71925937bapp03.indd 719 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

720

Appendix C: W3C DOM Reference

Event
When an event fi res, an Event object is passed to the event handler if one is specifi ed. This object con-
tains contextual information about an event.

Properties

Property Name Description Introduced

bubbles Indicates whether or not the event is a bubbling event. Level 2

cancelable Indicates whether or not the event can have its default action
prevented.

Level 2

currentTarget Indicates the EventTarget whose listeners are currently
being processed.

Level 2

target Indicates the EventTarget object to which the event was
originally fi red.

Level 2

timeStamp Specifi es the time (in milliseconds) at which the event was
fi red.

Level 2

type The name of the event (remember: this is the name without
the on prefi x).

Level 2

Methods

Method Name Description Introduced

preventDefault() Cancels the event, preventing the default action from
taking place, only if the event is cancelable.

Level 2

stopPropagation() Prevents further propagation of an event. Level 2

MouseEvent
The MouseEvent object provides specifi c information associated with mouse events. MouseEvent objects
contain not only the following properties, but also the properties and methods of the Event object.

Valid mouse events are shown in the following table.

Event Name Description

click Occurs when the mouse button is clicked over an element. A click is defi ned as
a mousedown and mouseup over the same screen location.

mousedown Occurs when the mouse button is pressed over an element.

25937bapp03.indd 72025937bapp03.indd 720 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

721

Appendix C: W3C DOM Reference

Event Name Description

mouseup Occurs when the mouse button is released over an element.

mouseover Occurs when the mouse pointer moves onto an element.

mousemove Occurs when the mouse pointer moves while it is over the element.

mouseout Occurs when the mouse pointer moves away from an element.

Properties

 Property Name Description Introduced

altKey Returns a Boolean value indicating whether or not the Alt key
was pressed during the event’s fi ring.

Level 2

button Indicates which mouse button was pressed, if applicable. The
number 0 represents the left button, 1 indicates the middle
button, and 2 indicates the right button. Left-hand-confi gured
mice reverse the buttons (right is 0, middle is 1, and left is 2).

Level 2

clientX The horizontal coordinate relative to the client area. Level 2

clientY The vertical coordinate relative to the client area. Level 2

ctrlKey Returns a Boolean value indicating whether or not the Ctrl key
was pressed when the event fi red.

Level 2

relatedTarget Indentifi es a secondary EventTarget. Currently, this
property is used with the mouseover event to indicate the
EventTarget that the mouse pointer exited and with the
mouseout event to indicate which EventTarget the pointer
entered.

Level 2

screenX The horizontal coordinate relative to the screen. Level 2

screenY The vertical coordinate relative to the screen. Level 2

shiftKey Returns a Boolean value indicating whether or not the Shift
key was pressed when the event fi red.

Level 2

25937bapp03.indd 72125937bapp03.indd 721 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

722

Appendix C: W3C DOM Reference

Miscellaneous Events
The following tables describe the events available in client-side JavaScript.

Mouse Events

Event Description

click Raised when the user clicks an HTML control.

dblclick Raised when the user double-clicks an HTML control.

mousedown Raised when the user presses a mouse button.

mousemove Raised when the user moves the mouse pointer.

mouseout Raised when the user moves the mouse pointer out from within an HTML control.

mouseover Raised when the user moves the mouse pointer over an HTML control.

mouseup Raised when the user releases the mouse button.

Keyboard Events

Event Description

keydown Raised when the user presses a key on the keyboard.

keypress Raised when the user presses a key on the keyboard. This event will be raised con-
tinually until the user releases the key.

keyup Raised when the user releases a key that had been pressed.

HTML Control Events

Event Description

blur Raised when an HTML control loses focus.

change Raised when an HTML control loses focus and its value has changed.

focus Raised when focus is set to the HTML control.

reset Raised when the user resets a form.

select Raised when the user selects text in an HTML control.

submit Raised when the user submits a form.

25937bapp03.indd 72225937bapp03.indd 722 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

723

Appendix C: W3C DOM Reference

Window Events

Event Description

load Raised when the window has completed loading.

resize Raised when the user resizes the window.

unload Executes JavaScript code when the user exits a document.

Other Events

Event Description

abort Raised when the user aborts loading an image.

error Raised when an error occurs loading the page.

25937bapp03.indd 72325937bapp03.indd 723 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

25937bapp03.indd 72425937bapp03.indd 724 9/20/09 12:37:01 AM9/20/09 12:37:01 AM

D
Latin-1 Character Set

This appendix contains the Latin-1 character set and the character codes in both decimal and hexa-
decimal formats. As explained in Chapter 2, the escape sequence \xNN, where NN is a hexadecimal
character code from the Latin-1 character set shown here, can be used to represent characters that
can’t be typed directly in JavaScript.

Decimal Character Code Hexadecimal Character Code Symbol

32 20 Space

33 21 !

34 22 "

35 23 #

36 24 $

37 25 %

38 26 &

39 27 '

40 28 (

41 29)

42 2A *

43 2B +

44 2C ,

45 2D -

46 2E .

25937bapp04.indd 72525937bapp04.indd 725 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

726

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

47 2F /

48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58 3A :

59 3B ;

60 3C <

61 3D =

62 3E >

63 3F ?

64 40 @

65 41 A

66 42 B

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

25937bapp04.indd 72625937bapp04.indd 726 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

727

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

74 4A J

75 4B K

76 4C L

77 4D M

78 4E N

79 4F O

80 50 P

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

86 56 V

87 57 W

88 58 X

89 59 Y

90 5A Z

91 5B [

92 5C \

93 5D]

94 5E ^

95 5F _

96 60 `

97 61 a

98 62 b

99 63 c

100 64 d

25937bapp04.indd 72725937bapp04.indd 727 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

728

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

124 7C |

125 7D }

126 7E ~

160 A0 Non-breaking space

25937bapp04.indd 72825937bapp04.indd 728 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

729

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

161 A1 ¡

162 A2 ¢

163 A3 £

164 A4 ¤

165 A5 ¥

166 A6 ¦

167 A7 §

168 A8 ¨

169 A9 ©

170 AA ª

171 AB «

172 AC ¬

173 AD Soft hyphen

174 AE ®

175 AF ¯

176 B0 °

177 B1 ±

178 B2 ²

179 B3 ³

180 B4 ´

181 B5 µ

182 B6 ¶

183 B7 ·

184 B8 ¸

185 B9 ¹

186 BA º

187 BB »

25937bapp04.indd 72925937bapp04.indd 729 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

730

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

188 BC ¼

189 BD ½

190 BE ¾

191 BF ¿

192 C0 À

193 C1 Á

194 C2 Â

195 C3 Ã

196 C4 Ä

197 C5 Å

198 C6 Æ

199 C7 Ç

200 C8 È

201 C9 É

202 CA Ê

203 CB Ë

204 CC Ì

205 CD Í

206 CE Î

207 CF Ï

208 D0 Ð

209 D1 Ñ

210 D2 Ò

211 D3 Ó

212 D4 Ô

213 D5 Õ

214 D6 Ö

25937bapp04.indd 73025937bapp04.indd 730 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

731

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

215 D7 ×

216 D8 Ø

217 D9 Ù

218 DA Ú

219 DB Û

220 DC Ü

221 DD Ý

222 DE Þ

223 DF ß

224 E0 à

225 E1 á

226 E2 â

227 E3 ã

228 E4 ä

229 E5 å

230 E6 æ

231 E7 ç

232 E8 è

233 E9 é

234 EA ê

235 EB ë

236 EC ì

237 ED í

238 EE î

239 EF ï

240 F0 ð

241 F1 ñ

25937bapp04.indd 73125937bapp04.indd 731 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

732

Appendix D: Latin-1 Character Set

Decimal Character Code Hexadecimal Character Code Symbol

242 F2 ò

243 F3 ó

244 F4 ô

245 F5 õ

246 F6 ö

247 F7 ÷

248 F8 ø

249 F9 ù

250 FA ú

251 FB û

252 FC ü

253 FD ý

254 FE þ

255 FF ÿ

25937bapp04.indd 73225937bapp04.indd 732 9/20/09 12:39:12 AM9/20/09 12:39:12 AM

Index

SYMBOLS
-- (decrement operators), 28–30
(pound sign), 537
$()

in jQuery, 531
in MooTools, 535, 575–576
in Prototype, 533
understanding jQuery, 550

$ (dollar sign), 320
$$()

in MooTools, 576
in Prototype, 559

$.get(), 552–553
&& (AND), 58
* (asterisk)

in numerical calculations, 26–27
precedence, 30–34
repetition characters, 319

[...] in regular expressions, 315
[^...] in regular expressions, 315
^ (carat), 320
{ } (curly braces)

in if statements, 54–55
incorrect number of, 90

{n,}, 319
{n,m}, 319
{n}, 319
|| (OR), 58

+ (plus sign)
missing in concatenation, 92–93
in numerical calculations, 26–27
precedence, 30–34
repetition characters, 319
in strings, 34–35

++ (increment operators), 28–30
< (less than), 53–54
<= (less than or equal to), 53–54
= (equals)

vs. == (is equal to), 91
as assignment operator, 22
in numerical calculations, 27

!= (unequal), 53–54
== (is equal to)

vs. = (equals), 91
defi ned, 53–54
preventing infi nite loops, 77

> (greater than), 53–54
>= (greater than or equal to), 53–54
\ (backslash)

reusing groups of characters, 325–326
in strings, 19
when using RegExp(), 336

“ (double quotation marks) in strings, 18–19
/ (forward slash)

in numerical calculations, 26–28
precedence, 30–34
in regular expressions, 307
setting cookie path, 377

- (hyphen) in CSS properties, 423

25937bindex.indd 73325937bindex.indd 733 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

734

- (minus sign)

- (minus sign)
in numerical calculations, 26–27
precedence, 30–34

! (NOT), 58
. (period) in regular expressions, 315
? (question mark), 319
; (semicolons) in statements, 9
‘ (single quotation marks) in strings, 18–19
() (parentheses)

grouping regular expressions, 323–325
incorrect number of, 90–91
using functions as properties, 91–92

A
abs(), 161
absolute values, 161
action attribute, 220
ActiveX controls

checking for and embedding, 474–479
exercise question, 489
overview, 469–470
security issues, 516
summary, 488–489
using, 480–488

ActiveX objects
defi ned, 454
XMLHttpRequest, 494–496

ActiveXObject, 683
adding
addEvent(), 535
new options to selection boxes, 248–252
options to selection boxes, 248–252
selection options, 252–253

address validation, 343–344
advertisements

adding timers to, 360–363
animating, 432–436

Ajax
creating simple module, 500–505
dealing with delays, 523–524
defi ned, 490–494
degrading gracefully, 524
exercise questions, 525
iframe smart form, 518–523

jQuery support, 550–558
MooTools support, 584–590
Prototype support, 567–575
summary, 525
things to watch out for, 515–518
validating forms fi elds with, 505–508
XMLHttpRequest, 494–500
XMLHttpRequest smart form, 508–515

ajaxError(), 551–552
Ajax.Request(), 567–575
alert()

defi ned, 12–13
in window, 191

alphabetical comparison, 66
altkey property

of Event, 439
of event, 444

AND

decision making, 58–59
in if statements, 61–64

animated advertisements, 432–436
appearances

changing in DOM, 422–428
jQuery, 539–541
MooTools, 576–577
Prototype, 560

appendChild(), 419
appending elements with jQuery, 541–543
applications

tools for creating, 5–7
using JavaScript for, 4

appName, 209–210
arithmetic operators, 674–675
Array

concat(), 150–151
creating, 136–137
JavaScript reference, 684–686
join(), 152–153
length property, 150
new array methods, 156–160
object, 150
reverse(), 154–156
slice(), 151–152
sort(), 153–154

25937bindex.indd 73425937bindex.indd 734 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

735

breakpoints

arrays
creating objects, 182–187
looping, 74–75
matching, 333–335
multi-dimensional, 45–49
searching for, 306
working with, 40–45

assignment operators
vs. comparison operators, 53
defi ned, 22
JavaScript reference, 672–673

asterisk (*)
in numerical calculations, 26–27
precedence, 30–34
repetition characters, 319

asynch property
of Ajax.Request(), 568
defi ned, 455–456
jQuery’s Ajax, 553
in MooTools, 584

asynchronous requests, 499–500
attr(), 531
Attr

defi ned, 403
properties, 705

attributes
<form/>, 220–222
<frameset/>, 267
ActiveX control, 475–478
changing appearances with class,

426–428
getting and setting with Element, 408,

410–412
handling events with HTML, 200–202
plug-in, 470–471
radio button, 239–240
RegExp, 308
in text boxes, 230
textarea, 236

availability of plug-ins/ActiveX controls,
481–482

available value, 506

B
\B, 320
\b, 320
back(), 193
back button and Ajax, 516–517
backslash (\)

reusing groups of characters, 325–326
in strings, 19
when using RegExp(), 336

base DOM objects, 402–403
Berners-Lee, Tim, 392
bgColor property, 195–197
bind(), 543–545
bitwise operators, 675
bitwise shift operators, 676
block statements, 8–9, 679–680
blur(), 225–226
blur events, 235
<body/> element, 400
BOM (Browser Object Model)

defi ned, 189–190
document, 195–197
vs. DOM, 399
history, 193
images collection, 198–199
links collection, 199
location, 194
navigator, 194–195
overview, 190–191
screen, 195
window, 191–193

Boolean, 686
Boolean data, 20
boundary characters, 320–323
break statements

looping, 78–79
in switch, 67–68, 70–71

breakpoints
defi ned, 103
setting in Dragonfl y, 130
setting in Firebug, 106–107
setting in IE, 119–120
setting with Web Inspector, 125–126

25937bindex.indd 73525937bindex.indd 735 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

736

Browser Object Model

Browser Object Model (BOM). see BOM

(Browser Object Model)

browser programming
browser checking with navigator, 209–215
connecting code to events, 200–206
determining user’s browser, 206–209
document, 195–197
events, 199–200
exercise questions, 217
history, 193
images collection, 198–199
links collection, 199
location, 194
navigator, 194–195
objects, 190–191
overview, 189–190
screen, 195
summary, 215–217
window, 191–193

browsers
Ajax support, 493–494
compatibility and, 15
cookie limitations, 387–388
cookies in Firefox, 373–374
cookies in IE, 368–373
debugging. see debugging
DOM standard compliance, 398
exception objects, 95
JavaScript and, 2–3
methods for adding new options, 252–253
needed to create applications, 5
opening new windows in, 284–292
potential problems with plug-ins, 485
preventing errors in, 93
reference, 669
retrieving XML fi les cross-browser, 458–459
using XMLHttpRequest, 494–496
Web standards, 392–394
writing cross-browser DHTML, 447–453

bubbles property, 439
button elements

combining with text boxes, 230–235
defi ned, 224
in HTML forms, 226–229
properties and methods, 224–226

button property
of Event, 439
of event, 444

buttons
radio buttons, 239–247
timer, 360

C
call stacks

defi ned, 103
Firebug, 114–116

calling functions, 80–81
cancelable property, 439
cancelBubble property, 444
carat (^), 320
Cascading Style Sheets (CSS). see CSS

(Cascading Style Sheets)

case
checking character, 146–149
conversion, 144–145

case sensitivity
common mistakes, 89
in ordering arrays, 153–154
in RegExp, 308
RegExp() fl ags, 336
of special characters in regular

expressions, 315
case statements, 67–71
CDATASection, 403
ceil(), 161–162
chaining methods

in jQuery, 531
in MooTools, 535
in Prototype, 533

change event, 254–260
character classes, 315
characters

case sensitivity, 89
checking for passphrases for alphanumeric,

316–318
comparing strings, 66
comparison operator, 53

25937bindex.indd 73625937bindex.indd 736 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

737

computer language

converting to strings, 149
escaping, 378–379
logical operator, 58
repetition, 319–320
reusing groups of, 325–326
selecting from strings, 145–149
special characters in regular expressions,

315–323
String object, 140
in strings, 18–19
in variables, 21

charAt() , 145–149
charCodeAt(), 145–149
check boxes in HTML forms, 239–247
checked attribute, 239–240
checking code, 93
child nodes, 400
child window objects

accessing parent variables and functions,
268–273

defi ned, 265–266
Chrome

Ajax support, 493
browser checking with navigator, 210–215
DOM standard compliance, 398

class attribute, 426–428
classes

altering styles with MooTools, 576–577
manipulating styles with Prototype, 560
vs. reference types, 178
using CSS to change styles, 539–540

classid attribute, 475–478
clauses, 102–103
clearing timers

continually fi ring timers, 363
one-shot timers, 360

click events
counting button, 226–227
defi ned, 440
handling in DOM, 442

clients, 3
client-side processing, 219
client.x property, 579

clientX property
of Event, 440
of event, 444

client.y property, 579
clientY property

of Event, 440
of event, 444

cloneNode(), 419
close()

windows, 285
windows security, 298

closing tags, 9
closures, 501
code access, 273–276
code stepping

defi ned, 103
with Dragonfl y, 130–131
Firebug, 108–112
IE, 121–122
Web Inspector, 127

codebase attribute, 478–479
coding between frames, 268–273
collections

defi ned, 195
elements, 222
forms, 220–222
images, 198–199
links, 199
options, 247–248

colors
changing with style property, 423
setting document, 195–197

cols attribute, 236
Comment, 403
comments, 12
comparison operators

comparing strings, 66
defi ned, 52–54
JavaScript reference, 673–674

compatibility, cross-browser. see cross-browser

compatibility

compiled code, 2
compressed JavaScript frameworks, 529
computer language, 1

25937bindex.indd 73725937bindex.indd 737 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

738

concat()

concat(), 150–151
concatenation

defi ned, 34–35
missing + in, 92–93

conditional statements
decision making, 51–52
reference, 680

conditions
evaluating with consoles, 113
if statement, 54–55
multiple in if statements, 60–64
for statement, 72

consoles
in debugging, 103
Dragonfl y, 129
Firebug, 112–114
IE, 122
Web Inspector, 127

constructors
ActiveX object, 454
Ajax.Request(), 567–575
creating, 178–179
creating arrays, 183
creating elements in Prototype, 561
HttpRequest, 501–502
object, 136
reference type, 178
RegExp, 335–339
regular expression, 307

content
animation, 433–436
positioning and moving, 429–432
separation of style and, 453–454

continually fi ring timers
defi ned, 358
setting, 363–364

continue, 78–79
controls

accessing between frames with top, 277–283
ActiveX. see ActiveX controls
code access between frames, 276
HTML events, 726

conversion, data type, 37–40
converting case, 144–145

converting time
setting and getting UTC date and time, 353–358
setting timers to fi re at regular intervals,

363–364
cookie pairs, 387
cookies

creating, 377–381
exercise questions, 389
fresh-baked, 368–374
getting value, 381–386
limitations, 386–388
overview, 367
security and IE6+, 388–389
strings, 374–377
summary, 389

Coordinated Universal Time (UTC)
defi ned, 348–351
setting and getting date and time, 351–358

copying
part of array, 151–152
parts of strings, 143–144

createElement(), 541–542
createXmlHttpRequest(), 500, 502–503
cross-browser compatibility

defi ned, 15
determining user’s browser, 206
with DHTML, 447–453
retrieving XML fi les, 458–459
of XML, 395
XMLHttpRequest, 494–497

crtlKey property
of Event, 440
of event, 444

CSS (Cascading Style Sheets)
altering styles with MooTools, 576–577
changing appearances with, 422–428
changing styles with jQuery, 539–541
manipulating styles with Prototype, 560
rewriting DHTML toolbar with jQuery, 545–550
selecting elements with jQuery, 537–538
selecting elements with Prototype, 559

current date, 170–172
current time, 174–176

25937bindex.indd 73825937bindex.indd 738 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

739

DHTML

D
\D, 315
\d, 315
data

arrays, 40–45
basic string operations, 34–35
conversion, 37–40
exercise questions, 50
mixing numbers and strings, 35–37
multi-dimensional arrays, 45–49
numerical calculations, 26–30
operator precedence, 30–34
primitive, 134
summary, 49
transfer with XML, 454
validation, 93

data types
creating string objects, 140
ECMAScript, 396
objects and, 138–139
overview, 17–20
returning node, 413

databases, 20
Date

calculations and, 173
getting Date values, 169–172
getting time values, 173–176
JavaScript reference, 686–689
objects, 168–169
setting and getting UTC date and time, 351–358
setting Date values, 172
setting time values, 176–177
summary, 364
using select element to calculate differences,

254–260
world time, 348–351

daylight savings time
world time and, 348, 350
World Time Converter, 353–358

debuggers, 5
debugging

call stack window, 114–116
exercise questions, 131–132

Firebug code stepping, 108–112
Firebug console, 112–114
Firebug watches, 107–108
in Firefox with Firebug, 104–106
in IE, 116–119
IE code stepping, 121–122
IE console, 122
IE watches, 121
overview, 103–104
in Safari, 123–127
setting breakpoints in Firebug, 106–107
setting breakpoints in IE, 119–120
summary, 131
using Dragonfl y, 127–131

decisions
AND, 58–59
comparing strings, 66
comparison operators, 52–54
else and else if, 64–66
exercise questions, 86
if statement, 54–58
logical operators, 58
multiple conditions inside if statements, 60–64
NOT, 60
OR, 59
overview, 51–52
summary, 84–85
switch statement, 67–71

declarations, 680
decrement loop variables, 72
decrement operators, 28–30
default statement, 67–68, 70
default windows, 290–291
defaultStatus, 192–193
degrading gracefully, 524
delays in Ajax, 523–524
development tools, 5
DHTML (Dynamic HTML)

animated advertisements, 432–436
defi ned, 391
exercise questions, 468
moving and positioning content with, 429–432
summary, 467
writing cross-browser with, 447–453

25937bindex.indd 73925937bindex.indd 739 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

740

DHTML toolbar

DHTML (Dynamic HTML) toolbar
rewriting with jQuery, 545–550
rewriting with MooTools, 579–584
rewriting with Prototype, 563–567

displayEvent(), 238
Document

defi ned, 403
properties and methods, 404–408, 705–706

Document Object Model (DOM). see DOM

(Document Object Model)

document

cookie property, 367
defi ned, 195–197
forms in, 220
navigating with DOM, 415–419
as window property, 192–193

DocumentFragment

defi ned, 403
reference, 706–707

documents
defi ned, 9
document representation as tree structure,

399–402
DocumentType, 403
Dojo, 528
dollar sign ($), 320
DOM (Document Object Model)

animated advertisement example, 432–436
vs. BOM, 399
changing appearances, 422–428
core objects, 402–404
defi ned, 391–392
Document object properties and methods,

404–408
Element object properties and methods,

408–412
event handling, 437–443
event handling in IE, 443–447
event model and objects, 723–725
extensions in Prototype, 533
high-level core objects, 704–709
HTML document as tree structure, 399–402
HTML elements, 711–723
HTMLCollection, 709

HTMLDocument, 710–711
low-level core objects, 701–704
miscellaneous events, 726–727
Node object methods, 419–422
Node object properties, 412–419
positioning and moving content, 429–432
standard, 397–398
summary, 467

domain, 377
domain name servers, 3
domain names

cookies and, 370
validation, 342–344

domready, 535
double quotation marks (“) in strings, 18–19
doubleAndAlert(), 159–160
do...while, 77–78
downloading frameworks, 529–530
Dragonfl y, 127–131
drop-down lists

adding and removing options from, 248–252
creating, 247–248
methods for adding new options, 252–253
select element events, 254–260

Drosera, 123
DTD, 403
Dynamic HTML (DHTML). see DHTML

(Dynamic HTML)

dynamic properties, 13

E
each(), 559, 576
ECMA (European Computer Manufacturers

Association), 3
ECMAScript

defi ned, 3
Web standards, 396–397

editors, 5
Element

creating, inserting and removing in Prototype,
561–562

properties and methods, 408–412

25937bindex.indd 74025937bindex.indd 740 9/20/09 12:40:23 AM9/20/09 12:40:23 AM

741

Event.observe()

elements
accessing in DOM, 422
accessing with for...in, 74–75
animating, 433–436
button, 226–229
changing appearances, 422–428
changing style with jQuery, 539–541
counting with length, 150
creating, appending and removing with jQuery,

541–543
creating, inserting and removing in MooTools,

577–578
creating, inserting and removing in Prototype, 561
creating in DOM, 407
creating with DOM methods, 420–422
defi ned, 41
fi nding with MooTools, 575–576
form properties and methods, 224–226
frame, 264–268
in HTML forms, 223–224
HTML objects, 711–723
manipulating styles with Prototype, 560
in multi-dimensional arrays, 45–49
operations with forEach() and map(), 159–160
ordering with reverse(), 154–156
ordering with sort(), 153–154
positioning and moving, 429–432
properties and methods, 224–226, 707–708
retrieving in Prototype, 558–559
select events, 254–260
selecting with jQuery, 537–538
text, 229–236
textarea, 236–238
in tree structure, 400

elements collection, 222
else, 64–66
else if, 64–66
e-mail address validation, 342
Email fi eld

defi ned, 505–506
validation, 508–515

embedding
ActiveX controls, 474–479
plug-ins, 470–474

enabling
IE debugger, 116–119
Web Inspector, 123–125

Entity, 403
EntityReference, 403
equals (=)

vs. == (is equal to), 91
as assignment operator, 22
in numerical calculations, 27

error handling
finally clauses, 102–103
nested try...catch, 100–102
prevention, 93–94
throwing errors, 96–100
try...catch, 94–96

error messages
display example, 459–467
jQuery’s Ajax, 551–552

errors
common, 87–93
vs. exceptions, 94
potential problems with plug-ins, 485–488

escape(), 378
escape characters, 19
escape sequences, 19
European Computer Manufacturers Association

(ECMA), 3
Event

accessing, 437–438
properties, 439–443
properties and methods, 724
properties in MooTools, 578–579

event

accessing, 443–444
properties, 444–447

event handling
button element mouse events, 227–228
counting button clicks, 226–227
defi ned, 200
DOM, 437–443
with HTML attributes, 200–202
in IE, 443–447
jQuery’s Ajax, 551–552
with object properties, 203–206
radio button, 240, 244–245
select element, 254
in text boxes, 230

Event.observe(), 533

25937bindex.indd 74125937bindex.indd 741 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

742

eventPhase property

eventPhase property, 439
events

connecting code to, 200–206
defi ned, 199–200
DOM, 726–727
DOM model and objects, 723–725
jQuery, 543–545
MooTools, 578–579
Prototype, 562–563
select element, 254–260

EventTarget, 723
every(), 157
exception handling statements, 681
exception objects, 95
exceptions, 94
execution control statements, 681
exiting loops, 78–79
expires, 375
expressions, 26. see also regular expressions

Ext JS, 528
external JavaScript fi les, 7–8
external web sites, 263–264

F
features in windows, 289–292
fi les, XML

retrieving cross-browser, 458–459
retrieving in Firefox and Opera, 457–458
retrieving in IE, 454–457

filter(), 157–158
finally clauses, 102–103
Firebug

call stack window, 114–116
code stepping, 108–112
console, 112–114
setting breakpoints with, 106–107
watches, 107–108

Firefox
Ajax support, 493
browser checking with navigator, 210–215
checking for and embedding plug-ins, 470–474
compatibility, 15
creating JavaScript applications, 5–7

debugging with Firebug. see Firebug
DOM standard compliance, 398
new array methods, 156–160
problems with blur events and, 235
retrieving XML fi les in, 457–458
viewing cookies in, 373–374

firstChild property, 412
fix(), 166–167
fl ags in RegExp, 308
fl oating-point numbers

data type conversion, 38–39
defi ned, 18

floor(), 161–162
focus(), 225–226
for statement, 71–74
forEach(), 159–160
for...in, 74–75
form property, 224–225
forms

HTML. see HTML (HyperText Markup Language)
forms

jQuery’s Ajax validation, 553–558
MooTools’ Ajax validation, 585–590
Prototype’s Ajax validation, 569–575
validating fi elds with Ajax, 505–508
XMLHttpRequest smart form, 508–515

forms collection, 220–222
forward(), 193
forward slash (/). see / (forward slash)
fractional numbers

numerical data, 18
in for statements, 74

<frame/>, 264–268
frames

code access between, 273–276
coding between, 268–273
exercise questions, 299–300
overview, 262–263
scripting iframes, 283–284
security, 298
summary, 298–299
support for hidden, 494
top property, 277–283
window and, 263–268

25937bindex.indd 74225937bindex.indd 742 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

743

href property

<frameset/>, 264–268
framesets

code access between frames, 273–276
defi ning, 267
using as modules, 269–273

frameworks, JavaScript. see JavaScript

frameworks

fromCharCode(), 149
fromElement property, 444
Function, 689–690
functions. see also methods

accessing parent in frames, 268–273
closure, 501
code access between frames, 273–276
cookie creation, 377–381
creating, 79–83
defi ned, 12–13
exercise questions, 86
getting cookie value, 382–383
jQuery, 531
MooTools, 535
Prototype, 533
scripting between windows, 292–296
summary, 85–86
top-level, 682–683
understanding jQuery, 550
using as properties, 91–92
variable scope and lifetime, 83–84
XMLHttpRequest, 496–497

G
garbage collection, 23
Garrett, Jesse James, 491
get() functions
Date object’s UTC date and time,

351–358
for date values, 169–172
fi nding elements by idValue or tagName,

404–407
getting attributes with Element, 410–412
for time values, 173–176

global matches
in RegExp, 308
RegExp() fl ags, 336

global objects, 191
global scope, 83
GMT (Greenwich Mean Time), 348
go(), 193
Google Maps, 492
Google Suggest, 493
greater than (>), 53–54
greater than or equal to (>=), 53–54
Greenwich Mean Time (GMT), 348
group elements, 239
grouping regular expressions, 323–325

H
handleData(), 505
hard wrapping text, 236
hasChildNodes(), 419
hasClass(), 540–541
<head/> element, 400
height

screen, 195
setting window, 285

Hewitt, Joe, 104
hidden frames, 494
hidden text boxes, 235–236
hierarchies

BOM, 191
frame, 275
HTML document as tree structure, 399–400
window object, 265–266
in XHTML, 396

high-level DOM objects
defi ned, 403–404
reference, 704–709

history, 193
history stacks

Ajax usability, 516–517
defi ned, 193

hosts, 3
href property, 199

25937bindex.indd 74325937bindex.indd 743 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

744

html()

html(), 531–532
HTML (HyperText Markup Language)

adding to new window, 289
control events, 726
document representation as tree structure,

399–402
dynamic. see DHTML (Dynamic HTML)
elements, 711–723
event handlers with attributes, 200–202
navigating documents with DOM, 415–419
properties vs. JavaScript properties, 13
splitting with match(), 333–335
String methods, 699
Web standards, 392–394
vs. XHTML, 396

HTML (HyperText Markup Language) forms
adding and removing options from selection

boxes, 248–252
button elements, 226–229
check boxes and radio buttons, 239–247
element properties and methods, 224–226
elements in, 223–224
exercises, 262
methods for adding new options, 252–253
object properties and methods, 221–222
overview, 219–221
select element events, 254–260
selection boxes, 247–248
summary, 260–262
text elements, 229–236
textarea element, 236–238

<html/> element, 400
HTMLAnchorElement, 712
HTMLBodyElement, 712–713
HTMLButtonElement, 713
HTMLCollection, 709
HTMLDivElement, 713
HTMLDocument, 710–711
HTMLElement, 712
HTMLFormElement, 714
HTMLFrameElement, 714–715
HTMLFrameSetElement, 715
HTMLImageElement, 716
HTMLInputElement, 716–717

HTMLOptionCollection, 718
HTMLOptionElement, 717–718
HTMLParagraphElement, 718
HTMLSelectElement, 718–719
HTMLTableCellElement, 719–720
HTMLTableElement, 720–721
HTMLTableRowElement, 721
HTMLTableSectionElement, 722
HTMLTextAreaElement, 722–723
HTTP (HyperText Transfer Protocol)

defi ned, 3
standards, 392–393

HttpRequest module, 500–505
Hungarian notation, 21
HyperText Transfer Protocol (HTTP)

defi ned, 3
standards, 392–393

hyphen (-) in CSS properties, 423

I
id attribute

of <frameset/>, 267
accessing elements with, 422
fi nding elements by, 404–407

identifi ers to avoid, 671
IE (Internet Explorer)

Ajax support, 493
browser checking with navigator, 210–215
checking for and embedding ActiveX controls in,

474–479
code stepping, 121–122
compatibility, 15
console, 122
cookies and security, 388–389
creating JavaScript applications, 5–7
debugging in, 116–119
determining user’s browser, 206–209
event handling in, 443–447
Node in, 414
potential problems with ActiveX controls, 487–

488
retrieving XML fi les in, 454–457
scripting iframes, 283–284

25937bindex.indd 74425937bindex.indd 744 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

745

JavaScript frameworks

security issues and operator precedence, 32–33
setting breakpoints in, 119–120
using XMLHttpRequest, 494–496
viewing cookies in, 368–373
watches, 121

if statement
decision making, 54–58
else and, 64–66
multiple conditions inside, 60–64
throwing errors, 96–100

iframes
creating back/forward-capable forms with, 517
scripting, 283–284

images
displaying when page loads, 204–206
images collection, 198–199

img, 198–199
incomplete forms, 233
increment loop variables, 72
increment operators, 28–30
index property, 248
index values, 41
indexOf()

fi nding array elements with, 156
searching for substrings, 140–143

infi nite loops, 77
information storage with cookies. see cookies

initialization
defi ned, 25
for statement, 72, 74

<input/> element, 223–224
insertBefore(), 419
inserting elements

in MooTools, 577–578
in Prototype, 561

installation
ActiveX control, 478–479
Firebug, 104–106
framework, 529–530
plug-in, 472–474
testing framework, 530–536

instances, 180–182
integers

data type conversion, 38–39
numerical data, 18

Internet Explorer (IE). see IE (Internet Explorer)

Internet protocol (IP) addresses, 3
interpreted code, 2
interpreters, 2
intervals, setting timer, 363–364
invoking functions, 80–81
IP (Internet protocol) addresses, 3
is equal to (==)

vs. = (equals), 91
defi ned, 53–54
preventing infi nite loops, 77

isLessThan3(), 157–158
iterations

of Array, 156–160
for statement, 72

J
JavaScript

browsers and compatibility, 15
ECMAScript and, 396–397
introduction, 1–7
objects. see objects
objects in, 134–135
simple programs, 8–14
summary, 16
web pages, 7–8
XML and, 453–454

JavaScript frameworks
Ajax support in MooTools, 584–590
Ajax support in Prototype, 567–575
creating, appending and removing elements with

jQuery, 541–543
creating, inserting and removing elements in

MooTools, 577–578
creating, inserting and removing elements in

Prototype, 561
exercise questions, 590
fi nding elements with MooTools, 575–576
getting started, 528–536
jQuery event model, 543–545
jQuery for Ajax, 550–558
jQuery styles, 539–541
MooTools events, 578–579
MooTools styles, 576–577
Prototype events, 562–563

25937bindex.indd 74525937bindex.indd 745 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

746

JavaScript frameworks (continued)

Prototype styles, 560
retrieving elements in Prototype, 558–559
rewriting DHTML toolbar with jQuery, 545–550
rewriting DHTML toolbar with MooTools, 579–

584
rewriting DHTML toolbar with Prototype, 563–

567
selecting, 527–528
selecting elements with jQuery, 537–538
summary, 590

JavaScript reference
ActiveXObject, 683
arithmetic operators, 674–675
Array, 684–686
assignment operators, 672–673
bitwise operators, 675
bitwise shift operators, 676
Boolean, 686
browsers, 669
comparison operators, 673–674
Date, 686–689
Function, 689–690
identifi ers to avoid, 671
logical operators, 676–677
Math, 691–692
miscellaneous operators, 677
Number, 692–693
Object, 693–694
operator precedence, 678–679
properties and functions, 682–683
RegExp, 694–697
reserved words, 670
statements, 679–682
String, 697–699

join()

defi ned, 152–153
in simple regular expressions, 314

joining arrays with concat(), 150–151
jQuery

Ajax support, 550–558
creating, appending and removing elements

with, 541–543
defi ned, 528
event model, 543–545

rewriting DHTML toolbar with, 545–550
selecting elements with, 537–538
styles, 539–541
testing installation, 531–533

K
keyboard events

miscellaneous, 726
in text boxes, 230
watching, 237–238

keyCode property, 445

L
lastChild property, 412
lastIndexOf()

fi nding array elements with, 156
searching for substrings, 140–143
using substr()with, 144

leaf nodes, 400
left operands, 52–53
left property

moving and positioning content with, 429–432
performing animation with, 433–436

left-hand side (LHS)
of comparison operators, 52–53
of logical operators, 58–60

length property
of Array, 150
of elements collection, 222
of history, 193
of String, 140

less than (<), 53–54
less than or equal to (<=), 53–54
level 0 of DOM, 397
level 1 of DOM, 398
level 2 of DOM, 398
level 3 of DOM, 398
LHS (left-hand side)

of comparison operators, 52–53
of logical operators, 58–60

lifespan, cookie, 375
lifetime, variable, 83–84

JavaScript frameworks (continued)

25937bindex.indd 74625937bindex.indd 746 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

747

methods

linking to external JavaScript fi les, 7–8
links collection, 199
list boxes

adding and removing options from, 248–252
creating, 247–248
methods for adding new options, 252–253
select element events, 254–260

listeners, 200
literal values, 23
local time

vs. world time, 348–351
World Time Converter, 353–358

location

defi ned, 194
as window property, 192–193

logical operators
AND, 58–59
decision making, 58
JavaScript reference, 676–677
NOT, 60
OR, 59

looping
break and continue, 78–79
to check for plug-ins, 473–474
defi ned, 680–681
do...while, 77–78
exercise questions, 86
for...in, 74–75
iterative methods of Array, 156–160
for statement, 71–74
summary, 85
while, 75–77

M
machine code, 2
manipulating strings. see string manipulation

map(), 159–160
match()

defi ned, 306
regular expressions, 333–335
in simple regular expressions, 314

matches
repetition characters, 319–320
in simple regular expressions, 308–314

Math

JavaScript reference, 691–692
overview, 160–167

mathematical capabilities, 26–30
max(), 161
maxlength attribute, 229
members, Element, 408
memory, 20–25
message property, 95
message-of-the day displays, 459–467
metaKey property, 440
method attribute

of <form/>, 220
of Ajax.Request(), 568
in MooTools, 584

methods
for adding new options, 252–253
Array, 684–686
Boolean, 686
browser checking with navigator, 209–215
calling object, 138
charAt() and charCodeAt(), 145–149
concat(), 150–151
creating, appending and removing elements with

jQuery, 541–543
creating arrays, 183–186
creating objects, 179–180
css(), 539
Date, 687–689
Document, 404–408
DOM event model, 723–725
Element, 408–412
fromCharCode(), 149
Function, 690
hasClass(), 540–541
high-level DOM object, 704–709
HTML element object, 711–723
HTML forms element, 224–226
HTML forms object, 221–222
HTMLCollection, 709
HTMLDocument, 710–711
HttpRequest module, 502–503
indexOf() and lastIndexOf(), 140–143
join(), 152–153
jQuery, 531–532

25937bindex.indd 74725937bindex.indd 747 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

748

methods (continued)

match(), 333–335
Math, 691–692
Math object, 160–167
MooTools, 535, 575–579
moving and positioning content, 429–432
moving and resizing windows, 297
new array, 156–160
Node, 419–422, 703–704
Number, 693
Number object, 167
Object, 694
observe(), 562–563
open(), 284–292
Prototype, 533
reference type, 178
RegExp(), 307
RegExp, 695
replace(), 329–332
reverse(), 154–156
search(), 332
setting and getting UTC date and time, 351–358
slice(), 151–152
sort(), 153–154
split(), 327–328
String, 698–699
string manipulation, 302–306
substr() and substring(), 143–144
toFixed(), 167–168
toggleClass(), 540
toLowerCase() and toUpperCase(), 144–

145
XMLHttpRequest, 500

Microsoft Internet Explorer. see IE (Internet

Explorer)

Microsoft MSXML library
recommended versions, 454–456
XMLHttpRequest, 494

Microsoft Web standards, 393
MIME (Multipurpose Internet Mail Extensions)

types
checking for plug-ins, 474
defi ned, 471

min(), 161
minifi ed frameworks, 529

minus sign (-)
in numerical calculations, 26–27
precedence, 30–34

mistakes, common, 87–93
mobile technology, 395
MochiKit, 528
modal, 13
modular code

creating simple Ajax module, 500–505
defi ned, 263
using framesets as modules, 269–273

MooTools
Ajax support, 584–590
creating, inserting and removing elements in,

577–578
defi ned, 528
events, 578–579
fi nding elements with, 575–576
rewriting DHTML toolbar with, 579–584
styles, 576–577
testing installation, 535–536

mouse events
changing appearances in DOM, 425–426
handling in IE, 444–447
miscellaneous, 726
properties of, 439–443

mousedown events, 440
MouseEvent, 724–725
mousemove events, 440
mouseout events, 440
mouseover events, 440
mouseup events, 440
moveBy(), 297
moveTo(), 297
moving

content with DHTML, 429–432
windows, 296–297

Mozilla Firefox. see Firefox

multi-dimensional arrays, 45–49
multi-line fl ags, 308
Multipurpose Internet Mail Extensions (MIME)

types
checking for plug-ins, 474
defi ned, 471

methods (continued)

25937bindex.indd 74825937bindex.indd 748 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

749

objects

N
name property

accessing Form, 220–222
exception object, 95
in form elements, 224
radio button, 239
setting cookie, 374–375
window object, 268

NamedNodeMap

defi ned, 402
properties and methods, 704

names
changing appearance with className, 426–

428
cookie, 380
function, 80–81
returning node, 413
variable, 21

native JavaScript objects, 133
navigation

Ajax usability, 516–517
creating back/forward-capable forms with

iframe, 517–523
DOM with Node, 412–419
with location, 194
tree structure, 399–400

navigator

browser checking with, 209–215
defi ned, 194–195
plugins property, 472–474
as window property, 192–193

negation, 60
nested if statements, 60–64
nested try...catch, 100–102
Netscape, 393
new keyword, 180
nextSibling property, 412
Node

defi ned, 402
methods, 419–422
properties, 412–419
reference, 701–704

NodeList

defi ned, 402

properties and methods, 703–704
<noscript/> element, 209
NOT

decision making, 60
in if statements, 61–64

Notation, 403
Number

defi ned, 167
JavaScript reference, 692–693
toFixed(), 167–168

numerical data
calculations, 26–30
converting in text boxes, 229
data type conversion, 37–39
defi ned, 18
mixing strings and, 35–37
in regular expressions, 315–318

O
Object, 693–694
objects

array, 150
array length, 150
browser. see BOM (Browser Object Model)
calculations and Date, 173
charAt() and charCodeAt(), 145–149
concat(), 150–151
creating and using reference type instances,

180–182
creating array, 182–187
creating Date, 168–169
creating new types of, 177–178
defi ning reference types, 178–180
Document properties and methods, 404–408
DOM, 402–404
Element properties and methods, 408–412
exception, 95
exercise questions, 188
Form, 220–222
fromCharCode(), 149
getting Date values, 169–172
getting time values, 173–176
high-level DOM, 704–709
in HTML forms, 221–222

25937bindex.indd 74925937bindex.indd 749 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

750

objects (continued)

indexOf() and lastIndexOf(), 140–143
join(), 152–153
jQuery, 531–532
low-level DOM, 701–704
Math, 160–167
new array methods, 156–160
Node methods, 419–422
Node properties, 412–419
Number, 167
object-based programming, 133–139
RegExp, 306–307
reverse(), 154–156
setting Date values, 172
setting time values, 176–177
slice(), 151–152
sort(), 153–154
String, 139–140
String’s length, 140
substr() and substring(), 143–144
summary, 187–188
toFixed(), 167–168
toLowerCase() and toUpperCase(), 144–

145
XMLHttpRequest, 494–500

observe(), 562–563
occurrences

counting substring, 142–143
searching for, 305

one-shot timers
defi ned, 358
in web page, 359–363

onFailure property
of Ajax.Request(), 568
in MooTools, 584

onSuccess property
of Ajax.Request(), 568
in MooTools, 584

open()

using XMLHttpRequest, 497
in window, 284–292

opener property, 292–296
opening

Dragonfl y, 127–129
new browser windows, 284–292

Opera
Ajax support, 493
browser checking with navigator, 210–215
debugging with Dragonfl y, 127–131
determining user’s browser, 207–208
DOM standard compliance, 398
retrieving XML fi les in, 457–458

operating systems and plug-ins, 486
operators

arithmetic, 674–675
assignment, 22, 672–673
bitwise, 675
bitwise shift, 676
comparison, 52–54, 673–674
logical, 58, 676–677
miscellaneous, 677
numerical calculations, 26–30
precedence, 30–34, 678–679
string, 34–35

options
adding and removing from selection boxes,

248–252
methods for adding new, 252–253
select element events, 254–260
in selection boxes, 247–248

OR

decision making, 59
in if statements, 61–64

ordering arrays
with reverse(), 154–156
with sort(), 153–154

ownerDocument property, 413

P
page-level scope, 83
page.x property, 578
page.y property, 578
parameters

adding features to new windows, 289–292
adding HTML to new window, 289
of Ajax.Request(), 568
creating functions, 81–82
defi ned, 13
function, 79

objects (continued)

25937bindex.indd 75025937bindex.indd 750 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

751

properties

jQuery’s Ajax, 552–558
method, 138
open(), 284–285
of rounding methods, 162
using functions as, 92

parent nodes, 400
parent property

code access between frames, 273–276
coding between frames, 268–273
vs. top property, 277
window object, 268

parent window objects, 265–266
parentheses ()

grouping regular expressions, 323–325
incorrect number of, 90–91
using functions as properties, 91–92

parentNode property, 413
parseFloat(), 38–39
parseInt()

data type conversion, 38–39
rounding numbers, 162

parsing, 9–13
passphrases, 316–318
Password fi eld

defi ned, 505–506
validation, 508–515

password text boxes, 235
path, 375–377
patterns, character, 332
period (.) in regular expressions, 315
PHP form fi eld validation with Ajax, 508–515
plug-ins

checking for and embedding, 470–474
exercise question, 489
overview, 469–470
summary, 488–489
using, 480–488

plus sign (+). see + (plus sign)

pointers, 92
position characters, 320–323
positioning content, 429–432
postal code validation, 341–342
pound sign (#), 537
pow(), 165–167

precedence, operator
comparison, 53
defi ned, 30–34
reference, 678–679

prevention, error, 93–94
previousSibling property, 412
primitive data

defi ned, 134
objects and, 138–139

privacy and cookies, 388–389
processing, client-side, 219
processing code, 1
ProcessingInstruction, 403
programming, browsers. see browser

programming

programming, object-based, 133–139
properties

accessing attributes as, 220–222
Ajax.Request(), 568
Array, 684
asynchronous request, 499–500
bgColor, 195–197
Boolean, 686
browser checking with navigator, 209–215
changing appearances with CSS, 422–428
checking for browser support, 207–209
cookie, 367
creating arrays, 183
creating objects, 179
Date, 686
defi ned, 134
document, 9
of document, 195
Document, 404–408
Element, 408–412
Event, 439–443
event, 444–447
exception object, 95
Function, 689–690
handling events with object, 203–206
high-level DOM object, 704–709
of history, 193
HTML element object, 711–723
HTML forms element, 224–226
HTML forms object, 221–222

25937bindex.indd 75125937bindex.indd 751 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

752

properties (continued)

HTMLCollection, 709
HTMLDocument, 710
img, 198–199
length. see length property
of location, 194
Math, 691
Node, 412–419, 702–704
Number, 692
Object, 693
opener, 292–296
parent in window, 268
plug-in, 472–474
position, 429–432
reference type, 178
RegExp, 694–695
Request, 584
of screen, 195
String, 698
top, 277–283
top-level, 682–683
using as functions, 91–92
using object, 137–138
window, 192

Prototype
Ajax support, 567–575
creating, inserting and removing elements in,

561
defi ned, 528
events, 562–563
retrieving elements in, 558–559
rewriting DHTML toolbar with, 563–567
styles, 560
testing installation, 533–535

punctuation in regular expressions, 315–318

Q
question mark (?), 319
QuickTime

determining availability, 481–482
fi nishing up, 482–484
plug-in example, 479–480
potential problems, 485–488
testing the disabling of form, 484–485

R
radio buttons, 239–247
random(), 164–165
readonly attribute, 230
readyState property

asynchronous requests, 499–500
defi ned, 456
installing ActiveX controls, 479

reference types
creating and using instances, 180–182
creating new object types, 177–178
creating objects, 136–137
defi ning, 178–180

RegExp(), 307
RegExp

defi ned, 306–307
domain name validation, 342–344
e-mail address validation, 342
JavaScript reference, 694–697
postal code validation, 341–342
telephone number validation, 339–341
using constructor, 335–339

regular expressions
covering all eventualities, 323
defi ned, 301
grouping, 323–325
overview, 306–307
reusing groups of characters, 325–326
simple, 307–314
special characters in, 315–323
using match() with, 333–335
using replace() with, 329–332
using search() with, 332
using split() with, 327–328

relatedTarget property
of Event, 440
in MooTools, 579

remote servers, 454
removing

attributes with Element, 408, 410–412
child nodes, 419
elements with jQuery, 541–543
elements with MooTools, 577–578
elements with Prototype, 561

properties (continued)

25937bindex.indd 75225937bindex.indd 752 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

753

secure

methods for node, 419
options, 253
options from selection boxes, 248–252

repetition characters, 319–320
replace()

defi ned, 305
in location, 194
regular expressions, 329–332
in simple regular expressions, 307–309

request property, 500
requests. see XMLHttpRequest

required fi elds, 233
reserved words

defi ned, 21
overview, 670–671

reset(), 222
Reset buttons, 228–229
resizing windows, 296–297
responseXML property, 500
retrieving

cookie value, 381–383
elements in Prototype, 558–559
XML fi les cross-browser, 458–459
XML fi les in Firefox and Opera, 457–458
XML fi les in IE, 454–457

return statements, 80
reusability of external fi les, 8
reverse(), 154–156
RHS (right-hand side)

of comparison operators, 52–53
of logical operators, 58–60

right operands, 52–53
right-hand side (RHS)

of comparison operators, 52–53
of logical operators, 58–60

root nodes, 400
rounding numbers, 161–164
rows attribute

of <frameset/>, 267
of textarea, 236

running code, 1
run-time errors, 93

S
\s, 315
\S, 315
Safari

Ajax support, 493
browser checking with navigator, 210–215
debugging in, 123–127
DOM standard compliance, 398

same-origin policy
Ajax security, 515–516
defi ned, 277
windows security, 298

scope, 83–84
screen

defi ned, 195
setting color depth, 195–197
as window property, 192–193

screenX property
of Event, 440
of event, 445

screenY property
of Event, 440
of event, 445

script blocks, 8–9
</script> tag, 9
<script> tag

defi ned, 8–9
linking to external fi les, 7–8

scripting
differences among plug-ins, 485–486
iframes, 283–284
with top property, 277–283
between windows, 292–296
windows security, 298

search()

defi ned, 305–306
regular expressions, 332

searching
for date values, 169–172
for substrings, 140–143

secure, 377

25937bindex.indd 75325937bindex.indd 753 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

754

security

security
Ajax, 515–516
cookies and IE6+, 388–389
IE issues and operator precedence, 32–33
windows and frames, 298

select(), 229
select elements

defi ned, 223
events, 254–260
properties and methods, 224–226
in selection boxes, 247–248

selection boxes
adding and removing options from, 248–252
in HTML forms, 247–248
methods for adding new options, 252–253
select element events, 254–260

selectors, CSS
selecting elements in jQuery, 537–538
selecting elements with Prototype, 559

self property, 283
semicolons (;) in statements, 9
send()

defi ned, 500, 503
using XMLHttpRequest, 498

separation of content and style, 453–454
session cookies

lifespan, 375
security, 388–389

set() functions
continually fi ring timers, 363–364
cookie creation, 379–381
Date object’s UTC date and time, 351–358
for date values, 172
frame and page controls, 282
setting attributes with Element, 410–412
setting one-shot timers, 359–363
styles, 560
for time values, 176–177

SGML (Standard Generalized Markup Language)
defi ned, 392
XML and, 394

shiftKey property
of Event, 440
of event, 445

simple regular expressions, 307–314
single quotation marks (‘) in strings, 18–19
size attribute

in selection boxes, 247
in text boxes, 229

slice(), 151–152
smart forms

iframe, 518–523
XMLHttpRequest, 508–515

soft wrapping text, 236
some(), 157
sort(), 153–154
special characters
RegExp, 695–697
in regular expressions, 315–323

speed in animation, 436
split()

defi ned, 302–305
regular expressions, 327–328

src property, 198–199
srcElement property, 445
Standard Generalized Markup Language (SGML)

defi ned, 392
XML and, 394

standards
DOM, 397–398
Web, 392–397
XMLHttpRequest, 494–500

statements
defi ned, 9
JavaScript reference, 679–682

static methods, 149
static properties, 13
status property, 498–499
stepping, code. see code stepping

storing data with cookies. see cookies

storing data with variables, 20–25
String

charAt() and charCodeAt(), 145–149
fromCharCode(), 149
indexOf() and lastIndexOf(), 140–143
JavaScript reference, 697–699
length property of, 140

25937bindex.indd 75425937bindex.indd 754 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

755

Text

objects, 139–140
substr() and substring(), 143–144
toLowerCase() and toUpperCase(), 144–

145
string manipulation

additional methods, 302–306
covering all eventualities, 323
domain name validation, 342–344
e-mail address validation, 342
exercise questions, 345–346
grouping regular expressions, 323–325
match(), 333–335
overview, 301
postal code validation, 341–342
RegExp constructor, 335–339
regular expressions, 306–307
replace(), 329–332
reusing groups of characters, 325–326
search(), 332
simple regular expressions, 307–314
special characters in regular expressions,

315–323
split(), 327–328
summary, 345
telephone number validation, 339–341

strings
basic operations, 34–35
comparing, 66
converting arrays to, 152–153
cookie, 374–377
data type conversion, 37–39
defi ned, 18–19
mixing numbers and, 35–37
not convertible, 40

styles
changing appearances with, 423–426
jQuery, 539–541
MooTools, 576–577
Prototype, 560
separation of content and, 453–454
style object, 406

submit()

defi ned, 222
vs. focus() and blur(), 225

Submit buttons, 228–229
substr(), 143–144
substring(), 143–144
substrings

creating array with split(), 302–305
searching for, 140–143
searching for occurrences, 305

switch statement, 67–71
synchronous requests, 498–499

T
tab strip creation, 447–453
tables in tree structure, 401–402
tagName

in Element, 408–409
fi nding elements by, 404–407

target property
of <form/>, 220
of Event, 439
in MooTools, 579

telephone number validation, 339–341
templates, 177–178
test(), 314
test conditions. see conditions

test expressions, 67
testing

disabled forms, 484–485
frameworks, 530–536
methods of Array, 157
regular expressions, 309–314

text
boxes, 229–235
changing appearances in DOM, 424–426
defi ned, 18–19
mixing with numbers, 35–37
nodes, 407
in regular expressions, 315–318
reversing order with split(), 302–305
searching for, 305–306

Text

defi ned, 403
methods, 709

25937bindex.indd 75525937bindex.indd 755 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

756

text elements

text elements
creating with DOM methods, 420–422
defi ned, 223
in HTML forms, 229–236
properties and methods, 224–226
textarea, 236–238

text property, 248
textarea, 236–238
throwing errors, 96–100
tick box elements

defi ned, 223
properties and methods, 224–226

time
getting values, 173–176
setting and getting UTC date and, 351–358
setting values, 176–177
summary, 364
world time, 348–351

time zones, 348
timers

defi ned, 347
exercise questions, 365
in web page, 358–365

timestamp property, 439
toElement property, 445
toFixed(), 167–168
toggleClass(), 540
toLowerCase() , 144–145
toolbar, DHTML. see DHTML (Dynamic HTML)

toolbar

tools, debugging. see debugging

tools needed to create applications, 5–7
top property

in frames, 277–283
moving and positioning content with, 429–432
performing animation with, 433–436

top-level properties and functions, 682–683
toUpperCase(), 144–145
transferring data with XML, 454
tree structure of HTML document

getting document’s root element, 407–408
navigating with DOM, 415–419
overview, 399–402

truth tables, 59–60

try...catch

error handling, 94–96
finally clauses, 102–103
nested, 100–102
throwing errors, 96–100

two-dimensional arrays, 46–49
type attribute

of <script>, 9
defi ned, 7
for plug-ins, 470–471

type property
of Event, 439
of event, 445
in form elements, 225
in MooTools, 579

types, data. see data types

U
unavailable value, 506
uncompressed JavaScript frameworks, 529
undefi ned variables, 88–89
unequal (!=), 53–54
unescape(), 378–379
updates

DOM, 422
fi nding changes with cookies, 384–386
in Prototype, 561
World Time Converter, 356–358

url property, 584
userAgent, 209–215
Username fi eld

defi ned, 505–506
validation, 508–515

users
base, 15
browser checking, 206–209
browser checking with navigator, 209–215
disabling cookies, 386–387
input errors, 96–100
interacting with HTML forms. see HTML

(HyperText Markup Language) forms

UTC (Coordinated Universal Time)
defi ned, 348–351
setting and getting date and time, 351–358

25937bindex.indd 75625937bindex.indd 756 9/20/09 12:40:24 AM9/20/09 12:40:24 AM

757

width property

V
validation

domain names, 342–344
e-mail addresses, 342
form fi eld with Ajax, 505–508
jQuery’s Ajax form, 553–558
MooTools’ Ajax form, 585–590
postal codes, 341–342
Prototype’s Ajax form, 569–575
RegExp(), 337–339
telephone numbers, 339–341
XMLHttpRequest smart form, 508–515

value property
in form elements, 224
of Option, 248
setting cookie, 374–375

values
assigning to other variables, 24–25
assigning to variables, 21–23
getting cookie, 381–386
readyState property, 456
returning node, 413

var keyword, 21
variables

accessing parent in frames, 268–273
arrays and, 40–45
assigning comparison results in, 54
code access between frames, 273–276
creating objects, 136–137
IE watches, 121
multi-dimensional arrays, 45–49
overview, 20–25
scope and lifetime, 83–84
scripting between windows, 292–296
setting in Watch tab, 107–108
undefi ned, 88–89
Web Inspector watches, 126

Venkman, 104
Verify Password fi eld

defi ned, 505–506
validation, 508–515

versions
browser checking with navigator, 210–215
browsers and compatibility, 15

DOM, 397–398
JavaScript framework, 529
MSXML, 454–456
potential problems with plug-ins and ActiveX

controls, 486–487
of Web standards, 394–397
XMLHttpRequest, 494–495

viewing
cookies in Firefox, 373–374
cookies in IE, 368–373

W
\W, 315
\w, 315
W3C (World Wide Web Consortium)

cookie security, 388
DOM. see DOM (Document Object Model)
Web standards, 392–394

watches
defi ned, 103
Firebug, 107–108
IE, 121
key events, 237–238

web and JavaScript, 2–3
Web Inspector, 123–127
web pages

adding ActiveX controls, 475–478
adding frameworks to, 530
adding plug-ins, 470–471
displaying results in, 14
placing script in, 7–8
timers in, 358–365

web servers
Ajax usability and response, 517–523
defi ned, 3
form fi eld validation with Ajax, 506–507

Web standards, 392–397
Webkit, 123
while, 75–77
whole numbers, 18
width property
screen, 195
setting window, 285

25937bindex.indd 75725937bindex.indd 757 9/20/09 12:40:25 AM9/20/09 12:40:25 AM

758

window

window

accessing event property, 443–444
code access between frames, 273–276
coding between frames, 268–273
defi ned, 191–193
frames and, 263–268
scripting iframes, 283–284
setting timers in, 359–363
top property, 277–283

windows
events, 727
exercise questions, 299–300
moving and resizing, 296–297
opening new browser, 284–292
scripting between, 292–296
security, 298
summary, 298–299

word-boundary characters, 320–323
world time, 348–351
World Time Converter

setting and getting UTC date and time, 353–358
setting to fi re at regular intervals, 363–364

World Wide Web Consortium (W3C)
cookie security, 388
DOM. see DOM (Document Object Model)
Web standards, 392–394

wrap attribute, 236
write()

adding HTML to new window, 289
setting screen color depth, 195–197

writeOptions(), 257

X
XHMTL, 395–396
XML (eXtensible Markup Language)

error message display example, 459–467
JavaScript and, 453–454
retrieving fi le cross-browser, 458–459
retrieving fi le in Firefox and Opera, 457–458
retrieving fi le in IE, 454–457
Web standards, 394–395

XMLHttpRequest

browser checking with, 208–209
browser’s back button and, 516–517
creating simple Ajax module, 500–505
dealing with delays, 523–524
defi ned, 494–500
smart form, 508–515

Y
Yahoo! User Interface Framework (YUI), 528

Z
Zip fi les, 454

25937bindex.indd 75825937bindex.indd 758 9/20/09 12:40:25 AM9/20/09 12:40:25 AM

25937badvert.indd 76225937badvert.indd 762 9/22/09 11:25:56 AM9/22/09 11:25:56 AM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning CSS, 2nd Edition
ISBN: 978-0-470-17708-2
Updated and revised, this book offers a hands-on look at designing standards-based, large-scale, professional-level CSS web sites.
Understand designers’ processes from start to finish and gain insight into how designers overcome a site’s unique set of challenges and
obstacles. Become comfortable with solving common problems, learn the best practices for using XHMTL with CSS, orchestrate a new
look for a blog, tackle browser-compatibility issues, and develop functional navigational structures.

Beginning JavaScript and CSS Development with jQuery
ISBN: 978-0-470-22779-4
Beginning JavaScript and CSS Development with jQuery presents the world of dynamic web applications to web developers from the
standpoint of modern standards. The author shows new JavaScript developers how working with the standard jQuery library will help
them to do more with less code and fewer errors.

Concise Guide to Dojo
ISBN: 978-0-470-45202-8
Dojo has rapidly become one of the hottest JavaScript-based web development frameworks. It provides you with the power and flexibility
to create attractive and useful dynamic web applications quickly and easily. In this fast-paced, code-intensive guide, you’ll discover how
to quickly start taking advantage of Dojo. The pages are packed with useful information and insightful examples that will help you.

JavaScript Programmer’s Reference
ISBN: 978-0-470-34472-9
Both a tutorial and a reference guide for web developers, employ this complete JavaScript reference to help you understand JavaScript data
types, variables, operators, expressions, and statements, work with JavaScript frameworks and data, and improve performance with Ajax.

Professional Ajax, 2nd Edition
ISBN: 978-0-470-10949-6
Professional Ajax, 2nd Edition is written for web application developers looking to enhance the usability of their web sites and web
applications and intermediate JavaScript developers looking to further understand the language. This second edition is updated to cover
Prototype, jQuery, FireBug, Microsoft Fiddler, ASP.NET AJAX Extensions, and much more.

Professional JavaScript for Web Developers, 2nd Edition
ISBN: 978-0-470-22780-0
This updated bestseller offers an in-depth look at the JavaScript language and covers such topics as debugging tools in Microsoft Visual
Studio, FireBug, and Drosera; client-side data storage with cookies, the DOM, and Flash; client-side graphics with JavaScript including
SVG, VML, and Canvas; and design patterns including creational, structural, and behavorial patterns.

Professional JavaScript Frameworks: Prototype, YUI, ExtJS, Dojo and MooTools
ISBN: 978-0-470-38459-6
This book offers a selection of some of the most active and most used JavaScript frameworks available, replete with practical examples
and explanations of what each framework does best. You’ll look at common web development tasks and discover how each framework
approaches that set of tasks, as well as learn how to use the features of each framework and avoid potential pitfalls.

525937_cover_2.indd 2525937_cover_2.indd 2 12/18/09 2:29 PM12/18/09 2:29 PM

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

4th Edition

Beginning

JavaScript®

Paul Wilton, Jeremy McPeak

Beginning

Wilton, McPeak

 $39.99 USA
 $47.99 CANWeb Development/JavaScript

JavaScript
®

Step-by-step guidance to creating
powerful web apps with JavaScript

4th Edition

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

JavaScript allows you to enhance your web pages and web applications
by providing dynamic, personalized, and interactive content. Serving
as a great introduction to JavaScript, this book offers all you need
to start using JavaScript on your web pages right away. It’s fully
updated and covers utilizing JavaScript with the latest versions of the
Internet Explorer®, Firefox®, and Safari® browsers.

• Walks you through the basics of JavaScript: what it is, how it works,
and what you can do with it

• Covers the various tools needed to create JavaScript web applications

• Escorts you through selecting a single character from a string,
converting character codes to a string, and copying string parts

• Shows you how to join arrays, copy parts of an array, sort arrays,
and reverse an array’s order

• Explains how using a JavaScript framework (such as jQuery,
Prototype, and MooTools) makes JavaScript programming faster
and more efficient

• Offers an in-depth look at Ajax

• Reviews common mistakes, debugging, and error handling

Paul Wilton owns his own company, providing online booking systems to
vacation property owners, which is largely developed using JavaScript.

Jeremy McPeak is a self-taught programmer who began his career by tinkering
with web sites in 1998. He is the coauthor of Professional Ajax, 2nd Edition
and several online articles covering topics such as XSLT, ASP.NET Web Forms,
and C#. He is currently employed at an energy-based company
building in-house conventional and web applications.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

525937_cover_2.indd 1525937_cover_2.indd 1 12/18/09 2:29 PM12/18/09 2:29 PM

	Beginning JavaScript, 4th Edition
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Whom This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introduction to JavaScript and the Web
	Introduction to JavaScript
	Where Do My Scripts Go?
	Your First Simple JavaScript Programs
	A Brief Look at Browsers and Compatibility Problems
	Summary

	Chapter 2: Data Types and Variables
	Types of Data in JavaScript
	Variables — Storing Data in Memory
	Using Data — Calculations and Basic String Manipulation
	Data Type Conversion
	Arrays
	Summary
	Exercise Questions

	Chapter 3: Decisions, Loops, and Functions
	Decision Making — The if and switch Statements
	Looping — The for and while Statements
	Functions
	Summary
	Exercise Questions

	Chapter 4: Common Mistakes, Debugging, and Error Handling
	D’oh! I Can’t Believe I Just Did That: Some Common Mistakes
	Error Handling
	Debugging
	Summary
	Exercise Questions

	Chapter 5: JavaScript — An Object-Based Language
	Object-Based Programming
	JavaScript’s Native Object Types
	Creating New Types of Objects (Reference Types)
	Summary
	Exercise Questions

	Chapter 6: Programming the Browser
	Introduction to the Browser’s Objects
	Responding to the User’s Actions with Events
	Summary
	Exercise Questions

	Chapter 7: HTML Forms: Interacting with the User
	HTML Forms
	Other Form Object Properties and Methods
	HTML Elements in Forms
	Summary
	Exercise Questions

	Chapter 8: Windows and Frames
	Frames and the window Object
	Opening New Windows
	Security
	Summary
	Exercise Questions

	Chapter 9: String Manipulation
	Additional String Methods
	Regular Expressions
	The String Object — split(), replace(), search(), and match() Methods
	Using the RegExp Object’s Constructor
	Summary
	Exercise Questions

	Chapter 10: Date, Time, and Timers
	World Time
	Timers in a Web Page
	Summary
	Exercise Questions

	Chapter 11: Storing Information: Cookies
	Baking Your First Cookie
	Creating a Cookie
	Getting a Cookie’s Value
	Cookie Limitations
	Cookie Security and IE6+
	Summary
	Exercise Questions

	Chapter 12: Dynamic HTML and the W3C Document Object Model
	The Web Standards
	The Document Object Model
	Manipulating the DOM
	DOM and Events
	Writing Cross-Browser DHTML
	JavaScript and XML
	Summary
	Exercise Questions

	Chapter 13: Using ActiveX and Plug-Ins with JavaScript
	Checking for and Embedding Plug-ins (Non-IE Browsers)
	Checking for and Embedding ActiveX Controls on Internet Explorer
	Using Plug-ins and ActiveX Controls
	Summary
	Exercise Question

	Chapter 14: Ajax
	What Is Ajax?
	Using the XMLHttpRequest Object
	Creating a Simple Ajax Module
	Validating Form Fields with Ajax
	Things to Watch Out For
	Summary
	Exercise Questions

	Chapter 15: JavaScript Frameworks
	Picking a Framework to Work With
	Getting Started
	Digging Deeper Into jQuery
	Diving into Prototype
	Delving into MooTools
	Summary
	Exercise Questions

	Appendix A: Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Appendix B: JavaScript Core Reference
	Browser Reference
	Reserved Words
	JavaScript Operators
	JavaScript Statements
	Top-Level Properties and Functions
	JavaScript and Jscript Core Objects

	Appendix C: W3C DOM Reference
	DOM Core Objects
	HTML DOM Objects
	DOM Event Model and Objects
	Miscellaneous Events

	Appendix D: Latin-1 Character Set
	Index

