
[1]

Learning JavaScript Robotics

Design, build, and program your own remarkable
robots with JavaScript and open source hardware

Kassandra Perch

BIRMINGHAM - MUMBAI

Learning JavaScript Robotics

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1231115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-334-7

www.packtpub.com

www.packtpub.com

Credits

Author
Kassandra Perch

Reviewers
Chris S. Crawford

Tomomi Imura

Commissioning Editor
Neil Alexander

Acquisition Editor
Aaron Lazar

Content Development Editor
Mayur Pawanikar

Technical Editor
Menza Mathew

Copy Editor
Kausambhi Majumdar

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Kassandra Perch is an open web developer and supporter. She began as a
frontend developer and moved to server-side with the advent of Node.js and was
especially enthralled by the advance of the NodeBots community. She travels the
world speaking at conferences about NodeBots and the fantastic community around
them. When she's not building bots, she's knitting, sewing, sculpting, or playing
video games with her cats.

I'd like to thank my mentor—as I've said in the past, I don't know
where I'd be without you, but I certainly know my life is better with
you in it. My parents supported me as a child who took things apart,
and their support lets me continue to do so, as well as build things of
my own.

The NodeBots community deserves a huge thank you: your sense
of wonder and joy in learning new things keeps me going. Special
thanks to Rick and Raquel for getting me started.

About the Reviewers

Chris S. Crawford (@chris_crawford_) is a PhD student in Human-Centered
Computing at the University of Florida. He is currently a graduate researcher in
Brain-Computer Interface Research Group in Human-Experience Research Lab. His
research focus is Brain-Robot Interaction, which consists of investigating the ways
in which physiological signals such as electroencephalogram (EEG) can be used to
enhance human-robot interactions. Chris has experience of working in various areas
including perceptual computing, 3D computer graphics, televoting, and native/
web app development. Currently, he also serves as a lead software engineer for
SeniorGeek Communications, LLC.

Tomomi Imura (@girlie_mac) is an avid open web and open technology advocate,
a frontend engineer, and a creative technologist, who has been active in the mobile
space for more than 8 years, before she started working with Internet of Things.
She loves to hack with hardware and occasionally gives talks at conferences and
workshops on prototyping IoT with Raspberry Pi.

She works as a senior developer evangelist at the San Francisco-based data stream
provider, PubNub, to support the best developer experiences.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt atwww.PacktPub.com, you can use this to access
PacktLib today and view 9entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with JS Robotics	 1

Understanding JS Robotics, NodeBots, and Johnny-Five	 1
What a NodeBot is, and other basic vocabulary	 2
Johnny-Five and the NodeBot revolution	 2
What we'll be using in this book	 3

Setting up your development environment	 3
Installing Node.JS	 3
Setting up your project and installing Johnny-Five	 3
Connecting your Microcontroller and installing Firmata	 4

Hello, World! – Blinking an onboard LED	 7
Writing the Johnny-Five script	 7
Running the script	 7

Summary	 8
Chapter 2: Working with Johnny-Five	 9

What you'll need for this chapter	 9
How a Johnny-Five program works	 9

Objects, functions, and events	 10
Going over our blink-LED script	 10

Understanding events in Johnny-Five	 11
Why events?	 11

Wiring up an external LED	 12
Setting up the hardware	 12

Using the Read-Eval-Print-Loop (REPL)	 14
Making components available to the REPL	 15
Using the REPL	 15

Summary	 18

Table of Contents

[ii]

Chapter 3: Using Digital and PWM Output Pins	 19
What you'll need for this chapter	 19
How GPIO pins work	 19

Digital output pins	 20
PWM output pins	 20
How to tell the difference between Digital and PWM pins	 20

Multiple pins with several LEDs	 21
Setting up the hardware for the project	 22
Writing the script for the project	 23
Exploring more about LED objects in Johnny-Five	 24

Using PWM pins with the Piezo element	 25
Setting up the hardware	 25
Writing the script	 26
What's going on with the pin?	 27
Exploring the Piezo API	 28

Summary	 28
Chapter 4: Using Specialized Output Devices	 29

What you'll need for this chapter	 29
Outputs that require multiple pins	 31

Inter-Integrated Circuits (I2C)	 32
Checking compatibility with Johnny-Five	 32
Obtaining documentation, wiring diagrams, and so on	 33
Project – character LCD display	 35

Wiring up – I2C LCDs	 35
The code	 39

The I2C version	 39
The non-I2C version	 39

Running the code	 40
Summary	 41

Chapter 5: Using Input Devices and Sensors	 43
What you'll need for this chapter	 44
How analog input pins work	 46
Johnny-Five sensor events	 47
Using basic inputs – buttons and potentiometers	 47

Wiring up our button and LED	 48
Coding button-led.js	 48
Wiring the potentiometer and the LED	 50
Coding our dimmer switch	 50

Using sensors – Light and Temperature	 52
Wiring up our photocell	 53

Table of Contents

[iii]

Coding our photocell example	 53
barcli	 54

Coding everything together	 55
Wiring up the temperature sensor	 56
Coding our temperature example	 57

Summary	 58
Chapter 6: Moving Your Bot	 59

What you'll need for this chapter	 59
The different kinds of servos and motors	 59

Defining motors and servos	 60
Things to keep in mind	 60
Types of motors	 60
Types of servos	 62
Do I use a servo or a motor?	 64
Servo and motor controllers	 64
Motor and servo shields	 65

Special concerns when using motors and servos	 65
Power concerns	 66
Tethering and cables	 66

Wiring up servos and motors	 66
Wiring up servos	 67
Wiring up motors	 68

Creating a project with a motor and using the REPL	 68
Exploring the motor API	 69

Creating a project with a servo and a sensor	 70
Exploring the servo API with the REPL	 71

Summary	 73
Chapter 7: Advanced Movement with the Animation Library	 75

What you'll need for this chapter	 75
What is the Animation API?	 76

Why do we need an Animation API?	 76
Why animation?	 76

Looking at the Animation API	 77
Learning the terminology	 77
The difference between .to() and the Animation API	 79
Using the ServoArray object	 79
Project – wiring up three servos and creating an array	 80

Writing Servo Animations	 83
Writing keyframes	 83

The keyframe object	 83

Table of Contents

[iv]

Keyframe shorthand	 84
Examples of writing keyframes	 85

Writing segments	 86
Segment options	 86
Examples of writing segments	 88

The Animation object	 89
Project – animating our servo array	 90

Animation events	 92
Building a servo array with an informative LCD readout	 93

Summary	 96
Chapter 8: Advanced Components – SPI, I2C,
and Other Devices	 97

What you'll need for this chapter	 97
Why do we need the I2C and SPI protocols?	 98
Exploring SPI (Serial Peripheral Interface) devices	 98

How SPI works	 99
How Johnny-Five does SPI	 100
Benefits and drawbacks of SPI	 101
Building with an SPI device – an LED matrix	 101

The build	 102
The API	 103

Exploring I2C devices	 108
How I2C works	 108

Pins used by I2C	 108
How I2C devices send and receive data	 109

Benefits and drawbacks of I2C	 109
Benefits	 109
Drawbacks	 110

Building with an I2C device – Accelerometer	 110
Wiring up our accelerometer	 110
Coding up our example	 111

External Devices	 114
Why External Devices?	 114

node-serialport	 114
node-hid	 115

Building a USB gamepad	 115
The hardware	 116
The node-gamepad API	 118
The code	 118

Summary	 119

Table of Contents

[v]

Chapter 9: Connecting NodeBots to the World,
and Where to Go Next	 121

What you'll need for this chapter	 121
Connecting NodeBots to the Web	 122

It's just a Node Server!	 122
Using Twilio	 122
Building the WeatherBot	 122
Using the TextBot	 125

Johnny-Five and the wide world of microcontrollers	 125
Moving our WeatherBot to the Particle Photon	 127
Tethering and Johnny-Five	 129

Other JS libraries and platforms	 129
Espruino	 130
Tessel	 130
Cylon.js	 130
JerryScript	 130
Tiny Linux computers	 131
Vendor libraries	 131

Where to go from here	 131
Index	 133

[vii]

Preface
Hello! Welcome to Learning JavaScript Robotics. In this book, you'll learn how to write
code for Arduino and other robotics platforms in JavaScript using Johnny-Five. We'll
cover the basics of Johnny-Five, input and output devices, and even movement devices
such as servos and motors. Finally, we'll cover how to connect your bots to the Internet
and move your Johnny-Five code between different platforms.

What this book covers
Chapter 1, Getting Started with JS Robotics, will get you started by setting up an Arduino
Uno and exploring the world of NodeBots.

Chapter 2, Working with Johnny-Five, covers the basics of Johnny-Five, including
Read-Eval-Print-Loop (REPL), and we will build our first project.

Chapter 3, Using Digital and PWM Output Pins, covers basic output devices, using both
digital and PWM pins.

Chapter 4, Using Specialized Output Devices, covers specialized outputs that use one or
multiple pins.

Chapter 5, Using Input Devices and Sensors, covers input devices using analog and
GPIO pins.

Chapter 6, Moving Your Bot, covers basic servo and motor usage with Johnny-Five.

Chapter 7, Advanced Movement with the Animation Library, covers the Animation
Library and how to create advanced movement schemes for your NodeBots.

Chapter 8, Advanced Components – SPI, I2C, and Other Devices, covers the use of I2C,
SPI, and other advanced components with Johnny-Five.

Preface

[viii]

Chapter 9, Connecting NodeBots to the World, and Where to Go Next, covers how to
connect your NodeBots to the Internet and use Johnny-Five code with platforms
other than Arduino.

What you need for this book
You will need the following factors before you start working on the book:

•	 A basic working knowledge of JavaScript and Node.JS
•	 A computer with USB ports that supports node-serialport, running

Node.JS 4.x
•	 An Arduino Uno or other board supported by Johnny-Five

(see http://johnny-five.io/platform-support) and a USB cable
for the board

•	 Light-Emitting Diodes (LEDs) - having a dozen should let you finish all
the examples with room for error.

•	 A Piezo element
•	 A character LCD (one with an I2C interface is fine)
•	 A push-button that is breadboard friendly
•	 A rotating potentiometer that is breadboard friendly
•	 A light-sensing diode
•	 A basic temperature sensor
•	 Three hobby servos that runs on 5V
•	 One hobby motor that runs on 5v
•	 An ADXL345I2C Accelerometer
•	 An LED matrix kit from SparkFun—product number DEV-11861
•	 A GamePad—RetroLink N64 controller or a DualShock3
•	 (Optional) A Particle Photon microcontroller

Who this book is for
If you've worked with Arduino before or are new to electronics and would like to
try writing sketches in JavaScript, then this book is for you. A basic knowledge of
JavaScript and Node.js will help you get the most out of this book.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For instance, the LED object has an on() and off() function that turns the LED on
and off."

A block of code is set as follows:

var myPin = new five.Pin(11);
myPin.on('high', function(){
console.log('pin 11 set to high!');
});

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

var myPin = new five.Pin(11);
myPin.on('high', function(){
console.log('pin 11 set to high!');
});

Any command-line input or output is written as follows:

> node LED-repl.js

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Now, we'll build a couple of projects that demonstrate how to use more
advanced sensors: a photocell and a temperature sensor."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/3347OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

Preface

[xi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1

[1]

Getting Started with
JS Robotics

Welcome to the world of JavaScript robotics! Let's explore how easy it is to get started
with writing robotics programs in JavaScript using Arduino and Johnny-Five.

In this chapter, we will do the following:

•	 Explore JS Robotics, NodeBots, and Johnny-Five
•	 Set up our development environment
•	 Blink an on-board LED

Understanding JS Robotics, NodeBots,
and Johnny-Five
JavaScript as a robotics language truly began a few years ago with the creation of
node-serialport—an NPM module written by Chris Williams. This module allows
Node.JS to communicate with devices over a serial connection; this can include
the typical serial connections from older computers, or the USB and Bluetooth
connections that we use every day. What exactly is a NodeBot though, and how
do we get started with using them with Johnny-Five?

Getting Started with JS Robotics

[2]

What a NodeBot is, and other basic vocabulary
A NodeBot is any piece of hardware that is controlled using JavaScript and/or Node.
JS. This can encompass a wide variety of projects; there are hundreds of ways to
create a NodeBot. In this book, we are going to use the Johnny-Five library, an
open source project created by Rick Waldron.

For those readers who are new to robotics, a microcontroller is a small
computer that contains a processor, memory, and input/output pins.
This serves as the brain of our project—our programs will communicate
with or will be loaded onto this microcontroller. Microcontrollers come
in many shapes and sizes, and with multiple capabilities.

We're going to use a microcontroller for our projects. What microcontroller should
you use? Luckily, our use of Johnny-Five means that we can choose from a large array
of different microcontrollers and still write the same code as you'll see in this book!

What exactly is Johnny-Five, and how does it make our lives easier?

Johnny-Five and the NodeBot revolution
Johnny-Five (http://johnny-five.io) is an open source robotics library
for Node.JS. It was created by Rick Waldron and has a thriving community of
contributors and supporters. This module has been known to work on Windows,
Mac, and Linux computers without any issues at the time of writing this book
using Node.JS version 4.x.

Johnny-Five was built on top of node-serialport and allows us to write JavaScript
applications that communicate with different microcontrollers using different types
of connection. For some microcontrollers, such as Arduino-compatible boards,
Johnny-Five uses a serial connection. For some newer boards, Johnny-Five emulates
this serial connection over an Internet service!

The capability of Johnny-Five to use multiple board types is implemented using
its wrapper system. Once the core system is installed, you can install a wrapper
for your particular microcontroller, and the APIs will remain the same. This is a
powerful concept—you can write code for one platform and quickly move it to
another without having to change it.

http://johnny-five.io

Chapter 1

[3]

What we'll be using in this book
For the examples in this book, we'll use an Arduino Uno board. You can get these
boards from sites such as Adafruit (www.adafruit.com), SparkFun (www.sparkfun.
com), and so on. You can also use a board that is Arduino Uno-compatible. SainSmart,
for instance, sells Uno-like boards that will work fine for our purposes. For this
chapter, you'll need the board itself and a USB cable for it.

In later chapters, we'll be using other components—there will be a table in each
chapter with an accessible list of materials for the projects within.

Setting up your development
environment
Now that we've covered the basic ideas, we're going to set up the development
environment for our first project. All the software used here worked on Windows,
Mac, and Linux desktop computers at the time of writing this book.

Installing Node.JS
If you don't have Node.JS already installed, you can download an installer for your
platform from nodejs.org. This installer will also install NPM or Node Package
Manager, which will be used to manage the rest of the software that we'll be using.

Run the installer on your machine, which may require a restart. After this, open up
your terminal application and run the following command:

node –-version

The output from this command should be 4.x.x, where x are integers.

Setting up your project and installing
Johnny-Five
In your terminal, create a folder for your project and change directories to this folder:

mkdir my-robotics-project

cd my-robotics-project

www.adafruit.com
www.sparkfun.com
www.sparkfun.com
nodejs.org

Getting Started with JS Robotics

[4]

Next, we're going to install Johnny-Five:

npm install johnny-five

You should see a spinner, followed by some output. Unless you see an ERR NOT
OK message at the end of your output, you're good to go with Johnny-Five.

On a Mac machine, you may need to install XCode
developer command-line tools.

Connecting your Microcontroller and
installing Firmata
First, you should get the Arduino IDE. Yes, we are still using JavaScript; however,
we must make sure that there's a particular sketch (that's Arduino-speak for program)
running on our board in order for Johnny-Five to communicate properly.

You can get the installer at the Arduino website (http://www.arduino.cc/en/
Main/Software). This book assumes that you have version 1.6.4, but the versions
in the 1.4 range should work as well.

Once you've downloaded the software, open it. Then, we'll make sure that your
serial connection works.

If you are using a board other than an Arduino, this step is not
necessary. However, there may be other steps. These will be
outlined with the wrapper plugin for your board.

Plug the USB cable into both the board and the computer. A few LEDs should
light up on this board—this is normal. Then, go to the Tools menu in the Arduino
IDE and hover over the ports submenu. You should see a list of ports that looks
somewhat like the following screenshot:

http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software

Chapter 1

[5]

You should see at least one entry in this list that fits the following format: /dev/
cu.usbmodem*****. It may or may not have Arduino Uno next to it. If you see this,
go ahead and click on it, because this is the port you will want to use for the Firmata
installation. If you have this, it means your board can communicate with your
computer, and you're ready to install Firmata.

To install Firmata on your board, go to File | Examples | Firmata | StandardFirmata,
as shown in the following screenshot:

Getting Started with JS Robotics

[6]

Once you've opened the sketch, you should get an IDE window that looks like the
following screenshot:

Once this sketch is up, click on the Upload button (it looks like an arrow pointing
to the right) to upload Firmata to your board. Once the uploading is done, you can
close the Arduino IDE, and you will be ready to start working with JavaScript.

A developer named Suz Hinton (@noopkat) is working on a node
program called AVRGirl that will remove this step in the near future.
Take a look at www.github.com/noopkat/avrgirl to learn more!

www.github.com/noopkat/avrgirl

Chapter 1

[7]

Hello, World! – Blinking an onboard LED
Now that we have our development environment set up, we can begin writing the
JavaScript to use with our Arduino board. We'll start by blinking an LED that is
already built into the Arduino microcontroller.

Writing the Johnny-Five script
In your favorite IDE, create a new hello-world.js file in your project directory.
Then, copy and paste, or write, the following code:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 var led = new five.Led(13);
 led.blink(500);
});

We'll go over more of what this script does in Chapter 2, Working with Johnny-Five,
but the basic overview is this: we require this script in the Johnny-Five module and
use it to create a new board object. When this board is ready, we will create an LED
object at pin 13 (this pin is wired to the onboard LED on an Arduino Uno board).
We then program this LED to blink every half second.

Running the script
In order to run the script, go to your terminal, and in your project folder, run the
following:

node hello-world.js

You should see an output that looks like the following:

Getting Started with JS Robotics

[8]

You should see an LED blink on your Arduino Uno. The following figure shows
where the LED is on the board:

If all is well and the LED is blinking, congratulations! You're ready to start building
robots and applications with Arduino and Johnny-Five!

If there is a problem, many troubleshooting issues can be solved
by checking the Johnny-Five website (www.johnny-five.io).

Summary
In this chapter, we learned about JS robotics and understood what a NodeBot is.
We went through the hardware components that we will be using in the book, and
we also learned how to set up the development environment. Finally, we got to
know how to get the on-board LED to blink. In the next chapter, we'll dive deep into
what makes Johnny-Five so powerful, and we will start writing and building some
more complex projects.

www.johnny-five.io

Chapter 2

[9]

Working with Johnny-Five
In this chapter, we'll begin working with Johnny-Five to build our own robotics
projects. We'll cover what makes Johnny-Five a great library for starting with
robotics, and we will build our first robot. We'll learn how we can manipulate this
robot in real time from the command line—a feat not easily replicated on other
platforms! By the end of this chapter, you'll have an open understanding of the
software involved, which will serve as a great foundation for more complicated
hardware builds.

This chapter will cover the following topics:

•	 How a Johnny-Five program works
•	 Understanding events in Johnny-Five
•	 Wiring an LED and making it blink
•	 Using Read-Eval-Print-Loop (REPL)

What you'll need for this chapter
All you'll need for this chapter is your microcontroller (the examples here still use an
Arduino Uno) and a small handful of LEDs—we'll be wiring only one LED, but you
may want a couple of spares, in case one burns out.

How a Johnny-Five program works
In this section, we'll take a look at the internals of a Johnny-Five program in more
detail, so we can start building more complex applications.

Working with Johnny-Five

[10]

Objects, functions, and events
Johnny-Five programs work using an event-based structure, and there are three
concepts to keep in mind: objects, functions, and events.

Objects tend to programmatically represent our physical electronic components
and are usually constructed using the new keyword. A few examples of objects in
Johnny-Five include the five object, which represents the Johnny-Five library, the
Board object, which represents our microcontroller; and the LED object, which will
programmatically represent our LED:

var led = new five.Led(11);

Functions are available for the objects we create and usually represent the actions
that our robots can do. For instance, the LED object has an on() and off() function
that turns the LED on and off:

led.on();
led.off();
led.blink();
led.stop();

Events are fired on objects and represent observable points in our program.
For example, the Board object fires a ready event when the board is ready to
receive instructions from a Johnny-Five program.

We can also set events on a pin to track events on our LED:

var myPin = new five.Pin(11);
myPin.on('high', function(){
 console.log('pin 11 set to high!');
});

We will use all three of these concepts in every Johnny-Five program we write,
so it's good to normalize our vocabulary early!

Going over our blink-LED script
In the previous chapter, we wrote a small script to blink an on-board LED on and off.
Let's take a look at this code in detail and outline the objects, functions, and events
we have used:

var five = require("johnny-five");

The preceding line just pulls johnny-five into our program so that we can use it.

var board = new five.Board();

Chapter 2

[11]

The preceding line constructs our board object. Note that, without parameters,
Johnny-Five assumes you are using an Arduino and guesses the serial port for you.

board.on("ready", function() {
 var led = new five.Led(13);
 led.blink(500);
});

Here, we set up a listener on our Board object for the ready event. When the board
is ready, our handler instantiates an Led object at pin 13 and makes the LED blink by
calling the blink function on that object.

This will be the basic format for most Johnny-Five functions: create a Board object,
create a listener and handler for the ready event, and then, within the ready event
handler, create component objects and call functions through them. We can also
add listeners and handlers to the component objects—we'll talk about this in the
next few chapters.

Understanding events in Johnny-Five
The events in Johnny-Five are a very important concept—this is also a new concept,
especially if you are used to low-level language programming. It's very similar
to the idea of interrupts, but definitely strays away from the traditional robotics
programming paradigm of an event loop. While you can create timers and loops
in Johnny-Five, it highly encourages an event-based programming approach,
which can need some practice.

Why events?
A question that gets asked a lot is, "Why event-based? Why not loop-based and
interrupt-based as in previous methods?".

A lot of this has to do with the way robots work and the way we think about how
we program robots. When you think about what you want a robot to do, you're less
likely to think "Every X seconds, I want to check for A and start task B..." and you are
more likely to think "When Y happens, I want to start event C...".

The event-based system in Johnny-Five works really well with this train of thought
by allowing users to place listeners and handlers in the events instead of polling for
the correct conditions every X seconds. It makes robotics programming a little easier
to grasp for those who are new to robotics programming.

Working with Johnny-Five

[12]

Grasping events is very important to understanding Johnny-Five—this is because
every Johnny-Five script begins by instantiating a Board object and waiting for it to
fire a ready event. This is the equivalent of the DOM ready event in browser-based
JavaScript applications—it tells you that you're ready to start sending instructions.

Wiring up an external LED
For our first hardware project, we're going to wire an LED to the Arduino. An LED,
or a Light Emitting Diode, is a component that lights up when electric current is
passed through it. They come in many colors and sizes and are one of the most
easy-to-use and versatile components in hobbyist robotics.

Setting up the hardware
First, take an LED. We'll determine the positive and negative leads of the LED—for this
component, it's straightforward: the positive lead is longer than the negative lead.

Determining the positive and negative ends of an LED

To wire the LED to an Arduino, place the positive lead on pin 11 and the negative
lead on the pin marked GND, just like in the following diagram:

Chapter 2

[13]

Wiring up our LED

You can also use a breadboard if you wish to—it will look like the following:

Wiring an LED with a breadboard

Working with Johnny-Five

[14]

Now that we've wired up the LED, we're going to make it blink as we did in the last
chapter. The script looks very familiar:

var five = require("johnny-five");

var board = new five.Board();

board.on("ready", function() {
 var led = new five.Led(11);
 led.blink(500);
});

This is because it's nearly the same script as in the previous chapter—we just changed
the pin number to reflect the new LED we have installed.

Save and run the script. You should see a blinking LED on your board, as shown in
the following screenshot:

[TODO: Add Photo]

When you run the script, you'll notice a prompt—you can even type into it! This is
the REPL, and we're going to use it to play with our LED in real time!

Using the Read-Eval-Print-Loop (REPL)
The Read, Eval, Print Loop, or REPL, is a concept relative to many scripting languages,
but it is new to libraries, and definitely new to robotics. Think about how you alter the
state in a typical Arduino program: you modify the source code, re-load it onto the
board, and wait for it to run.

However, due to the way Johnny-Five works, we can modify the state of our robot
code while the code is running. This is because we use Firmata—the board is just a
thin client that reacts to instructions from our node program, so if we let our Node
programs send different instructions, we can change how our robot works in
real time.

The way to do this in a Johnny-Five program is by injecting components into the
REPL, which allows us to use them.

Chapter 2

[15]

Making components available to the REPL
We're going to modify our script from the previous section in order to manipulate
our LED. To do this, we're going to use the this.repl.inject() function. The
this keyword, when used within our board.on('ready') handler, is a reference
to the global context, so we can access the REPL for the program we are working
on with this.repl. The inject method accepts an object; the keys of this object
will represent the names you can access from the REPL, and the values will be the
components you wish to access.

So, we're going to pass the following object to the inject method. It will allow us to
access our LED component by the myLed name:

{
 myLed: led
}

Our new program looks like this:

var five = require("johnny-five");

var board = new five.Board();

board.on("ready", function() {
 var led = new five.Led(11);

 this.repl.inject({
 myLed: led
 });

 led.blink(500);
});

Go ahead and save this in LED-repl.js. Now we have the code that we had
before—the LED at pin 11 will blink—but we have programmatic access to this
LED via the REPL. Now, let's run it and have some fun.

Using the REPL
First, with the LED still wired to pin 11, attach your board to your computer.
Then, in your command line, in the same folder as your .js file, run the following:

> node LED-repl.js

Working with Johnny-Five

[16]

You should see a boot-up sequence, followed by a prompt—it'll look like the
following screenshot. Your LED wired to pin 11 should also start blinking.

The terminal setup for the Johnny-Five REPL prompt

This (as well as the Repl Initialized line) means that you can start working with
the REPL. Try typing myLed and hit Enter. What you'll see is an object representing
your LED:

The output of your myLed object in the REPL

You can see the names of several functions and attributes of the LED object. Next,
we'll use the REPL to stop the blinking of the LED. Type myLed.stop() into the
REPL and hit Enter. As the .stop() function returns the LED object, the output
will look like the following screenshot:

Chapter 2

[17]

The output from myLed.stop();

This function should return quickly, and the LED will stop blinking.

Please note that the LED will not necessarily turn off;
it may just stay on.

One of the cool things about Johnny-Five's object functions is that they are chainable—
if you want the LED to remain off once you stop its blinking, you can use myLed.
stop().off():

Using chainable function calls in the REPL

Working with Johnny-Five

[18]

There are a bunch of LED functions available to you in the REPL:

•	 .on() and .off()
•	 .blink()

•	 .pulse()

•	 .toggle()

•	 .strobe()

•	 .fadeIn() and .fadeOut()

Try them all to see what happens with your myLed object!

Summary
In this chapter, we learned how to wire up an LED and how to use the REPL to
modify our robot's state in real time. We understood what software is involved
when working with complex hardware. We also looked at what makes Johnny-Five
stand out in the robotics world by exploring the REPL and the event structure of
Johnny-Five programs.

In the next chapter, we'll explore pins—including analog and PWM pins—and talk
more about how an LED can be set to different values of brightness.

Chapter 3

[19]

Using Digital and PWM
Output Pins

In this chapter, we'll explore the pins of our microcontroller: how they work, how to
manipulate them with Johnny-Five, and how different pins can be programmed to
behave in different ways. We'll also build two new projects—one in which we will use
several LEDs to explore the Led API more, and another in which we will use a Piezo
element to make some music! We will cover the following topics in this chapter:

•	 How GPIO pins work
•	 Using multiple outputs with several LEDs
•	 Using a PWM output with a Piezo element

What you'll need for this chapter
For the first project, you'll need your microcontroller, a handful of breadboard wires,
a half-sized breadboard, and five LEDs.

For the second project, you'll need your microcontroller, a handful of breadboard
wires, a half-sized breadboard, and a Piezo element.

How GPIO pins work
If we look at our last project, we can observe from the code that we're writing values
to an Led object in Johnny-Five, and it's changing the state and brightness of an
LED. How does this work? While the in-depth details are beyond the scope of this
book, we will go a little into how this works; this uses the concept of GPIO,
or General-Purpose Input/Output, pins.

Using Digital and PWM Output Pins

[20]

A GPIO pin is a pin that provides electric current to or reads electric current from
a circuit. In our last project, we used this to provide varying levels of power to our
LED. These pins can be configured by users (that's us!) to be used as input (read
electric current) or output (provide electric current). For now, we're going to focus
on the output pins, of which there are two main types: Digital and PWM.

Digital output pins
Digital output pins are only capable of providing two levels of electric current to
our circuits: 1 and 0, HI and LOW, or ON and OFF. This means if we plug an LED into
a digital pin, we can only turn it on or off.

However, in our case, when we ran the pulse() method, our LED exhibited varying
levels of brightness. What does this mean? This means we used a PWM pin in our
previous examples.

PWM output pins
A PWM (Pulse-Width Modulation) pin is capable of sending varying levels of power
to our circuit (sort of). The way this works is actually by setting the pin to HIGH and
then LOW very quickly in a timed manner, which emulates varying levels of power.

Programmatically, you can set a PWM pin to any value between 0 and 255, inclusive.
The value you set the pin to decides how often the pin is set to HIGH; for instance, the
value 0 would mean the PWM pin is set to HIGH for 0% of the time. The value 85 is
one-third of 255, and would mean the pin is set to HIGH for one-third of the time—
this emulates one-third power, or in the case of our LED, one-third brightness.

Our first example uses a PWM pin to show varying degrees of brightness of our
LED, but there are nearly infinite uses for PWM pins—as we'll see later in this
chapter, we can even make music with them!

How to tell the difference between Digital and
PWM pins
How can you check which pins are PWM on a microcontroller? This really depends
on the microcontroller you're using. For the Arduino Uno, which we have used in
this book, the PWM pins are marked with a ~, or tilde, symbol. This means, on an
Uno, the PWM pins are 3, 5, 6, 9, 10, and 11.

Chapter 3

[21]

Determining the PWM pins on an Arduino Uno

Next, we'll explore the differences between the pins by wiring up several LEDs and
playing with the Led API.

Multiple pins with several LEDs
For the next project, we're going to look at the Led object API and test several
different methods. This is one of the benefits of Johnny-Five—abstraction. If you can
understand the concept of an LED, you can use the Johnny-Five LED object without
thinking about the underlying pins or timings. Let's go over the methods that we'll
use for our project:

•	 on() and off(): These turn an LED on and off. Under abstraction, this sets
the pin that is wired to the LED to HIGH and LOW, respectively. We'll be using
these in the REPL.

•	 blink(time): This turns an LED on and off at a given interval. strobe()
and blink() are aliases of each other and do the same thing.

•	 pulse(time): This will cause an LED to pulse on and off in an eased manner.
This requires an LED wired to a PWM pin. The time argument sets the
length of each side of the pulse—500 will mean the LED will fade in for
500 ms and fade out for 500 ms, meaning a 1-second pulse.

•	 fade(brightness, ms): This will cause an LED to fade on or off from its
current brightness to the given brightness over ms milliseconds.

•	 stop(): This stops any recurring action happening on an LED. Note that this
won't necessarily turn off the LED. It will stop the action in its tracks—if this
means the LED is on, so be it.

Using Digital and PWM Output Pins

[22]

Remember that most Johnny-Five object functions are chainable—you can use one
right after the other.

myLed1.stop().off()

The preceding code will stop any recurring event on the LED and then turn it off.

Now that we know what functions we'll be working with, let's wire up our
next project.

Setting up the hardware for the project
Grab your materials and look at the following diagram:

The wiring for our multiple LEDs project

Chapter 3

[23]

Note that the LEDs are wired to pins 2, 4, 6, and 9—two on Digital pins and two
on PWM pins. We will perform an experiment to check whether they are Digital or
PWM pins.

Writing the script for the project
Let's write our script, called leds-gpio.js, with the following objectives in mind:

1.	 Establish the Board object and add a handler to the board's ready event.
2.	 Create Led objects for each of our LEDs.
3.	 Make the LEDs on pins 2 and 9 accessible to the REPL as myLed2 and

myLed9 respectively.
4.	 Set the LED on pin 4 to blink every 500 ms.
5.	 Set the LED on pin 6 to pulse every 500 ms.

Your code should look like this:

var five = require("johnny-five");

var board = new five.Board();

board.on("ready", function() {
 var myLed2 = new five.Led(2);
 var myLed4 = new five.Led(4);
 var myLed6 = new five.Led(6);
 var myLed9 = new five.Led(9);

 this.repl.inject({
 myLed2: myLed2,
 myLed9: myLed9
 });

 myLed4.blink(500);
 myLed6.pulse(500);
});

Now, let's run the script and play around with our new Led objects.

Using Digital and PWM Output Pins

[24]

Exploring more about LED objects in
Johnny-Five
When you run the script, the LEDs on pins 4 and 6 should start blinking and pulsing,
respectively. First, let's see what happens when we run pulse(), a method that
requires a PWM pin, on our LED wired to pin 2, which is a digital pin. In the REPL,
run the following:

myLed2.pulse(500);

You should be promptly kicked out of the REPL as your program crashes.

An error when using a PWM method on a digital pin

This is because Johnny-Five watches your program and makes sure that you don't
try to use PWM methods on digital pins. This also shows one of the other benefits of
Johnny-Five—the maintainers have taken great pains to make sure that many error
messages are clear, which can be an issue while dealing with robotics code.

Restart your code, and run the following:

myLed2.on().isOn

Chapter 3

[25]

This will return the value as true in your REPL:

The isOn attribute

This points to an attribute of the Led object. isOn tells you whether the LED is on
(any value other than 0) or off (a 0 value). There are other attributes of your LED:

The other LED attributes

Go ahead and explore these attributes and the function with myLed2 and myLed9.

Now that we've learned how to use one of the less complicated Johnny-Five
components, the LED, let's take a look at a component with a more interesting
API and make some music with the Piezo object.

Using PWM pins with the Piezo element
Piezo elements can be really fun—you can use them to simply add music to your
Johnny-Five projects. We're going to build a small project and play with some of
the Johnny-Five utilities to make music with this fun little component.

Setting up the hardware
Wiring a Piezo is pretty straightforward—you need to determine the + and - sides
first. Usually, the + side is marked on the top of the plastic casing of the Piezo, and
one leg is longer—much like an LED, the longer leg denotes the + side. Finally, some
Piezo buzzers come with lead wires that are red (the + side) and black (the - side).

Using Digital and PWM Output Pins

[26]

Once you've determined the + side, wire it to pin 3, and wire the - side to GND,
as shown in the following diagram:

A Piezo wiring diagram

Writing the script
The script is a little more complicated than our last few scripts; we need to create
a Piezo element, which just requires a pin. However, a piece of music is more
complicated than turning an LED on and off. Luckily, the Johnny-Five Piezo
API has the play() method, which takes an object. This object has attributes
such as beats, tempo, and song—we'll use these to play our tune.

Chapter 3

[27]

There are many ways to describe a song for the play() method. One way—the way
that we'll use here—is as a string of notes, as follows:

C D F D A - A A A A G G G G - - C D F D G - G G G G F F F F - -

When you use this method, it will assume the middle octave, and the - symbol
indicates null or off notes—nothing will play here.

For beats, we will use one-fourth time, and for tempo, we'll start with 100 bpm
(beats per minute). Your code will look like this:

var five = require("johnny-five"),
 board = new five.Board();

board.on("ready", function() {
 var piezo = new five.Piezo(3);

 board.repl.inject({
 piezo: piezo
 });

 piezo.play({
 song: "C D F D A - A A A A G G G G - - C D F D G -
 G G G G F F F F - -",
 beats: 1 / 4,
 tempo: 20
 });

});

Save it to a file called piezo.js and run it in your terminal:

node piezo.js

You should hear a jaunty tune come from your Arduino board!

What's going on with the pin?
The reason a Piezo requires a PWM pin is that the Piezo object is sending different
amounts of power through pin 3 to the Piezo, which causes it to emit different
notes. The Johnny-Five library allows us to show these notes in a way that we can
understand, instead of having to calculate how much power to send for each note.

Using Digital and PWM Output Pins

[28]

Exploring the Piezo API
You can now explore the Piezo API further, including looking at the other ways
of writing tunes that give you more control of the octave. Check the Johnny-Five
website for more details and examples.

A challenge: using the REPL, find a way to make the Piezo stop playing mid song.
A hint: there is a piezo.off() method.

Summary
In this chapter, we explored how GPIO pins work and how they form the
underpinnings of Johnny-Five objects by manipulating pin values.

Next, we'll look at how to handle input in the Johnny-Five projects with
analog input pins.

Chapter 4

[29]

Using Specialized
Output Devices

Now that we know how output pins (both digital and PWM) work, we're going to take
a look at specialized output devices. These devices use multiple pins for one device for
a number of reasons: some use protocols that are widely known, some are proprietary,
some just require a lot of pins to output a lot of data. We'll take a look at a few of the
well-known protocols and build a project with one such device: a character LCD,
reminiscent of a calculator. This chapter will cover the following topics:

•	 Outputs that require multiple pins
•	 Checking compatibility with Johnny-Five
•	 Obtaining documentation, wiring diagrams, and so on
•	 Project – character LCD display

What you'll need for this chapter
For the project in this chapter, you'll need your board, a USB cable, and a character
LCD character display. A breadboard and a handful of breadboard wires will also
come in handy.

Using Specialized Output Devices

[30]

We will go over how to use character LCDs with or without an I2C interface. An
example of one with an I2C interface can be found here: http://www.amazon.com/
SainSmart-Serial-Module-Display-Arduino/dp/B00813HBEQ. A way to quickly
identify an I2C-compatible character LCD is by the backpack that is presoldered
on to it, as shown in the following examples. It only uses four pins labeled as VCC,
GND, SDA, and SCL:

Examples of I2C backpacks on character LCDs

An example of a character LCD without an I2C interface is available here:
https://www.adafruit.com/products/181. The main visible difference is
that these character LCDs use more than the four pins used by I2C interfaces.

http://www.amazon.com/SainSmart-Serial-Module-Display-Arduino/dp/B00813HBEQ
http://www.amazon.com/SainSmart-Serial-Module-Display-Arduino/dp/B00813HBEQ
https://www.adafruit.com/products/181

Chapter 4

[31]

Note that these may also require assembly by soldering!

The following screenshot is an example of this:

A non-I2C character LCD

Note that if you are using a board that is NOT an Arduino, read the section on
checking compatibility BEFORE buying your character LCD—you'll want to make
sure that your board is I2C-compatible beforehand. All Arduino boards used here
had I2C compatibility with Johnny-Five at the time of writing this book.

Outputs that require multiple pins
There are many types of output, many of which only need one output pin for data,
such as LEDs and the Piezo element that we used in the last few chapters. However,
there are nearly an infinite number of output devices that we can use—many of them
require more complicated instructions than one output pin is capable of sending.

These devices work in several different ways, and while the exact ways are well
beyond the scope of this book, we'll go over a few very common types. For this
chapter, however, we'll just go over the I2C, because it is the common format for
the device that we will use in this chapter's project.

Using Specialized Output Devices

[32]

Inter-Integrated Circuits (I2C)
I2C, or Inter-Integrated Circuits, are output devices that can share the same set of two
data pins. The data pins are usually called SCL (Serial Clock Line) and SDA (Serial
Data Line), where SCL handles timing and SDA sends data. The reason you can wire
many devices to one pair of digital output pins is because in order to send or receive
a message from an I2C device, you need to know its address—a hexadecimal byte
prefaced to every message to the device that determines which device the message
is meant for.

I2C is also commonly used for input devices that have a lot of data to send, such as
some accelerometers and magnetometers, as we'll see in the next chapter.

Checking compatibility with Johnny-Five
It's easy to find a lot of different devices online, but how do you know what will
work with Johnny-Five? and will it work on Johnny-Five for your particular board?

Luckily, the Johnny-Five website at www.johnny-five.io can easily tell you this,
and you just need to follow a few steps in order to determine what type of device
you are looking at.

First, let's take a look at the website at www.johnny-five.io. There are several tabs,
but for now, we're looking for the Platform Support tab:

The johnny-five.io header

Once you are on the Platform Support page, look for the board you're using. If you're
using Arduino Uno, your search should be short—it's at the top of the page!

www.johnny-five.io
www.johnny-five.io

Chapter 4

[33]

The Platform Support page entry for Arduino Uno

As you can see, there's a table for compatibility with each board entry. If you're
not using an Arduino Uno, quickly check whether or not your board has I2C
compatibility before buying or trying to use an I2C character LCD.

Obtaining documentation, wiring
diagrams, and so on
A good skill to have when building your own Johnny-Five projects is finding
code and wiring diagrams for the components that you'd like to use. Luckily, the
www.johnny-five.io website and the project provide a thorough and top-notch
documentation right there on the site!

Let's take a look at the LCD documentation on the site to prepare us for building
our project:

1.	 In the header of the site, click on the API tab.
2.	 Then, you'll see a list of components on the left (if you're on a desktop)

or at the top (if you're on a tablet or phone).

www.johnny-five.io

Using Specialized Output Devices

[34]

3.	 Find and click the LCD entry in this list.

The API documentation page

Once you are on the LCD page, you'll see a bunch of different LCD components, a
section on the LCD API, and some links to examples at the bottom. There is a page
like this for every component in Johnny-Five, so it's easy to find out how to get
started with just about every component that has already been adapted.

Let's take a look at the LCD API that we'll use to work on our next project.

The constructor takes several parameters, depending on the type of LCD you are
using. We'll cover the pin options in detail when we build our project, but rows
and columns are something that we can knock out now. Whether you can read it
from the packaging or estimate it by looking at the number of character spaces,
go ahead and figure out how many rows and columns you have on your LCD.

There's also a backlight pin option; most LCDs have a backlight and some have
an RGB backlight. If you have no backlight, you do not need to initialize this
parameter; if you have a single-color backlight, you'll want to note that you
need to set this option.

Chapter 4

[35]

If you have an LCD with an RGB backlight, you'll want to look at the Led.RGB class
under the LED subheader and instantiate this yourself—we'll take a peek at the
actual code for this in the project section, but go ahead and look at the RGB LED
API to just be sure.

Once you've made yourself familiar with looking up information on the Johnny-
Five website, you'll have unlocked a wide range of information for your projects.
Is something missing? The entire page is open source and available on GitHub
(https://github.com/bocoup/johnny-five.io), so you can file issues and
make pull requests with your own examples.

Project – character LCD display
For our project, we're going to connect our character LCD to our Arduino Uno board
and use Johnny-Five to print some messages on it. I'll be using an I2C display, but
will include wiring diagrams and code for non-I2C versions as well.

Wiring up – I2C LCDs
First, we'll describe how to wire up an I2C LCD. Note that the image diagram will
look different, because no component exists in the imaging software for the I2C
backpack. There is an accompanying diagram to clarify your queries.

You'll want to look for the pins labeled SCL and SDA on the back of your LCD unit—
these pins need to be connected to two pins on the Arduino Uno that are not clearly
labeled on all units. These pins are near the USB connector and the reset button.
With the USB connector facing left, the pins are on the left-most side of the top rail of
pins—on the left is SCL, and on the right is SDA. On newer boards, these are labeled
on the side of the pin railing.

https://github.com/bocoup/johnny-five.io

Using Specialized Output Devices

[36]

Once these are in place, you'll want to connect VCC to 5 V and GND to GND. If an
LED pin exists, you can wire it to 3v3.

A diagram of an I2C LCD hookup

Chapter 4

[37]

The photo of an I2C backpack wiring – wiring up regular LCDs

There are six data pins and a few ground and power pins to use when wiring a
non-I2C LCD. These pins are rs, en, d4, d5, d6, and d7, and are represented by pins
4, 6, 11, 12, 13, and 14 on the LCD. We're going to wire these to pins 8, 9, 4, 5, 6, and 7
on the Uno.

Pins 2 and 15 are both connected to the main power supply—pin 2 powers the LCD
itself, and pin 15 powers the backlight LED. Pins 1 and 16 run to ground to match
pins 2 and 15. Pin 3 is connected to a potentiometer—about which we'll talk more in
the next chapter. For now, note that it looks like a small turnable knob. You should
have received one with your LCD, and you should, for now, wire it up as shown in
the following diagram—the left-hand side to power, the right-hand side to ground,
and the middle to pin 3 of the LCD (note—you can't get this backwards). This
potentiometer controls contrast, and is built into I2C LCDs.

Using Specialized Output Devices

[38]

Please note that, in the following diagram, the Arduino Uno has
been rotated. Please be sure to be careful while wiring this up!

Wiring up a non-I2C LCD

In order to check that your wiring is working, you can plug your Arduino into your
computer. The backlight should turn on, and you should be able to see block characters
on your LCD. Adjust the potentiometer, if necessary, to see the block characters.

Chapter 4

[39]

The code
Now that we have our LCD wired up, we're going to write some code in the
following sections. While we will do some initialization in the code, we will
also open up the LCD to the REPL and play with it in real time!

The I2C version
The code for the I2C version LCD is as follows:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 // Controller: PCF8574A (Generic I2C)
 // Locate the controller chip model number on the chip itself.
 var l = new five.LCD({
 controller: "PCF8574A",
 });

 this.repl.inject({
 lcd: l
 })

 l.useChar("heart");
 l.cursor(0, 0).print("hello :heart:");
 l.blink();
});

The non-I2C version
The code for the non-I2C version LCD is as follows:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 var l = new five.LCD({
 pins: [8, 9, 10, 11, 12, 13]
 });

 this.repl.inject({
 lcd: l
 })

Using Specialized Output Devices

[40]

 l.useChar("heart");
 l.cursor(0, 0).print("hello :heart:");
 l.blink();
});

Remember, use the I2C version if your LCD has an I2C backpack; otherwise, use the
non-I2C version. The difference between them is the controller; the I2C LCD requires
a controller that will be listed on the backpack, whereas non-I2C requires an array of
pins used to control the LCD.

Running the code
Now that we've written the code, let's start the program. Use the lcd-i2c.js node
or the lcd.js node, depending on the type of character LCD you are using to start
the program.

What you should see is your LCD lighting up and displaying hello, followed by a
heart character. The LCD carat should be also blinking.

Where did the heart character come from? One of the many fun things about character
LCDs is that you can define quite a few custom icons to use with them. Johnny-Five
has created a set that you can use in the lcd object. Some other examples of icons
defined by Johnny-Five include target, duck, dice1, dice2, up to dice6, and check.

Please note that you can only use up to eight of these custom characters
at one time—LCDs have a limited memory for custom characters.

Now that our code is running, we're going to play around with the LCD API using
the REPL. We've attached our lcd object to the lcd variable. First, let's clear the
LCD as follows:

> lcd.clear();

Your LCD should now be blank, and the carat should still be blinking. If you'd like to
turn this off, you can type the following:

> lcd.noBlink();

This will turn off the carat. Want to start on line 2? We can move the cursor with the
cursor(row, column) function:

>lcd.cursor(1, 0);

Chapter 4

[41]

Similar to arrays and other programming concepts, the column and row indices of an
LCD are 0-based: for example, row 2 is index 1. Now, let's print something on row 2:

>lcd.print("hello, world!");

This should print properly on the second line. Now, let's clear the display, so we can
show an edge case of character LCDs:

> lcd.clear();

>lcd.print("This is a really really really really long sentence!");

Notice anything weird? When line 1 overflows, it starts printing on row 3, and then
row 2. This is how the LCD functions normally. What this means is that you'll need
to check the length of what you print to prevent this overflow from making your
code look broken. Now, let's clear our LCD and load one of the custom characters
for our own use:

>lcd.clear();

>lcd.useChar('clock');

>lcd.print(":clock:");

This will clear the LCD and print a clock character. The .useChar function pulls the
character with this name out of the definitions that Johnny-Five provides and sends
the commands to the LCD to load it into memory. When we run the .print function,
the ":" delimiters tell the function that we want to use a special character.

Summary
In this chapter, we've looked at how to use specialized inputs by walking through
the documentation on johnny-five.io. The knowledge used here will allow you to
use many different components that you come across in your robotics adventures.
Just be sure that, if you find a new component and write the code, you contribute
it back to Johnny-Five to make it better for everyone else!

In the next chapter, we will learn how to use many different input devices and
sensors in order to build Johnny-Five projects.

johnny-five.io

Chapter 5

[43]

Using Input Devices
and Sensors

We've handled outputs, but what makes robots truly interesting is the use of inputs
to generate outputs! In this chapter, we'll go over basic input devices, such as buttons,
and environmental sensors, such as a sensor that detects ambient light. We'll talk
about how Johnny-Five uses events to make these devices easy to use, and build some
projects. After finishing this chapter, you should have all the knowledge that you
need to handle most input/output projects.

This chapter will cover the following topics:

•	 How analog input pins work
•	 Johnny-Five's sensor events
•	 Using basic inputs – buttons and potentiometers
•	 Using sensors – light and temperature
•	 Other types of sensors and their uses

Using Input Devices and Sensors

[44]

What you'll need for this chapter
For the project in this chapter, you'll need your board, a USB cable, and a few inputs
and sensors.

First, you'll want a button. You can find these aplenty in most starter kits, but you
can also buy them separately. We're going to consider a button with a four-prong
design, as shown in the following screenshot:

A common push button for robotics projects

However, a design with two prongs is fine too—four-prong buttons still represent
two sides of the button, so you can replicate these with two-prong designs.

You'll also need a rotating potentiometer—these are knobs that you twist to set a
value, similar to the volume knob on a speaker. You'll want one that's breadboard-
friendly with a three-prong design, as shown in the following screenshot:

A basic rotating potentiometer

Chapter 5

[45]

Please note that you may have access to a sliding potentiometer (one that
looks like a sliding switch or similar to a dimmer switch) or some other
potentiometer. These will work fine, but check the www.johnny-five.
io site for more details on wiring them.

For inputs, first you'll need a light sensor that is commonly referred to as a photocell.
Usually, these look like diodes that are tan with a wave design on top, as shown in
the following screenshot:

A light sensor diode

There are breakout boards for light sensors as well, but for this chapter, let's stick
with the diode kind. These can be found very easily on Adafruit and SparkFun.

To round out our sensors, you'll want a temperature sensor. These look like small,
half-cut cylinders with three metal prongs at the bottom. I recommend the TMP36,
which has TMP written on the back, as shown in the following screenshot:

A temperature sensor

You can also use a LM35 with the same wiring—this sensor looks the same as the
TMP36, except that LM35 is written on the back. If you use a different temperature
sensor, before you continue, be sure to check the johnny-five.io documentation
at http://johnny-five.io/api/temperature to see whether or not the sensor
is supported.

www.johnny-five.io
www.johnny-five.io
johnny-five.io
http://johnny-five.io/api/temperature

Using Input Devices and Sensors

[46]

You'll also need a breadboard, a handful of breadboard wires, an LED, and a few
10k Ohm resistors.

Resistors lower the electric current being sent to our sensors to ensure accurate
readings and are also sometimes used to protect output devices. To make sure that
your resistors are 10k ohm, we're going to use the colored stripes on the resistor.
Your resistor should have brown, black, and orange bands. There may be another
band after these—the color of this band, for our purposes, doesn't matter. The
resistor should look like the following:

A 10k ohm resistor

How analog input pins work
Inputs are the first half of awesome robots equations; robots that know the weather,
can tell how fast they are moving, or see where things are. Input pins make this
possible, so in this section we'll discuss how they work and how we're going to
utilize them.

Analog input pins work by reading a voltage level from a sensor and converting this
voltage level to an integer value between 0 and 1,023. Input device manufacturers
usually give a scale to their device that tells us how to turn this integer value into a
real-world value; for instance, we'll do this with our temperature sensor to change
the value into a temperature that we as humans can understand.

Chapter 5

[47]

We're going to utilize these pins by plugging in both the human input devices and
the environmental sensors, and map ping the inputs that they give. This way, we can
start developing projects that use inputs to generate outputs.

Johnny-Five sensor events
As discussed in the previous chapters, Johnny-Five is dependent on events for a lot
of its functionality. This is not different for inputs and sensors—most of the time,
you'll interact with these by waiting for events. While most input devices have ways
way to read data at any given moment, these are mostly used for debugging, and
you'll need to have a good grasp of the events available for your input device or
sensor when coding your projects.

Most input devices and sensors have a data event; this event tells the program when
data is read from the device. This is a kind of a firehose: it reports quite quickly and
can be a little overwhelming. This is usually used for debugging, as most robotics
programs are more interested in when the sensor or input data changes rather than
when there is new input to be read.

The change event, also available on most devices, is a very commonly-used event—it
only fires when the incoming data has changed. A good example is a temperature
change as we'll see in one of the projects in this chapter.

The best way to figure out what events to use is by the Johnny-Five documentation
for your device at johnny-five.io; this will give you a full list of events for each
input and sensor type and can be very helpful when starting new projects.

Using basic inputs – buttons and
potentiometers
Let's take a look at using some basic input devices first. We'll start with a button and
a potentiometer—two of the easiest input devices to use with Johnny-Five, and a
good way to get acquainted with both specialized input objects, such as buttons,
and general Sensor objects, which we'll use for the potentiometer.

Using Input Devices and Sensors

[48]

Wiring up our button and LED
First, we're going to wire up a button and write some code to measure whether it
is pressed or not, using an LED as our indicator. The wiring of the project will look
like this:

Wiring diagram for a button and an LED

Make sure that if you're using the four-prong button, it crosses over the center
trough of your breadboard as shown in the diagram. If it does not, the button will
not work properly. If you are using a two-prong button, the wiring is very similar,
and it does not have to cross over.

Coding button-led.js
Now, let's take a look at the Button object in Johnny-Five to see what we'll need
to use for our code. First, we want to see whether or not there's an event to tap into
when the button is pressed. Sure enough, there is such an event: the press event is
logged when the button is pressed. Right below this, we see the release event that
is logged when the button is released.

Chapter 5

[49]

Using these and our previous knowledge of the Led object, we can write the
following in button-led.js:

var five = require('johnny-five');

var board = new five.Board();

board.on('ready', function(){
 var button = new five.Button('A0');
 var led = new five.Led(13);

 button.on('press', function(){
 console.log('button pressed!');
 led.on();
 });

 button.on('release', function(){
 console.log('button released!');
 led.off();
 })
});

This code will light the LED when the button is pressed and turn it off again when
the button is released. Go ahead and run it with the following command:

> node button-led.js

Try this out. You should see an output in your console like the following:

The output from led-button.js

The LED should be lit when the button is pressed, and it should be turned off
when the button is released.

Now that we've got a button working, let's set up our potentiometer and discover
some other events related to input and sensor devices. Our project will set the
brightness of the LED to correlate to the input from the potentiometer—we're
building a dimmer switch, essentially.

Using Input Devices and Sensors

[50]

Wiring the potentiometer and the LED
Grab your potentiometer and follow the wiring in the following diagram:

Wiring diagram for a dimmer switch

Please note that if you're using the setup from your
button project, the LED pin changes in this one, so make
sure that you move it, too.

Coding our dimmer switch
As we write our code, you'll notice that there is no potentiometer object in
Johnny-Five. That's fine. As the potentiometer is a very basic sensor, we'll be
using the Sensor object instead.

Chapter 5

[51]

Next, let's take a look at the events that we'll be using. The change event fires when
the input from the potentiometer changes, so we'll use this event to trigger our
LED change. In order to get the reading, we'll use this.value, as explained in the
documentation.

Now, let's think about how LEDs work and about the input from the potentiometer.
The LED can be set from 0 to 255, and the potentiometer can take an input from 0 to
1023. We can do the math to scale these inputs ourselves, but luckily, Johnny-Five
has a function to help us out. This is called the scale(min, max) function. It will
scale our input to the number that we give it; in our case, 0 and 255. We will still use
this.value to reference the scaled value. If you want to see the unscaled value in
the event handler, you can use this.raw.

We can use the scale function before the event listener call to scale our
potentiometer's output to the range our LED can understand.

With this in mind, we can write the code for our dimmer switch. Go ahead and place
the following code in dimmer-switch.js:

var five = require('johnny-five');

var board = new five.Board();

board.on('ready', function(){
 var pot = new five.Sensor('A0');
 var led = new five.Led(11);

 pot.scale(0, 255).on('change', function(){
 console.log('The scaled potentiometer value is: ' +
 this.value);
 console.log('The raw potentiometer value is: ' + this.raw);
 led.brightness(this.value);
 });
});

Start the script using the following:

> node dimmer-switch.js

Using Input Devices and Sensors

[52]

Try this out by twisting the potentiometer. Data should log in to your terminal
as follows:

The output from dimmer-switch.js

The brightness of the LED should change accordingly. Now that we have a
good grasp on input devices, we'll take a look at sensors, using a photocell and a
temperature sensor.

Using sensors – Light and Temperature
Now, we'll build a couple of projects that demonstrate how to use more advanced
sensors: a photocell and a temperature sensor. We'll learn how specialized Johnny-
Five Sensor objects allow us to make these easier to use, and how to play with inputs
in the REPL and show some input data in the console using a module called barcli.

Chapter 5

[53]

Wiring up our photocell
First, we'll start with the photocell—see the following wiring diagram:

The wiring diagram for the photocell

Note that the resistor setup is how we wire up a sensor with only
two leads and we need three—input, power, and ground.

Coding our photocell example
As we code our photocell example, we'll note that there is no photocell object, so
we're going to use the generic Sensor object, as we did with the potentiometer.

As for outputting the data that we get from the sensor, we're going to use a handy
utility called barcli to make our output much easier to read.

Using Input Devices and Sensors

[54]

barcli
In the early days of Johnny-Five, one of the most common ways to check sensor
data was to log the data on every change event. This got messy and unreadable very
quickly, with thousands of lines being printed out to the console with an integer on
each line. This is not very useful, as shown in the following:

An output in the days before barcli

Luckily, Donovan Buck (who we'll see again in the Animation chapter) wrote a
handy Node module called barcli (pronounced BAHRK-LEE) that makes it easy
to render bar graphs in the console. This is the best way to show sensor data in
the console, because you can see it being updated in real time, and it's much more
readable than thousands of lines of integers!

Chapter 5

[55]

You can find barcli here: https://github.com/dtex/barcli. In order to install
barcli so that we can use it in the same folder as your code, run the following:

> npm install barcli

In order to create our graph with the range of our photocell (0 to 1023), we'll use the
following code:

var barcli = require('barcli');
var graph = new barcli({
 label: 'photocell',
 range: [0, 1023]
});

To set the graph, we'll use the following:

graph.set([photocell value]);

These graphs are much easier to read, as shown in the following example:

A barcli graph in the console

Coding everything together
Using our knowledge of Johnny-Five, the Sensor object, and now barcli, we can
write the following in photocell.js:

var five = require('johnny-five');
var Barcli = require('barcli');

var board = new five.Board();
var graph = new Barcli({
 label: 'Photocell',
 range: [0, 1023]
});

board.on('ready', function(){
 var photocell = new five.Sensor('A0');

 photocell.on('data', function(){
 graph.update(this.value);
 });
});

https://github.com/dtex/barcli

Using Input Devices and Sensors

[56]

Now that we've written the code, run it with the following:

> node photocell.js

The bar graph in your console should be updated as you cover up or shine a light on
the photocell.

Now that we've explored a typical Sensor object, let's take a look at a specialized
one using our temperature sensor. We'll write a small application that logs in to bar
graphs the temperature detected by the sensor in Fahrenheit, Celsius, and Kelvin.

Wiring up the temperature sensor
Use the following wiring diagram to wire up your TMP36 or LM35
temperature sensor:

Wiring up the temperature sensor

Chapter 5

[57]

One way to check that your TMP36 or LM35 is wired correctly is by
wiring it up and then plugging the board into your computer. Put your
fingers near the temperature sensor. Do they feel warm? Then you have
the ground and the power flipped. The diagram assumes the flat side is
facing you—remember this, but it's always good to double-check!

Coding our temperature example
Looking at the API for the temperature sensor object, we'll notice that there are
no special API calls. However, there are special attributes of the this object inside
our data event handler. These attributes allow us to access the Fahrenheit, Celsius,
and Kelvin readings for our temperature sensor without doing the translation
math ourselves.

With our prior knowledge of Sensor objects and barcli, we can write the following
in temperature.js:

var five = require('johnny-five');
var Barcli = require('barcli');

var board = new five.Board();

var fahrenheitGraph = new Barcli({
 label: 'Fahrenheit',
 range: [20, 120]
});

var celsiusGraph = new Barcli({
 label: 'Celsius',
 range: [6, 50]
});

var kelvinGraph = new Barcli({
 label: 'Kelvin',
 range: [250, 325]
});

board.on('ready', function(){
 var temp = new five.Temperature('A0');

 temp.on('data', function(err, data){
 fahrenheitGraph.update(data.fahrenheit);
 celsiusGraph.update(data.celsius);
 kelvinGraph.update(data.kelvin);
 });
})

Using Input Devices and Sensors

[58]

Now, we just run this with the following:

> node temperature.js

We should see three bar graphs in the console as follows:

The temperature.js console output

Try putting something warm or cold near the sensor to see how the bar graph changes!

Summary
In this chapter, we've learned how to use many different input devices and sensors
in order to build Johnny-Five projects that listen to the world around them. We've
learned how to listen for events, as well as use both the generic Sensor object and
specialized objects like Button and Temperature.

In the next chapter, we'll start looking at moving robots using sensors.

Chapter 6

[59]

Moving Your Bot
In this chapter, we will cover the following topics:

•	 The different kinds of servos and motors
•	 Special concerns when using motors and servos
•	 Wiring up servos and motors
•	 Creating a project with a motor and using the REPL
•	 Creating a project with a servo and a sensor

What you'll need for this chapter
You'll need your microcontroller—I highly recommend the Arduino Uno for this
chapter because of its compatibility. You'll also need your USB cable, a breadboard,
some breadboard wires, and a 10k ohm resistor. Grab a photocell, or any other
sensor you'd like to try.

You'll also need a motor that runs on 5V and a standard hobby servo that uses 5V.
These can be found easily at hobby stores or on Adafruit, SparkFun, Seeed studio, and
many other online shops. Check out the following section to see some of your options.

The different kinds of servos and motors
First, we'll go over a few common servos and motors that you'll run into. But first,
for those who are new to this, let's look at a quick description of motors and servos.

Moving Your Bot

[60]

Defining motors and servos
A motor (or an electrical motor for our purposes) converts electrical energy to
motion. Electricity goes in, motion comes out. This motion is output as a rotation
motion; one of the most common uses of electronic motors is to turn wheels. Note
that while you can control the speed of a motor by controlling the power being input,
you cannot change the position of a motor precisely.

This is where servos come in. Servos use electricity to move to a set point—most
commonly in an arc of 180 degrees. However, there are some servos that can rotate 360
degrees. We'll discuss these in a moment. Servos are technically specialized motors,
and while motors are used to propel projects, servos are used to control them.

Things to keep in mind
There are quite a few servos and motors available for use with your Johnny-Five
projects. While we are going to go over many of these, there are a few things to
keep in mind when looking at motors to be used.

For instance, be sure to be aware of the voltage and current needed to power the
motor or servo; if this is above 5 volts, you'll need to power them with something
other than the Arduino's 5V OUT, and if they draw a lot of current but only use 5V,
you might consider an external power supply for your Arduino board. Note that
additional electric current is supplied whenever you have multiple servos—but the
voltage required stays the same; for instance, if you have two servos that require
5V of voltage but 200 mA of electric current, you still only need 5 volts but you will
need 400 mA current! Much of this information can be found on the data sheet for
the motor or servo you are using.

Types of motors
While we're going to go over a few types of motors here, keep in mind that the
functionality of most of these motors is the same; they have an on and off switch,
and you can slightly adjust their speed with power adjustments. However, this
doesn't rule out the use of motors entirely—there are some interesting uses as well!

Chapter 6

[61]

Your standard hobby motor looks like a large cylinder with a few wires on one end
and a rod on the other end, like the following figure:

A standard DC hobby motor

The motors come in various sizes and can generate different levels of work. These
are mainly used for motion and propelling projects such as remote-control vehicles.
Some of these motors are called directional motors—this means you can control the
direction. With nondirectional motors, you can only turn the motor in one direction.
Keep this in mind when considering your project.

There are also vibration motors—these are found in cell phones that alert you to calls
without an audible ring. These look similar to regular motors, but the rod at the end
has an asymmetrical weight attached, as shown in the following figure:

A vibration motor

Moving Your Bot

[62]

These motors are primarily used for tactile vibration, but in the wearables and cell
phone worlds, this can be a vital piece of the puzzle!

Finally, there are stepper motors. They are usually larger and require more power:

A stepper motor

However, stepper motors move in a discreet manner, giving you more control
and precision with full rotation. One very common use of these motors is 3D
printing—these motors are at the heart of most 3D printers because of their
precision and speed.

Types of servos
There are two main types of servos. The first is generally called a standard servo;
they are regularly used in hobby remote-control vehicles, such as cars and planes,
as well as hobby robotics. These tend to look similar to a box with a plastic cylinder
and a propeller, an arm, or a disc shape on top, as shown in the following figure:

Chapter 6

[63]

A standard servo

These servos move in a range of motion that spans 180 degrees or half of a full range
of motion. However, these can be set to a required position giving them precision
over motors.

There are also continuous servos that span a full 360 degrees. Note that the two types
of servos look remarkably similar; checkout the previous servo and the one shown in
the following figure:

A continuous servo

Most continuous servos have a label on them that indicates that they are continuous
servos, but you'll have to keep a track of the different types when purchasing
your own.

Moving Your Bot

[64]

Do I use a servo or a motor?
This is a fantastic question: if you want movement, which one do you use? A servo
or a motor? The rule of thumb is, if you want precise movement, you'll need a servo;
while servos can be configured to move in certain angles, motors go on and off with
the speed setting varied by the amount of power sent to it—not a discrete unit such
as degrees/second.

Many of you will think that if you want a full 360 degree range of motors, you're
limited to using motors. This isn't always the case; continuous servos combine the
precise nature of servos with a full range of motion offered by a motor.

Servo and motor controllers
Sometimes, you may want to use a lot of motors or servos on a project; a good
example of this is a hexapod kit, which uses 18 high-powered servos! There are not
that many pins on an Arduino Uno, but using a servo or a motor controller, you can
control many motors or servos using two data pins. These controllers use the I2C
method that we discussed in Chapter 4, Using Specialized Output Devices. Johnny-Five
has built-in support for quite a few of these controllers. If you'd like to use one, make
sure that you check the documentation at www.johnny-five.io to make sure yours
is compatible.

An example of a servo controller with an I2C interface

www.johnny-five.io

Chapter 6

[65]

Motor and servo shields
A shield is an Arduino term for a board that is placed on top of an Arduino, usually
an Uno, to give it some extra capability. Shields can be used to add Wi-Fi, LED
matrices, and so on. A very common shield type is the shield for motors and servos.
Johnny-Five supports a few shields for motor use. Again, if you wish to use a lot of
motors or high-powered motors, check out the documentation at www.johnny-five.
io to see whether a motor shield is right for your project.

An example of a motor shield

Special concerns when using motors
and servos
Projects that use servos and motors have some special considerations for them that
are mostly focused around power and the fact that Johnny-Five projects are tethered
to the computer running the Johnny-Five code.

www.johnny-five.io
www.johnny-five.io

Moving Your Bot

[66]

Power concerns
Servos and motors draw a lot of power. This can be an issue when you are using
several of them. If you are using 5V servos and motors and more than two or three
at a time, you should use an external power supply for your Arduino to draw this
extra current without affecting performance. These power supplies are usually
plugged in to an external outlet, and look like the following figure.

WARNING!
Before plugging any external power supply into your board, make sure
that the board you are using is voltage regulated for the voltage of the
power supply; for an Arduino Uno, this is 12V. When in doubt, use a
5V power supply for Arduinos. Also, follow proper safety protocols
when dealing with outside power sources. SparkFun has a great guide
at https://learn.sparkfun.com/tutorials/how-to-power-
a-project.

If you are using servos or motors that require more than 5V, you will need to supply
power externally to your motors or servos. This is outside the scope of this book.

Tethering and cables
Johnny-Five usage means that the code running on the board is receiving messages
from the host computer. If this connection is lost, the project cannot run. This means
that for most Johnny-Five projects, you will need to maintain a USB cable connection.
So if you're going to make a project that involves motion, you'll want a long USB cable.

There are options for wireless NodeBots using Johnny-Five described in Chapter 9,
Connecting NodeBots to the World, and Where to Go Next.

Wiring up servos and motors
Wiring up servos will look similar to wiring up sensors, except the signal maps to an
output. Wiring up a motor is similar to wiring up an LED.

https://learn.sparkfun.com/tutorials/how-to-power-a-project
https://learn.sparkfun.com/tutorials/how-to-power-a-project

Chapter 6

[67]

Wiring up servos
To wire up a servo, you'll have to use a setup similar to the following figure:

A servo wiring diagram

The wire colors may vary for your servo. If your wires are red, brown,
and orange, red is 5V, brown is GND, and orange is signal. When in
doubt, check the data sheet that came with your servo.

After wiring up the servo, plug the board in and listen to your servo. If you hear a
clicking noise, quickly unplug the board—this means your servo is trying to place
itself in a position it cannot reach. Usually, there is a small screw at the bottom of
most servos that you can use to calibrate them. Use a small screwdriver to rotate
this until it stops clicking when the power is turned on.

This procedure is the same for continuous servos—the diagram does not change much
either. Just replace the regular servo with a continuous one and you're good to go.

Moving Your Bot

[68]

Wiring up motors
Wiring up motors looks like the following diagram:

A motor wiring diagram

Again, you'll want the signal pin to go to a PWM pin. As there are only two pins, it
can be confusing where the power pin goes—it goes to a PWM pin because, similar
to our LED getting its power from the PWM pin in Chapter 2, Working with Johnny-
Five, the same pin will provide the power to run the motor.

Now that we know how to wire these up, let's work on a project involving a motor
and Johnny-Five's REPL.

Creating a project with a motor and using
the REPL
Grab your motor and board, and follow the diagram in the previous section to wire a
motor. Let's use pin 6 for the signal pin, as shown in the preceding diagram.

Chapter 6

[69]

What we're going to do in our code is create a Motor object and inject it into the
REPL, so we can play around with it in the command line. Create a motor.js file
and put in the following code:

var five = require('johnny-five');

var board = new five.Board();

board.on('ready', function(){

 var motor = new five.Motor({
 pin: 6
 });

 this.repl.inject({
 motor: motor
 });
});

Then, plug in your board and use the motor.js node to start the program.

Exploring the motor API
If we take a look at the documentation on the Johnny-Five website, there are a few
things we can try here. First, let's turn our motor on at about half speed:

> motor.start(125);

The .start() method takes a value between 0 and 255. Sounds familiar? That's
because these are the values we can assign to a PWM pin! Okay, let's tell our motor
to coast to a stop:

> motor.stop();

Note that while this function will cause the motor to coast to a stop, there is a
dedicated .brake() method. However, this requires a dedicated break pin, which
can be made available using shields and certain motors.

If you happen to have a directional motor, you can tell the motor to run in reverse
using .reverse() with a value between 0 and 255:

> motor.reverse(125);

This will cause a directional motor to run in reverse at half speed. Note that this
requires a shield.

And that's about it. Operating motors isn't difficult and Johnny-Five makes it even
easier. Now that we've learned how this operates, let's try a servo.

Moving Your Bot

[70]

Creating a project with a servo and
a sensor
Let's start with just a servo and the REPL, then we can add in a sensor. Use the
diagram from the previous section as a reference to wire up a servo, and use
pin 6 for signal.

Before we write our program, let's take a look at some of the options the Servo object
constructor gives us. You can set an arbitrary range by passing [min, max] to the
range property. This is great for low quality servos that have trouble at very low
and very high values.

The type property is also important. We'll be using a standard servo, but you'll need
to set this to continuous if you're using a continuous servo. Since standard is the
default, we can leave this out for now.

The offset property is important for calibration. If your servo is set too far in one
direction, you can change the offset to make sure it can programmatically reach
every angle it was meant to. If you hear clicking at very high or low values, try
adjusting the offset.

You can invert the direction of the servo with the invert property or initialize the
servo at the center with center. Centering the servo helps you to know whether
you need to calibrate it. If you center it and the arm isn't centered, try adjusting the
offset property.

Now that we've got a good grasp of the constructor, let's write some code. Create a
file called servo-repl.js and enter the following code:

var five = require('johnny-five');

var board = new five.Board();

board.on('ready', function(){

 var servo = new five.Servo({
 pin: 6
 });

 this.repl.inject({
 servo: servo
 });
});

This code simply constructs a standard servo object for pin 6 and injects it into
the REPL.

Chapter 6

[71]

Then, run it using the following command line:

> node servo-repl.js

Your servo should jump to its initialization point. Now, let's figure out how to write
the code that makes the servo move.

Exploring the servo API with the REPL
The most basic thing we can do with a servo is set it to a specific angle. We do this by
calling the .to() function with a degree, as follows:

> servo.to(90);

This should center the servo. You can also set a time on the .to() function, which can
take a certain amount of time:

> servo.to(20, 500);

This will move the servo from 90 degrees to 20 degrees in over 500 ms.

You can even determine how many steps the servo takes to get to the new angle,
as follows:

> servo.to(120, 500, 10);

This will move the servo to 120 degrees in over 500 ms in 10 discreet steps.

The .to() function is very powerful and will be used in the majority of your Servo
objects. However, there are many useful functions. For instance, checking whether
a servo is calibrated correctly is easier when you can see all angles quickly. For this,
we can use the .sweep() function, as follows:

> servo.sweep();

This will sweep the servo back and forth between its minimum and maximum
values, which are 0 and 180, unless set in the constructor via the range property.
You can also specify a range to sweep, as follows:

> servo.sweep({ range: [20, 120] });

This will sweep the servo from 20 to 120 repeatedly. You can also set the interval
property, which will change how long the sweep takes, and a step property, which
sets the number of discreet steps taken, as follows:

> servo.sweep({ range: [20, 120], interval: 1000, step: 10 });

Moving Your Bot

[72]

This will cause the servo to sweep from 20 to 120 every second in 10 discreet steps.

You can stop a servo's movement with the .stop() method, as follows:

> servo.stop();

For continuous servos, you can use .cw() and .ccw() with a speed
between 0 and 255 to move the continuous servo back and forth.

Now that we've seen the Servo object API at work, let's hook our servo up to a
sensor. In this case, we'll use a photocell. This code is a good example for a few
reasons: it shows off Johnny-Five's event API, allows us to use a servo with an
event, and gets us used to wiring inputs to outputs using events.

First, let's add a photocell to our project using the following diagram:

A servo and photoresistor wiring diagram

Chapter 6

[73]

Then, create a photoresistor-servo.js file, and add the following:

var five = require('johnny-five');

var board = new five.Board();

board.on('ready', function(){

 var servo = new five.Servo({
 pin: 6
 });

 var photoresistor = new five.Sensor({
 pin: "A0",
 freq: 250

 });

 photoresistor.scale(0, 180).on('change', function(){
 servo.to(this.value);
 });

});

How this works is as follows: it's similar to the sensor code we wrote in the previous
chapter! It's just during the data event that we tell our servo to move to the correct
position based on the scaled data from our photoresistor. Run the following
command line:

> node photoresistor-servo.js

Then, try turning the light on and covering up your photoresistor and watch the
servo move!

Summary
We now know how to use servos and motors to move our robotics projects. Wheeled
robots are good to go! But what about more complex projects, such as the hexapod?
Walking takes timing. As we mentioned in the .to() function, we can time servo
movement, thanks to the Animation library.

In the next chapter, we'll talk about the Animation library and do some projects that
move a few servos in sequence and as a group.

[75]

Advanced Movement with
the Animation Library

Now that we've achieved basic movements in our robotics projects, we're going to
explore how to create timed, complex movements. This may seem daunting at first—
keeping track of one servo is hard enough! Luckily for us, the Animation library
in Johnny-Five makes these complex movements easier to both understand and
program. In this chapter, we'll explore what makes the Animation library special
and start working with some servo animations. We will cover the following topics:

•	 What is the Animation API?
•	 Looking at the Animation API
•	 Writing servo animations
•	 Animation events

What you'll need for this chapter
You'll need your microcontroller—I highly recommend the Arduino Uno for this
chapter because of its compatibility. You'll also need a USB cable, a breadboard,
some breadboarding wires, and the LCD you used in Chapter 4, Using Specialized
Output Devices. You'll also need three standard servos. If possible, the servos
should be of the same brand and make—this will help with our project.

Advanced Movement with the Animation Library

[76]

What is the Animation API?
This chapter's title leads to a lot of questions—what is the Animation API and how
does it relate to servos? There's also a lot of terminology used here. To start, let's
discuss the point and development of the Animation API to give us a little context.

Why do we need an Animation API?
The Animation API was created around the work started by Donovan Buck and Rick
Waldron on walking robots—Rick built a quadruped bot, and Donovan, a Hexapod.
Turns out, walking robots require a lot of timing on the servos involved, and the
Johnny-Five library at the time was only capable of running servos from one degree
to another at a maximum speed. This made walking very difficult, because even with
servos of the same brand and make, the maximum speed is slightly different. Also,
there are situations in which you want different servos to move at different speeds—
this was impossible before the Animation API as well.

This led to the development of a function that allows you to set the speed of a
given movement by giving a time to complete—we explored these functions in the
previous section. You can also set a number of discreet movements. While these
definitely helped with walking robotics code, there's another huge benefit to this
API, and this is why the name might seem strange.

Why animation?
An animation is a description of movements over time. Keyframes are used in
animations to set key positions at given times—there are several animation libraries
that will calculate the frames in-between these keyframes, called tweening. The
Animation API in Johnny-Five allows you to set keyframes for a servo movement
and then does the tweening for you—allowing you to programmatically define a
set of movements over time, just as the definition of animation states.

This is great for moving robotics—calculating the speed for each servo in a leg that is
moving to a specific point would be daunting for even the most skilled programmer.
The Animation API's ability to do tweening for us means that we can set the keyframes
and let the code do the rest. This means that even beginners in moving robotics can
create complex movements.

Now that we have some context, let's take a bird's-eye view of the Animation API
and the various ways to describe and interact with it.

Chapter 7

[77]

Looking at the Animation API
The Animation API has its own vocabulary—it may be familiar to the readers who
have done some animation work. It also has a few different ways to interact with it,
and we'll explore these ways before diving in and writing our own projects.

Learning the terminology
There are two parts that make up any servo animation in Johnny-Five: a target and
one or more segments. The target is either a servo or an array of servos. We'll go into
the programmatic differences between a servo and a servo array in our first project;
the basic point is that a ServoArray object in Johnny-Five allows a logical grouping
and the manipulation of multiple servos—a leg, for instance, would be a logical use
of a ServoArray object.

A segment is the programmatic description of a piece of animation. It is comprised of
a few pieces of information: a duration, cue points, and keyframes.

A keyframe is a description of the position of the target at a given point. A keyframe
has no concept of time; it is an instantaneous description of state. Keyframes are
combined with cue points in a segment to add the concept of time.

Cue points are the points at which each keyframe is placed in a segment. This is not a
discrete point in time either; cue points are described relative to the segment, usually
as a decimal between 0 and 1 where 0 is the beginning of the segment and 1 is the end.

The duration outlines exactly how long the segment will take. The rest of the
information uses the duration to calculate the speeds necessary to make it between
keyframes at the cue points given. Duration adds the concept of discrete time to
a segment.

In order to better understand how these work together, let's walk through a segment
description: we have a segment with a duration of 2000 ms (2 seconds). It has cue
points at 0, .75, and 1. There are two servos in our target: keyframe 1 has servo 1 at 0
degrees, and servo 2 at 90 degrees. Keyframe 2 has servo one at 45 degrees, and servo 2
at 135 degrees. Keyframe 3 has servo one at 90 degrees, and servo 2 at 180 degrees. So
in all, we have a servo starting at 0 degrees and moving to 90 degrees over 2 seconds,
and a second servo moving from 90 to 180 degrees in that same 2 seconds.

Advanced Movement with the Animation Library

[78]

A graphical representation of this can be seen in the following figure:

A graphical representation of an animation segment

So, now that we have our segment information, let's use the duration and cue points
to see when each keyframe should be reached: the 0 cue point will be reached at 0
ms, the .75 cue point will be reached at 1,500 ms, and the 1 cue point will be reached
at 2,000 ms. But how do we determine this? We can use the following formula to
determine when a cue point will be reached in a segment:

The formula for a cue point time

So, for the .75 cue point, 2000 ms * .75 = 1500 ms.

Now, we match these cue points to our keyframes: at 0 ms, servo one will be at 0 and
servo two at 90 degrees. At 1500 ms, servo one will be at 45 degrees and servo two
will be at 135 degrees, and at 2000 ms, servo one will be at 90 degrees and servo two
at 180 degrees. A graphical representation of this is shown in figure 3:

Chapter 7

[79]

The pictures of the servo movement from the segment

So, in summary, an animation consists of segments applied to a target. Segments
consist of keyframes, set to cue points whose timings are determined by the
segment's duration.

You get a glimpse of the power the Animation API gives you via this example; trying
to calculate the speed needed to move one servo from one degree point to another
over x milliseconds is a difficult task—to get a lot of servos that represent an arm or
leg to do so would be chaotic. The Animation API does this for you by allowing you
to set keyframes and cue points in a segment to achieve the movement you want.

The difference between .to() and the
Animation API
It may look like the extra options in the .to() method for servos allow the creation
of animations implicitly. This is not the case!

The duration parameter, while allowing servos to move at nonmax speeds, does not
necessarily serve the same purpose as an animation. The rate parameter does not
create keyframes; the rate parameter creates a number of discrete movements, and
they are moved to at the maximum speed.

So, while using .to() with durations and rates may seem like creating animations,
you should know that they are not a full substitute to write your own animations
and segments using the Animation API.

Using the ServoArray object
We've discussed the concept of ServoArray, but let's look at it in a little more detail,
as we'll be using it in this chapter's projects.

Advanced Movement with the Animation Library

[80]

Constructing the ServoArray object looks remarkably similar to constructing a single
servo; however, the object is called Servos instead of Servo, and you pass in an
array of pins representing the pins your group of servos is on:

var myServos = five.Servos([3, 5, 6]);

This creates an array of servos that are on pins 3, 5, and 6.

Performing actions on a servo array is also remarkably similar to moving a single
servo; using .to() will move all the servos using the parameters given. For instance,
consider the following:

myServos.to(120, 500);

This will move all the servos in the array to 120 degrees over 500 ms. If you'd like to
move one servo independently, all you need is its key in the servo array—you can
then reference it and move it as a standard Servo object:

myServos[0].to(90, 200);

This moves the first servo in the array to 90 degrees over 200 ms.

ServoArrays are also very useful in creating animations; you can address an entire
array of servos with a single keyframe, allowing you to write keyframes and
segments for several servos at once, instead of writing them out separately for
each servo.

Now that we've explored the terminology and concepts behind the Animation API,
let's build our first project; we're going to build our three servos into a servo array
that we can manipulate.

Project – wiring up three servos and creating
an array
First, you'll have to wire up your three servos as shown in the following figure:

Chapter 7

[81]

Taking our knowledge of Johnny-Five and the code we went over in the last section,
let's write a code to create a servo array of the servos we just wired up and inject
them into the REPL so that we can run some code in real time. Place the following
into servo-array.js:

var five = require('johnny-five')

var board = new five.Board({
 port: '/dev/cu.usbmodem14131'
})

board.on('ready', function(){
 var myServos = new five.Servos([3,5,6])
 this.repl.inject({
 servos: myServos
 })
})

Now we run it with the following:

> node servo-array.js

Advanced Movement with the Animation Library

[82]

Let it start up. Eventually, the REPL will start and your servos should move to their
starting position (the default is 90).

Let's explore moving these servos as a group. Let's sweep them all:

>servos.sweep()

If, while sweeping all the servos in your array, they seem choppy,
don't fret; we're using three servos now, which takes more electric
current than usual. The choppiness is due to a lack of electric current.
While this is OK for our present example, you should definitely take
a look at the powering servos section in Chapter 6, Moving Your Bot, if
you want to make a project with multiple servos run smoothly.

We can stop the servos with the following:

>servos.stop()

Now, let's explore how to use .to(), and not only look at how it works with each
servo, but also how duration and rate don't substitute the writing of an animation.

We can move all of the servos to the same angle using .to(), as follows:

>servos.to(0)

We can use the same parameters, duration, and rate that we used with a single servo,
as shown here:

>servos.to(90, 500, 10)

That ran pretty smoothly, right? Like an animation would? That's true! But let's slow
.to() and see what's actually happening here:

>servos.to(0)

>servos.to(180, 10000, 20)

That's a full 180-degree movement over 10 seconds with 20 discrete steps. Did you
notice the choppiness? That's because this writes to servoWrite() instead of writing
an animation segment.

You can also control one servo at a time as we explored in the last section. For
instance, run the following:

>servos[0].to(0);

Chapter 7

[83]

This will move the first servo (on pin 3) to 0 degrees, while leaving the other two
pins alone.

There are some really great options available in the Animation API that will make
these movements smoother and allow you to create complex movements. Let's
explore how to declare and run animation segments with Johnny-Five.

Writing Servo Animations
As we discussed in the last section, an animation in Johnny-Five is created and
then you enqueue segments that run first-in, first-out. We're going to go from the
inside out in our exploration of creating an animation: first, we'll learn about writing
keyframes, then segments, and finally we'll explore the Animation object.

Writing keyframes
Writing keyframes are at the core of the Animation API—the power of this API is its
ability to tween between our keyframes. Each keyframe is an object, and you'll pass
your keyframes into your segment via an array. Remember: you'll want to write a
keyframe for each of your cue points.

The keyframe object
As each keyframe is an object, we have access to a few properties that we can
establish for each one:

Keyframe Properties

degrees degrees is what the name implies; the degree you want the servo
to be at when the keyframe is reached. It should be an integer value
between 0 and 180 inclusive.

step step is similar to degrees, but relative to the last keyframe; for
instance, if degrees is set to 135 in the first keyframe and step is
set to -45 in the next keyframe, the second keyframe will move the
servo to 135 - 45 = 90 degrees.

easing When you create an animation segment, by default any tweening is
done at the same speed for the entire span between two keyframes.
The easing functions are applied to these frames to change the
speed. This can make a motion look more fluid or serve a practical
purpose; easing can make quick movements in different directions
easier on your servos and equipment.

Advanced Movement with the Animation Library

[84]

There are several easing functions available via Johnny-Five's use of the ease-
component module; a very popular one is inOutCirc, which causes the frames to
move slowly at first, quickly increasing in the middle, and slowing down again
towards the end. See the Johnny-Five and ease-component docs for more examples
of easing functions.

Keyframe Properties

copyDegrees copyDegrees calculates the calculated or explicitly set value
from the frame at the index given. For instance, let's say
we have two keyframes: one has degrees set to 90, and the
second has step set to 45. If we create a third keyframe with
copyDegrees set to 0, it will copy the first frame and set to
90. If we set the index to 1, it will copy the second frame and
90 + 45 = 135 degrees will be the setting for the third keyframe.

copyFrame copyFrame is similar to copyDegrees, but it copies all the
attributes of the given frame instead of just the degrees; this
includes easing functions and so on.

position position is an advanced and newer concept in Johnny-Five's
Animation API. This allows you to give three tuples that
represent a 3D coordinate in space, and it will move the array
of servos to this point.
It is worth noting here that you need more than just
Johnny-Five for this to work; you'll need an IK (Inverse
Kinematic) solver, such as Donovan Buck's tharp project.
Going into the details of position is outside the scope of this
book, as it is still being actively developed and the functionality
might change. However, if you're looking to build a robot that
moves with you, check this out.

Keyframe shorthand
You can also define keyframes without using objects; if you pass your keyframes
as an array of integer values, each integer value will be interpreted as a step value.
Consider the following array:

keyFrames: [0, 90, -45, 90, -90]

This will (assuming a 0 start point) move the servo to 0, 90, 45, 135, and 45 degrees
for each cue point.

Chapter 7

[85]

You can also use non-integer values in shorthand syntax to mean specialized values:

Values Properties
null When null is passed into a shorthand keyframes array, its value

depends on its position. If it is the first keyframe, the segment will
use the existing servo position as its first keyframe. If it is last in the
array, it will copy the previous keyframe's value.
However, if it is used between two frames, something interesting
happens: it will drop the keyframe, and tweening will be calculated
between the keyframe before and after the null value. This can be
handy if you'd like a servo to take more time between two keyframes.

false false, used anywhere in a shorthand keyframe array, will copy
the last known value. It will not move the servo between the
two keyframes.

So, in closing, you can use either a keyframe object, a number, null, or false
to represent a keyframe in a segment definition. Now that we've explored the
attributes available on a keyframe object, let's write some keyframes to match
certain situations.

Examples of writing keyframes
Let's explore some examples of keyframes:

Example 1: Write a set of keyframes that starts a servo at the last position it was at,
moves to it by 90 degrees with an inOutCirc easing, then moves it by 45 degrees
back with no easing:

1.	 The first keyframe can be handled using the null value:
var myFrames = [null];

2.	 The second requires a keyframe object because we want to establish an
easing function:
var myFrames = [null, { degrees: 90, easing: 'inOutCirc' }];

3.	 The last could be done with a keyframe object:
var myFrames = [null, { degrees: 90, easing: 'inOutCirc' }, {
step: -45 }];

However, we can also use shorthand—remember that passing a number as a
keyframe will lead to using that number as a step value:

var myFrames = [null, {degrees: 90, easing: 'inOutCirc' }, -45];

Advanced Movement with the Animation Library

[86]

Among the preceding alternatives, which one you use is entirely up to your own
preference.

Example 2: Write a set of keyframes that starts the servo at 0, moves to 90, spends
two cue points moving to 180, and then moves to 135:

1.	 The first and second keyframes can be set via a keyframe object, as follows:
var myFrames = [{degrees: 0}, {degrees: 90}];

2.	 Otherwise for the second keyframe, we can use a shorthand, as shown here:
var myFrames = [{degrees: 0}, 90];

As we know that the first keyframe will set the servo to 0, we can use step instead
of degrees. For the next step, we want the servo to take two cue points to move to
180. We could calculate how to do this with standard keyframes, or we could use a
shorthand null to tell the segment to skip that cue point and tween between 90 and
180 over two cue points:

var myFrames = [{degrees: 0}, 90, null, {degrees: 180}]

Now that you've learned how to write keyframe arrays and objects, let's take a look
at writing the rest of our Animation object.

Writing segments
We know that segments consist of an array of keyframes, an array of cue points, a
duration, and some options. Let's take a look at the options available to us in each
segment, and then build some segments to get us ready for our next project.

Segment options
The segment options and their properties are as follows:

Segment options Properties
target You can use this in the segment to override the target this segment

operates on; this is usually specified by the animation, so setting it
in the segment overrides the animation's assignment.

easing Just like keyframes, you can set an easing function for an entire
segment. Note that easing functions stack; if you use an easing
function on keyframes and a segment, the tweening will calculate
the keyframe easing and then the segment easing.

Chapter 7

[87]

Segment options Properties
loop This is a Boolean; true causes this segment to loop when

enqueued until it is stopped by the animation it was queued to.

loopBack If you'd like a looping segment to loop back to some place other
than the first cue point, you can specify the index of that cue point
here. For instance if a segment has the cue points [0, .25, .75, 1]
and you set loopBack to 1, the segment will loop the cue points
[.25, .75, 1] only.

metronomic This is a Boolean; if true, the segment will run from the first cue
point to the last, then back to the first in reverse order. You can
combine this with the loop option, but it will not loop by default.

progress This attribute can be either used as information about a running
segment (as we'll see in a later project) or set; you can set the
current progress of the animation if you'd like to start at a
different point. This should be a value between 0 and 1, much like
cue points.

currentSpeed Much like progress, this can be used as information and set. The
default is 1.0, and this changes the speed multiplier at which the
segment runs.

fps This sets the maximum frames per second that a segment can run
at. The default is 60. Changing the maximum fps of a segment
will not change the speed or cue points.

Multiple servos in one segment
More often than not, you'll be animating more than one servo at a time. How do
you handle keyframes for more than one servo? By passing an array of arrays; each
array represents the keyframes for a servo in the target servo array. For instance, the
following segment contains the keyframes for two servos in an array:

var myMultiServoSegment = {
 duration: 2000,
 cuePoints: [0, .5, 1],
 keyFrames: [
 [{degrees: 135}, -45, -45]
 [{degrees: 45], 45, 45]
]
}

Advanced Movement with the Animation Library

[88]

Examples of writing segments
Let's walk through a couple of examples of writing segments.

Example 1: Write a sweeping segment that goes from 0 to 180 and back. Give it the
inOutCirc easing and make it loop. The duration should be 5 seconds, with as few
keyframes as possible.

Now, we could write our keyframes to go from 0 to 180 and back, or we could use
the metronomic option to help us out. Using the metronomic function also means
that we only need two keyframes and cue points—0 and 1! We'll also need the
easing option and the loop option. Here's the result of this example:

var sweepingSegment = {
 duration: 5000,
 metronomic: true,
 loop: true,
 easing: 'inOutCirc',
 cuePoints: [0, 1],
 keyFrames: [{degrees: 0}, {degrees: 180}]
}

Example 2: Write a segment that runs once. This segment contains instructions
for two servos. Servo one starts at whatever position the servo is already at, then
adds 45 degrees over 1 second, then removes 30 degrees over 2 seconds, and finally
adds 15 degrees over 1 second. The second servo simply moves from 20 degrees to
120 degrees over the duration, with full tweening and the inOutCirc easing. The
duration of the segment should be 4 seconds.

We're using relative positions here, so it looks like the keyframes shorthand will
come in handy. We have to set unequal cue points at: 0/4, 1/4, 3/4, and 4/4, that
is at .25, .75, and 1. Remember— in a keyframe shorthand, null at the beginning
means use the current position of the servo, and null in the middle means skip the
cue point and recalculate tweening!

Keeping all of this in mind, we get the following:

var mySegment = {
 duration: 4000,
 cuePoints: [0, .25, .75, 1] ,
 keyFrames: [
 [null, 45, -30, 15],
 [{degrees: 20}, null, null, {degrees: 120}]
]
}

Chapter 7

[89]

This is the true power of the Animation API—we can describe complex movements
in objects that mathematically work out.

Now that we know how to write keyframes and segments, let's take a look at writing
Animation objects and running segments using them.

The Animation object
The analogy that I like to use for the Animation object is to think of it like an MP3
player. You load tracks into it, and you can press play, pause, or stop. You queue
segments into an animation in any order, and you can play, pause, or stop the
animation at any time.

Let's take a quick look at the constructor: it only takes one parameter, which is the
target. As we mentioned earlier, the target is the servo or an array of servos being
animated. So, let's take a look at a sample program that constructs a servo array
and constructs an Animation object:

var five = require('johnny-five')

var board = new five.Board()

board.on('ready', function(){
 var servos = new five.Servos([3, 5, 6])
 var animation = new five.Animation(servos)
})

Once we've constructed the Animation object, the next important function is
.enqueue(). You pass a segment to this function to add it to the animation queue.
Animations are run first-in, first-out, so our code becomes this:

var five = require('johnny-five')

var board = new five.Board()

board.on('ready', function(){
 var servos = new five.Servos([3, 5, 6])
 var animation = new five.Animation(servos)

 var mySegment = {
 easing: 'inOutCirc',
 duration: 3000,
 cuePoints: [0, .25, .75, 1]
 keyframes: [{degrees: 45}, 45, 45, -45]
 }

Advanced Movement with the Animation Library

[90]

 animation.enqueue(mySegment)
})

That's the whole kit and caboodle; animations are set to run as soon as a segment is
enqued! Let's take an in-depth look at the functions available to the Animation object:

Functions Properties
.enqueue() .enqueue() places a segment in the queue for the

animation. Segments are run first-in, first-out when an
animation is played.

.play() .play() plays the animation, starting with the first
segment put in that hasn't already been run. It will also
continue the last segment in progress if the animation
was paused.

.pause() .pause() stops the animation, but maintains progress
on any in-progress segments and maintains the
segment queue.

.stop() .stop() clears the segment queue as well as stops all
animation.

.next() .next() clears the current segment and moves on
to the next. However, this is not automatically called
by the animation when each segment finishes and is
normally not called by the user.

.speed([speed]) .speed() can be used to view (when no arguments
are passed) or set (when a number representing
a multiplier is passed) the speed of the current
animation.

Now that we know how animations work in general, let's build our own project with
our three servos. Let's animate!

Project – animating our servo array
You should still have your servo array from the last project. Let's animate it! We'll
use the REPL to modify our animation segment in real time and play with some of
the true power of the Animation API.

Chapter 7

[91]

Let's start with the code that initializes our board, sets up our servo array, creates an
animation and a segment, and inserts them into the REPL. Place the following into
animation-project.js:

var five = require('johnny-five')

var board = new five.Board()

board.on('ready', function(){
 var servos = new five.Servos([3, 5, 6])
 var animation = new five.Animation(servos)

 var mySegment = {
 easing: 'inOutCirc',
 duration: 3000,
 cuePoints: [0, .25, .75, 1],
 keyFrames: [
 [{degrees: 45}, 45, 45, -45],
 [{degrees: 30}, 30, 30, 30],
 [{degrees: 20}, 40, 40, 40]
]
 }

 this.repl.inject({
 animation,
 mySegment
 })

 animation.enqueue(mySegment)
})

Go ahead and run this with the following:

node animation-project.js

Your servos should spring to life and should start running the segment (we queued
it on the last line!). Once it's done running, let's see it again on a loop. In the REPL,
type the following:

>mySegment.loop = true

>animation.enqueue(mySegment)

The segment should start running on a loop. Want to see it slower? Let's change the
speed using the Animation object's speed() function:

>animation.speed(.5)

Advanced Movement with the Animation Library

[92]

This should slow it down to half speed. Let's go ahead and stop the animation,
clearing the queue:

>animation.stop()

Let's see what happens when we make our segment metronomic using an easing
function, and then run it:

>mySegment.easing = 'inOutCirc'

>mySegment.metronomic = true

>animation.enqueue(mySegment)

The segment now loops forward and reverses and looks more fluid!

This is cool, but what if we want animations to run one after the other? We could use
a series of durations and timers, or we could tap into Johnny-Five's event system,
which extends through the Animation API. Next we'll explore how to tap into these
events to create timed animations.

Animation events
A lot of movements require waiting for one segment to finish before starting another.
Some segments should only be fired at certain times, as well. The best way to handle
these timings and communication systems is by using Johnny-Five's animation
events.

We tap into these events by assigning callbacks to special attributes on segments.
Let's go into the details of each one and see when they will fire.

Events Details
onstart The onstart callback fires when the segment has begun playing in

the animation.

onstop The onstop callback is only called when the segment is either in
the queue or currently running, but the animation is stopped via
animation.stop().

onpause The onpause callback is only called when the segment is queued
or running in an animation that has been paused via animation.
pause().

Chapter 7

[93]

Events Details
oncomplete The oncomplete callback only fires when the segment has completed

running in an animation. Note: This does NOT apply to looped
segments. See the onloop callback for this.

onloop The onloop callback is called when a function loops, that is at the
beginning of the second run-through and each started run-through
thereafter.

In order to understand how the events work and what they can be used for, let's start
on our final project: grab your LCD from Chapter 4, Using Specialized Output Devices,
and your servo array from earlier in the chapter, and let's build.

Building a servo array with an informative
LCD readout
Using the following diagrams, build your project; the first diagram is for I2C
LCD displays:

Events project wiring diagram—I2C LCD

Advanced Movement with the Animation Library

[94]

The second diagram is for standard LCD displays:

Events project wiring diagram—Standard LCD

Once you've wired it up, you'll notice that we can modify the last piece of code
we wrote to include our LCD and create functions for each event. Let's add the
following to our segment: a callback for each event type that prints to the LCD
segment [event name]!.

When you've added the LCD code and the event callbacks, your code should look
like this. Let's create a new file called animation-events.js for this:

var five = require('johnny-five')

var board = new five.Board()
board.on('ready', function(){
 var servos = new five.Servos([3, 5, 6])
 var animation = new five.Animation(servos)
 //For I2CLCDs, uncomment these lines:
 // var lcd = new five.LCD({

Chapter 7

[95]

 // controller: 'PCF8574A'
 // })
 //NOTE: for standard LCDs, uncomment these lines:
 // var lcd = new five.LCD({
 // pins: [8, 9, 10, 11, 12, 13]
 // })

 var mySegment = {
 easing: 'inOutCirc',
 duration: 3000,
 cuePoints: [0, .25, .75, 1],
 keyFrames: [
 [{degrees: 45}, 45, 45, -45],
 [{degrees: 30}, 30, 30, 30],
 [{degrees: 20}, 40, 40, 40]
],
 onstart: function(){
 lcd.clear()
 lcd.print('Segment started!')
 },
 onpause: function(){
 lcd.clear()
 lcd.print('Segment paused!')
 },
 onstop: function(){
 lcd.clear()
 lcd.print('Segment stopped!')
 },
 onloop: function(){
 lcd.clear()
 lcd.print('Segment looped!')
 },
 oncomplete: function(){
 lcd.clear()
 lcd.print('Segment completed!')
 }
 }

 this.repl.inject({
 lcd,
 animation,
 mySegment
 })

 animation.enqueue(mySegment)
})

Advanced Movement with the Animation Library

[96]

Let's try this out! Go ahead and run this with the following:

node events-project.js

You should see Segment started! as soon as the program starts—this is because
we enqueue the segment right away. Once it's done, you should see Segment
Complete!.

To test onloop, onpause, and onstop, let's modify our segment to run on a loop
and enqueue it:

>mySegment.loop = true

>animation.enqueue(mySegment)

You should see the start event, then if you let it run for a bit, it'll show
Segment looped!.

Now let's pause it to see the pause event:

>animation.pause()

You should see Segment paused!. Let's re-run it, then stop to see the onstop event:

>animation.play()

>animation.stop()

You should see Segment stopped!.

Summary
You now know just about everything there is to know about the Animation API as
it applies to a servo movement. More functionality is being added to the Animation
API to work with other devices, such as LEDs—so keep an eye on johnny-five.io
to see more!

In the next chapter, we'll look at adding other devices to your Johnny-Five projects,
such as other USB devices and complex components.

[97]

Advanced Components –
SPI, I2C, and Other Devices

We've covered a lot of different types of device already—including input, output,
and movement. This chapter delves into how these devices can be implemented
in different ways and for different reasons. In this chapter, we'll take a look at the
I2C and SPI protocols and their advantages and setbacks with Johnny-Five. We'll
also take a look at how to add your own components to Johnny-Five, which gives
us a good look into how these devices work and how you can contribute to the
development of Johnny-Five! In this chapter, we will cover the following topics:

•	 Why do we need the I2C and SPI protocols?
•	 The SPI devices
•	 The I2C devices
•	 External devices

What you'll need for this chapter
You'll need your microcontroller, a USB cable, and computer. You'll also need an
ADXL345I2C Accelerometer such as the Adafruit Industries product ID 1231 or
the SparkFun product ID SEN-09836, and an LED matrix kit from SparkFun—
product number DEV-11861. You'll also need your LCD display from Chapter 4,
Using Specialized Output Devices. Finally, you'll need a USB gamepad—I recommend
the N64RetroLink controller that is available for about $15 on Amazon, but if you
have a spare PS3DualShock 3 controller, I will also include instructions for that.

Advanced Components – SPI, I2C, and Other Devices

[98]

Why do we need the I2C and SPI
protocols?
This is all starting to get really complicated, right? Why even bother? We have digital
pins and analog pins; shouldn't reading values from these be enough?

Not when you go outside the realm of LEDs. Think about how much information
goes into this text you're reading on a page (or, likely, a screen)! Bytes and bytes of
information. This is true for many peripherals you'll use in Johnny-Five applications.

For instance, the accelerometer we'll be using—without the I2C protocol, it would
use three analog pins. That's the majority of the analog pins on an Arduino Uno,
and many platforms don't have analog pins at all! Not to mention the LCD we used
in Chapter 4, Using Specialized Output Devices—without I2C, we have to correctly wire
11 different pins, six of which are separate data pins.

The complexity of data being sent and received is also an issue. There are sensors
that send back data that doesn't fit in an analog range of 0-1024. There are output
devices—such as LCD screens—that need bytes of information. These devices need
these protocols to effectively communicate and receive the data they need.

The I2C and SPI protocols allow us to unlock an entirely new dimension of data for
small projects—we can use many more devices with way fewer pins.

First, we'll take a look at the SPI protocol—this protocol allows us to send a lot of
data in a much easier way than previous setups.

Exploring SPI (Serial Peripheral Interface)
devices
Serial Peripheral Interface (SPI) is a protocol to be used with certain devices in
Johnny-Five and in general, robotics. It came about as a response to typical serial
connections (which you don't see often in hobbyist robotics anymore), which were
asynchronous in nature. This led to a lot of overhead, so SPI was developed as a
way to ensure data was sent and received in a way that was efficient.

Keep in mind that when we talk about synchronous/
asynchronous in this context, we are NOT talking about
it as we would in JavaScript. You can still write async
JavaScript functions around SPI methods!

Chapter 8

[99]

How SPI works
In typical serial connections, you have a line from which data goes out (TX)
and a line to which the data comes in (RX), and this makes communication difficult.
How does the receiver know how fast the sender would be sending bytes, and when
are they done sending? This lack of a synchronized time clock is what we mean
when we say asynchronous in this context—the sending and receiving devices just
send bytes as fast as they please, assuming the receiver will know how to read them.

Let's go through some of the features of SPI:

•	 SPI uses a separate pin to establish a unified time clock, to sync the receiver
and sender. This data clock is flipped between a HIGH and LOW state each
time a bit is sent—telling the receiver that a new piece of information is
being read.

•	 SPI also splits the communications lines into MOSI (Master Out Slave In)
and MISO (Master In Slave Out). I'll refer to these by their acronyms, but I
will use microcontrollers and devices for our purposes, as in this context they
work well.

•	 The MOSI pin is the line to send data from the microcontroller to the
device—output, for our purposes. MISO is a line for the device to send
data to the microcontroller—great for sensors and other input needs.
Note that if a device does not have any reason to communicate data back
to the microcontroller (like our LED matrix), it may leave off the MOSI
pin and label the MISO pin something such as "data".

•	 Finally, SPI devices usually have a CS or SS pin (Chip Select or Slave
Select), which is used in setups where multiple devices are used by
one microcontroller. This pin is flipped between HIGH and LOW to let the
microcontroller tell the device that it is sending data. You flip the CS pin of
the device you are reading from or writing to, and other devices will ignore
that data.

Advanced Components – SPI, I2C, and Other Devices

[100]

So to recap, you need four pins on average—one for the synchronous clock (often
labeled SCLK), one for the microcontroller to send data to the device, one for the
device to send data to the microcontroller, and one for chip selection.

The SPI explained—Image credit: https://en.wikipedia.org/wiki/Serial_Peripheral_
Interface_Bus

Note that in many setups with one SPI device, wiring diagrams
will show that the CS pin is wired to the 5V. This is fine—you're
just permanently setting the CS to HIGH, telling the device to
always be listening for or sending data.

How Johnny-Five does SPI
Luckily, we don't have to handle timing and bit-shifting ourselves—Johnny-Five
gives us a nice API to deal with SPI connections. The functions for these are attached
to the Board object and are usually accessed by the component libraries themselves—
you won't be using these much unless you're implementing your own SPI device!

This method handles the sending out of data to the device. Also, this is the method
used for our LED matrix. The method, Board.shiftOut(dataPin, clockPin, data),
shifts out the bytes in data through the pin dataPin using clockPin as a clock.

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Chapter 8

[101]

So considering what we know of SPI, we can determine that Johnny-Five does the
following for us:

1.	 Sets the clock, data, and CS pins to the OUTPUT mode.
2.	 Sends startup instructions specific to our device (in the case of our LED

matrix, brightness and refresh rate are two examples).
3.	 Waits for data to be sent by our program.
4.	 Sets the CS pin to LOW to indicate to our device that data is being sent to it.
5.	 Writes the data and syncs the clock and data pins for us.
6.	 Sets the CS pin back to HIGH to indicate we are done sending data.

Benefits and drawbacks of SPI
The benefits of SPI are mainly in the speed and ease-of-use categories; it's way easier
to write to and read from SPI devices because they agree on timing and you don't
need extra bits or patterns to alert devices of the beginning and end of data.

The downside involves the sheer number of pins required; whereas serial
connections only required two pins, SPI requires four, with only one pin that can
be shared with multiple SPI devices. Your SPI devices can all share a clock pin,
but need their own MISO, MOSI, and CS pins. This can proliferate quite quickly.

Luckily, Johnny-Five has SPI support on quite a few platforms, most notably
Arduino microcontrollers. Next, we'll take a look at building a project with an
SPI device—our LED matrix!

Building with an SPI device – an LED matrix
For our first project, we're going to use an SPI device with our Arduino and
Johnny-Five. What we'll use is an LED matrix. This is a matrix of several single-,
dual-, or tri-color LEDs that are controlled as a group.

You can really see the benefit of SPI here—controlling each of these LEDs with a pin
would require 64 pins for a single-color matrix! For dual- and tri-color, it would be
128 and 192! SPI really gives us a boost here by allowing us to have control based on
two pins.

Advanced Components – SPI, I2C, and Other Devices

[102]

The build
Grab your LED matrix and wire it up! Here's the pin matchup in case you have a
different LED matrix: pin 2 runs to DIN or DATA, pin 3 to SCLK, CLK, or clock, and pin
4 to CS, as shown in the following diagram:

Wiring diagram for the LED matrix

Note that the item in the diagram has one extra pin— ignore that! Yours should only
have five, and the pins should be clearly labeled on any kit you get.

Chapter 8

[103]

The API
The LED matrix API in Johnny-Five gives us a lot of ways to play with this output
device. Let's take a look at the constructor and a few of the methods, in the following
table, before breaking into our code:

Note that in the API, many of these functions take an optional index—
this is because you can chain LED matrices together and this optional
parameter allows you to address each one specifically. We won't be
using this here because we only have one device.

Methods Properties
.on([index]) This turns on all the matrices if no index is

passed. It turns off the device at an index if
an index value is passed.

.off([index]) This turns off all the matrices if no index
is passed, and the one at an index if it is
passed. Note that when a matrix is turned
off, it still retains data that will be shown
when the matrix is turned back on—this
can be used as a power saver for
battery-run projects!

.clear([index]) This clears all matrices if no index is passed,
and clears the matrix at an index if one is
passed. This clears out the data and turns all
LEDs in the matrix off.

.brightness([index], brightness) If no index is passed, this sets all matrices to
the brightness passed (0-100). If an index is
passed, this sets the matrix at that index to
the passed brightness level.

.led([index], row, col, state) If no index is passed, this sets all matrices at
the point (row, col) to state (1 for ON, 0 for
OFF). If an index is passed, this sets only the
LED on that matrix.

There are also functions to draw multiple LEDs at once, but we'll need to talk a bit
about how we pass drawing data to the LED matrix first.

Advanced Components – SPI, I2C, and Other Devices

[104]

Formatting data for the LED matrix
As you can see from the preceding .led() function, 1 sets the LED to ON and 0 sets it
to OFF. This is a lot like binary, right? That's because it is, and that's how we send all
data to the LED matrix—a series of binary bits.

So, for instance, you can send an image to an LED matrix that's 8x8 with an array of
rows represented by strings containing binary values for each LED in the row:

var checkerboard = [
 "01010101",
 "10101010",
 "01010101",
 "10101010",
 "01010101",
 "10101010",
 "01010101",
 "10101010"
];

However, this can get unwieldy. You can also send the same data as a set of
hexadecimal values representing each row, with two digits in each number; our first
row in binary is 0b01010101, which translates to 0x55, and our second row in binary
is 10101010, which translates to 0xAA:

var checkerboardHex = [0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA];

Keep these in mind as we talk about the next set of functions, which I call the
drawing functions.

The Drawing functions
Let's explore some of the drawing functions in the following table:

Functions Properties
.row([index], row, value); If an index isn't passed, this sets the LEDs in

a row at row to value—where the value is
an 8-bit or 16-bit value (0-255 in decimal). If
an index is passed, this only sets the row at
that device's index.

.column([index], col, value); If an index isn't passed, this sets the LEDs
in the column at col to value—where the
value is an 8-bit or 16-bit value (0-255 in
decimal). If an index is passed, this only sets
the row at that device's index.

Chapter 8

[105]

Functions Properties
.draw([index], character); This draws a character on the device at an

index, if passed. If no index is passed, this
renders the character on all devices.

So, .row() and .column() work with one hexadecimal value—.row(0, 0xFF) sets
the first row of LEDs to ON for all matrices.

.draw can accept a few things as a valid input. We have shown many of these in
previous examples: Strings of binary characters and hexadecimal values, both in an
array of rows. But luckily, the library already has several characters implemented for
us. The predefined characters for LED matrices in Johnny-Five are as follows:

•	 0 1 2 3 4 5 6 7 8 9…
•	 ! " # $ % & ' () * + , - . / : ; < = > ? @
•	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ `
•	 a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

You can pass in a string containing one of these characters as your value,
as shown here:

myMatrix.draw('~');
myMatrix.draw('A');

This allows us much more easily to show text and numerical output on our
LED matrix.

Now that we've explored the API, let's write some code that loads a character that
we define, then injects our matrix and another character that we define into the REPL
so we can play with it live!

The Code
Place the following into led-matrix.js:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {

 // our first defined character-- using string maps
 var checkerboard1 = [
 "01010101",
 "10101010",

Advanced Components – SPI, I2C, and Other Devices

[106]

 "01010101",
 "10101010",
 "01010101",
 "10101010",
 "01010101",
 "10101010"
];

 //our second defined character-- using hex values
 var checkerboard2 = [0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA,
 0x55];

 var matrix = new five.Led.Matrix({
 pins: {
 data: 2,
 clock: 3,
 cs: 4
 }
 });

 matrix.on();
 matrix.draw(checkerboard1); //draw our first character

 this.repl.inject({
 matrix: matrix,
 check1: checkerboard1,
 check2: checkerboard2
 });
});

Once you've got the code in, run it with the following:

node led-matrix.js

Chapter 8

[107]

In a few seconds, your LED matrix should light up with a checkerboard pattern like
the following:

A matrix example with checkbox character

Now's the time to play with the REPL—for instance, try the following command line:

matrix.draw(check2);

And watch it change! You can also clear the matrix with the following command line:

matrix.clear()

Draw a predefined character with the following command line:

matrix.draw('J');

After clearing again, try the .led and .row functions as follows:

matrix.clear();

matrix.led(3, 3, 1)

matrix.row(1, 0xA1);

You now have a good grasp of the LED matrix and using SPI devices with Johnny-
Five! We've discussed the upsides and downsides of SPI communications and
covered a little about why serial connections remove and create a lot of overhead.
Now, we're going to take a look at I2C—a protocol designed to gather many of the
benefits of SPI and serial and join them together.

Advanced Components – SPI, I2C, and Other Devices

[108]

Exploring I2C devices
We touched on I2C devices back in Chapter 4, Using Specialized Output Devices—you
may have used an I2C LCD to display some data. You may have noticed that the
I2C LCD was much easier to wire up, and had the same API as the non-I2C LCD.
Luckily, this is because Johnny-Five strives to give every component a similar API,
regardless of its implementation or protocol. But how does I2C work, and what
makes it a useful protocol?

How I2C works
I2C, which stands for Inter-Integrated Circuit, is a protocol that input and output
components can use to communicate with microcontrollers. It's very standardized,
and nearly all I2C devices operate in the same way. I2C also has the major benefit of
being recognized and implemented by many major microcontroller manufacturers—
including Arduino. Any Arduino platform that is compatible with Johnny-Five is
also compatible with I2C devices.

However, implementing an I2C device in Johnny-Five can be a tricky proposition.
To understand why, we need a better understanding of how I2C works.

I2C has the good parts of SPI combined with the good parts of serial communications.
It only uses two pins for data and clock, but has a synchronous clock that can be set by
the system!

Pins used by I2C
I2C devices use two pins outside of any power requirements: SDA, which is a data
line, and SCL, which is a clock line. These two pins form an information bus, which
can be used by many devices at once.

This is where it sounds a lot like SPI; the two pins drive each other. When sending
an instruction, the SCL pin is flipped, telling the bus that another bit of data is ready,
while simultaneously flipping the SDA bit to the value of the bit being sent. This
allows the programmer and microcontroller to dynamically control the clock—this
allows accurate data transmission and very few bit errors. However, it can be very
difficult to implement this behavior ourselves.

Each time data is sent to I2C, an address is sent as the first byte. This address refers
to the device on which our microcontroller is.

Chapter 8

[109]

Luckily, we don't have to implement this behavior ourselves—Johnny-Five and the
underlying Firmata system have implemented this for us. However, you will need
to understand how to write and read from these devices—otherwise, you'll be stuck
with a device that won't even boot up!

How I2C devices send and receive data
Every I2C device has an address, which is usually shown in hexadecimal format.
For instance, the address of the accelerometer that we'll be using in this chapter
is 0x53 (the 0x, for those unfamiliar with hexadecimal, indicates that the number
is in hexadecimal format). This is useful when the I2C bus for a microcontroller is
controlling multiple devices—the address tells the devices on the bus which device
we are writing to or reading from. An example of address use can be as follows:

Data is sent and received by writing to and reading from registers on the I2C device.
Every time we want to write to or read from an I2C device, we need to send the
address (so the devices on the bus know which device you are addressing to)
and the register we want to read or write. If we are writing data, we also need to
send the byte we wish to write.

Benefits and drawbacks of I2C
There are definitely benefits and drawbacks of using I2C with Johnny-Five, and they
can affect your builds or choice of microcontroller.

Benefits
Let's go through the benefits of using the I2C devices, as follows:

1.	 One of the benefits of using I2C devices is that you can use several devices
with just two data pins: SDA and SCL. As this is built on a bus, you can use
several devices without any issues.

2.	 Another benefit of I2C devices is that they conform to a standard;
implementing these standards mostly conforms to a formula that is easier
to follow than the devices with a less rigid standard (or no standard!).

3.	 Finally, there are many I2C backpacks for devices that use several data
pins otherwise—such as our LCD from earlier. These backpacks can make
devices useable with microcontrollers using fewer pins. There is even some
work being done in Johnny-Five to use I2C expanders, which will allow
devices without analog input or PWM pins to use devices that require these
pins. This is called the Expander API and more info can be found on this at
johnny-five.io.

johnny-five.io

Advanced Components – SPI, I2C, and Other Devices

[110]

Drawbacks
Let's go through the drawbacks of using the I2C devices, as follows:

1.	 One of the main drawbacks of using I2C in Johnny-Five is that not all
platforms that run Johnny-Five support it—be sure to check the Platform
Support section of johnny-five.io before trying I2C with your device.

2.	 Another drawback of implementing new I2C devices is that timing can be
an issue—I2C is very synchronous by nature; it requires certain instructions
to be sent in a certain order with certain delays in between. Johnny-Five
and JavaScript are not the easiest to wrap around these concepts, and this
can cause some really interesting race conditions and bugs. However, these
issues only appear when implementing your own I2C devices.

Building with an I2C device – Accelerometer
Building a Johnny-Five project with an I2C component can sound tricky—luckily,
because of the way Johnny-Five works, it's actually nearly as simple as other projects
we've worked on in this book. For this project, you'll need your microcontroller, your
breadboard and wires, and your ADXL345 accelerometer.

Wiring up our accelerometer
To get started, wire up your project as shown in the following diagram. Be sure that
you only use the I2C pins and the power pins on your accelerometer. Also, be sure to
use as many jumper wires as you can, as you have been able to move the breadboard
and the accelerometer around a bit to test this project:

Accelerometer wiring for NON-R3 Arduino Uno

johnny-five.io

Chapter 8

[111]

One last thing to note: if you use the SparkFunADXL345 board, you'll need to wire
the CS (Chip Select) pin to VCC, as shown here:

Wiring for the SparkFun breakout board

You do NOT need to do this for the AdafruitADXL345 board.

Once you've wired the accelerometer up, it's time to write the code to test
that everything works. We'll be using barcli again, to show each axis of
acceleration easily.

Coding up our example
In order to code our example, we should first look at the Accelerometer object and
API to see which events to watch for.

Looking at the API, we'll want to tap into the change event. Luckily for us, we can
also tap into a lot of information regarding the accelerometer, thanks to the Johnny-
Five API. Inside the change event handler, we can access the following bits of data:

Data Properties
this.x This is the value for the x axis in G forces
this.y This is the value for the y axis in G forces

Advanced Components – SPI, I2C, and Other Devices

[112]

Data Properties
this.z This is the value for the z axis in G forces
this.pitch This is the pitch of the device in degrees
this.roll This is the roll of the device in degrees
this.
acceleration

This is the total acceleration of the device

this.
inclination

This is the inclination (incline measure) of the
device

this.
orientation

This is a value between -3 and 3 representing
the physical orientation of the device

Since we want to show bar graphs of the output, let's consider the ranges we'll need
to set on these graphs. The axes' raw data doesn't tell us too much, so let's skip the
graphs of these. pitch, roll, and inclination are in degrees, so we'll set the range from
-180 to 180. And acceleration will be between -2 and 2g, although you can set this
higher for the ADXL345—up to 16g. Orientation will be between -3 and 3.

Knowing all of this, we can write our code as follows:

var five = require('johnny-five');
var barcli = require('barcli');
var board = new five.Board();

board.on('ready', function(){
 //set up our accelerometer
 var accel = new five.Accelerometer({
 controller: 'ADXL345'
 });

 //set up our graphs
 var pitch = new barcli({
 label: 'Pitch',
 range: [-180, 180]
 });
 var roll = new barcli({
 label: 'Roll',
 range: [-180, 180]
 });
 var acceleration = new barcli({
 label: 'Acceleration',
 range: [-2, 2]
 });
 var inclination = new barcli({

Chapter 8

[113]

 label: 'Inclination',
 range: [-180, 180]
 });
 var orientation = new barcli({
 label: 'Orientation',
 range: [-3, 3]
 });

 accel.on('change', function(){
 pitch.update(this.pitch);
 roll.update(this.roll);
 acceleration.update(this.acceleration);
 inclination.update(this.inclination);
 orientation.update(this.orientation);
 });
});

Once you've got all this in, place your accelerometer so that it is laid flat on a table,
and start up the program with the following:

node accel-i2c.js

You should see your terminal clear, and several bar graphs appear, like the
figure below:

Barcli bar graphs in the terminal

As you move the accelerometer, watch the values change! The bar graphs should,
as always, update live in the terminal.

There are many projects you can continue within this vein—you can attach servos
to match pitch and roll angles, or LEDs to get brighter when you accelerate! You
can achieve a lot of input from your accelerometer that can influence and add extra
dimensions to your NodeBots projects.

Now that we've gone through the two most popular protocols to communicate
with the devices connected to our microcontrollers, let's explore the world beyond
a bit—let's talk about using external devices in your Johnny-Five projects.

Advanced Components – SPI, I2C, and Other Devices

[114]

External Devices
SPI, I2C, and some other protocols get really complex, but there's a whole other
world of devices we can also use with our Johnny-Five projects. These technically
fall outside the scope of the Johnny-Five library, but works well with the library
due to their use of Node.JS. Let's take a look at the "why" and the "how" of external
devices with Johnny-Five.

Why External Devices?
Microcontrollers are amazing! They can do a litany of things—input, output, and so
on - but sometimes you see a new device that doesn't plug in to a microcontroller.
Perhaps it contains a microcontroller of its own—such as a quadcopter or a drone!
This section covers the use of these devices with Node and integrating them into
your Johnny-Five projects.

Some really cool examples that have been integrated into Johnny-Five projects are
as follows: video game controllers; the LeapMotion controller, a gesture sensor that
tracks hand position and movement; and Wi-Fi-enabled quadcopters, such as the
Parrot AR drones.

But how do we communicate with devices without using Johnny-Five? The answer
actually lies within Johnny-Five itself: node-serialport, a library that handles serial
connections via Node.JS. Let's take a look at how this library enables us to build the
amazing world of NodeBots.

node-serialport
As early as five years ago, NodeBots didn't exist. As early as ten years ago, they
weren't even a thought—JavaScript was a browser language, after all. However,
with the advent of Node, all sorts of new technologies were available to Node.

Serial connections are the communications channel between all sorts of devices—
such as printers, webcams—and many of the peripherals that we use on a daily
basis. In 2009, Chris Williams (often cited as the Godfather of NodeBots!) created
node-serialport. The node-serialport library allows you to communicate with
serial devices using Node.JS.

Chapter 8

[115]

At first, this didn't create the explosion of NodeBots you'd expect by reading a book
like this—it was still a very specialized thing to get a serial connection working.
However, shortly after the creation of node-serialport, Rick Waldron wrote
Johnny-Five on top of it. That's right; under its hood, Johnny-Five uses node-
serialport to speak to the Arduino boards we've been using in our examples.

However, there are other devices that have made their way to Node using libraries
outside node-serialport; these include gamepads meant for playing games on the
PC. Many devices that you can add to your computer via USB can now be used with
Node, thanks to another library called node-hid.

node-hid
The node-hid library is for using Human Interface Device (HID) devices, such as
gamepads. HID is a part of the USB specification and allows many peripherals to
speak to a computer in a way that is easily understood and emulated.

Some of the most popular HID devices used are gamepads, computer games, and
retro system emulators. In our next build, we'll explore how to use these external
devices with Johnny-Five, using a library called node-gamepad.

Building a USB gamepad
What we're going to build is a hybrid project; we'll be using Johnny-Five along with
other Node plugins in order to expand the reach of things we can do. We're going to
show the x and y coordinates from the joystick on the N64RetroLink controller (or
left on the PS3 controller) on our LCD display.

Advanced Components – SPI, I2C, and Other Devices

[116]

The hardware
First, let's wire our LCD to our Arduino to show data on. Remember to use the first
diagram for I2C displays and the second for regular LCD displays:

Wiring diagram—I2C LCD

Chapter 8

[117]

Wiring diagram—regular LCD

Once you've wired up your LCD, connect your gamepad to your computer.
If you're using the RetroLinkN64 controller, plug it in via USB. If you're using
the PS3 controller, you can pair it with Bluetooth or connect it via USB.

Advanced Components – SPI, I2C, and Other Devices

[118]

The node-gamepad API
Let's take a look at the node-gamepad library before writing our code. First, let's
install the library:

npm install node-gamepad

This will install the library and rebuild the native bindings for node-hid. Then,
let's take a look at the gamepad constructor:

var GamePad = require('node-gamepad');
var gamepad = new GamePad('n64/retrolink'); //using PS3? use 'ps3/
dualshock3' instead

The constructor just takes a path to a keymap provided by the library; use n64/
retrolink for the retrolink controller and ps3/dualshock3 for the PS3 controller.

For the joystick data, we'll need to put an event handler on the joystick so that we
get a response when it moves:

gamepad.on('center:move', function(data){ … }); //Using PS3? use
'left:move'

The data object will have an x and a y property, representing the x and y coordinates
of the joystick.

Now that you know what to look for from the gamepad, you can wire this code
together with your existing Johnny-Five knowledge!

The code
Create a controller.js file and add the following lines of code:

var five = require("johnny-five");
var GamePad = require('node-gamepad');
var board = new five.Board();

var controller = new GamePad('ps3/dualshock3');
controller.connect();

board.on("ready", function() {
 // Controller: PCF8574A (Generic I2C)
 // Locate the controller chip model number on the chip itself.
 var l = new five.LCD({
 controller: "PCF8574A",
 });

Chapter 8

[119]

 //If you're using a regular LCD, comment the previous three
 // lines and uncomment these lines:
 // var l = new five.LCD({
 // pins: [8, 9, 10, 11, 12, 13]
 // });

 var x, y;

 // if you're using a PS3 controller, change center:move to
 // left: move!
 controller.on('center:move', function(data) {
 x = data.x;
 y = data.y;
 });

 // Updates on an interval to not overwhelm the LCD!
 setInterval(function(){
 l.clear();
 l.cursor(0, 0).print('X: ' + x);
 l.cursor(1, 0).print('Y: ' + y);
 }, 250)
});

Start the file using the following command line:

node controller.js

You should see the LCD update when you move the joystick!

Now here's a challenge; add a listener for one of the controller buttons to show on
the LCD as well!

Summary
We've done a lot in this chapter. You've learned about SPI, I2C, and how to use
external libraries and devices with Johnny-Five. In the next (and sadly, final)
chapter, we'll discuss the use of different microcontrollers with Johnny-Five
and how to connect your projects to the Internet.

Chapter 9

[121]

Connecting NodeBots to the
World, and Where to Go Next

We have now covered just about everything you need to break into the wide world
of JavaScript Robotics—except how to connect your bots to the web, and where to
go from here. This chapter covers how to connect your NodeBots to online services,
such as Twilio, and how Johnny-Five and other libraries will lead you to exploring
your next set of projects!

In this chapter, we will cover the following topics:

•	 Connecting NodeBots to the Web
•	 Johnny-Five and the wide world of microcontrollers
•	 Other JS Robotics libraries and platforms
•	 Where to go from here

What you'll need for this chapter
You'll need your microcontroller, a temperature sensor, and a button—we're going
to build a bot that sends a text message with the inside and outside temperature
data when you press the button. If you can get your hands on a Particle Photon
(check out the shop at www.particle.io), you'll also learn how to make your
code work on both platforms without changing more than two lines!

Finally, you'll need your enthusiasm and curiosity—these are the things that'll give
you ideas for your next NodeBots project!

www.particle.io

Connecting NodeBots to the World, and Where to Go Next

[122]

Connecting NodeBots to the Web
Bots are really cool on their own—collecting data, outputting that data using
colors, text, and even images! We can only do so much when our bots only talk to
themselves. However, because of the Node platform that we build our NodeBots
on, talking to web services and using Internet data in our projects is really simple.
How so? Well, all you have to remember about NodeBots code is the following.

It's just a Node Server!
Implementing data retrieval and third-party APIs in our NodeBots is easy—especially
when, thanks to npm, the modules that interface with all our favorite APIs are right at
our fingertips.

Anything that you can install on your computer from npm, you can use with your
NodeBots. For instance, I have a wearable that pulls colors from tweets—I use Twitter
and the color modules from npm to make this happen smoothly!

For our first example, we're going to build a relatively simple bot, hardware-wise.
It'll have a button and a temperature sensor. However, we're going to connect this
bot to the Internet and have it collect weather data and use Twilio to text us this data.

Using Twilio
In order to get started, you'll have to follow the instructions at http://twilio.
github.io/twilio-node/ to get your own account, phone number, and API keys.
Once you've done this, you'll need to save the keys and phone number for use in
our project code.

Building the WeatherBot
First, let's wire up the WeatherBot, as shown in the following diagram:

http://twilio.github.io/twilio-node/
http://twilio.github.io/twilio-node/

Chapter 9

[123]

The Arduino WeatherBot schematic

Once you've wired it all together and got your Twilio API keys and phone number,
it's time to start coding.

Let's take a look at the steps that we need to take:

1.	 We need to establish our weather and Twilio services, create our board,
and start the board.

2.	 Then, when the board is ready, we need to create a temperature sensor
and a button object.

3.	 When the temperature sensor updates, we need to update a variable
with the current indoor temperature.

4.	 When the button is pressed, we need to go get the outside weather data,
and combining this with our indoor weather data, we have to send a text
message using our new Twilio client.

Connecting NodeBots to the World, and Where to Go Next

[124]

So we'll need the following in a file called arduino-weatherbot.js:

var five = require('johnny-five');
// we'll use weather-js for the weather
var weather = require('weather-js');
// and Twilio so send our text message
var twilio = require('twilio')(YOUR_ACCOUNT_SID, YOUR_AUTH_TOKEN)

var board = new five.Board();

board.on('ready', function(){
 var button = new five.Button(2);
 var temp = new five.Temperature({
 pin: 'A0',
 controller: 'TMP36' // Make sure you use the controller proper
 for your sensor!
 });

 var currentTemp = undefined; // we'll stash the temp sensor data
here

 button.on('press', function(){
 console.log('Inside: ' + currentTemp + ' degrees F');
 weather.find({ search: 'Austin, TX', degreeType: 'F' },
 function(err, data){
 console.log('Outside: ' + data[0].current.temperature + '
 degrees F');
 twilio.sendMessage({
 to: YOUR_PHONE_NUMBER,
 from: YOUR_TWILIO_NUMBER,
 body: 'Inside: ' + currentTemp + ' degrees F \n Outside:
 ' + data[0].current.temperature + ' degrees F'
 }, function(err, responseData) {
 if(!err){
 console.log('Success!');
 } else {
 cosole.log(err); // we need to catch any Twilio errors
 }
 });
 })
 })

 temp.on('change', function(err, data){
 currentTemp = data.F; //stash the temp data when it changes!
 });
});

Chapter 9

[125]

Once you've got all this, keep in mind what you need to change: YOUR_ACCOUNT_SID
and YOUR_AUTH_TOKEN need to be replaced with the keys you received from the
Twilio API, YOUR_PHONE_NUMBER needs to be replaced with a number you can text,
and YOUR_TWILIO_NUMBER needs to be replaced with the number you received from
Twilio. Finally, you should change Austin, TX to your location for more accurate
data!

Using the TextBot
Now, grab your cell phone and run the code:

node arduino-weatherbot.js

Once you've pressed the button, wait a bit, and you should see a text message in
your phone's inbox!

The text message from my WeatherBot!

You've now connected your NodeBots to two online services: weather-js uses
Yahoo weather and Twilio!

We've done a lot with our Arduino Uno, and it's been great, but let's talk about
moving on to other microcontrollers and how easy this can be with Johnny-Five!

Johnny-Five and the wide world of
microcontrollers
We've been using Johnny-Five for the majority of this book, but we haven't really
touched on one of its best features! While the REPL and the API are definitely
strong points, what really stands out about it is its wide array of supported
microcontrollers.

To be up to date with what Johnny-Five supports, check out johnny-five.io/
platform-support—this page, as we saw in the earlier chapters, contains all the
platforms that Johnny-Five supports, and also what types of component they support.

johnny-five.io/platform-support
johnny-five.io/platform-support

Connecting NodeBots to the World, and Where to Go Next

[126]

Wrappers, which we'll use in this build, are pieces of code that translate Johnny-
Five's Firmata method of communicating to other platforms that don't necessarily
use Firmata. In our build, for instance, we'll be using a Particle Photon, which uses
a firmware called VoodooSpark. The particle-io wrapper essentially teaches
Johnny-Five how to speak VoodooSpark, so we can use the Photon with our
existing code.

Let's check out how easy it is to move code by moving our Arduino Uno WeatherBot
to the Particle Photon, a Wi-Fi-connected microcontroller that is available at particle.
io. There are definitely some differences between our Uno and the Photon: the
Photon is a $20, Wi-Fi-connected device, and it comes with free cloud services
provided by Particle.

Once you've received your Photon, you have to use particle-cl to create an
account and claim your Photon. Do this by plugging your Photon into a USB port,
and while the status light flashes blue, install the CLI using npm and run the setup:

npm install -g particle-cli

particle setup

Once you've run the setup, you'll need your access token and device ID. To get the
device ID, run the following:

particle list

Then, copy the hex identifier for the Photon you just set up. To get your access token,
run the following:

particle token list

Next, copy the hex value for any nonexpired token.

Finally, we need to flash our Photon with VoodooSpark, a firmware that, like
Firmata on the Uno, allows our Johnny-Five code to communicate with our
Photon. You can go about this in two ways: one is to follow the instructions at
https://github.com/voodootikigod/voodoospark, and the other is to use the
new command-line tool, voodoospark-installer. To use the new CLI, install it
as follows:

npm install -g voodoospark-installer

Then, run the following:

voodoospark

https://github.com/voodootikigod/voodoospark

Chapter 9

[127]

This will ask for your Particle username and password, and then give you a list
of Photons to pick from. Select your new Photon, hit Enter, and it will install
VoodooSpark on that Photon.

Moving our WeatherBot to the Particle Photon
First, let's look at the hardware setup for this bot. It's very similar to the Arduino
Uno build, but the pins are a bit different:

A WeatherBot Photon schematic

Next, we'll need to enter our project folder and install particle-io. The particle-io
module is a Johnny-Five wrapper module—it tells Johnny-Five how to communicate
with the Photon, because it is slightly different to communicating with the Arduino.

npm install particle-io

Connecting NodeBots to the World, and Where to Go Next

[128]

Now, we need to add the wrapper to our code. I suggest that you copy your original
code to a new file called photon-weatherbot.js:

var five = require('johnny-five');
// our particle-io wrapper
var Particle = require('particle-io');
// we'll use weather-js for the weather
var weather = require('weather-js');
// and Twilio so send our text message
var twilio = require('twilio')(YOUR_ACCOUNT_SID, YOUR_AUTH_TOKEN)

var board = new Particle({
 deviceId: YOUR_DEVICE_ID,
 token: YOUR_ACCESS_TOKEN
});

board.on('ready', function(){
 var button = new five.Button('D0');
 var temp = new five.Temperature({
 pin: 'A0',
 controller: 'TMP36' // Make sure you use the controller proper for
your sensor!
 });

 var currentTemp = undefined; // we'll stash the temp sensor data
here

 button.on('press', function(){
 console.log('Inside: ' + currentTemp + ' degrees F');
 weather.find({ search: 'Austin, TX', degreeType: 'F' },
function(err, data){
 console.log('Outside: ' + data[0].current.temperature + '
degrees F');
 twilio.sendMessage({
 to: YOUR_PHONE_NUMBER,
 from: YOUR_TWILIO_NUMBER,
 body: 'Inside: ' + currentTemp + ' degrees F \n Outside: ' +
 data[0].current.temperature + ' degrees F'
 }, function(err, responseData) {
 if(!err){
 console.log('Sucess!');
 } else {
 cosole.log(err); // we need to catch any Twilio errors
 }

Chapter 9

[129]

 });
 })
 })

 temp.on('change', function(err, data){
 currentTemp = data.F; //stash the temp data when it changes!
 });
});

Note the changes; we need to require in our wrapper, place it in our Board object
constructor, and change the pins for the button and temperature sensor.

That's it! The rest of the code will work the same, and this is true for ANY platform
that Johnny-Five supports. This is one of the biggest strengths of Johnny-Five; we
have an ubiquitous API to build NodeBots on tons of different platforms with very
little code change. Run this, and watch it work!

Now that we've explored how to change platforms, let's look at why changing
platforms can be beneficial, depending on the type of project you are working on.

Tethering and Johnny-Five
You may have noticed one limitation of our Arduino setup with Johnny-Five:
we have to keep our microcontroller attached to our computer via USB and keep
the Node code running on the computer in order to keep Johnny-Five running.
Luckily, this isn't the case for all NodeBots on Johnny-Five. For instance, the
BeagleBone Black runs Node on-board, and so, using beaglebone-s, you don't
need to tether. You just run the Johnny-Five code straight on the device. This is
also true for raspi-io for Raspberry Pi and tessel-io for the Tessel 2.

More and more devices will be added to Johnny-Five as time goes on, and tethering
limitations will become less and less of an issue accordingly.

Other JS libraries and platforms
Johnny-Five is definitely an amazing library and one of the cornerstones of
NodeBots. However, one of the great things about open source hardware and
software is that there is a litany of choices for you to explore in the world of
NodeBots. I'll go into just a few of the many available, as new choices and
projects are popping up every day!

Connecting NodeBots to the World, and Where to Go Next

[130]

Espruino
Espruino is an open source effort by Gordon Williams to create a microcontroller
that runs JavaScript right on the board. There are currently two models available:
the Espruino, which is the size of a credit card, and the Pico, which is nearly
stamp-sized. Both interact via a USB connection.

Note that the Espruino doesn't use Node; it uses its own version of JavaScript
that is in some places heavily modified. However, to most JavaScript developers,
it will feel remarkably familiar.

The Espruino uses a Chrome app to code and flash the board, and has a good
amount of documentation. As the entire effort is open-source, users are welcome
to contribute. You can find out more about the Espruino at www.espruino.com,
and the boards are available for purchase on Adafruit.

Tessel
The Tessel project is another fully open sourced platform that has two versions. Tessel
1 ran a Node-like environment using a LUA interpreter under the hood, and Tessel
2 runs Linux with Node on top. Note that the Johnny-Five wrapper tessel-io only
works for Tessel 2! However, both of these boards are very interesting and fairly easy
to use without Johnny-Five, and are well-supported and documented by the Tessel
steering committee.

Tessel 2 was ready to be shipped soon at the time of writing this book, and you can
check out its progress or pre-order/buy one at tessel.io.

Cylon.js
Cylon.js is a library much like Johnny-Five, which also supports many platforms.
Its focus is also slightly broader. While Johnny-Five sticks to making sure that
microcontroller support is the main focus, Cylon supports other serial peripherals.
You can find out more about this open-source project at cylonjs.com.

JerryScript
JerryScript is a brand new open-source project from Samsung to get a JavaScript
engine running in a small enough amount of memory so that it can run on a
microcontroller without Linux running underneath. While this is a very new and
ambitious project, if it succeeds, it can usher in a whole new era of JavaScript
robotics. You can learn more at https://samsung.github.io/jerryscript/.

www.espruino.com
tessel-io
cylonjs.com
https://samsung.github.io/jerryscript/

Chapter 9

[131]

Tiny Linux computers
While this is less of a concerted effort and more of a category of devices, there are
new, smaller, faster Linux machines coming out every few months. From Raspberry
Pi to Onion Omega, these machines that carry their own GPIO are definitely an
interesting segment of devices to explore. Many have their own GPIO Node modules
outside of Johnny-Five. BeagleBone Black has BoneScript, for instance. Keep an eye
out in the future for more of these tiny computers, and definitely consider them for
your standalone NodeBots projects.

Vendor libraries
Many IoT microcontrollers also come with JS libraries to use. For instance, Particle
has released an npm module to work with their Core and Photon platforms over
their cloud service using the Spark package. (Note that, because of their company
name change, this package name may change when this book is published). Many
vendors are moving to support Node on their own terms, so definitely look for an
npm package when looking at new hardware platforms.

Where to go from here
As we near the end of this book, I'll address the questions that I get most often:
Where do I go from here? What do I build? Who do I ask for help?

As for what to build, you can do as I do. I keep a small notebook with me, although I
also use my phone to record thoughts—I think about the small things I'd like to have
in my day-to-day life. What problems can I solve? What would look cool? I write
down these problems or wants and go over them later. Can I fix this with a NodeBot,
I ask myself. If I can, awesome! I have my next project. I think you'll find you have
more ideas than you thought you did with this method.

Once you've built something, write about it! The NodeBots community loves to see
how you built something. Don't worry if it's not the next terrain-navigating hexapod;
we'd like to see how you built your Internet-connected Christmas lights or your
automatic dog-feeder. You can never have too many examples for people to look at,
and one of the best ways to contribute back is documentation.

What if you get a new part working? Submit a pull request to Johnny-Five. The team
is very good about issuing fast and friendly feedback, and will work with you to get
your component into Johnny-Five. Also, come and say "Hi" in our Gitter channel—
we're super friendly and love to meet new users and NodeBotters.

Connecting NodeBots to the World, and Where to Go Next

[132]

Thanks for taking this journey through JavaScript Robotics with me! I'm nodebotanist
on Twitter, GitHub, and just about anywhere—come and say "HI" and show me what
you've built!

[133]

Index
Symbol
.to() method

and Animation API, differentiating
between 79

A
accelerometer

building, with I2C devices 110
example, coding 111-113
wiring up 110, 111

Adafruit
URL 3

analog input pins
working 46

Animation API
about 76
and .to() method, differentiating

between 79
animation 76
array, creating 80-82
cue points 77-79
duration 77, 78
keyframe 77
need for 76
observing 77
segment 77-79
ServoArray object 79, 80
target 77
terminology 77
three servos, wiring 80-82

animation events
about 92

oncomplete callback 93
onloop callback 93
onpause callback 92
onstart callback 92
onstop callback 92
servo array, building with informative

LCD readout 93-96
Animation object

.enqueue() function 90

.next() function 90

.speed([speed]) function 90

.stop() function 90
about 89
functions 90
pause() function 90
play() function 90

Arduino Uno board
using 3

AVRGirl
about 6
URL 6

B
barcli

URL 55
basic inputs

button-led.js, coding 48, 49
buttons 47
potentiometers 47
using 47

button
and LED, wiring 48
coding 48, 49

[134]

C
character LCD

code, running 40, 41
code, writing 39
connecting, to Arduino Uno board 35
I2C LCDs, wiring 35-38
I2C version, coding 39
non-I2C version, coding 39
without I2C interface, URL 30

Chip Select (CS) 99
Cylon.js

about 130
URL 130

D
development environment,

for JavaScript robotics
Firmata, installing 4-6
Johnny-Five, installing 3
microcontroller, connecting 4-6
Node.js, installing 3
project, setting up 3

digital output pins
and PWM pins, differentiating

between 20, 21
Donovan Buck's tharp project 84
drawbacks

of I2C device 110
of SPI device 101

E
Espruino

about 130
URL 130

events, Johnny-Five program
about 11
importance 11

external devices
about 114
importance 114
node-hid library 115

node-serialport library 114, 115
USB gamepad, building 115

external LED
hardware, setting up 12-14
importance 12
wiring 12

F
Firmata

installing 4
functions, Johnny-Five program 10

G
General-Purpose Input/Output pins

(GPIO pins)
digital output pins 20
PWM output pins 20
working 19, 20

GitHub
URL 35

H
Hello, World!

onboard LED, blinking 7
Human Interface Device (HID) devices 115

I
I2C devices

benefits 109
data, receiving 109
data, sending 109
drawbacks 109, 110
exploring 108
pins 108, 109
used, for building accelerometer 110
working 108

I2C protocol
need for 98

inject method 15
Inter-Integrated Circuits (I2C) 32
Inverse Kinematic (IK) 84

[135]

J
JavaScript robotics

about 1
development environment 3

JerryScript
about 130
URL 130

Johnny-Five
about 1, 2
abstraction 21
and NodeBot 2
blink-LED script 10, 11
compatibility, checking with 32, 33
documentation, URL 45
events 10, 11
functions 10
installing 3
Led objects, exploring 24
microcontrollers 125, 126
requisites 9
sensor events 47
SPI device, using 100, 101
tethering 129
URL 32, 45, 65
working 9

JS libraries and platforms
about 129
Cylon.js 130
Espruino 130
JerryScript 130
Tessel 130
tiny Linux computers 131
vendor libraries 131

K
keyframes, servo animations

copyDegrees 84
copyFrame 84
degrees 83
easing 83
non-integer values 85
position 84
shorthand 84
step 83
writing 83-85

L
LCD documentation

obtaining 33, 34
LED

and button, wiring 48
and potentiometer, wiring 50, 51

LED matrix
API 103
drawing functions 104, 105
methods 103
building, with SPI device 101
pin matchup 102

LED matrix API
about 103
code 105-107
data, formatting 104
drawing functions 104, 105

Led object API 21

M
Master In Slave Out (MISO) 99
Master Out Slave In (MOSI) 99
methods, project

blink(time) 21
fade(brightness, ms) 21
off() 21
on() 21
pulse(time) 21
stop() 21

microcontroller
about 2
connecting 4

motors
API, exploring 69
cables 66
considerations 60
controllers 64
defining 60
power concerns 66
REPL, using 68, 69
selecting 64
shields 65
tethering 66
types 59-62
used, for creating project 68, 69

[136]

using, concerns 65
wiring up 66-68

N
NodeBots

about 2
connecting, to Web 122
Node Server 122
TextBot, using 125
Twilio, using 122
used, for fixing issues 131
WeatherBot, building 122-125

Node.js
URL 3

Node Package Manager (NPM) 3
node-serialport 1
non-integer values

false 85
null 85

O
objects, Johnny-Five program 10
onboard LED

blinking 7
Johnny-Five script, running 7, 8
Johnny-Five script, writing 7

outputs devices
multiple pins, requiring 31

P
Particle Photon

URL 121
WeatherBot, moving to 127-129

photocell
about 52
barcli 54, 55
example, coding 53
summarizing 55, 56
wiring 53

Piezo element
PWM pins, using with 25

piezo.off() method 28
potentiometer

and LED, wiring 50, 51

prerequisites, JavaScript robotics
about 19, 44-46, 97
button 44
for creating complex movements 75
light sensor 45
LM35 45
microcontroller 59
Particle Photon 121
rotating potentiometer 44
temperature sensor 45

project
creating, with servo and sensor 70
hardware, setting up 22, 23
Led objects, in Johnny-Five 24, 25
methods 21, 22
script, writing 23

pulse() method 20
Pulse-Width Modulation pins

(PWM pins)
about 20
and digital output pins,

differentiating between 20
PWM pins, using with Piezo element

about 25
hardware, setting up 25
Piezo API, exploring 28
script, writing 26, 27
working 27

R
Read-Eval-Print-Loop (REPL)

about 14
components, making available 15
using 15-17
using, with motor 69
using, with sensor 71-73

S
SainSmart 3
segment options, servo animations

currentSpeed 87
easing 86
fps 87
loop 87
metronomic 87

[137]

multiple servos, in one segment 87
options 86
progress 87
target 86
writing 86-89

sensor events, Johnny-Five 47
Serial Clock Line (SCL) 32
Serial Data Line (SDA) 32
Serial Peripheral Interface device.

See SPI device
servo animations

animation object 89
keyframes, writing 83, 84
segments, writing 86
servo array, animating 90-92
writing 83

servos
about 59
and sensor, used for creating project 70
array building, with informative LCD

readout 93, 94
cables 66
considerations 60
controllers 64
defining 60
power concerns 66
selecting 64
servo API, exploring with sensor 71-73
shields 65
tethering 66
types 62, 63
using, concerns 65
wiring up 67

Slave Select (SS) 99
SparkFun

URL 3, 66
SPI device

benefits 101
drawbacks 101
exploring 98
features 99
used, by Johnny-Five 100, 101
used, for building LED matrix 101
working 99, 100

SPI protocol
need for 98

T
temperature sensor

example, coding 57, 58
using 52
wiring 56, 57

Tessel 130
Tessel 2 130
TextBot

using 125
this.repl.inject() function 15
Twilio

URL 122
using 122

U
USB gamepad

building 115
code, adding to controller.js file 118, 119
hardware 116, 117
node-gamepad API 118

V
VoodooSpark

URL 126

W
WeatherBot

building 122-125
moving, to Particle Photon 127-129

Web
NodeBots, connecting to 122

Thank you for buying
Learning Javascript Robotics

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Arduino Robotic Projects
ISBN: 978-1-78398-982-9 Paperback: 240 pages

Build awesome and complex robots with the power
of Arduino

1.	 Develop a series of exciting robots that can sail,
go under water, and fly.

2.	 Simple, easy-to-understand instructions
to program Arduino.

3.	 Effectively control the movements of all types
of motors using Arduino.

4.	 Use sensors, GPS, and a magnetic compass to
give your robot direction and make it lifelike.

Arduino Development Cookbook
ISBN: 978-1-78398-294-3 Paperback: 246 pages

Over 50 hands-on recipes to quickly build and
understand Arduino projects, from the simplest
to the most extraordinary

1.	 Get quick, clear guidance on all the principle
aspects of integration with the Arduino.

2.	 Learn the tools and components needed to
build engaging electronics with the Arduino.

3.	 Make the most of your board through practical
tips and tricks.

Please check www.PacktPub.com for information on our titles

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1.	 Get to grips with robotic systems.

2.	 Communicate with your robot and teach
it to detect and respond to its environment.

3.	 Develop walking, rolling, swimming,
and flying robots.

Arduino Home Automation
Projects
ISBN: 978-1-78398-606-4 Paperback: 132 pages

Automate your home using the powerful
Arduino platform

1.	 Interface home automation components
with Arduino.

2.	 Automate your projects to communicate
wirelessly using XBee, Bluetooth and WiFi.

3.	 Build seven exciting, instruction-based home
automation projects with Arduino in no time.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
JS Robotics
	Understanding JS Robotics, NodeBots, and Johnny-Five
	What a NodeBot is, and other basic vocabulary
	Johnny-Five and the NodeBot revolution
	What we'll be using in this book

	Setting up your development environment
	Installing Node.JS
	Setting up your project and installing
Johnny-Five
	Connecting your Microcontroller and installing Firmata

	Hello, World! – Blinking an onboard LED
	Writing the Johnny-Five script
	Running the script

	Summary

	Chapter 2: Working with Johnny-Five
	What you'll need for this chapter
	How a Johnny-Five program works
	Objects, functions, and events
	Going over our blink-LED script

	Understanding events in Johnny-Five
	Why events?

	Wiring up an external LED
	Setting up the hardware

	Using the Read, Eval, Print Loop (REPL)
	Making components available to the REPL
	Using the REPL

	Summary

	Chapter 3: Using Digital and PWM Output Pins
	What you'll need for this chapter
	How GPIO pins work
	Digital output pins
	PWM output pins
	How to tell the difference between Digital and PWM pins

	Multiple pins with several LEDs
	Setting up the hardware for the project
	Writing the script for the project
	Exploring more about LED objects in
Johnny-Five

	Using PWM pins with the Piezo element
	Setting up the hardware
	Writing the script
	What's going on with the pin?
	Exploring the Piezo API

	Summary

	Chapter 4: Using Specialized
Output Devices
	What you'll need for this chapter
	Outputs that require multiple pins
	Inter-Integrated Circuits (i2c)

	Checking compatibility with Johnny-Five
	Obtaining documentation, wiring diagrams, and so on
	The project – character LCD display
	Wiring up – i2c LCDs
	The code
	The i2c version
	The non-i2c version

	Running the code

	Summary

	Chapter 5: Using Input Devices
and Sensors
	What you'll need for this chapter
	How analog input pins work
	Johnny-Five sensor events
	Using basic inputs – buttons and potentiometers
	Wiring up our button and LED
	Coding button-led.js
	Wiring the potentiometer and the LED
	Coding our dimmer switch

	Using sensors – Light and Temperature
	Wiring up our photocell
	Coding our photocell example
	barcli

	Coding everything together
	Wiring up the temperature sensor
	Coding our temperature example

	Summary

	Chapter 6: Moving Your Bot
	What you'll need for this chapter
	The different kinds of servos and motors
	Defining motors and servos
	Things to keep in mind
	Types of motors
	Types of servos
	Do I use a servo or a motor?
	Servo and motor controllers
	Motor and servo shields

	Special concerns when using motors
and servos
	Power concerns
	Tethering and cables

	Wiring up servos and motors
	Wiring up servos
	Wiring up motors

	Creating a project with a motor and using the REPL
	Exploring the motor API

	Creating a project with a servo and
a sensor
	Exploring the servo API with the REPL

	Summary

	Chapter 7: Advanced Movement with
the Animation Library
	What you'll need for this chapter
	What is the Animation API?
	Why do we need an Animation API?
	Why animation?

	Looking at the Animation API
	Learning the terminology
	The difference between .to() and the Animation API
	Using the ServoArray object
	Project – wiring up three servos and creating an array

	Writing Servo Animations
	Writing key frames
	The key frame object
	Key frame shorthand
	Examples of writing key frames

	Writing segments
	Segment options
	Examples of writing segments

	The Animation object
	Project – animating our servo array

	Animation events
	Building a servo array with an informative LCD readout

	Summary

	Chapter 8: Advanced Components – I2C, SPI, and Other Devices
	What you'll need for this chapter
	Why do we need the I2C and SPI protocols?

	Exploring SPI (Serial Peripheral Interface) devices
	How SPI works
	How Johnny-Five does SPI
	Benefits and drawbacks of SPI
	Building with an SPI device – an LED matrix
	The build
	The API

	Exploring I2C devices
	How I2C works
	Pins used by I2C
	How I2C devices send and receive data

	Benefits and drawbacks of I2C
	Benefits
	Drawbacks

	Building with an I2C device – Accelerometer
	Wiring up our accelerometer
	Coding up our example

	External Devices
	Why External Devices?
	node-serialport
	node-hid
	Build – a USB gamepad
	The hardware
	The node-gamepad API
	The code

	Summary

	Chapter 9: Connecting NodeBots to the World, and Where to Go Next
	What you'll need for this chapter
	Connecting NodeBots to the Web
	It's just a Node Server!
	Using Twilio
	Building the WeatherBot
	Using the TextBot

	Johnny-Five and the wide world of microcontrollers
	Moving our WeatherBot to the Particle Photon
	Tethering and Johnny-Five

	Other JS libraries and platforms
	Espruino
	Tessel
	Cylon.js
	JerryScript
	Tiny Linux computers
	Vendor libraries

	Where to go from here

	Index

