

Functional Programming
in JavaScript

Unlock the powers of functional programming hidden
within JavaScript to build smarter, cleaner, and more
reliable web apps

Dan Mantyla

BIRMINGHAM - MUMBAI

Functional Programming in JavaScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1230315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-78439-822-4

www.packtpub.com

Cover Image by Dan Mantyla

Credits

Author
Dan Mantyla

Reviewers
Dom Derrien

Joe Dorocak

Peter Ehrlich

Edward E. Griebel Jr.

Commissioning Editor
Julian Ursell

Acquisition Editor
Owen Roberts

Content Development Editor
Kirti Patil

Technical Editor
Abhishek R. Kotian

Copy Editors
Aditya Nair

Aarti Saldanha

Vikrant Phadkey

Project Coordinator
Nidhi Joshi

Proofreaders
Stephen Copestake

Maria Gould

Paul Hindle

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Dan Mantyla works as a web application developer for the University of
Kansas. He enjoys contributing to open source web frameworks and wrenching
on motorcycles. Dan is currently living in Lawrence, Kansas, USA—the birthplace
of Python Django and home to Linux News Media.

Dan has also clicked the cover image, which was taken outside his home in
Lawrence, Kansas, USA, where the sunflower fields are in bloom for only
one short week in September.

About the Reviewers

Dom Derrien is a full stack web developer who has recently been defining
application environments with a focus on high availability and scalability. He's been
in the development field for more than 15 years and has worked for big and small
companies and as an entrepreneur.

He's currently working for the game company Ubisoft, where he defines the next
generation services platform for its successful AAA games. To extend the gamer
experience on to the Web and on mobiles, he provides technical means that are
transparent, efficient, and highly flexible.

Having developed smart clients before the introduction of XHR, using a frameset tag
to keep the context and a hidden frame of size=0 to dynamically exchange data with
servers, he had a great pleasure of reviewing this book, which pushes the language
to its limits. He hopes that it will help developers improve their programming skills.

I want to thank my wife, Sophie, and our sons, Erwan and Goulven,
with whom I enjoy a peaceful life in Montréal, Québec, Canada.

Joe Dorocak, whose Internet moniker is Joe Codeswell, is a very experienced
programmer. He enjoys creating readable code that implements project requirements
efficiently and in a manner that can be easily understood. He considers writing code
akin to writing poetry.

Joe prides himself on the ability to communicate clearly and professionally. He
considers his code to be communication, not only with the machine platforms on
which it runs, but also with human programmers who might read it in the future.

Joe has worked as an employee as well as in a contractual role for major brands
such as IBM, HP, GTE/Sprint, and other top-shelf companies. He is presently
consulting on web, mobile, and desktop applications, which are coded primarily,
but not exclusively, in Python and JavaScript. For more details about him, please
visit https://www.linkedin.com/in/joedorocak.

Peter Ehrlich taught himself web programming in 2007, and now works
on performance JavaScript and WebGL at Leap Motion, Inc. In his spare time,
he enjoys dancing, rock climbing, and taking naps.

Edward E. Griebel Jr. has been developing enterprise software for over
20 years in C, C++, and Java. He has a bachelor of science degree in computer
engineering. He is currently a middleware architect at a leading payroll and
financial services provider in the U.S., focusing on systems integration and UI
and server development.

https://www.linkedin.com/in/joedorocak

www.PacktPub.com

Support files, eBooks, discount offers and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
service@packtpub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: The Powers of JavaScript's Functional Side – a
Demonstration	 1

Introduction	 1
The demonstration	 2
The application – an e-commerce website	 2

Imperative methods	 2
Functional programming	 4
Summary	 7

Chapter 2: Fundamentals of Functional Programming	 9
Functional programming languages	 9

What makes a language functional?	 10
Advantages	 11

Cleaner code	 11
Modularity	 12
Reusability	 12
Reduced coupling	 12
Mathematically correct	 12

Functional programming in a nonfunctional world	 14
Is JavaScript a functional programming language?	 15

Working with functions	 17
Self-invoking functions and closures	 18
Higher-order functions	 19
Pure functions	 20
Anonymous functions	 21
Method chains	 23
Recursion	 24

Divide and conquer	 25
Lazy evaluation	 26

Table of Contents

[ii]

The functional programmer's toolkit	 27
Callbacks	 28
Array.prototype.map()	 29
Array.prototype.filter()	 30
Array.prototype.reduce()	 31
Honorable mentions	 32

Array.prototype.forEach	 32
Array.prototype.concat	 33
Array.prototype.reverse	 34
Array.prototype.sort	 34
Array.prototype.every and Array.prototype.some	 35

Summary	 35
Chapter 3: Setting Up the Functional Programming
Environment	 37

Introduction	 37
Functional libraries for JavaScript	 38

Underscore.js	 38
Fantasy Land	 41
Bilby.js	 42
Lazy.js	 44
Bacon.js	 45
Honorable mentions	 46

Development and production environments	 48
Browsers	 48
Server-side JavaScript	 49

A functional use case in the server-side environment	 49
CLI	 50
Using functional libraries with other JavaScript modules	 50
Functional languages that compile into JavaScript	 51

Summary	 52
Chapter 4: Implementing Functional Programming Techniques
in JavaScript	 53

Partial function application and currying	 54
Function manipulation	 54

Apply, call, and the this keyword	 54
Binding arguments	 55
Function factories	 56

Partial application	 57
Partial application from the left	 58
Partial application from the right	 59

Currying	 60

Table of Contents

[iii]

Function composition	 62
Compose	 62

Sequence – compose in reverse	 63
Compositions versus chains	 64
Programming with compose	 65

Mostly functional programming	 68
Handling events	 70

Functional reactive programming	 71
Reactivity	 72
Putting it all together	 73

Summary	 75
Chapter 5: Category Theory	 77

Category theory	 78
Category theory in a nutshell	 78
Type safety	 80

Object identities	 82
Functors	 83

Creating functors	 84
Arrays and functors	 84
Function compositions, revisited	 85

Monads	 87
Maybes	 88
Promises	 90
Lenses	 92
jQuery is a monad	 94

Implementing categories	 95
Summary	 98

Chapter 6: Advanced Topics and Pitfalls in JavaScript	 99
Recursion	 100

Tail recursion	 100
The Tail-call elimination	 101

Trampolining	 103
The Y-combinator	 106

Memoization	 108
Variable scope	 109

Scope resolutions	 109
Global scope	 110
Local scope	 110
Object properties	 111

Closures	 112
Gotchas	 113

Table of Contents

[iv]

Function declarations versus function expressions versus
the function constructor	 114

Function declarations	 114
Function expressions	 115
The function constructor	 115
Unpredictable behavior	 116

Summary	 117
Chapter 7: Functional and Object-oriented Programming
in JavaScript	 119

JavaScript – the multi-paradigm language	 120
JavaScript's object-oriented implementation – using prototypes	 121

Inheritance	 121
JavaScript's prototype chain	 122
Inheritance in JavaScript and the Object.create() method	 123

Mixing functional and object-oriented programming in JavaScript	 125
Functional inheritance	 125

Strategy Pattern	 126
Mixins	 128

Classical mixins	 129
Functional mixins	 130

Summary	 133
Appendix A: Common Functions for Functional
Programming in JavaScript	 135
Appendix B: Glossary of Terms	 143
Index	 147

[v]

Preface
Functional programming is a style that emphasizes and enables the writing of
smarter code, which minimizes complexity and increases modularity. It's a way
of writing cleaner code through clever ways of mutating, combining, and using
functions. JavaScript provides an excellent medium for this approach. JavaScript, the
Internet's scripting language, is actually a functional language at heart. By learning
how to expose its true identity as a functional language, we can implement web
applications that are powerful, easier to maintain, and more reliable. By doing this,
JavaScript's odd quirks and pitfalls will suddenly become clear and the language as a
whole will make infinitely more sense. Learning how to use functional programming
will make you a better programmer for life.

This book is a guide for both new and experienced JavaScript developers who are
interested in learning functional programming. With a focus on the progression
of functional programming techniques, styles, and detailed information about
JavaScript libraries, this book will help you to write smarter code and become a
better programmer.

What this book covers
Chapter 1, The Powers of JavaScript's Functional Side – a Demonstration, sets the pace
of the book by creating a small web application with the help of both traditional
methods and functional programming. It then compares these two methods to
underline the importance of functional programming.

Chapter 2, Fundamentals of Functional Programming, introduces you to the core
concepts of functional programming as well as built-in JavaScript functions.

Chapter 3, Setting Up the Functional Programming Environment, explores different
JavaScript libraries and how they can be optimized for functional programming.

Preface

[vi]

Chapter 4, Implementing Functional Programming Techniques in JavaScript, explains the
functional paradigm in JavaScript. It covers several styles of functional programming
and demonstrates how they can be employed in different scenarios.

Chapter 5, Category Theory, explains the concept of Category Theory in detail and then
implements it in JavaScript.

Chapter 6, Advanced Topics and Pitfalls in JavaScript, highlights various drawbacks you
may face while programming in JavaScript, and the various ways to successfully
deal with them.

Chapter 7, Functional and Object-oriented Programming in JavaScript, relates both
functional and object-oriented programming to JavaScript, and shows you how
the two paradigms can complement each other and coexist side by side.

Appendix A, Common Functions for Functional Programming in JavaScript, contains
common functions used to perform functional programming in JavaScript.

Appendix B, Glossary of Terms, includes a glossary of terms used throughout the book.

What you need for this book
Only a browser is needed to get you up and running.

Who this book is for
If you are a JavaScript developer interested in learning functional programming,
looking for a quantum leap toward mastering the JavaScript language, or just want
to become a better programmer in general, then this book is ideal for you. This guide
is aimed at programmers involved in developing reactive frontend applications,
server-side applications that wrangle with reliability and concurrency, and
everything else in between.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[vii]

A block of code is set as follows:

Function.prototype.partialApply = function() {
 var func = this;
 args = Array.prototype.slice.call(arguments);
 return function() {
 return func.apply(this, args.concat(
 Array.prototype.slice.call(arguments)
));
 };
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var messages = ['Hi', 'Hello', 'Sup', 'Hey', 'Hola'];
messages.map(function(s,i){
 return printSomewhere(s, i*10, i*10);
}).forEach(document.body.appendChild);

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

The Powers of JavaScript's
Functional Side – a

Demonstration

Introduction
For decades, functional programming has been the darling of computer science
aficionados, prized for its mathematical purity and puzzling nature that kept it
hidden in dusty computer labs occupied by data scientists and PhD hopefuls. But
now, it is going through a resurgence, thanks to modern languages such as Python,
Julia, Ruby, Clojure and—last but not least—JavaScipt.

JavaScript, you say? The web's scripting language? Yes!

JavaScript has proven to be an important technology that isn't going away for quite
a while. This is largely due to the fact that it is capable of being reborn and extended
with new frameworks and libraries, such as backbone.js, jQuery, Dojo, underscore.
js, and many more. This is directly related to JavaScript's true identity as a functional
programming language. An understanding of functional programming with JavaScript
will be welcome and useful for a long time for programmers of any skill level.

Why so? Functional programming is very powerful, robust, and elegant. It is
useful and efficient on large data structures. It can be very advantageous to use
JavaScript—a client-side scripting language, as a functional means to manipulate the
DOM, sort API responses or perform other tasks on increasingly complex websites.

The Powers of JavaScript's Functional Side – a Demonstration

[2]

In this book, you will learn everything you need to know about functional
programming with JavaScript: how to empower your JavaScript web applications with
functional programming, how to unlock JavaScript's hidden powers, and how to write
better code that is both more powerful and—because it is smaller—easier to maintain,
faster to download, and takes less overhead. You will also learn the core concepts
of functional programming, how to apply them to JavaScript, how to side-step the
caveats and issues that may arise when using JavaScript as a functional language, and
how to mix functional programming with object-oriented programming in JavaScript.

But before we begin, let's perform an experiment.

The demonstration
Perhaps a quick demonstration will be the best way to introduce functional
programming with JavaScript. We will perform the same task using JavaScript—once
using traditional, native methods, and once with functional programming. Then, we
will compare the two methods.

The application – an e-commerce website
In pursuit of a real-world application, let's say we need an e-commerce web
application for a mail-order coffee bean company. They sell several types of coffee
and in different quantities, both of which affect the price.

Imperative methods
First, let's go with the procedural route. To keep this demonstration down to
earth, we'll have to create objects that hold the data. This allows the ability to
fetch the values from a database if we need to. But for now, we'll assume they're
statically defined:

// create some objects to store the data.
var columbian = {
 name: 'columbian',
 basePrice: 5
};
var frenchRoast = {
 name: 'french roast',
 basePrice: 8
};
var decaf = {
 name: 'decaf',

Chapter 1

[3]

 basePrice: 6
};

// we'll use a helper function to calculate the cost
// according to the size and print it to an HTML list
function printPrice(coffee, size) {
 if (size == 'small') {
 var price = coffee.basePrice + 2;
 }
 else if (size == 'medium') {
 var price = coffee.basePrice + 4;
 }
 else {
 var price = coffee.basePrice + 6;
 }

// create the new html list item
 var node = document.createElement("li");
 var label = coffee.name + ' ' + size;
 var textnode = document.createTextNode(label+' price: $'+price);
 node.appendChild(textnode);
 document.getElementById('products').appendChild(node);
}

// now all we need to do is call the printPrice function
// for every single combination of coffee type and size
printPrice(columbian, 'small');
printPrice(columbian, 'medium');
printPrice(columbian, 'large');
printPrice(frenchRoast, 'small');
printPrice(frenchRoast, 'medium');
printPrice(frenchRoast, 'large');
printPrice(decaf, 'small');
printPrice(decaf, 'medium');
printPrice(decaf, 'large');

Downloading the example code
You can download example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

The Powers of JavaScript's Functional Side – a Demonstration

[4]

As you can see, this code is very basic. What if there were many more coffee styles
than just the three we have here? What if there were 20? 50? What if, in addition to
size, there were organic and non-organic options. That could increase the lines
of code extremely quickly!

Using this method, we are telling the machine what to print for each coffee type and
for each size. This is fundamentally what is wrong with imperative code.

Functional programming
While imperative code tells the machine, step-by-step, what it needs to do to
solve the problem, functional programming instead seeks to describe the problem
mathematically so that the machine can do the rest.

With a more functional approach, the same application can be written as follows:

// separate the data and logic from the interface
var printPrice = function(price, label) {
 var node = document.createElement("li");
 var textnode = document.createTextNode(label+' price: $'+price);
 node.appendChild(textnode);
 document.getElementById('products 2').appendChild(node);
}

// create function objects for each type of coffee
var columbian = function(){
 this.name = 'columbian';
 this.basePrice = 5;
};
var frenchRoast = function(){
 this.name = 'french roast';
 this.basePrice = 8;
};
var decaf = function(){
 this.name = 'decaf';
 this.basePrice = 6;
};

// create object literals for the different sizes
var small = {
 getPrice: function(){return this.basePrice + 2},
 getLabel: function(){return this.name + ' small'}
};
var medium = {

Chapter 1

[5]

 getPrice: function(){return this.basePrice + 4},
 getLabel: function(){return this.name + ' medium'}
};
var large = {
 getPrice: function(){return this.basePrice + 6},
 getLabel: function(){return this.name + ' large'}
};

// put all the coffee types and sizes into arrays
var coffeeTypes = [columbian, frenchRoast, decaf];
var coffeeSizes = [small, medium, large];

// build new objects that are combinations of the above
// and put them into a new array
var coffees = coffeeTypes.reduce(function(previous, current) {
 var newCoffee = coffeeSizes.map(function(mixin) {
 // `plusmix` function for functional mixins, see Ch.7
 var newCoffeeObj = plusMixin(current, mixin);
 return new newCoffeeObj();
 });
 return previous.concat(newCoffee);
},[]);

// we've now defined how to get the price and label for each
// coffee type and size combination, now we can just print them
coffees.forEach(function(coffee){
 printPrice(coffee.getPrice(),coffee.getLabel());
});

The first thing that should be obvious is that it is much more modular. This makes
adding a new size or a new coffee type as simple as shown in the following
code snippet:

var peruvian = function(){
 this.name = 'peruvian';
 this.basePrice = 11;
};

var extraLarge = {
 getPrice: function(){return this.basePrice + 10},
 getLabel: function(){return this.name + ' extra large'}
};

coffeeTypes.push(Peruvian);
coffeeSizes.push(extraLarge);

The Powers of JavaScript's Functional Side – a Demonstration

[6]

Arrays of coffee objects and size objects are "mixed" together,—that is, their methods
and member variables are combined—with a custom function called plusMixin
(see Chapter 7, Functional and Object-oriented Programming in JavaScript). The coffee
type classes contain the member variables and the sizes contain methods to calculate
the name and price. The "mixing" happens within a map operation, which applies
a pure function to each element in an array and returns a new function inside a
reduce() operation—another higher-order function similar to the map function,
except that all the elements in the array are combined into one. Finally, the new
array of all possible combinations of types and sizes is iterated through with the
forEach() method The forEach() method is yet another higher-order function that
applies a callback function to each object in an array. In this example, we provide it
as an anonymous function that instantiates the objects and calls the printPrice()
function with the object's getPrice() and getLabel() methods as arguments.

Actually, we could make this example even more functional by removing the
coffees variable and chaining the functions together—another little trick in
functional programming.

coffeeTypes.reduce(function(previous, current) {
 var newCoffee = coffeeSizes.map(function(mixin) {
 // `plusMixin` function for functional mixins, see Ch.7
 var newCoffeeObj = plusMixin(current, mixin);
 return new newCoffeeObj();
 });
 return previous.concat(newCoffee);
},[]).forEach(function(coffee) {
 printPrice(coffee.getPrice(),coffee.getLabel());
});

Also, the control flow is not as top-to-bottom as the imperative code was. In
functional programming, the map() function and other higher-order functions take
the place of for and while loops and very little importance is placed on the order of
execution. This makes it a little trickier for newcomers to the paradigm to read the
code but, once you get the hang of it, it's not hard at all to follow and you'll see that
it is much better.

This example barely touched on what functional programming can do in JavaScript.
Throughout this book, you will see even more powerful examples of the functional
approach.

Chapter 1

[7]

Summary
First, the benefits of adopting a functional style are clear.

Second, don't be scared of functional programming. Yes, it is often thought of as
pure logic in the form of computer language, but we don't need to understand
Lambda calculus to be able to apply it to everyday tasks. The fact is, by allowing
our programs to be broken down into smaller pieces, they're easier to understand,
simpler to maintain, and more reliable. map() and reduce() function's are lesser-
known built-in functions in JavaScript, but we'll look at them.

JavaScript is a scripting language, interactive and approachable. No compiling
is necessary. We don't even need to download any development software, your
favorite browser works as the interpreter and as the development environment.

Interested? Alright, let's get started!

[9]

Fundamentals of Functional
Programming

By now, you've seen a small glimpse of what functional programming can do.
But what exactly is functional programming? What makes one language functional
and not another? What makes one programming style functional and not another?

In this chapter, we will first answer these questions and then cover the core concepts
of functional programming:

•	 Using functions and arrays for control flow
•	 Writing pure functions, anonymous functions, recursive functions, and more
•	 Passing functions around like objects
•	 Utilizing the map(), filter(), and reduce() functions

Functional programming languages
Functional programming languages are languages that facilitate the functional
programming paradigm. At the risk of oversimplifying, we could say that, if a
language includes the features required for functional programming, then it is a
functional language—as simple as that. In most cases, it's the programming style
that truly determines whether a program is functional or not.

Fundamentals of Functional Programming

[10]

What makes a language functional?
Functional programming cannot be performed in C. Functional programming
cannot be performed in Java (without a lot of cumbersome workarounds for "almost"
functional programming). Those and many more languages simply don't contain the
constructs to support it. They are purely object-oriented and strictly non-functional
languages.

At the same time, object-oriented programming cannot be performed on purely
functional languages, such as Scheme, Haskell, and Lisp, just to name a few.

However, there are certain languages that support both models. Python is a
famous example, but there are others: Ruby, Julia, and—here's the one we're
interested in—JavaScript. How can these languages support two design patterns
that are very different from each other? They contain the features required for both
programming paradigms. However, in the case of JavaScript, the functional features
are somewhat hidden.

But really, it's a little more involved than that. So what makes a language functional?

Characteristic Imperative Functional
Programming Style Perform step-by-step tasks

and manage changes in state
Define what the problem
is and what data
transformations are needed
to achieve the solution

State Changes Important Non-existent
Order of Execution Important Not as important
Primary Flow Control Loops, conditionals, and

function calls
Function calls and recursion

Primary Manipulation
Unit

Structures and class objects Functions as first-class
objects and data sets

The syntax of the language must allow for certain design patterns, such as an
inferred type system, and the ability to use anonymous functions. Essentially,
the language must implement Lambda calculus. Also, the interpreter's evaluation
strategy should be non-strict and call-by-need (also known as deferred execution),
which allows for immutable data structures and non-strict, lazy evaluation.

Chapter 2

[11]

Advantages
You could say that the profound enlightenment you experience when you finally
"get it" will make learning functional programming worth it. An experience such as
this will make you a better programmer for the rest of your life, whether you actually
become a full-time functional programmer or not.

But we're not talking about learning to meditate; we're talking about learning an
extremely useful tool that will make you a better programmer.

Formally speaking, what exactly are the practical advantages of using functional
programming?

Cleaner code
Functional programs are cleaner, simpler, and smaller. This simplifies debugging,
testing, and maintenance.

For example, let's say we need a function that converts a two-dimensional array into
a one-dimensional array. Using only imperative techniques, we could write it the
following way:

function merge2dArrayIntoOne(arrays) {
 var count = arrays.length;
 var merged = new Array(count);
 var c = 0;
 for (var i = 0; i < count; ++i) {
 for (var j = 0, jlen = arrays[i].length; j < jlen; ++j) {
 merged[c++] = arrays[i][j];
 }
 }
 return merged
}

And using functional techniques, it could be written as follows:

varmerge2dArrayIntoOne2 = function(arrays) {
 return arrays.reduce(function(p,n){
 return p.concat(n);
 });
};

Both of these functions take the same input and return the same output. However,
the functional example is much more concise and clean.

Fundamentals of Functional Programming

[12]

Modularity
Functional programming forces large problems to be broken down into smaller
instances of the same problem to be solved. This means that the code is more
modular. Programs that are modular are clearly specified, easier to debug, and
simpler to maintain. Testing is easier because each piece of modular code can
potentially be checked for correctness.

Reusability
Functional programs share a variety of common helper functions, due to the
modularity of functional programming. You'll find that many of these functions
can be reused for a variety of different applications.

Many of the most common functions will be covered later in this chapter. However, as
you work as a functional programmer, you will inevitably compile your own library
of little functions that can be used over and over again. For example, a well-designed
function that searches through the lines of a configuration file could also be used to
search through a hash table.

Reduced coupling
Coupling is the amount of dependency between modules in a program. Because the
functional programmer works to write first-class, higher-order, pure functions that
are completely independent of each other with no side effects on global variables,
coupling is greatly reduced. Certainly, functions will unavoidably rely on each
other. But modifying one function will not change another, so long as the one-to-one
mapping of inputs to outputs remains correct.

Mathematically correct
This last one is on a more theoretical level. Thanks to its roots in Lambda calculus,
functional programs can be mathematically proven to be correct. This is a big
advantage for researchers who need to prove the growth rate, time complexity,
and mathematical correctness of a program.

Let's look at Fibonacci's sequence. Although it's rarely used for anything other
than a proof-of-concept, it illustrates this concept quite well. The standard way
of evaluating a Fibonacci sequence is to create a recursive function that expresses
fibonnaci(n) = fibonnaci(n-2) + fibonnaci(n–1) with a base case to return
1 when n < 2, which makes it possible to stop the recursion and begin adding up
the values returned at each step in the recursive call stack.

Chapter 2

[13]

This describes the intermediary steps involved in calculating the sequence.

var fibonacci = function(n) {
 if (n < 2) {
 return 1;
 }
 else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}
console.log(fibonacci(8));
// Output: 34

However, with the help of a library that implements a lazy execution strategy,
an indefinite sequence can be generated that states the mathematical equation
that defines the entire sequence of numbers. Only as many numbers as needed
will be computed.

var fibonacci2 = Lazy.generate(function() {
 var x = 1,
 y = 1;
 return function() {
 var prev = x;
 x = y;
 y += prev;
 return prev;
 };
}());

console.log(fibonacci2.length());// Output: undefined

console.log(fibonacci2.take(12).toArray());// Output: [1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144]

var fibonacci3 = Lazy.generate(function() {
 var x = 1,
 y = 1;
 return function() {
 var prev = x;
 x = y;
 y += prev;
 return prev;
 };
}());

console.log(fibonacci3.take(9).reverse().first(1).toArray());//
Output: [34]

Fundamentals of Functional Programming

[14]

The second example is clearly more mathematically sound. It relies on the Lazy.
js library of JavaScript. There are other libraries that can help here as well, such as
Sloth.js and wu.js. These will be covered in Chapter 3, Setting Up the Functional
Programming Environment.

Functional programming in a nonfunctional
world
Can functional and nonfunctional programming be mixed together? Although this
is the subject of Chapter 7, Functional & Object-oriented Programming in JavaScript, it is
important to get a few things straight before we go any further.

This book is not intended to teach you how to implement an entire application that
strictly adheres to the rigors of pure functional programming. Such applications are
rarely appropriate outside Academia. Rather, this book will teach you how to use
functional programming design strategies within your applications to complement
the necessary imperative code.

For example, if you need the first four words that only contain letters out of some
text, they could naively be written like this:

var words = [], count = 0;
text = myString.split(' ');
for (i=0; count<4, i<text.length; i++) {
 if (!text[i].match(/[0-9]/)) {
 words = words.concat(text[i]);
 count++;
 }
}
console.log(words);

In contrast, a functional programmer might write them as follows:

var words = [];
var words = myString.split(' ').filter(function(x){
 return (! x.match(/[1-9]+/));
}).slice(0,4);
console.log(words);

Chapter 2

[15]

Or, with a library of functional programming utilities, they can be simplified
even further:

var words = toSequence(myString).match(/[a-zA-Z]+/).first(4);

The key to identifying functions that can be written in a more functional way is to
look for loops and temporary variables, such as words and count instances in the
preceding example. We can usually do away with both temporary variables and
loops by replacing them with higher-order functions, which we will explore later
in this chapter.

Is JavaScript a functional programming language?
There is one last question we must ask ourselves. Is JavaScript a functional language
or a non-functional language?

JavaScript is arguably the world's most popular and least understood functional
programming language. JavaScript is a functional programming language in C-like
clothing. Its syntax is undeniably C-like, meaning it uses C's block syntax and in-
fix ordering. And it's one of the worst named languages in existence. It doesn't take
a lot of imagination to see how so many people can confuse JavaScript as being
related to Java; somehow, its name implies that it should be! But in reality it has
very little in common with Java. And, to really cement the idea that JavaScript is an
object-oriented language, libraries and frameworks such as Dojo and ease.js have
been hard at work attempting to abstract it and make it suitable for object-oriented
programming. JavaScript came of age in the 1990s when OOP was all the buzz, and
we've been told that JavaScript is object-oriented because we want it to be so badly.
But it is not.

Its true identity is much more aligned with its ancestors: Scheme and Lisp, two
classic functional languages. JavaScript is a functional language, all the way. Its
functions are first-class and can be nested, it has closures and compositions, and it
allows for currying and monads. All of these are key to functional programming.
Here are a few more reasons why JavaScript is a functional language:

•	 JavaScript's lexical grammar includes the ability to pass functions as
arguments, has an inferred type system, and allows for anonymous
functions, higher-order functions, closures and more. These facts
are paramount to achieving the structure and behavior of functional
programming.

Fundamentals of Functional Programming

[16]

•	 It is not a pure object-oriented language, with most object-oriented design
patterns achieved by copying the Prototype object, a weak model for
object-oriented programming. European Computer Manufacturers
Association Script (ECMAScript), JavaScript's formal and standardized
specifications for implementation, states the following in specification 4.2.1:

"ECMAScript does not contain proper classes such as those in
C++, Smalltalk, or Java, but rather, supports constructors which
create objects. In a class-based object-oriented language, in general,
state is carried by instances, methods are carried by classes, and
inheritance is only of structure and behavior. In ECMAScript, the
state and methods are carried by objects, and structure, behavior
and state are all inherited."

•	 It is an interpreted language. Sometimes called "engines", JavaScript
interpreters often closely resemble Scheme interpreters. Both are dynamic,
both have flexible datatypes that easily combine and transform, both evaluate
the code into blocks of expressions, and both treat functions similarly.

That being said, it is true that JavaScript is not a pure functional language.
What's lacking is lazy evaluation and built-in immutable data. This is because
most interpreters are call-by-name and not call-by-need. JavaScript also isn't very
good with recursion due to the way it handles tail calls. However, all of these
issues can be mitigated with a little bit of attention. Non-strict evaluation, required
for infinite sequences and lazy evaluation, can be achieved with a library called
Lazy.js. Immutable data can be achieved simply by programming technique, but
this requires more programmer discipline rather than relying on the language to take
care of it. And recursive tail call elimination can be achieved with a method called
Trampolining. These issues will be addressed in Chapter 6, Advanced Topics & Pitfalls
in JavaScript.

Many debates have been waged over whether or not JavaScript is a functional
language, an object-oriented language, both, or neither. And this won't be the
last debate.

In the end, functional programming is way of writing cleaner code through clever
ways of mutating, combining, and using functions. And JavaScript provides an
excellent medium for this approach. If you really want to use JavaScript to its full
potential, you must learn how to use it as a functional language.

Chapter 2

[17]

Working with functions
Sometimes, the elegant implementation is a function. Not a method. Not a class.
Not a framework. Just a function.
 -John Carmack, lead programmer of the Doom video game

Functional programming is all about decomposing a problem into a set of functions.
Often, functions are chained together, nested within each other, passed around, and
treated as first-class citizens. If you've used frameworks such as jQuery and Node.js,
you've probably used some of these techniques, you just didn't realize it!

Let's start with a little JavaScript dilemma.

Say we need to compile a list of values that are assigned to generic objects.
The objects could be anything: dates, HTML objects, and so on.

var
 obj1 = {value: 1},
 obj2 = {value: 2},
 obj3 = {value: 3};

var values = [];
function accumulate(obj) {
 values.push(obj.value);
}
accumulate(obj1);
accumulate(obj2);
console.log(values); // Output: [obj1.value, obj2.value]

It works but it's volatile. Any code can modify the values object without calling the
accumulate() function. And if we forget to assign the empty set, [], to the values
instance then the code will not work at all.

But if the variable is declared inside the function, it can't be mutated by any rogue
lines of code.

function accumulate2(obj) {
 var values = [];
 values.push(obj.value);
 return values;
}
console.log(accumulate2(obj1)); // Returns: [obj1.value]
console.log(accumulate2(obj2)); // Returns: [obj2.value]
console.log(accumulate2(obj3)); // Returns: [obj3.value]

Fundamentals of Functional Programming

[18]

It does not work! Only the value of the object last passed in is returned.

We could possibly solve this with a nested function inside the first function.

var ValueAccumulator = function(obj) {
 var values = []
 var accumulate = function() {
 values.push(obj.value);
 };
 accumulate();
 return values;
};

But it's the same issue, and now we cannot reach the accumulate function or the
values variable.

What we need is a self-invoking function.

Self-invoking functions and closures
What if we could return a function expression that in-turn returns the values
array? Variables declared in a function are available to any code within the
function, including self-invoking functions.

By using a self-invoking function, our dilemma is solved.

var ValueAccumulator = function() {
 var values = [];
 var accumulate = function(obj) {
 if (obj) {
 values.push(obj.value);
 return values;
 }
 else {
 return values;
 }
 };
 return accumulate;
};

//This allows us to do this:
var accumulator = ValueAccumulator();
accumulator(obj1);
accumulator(obj2);
console.log(accumulator());
// Output: [obj1.value, obj2.value]

Chapter 2

[19]

It's all about variable scoping. The values variable is available to the inner
accumulate() function, even when code outside the scope calls the functions.
This is called a closure.

Closures in JavaScript are functions that have access to the parent
scope, even when the parent function has closed.

Closures are a feature of all functional languages. Traditional imperative languages
do not allow them.

Higher-order functions
Self-invoking functions are actually a form of higher-order functions. Higher-order
functions are functions that either take another function as the input or return a
function as the output.

Higher-order functions are not common in traditional programming. While
an imperative programmer might use a loop to iterate an array, a functional
programmer would take another approach entirely. By using a higher-order
function, the array can be worked on by applying that function to each item in
the array to create a new array.

This is the central idea of the functional programming paradigm. What higher-order
functions allow is the ability to pass logic to other functions, just like objects.

Functions are treated as first-class citizens in JavaScript, a distinction JavaScript shares
with Scheme, Haskell, and the other classic functional languages. This may sound
bizarre, but all this really means is that functions are treated as primitives, just like
numbers and objects. If numbers and objects can be passed around, so can functions.

To see this in action, let's use a higher-order function with our ValueAccumulator()
function from the previous section:

// using forEach() to iterate through an array and call a
// callback function, accumulator, for each item
var accumulator2 = ValueAccumulator();
var objects = [obj1, obj2, obj3]; // could be huge array of objects
objects.forEach(accumulator2);
console.log(accumulator2());

Fundamentals of Functional Programming

[20]

Pure functions
Pure functions return a value computed using only the inputs passed to it. Outside
variables and global states may not be used and there may be no side effects. In
other words, it must not mutate the variables passed to it for input. Therefore,
pure functions are only used for their returned value.

A simple example of this is a math function. The Math.sqrt(4) function will always
return 2, does not use any hidden information such as settings or state, and will
never inflict any side effects.

Pure functions are the true interpretation of the mathematical term for 'function',
a relation between inputs and an output. They are simple to think about and are
readily re-usable. Because they are totally independent, pure functions are more
capable of being used again and again.

To illustrate this, compare the following non-pure function to the pure one.

// function that prints a message to the center of the screen
var printCenter = function(str) {
 var elem = document.createElement("div");
 elem.textContent = str;
 elem.style.position = 'absolute';
 elem.style.top = window.innerHeight/2+"px";
 elem.style.left = window.innerWidth/2+"px";
 document.body.appendChild(elem);
};
printCenter('hello world');
// pure function that accomplishes the same thing
var printSomewhere = function(str, height, width) {
 var elem = document.createElement("div");
 elem.textContent = str;
 elem.style.position = 'absolute';
 elem.style.top = height;
 elem.style.left = width;
 return elem;
};
document.body.appendChild(
 printSomewhere('hello world',
 window.innerHeight/2)+10+"px",
 window.innerWidth/2)+10+"px")
);

Chapter 2

[21]

While the non-pure function relies on the state of the window object to compute the
height and width, the pure, self-sufficient function instead asks that those values be
passed in. What this actually does is allow the message to be printed anywhere, and
this makes the function much more versatile.

And while the non-pure function may seem like the easier option because it
performs the appending itself instead of returning an element, the pure function
printSomewhere() and its returned value play better with other functional
programming design techniques.

var messages = ['Hi', 'Hello', 'Sup', 'Hey', 'Hola'];
messages.map(function(s,i){
 return printSomewhere(s, 100*i*10, 100*i*10);
}).forEach(function(element) {
 document.body.appendChild(element);
});

When the functions are pure and don't rely on state or environment,
then we don't care about when or where they actually get computed.
We'll see this later with lazy evaluation.

Anonymous functions
Another benefit of treating functions as first-class objects is the advent of
anonymous functions.

As the name might imply, anonymous functions are functions without names.
But they are more than that. What they allow is the ability to define ad-hoc logic,
on-the-spot and as needed. Usually, it's for the benefit of convenience; if the function
is only referred to once, then a variable name doesn't need to be wasted on it.

Some examples of anonymous functions are as follows:

// The standard way to write anonymous functions
function(){return "hello world"};

// Anonymous function assigned to variable
var anon = function(x,y){return x+y};

// Anonymous function used in place of a named callback function,
// this is one of the more common uses of anonymous functions.
setInterval(function(){console.log(new Date().getTime())}, 1000);

Fundamentals of Functional Programming

[22]

// Output: 1413249010672, 1413249010673, 1413249010674, ...

// Without wrapping it in an anonymous function, it immediately
// execute once and then return undefined as the callback:
setInterval(console.log(new Date().getTime()), 1000)
// Output: 1413249010671

A more involved example of anonymous functions used within higher-order functions:

function powersOf(x) {
 return function(y) {
 // this is an anonymous function!
 return Math.pow(x,y);
 };
}
powerOfTwo = powersOf(2);
console.log(powerOfTwo(1)); // 2
console.log(powerOfTwo(2)); // 4
console.log(powerOfTwo(3)); // 8

powerOfThree = powersOf(3);
console.log(powerOfThree(3)); // 9
console.log(powerOfThree(10)); // 59049

The function that is returned doesn't need to be named; it can't be used anywhere
outside the powersOf() function, and so it is an anonymous function.

Remember our accumulator function? It can be re-written using anonymous functions.

var
 obj1 = {value: 1},
 obj2 = {value: 2},
 obj3 = {value: 3};

var values = (function() {
 // anonymous function
 var values = [];
 return function(obj) {
 // another anonymous function!
 if (obj) {
 values.push(obj.value);
 return values;
 }
 else {

Chapter 2

[23]

 return values;
 }
 }
})(); // make it self-executing
console.log(values(obj1)); // Returns: [obj.value]
console.log(values(obj2)); // Returns: [obj.value, obj2.value]

Right on! A pure, high-order, anonymous function. How did we ever get so lucky?
Actually, it's more than that. It's also self-executing as indicated by the structure,
(function(){...})();. The pair of parentheses following the anonymous function
causes the function to be called right away. In the above example, the values instance
is assigned to the output of the self-executing function call.

Anonymous functions are more than just syntactical sugar. They are
the embodiment of Lambda calculus. Stay with me on this… Lambda
calculus was invented long before computers or computer languages.
It was just a mathematical notion for reasoning about functions.
Remarkably, it was discovered that—despite the fact that it only
defines three kinds of expressions: variable references, function calls,
and anonymous functions—it was Turing-complete. Today, Lambda
calculus lies at the core of all functional languages if you know how
to find it, including JavaScript.
For this reason, anonymous functions are often called lambda
expressions.

One drawback to anonymous functions remains. They're difficult to identify in call
stacks, which makes debugging trickier. They should be used sparingly.

Method chains
Chaining methods together in JavaScript is quit common. If you've used jQuery,
you've likely performed this technique. It's sometimes called the "Builder Pattern".

It's a technique that is used to simplify code where multiple functions are applied to
an object one after another.

// Instead of applying the functions one per line...
arr = [1,2,3,4];
arr1 = arr.reverse();
arr2 = arr1.concat([5,6]);
arr3 = arr2.map(Math.sqrt);

Fundamentals of Functional Programming

[24]

// ...they can be chained together into a one-liner
console.log([1,2,3,4].reverse().concat([5,6]).map(Math.sqrt));
// parentheses may be used to illustrate
console.log(((([1,2,3,4]).reverse()).concat([5,6])).map(Math.sqrt)
);

This only works when the functions are methods of the object being worked on.
If you created your own function that, for example, takes two arrays and returns
an array with the two arrays zipped together, you must declare it as a member of
the Array.prototype object. Take a look at the following code snippet:

Array.prototype.zip = function(arr2) {
 // ...
}

This would allow us to the following:

arr.zip([11,12,13,14).map(function(n){return n*2});
// Output: 2, 22, 4, 24, 6, 26, 8, 28

Recursion
Recursion is likely the most famous functional programming technique. If you don't
know by now, a recursive function is a function that calls itself.

When a functions calls itself, something strange happens. It acts both as a loop, in
that it executes the same code multiple times, and as a function stack.

Recursive functions must be very careful to avoid an infinite loop (rather, infinite
recursion in this case). So just like loops, a condition must be used to know when to
stop. This is called the base case.

An example is as follows:

var foo = function(n) {
 if (n < 0) {
 // base case
 return 'hello';
 }
 else {
 // recursive case
 foo(n-1);
 }
}
console.log(foo(5));

Chapter 2

[25]

It's possible to convert any loop to a recursive algorithm and any recursive algorithm
to a loop. But recursive algorithms are more appropriate, almost necessary, for
situations that differ greatly from those where loops are appropriate.

A good example is tree traversal. While it's not too hard to traverse a tree using
a recursive function, a loop would be much more complex and would need to
maintain a stack. And that would go against the spirit of functional programming.

var getLeafs = function(node) {
 if (node.childNodes.length == 0) {
 // base case
 return node.innerText;
 }
 else {
 // recursive case:
 return node.childNodes.map(getLeafs);
 }
}

Divide and conquer
Recursion is more than an interesting way to iterate without for and while loops.
An algorithm design, known as divide and conquer, recursively breaks problems
down into smaller instances of the same problem until they're small enough to solve.

The historical example of this is the Euclidan algorithm for finding the greatest
common denominator for two numbers.

function gcd(a, b) {
 if (b == 0) {
 // base case (conquer)
 return a;
 }
 else {
 // recursive case (divide)
 return gcd(b, a % b);
 }
}

console.log(gcd(12,8));
console.log(gcd(100,20));

Fundamentals of Functional Programming

[26]

So in theory, divide and conquer works quite eloquently, but does it have any use
in the real world? Yes! The JavaScript function for sorting arrays is not very good.
Not only does it sort the array in place, which means that the data is not immutable,
but it is unreliable and inflexible. With divide and conquer, we can do better.

The merge sort algorithm uses the divide and conquer recursive algorithm design to
efficiently sort an array by recursively dividing the array into smaller sub-arrays and
then merging them together.

The full implementation in JavaScript is about 40 lines of code. However,
pseudo-code is as follows:

var mergeSort = function(arr){
 if (arr.length < 2) {
 // base case: 0 or 1 item arrays don't need sorting
 return items;
 }
 else {
 // recursive case: divide the array, sort, then merge
 var middle = Math.floor(arr.length / 2);
 // divide
 var left = mergeSort(arr.slice(0, middle));
 var right = mergeSort(arr.slice(middle));
 // conquer
 // merge is a helper function that returns a new array
 // of the two arrays merged together
 return merge(left, right);
 }
}

Lazy evaluation
Lazy evaluation, also known as non-strict evaluation, call-by-need and deffered
execution, is an evaluation strategy that waits until the value is needed to compute
the result of a function and is particularly useful for functional programming. It's
clear that a line of code that states x = func() is calling for x to be assigned to the
returned value by func(). But what x actually equates to does not matter until it is
needed. Waiting to call func() until x is needed is known as lazy evaluation.

This strategy can result in a major increase in performance, especially when used
with method chains and arrays, the favorite program flow techniques of the
functional programmer.

Chapter 2

[27]

One exciting benefit of lazy evaluation is the existence of infinite series. Because
nothing is actually computed until it can't be delayed any further, it's possible
to do this:

// wishful JavaScript pseudocode:
var infinateNums = range(1 to infinity);
var tenPrimes = infinateNums.getPrimeNumbers().first(10);

This opens the door for many possibilities: asynchronous execution, parallelization,
and composition, just to name a few.

However, there's one problem: JavaScript does not perform Lazy evaluation on
its own. That being said, there exist libraries for JavaScript that simulate lazy
evaluation very well. That is the subject of Chapter 3, Setting Up the Functional
Programming Environment.

The functional programmer's toolkit
If you've looked closely at the few examples presented so far, you'll notice a few
methods being used that you may not be familiar with. They are the map(), filter(),
and reduce() functions, and they are crucial to every functional program of any
language. They enable you to remove loops and statements, resulting in cleaner code.

The map(), filter(), and reduce() functions make up the core of the functional
programmer's toolkit, a collection of pure, higher-order functions that are the
workhorses of the functional method. In fact, they're the epitome of what a pure
function and what a higher-order function should be like; they take a function as
input and return an output with zero side effects.

While they're standard for browsers that implement ECMAScript 5.1, they only work
on arrays. Each time it's called, a new array is created and returned. The existing
array is not modified. But there's more, they take functions as inputs, often in the form
of anonymous functions referred to as callback functions; they iterate over the array
and apply the function to each item in the array!

myArray = [1,2,3,4];
newArray = myArray.map(function(x) {return x*2});
console.log(myArray); // Output: [1,2,3,4]
console.log(newArray); // Output: [2,4,6,8]

Fundamentals of Functional Programming

[28]

One more thing. Because they only work on arrays, they do not work on other
iterable data structures, like certain objects. Fret not, libraries such as underscore.
js, Lazy.js, stream.js, and many more all implement their own map(), filter(),
and reduce() methods that are more versatile.

Callbacks
If you've never worked with callbacks before, you might find the concept a little
puzzling. This is especially true in JavaScript, given the several different ways that
JavaScript allows you to declare functions.

A callback() function is used for passing to other functions for them to use. It's a
way to pass logic just as you would pass an object:

var myArray = [1,2,3];
function myCallback(x){return x+1};
console.log(myArray.map(myCallback));

To make it simpler for easy tasks, anonymous functions can be used:

console.log(myArray.map(function(x){return x+1}));

They are not only used in functional programming, they are used for many things in
JavaScript. Purely for example, here's a callback() function used in an AJAX call
made with jQuery:

function myCallback(xhr){
 console.log(xhr.status);
 return true;
}
$.ajax(myURI).done(myCallback);

Notice that only the name of the function was used. And because we're not calling
the callback and are only passing the name of it, it would be wrong to write this:

$.ajax(myURI).fail(myCallback(xhr));
// or
$.ajax(myURI).fail(myCallback());

What would happen if we did call the callback? In that case, the myCallback(xhr)
method would try to execute—'undefined' would be printed to the console and it
would return True. When the ajax() call completes, it will have 'true' as the name
of the callback function to use, and that will throw an error.

Chapter 2

[29]

What this also means is that we cannot specify what arguments are passed to the
callback functions. If we need different parameters from what the ajax() call will
pass to it, we can wrap the callback function in an anonymous function:

function myCallback(status){
 console.log(status);
 return true;
}
$.ajax(myURI).done(function(xhr){myCallback(xhr.status)});

Array.prototype.map()
The map() function is the ringleader of the bunch. It simply applies the callback
function on each item in the array.

Syntax: arr.map(callback [, thisArg]);

Parameters:

•	 callback(): This function produces an element for the new array,
receiving these arguments:

°° currentValue: This argument gives the current element being
processed in the array

°° index: This argument gives the index of the current element
in the array

°° array: This argument gives the array being processed

•	 thisArg(): This function is optional. The value is used as this when
executing callback.

Examples:

var
 integers = [1,-0,9,-8,3],
 numbers = [1,2,3,4],
 str = 'hello world how ya doing?';
// map integers to their absolute values
console.log(integers.map(Math.abs));

// multiply an array of numbers by their position in the array

Fundamentals of Functional Programming

[30]

console.log(numbers.map(function(x, i){return x*i}));

// Capitalize every other word in a string.
console.log(str.split(' ').map(function(s, i){
 if (i%2 == 0) {
 return s.toUpperCase();
 }
 else {
 return s;
 }
}));

While the Array.prototype.map method is a standard method
for the Array object in JavaScript, it can be easily extended to your
custom objects as well.

MyObject.prototype.map = function(f) {

 return new MyObject(f(this.value));

};

Array.prototype.filter()
The filter() function is used to take elements out of an array. The callback must
return True (to include the item in the new array) or False (to drop it). Something
similar could be achieved by using the map() function and returning a null value
for items you want dropped, but the filter() function will delete the item from
the new array instead of inserting a null value in its place.

Syntax: arr.filter(callback [, thisArg]);

Parameters:

•	 callback(): This function is used to test each element in the array.
Return True to keep the element, False otherwise. With these parameters:

°° currentValue: This parameter gives the current element being
processed in the array

°° index: This parameter gives the index of the current element
in the array

Chapter 2

[31]

•	 array: This parameter gives the array being processed.
•	 thisArg(): This function is optional. Value is used as this when

executing callback.

Examples:

var myarray = [1,2,3,4]
words = 'hello 123 world how 345 ya doing'.split(' ');
re = '[a-zA-Z]';
// remove all negative numbers
console.log([-2,-1,0,1,2].filter(function(x){return x>0}));
// remove null values after a map operation
console.log(words.filter(function(s){
 return s.match(re);
}));
// remove random objects from an array
console.log(myarray.filter(function(){
 return Math.floor(Math.random()*2)})
);

Array.prototype.reduce()
Sometimes called fold, the reduce() function is used to accumulate all the values of
the array into one. The callback needs to return the logic to be performed to combine
the objects. In the case of numbers, they're usually added together to get a sum
or multiplied together to get a product. In the case of strings, the strings are often
appended together.

Syntax: arr.reduce(callback [, initialValue]);

Parameters:

•	 callback(): This function combines two objects into one, which is returned.
With these parameters:

°° previousValue: This parameter gives the value previously
returned from the last invocation of the callback, or the
initialValue, if supplied

°° currentValue: This parameter gives the current element
being processed in the array

Fundamentals of Functional Programming

[32]

°° index: This parameter gives the index of the current element
in the array

°° array: This parameter gives the array being processed

•	 initialValue(): This function is optional. Object to use as the first
argument to the first call of the callback.

Examples:

var numbers = [1,2,3,4];
// sum up all the values of an array
console.log([1,2,3,4,5].reduce(function(x,y){return x+y}, 0));
// sum up all the values of an array
console.log([1,2,3,4,5].reduce(function(x,y){return x+y}, 0));

// find the largest number
console.log(numbers.reduce(function(a,b){
 return Math.max(a,b)}) // max takes two arguments
);

Honorable mentions
The map(), filter(), and reduce() functions are not alone in our toolbox of helper
functions. There exist many more functions that can be plugged into nearly any
functional application.

Array.prototype.forEach
Essentially the non-pure version of map(), forEach() iterates over an array and
applies a callback() function over each item. However, it doesn't return anything.
It's a cleaner way of performing a for loop.

Syntax: arr.forEach(callback [, thisArg]);

Chapter 2

[33]

Parameters:

•	 callback(): This function is to be performed for each value of the array.
With these parameters:

°° currentValue: This parameter gives the current element being
processed in the array

°° index: This parameter gives the index of the current element in
the array

°° array: This parameter gives the array being processed

•	 thisArg: This function is optional. Value is used as this when executing
callback.

Examples:

var arr = [1,2,3];
var nodes = arr.map(function(x) {
 var elem = document.createElement("div");
 elem.textContent = x;
 return elem;
});

// log the value of each item
arr.forEach(function(x){console.log(x)});

// append nodes to the DOM
nodes.forEach(function(x){document.body.appendChild(x)});

Array.prototype.concat
When working with arrays instead of for and while loops, often you will need to
join multiple arrays together. Another built-in JavaScript function, concat(), takes
care of this for us. The concat() function returns a new array and leaves the old
arrays untouched. It can join as many arrays as you pass to it.

console.log([1, 2, 3].concat(['a','b','c']) // concatenate two
arrays);
// Output: [1, 2, 3, 'a','b','c']

Fundamentals of Functional Programming

[34]

The original array is untouched. It returns a new array with both arrays concatenated
together. This also means that the concat() function can be chained together.

var arr1 = [1,2,3];
var arr2 = [4,5,6];
var arr3 = [7,8,9];
var x = arr1.concat(arr2, arr3);
var y = arr1.concat(arr2).concat(arr3));
var z = arr1.concat(arr2.concat(arr3)));
console.log(x);
console.log(y);
console.log(z);

Variables x, y and z all contain [1,2,3,4,5,6,7,8,9].

Array.prototype.reverse
Another native JavaScript function helps with array transformations. The reverse()
function inverts an array, such that the first element is now the last and the last is
now the first.

However, it does not return a new array; instead it mutates the array in place. We
can do better. Here's an implementation of a pure method for reversing an array:

var invert = function(arr) {
 return arr.map(function(x, i, a) {
 return a[a.length - (i+1)];
 });
};
var q = invert([1,2,3,4]);
console.log(q);

Array.prototype.sort
Much like our map(), filter(), and reduce() methods, the sort() method takes a
callback() function that defines how the objects within an array should be sorted.
But, like the reverse() function, it mutates the array in place. And that's no bueno.

arr = [200, 12, 56, 7, 344];
console.log(arr.sort(function(a,b){return a–b}));
// arr is now: [7, 12, 56, 200, 344];

We could write a pure sort() function that doesn't mutate the array, but sorting
algorithms is the source of much grief. Significantly large arrays that need to be
sorted really should be organized in data structures that are designed just for that:
quickStort, mergeSort, bubbleSort, and so on.

Chapter 2

[35]

Array.prototype.every and Array.prototype.some
The Array.prototype.every() and Array.prototype.some() functions are both
pure and high-order functions that are methods of the Array object and are used
to test the elements of an array against a callback() function that must return a
Boolean representing the respective input. The every() function returns True if the
callback() function returns True for every element in the array, and the some()
function returns True if some elements in the array are True.

Example:

function isNumber(n) {
 return !isNaN(parseFloat(n)) && isFinite(n);
}

console.log([1, 2, 3, 4].every(isNumber)); // Return: true
console.log([1, 2, 'a'].every(isNumber)); // Return: false
console.log([1, 2, 'a'].some(isNumber)); // Return: true

Summary
In order to develop an understanding of functional programming, this chapter
covered a fairly broad range of topics. First we analyzed what it means for a
programming language to be functional, then we evaluated JavaScript for its
functional programming capabilities. Next, we applied the core concepts of
functional programming using JavaScript and showcased some of JavaScript's
built-in functions for functional programming.

Although JavaScript does have a few tools for functional programming, its functional
core remains mostly hidden and much is to be desired. In the next chapter, we will
explore several libraries for JavaScript that expose its functional underbelly.

[37]

Setting Up the Functional
Programming Environment

Introduction
Do we need to know advanced math—category theory, Lambda calculus,
polymorphisms—just to write applications with functional programming? Do we
need to reinvent the wheel? The short answer to both these questions is no.

In this chapter, we will do our best to survey everything that can impact the way we
write our functional applications in JavaScript.

•	 Libraries
•	 Toolkits
•	 Development environments
•	 Functional language that compiles to JavaScript
•	 And more

Please understand that the current landscape of functional libraries for JavaScript
is a very fluid one. Like all aspects of computer programming, the community can
change in a heartbeat; new libraries can be adopted and old ones can be abandoned.
For instance, during the writing process of this very book, the popular and stable
Node.js platform for I/O has been forked by its open source community. Its future
is vague.

Setting Up the Functional Programming Environment

[38]

Therefore, the most important concept to be gained from this chapter is not how to
use the current libraries for functional programming, but how to use any library that
enhances JavaScript's functional programming method. This chapter will not focus
on just one or two libraries, but will explore as many as possible with the goal of
surveying all the many styles of functional programming that exist within JavaScript.

Functional libraries for JavaScript
It's been said that every functional programmer writes their own library of functions,
and functional JavaScript programmers are no exception. With today's open source
code-sharing platforms such as GitHub, Bower, and NPM, it's easier to share,
collaborate, and grow these libraries. Many libraries exist for functional programming
with JavaScript, ranging from tiny toolkits to monolithic module libraries.

Each library promotes its own style of functional programming. From a rigid, math-
based style to a relaxed, informal style, each library is different but they all share one
common feature: they all have abstract JavaScript functional capabilities to increase
code re-use, readability, and robustness.

At the time of writing, however, a single library has not established itself as the
de-facto standard. Some might argue that underscore.js is the one but, as you'll
see in the following section, it might be advisable to avoid underscore.js.

Underscore.js
Underscore has become the standard functional JavaScript library in the eyes of
many. It is mature, stable, and was created by Jeremy Ashkenas, the man behind the
Backbone.js and CoffeeScript libraries. Underscore is actually a reimplementation
of Ruby's Enumerable module, which explains why CoffeeScript was also influenced
by Ruby.

Similar to jQuery, Underscore doesn't modify native JavaScript objects and instead
uses a symbol to define its own object: the underscore character "_". So, using
Underscore would work like this:

var x = _.map([1,2,3], Math.sqrt); // Underscore's map function
console.log(x.toString());

We've already seen JavaScrip's native map() method for the Array object, which
works like this:

var x = [1,2,3].map(Math.sqrt);

Chapter 3

[39]

The difference is that, in Underscore, both the Array object and the callback()
function are passed as parameters to the Underscore object's map() method (_.map),
as opposed to passing only the callback to the array's native map() method (Array.
prototype.map).

But there's way more than just map() and other built-in functions to Underscore.
It's full of super handy functions such as find(), invoke(), pluck(), sortyBy(),
groupBy(), and more.

var greetings = [{origin: 'spanish', value: 'hola'},
{origin: 'english', value: 'hello'}];
console.log(_.pluck(greetings, 'value'));
// Grabs an object's property.
// Returns: ['hola', 'hello']
console.log(_.find(greetings, function(s) {return s.origin ==
'spanish';}));
// Looks for the first obj that passes the truth test
// Returns: {origin: 'spanish', value: 'hola'}
greetings = greetings.concat(_.object(['origin','value'],
['french','bonjour']));
console.log(greetings);
// _.object creates an object literal from two merged arrays
// Returns: [{origin: 'spanish', value: 'hola'},
//{origin: 'english', value: 'hello'},
//{origin: 'french', value: 'bonjour'}]

And it provides a way of chaining methods together:

var g = _.chain(greetings)
 .sortBy(function(x) {return x.value.length})
 .pluck('origin')
 .map(function(x){return x.charAt(0).toUpperCase()+x.slice(1)})
 .reduce(function(x, y){return x + ' ' + y}, '')
 .value();
// Applies the functions
// Returns: 'Spanish English French'
console.log(g);

The _.chain() method returns a wrapped object that holds all the
Underscore functions. The _.value method is then used to extract the
value of the wrapped object. Wrapped objects are also very useful for
mixing Underscore with object-oriented programming.

Setting Up the Functional Programming Environment

[40]

Despite its ease of use and adaptation by the community, the underscore.js library
has been criticized for forcing you to write overly verbose code and for encouraging
the wrong patterns. Underscore's structure may not be ideal or even function!

Until version 1.7.0, released shortly after Brian Lonsdorf's talk entitled Hey
Underscore, you're doing it wrong!, landed on YouTube, Underscore explicitly
prevented us from extending functions such as map(), reduce(), filter(),
and more.

_.prototype.map = function(obj, iterate, [context]) {
 if (Array.prototype.map && obj.map === Array.prototype.map)
 return obj.map(iterate, context);
 // ...
};

You can watch the video of Brian Lonsdorf's talk at https://www.
youtube.com/watch?v=m3svKOdZijA.

Map, in terms of category theory, is a homomorphic functor interface (more on this
in Chapter 5, Category Theory). And we should be able to define map as a functor for
whatever we need it for. So that's not very functional of Underscore.

And because JavaScript doesn't have built-in immutable data, a functional library
should be careful to not allow its helper functions to mutate the objects passed to
it. A good example of this problem is shown below. The intention of the snippet is
to return a new selected list with one option set as the default. But what actually
happens is that the selected list is mutated in place.

function getSelectedOptions(id, value) {
 options = document.querySelectorAll('#' + id + ' option');
 var newOptions = _.map(options, function(opt){
 if (opt.text == value) {
 opt.selected = true;
 opt.text += ' (this is the default)';
 }
 else {
 opt.selected = false;
 }
 return opt;
 });
 return newOptions;
}
var optionsHelp = getSelectedOptions('timezones', 'Chicago');

https://www.youtube.com/watch?v=m3svKOdZijA
https://www.youtube.com/watch?v=m3svKOdZijA

Chapter 3

[41]

We would have to insert the line opt = opt.cloneNode(); to the callback()
function to make a copy of each object within the list being passed to the function.
Underscore's map() function cheats to boost performance, but it is at the cost of
functional feng shui. The native Array.prototype.map() function wouldn't require
this because it makes a copy, but it also doesn't work on nodelist collections.

Underscore may be less than ideal for mathematically-correct, functional
programming, but it was never intended to extend or transform JavaScript into a
pure functional language. It defines itself as a JavaScript library that provides a whole
mess of useful functional programming helpers. It may be a little more than a spurious
collection of functional-like helpers, but it's no serious functional library either.

Is there a better library out there? Perhaps one that is based on mathematics?

Fantasy Land
Sometimes, the truth is stranger than fiction.

Fantasy Land is a collection of functional base libraries and a formal specification
for how to implement "algebraic structures" in JavaScript. More specifically, Fantasy
Land specifies the interoperability of common algebraic structures, or algebras for
short: monads, monoids, setoids, functors, chains, and more. Their names may sound
scary, but they're just a set of values, a set of operators, and some laws it must obey.
In other words, they're just objects.

Here's how it works. Each algebra is a separate Fantasy Land specification and may
have dependencies on other algebras that need to be implemented.

Setting Up the Functional Programming Environment

[42]

Some of the algebra specifications are:

•	 Setoids:
°° Implement the reflexivity, symmetry and transitivity laws
°° Define the equals() method

•	 Semigroups
°° Implement the associativity law
°° Define the concat() method

•	 Monoid
°° Implement right identity and left identity
°° Define the empty() method

•	 Functor

°° Implement the identity and composition laws
°° Define the map() method

The list goes on and on.

We don't necessarily need to know exactly what each algebra is for but it
certainly helps, especially if you're writing your own library that conforms to the
specifications. It's not just abstract nonsense, it outlines a means of implementing a
high-level abstraction called category theory. A full explanation of category theory
can be found in Chapter 5, Category Theory.

Fantasy Land doesn't just tell us how to implement functional programming, it does
provide a set of functional modules for JavaScript. However, many are incomplete
and documentation is pretty sparse. But Fantasy Land isn't the only library out there
to implement its open source specifications. Others have too, namely: Bilby.js.

Bilby.js
What the heck is a bilby? No, it's not a mythical creature that might exist in Fantasy
Land. It exists here on Earth as a freaky/cute cross between a mouse and a rabbit.
Nonetheless, bibly.js library is compliant with Fantasy Land specifications.

Chapter 3

[43]

In fact, bilby.js is a serious functional library. As its documentation states, it is,
Serious, meaning it applies category theory to enable highly abstract code. Functional,
meaning it enables referentially transparent programs. Wow, that is pretty serious. The
documentation located at http://bilby.brianmckenna.org/ goes on to say that
it provides:

•	 Immutable multi-methods for ad-hoc polymorphism
•	 Functional data structures
•	 Operator overloading for functional syntax
•	 Automated specification testing (ScalaCheck, QuickCheck)

By far the most mature library that conforms to the Fantasy Land specifications
for algebraic structures, Bilby.js is a great resource for fully committing to the
functional style.

Let's try an example:

// environments in bilby are immutable structure for multimethods
var shapes1 = bilby.environment()
 // can define methods
 .method(
 'area', // methods take a name
 function(a){return typeof(a) == 'rect'}, // a predicate
 function(a){return a.x * a.y} // and an implementation
)
 // and properties, like methods with predicates that always
 // return true
 .property(
 'name', // takes a name
 'shape'); // and a function
// now we can overload it
var shapes2 = shapes1
 .method(
 'area', function(a){return typeof(a) == 'circle'},
 function(a){return a.r * a.r * Math.PI});
var shapes3 = shapes2
 .method(
 'area', function(a){return typeof(a) == 'triangle'},
 function(a){return a.height * a.base / 2});

// and now we can do something like this
var objs = [{type:'circle', r:5}, {type:'rect', x:2, y:3}];
var areas = objs.map(shapes3.area);

// and this
var totalArea = objs.map(shapes3.area).reduce(add);

http://bilby.brianmckenna.org/

Setting Up the Functional Programming Environment

[44]

This is category theory and ad-hoc polymorphism in action. Again, category theory
will be covered in full in Chapter 5, Category Theory.

Category theory is a recently invigorated branch of mathematics
that functional programmers use to maximize the abstraction and
usefulness of their code. But there is a major drawback: it's difficult to
conceptualize and quickly get started with.

The truth is that Bilby and Fantasy Land are really stretching the possibilities of
functional programming in JavaScript. Although it's exciting to see the evolution
of computer science, the world may just not be ready for the kind of hard-core
functional style that Bibly and Fantasy Land are pushing.

Maybe such a grandiose library on the bleeding-edge of functional JavaScript is not
our thing. After all, we set out to explore the functional techniques that complement
JavaScript, not to build functional programming dogma. Let's turn our attention to
another new library, Lazy.js.

Lazy.js
Lazy is a utility library more along the lines of the underscore.js library but with
a lazy evaluation strategy. Because of this, Lazy makes the impossible possible by
functionally computing results of series that won't be available with immediate
interpretation. It also boasts a significant performance boost.

The Lazy.js library is still very young. But it has a lot of momentum and
community enthusiasm behind it.

The idea is that, in Lazy, everything is a sequence that we can iterate over. Owing
to the way the library controls the order in which methods are applied, many really
cool things can be achieved: asynchronous iteration (parallel programming), infinite
sequences, functional reactive programming, and more.

The following examples show off a bit of everything:

// Get the first eight lines of a song's lyrics
var lyrics = "Lorem ipsum dolor sit amet, consectetur adipiscing eli
// Without Lazy, the entire string is first split into lines
console.log(lyrics.split('\n').slice(0,3));

// With Lazy, the text is only split into the first 8 lines
// The lyrics can even be infinitely long!
console.log(Lazy(lyrics).split('\n').take(3));

Chapter 3

[45]

//First 10 squares that are evenly divisible by 3
var oneTo1000 = Lazy.range(1, 1000).toArray();
var sequence = Lazy(oneTo1000)
 .map(function(x) { return x * x; })
 .filter(function(x) { return x % 3 === 0; })
 .take(10)
 .each(function(x) { console.log(x); });

// asynchronous iteration over an infinite sequence
var asyncSequence = Lazy.generate(function(x){return x++})
 .async(100) // 0.100s intervals between elements
 .take(20) // only compute the first 20
 .each(function(e) { // begin iterating over the sequence
 console.log(new Date().getMilliseconds() + ": " + e);
 });

More examples and use-cases are covered in Chapter 4, Implementing Functional
Programming Techniques in JavaScript.

But its not entirely correct to fully credit the Lazy.js library with this idea. One of its
predecessors, the Bacon.js library, works in much the same way.

Bacon.js
The logo of Bacon.js library is as follows:

The mustachioed hipster of functional programming libraries, Bacon.js is itself
a library for functional reactive programming. Functional reactive programming just
means that functional design patterns are used to represent values that are reactive
and always changing, like the position of the mouse on the screen, or the price of
a company's stock. In the same way that Lazy can get away with creating infinite
sequences by not calculating the value until it's needed, Bacon can avoid having to
calculate ever-changing values until the very last second.

Setting Up the Functional Programming Environment

[46]

What are called sequences in Lazy are known as EventStreams and Properties
in Bacon because they're more suited for working with events (onmouseover,
onkeydown, and so on) and reactive properties (scroll position, mouse position,
toggles, and so on).

Bacon.fromEventTarget(document.body, "click")
 .onValue(function() { alert("Bacon!") });

Bacon is a little bit older than Lazy but its feature set is about half the size and its
community enthusiasm is about equal.

Honorable mentions
There are simply too many libraries out there to do them all justice within the
scope of this book. Let's look at a few more libraries for functional programming
in JavaScript.

•	 Functional

°° Possibly the first library for functional programming in JavaScript,
Functional is a library that includes comprehensive higher-order
function support as well as string lambdas

•	 wu.js

°° Especially prized for its curryable() function, wu.js library is a
very nice Library for functional programming. It was the first library
(that I know of) to implement lazy evaluation, getting the ball rolling
for Bacon.js, Lazy.js and other libraries

°° Yes, it is named after the infamous rap group Wu Tang Clan

•	 sloth.js

°° Very similar to the Lazy.js libraries, but much smaller

•	 stream.js

°° The stream.js library supports infinite streams and not much else
°° Absolutely tiny in size

•	 Lo-Dash.js

°° As the name might imply, the lo-dash.js library was inspired by
the underscore.js library

°° Highly optimized

Chapter 3

[47]

•	 Sugar

°° Sugar is a support library for functional programming techniques
in JavaScript, like Underscore, but with some key differences in how
it's implemented.

°° Instead of doing _.pluck(myObjs, 'value') in Underscore, it's just
myObjs.map('value') in Sugar. This means that it modifies native
JavaScript objects, so there is a small risk of it not playing nicely with
other libraries that do the same such as Prototype.

°° Very good documentation, unit tests, analyzers, and more.

•	 from.js

°° A new functional library and LINQ (Language Integrated Query)
engine for JavaScript that supports most of the same LINQ functions
that .NET provides

°° 100% lazy evaluation and supports lambda expressions
°° Very young but documentation is excellent

•	 JSLINQ
°° Another functional LINQ engine for JavaScript
°° Much older and more mature than from.js library

•	 Boiler.js

°° Another utility library that extends JavaScript's functional methods to
more primitives: strings, numbers, objects, collections and arrays

•	 Folktale
°° Like the Bilby.js library, Folktale is another new library that

implements the Fantasy Land specifications. And like its forefather,
Folktale is also a collection of libraries for functional programming
in JavaScript. It's very young but could have a bright future.

•	 jQuery

°° Surprised to see jQuery mentioned here? Although jQuery is not
a tool used to perform functional programming, it nevertheless
is functional itself. jQuery might be one of the most widely used
libraries that has its roots in functional programming.

°° The jQuery object is actually a monad. jQuery uses the monadic laws
to enable method chaining:

$('#mydiv').fadeIn().css('left': 50).alert('hi!');

Setting Up the Functional Programming Environment

[48]

A full explanation of this can be found in Chapter 7, Functional and Object-oriented
Programming in JavaScript.

•	 And some of its methods are higher-order:
$('li').css('left': function(index){return index*50});

•	 As of jQuery 1.8, the deferred.then parameter implements a functional
concept known as Promises.

•	 jQuery is an abstraction layer, mainly for the DOM. It's not a framework or a
toolkit, just a way to use abstraction to increase code-reuse and reduce ugly
code. And isn't that what functional programming is all about?

Development and production
environments
It does not matter in terms of programming style what type of environment the
application is being developed in and will be deployed in. But it does matter
to the libraries a lot.

Browsers
The majority of JavaScript applications are designed to run on the client side, that is,
in the client's browser. Browser-based environments are excellent for development
because browsers are ubiquitous, you can work on the code right on your local
machine, the interpreter is the browser's JavaScript engine, and all browsers have
a developer console. Firefox's FireBug provides very useful error messages and
allows for break-points and more, but it's often helpful to run the same code in
Chrome and Safari to cross-reference the error output. Even Internet Explorer
contains developer tools.

The problem with browsers is that they evaluate JavaScript differently! Though it's
not common, it is possible to write code that returns very different results in different
browsers. But usually the differences are in the way they treat the document object
model and not how prototypes and functions work. Obviously, Math.sqrt(4)
method returns 2 to all browsers and shells. But the scrollLeft method depends
on the browser's layout policies.

Writing browser-specific code is a waste of time, and that's another reason why
libraries should be used.

Chapter 3

[49]

Server-side JavaScript
The Node.js library has become the standard platform for creating server-side and
network-based applications. Can functional programming be used for server-side
application programming? Yes! Ok, but do there exist any functional libraries that are
designed for this performance-critical environment? The answer to that is also: yes.

All the functional libraries outlined in this chapter will work in the Node.js library,
and many depend on the browserify.js module to work with browser elements.

A functional use case in the server-side
environment
In our brave new world of network systems, server-side application developers
are often concerned with concurrency, and rightly so. The classic example is an
application that allows multiple users to modify the same file. But if they try to
modify it at the same time, you will get into an ugly mess. This is the maintenance
of state problem that has plagued programmers for decades.

Assume the following scenario:

1.	 One morning, Adam opens a report for editing but he doesn't save it before
leaving for lunch.

2.	 Billy opens the same report, adds his notes, and then saves it.
3.	 Adam comes back from lunch, adds his notes to the report, and then saves it,

unknowingly overwriting Billy's notes.
4.	 The next day, Billy finds out that his notes are missing. His boss yells at

him; everybody gets mad and they gang up on the misguided application
developer who unfairly loses his job.

For a long time, the solution to this problem was to create a state about the file.
Toggle a lock status to on when someone begins editing it, which prevents others
from being able to edit it, and then toggle it to off once they save it. In our scenario,
Billy would not be able to do his work until Adam gets back from lunch. And if it's
never saved (if, say, Adam decided to quit his job in the middle of the lunch break),
then no one will ever be able to edit it.

This is where functional programming's ideas about immutable data and state
(or lack thereof) can really be put to work. Instead of having users modify the file
directly, with a functional approach they would modify a copy of the file, which is a
new revision. If they go to save the revision and a new revision already exists, then
we know that someone else has already modified the old one. Crisis averted.

Setting Up the Functional Programming Environment

[50]

Now the scenario from before would unfold like this:

1.	 One morning, Adam opens a report for editing. But he doesn't save it before
going to lunch.

2.	 Billy opens the same report, adds his notes, and saves it as a new revision.
3.	 Adam returns from lunch to add his notes. When he attempts to save the

new revision, the application tells him that a newer revision now exists.
4.	 Adam opens the new revisions, adds his notes to it, and saves another

new revision.
5.	 By looking at the revision history, the boss sees that everything is working

smoothly. Everyone is happy and the application developer gets a promotion
and a raise.

This is known as event sourcing. There is no explicit state to be maintained, only
events. The process is much cleaner and there is a clear history of events that can
be reviewed.

This idea and many others are why functional programming in server-side
environments is on the rise.

CLI
Although web and the node.js library are the two main JavaScript environments,
some pragmatic and adventurous users are finding ways to use JavaScript in the
command line.

Using JavaScript as a Command Line Interface (CLI) scripting language might be
one of the best opportunities to apply function programming. Imagine being able to
use lazy evaluation when searching for local files or to rewrite an entire bash script
into a functional JavaScript one-liner.

Using functional libraries with other
JavaScript modules
Web applications are made up of all sorts of things: frameworks, libraries, APIs
and more. They can work along side each other as dependents, plugins, or just as
coexisting objects.

Chapter 3

[51]

•	 Backbone.js

°° An MVP (model-view-provider) framework with a RESTful JSON
interface

°° Requires the underscore.js library, Backbone's only hard
dependency

•	 jQuery
°° The Bacon.js library has bindings for mixing with jQuery
°° Underscore and jQuery complement each other very well

•	 Prototype JavaScript Framework
°° Provides JavaScript with collection functions in the manner closest to

Ruby's Enumerable

•	 Sugar.js

°° Modifies native objects and their methods
°° Must be careful when mixing with other libraries, especially

Prototype

Functional languages that compile into
JavaScript
Sometimes the thick veneer of C-like syntax over JavaScript's inner functionality
can be enough to make you want to switch to another functional language. Well,
you can!

•	 Clojure and ClojureScript
°° Closure is a modern Lisp implementation and a full-featured

functional language
°° ClojureScript trans-compiles Clojure into JavaScript

•	 CoffeeScript
°° CoffeeScript is the name of both a functional language and a compiler

for trans-compiling the language into JavaScript
°° 1-to-1 mapping between expressions in CoffeeScript and expression

in JavaScript

There are many more out there, including Pyjs, Roy, TypeScript, UHC and more.

Setting Up the Functional Programming Environment

[52]

Summary
Which library you choose to use depends on what your needs are. Need functional
reactive programming to handle events and dynamic values? Use the Bacon.js
library. Only need infinite streams and nothing else? Use the stream.js library.
Want to complement jQuery with functional helpers? Try the underscore.js
library. Need a structured environment for serious ad hoc polymorphism? Check
out the bilby.js library. Need a well-rounded tool for functional programming?
Use the Lazy.js library. Not happy with any of these options? Write your own!

Any library is only as good as the way it's used. Although a few of the libraries
outlined in this chapter have a few flaws, most faults occur somewhere between
the keyboard and the chair. It's up to you to use the libraries correctly and to suit
your needs.

And if we're importing code libraries into our JavaScript environment, then maybe
we can import ideas and principles too. Maybe we can channel The Zen of Python,
by Tim Peter:

Beautiful is better than ugly
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than "right" now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let's do more of those!

[53]

Implementing Functional
Programming Techniques

in JavaScript
Hold on to your hats because we're really going to get into the functional
mind-set now.

In this chapter, we're going to do the following:

•	 Put all the core concepts together into a cohesive paradigm
•	 Explore the beauty that functional programming has to offer when we fully

commit to the style
•	 Step through the logical progression of functional patterns as they build

upon each other
•	 All the while, we will build up a simple application that does some pretty

cool stuff

You may have noticed a few concepts that were brought up in the last chapter when
dealing with functional libraries for JavaScript, but not in Chapter 2, Fundamentals of
Functional Programming. Well, that was for a reason! Compositions, currying, partial
application, and more. Let's explore why and how these libraries implemented those
concepts.

Functional programming can come in a variety of flavors and patterns. This chapter
will cover many different styles of functional programming:

•	 Data generic programming
•	 Mostly functional programming
•	 Functional reactive programming and more

Implementing Functional Programming Techniques in JavaScript

[54]

This chapter, however, will be as style-unbiased as possible. Without leaning too
hard on one style of functional programming over another, the overall goal is to
show that there are better ways to write code than what is often accepted as the
correct and only way. Once you free your mind about the preconceptions of what
is the right way and what is not the right way to write code, you can do whatever
you want. When you just write code with childlike abandon for no reason other than
the fact that you like it and when you're not concerned about conforming to the
traditional way of doing things, then the possibilities are endless.

Partial function application and currying
Many languages support optional arguments, but not in JavaScript. JavaScript uses
a different pattern entirely that allows for any number of arguments to be passed to
a function. This leaves the door open for some very interesting and unusual design
patterns. Functions can be applied in part or in whole.

Partial application in JavaScript is the process of binding values to one or more
arguments of a function that returns another function that accepts the remaining,
unbound arguments. Similarly, currying is the process of transforming a function
with many arguments into a function with one argument that returns another
function that takes more arguments as needed.

The difference between the two may not be clear now, but it will be obvious
in the end.

Function manipulation
Actually, before we go any further and explain just how to implement partial
application and currying, we need a review. If we're going to tear JavaScript's thick
veneer of C-like syntax right off and expose it's functional underbelly, then we're
going to need to understand how primitives, functions, and prototypes in JavaScript
work; we would never need to consider these if we just wanted to set some cookies
or validate some form fields.

Apply, call, and the this keyword
In pure functional languages, functions are not invoked; they're applied. JavaScript
works the same way and even provides utilities for manually calling and applying
functions. And it's all about the this keyword, which, of course, is the object that the
function is a member of.

Chapter 4

[55]

The call() function lets you define the this keyword as the first argument. It works
as follows:

console.log(['Hello', 'world'].join(' ')) // normal way
console.log(Array.prototype.join.call(['Hello', 'world'], ' ')); //
using call

The call() function can be used, for example, to invoke anonymous functions:

console.log((function(){console.log(this.length)}).call([1,2,3]));

The apply() function is very similar to the call() function, but a little more useful:

console.log(Math.max(1,2,3)); // returns 3
console.log(Math.max([1,2,3])); // won't work for arrays though
console.log(Math.max.apply(null, [1,2,3])); // but this will work

The fundamental difference is that, while the call() function accepts a list of
arguments, the apply() function accepts an array of arguments.

The call() and apply() functions allow you to write a function once and then
inherit it in other objects without writing the function over again. And they are
both members themselves of the Function argument.

This is bonus material, but when you use the call() function on
itself, some really cool things can happen:

// these two lines are equivalent

func.call(thisValue);

Function.prototype.call.call(func, thisValue);

Binding arguments
The bind() function allows you to apply a method to one object with the this
keyword assigned to another. Internally, it's the same as the call() function,
but it's chained to the method and returns a new bounded function.

It's especially useful for callbacks, as shown in the following code snippet:

function Drum(){
 this.noise = 'boom';
 this.duration = 1000;
 this.goBoom = function(){console.log(this.noise)};
}
var drum = new Drum();
setInterval(drum.goBoom.bind(drum), drum.duration);

Implementing Functional Programming Techniques in JavaScript

[56]

This solves a lot of problems in object-oriented frameworks, such as Dojo, specifically
the problems of maintaining the state when using classes that define their own handler
functions. But we can use the bind() function for functional programming too.

The bind() function actually does partial application
on its own, though in a very limited way.

Function factories
Remember our section on closures in Chapter 2, Fundamentals of Functional
Programming? Closures are the constructs that makes it possible to create a useful
JavaScript programming pattern known as function factories. They allow us to
manually bind arguments to functions.

First, we'll need a function that binds an argument to another function:

function bindFirstArg(func, a) {
 return function(b) {
 return func(a, b);
 };
}

Then we can use this to create more generic functions:

var powersOfTwo = bindFirstArg(Math.pow, 2);
console.log(powersOfTwo(3)); // 8
console.log(powersOfTwo(5)); // 32

And it can work on the other argument too:

function bindSecondArg(func, b) {
 return function(a) {
 return func(a, b);
 };
}
var squareOf = bindSecondArg(Math.pow, 2);
var cubeOf = bindSecondArg(Math.pow, 3);
console.log(squareOf(3)); // 9
console.log(squareOf(4)); // 16
console.log(cubeOf(3)); // 27
console.log(cubeOf(4)); // 64

Chapter 4

[57]

The ability to create generic functions is very important in functional programming.
But there's a clever trick to making this process even more generalized. The
bindFirstArg() function itself takes two arguments, the first being a function. If
we pass the bindFirstArg function as a function to itself, we can create bindable
functions. This can be best described with the following example:

var makePowersOf = bindFirstArg(bindFirstArg, Math.pow);
var powersOfThree = makePowersOf(3);
console.log(powersOfThree(2)); // 9
console.log(powersOfThree(3)); // 27

This is why they're called function factories.

Partial application
Notice that our function factory example's bindFirstArg() and bindSecondArg()
functions only work for functions that have exactly two arguments. We could write
new ones that work for different numbers of arguments, but that would work away
from our model of generalization.

What we need is partial application.

Partial application is the process of binding values to one or more
arguments of a function that returns a partially-applied function that
accepts the remaining, unbound arguments.

Unlike the bind() function and other built-in methods of the Function object, we'll
have to create our own functions for partial application and currying. There are two
distinct ways to do this.

•	 As a stand-alone function, that is, var partial = function(func){...
•	 As a polyfill, that is, Function.prototype.partial = function(){...

Polyfills are used to augment prototypes with new functions and will allow us to call
our new functions as methods of the function that we want to partially apply. Just
like this: myfunction.partial(arg1, arg2, …);

Implementing Functional Programming Techniques in JavaScript

[58]

Partial application from the left
Here's where JavaScript's apply() and call() utilities become useful for us. Let's
look at a possible polyfill for the Function object:

Function.prototype.partialApply = function(){
 var func = this;
 args = Array.prototype.slice.call(arguments);
 return function(){
 return func.apply(this, args.concat(
 Array.prototype.slice.call(arguments)
));
 };
};

As you can see, it works by slicing the arguments special variable.

Every function has a special local variable called arguments that is
an array-like object of the arguments passed to it. It's technically not
an array. Therefore it does not have any of the Array methods such
as slice and forEach. That's why we need to use Array's slice.
call method to slice the arguments.

And now let's see what happens when we use it in an example. This time, let's get
away from the math and go for something a little more useful. We'll create a little
application that converts numbers to hexadecimal values.

function nums2hex() {
 function componentToHex(component) {
 var hex = component.toString(16);
 // make sure the return value is 2 digits, i.e. 0c or 12
 if (hex.length == 1) {
 return "0" + hex;
 }
 else {
 return hex;
 }
 }
 return Array.prototype.map.call(arguments,
 componentToHex).join('');
}

// the function works on any number of inputs
console.log(nums2hex()); // ''
console.log(nums2hex(100,200)); // '64c8'

Chapter 4

[59]

console.log(nums2hex(100, 200, 255, 0, 123)); // '64c8ff007b'

// but we can use the partial function to partially apply
// arguments, such as the OUI of a mac address
var myOUI = 123;
var getMacAddress = nums2hex.partialApply(myOUI);
console.log(getMacAddress()); // '7b'
console.log(getMacAddress(100, 200, 2, 123, 66, 0, 1));
// '7b64c8027b420001'

// or we can convert rgb values of red only to hexadecimal
var shadesOfRed = nums2hex.partialApply(255);
console.log(shadesOfRed(123, 0)); // 'ff7b00'
console.log(shadesOfRed(100, 200)); // 'ff64c8'

This example shows that we can partially apply arguments to a generic function and
get a new function in return. This first example is left-to-right, which means that we can
only partially apply the first, left-most arguments.

Partial application from the right
In order to apply arguments from the right, we can define another polyfill.

Function.prototype.partialApplyRight = function(){
 var func = this;
 args = Array.prototype.slice.call(arguments);
 return function(){
 return func.apply(
 this,
 [].slice.call(arguments, 0)
 .concat(args));
 };
};

var shadesOfBlue = nums2hex.partialApplyRight(255);
console.log(shadesOfBlue(123, 0)); // '7b00ff'
console.log(shadesOfBlue(100, 200)); // '64c8ff'

var someShadesOfGreen = nums2hex.partialApplyRight(255, 0);
console.log(shadesOfGreen(123)); // '7bff00'
console.log(shadesOfGreen(100)); // '64ff00'

Implementing Functional Programming Techniques in JavaScript

[60]

Partial application has allowed us to take a very generic function and extract more
specific functions out of it. But the biggest flaw in this method is that the way
in which the arguments are passed, as in how many and in what order, can be
ambiguous. And ambiguity is never a good thing in programming. There's a better
way to do this: currying.

Currying
Currying is the process of transforming a function with many arguments into a
function with one argument that returns another function that takes more arguments
as needed. Formally, a function with N arguments can be transformed into a function
chain of N functions, each with only one argument.

A common question is: what is the difference between partial application and
currying? While it's true that partial application returns a value right away and
currying only returns another curried function that takes the next argument, the
fundamental difference is that currying allows for much better control of how
arguments are passed to the function. We'll see just how that's true, but first we
need to create function to perform the currying.

Here's our polyfill for adding currying to the Function prototype:

Function.prototype.curry = function (numArgs) {
 var func = this;
 numArgs = numArgs || func.length;

 // recursively acquire the arguments
 function subCurry(prev) {
 return function (arg) {
 var args = prev.concat(arg);
 if (args.length < numArgs) {
 // recursive case: we still need more args
 return subCurry(args);
 }
 else {
 // base case: apply the function
 return func.apply(this, args);
 }
 };
 }
 return subCurry([]);
};

The numArgs argument lets us optionally specify the number of arguments the
function being curried needs if it's not explicitly defined.

Chapter 4

[61]

Let's look at how to use it within our hexadecimal application. We'll write a function
that converts RGB values to a hexadecimal string that is appropriate for HTML:

function rgb2hex(r, g, b) {
 // nums2hex is previously defined in this chapter
 return '#' + nums2hex(r) + nums2hex(g) + nums2hex(b);
}
var hexColors = rgb2hex.curry();
console.log(hexColors(11)) // returns a curried function
console.log(hexColors(11,12,123)) // returns a curried function
console.log(hexColors(11)(12)(123)) // returns #0b0c7b
console.log(hexColors(210)(12)(0)) // returns #d20c00

It will return the curried function until all needed arguments are passed in.
And they're passed in the same left-to-right order as defined by the function
being curried.

But we can step it up a notch and define the more specific functions that we need
as follows:

var reds = function(g,b){return hexColors(255)(g)(b)};
var greens = function(r,b){return hexColors(r)(255)(b)};
var blues = function(r,g){return hexColors(r)(g)(255)};
console.log(reds(11, 12)) // returns #ff0b0c
console.log(greens(11, 12)) // returns #0bff0c
console.log(blues(11, 12)) // returns #0b0cff

So that's a nice way to use currying. But if we just want to curry our nums2hex()
function directly, we run into a little bit of trouble. And that's because the function
doesn't define any arguments, it just lets you pass as many arguments in as you
want. So we have to define the number of arguments. We do that with the optional
parameter to the curry function that allows us to set the number of arguments of the
function being curried.

var hexs = nums2hex.curry(2);
console.log(hexs(11)(12)); // returns 0b0c
console.log(hexs(11)); // returns function
console.log(hexs(110)(12)(0)); // incorrect

Therefore currying does not work well with functions that accept variable numbers
of arguments. For something like that, partial application is preferred.

All of this isn't just for the benefit of function factories and code reuse. Currying
and partial application play into a bigger pattern known as composition.

Implementing Functional Programming Techniques in JavaScript

[62]

Function composition
Finally, we have arrived at function composition.

In functional programming, we want everything to be a function. We especially want
unary functions if possible. If we can convert all functions to unary functions, then
magical things can happen.

Unary functions are functions that take only a single input. Functions
with multiple inputs are polyadic, but we usually say binary for functions
that accept two inputs and ternary for three inputs. Some functions don't
accept a specific number of inputs; we call those variadic.

Manipulating functions and their acceptable number of inputs can be extremely
expressive. In this section, we will explore how to compose new functions from
smaller functions: little units of logic that combine into whole programs that are
greater than the sum of the functions on their own.

Compose
Composing functions allows us to build complex functions from many simple, generic
functions. By treating functions as building blocks for other functions, we can build
truly modular applications with excellent readability and maintainability.

Before we define the compose() polyfill, you can see how it all works with these
following examples:

var roundedSqrt = Math.round.compose(Math.sqrt)
console.log(roundedSqrt(5)); // Returns: 2

var squaredDate = roundedSqrt.compose(Date.parse)
console.log(squaredDate("January 1, 2014")); // Returns: 1178370

In math, the composition of the f and g variables is defined as f(g(x)).
In JavaScript, this can be written as:

var compose = function(f, g) {
 return function(x) {
 return f(g(x));
 };
};

Chapter 4

[63]

But if we left it at that, we would lose track of the this keyword, among other
problems. The solution is to use the apply() and call() utilities. Compared to
curry, the compose() polyfill is quite simple.

Function.prototype.compose = function(prevFunc) {
 var nextFunc = this;
 return function() {
 return nextFunc.call(this,prevFunc.apply(this,arguments));
 }
}

To show how it's used, let's build a completely contrived example, as follows:

function function1(a){return a + ' 1';}
function function2(b){return b + ' 2';}
function function3(c){return c + ' 3';}
var composition = function3.compose(function2).compose(function1);
console.log(composition('count')); // returns 'count 1 2 3'

Did you notice that the function3 parameter was applied first? This is very
important. Functions are applied from right to left.

Sequence – compose in reverse
Because many people like to read things from the left to the right, it might make
sense to apply the functions in that order too. We'll call this a sequence instead
of a composition.

To reverse the order, all we need to do is swap the nextFunc and prevFunc
parameters.

Function.prototype.sequence = function(prevFunc) {
 var nextFunc = this;
 return function() {
 return prevFunc.call(this,nextFunc.apply(this,arguments));
 }
}

This allows us to now call the functions in a more natural order.

var sequences = function1.sequence(function2).sequence(function3);
console.log(sequences('count')); // returns 'count 1 2 3'

Implementing Functional Programming Techniques in JavaScript

[64]

Compositions versus chains
Here are five different implementations of the same floorSqrt() functional
composition. They seem to be identical, but they deserve scrutiny.

function floorSqrt1(num) {
 var sqrtNum = Math.sqrt(num);
 var floorSqrt = Math.floor(sqrtNum);
 var stringNum = String(floorSqrt);
 return stringNum;
}

function floorSqrt2(num) {
 return String(Math.floor(Math.sqrt(num)));
}

function floorSqrt3(num) {
 return [num].map(Math.sqrt).map(Math.floor).toString();
}
var floorSqrt4 = String.compose(Math.floor).compose(Math.sqrt);
var floorSqrt5 = Math.sqrt.sequence(Math.floor).sequence(String);

// all functions can be called like this:
floorSqrt<N>(17); // Returns: 4

But there are a few key differences we should go over:

•	 Obviously the first method is verbose and inefficient.
•	 The second method is a nice one-liner, but this approach becomes very

unreadable after only a few functions are applied.

To say that less code is better is missing the point. Code is more
maintainable when the effective instructions are more concise. If you
reduce the number of characters on the screen without changing
the effective instructions carried out, this has the complete opposite
effect—code becomes harder to understand, and decidedly less
maintainable; for example, when we use nested ternary operators,
or we chain several commands together on a single line. These
approaches reduce the amount of 'code on the screen', but they don't
reduce the number of steps actually being specified by that code. So
the effect is to obfuscate and make the code harder to understand. The
kind of conciseness that makes code easier to maintain is that which
effectively reduces the specified instructions (for example, by using a
simpler algorithm that accomplishes the same result with fewer and/
or simpler steps), or when we simply replace code with a message, for
instance, invoking a third-party library with a well-documented API.

Chapter 4

[65]

•	 The third approach is a chain of array functions, notably the map function.
This works fairly well, but it is not mathematically correct.

•	 Here's our compose() function in action. All methods are forced to be
unary, pure functions that encourage the use of better, simpler, and smaller
functions that do one thing and do it well.

•	 The last approach uses the compose() function in reverse sequence, which is
just as valid.

Programming with compose
The most important aspect of compose is that, aside from the first function that
is applied, it works best with pure, unary functions: functions that take only one
argument.

The output of the first function that is applied is sent to the next function. This means
that the function must accept what the previous function passed to it. This is the
main influence behind type signatures.

Type Signatures are used to explicitly declare what types of input the
function accepts and what type it outputs. They were first used by
Haskell, which actually used them in the function definitions to be used
by the compiler. But, in JavaScript, we just put them in a code comment.
They look something like this: foo :: arg1 -> argN -> output
Examples:

// getStringLength :: String -> Int
function getStringLength(s){return s.length};

// concatDates :: Date -> Date -> [Date]
function concatDates(d1,d2){return [d1, d2]};

// pureFunc :: (int -> Bool) -> [int] -> [int]
pureFunc(func, arr){return arr.filter(func)}

In order to truly reap the benefits of compose, any application will need a hefty
collection of unary, pure functions. These are the building blocks that are composed
into larger functions that, in turn, are used to make applications that are very
modular, reliable, and maintainable.

Let's go through an example. First we'll need many building-block functions. Some
of them build upon the others as follows:

// stringToArray :: String -> [Char]
function stringToArray(s) { return s.split(''); }

// arrayToString :: [Char] -> String

Implementing Functional Programming Techniques in JavaScript

[66]

function arrayToString(a) { return a.join(''); }

// nextChar :: Char -> Char
function nextChar(c) {
 return String.fromCharCode(c.charCodeAt(0) + 1); }

// previousChar :: Char -> Char
function previousChar(c) {
 return String.fromCharCode(c.charCodeAt(0)-1); }

// higherColorHex :: Char -> Char
function higherColorHex(c) {return c >= 'f' ? 'f' :
 c == '9' ? 'a' :
 nextChar(c)}

// lowerColorHex :: Char -> Char
function lowerColorHex(c) { return c <= '0' ? '0' :
 c == 'a' ? '9' :
 previousChar(c); }

// raiseColorHexes :: String -> String
function raiseColorHexes(arr) { return arr.map(higherColorHex); }

// lowerColorHexes :: String -> String
function lowerColorHexes(arr) { return arr.map(lowerColorHex); }

Now let's compose some of them together.

var lighterColor = arrayToString
 .compose(raiseColorHexes)
 .compose(stringToArray)
 var darkerColor = arrayToString
 .compose(lowerColorHexes)
 .compose(stringToArray)

console.log(lighterColor('af0189')); // Returns: 'bf129a'
console.log(darkerColor('af0189')); // Returns: '9e0078'

We can even use compose() and curry() functions together. In fact, they work very
well together. Let's forge together the curry example with our compose example.
First we'll need our helper functions from before.

// component2hex :: Ints -> Int
function componentToHex(c) {
 var hex = c.toString(16);
 return hex.length == 1 ? "0" + hex : hex;

Chapter 4

[67]

}

// nums2hex :: Ints* -> Int
function nums2hex() {
 return Array.prototype.map.call(arguments,
 componentToHex).join('');
}

First we need to make the curried and partial-applied functions, then we can
compose them to our other composed functions.

var lighterColors = lighterColor
 .compose(nums2hex.curry());
var darkerRed = darkerColor
 .compose(nums2hex.partialApply(255));
Var lighterRgb2hex = lighterColor
 .compose(nums2hex.partialApply());

console.log(lighterColors(123, 0, 22)); // Returns: 8cff11
console.log(darkerRed(123, 0)); // Returns: ee6a00
console.log(lighterRgb2hex(123,200,100)); // Returns: 8cd975

There we have it! The functions read really well and make a lot of sense. We were
forced to begin with little functions that just did one thing. Then we were able to put
together functions with more utility.

Let's look at one last example. Here's a function that lightens an RBG value by a
variable amount. Then we can use composition to create new functions from it.

// lighterColorNumSteps :: string -> num -> string
function lighterColorNumSteps(color, n) {
 for (var i = 0; i < n; i++) {
 color = lighterColor(color);
 }
 return color;
}

// now we can create functions like this:
var lighterRedNumSteps =
lighterColorNumSteps.curry().compose(reds)(0,0);

// and use them like this:
console.log(lighterRedNumSteps(5)); // Return: 'ff5555'
console.log(lighterRedNumSteps(2)); // Return: 'ff2222'

Implementing Functional Programming Techniques in JavaScript

[68]

In the same way, we could easily create more functions for creating lighter and
darker blues, greens, grays, purples, anything you want. This is a really great way to
construct an API.

We just barely scratched the surface of what function composition can do. What
compose does is take control away from JavaScript. Normally JavaScript will
evaluate left to right, but now the interpreter is saying "OK, something else is going
to take care of this, I'll just move on to the next." And now the compose() function
has control over the evaluation sequence!

This is how Lazy.js, Bacon.js and others have been able to implement things such
as lazy evaluation and infinite sequences. Up next, we'll look into how those libraries
are used.

Mostly functional programming
What is a program without side effects? A program that does nothing.

Complementing our code with functional code with unavoidable side-effects can
be called "mostly functional programming." Using multiple paradigms in the same
codebase and applying them where they are most optimal is the best approach.
Mostly functional programming is how even the pure, traditional functional
programs are modelled: keep most of the logic in pure functions and interface with
imperative code.

And this is how we're going to write a little application of our own.

In this example, we have a boss that tells us that we need a web application for our
company that tracks the status of the employees' availability. All the employees at
this fictional company only have one job: using our website. Staff will sign in when
they get to work and sign out when they leave. But that's not enough, it also needs
to automatically update the content as it changes, so our boss doesn't have to keep
refreshing the pages.

We're going to use Lazy.js as our functional library. And we're also going to be lazy:
instead of worrying about handling all the users logging in and out, WebSockets,
databases, and more, we'll just pretend there's a generic application object that does
this for us and just happens to have the perfect API.

So for now, let's just get the ugly parts out of the way, the parts that interface and
create side-effects.

function Receptor(name, available){
 this.name = name;
 this.available = available; // mutable state

Chapter 4

[69]

 this.render = function(){
 output = '';
 output += this.available ?
 this.name + ' is available' :
 this.name + ' is not available';
 output += '';
 return output;
 }
}
var me = new Receptor;
var receptors = app.getReceptors().push(me);
app.container.innerHTML = receptors.map(function(r){
 return r.render();
}).join('');

This would be sufficient for just displaying a list of availabilities, but we want it to be
reactive, which brings us to our first obstacle.

By using the Lazy.js library to store the objects in a sequence, which won't actually
compute anything until the toArray() method is called, we can take advantage of its
laziness to provide a sort of functional reactive programming.

var lazyReceptors = Lazy(receptors).map(function(r){
 return r.render();
});
app.container.innerHTML = lazyReceptors.toArray().join('');

Because the Receptor.render() method returns new HTML instead of modifying
the current HTML, all we have to do is set the innerHTML parameter to its output.

We'll also have to trust that our generic application for user management will
provide callback methods for us to use.

app.onUserLogin = function(){
 this.available = true;
 app.container.innerHTML = lazyReceptors.toArray().join('');
};
app.onUserLogout = function(){
 this.available = false;
 app.container.innerHTML = lazyReceptors.toArray().join('');
};

This way, any time a user logs in or out, the lazyReceptors parameter will be
computed again and the availability list will be printed with the most recent values.

Implementing Functional Programming Techniques in JavaScript

[70]

Handling events
But what if the application doesn't provide callbacks for when the user logs in
and out? Callbacks are messy and can quickly turn a program into spaghetti code.
Instead, we can determine it ourselves by observing the user directly. If the user
has the webpage in focus, then he/she must be active and available. We can use
JavaScript's focus and blur events for this.

window.addEventListener('focus', function(event) {
 me.available = true;
 app.setReceptor(me.name, me.available); // just go with it
 container.innerHTML = lazyReceptors.toArray().join('');
});
window.addEventListener('blur', function(event) {
 me.available = false;
 app.setReceptor(me.name, me.available);
 container.innerHTML = lazyReceptors.toArray().join('');
});

Wait a second, aren't events reactive too? Can they be lazily computed as well?
They can in the Lazy.js library, where there's even a handy method for this.

var focusedReceptors = Lazy.events(window,
"focus").each(function(e){
 me.available = true;
 app.setReceptor(me.name, me.available);
 container.innerHTML = lazyReceptors.toArray().join('');
});
var blurredReceptors = Lazy.events(window,
"blur").each(function(e){
 me.available = false;
 app.setReceptor(me.name, me.available);
 container.innerHTML = lazyReceptors.toArray().join('');
});

Easy as pie.

By using the Lazy.js library to handle events, we can create
an infinite sequence of events. Each time the event is fired, the
Lazy.each() function is able to iterate one more time.

Our boss likes the application so far, but she points out that if an employee never
logs out before leaving for the day without closing the page, then the application
says the employee is still available.

Chapter 4

[71]

To figure out if an employee is active on the website, we can monitor the keyboard
and mouse events. Let's say they're considered to be unavailable after 30 minutes of
no activity.

var timeout = null;
var inputs = Lazy.events(window, "mousemove").each(function(e){
 me.available = true;
 container.innerHTML = lazyReceptors.toArray().join('');
 clearTimeout(timeout);
 timeout = setTimeout(function(){
 me.available = false;
 container.innerHTML = lazyReceptors.toArray().join('');
 }, 1800000); // 30 minutes
});

The Lazy.js library has made it very easy for us to handle events as an infinite
stream that we can map over. It makes this possible because it uses function
composition to take control of the order of execution.

But there's a little problem with all of this. What if there are no user input events
that we can latch onto? What if, instead, there is a property value that changes all the
time? In the next section, we'll investigate exactly this issue.

Functional reactive programming
Let's build another kind of application that works in much the same way; one
that uses functional programming to react to changes in state. But, this time, the
application won't be able to rely on event listeners.

Imagine for a moment that you work for a news media company and your boss tells
you to create a web application that tracks government election results on Election
Day. Data is continuously flowing in as local precincts turn in their results, so the
results to display on the page are very reactive. But we also need to track the results
by each region, so there will be multiple objects to track.

Rather than creating a big object-oriented hierarchy to model the interface, we can
describe it declaratively as immutable data. We can transform it with chains of pure
and semi-pure functions whose only ultimate side effects are updating whatever bits
of state absolutely must be held onto (ideally, not many).

And we'll use the Bacon.js library, which will allow us to quickly develop
Functional Reactive Programming (FRP) applications. The application will only
be used one day out of the year (Election Day), and our boss thinks it should take a
proportional amount of time. With functional programming and a library such as
Bacon.js, we'll get it done in half the time.

Implementing Functional Programming Techniques in JavaScript

[72]

But first, we're going to need some objects to represent the voting regions, such as
states, provinces, districts, and so on.

function Region(name, percent, parties){
 // mutable properties:
 this.name = name;
 this.percent = percent; // % of precincts reported
 this.parties = parties; // political parties

 // return an HTML representation
 this.render = function(){
 var lis = this.parties.map(function(p){
 return '' + p.name + ': ' + p.votes + '';
 });
 var output = '<h2>' + this.name + '</h2>';
 output += '' + lis.join('') + '';
 output += 'Percent reported: ' + this.percent;
 return output;
 }
}
function getRegions(data) {
 return JSON.parse(data).map(function(obj){
 return new Region(obj.name, obj.percent, obj.parties);
 });
}
var url = 'http://api.server.com/election-data?format=json';
var data = jQuery.ajax(url);
var regions = getRegions(data);
app.container.innerHTML = regions.map(function(r){
 return r.render();
}).join('');

While the above would be sufficient for just displaying a static list of election results,
we need a way to update the regions dynamically. It's time to cook up some Bacon
and FRP.

Reactivity
Bacon has a function, Bacon.fromPoll(), that lets us create an event stream, where
the event is just a function that is called on the given interval. And the stream.
subscribe() function lets us subscribe a handler function to the stream. Because it's
lazy, the stream will not actually do anything without a subscriber.

var eventStream = Bacon.fromPoll(10000, function(){
 return Bacon.Next;
});
var subscriber = eventStream.subscribe(function(){
 var url = 'http://api.server.com/election-data?format=json';

Chapter 4

[73]

 var data = jQuery.ajax(url);
 var newRegions = getRegions(data);	
 container.innerHTML = newRegions.map(function(r){
 return r.render();
 }).join('');
});

By essentially putting it in a loop that runs every 10 seconds, we could get the job
done. But this method would hammer-ping the network and is incredibly inefficient.
That would not be very functional. Instead, let's dig a little deeper into the Bacon.js
library.

In Bacon, there are EventStreams and Properties parameters. Properties can be
thought of as "magic" variables that change over time in response to events. They're
not really magic because they still rely on a stream of events. The Property changes
over time in relation to its EventStream.

The Bacon.js library has another trick up its sleeve. The Bacon.fromPromise()
function is a way to emit events into a stream by using promises. And as of jQuery
version 1.5.0, jQuery AJAX implements the promises interface. So all we need to do
is write an AJAX search function that emits events when the asynchronous call is
complete. Every time the promise is resolved, it calls the EvenStream's subscribers.

var url = 'http://api.server.com/election-data?format=json';
var eventStream = Bacon.fromPromise(jQuery.ajax(url));
var subscriber = eventStream.onValue(function(data){
 newRegions = getRegions(data);
 container.innerHTML = newRegions.map(function(r){
 return r.render();
 }).join('');
}

A promise can be thought of as an eventual value; with the Bacon.js library, we can
lazily wait on the eventual values.

Putting it all together
Now that we have the reactivity covered, we can finally play with some code.

We can modify the subscriber with chains of pure functions to do things such
as adding up a total and filtering out unwanted results, and we do it all within
onclick() handler functions for buttons that we create.

// create the eventStream out side of the functions
var eventStream = Bacon.onPromise(jQuery.ajax(url));
var subscribe = null;

Implementing Functional Programming Techniques in JavaScript

[74]

var url = 'http://api.server.com/election-data?format=json';

// our un-modified subscriber
$('button#showAll').click(function() {
 var subscriber = eventStream.onValue(function(data) {
 var newRegions = getRegions(data).map(function(r) {
 return new Region(r.name, r.percent, r.parties);
 });
 container.innerHTML = newRegions.map(function(r) {
 return r.render();
 }).join('');
 });
});

// a button for showing the total votes
$('button#showTotal').click(function() {
 var subscriber = eventStream.onValue(function(data) {
 var emptyRegion = new Region('empty', 0, [{
 name: 'Republican', votes: 0
 }, {
 name: 'Democrat', votes: 0
 }]);
 var totalRegions = getRegions(data).reduce(function(r1, r2) {
 newParties = r1.parties.map(function(x, i) {
 return {
 name: r1.parties[i].name,
 votes: r1.parties[i].votes + r2.parties[i].votes
 };
 });
 newRegion = new Region('Total', (r1.percent + r2.percent) / 2,
 newParties);
 return newRegion;
 }, emptyRegion);
 container.innerHTML = totalRegions.render();
 });
});

// a button for only displaying regions that are reporting > 50%
$('button#showMostlyReported').click(function() {
 var subscriber = eventStream.onValue(function(data) {
 var newRegions = getRegions(data).map(function(r) {
 if (r.percent > 50) return r;
 else return null;
 }).filter(function(r) {return r != null;});

Chapter 4

[75]

 container.innerHTML = newRegions.map(function(r) {
 return r.render();
 }).join('');
 });
});

The beauty of this is that, when users click between the buttons, the event stream
doesn't change but the subscriber does, which makes it all work smoothly.

Summary
JavaScript is a beautiful language.

Its inner beauty really shines with functional programming. It's what empowers its
excellent extendibility. Just the fact that it allows first-class functions that can do so
many things is what opens the functional flood gates. Concepts build on top of each
other, stacking up higher and higher.

In this chapter, we dove head-first into the functional paradigm in JavaScript.
We covered function factories, currying, function composition and everything
required to make it work. We built an extremely modular application that used
these concepts. And then we showed how to use some functional libraries that use
these same concepts themselves, namely function composition, to manipulate the
order of execution.

Throughout the chapter, we covered several styles of functional programming: data
generic programming, mostly-functional programming, and functional reactive
programming. They're all not that different from each other, they're just different
patterns for applying functional programing in different situations.

In the previous chapter, something called Category Theory was briefly mentioned. In
the next chapter, we're going to learn a lot more about what it is and how to use it.

[77]

Category Theory
Thomas Watson was famously quoted as saying, "I think there is a world market
for maybe five computers". That was in 1948. Back then, everybody knew that
computers would only be used for two things: math and engineering. Not even
the biggest minds in tech could predict that, one day, computers would be able
to translate Spanish to English, or simulate entire weather systems. At the time,
the fastest machine was IBM's SSEC, clocking in at 50 multiplications per second,
the display terminal wasn't due until 15 years later and multiple-processing
meant multiple user terminals sharing a single processor. The transistor changed
everything, but tech's visionaries still missed the mark. Ken Olson made another
famously foolish prediction when, in 1977, he said "There is no reason anyone
would want a computer in their home".

It seams obvious to us now that computers are not just for scientists and engineers, but
that's hindsight. The idea that machines can do more than just math was anything but
intuitive 70 years ago. Watson didn't just fail to realize how computers could transform
a society, he failed to realize the transformative and evolving powers of mathematics.

But the potential of computers and math was not lost on everybody. John McCarthy
invented Lisp in 1958, a revolutionary algorithm-based language that ushered in a
new era in computing. Since its inception, Lisp was instrumental in the idea of using
abstraction layers—compilers, interpreters, virtualization—to push forward the
progression of computers from hardcore math machines to what they are today.

From Lisp came Scheme, a direct ancestor of JavaScript. Now that brings us full
circle. If computers are, at their core, machines that just do math, then it stands to
reason that a math-based programming paradigm would excel.

Category Theory

[78]

The term "math" is being used here not to describe the "number crunching" that
computers can obviously do, but to describe discrete mathematics: the study of discrete,
mathematical structures such as statements in logic or the instructions of a computer
language. By treating code as a discrete mathematical structure, we can apply concepts
and ideas in math to it. This is what has made functional programming so instrumental
in artificial intelligence, graph search, pattern recognition and other big challenges in
computer science.

In this chapter, we will experiment with some of these concepts and their applications
in everyday programming challenges. They will include:

•	 Category theory
•	 Morphisms
•	 Functors
•	 Maybes
•	 Promises
•	 Lenses
•	 Function composition

With these concepts, we'll be able to write entire libraries and APIs very easily and
safely. And we'll go from explaining category theory to formally implementing it
in JavaScript.

Category theory
Category theory is the theoretical concept that empowers function composition.
Category theory and function composition go together like engine displacement
and horsepower, like NASA and the space shuttle, like good beer and a mug to
pour it in. Basically, you can't have one without the other.

Category theory in a nutshell
Category theory really isn't too difficult a concept. Its place in math is large enough to
fill up an entire graduate-level college course, but its place in computer programming
can be summed up quite easily.

Einstein once said, "If you can't explain it to a 6-year-old, you don't know it yourself".
Thus, in the spirit of explaining it to a 6-year-old, category theory is just connecting the
dots. Although it may be grossly over-simplifying category theory, it does do a good
job of explaining what we need to know in a straightforward manner.

Chapter 5

[79]

First you'll need to know some terminology. Categories are just sets with the same
type. In JavaScript, they're arrays or objects that contain variables that are explicitly
declared as numbers, strings, Booleans, dates, nodes, and so on. Morphisms are pure
functions that, when given a specific set of inputs, always return the same output.
Homomorphic operations are restricted to a single category, while polymorphic
operations can operate on multiple categories. For example, the homomorphic
function multiplication only works on numbers, but the polymorphic function
addition can work on strings too.

The following diagram shows three categories—A, B, and C—and two
morphisms—ƒ and ɡ.

Category theory tells us that, when we have two morphisms where the category
of the first one is the expected input of the other, then they can be composed to
the following:

Category Theory

[80]

The ƒ o g symbol is the composition of morphisms ƒ and g. Now we can just connect
the dots.

And that's all it really is, just connecting dots.

Type safety
Let's connect some dots. Categories contain two things:

1.	 Objects (in JavaScript, types).
2.	 Morphisms (in JavaScript, pure functions that only work on types).

These are the terms given to category theory by mathematicians, so there is some
unfortunate nomenclature overloading with our JavaScript terminology. Objects in
category theory are more like variables with an explicit data type and not collections
of properties and values like in the JavaScript definition of objects. Morphisms are
just pure functions that use those types.

So applying the idea of category theory to JavaScript is pretty easy. Using category
theory in JavaScript means working with one certain data type per category. Data
types are numbers, strings, arrays, dates, objects, Booleans, and so on. But, with no
strict type system in JavaScript, things can go awry. So we'll have to implement our
own method of ensuring that the data is correct.

There are four primitive data types in JavaScript: numbers, strings, Booleans, and
functions. We can create type safety functions that either return the variable or throw
an error. This fulfils the object axiom of categories.

var str = function(s) {
 if (typeof s === "string") {
 return s;
 }

Chapter 5

[81]

 else {
 throw new TypeError("Error: String expected, " + typeof s + "
 given.");
 }
}
var num = function(n) {
 if (typeof n === "number") {
 return n;
 }
 else {
 throw new TypeError("Error: Number expected, " + typeof n + "
 given.");
 }
}
var bool = function(b) {
 if (typeof b === "boolean") {
 return b;
 }
 else {
 throw new TypeError("Error: Boolean expected, " + typeof b + "
 given.");
 }
}
var func = function(f) {
 if (typeof f === "function") {
 return f;
 }
 else {
 throw new TypeError("Error: Function expected, " + typeof f +
 " given.");
 }
}

However, there's a lot of repeated code here and that isn't very functional. Instead, we
can create a function that returns another function that is the type safety function.

var typeOf = function(type) {
 return function(x) {
 if (typeof x === type) {
 return x;
 }
 else {
 throw new TypeError("Error: "+type+" expected, "+typeof x+"
 given.");
 }

Category Theory

[82]

 }
}
var str = typeOf('string'),
 num = typeOf('number'),
 func = typeOf('function'),
 bool = typeOf('boolean');

Now, we can use them to ensure that our functions behave as expected.

// unprotected method:
var x = '24';
x + 1; // will return '241', not 25

// protected method
// plusplus :: Int -> Int
function plusplus(n) {
 return num(n) + 1;
}
plusplus(x); // throws error, preferred over unexpected output

Let's look at a meatier example. If we want to check the length of a Unix timestamp
that is returned by the JavaScript function Date.parse(), not as a string but as a
number, then we'll have to use our str() function.

// timestampLength :: String -> Int
function timestampLength(t) { return num(str(t).length); }
timestampLength(Date.parse('12/31/1999')); // throws error
timestampLength(Date.parse('12/31/1999')
 .toString()); // returns 12

Functions like this that explicitly transform one type to another (or to the same type)
are called morphisms. This fulfils the morphism axiom of category theory. These forced
type declarations via the type safety functions and the morphisms that use them are
everything we need to represent the notion of a category in JavaScript.

Object identities
There's one other important data type: objects.

var obj = typeOf('object');
obj(123); // throws error
obj({x:'a'}); // returns {x:'a'}

However, objects are different. They can be inherited. Everything that is not a
primitive—numbers, strings, Booleans, and functions—is an object, including
arrays, dates, elements, and more.

Chapter 5

[83]

There's no way to know what type of object something is, as in to know what
sub-type a JavaScript 'object' is, from the typeof keyword, so we'll have to improvise.
Objects have a toString() function that we can hijack for this purpose.

var obj = function(o) {
 if (Object.prototype.toString.call(o)==="[object Object]") {
 return o;
 }
 else {
 throw new TypeError("Error: Object expected, something else
 given.");
 }
}

Again, with all the objects out there, we should implement some code re-use.

var objectTypeOf = function(name) {
 return function(o) {
 if (Object.prototype.toString.call(o) === "[object "+name+"]")
 {
 return o;
 }
 else {
 throw new TypeError("Error: '+name+' expected, something
 else given.");
 }
 }
}
var obj = objectTypeOf('Object');
var arr = objectTypeOf('Array');
var date = objectTypeOf('Date');
var div = objectTypeOf('HTMLDivElement');

These will be very useful for our next topic: functors.

Functors
While morphisms are mappings between types, functors are mappings between
categories. They can be thought of as functions that lift values out of a container,
morph them, and then put them into a new container. The first input is a morphism
for the type and the second input is the container.

Category Theory

[84]

The type signature for functors looks like this:
// myFunctor :: (a -> b) -> f a -> f b

This says, "give me a function that takes a and returns b and a
box that contains a(s), and I'll return a box that contains b(s).

Creating functors
It turns out we already have one functor: map(). It grabs the values within the
container, an array, and applies a function to it.

[1, 4, 9].map(Math.sqrt); // Returns: [1, 2, 3]

However, we'll need to write it as a global function and not as a method of the array
object. This will allow us to write cleaner, safer code later on.

// map :: (a -> b) -> [a] -> [b]
var map = function(f, a) {
 return arr(a).map(func(f));
}

This example seems like a contrived wrapper because we're just piggybacking
onto the map() function. But it serves a purpose. It provides a template for maps
of other types.

// strmap :: (str -> str) -> str -> str
var strmap = function(f, s) {
 return str(s).split('').map(func(f)).join('');
}

// MyObject#map :: (myValue -> a) -> a
MyObject.prototype.map(f{
 return func(f)(this.myValue);
}

Arrays and functors
Arrays are the preferred way to work with data in functional JavaScript.

Is there an easier way to create functors that are already assigned to a morphism?
Yes, and it's called arrayOf. When you pass in a morphism that expects an integer
and returns an array, you get back a morphism that expects an array of integers and
returns an array of arrays.

Chapter 5

[85]

It is not a functor itself, but it allows us to create functors from morphisms.

// arrayOf :: (a -> b) -> ([a] -> [b])
var arrayOf = function(f) {
 return function(a) {
 return map(func(f), arr(a));
 }
}

Here's how to create functors by using morphism:

var plusplusall = arrayOf(plusplus); // plusplus is our morphism
console.log(plusplusall([1,2,3])); // returns [2,3,4]
console.log(plusplusall([1,'2',3])); // error is thrown

The interesting property of the arrayOf functor is that it works on type safeties as
well. When you pass in the type safety function for strings, you get back a type
safety function for an array of strings. The type safeties are treated like the identity
function morphism. This can be very useful for ensuring that an array contains all
the correct types.

var strs = arrayOf(str);
console.log(strs(['a','b','c'])); // returns ['a','b','c']
console.log(strs(['a',2,'c'])); // throws error

Function compositions, revisited
Functions are another type of primitive that we can create a functor for. And that
functor is called fcompose. We defined functors as something that takes a value from
a container and applies a function to it. When that container is a function, we just call
it to get its inner value.

We already know what function compositions are, but let's look at what they can do
in a category theory-driven environment.

Function compositions are associative. If your high school algebra teacher was
like mine, she taught you what the property is but not what it can do. In practice,
compose is what the associative property can do.

Category Theory

[86]

We can do any inner-compose, it doesn't matter how it's grouped. This is not to be
confused with the commutative property. ƒ o g does not always equal g o ƒ. In other
words, the reverse of the first word of a string is not the same as the first word of the
reverse of a string.

What this all means is that it doesn't matter which functions are applied and in
what order, as long as the input of each functions comes from the output of the
previous function. But wait, if the function on the right relies on the function on the
left, then can't there be only one order of evaluation? Left to right? True, but if it's
encapsulated, then we can control it however we feel fit. This is what empowered
lazy evaluation in JavaScript.

Let's rewrite function composition, not as an extension of the function prototype, but
as a stand-alone function that will allow us to get more out of it. The basic form is
as follows:

var fcompose = function(f, g) {
 return function() {
 return f.call(this, g.apply(this, arguments));
 };
};

But we'll need it to work on any number of inputs.

var fcompose = function() {
 // first make sure all arguments are functions
 var funcs = arrayOf(func)(arguments);

 // return a function that applies all the functions
 return function() {
 var argsOfFuncs = arguments;
 for (var i = funcs.length; i > 0; i -= 1) {
 argsOfFuncs = [funcs[i].apply(this, args)];
 }
 return args[0];
 };
};

// example:

Chapter 5

[87]

var f = fcompose(negate, square, mult2, add1);
f(2); // Returns: -36

Now that we've encapsulated the functions, we have control over them. We could
rewrite the compose function such that each function accepts another function as input,
stores it, and gives back an object that does the same. Instead of accepting an array as an
input, doing something with it, and then giving back a new array for each operation,
we can accept a single array for each element in the source, perform all operations
combined (every map(), filter(), and so on, composed together), and finally
store the results in a new array. This is lazy evaluation via function composition.
No reason to reinvent the wheel here. Many libraries have a nice implementation
of this concept, including the Lazy.js, Bacon.js and wu.js libraries.

There's a lot more we can do as a result of this different model: asynchronous iteration,
asynchronous event handling, lazy evaluation, and even automatic parallelization.

Automatic parallelization? There's a word for that in the computer
science industry: IMPOSSIBLE. But is it really impossible? The
next evolutionary leap in Moore's law might be a compiler that
parallelizes our code for us, and could function composition be it?
No, it doesn't quite work that way. The JavaScript engine is what
is really doing the parallelization, not automatically but with well
thought-out code. Compose just gives the engine the chance to
split it into parallel processes. But that in itself is pretty cool.

Monads
Monads are tools that help you compose functions.

Like primitive types, monads are structures that can be used as the containers that
functors "reach into". The functors grab the data, do something to it, put it into a
new monad, and return it.

There are three monads we'll focus on:

•	 Maybes
•	 Promises
•	 Lenses

So in addition to arrays (map) and functions (compose), we'll have five functors
(map, compose, maybe, promise and lens). These are just some of the many other
functors and monads that are out there.

Category Theory

[88]

Maybes
Maybes allow us to gracefully work with data that might be null and to have defaults.
A maybe is a variable that either has some value or it doesn't. And it doesn't matter to
the caller.

On its own, it might seem like this is not that big a deal. Everybody knows that
null-checks are easily accomplished with an if-else statement:

if (getUsername() == null) {
 username = 'Anonymous') {
else {
 username = getUsername();
}

But with functional programming, we're breaking away from the procedural, line-
by-line way of doing things and instead working with pipelines of functions and
data. If we had to break the chain in the middle just to check if the value existed or
not, we would have to create temporary variables and write more code. Maybes are
just tools to help us keep the logic flowing through the pipeline.

To implement maybes, we'll first need to create some constructors.

// the Maybe monad constructor, empty for now
var Maybe = function(){};

// the None instance, a wrapper for an object with no value
var None = function(){};
None.prototype = Object.create(Maybe.prototype);
None.prototype.toString = function(){return 'None';};

// now we can write the `none` function
// saves us from having to write `new None()` all the time
var none = function(){return new None()};

// and the Just instance, a wrapper for an object with a value
var Just = function(x){return this.x = x;};
Just.prototype = Object.create(Maybe.prototype);
Just.prototype.toString = function(){return "Just "+this.x;};
var just = function(x) {return new Just(x)};

Finally, we can write the maybe function. It returns a new function that either returns
nothing or a maybe. It is a functor.

var maybe = function(m){
 if (m instanceof None) {

Chapter 5

[89]

 return m;
 }
 else if (m instanceof Just) {
 return just(m.x);
 }
 else {
 throw new TypeError("Error: Just or None expected, " +
 m.toString() + " given.");
 }
}

And we can also create a functor generator just like we did with arrays.

var maybeOf = function(f){
 return function(m) {
 if (m instanceof None) {
 return m;
 }
 else if (m instanceof Just) {
 return just(f(m.x));
 }
 else {
 throw new TypeError("Error: Just or None expected, " +
 m.toString() + " given.");
 }
 }
}

So Maybe is a monad, maybe is a functor, and maybeOf returns a functor that is
already assigned to a morphism.

We'll need one more thing before we can move forward. We'll need to add a method
to the Maybe monad object that helps us use it more intuitively.

Maybe.prototype.orElse = function(y) {
 if (this instanceof Just) {
 return this.x;
 }
 else {
 return y;
 }
}

Category Theory

[90]

In its raw form, maybes can be used directly.

maybe(just(123)).x; // Returns 123
maybeOf(plusplus)(just(123)).x; // Returns 124
maybe(plusplus)(none()).orElse('none'); // returns 'none'

Anything that returns a method that is then executed is complicated enough
to be begging for trouble. So we can make it a little cleaner by calling on our
curry() function.

maybePlusPlus = maybeOf.curry()(plusplus);
maybePlusPlus(just(123)).x; // returns 123
maybePlusPlus(none()).orElse('none'); // returns none

But the real power of maybes will become clear when the dirty business of
directly calling the none() and just() functions is abstracted. We'll do this
with an example object User, that uses maybes for the username.

var User = function(){
 this.username = none(); // initially set to `none`
};
User.prototype.setUsername = function(name) {
 this.username = just(str(name)); // it's now a `just
};
User.prototype.getUsernameMaybe = function() {
 var usernameMaybe = maybeOf.curry()(str);
 return usernameMaybe(this.username).orElse('anonymous');
};

var user = new User();
user.getUsernameMaybe(); // Returns 'anonymous'

user.setUsername('Laura');
user.getUsernameMaybe(); // Returns 'Laura'

And now we have a powerful and safe way to define defaults. Keep this User
object in mind because we'll be using it later on in this chapter.

Promises
The nature of promises is that they remain immune to changing circumstances.
- Frank Underwood, House of Cards

Chapter 5

[91]

In functional programming, we're often working with pipelines and data flows:
chains of functions where each function produces a data type that is consumed by
the next. However, many of these functions are asynchronous: readFile, events,
AJAX, and so on. Instead of using a continuation-passing style and deeply nested
callbacks, how can we modify the return types of these functions to indicate the
result? By wrapping them in promises.

Promises are like the functional equivalent of callbacks. Obviously, callbacks are not
all that functional because, if more than one function is mutating the same data, then
there can be race conditions and bugs. Promises solve that problem.

You should use promises to turn this:

fs.readFile("file.json", function(err, val) {
 if(err) {
 console.error("unable to read file");
 }
 else {
 try {
 val = JSON.parse(val);
 console.log(val.success);
 }
 catch(e) {
 console.error("invalid json in file");
 }
 }
});

Into the following code snippet:

fs.readFileAsync("file.json").then(JSON.parse)
 .then(function(val) {
 console.log(val.success);
 })
 .catch(SyntaxError, function(e) {
 console.error("invalid json in file");
 })
 .catch(function(e){
 console.error("unable to read file")
 });

The preceding code is from the README for bluebird: a full featured Promises/A+
implementation with exceptionally good performance. Promises/A+ is a specification
for implementing promises in JavaScript. Given its current debate within the JavaScript
community, we'll leave the implementations up to the Promises/A+ team, as it is much
more complex than maybes.

Category Theory

[92]

But here's a partial implementation:

// the Promise monad
var Promise = require('bluebird');

// the promise functor
var promise = function(fn, receiver) {
 return function() {
 var slice = Array.prototype.slice,
 args = slice.call(arguments, 0, fn.length - 1),
 promise = new Promise();
 args.push(function() {
 var results = slice.call(arguments),
 error = results.shift();
 if (error) promise.reject(error);
 else promise.resolve.apply(promise, results);
 });
 fn.apply(receiver, args);
 return promise;
 };
};

Now we can use the promise() functor to transform functions that take callbacks
into functions that return promises.

var files = ['a.json', 'b.json', 'c.json'];
readFileAsync = promise(fs.readFile);
var data = files
 .map(function(f){
 readFileAsync(f).then(JSON.parse)
 })
 .reduce(function(a,b){
 return $.extend({}, a, b)
 });

Lenses
Another reason why programmers really like monads is that they make writing
libraries very easy. To explore this, let's extend our User object with more functions
for getting and setting values but, instead of using getters and setters, we'll use lenses.

Lenses are first-class getters and setters. They allow us to not just get and set variables,
but also to run functions over it. But instead of mutating the data, they clone and return
the new data modified by the function. They force data to be immutable, which is great
for security and consistency as well for libraries. They're great for elegant code no
matter what the application, so long as the performance-hit of introducing additional
array copies is not a critical issue.

Chapter 5

[93]

Before we write the lens() function, let's look at how it works.

var first = lens(
 function (a) { return arr(a)[0]; }, // get
 function (a, b) { return [b].concat(arr(a).slice(1)); } // set
);
first([1, 2, 3]); // outputs 1
first.set([1, 2, 3], 5); // outputs [5, 2, 3]
function tenTimes(x) { return x * 10 }
first.modify(tenTimes, [1,2,3]); // outputs [10,2,3]

And here's how the lens() function works. It returns a function with get, set and
mod defined. The lens() function itself is a functor.

var lens = fuction(get, set) {
 var f = function (a) {return get(a)};
 f.get = function (a) {return get(a)};
 f.set = set;
 f.mod = function (f, a) {return set(a, f(get(a)))};
 return f;
};

Let's try an example. We'll extend our User object from the previous example.

// userName :: User -> str
var userName = lens(
 function (u) {return u.getUsernameMaybe()}, // get
 function (u, v) { // set
 u.setUsername(v);
 return u.getUsernameMaybe();
 }
);

var bob = new User();
bob.setUsername('Bob');
userName.get(bob); // returns 'Bob'
userName.set(bob, 'Bobby'); //return 'Bobby'
userName.get(bob); // returns 'Bobby'
userName.mod(strToUpper, bob); // returns 'BOBBY'
strToUpper.compose(userName.set)(bob, 'robert'); // returns
'ROBERT'
userName.get(bob); // returns 'robert'

Category Theory

[94]

jQuery is a monad
If you think all this abstract babble about categories, functors, and monads has
no real-world application, think again. jQuery, the popular JavaScript library that
provides an enhanced interface for working with HTML is, in-fact, a monadic
library.

The jQuery object is a monad and its methods are functors. Really, they're a special
type of functor called endofunctors. Endofunctors are functors that return the same
category as the input, that is, F :: X -> X. Each jQuery method takes a jQuery
object and returns a jQuery object, which allows methods to be chained, and they
will have the type signature jFunc :: jquery-obj -> jquery-obj.

$('li').add('p.me-too').css('color', 'red').attr({id:'foo'});

This is also what empowers jQuery's plugin framework. If the plugin takes a jQuery
object as input and returns one as output, then it can be inserted into the chain.

Let's look at how jQuery was able to implement this.

Monads are the containers that the functors "reach into" to get the data. In this way,
the data can be protected and controlled by the library. jQuery provides access to the
underlying data, a wrapped set of HTML elements, via its many methods.

The jQuery object itself is written as the result of an anonymous function call.

var jQuery = (function () {
 var j = function (selector, context) {
 var jq-obj = new j.fn.init(selector, context);
 return jq-obj;
 };

 j.fn = j.prototype = {
 init: function (selector, context) {
 if (!selector) {
 return this;
 }
 }
 };
 j.fn.init.prototype = j.fn;
 return j;
})();

Chapter 5

[95]

In this highly simplified version of jQuery, it returns a function that defines the
j object, which is actually just an enhanced init constructor.

var $ = jQuery(); // the function is returned and assigned to `$`
var x = $('#select-me'); // jQuery object is returned

In the same way that functors lift values out of a container, jQuery wraps the HTML
elements and provides access to them as opposed to modifying the HTML elements
directly.

jQuery doesn't advertise this often, but it has its own map() method for lifting the
HTML element objects out of the wrapper. Just like the fmap() method, the elements
are lifted, something is done with them, and then they're placed back into the
container. This is how many of jQuery's commands work in the backend.

$('li').map(function(index, element) {
 // do something to the element
 return element
});

Another library for working with HTML elements, Prototype, does not work like
this. Prototype alters the HTML elements directly via helpers. Consequently, it has
not faired as well in the JavaScript community.

Implementing categories
It's about time we formally defined category theory as JavaScript objects. Categories
are objects (types) and morphisms (functions that only work on those types). It's an
extremely high-level, totally-declarative way to program, but it ensures that the code
is extremely safe and reliable—perfect for APIs and libraries that are worried about
concurrency and type safety.

First, we'll need a function that helps us create morphisms. We'll call it homoMorph()
because they'll be homomorphisms. It will return a function that expects a function
to be passed in and produces the composition of it, based on the inputs. The inputs
are the types that the morphism accepts as input and gives as output. Just like our
type signatures, that is, // morph :: num -> num -> [num], only the last one is
the output.

var homoMorph = function(/* input1, input2,..., inputN, output */
) {
 var before =
 checkTypes(arrayOf(func)(Array.prototype.slice.call(arguments,
 0, arguments.length-1)));

Category Theory

[96]

 var after = func(arguments[arguments.length-1])
 return function(middle) {
 return function(args) {
 return after(middle.apply(this, before
 ([].slice.apply(arguments))));
 }
 }
}

// now we don't need to add type signature comments
// because now they're built right into the function declaration
add = homoMorph(num, num, num)(function(a,b){return a+b})
add(12,24); // returns 36
add('a', 'b'); // throws error
homoMorph(num, num, num)(function(a,b){
 return a+b;
})(18, 24); // returns 42

The homoMorph() function is fairly complex. It uses a closure (see Chapter 2,
Fundamentals of Functional Programming) to return a function that accepts a function
and checks its input and output values for type safety. And for that, it relies on a
helper function: checkTypes, which is defined as follows:

var checkTypes = function(typeSafeties) {
 arrayOf(func)(arr(typeSafeties));
 var argLength = typeSafeties.length;
 return function(args) {
 arr(args);
 if (args.length != argLength) {
 throw new TypeError('Expected '+ argLength + ' arguments');
 }
 var results = [];
 for (var i=0; i<argLength; i++) {
 results[i] = typeSafeties[i](args[i]);
 }
 return results;
 }
}

Now let's formally define some homomorphisms.

var lensHM = homoMorph(func, func, func)(lens);
var userNameHM = lensHM(
 function (u) {return u.getUsernameMaybe()}, // get
 function (u, v) { // set

Chapter 5

[97]

 u.setUsername(v);
 return u.getUsernameMaybe();
 }
)
var strToUpperCase = homoMorph(str, str)(function(s) {
 return s.toUpperCase();
});
var morphFirstLetter = homoMorph(func, str, str)(function(f, s) {
 return f(s[0]).concat(s.slice(1));
});
var capFirstLetter = homoMorph(str, str)(function(s) {
 return morphFirstLetter(strToUpperCase, s)
});

Finally, we can bring it on home. The following example includes function
composition, lenses, homomorphisms, and more.

// homomorphic lenses
var bill = new User();
userNameHM.set(bill, 'William'); // Returns: 'William'
userNameHM.get(bill); // Returns: 'William'

// compose
var capatolizedUsername = fcompose(capFirstLetter,userNameHM.get);
capatolizedUsername(bill, 'bill'); // Returns: 'Bill'

// it's a good idea to use homoMorph on .set and .get too
var getUserName = homoMorph(obj, str)(userNameHM.get);
var setUserName = homoMorph(obj, str, str)(userNameHM.set);
getUserName(bill); // Returns: 'Bill'
setUserName(bill, 'Billy'); // Returns: 'Billy'

// now we can rewrite capatolizeUsername with the new setter
capatolizedUsername = fcompose(capFirstLetter, setUserName);
capatolizedUsername(bill, 'will'); // Returns: 'Will'
getUserName(bill); // Returns: 'will'

The preceding code is extremely declarative, safe, reliable, and dependable.

What does it mean for code to be declarative? In imperative
programming, we write sequences of instructions that
tell the machine how to do what we want. In functional
programming, we describe relationships between values
that tell the machine what we want it to compute, and the
machine figures out the instruction sequences to make it
happen. Functional programming is declarative.

Category Theory

[98]

Entire libraries and APIs can be constructed this way that allow programmers to
write code freely without worrying about concurrency and type safety because
those worries are handled in the backend.

Summary
About one in every 2,000 people has a condition known as synesthesia, a neurological
phenomenon in which one sensory input bleeds into another. The most common form
involves assigning colors with letters. However, there is an even rarer form where
sentences and paragraphs are associated with tastes and feelings.

For these people, they don't read word by word, sentence by sentence. They look
at the whole page/document/program and get a sense for how it tastes—not in the
mouth but in the mind. Then they put the parts of the text together like the pieces of
a puzzle.

This is what it is like to write fully declarative code: code that describes the
relationships between values that tells the machine what we want it to compute.
The parts of the program are not instructions in line-by-line order. Synesthetics may
be able to do it naturally, but with a little practice anyone can learn how to put the
relational puzzle pieces together.

In this chapter, we looked at several mathematical concepts that apply to
functional programming and how they allow us to build relationships between
data. Next, we'll explore recursion and other advanced topics in JavaScript.

[99]

Advanced Topics and Pitfalls
in JavaScript

JavaScript has been called the "assembly language of the web". The analogy (it isn't
perfect, but which analogy is?) draws from the fact that JavaScipt is often a target
for compilation, namely from Clojure and CoffeeScript, but also from many other
sources such as pyjamas (python to JS) and Google Web Kit (Java to JS).

But the analogy also references the foolish idea that JavaScript is as expressive and
low-level as x86 assembly. Perhaps this notion stems from the fact that JavaScript
has been bashed for its design flaws and oversights ever since it was first shipped
with Netscape back in 1995. It was developed and released in a hurry, before it could
be fully developed. And because of that, some questionable design choices made its
way into JavaScript, the language that soon became the de-facto scripting language
of the web. Semicolons were a big mistake. So were its ambiguous methods for
defining functions. Is it var foo = function(); or function foo();?

Functional programming is an excellent way to side-step some of these mistakes.
By focusing on the fact that JavaScript is truly a functional language, it becomes
clear that, in the preceding example about the different ways to declare a function,
it's best to declare functions as variables. And that semicolons are mostly just
syntactic sugar to make JavaScript appear more C-like.

Advanced Topics and Pitfalls in JavaScript

[100]

But always remember the language you are working with. JavaScript, like any other
language, has its pitfalls. And, when programming in a style that often skirts the
bleeding edge of what's possible, those minor stumbles can become non-recoverable
gotchas. Some of these gotchas include:

•	 Recursion
•	 Variable scope and closures
•	 Function declarations vs. function expressions

However, these issues can be overcome with a little attention.

Recursion
Recursion is very important to functional programming in any language. Many
functional languages go so far as to require recursion for iteration by not providing
for and while loop statements; this is only possible when tail-call elimination is
guaranteed by the language, which is not the case for JavaScript. A quick primer on
recursion was given in Chapter 2, Fundamentals of Functional Programming. But in this
section, we'll dig deeper into exactly how recursion works in JavaScript.

Tail recursion
JavaScript's routine for handling recursion is known as tail recursion, a stack-based
implementation of recursion. This means that, for every recursive call, there is a new
frame in the stack.

To illustrate the problems that can arise from this method, let's use the classic recursive
algorithm for factorials.

var factorial = function(n) {
 if (n == 0) {
 // base case
 return 1;
 }
 else {
 // recursive case
 return n * factorial(n-1);
 }
}

The algorithm will call itself n times to get the answer. It's literally computing (1 x
1 x 2 x 3 x … x N). That means the time complexity is O(n).

Chapter 6

[101]

O(n), pronounced "big oh to the n," means that the complexity of the
algorithm will grow at a rate of n as the size of the input grows, which is
leaner growth. O(n2) is exponential growth, O(log(n)) is logarithmic
growth, and so on. This notation can be used for time complexity as well
as space complexity.

But, because a new frame in the memory stack is allocated for each iteration, the
space complexity is also O(n). This is a problem. This means that memory will be
consumed at such a rate the memory limit will be exceeded far too easily. On my
laptop, factorial(23456) returns Uncaught Error: RangeError: Maximum call
stack size exceeded.

While calculating the factorial of 23,456 is a frivolous endeavor, you can be assured
that many problems that are solved with recursion will grow to that size without
too much trouble. Consider the case of data trees. The tree could be anything:
search applications, file systems, routing tables, and so on. Below is a very simple
implementation of the tree traversal function:

var traverse = function(node) {
 node.doSomething(); // whatever work needs to be done
 node.childern.forEach(traverse); // many recursive calls
}

With just two children per node, both time complexity and space complexity,
(in the worst case, where the entire tree must be traversed to find the answer), would
be O(n2) because there would be two recursive calls each. With many children
per node, the complexity would be O(nm) where m is the number of children. And
recursion is the preferred algorithm for tree traversal; a while loop would be much
more complex and would require the maintenance of a stack.

Exponential growth like this would mean that it would not take a very large tree
to throw a RangeError exception. There must be a better way.

The Tail-call elimination
We need a way to eliminate the allocation of new stack frames for every recursive
call. This is known as tail-call elimination.

With tail-call elimination, when a function returns the result of calling itself, the
language doesn't actually perform another function call. It turns the whole thing
into a loop for you.

Advanced Topics and Pitfalls in JavaScript

[102]

OK, so how do we do this? With lazy evaluation. If we could rewrite it to fold over a
lazy sequence, such that the function returns a value or it returns the result of calling
another function without doing anything with that result, then new stack frames
don't need to be allocated.

To put it in "tail recursion form", the factorial function would have to be rewritten
such that the inner procedure fact calls itself last in the control flow, as shown in
the following code snippet:

var factorial = function(n) {
 var _fact = function(x, n) {
 if (n == 0) {
 // base case
 return x;
 }
 else {
 // recursive case
 return _fact(n*x, n-1);
 }
 }
 return fact(1, n);
}

Instead of having the result produced by the first function in the
recursion tail (like in n * factorial(n-1)), the result is computed
going down the recursion tail (with the call to _fact(r*n, n-1))
and is produced by the last function in this tail (with return r;).
The computation goes only one way down, not on its way up. It's
relatively easy to process it as an iteration for the interpreter.

However, tail-call elimination does not work in JavaScript. Put the above code into your
favorite JavaScript engine and factorial(24567) still returns Uncaught Error:
RangeError: Maximum call stack size exceeded exception. Tail-call elimination
is listed as a new feature to be included in the next release of ECMAScript, but it will
be some time before all browsers implement it.

JavaScript cannot optimize functions that are put into tail recursion form. It's a
feature of the language specification and runtime interpreter, plain and simple. It has
to do with how the interpreter acquires resources for stack frames. Some languages
will reuse the same stack frame when it doesn't need to remember anything new,
like in the preceding function. This is how tail-call elimination reduces both time
and space complexity.

Chapter 6

[103]

Unfortunately, JavaScript does not do this. But if it did, it would reorganize the stack
frames from this:

call factorial (3)
 call fact (3 1)
 call fact (2 3)
 call fact (1 6)
 call fact (0 6)
 return 6
 return 6
 return 6
 return 6
return 6

into the following:

call factorial (3)
 call fact (3 1)
 call fact (2 3)
 call fact (1 6)
 call fact (0 6)
 return 6
return 6

Trampolining
The solution? A process known as trampolining. It's a way to "hack" the concept of
tail-call elimination into a program by using thunks.

Thunks are, for this purpose, expressions with arguments that wrap
anonymous functions with no arguments of their own. For example:
function(str){return function(){console.log(str)}}.
This prevents the expression from being evaluated until a receiving
function calls the anonymous function.

A trampoline is a function that takes a function as input and repeatedly executes
its returned value until something other than a function is returned. A simple
implementation is shown in the following code snippet:

var trampoline = function(f) {
 while (f && f instanceof Function) {
 f = f.apply(f.context, f.args);
 }
 return f;
}

Advanced Topics and Pitfalls in JavaScript

[104]

To actually implement tail-call elimination, we need to use thunks. For this, we can
use the bind() function that allows us to apply a method to one object with the
this keyword assigned to another. Internally, it's the same as the call keyword, but
it's chained to the method and returns a new bound function. The bind() function
actually does partial application, though in a very limited way.

var factorial = function(n) {
 var _fact = function(x, n) {
 if (n == 0) {
 // base case
 return x;
 }
 else {
 // recursive case
 return _fact.bind(null, n*x, n-1);
 }
 }
 return trampoline(_fact.bind(null, 1, n));
}

But writing the fact.bind(null, ...) method is cumbersome and would confuse
anybody reading the code. Instead, let's write our own function for creating thunks.
There are a few things the thunk() function must do:

•	 thunk() function must emulate the _fact.bind(null, n*x, n-1) method
that returns a non-evaluated function

•	 The thunk() function should enclose two more functions:
°° For processing the give function, and
°° For processing the function arguments that will be used when the

given function is invoked

With that, we're ready to write the function. We only need a few lines of code to
write it.

var thunk = function (fn) {
 return function() {
 var args = Array.prototype.slice.apply(arguments);
 return function() { return fn.apply(this, args); };
 };
};

Chapter 6

[105]

Now we can use the thunk() function in our factorial algorithm like this:

var factorial = function(n) {
 var fact = function(x, n) {
 if (n == 0) {
 return x;
 }
 else {
 return thunk(fact)(n * x, n - 1);
 }
 }
 return trampoline(thunk(fact)(1, n));
}

But again, we can simplify it just a bit further by defining the _fact() function
as a thunk() function. By defining the inner function as a thunk() function, we're
relieved of having to use the thunk() function both inside the inner function
definition and in the return statement.

var factorial = function(n) {
 var _fact = thunk(function(x, n) {
 if (n == 0) {
 // base case
 return x;
 }
 else {
 // recursive case
 return _fact(n * x, n - 1);
 }
 });
 return trampoline(_fact(1, n));
}

The result is beautiful. What seems like the function _fact() being recursively called
for a tail-free recursion is almost transparently processed as an iteration!

Finally, let's see how the trampoline() and thunk() functions work with our more
meaningful example of tree traversal. The following is a crude example of how a
data tree could be traversed using trampolining and thunks:

var treeTraverse = function(trunk) {
 var _traverse = thunk(function(node) {
 node.doSomething();
 node.children.forEach(_traverse);
 }
 trampoline(_traverse(trunk));
}

Advanced Topics and Pitfalls in JavaScript

[106]

We've solved the issue of tail recursion. But is there an even better way? What if we
could simply convert the recursive function to a non-recursive function? Up next,
we'll look at how to do just that.

The Y-combinator
The Y-combinator is one of those things in computer science that amaze even the
deftest of programming masterminds. Its ability to automatically convert recursive
functions to non-recursive functions is why Douglas Crockford calls it "one of the
most strange and wonderful artifacts of computer science", and Sussman and Steele
once said, "That this manages to work is truly remarkable".

So a truly-remarkable, wonderfully strange artifact of computer science that brings
recursive functions to their knees must be massive and complex, right? No, not
exactly. Its implementation in JavaScript is only nine, very odd, lines of code.
They are as follows:

var Y = function(F) {
 return (function (f) {
 return f(f);
 } (function (f) {
 return F(function (x) {
 return f(f)(x);
 });
 }));
}

Here's how it works: it finds the "fixed point" of the function passed in as an
argument. Fixed points offer another way to think about functions rather than
recursion and iteration in the theory of computer programming. And it does this
with only the use of anonymous function expressions, function applications, and
variable references. Note that Y does not reference itself. In fact, all those functions
are anonymous.

As you might have guessed, the Y-combinator came out of lambda calculus.
It's actually derived with the help of another combinator called the U-combinator.
Combinators are special higher-order functions that only use function application
and earlier defined combinators to define a result from its input.

Chapter 6

[107]

To demonstrate the Y-combinator, we'll again turn to the factorial problem, but we
need to define the factorial function a little differently. Instead of writing a recursive
function, we write a function that returns a function that is the mathematical
definition of factorials. Then we can pass this into the Y-combinator.

var FactorialGen = function(factorial) {
 return (function(n) {
 if (n == 0) {
 // base case
 return 1;
 }
 else {
 // recursive case
 return n * factorial(n – 1);
 }
 });
};
Factorial = Y(FactorialGen);
Factorial(10); // 3628800

However, when we give it a significantly large number, the stack overflows just as if
tail recursion without trampolining was used.

Factorial(23456); // RangeError: Maximum call stack size exceeded

But we can use trampolining with the Y-combinator as in the following:

var FactorialGen2 = function (factorial) {
 return function(n) {
 var factorial = thunk(function (x, n) {
 if (n == 0) {
 return x;
 }
 else {
 return factorial(n * x, n - 1);
 }
 });
 return trampoline(factorial(1, n));
 }
};

var Factorial2 = Y(FactorialGen2)
Factorial2(10); // 3628800
Factorial2(23456); // Infinity

We can also rearrange the Y-combinator to perform something called memoization.

Advanced Topics and Pitfalls in JavaScript

[108]

Memoization
Memoization is the technique of storing the result of expensive function calls.
When the function is later called with the same arguments, the stored result is
returned rather than computing the result again.

Although the Y-combinator is much faster than recursion, it is still relatively slow. To
speed it up, we can create a memoizing fixed-point combinator: a Y-like combinator
that caches the results of intermediate function calls.

var Ymem = function(F, cache) {
 if (!cache) {
 cache = {} ; // Create a new cache.
 }
 return function(arg) {
 if (cache[arg]) {
 // Answer in cache
 return cache[arg] ;
 }
 // else compute the answer
 var answer = (F(function(n){
 return (Ymem(F,cache))(n);
 }))(arg); // Compute the answer.
 cache[arg] = answer; // Cache the answer.
 return answer;
 };
}

So how much faster is it? By using http://jsperf.com/, we can compare the
performance.

The following results are with random numbers between 1 and 100. We can see that
the memoizing Y-combinator is much, much faster. And adding trampolining to it
does not slow it down by much. You can view the results and run the tests yourself
at this URL: http://jsperf.com/memoizing-y-combinator-vs-tail-call-
optimization/7.

http://jsperf.com/
http://jsperf.com/memoizing-y-combinator-vs-tail-call-optimization/7
http://jsperf.com/memoizing-y-combinator-vs-tail-call-optimization/7

Chapter 6

[109]

The bottom line is: the most efficient and safest method of performing recursion
in JavaScript is to use the memoizing Y-combinator with tail-call elimination via
trampolining and thunks.

Variable scope
The scope of variables in JavaScript is not natural. In fact, sometimes it's downright
counter-intuitive. They say that JavaScript programmers can be judged by how well
they understand scope.

Scope resolutions
First, let's go over the different scope resolutions in JavaScript.

JavaScript uses scope chains to establish the scope of variables. When resolving a
variable, it starts at the innermost scope and searches outwards.

Advanced Topics and Pitfalls in JavaScript

[110]

Global scope
Variables, functions, and objects defined at this level are available to any code in the
entire program. This is the outermost scope.

var x = 'hi';
function a() {
 console.log(x);
}
a(); // 'hi'

Local scope
Each function described has its own local scope. Any function defined within
another function has a nested local scope that is linked to the outer function. Almost
always, it's the position in the source that defines the scope.

var x = 'hi';
function a() {
 console.log(x);
}
function b() {
 var x = 'hello';
 console.log(x);
}
b(); // hello
a(); // hi

Local scope is only for functions and not for any expression statements (if, for,
while, and so on), which is different from how most languages treat scope.

function c() {
 var y = 'greetings';
 if (true) {
 var y = 'guten tag';
 }
 console.log(y);
}

function d() {
 var y = 'greetings';
 function e() {
 var y = 'guten tag';
 }

Chapter 6

[111]

 console.log(y)
}
c(); // 'guten tag'
d(); // 'greetings'

In functional programming, this isn't as much of a concern because functions are
used more often and expression statements less often. For example:

function e(){
 var z = 'namaste';
 [1,2,3].foreach(function(n) {
 var z = 'aloha';
 }
 isTrue(function(){
 var z = 'good morning';
 });
 console.log(z);
}
e(); // 'namaste'

Object properties
Object properties have their own scope chains as well.

var x = 'hi';
var obj = function(){
 this.x = 'hola';
};
var foo = new obj();
console.log(foo.x); // 'hola'
foo.x = 'bonjour';
console.log(foo.x); // 'bonjour'

The object's prototype is further down the scope chain.

obj.prototype.x = 'greetings';
obj.prototype.y = 'konnichi ha';
var bar = new obj();
console.log(bar.x); // still prints 'hola'
console.log(bar.y); // 'konnichi ha'

This isn't even close to being comprehensive, but these three types of scope are
enough to get started.

Advanced Topics and Pitfalls in JavaScript

[112]

Closures
One problem with this scope structure is that it leaves no room for private variables.
Consider the following code snippet:

var name = 'Ford Focus';
var year = '2006';
var millage = 123456;
function getMillage(){
 return millage;
}
function updateMillage(n) {
 millage = n;
}

These variables and functions are global, which means it would be too easy for code
later down the program to accidentally overwrite them. One solution would be to
encapsulate them into a function and call that function immediately after defining it.

var car = function(){
 var name = 'Ford Focus';
 var year = '2006';
 var millage = 123456;
 function getMillage(){
 return Millage;
 }
 function updateMillage(n) {
 millage = n;
 }
}();

Nothing is happening outside the function, so we ought to discard the function name
by making it anonymous.

(function(){
 var name = 'Ford Focus';
 var year = '2006';
 var millage = 123456;
 function getMillage(){
 return millage;
 }
 function updateMillage(n) {
 millage = n;
 }
})();

Chapter 6

[113]

To make the functions getValue() and updateMillage() available outside the
anonymous function, we'll need to return them in an object literal as shown in the
following code snippet:

var car = function(){
 var name = 'Ford Focus';
 var year = '2006';
 var millage = 123456;
 return {
 getMillage: function(){
 return millage;
 },
 updateMillage: function(n) {
 millage = n;
 }
 }
}();
console.log(car.getMillage()); // works
console.log(car.updateMillage(n)); // also works
console.log(car.millage); // undefined

This gives us pseudo-private variables, but the problems don't stop there.
The following section explores more issues with variable scope in JavaScript.

Gotchas
Many variable scope nuances can be found throughout JavaScript. The following is
by no means a comprehensive list, but it covers the most common cases:

•	 The following will output 4, not 'undefined' as one would expect:
for (var n = 4; false;) { } console.log(n);

This is due to the fact that, in JavaScript, variable definition happens at the
beginning of the corresponding scope, not just when it is declared.

•	 If you define a variable in the outer scope, and then have an if statement
define a variable inside the function with the same name, even if that if
branch isn't reached, it is redefined. An example:
var x = 1;
function foo() {
 if (false) {
 var x = 2;
 }
 return x;

Advanced Topics and Pitfalls in JavaScript

[114]

}
foo(); // Return value: 'undefined', expected return value:
2

Again, this is caused by moving the variable definition at the beginning of
the scope with the undefined value.

•	 In the browser, global variables are really stored in the window object.

window.a = 19;
console.log(a); // Output: 19

a in the global scope means a as an attribute of the current context,
so a===this.a and window object in a browser act as an equivalent
of the this keyword in the global scope.

The first two examples are a result of a feature of JavaScript known as hoisting,
which will be a critical concept in the next section about writing functions.

Function declarations versus function
expressions versus the function
constructor
What is the difference between these three statements?

function foo(n){ return n; }
var foo = function(n){ return n; };
var foo = new Function('n', 'return n');

At first glance, they're merely different ways to write the same function. But there's
a little more going on here. And if we're to take full advantage of functions in
JavaScript in order to manipulate them into a functional programming style,
then we'd better be able to get this right. If there is a better way to do something
in computer programming, then that one way should be the only way.

Function declarations
Function declarations, sometimes called function statements, define a function by
using the function keyword.

function foo(n) {
 return n;
}

Chapter 6

[115]

Functions that are declared with this syntax are hoisted to the top of the current
scope. What this actually means is that, even if the function is defined several lines
down, JavaScript knows about it and can use it earlier in the scope. For example,
the following will correctly print 6 to the console:

foo(2,3);
function foo(n, m) {
 console.log(n*m);
}

Function expressions
Named functions can also be defined as an expression by defining an anonymous
function and assigning it to a variable.

var bar = function(n, m) {
 console.log(n*m);
};

They are not hoisted like function declarations are. This is because, while function
declarations are hoisted, variable declarations are not. For example, this will not
work and will throw an error:

bar(2,3);
var bar = function(n, m) {
 console.log(n*m);
};

In functional programming, we're going to want to use function expressions so we
can treat the functions like variables, making them available to be used as callbacks
and arguments to higher-order functions such as map() functions. Defining functions
as expressions makes it more obvious that they're variables assigned to a function.
Also, if we're going to write functions in one style, we should write all functions in
that style for the sake of consistency and clarity.

The function constructor
JavaScript actually has a third way to create functions: with the Function()
constructor. Just like function expressions, functions defined with the Function()
constructor are not hoisted.

var func = new Function('n','m','return n+m');
func(2,3); // returns 5

Advanced Topics and Pitfalls in JavaScript

[116]

But the Function() constructor is not only confusing, it is also highly dangerous.
No syntax correction can happen, no optimization is possible. It's far easier, safer,
and less confusing to write the same function as follows:

var func = function(n,m){return n+m};
func(2,3); // returns 5

Unpredictable behavior
So the difference is that function declarations are hoisted while function expressions
are not. This can cause unexpected things to happen. Consider the following:

function foo() {
 return 'hi';
}
console.log(foo());
function foo() {
 return 'hello';
}

What's actually printed to the console is hello. This is due to the fact that the second
definition of the foo() function is hoisted to the top, making it the definition that is
actually used by the JavaScript interpreter.

While at first this may not seem like a critical difference, in functional programming
this can cause mayhem. Consider the following code snippet:

if (true) {
 function foo(){console.log('one')};
}
else {
 function foo(){console.log('two')};
}
foo();

When the foo() function is called, two is printed to the console, not one!

Finally, there is a way to combine both function expressions and declarations.
It works as follows:

var foo = function bar(){ console.log('hi'); };
foo(); // 'hi'
bar(); // Error: bar is not defined

Chapter 6

[117]

It makes very little sense to use this method because the name used in the declaration
(the bar() function in the preceding example) is not available outside the function
and causes confusion. It would only be appropriate for recursion, for example:

var foo = function factorial(n) {
 if (n == 0) {
 return 1;
 }
else {
 return n * factorial(n-1);
 }
};
foo(5);

Summary
JavaScript has been called the "assembly language of the web," because it's as
ubiquitous and unavoidable as x86 assembly. It's the only language that runs on
all browsers. It's also flawed, yet referring to it as a low-level language is missing
the mark.

Instead, think of JavaScript as the raw coffee beans of the web. Sure, some of the
beans are damaged and a few are rotten. But if the good ones are selected, roasted,
and brewed by a skilled barista, the beans can be transformed into a brilliant jamocha
that cannot be had just once and forgotten. It's consumption becomes a daily custom,
life without it would be static, harder to perform, and much less exciting. Some even
prefer to enhance the brew with plug-ins and add-ons such as cream, sugar, and
cocoa, which complement it very well.

One of JavaScript's biggest critics, Douglas Crawford, was quoted as saying "There
are certainly a lot of people who refuse to consider the possibility that JavaScript got
anything right. I used to be one of those guys. But now I continue to be amazed by
the brilliance that is in there".

JavaScript turned out to be pretty awesome.

[119]

Functional and Object-oriented
Programming in JavaScript

You will often hear that JavaScript is a blank language, where blank is either
object-oriented, functional, or general-purpose. This book has focused on JavaScript
as a functional language and has gone to great lengths to prove that it is. But the
truth is that JavaScript is a general-purpose language, meaning it's fully capable of
multiple programming styles. Like Python and F#, JavaScript is multi-paradigm. But
unlike those languages, JavaScript's OOP side is prototype-based while most other
general-purpose languages are class-based.

In this final chapter, we will relate both functional and object-oriented programming
to JavaScript, and see how the two paradigms can complement each other and
coexist side-by-side. In this chapter the following topics will be covered:

•	 How can JavaScript be both functional and OOP?
•	 JavaScript's OOP – using prototypes
•	 How to mix functional and OOP in JavaScript
•	 Functional inheritance
•	 Functional mixins

Better code is the goal. Functional and object-oriented programming are just means
to this end.

Functional and Object-oriented Programming in JavaScript

[120]

JavaScript – the multi-paradigm language
If object-oriented programming means treating all variables as objects, and functional
programming means treating all functions as variables, then can't functions be
treated like objects? In JavaScript, they can.

But saying that functional programming means treating functions as variables is
somewhat inaccurate. A better way to put it is: functional programming means
treating everything as a value, especially functions.

A better way still to describe functional programming may be to call it declarative.
Independent of the imperative branch of programming styles, declarative programming
expresses the logic of computation required to solve the problem. The computer is told
what the problem is rather than the procedure for how to solve it.

Meanwhile, object-oriented programming is derived from the imperative
programming style: the computer is given step-by-step instructions for how to solve
the problem. OOP mandates that the instructions for computation (methods) and the
data they work on (member variables) be organized into units called objects. The only
way to access that data is through the object's methods.

So how can these two styles be integrated together?

•	 The code inside the object's methods is typically written in an imperative
style. But what if it was in a functional style? After all, OOP doesn't exclude
immutable data and higher-order functions.

•	 Perhaps a purer way to mix the two would be to treat objects both as
functions and as traditional, class-based objects at the same time.

•	 Maybe we can simply include several ideas from functional programming—
such as promises and recursion—into our object-oriented application.

•	 OOP covers topics such as encapsulation, polymorphism, and abstraction.
So does functional programming, it just goes about it in a different way.
So maybe we can include several ideas from object-oriented programming
in our functional-oriented application.

The point is: OOP and FP can be mixed together and there are several ways to do it.
They're not exclusive of each other.

Chapter 7

[121]

JavaScript's object-oriented
implementation – using prototypes
JavaScript is a class-less language. That's not to mean it is less fashionable or more
blue-collar than other computer languages; class-less means it doesn't have a class
structure in the same way that object-oriented languages do. Instead, it uses
prototypes for inheritance.

Although this may be baffling to programmers with backgrounds in C++ and
Java, prototype-based inheritance can be much more expressive than traditional
inheritance. The following is a brief comparison between the differences between
C++ and JavaScript:

C++ JavaScript
Strongly typed Loosely typed
Static Dynamic
Class-based Prototype-based
Classes Functions
Constructors Functions
Methods Functions

Inheritance
Before we go much further, let's make sure we fully understand the concept
of inheritance in object-oriented programming. Class-based inheritance is
demonstrated in the following pseudo-code:

class Polygon {
 int numSides;
 function init(n) {
 numSides = n;
 }
}
class Rectangle inherits Polygon {
 int width;
 int length;
 function init(w, l) {
 numSides = 4;
 width = w;
 length = l;
 }

Functional and Object-oriented Programming in JavaScript

[122]

 function getArea() {
 return w * l;
 }
}
class Square inherits Rectangle {
 function init(s) {
 numSides = 4;
 width = s;
 length = s;
 }
}

The Polygon class is the parent class the other classes inherit from. It defines
just one member variable, the number of sides, which is set in the init() function.
The Rectangle subclass inherits from the Polygon class and adds two more member
variables, length and width, and a method, getArea(). It doesn't need to define
the numSides variable because it was already defined by the class it inherits from,
and it also overrides the init() function. The Square class carries on this chain of
inheritance even further by inheriting from the Rectangle class for its getArea()
method. By simply overriding the init() function again such that the length and
width are the same, the getArea() function can remain unchanged and less code
needs to be written.

In a traditional OOP language, this is what inheritance is all about. If we wanted
to add a color property to all the objects, all we would have to do is add it to the
Polygon object without having to modify any of the objects that inherit from it.

JavaScript's prototype chain
Inheritance in JavaScript comes down to prototypes. Each object has an internal
property known as its prototype, which is a link to another object. That object has
a prototype of its own. This pattern can repeat until an object is reached that has
undefined as its prototype. This is known as the prototype chain, and it's how
inheritance works in JavaScript. The following diagram explain the inheritance
in JavaScirpt:

Chapter 7

[123]

When running a search for an object's function definition, JavaScript "walks" the
prototype chain until it finds the first definition of a function with the right name.
Therefore, overriding it is as simple as providing a new definition on the prototype
of the subclass.

Inheritance in JavaScript and the
Object.create() method
Just as there are many ways to create objects in JavaScript, there are also many ways
to replicate class-based, classical inheritance. But the one preferred way to do it is
with the Object.create() method.

var Polygon = function(n) {
 this.numSides = n;
}

var Rectangle = function(w, l) {
 this.width = w;
 this.length = l;
}

// the Rectangle's prototype is redefined with Object.create
Rectangle.prototype = Object.create(Polygon.prototype);

// it's important to now restore the constructor attribute
// otherwise it stays linked to the Polygon
Rectangle.prototype.constructor = Rectangle;

// now we can continue to define the Rectangle class
Rectangle.prototype.numSides = 4;
Rectangle.prototype.getArea = function() {
 return this.width * this.length;
}

var Square = function(w) {
 this.width = w;
 this.length = w;
}
Square.prototype = Object.create(Rectangle.prototype);
Square.prototype.constructor = Square;

var s = new Square(5);
console.log(s.getArea()); // 25

Functional and Object-oriented Programming in JavaScript

[124]

This syntax may seem unusual to many but, with a little practice, it will become
familiar. The prototype keyword must be used to gain access to the internal property,
[[Prototype]], which all objects have. The Object.create() method declares a new
object with a specified object for its prototype to inherit from. In this way, classical
inheritance can be achieved in JavaScript.

The Object.create() method was introduced in
ECMAScript 5.1 in 2011, and it was billed as the new
and preferred way to create objects. This was just one of
many attempts to integrate inheritance into JavaScript.
Thankfully, this method works pretty well.

We saw this structure of inheritance when building the Maybe classes in Chapter 5,
Category Theory. Here are the Maybe, None, and Just classes, which inherit from
each other just like the preceding example.

var Maybe = function(){};

var None = function(){};
None.prototype = Object.create(Maybe.prototype);
None.prototype.constructor = None;
None.prototype.toString = function(){return 'None';};

var Just = function(x){this.x = x;};
Just.prototype = Object.create(Maybe.prototype);
Just.prototype.constructor = Just;
Just.prototype.toString = function(){return "Just "+this.x;};

This shows that class inheritance in JavaScript can be an enabler of functional
programming.

A common mistake is to pass a constructor into Object.create() instead of
a prototype object. This problem is compounded by the fact that an error will
not be thrown until the subclass tries to use an inherited member function.

Foo.prototype = Object.create(Parent.prototype); // correct
Bar.prototype = Object.create(Parent); // incorrect
Bar.inheritedMethod(); // Error: function is undefined

The function won't be found if the inheritedMethod() method has been attached to
the Foo.prototype class. If the inheritedMethod() method is attached directly to the
instance with this.inheritedMethod = function(){...} in the Bar constructor,
then this use of Parent as an argument of Object.create()could be correct.

Chapter 7

[125]

Mixing functional and object-oriented
programming in JavaScript
Object-oriented programming has been the dominant programming paradigm
for several decades. It is taught in Computer Science 101 classes around the world,
while functional programming is not. It is what software architects use to design
applications, while functional programming is not. And it makes sense too: OOP
makes it easy to conceptualize abstract ideas. It makes it easier to write code.

So, unless you can convince your boss that the application needs to be all functional,
we're going to be using functional programming in an object-oriented world. This
section will explore ways to do this.

Functional inheritance
Perhaps the most accessible way to apply functional programming to JavaScript
applications is to use a mostly functional style within OOP principles, such as
inheritance.

To explore how this might work, let's build a simple application that calculates
the price of a product. First, we'll need some product classes:

var Shirt = function(size) {
 this.size = size;
};

var TShirt = function(size) {
 this.size = size;
};
TShirt.prototype = Object.create(Shirt.prototype);
TShirt.prototype.constructor = TShirt;
TShirt.prototype.getPrice = function(){
 if (this.size == 'small') {
 return 5;
 }
 else {
 return 10;
 }
}

var ExpensiveShirt = function(size) {
 this.size = size;
}

Functional and Object-oriented Programming in JavaScript

[126]

ExpensiveShirt.prototype = Object.create(Shirt.prototype);
ExpensiveShirt.prototype.constructor = ExpensiveShirt;
ExpensiveShirt.prototype.getPrice = function() {
 if (this.size == 'small') {
 return 20;
 }
 else {
 return 30;
 }
}

We can then organize them within a Store class as follows:

var Store = function(products) {
 this.products = products;
}
Store.prototype.calculateTotal = function(){
 return this.products.reduce(function(sum,product) {
 return sum + product.getPrice();
 }, 10) * TAX; // start with $10 markup, times global TAX var
};

var TAX = 1.08;
var p1 = new TShirt('small');
var p2 = new ExpensiveShirt('large');
var s = new Store([p1,p2]);
console.log(s.calculateTotal()); // Output: 35

The calculateTotal() method uses the array's reduce() function to cleanly sum
together the prices of the products.

This works just fine, but what if we need a dynamic way to calculate the markup
value? For this, we can turn to a concept called Strategy Pattern.

Strategy Pattern
Strategy Pattern is a method for defining a family of interchangeable algorithms.
It is used by OOP programmers to manipulate behavior at runtime, but it is based
on a few functional programming principles:

•	 Separation of logic and data
•	 Composition of functions
•	 Functions as first-class objects

Chapter 7

[127]

And a couple of OOP principles as well:

•	 Encapsulation
•	 Inheritance

In our example application for calculating product cost, explained previously,
let's say we want to give preferential treatment to certain customers, and that
the markup will have to be adjusted to reflect this.

So let's create some customer classes:

var Customer = function(){};
Customer.prototype.calculateTotal = function(products) {
 return products.reduce(function(total, product) {
 return total + product.getPrice();
 }, 10) * TAX;
};

var RepeatCustomer = function(){};
RepeatCustomer.prototype = Object.create(Customer.prototype);
RepeatCustomer.prototype.constructor = RepeatCustomer;
RepeatCustomer.prototype.calculateTotal = function(products) {
 return products.reduce(function(total, product) {
 return total + product.getPrice();
 }, 5) * TAX;
};

var TaxExemptCustomer = function(){};
TaxExemptCustomer.prototype = Object.create(Customer.prototype);
TaxExemptCustomer.prototype.constructor = TaxExemptCustomer;
TaxExemptCustomer.prototype.calculateTotal = function(products) {
 return products.reduce(function(total, product) {
 return total + product.getPrice();
 }, 10);
};

Each Customer class encapsulates the algorithm. Now we just need the Store class
to call the Customer class's calculateTotal() method.

var Store = function(products) {
 this.products = products;
 this.customer = new Customer();
 // bonus exercise: use Maybes from Chapter 5 instead of a
 default customer instance
}

Functional and Object-oriented Programming in JavaScript

[128]

Store.prototype.setCustomer = function(customer) {
 this.customer = customer;
}
Store.prototype.getTotal = function(){
 return this.customer.calculateTotal(this.products);
};

var p1 = new TShirt('small');
var p2 = new ExpensiveShirt('large');
var s = new Store([p1,p2]);
var c = new TaxExemptCustomer();
s.setCustomer(c);
s.getTotal(); // Output: 45

The Customer classes do the calculating, the Product classes hold the data
(the prices), and the Store class maintains the context. This achieves a very high
level of cohesion and a very good mixture of object-oriented programming and
functional programming. JavaScript's high level of expressiveness makes this
possible and quite easy.

Mixins
In a nutshell, mixins are classes that can allow other classes to use their methods.
The methods are intended to be used solely by other classes, and the mixin class itself
is never to be instantiated. This helps to avoid inheritance ambiguity. And they're a
great means of mixing functional programming with object-oriented programming.

Mixins are implemented differently in each language. Thanks to JavaScript's flexibility
and expressiveness, mixins are implemented as objects with only methods. While they
can be defined as function objects (that is, var mixin = function(){...};), it would
be better for the structural discipline of the code to define them as object literals (that
is, var mixin = {...};). This will help us to distinguish between classes and mixins.
After all, mixins should be treated as processes, not objects.

Let's start with declaring some mixins. We'll extend our Store application from the
previous section, using mixins to expand on the classes.

var small = {
 getPrice: function() {
 return this.basePrice + 6;
 },
 getDimensions: function() {
 return [44,63]
 }

Chapter 7

[129]

}
var large = {
 getPrice: function() {
 return this.basePrice + 10;
 },
 getDimensions: function() {
 return [64,83]
 }
};

We're not limited to just this. Many more mixins can be added, like colors or fabric
material. We'll have to rewrite our Shirt classes a little bit, as shown in the following
code snippet:

var Shirt = function() {
 this.basePrice = 1;
};
Shirt.getPrice = function(){
 return this.basePrice;
}
var TShirt = function() {
 this.basePrice = 5;
};
TShirt.prototype = Object.create(Shirt.prototype);
TShirt..prototype.constructor = TShirt;

Now we're ready to use mixins.

Classical mixins
You're probably wondering just how these mixins get mixed with the classes.
The classical way to do this is by copying the mixin's functions into the receiving
object. This can be done with the following extension to the Shirt prototype:

Shirt.prototype.addMixin = function (mixin) {
 for (var prop in mixin) {
 if (mixin.hasOwnProperty(prop)) {
 this.prototype[prop] = mixin[prop];
 }
 }
};

Functional and Object-oriented Programming in JavaScript

[130]

And now the mixins can be added as follows:

TShirt.addMixin(small);
var p1 = new TShirt();
console.log(p1.getPrice()); // Output: 11

TShirt.addMixin(large);
var p2 = new TShirt();
console.log(p2.getPrice()); // Output: 15

However, there is a major problem. When the price of p1 is calculated again, it comes
back as 15, the price of a large item. It should be the value for a small one!

console.log(p1.getPrice()); // Output: 15

The problem is that the Shirt object's prototype.getPrice() method is getting
rewritten every time a mixin is added to it; this is not very functional at all and not
what we want.

Functional mixins
There's another way to use mixins, one that is more aligned with functional
programming.

Instead of copying the methods of the mixin to the target object, we need to create
a new object that is a clone of the target object with the mixin's methods added in.
The object must be cloned first, and this is achieved by creating a new object that
inherits from it. We'll call this variation plusMixin.

Shirt.prototype.plusMixin = function(mixin) {
 // create a new object that inherits from the old
 var newObj = this;
 newObj.prototype = Object.create(this.prototype);
 for (var prop in mixin) {
 if (mixin.hasOwnProperty(prop)) {
 newObj.prototype[prop] = mixin[prop];
 }
 }
 return newObj;
};

var SmallTShirt = Tshirt.plusMixin(small); // creates a new class
var smallT = new SmallTShirt();
console.log(smallT.getPrice()); // Output: 11

Chapter 7

[131]

var LargeTShirt = Tshirt.plusMixin(large);
var largeT = new LargeTShirt();
console.log(largeT.getPrice()); // Output: 15
console.log(smallT.getPrice()); // Output: 11 (not effected by 2nd
mixin call)

Here comes the fun part! Now we can get really functional with the mixins. We can
create every possible combination of products and mixins.

// in the real world there would be way more products and mixins!
var productClasses = [ExpensiveShirt, Tshirt];
var mixins = [small, medium, large];

// mix them all together
products = productClasses.reduce(function(previous, current) {
 var newProduct = mixins.map(function(mxn) {
 var mixedClass = current.plusMixin(mxn);
 var temp = new mixedClass();
 return temp;
 });
 return previous.concat(newProduct);
},[]);
products.forEach(function(o){console.log(o.getPrice())});

To make it more object-oriented, we can rewrite the Store object with this
functionality. We'll also add a display function to the Store object, not the
products, to keep the interface logic and the data separated.

// the store
var Store = function() {
 productClasses = [ExpensiveShirt, TShirt];
 productMixins = [small, medium, large];
 this.products = productClasses.reduce(function(previous,
 current) {
 var newObjs = productMixins.map(function(mxn) {
 var mixedClass = current.plusMixin(mxn);
 var temp = new mixedClass();
 return temp;
 });
 return previous.concat(newObjs);
 },[]);
}
Store.prototype.displayProducts = function(){
 this.products.forEach(function(p) {
 $('ul#products').append(''+p.getTitle()+':
 $'+p.getPrice()+'');
 });
}

Functional and Object-oriented Programming in JavaScript

[132]

And all we have to do is create a Store object and call its displayProducts()
method to generate a list of products and prices!

<ul id="products">
 small premium shirt: $16
 medium premium shirt: $18
 large premium shirt: $20
 small t-shirt: $11
 medium t-shirt: $13
 large t-shirt: $15

These lines need to be added to the product classes and mixins to get the preceding
output to work:

Shirt.prototype.title = 'shirt';
TShirt.prototype.title = 't-shirt';
ExpensiveShirt.prototype.title = 'premium shirt';

// then the mixins got the extra 'getTitle' function:
var small = {
 ...
 getTitle: function() {
 return 'small ' + this.title; // small or medium or large
 }
}

And, just like that, we have an e-commerce application that is highly modular and
extendable. New shirt styles can be added absurdly easily—just define a new Shirt
subclass and add to it the Store class's array product classes. Mixins are added in
just the same way. So now when our boss says, "Hey, we have a new type of shirt
and a coat, each available in the standard colors, and we need them added to the
website before you go home today", we can rest assured that we'll not be staying late!

Chapter 7

[133]

Summary
JavaScript has a high level of expressiveness. This makes it possible to mix
functional and object-oriented programming. Modern JavaScript is not solely
OOP or functional—it is a mixture of the two. Concepts such as Strategy Pattern
and mixins are perfect for JavaScript's prototype structure, and they help to
prove that today's best practices in JavaScript share equal amounts of functional
programming and object-oriented programming.

If you were to take away only one thing from this book, I would want it to be
how to apply functional programming techniques to real-world applications.
And this chapter showed you how to do exactly that.

[135]

Common Functions for
Functional Programming

in JavaScript
This Appendix covers common functions for functional programming in JavaScript:

•	 Array Functions:
var flatten = function(arrays) {
 return arrays.reduce(function(p,n){
 return p.concat(n);
 });
};

var invert = function(arr) {
 return arr.map(function(x, i, a) {
 return a[a.length - (i+1)];
 });
};

•	 Binding Functions:
var bind = Function.prototype.call.bind(Function.prototype.bind);
var call = bind(Function.prototype.call, Function.prototype.call);
var apply = bind(Function.prototype.call,
Function.prototype.apply);

•	 Category Theory:
var checkTypes = function(typeSafeties) {
 arrayOf(func)(arr(typeSafeties));

Common Functions for Functional Programming in JavaScript

[136]

 var argLength = typeSafeties.length;
 return function(args) {
 arr(args);
 if (args.length != argLength) {
 throw new TypeError('Expected '+ argLength + '
 arguments');
 }
 var results = [];
 for (var i=0; i<argLength; i++) {
 results[i] = typeSafeties[i](args[i]);
 }
 return results;
 };
};

var homoMorph = function(/* arg1, arg2, ..., argN, output */) {
 var before =
 checkTypes(arrayOf(func)(Array.prototype.slice.call
 (arguments, 0, arguments.length-1)));
 var after = func(arguments[arguments.length-1])
 return function(middle) {
 return function(args) {
 return after(middle.apply(this,
 before([].slice.apply(arguments))));
 };
 };
};

•	 Composition:
Function.prototype.compose = function(prevFunc) {
 var nextFunc = this;
 return function() {
 return
 nextFunc.call(this,prevFunc.apply(this,arguments));
 };
};

Function.prototype.sequence = function(prevFunc) {
 var nextFunc = this;
 return function() {
 return
 prevFunc.call(this,nextFunc.apply(this,arguments));
 };
};

Appendix A

[137]

•	 Currying:
Function.prototype.curry = function (numArgs) {
 var func = this;
 numArgs = numArgs || func.length;
 // recursively acquire the arguments
 function subCurry(prev) {
 return function (arg) {
 var args = prev.concat(arg);
 if (args.length < numArgs) {
 // recursive case: we still need more args
 return subCurry(args);
 }
 else {
 // base case: apply the function
 return func.apply(this, args);
 }
 };
 };
 return subCurry([]);
};

•	 Functors:
// map :: (a -> b) -> [a] -> [b]
var map = function(f, a) {
 return arr(a).map(func(f));
}

// strmap :: (str -> str) -> str -> str
var strmap = function(f, s) {
 return str(s).split('').map(func(f)).join('');
}

// fcompose :: (a -> b)* -> (a -> b)
var fcompose = function() {
 var funcs = arrayOf(func)(arguments);
 return function() {
 var argsOfFuncs = arguments;
 for (var i = funcs.length; i > 0; i -= 1) {
 argsOfFuncs = [funcs[i].apply(this, args)];
 }
 return args[0];
 };
};

Common Functions for Functional Programming in JavaScript

[138]

•	 Lenses:
var lens = function(get, set) {
 var f = function (a) {return get(a)};
 f.get = function (a) {return get(a)};
 f.set = set;
 f.mod = function (f, a) {return set(a, f(get(a)))};
 return f;
};

// usage:
var first = lens(
 function (a) { return arr(a)[0]; }, // get
 function (a, b) { return [b].concat(arr(a).slice(1)); } // set
);

•	 Maybes:
var Maybe = function(){};
Maybe.prototype.orElse = function(y) {
 if (this instanceof Just) {
 return this.x;
 }
 else {
 return y;
 }
};

var None = function(){};
None.prototype = Object.create(Maybe.prototype);
None.prototype.toString = function(){return 'None';};
var none = function(){return new None()};
// and the Just instance, a wrapper for an object with a
value
var Just = function(x){return this.x = x;};
Just.prototype = Object.create(Maybe.prototype);
Just.prototype.toString = function(){return "Just
"+this.x;};
var just = function(x) {return new Just(x)};
var maybe = function(m){
 if (m instanceof None) {
 return m;
 }
 else if (m instanceof Just) {
 return just(m.x);
 }

Appendix A

[139]

 else {
 throw new TypeError("Error: Just or None expected, " +
 m.toString() + " given.");
 }
};

var maybeOf = function(f){
 return function(m) {
 if (m instanceof None) {
 return m;
 }
 else if (m instanceof Just) {
 return just(f(m.x));
 }
 else {
 throw new TypeError("Error: Just or None expected, "
 + m.toString() + " given.");
 }
 };
};

•	 Mixins:
Object.prototype.plusMixin = function(mixin) {
 var newObj = this;
 newObj.prototype = Object.create(this.prototype);
 newObj.prototype.constructor = newObj;
 for (var prop in mixin) {
 if (mixin.hasOwnProperty(prop)) {
 newObj.prototype[prop] = mixin[prop];
 }
 }
 return newObj;
};

•	 Partial Application:
function bindFirstArg(func, a) {
 return function(b) {
 return func(a, b);
 };
};

Function.prototype.partialApply = function(){
 var func = this;
 args = Array.prototype.slice.call(arguments);

Common Functions for Functional Programming in JavaScript

[140]

 return function(){
 return func.apply(this, args.concat(
 Array.prototype.slice.call(arguments)
));
 };
};

Function.prototype.partialApplyRight = function(){
 var func = this;
 args = Array.prototype.slice.call(arguments);
 return function(){
 return func.apply(
 this,
 Array.protype.slice.call(arguments, 0)
 .concat(args));
 };
};

•	 Trampolining:
var trampoline = function(f) {
 while (f && f instanceof Function) {
 f = f.apply(f.context, f.args);
 }
 return f;
};

var thunk = function (fn) {
 return function() {
 var args = Array.prototype.slice.apply(arguments);
 return function() { return fn.apply(this, args); };
 };
};

•	 Type Safeties:
var typeOf = function(type) {
 return function(x) {
 if (typeof x === type) {
 return x;
 }
 else {
 throw new TypeError("Error: "+type+" expected,
 "+typeof x+" given.");
 }
 };

Appendix A

[141]

};

var str = typeOf('string'),
 num = typeOf('number'),
 func = typeOf('function'),
 bool = typeOf('boolean');

var objectTypeOf = function(name) {
 return function(o) {
 if (Object.prototype.toString.call(o) === "[object
 "+name+"]") {
 return o;
 }
 else {
 throw new TypeError("Error: '+name+' expected,
 something else given.");
 }
 };
};
var obj = objectTypeOf('Object');
var arr = objectTypeOf('Array');
var date = objectTypeOf('Date');
var div = objectTypeOf('HTMLDivElement');

// arrayOf :: (a -> b) -> ([a] -> [b])
var arrayOf = function(f) {
 return function(a) {
 return map(func(f), arr(a));
 }
};

•	 Y-combinator:

var Y = function(F) {
 return (function (f) {
 return f(f);
 }(function (f) {
 return F(function (x) {
 return f(f)(x);
 });
 }));
};

// Memoizing Y-Combinator:
var Ymem = function(F, cache) {

Common Functions for Functional Programming in JavaScript

[142]

 if (!cache) {
 cache = {} ; // Create a new cache.
 }
 return function(arg) {
 if (cache[arg]) {
 // Answer in cache
 return cache[arg] ;
 }
 // else compute the answer
 var answer = (F(function(n){
 return (Ymem(F,cache))(n);
 }))(arg); // Compute the answer.
 cache[arg] = answer; // Cache the answer.
 return answer;
 };
};

[143]

Glossary of Terms
This appendix covers some of the important terms that are used in this book:

•	 Anonymous function: A function that has no name and is not bound to any
variables. It is also known as a Lambda Expression.

•	 Callback: A function that can be passed to another function to be used in a
later event.

•	 Category: In terms of Category Theory, a category is a collection of objects of
the same type. In JavaScript, a category can be an array or object that contains
objects that are all explicitly declared as numbers, strings, Booleans, dates,
objects, and so on.

•	 Category Theory: A concept that organizes mathematical structures into
collections of objects and operations on those objects. The data types and
functions used in computer programs form the categories used in this book.

•	 Closure: An environment such that functions defined within it can access
local variables that are not available outside it.

•	 Coupling: The degree to which each program module relies on each of the
other modules. Functional programming reduces the amount of coupling
within a program.

•	 Currying: The process of transforming a function with many arguments
into a function with one argument that returns another function that can take
more arguments, as needed. Formally, a function with N arguments
can be transformed into a function chain of N functions, each with only
one argument.

•	 Declarative programming: A programming style that expresses the
computational logic required to solve the problem. The computer is told
what the problem is rather than the procedure required to solve it.

Glossary of Terms

[144]

•	 Endofunctor: A functor that maps a category to itself.
•	 Function composition: The process of combining many functions into one

function. The result of each function is passed as an argument to the next,
and the result of the last function is the result of the whole composition.

•	 Functional language: A computer language that facilitates functional
programming.

•	 Functional programming: A declarative programming paradigm that
focuses on treating functions as mathematical expressions and avoids
mutable data and changes in state.

•	 Functional reactive programming: A style of functional programming that
focuses on reactive elements and variables that change over time in response
to events.

•	 Functor: A mapping between categories.
•	 Higher-order function: A function that takes either one or more functions

as input, and returns a function as its output.
•	 Inheritance: An object-oriented programming capability that allows one class

to inherit member variables and methods from another class.
•	 Lambda expressions: See Anonymous function.
•	 Lazy evaluation: A computer language evaluation strategy that delays the

evaluation of an expression until its value is needed. The opposite of this
strategy is called eager evaluation or greedy evaluation. Lazy evaluation is
also known as call by need.

•	 Library: A set of objects and functions that have a well-defined interface that
allows a third-party program to invoke their behavior.

•	 Memoization: The technique of storing the results of expensive function
calls. When the function is called later with the same arguments, the stored
result is returned rather than computing the result again.

•	 Method chain: A pattern in which many methods are invoked side by side
by directly passing the output of one method to the input of the next. This
avoids the need to assign the intermediary values to temporary variables.

•	 Mixin: An object that can allow other objects to use its methods. The methods
are intended to be used solely by other objects, and the mixin object itself is
never to be instantiated.

•	 Modularity: The degree to which a program can be broken down into
independent modules of code. Functional programming increases the
modularity of programs.

•	 Monad: A structure that provides the encapsulation required by functors.

Appendix B

[145]

•	 Morphism: A pure function that only works on a certain category and always
returns the same output when given a specific set of inputs. Homomorphic
operations are restricted to a single category, while polymorphic operations
can operate on multiple categories.

•	 Partial application: The process of binding values to one or more arguments
of a function. It returns a partially applied function, which in turn accepts the
remaining, unbound arguments.

•	 Polyfill: A function used to augment prototypes with new functions. It
allows us to call our new functions as methods of the previous function.

•	 Pure function: A function whose output value depends only on the
arguments that are the input to the function. Thus, calling a function, f,
twice with the same value of an argument, x, will produce the same result,
f(x),every time.

•	 Recursive function: A function that calls itself. Such functions depend on
solutions to smaller instances of the same problem to compute the solution
to the larger problem. Like iteration, recursion is another way to repeatedly
call the same block of code. But, unlike iteration, recursion requires that the
code block define the case in which the repeating code calls should terminate,
known as the base case.

•	 Reusability: The degree to which a block of code, usually a function in
JavaScript, can be reused in other parts of the same program or in other
programs.

•	 Self-invoking function: An anonymous function that is invoked
immediately after it has been defined. In JavaScript, this is achieved by
placing a pair of parentheses after the function expression.

•	 Strategy pattern: A method used to define a family of interchangeable
algorithms.

•	 Tail recursion: A stack-based implementation of recursion. For every
recursive call, there is a new frame in the stack.

•	 Toolkit: A small software library that provides a set of functions for the
programmer to use. Compared to a library, a toolkit is simpler and requires
less coupling with the program that invokes it.

•	 Trampolining: A strategy for recursion that provides tail-call elimination in
programming languages that do not provide this feature, such as JavaScript.

•	 Y-combinator: A fixed-point combinator in Lambda calculus that eliminates
explicit recursion. When it is given as input to a function that returns a
recursive function, the Y-combinator returns the fixed point of that function,
which is the transformation from the recursive function to a non-recursive
function.

[147]

Index
A
anonymous functions 21-23, 143
arrayOf functor 85
arrays 84

B
backbone.js 1
Bacon.js 45
Bilby.js 42-44
bind() function 55
bluebird 91

C
C++

versus JavaScript 121
callback 143
call() function 55
categories

about 79
implementing 95-98

category theory
about 78-80, 143
objects 82, 83
type safety functions, creating 80-82

classical mixins 129
Clojure 1, 99
closure

about 19, 143
using 19

CoffeeScript 99
Command Line Interface (CLI) 50

common functions, functional
programming 135-140

compose
programming with 65-68

coupling 143
currying 54, 60, 61, 143

D
declarative programming 143
development environment 48
discrete mathematics 78
Dojo 1

E
ease.js 15
e-commerce website application

about 2
imperative methods 2-4

endofunctors 94, 144
engines 16
environments, JavaScript applications

browsers 48
Command Line Interface (CLI) 50
server-side JavaScript 49

European Computer Manufacturers
Association (ECMAScript) 16

F
Fantasy Land 41, 42
filter() function

parameters 30

[148]

forEach() function
parameters 33

functional inheritance
about 125, 126
Strategy Pattern 126, 127

functional language
about 144
compiling, into JavaScript 51

functional libraries
using 50

functional libraries, for JavaScript
about 38
Bacon.js 45
Bilby.js 42, 44
Boiler.js 47
Fantasy Land 41, 42
Folktale 47
Functional 46
from.js 47
jQuery 47
JSLINQ 47
Lazy.js 44, 45
Lo-Dash.js 46
sloth.js 46
Sugar 47
stream.js 46
Underscore.js 38-41
wu.js 46

functional mixins 130-132
functional programming

about 1, 4, 6, 68, 69, 144
and object-oriented programming,

mixing 125
events, handling 70, 71
used, in nonfunctional programming 14, 15

functional programming languages
about 9
advantages 11-14
characteristics 10
JavaScript 15, 16
performing 10

functional programming, using
object-oriented programming

functional inheritance 125, 126
mixins 128, 129

Functional Reactive Programming (FRP)
about 71, 72, 144
reactivity 72, 73
subscriber, modifying 73-75

function composition
about 62, 85, 86, 144
compose() 62, 63
compositions, versus chains 64, 65
rewriting 86, 87
sequence, using 63

function constructor 115, 116
function declarations

about 114
versus function expressions 115-117

function expressions
about 115
versus function constructor 115, 116

function factories 56, 57
function manipulation

about 54
apply() function 54
bind() function 55
call() function 55
function factories 56, 57
this keyword 54

functions
anonymous functions 21-23
closures, using 18, 19
higher-order functions 19
lazy evaluation 26
methods, chaining 23, 24
pure functions 20, 21
recursive function 24, 25
self-invoking function, using 18, 19
working with 17

function statements. See function
declarations

functors
about 83, 144
creating 84
function compositions 85, 86

G
global scope, variables 110

[149]

H
Haskell 10
higher-order functions 19, 144
homomorphic operations 79

I
identity function morphism 85
inheritance

about 121, 122, 144
with Object.create() method 123, 124

J
JavaScript

about 1, 15, 99
function constructor 114
function declarations 114
function expressions 114
multi-paradigm language 120
object-oriented implementation 121
recursion 100
variable scope 109
versus C++ 121

jQuery 1
jQuery object

about 94
implementing 94, 95

Julia 1

L
lazy evaluation

about 26, 144
benefits 27

Lazy.js 44, 45
lenses 92
lens() function

writing 93
library 144
LINQ (Language Integrated Query) 47
Lisp 10, 77
local scope, variables 110, 111

M
map() function

parameters 29
maybes

about 88-90
writing 88

memoization
about 108, 109, 144
reference link 108

method chain 144
mixins

about 128, 129, 144
classical mixins 129
functional mixins 130-132

modularity 144
monads

about 87, 144
jQuery object 94
lenses 92
maybes 88
promises 91

morphisms 79, 80, 82, 145
MVP (model-view-provider) 50

O
Object.create() method

using 123
object-oriented implementation, JavaScript

inheritance 121, 122
inheritance, with Object.create()

method 123, 124
prototype chain 122
prototypes, using 121

object-oriented programming
and functional programming, mixing 125

object properties, variables 111
objects 80

P
partial application

about 54, 57, 145
left arguments, applying 58, 59
right arguments, applying 59

[150]

polyadic 62
polyfill 145
polymorphic operations 79
production environment 48
promises

using 91
prototype chain 122
prototypes

using, for inheritance 121
pure functions 20, 21, 145
pyjamas 99
Pyjs 51
Python 1

Q
QuickCheck 43

R
recursion

about 100
Y-Combinator 106, 107

recursive function
about 24, 25, 145
Divide and Conquer 25, 26

reduce() function
parameters 31

reusability 145
Roy 51
Ruby 1

S
ScalaCheck 43
Scheme 10, 77
scope resolutions

about 109
global scope 110
local scope 110, 111
object properties 111

self-invoking function
about 145
using 18

server-side JavaScript
functional use case 49, 50

Strategy Pattern 126, 127

T
tail-call elimination

about 101, 102
trampolining 103-105

tail recursion
about 100, 101, 145
tail-call elimination 101, 102

ternary 62
this keyword 54
thunks 103-105
toolkit 145
toolkit, functional programmer

about 27, 28
Array.prototype.concat 33
Array.prototype.every 35
Array.prototype.filter() 30
Array.prototype.forEach 32
Array.prototype.map() 29, 30
Array.prototype.reduce() 31, 32
Array.prototype.reverse 34
Array.prototype.some 35
Array.prototype.sort 34
callbacks, using 28

trampolining 16, 103-105, 145
TypeScript 51

U
UHC 51
unary functions 62
underscore.js 1, 38-41

V
variable scope

about 109
features 113, 114
issues 112, 113
scope resolutions 109

variadic 62

Y
Y-Combinator

about 106, 107, 145
memoization 108, 109

Thank you for buying
Functional Programming in JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering JavaScript Design
Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1.	 Learn how to use tried and true software
design methodologies to enhance your
JavaScript code.

2.	 Discover robust JavaScript implementations of
classic as well as advanced design patterns.

3.	 Packed with easy-to-follow examples that
can be used to create reusable code and
extensible designs.

JavaScript Mobile Application
Development
ISBN: 978-1-78355-417-1 Paperback: 332 pages

Create neat cross-platform mobile apps using Apache
Cordova and jQuery Mobile

1.	 Configure your Android, iOS, and Window
Phone 8 development environments.

2.	 Extend the power of Apache Cordova
by creating your own Apache Cordova
cross-platform mobile plugins.

3.	 Enhance the quality and the robustness of your
Apache Cordova mobile application by unit
testing its logic using Jasmine.

Please check www.PacktPub.com for information on our titles

Learning JavaScript Data
Structures and Algorithms
ISBN: 978-1-78355-487-4 Paperback: 218 pages

Understand and implement classic data structures and
algorithms using JavaScript

1.	 Learn how to use the most used data structures
such as array, stack, list, tree, and graphs with
real-world examples.

2.	 Get a grasp on which one is best between
searching and sorting algorithms and learn
how to implement them.

3.	 Follow through solutions for notable
programming problems with step-by-step
explanations.

JavaScript Promises Essentials
ISBN: 978-1-78398-564-7 Paperback: 90 pages

Build fully functional web applications using
Promises, the new standard in JavaScript

1.	 Integrate JavaScript Promises into your
application by mastering the key concepts
of the Promises API.

2.	 Replace complex nested callbacks in JavaScript
with the more intuitive chained Promises.

3.	 Acquire the knowledge needed to start working
with JavaScript Promises immediately.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Powers of JavaScript's Functional Side – a Demonstration
	Introduction
	The demonstration
	The application: an e-commerce website
	Imperative methods

	Functional programming
	Summary

	Chapter 2: Fundamentals of Functional Programming
	Functional programming languages
	What makes a language functional?
	Advantages
	Cleaner code
	Modularity
	Reusability
	Reduced coupling
	Mathematically correct

	Functional programming in a nonfunctional world
	Is JavaScript a functional programming language?

	Working with functions
	Self-invoking functions and closures
	Higher-order functions
	Pure functions
	Anonymous functions
	Method chains
	Recursion
	Divide and conquer

	Lazy evaluation

	The functional programmer's toolkit
	Callbacks
	Array.prototype.map()
	Array.prototype.filter()
	Array.prototype.reduce()
	Honorable mentions
	Array.prototype.forEach
	Array.prototype.concat
	Array.prototype.reverse
	Array.prototype.sort
	Array.prototype.every and Array.prototype.some

	Summary

	Chapter 3: Setting Up the Functional Programming Environment
	Introduction
	Functional libraries for JavaScript
	Underscore.js
	Fantasy Land
	Bilby.js
	Lazy.js
	Bacon.js
	Honorable mentions

	Development and production environments
	Browsers
	Server-side JavaScript
	A functional use case in the server-side environment

	CLI
	Using functional libraries with other JavaScript modules
	Functional languages that compile into JavaScript

	Summary

	Chapter 4: Implementing Functional Programming Techniques
in JavaScript
	Partial function application and currying
	Function manipulation
	Apply, call, and the this keyword
	Binding arguments
	Function factories

	Partial application
	Partial application from the left
	Partial application from the right

	Currying

	Function composition
	Compose
	Sequence: compose in reverse

	Compositions versus chains
	Programming with compose

	Mostly functional programming
	Handling events

	Functional reactive programming
	Reactivity
	Putting it all together

	Summary

	Chapter 5: Category Theory
	Category theory
	Category theory in a nutshell
	Type safety
	Object identities

	Functors
	Creating functors
	Arrays and functors
	Function compositions, revisited

	Monads
	Maybes
	Promises
	Lenses
	jQuery is a monad

	Implementing categories
	Summary

	Chapter 6: Advanced Topics and Pitfalls
in JavaScript
	Recursion
	Tail recursion
	Tail-call elimination

	Trampolining
	The Y-combinator
	Memoization

	Variable scope
	Scope resolutions
	Global scope
	Local scope
	Object properties

	Closures
	Gotchas

	Function declarations versus function expressions versus the function constructor
	Function declarations
	Function expressions
	The function constructor
	Unpredictable behavior

	Summary

	Chapter 7: Functional and Object-oriented Programming in JavaScript
	JavaScript – the multi-paradigm language
	JavaScript's object-oriented implementation – using prototypes
	Inheritance
	JavaScript's prototype chain
	Inheritance in JavaScript and the Object.create() method

	Mixing functional and object-oriented programming in JavaScript
	Functional inheritance
	Strategy Pattern

	Mixins
	Classical mixins
	Functional mixins

	Summary

	Appendix A: Common Functions for Functional Programming
in JavaScript
	Appendix B: Glossary of Terms
	Index

