
M A N N I N G

Simon Holmes

Getting MEAN
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Getting MEAN
with Mongo, Express,

Angular, and Node

SIMON HOLMES

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Susie Pitzen, Susanna Kline,
20 Baldwin Road Karen Miller
PO Box 761 Technical development editor: Marius Butuc
Shelter Island, NY 11964 Copyeditor: Jodie Allen

Proofreader: Alyson Brener
Technical proofreaders: Steven Jenkins, Deepak Vohra

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617292033
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com

brief contents
PART 1 SETTING THE BASELINE ...1

1 ■ Introducing full-stack development 3

2 ■ Designing a MEAN stack architecture 24

PART 2 BUILDING A NODE WEB APPLICATION...........................51

3 ■ Creating and setting up a MEAN project 53

4 ■ Building a static site with Node and Express 80

5 ■ Building a data model with MongoDB
and Mongoose 120

6 ■ Writing a REST API: Exposing the MongoDB
database to the application 160

7 ■ Consuming a REST API: Using an API from
inside Express 202

PART 3 ADDING A DYNAMIC FRONT END WITH ANGULAR.........241

8 ■ Adding Angular components to an Express
application 243
v

Licensed to Mark Watson <nordickan@gmail.com>

BRIEF CONTENTSvi
9 ■ Building a single-page application with Angular:
Foundations 276

10 ■ Building an SPA with Angular: The next level 304

PART 4 MANAGING AUTHENTICATION AND USER SESSIONS......347

11 ■ Authenticating users, managing sessions,
and securing APIs 349
Licensed to Mark Watson <nordickan@gmail.com>

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 SETTING THE BASELINE......................................1

1 Introducing full-stack development 3
1.1 Why learn the full stack? 4

A very brief history of web development 4 ■ The trend toward
full-stack developers 6 ■ Benefits of full-stack development 6
Why the MEAN stack specifically? 7

1.2 Introducing Node.js: The web server/platform 7
JavaScript: The single language through the stack 8
Fast, efficient, and scalable 8 ■ Using prebuilt packages
via npm 11

1.3 Introducing Express: The framework 12
Easing your server setup 12 ■ Routing URLs to responses 12
Views: HTML responses 12 ■ Remembering visitors with
session support 13
vii

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSviii
1.4 Introducing MongoDB: The database 13
Relational versus document databases 13 ■ MongoDB
documents: JavaScript data store 14 ■ More than just
a document database 14 ■ What is MongoDB not
good for? 15 ■ Mongoose for data modeling and more 15

1.5 Introducing AngularJS: The front-end framework 16
jQuery versus AngularJS 16 ■ Two-way data binding: Working
with data in a page 16 ■ Using AngularJS to load new pages 18
Are there any downsides? 18

1.6 Supporting cast 19
Twitter Bootstrap for user interface 19 ■ Git for source control 20
Hosting with Heroku 20

1.7 Putting it together with a practical example 21
Introducing the example application 21 ■ How the MEAN
stack components work together 22

1.8 Summary 23

2 Designing a MEAN stack architecture 24
2.1 A common MEAN stack architecture 25
2.2 Looking beyond SPAs 26

Hard to crawl 26 ■ Analytics and browser history 27
Speed of initial load 27 ■ To SPA or not to SPA? 28

2.3 Designing a flexible MEAN architecture 28
Requirements for a blog engine 29 ■ A blog engine
architecture 30 ■ Best practice: Build an internal API
for a data layer 33

2.4 Planning a real application 34
Planning the application at a high level 35 ■ Architecting the
application 36 ■ Wrapping everything in an Express project 38
The end product 39

2.5 Breaking the development into stages 40
Rapid prototype development stages 40 ■ The steps to
build Loc8r 41

2.6 Hardware architecture 47
Development hardware 47 ■ Production hardware 47

2.7 Summary 49
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS ix
PART 2 BUILDING A NODE WEB APPLICATION51

3 Creating and setting up a MEAN project 53
3.1 A brief look at Express, Node, and npm 55

Defining packages with package.json 55 ■ Installing Node
dependencies with npm 56

3.2 Creating an Express project 58
Installing the pieces 58 ■ Creating a project folder 58
Configuring an Express installation 59 ■ Creating an Express
project and trying it out 61 ■ Restarting the application 62

3.3 Modifying Express for MVC 64
A bird’s eye view of MVC 64 ■ Changing the folder structure 65
Using the new views and routes folders 66 ■ Splitting controllers
from routes 67

3.4 Import Bootstrap for quick, responsive layouts 70
Download Bootstrap and add it to the application 70
Using Bootstrap in the application 70

3.5 Make it live on Heroku 74
Getting Heroku set up 74 ■ Pushing the site live using Git 76

3.6 Summary 79

4 Building a static site with Node and Express 80
4.1 Defining the routes in Express 82

Different controller files for different collections 83

4.2 Building basic controllers 84
Setting up controllers 85 ■ Testing the controllers and routes 86

4.3 Creating some views 87
A look at Bootstrap 88 ■ Setting up the HTML framework with
Jade templates and Bootstrap 89 ■ Building a template 93

4.4 Adding the rest of the views 98
Details page 98 ■ Adding Review page 102
The About page 104

4.5 Take the data out of the views and make them
smarter 106
How to move data from the view to the controller 107
Dealing with complex, repeating data 109 ■ Manipulating the
data and view with code 113 ■ Using includes and mixins to
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSx
create reusable layout components 113 ■ The finished
homepage 115 ■ Updating the rest of the views and
controllers 117

4.6 Summary 119

5 Building a data model with MongoDB and Mongoose 120
5.1 Connecting the Express application to MongoDB

using Mongoose 122
Adding Mongoose to our application 123 ■ Adding a Mongoose
connection to our application 124

5.2 Why model the data? 130
What is Mongoose and how does it work? 131

5.3 Defining simple Mongoose schemas 134
The basics of setting up a schema 135 ■ Using geographic data
in MongoDB and Mongoose 137 ■ Creating more complex
schemas with subdocuments 138 ■ Final schema 143
Compiling Mongoose schemas into models 145

5.4 Using the MongoDB shell to create a MongoDB database
and add data 147
MongoDB shell basics 147 ■ Creating a MongoDB
database 148

5.5 Getting our database live 152
Setting up MongoLab and getting the database URI 152
Pushing up the data 154 ■ Making the application use
the right database 156

5.6 Summary 159

6 Writing a REST API: Exposing the MongoDB
database to the application 160
6.1 The rules of a REST API 161

Request URLs 162 ■ Request methods 163 ■ Responses and
status codes 165

6.2 Setting up the API in Express 167
Creating the routes 167 ■ Creating the controller
placeholders 170 ■ Including the model 171
Testing the API 172
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
6.3 GET methods: Reading data from MongoDB 172
Finding a single document in MongoDB using Mongoose 173
Finding a single subdocument based on IDs 177
Finding multiple documents with geospatial queries 180

6.4 POST methods: Adding data to MongoDB 187
Creating new documents in MongoDB 188 ■ Creating new
subdocuments in MongoDB 190

6.5 PUT methods: Updating data in MongoDB 193
Using Mongoose to update a document in MongoDB 194
Updating an existing subdocument in MongoDB 196

6.6 DELETE method: Deleting data from MongoDB 197
Deleting documents in MongoDB 198 ■ Deleting a subdocument
from MongoDB 199

6.7 Summary 200

7 Consuming a REST API: Using an API from
inside Express 202
7.1 How to call an API from Express 203

Adding the request module to our project 203 ■ Setting up
default options 204 ■ Using the request module 204

7.2 Using lists of data from an API: The Loc8r
homepage 206
Separating concerns: Moving the rendering into a
named function 207 ■ Building the API request 207
Using the API response data 208 ■ Modifying data before
displaying it: Fixing the distances 209 ■ Catching errors
returned by the API 212

7.3 Getting single documents from an API: The Loc8r
Details page 216
Setting URLs and routes to access specific MongoDB
documents 216 ■ Separating concerns: Moving the rendering
into a named function 218 ■ Querying the API using a unique ID
from a URL parameter 219 ■ Passing the data from the API to
the view 220 ■ Debugging and fixing the view errors 221
Creating status-specific error pages 223

7.4 Adding data to the database via the API:
Add Loc8r reviews 226
Setting up the routing and views 227 ■ POSTing the review
data to the API 231
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
7.5 Protecting data integrity with data validation 233
Validating at the schema level with Mongoose 234 ■ Validating at
the application level with Node and Express 237 ■ Validating in
the browser with jQuery 239

7.6 Summary 240

PART 3 ADDING A DYNAMIC FRONT END
WITH ANGULAR ...241

8 Adding Angular components to an Express application 243
8.1 Getting Angular up and running 244

Uncovering two-way data binding 245 ■ Setting up for greatness
(and JavaScript code) 248

8.2 Displaying and filtering the homepage list 251
Adding Angular to an Express application 251 ■ Moving data
delivery from Express to Angular 252 ■ Using Angular filters
to format data 255 ■ Using Angular directives to create
HTML snippets 259

8.3 Getting data from an API 263
Using services for data 264 ■ Making HTTP requests from
Angular to an API 265 ■ Adding HTML geolocation to find
places near you 268

8.4 Ensuring forms work as expected 274
8.5 Summary 275

9 Building a single-page application with Angular:
Foundations 276
9.1 Setting the groundwork for an Angular SPA 277

Getting base files in place 278

9.2 Switching from Express routing to Angular routing 279
Switching off the Express routing 279 ■ Adding ngRoute
(angular-route) to the application 282

9.3 Adding the first views, controllers, and services 284
Creating an Angular view 284 ■ Adding a controller
to a route 286 ■ Controller best practice: Using the
controllerAs syntax 288 ■ Using services 291
Using filters and directives 294
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
9.4 Improving browser performance 297
Wrap each file in an IIFE 298 ■ Manually injecting dependencies
to protect against minification 299 ■ Using UglifyJS to minify and
concatenate scripts 300

9.5 Summary 303

10 Building an SPA with Angular: The next level 304
10.1 A full SPA: Removing reliance on the server-side

application 305
Creating an isolated HTML host page 305
Making reusable page framework directives 307
Removing the # from URLs 312

10.2 Adding additional pages and dynamically
injecting HTML 314
Adding a new route and page to the SPA 315
Creating a filter to transform the line breaks 317
Sending HTML through an Angular binding 319

10.3 More complex views and routing parameters 321
Getting the page framework in place 321 ■ Using URL
parameters in controllers and services 323 ■ Building the
Details page view 326

10.4 Using AngularUI components to create a modal
popup 330
Getting AngularUI in place 330 ■ Adding and using a click
handler 332 ■ Creating a Bootstrap modal with AngularUI 333
Passing data into the modal 335 ■ Using the form to submit
a review 337

10.5 Summary 345

PART 4 MANAGING AUTHENTICATION AND
USER SESSIONS...347

11 Authenticating users, managing sessions, and securing APIs 349
11.1 How to approach authentication in the MEAN stack 350

Traditional server-based application approach 350 ■ Full MEAN
stack approach 352
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
11.2 Creating a user schema for MongoDB 354
One-way password encryption: Hashes and salts 354 ■ Building
the Mongoose schema 354 ■ Setting encrypted paths using
Mongoose methods 355 ■ Validating a submitted password 357
Generating a JSON Web Token 357

11.3 Creating an authentication API with Passport 360
Installing and configuring Passport 360 ■ Creating API
endpoints to return JSON Web Tokens 363

11.4 Securing relevant API endpoints 368
Adding authentication middleware to Express routes 368
Using the JWT information inside a controller 369

11.5 Creating Angular authentication service 373
Managing a user session in Angular 373 ■ Allowing users to
sign up, sign in, and sign out 374 ■ Using the JWT data in
the Angular service 375

11.6 Creating register and login pages 377
Building the register page 377 ■ Building the login page 380

11.7 Working with authentication in the Angular app 383
Updating navigation 383 ■ Adding user data to a review 386

11.8 Summary 389

appendix A Installing the stack 391
appendix B Installing and preparing the supporting cast 395
appendix C Dealing with all of the views 399
appendix D Reintroducing JavaScript available online only

index 405
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

preface
Back in 1995 I got my first taste of web development, putting together a few pages of
simple HTML for a piece of university coursework. It was a small part of my course,
which was a mixture of software engineering and communication studies. This was an
unusual mixture. I learned the fundamentals of software development, database design,
and programming. But I also learned about the importance of the audience and end-
user and how to communicate with them, both verbally and non-verbally.

 In 1998, on the communication studies side of the degree, I was required to write a
publication for an organization of my choice. I decided to write a prospectus for the
school where my mother was teaching at the time. But I decided to do it as a website.
Again this was all front-end work. Fortunately I no longer have a copy of it, as I shudder
at the thought of the code. We’re talking HTML with frames, table layouts, inline styles,
and a smattering of basic JavaScript. By today’s standards it was shocking, but back then
it was quite futuristic. I was the first person at the university to submit a website as a pub-
lication. I even had to tell my instructors how to open it in their browser from the floppy
disk it was submitted on! After it was completed and marked, I sold the website to the
school it was about. I figured there was probably a future in this web development thing.

 During the following years I made use of both parts of my degree working as the “web
guy” in a London design agency. Because it was a design agency, user-experience (before
it was called UX) and the front end were crucial. But of course there has to be a back
end to support the front end. As the only web guy I fulfilled both roles as the classic full-
stack developer. There wasn’t much separation of concerns in those days. The database
was tightly coupled to the back end. Back-end logic, markup, and front-end logic all
xv

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExvi
wove together tightly. This is largely because the project was thought of as a single
thing: the website.

 Many of the best practices from this book are borne of the pain of finding out the
hard way over these years. Something that might seem harmless at the time, most def-
initely easier, or sometimes even sensible, can come back to bite you later on. Don’t let
this put you off from diving in and having a go. Mistakes are there to be made, and—
in this arena at least—mistakes are a great way of learning. They say that intelligence is
“learning from your mistakes.” This is true, but you’ll be a step ahead if you can also
learn from others’ mistakes.

 The web development landscape changed over the years, but I was still heavily
involved with creating—or managing the creation of—full websites and applications. I
came to appreciate that there is a real art to gluing together applications made from
different technologies. It is a skill in itself; just knowing the technologies and what
they can do is only part of the challenge.

 When Node.js came onto my radar I jumped right in and embraced the idea full
on. I had done a lot of context switching between various languages, and the idea of
having a single language to focus on and master was extremely compelling. I figured
that if used in the right way it could streamline development by reducing the language
context shifting. Playing with Node I started to create my own MVC framework, before
discovering Express. Express solved a lot of the problems and challenges I faced when
first trying to learn Node and use it to create a website or web application. In many
ways adopting it was a no-brainer.

 Naturally, behind pretty much any web application is a database. I didn’t want to
fall back on my previous go-to option of Microsoft SQL Server, as the cost made it
quite prohibitive to launch small personal projects. Some research led me to the lead-
ing open source NoSQL database: MongoDB. It worked natively with JavaScript! I was
more excited than I possibly should have been about a database. However MongoDB
was different from all of the databases I had used before. My previous experience was
all in relational databases; MongoDB is a document database, and that is something
quite different, making the way you approach database design quite different as well. I
had to retrain my brain to think in this new way, and eventually it all made sense.

 There was just one piece missing. JavaScript in the browser was no longer just
about enhancing functionality, it was about creating the functionality and managing
the application logic. Out of the available options I was already leaning toward
AngularJS. When I heard Valeri Karpov of MongoDB coin the term “MEAN stack” that
was it. I knew that here was a next-generation stack.

 I knew that the MEAN stack would be powerful. I knew that the MEAN stack would
be flexible. I knew that the MEAN stack would capture the imagination of developers.
Each of the individual technologies is great, but when you put them all together you
have something exceptional on your hands. This is where Getting MEAN comes from.
Getting the best out of the MEAN stack is more than just knowing the technologies, it’s
about knowing how to get those technologies working together.
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
I must start with the people who mean the world to me, who inspire me to push myself,
and who ultimately make everything worthwhile. I’m talking about my wife, Sally, and
daughters, Eri and Bel. Everything I do starts and ends with these three ladies.

 Thanks of course must go to the Manning team. I know it extends beyond the peo-
ple I’m about to name, so if you were involved in any way then thank you! Here are
the people I have personally dealt with.

 Right from the beginning there was Robin de Jongh who was instrumental in get-
ting the project started and also in shaping the book. And many thanks to Bert Bates
for providing great insight and challenging me to justify my thinking and opinions
from an early stage. Those were fun conversations.

 Crucial to the momentum and feel of the book were my developmental editors,
Susie Pitzen, Susanna Kline, and Karen Miller. And of course my technical developmen-
tal editor, Marius Butuc. Thanks all for sharp eyes, great ideas, and positive feedback.

 The next two people really impressed me with their amount of effort and attention
to detail. So thank you Kevin Sullivan and Jodie Allen for the copyediting and proof-
ing, and for staying on top of everything under increasingly short timeframes.

 Last but by no means least for the Manning team is Candace Gillhoolley, who has
been keeping up the marketing pace on the book, giving me the sales numbers to
maintain my motivation.

 Manning must also be congratulated for having their Manning Early Access Pro-
gram (MEAP) and associated online author forum. The comments, corrections, ideas,
and feedback from early readers proved invaluable in improving the quality of this
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii
book. I don’t have the names of everybody who contributed. You know who you are:
thank you!

 Special thanks for their insights and suggestions to the following peer reviewers
who read the manuscript at various stages of its development: Andrea Tarocchi, Andy
Knight, Blake Hall, Cynthia Pepper, Davide Molin, Denis Ndwiga, Devang Paliwal,
Douglas Duncan, Filip Pravica, Filippo Veneri, Francesco Bianchi, Jesus Rodriguez
Rodriguez, Matt Merkes, Rambabu Posa, and William E. Wheeler. Also to Steven
Jenkins and Deepak Vohra for their final technical proofread of the chapters, shortly
before they went into production.

 A couple of extra shout-outs for putting up with me and my late-night technology
discussions are to Tamas Piros and Marek Karwowski. Thanks guys!
Licensed to Mark Watson <nordickan@gmail.com>

about this book
JavaScript has come of age. Building an entire web application from front to back with
just one language is now possible, using JavaScript. The MEAN stack is comprised of
the best-of-breed technologies in this arena. You’ve got MongoDB for the database,
Express for the server-side web-application framework, AngularJS for the client-side
framework, and Node for the server-side platform.

 This book introduces each of these technologies, as well as how to get them work-
ing well together as a stack. Throughout the book we build a working application,
focusing on one technology at a time, seeing how they fit into the overall application
architecture. So it’s a very practical book designed to get you comfortable with all of
the technologies and how to use them together.

 A common theme running through the book is “best practice.” This book is a
springboard to building great things with the MEAN stack, so there is a focus on creat-
ing good habits, doing things the “right way,” and planning ahead.

 This book doesn’t teach HTML, CSS, or basic JavaScript; previous knowledge of these
are assumed. It does include a very brief primer on the Twitter Bootstrap CSS frame-
work, and there’s also a good, long appendix on JavaScript theory, best practice, tips,
and gotchas. It’s worth checking out early on. This appendix can be found online at
www.manning.com/books/getting-mean-with-mongo-express-angular-and-node.

Roadmap
This book takes you on a journey through eleven chapters, as follows:

 Chapter 1 takes a look at the benefits of learning full-stack development and
explores the components of the MEAN stack.
xix

Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

ABOUT THIS BOOKxx
 Chapter 2 builds on this knowledge of the components and discusses options of
how you can use them together to build different things.

 Chapter 3 gets you going with creating and setting up a MEAN project, getting
you acquainted with Express.

 Chapter 4 provides a much deeper understanding of Express by building out a
static version of the application.

 Chapter 5 takes what we’ve learned about the application so far and works with
MongoDB and Mongoose to design and build the data model we’ll need.

 Chapter 6 covers the benefits and processes of creating a data API, and we’ll create
a REST API using Express, MongoDB, and Mongoose.

 Chapter 7 ties this REST API back into the application by consuming it from our
static Express application.

 Chapter 8 introduces Angular to the stack, and we’ll see how to use it to build a
component for an existing web page, including calling our REST API to get data.

 Chapter 9 covers the fundamentals of creating a single-page application with
Angular, showing how to build a modular, scalable, and maintainable application.

 Chapter 10 builds on the foundations of chapter 9, developing the single-page
application further by covering some critical concepts and increasing the complexity
of the Angular application.

 Chapter 11 touches every part of the MEAN stack as we add authentication to the
application, enabling users to register and log in.

Code conventions
All source code in listings or in the text is in a fixed-width font like this to sepa-
rate it from ordinary text. Method and function names, properties, JSON elements,
and attributes in the text are also presented in this same font.

 In some cases, the original source code has been reformatted to fit on the pages.
In general, the original code was written with page-width limitations in mind, but
sometimes you may find a slight formatting difference between the code in the book
and that provided in the source download. In a few rare cases, where long lines could
not be reformatted without changing their meaning, the book listings contain line
continuation markers.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In many cases, numbered bullets link to explanations that follow in the text.

Code downloads
The source code for the application built throughout the book is available to down-
load via Manning’s website, www.manning.com/books/getting-mean-with-mongo-
express-angular-and-node. It is also available on GitHub, github.com/simonholmes/
getting-MEAN.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/simonholmes/getting-MEAN
https://github.com/simonholmes/getting-MEAN
http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

ABOUT THIS BOOK xxi
 There is a separate folder (branch on GitHub) for each of the stages of the appli-
cation, typically at the end of a chapter. The folders (or branches) do not include the
nodemodules folder—as is best practice. To run the application in any of the given
folders you will need to install the dependencies using npm install in the command
line. The book covers what this is and why it is necessary.

Author Online
The purchase of Getting MEAN includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/getting-
mean-with-mongo-express-angular-and-node. This page provides information on how
to get on the forum once you are registered, what kind of help is available, and the
rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of this book is captioned “Habit of a Lady of Constantinople
ca. 1730.” The illustration is taken from Thomas Jefferys’s A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate engrav-
ings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geogra-
pher to King George III.” He was an English cartographer who was the leading map
supplier of his day. He engraved and printed maps for government and other official
bodies and produced a wide range of commercial maps and atlases, especially of
North America. His work as a map maker sparked an interest in local dress customs
of the lands he surveyed and mapped, and which are brilliantly displayed in this col-
lection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century, and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’s volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitants of one continent from
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

ABOUT THIS BOOKxxii
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’s pictures.
Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Setting the baseline

Full-stack development is very rewarding when you get it right. There are
many moving parts to an application and it’s your job to get them working in
harmony. The best first step you can take is to understand the building blocks
you have to work with and look at the ways you can put them together to achieve
different results.

 This is what part 1 is all about. In chapter 1 we’ll take a look at the benefits of
learning full-stack development in a bit more detail and explore the components
of the MEAN stack. Chapter 2 builds on this knowledge of the components and dis-
cusses how you can use them together to build different things.

 By the end of part 1 you’ll have a good understanding of possible software
and hardware architectures for a MEAN-stack application, as well as the plan for
the application we’ll build throughout the book.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Introducing full-stack
development
If you’re like me then you’re probably impatient to dive into some code and get on
with building something. But let’s take a moment first to clarify what is meant by
full-stack development, and look at the component parts of the stack to make sure you
understand each.

 When I talk about full-stack development, I’m really talking about developing
all parts of a website or application. The full stack starts with the database and web
server in the back end, contains application logic and control in the middle, and
goes all the way through to the user interface at the front end.

This chapter covers
■ The benefits of full-stack development
■ An overview of the MEAN stack components
■ What makes the MEAN stack so compelling
■ A preview of the application we’ll build

throughout this book
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Introducing full-stack development
 The MEAN stack is comprised of four main technologies, with a cast of supporting
technologies:

■ MongoDBthe database
■ Expressthe web framework
■ AngularJSthe front-end framework
■ Node.jsthe web server

MongoDB has been around since 2007, and is actively maintained by MongoDB Inc.,
previously known as 10gen.

 Express was first released in 2009 by T. J. Holowaychuk and has since become the
most popular framework for Node.js. It’s open source with more than 100 contribu-
tors, and is actively developed and supported.

 AngularJS is open source and backed by Google. It has been around since 2010
and is constantly being developed and extended.

 Node.js was created in 2009, and its development and maintenance are sponsored
by Joyent. Node.js uses Google’s open source V8 JavaScript engine at its core.

1.1 Why learn the full stack?
So, indeed, why learn the full stack? It sounds like an awful lot of work! Well yes, it is
quite a lot of work, but it’s also very rewarding. And with the MEAN stack it isn’t as
hard as you might think.

1.1.1 A very brief history of web development

Back in the early days of the web, people didn’t have high expectations of websites.
Not much emphasis was given to presentation; it was much more about what was
going on behind the scenes. Typically, if you knew something like Perl and could
string together a bit of HTML then you were a web developer.

 As use of the internet spread, businesses started to take more of an interest in how
their online presence portrayed them. In combination with the increased browser
support of Cascading Style Sheets (CSS) and JavaScript, this desire started to lead to
more complicated front-end implementations. It was no longer a case of being able to
string together HTML; you needed to spend time on CSS and JavaScript, making sure
it looked right and worked as expected. And all of this needed to work in different
browsers, which were much less compliant than they are today.

 This is where the distinction between front-end developer and back-end developer
came in. Figure 1.1 illustrates this separation over time.

 While the back-end developers were focused on the mechanics behind the scenes,
the front-end developers focused on building a good user experience. As time went
on, higher expectations were made of both camps, encouraging this trend to con-
tinue. Developers often had to choose an expertise and focus on it.
Licensed to Mark Watson <nordickan@gmail.com>

5Why learn the full stack?
HELPING DEVELOPERS WITH LIBRARIES AND FRAMEWORKS

During the 2000s libraries and frameworks started to become popular and prevalent
for the most common languages, on both the front and back ends. Think Dojo and
jQuery for front-end JavaScript, and CodeIgniter for PHP and Ruby on Rails. These
frameworks were designed to make your life as a developer easier, lowering the barri-
ers to entry. A good library or framework abstracts away some of the complexities of
development, allowing you to code faster and requiring less in-depth expertise. This
trend toward simplification has resulted in a resurgence of full-stack developers who
build both the front end and the application logic behind it, as figure 1.2 shows.

Front-end

complexity

Front- and

back-end

developers

Front-end

developers

Back-end

developers

Time

Back-end

complexity

Figure 1.1 Divergence of front-end
and back-end developers over time

Front-end

complexity

Front-end

developers

Full-stack

developers

Introduction

of frameworks

Back-end

developers

Time

Back-end

complexity

Front- and

back-end

developers

Figure 1.2 Impact of
frameworks on the separated
web development factions
Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Introducing full-stack development
Figure 1.2 illustrates a trend rather than proclaiming a definitive “all web developers
should be full-stack developers” maxim. There have been, of course, full-stack devel-
opers throughout the entire history of the web, and moving forward it’s most likely
that some developers will choose to specialize on either front-end or back-end devel-
opment. The intention is to show that through the use of frameworks and modern
tools you no longer have to choose one side or the other to be a good web developer.

 A huge advantage of embracing the framework approach is that you can be incred-
ibly productive, as you’ll have an all-encompassing vision of the application and how it
ties together.

MOVING THE APPLICATION CODE FORWARD IN THE STACK

Continuing with the trend for frameworks, the last few years have seen an increasing
tendency for moving the application logic away from the server and into the front
end. Think of it as coding the back end in the front end. Some of the more popular
JavaScript frameworks doing this are AngularJS, Backbone, and Ember.

 Tightly coupling the application code to the front end like this really starts to blur
the lines between traditional front-end and back-end developers. One of the reasons
that people like to use this approach is that it reduces the load on the servers, thus
reducing cost. What you’re in effect doing is crowd-sourcing the computational power
required for the application by pushing that load into the users’ browsers.

 I’ll discuss the pros and cons of this approach later in the book, and cover when it
may or may not be appropriate to use one of these technologies.

1.1.2 The trend toward full-stack developers

As discussed, the paths of front-end and back-end developers are merging, and it’s
entirely possible to be fully proficient in both disciplines. If you’re a freelancer, con-
sultant, or part of a small team, being multiskilled is extremely useful, increasing the
value that you can provide for your clients. Being able to develop the full scope of a
website or application gives you better overall control and can help the different parts
work seamlessly together, as they haven’t been built in isolation by separate teams.

 If you work as part of a large team then chances are that you’ll need to specialize in
(or at least focus on) one area. But it’s generally advisable to understand how your
component fits with other components, giving you a greater appreciation of the
requirements and goals of other teams and the overall project.

 In the end, building on the full stack by yourself is very rewarding. Each part
comes with its own challenges and problems to solve, keeping things interesting. The
technology and tools available today enhance this experience, and empower you to
build great web applications relatively quickly and easily.

1.1.3 Benefits of full-stack development

There are many benefits to learning full-stack development. For starters, there’s the
enjoyment of learning new things and playing with new technologies, of course. Then
Licensed to Mark Watson <nordickan@gmail.com>

7Introducing Node.js: The web server/platform
there’s also the satisfaction of mastering something different and the thrill of being
able to build and launch a full data-driven application all by yourself.

 The benefits when working in a team include

■ You’re more likely to have a better view of the bigger picture by understanding
the different areas and how they fit together.

■ You’ll form an appreciation of what other parts of the team are doing and what
they need to be successful.

■ Team members can move around more freely.

The additional benefits when working by yourself include

■ You can build applications end-to-end by yourself with no dependencies on
other people.

■ You have more skills, services, and capabilities to offer customers.

All in all, there’s a lot to be said for full-stack development. A majority of the most
accomplished developers I’ve met have been full-stack developers. Their overall under-
standing and ability to see the bigger picture is a tremendous bonus.

1.1.4 Why the MEAN stack specifically?

The MEAN stack pulls together some of the “best-of-breed” modern web technologies
into a very powerful and flexible stack. One of the great things about the MEAN stack
is that it not only uses JavaScript in the browser, it uses JavaScript throughout. Using
the MEAN stack, you can code both the front end and back end in the same language.

 The principle technology allowing this to happen is Node.js, bringing JavaScript to
the back end.

1.2 Introducing Node.js: The web server/platform
Node.js is the N in MEAN. Being last doesn’t mean that it’s the least important—it’s
actually the foundation of the stack!

 In a nutshell, Node.js is a software platform that allows you to create your own
web server and build web applications on top of it. Node.js isn’t itself a web server,
nor is it a language. It contains a built-in HTTP server library, meaning that you
don’t need to run a separate web server program such as Apache or Internet Infor-
mation Services (IIS). This ultimately gives you greater control over how your web
server works, but also increases the complexity of getting it up and running, particu-
larly in a live environment.

 With PHP, for example, you can easily find a shared-server web host running
Apache, send some files over FTP, and—all being well—your site is running. This
works because the web host has already configured Apache for you and others to use.
With Node.js this isn’t the case, as you configure the Node.js server when you create
your application. Many of the traditional web hosts are behind the curve on Node.js
support, but a number of new platform as a service (PaaS) hosts are springing up to
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Introducing full-stack development
address this need, including Heroku, Nodejitsu, and OpenShift. The approach to
deploying live sites on these PaaS hosts is different from the old FTP model, but is
quite easy when you get the hang of it. We’ll be deploying a site live to Heroku as we
go through the book.

 An alternative approach to hosting a Node.js application is to do it all yourself on a
dedicated server onto which you can install anything you need. But production server
administration is a whole other book! And while you could independently swap out
any of the other components with an alternative technology, if you take Node.js out
then everything that sits on top of it would change.

1.2.1 JavaScript: The single language through the stack

One of the main reasons that Node.js is gaining broad popularity is that you code it
in a language that most web developers are already familiar with: JavaScript. Until
now, if you wanted to be a full-stack developer you had to be proficient in at least
two languages: JavaScript on the front end and something else like PHP or Ruby on
the back end.

With the release of Node.js you can leverage what you already know and put it to use
on the server. One of the hardest parts of learning a new technology like this is learn-
ing the language, but if you already know some JavaScript then you’re one step ahead!

 There is, of course, a learning curve when taking on Node.js, even if you’re an
experienced front-end JavaScript developer. The challenges and obstacles in server-
side programming are different from those in the front end, but you’ll face those no
matter what technology you use. In the front end you might be concerned about mak-
ing sure everything works in a variety of different browsers on different devices. On
the server you’re more likely to be aware of the flow of the code, to ensure that noth-
ing gets held up and that you don’t waste system resources.

1.2.2 Fast, efficient, and scalable

Another reason for the popularity of Node.js is, when coded correctly, it’s extremely
fast and makes very efficient use of system resources. This enables a Node.js applica-
tion to serve more users on fewer server resources than most of the other mainstream
server technologies. So business owners also like the idea of Node.js because it can
reduce their running costs, even at a large scale.

Microsoft’s foray into server-side JavaScript
In the late 1990s Microsoft released Active Server Pages (now known as Classic
ASP). ASP could be written in either VBScript or JavaScript, but the JavaScript version
didn’t really take off. This is largely because, at the time, a lot of people were familiar
with Visual Basic, which VBScript looks like. The majority of books and online resources
were for VBScript, so it snowballed into becoming the “standard” language for Clas-
sic ASP.
Licensed to Mark Watson <nordickan@gmail.com>

9Introducing Node.js: The web server/platform
 How does it do this? Node.js is light on system resources because it’s single-
threaded, whereas traditional web servers are multithreaded. Let’s take a look at what
that means, starting with the traditional multithreaded approach.

TRADITIONAL MULTITHREADED WEB SERVER

Most of the current mainstream web servers are multithreaded, including Apache and
IIS. What this means is that every new visitor (or session) is given a separate “thread”
and associated amount of RAM, often around 8 MB.

 Thinking of a real-world analogy, imagine two people going into a bank wanting to
do separate things. In a multithreaded model they’d each go to a separate bank teller
who would deal with their requests, as shown in figure 1.3.

 You can see in figure 1.3 that Simon goes to bank teller 1 and Sally goes to bank
teller 2. Neither side is aware of or impacted by the other. Bank teller 1 deals with
Simon throughout the entirety of the transaction and nobody else; the same goes for
bank teller 2 and Sally.

 This approach works perfectly well as long as you have enough tellers to service the
customers. When the bank gets busy and the customers outnumber the tellers, that’s
when the service starts to slow down and the customers have to wait to be seen. While
banks don’t always worry about this too much, and seem happy to make you queue,

Simon

Put $500 in safe.

Tell me how much

I have.

Withdraw

$100.

Your total

is $5,000.

Here is

your $100.

Bank teller 1

Sally

Bank teller 2

Goes to

safe.

Deposits

money.

Checks

account

details.

Retrieves

money from

cash drawer.

Counts

total.

Figure 1.3 Example of a
multithreaded approach:
visitors use separate
resources. Visitors and
their dedicated resources
have no awareness of or
contact with other visitors
and their resources.
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 Introducing full-stack development
the same isn’t true of websites. If a website is slow to respond you’re likely to leave and
never come back.

 This is one of the reasons why web servers are often overpowered and have so
much RAM, even though they don’t need it 90% of the time. The hardware is set up in
such a way as to be prepared for a huge spike in traffic. It’s like the bank hiring an
additional 50 full-time tellers and moving to a bigger building because they get busy
at lunchtime.

 Surely there’s a better way, a way that’s a bit more scalable? Here’s where a single-
threaded approach comes in.

A SINGLE-THREADED WEB SERVER

A Node.js server is single-threaded and works differently than the multithreaded way.
Rather than giving each visitor a unique thread and a separate silo of resources, every
visitor joins the same thread. A visitor and thread only interact when needed, when
the visitor is requesting something or the thread is responding to a request.

 Returning to the bank teller analogy, there would be only one teller who deals with
all of the customers. But rather than going off and managing all requests end-to-end,
the teller delegates any time-consuming tasks to “back office” staff and deals with the
next request. Figure 1.4 illustrates how this might work, using the same two requests
from the multithreaded example.

Simon

Put $500 in the

safe. Tell me how much

I have.
Withdraw

$100.

Your total

is $5,000.

Here is

your $100.

Safe manager

Bank teller Sally

Cashier

Gets

$100.Goes to safe.

Deposits $500.

Counts total.
Figure 1.4 Example of a
single-threaded approach:
visitors use the same central
resource. The central
resource must be well
disciplined to prevent one
visitor from affecting others.
Licensed to Mark Watson <nordickan@gmail.com>

11Introducing Node.js: The web server/platform
In the single-threaded approach shown in figure 1.4, Sally and Simon both give their
requests to the same bank teller. But instead of dealing with one of them entirely
before the next, the teller takes the first request and passes it to the best person to
deal with it, before taking the next request and doing the same thing. When the teller
is told that the requested task is completed, the teller then passes this straight back to
the visitor who requested it.

Despite there being just a single teller, neither of the visitors is aware of the other, and
neither of them is impacted by the requests of the other. This approach means that
the bank doesn’t need a large number of tellers constantly on hand. This model isn’t
infinitely scalable, of course, but it’s more efficient. You can do more with fewer
resources. This doesn’t mean that you’ll never need to add more resources.

 This particular approach is possible in Node.js due to the asynchronous capabili-
ties of JavaScript. You’ll see this in action throughout the book, but if you’re not sure
on the theory, check out appendix D, particularly the section on callbacks.

1.2.3 Using prebuilt packages via npm

npm is a package manager that gets installed when you install Node.js. npm gives you
the ability to download Node.js modules or “packages” to extend the functionality of
your application. At the time of writing there are more than 46,000 packages available
through npm, giving you an indication of just how much depth of knowledge and
experience you can bring into the application.

 Packages in npm vary widely in what they give you. We’ll use some throughout this
book to bring in an application framework and database driver with schema support.
Other examples include helper libraries like Underscore, testing frameworks like Mocha,
and other utilities like Colors, which adds color support to Node.js console logs.

Blocking versus nonblocking code
With the single-threaded model it’s important to remember that all of your users use
the same central process. To keep the flow smooth you need to make sure that noth-
ing in your code causes a delay, blocking another operation. An example would be if
the bank teller has to go to the safe to deposit the money for Simon, Sally would have
to wait to make her request.

Similarly, if your central process is responsible for reading each static file (such as
CSS, JavaScript, or images) it won’t be able to process any other request, thus block-
ing the flow. Another common task that’s potentially blocking is interacting with a
database. If your process is going to the database each time it’s asked, be it search-
ing for data or saving data, it won’t be able to do anything else.

So for the single-threaded approach to work you must make sure your code is non-
blocking. The way to achieve this is to make any blocking operations run asynchro-
nously, preventing them from blocking the flow of your main process.
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Introducing full-stack development
 We’ll look more closely at npm and how it works when we get started building an
application in chapter 3.

 As you’ve seen, Node.js is extremely powerful and flexible, but it doesn’t give you
much help when trying to create a website or application. Express has been created to
give you a hand here. Express is installed using npm.

1.3 Introducing Express: The framework
Express is the E in MEAN. As Node.js is a platform, it doesn’t prescribe how it should
be set up or used. This is one of its great strengths. But when creating websites and
web applications there are quite a few common tasks that need doing every time.
Express is a web application framework for Node.js that has been designed to do this
in a well-tested and repeatable way.

1.3.1 Easing your server setup

As already noted, Node.js is a platform not a server. This allows you to get creative with
your server setup and do things that other web servers can’t do. It also makes it harder
to get a basic website up and running.

 Express abstracts away this difficulty by setting up a web server to listen to incom-
ing requests and return relevant responses. In addition, it also defines a directory
structure. One of these folders is set up to serve static files in a nonblocking way—the
last thing you want is for your application to have to wait when somebody else
requests a CSS file! You could configure this yourself directly in Node.js, but Express
does it for you.

1.3.2 Routing URLs to responses

One of the great features of Express is that it provides a really simple interface for
directing an incoming URL to a certain piece of code. Whether this is going to serve a
static HTML page, read from a database, or write to a database doesn’t really matter.
The interface is simple and consistent.

 What Express has done here is abstract away some of the complexity of doing this
in native Node.js, to make code quicker to write and easier to maintain.

1.3.3 Views: HTML responses

It’s likely that you’ll want to respond to many of the requests to your application by
sending some HTML to the browser. By now it will come as no surprise to you that
Express makes this easier than it is in native Node.js.

 Express provides support for a number of different templating engines that make
it easier to build HTML pages in an intelligent way, using reusable components as well
as data from your application. Express compiles these together and serves them to the
browser as HTML.
Licensed to Mark Watson <nordickan@gmail.com>

13Introducing MongoDB: The database
1.3.4 Remembering visitors with session support

Being single-threaded, Node.js doesn’t remember a visitor from one request to the
next. It doesn’t have a silo of RAM set aside just for you; it just sees a series of HTTP
requests. HTTP is a stateless protocol, so there’s no concept of storing a session state
there. As it stands, this makes it difficult to create a personalized experience in
Node.js or have a secure area where a user has to log in—it’s not much use if the site
forgets who you are on every page. You can do it, of course, but you have to code
it yourself.

 Or, you’ll never guess what: Express has an answer to this too! Express comes with
the ability to use sessions so that you can identify individual visitors through multiple
requests and pages. Thank you Express!

 Sitting on top of Node.js, Express gives you a great helping hand and a sound start-
ing point for building web applications. It abstracts away a number of complexities
and repeatable tasks that most of us don’t need—or want—to worry about. We just
want to build web applications.

1.4 Introducing MongoDB: The database
The ability to store and use data is vital for most applications. In the MEAN stack the
database of choice is MongoDB, the M in MEAN. MongoDB fits into the stack incredi-
bly well. Like Node.js, it’s renowned for being fast and scalable.

1.4.1 Relational versus document databases

If you’ve used a relational database before, or even a spreadsheet, you’ll be used to the
concept of columns and rows. Typically, a column defines the name and data type and
each row would be a different entry. See table 1.1 for an example of this.

MongoDB is not like that! MongoDB is a document database. The concept of rows still
exists but columns are removed from the picture. Rather than a column defining what
should be in the row, each row is a document, and this document both defines and
holds the data itself. See table 1.2 for how a collection of documents might be listed
(the indented layout is for readability, not a visualization of columns).

Table 1.1 How rows and columns can look in a relational database table

firstName middleName lastName maidenName nickname

Simon David Holmes Si

Sally June Panayiotou

Rebecca Norman Holmes Bec
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 Introducing full-stack development
This less-structured approach means that a collection of documents could have a wide
variety of data inside. Let’s take a look at a sample document so that you’ve got a bet-
ter idea of what I’m talking about.

1.4.2 MongoDB documents: JavaScript data store

MongoDB stores documents as BSON, which is binary JSON (JavaScript Serialized
Object Notation). Don’t worry for now if you’re not fully familiar with JSON—check
out the relevant section in appendix D, which can be found online at https://www
.manning.com/books/getting-mean-with-mongo-express-angular-and-node. In short,
JSON is a JavaScript way of holding data, hence why MongoDB fits so well into the
JavaScript-centric MEAN stack!

 The following code snippet shows a very simple sample MongoDB document:

{
 "firstName" : "Simon",
 "lastName" : "Holmes",
 _id : ObjectId("52279effc62ca8b0c1000007")
}

Even if you don’t know JSON that well, you can probably see that this document stores
the first and last names of me, Simon Holmes! So rather than a document holding a
data set that corresponds to a set of columns, a document holds name and value pairs.
This makes a document useful in its own right, as it both describes and defines the data.

 A quick word about _id. You most likely noticed the _id entry alongside the names
in the preceding example MongoDB document. The _id entity is a unique identifier
that MongoDB will assign to any new document when it’s created.

 We’ll look at MongoDB documents in more detail in chapter 5 when we start to
add the data into our application.

1.4.3 More than just a document database

MongoDB sets itself apart from many other document databases with its support for
secondary indexing and rich queries. This means that you can create indexes on more
than just the unique identifier field, and querying indexed fields is much faster. You
can also create some fairly complex queries against a MongoDB database—not to the
level of huge SQL commands with joins all over the place, but powerful enough for
most use cases.

Table 1.2 Each document in a document database defines and holds the data, in no particular order.

firstName:
"Simon"

middleName:
"David"

lastName:
"Holmes"

nickname:
"Si"

lastName:
"Panayiotou"

middleName:
"June"

firstName:
"Sally"

maidenName:
"Holmes"

firstName:
"Rebecca"

lastName:
"Norman"

nickname:
"Bec"
Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

15Introducing MongoDB: The database
 As we build an application through the course of this book, we’ll get to have some
fun with this, and you’ll start to appreciate exactly what MongoDB can do.

1.4.4 What is MongoDB not good for?

MongoDB isn’t a transactional database, and shouldn’t be used as such. A transac-
tional database can take a number of separate operations as one transaction. If any
one of the operations in a transaction should fail the entire transaction fails, and none
of the operations complete. MongoDB does not work like this. MongoDB will take each
of the operations independently; if one fails then it alone fails and the rest of the
operations will continue.

 This is important if you need to update multiple collections or documents at once.
If you’re building a shopping cart, for example, you need to make sure that the pay-
ment is made and recorded, and also that the order is marked as confirmed to be pro-
cessed. You certainly don’t want to entertain the possibility that a customer might have
paid for an order that your system thinks is still in the checkout. So these two opera-
tions need to be tied together in one transaction. Your database structure might allow
you to do this in one collection, or you might code fallbacks and safety nets into your
application logic in case one fails, or you might choose to use a transactional database.

1.4.5 Mongoose for data modeling and more

MongoDB’s flexibility about what it stores in documents is a great thing for the data-
base. But most applications need some structure to their data. Note that it’s the appli-
cation that needs the structure, not the database. So where does it make most sense to
define the structure of your application data? In the application itself!

 To this end, the company behind MongoDB created Mongoose. In their own
words, Mongoose provides “elegant MongoDB object modeling for Node.js” (http://
mongoosejs.com/).

WHAT IS DATA MODELING?
Data modeling, in the context of Mongoose and MongoDB, is defining what data can
be in a document, and what data must be in a document. When storing user informa-
tion you might want to be able to save the first name, last name, email address, and
phone number. But you only need the first name and email address, and the email
address must be unique. This information is defined in a schema, which is used as the
basis for the data model.

WHAT ELSE DOES MONGOOSE OFFER?
As well as modeling data, Mongoose adds an entire layer of features on top of Mon-
goDB that are useful when building web applications. Mongoose makes it easier to
manage the connections to your MongoDB database, as well as to save data and read
data. We’ll use all of this later. We’ll also discuss how Mongoose enables you to add
data validation at the schema level, making sure that you only allow valid data to be
saved in the database.
Licensed to Mark Watson <nordickan@gmail.com>

http://mongoosejs.com/
http://mongoosejs.com/

16 CHAPTER 1 Introducing full-stack development
 MongoDB is a great choice of database for most web applications because it pro-
vides a balance between the speed of pure document databases and the power of rela-
tional databases. That the data is effectively stored in JSON makes it the perfect data
store for the MEAN stack.

1.5 Introducing AngularJS: The front-end framework
AngularJS is the A in MEAN. In simple terms, AngularJS is a JavaScript framework for
working with data directly in the front end.

 You could use Node.js, Express, and MongoDB to build a fully functioning data-
driven web application. And we’ll do just this throughout the book. But you can put
some icing on the cake by adding AngularJS to the stack.

 The traditional way of doing things is to have all of the data processing and appli-
cation logic on the server, which then passes HTML out to the browser. AngularJS
enables you to move some or all of this processing and logic out to the browser, some-
times leaving the server just passing data from the database. We’ll take a look at this in
a moment when we discuss two-way data binding, but first we need to address the
question of whether AngularJS is like jQuery, the leading front-end JavaScript library.

1.5.1 jQuery versus AngularJS

If you’re familiar with jQuery, you might be wondering if AngularJS works the same
way. The short answer is no, not really. jQuery is generally added to a page to provide
interactivity, after the HTML has been sent to the browser and the Document Object
Model (DOM) has completely loaded. AngularJS comes in a step earlier and helps put
together the HTML based on the data provided.

 Also, jQuery is a library, and as such has a collection of features that you can use as
you wish. AngularJS is what is known as an opinionated framework. This means that it
forces its opinion on you as to how it needs to be used.

 As mentioned, AngularJS helps put the HTML together based on the data pro-
vided, but it does more than this. It also immediately updates the HTML if the data
changes, and can also update the data if the HTML changes. This is known as two-way
data binding, which we’ll now take a quick look at.

1.5.2 Two-way data binding: Working with data in a page

To understand two-way data binding let’s start with a look at the traditional approach
of one-way data binding. One-way data binding is what you’re aiming for when look-
ing at using Node.js, Express, and MongoDB. Node.js gets the data from MongoDB,
and Express then uses a template to compile this data into HTML that’s then delivered
to the server. This process is illustrated in figure 1.5.

 This one-way model is the basis for most database-driven websites. In this model
most of the hard work is done on the server, leaving the browser to just render HTML
and run any JavaScript interactivity.
Licensed to Mark Watson <nordickan@gmail.com>

17Introducing AngularJS: The front-end framework
Two-way data binding is different. First, the template and data are sent independently
to the browser. The browser itself compiles the template into the view and the data
into a model. The real difference is that the view is “live.” The view is bound to the
model, so if the model changes the view changes instantly. On top of this, if the view
changes then the model also changes. Two-way binding is illustrated in figure 1.6.

 As your data store is likely to be exposed via an API and not tightly coupled to the
application, there’s typically some processing involved before adding it to the model.
You want to make sure that you’re binding the correct, relevant data to the view.

Model

View

Compile

Template

BrowserServer

Figure 1.5 One-way data binding—the template and model are
compiled on the server before being sent to the browser.

Template

Data Model

Model

updates

view

View

updates

model

View

Compile

Process

BrowserServer

Figure 1.6 Two-way data binding—the model and the view are processed in the browser
and bound together, each instantly updating the other.
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 Introducing full-stack development
As we go through part 3 of the book you’ll really get to see—and use—this in action.
Seeing is believing with this, and you won’t be disappointed.

1.5.3 Using AngularJS to load new pages

Something that AngularJS has been specifically designed for is single-page application
(SPA) functionality. In real terms, an SPA runs everything inside the browser and never
does a full page reload. What this means is that all application logic, data processing,
user flow, and template delivery can be managed in the browser.

 Think Gmail. That’s an SPA. Different views get shown in the page, along with a
whole variety of data sets, but the page itself never fully reloads.

 This approach can really reduce the amount of resources you need on your server,
as you’re essentially crowd-sourcing the computational power. Each person’s browser
is doing the hard work, and your server is basically just serving up static files and data
on request.

 The user experience can also be better when using this approach. Once the appli-
cation is loaded there are fewer calls to be made to the server, reducing the potential
of latency.

 All this sounds great, but surely there’s a price to pay? Why isn’t everything built in
AngularJS?

1.5.4 Are there any downsides?

Despite its many benefits, AngularJS isn’t appropriate for every website. Front-end
libraries like jQuery are best used for progressive enhancement. The idea is that your
site will function perfectly well without JavaScript, and the JavaScript you do use
makes the experience better. That isn’t the case with AngularJS, or indeed any other
SPA framework. AngularJS uses JavaScript to build the rendered HTML from templates
and data, so if your browser doesn’t support JavaScript, or if there’s a bug in the code,
then the site won’t run.

 This reliance on JavaScript to build the page also causes problems with search
engines. When a search engine crawls your site it will not run any JavaScript, and
with AngularJS the only thing you get before JavaScript takes over is the template
from the server. If you want your content and data indexed by search engines
rather than just your templates, you’ll need to think whether AngularJS is right for
that project.

 There are ways to combat this issue—in short, you need your server to output com-
piled content as well as AngularJS—but if you don’t need to fight this battle, I’d recom-
mend against doing so.

 One thing you can do is use AngularJS for some things and not others. There’s
nothing wrong with using AngularJS selectively in your project. For example, you might
have a data-rich interactive application or section of your site that’s ideal for building
in AngularJS. You might also have a blog or some marketing pages around your appli-
cation. These don’t need to be built in AngularJS, and arguably would be better served
Licensed to Mark Watson <nordickan@gmail.com>

19Supporting cast
from the server in the traditional way. So part of your site is served by Node.js, Express,
and MongoDB, and another part also has AngularJS doing its thing.

 This flexible approach is one of the most powerful aspects of the MEAN stack. With
one stack you can achieve a great many different things.

1.6 Supporting cast
The MEAN stack gives you everything you need for creating data-rich interactive web
applications, but you may want to use a few extra technologies to help you on the way.
You can use Twitter Bootstrap to help create a good user interface, Git to help manage
your code, and Heroku to help by hosting the application on a live URL. In later chap-
ters we’ll look at incorporating these into the MEAN stack. Here, we’ll just cover briefly
what each can do for you.

1.6.1 Twitter Bootstrap for user interface

In this book we’re going to use Twitter Bootstrap to create a responsive design with
minimal effort. It’s not essential for the stack, and if you’re building an application
from existing HTML or a specific design then you probably won’t want to add it in. But
we’re going to be building an application in a “rapid prototype” style, going from idea
to application with no external influences.

 Bootstrap is a front-end framework that provides a wealth of help for creating a
great user interface. Among its features, Bootstrap provides a responsive grid system,
default styles for many interface components, and the ability to change the visual
appearance with themes.

RESPONSIVE GRID LAYOUT

In a responsive layout, you serve up a single HTML page that arranges itself differ-
ently on different devices. This is done through detecting the screen resolution rather
than trying to sniff out the actual device. Bootstrap targets four different pixel-width
breakpoints for their layouts, loosely aimed at phones, tablets, laptops, and external
monitors. So if you give a bit of thought to how you set up your HTML and CSS
classes, you can use one HTML file to give the same content in different layouts suited
to the screen size.

CSS CLASSES AND HTML COMPONENTS

Bootstrap comes with a set of predefined CSS classes that can create useful visual com-
ponents. These include things like page headers, flash-message containers, labels and
badges, stylized lists … the list goes on! They’ve thought of a lot, and it really helps
you quickly build an application without having to spend too much time on the HTML
layout and CSS styling.

 Teaching Bootstrap isn’t an aim of this book, but I’ll point out various features as
we’re using them.
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 1 Introducing full-stack development
ADDING THEMES FOR A DIFFERENT FEEL

Bootstrap has a default look and feel that provides a really neat baseline. This is so
commonly used that your site could end up looking like anybody else’s. Fortunately,
it’s possible to download themes for Bootstrap to give your application a different
twist. Downloading a theme is often as simple as replacing the Bootstrap CSS file with
a new one. We’ll use a free theme in this book to build our application, but it’s also
possible to buy premium themes from a number of sites online to give an application
a unique feel.

1.6.2 Git for source control

Saving code on your computer or a network drive is all very well and good, but that
only ever holds the current version. It also only lets you, or others on your network,
access it.

 Git is a distributed revision control and source code management system. This
means that several people can work on the same codebase at the same time on differ-
ent computers and networks. These can be pushed together with all changes stored
and recorded. It also makes it possible to roll back to a previous state if necessary.

HOW TO USE GIT

Git is typically used from the command line, although there are GUIs available for
Windows and Mac. Throughout this book we’ll use command-line statements to issue
the commands that we need. Git is very powerful and we’re barely going to scratch the
surface of it in this book, but everything we do will be noted.

 In a typical Git setup you’ll have a local repository on your machine and a remote
centralized master repository hosted somewhere like GitHub or BitBucket. You can
pull from the remote repository into your local one, or push from local to remote. All
of this is really easy in the command line, and both GitHub and BitBucket have web
interfaces so that you can keep a visual track on everything committed.

WHAT ARE WE USING GIT FOR HERE?
In this book we’re going to be using Git for two reasons.

 First, the source code of the sample application in this book will be stored on
GitHub, with different branches for various milestones. We’ll be able to clone the mas-
ter or the separate branches to use the code.

 Second, we’ll use Git as the method for deploying our application to a live web
server for the world to see. For hosting we’ll be using Heroku.

1.6.3 Hosting with Heroku

Hosting Node.js applications can be complicated, but it doesn’t have to be. Many tra-
ditional shared hosting providers haven’t kept up with the interest in Node.js. Some
will install it for you so that you can run applications, but the servers are generally not
set up to meet the unique needs of Node.js. To run a Node.js application successfully
Licensed to Mark Watson <nordickan@gmail.com>

21Putting it together with a practical example
you either need a server that has been configured with that in mind, or you can use a
PaaS provider that’s aimed specifically at hosting Node.js.

 In this book we’re going to go for the latter. We’re going to use Heroku
(www.heroku.com) as our hosting provider. Heroku is one of the leading hosts for
Node.js applications, and it has an excellent free tier that we’ll be making use of.

 Applications on Heroku are essentially Git repositories, making the publishing
process incredibly simple. Once everything is set up you can publish your application
to a live environment using a single command:

$ git push heroku master

I told you it didn’t have to be complicated.

1.7 Putting it together with a practical example
As already mentioned a few times, throughout the course of this book we’ll build a
working application on the MEAN stack. This will give you a good grounding in each
of the technologies, as well as showing how they all fit together.

1.7.1 Introducing the example application

So what are we actually going to be building as we go through the book? We’ll be
building an application called Loc8r. Loc8r will list nearby places with WiFi where
people can go and get some work done. It will also display facilities, opening times, a
rating, and a location map for each place. Users will be able to log in and submit rat-
ings and reviews.

 This application has some grounding in the real world. Location-based applica-
tions themselves are nothing particularly new and come in a few different guises.
Foursquare and Facebook Check In list everything nearby that they can, and crowd-
source data for new places and information updates. UrbanSpoon helps people find
nearby places to eat, allowing a user to search on price bracket and type of cuisine.
Even companies like Starbucks and McDonald’s have sections of their applications to
help users find the nearest one.

REAL OR FAKE DATA?
Okay, so we’re going to fake the data for Loc8r in this book, but you could collate the
data, crowd-source it, or use an external source if you wanted. For a rapid prototype
approach you’ll often find that faking data for the first private version of your applica-
tion speeds up the process.

END PRODUCT

We’ll use all layers of the MEAN stack to create Loc8r, including Twitter Bootstrap to
help us create a responsive layout. Figure 1.7 shows some screenshots of what we’re
going to be building throughout the book.
Licensed to Mark Watson <nordickan@gmail.com>

www.heroku.com

22 CHAPTER 1 Introducing full-stack development
1.7.2 How the MEAN stack components work together

By the time you’ve been through this book you’ll have an application running on the
MEAN stack, using JavaScript all of the way through. MongoDB stores data in binary
JSON, which through Mongoose is exposed as JSON. The Express framework sits on
top of Node.js, where the code is all written in JavaScript. In the front end is Angu-
larJS, which again is JavaScript. Figure 1.8 illustrates this flow and connection.

Figure 1.7 Loc8r is the application we’re going to build throughout this book. It will display differently on
different devices, showing a list of places and details about each place, and will allow visitors to log in and
leave reviews.
Licensed to Mark Watson <nordickan@gmail.com>

23Summary
We’re going to explore various ways you can architect the MEAN stack and how we’re
going to build Loc8r in chapter 2.

1.8 Summary
In this chapter we’ve covered

■ The different technologies making up the MEAN stack
■ MongoDB as the database layer
■ Node.js and Express working together to provide an application server layer
■ AngularJS providing an amazing front-end, data-binding layer
■ How the MEAN components work together
■ A few ways to extend the MEAN stack with additional technologies

As JavaScript plays such a pivotal role in the stack, please take a look at appendix D
(available online), which has a refresher on JavaScript pitfalls and best practices.

 Coming up next in chapter 2 we’re going to discuss how flexible the MEAN stack is,
and how you can architect it differently for different scenarios.

Database

Data format:

BSON

MongoDB

Exposed data format:

JSON

Mongoose

Application server

Language:

JavaScript

Node.js and Express

Data format:

JSON

Front end

Language:

JavaScript

AngularJS

Data format:

JSON

Figure 1.8 JavaScript is the common language throughout the MEAN stack, and JSON
is the common data format.
Licensed to Mark Watson <nordickan@gmail.com>

Designing a MEAN
stack architecture
In chapter 1 we took a look at the component parts of the MEAN stack and how
they fit together. In this chapter we’re going to look at how they fit together in
more detail.

 We’ll start off by looking at what some people think of as the MEAN stack archi-
tecture, especially when they first encounter the stack. Using some examples we’ll
explore why you might use a different architecture, and switch things up a bit and
move things around. MEAN is a very powerful stack and can be used to solve a
diverse range of problems … if you get creative with how you design your solutions.

This chapter covers
■ Introducing a common MEAN stack architecture
■ Considerations for single-page applications
■ Discovering alternative MEAN stack

architectures
■ Designing an architecture for a real application
■ Planning a build based on the architecture

design
24

Licensed to Mark Watson <nordickan@gmail.com>

25A common MEAN stack architecture
2.1 A common MEAN stack architecture
A common way to architect a MEAN stack application is to have a representational
state transfer (REST) API feeding a single-page application. The API is typically built
with MongoDB, Express, and Node.js, with the SPA being built in AngularJS. This
approach is particularly popular with those who come to the MEAN stack from an
AngularJS background and are looking for a stack that gives a fast, responsive API. Fig-
ure 2.1 illustrates the basic setup and data flow.

Figure 2.1 is a great setup, ideal if you have, or intend to build, an SPA as your user-
facing side. AngularJS is designed with a focus on building SPAs, pulling in data from a
REST API, as well as pushing it back. MongoDB, Express, and Node.js are also extremely
capable when it comes to building an API, using JSON all the way through the stack
including the database itself.

 This is where many people start with the MEAN stack, looking for an answer to the
question, “I’ve built an application in AngularJS; now where do I get the data?”

 Having an architecture like this is great if you have an SPA, but what if you don’t
have or want to use an SPA? If this is the only way you think of the MEAN stack, you’re
going to get a bit stuck and start looking elsewhere. But the MEAN stack is very flexi-
ble. All four components are very powerful and have a lot to offer.

What is a REST API?
REST stands for REpresentational State Transfer, which is an architectural style
rather than a strict protocol. REST is stateless—it has no idea of any current user
state or history.

API is an abbreviation for application program interface, which enables applications
to talk to each other.

So a REST API is a stateless interface to your application. In the case of the MEAN
stack the REST API is used to create a stateless interface to your database, enabling
a way for other applications to work with the data.

AngularJS
MongoDB

Express

Node.js

Single-page

application
REST API

JSON

JSON Figure 2.1 A common approach to MEAN
stack architecture, using MongoDB,
Express, and Node.js to build a REST API
that feeds JSON data to an AngularJS SPA
run in the browser
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 2 Designing a MEAN stack architecture
2.2 Looking beyond SPAs
Coding an SPA in AngularJS is like driving a Porsche along a coastal road with the roof
down. Both are amazing. They’re fun, fast, sexy, agile, and very, very capable. And it’s
most likely that both are a vast improvement on what you’ve been doing before.

 But sometimes they’re not appropriate. If you want to pack up the surfboards and
take your family away for the week you’re going to struggle with the sports car. As
amazing as your car may be, in this case you’re going to want to use something differ-
ent. It’s the same story with SPAs. Yes, building them in AngularJS is amazing, but
sometimes it’s not the best solution to your problem.

 Let’s take a brief look at some things to bear in mind about SPAs when designing a
solution and deciding whether a full SPA is right for your project or not. This section
isn’t intended to be in any way “anti-SPA.” SPAs generally offer a fantastic user experi-
ence while reducing the load on your servers, and therefore also your hosting costs. In
sections 2.3.1 and 2.3.2 we’ll look at a good use case for an SPA and a bad one, and
we’ll actually build one by the end of this book!

2.2.1 Hard to crawl

JavaScript applications are very hard for search engines to crawl and index. Most search
engines look at the HTML content on a page but don’t download or execute much
JavaScript. For those that do, the actual crawling of JavaScript-created content is
nowhere near as good as content delivered by the server. If all of your content is served
via a JavaScript application then you cannot be sure how much of it will be indexed.

 A related downside is that automatic previews from social-sharing sites like Face-
book, LinkedIn, and Pinterest don’t work very well. This is also because they look at
the HTML of the page you’re linking to and try to extract some relevant text and
images. Like search engines they don’t run JavaScript on the page, so content served
by JavaScript won’t be seen.

MAKING AN SPA CRAWLABLE

There are a couple of workarounds to make it look as though your site is crawlable.
Both involve creating separate HTML pages that mirror the content of your SPA. You
can have your server create an HTML-based version of your site and deliver that to
crawlers, or you can use a headless browser such as PhantomJS to run your JavaScript
application and output the resulting HTML.

 Both of these require quite a bit of effort, and can end up being a maintenance
headache if you have a large, complex site. There are also potential search engine
optimization (SEO) pitfalls. If your server-generated HTML is deemed to be too differ-
ent from the SPA content then your site will be penalized. Running PhantomJS to out-
put the HTML can slow down the response speed of your pages, which is something
for which search engines—Google in particular—downgrade you.
Licensed to Mark Watson <nordickan@gmail.com>

27Looking beyond SPAs
DOES IT MATTER?
Whether this matters or not depends on what you want to build. If the main growth
plan for whatever you’re building is through search engine traffic or social sharing
then this is something you want to give a great deal of thought to. If you’re creating
something small that will stay small then managing the workarounds is achievable,
whereas at a larger scale you’ll struggle.

 On the other hand, if you’re building an application that doesn’t need much
SEO—or indeed if you want your site to be harder to scrape—then this isn’t an issue
you need to be concerned about. It could even be an advantage.

2.2.2 Analytics and browser history

Analytics tools like Google Analytics rely heavily on entire new pages loading in the
browser, initiated by a URL change. SPAs don’t work this way. There’s a reason they’re
called single-page applications!

 After the first page load, all subsequent page and content changes are handled
internally by the application. So the browser never triggers a new page load, nothing
gets added to the browser history, and your analytics package has no idea who’s doing
what on your site.

ADDING PAGE LOADS TO AN SPA
You can add page load events to an SPA using the HTML5 history API; this will help you
integrate analytics. The difficulty comes in managing this and ensuring that every-
thing is being tracked accurately, which involves checking for missing reports and
double entries.

 The good news is that you don’t have to build everything from the ground up.
There are several open source analytics integrations for AngularJS available online,
addressing most of the major analytics providers. You still have to integrate them into
your application and make sure that everything is working correctly, but you don’t
have to do everything from scratch.

IS IT A MAJOR PROBLEM?
The extent to which this is a problem depends on your need for undeniably accurate
analytics. If you want to monitor trends in visitor flows and actions then you’re proba-
bly going to find it easy to integrate. The more detail and definite accuracy you need,
the more work it is to develop and test. While it’s arguably much easier to just include
your analytics code on every page of a server-generated site, analytics integration isn’t
likely to be the sole reason that you choose a non-SPA route.

2.2.3 Speed of initial load

SPAs have a slower first page load than server-based applications. This is because the
first load has to bring down the framework and the application code before rendering
the required view as HTML in the browser. A server-based application just has to push
out the required HTML to the browser, reducing the latency and download time.
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 2 Designing a MEAN stack architecture
SPEEDING UP THE PAGE LOAD

There are some ways of speeding up the initial load of an SPA, such as a heavy approach
to caching and lazy-loading modules when you need them. But you’ll never get away
from the fact that it needs to download the framework, at least some of the applica-
tion code, and will most likely hit an API for data before displaying something in
the browser.

SHOULD YOU CARE ABOUT SPEED?
The answer to whether you should care about the speed of the initial page load is,
once again, “it depends.” It depends on what you’re building and how people are
going to interact with it.

 Think about Gmail. Gmail is an SPA and takes quite a while to load. Granted this is
only normally a couple of seconds, but everyone online is impatient these days and
expects immediacy. But people don’t mind waiting for Gmail to load, as it’s snappy
and responsive once you’re in. And once you’re in, you often stay in for a while.

 But if you have a blog pulling in traffic from search engines and other external
links, you don’t want the first page load to take a few seconds. People will assume your
site is down or running slowly and click the back button before you’ve had the chance
to show them content. I’m willing to bet that you know this happens because you’ve
done it yourself!

2.2.4 To SPA or not to SPA?

Just a reminder that this wasn’t an exercise in SPA-bashing; we’re just taking a moment
to think about some things that often get pushed to the side until it’s too late. The
three points about crawlability, analytics integration, and page load speed aren’t
designed to give clear-cut definitions about when to create an SPA and when to do
something else. They’re there to give a framework for consideration.

 It might be the case that none of those things is an issue for your project, and that
an SPA is definitely the right way to go. If you find that each point makes you pause
and think, and it looks like you need to add in workarounds for all three, then an SPA
probably isn’t the way to go.

 If you’re somewhere in between then it’s a judgment call about what is most impor-
tant, and, crucially, what is the best solution for the project. As a rule of thumb, if your
solution includes a load of workarounds at the outset then you probably need to
rethink it.

 Even if you decide that an SPA isn’t right for you, that doesn’t mean that you
can’t use the MEAN stack. Let’s move on and take a look at how you can design a dif-
ferent architecture.

2.3 Designing a flexible MEAN architecture
If AngularJS is like having a Porsche then the rest of the stack is like also having an
Audi RS6 in the garage. A lot of people may be focusing on your sports car out front
Licensed to Mark Watson <nordickan@gmail.com>

29Designing a flexible MEAN architecture
and not give a second glance to the estate car in your garage. But if you do go into the
garage and have a poke around, you’ll find that there’s a Lamborghini V10 engine
under the hood. There’s a lot more to that estate car than you might first think!

 Only ever using MongoDB, Express, and Node.js together to build a REST API is
like only ever using the Audi RS6 to do the school drop-off runs. They’re all extremely
capable and will do the job very well, but they have a lot more to offer.

 We talked a little about what the technologies can do in chapter 1, but here are a
few starting points:

■ MongoDB can store and stream binary information.
■ Node.js is particularly good for real-time connections using web sockets.
■ Express is a web application framework with templating, routing, and session

management built in.

There’s also a lot more, and I’m certainly not going to be able to address the full capa-
bilities of all of the technologies in this book. I’d need several books to do that! What
I can do here is give you a simple example and show you how you can fit together the
pieces of the MEAN stack to design the best solution.

2.3.1 Requirements for a blog engine

Let’s take a look at the familiar idea of a blog engine, and see how you could best
architect the MEAN stack to build one.

 A blog engine typically has two sides to it. There’s a public-facing side serving up
articles to readers, and hopefully being syndicated and shared across the internet. A
blog engine will also have an administrator interface where blog owners log in to write
new articles and manage their blogs. Figure 2.2 shows some of the key characteristics
for these two sides.

 Looking at the lists in figure 2.2, it’s quite easy to see a high level of conflict
between the characteristics of the two sides. You’ve got content-rich, low interaction
for the blog articles, but a feature-rich, highly interactive environment for the admin

Characteristics:

• Feature-rich

• High interaction

• Fast response to actions

• Long user duration

• Private

Admin interface

Characteristics:

• Content-rich

• Low interaction

• Fast first load

• Short user duration

• Public and shareable

Blog entries

Figure 2.2 Conflicting
characteristics of the two
sides of a blog engine, the
public-facing blog entries
and the private admin
interface
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Designing a MEAN stack architecture
interface. The blog articles should be quick to load to reduce bounce rates, whereas
the admin area should be quick to respond to user input and actions. Finally, users
typically stay on a blog entry for a short time, but may share it with others, whereas
the admin interface is very private and an individual user could be logged in for a
long time.

 Taking what we’ve discussed about potential issues with SPAs, and looking at the
characteristics of blog entries, you’ll see quite a lot of overlap. It’s quite likely that
bearing this in mind you’d choose not to use an SPA to deliver your blog articles to
readers. On the other hand, the admin interface is a perfect fit for an SPA.

 So what do you do? Arguably the most important thing is to keep the blog readers
coming—if they get a bad experience they won’t come back and they won’t share. If a
blog doesn’t get readers then the writer will stop writing or move to another platform.
Then again, a slow and unresponsive admin interface will also see your blog owners
jumping ship. So what do you do? How do you keep everybody happy and keep the
blog engine in business?

2.3.2 A blog engine architecture

The answer lies in not looking for a one-size-fits-all solution. You effectively have two
applications. You have public-facing content that should be delivered direct from the
server and an interactive private admin interface that you want to build as an SPA.
Let’s start by looking at each of the two applications separately, starting with the
admin interface.

ADMIN INTERFACE: AN ANGULARJS SPA
We’ve already discussed that this would be an ideal fit for an SPA built in AngularJS. So
the architecture for this part of the engine will look very familiar: a REST API built with
MongoDB, Express, and Node.js with an AngularJS SPA upfront. Figure 2.3 shows how
this looks.

 There’s nothing particularly new shown in figure 2.3. The entire application is
built in AngularJS and runs in the browser, with JSON data being passed back and
forth between the AngularJS application and the REST API.

AngularJS
MongoDB

Express

Node.js

Admin interfaceREST API

JSON

JSON Figure 2.3 A familiar sight: the
admin interface would be an
AngularJS SPA making use of a
REST API built with MongoDB,
Express, and Node.js
Licensed to Mark Watson <nordickan@gmail.com>

31Designing a flexible MEAN architecture
BLOG ENTRIES: WHAT TO DO?
Looking at the blog entries, things get a little more difficult.

 If you only think of the MEAN stack as an AngularJS SPA calling a REST API then
you’re going to get a bit stuck. You could build the public-facing site as an SPA anyway,
because you want to use JavaScript and the MEAN stack. But it’s not the best solution.
You could decide that the MEAN stack isn’t appropriate in this case and choose a differ-
ent technology stack. But you don’t want to do that! You want end-to-end JavaScript.

 So let’s take another look at the MEAN stack, and think about all of the components.
You know that Express is a web application framework. You know that Express can use
template engines to build HTML on the server. You know that Express can use URL rout-
ing and MVC patterns. You should start to think that perhaps Express has the answer!

BLOG ENTRIES: MAKING GOOD USE OF EXPRESS

In this blog scenario, delivering the HTML and content directly from the server is
exactly what you want to do. Express does this particularly well, even offering a choice
of template engines right from the get-go. The HTML content will require data from
the database, so you’ll use a REST API again for that (more on why it’s best to take this
approach in section 2.3.3). Figure 2.4 lays out the basis for this architecture.

This gives you an approach where you can use the MEAN stack, or part of it at least, to
deliver database-driven content directly from the server to the browser. But it doesn’t
have to stop there. The MEAN stack is yet again more flexible.

BLOG ENTRIES: USING MORE OF THE STACK

You’re looking at an Express application delivering the blog content to the visitors.
If you want visitors to be able to log in, perhaps to add comments to articles, you
need to track user sessions. You could use MongoDB with your Express application
to do just this.

 You might also have some dynamic data in the sidebar of your posts, such as
related posts or a search box with type-ahead auto-completion. You could implement
these in AngularJS. Remember, AngularJS isn’t only for SPAs; it can also be used to add
some rich data interactivity to an otherwise static page.

Express

Node.js

MongoDB

Express

Node.js

Blog entries

JSON

JSON

REST API

Figure 2.4 An architecture for delivering
HTML directly from the server: an Express
and Node.js application at the front,
interacting with a REST API built in
MongoDB, Express, and Node.js
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Designing a MEAN stack architecture
Figure 2.5 shows these optional parts of MEAN added to the blog entry architecture.
 Now you have the possibility of a full MEAN application delivering content to visi-

tors interacting with your REST API.

BLOG ENGINE: A HYBRID ARCHITECTURE

At this point there are two separate applications, each using a REST API. With a little
bit of planning this can be a common REST API, used by both sides of the application.

 Figure 2.6 shows what this looks like as a single architecture, with the one REST API
interacting with the two front-end applications.

 This is just a simple example to show how you can piece together the various parts
of the MEAN stack into different architectures to answer the questions that your proj-
ects ask of you. Your options are only limited by your understanding of the components

Express

Node.js

(AngularJS)

(MongoDB)

MongoDB

Express

Node.js

Blog entries

JSON

JSON

REST API

Figure 2.5 Adding the options of using
AngularJS and MongoDB as part of the
public-facing aspect of the blog engine,
serving the blog entries to visitors

Express

Node.js

(AngularJS)

(MongoDB)

MongoDB

Express

Node.js

Blog entries

AngularJS

Admin interface

REST API
JSON

JSON

Figure 2.6 A hybrid MEAN stack architecture: a
single REST API feeding two separate user-facing
applications, built using different parts of the
MEAN stack to give the most appropriate solution
Licensed to Mark Watson <nordickan@gmail.com>

33Designing a flexible MEAN architecture
and your creativity in putting them together. There’s no one correct architecture for
the MEAN stack.

2.3.3 Best practice: Build an internal API for a data layer

You’ve probably noticed that every version of the architecture includes an API to sur-
face the data, and allows interaction between the main application and the database.
There’s a good reason for this.

 If you were to start off by building your application in Node.js and Express, serving
HTML directly from the server, it would be really easy to talk to the database directly
from the Node.js application code. With a short-term view this is the easy way. But with
a long-term view this becomes the difficult way, as it will tightly couple your data to
your application code in a way that nothing else could use it.

 The other option is to build your own API that can talk to the database directly and
output the data you need. Your Node.js application can then talk with this API instead
of directly with the database. Figure 2.7 shows a comparison of the two setups.

Looking at figure 2.7 you could well be wondering why you’d want to go to the effort
of creating an API just to sit in between your application and your database. Isn’t it cre-
ating more work? At this stage, yes, it’s creating more work—but you want to look
further down the road here. What if you want to use your data in a native mobile
application a little later? Or, for example, in an AngularJS front end?

 You certainly don’t want to find yourself in the position where you have to write
separate but similar interfaces for each. If you’ve built your own API upfront that out-
puts the data you need, you can avoid all of this. If you have an API in place, when you
want to integrate the data layer into your application you can simply make it reference
your API. It doesn’t matter if your application is Node.js, AngularJS, or iOS. It doesn’t
have to be a public API that anyone can use, so long as you can access it. Figure 2.8

Database

Integrated approach

Node.js application APIDatabase

API approach

Node.js application

Figure 2.7 The short-term view of data integration into your Node.js application. You can set up
your Node.js application to talk directly to your database, or you can create an API that interacts
with the database and have your Node.js application talk only with the API.
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Designing a MEAN stack architecture
shows a comparison of the two approaches when you have Node.js, AngularJS, and iOS
applications all using the same data source.

 As figure 2.8 shows, the previously simple integrated approach is now becoming
fragmented and complex. You’ll have three data integrations to manage and main-
tain, so any changes will have to be made in multiple places to retain consistency. If
you have a single API you don’t have any of these worries. So with a little bit of extra
work at the beginning, you can make life much easier for yourself further down the
road. We’ll look at creating internal APIs in chapter 6.

2.4 Planning a real application
As we talked about in chapter 1, throughout the course of this book we’ll build a work-
ing application on the MEAN stack called Loc8r. Loc8r will list nearby places with WiFi
where people can go and get some work done. It will also display facilities, opening
times, a rating, and a location map for each place. Visitors will be able to submit rat-
ings and reviews.

Database

Integrated approach

Integration

layer

AngularJS

application

Node.js

application

Integration

layer

IOS

app

Database API

API approach

AngularJS

application

Node.js

application

IOS

app

Figure 2.8 The long-term view of data integration into your Node.js application, and additional
AngularJS and iOS applications. The integrated approach has now become fragmented, whereas the
API approach is simple and maintainable.
Licensed to Mark Watson <nordickan@gmail.com>

35Planning a real application
 For the sake of the demo application, we’ll be creating fake data so that we can test
it quickly and easily. So let’s get planning.

2.4.1 Planning the application at a high level

The first step is to think about what screens we’ll need in our application. We’ll focus
on the separate page views and the user journeys. We can do this at a very high level,
not really concerning ourselves with the details of what is on each page. It is a good
idea to sketch out this stage on a piece of paper or a whiteboard, as it helps to visualize
the application as a whole. It also helps with organizing the screens into collections
and flows, while serving as a good reference point for when we come to build it. As
there’s no data attached to the pages or application logic behind them, it’s really easy
to add and remove parts, change what is displayed where, and even change how many
pages we want. The chances are that we won’t get it right the first time; the key is to
start and iterate and improve until we’re happy with the separate pages and overall
user flow.

PLANNING THE SCREENS

Let’s think about Loc8r. As stated our aim is as follows:

Loc8r will list nearby places with WiFi where people can go and get some
work done. It will also display facilities, opening times, a rating, and a
location map for each place. Visitors will be able to submit ratings and
reviews.

From this we can get an idea about some of the screens we’re going to need:

1 A screen that lists nearby places
2 A screen that shows details about an individual place
3 A screen for adding a review about a place

We’ll probably also want to tell visitors what Loc8r is for and why it exists, so we should
add another screen to the list:

4 A screen for “about us” information

DIVIDING THE SCREENS INTO COLLECTIONS

Next we want to take the list of screens and collate them where they logically belong
together. For example, the first three in the list are all dealing with locations. The
About page doesn’t really belong anywhere so it can go in a miscellaneous Others col-
lection. Sketching this out brings us something like figure 2.9.

 Having a quick sketch like this is the first stage in planning, and we really need to
go through this stage before we can start thinking about architecture. This stage gives
us a chance to look at the basic pages, and to also think about the flow. Figure 2.9, for
example, also shows a basic user journey in the Locations collection, going from the
List page, to a Details page, and then onto the form to add a review.
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 Designing a MEAN stack architecture
2.4.2 Architecting the application

On the face of it Loc8r is a fairly simple application, with just a few screens. But we still
need to think about how to architect it, as we’re going to be transferring data from a
database to a browser, letting users interact with the data, and allowing data to be sent
back to the database.

STARTING WITH THE API
Because the application is going to be using a database and passing data around, we’ll
start building up the architecture with the piece we’re definitely going to need. Fig-
ure 2.10 shows the starting point, a REST API built with Express and Node.js to enable
interactions with the MongoDB database.

As already discussed in this chapter, building an API to interface with our data is a bit
of a given, and is the base point of the architecture. So the more interesting and diffi-
cult question is: How do we architect the application itself?

List page

Locations

About page

Others

Details page Add Review page

Figure 2.9 Collate the separate
screens for our application into
logical collections.

Database

JSON

JSON

API

Express

Node.js

MongoDB
Figure 2.10 Start with the standard
MEAN REST API, using MongoDB,
Express, and Node.js.
Licensed to Mark Watson <nordickan@gmail.com>

37Planning a real application
APPLICATION ARCHITECTURE OPTIONS

At this point we need to take a look at the specific requirements of our application,
and how we can put together the pieces of the MEAN stack to build the best solution.
Do we need something special from MongoDB, Express, AngularJS, or Node.js that
will swing the decision a certain way? Do we want HTML served directly from the
server, or is an SPA the better option?

 For Loc8r there are no unusual or specific requirements, and whether or not it
should be easily crawlable by search engines depends on the business growth plan. If
the aim is to bring in organic traffic from search engines, then yes it needs to be craw-
lable. If the aim is to promote the application as an application and drive use that way,
then search engine visibility is a lesser concern.

 Thinking back to the blog example, we can immediately envisage three possible
application architectures as shown in figure 2.11:

1 A Node.js and Express application
2 A Node.js and Express application with AngularJS additions for interactivity
3 An AngularJS SPA

With these three options in mind, which is the best for Loc8r?

Database

JSON

JSON

API

Express

Node.js

An Express and

Node.js application

1

Express app

Express

Node.js

An Express and

Node.js application

with additional

Angular components

2

Express and extras

Express

Node.js

AngularJS

An Angular SPA3

Angular SPA

AngularJS

MongoDB

Figure 2.11 Three options for building the Loc8r application, ranging from a server-side Express
and Node.js application to a full client-side AngularJS SPA
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 Designing a MEAN stack architecture
CHOOSING AN APPLICATION ARCHITECTURE

There are no specific business requirements pushing us to favor one particular archi-
tecture over another. It doesn’t matter because we’re going to do all three in this book.
Building all three of the architectures will allow us to explore how each approach works,
and will enable us to take a look at each of the technologies in turn, building up the
application layer by layer.

 We’ll be building the architectures in the order they’re shown in figure 2.11, start-
ing with a Node.js and Express application, then moving on to add some AngularJS,
before refactoring to an AngularJS SPA. While this isn’t necessarily how you might
build a site normally, it gives you a great opportunity for learning all aspects of the
MEAN stack. We’ll talk shortly in section 2.5 about the approach, and walk through
the plan in a bit more detail.

2.4.3 Wrapping everything in an Express project

The architecture diagrams we’ve been looking at so far imply that we’ll have separate
Express applications for the API and the application logic. This is perfectly possible,
and is a good way to go for a large project. If we’re expecting large amounts of traffic
we might even want our main application and our API on different servers. An addi-
tional benefit of this is that we can have more specific settings for each of the servers
and applications that are best suited to the individual needs.

 Another way is to keep things simple and contained and have everything inside a
single Express project. With this approach we only have one application to worry
about hosting and deploying, and one set of source code to manage. This is what we’ll
be doing with Loc8r, giving us one Express project containing a few subapplications.
Figure 2.12 illustrates this particular approach.

Database API

Express

Node.js

Express app
Encapsulating

Express project

Express

Node.js

AngularJS

Angular SPA

AngularJS

MongoDB

Figure 2.12 The
architecture of the
application with the API
and application logic
wrapped inside the same
Express project
Licensed to Mark Watson <nordickan@gmail.com>

39Planning a real application
When putting together an application in this way it’s important to organize our code
well so that the distinct parts of the application are kept separate. As well as making
our code easier to maintain, it also makes it easier to split it out into separate projects
further down the line if we decide that’s the right route. This is a key theme that we’ll
keep coming back to throughout the book.

2.4.4 The end product

As you can see, we’ll use all layers of the MEAN stack to create Loc8r. We’ll also include
Twitter Bootstrap to help us create a responsive layout. Figure 2.13 shows some screen-
shots of what we’re going to be building throughout the book.

Figure 2.13 Loc8r is the application we’re going to build throughout this book. It will display differently on
different devices, showing a list of places and details about each place, and will enable visitors to log in and
leave reviews.
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 2 Designing a MEAN stack architecture
2.5 Breaking the development into stages
In this book we have two aims:

1 Build an application on the MEAN stack
2 Learn about the different layers of the stack as we go

We’ll approach the project in the way I’d personally go about building a rapid proto-
type, but with a few tweaks to give you the best coverage of the whole stack. We’ll start
by looking at the five stages of rapid prototype development, and then see how we can
use this approach to build up Loc8r layer by layer, focusing on the different technolo-
gies as we go.

2.5.1 Rapid prototype development stages

Let’s break down the process into a number of stages, which lets us concentrate on
one thing at a time, increasing our chances of success. I find this approach works well
for making an idea a reality.

STAGE 1: BUILD A STATIC SITE

The first stage is to build a static version of the application, which is essentially a num-
ber of HTML screens. The aims of this stage are

■ To quickly figure out the layout
■ To ensure that the user flow makes sense

At this point we’re not concerned with a database or flashy effects on the user inter-
face; all we want to do is create a working mockup of the main screens and journeys
that a user will take through the application.

STAGE 2: DESIGN THE DATA MODEL AND CREATE THE DATABASE

Once we have a working static prototype that we’re happy with, the next thing to do is
look at any hard-coded data in the static application and put it into a database. The
aims of this stage are

■ To define a data model that reflects the requirements of the application
■ To create a database to work with the model

The first part of this is to define the data model. Stepping back to a bird’s-eye view,
what are the objects we need data about, how are the objects connected, and what
data is held in them?

 If we try to do this stage before building the static prototype then we’re dealing
with abstract concepts and ideas. Once we have a prototype, we can see what is hap-
pening on different pages and what data is needed where. Suddenly this stage becomes
much easier. Almost unknown to us, we’ve done the hard thinking while building the
static prototype.
Licensed to Mark Watson <nordickan@gmail.com>

41Breaking the development into stages
STAGE 3: BUILD OUR DATA API
After stages 1 and 2 we have a static site on one hand and a database on the other. This
stage and the next take the natural steps of linking them together. The aim of stage 3 is

■ To create a REST API that will allow our application to interact with the database

STAGE 4: HOOK THE DATABASE INTO THE APPLICATION

When we get to this stage we have a static application and an API exposing an inter-
face to our database. The aim of this stage is

■ To get our application to talk to our API

When this stage is complete the application will look pretty much the same as it did
before, but the data will be coming from the database. When it’s done, we’ll have a
data-driven application!

STAGE 5: AUGMENT THE APPLICATION

This stage is all about embellishing the application with additional functionality. We
might add authentication systems, data validation, or methods for displaying error
messages to users. It could include adding more interactivity to the front end or tight-
ening up the business logic in the application itself.

 So, really, the aims of this stage are

■ To add finishing touches to our application
■ To get the application ready for people to use

These five stages of development provide a great methodology for approaching a new
build project. Let’s take a look at how we’ll follow these steps to build Loc8r.

2.5.2 The steps to build Loc8r

In building Loc8r throughout this book we have two aims. First, of course, we want
to build a working application on the MEAN stack. Second, we want to learn about
the different technologies, how to use them, and how to put them together in differ-
ent ways.

 So throughout the book we’ll be following the five stages of development, but with
a couple of twists so that we get to see the whole stack in action. Before we look at the
steps in detail, let’s quickly remind ourselves of the proposed architecture as shown in
figure 2.14.

STEP 1: BUILD A STATIC SITE

We’ll start off by following stage 1 and building a static site. I recommend doing this
for any application or site, as you can learn a lot with relatively little effort. When
building the static site, it’s good to keep one eye on the future, keeping in mind what
the final architecture will be. We’ve already defined the architecture for Loc8r as shown
in figure 2.14.
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 Designing a MEAN stack architecture
Based on this architecture we’ll build the static application in Node and Express,
using that as our starting point into the MEAN stack. Figure 2.15 highlights this step in
the process as the first part of developing the proposed architecture.

 This step is covered in chapters 3 and 4.

Database API

Express

Node.js

Express app

Express

Node.js

AngularJS

MongoDB
Angular SPA

AngularJS

Figure 2.14 Proposed
architecture for Loc8r as
we’ll build it throughout
this book

Database API

Express

Node.js

Express app

Express

Node.js

AngularJS

Build a static

app with Express

and Node.js.

1

MongoDB
Angular SPA

AngularJS

Figure 2.15 The starting point for our application is building the user interface in
Express and Node.js.
Licensed to Mark Watson <nordickan@gmail.com>

43Breaking the development into stages
STEP 2: DESIGN THE DATA MODEL AND CREATE THE DATABASE

Still following the stages of development we’ll continue to stage 2 by creating the data-
base and designing the data model. Again, any application is likely to need this step,
and you’ll get much more out of it if you’ve been through step 1 first.

 Figure 2.16 illustrates how this step adds to the overall picture of building up the
application architecture.

In the MEAN stack we’ll use MongoDB for this step, relying heavily on Mongoose for
the data modeling. The data models themselves will actually be defined inside the
Express application. This step will be covered in chapter 5.

STEP 3: BUILD OUR REST API
When we’ve built the database and defined the data models we’ll want to create a
REST API so that we can interact with the data through making web calls. Pretty much
any data-driven application will benefit from having an API interface, so this is another
step you’ll want to have in most build projects.

 You can see where this step fits into building the overall project in figure 2.17.
 In the MEAN stack this step is mainly done in Node.js and Express, with quite a bit

of help from Mongoose. We’ll use Mongoose to interface with MongoDB rather than
dealing with MongoDB directly. This step will be covered in chapter 6.

STEP 4: USE THE API FROM OUR APPLICATION

This step matches stage 4 of the development process and is where Loc8r will start to
come to life. The static application from step 1 will be updated to use the REST API
from step 3 to interact with the database created in step 2.

Database API

MongoDB
Express

Node.js

Express app

Express

Node.js

AngularJS

Angular SPA

AngularJS

Create database and

design data model.

2

Figure 2.16 After the
static site is built we’ll use
the information gleaned to
design the data model and
create the MongoDB
database.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 Designing a MEAN stack architecture
To learn about all parts of the stack, and the different ways in which we can use them,
we’ll be using Express and Node.js to make calls to the API. If, in a real-world scenario,
you were planning to build the bulk of an application in AngularJS then you’d hook
your database into AngularJS instead. We’ll cover that in chapters 8, 9, and 10.

 At the end of this step we’ll have an application running on the first of the three
architectures: an Express and Node.js application. Figure 2.18 shows how this step fits
together the two sides of the architecture.

Database API

MongoDB
Express

Node.js

Express app

Express

Node.js

AngularJS

Build an API

to expose the

database.

3

Angular SPA

AngularJS

Figure 2.17 Use Express and
Node.js to build an API, exposing
methods of interacting with the
database.

Database API

MongoDB
Express

Node.js

Express app

Express

Node.js

AngularJS

Hook Express

application into

the data API.

4

Angular SPA

AngularJS

Figure 2.18 Update the static
Express application by hooking it
into the data API, allowing the
application to be database-driven.
Licensed to Mark Watson <nordickan@gmail.com>

45Breaking the development into stages
In this build we’ll be doing the majority of this step in Node.js and Express, and it will
be covered in chapter 7.

STEP 5: EMBELLISH THE APPLICATION

Step 5 relates to stage 5 in the development process where we get to add extra touches
to the application. We’re going to use this step to take a look at AngularJS, and we’ll
see how we can integrate AngularJS components into an Express application.

 You can see this addition to the project architecture highlighted in figure 2.19.

This step is all about introducing and using AngularJS. To support this we’ll most
likely also change some of our Node.js and Express setup. This step will be covered in
chapter 8.

STEP 6: REFACTOR THE CODE INTO AN ANGULARJS SPA
In step 6 we’ll radically change the architecture by replacing the Express application
and moving all of the logic into an SPA using AngularJS. Unlike all of the previous
steps, this replaces some of what has come before it, rather than building upon it.

 This would be an unusual step in a normal build process, to develop an application
in Express and then redo it in AngularJS, but it suits the learning approach in this
book particularly well. We’ll be able to focus on AngularJS as we already know what
the application should do, and there’s a data API ready for us.

 Figure 2.20 shows how this change affects the overall architecture.
 This step is once again focused on AngularJS, and will be covered in chapters 9 and 10.

Database API

MongoDB
Express

Node.js

Express app

Express

Node.js

AngularJS

Add AngularJS

components to

the front end.

5

Angular SPA

AngularJS

Figure 2.19 One way to use AngularJS in a MEAN application is to add components
to the front end in an Express application.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 Designing a MEAN stack architecture
STEP 7: ADD AUTHENTICATION

In step 7 we’ll add functionality to the application and enable users to register and log
in, and also see how to make use of the user’s data whilst they are using the applica-
tion. We’ll build on everything we’ve done so far and add authentication to the Angu-
lar SPA. As a part of this we’ll save user information in the database and secure certain
API end points so that they can only be used by authenticated users.

 Figure 2.21 shows what we’ll be working with in the architecture.

Database API

MongoDB
Express

Node.js

Express app

Express

Node.js

AngularJS

Angular SPA

AngularJS
Refactor code

into an Angular

SPA.

6 Figure 2.20 Effectively
rewriting the application
as an AngularJS SPA

Express app

Express

Node.js

AngularJS

Angular SPA

AngularJS

API

Express

Node.js

Database

MongoDB

Use the whole MEAN

stack to add authentication

to the Angular SPA.

7 Figure 2.21 Using all of the
MEAN stack to add authentication
to the AngularJS SPA
Licensed to Mark Watson <nordickan@gmail.com>

47Hardware architecture
In this step we’ll work with all of the MEAN technologies; this is covered in chapter 11.

2.6 Hardware architecture
No discussion about architecture would be complete without a section on hardware.
You’ve seen how all of the software and code components can be put together, but
what type of hardware do you need to run it all?

2.6.1 Development hardware

The good news is that you don’t need anything particularly special to run a develop-
ment stack. Just a single laptop, or even a virtual machine (VM), is enough to develop
a MEAN application. All components of the stack can be installed on Windows, Mac
OS X, and most Linux distributions.

 I’ve successfully developed applications on Windows and Mac OS X laptops, and
also on Ubuntu VMs. My personal preference is native development in OS X, but I
know of others who swear by using Linux VMs.

 If you have a local network and a number of different servers you can run different
parts of your application across them. For example, it’s possible to have one machine
as a database server, another for the REST API, and a third for the main application
code itself. So long as the servers can talk to each other this isn’t a problem.

2.6.2 Production hardware

The approach to production hardware architecture isn’t all that different from devel-
opment hardware. The main difference is that production hardware is normally higher
spec, and is open to the internet to receive public requests.

STARTER SIZE

It’s quite possible to have all parts of your application hosted and running on the same
server. You can see a basic diagram of this in figure 2.22.

This architecture is okay for applications with low amounts of traffic, but isn’t gener-
ally advised as your application grows, because you don’t want your application and
database fighting over the same resources.

GROWING UP: A SEPARATE DATABASE SERVER

One of the first things to be moved onto a separate server is often the database. So
now you have two servers: one for the application code and one for the database. Fig-
ure 2.23 illustrates this approach.

REST API ApplicationDatabase

Figure 2.22 The simplest of hardware
architectures, having everything on a
single server
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 Designing a MEAN stack architecture
This is quite a common model, particularly if you choose to use a platform as a service
(PaaS) provider for your hosting. We’ll be using this approach in this book.

GOING FOR SCALE

Much like we talked about in the development hardware, you can have a different
server for the different parts of your application—a database server, an API server, and
an application server. This will allow you to deal with more traffic as the load is spread
across three servers, as illustrated in figure 2.24.

But it doesn’t stop there. If your traffic starts to overload your three servers, you can
have multiple instances—or clusters—of these servers, as shown in figure 2.25.

 Setting up this approach is a little more involved than the previous methods
because you need to ensure that your database remains accurate, and that the load is
balanced across the servers. Once again, PaaS providers offer a convenient route into
this type of architecture.

REST API ApplicationDatabase

Figure 2.23 A common hardware
architecture approach: one server to
run the application code and API, and
a second, separate database server

REST API ApplicationDatabase

Figure 2.24 A decoupled architecture using
three servers: one for the database, one for
the API, and one for the application code

REST API ApplicationDatabase

Figure 2.25 You can scale
MEAN applications by having
clusters of servers for each part
of your entire application.
Licensed to Mark Watson <nordickan@gmail.com>

49Summary
2.7 Summary
In this chapter we’ve covered

■ A common MEAN stack architecture with an AngularJS SPA using a REST API
built in Node.js, Express, and Mongo

■ Points to consider when deciding whether to build an SPA or not
■ How to design a flexible architecture in the MEAN stack
■ The best practice of building an API to expose a data layer
■ The steps we’re going to take to build the sample application Loc8r
■ Development and production hardware architectures

We’ll get started on the journey in chapter 3 by creating the Express project that will
hold everything together.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Building a Node
web application

Node.js underpins any MEAN application, so that’s where we’ll start.
Throughout part 2 we’ll build a data-driven web application using Node.js,
Express, and MongoDB. We’ll learn the individual technologies as we go, steadily
building up the application to a point where we have a fully functioning Node
web application.

 In chapter 3 we’ll get going by creating and setting up a MEAN project, get-
ting acquainted with Express, before getting a much deeper understanding of
Express by building out a static version of the application in chapter 4. Taking
what we’ve learned about the application so far, in chapter 5 we’ll work with
MongoDB and Mongoose to design and build the data model we’ll need.

 Good application architecture should include a data API rather than tightly
coupling the database interactions with the application logic. In chapter 6 we’ll
create a REST API using Express, MongoDB, and Mongoose, before tying this
back into the application by consuming the REST API from our static applica-
tion. As we get to the end of part 2 we’ll have a data-driven website using
Node.js, MongoDB, and Express, and also a fully functioning REST API.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Creating and setting up
a MEAN project
Now we’re really ready to get underway, and in this chapter we’ll get going on
building our application. Remember from chapters 1 and 2 that throughout this
book we’re going to build an application called Loc8r. This is going to be a location-
aware web application that will display listings near users and invite people to login
and leave reviews.

 In the MEAN stack Express is the Node web application framework. Together
Node and Express underpin the entire stack, so let’s start here. In terms of building

This chapter covers
■ Managing dependencies by using a

package.json file
■ Creating and configuring Express projects
■ Setting up an MVC environment
■ Adding Twitter Bootstrap for layout
■ Publishing to a live URL and using Git and

Heroku
53

Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Creating and setting up a MEAN project
up the application architecture, figure 3.1 shows where we’ll be focusing in this chap-
ter. We’ll be doing two things:

1 Creating the project and encapsulating the Express application that will house
everything else except the database

2 Setting up the main Express application

Getting the source code
The source code for this application is on GitHub at github.com/simonholmes/getting-
MEAN. Each chapter with a significant update will have its own branch. I encourage
you to build it up from scratch, through the course of the book, but if you wish you
can get the code we’ll be building throughout this chapter from GitHub on the chapter-
03 branch. In a fresh folder in terminal the following two commands will clone it, if
you already have Git installed:

$ git clone -b chapter-03 https://github.com/simonholmes/getting-MEAN.git

This will give you a copy of the code that’s stored on GitHub. To run the application
you’ll need to install some dependencies with the following commands:

$ cd getting-MEAN
$ npm install

Don’t worry if some of this doesn’t make sense just yet, or if some of the commands
aren’t working. During this chapter we’ll install these technologies as we go.

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Create the project

and encapsulating

Express app.

1

Start creating

the main

Express app.

2

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 3.1 Creating the encapsulating Express application, and starting to set up the main
Express application
Licensed to Mark Watson <nordickan@gmail.com>

http://www.github.com/simonholmes/getting-MEAN
http://www.github.com/simonholmes/getting-MEAN

55A brief look at Express, Node, and npm
We’ll start with a bit of groundwork by looking at Express and seeing how we can man-
age dependencies and modules using npm and a package.json file. We’ll need this
background knowledge to get going and set up an Express project.

 Before we can really do anything we’ll make sure that you have everything you
need installed on your machine. When that’s all done we’ll look at creating new
Express projects from the command line, and the various options we can specify at
this point.

 Express is great, but you can make it better—and get to know it better—by tinker-
ing a little and changing some things around. This ties into a quick look at model-
view-controller (MVC) architecture. Here’s where we’ll get under the hood of Express
a little, and see what it’s doing by modifying it to have a very clear MVC setup.

 When the framework of Express is set up as we want it, we’ll next include Twitter’s
Bootstrap framework, and make the site responsive by updating the Jade templates. In
the final step of this chapter we’ll push the modified, responsive MVC Express applica-
tion to a live URL using Heroku and Git.

3.1 A brief look at Express, Node, and npm
As mentioned before, Express is a web application framework for Node. In basic terms,
an Express application is simply a Node application that happens to use Express as the
framework. Remember from chapter 1 that npm is a package manager that gets installed
when you install Node, which gives you the ability to download Node modules or pack-
ages to extend the functionality of your application.

 But how do these things work together, and how do you use them? A key piece to
understanding this puzzle is the package.json file.

3.1.1 Defining packages with package.json

In every Node application there should be a file in the root folder of the application
called package.json. This file can contain various metadata about a project, including
the packages that it depends on to run. The following listing shows an example pack-
age.json file that you might find in the root of a new Express project.

{
 "name": "application-name",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "express": "~4.9.0",
 "body-parser": "~1.8.1",
 "cookie-parser": "~1.3.3",
 "morgan": "~1.3.0",

Listing 3.1 Example package.json file in a new Express project

Various metadata
defining application

Package dependencies
needed for application
to run
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Creating and setting up a MEAN project
 "serve-favicon": "~2.1.3",
 "debug": "~2.0.0",
 "jade": "~1.6.0"
 }
}

This is the file in its entirety, so it’s not particularly complex. There’s various metadata
at the top of the file followed by the dependencies section. In this default installation
of an Express project there are quite a few dependencies. Express itself is modular so
that you can add in components or upgrade them individually.

WORKING WITH DEPENDENCY VERSIONS IN PACKAGE.JSON

Alongside the name of each dependency is the version number that the application is
going to use. Notice that they’re all prefixed with a ~.

 Let’s take a look at the dependency definition for Express 4.9.0. It specifies a par-
ticular version at three levels:

■ Major version (4)
■ Minor version (9)
■ Patch version (0)

Prefixing the whole version number with a ~ is like replacing the patch version with a
wildcard, which means that the application will use the latest patch version available.
This is considered best practice, as patches should only contain fixes that won’t have
any impact on the application. But different major and minor versions could well
include changes that cause problems with the application, so you want to avoid auto-
matically using later versions of these.

3.1.2 Installing Node dependencies with npm

Any Node application or module can have dependencies defined in a package.json
file. Installing them is really easy, and is done in the same way regardless of the appli-
cation or module.

 Using a terminal prompt in the same folder as the package.json file you simply
need to run the following command:

$ npm install

This tells npm to install all of the dependencies listed in the package.json file. When
you run it, npm will download all of the packages listed as dependencies and install
them into a specific folder in the application called node_modules. Figure 3.2 illustrates
the three key parts.

 npm will install each package into its own subfolder because each one is effectively
a Node package in its own right. As such, each package also has its own package.json
file defining the metadata including the specific dependencies. It’s quite common for
a package to have its own node_modules folder. You don’t need to worry about manu-
ally installing all of the nested dependencies though, because this is all handled by the
original npm install command.

Package dependencies
needed for application
to run
Licensed to Mark Watson <nordickan@gmail.com>

57A brief look at Express, Node, and npm
ADDING MORE PACKAGES TO AN EXISTING PROJECT

You’re unlikely to have the full list of dependencies for a project right from the outset.
It’s far more likely that you’ll start off with a few key ones that you know you’ll need,
and perhaps some that you always use in your workflow.

 Using npm, it’s really easy to add more packages to the application whenever you
want. You simply find the name of the package you want to install and open a com-
mand prompt in the same folder as the package.json file. You then run a simple com-
mand like this:

$ npm install --save package-name

With this command npm will download and install the new package into the node_
modules folder. The --save flag tells npm to add this package to the list of dependen-
cies in the package.json file.

UPDATING PACKAGES TO LATER VERSIONS

The only time npm downloads and reinstalls existing packages is when you’re upgrad-
ing to a new version. When you run npm install, npm will go through all of the depen-
dencies and check the following:

■ The version defined in the package.json file
■ The latest patch version on npm (assuming you used the ~)
■ The version installed in the node_modules folder (if at all)

If your installed version is different from the definition in the package.json file, npm
will download and install the version defined in package.json. Similarly, if you’re using
a patch wildcard and there’s a later patch version available, npm will download and
install it in place of the previous version.

 With that knowledge under your belt, we can start creating our first Express project.

Modules and

packages are

defined in the

package.json file.

npm is used in

the command line to

install the modules.

npm downloads the

packages defined in

package.json and installs

them in a node_modules

folder in your application.

package.json node_modules

+

$ npm install

$

Figure 3.2 The npm modules defined in a package.json file are downloaded
and installed into the application’s node_modules folder when you run the npm
install terminal command.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Creating and setting up a MEAN project
3.2 Creating an Express project
All journeys must have a starting point, which for building a MEAN application is to
create a new Express project. To create an Express project you’ll need to have five key
things installed on your development machine:

■ Node and npm
■ The Express generator installed globally
■ Git
■ Heroku
■ New command-line interface (CLI) or terminal

3.2.1 Installing the pieces

If you don’t have Node, npm, or the Express generator installed yet, see appendix A
for instructions and pointers to online resources. They can all be installed on Win-
dows, Mac OS X, and most mainstream Linux distributions.

 By the end of this chapter we’ll also have used Git to manage the source control of
our Loc8r application, and pushed it to a live URL using Heroku. Please take a look
through appendix B, which guides you through setting up Git and Heroku.

 Depending on your operating system you may need to install a new CLI or termi-
nal. See appendix B to find out if this applies to you or not.

NOTE Throughout this book I’ll often refer to the CLI as terminal. So when I
say “run this command in terminal,” simply run it in whichever CLI you’re
using. When terminal commands are included as code snippets throughout
this book, they’ll start with a $. You shouldn’t type this into terminal; it’s
simply there to denote that this is a command-line statement. For example,
using the echo command $ echo 'Welcome to Getting MEAN', you’d just type
in echo 'Welcome to Getting MEAN'.

VERIFYING THE INSTALLATIONS

To create a new Express project you must have Node and npm installed, and also have
the Express generator installed globally. You can verify this by checking for the version
numbers in the terminal using the following commands:

$ node --version
$ npm --version
$ express --version

Each of these commands should output a version number to terminal. If one of them
fails, head back to appendix A on how to install it again.

3.2.2 Creating a project folder

Assuming all is good, let’s start by creating a new folder on your machine called loc8r.
This can be on your desktop, in your documents, in a Dropbox folder—it doesn’t
really matter, as long as you have full read and write access rights to the folder.
Licensed to Mark Watson <nordickan@gmail.com>

59Creating an Express project
 I personally do a lot of my MEAN development in Dropbox folders so that it’s
immediately backed up and accessible on any of my machines. If you’re in a corpor-
ate environment this may not be suitable for you, so create the folder wherever you
think best.

3.2.3 Configuring an Express installation

An Express project is installed from the command line, and the configuration is
passed in using parameters on the command that you use. If you’re not familiar with
using the command line, don’t worry, none of what we’ll go through in the book is
particularly complex, and it’s all pretty easy to remember. Once you’ve started using it
you’ll probably start to love how it makes some operations so fast!

 For example—don’t do this just yet—you can install Express into a folder with a
simple command:

$ express

This would install the framework with default settings into your current folder. This is
probably a good start, but let’s take a look at some configuration options first.

CONFIGURATION OPTIONS WHEN CREATING AN EXPRESS PROJECT

What can you configure when creating an Express project? When creating an Express
project in this way, you can specify the following:

■ Which HTML template engine to use
■ Which CSS preprocessor to use
■ Whether to add support for sessions

A default installation will use the Jade template engine, but it will have no CSS pre-
processing or session support. You can specify a few different options as laid out in
table 3.1.

For example—and this isn’t what we’re going to do here—if you want to create a proj-
ect that uses the Less CSS preprocessor and the Hogan template engine you’d run the
following command in terminal:

$ express --css less --hogan

Table 3.1 Command-line configuration options when creating a new Express project

Configuration command Effect

--css less|stylus Adds a CSS preprocessor to your project, either Less or Stylus,
depending on which you type in the command.

--ejs Changes the HTML template engine from Jade to EJS.

--jshtml Changes the HTML template engine from Jade to JsHtml.

--hogan Changes the HTML template engine from Jade to Hogan.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Creating and setting up a MEAN project
To keep things simple in our project we won’t use CSS preprocessing, so we can stick
with the default of plain CSS. But we do need to use a template engine, so let’s take a
quick look at the options.

DIFFERENT TEMPLATE ENGINES

When using Express in this way there are four template options available: Jade, EJS,
JsHtml, and Hogan. The basic workflow of a template engine is that you create the
HTML template, including placeholders for data, and then pass it some data. The
engine will then compile the two together to create the final HTML markup that the
browser will receive.

 All of the engines have their own merits and quirks, and if you already have a pre-
ferred one then that’s fine. In this book we’re going to be using Jade. Jade is very pow-
erful and provides all of the functionality we’re going to need. As it’s the default
template engine in Express you’ll also find that most examples and projects online
use it, so it’s very helpful to be familiar with it. Finally, Jade’s minimal style makes it
ideal for code samples in a book!

A QUICK LOOK AT JADE

Jade is unusual when compared to the other template engines in that it doesn’t
actually contain HTML tags in the templates. Instead, Jade takes a rather minimalist
approach, using tag names, indentation, and a CSS-inspired reference method to
define the structure of the HTML. The exception to this is the <div> tag. Because it’s
so common, if the tag name is omitted from the template, Jade will assume that you
want a <div>.

TIP Jade templates must be indented using spaces, not tabs.

The following code snippet shows a simple example of a Jade template and the com-
piled output:

#banner.page-header
 h1 My page
 p.lead Welcome to my page

<div id="banner" class="page-header">
 <h1>My page</h1>
 <p class="lead">Welcome to my page</p>
</div>

From the first lines of the input and output you should be able to see that

■ With no tag name specified, a <div> is created.
■ #banner in Jade becomes id="banner" in HTML.
■ .page-header in Jade becomes class="page-header" in HTML.

So with that starting knowledge behind us, it’s time for us to create a project.

Jade template contains
no HTML tags

Compiled output is
recognizable HTML
Licensed to Mark Watson <nordickan@gmail.com>

61Creating an Express project
3.2.4 Creating an Express project and trying it out

So we know the basic command for creating an Express project, and have decided to
use the default configuration options, so let’s go ahead and create a new project. In
section 3.2.2 you should have created a new folder called loc8r. Navigate to this folder
in your terminal, and run the following command:

$ express

This will create a bunch of folders and files inside the loc8r folder that will form the
basis of our Loc8r application. But we’re not quite ready yet. Next you’ll need to install
the dependencies. As you may remember, this is simply done by running the following
command from a terminal prompt in the same folder as the package.json file:

$ npm install

As soon as you run it you’ll see your terminal window light up with all of the things it’s
downloading. Once it has finished, the application is ready for a test drive.

TRYING IT OUT

Running the application is a piece of cake. We’ll take a look at a better way of doing
this in just a moment, but if you’re impatient like me, you’ll want to see that what
you’ve done so far works.

 In terminal, in the loc8r folder, run the following command:

$ npm start

You should see a confirmation similar to this:

loc8r@0.0.0 start /path/to/your/application/folder

This means that the Express application is running! You can see it in action by open-
ing a browser and heading over to localhost:3000. Hopefully you’ll see something like
the screenshot in figure 3.3.

Figure 3.3 Landing page for a barebones Express project
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Creating and setting up a MEAN project
Admittedly, this is not exactly ground-breaking stuff right now, but getting the Express
application up and running to the point of working in a browser was pretty easy, right?

 If you head back to terminal now you should see a couple of log statements con-
firming that the page has been requested, and that a stylesheet has been requested. To
get to know Express a little better, let’s take a look at what’s going on here.

HOW EXPRESS HANDLES THE REQUESTS

The default Express landing page is pretty simple. There’s a small amount of HTML,
of which some of the text content is pushed as data by the Express route. There’s also
a CSS file. The logs in terminal should confirm that this is what Express has had
requested and has returned to the browser. But how does it do it?

All requests to the Express server run through the middleware defined in the app.js
file (see the sidebar “About Express middleware”). As well as doing other things,
there’s a default piece of middleware that looks for paths to static files. When the mid-
dleware matches the path against a file, Express will return this asynchronously, ensur-
ing that the Node.js process isn’t tied up with this operation and therefore blocking
other operations. When a request runs through all of the middleware, Express will
then attempt to match the path of the request against a defined route. We’ll get into
this in a bit more detail later in this chapter.

 Figure 3.4 illustrates this flow, using the example of the default Express homepage
from figure 3.3.

 The flow in figure 3.4 shows the separate requests made and how Express handles
them differently. Both requests run through the middleware as a first action, but the
outcomes are very different.

3.2.5 Restarting the application

A Node application compiles before running, so if you make changes to the applica-
tion code while it’s running, they won’t be picked up until the Node process is stopped

About Express middleware
In the middle of the app.js file there are a bunch of lines that start with app.use.
These are known as middleware. When a request comes in to the application it
passes through each piece of middleware in turn. Each piece of middleware may or
may not do something with the request, but it’s always passed on to the next one
until it reaches the application logic itself, which returns a response.

Take app.use(express.cookieParser()); for example. This will take an incoming
request, parse out any of the cookie information, and then attach the data to the
request in a way that makes it easy to reference it in the controller code.

You don’t really need to know what each piece does right now, but you may well find
yourself adding to this list as you build out applications.
Licensed to Mark Watson <nordickan@gmail.com>

63Creating an Express project
and restarted. Note that this is only true for application code; Jade templates, CSS
files, and client-side JavaScript can all be updated on-the-fly.

 Restarting the Node process is a two-step procedure. First you have to stop the run-
ning process. You do this in terminal by pressing Ctrl-C. Then you have to start the
process again in terminal using the same command as before: npm start.

 This doesn’t sound problematic, but when you’re actively developing and testing
an application, having to do these two steps every time you want to check an update
actually becomes quite frustrating. Fortunately there’s a better way.

AUTOMATICALLY RESTARTING THE APPLICATION WITH NODEMON

There are some services out there that have been developed to monitor application
code that will restart the process when it detects that changes have been made. One

Visitor

enters URL

into browser

Browser

requests URL

from server

Express runs request

through all middleware

specified in app.js

Express checks

and matches

homepage route

Express compiles

data and view

template into HTML

In middleware,

Express matches

request to a file

path in a specified

“Static” folder
Express returns

CSS file to browser

asynchronously

Browser renders

final web page

Express runs

request through

all middleware

Express returns

HTML to browser

Browser requests

CSS file referenced

in HTML file

HTML

CSS file

Visitor

Visitor

Data view+

+

Browser Server Middleware

Router

Middleware

“Static” folder

Server

Browser

Browser

Figure 3.4 The key interactions and processes that Express goes through when responding to the
request for the default landing page. The HTML page is processed by Node to compile data and a
view template, and the CSS file is served asynchronously from a static folder.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Creating and setting up a MEAN project
such service, and the one we’ll be using in this book, is nodemon. nodemon simply wraps
the Node application, and other than monitoring for changes causes no interference.

 To use nodemon you start off by installing it globally, much like you did with
Express. This is done using npm in terminal:

$ npm install -g nodemon

When the installation has finished, you’ll be able to use nodemon wherever you wish.
Using it’s really simple. Instead of typing node to start the application, you type nodemon.
So, making sure you’re in the loc8r folder in terminal—and that you’ve stopped the
Node process if it’s still running—enter the following command:

$ nodemon

You should see that a few extra lines are output to terminal confirming that nodemon
is running, and that it has started node ./bin/www. If you head back over to your
browser and refresh, you should see that the application is still there.

NOTE nodemon is only intended for easing the development process in your
development environment, and shouldn’t really be used in a live production
environment.

3.3 Modifying Express for MVC
First off, what is MVC architecture? MVC stands for model-view-controller, and it’s an
architecture that aims to separate out the data (model), the display (view), and the
application logic (controller). This separation aims to remove any tight coupling
between the components, theoretically making code more maintainable and reusable.
A bonus is that these components fit very nicely into our rapid prototype development
approach and allow us to concentrate on one aspect at a time as we discuss each part
of the MEAN stack.

 There are whole books dedicated to the nuances of MVC, but we’re not going to go
into that depth here. We’ll keep the discussion of MVC at a high level, and see how we
can use it with Express to build our Loc8r application.

3.3.1 A bird’s eye view of MVC

Most applications or sites that you build will be designed to take an incoming request,
do something with it, and return a response. At a simple level, this loop in an MVC
architecture works like this:

1 A request comes into the application.
2 The request gets routed to a controller.
3 The controller, if necessary, makes a request to the model.
4 The model responds to the controller.
5 The controller sends a response to a view.
6 The view sends a response to the original requester.
Licensed to Mark Watson <nordickan@gmail.com>

65Modifying Express for MVC
In reality, depending on your setup, the controller may actually compile the view
before sending the response back to the visitor. The effect is the same though, so keep
this simple flow in mind as a visual for what will happen in our Loc8r application. See
figure 3.5 for an illustration of this loop.

 Figure 3.5 highlights the individual parts of the MVC architecture and how they
link together. It also illustrates the need for a routing mechanism along with the
model, view, and controller components. So now that you’ve seen how we want the basic
flow of our Loc8r application to work, it’s time to modify the Express setup to make
this happen.

3.3.2 Changing the folder structure

If you look inside the newly created Express project in the loc8r folder, you should see
a file structure including a views folder, and even a routes folder, but no mention of
models or controllers. Rather than going ahead and cluttering up the root level of the
application with some new folders, let’s keep things tidy with one new folder for all of
our MVC architecture. Follow three quick steps here:

1 Create a new folder called app_server.
2 In app_server create two new folders called models and controllers.
3 Move the views and routes folders from the root of the application into the

app_server folder.

Figure 3.6 illustrates these changes and shows the folder structures before and after
the modifications.

 Now we have a really obvious MVC setup in the application, which makes it easier
to separate our concerns. But if you try to run the application now it won’t work, as

Visitor
Request

Response

Request

Response

Request

Response

Router

View

ModelController

Request

comes into

application

1 Request

gets routed to

controller

2 Controller may

send request

to model

3

View sends

response to

requester

6 Controller

sends response

to view

5 Model

responds to

controller

4

Figure 3.5 Request–response flow of a basic MVC architecture
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Creating and setting up a MEAN project
we’ve just broken it. So let’s fix it. Express doesn’t know that we’ve added in some new
folders, or have any idea what we want to use them for. So we need to tell it.

3.3.3 Using the new views and routes folders

The first thing we need to do is tell Express that we’ve moved the views and routes
folders, because Express will be looking for folders and files that no longer exist.

USING THE NEW VIEWS FOLDER LOCATION

Express will be looking in /views but we’ve just moved it to /app_server/views. Chang-
ing it’s really simple. In app.js find the following line:

app.set('views', path.join(__dirname, 'views'));

and change it to the following (modifications in bold):

app.set('views', path.join(__dirname, 'app_server', 'views'));

Our application still won’t work just yet because we’ve moved the routes, so let’s tell
Express about them too.

USING THE NEW ROUTES FOLDER LOCATION

Express will be looking in /routes but we’ve just moved it to /app_server/routes.
Changing this is also really simple. In app.js find the following lines:

var routes = require('./routes/index');
var users = require('./routes/users');

Create folder

app_server.

Before After

1

Create subfolders

controllers and

models.

2

Move the views

and routes folders

into app_server.

3

Figure 3.6 Changing the folder structure of an Express project into an MVC architecture
Licensed to Mark Watson <nordickan@gmail.com>

67Modifying Express for MVC
and change them to the following (modifications in bold):

var routes = require('./app_server/routes/index');
var users = require('./app_server/routes/users');

If you save this and run the application again, you’ll find that we’ve fixed it and the
application works once more!

3.3.4 Splitting controllers from routes

In a default Express setup, controllers are very much part of the routes, but we want to
separate them out. Controllers should manage the application logic, and routing
should map URL requests to controllers.

UNDERSTANDING ROUTE DEFINITION

To understand how routes work let’s take a look at the route already set up for deliver-
ing the default Express homepage. Inside index.js in app_server/routes you should
see the following code snippet:

/* GET home page. */
router.get('/', function(req, res) {
 res.render('index', { title: 'Express' });
});

In the code at B you can see router.get('/', which is where the router looks for a
get request on the homepage URL path, which is just '/'. The anonymous function
that runs the code c is really the controller. This is a very basic example with no
application code to speak of. So B and c are the pieces we want to separate here.

 Rather than diving straight in and putting the controller code into the controllers
folder, we’ll test out the approach in the same file first. To do this, we can take the
anonymous function from the route definition and define it as a named function.
We’ll then pass the name of this function through as the callback in the route defini-
tion. Both of these steps are in the following listing, which you can put into place
inside app_server/routes/index.js.

var homepageController = function (req, res) {
 res.render('index', { title: 'Express' });
};

/* GET home page. */
router.get('/', homepageController);

If you refresh your homepage now it should still work just as before. We haven’t changed
anything in how the site works, just moved a step toward separating concerns.

Listing 3.2 Taking the controller code out of the route: step 1

Where router
looks for URL

 b

Controller content, albeit
very basic right now c

Take anonymous
function and define it
as a named function

Pass name of function
through as a callback
in route definition
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Creating and setting up a MEAN project
Now that we’re clear about how the route definition works, it’s time to put the control-
ler code into its proper place.

MOVING THE CONTROLLER OUT OF THE ROUTES FILE

In Node, to reference code in an external file you create a module in your new file
and then require it in the original file. See the following sidebar for some overarch-
ing principles behind this process.

Understanding res.render
We’ll look at this more in chapter 4, but render is the Express function for compiling
a view template to send as the HTML response that the browser will receive. The
render method takes the name of the view template and a JavaScript data object in
the following construct:

Note that the template file doesn’t need to have the file extension suffix, so index
.jade can just be referenced as index. You also don’t need to specify the path to
the view folder because you’ve already done this in the main Express setup.

Creating and using Node modules
Taking some code out of a Node file to create an external module is fortunately pretty
simple. In essence, you create a new file for your code, choose which bits of it you
want to expose to the original file, and then require your new file in your original file.

In your new module file you expose the parts of the code that you wish to by using
the module.exports method, like so:

module.exports = function () {
 console.log("This is exposed to the requester");
};

You’d then require this in your main file like so:

require('./yourModule');

If you want your module to have separate named methods exposed, then you can do
so by defining them in your new file in the following way:

module.exports.logThis = function(message){
 console.log(message);
};

res.render(’index’, {title:’express’});

JavaScript object containing

data for template to use

Name of template file to use—in

this case referencing index.jade
Licensed to Mark Watson <nordickan@gmail.com>

69Modifying Express for MVC
So the first thing we need to do is create a file to hold the controller code. Create a
new file called main.js in app_server/controllers. In this file we’ll create an export
method called index and use it to house the res.render code as shown in the follow-
ing listing.

/* GET home page */
module.exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

That’s all there is to creating the controller export. The next step is to require this
controller module in the routes file so that we can use the exposed method in the
route definition. The following listing shows how the main routes file index.js should
now look.

var express = require('express');
var router = express.Router();
var ctrlMain = require('../controllers/main');

/* GET home page. */
router.get('/', ctrlMain.index);

module.exports = router;

This links the route to the new controller by “requiring” the controller file B and
referencing the controller function in the second parameter of the router.get
function c.

 We now have the routing and controller architecture, as illustrated in figure 3.7,
where app.js requires routes/index.js, which in turn requires controllers/main.js.

To reference this in your original file you need to assign your module to a variable
name, and then invoke the method. For example, in your main file

var yourModule = require('./yourModule');
yourModule.logThis("Hooray, it works!");

This assigns your new module to the variable yourModule. The exported function
logThis is now available as a method of yourModule.

When using the require function, note that you don’t need to specify a file exten-
sion. The require function will look for a couple of things: a JavaScript file of the
same name or an index.js file inside a folder of the given name.

Listing 3.3 Setting up the homepage controller in app_server/controllers/main.js

Listing 3.4 Updating the routes file to use external controllers

Create an index
export method

Include controller
code for homepage

Require main
controllers file

 b

Reference index
method of controllers
in route definition c
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Creating and setting up a MEAN project
If you test this out now in your browser, you should see that the default Express home-
page displays correctly once again.

 That’s everything set up with Express for now, so it’s almost time to start the build-
ing process. But before that there are a couple more things that we need to do, first of
which is adding Twitter Bootstrap to the application.

3.4 Import Bootstrap for quick, responsive layouts
As discussed in chapter 1, our Loc8r application will make use of Twitter’s Bootstrap
framework to speed up the development of a responsive design. We’ll also make the
application stand out by using a theme. The aim here is to help us keep moving for-
ward quickly with building the application, and not get side-tracked with the seman-
tics of developing a responsive interface.

3.4.1 Download Bootstrap and add it to the application

Instructions for downloading Bootstrap, getting a custom theme, and adding the files
into the project folder are all found in appendix B. A key point here’s that the Boot-
strap files are all static files to be sent directly to the browser; they don’t need any pro-
cessing by the Node engine. Your Express application will already have a folder for
this purpose: the public folder. When you have it ready, the public folder should look
something like figure 3.8.

 Bootstrap also requires jQuery for some of the interactive components to load. You
can reference it directly from a CDN, but we’ll download it at http://jquery.com/
download/ so that we’ve got it in our application. We’re going to use the latest 1.x ver-
sion, which at the time of writing is 1.11.1. So go ahead and download jQuery, saving it
in the public/javascripts folder of the application.

3.4.2 Using Bootstrap in the application

Now that all of the Bootstrap pieces are sitting in the application, it’s time to hook it
up to the front end. This means taking a look at the Jade templates.

app.js

Application

index.is

Routes

main.js

Controllers

Figure 3.7 Separating the controller logic from the route definitions
Licensed to Mark Watson <nordickan@gmail.com>

http://jquery.com/download/
http://jquery.com/download/

71Import Bootstrap for quick, responsive layouts
WORKING WITH JADE TEMPLATES

Jade templates are often set up to work by having a main layout file that has defined
areas for other Jade files to extend. This makes a great deal of sense when building a
web application, because there are often many screens or pages that have the same
underlying structure with different content in the middle.

 This is how Jade appears in a default Express installation. If you look in the views
folder in the application you’ll see two files, layout.jade and index.jade. The index.jade
file is controlling the content for the index page of the application. Open it up, and
there’s not much in there; the entire contents are shown in the following listing.

extends layout

block content
 h1= title
 p Welcome to #{title.}

There’s more going on here than meets the eye. Right at the top of the file is a state-
ment declaring that this file is an extension of another file B, in this case the layout
file. Following this is a statement defining a block of code c that belongs to a specific
area of the layout file, an area called content in this instance. Finally, there’s the min-
imal content that’s displayed on the Express index page, a single <h1> tag and a single
<p> tag d.

Listing 3.5 The complete index.jade file

Figure 3.8 Structure of the public
folder in the Express application after
adding Bootstrap

Informs that this file is
extending layout file

 b

Informs that the following
section goes into area of
layout file called content

 c

Outputs h1 and p
tags to content area d
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Creating and setting up a MEAN project
 There are no references to <head> or <body> tags here, nor any stylesheet refer-
ences. These are all handled in the layout file, so that’s more likely where you want to
go to add in global scripts and stylesheets to the application. Open up layout.jade and
you should see something similar to the following listing.

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

Listing 3.6 shows the layout file being used for the basic index page in the default
Express installation. You’ll see that there’s a head section and a body section, and
within the body section there’s a block content line with nothing inside it. This
named block can be referenced by other Jade templates, such as the index.jade file in
listing 3.5. The block content from the index file gets pushed into the block content
area of the layout file when the views are compiled.

ADDING BOOTSTRAP TO THE ENTIRE APPLICATION

If you want to add some external reference files to the entire application, then using
the layout file makes sense in the current setup. So in layout.jade you need to accom-
plish four things:

■ Reference the Bootstrap CSS file.
■ Reference the Bootstrap JavaScript file.
■ Reference jQuery, which Bootstrap requires.
■ Add viewport metadata so that the page scales nicely on mobile devices.

The CSS file and the viewport metadata should both be in the head of the document,
and the two script files should be at the end of the body section. The following listing
shows all of this in place in layout.jade, with the new lines in bold.

doctype html
html
 head
 meta(name='viewport', content='width=device-width, initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/bootstrap/css/amelia.bootstrap.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

Listing 3.6 Default layout.jade file

Listing 3.7 Updated layout.jade including Bootstrap references

Empty named
block can be used
by other templates

Set viewport metadata for better
display on mobile devices

Include themed
Bootstrap CSS
Licensed to Mark Watson <nordickan@gmail.com>

73Import Bootstrap for quick, responsive layouts
 script(src='/javascripts/jquery-1.11.1.min.js')
 script(src='/bootstrap/js/bootstrap.min.js')

With that done, any new template that you create will automatically have Bootstrap
included and will scale on mobile devices—as long as your new templates extend the
layout template, of course.

 Finally, before testing it all out, delete the contents of the style.css file in /public/
stylesheets/. This will prevent the default Express styles from overriding the Bootstrap
files. We’ll want to add our own styles in to the Loc8r application somewhere a little
later down the line, so there’s no need to delete the file.

VERIFY THAT IT WORKS

If the application isn’t already running with nodemon, start it up and view it in your
browser. The content hasn’t changed, but the appearance should have. You should
now have something looking like figure 3.9.

Remember you can get the source code of the application so far from GitHub on
the chapter-03 branch. In a fresh folder in terminal the following command will
clone it:

$ git clone -b chapter-03 https://github.com/simonholmes/getting-MEAN.git

Now we’ve got something working locally; let’s see how we can get it running on a live
production server.

Bring in jQuery
as it’s needed by
Bootstrap

Bring in Bootstrap
JavaScript file

Figure 3.9 Bootstrap theme having an effect on the default Express index page
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Creating and setting up a MEAN project
3.5 Make it live on Heroku
A common perceived headache with Node applications is deploying them to a live
production server. We’re going to get rid of that headache early on and push our
Loc8r application onto a live URL already. As we iterate and build it up we can keep
pushing out the updates. For prototyping this is great because it makes it really easy to
show our progress to others.

 As mentioned in chapter 1 there are a few platform as a service providers such as
Google Cloud Platform, Nodejitsu, OpenShift, and Heroku. We’re going to use Her-
oku here, but there’s nothing stopping you from trying out other options.

3.5.1 Getting Heroku set up

Before you can use Heroku, you’ll need to sign up for a free account and install the
Heroku Toolbelt on your development machine. Appendix B has more detailed infor-
mation on how to do this. You’ll also need a bash-compatible terminal; the default ter-
minal for Mac users is fine, but the default CLI for Windows users won’t do. If you’re
on Windows you’ll need to download something like the GitHub terminal, which
comes as part of the GitHub desktop application.

 Once you have everything set up, we can continue and get the application ready to
push live.

UPDATING PACKAGE.JSON

Heroku can run applications on all different types of codebases, so we need to tell it
what our application is running. As well as telling it that we’re running a Node appli-
cation using npm as the package manager, we need to tell it which version we’re run-
ning to ensure that the production setup is the same as the development setup.

 If you’re not sure which versions of Node and npm you’re running you can find
out with a couple of terminal commands:

$ node --version
$ npm --version

At the time of writing, these commands return v4.2.1 and 2.2.0, respectively. Using
the ~ syntax to add a wildcard for a patch version as you’ve seen previously, you need
to add these to a new engines section in the package.json file. The complete updated
package.json file is shown in the following listing, with the added section in bold.

{
 "name": "Loc8r",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },

Listing 3.8 Adding an engines section to package.json
Licensed to Mark Watson <nordickan@gmail.com>

75Make it live on Heroku
 "engines": {
 "node": "~4.2.1",
 "npm": "~2.2.0"
 },
 "dependencies": {
 "express": "~4.9.0",
 "body-parser": "~1.8.1",
 "cookie-parser": "~1.3.3",
 "morgan": "~1.3.0",
 "serve-favicon": "~2.1.3",
 "debug": "~2.0.0",
 "jade": "~1.6.0"
 }
}

When pushed up to Heroku, this will tell Heroku that our application uses the latest
patch version of Node, 4.2, and the latest patch version of npm, 2.2.

CREATING A PROCFILE

The package.json file will tell Heroku that the application is a Node application, but it
doesn’t tell it how to start it. For this we need to use a Procfile. A Procfile is used to
declare the process types used by our application, and the commands used to start them.

 For Loc8r we want a web process, and we want it to run the Node application. So in
the root folder of the application create a file called Procfile—this is case-sensitive and
has no file extension. Enter the following line into the Procfile file:

web: npm start

When pushed up to Heroku, this file will simply tell Heroku that the application
needs a web process and that it should run npm start.

TESTING IT LOCALLY WITH FOREMAN

The Heroku Toolbelt comes with a utility called Foreman. We can use Foreman to ver-
ify our setup and run our application locally before pushing the application up to
Heroku. If the application is currently running, stop it by pressing Ctrl-C in the termi-
nal window running the process. Then in the terminal window enter the following
command:

$ foreman start

All being well with the setup, this will start the application running on localhost
again, but this time on a different port: 5000. The confirmation you get in terminal
should be along these lines:

16:09:01 web.1 | started with pid 91976
16:09:02 web.1 | > loc8r@0.0.1 start /path/to/your/application/folder
16:09:02 web.1 | > node ./bin/www

If you fire up a browser and head over to localhost:5000—note that the port is 5000
instead of 3000—you should be able to see the application up and running once again.

 Now that we know the setup is working it’s time to push our application up to Heroku.

Add an engines section to
package.json to tell Heroku
which platform your application
is on, and which version to use
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 3 Creating and setting up a MEAN project
3.5.2 Pushing the site live using Git

Heroku uses Git as the deployment method. If you already use Git you’ll love this
approach; if you haven’t you may feel a bit apprehensive about it, as the world of Git
can be quite complex. But it doesn’t need to be, and once you get going you’ll love
this approach too!

STORING THE APPLICATION IN GIT

The first action is to store the application in Git, on your local machine. This is a
three-step process, as you need to

1 Initialize the application folder as a Git repository.
2 Tell Git which files you want to add to the repository.
3 Commit these changes to the repository.

This might sound complex, but it really isn’t. You just need a single short terminal
command for each step. If the application is running locally, stop it in terminal (Ctrl-C).
Then, ensuring you’re still in the root folder of the application, stay in terminal and
run the following commands:

$ git init
$ git add .
$ git commit -m "First commit"

These three things together will create a local Git repository containing the entire
codebase for the application. When we go to update the application later on, and we
want to push some changes live, we’ll use the second two commands, with a different
message, to update the repository.

 Your local repository is now ready. It’s time to create the Heroku application.

CREATING THE HEROKU APPLICATION

This next step will create an application on Heroku, as a remote Git repository of your
local repository. All this is done with a single terminal command:

$ heroku create

When this is done, you’ll see a confirmation in terminal of the URL that the applica-
tion will be on, the Git repository address, and the name of the remote repository.
For example

http://shrouded-tor-1673.herokuapp.com/ | git@heroku.com:shrouded-tor-
1673.git

Git remote heroku added

If you log in to your Heroku account in a browser you’ll also see that the application
exists there. So you now have a container on Heroku for the application, and the next
step is to push the application code up.

Initializes folder as a
local Git repository

Adds everything in
folder to repository

Commits changes to
repository with a message
Licensed to Mark Watson <nordickan@gmail.com>

77Make it live on Heroku
DEPLOYING THE APPLICATION TO HEROKU

By now you have the application stored in a local Git repository, and you’ve created a
new remote repository on Heroku. The remote repository is currently empty, so you
need to push the contents of your local repository into the heroku remote repository.

 If you don’t know Git, there’s a single command to do this, which has the follow-
ing construct:

This command will push the contents of your local Git repository to the heroku
remote repository. Currently, you only have a single branch in your repository, which
is the master branch, so that’s what you’ll push to Heroku. See the following sidebar
for more information on Git branches.

 When you run this, terminal will display a load of log messages as it goes through
the process, eventually ending up with a confirmation that the application has been
deployed to Heroku. This will be something like the following, except you’ll have a
different URL of course:

http://shrouded-tor-1673.herokuapp.com deployed to Heroku

STARTING A WEB DYNO ON HEROKU

Heroku uses the concept of dynos for running and scaling an application. The more
dynos you have, the more system resources and processes you have available to your
application. Adding more dynos when your application gets bigger and more popular
is really easy.

 Heroku also has a great free tier, which is perfect for application prototyping
and building a proof-of-concept. You get one web dyno for free, which is more than

What are Git branches?
If you just work on the same version of the code and push it up to a remote repository
like Heroku or GitHub periodically, you’re working on the master branch. This is abso-
lutely fine for linear development with just one developer. If you have multiple develop-
ers or your application is already published, then you don’t really want to be doing your
development on the master branch. Instead, you start a new branch from the master
code in which you can continue development, add fixes, or build a new feature.

When work on a branch is complete it can be merged back into the master branch.

$ git push heroku master

Target

repository name

Git command Branch name
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 3 Creating and setting up a MEAN project
adequate for our purposes here. Before you can view the application online you need
to add a single web dyno. This is easily done with a simple terminal command:

$ heroku ps:scale web=1

When you’ve run this, terminal will display a confirmation:

Scaling web dynos... done, now running 1

Now let’s check out the live URL.

VIEWING THE APPLICATION ON A LIVE URL
Everything is now in place, and the application is live on the internet! You can see it by
typing in the URL given to you in the confirmation, via your account on the Heroku
website, or by using the following terminal command:

$ heroku open

This will launch the application in your default browser, and you should see some-
thing like figure 3.10.

Your URL will be different, of course, and within Heroku you can change it to use your
domain name instead of the address it has given you. In the application settings on
the Heroku website you can also change it to use a more meaningful subdomain of
herokuapp.com.

 Having your prototype on an accessible URL is very handy for cross-browser and
cross-device testing, as well as sending it out to colleagues and partners.

Figure 3.10 MVC Express application running on a live URL
Licensed to Mark Watson <nordickan@gmail.com>

http://herokuapp.com

79Summary
A SIMPLE UPDATE PROCESS

Now that the Heroku application is set up, updating it will be really easy. Every time you
want to push some new changes through, you just need three terminal commands:

$ git add .
$ git commit -m "Commit message here"
$ git push heroku master

That’s all there’s to it, for now at least. Things might get a bit more complex if you
have multiple developers and branches to deal with, but the actual process of pushing
the code to Heroku using Git remains the same.

3.6 Summary
In this chapter we’ve covered

■ Creating a new Express application
■ Managing application dependencies with npm and the package.json file
■ Modifying Express to meet an MVC approach to architecture
■ Routes and controllers
■ Creating new Node modules
■ Publishing an Express application live onto Heroku using Git

In the next chapter you’ll get to know Express even more when we build out a proto-
type of the Loc8r application.

Add all changes to
local Git repository Commit changes to

local repository with
a useful message

Push changes to
Heroku repository
Licensed to Mark Watson <nordickan@gmail.com>

Building a static site
with Node and Express
In chapter 3 you should have had an Express application running, set up in an MVC
way, with Bootstrap included to help with building page layouts. Our next step is to
build on this base, creating a static site that you can click through. This is a critical
step in putting together any site or application. Even if you’ve been given a design
or some wireframes to work from, there’s no substitute for rapidly creating a realis-
tic prototype that you can use in the browser. Something always comes to light in
terms of layout or usability that hadn’t been noticed before. From this static proto-
type, we’ll take the data out from the views and put it into the controllers. By the

This chapter covers
■ Prototyping an application through building

a static version
■ Defining routes for application URLs
■ Creating views in Express using Jade and

Bootstrap
■ Using controllers in Express to tie routes

to views
■ Passing data from controllers to views
80

Licensed to Mark Watson <nordickan@gmail.com>

81Defining the routes in Express
end of this chapter we’ll have intelligent views that can display data passed to them,
and controllers passing hard-coded data to the views.

In terms of building up the application architecture, this chapter will be focusing on
the Express application as shown in figure 4.1.

 As there are two main steps being taken in this chapter, there are two versions of
the source code available. The first version contains all of the data in the views and
represents the application as it stands at the end of section 4.4. This is available from
GitHub on the chapter-04-views branch.

 The second version has the data in the controllers, in the state the application will
be at the end of this chapter. This is available from GitHub on the chapter-04 branch.

Getting the source code
If you haven’t yet built the application from chapter 3, you can get the code from
GitHub on the chapter-03 branch at github.com/simonholmes/getting-MEAN. In a
fresh folder in terminal the following commands will clone it and install the npm mod-
ule dependencies:

$ git clone -b chapter-03 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Building an app

in Express and

Node.js.

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 4.1 Using Express and Node to build a static site for testing views
Licensed to Mark Watson <nordickan@gmail.com>

http://www.github.com/simonholmes/getting-MEAN

82 CHAPTER 4 Building a static site with Node and Express
To get one of these use the following commands in a fresh folder in terminal, remem-
bering to specify the branch that you want:

$ git clone -b chapter-04 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install

Okay, let’s get back into Express.

4.1 Defining the routes in Express
In chapter 2 we planned out the application and decided on the four pages we are
going to build. There’s a collection of Locations pages and a page in the Others col-
lection as shown in figure 4.2.

Having a set of screens is great, but these need to relate to incoming URLs. Before we
do any coding it’s a good idea to map this out and to get a good standard in place.
Take a look at table 4.1. It shows a simple mapping of the screens against URLs. These
will form the basis of the routing for our application.

Table 4.1 Defining a URL path, or route, for each of the screens in the prototype

Collection Screen URL path

Locations List of locations (this will be the homepage) /

Locations Location detail /location

Locations Location review form /location/review/new

Others About Loc8r /about

List page

Locations

About page

Others

Details page Add Review page

Figure 4.2 Collections of screens we’ll
be building for the Loc8r application
Licensed to Mark Watson <nordickan@gmail.com>

83Defining the routes in Express
For example, when somebody visits the homepage we want to show them a list of places,
but when somebody visits the /about URL path we want to show them the information
about Loc8r.

4.1.1 Different controller files for different collections

In chapter 3 you’ll recall we moved any sense of controller logic out of the route defi-
nitions and into an external file. Looking to the future we know that our application
will grow, and we don’t want to have all the controllers in one file. A logical starting
point for splitting them up is to divide them by collections.

 So looking at the collections we’ve decided upon, we’ll split the controllers up into
Locations and Others. To see how this might work from a file architecture point of
view, we can sketch out something like figure 4.3. Here the application includes the
routes file, which in turn includes multiple controller files, each named according to
the relevant collection.

Here we have a single route file and one controller file for each logical collection of
screens. This setup is designed to help us organize our code in line with how our
application is organized. We’ll look at the controllers shortly, but first we’ll deal with
the routes.

 The time for planning is over; now it’s time for action! So head back over to your
development environment and open the application. We’ll start off working in the
routes file index.js.

REQUIRING THE CONTROLLER FILES

As shown in figure 4.3 we want to reference two controller files in this routes file. We
haven’t created these controller files yet; we’ll do that shortly.

app.js

Application

index.is

Routes

locations.js

Controllers

others.js

Figure 4.3 Proposed file architecture for routes and controllers in our application
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Building a static site with Node and Express

 These files will be called locations.js and others.js and will be saved in app_server/
controllers. In index.js we’ll require both of these files and assign each to a relevant
variable name, as shown in the following listing.

var express = require('express');
var router = express.Router();
var ctrlLocations = require('../controllers/locations');
var ctrlOthers = require('../controllers/others');

Now we have two variables we can reference in the route definitions, which will con-
tain different collections of routes.

SETTING UP THE ROUTES

In index.js you’ll need to have the routes for the three screens in the Locations collec-
tion, and also the About page in the Others collection. Each of these routes will also
need a reference to the controllers. Remember that routes simply serve as a mapping
service, taking the URL of an incoming request and mapping it to a specific piece of
application functionality.

 From table 4.1 we already know which paths we want to map, so it’s a case of put-
ting it all together into the routes/index.js file. What you need to have in the file is
shown in entirety in the following listing.

var express = require('express');
var router = express.Router();
var ctrlLocations = require('../controllers/locations');
var ctrlOthers = require('../controllers/others');

/* Locations pages */
router.get('/', ctrlLocations.homelist);
router.get('/location', ctrlLocations.locationInfo);
router.get('/location/review/new', ctrlLocations.addReview);

/* Other pages */
router.get('/about', ctrlOthers.about);

module.exports = router;

This routing file maps the defined URLs to some specific controllers, although we
haven’t created those yet. So let’s take care of that now and create the controllers.

4.2 Building basic controllers
At this point we’re going to make the controllers really basic so that our application
will run and we can test the different URLs and routing.

Listing 4.1 Requiring the controller files in routes/index.js

Listing 4.2 Defining the routes and mapping them to controllers

Replace existing
ctrlMain reference
with two new
requires

Require
controller files

Define location routes
and map them to
controller functions

Define other
routes
Licensed to Mark Watson <nordickan@gmail.com>

85Building basic controllers
4.2.1 Setting up controllers

We currently have one file, the main.js file in the controllers folder (in the app_server
folder) that has a single function that’s controlling the homepage. This is shown in
the following code snippet:

/* GET 'home' page */
module.exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

We don’t actually want a “main” controller file anymore, but we can use this as a tem-
plate. Start by renaming this as others.js.

ADDING THE OTHERS CONTROLLERS

Recall from listing 4.2 that we want one controller in others.js called about. So
rename the existing index controller to about, keep the same view template for now,
and update the title property to be something relevant. This will help you easily test
that the route is working as expected. The following listing shows the full contents of
the others.js controller file following these couple of little changes.

/* GET 'about' page */
module.exports.about = function(req, res){
 res.render('index', { title: 'About' });
};

That’s the first one done, but the application still won’t work, as there aren’t any con-
trollers for the Locations routes yet.

ADDING THE LOCATIONS CONTROLLERS

Adding the controllers for the Locations routes is going to be pretty much the same
process. In the routes file we specified the name of the controller file to look for, and
the name of the three controller functions.

 In the controllers folder create a file called locations.js, and create three basic con-
troller functions: homelist, locationInfo, and addReview. The following listing shows
how this should look.

/* GET 'home' page */
module.exports.homelist = function(req, res){
 res.render('index', { title: 'Home' });
};

/* GET 'Location info' page */
module.exports.locationInfo = function(req, res){
 res.render('index', { title: 'Location info' });
};

Listing 4.3 Others controller file

Listing 4.4 Locations controller file

Define route using same view
template but changing title to About
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Building a static site with Node and Express
/* GET 'Add review' page */
module.exports.addReview = function(req, res){
 res.render('index', { title: 'Add review' });
};

That looks like everything is in place, so let’s test it.

4.2.2 Testing the controllers and routes

Now that the routes and basic controllers are in place you should be able to start and
run the application. If you don’t already have it running with nodemon, head to the
root folder of the application in the terminal and start it up:

$ nodemon

All being well, this should give you no errors, meaning that all of the routes are point-
ing to controllers. So you can head over to your browser and check each of the four
routes we’ve created, such as localhost:3000 for the homepage and localhost:3000/
location for the location information page. Because we changed the data being

Troubleshooting
If you’re having problems restarting the application at this point, the main thing to
check is that all of the files, functions, and references are named correctly. Look at
the error messages you’re getting in the terminal window and see if they give you any
clues. Sometimes they’re more helpful than others! Take a look at the following pos-
sible error, and we’ll pick out the parts that are interesting to us:

module.js:340
 throw err;
 ^
Error: Cannot find module '../controllers/other'
 at Function.Module._resolveFilename (module.js:338:15)
 at Function.Module._load (module.js:280:25)
 at Module.require (module.js:364:17)
 at require (module.js:380:17)
 at module.exports (/Users/sholmes/Dropbox/Manning/Getting-MEAN/Code/

Loc8r/BookCode/routes/index.js:2:3)
 at Object.<anonymous> (/Users/sholmes/Dropbox/Manning/Getting-MEAN/

Code/Loc8r/BookCode/app.js:26:20)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)

First, you can see that a module called other can’t be found B. Further down the
stack trace you can see the file where the error originated c. So you’d then open
the routes/index.js file and discover that you’d written require('../controllers/
other') when the file you want to require is others.js. So to fix the problem you’d
simply need to correct the reference by changing it to require('../controllers/
others').

Clue one: a
module can’t
be found

 b

Clue two: file
throwing

error c
Licensed to Mark Watson <nordickan@gmail.com>

87Creating some views
sent to the view template by each of the controllers, we’ll easily be able to see that
each one is running correctly because the title and heading should be different on
each page. Figure 4.4 shows a collection of screenshots of the newly created routes
and controllers.

 From this we can see that each route is getting unique content, so we know that the
routing and controller setup has worked.

 The next stage in this prototyping process is to put some HTML, layout, and con-
tent onto each screen. We’ll do this using views.

4.3 Creating some views
When you have your empty pages, paths, and routes sorted out, it’s time to get some
content and layout into our application. This is where we really bring it to life and can
start to see our idea become reality. For this step, the technologies that we’re going to
use are Jade and Bootstrap. Jade is the default template engine in Express (although
you can use others if you prefer) and Bootstrap is a front-end layout framework that
makes it really easy to build a responsive website that looks different on desktop and
mobile devices.

Figure 4.4 Screenshots of the four routes created so far, with different heading text coming through from the
specific controllers associated with each route
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Building a static site with Node and Express
4.3.1 A look at Bootstrap

Before getting started, let’s take a quick look at Bootstrap. We’re not going to go into
all the details about Bootstrap and everything it can do, but it’s useful to see some of
the key concepts before we try to throw it into a template file.

BOOTSTRAP RESPONSIVE GRID SYSTEM

Bootstrap uses a 12-column grid. No matter the size of the display you’re using, there
will always be these 12 columns. On a phone each column will be narrow, and on a
large external monitor each column will be wide. The fundamental concept of Boot-
strap is that you can define how many columns an element will use, and this can be a
different number for different screen sizes.

 Bootstrap has various CSS references that let you target up to four different pixel-
width breakpoints for your layouts. These breakpoints are noted in table 4.2 along
with the example device that you’d be targeting at each size.

To define the width of an element you combine a CSS reference from table 4.2 with
the number of columns you wish it to span. A class denoting a column is constructed
like this:

This class of col-sm-6 will make the element it’s applied to take up 6 columns on
screens of size sm and larger. So on tablets, laptops, and monitors this column will take
up half of the available width.

 To get the responsive side of things to work, you can apply multiple classes to a sin-
gle element. So if you wanted a div to span the entire width of the screen on the

Table 4.2 Breakpoints that Bootstrap targets for different types of devices

Breakpoint name CSS reference Example device Width in pixels

Extra-small devices xs Phones Less than 768

Small devices sm Tablets 768 or more

Medium devices md Laptops 992 or more

Large devices lg External monitors 1,200 or more

col-sm-6

Minimum target

break point

Denotes that this

element will act

as a column

Number of

columns to

take up
Licensed to Mark Watson <nordickan@gmail.com>

89Creating some views
phone, but only half of the width on tablets and larger, you could use the following
code snippet:

<div class="col-xs-12 col-sm-6"></div>

The col-xs-12 class tells the layout to use 12 columns on extra-small devices, and the
col-sm-6 class tells the layout to use 6 columns for small devices and above. Figure 4.5
illustrates the effect this has on different devices if you have two of these, one after
another on the page, like this:

<div class="col-xs-12 col-sm-6">DIV ONE</div>
<div class="col-xs-12 col-sm-6">DIV TWO</div>

This approach allows for a very semantic way of putting together responsive templates,
and we’ll rely heavily on this for the Loc8r pages. Speaking of which, let’s make a start.

4.3.2 Setting up the HTML framework with Jade templates
and Bootstrap

There are some common requirements across all of the pages we’ll have in the appli-
cation. At the top of the page we’ll want a navigation bar and logo, at the bottom of
the page we’ll have a copyright notice in the footer, and we’ll have a content area in
the middle. What we’re aiming for here is something like figure 4.6.

Desktop Phone

DIV ONE DIV TWO DIV ONE

DIV TWO Figure 4.5 Bootstrap’s responsive
column system on a desktop and mobile
device. CSS classes are used to
determine the number of columns out of
12 that each element should take up at
different screen resolutions.

Changeable content area

Navigation

Footer

Figure 4.6 Basic structure of the reusable
layout, comprising a standard navigation
bar and footer with an extendable and
changeable content area in between
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Building a static site with Node and Express
This framework for a layout is pretty simple, but it suits our needs. It will give a consis-
tent look and feel, while allowing for all types of content layouts to go in the middle.

 As you saw in chapter 3, Jade templates use the concept of extendable layouts,
enabling you to define this type of repeatable structure just once in a layout file. In
the layout file you can specify which parts can be extended; once you have this lay-
out file set up you can extend it as many times as you want. Creating the framework
in a layout file means that you only have to do it once, and only have to maintain
it in one place.

LOOKING AT THE LAYOUT

To build the common framework then, we’re mainly going to be working with the
layout.jade file in the app_server/views folder. This is currently pretty minimal and
looks like this code snippet:

doctype html
html
 head
 meta(name='viewport', content='width=device-width, initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/bootstrap/css/amelia.bootstrap.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

 script(src='/javascripts/jquery-1.11.1.min.js')
 script(src='/bootstrap/js/bootstrap.min.js')

There isn’t any HTML content in the body area at all yet, just a single extendable block
called content and a couple of script references. We want to keep all of this, but need
to add a navigation section above the content block, and a footer below it.

BUILDING THE NAVIGATION

Bootstrap offers a collection of elements and classes that can be used to create a sticky
navigation bar that’s fixed to the top, and collapses the options into a dropdown
menu on mobile devices. We’re not going to explore the details of Bootstrap’s CSS
classes here, as we really just need to grab the example code from the Bootstrap web-
site, tweak it a little, and update it with the correct links.

 In the navigation we want to have

1 The Loc8r logo linking to the homepage
2 An About link on the left, pointing to the /about URL page

The code to do all of this is in the following snippet, and can be placed in the
layout.jade file above the block content line:

 .navbar.navbar-default.navbar-fixed-top
 .container
 .navbar-header
 a.navbar-brand(href='/') Loc8r

Set up a Bootstrap navigation
bar fixed to top of window

Add a brand-styled
link to homepage
Licensed to Mark Watson <nordickan@gmail.com>

91Creating some views
 button.navbar-toggle(type='button', data-toggle='collapse', data-
target='#navbar-main')

 span.icon-bar
 span.icon-bar
 span.icon-bar
 #navbar-main.navbar-collapse.collapse
 ul.nav.navbar-nav
 li
 a(href='/about/') About

If you pop that in and run it you’ll notice that the navigation now overlays the page
heading. This will be fixed when we build the layouts for the content area in sec-
tions 4.3.3 and 4.4, so it’s nothing to worry about.

TIP Remember that Jade doesn’t include any HTML tags, and that correct
indentation is critical to provide the expected outcome.

And that’s it for the navigation bar; it’s all we’ll need for a while. If Jade and Bootstrap
are new to you it might take a little while to get used to the approach and the syntax,
but as you can see, you can achieve a lot with little code.

WRAPPING THE CONTENT

Working down the page from top to bottom the next area is the content block. There
isn’t much to do with this, as other Jade files will decide the contents. As it stands
though, the content block is anchored to the left margin and is unconstrained, mean-
ing that it will stretch the full width of any device.

 Addressing this is easy with Bootstrap. You simply need to wrap the content block
in a container div like so:

.container
 block content

The div with a class of container will be centered in the window, and constrained to
sensible maximum widths on large displays. The contents of a container div will
remain aligned to the left as normal though.

ADDING THE FOOTER

At the bottom of the page we want to add a standard footer. We could add a bunch of
links in here, terms and conditions, or a privacy policy. For now we’ll just add a copy-
right notice and keep things simple. As it’s going in the layout file it will be really easy
to update this across all of the pages should we need to at a later date.

 The following code snippet shows all the code needed for our simple footer:

footer
 .row
 .col-xs-12
 small © Simon Holmes 2014

This will be best placed inside the container div that holds the content block, so
when you add it in make sure that the footer line is at the same level of indentation as
the block content line.

Set up collapsing
navigation for smaller
screen resolutions

Add About link to
left side of bar
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Building a static site with Node and Express
ALL TOGETHER NOW

Now that the navigation bar, content area, and footer are all dealt with, that’s the com-
plete layout file. The full code for layout.jade is shown in the following listing (modifi-
cations in bold).

doctype 5
html
 head
 meta(name='viewport', content='width=device-width, initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/bootstrap/css/amelia.bootstrap.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 .navbar.navbar-default.navbar-fixed-top
 .container
 .navbar-header
 a.navbar-brand(href='/') Loc8r
 button.navbar-toggle(type='button', data-toggle='collapse',

➥ data-target='#navbar-main')
 span.icon-bar
 span.icon-bar
 span.icon-bar
 #navbar-main.navbar-collapse.collapse
 ul.nav.navbar-nav
 li
 a(href='/about/') About

 .container
 block content

 footer
 .row
 .col-xs-12
 small © Simon Holmes 2014
 script(src='/javascripts/jquery-1.11.1.min.js')
 script(src='/bootstrap/js/bootstrap.min.js')

That’s all it takes to create a responsive layout framework using Bootstrap, Jade, and
Express. If you’ve got that all in place and run the application you should see some-
thing like the screenshots in figure 4.7, depending on your device.

 You’ll see that the navigation still overlays the content, but we’ll address that very
soon when we start looking at the content layouts. It’s a good indication that the navi-
gation is working as we want it to though—we want the navigation to be ever-present,
fixed to the top of the window. Also notice how Bootstrap has collapsed the navigation
into a dropdown menu on the smaller screen of the phone. Pretty nice isn’t it, for very
little effort on our part?

TIP If you can’t access your development site on a phone you can always try
resizing your browser window, or Google Chrome allows you to emulate vari-
ous different mobile devices through the JavaScript console.

Listing 4.5 Final code for the layout framework in app_server/views/layout.jade

Starting layout with
fixed navigation bar

Extendable content
block now wrapped
in a container div

Simple copyright footer in same
container as content block
Licensed to Mark Watson <nordickan@gmail.com>

93Creating some views
Now that the generic layout template is complete, it’s time to start building out the
actual pages of our application.

4.3.3 Building a template

When building templates, start with whichever one makes the most sense to you. This
might be the most complicated or the most simple, or just the first in the main user
journey. For Loc8r a good place to start is the homepage; this is the example we’ll go
through in most detail.

DEFINING A LAYOUT

The primary aim for the homepage is to display a list of locations. Each location will
need to have a name, an address, the distance away, users’ ratings, and a facilities list.
We’ll also want to add a header to the page, and some text to put the list in context, so
that users know what they’re looking at when they first visit.

 You may find it useful, as I do, to sketch out a layout or two on a piece of paper or
a whiteboard. I find this really helpful for creating a starting point for the layout, mak-
ing sure you’ve got all of the pieces you need on a page without getting bogged down
in the technicalities of any code. Figure 4.8 shows what I’ve sketched for the home-
page of Loc8r.

 You’ll see that there are two layouts, a desktop and a phone. It’s worth making the
responsive distinction at this point, with your understanding of what Bootstrap can do
and how it works in the back of your mind.

Figure 4.7 The homepage after the layout template has been set up. Bootstrap has automatically collapsed the
navigation on the small screen size of the phone. The navigation bar overlaps the content, but that will be fixed
when the content layouts are created.
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Building a static site with Node and Express
At this stage, the layouts are by no means final and we may well find that we’ll tweak
them and change them as we build the code. But any journey is easier if there’s a des-
tination and a map; this is what the sketches give us. We can start off our coding in the
right direction. The few minutes it takes to do this upfront can save us hours later
on—moving parts around, or even throwing them out and starting again, is much eas-
ier with a sketch than with a load of code.

 Now that we’ve got an idea of the layout and the pieces of content required, it’s
time to put it together in a new template.

SETTING UP THE VIEW AND THE CONTROLLER

The first step is to create a new view file and link it to the controller. So in the
app_server/views folder make a copy of the index.jade view and save it in the same
folder as locations-list.jade. It’s best not calling it “homepage” or something simi-
lar, as at some point we may change our mind about what should be displayed on the
homepage. This way, the name of the view is clear, and it can be used anywhere with-
out confusion.

 The second step is to tell the controller for the homepage that we want to use this
new view. The controller for the homepage is in the locations.js file in app_server/
controllers. Update this to change the view called by the homelist controller. This
should look like the following code snippet (modifications in bold):

module.exports.homelist = function(req, res){
 res.render('locations-list', { title: 'Home' });
};

Navigation

Desktop Phone

Footer

Page header

Name

Address

Facilities

Sidebar

text

100m

Name

Address

Facilities

200m

Name 250m

Navigation

Footer

Page header

Name

Address

Facilities

100m

Name

Address

Facilities

200m

Sidebar text

Multiple

locations

Multiple

locations

Figure 4.8 Desktop and mobile layout sketches for the homepage. Sketching out the layouts for a
page can give you a quick idea of what you’re going to build, without getting distracted by the
intricacies of Photoshop or technicalities of code.
Licensed to Mark Watson <nordickan@gmail.com>

95Creating some views

ire
n

6
s
Now let’s build the view template.

CODING THE TEMPLATE: PAGE LAYOUT

When actually writing the code for the layouts, I prefer to start with the big pieces, and
then move toward the detail. As we’re extending the layout file, the navigation bar
and footer are already done, but there’s still the page header, the main area for the
list, and the sidebar to consider.

 At this point we need to take a first stab at how many of the 12 Bootstrap columns
we want each element to take up on which devices. The following code snippet shows
the layout of the three distinct areas of the Loc8r List page:

#banner.page-header
 .row
 .col-lg-6
 h1 Loc8r
 small Find places to work with wifi near you!
.row
 .col-xs-12.col-sm-8
 p List area.
 .col-xs-12.col-sm-4
 p.lead Loc8r helps you find places to work when out and about.

I did go back and forth a bit, testing the columns at various resolutions until I was
happy with them. Having device simulators can make this process easier, but a really
simple method is to just change the width of your browser window to force the differ-
ent Bootstrap breakpoints. When you’ve got something you think is probably okay,
you can push it up to Heroku and test it out for real on your phone or tablet.

CODING THE TEMPLATE: LOCATIONS LIST

Now that the containers for the homepage are defined, it’s time for the main area.
We have an idea of what we want in here from the sketches drawn for the page lay-
out. Each place should show the name, address, its rating, how far away it is, and the
key facilities.

 Because we’re creating a clickable prototype all of the data will be hard-coded into
the template for now. It’s the quickest way of putting a template together and ensur-
ing that we have the information we want displayed the way we want. We’ll worry
about the data side of it later. If you’re working from an existing data source, or have
constraints around what data you can use, then naturally you’ll have to bear that in
mind when creating the layouts.

 Again, getting a layout you’re happy with will take a bit of testing, but Jade and
Bootstrap working together make this process considerably easier than it might be.
The following code snippet shows what I’ve come up with for a single location:

Page header that fills ent
width, containing a colum
that limits text width to
columns on large screen
for readability

Container for list of locations, spanning all
12 columns on extra-small devices and 8
columns on small devices and larger

Container for secondary or sidebar
information, spanning all 12 columns on

extra-small devices and 4 columns on
small devices and larger
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Building a static site with Node and Express

b

.row.list-group
 .col-xs-12.list-group-item
 h4
 a(href="/location") Starcups
 small
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star-empty
 span.glyphicon.glyphicon-star-empty
 span.badge.pull-right.badge-default 100m
 p.address 125 High Street, Reading, RG6 1PS
 p
 span.label.label-warning Hot drinks

 span.label.label-warning Food

 span.label.label-warning Premium wifi

Once again you can see how much you can achieve with relatively little effort and
code, all thanks to the combination of Jade and Bootstrap. To give you an idea of what
the preceding code snippet does, it will render like figure 4.9.

This section is set to go across the full width of the available area, so 12 columns on
all devices. Remember, though, that this section is nested inside a responsive col-
umn, so that full width is the full width of the containing column, not necessarily
the browser viewport.

 This will probably make more sense when we put it all together and see it in action.

CODING THE TEMPLATE: PUTTING IT TOGETHER

So we’ve got the layout of page elements, the structure of the list area, and some hard-
coded data. Let’s see what it looks like all together. To get a better feel of the layout in
the browser it will be a good idea to duplicate and modify the List page so that we have
a number of locations showing up. The code, including just a single location for brev-
ity, is shown in the following listing.

Set up a Bootstrap list group and create
a single item spanning full 12 columns

Name of listing and
a link to location

Use Bootstrap’s
glyphicons to output
a star rating

Use
Bootstrap’s
adge helper

class to hold
distance

away
Address of
location

Facilities of location,
output using Bootstrap’s
label classes

Figure 4.9 Onscreen rendering of a single location on the List page
Licensed to Mark Watson <nordickan@gmail.com>

97Creating some views

s
an
extends layout

block content
 #banner.page-header
 .row
 .col-lg-6
 h1 Loc8r
 small Find places to work with wifi near you!
 .row
 .col-xs-12.col-sm-8
 .row.list-group
 .col-xs-12.list-group-item
 h4
 a(href="/location") Starcups
 small
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star-empty
 span.glyphicon.glyphicon-star-empty
 span.badge.pull-right.badge-default 100m
 p.address 125 High Street, Reading, RG6 1PS
 p
 span.label.label-warning Hot drinks
 |
 span.label.label-warning Food
 |
 span.label.label-warning Premium wifi
 |
 .col-xs-12.col-sm-4
 p.lead Looking for wifi and a seat? Loc8r helps you find places to work

when out and about. Perhaps with coffee, cake or a pint? Let Loc8r help
you find the place you're looking for.

When you’ve got this all in place, you’ve got the homepage listing template all done.
If you run the application and head to localhost:3000 you should see something like
figure 4.10.

 See how the layout changes between a desktop view and a mobile view? That’s all
thanks to Bootstrap’s responsive framework and our choice of CSS classes. Scrolling
down in the mobile view you’ll see the sidebar text content between the main list and
the footer. On the smaller screen it’s more important to display the list in the available
space than the text.

 So that’s great; we’ve got a responsive layout for the homepage using Jade and
Bootstrap in Express and Node. Let’s quickly add the other views.

Listing 4.6 Complete template for app_server/views/locations-list.jade

Start header
area

Start responsive
main listing
column section

An individual
listing; duplicate
this section to
create list of
multiple items

Set up
idebar area
d populate
with some

content
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Building a static site with Node and Express
4.4 Adding the rest of the views
The Locations collection’s List page is done, so we now need to look at creating the
other pages to give users a site they can click through. In this section we’ll cover add-
ing these pages:

1 Details
2 Add Review
3 About

We won’t go through the process in so much detail for all of them though, just a bit of
explanation, the code, and the output. You can always download the source code from
GitHub if you prefer.

4.4.1 Details page

The logical step, and arguably the next most important page to look at, is the Details
page for an individual location.

 This page needs to display all of the information about a location, including

■ Name
■ Address
■ Rating
■ Opening hours
■ Facilities
■ Location map

Figure 4.10 Responsive template for the homepage in action on different devices
Licensed to Mark Watson <nordickan@gmail.com>

99Adding the rest of the views
■ Reviews, each with
– Rating
– Reviewer name
– Review date
– Review text

■ Button to add a new review
■ Text to set the context of the page

That’s quite a lot of information! This is the most complicated single template that
we’ll have in our application.

PREPARATION

The first step is to update the controller for this page to use a different view. Look for
the locationInfo controller in the locations.js file in app_server/controllers. Change
the name of the view to be location-info, as per the following code snippet:

module.exports.locationInfo = function(req, res){
 res.render('location-info', { title: 'Location info' });
};

Remember, if you run the application at this point it won’t work because Express can’t
find the view template. Not surprising really, as we haven’t created it yet. That’s the
next part.

THE VIEW

Create a new file in app_server/views and save it as location-info.jade. The content for
this is shown in listing 4.7. This is the largest listing in this book. Remember that for
the purposes of this stage in the prototype development, we’re generating clickable
pages with the data hard-coded directly into them.

extends layout

block content
 .row.page-header
 .col-lg-12
 h1 Starcups
 .row
 .col-xs-12.col-md-9
 .row
 .col-xs-12.col-sm-6
 p.rating
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star-empty
 span.glyphicon.glyphicon-star-empty

Listing 4.7 View for the Details page, app_server/views/location-info.js

Start with
page header

Set up nested
responsive columns
needed for template
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Building a static site with Node and Express
 p 125 High Street, Reading, RG6 1PS
 .panel.panel-primary
 .panel-heading
 h2.panel-title Opening hours
 .panel-body
 p Monday - Friday : 7:00am - 7:00pm
 p Saturday : 8:00am - 5:00pm
 p Sunday : closed
 .panel.panel-primary
 .panel-heading
 h2.panel-title Facilities
 .panel-body
 span.label.label-warning
 span.glyphicon.glyphicon-ok
 | Hot drinks
 |
 span.label.label-warning
 span.glyphicon.glyphicon-ok
 | Food
 |
 span.label.label-warning
 span.glyphicon.glyphicon-ok
 | Premium wifi
 |
 .col-xs-12.col-sm-6.location-map
 .panel.panel-primary
 .panel-heading
 h2.panel-title Location map
 .panel-body
 img.img-responsive.img-rounded(src='http://maps.googleapis.com/

maps/api/staticmap?center=51.455041,-
0.9690884&zoom=17&size=400x350&sensor=false&markers=51.455041,-
0.9690884&scale=2')

 .row
 .col-xs-12
 .panel.panel-primary.review-panel
 .panel-heading
 a.btn.btn-default.pull-right(href='/location/review/new') Add

review
 h2.panel-title Customer reviews
 .panel-body.review-container
 .row
 .review
 .well.well-sm.review-header
 span.rating
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.reviewAuthor Simon Holmes
 small.reviewTimestamp 16 July 2013
 .col-xs-12

One of several Bootstrap
panel components used
to define information
areas, in this case
opening hours

Use static Google Maps
image, including coordinates
in the query string
51.455041,-0.9690884

Create link to Add Review
page using Bootstrap’s
button helper class
Licensed to Mark Watson <nordickan@gmail.com>

101Adding the rest of the views

i

 p What a great place. I can't say enough good things about
it.

 .row
 .review
 .well.well-sm.review-header
 span.rating
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star-empty
 span.glyphicon.glyphicon-star-empty
 span.reviewAuthor Charlie Chaplin
 small.reviewTimestamp 16 June 2013
 .col-xs-12
 p It was okay. Coffee wasn't great, but the wifi was fast.
 .col-xs-12.col-md-3
 p.lead Simon's cafe is on Loc8r because it has accessible wifi and space

to sit down with your laptop and get some work done.
 p If you've been and you like it - or if you don't - please leave a

review to help other people just like you.

So that’s a pretty long template, and we’ll look at how we can shorten that soon. But
the page itself is pretty complex and contains a lot of information, and a few nested
responsive columns. Imagine how much longer it would be if it was written in full
HTML, though!

ADDING A BIT OF STYLE

This template will look okay as it is, but there are some little stylistic issues that can eas-
ily be addressed with a few lines of CSS. When we set up the project we left the default
Express stylesheet where it was for just this reason, even though we took all of the con-
tent out of it. The file is called style.css and is in the folder public/stylesheets. Enter
the following code snippet into the file and save it:

.review {padding-bottom: 5px;}

.panel-body.review-container {padding-top: 0;}

.review-header {margin-bottom: 10px;}

.reviewAuthor {margin: 0 5px;}

.reviewTimestamp {color: #ccc;}

With this saved, the Details page layout is complete, and you can head over to local-
host:3000/location to check it out. Figure 4.11 shows how this layout looks in a browser
and on a mobile device.

 The next step in this user journey is the Add Review page, which has much sim-
pler requirements.

Final
responsive
column for

sidebar
contextual

nformation
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Building a static site with Node and Express
4.4.2 Adding Review page

This will be a pretty straightforward page. It only really needs to hold a form contain-
ing the user’s name and a couple of input fields for the rating and review.

 The first step is to update the controller to reference a new view. In app_server/
controllers/locations.js change the addReview controller to use a new view location-
review-form, like in the following code snippet:

module.exports.addReview = function(req, res){
 res.render('location-review-form', { title: 'Add review' });
};

The second step is to create the view itself. In the views folder app_server/views create
a new file called location-review-form.jade. Because this is designed to be a clickable
prototype we’re not going to be posting the form data anywhere, so the aim is just to
get the action to redirect to the Details page that displays the review data. In the form
then, we’ll set the action to be /location and the method to get. This will give us the
functionality we need for now. The entire code for the review form page is shown in
the following listing.

extends layout

block content
 .row.page-header
 .col-lg-12
 h1 Review Starcups

Listing 4.8 View for the Add Review page, app_server/views/location-review.form.js

Figure 4.11 Details page layout on desktop and mobile devices
Licensed to Mark Watson <nordickan@gmail.com>

103Adding the rest of the views

a

r
t
 .row
 .col-xs-12.col-md-6
 form.form-horizontal(action="/location", method="get", role="form")
 .form-group
 label.col-xs-10.col-sm-2.control-label(for="name") Name
 .col-xs-12.col-sm-10
 input#name.form-control(name="name")
 .form-group
 label.col-xs-10.col-sm-2.control-label(for="rating") Rating
 .col-xs-12.col-sm-2
 select#rating.form-control.input-sm(name="rating")
 option 5
 option 4
 option 3
 option 2
 option 1
 .form-group
 label.col-sm-2.control-label(for="review") Review
 .col-sm-10
 textarea#review.form-control(name="review", rows="5")
 button.btn.btn-default.pull-right Add my review
 .col-xs-12.col-md-4

Bootstrap has a lot of helper classes for dealing with forms, which are evident in list-
ing 4.8. But it’s a pretty simple page, and when you run it, it should look like figure 4.12.

 The Add Review page marks the end of the user journey through the Locations
collection of screens. There is just the About page left to do.

Set form
action to
/location

nd method
to get

Input field for
reviewer to
leave name

Dropdown
select box for
rating 1 to 5

Text area fo
text conten
of review

Submit
button

for form

Figure 4.12 Complete Add Review page in a desktop and mobile view
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 4 Building a static site with Node and Express
4.4.3 The About page

The final page of the static prototype is the About page. This is just going to be a page
with a header and some content, so nothing complicated. The layout might be useful
for other pages further down the line, such as a privacy policy or terms and condi-
tions, so we’re best off creating a generic, reusable view.

 The controller for the About page is in the others.js file in app_server/controllers.
You’re looking for the controller called about, and you want to change the name of
the view to generic-text, like in the following code snippet:

module.exports.about = function(req, res){
 res.render('generic-text', { title: 'About' });
};

Next, create the view generic-text.jade in app_server/views. It’s a pretty small tem-
plate, and should look like the following listing.

extends layout

block content
 #banner.page-header
 .row
 .col-md-6.col-sm-12
 h1= title
 .row
 .col-md-6.col-sm-12
 p
 | Loc8r was created to help people find places to sit down and get a

bit of work done.
 |

 | Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc sed

lorem ac nisi dignissim accumsan.

Listing 4.9 is a very simple layout. Don’t worry about including page-specific content
into a generic view at this point; we’ll take that on soon and make the page reusable.
For now, for the purposes of finishing the clickable static prototype, it’s okay.

 You’ll probably want to add some additional lines in there, so that the page looks
like it has real content. Notice that the lines starting with the pipe character (|) can
contain HTML tags if you want them to. Figure 4.13 shows how this might look in the
browser with a bit more content in it.

 And that’s the last one of the four pages we need for the static site. You can now
push this up to Heroku and have people visit the URL and click around. If you’ve for-
gotten how to do this, the following code snippet shows the terminal commands you
need, assuming you’ve already set up Heroku. In terminal, you need to be in the root
folder of the application.

$ git add .
$ git commit –m "Adding the view templates"
$ git push heroku master

Listing 4.9 View for text only pages, app_server/views/generic-text.jade

Use | to
create lines
of plain text

within a
<p> tag
Licensed to Mark Watson <nordickan@gmail.com>

105Adding the rest of the views
So what’s next? The routes, views, and controllers are set up for a static site that you
can click through. And you’ve just pushed it up to Heroku so that others can also try it
out. In some ways this is the end goal for this stage, and you can stop here while you
play with the journeys and get feedback. This is definitely the easiest point in the pro-
cess to make large sweeping changes.

 If you were definitely going to be building an Angular SPA, and assuming you’re
happy with what you’ve done to this point, then you probably wouldn’t go any fur-
ther with creating a static prototype. Instead, you’d start to create an application
in Angular.

 But the next step we’re going to take now will continue down the road of creating
the Express application. So while keeping with the static site, we’ll be removing the
data from the views and putting them into the controllers.

Get the source code
The source code for the application as it stands at this point is available on GitHub
in the chapter-04-views branch. In a fresh folder in terminal the following commands
will clone it and install the npm module dependencies:

$ git clone -b chapter-04-views https://github.com/simonholmes/getting-
MEAN.git

$ cd getting-MEAN
$ npm install

Figure 4.13 Generic text template rendering the About page
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 4 Building a static site with Node and Express
4.5 Take the data out of the views and make them smarter
At the moment, all of the content and data is held in the views. This is perfect for test-
ing stuff out and moving things around, but we need to move forward. An end goal of
the MVC architecture is to have views without content or data. The views should simply
be fed data that they present to the end users, while being agnostic of the data they’re
fed. The views will need a data structure, but what is inside the data doesn’t matter to
the view itself.

 If you think about the MVC architecture, the model holds the data, the controller
then processes the data, and finally the view renders the processed data. We’re not
dealing with the model yet—that will come soon, starting in chapter 5. For now we’re
working with the views and controllers. To make the views smarter, and do what they’re
intended to do, we need to take the data and content out of the views and into the con-
trollers. Figure 4.14 illustrates the data flow in an MVC architecture, and the changes
we want to make to get us a step closer.

Making these changes now will allow us to finalize the views and be ready for the next
step. As a bonus, we’ll start thinking about how the processed data should look in the
controllers. So rather than starting with a data structure, we’ll start off with the ideal
front end and slowly reverse-engineer the data back through the MVC steps as our
understanding of the requirements solidifies.

 So how are we going to do this? Starting with the homepage we’ll take every piece
of content out of the Jade view. We’ll update the Jade file to contain variables in place

Data flow Data flow

Model Controller

Holds the

data

Processes

the data

Data flow in an MVC pattern

Renders the

processed data

The data is currently in the view.

Move it back a step to the controller

and give the views processed data.

View

Figure 4.14 How the data should flow in an MVC pattern, from the model
through the controller to the view. At this point in the prototype our data
is in the view, but we want to move it a step back into the controller.
Licensed to Mark Watson <nordickan@gmail.com>

107Take the data out of the views and make them smarter
of the content, and put the content as variables into the controller. The controller can
then pass these values into the view. The result should end up looking the same in the
browser, and end users shouldn’t be able to spot a difference. The roles of the various
parts and the movement and use of data are shown in figure 4.15.

 At the end of this stage, the data will still be hard-coded, but in the controllers
instead of the views. The views will now be smarter and able to accept and display
whatever data is sent to them, providing it’s in the correct format, of course.

4.5.1 How to move data from the view to the controller

We’re going to start with the homepage, and take the data out of the locations-
list.jade view into the homelist function in the locations.js controllers file. Let’s
start at the top with something pretty simple, the page header. The following code
snippet shows the page header section of the list.jade view, which has two pieces
of content:

#banner.page-header
 .row
 .col-lg-6
 h1 Loc8r
 small Find places to work with wifi near you!

These two pieces of content are the first that we’ll move into the controller. The
homepage controller currently looks like the following:

module.exports.homelist = function(req, res){
 res.render('locations-list', { title: 'Home' });
};

This is already sending one piece of data to the view. Remember that the second
parameter in the render function is a JavaScript object containing the data to send to

View uses data

to generate final

HTML output

Controller passes

data to view

as variables

Controller View User

• Sees the

final HTML

• HTML layout

• References to

variables

• Specifies view

• Defines variables

• Assigns data to

variables

Figure 4.15 When the controller specifies the data, it passes the data to the view
as variables; the view then uses that data to generate the final HTML that’s
delivered to the user.

Large font
page title

Smaller font
strapline for page
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 4 Building a static site with Node and Express

the view. Here the homelist controller is sending the data object { title: 'Home' }
to the view. This is being used by the layout file to put the string Home into the HTML
<title>, which isn’t necessarily the best choice of text.

UPDATE THE CONTROLLER

So let’s change the title to something more appropriate for the page, and also add in
the two data items for the page header. Make these changes to the controller first, as
follows (modifications in bold):

module.exports.homelist = function(req, res){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 }
 });
};

For neatness and future manageability the title and the strapline are grouped together
within a pageHeader object. This is a good habit to get into, and will make the control-
lers easier to update and maintain further down the line.

UPDATE THE VIEW

Now that the controller is passing these pieces of data to the view, we can update the
view to reference them in place of the hard-coded content. Nested data items like this
are referenced using the dot syntax. So to reference the page header strapline in the
list.jade view we’ll use pageHeader.strapline. The following code snippet shows
the page header section of the view (modifications in bold):

#banner.page-header
 .row
 .col-lg-6
 h1= pageHeader.title
 small #{pageHeader.strapline}

The code is outputting pageHeader.title and pageHeader.strapline in the relevant
places in the view. See the following sidebar for details about the different methods of
referencing data in Jade templates.

Referencing data in Jade templates
There are two key syntaxes for referencing data in Jade templates. The first is called
interpolation, and it’s typically used to insert data into the middle of some other con-
tent. Interpolated data is defined by the opening delimiter #{ and the end delimiter
}. You’d normally use it like this:

h1 Welcome to #{pageHeader.title}

New nested pageHeader
object containing
properties for title and
strapline of page

= signifies that following
content is buffered code, in
this case a JavaScript object

#{} delimiters are
used to insert data into
a specific place, like
part of a piece of text
Licensed to Mark Watson <nordickan@gmail.com>

109Take the data out of the views and make them smarter
If you run the application now and head back to the homepage, the only change you
should notice is that the <title> has been updated. Everything else still looks the
same; it’s just that some of the data is now coming from the controller.

 This section served as a simple example of what we’re doing at this point, and how
we’re doing it. The complicated part of the homepage is the listing section, so let’s
look at how we can approach that.

4.5.2 Dealing with complex, repeating data
This first thing to bear in mind with the listing section is that there are multiple
entries, all following the same data pattern and layout pattern. Like we’ve just done
with the page header, we’ll start with the data, taking it from the view to the controller.

 In terms of JavaScript data, a repeatable pattern lends itself nicely to the idea of an
array of objects. We’ll look to have one array holding multiple objects, with each sin-
gle object containing all of the relevant information for an individual listing.

ANALYZING THE DATA IN THE VIEW

Let’s take a look at a listing and see what information we need the controller to send.
Figure 4.16 reminds us how a listing looks in the homepage view.

If your data contains HTML, this will be escaped for security reasons. This means that
the end users will see any HTML tags displayed as text, and the browser will not inter-
pret them as HTML. If you want the browser to render any HTML contained in the data
you can use the following syntax:

h1 Welcome to !{pageHeader.title}

This poses potential security risks and should only be done from data sources that
you trust. You shouldn’t allow user inputs to display like this, for example, with some
additional security checks.

The second method of outputting the data is with buffered code. Instead of inserting
the data into a string, you build the string using JavaScript. This is done by using the
= sign directly after the tag declaration, like this:

h1= "Welcome to " + pageHeader.title

Again, this will escape any HTML for security reasons. If you want to have unescaped
HTML in your output you can use slightly different syntax like this:

h1!= "Welcome to " + pageHeader.title

Once again, be careful using this. Whenever possible you should try to use one of the
escaped methods just to be on the safe side.

Figure 4.16
An individual listing,
showing the data
that we need
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 4 Building a static site with Node and Express
From this screenshot we can see that an individual listing on the homepage has the
following data requirements:

■ Name
■ Rating
■ Distance away
■ Address
■ List of facilities

Taking the data from the screenshot in figure 4.16 and creating a JavaScript object
from it, we could come up with something simple like the following code snippet:

{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}

That’s all the data needed for a single location. For multiple locations we’ll need an
array of these.

ADDING THE REPEATING DATA ARRAY TO THE CONTROLLER

So we just need to create an array of the single location objects—taking the data you
currently have in the view if you want—and add it to the data object passed to the
render function in the controller. The following code snippet shows the updated
homelist controller including the array of locations:

module.exports.homelist = function(req, res){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
 },{
 name: 'Cafe Hero',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 4,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '200m'
 },{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 2,

List of facilities is
sent as an array of
string values

Array of locations
is being passed as
locations to view
for rendering
Licensed to Mark Watson <nordickan@gmail.com>

111Take the data out of the views and make them smarter
 facilities: ['Food', 'Premium wifi'],
 distance: '250m'
 }]
 });
};

Here we’ve got the details for three locations being sent in the array. You can add
many more, of course, but this is as good a start as any. Now we need to get the view to
render this information, instead of the data currently hard-coded inside it.

LOOPING THROUGH ARRAYS IN A JADE VIEW

The controller is sending an array to Jade as the variable locations. Jade offers a very
simple syntax for looping through an array. In one line we specify which array to use
and what variable name we want to use as the key. The key is simply a named reference
to the current item in the array, so the contents of it change as the loop progresses
through the array. The construct of a Jade loop is like so:

Anything nested inside this line in Jade will be iterated through for each item in the
array. Let’s take a look at an example of using this, using the locations data and part of
the view we want. In the view file, each location starts off with the code in the follow-
ing snippet, just with a different name each time:

.col-xs-12.list-group-item
 h4
 a(href="/location") Starcups

We can use Jade’s each/in syntax to loop through all of the locations in the locations
array, and output the name of each. How this works is shown in the next code snippet:

each location in locations
 .col-xs-12.list-group-item
 h4
 a(href="/location")= location.name

each location in locations

Name the key you want to

use to access the data

Name of the array

to loop through

Set up loop, defining
variable location as key

Nested items are all
looped through

Output name of each
location, accessing the name
property of each location
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 4 Building a static site with Node and Express
Given the controller data we’ve got, with three locations in it, using that with the pre-
ceding code would result in the following HTML:

<div class="col-xs-12 list-group-item">
 <h4>
 Starcups
 </h4>
</div>
<div class="col-xs-12 list-group-item">
 <h4>
 Cafe Hero
 </h4>
</div>
<div class="col-xs-12 list-group-item">
 <h4>
 Burger Queen
 </h4>
</div>

As you can see, the HTML construct—the div, h4, and a tags—are repeated three
times. But the name of the location is different in each one, corresponding to the data
in the controller.

 So looping through arrays is pretty easy, and with that little test we’ve already got
the first few lines of the updated view text we need. Now we just need to follow this
through with the rest of the data used in the listings. We can’t deal with the ratings
stars like this, so we’ll ignore those for now and deal with them shortly.

 Dealing with the rest of the data we can produce the following code snippet, which
will output all of the data for each listing. As the facilities are being passed as an array,
we’ll need to loop through that array for each listing:

each location in locations
 .col-xs-12.list-group-item
 h4
 a(href="/location")= location.name
 small
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star
 span.glyphicon.glyphicon-star-empty
 span.glyphicon.glyphicon-star-empty
 span.badge.pull-right.badge-default= location.distance
 p.address= location.address
 p
 each facility in location.facilities
 span.label.label-warning= facility

Looping through the facilities array is no problem, and Jade handles this with ease.
Pulling out the rest of the data like the distance and the address is pretty straightfor-
ward, using the techniques we’ve already looked at.

Looping through a nested
array to output facilities
for each location
Licensed to Mark Watson <nordickan@gmail.com>

113Take the data out of the views and make them smarter
 The only part left to deal with is the ratings stars. For that, we’re going to need a
bit of inline JavaScript code.

4.5.3 Manipulating the data and view with code

For the star ratings the view is outputting spans with different classes using Bootstrap’s
Glyphicon system. There are a total of five stars, which are either solid or empty,
depending on the rating. For example, a rating of five will show five solid stars, a rat-
ing of three will show three solid stars and two empty stars, as shown in figure 4.17,
and a rating of zero will show five empty stars.

To generate this type of output, we’re going to use some code inside the Jade template.
The code is essentially JavaScript, with some Jade-specific conventions thrown in. To add
a line of inline code to a Jade template we prefix the line with a dash or hyphen. This
tells Jade to run the JavaScript code rather than passing it through to the browser.

 To generate the output for the stars we’re going to use a couple of for loops. The
first loop will output the correct number of solid stars and the second loop will output
the remaining empty stars. The following code snippet shows how this looks and
works in Jade:

 - for (var i = 1; i <= location.rating; i++)
 span.glyphicon.glyphicon-star
 - for (i = location.rating; i < 5; i++)
 span.glyphicon.glyphicon-star-empty

Notice that the syntax is very familiar JavaScript, but there are no curly brackets defin-
ing the block of code to run. Instead, the block of code is defined by indentation, like
the rest of Jade. Also notice the mixture of code and Jade. The lines of code are saying
“for every time I evaluate as true, render the indented Jade content.” This is a really
nice approach, as you don’t have to try to construct your HTML using JavaScript.

 That’s all of the content and layout for the homepage sorted, so we can move on.
Except, there’s one more thing we can do to improve what we’ve got and make some
of the code reusable.

4.5.4 Using includes and mixins to create reusable layout components

The star rating code that we’ve just written is going to be quite useful on other layouts.
We’re going to want it on the Details page, for example, and maybe in more places in
the future. We don’t want to have to manually add it to every page. What if we decide
that we don’t like the Glyphicons anymore and want to change the markup? We cer-
tainly don’t want to have to change it separately on every single page that shows a rat-
ing, not if we can help it.

Figure 4.17 The Glyphicon star rating system in
action, showing a rating of three out of five stars
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 4 Building a static site with Node and Express
 Fortunately, Jade enables you to create reusable components using mixins and
includes.

DEFINING JADE MIXINS

A mixin in Jade is essentially a function. You can define a mixin at the top of your file
and use it in multiple places. A mixin definition is really straightforward: you simply
define the name of the mixin, and then nest the content of it with indentation. The
following code snippet shows a basic mixin definition:

mixin welcome
 p Welcome

This will output the “Welcome” text inside a <p> tag wherever it’s invoked.
 Mixins are also able to accept parameters, just like a JavaScript function. This is

going to be very useful for creating the mixin we need to display the rating, as the
HTML output will be different depending on the actual rating. The following code
snippet shows how this can work, defining the mixin we want to use on the homepage
to output the ratings stars:

mixin outputRating(rating)
 - for (var i = 1; i <= rating; i++)
 span.glyphicon.glyphicon-star
 - for (i = rating; i < 5; i++)
 span.glyphicon.glyphicon-star-empty

In a sense, this works just like a JavaScript function. When you define the mixin you
can specify the parameters that it expects. Within the mixin you can then use this
parameter. You can take the preceding code snippet and pop it into the top of the
locations-list.jade file, between the extends layout and block content lines.

CALLING JADE MIXINS

After defining the mixin, you’re going to want to use it, of course. The syntax for call-
ing a mixin is to simply place a + before its name. If you have no parameters, such as
the welcome mixin we’ve just looked at, this looks like the following:

+welcome

This will call the welcome mixin and output the text “Welcome” inside a <p> tag.
 Calling a mixin with parameters is just as easy. You simply send the values of the

parameters through inside brackets, just like you’d do when calling a JavaScript func-
tion. In the location-listings.jade file, at the point where we’re outputting the ratings,
the value of the rating is held in the variable location.rating, as shown in the follow-
ing code snippet:

small
 - for (var i = 1; i <= location.rating; i++)
 span.glyphicon.glyphicon-star
 - for (i = location.rating; i < 5; i++)
 span.glyphicon.glyphicon-star-empty

Define mixin outputRating
expecting a single parameter rating

Use rating parameter
inside for loops to
output correct HTML
Licensed to Mark Watson <nordickan@gmail.com>

115Take the data out of the views and make them smarter
We can replace this code with a call to our new mixin outputRating, sending the
location.rating variable as the parameter. This looks like the following code snippet:

small
 +outputRating(location.rating)

This will now output the exact same HTML as before, but we’ve taken a part of the
code outside of the contents of the layout. Right now, this is only reusable within the
same file, but next we’re going to use includes to make it accessible to other files.

USING INCLUDES IN JADE

To allow our new mixin to be called from other Jade templates, we need to make it an
include file. This is super easy.

 Within the app_server/views folder, create a subfolder called _includes. Within
this folder create a new file called sharedHTMLfunctions.jade, and paste into it the
outputRating mixin definition, as follows:

mixin outputRating(rating)
 - for (var i = 1; i <= rating; i++)
 span.glyphicon.glyphicon-star
 - for (i = rating; i < 5; i++)
 span.glyphicon.glyphicon-star-empty

Save the file, and that’s your include created. To use an include file in a Jade layout
there is a very simple syntax. Simply use the keyword include, followed by the relative
path to the include file. The following code snippet shows the line of code that we can
use to replace the mixin code at the top of location-listings.jade:

include _includes/sharedHTMLfunctions

Now, rather than having the mixin code inline in the template, we’re calling it in from
an include file. Notice that you can omit the .jade file extension when calling the
include. So now, when we create a new template that needs to have ratings stars on it,
we can easily reference this include file and call the outputRatings mixin.

 And now, we’re really done with the homepage!

4.5.5 The finished homepage

We’ve made quite a lot of changes to the homepage template throughout this section. So
let’s see what we’ve ended up with. First let’s take a look at the updated controller. The
following listing shows the final homelist controller, incorporating the hard-coded data.

module.exports.homelist = function(req, res){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },

Listing 4.10 The homelist controller, passing hard-coded data to the view

Update text for
HTML <title>

Add text for page
header as two items
inside an object
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 4 Building a static site with Node and Express
 sidebar: "Looking for wifi and a seat? Loc8r helps you find places
to work when out and about. Perhaps with coffee, cake or a pint?
Let Loc8r help you find the place you're looking for.",

 locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
 },{
 name: 'Cafe Hero',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 4,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '200m'
 },{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 2,
 facilities: ['Food', 'Premium wifi'],
 distance: '250m'
 }]
 });
};

Seeing this all together you can start to appreciate where we’re going with this
approach. We’ve got a clear picture of all of the data required for the homepage of
Loc8r. This is going to come in handy in the next chapter. This controller contains the
text for the sidebar. We didn’t talk about this step, but taking it from the view to the
controller is as simple as creating a new variable for it in the controller and referenc-
ing it in the view.

 Something important that we’ve achieved through this process is the removal of
data from the view. Building the view with data in was great as a first step, as it allowed
us to focus on the end-user experience without getting distracted by the technicali-
ties. Now that we’ve moved the data from the view into the controller we have a
much smarter, dynamic view. The view knows what pieces of data it needs, but it
doesn’t care what is in those pieces of data. The following listing shows the final view
for the homepage.

extends layout

include _includes/sharedHTMLfunctions

block content
 #banner.page-header
 .row
 .col-lg-6
 h1= pageHeader.title
 small #{pageHeader.strapline}

Listing 4.11 Final view for the homepage, app_server/views/locations-list.jade

Add text
for sidebar

Create an array of
one object for each
location in list

Bring in external
include file containing
outputRating mixin

Output page header text
using different methods
Licensed to Mark Watson <nordickan@gmail.com>

117Take the data out of the views and make them smarter
 .row
 .col-xs-12.col-sm-8
 .row.list-group
 each location in locations
 .col-xs-12.list-group-item
 h4
 a(href="/location")= location.name
 small
 +outputRating(location.rating)
 span.badge.pull-right.badge-default= location.distance
 p.address= location.address
 p
 each facility in location.facilities
 span.label.label-warning= facility
 |
 .col-xs-12.col-sm-4
 p.lead= sidebar

That’s a pretty small template, right? Especially considering everything it’s doing. This
is a testament to the power of Jade and Bootstrap working together. Not to mention a
side effect of removing all of the content (notice that the sidebar content is being
pulled from the controller too).

 We’re one step closer to the MVC—and general development—goal of separation
of concerns. With the homepage at least.

4.5.6 Updating the rest of the views and controllers

We’ve stepped through the process for the homepage in quite some detail here, but
we’re not going to spend so much time on each of the other pages. Before we can
move to the next stage of development—building the data model—we need to go
through the process on all of the pages, though. The end goal is to have no data in
any of the views; instead the views will be smarter and the data will be hard-coded into
the relevant controllers.

 The process for each page will be

1 Look at the data in the view.
2 Create a structure for that data in the controller.
3 Replace the data in the view with references to the controller data.
4 Look for opportunities to reuse code.

Appendix C goes through the process for each of the three remaining pages, showing
what the controller and view code should look like for each one. When you’ve fin-
ished, none of your views should contain any hard-coded data; the controller for each
page should be passing the required data. Figure 4.18 shows a collection of screen-
shots of the final pages you should have at the end of this stage.

 This puts us at the end of the first phase of our rapid prototype development, and
primed to start the next phase.

Loop through
array of locations

Call outputRating mixin for
each location, passing value
of current location’s rating

Reference sidebar
content from controller
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 4 Building a static site with Node and Express
Figure 4.18 Screenshots of all four pages in the static prototype, using smart views and data hard-coded into
the controllers
Licensed to Mark Watson <nordickan@gmail.com>

119Summary
4.6 Summary
In this chapter we’ve covered

■ Defining and organizing routes in Express
■ Creating Node modules to hold the controllers
■ Using multiple sets of controllers with the routes
■ Creating views using Jade and Bootstrap
■ Making reusable Jade components, mixins
■ Displaying dynamic data in Jade templates
■ Passing data from controllers to views

Coming up in chapter 5 we’re going to continue the journey of moving the data back
up through the MVC architecture by using MongoDB and Mongoose to create a data
model. That’s right, it’s database time!

Get the source code
The source code of the application so far is available from GitHub on the chapter-04
branch of the getting-MEAN repository. In a fresh folder in terminal the following com-
mands will clone it and install the dependencies:

$ git clone -b chapter-04 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install
Licensed to Mark Watson <nordickan@gmail.com>

Building a data model with
MongoDB and Mongoose
In chapter 4 we ended up by moving our data out of the views and backward down
the MVC path into the controllers. Ultimately, the controllers will pass data to the
views, but they shouldn’t store it. Figure 5.1 recaps the data flow in an MVC pattern.

 For storing the data we’ll need a database, specifically MongoDB. So this is our
next step in the process: creating a database and data model.

This chapter covers
■ How Mongoose helps bridge an Express/Node

application to a MongoDB database
■ Defining schemas for a data model using

Mongoose
■ Connecting an application to a database
■ Managing databases using the MongoDB shell
■ Pushing a database into a live environment
■ Using the correct database depending on the

environment, distinguishing between local and
live versions of an application
120

Licensed to Mark Watson <nordickan@gmail.com>

121Building a data model with MongoDB and Mongoose
NOTE If you haven’t yet built the application from chapter 4, you can get the
code from GitHub on the chapter-04 branch at github.com/simonholmes/
getting-MEAN. In a fresh folder in terminal the following command will
clone it:

$ git clone -b chapter-04 https://github.com/simonholmes/getting-MEAN.git

We’ll start by connecting our application to a database before using Mongoose to
define schemas and models. When we’re happy with the structure we can add some
test data directly to the MongoDB database. The final step will be making sure that this
also works when pushed up to Heroku. Figure 5.2 shows the flow of these four steps.

For those of you who are worried that you’ve missed a section or two, don’t worry—we
haven’t created a database yet. And we don’t need to. In various other technology
stacks this can present an issue and throw errors. But with MongoDB we don’t need to
create a database before connecting to it. MongoDB will create a database when we
first try to use it.

Data flow Data flow

Model Controller

Holds the

data

Processes

the data

Data flow in an MVC pattern

Renders the

processed data

View

Figure 5.1 In an MVC pattern, data is held in the model, processed
by a controller, and then rendered by a view.

Connect

application

to database

Define

schemas

and models

Add test

data to

database

Push

to live

environment

1 2 3 4

Figure 5.2 Four main steps in this chapter, from connecting our application to a
database to pushing the whole thing into a live environment
Licensed to Mark Watson <nordickan@gmail.com>

http://www.github.com/simonholmes/getting-MEAN
http://www.github.com/simonholmes/getting-MEAN

122 CHAPTER 5 Building a data model with MongoDB and Mongoose
Figure 5.3 shows where this chapter will focus in terms of the overall architecture.
 We’ll, of course, be working with a MongoDB database, but most of the work will be

in Express and Node. In chapter 2 we discussed the benefits of decoupling the data
integration by creating an API rather than tightly integrating it into the main Express
app. So although we’ll be working in Express and Node, and still within the same
encapsulating application, we’ll actually be starting the foundations of our API layer.

NOTE To follow through this chapter you’ll need to have MongoDB installed.
If you haven’t done so already, you can find the instructions for this in appen-
dix A.

The source code of the application as it will be at the end of this chapter is avail-
able from GitHub on the chapter-05 branch. In a fresh folder in terminal the
following commands will clone it and install the npm module dependencies:

$ git clone -b chapter-05 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install

5.1 Connecting the Express application to MongoDB
using Mongoose
We could connect our application directly to MongoDB and have the two interact
with each other using the native driver. While the native MongoDB driver is very

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Use Mongoose

with Express and

Node.js to model

data and connect

to database

1

Create database

and add data to it

2

Angular SPA

AngularJS

API

Express

Node.js

Database

MongoDB

Figure 5.3 The
MongoDB database
and using Mongoose
inside Express to model
the data and manage
the connection to the
database
Licensed to Mark Watson <nordickan@gmail.com>

123Connecting the Express application to MongoDB using Mongoose
powerful it isn’t particularly easy to work with. It also doesn’t offer a built-in way of
defining and maintaining data structures. Mongoose exposes most of the function-
ality of the native driver, but in a more convenient way, designed to fit into the flows
of application development.

 Where Mongoose really excels is in the way it enables us to define data struc-
tures and models, maintain them, and use them to interact with our database. All
from the comfort of our application code. As part of this approach Mongoose
includes the ability to add validation to our data definitions, meaning that we don’t
have to write validation code into every place in our application where we send
data back to the database.

 So Mongoose fits into the stack inside the Express application by being the liaison
between the application and the database, as shown in figure 5.4.

MongoDB only talks to Mongoose, and Mongoose in turn talks to Node and Express.
Angular will not talk directly to MongoDB or Mongoose, but only to the Express
application.

 You should already have MongoDB installed on your system (covered in appen-
dix A), but not Mongoose. Mongoose isn’t installed globally, but is instead added
directly to our application. We’ll do that now.

5.1.1 Adding Mongoose to our application

Mongoose is available as an npm module. As you saw in chapter 3, the quickest and
easiest way to install an npm module is through the command line. We can install
Mongoose and add it to our list of dependencies in package.json with one command.

 So head over to terminal and make sure the prompt is at the root folder of the
application, where the package.json file is, and run the following command:

$ npm install --save mongoose

Database
Browser

applicationApplication

AngularJSMongoDB Node.js

Express

Mongoose

Figure 5.4 The data interactions in the MEAN stack and where Mongoose
fits in. The Node/Express application interacts with MongoDB through
Mongoose, and Node and Express can then also talk to Angular.
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Building a data model with MongoDB and Mongoose
The --save flag is what tells npm to add Mongoose to the dependency list in pack-
age.json. When that command has finished running you’ll be able to see a new mon-
goose folder inside the node_modules folder of the application, and the dependencies
section of the package.json file should look like the following code snippet:

"dependencies": {
 "express": "~4.9.0",
 "body-parser": "~1.8.1",
 "cookie-parser": "~1.3.3",
 "morgan": "~1.3.0",
 "serve-favicon": "~2.1.3",
 "debug": "~2.0.0",
 "jade": "~1.6.0",
 "mongoose": "~3.8.20"
}

You may have slightly different version numbers, of course, but at the time of writing
the latest stable version of Mongoose is 3.8.20. Now that Mongoose is installed, let’s
get it connected.

5.1.2 Adding a Mongoose connection to our application

At this stage we’re going to connect our application to a database. We haven’t created
a database yet, but that doesn’t matter because MongoDB will create a database when
we first try to use it. This can seem a little odd, but for putting an application together
it’s a great advantage: we don’t need to leave our application code to mess around in a
different environment.

MONGODB AND MONGOOSE CONNECTION
Mongoose opens a pool of five reusable connections when it connects to a MongoDB
database. This pool of connections is shared between all requests. Five is just the
default number and can be increased or decreased in the connection options if you
need to.

BEST-PRACTICE TIP Opening and closing connections to databases can take a
little bit of time, especially if your database is on a separate server or service.
So it’s best to only run these operations when you need to. The best practice
is to open the connection when your application starts up, and to leave it
open until your application restarts or shuts down. This is the approach we’re
going to take.

SETTING UP THE CONNECTION FILE

When we first sorted out the file structure for the application we created three folders
inside the app_server folder: models, views, and controllers. For working with data and
models, we’ll be predominantly based in the app_server/models folder.

 Setting up the connection file is a two-part process: creating the file and requiring
it into the application so that it can be used.
Licensed to Mark Watson <nordickan@gmail.com>

125Connecting the Express application to MongoDB using Mongoose
 Step one: create a file called db.js in app_server/models and save it. For now we’ll
just require Mongoose in this file, with the following single command line:

var mongoose = require('mongoose');

Step two: bring this file into the application by requiring it in app.js. As the actual pro-
cess of creating a connection between the application and the database can take a lit-
tle while, we want to do this early on in the setup. So amend the top part of app.js to
look like the following code snippet (modifications in bold):

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
require('./app_server/models/db');

We’re not going to export any functions from db.js, so we don’t need to assign it to a
variable when we require it. We need it to be there in the application, but we’re not
going to need to hook into any methods of it from within app.js.

 If you restart the application it should run just as before, but now you have Mon-
goose in the application. If you get an error, check that the path in the require state-
ment matches the path to the new file, that your package.json includes the Mongoose
dependency, and that you’ve run npm install from terminal in the root folder of
the application.

CREATING THE MONGOOSE CONNECTION

Creating a Mongoose connection can be as simple as declaring the URI for your data-
base and passing it to Mongoose’s connect method. A database URI is a string follow-
ing this construct:

The username, password, and port are all optional. So on your local machine your
database URI is going to be quite simple. For now, assuming that you have MongoDB
installed on your local machine, adding the following code snippet to db.js will be all
you need to create a connection:

var dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI);

If you run the application with this addition to db.js it should still start and function
just as before. So how do you know your connection is working correctly? The answer
lies in connection events.

mongodb://username:password@localhost:27027/database

MongoDB

protocol

Server

address

Database

name

Login credentials

for database

Port
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Building a data model with MongoDB and Mongoose
MONITORING THE CONNECTION WITH MONGOOSE CONNECTION EVENTS

Mongoose will publish events based on the status of the connection, and these are
really easy to hook into so that you can see what’s going on. We’re going to use events
to see when the connection is made, when there’s an error, and when the connection
is disconnected. When any one of these events occurs we’ll log a message to the con-
sole. The following code snippet shows the code required to do this:

mongoose.connection.on('connected', function () {
 console.log('Mongoose connected to ' + dbURI);
});
mongoose.connection.on('error',function (err) {
 console.log('Mongoose connection error: ' + err);
});
mongoose.connection.on('disconnected', function () {
 console.log('Mongoose disconnected');
});

With this added to db.js, when you restart the application you should see the following
confirmations logged to the terminal window:

Express server listening on port 3000
Mongoose connected to mongodb://localhost/Loc8r

If you restart the application again, however, you’ll notice that you don’t get any dis-
connection messages. This is because the Mongoose connection doesn’t automatically
close when the application stops or restarts. We need to listen for changes in the Node
process to deal with this.

CLOSING A MONGOOSE CONNECTION

Closing the Mongoose connection when the application stops is as much a part of the
best practice as opening the connection when it starts. The connection has two ends:
one in your application and one in MongoDB. MongoDB needs to know when you
want to close the connection so that it doesn’t keep redundant connections open.

 To monitor when the application stops we need to listen to the Node.js process, lis-
tening for an event called SIGINT.

Listening for SIGINT on Windows
SIGINT is an operating system–level signal that fires on Unix-based systems like
Linux and Mac OS X. It also fires on some later versions of Windows. If you’re running
on Windows and the disconnection events don’t fire, you can emulate them. If you
need to emulate this behavior on Windows you first add a new npm package to your
application, readline. So in your package.json file update the dependencies section
like this:

"dependencies": {
 "express": "3.4.x",

Monitoring for successful
connection through
Mongoose

Checking for
connection error

Checking for
disconnection event
Licensed to Mark Watson <nordickan@gmail.com>

127Connecting the Express application to MongoDB using Mongoose

M
con

thr
ano
fun

ru
If you’re using nodemon to automatically restart the application then you’ll also have
to listen to a second event on the Node process called SIGUSR2. Heroku uses another
different event, SIGTERM, so we’ll need to listen for that as well.

CAPTURING THE PROCESS TERMINATION EVENTS

With all of these events, once we’ve captured them we prevent the default behavior
from happening, so we need to make sure that we manually restart the behavior
required. After closing the Mongoose connection, of course.

 To do this, we need three event listeners and one function to close the database
connection. Closing the database is an asynchronous activity, so we’re going to need
to pass through whatever function is required to restart or end the Node process as a
callback. While we’re at it, we can output a message to the console confirming that the
connection is closed, and the reason why. We can wrap this all in a function called
gracefulShutdown in db.js, as in the following code snippet:

var gracefulShutdown = function (msg, callback) {
 mongoose.connection.close(function () {
 console.log('Mongoose disconnected through ' + msg);
 callback();
 });
};

 "jade": "*",
 "mongoose": "3.8.x",
 "readline": "0.0.x"
}

When that’s done, install it into the application by running npm install from the
command line, based in the same folder as your package.json file.

In the db.js file, above the event listener code, add the following:

var readLine = require ("readline");
if (process.platform === "win32"){
 var rl = readLine.createInterface ({
 input: process.stdin,
 output: process.stdout
 });
 rl.on ("SIGINT", function (){
 process.emit ("SIGINT");
 });
}

This will emit the SIGINT signal on Windows machines, allowing you to capture it and
gracefully close down anything else you need to before the process ends.

Define function to
accept message and
callback function

Close
ongoose
nection,
passing
ough an
nymous
ction to
n when
closed

Output message and
call callback when
Mongoose connection
is closed
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 Building a data model with MongoDB and Mongoose

Liste
SI

emitte
applic

termin

Liste
SIGT
em

when He
shuts d

pro
Now we need to call this function when the application terminates, or when nodemon
restarts it. The following code snippet shows the two event listeners we need to add to
db.js for this to happen:

process.once('SIGUSR2', function () {
 gracefulShutdown('nodemon restart', function () {
 process.kill(process.pid, 'SIGUSR2');
 });
});

process.on('SIGINT', function () {
 gracefulShutdown('app termination', function () {
 process.exit(0);
 });
});

process.on('SIGTERM', function() {
 gracefulShutdown('Heroku app shutdown', function () {
 process.exit(0);
 });
});

Now when the application terminates, it gracefully closes the Mongoose connection
before it actually ends. Similarly, when nodemon restarts the application due to changes
in the source files, the application closes the current Mongoose connection first. The
nodemon listener is using process.once as opposed to process.on, as we only want
to listen for the SIGUSR2 event once. nodemon also listens for the same event and we
don’t want to capture it each time, preventing nodemon from working.

TIP It’s important to manage opening and closing your database connec-
tions properly in every application you create. If you use an environment with
different process termination signals you should ensure that you listen to
them all.

COMPLETE CONNECTION FILE

That’s quite a lot of stuff we’ve added to the db.js file, so let’s take a moment to recap.
So far we have

■ Defined a database connection string
■ Opened a Mongoose connection at application startup
■ Monitored the Mongoose connection events
■ Monitored some Node process events so that we can close the Mongoose con-

nection when the application ends

All together the db.js file should look like the following listing. Note that this doesn’t
include the extra code required by Windows to emit the SIGINT event.

Listen for SIGUSR2, which
is what nodemon uses

Send message to graceful-
Shutdown and callback to
kill process, emitting
SIGUSR2 again

n for
GINT
d on

ation
ation

Send message to
gracefulShutdown
and callback to
exit Node process

n for
ERM
itted
roku
own
cess
Licensed to Mark Watson <nordickan@gmail.com>

129Connecting the Express application to MongoDB using Mongoose
var mongoose = require('mongoose');
var gracefulShutdown;
var dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI);

mongoose.connection.on('connected', function () {
 console.log('Mongoose connected to ' + dbURI);
});
mongoose.connection.on('error',function (err) {
 console.log('Mongoose connection error: ' + err);
});
mongoose.connection.on('disconnected', function () {
 console.log('Mongoose disconnected');
});

gracefulShutdown = function (msg, callback) {
 mongoose.connection.close(function () {
 console.log('Mongoose disconnected through ' + msg);
 callback();
 });
};

// For nodemon restarts
process.once('SIGUSR2', function () {
 gracefulShutdown('nodemon restart', function () {
 process.kill(process.pid, 'SIGUSR2');
 });
});
// For app termination
process.on('SIGINT', function() {
 gracefulShutdown('app termination', function () {
 process.exit(0);
 });
});
// For Heroku app termination
process.on('SIGTERM', function() {
 gracefulShutdown('Heroku app shutdown', function () {
 process.exit(0);
 });
});

Once you have a file like this you can easily copy it from application to application,
because the events you’re listening for are always the same. All you’ll have to do each
time is change the database connection string. Remember that we also required this file
into app.js, right near the top, so that the connection opens up early on in the applica-
tion’s life.

Listing 5.1 Complete database connection file db.js in app_server/models

Define database connection
string and use it to open
Mongoose connection

Listen for Mongoose
connection events
and output statuses
to console

Reusable function
to close Mongoose
connection

Listen to Node
processes for
termination or
restart signals,
and call
gracefulShutdown
function when
appropriate,
passing a
continuation
callback
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 5 Building a data model with MongoDB and Mongoose
5.2 Why model the data?
In chapter 1 we talked about how MongoDB is a document store, rather than a tradi-
tional table-based database using rows and columns. This allows MongoDB great free-
dom and flexibility, but sometimes we want—that is, we need—structure to our data.

 Take the Loc8r homepage, for example. The listing section shown in figure 5.5
contains a specific data set that’s common to all locations.

Using multiple databases
What you’ve seen so far is known as the default connection, and is well suited to
keeping a single connection open throughout the uptime of an application. But if you
want to connect to a second database, say for logging or managing user sessions,
then you can use a named connection. In place of the mongoose.connect method
you’d use a different method called mongoose.createConnection, and assign this
to a variable. You can see this in the following code snippet:

var dbURIlog = 'mongodb://localhost/Loc8rLog';
var logDB = mongoose.createConnection(dbURIlog);

This creates a new Mongoose connection object called logDB. You can interact with
this in the same ways as you would with mongoose.connection for the default con-
nection. Here are a couple of examples:

logDB.on('connected', function () {
 console.log('Mongoose connected to ' + dbURIlog);
});
logDB.close(function () {
 console.log('Mongoose log disconnected');
});

Monitoring connection
event for named
connection

Closing named
connection

Figure 5.5 Listing
section of the
homepage has very
defined data
requirements and
structure
Licensed to Mark Watson <nordickan@gmail.com>

131Why model the data?
The page needs these data items for all locations, and the data record for each
location must have a consistent naming structure. Without this, the application
wouldn’t be able to find the data and use it. At this point in the development the
data is held in the controller and being passed into the view. In terms of MVC archi-
tecture, we started off with the data in the view and then moved it back a step to the
controller. Now what we need to do is move it back one final step to where it should
belong, in the model. Figure 5.6 illustrates our current position, highlighting the
end goal.

 One of the outcomes of moving the data back through the MVC flow step-by-step as
we’ve done so far is that it helps solidify the requirements of the data structure. This
ensures the data structure accurately reflects the needs of our application. If you try to
define your model first you end up second-guessing what the application will look like
and how it will work.

 So when we talk about modeling data, what we’re really doing is describing how we
want the data to be structured. In our application we could create and manage the
definitions manually and do the heavy lifting ourselves, or we could use Mongoose
and let it do the hard work for us.

5.2.1 What is Mongoose and how does it work?

Mongoose was built specifically as a MongoDB Object-Document Modeler (ODM) for
Node applications. One of the key principles is that you can manage your data model
from within your application. You don’t have to mess around directly with databases
or external frameworks or relational mappers; you can just define your data model in
the comfort of your application.

Data flow Data flow

Model Controller

Holds the

data

Processes

the data

Data flow in an MVC pattern

Renders the

processed data

View

The data is currently in the controller.

Move the data backward into the model,

allowing the controller to be dynamic.

Figure 5.6 How data should
flow in an MVC pattern, from the
model, through the controller,
into the view. At this point in our
prototype our data is in the
controller, so we want to move
it a step back into the model.
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 5 Building a data model with MongoDB and Mongoose
 First off, let’s get some naming conventions out of the way:

■ In MongoDB each entry in a database is called a document.
■ In MongoDB a collection of documents is called a collection (think “table” if

you’re used to relational databases).
■ In Mongoose the definition of a document is called a schema.
■ Each individual data entity defined in a schema is called a path.

Using the example of a stack of business cards, figure 5.7 illustrates these naming con-
ventions, and how each is related to the other.

One final definition is for models. A model is the compiled version of a schema. All
data interactions using Mongoose go through the model. We’ll work with models
more in chapter 6, but for now we’re focusing on building them.

HOW DOES MONGOOSE MODEL DATA?
If we’re defining our data in the application, how are we going to do it? In JavaScript,
of course! JavaScript objects to be precise. We’ve already had a sneak peak in figure 5.7,
but let’s take a look at a simple MongoDB document and see what the Mongoose
schema for it might look like. The following code snippet shows a MongoDB document,
followed by the Mongoose schema:

{
 "firstname" : "Simon",
 "surname" : "Holmes",
 _id : ObjectId("52279effc62ca8b0c1000007")
}

Each document contains

data, the structure of which

is defined by a schema.

Document

Simon Holmes

0800 3141 592

A collection

contains many

documents.

Collection

Each schema

is made up of a

number of paths.

Schema

firstname lastname

telephone

Each path can

have multiple

defining properties.

Path

firstname:{

type: String,

required:true}

Figure 5.7 Relationships among collections, documents, schemas, and paths in MongoDB and
Mongoose, using a business card metaphor

Example MongoDB
document
Licensed to Mark Watson <nordickan@gmail.com>

133Why model the data?
{
 firstname : String,
 surname : String
}

As you can see, the schema bears a very strong resemblance to the data itself. The
schema defines the name for each data path, and the data type it will contain. In this
example we’ve simply declared the paths firstname and surname as strings.

BREAKING DOWN A SCHEMA PATH

The basic construct for an individual path definition is the path name followed by a
properties object. What we’ve just looked at is actually shorthand for when you just
want to define the data type for that particular path. So a schema path is constructed
of two parts, the path name and the properties object, like this:

About the _id path
You may have noticed that we haven’t declared the id path in the schema. id is the
unique identifier—the primary key if you like—for each document. MongoDB automat-
ically creates this path when each document is created and assigns it a unique
ObjectId value. The value is designed to always be unique by combining the time
since the Unix epoch with machine and process identifiers and a counter.

It’s possible to use your own unique key system if you prefer, if you have a preexisting
database, for example. In this book and the Loc8r application we’re going to stick
with the default ObjectId.

Allowed schema types
The schema type is the property that defines the data type for a given path. It’s
required for all paths. If the only property of a path is the type, then the shorthand
definition can be used. There are eight schema types that you can use:

■ StringAny string, UTF-8 encoded
■ NumberMongoose doesn’t support long or double numbers, but it can be

extended to do so using Mongoose plugins; the default support is enough for
most cases

■ DateTypically returned from MongoDB as an ISODate object
■ BooleanTrue or false
■ BufferFor binary information such as images

Corresponding
Mongoose schema

firstname: {type:String}

Path name Properties object
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 5 Building a data model with MongoDB and Mongoose
The path name follows JavaScript object definition conventions and requirements.
So there are no spaces or special characters and you should try to avoid reserved
words. My convention is to use camelCase for path names. If you’re using an exist-
ing database use the names of the paths already in the documents. If you’re creating
a new database, the path names in the schema will be used in the documents, so
think carefully.

 The properties object is essentially another JavaScript object. This one defines the
characteristics of the data held in the path. At a minimum this contains the data type,
but it can include validation characteristics, boundaries, default values, and more.
We’ll explore and use some of these options over the next few chapters as we turn
Loc8r into a data-driven application.

 But let’s get moving and start defining the schemas we want in the application.

5.3 Defining simple Mongoose schemas
We’ve just discussed that a Mongoose schema is essentially a JavaScript object, which
we define from within the application. Let’s start by setting up and including the file
so that it’s done and out of the way, leaving us to concentrate on the schema.

 As you’d expect we’re going to define the schema in the model folder alongside
db.js. In fact, we’re going to require it into db.js to expose it to the application. So
inside the models folder in app_server create a new empty file called locations.js. You
need Mongoose to define a Mongoose schema, naturally, so enter the following line
into locations.js:

var mongoose = require('mongoose');

We’re going to bring this file into the application by requiring it in db.js, so at the very
end of db.js add the following line:

require('./locations');

And with that, we’re set up and ready to go.

(continued)
■ MixedAny data type
■ ArrayCan either be an array of the same data type, or an array of nested sub-

documents
■ ObjectIdFor a unique ID in a path other than _id; typically used to reference

_id paths in other documents

If you do need to use a different schema type it’s possible to write your own custom
schema types or to use an existing Mongoose plugin from http://plugins.mongoosejs
.com.
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.mongoosejs.com
http://plugins.mongoosejs.com

135Defining simple Mongoose schemas
5.3.1 The basics of setting up a schema

Mongoose gives you a constructor function for defining new schemas, which you typi-
cally assign to a variable so that you can access it later. It looks like the following line:

var locationSchema = new mongoose.Schema({ });

In fact, that’s exactly the construct we’re going to use, so go ahead and add that to the
locations.js model, below the line requiring Mongoose, of course. The empty object
inside the mongooseSchema({ }) brackets is where we’ll define the schema.

DEFINING A SCHEMA FROM CONTROLLER DATA

One of the outcomes in moving the data back from the view to the controller is that
the controller ends up giving us a good idea of the data structure we need. Let’s start
simple and take a look at the homelist controller in app_server/controllers/loca-
tions.js. The homelist controller passes the data to be shown on the homepage into
the view. Figure 5.8 shows how one of the locations looks on the homepage.

The following code snippet shows the data for this location, as found in the controller:

locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}]

We’ll come back to the distance a bit later, as that will need to be calculated. The
other four data items are fairly straightforward: two strings, one number, and one
array of strings. Taking what you know so far you can use this information to define a
basic schema, like in the following:

var locationSchema = new mongoose.Schema({
 name: String,
 address: String,
 rating: Number,
 facilities: [String]
});

Figure 5.8 A single location as displayed on the homepage list

name is a string address is
another string

rating is a number

facilities is an
array of strings

Declare an array of same
schema type by declaring that
type inside square brackets

 b
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 5 Building a data model with MongoDB and Mongoose
Note the simple approach to declaring facilities as an array B. If your array will only
contain one schema type, such as String, then you can simply define it by wrapping
the schema type in square brackets.

ASSIGNING DEFAULT VALUES

In some cases it’s useful to set a default value when a new MongoDB document is cre-
ated based on your schema. In the locationSchema the rating path is a good candi-
date for this. When a new location is added to the database, it won’t have had any
reviews, so it won’t have a rating. But our view expects a rating between zero and five
stars, which is what the controller will need to pass through.

 So what we’d like to do is set a default value of 0 for the rating on each new docu-
ment. Mongoose lets you do this from within the schema. Remember how rating:
Number is shorthand for rating: {type: Number}? Well you can add other options to
the definition object, including a default value. This means that you can update the
rating path in the schema as follows:

rating: {type: Number, "default": 0}

The word default doesn’t have to be in quotes, but it’s a reserved word in JavaScript
so it’s a good idea to do so.

ADDING SOME BASIC VALIDATION: REQUIRED FIELDS

Through Mongoose you can quickly add some basic validation at the schema level.
This helps toward maintaining data integrity and can protect your database from
problems of missing or malformed data. Mongoose’s helpers make it really easy to add
some of the most common validation tasks, meaning that you don’t have to write or
import the code each time.

 The first example of this type of validation ensures that required fields aren’t
empty before saving the document to the database. Rather than writing the checks for
each required field in code, you can simply add a required: true flag to the defini-
tion objects of each path that you decide should be mandatory. In the location-
Schema, we certainly want to ensure that each location has a name, so we can update
the name path like this:

name: {type: String, required: true}

If you try to save a location without a name, Mongoose will return a validation error
that you can capture immediately in your code, without needing a roundtrip to the
database.

ADDING SOME BASIC VALIDATION: NUMBER BOUNDARIES

You can also use a similar technique to define the maximum and minimum values you
want for a number path. These validators are called max and min. Each location we have
has a rating assigned to it, which we have just given a default value of 0. The value should
never be less than 0 or greater than 5, so you can update the rating path as follows:

rating: {type: Number, "default": 0, min: 0, max: 5}
Licensed to Mark Watson <nordickan@gmail.com>

137Defining simple Mongoose schemas
With this update Mongoose will not let you save a rating value of less than 0 or greater
than 5. It will return a validation error that you can handle in your code. One great
thing about this approach is that the application doesn’t have to make a roundtrip to
the database to check the boundaries. Another bonus is that you don’t have to write
validation code into every place in the application where you might add, update, or
calculate a rating value.

5.3.2 Using geographic data in MongoDB and Mongoose

When we first started to map our application’s data from the controller into a Mon-
goose schema we left the question of distance until later. Now it’s time to discuss how
we’re going to handle geographic information.

 MongoDB can store geographic data as longitude and latitude coordinates, and
can even create and manage an index based on this. This ability, in turn, enables users
to do fast searches of places that are near to each other, or near a specific longitude
and latitude. This is very helpful indeed for building a location-based application!

The data for a single geographical location is stored according to the GeoJSON format
specification, which we’ll see in action shortly. Mongoose supports this data type allow-
ing you to define a geospatial path inside a schema. As Mongoose is an abstraction
layer on top of MongoDB it strives to make things easier for you. All you have to do to
add a GeoJSON path in your schema is

1 Define the path as an array of the Number type.
2 Define the path as having a 2dsphere index.

About MongoDB indexes
Indexes in any database system enable faster and more efficient queries, and Mon-
goDB is no different. When a path is indexed, MongoDB can use this index to quickly
grab subsets of data without having to scan through all documents in a collection.

Think of a filing system you might have at home, and imagine you need to find a par-
ticular credit card statement. You might keep all of your paperwork in one drawer or
cabinet. If it’s all just thrown in there randomly you’ll have to sort through all types of
irrelevant documents until you find what you’re looking for. If you’ve “indexed” your
paperwork into folders, you can quickly find your “credit card” folder. Once you’ve
picked this out you just look through this one set of documents, making your search
much more efficient.

This is akin to how indexing works in a database. In a database, though, you can have
more than one index for each document, enabling you to search efficiently on differ-
ent queries.

Indexes do take maintenance and database resources, though, just as it takes time
to correctly file your paperwork. So for best overall performance, try to limit your data-
base indexes to the paths that really need indexing and are used for most queries.
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 5 Building a data model with MongoDB and Mongoose
To put this into action you can add a coords path to your location schema. If you
follow the two preceding steps, your schema should be looking like the following
code snippet:

var locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: [Number], index: '2dsphere'}
});

The 2dsphere here is the critical part, as that’s what enables MongoDB to do the cor-
rect calculations when running queries and returning results. It allows MongoDB to
calculate geometries based on a spherical object. We’ll work more with this in chap-
ter 6 when we build our API and start to interact with the data.

TIP To meet the GeoJSON specification, a coordinate pair must be entered
into the array in the correct order: longitude then latitude.

We’ve now got the basics covered and our schema for Loc8r currently holds every-
thing needed to satisfy the homepage requirements. Next it’s time to take a look at
the Details page. This page has more complex data requirements, and we’ll see how to
handle them with Mongoose schemas.

5.3.3 Creating more complex schemas with subdocuments

The data we’ve used so far has been pretty simple, and can be held in a fairly flat
schema. We’ve used a couple of arrays for the facilities and location coordinates, but
again those arrays are simple, containing just a single data type each. Now we’re
going to look at what happens when we have a slightly more complicated data set to
work with.

 Let’s start by reacquainting ourselves with the Details page, and the data that it
shows. Figure 5.9 shows a screenshot of the page and shows all the different areas of
information.

 The name, rating, and address are right at the top, and a little further down are
the facilities. On the right side there’s a map, based on the geographic coordinates.
All of this we’ve covered already with the basic schema. The two areas that we don’t
have anything for are opening hours and customer reviews.

 The data powering this view is currently held in the locationInfo controller in
app_server/controllers/locations.js. The following listing shows the relevant portion
of the data in this controller.

Licensed to Mark Watson <nordickan@gmail.com>

139Defining simple Mongoose schemas

location: {
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: {lat: 51.455041, lng: -0.9690884},
 openingTimes: [{
 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 },{
 days: 'Saturday',
 opening: '8:00am',

Listing 5.2 Data in the controller powering the Details page

Figure 5.9 The information displayed for a single location on the Details page

Already covered
with existing
schema

Data for opening
hours is held as
an array of
objects
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 5 Building a data model with MongoDB and Mongoose

Revi
also
to t
as a
 closing: '5:00pm',
 closed: false
 },{
 days: 'Sunday',
 closed: true
 }],
 reviews: [{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place. I can\'t say enough good things about it.'
 },{
 author: 'Charlie Chaplin',
 rating: 3,
 timestamp: '16 June 2013',
 reviewText: 'It was okay. Coffee wasn\'t great, but the wifi was fast.'
 }]
}

So here we have arrays of objects for the opening hours and for the reviews. In a rela-
tional database you’d create these as separate tables, and join them together in a
query when you need the information. But that’s not how document databases work,
including MongoDB. In a document database anything that belongs specifically to a
parent document should be contained within that document. Figure 5.10 illustrates
the conceptual difference between the two approaches.

Data for opening
hours is held as
an array of
objects

ews are
 passed
he view
rray of
objects

Relational database

Each location document contains

the reviews and open times

in subdocuments.

Each location document record

links out to separate tables for

reviews and open times.

Document database

Reviews

Open

times

Location

Reviews

Open times

Location

Figure 5.10 Differences between how a relational database and document database
store repeating information relating to a parent element
Licensed to Mark Watson <nordickan@gmail.com>

141Defining simple Mongoose schemas
MongoDB offers the concept of subdocuments to store this repeating, nested data. Sub-
documents are very much like documents in that they have their own schema and
each is given a unique _id by MongoDB when created. But subdocuments are nested
inside a document and they can only be accessed as a path of that parent document.

USING NESTED SCHEMAS IN MONGOOSE TO DEFINE SUBDOCUMENTS

Subdocuments are defined in Mongoose by using nested schemas. So that’s one schema
nested inside another. Let’s create one to see how that works in code. The first step is to
define a new schema for a subdocument. We’ll start with the opening times and create
the following schema. Note that this needs to be in the same file as the locationSchema
definition, and, importantly, must be before the locationSchema definition.

var openingTimeSchema = new mongoose.Schema({
 days: {type: String, required: true},
 opening: String,
 closing: String,
 closed: {type: Boolean, required: true}
});

Options for storing time information
In the opening time schema we have an interesting situation where we want to save
time information, such as 7:30 a.m., but without a date associated with it.

Here we’re using a String method, as it doesn’t require any processing before being
put into the database or after being retrieved. It also makes each record easy to
understand. The downside is that it would make it harder to do any computational
processing with it.

One option is to create a date object with an arbitrary data value assigned to it, and
manually set the hours and minutes, such as

var d = new Date();
d.setHours(15);
d.setMinutes(30);

Using this method we could easily extract the time from the data. The downside is
storing unnecessary data, and it’s technically incorrect.

A second option is to store the number of minutes since midnight. So 7:30 a.m.
is (7 × 60) + 30 = 450. This is a fairly simple computation to make when putting
data into the database and pulling it back out again. But the data at a glance is
meaningless.

But this second option would be my preference for making the dates smarter and
could be a good extension if you want to try out something new. For the sake of
readability and avoiding distractions we’ll keep using the String method through
the book.

d is now Wed Apr 09 2014
15:30:40 GMT+0100 (BST)
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 5 Building a data model with MongoDB and Mongoose
This schema definition is again pretty simple, and maps over from the data in the con-
troller. We have two required fields, the closed Boolean flag and the days each sub-
document is referring to.

 Nesting this schema inside the location schema is another straightforward task. We
need to add a new path to the parent schema, and define it as an array of our subdoc-
ument schema. The following code snippet shows how to nest the openingTimeSchema
inside the locationSchema:

var locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: [Number], index: '2dsphere'},
 openingTimes: [openingTimeSchema]
});

With this in place we could now add multiple opening time subdocuments to a given
location, and they would be stored within that location document. An example docu-
ment from MongoDB based on this schema is shown in the following code snippet,
with the subdocuments for the opening times in bold:

{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f5"),
 "name": "Starcups",
 "address": "125 High Street, Reading, RG6 1PS",
 "rating": 3,
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "coords": [-0.9690884, 51.455041],
 "openingTimes": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f6"),
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f7"),
 "days": "Saturday",
 "opening": "8:00am",
 "closing": "5:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f8"),
 "days": "Sunday",
 "closed": true
 }]
}

With the schema for the opening times taken care of, we’ll move on and look at add-
ing a schema for the review subdocuments.

Add nested schema
by referencing
another schema
object as an array

In a MongoDB
document nested
opening times
subdocuments live
inside location
document
Licensed to Mark Watson <nordickan@gmail.com>

143Defining simple Mongoose schemas

Re
Mon
so th
can u

me
ADDING A SECOND SET OF SUBDOCUMENTS

Neither MongoDB nor Mongoose limit the number of subdocument paths in a docu-
ment. This means we’re free to take what we’ve done for the opening times and repli-
cate the process for the reviews.

 Step one: take a look at the data used in a review, shown in the following code
snippet:

{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place. I can\'t say enough good things about it.'
}

Step two: map this into a new reviewSchema in app_server/models/location.js:

var reviewSchema = new mongoose.Schema({
 author: String,
 rating: {type: Number, required: true, min: 0, max: 5},
 reviewText: String,
 createdOn: {type: Date, "default": Date.now}
});

Step three: add this reviewSchema as a new path to locationSchema:

var locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: [Number], index: '2dsphere'},
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});

Once we’ve defined the schema for reviews and added it to our main location schema
we have everything we need to hold the data for all locations in a structured way.

5.3.4 Final schema

Throughout this section we’ve done quite a bit in the file, so let’s take a look at it all
together and see what’s what. The following listing shows the contents of the loca-
tions.js file in app_server/models, defining the schema for the location data.

var mongoose = require('mongoose');

var reviewSchema = new mongoose.Schema({
 author: String
 rating: {type: Number, required: true, min: 0, max: 5},
 reviewText: String,
 createdOn: {type: Date, default: Date.now}
});

Listing 5.3 Final location schema definition, including nested schemas

quire
goose
at we
se its
thods

Define a
schema for
reviews
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 5 Building a data model with MongoDB and Mongoose
var openingTimeSchema = new mongoose.Schema({
 days: {type: String, required: true},
 opening: String,
 closing: String,
 closed: {type: Boolean, required: true}
});

var locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: [Number], index: '2dsphere'},
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});

Documents and subdocuments all have a schema defining their structure, and we’ve
also added in some default values and basic validation. To make this a bit more real,
the following listing shows an example MongoDB document based on this schema.

{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f5"),
 "name": "Starcups",
 "address": "125 High Street, Reading, RG6 1PS",
 "rating": 3,
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "coords": [-0.9690884, 51.455041],
 "openingTimes": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f6"),
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f7"),
 "days": "Saturday",
 "opening": "8:00am",
 "closing": "5:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f8"),
 "days": "Sunday",
 "closed": true
 }],

Listing 5.4 Example MongoDB document based on the location schema

Define a
schema for
opening times

Start main location
schema definition

Use 2dsphere to add
support for GeoJSON
longitude and latitude
coordinate pairs

Reference opening times
and reviews schemas to add
nested subdocuments

Coordinates are
stored as a GeoJSON
pair [longitude,
latitude]

Opening times are
stored as nested
array of objects—
these are
subdocuments
Licensed to Mark Watson <nordickan@gmail.com>

145Defining simple Mongoose schemas

Re
also

subdo
 "reviews": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f9"),
 "author": "Simon Holmes",
 "rating": 5,
 "createdOn": ISODate("2013-07-15T23:00:00Z"),
 "reviewText": "What a great place. I can't say enough good

things about it."
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7fa"),
 "author": "Charlie Chaplin",
 "rating": 3,
 "createdOn": ISODate("2013-06-15T23:00:00Z"),
 "reviewText": "It was okay. Coffee wasn't great, but the wifi was fast."
 }]
}

That should give you an idea of what a MongoDB document looks like, including sub-
documents, when based on a known schema. In a readable form like this it’s a JSON
object, although technically MongoDB stores it as BSON, which is Binary JSON.

5.3.5 Compiling Mongoose schemas into models

An application doesn’t interact with the schema directly when working with data; data
interaction is done through models.

 In Mongoose, a model is a compiled version of the schema. Once compiled, a sin-
gle instance of the model maps directly to a single document in your database. It’s
through this direct one-to-one relationship that the model can create, read, save, and
delete data. Figure 5.11 illustrates this arrangement.

 This approach makes Mongoose a breeze to work with and we’ll really get our
teeth into it in chapter 6 when we build the internal API for the application.

COMPILING A MODEL FROM A SCHEMA

Anything with the word “compiling” in it tends to sound a bit complicated. In reality,
compiling a Mongoose model from a schema is a really simple one-line task. You just
need to ensure that the schema is complete before you invoke the model command.
The model command follows this construct:

views are
 array of
cuments

mongoose.model('Location', locationSchema, 'Locations');

Connection

name

The schema

to use

The name of

the model

MongoDB collection

name (optional)
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 5 Building a data model with MongoDB and Mongoose
TIP The MongoDB collection name is optional. If you exclude it Mongoose
will use a lowercase pluralized version of the model name. For example, a
model name of Location would look for a collection name of locations
unless you specify something different.

As we’re creating a database and not hooking into an existing data source we can use
a default collection name, so we don’t need to include that parameter into the model
command. So to build a model of our location schema we can add the following line
to the code, just below the locationSchema definition:

mongoose.model('Location', locationSchema);

That’s all there is to it. We’ve defined a data schema for the locations, and complied
the schema into a model that we can use in the application. What we need now is
some data.

Array of

instances

Single

instance

Schema

Application

Model
Subset of

documents

[1:1]

1:1

Single

document

A single instance

of the model maps

directly to a single

document.Schema

compiles into

a model.

An array of instances

maps to a subset of documents.

Each instance in the array has a 1:1

relationship with a specific single

document in the subset.

Collection

Database

Figure 5.11 The application and database talk to each other through models. A single instance of a model has a
one-to-one relationship with a single document in the database. It’s through this relationship that the creating,
reading, updating, and deleting of data is managed.
Licensed to Mark Watson <nordickan@gmail.com>

147Using the MongoDB shell to create a MongoDB database and add data
5.4 Using the MongoDB shell to create a MongoDB
database and add data
For building the Loc8r app we’re going to create a new database and manually add
some test data. This means that you get to create your own personal version of Loc8r
for testing, and at the same time get to play directly with MongoDB.

5.4.1 MongoDB shell basics

The MongoDB shell is a command-line utility that gets installed with MongoDB, and
allows you to interact with any MongoDB databases on your system. It’s quite power-
ful and can do a lot—we’re just going to dip our toes in with the basics to get up
and running.

STARTING THE MONGODB SHELL

Drop into the shell by running the following line in terminal:

$ mongo

This should respond in terminal with a couple of lines like these next two, confirming
the shell version and that it’s connecting to a test database:

MongoDB shell version: 2.4.6
connecting to: test

TIP When you’re in the shell new lines start with a > to differentiate from the
standard command-line entry point. The shell commands printed in this sec-
tion will start with > instead of $ to make it clear that we’re using the shell, but
like the $ you don’t need to type it in.

LISTING ALL LOCAL DATABASES

Next is a simple command that will show you a list of all of the local MongoDB data-
bases. Enter the following line into the shell:

> show dbs

This will return a list of the local MongoDB database names and their sizes. If you
haven’t created any databases at this point you’ll still see the two default ones, some-
thing like this:

local 0.078125GB
test (empty)

USING A SPECIFIC DATABASE

When starting the MongoDB shell it automatically connects to the empty test data-
base. If you want to switch to a different database, such as the default one called local,
you can use the use command, like this:

> use local
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 5 Building a data model with MongoDB and Mongoose
The shell will respond with a message, along these lines:

switched to db local

This message confirms the name of the database the shell has connected to.

LISTING THE COLLECTIONS IN A DATABASE

Once you’re using a particular database, it’s really easy to output a list of the collec-
tions using the following command:

> show collections

If you’re using the local database you’ll probably see a single collection name output
to terminal: startup_log.

SEEING THE CONTENTS OF A COLLECTION

The MongoDB shell also lets you query the collections in a database. The construct for
a query or find operation is as follows:

The query object is used to specify what you’re trying to find in the collection, and
we’ll look at examples of this query object later in chapter 6 (Mongoose also uses the
query object). The simplest query is an empty query, which will return all of the docu-
ments in a collection. Don’t worry if your collection is large, as MongoDB will return a
subset of documents that you can page through. Using the startup_log collection as
an example, you can run the following command:

> db.startup_log.find()

This will return a number of documents from the MongoDB startup log, the content
of which isn’t interesting enough to show here. This command is useful for when
you’re getting your database up and running, and making sure that things are being
saved as you expect.

5.4.2 Creating a MongoDB database

You don’t actually have to create a MongoDB database; you just start to use it. For the
Loc8r application it makes sense to have a database called Loc8r. So in the shell, you
use it with the following command:

> use Loc8r

db.collectionName.find(queryObject)

Specify the name

of the collection

to query.

An optional object

providing query

parameters.
Licensed to Mark Watson <nordickan@gmail.com>

149Using the MongoDB shell to create a MongoDB database and add data
If you run the show collections command it won’t return anything yet, but if you
run show dbs you should see that it has been added to the list of databases, and is
currently empty:

Loc8r (empty)
local 0.078125GB
test (empty)

This message shows it has been added to the list of databases.

CREATING A COLLECTION AND DOCUMENTS

Similarly, you don’t have to explicitly create a collection as MongoDB will create it for
you when you first save data into it.

To match the Location model you’ll want a locations collection; remember that the
default collection name is a lowercase pluralized version of the model name. You can
create and save a new document by passing a data object into the save command of a
collection, like in the following code snippet:

> db.locations.save({
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: [-0.9690884, 51.455041],
 openingTimes: [{
 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 }, {
 days: 'Saturday',
 opening: '8:00am',

Location data more personal to you
Loc8r is all about location-based data, and the examples are all fictitious places, geo-
graphically close to where I live in the United Kingdom. You can make your version
more personal to you by changing the names, addresses, and coordinates.

To get your current coordinates you can visit http://whatsmylatlng.com. There’s a but-
ton on the page to find your location using JavaScript, which will give you a much more
accurate location than the first attempt. Note that the coordinates are shown to you
in latitude–longitude order, and you need to flip them round for the database, so that
longitude is first.

To get the coordinates of any address you can use http://mygeoposition.com. This
will let you enter an address or drag and drop a pointer to give you the geographic
coordinates. Again, remember that the pairs in MongoDB must be longitude then
latitude.

Note collection name
specified as part of
save command
Licensed to Mark Watson <nordickan@gmail.com>

http://whatsmylatlng.com
http://mygeoposition.com

150 CHAPTER 5 Building a data model with MongoDB and Mongoose
 closing: '5:00pm',
 closed: false
 }, {
 days: 'Sunday',
 closed: true
 }]
})

In one step this will have created a new locations collection, and also the first docu-
ment within the collection. If you run show collections in the MongoDB shell now
you should see the new locations collection being returned, alongside an automati-
cally generated system.indexes collection. For example

> show collections
locations
system.indexes

You can now query the collection to find all of the documents—there’s only one in
there right now, so the returned information will be quite small. You can use the find
command on the collection as well:

> db.locations.find()
{
 "_id": ObjectId("530efe98d382e7fa4345f173"),
 "address": "125 High Street, Reading, RG6 1PS",
 "coords": [-0.9690884, 51.455041],
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "name": "Starcups",
 "openingTimes": [{
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "days": "Saturday",
 "opening": "8:00am",
 "closing": "5:00pm",
 "closed": false
 }, {
 "days": "Sunday",
 "closed": true
 }],
 "rating": 3,
}

This code snippet has been formatted for readability; the document that MongoDB
returns to the shell won’t have the line breaks and indentation. But the MongoDB shell
can prettify it for you if you add .pretty() to the end of the command like this:

> db.locations.find().pretty()

Notice that the order of the data in the returned document doesn’t match the order
of the data in the object you supplied. As the data structure isn’t column-based it

Remember to run the find
operation on collection itself

MongoDB has
automatically added
a unique identifier
for this document
Licensed to Mark Watson <nordickan@gmail.com>

151Using the MongoDB shell to create a MongoDB database and add data
doesn’t matter how MongoDB stores the individual paths within a document. The data
is always still there in the correct paths, and data held inside arrays always maintains
the same order.

ADDING SUBDOCUMENTS

You’ve probably noticed that our first document doesn’t have the full data set—there
are no review subdocuments. You can actually add these to the initial save command
like we’ve done with the opening times, or you can update an existing document and
push them in.

 MongoDB has an update command that accepts two arguments, the first being a
query so that it knows which document to update, and the second contains the
instructions on what to do when it has found the document. At this point we can do a
really simple query and look for the location by name (Starcups), as we know that
there aren’t any duplicates. For the instruction object we can use a $push command to
add a new object to the reviews path; it doesn’t matter if the reviews path doesn’t exist
yet, MongoDB will add it as part of the push operation.

 Putting it all together shows something like the following code snippet:

> db.locations.update({
 name: 'Starcups'
}, {
 $push: {
 reviews: {
 author: 'Simon Holmes',
 id: ObjectId(),
 rating: 5,
 timestamp: new Date("Jul 16, 2013"),
 reviewText: "What a great place. I can't say enough good

things about it."
 }
 }
})

If you run that command in the MongoDB shell while using the Loc8r database, it will
add a review to the document. You can repeat it as often as you like, changing the data
to add multiple reviews.

 Note the new Date command for setting the timestamp of the review. Using this
ensures that MongoDB stores the date as an ISO date object, not a string—this is what
our schema expects and allows greater manipulation of dates data.

REPEAT THE PROCESS

These few commands have given us one location to test the application with, but ideally
we need a couple more. So go ahead and add some more locations to your database.

 When you’re done with that and your data is set, you’re just about at the point
where you can start using it from the application—in this case we’ll be building an
API. But before we jump into that in chapter 6, there’s just one more piece of house-
keeping. We want to keep pushing regular updates into Heroku, and now that we’ve

Start with query object to
find correct document

When document is found, push a
subdocument into the reviews path

Subdocument
contains this
data
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 5 Building a data model with MongoDB and Mongoose
added a database connection and data models to our application we need to make sure
that these are supported in Heroku.

5.5 Getting our database live
If you’ve got your application out in the wild it’s no good having your database on your
local host. Your database also needs to be externally accessible. In this section we’re
going to push our database into a live environment, and update our Loc8r application
so that it uses the published database from the published site, and the local host data-
base from the development site. We’ll start by using the free tier of a service called Mon-
goLab, which can be used as an add-on to Heroku. If you have a different preferred
provider or your own database server, that’s no problem. The first part of this section
runs through setting up on MongoLab, but the following parts—migrating the data and
setting the connection strings in the Node application—aren’t platform-specific.

5.5.1 Setting up MongoLab and getting the database URI

The first goal is to get an externally accessible database URI so that we can push data
to it and add it to the application. We’re going to use MongoLab here as it has a good
free tier, excellent online documentation, and a very responsive support team.

 There are a couple of ways to set up a database on MongoLab. The quickest and eas-
iest way is to use an add-on via Heroku. This is what we’ll run through here, but this does
require you to register a valid credit card with Heroku. Heroku makes you do this when
using add-ons through their ecosystem to protect themselves from abusive behavior.
Using the free sandbox tier of MongoLab will not incur any charges. If you’re not com-
fortable doing this, check out the following sidebar for setting up MongoLab manually.

Setting up MongoLab manually
You don’t have to use the Heroku add-on system if you don’t want to. What you really
want to do is to set up a MongoDB database in the cloud and get a connection string
for it.

You can follow through the MongoLab documentation to guide you through this:
http://docs.mongolab.com/.

In short, the steps are

1 Sign up for a free account.
2 Create a new database (select Single Node, Sandbox for the free tier).
3 Add a user.
4 Get the database URI (connection string).

The connection string will look something like this:

mongodb://dbuser:dbpassword@ds059957.mongolab.com:59957/loc8r-dev

All of the parts will be different for you, of course, and you’ll have to swap out the
username and password with what you specified in step 3.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.mongolab.com/

153Getting our database live
ADDING MONGOLAB TO THE HEROKU APPLICATION

The quickest way to add MongoLab as a Heroku add-on is through terminal. Make
sure you’re in the root folder of your application and run the following command:

$ heroku addons:add mongolab

Unbelievably, that’s it! You now have a MongoDB database ready and waiting for you
out in the cloud. You can prove this to yourself and open up a web interface to this
new database using the following command:

$ heroku addons:open mongolab

To use the database, you’ll need to know its URI.

GETTING THE DATABASE URI
You can get the full database URI also using the command line. This will give you the
full connection string that you can use in the application, and also show you the vari-
ous components that you’ll need to push data up to the database.

 The command to get the database URI is

$ heroku config:get MONGOLAB_URI

This will output the full connection string, which looks something like this:

mongodb://heroku_app20110907:4rqhlidfdqq6vgdi06c15jrlpf@ds033669
.mongolab.com:33669/heroku_app20110907

Keep your version handy, as you’ll use it in the application soon. First we need to
break it down into the components.

BREAKING DOWN THE URI INTO ITS COMPONENTS

This looks like quite a random mess of characters, but we can break it down to make
sense of it. From section 5.2.2 we know that this is how a database URI is constructed:

Once you have your full connection string you should save it as part of your Heroku
configuration. With a terminal prompt in the root folder of your application you can do
this with the following command:

$ heroku config:set MONGOLAB_URI=your_db_uri

Replace your_db_uri with your full connection string, including the mongodb:// pro-
tocol. The quick and easy way automatically creates the MONGOLAB_URI setting in
your Heroku configuration. These manual steps bring you to the same point as the
quick way, and you can now jump back to the main text.

MongoDB

protocol

Server

address

Login credentials

for the database

Port Database

name

mongodb://username:password@localhost:27027/database
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 5 Building a data model with MongoDB and Mongoose
So taking the URI that MongoLab has given you, you can break it down into some-
thing like the following:

■ Username: heroku_app20110907
■ Password: 4rqhlidfdqq6vgdi06c15jrlpf
■ Server address: ds033669.mongolab.com
■ Port: 33669
■ Database name: heroku_app20110907

These are from the example URI, so yours will be different, of course, but make a note
of them and they’ll be useful.

5.5.2 Pushing up the data

Now that you have an externally accessible database set up, and know all of the details
for connecting to it, you can push up data to it. The steps to do this are as follows:

1 Create a temporary directory to hold the data dump.
2 Dump the data from your development Loc8r database.
3 Restore the data to your live database.
4 Test the live database.

All of these steps can be achieved quickly through terminal, so that’s what we’ll do. It
saves jumping around between environments.

CREATING A TEMPORARY FOLDER

A really simple first step, which you can do in your operating system interface if you
prefer, is to create a temporary folder into which you can dump your data. The follow-
ing command does it on Mac or Linux:

$ mkdir -p ~/tmp/mongodump

Now you have a place for the data dump.

DUMPING THE DATA FROM THE DEVELOPMENT DATABASE

Dumping the data sounds like you’re deleting everything from your local develop-
ment version, but this isn’t the case. The process is more of an export than a trashing.

 The command used is mongodump, which accepts the following three parameters:

■ -hThe host server (and port)
■ -dThe database name
■ -oThe output destination folder

Putting it all together, and using the default MongoDB port of 27017, you should end
up with a command like the following:

$ mongodump -h localhost:27017 -d Loc8r -o ~/tmp/mongodump

Run that and you have a temporary dump of the data.
Licensed to Mark Watson <nordickan@gmail.com>

155Getting our database live
RESTORING THE DATA TO YOUR LIVE DATABASE

The process of pushing up the data to your live database is similar, this time using the
mongorestore command. This command expects the following parameters:

■ -hLive host and port
■ -dLive database name
■ -uUsername for the live database
■ -pPassword for the live database
■ Path to the dump directory and database name (this comes at the end of the

command and doesn’t have a corresponding flag like the other parameters)

Putting all of this together, using the information you have about the database URI,
you should have a command like the following:

$ mongorestore -h ds033669.mongolab.com:33669 -d heroku_app20110907 -u
heroku_app20110907 -p 4rqhlidfdqq6vgdi06c15jrlpf ~/tmp/mongodump/Loc8r

Yours will look a bit different, of course, because you’ll have a different host, live data-
base name, username, and password. When you run your mongorestore command it
will push up the data from the data dump into your live database.

TESTING THE LIVE DATABASE

The MongoDB shell isn’t restricted to only accessing databases on your local machine.
You can also use the shell to connect to external databases, if you have the right cre-
dentials, of course.

 To connect the MongoDB shell to an external database you use the same mongo
command, but add information about the database you want to connect to. You need
to include the hostname, port, and database names, and you can supply a username
and password if required. This is put together in the following construct:

$ mongo hostname:port/database_name -u username -p password

For example, using the setup we’ve been looking at in this section would give you
this command:

$ mongo ds033669.mongolab.com:33669/heroku_app20110907 -u heroku_app20110907
-p 4rqhlidfdqq6vgdi06c15jrlpf

This will connect you to the database through the MongoDB shell. When the connec-
tion is established you can use the commands you’ve already been using to interrogate
it, such as

> show collections
> db.locations.find()

Now you’ve got two databases and two connection strings; it’s important to use the
right one at the right time.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 5 Building a data model with MongoDB and Mongoose
5.5.3 Making the application use the right database

So you have your original development database on your local machine plus your new
live database up on MongoLab (or elsewhere). We want to keep using the develop-
ment database while we’re developing our application, and we want the live version of
our application to use the live database. Yet they both use the same source code. Fig-
ure 5.12 shows the issue.

 So we have one set of source code running in two environments, each of which
should use a different database. The way to handle this is through using a Node envi-
ronment variable, NODE_ENV.

THE NODE_ENV ENVIRONMENT VARIABLE

Environment variables affect the way the core process runs, and the one we’re going
to look at and use here is NODE_ENV. The application already uses NODE_ENV; you just
don’t see it exposed anywhere. By default, Heroku should set NODE_ENV to production
so that the application will run in production mode on their server.

You can read NODE_ENV from anywhere in the application by using the following
statement:

process.env.NODE_ENV

Ensuring Heroku is using production mode
In certain instances, depending on how the application was set up, the Heroku appli-
cation might not be running in production mode. You can ensure that the Heroku envi-
ronment variable is set correctly with the following terminal command:

$ heroku config:set NODE_ENV=production

Source code

Live

database

Development

databaseLocal host

Heroku

Figure 5.12 The source code
runs in two locations, each of
which needs to connect to a
different database.
Licensed to Mark Watson <nordickan@gmail.com>

157Getting our database live
Unless specified in your environment this will come back as undefined. You can spec-
ify different environment variables when starting the Node application by prepending
the assignment to the launch command. For example

$ NODE_ENV=production nodemon

This command will start up the application in production mode, and the value of
process.env.NODE_ENV will be set to production.

TIP Don’t set NODE_ENV from inside the application, only read it.

SETTING THE DATABASE URI BASED ON THE ENVIRONMENT

The database connection for our application is held in the db.js file in app_server/models.
The connection portion of this file currently looks like the following code snippet:

var dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI);

Changing the value of dbURI based on the current environment is as simple as using
an if statement to check NODE_ENV. The next code snippet shows how you can do this
to pass in your live MongoDB connection. Remember to use your own MongoDB con-
nection string rather than the one in this example.

var dbURI = 'mongodb://localhost/Loc8r';
if (process.env.NODE_ENV === 'production') {
 dbURI = 'mongodb://

heroku_app20110907:4rqhlidfdqq6vgdi06c15jrlpf@ds033669.mongolab.com:3366
9/heroku_app20110907';

}
mongoose.connect(dbURI);

If the source code is going to be in a public repository then you probably don’t want
to be giving everybody the login credentials to your database. A way around this is to
use an environment variable. With MongoLab on Heroku you automatically have
one set up—it’s how we originally got access to the connection string (if you set your
MongoLab account up manually, this is the Heroku configuration variable that you
set). If you’re using a different provider that hasn’t added anything to the Heroku
configuration, you can add in your URI with the heroku config:set command that we
used to ensure Heroku is running in production mode.

 The following code snippet shows how you can use the connection string set in the
environment variables:

var dbURI = 'mongodb://localhost/Loc8r';
if (process.env.NODE_ENV === 'production') {
 dbURI = process.env.MONGOLAB_URI;
}
mongoose.connect(dbURI);

This now means that you can share your code, but only you retain access to your data-
base credentials.
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 5 Building a data model with MongoDB and Mongoose
TESTING BEFORE LAUNCHING

You can test this update to the code locally before pushing the code to Heroku by set-
ting the environment variable as you start up the application from terminal. The Mon-
goose connection events we set up earlier output a log to the console when the
database connection is made, verifying the URI used.

 Starting the application normally from terminal looks like this:

$ nodemon
Express server listening on port 3000
Mongoose connected to mongodb://localhost/Loc8r

In comparison, starting the application in production mode looks like this:

$ NODE_ENV=production nodemon
Express server listening on port 3000
Mongoose connected to mongodb://
heroku_app20110907:4rqhlidfdqq6vgdi06c15jrlpf@ds033669.mongolab.com:33669/
heroku_app20110907

When running these commands you’ll probably notice that the Mongoose connection
confirmation takes longer to appear in the production environment. This is due to
the latency of using a separate database server and is why it’s a good idea to open the
database connection at application startup and leave it open.

 Note that the preceding production test may fail on some versions of Windows
and the occasional flavor of Linux. This happens when your system is unable to pull
down the Heroku configuration variables. You can still test against the production
database by prepending the MONGOLAB_URI to the application start command, which
looks like the following code snippet (note that this should all be entered as one line):

$ NODE_ENV=production MONGOLAB_URI=mongodb://
<username>:<password>@<hostname>:<port>/<database> nodemon start

Whatever OS you’re running you should now be able to run the application locally
and connect to the production database.

TESTING ON HEROKU

If your local tests are successful, and you can connect to your remote database by tempo-
rarily starting the application in production mode, then you’re ready to push it up to
Heroku. Use the same commands as normal to push the latest version of the code up:

$ git add .
$ git commit –m "Commit message here"
$ git push heroku master

Heroku lets you easily look at the latest 100 lines of logs by running a terminal com-
mand. You can check in those logs to see the output of your console log messages, one
of which will be your “Mongoose connected to …” logs. To view the logs run the fol-
lowing command in terminal:

$ heroku logs
Licensed to Mark Watson <nordickan@gmail.com>

159Summary
This will output the latest 100 rows to the terminal window, with the very latest mes-
sages at the bottom. Scroll up until you find the “Mongoose connected to …” message
that looks something like this:

2014-03-08T08:19:42.269603+00:00 app[web.1]: Mongoose connected to mongodb://
heroku_app20110907:4rqhlidfdqq6vgdi06c15jrlpf@ds033669.mongolab.com:33669/
heroku_app20110907

When you see this, you know that the live application on Heroku is connecting to your
live database.

 So that’s the data defined and modeled, and our Loc8r application is now con-
nected to the database. But we’re not interacting with the database at all yet—that
comes next!

5.6 Summary
In this chapter we’ve covered

■ Using Mongoose to connect an Express application to MongoDB
■ Best practices for managing Mongoose connections
■ How to model data using Mongoose schemas
■ Compiling schemas into models
■ Using the MongoDB shell to work directly with the database
■ Pushing your database to a live URI
■ Connecting to different databases from different environments

Coming up next in chapter 6 we’re going to use Express to create a REST API, so that
we can then access the database through web services.

Get the source code
The source code of the application so far is available from GitHub on the chapter-05
branch of the getting-MEAN repository. In a fresh folder in terminal the following com-
mands will clone it and install the npm module dependencies:

$ git clone -b chapter-05 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install
Licensed to Mark Watson <nordickan@gmail.com>

Writing a REST API:
Exposing the MongoDB

database to the application
As we come in to this chapter we have a MongoDB database set up, but we can only
interact with it through the MongoDB shell. During this chapter we’ll build a REST
API so that we can interact with our database through HTTP calls and perform the
common CRUD functions: create, read, update, and delete.

 We’ll mainly be working with Node and Express, using Mongoose to help with the
interactions. Figure 6.1 shows where this chapter fits into the overall architecture.

 We’ll start off by looking at the rules of a REST API. We’ll discuss the importance
of defining the URL structure properly, the different request methods (GET, POST,
PUT, and DELETE) that should be used for different actions, and how an API
should respond with data and an appropriate HTTP status code. Once we have

This chapter covers
■ Rules of REST APIs
■ API patterns
■ Typical CRUD functions (create, read, update,

delete)
■ Using Express and Mongoose to interact

with MongoDB
■ Testing API endpoints
160

Licensed to Mark Watson <nordickan@gmail.com>

161The rules of a REST API
that knowledge under our belts we’ll move on to building our API for Loc8r, covering
all of the typical CRUD operations. As we go, we’ll discuss a lot about Mongoose, and
get into some Node programming and more Express routing.

NOTE If you haven’t yet built the application from chapter 5, you can get the
code from GitHub on the chapter-05 branch at github.com/simonholmes/
getting-MEAN. In a fresh folder in terminal the following commands will
clone it and install the npm module dependencies:

$ git clone -b chapter-05 https://github.com/simonholmes/getting-MEAN.git
$ cd getting-MEAN
$ npm install

6.1 The rules of a REST API
Let’s start with a recap of what a REST API is. From chapter 2 you may remember:

■ REST stands for REpresentational State Transfer, which is an architectural style
rather than a strict protocol. REST is stateless—it has no idea of any current user
state or history.

■ API is an abbreviation for application program interface, which enables applica-
tions to talk to each other.

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Build a REST API using

Express, Node.js, and

Mongoose

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 6.1 This chapter will focus on building the API that will interact with the
database, exposing an interface for the applications to talk to.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.github.com/simonholmes/getting-MEAN
http://www.github.com/simonholmes/getting-MEAN

162 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
So a REST API is a stateless interface to your application. In the case of the MEAN stack
the REST API is used to create a stateless interface to your database, enabling a way for
other applications to work with the data.

 REST APIs have an associated set of standards. While you don’t have to stick to
these for your own API it’s generally best to, as it means that any API you create will fol-
low the same approach. It also means you’re used to doing things in the “right” way if
you decide you’re going to make your API public.

 In basic terms a REST API takes an incoming HTTP request, does some processing,
and always sends back an HTTP response, as shown in figure 6.2.

The standards that we’re going to follow for Loc8r revolve around the requests and
the responses.

6.1.1 Request URLs

Request URLs for a REST API have a simple standard. Following this standard will
make your API easy to pick up, use, and maintain.

 The way to approach this is to start thinking about the collections in your database,
as you’ll typically have a set of API URLs for each collection. You may also have a set of
URLs for each set of subdocuments. Each URL in a set will have the same basic path,
and some may have additional parameters.

 Within a set of URLs you need to cover a number of actions, generally based
around the standard CRUD operations. The common actions you’ll likely want are

■ Create a new item
■ Read a list of several items
■ Read a specific item

Application
REST API

Request

Response

Someone or something

sends a request to the API.

1

The API processes

the request, talking

to a database if

necessary.

2 The API always

sends a response

back to the

requester.

3 Figure 6.2 A REST API takes
incoming HTTP requests, does
some processing, and returns
HTTP responses.
Licensed to Mark Watson <nordickan@gmail.com>

163The rules of a REST API
■ Update a specific item
■ Delete a specific item

Using Loc8r as an example, the database has a Locations collection that we want to
interact with. Table 6.1 shows how the URLs and parameters might look for this
collection.

As you can see from table 6.1, each action has the same URL path, and three of them
expect the same parameter to specify a location. This poses a very obvious question:
How do you use the same URL to initiate different actions? The answer lies in request
methods.

6.1.2 Request methods

HTTP requests can have different methods that essentially tell the server what type of
action to take. The most common type of request is a GET request—this is the method
used when you enter a URL into the address bar of your browser. Another common
method is POST, often used when submitting form data.

 Table 6.2 shows the methods we’ll be using in our API, their typical use cases, and
what you’d expect returned.

The four HTTP methods that we’ll be using are POST, GET, PUT, and DELETE. If you
look at the first word in the “Use” column you’ll notice that there’s a different method
for each of the four CRUD operations.

Table 6.1 URL paths and parameters for an API to the Locations collection; all have the same base
path, and several have the same location ID parameter

Action URL path Parameters Example

Create new location /locations http://loc8r.com/api/locations

Read list of locations /locations http://loc8r.com/api/locations

Read a specific location /locations locationid http://loc8r.com/api/locations/123

Update a specific location /locations locationid http://loc8r.com/api/locations/123

Delete a specific location /locations locationid http://loc8r.com/api/locations/123

Table 6.2 Four request methods used in a REST API

Request method Use Response

POST Create new data in the database New data object as seen in the database

GET Read data from the database Data object answering the request

PUT Update a document in the database Updated data object as seen in the database

DELETE Delete an object from the database Null
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
TIP Each of the four CRUD operations uses a different request method.

The method is important, because a well-designed REST API will often have the same
URL for different actions. In these cases it’s the method that tells the server which type
of operation to perform. We’ll discuss how to build and organize the routes for this in
Express later in this chapter.

 So if we take the paths and parameters and map across the appropriate request
method we can put together a plan for our API, as shown in table 6.3.

Table 6.3 shows the paths and methods we’ll use for the requests to interact with the
location data. As there are five actions but only two different URL patterns, we can use
the request methods to get the desired results.

 Loc8r only has one collection right now, so this is our starting point. But the docu-
ments in the Locations collection do have reviews as subdocuments, so let’s quickly
map those out too.

API URLS FOR SUBDOCUMENTS

Subdocuments are treated in a similar way, but require an additional parameter. Each
request will need to specify the ID of the location, and some will also need to specify
the ID of a review. Table 6.4 shows the list of actions and their associated methods,
URL paths, and parameters.

Table 6.3 Request method is used to link the URL to the desired action, enabling the API to use the
same URL for different actions

Action Method URL path Parameters Example

Create new
location

POST /locations http://loc8r.com/api/locations

Read list of
locations

GET /locations http://loc8r.com/api/locations

Read a specific
location

GET /locations locationid http://loc8r.com/api/locations/123

Update a spe-
cific location

PUT /locations locationid http://loc8r.com/api/locations/123

Delete a spe-
cific location

DELETE /locations locationid http://loc8r.com/api/locations/123

Table 6.4 API URL specifications for interacting with subdocuments; each base URL path must contain
the ID of the parent document

Action Method URL path Parameters Example

Create new
review

POST /locations/
locationid/
reviews

locationid http://loc8r.com/api/locations/
123/reviews
Licensed to Mark Watson <nordickan@gmail.com>

165The rules of a REST API
You may have noticed that for the subdocuments we don’t have a “read a list of
reviews” action. This is because we’ll be retrieving the list of reviews as part of the
main document. The preceding tables should give you an idea of how to create basic
API request specifications. The URLs, parameters, and actions will be different from
one application to the next, but the approach should remain consistent.

 That’s requests covered. The other half of the flow, before we get stuck in some
code, is responses.

6.1.3 Responses and status codes

A good API is like a good friend. If you go for a high-five a good friend will not leave
you hanging. The same goes for a good API. If you make a request, a good API will
always respond and not leave you hanging. Every single API request should return a
response. This contrast is shown in figure 6.3.

Read a spe-
cific review

GET /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/locations/
123/reviews/abc

Update a spe-
cific review

PUT /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/locations/
123/reviews/abc

Delete a spe-
cific review

DELETE /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/locations/
123/reviews/abc

Table 6.4 API URL specifications for interacting with subdocuments; each base URL path must contain
the ID of the parent document

Action Method URL path Parameters Example

Good API Bad API

Request

Response

Request

Don’t leave

me hanging.
High-five!

Figure 6.3 A good API always returns a response and shouldn’t leave you hanging.
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
For a successful REST API, standardizing the responses is just as important as standard-
izing the request format. There are two key components to a response:

■ The returned data
■ The HTTP status code

Combining the returned data with the appropriate status code correctly should give
the requester all of the information required to continue.

RETURNING DATA FROM AN API
Your API should return a consistent data format. Typical formats for a REST API are
XML and JSON. We’ll be using JSON for our API because it’s the natural fit for the
MEAN stack, and it’s more compact than XML, so it can help speed up the response
times of an API.

 Our API will return one of three things for each request:

■ A JSON object containing data answering the request query
■ A JSON object containing error data
■ A null response

During this chapter we’ll discuss how to do all of these things as we build the Loc8r
API. As well as responding with data, any REST API should return the correct HTTP sta-
tus code.

USING HTTP STATUS CODES

A good REST API should return the correct HTTP status code. The status code most
people are familiar with is 404, which is what is returned by a web server when a user
requests a page that can’t be found. This is probably the most prevalent error code on
the internet, but there are dozens of other codes relating to client errors, server
errors, redirections, and successful requests. Table 6.5 shows the 10 most popular
HTTP status codes and where they might be useful when building an API.

Table 6.5 Most popular HTTP status codes and how they might be used when sending responses to an
API request

Status code Name Use case

200 OK A successful GET or PUT request

201 Created A successful POST request

204 No content A successful DELETE request

400 Bad request An unsuccessful GET, POST, or PUT request, due to invalid content

401 Unauthorized Requesting a restricted URL with incorrect credentials

403 Forbidden Making a request that isn’t allowed

404 Not found Unsuccessful request due to an incorrect parameter in the URL

405 Method not allowed Request method not allowed for the given URL
Licensed to Mark Watson <nordickan@gmail.com>

167Setting up the API in Express
As we go through this chapter and build the Loc8r API we’ll make use of several of
these status codes, while also returning the appropriate data.

6.2 Setting up the API in Express
We’ve already got a good idea about the actions we want our API to perform, and the
URL paths needed to do so. As we know from chapter 4, to get Express to do some-
thing based on an incoming URL request we need to set up controllers and routes.
The controllers will do the action, and the routes will map the incoming requests to
the appropriate controllers.

 We have files for routes and controllers already set up in the application, so we
could use those. A better option, though, is to keep the API code separate so that we
don’t run the risk of confusion and complication in our application. In fact, this is one
of the reasons for creating an API in the first place. Also, by keeping the API code sep-
arate it makes it easier to strip it out and put it into a separate application at a future
point, should you choose to do so. We really do want easy decoupling here.

 So the first thing we want to do here is create a separate area inside the application
for the files that will create the API. At the top level of the application create a new folder
called app_api. If you’ve been following along and building up the application as you
go, this will sit alongside the app_server folder.

 This folder will hold everything specific to the API: routes, controllers, and mod-
els. When you’ve got this all set up we’ll have a look at some ways to test these API
placeholders.

6.2.1 Creating the routes

Like we did with the routes for the main Express application, we’ll have an index.js
file in the app_api/routes folder that will hold all of the routes we’ll use in the API.
Let’s start by referencing this file in the main application file app.js.

INCLUDING THE ROUTES IN THE APPLICATION

The first step is to tell our application that we’re adding more routes to look out for,
and when it should use them. We already have a line in app.js to require the server
application routes, which we can simply duplicate and set the path to the API routes
as follows:

var routes = require('./app_server/routes/index');
var routesApi = require('./app_api/routes/index');

409 Conflict Unsuccessful POST request when another object already exists
with the same data

500 Internal server error Problem with your server or the database server

Table 6.5 Most popular HTTP status codes and how they might be used when sending responses to an
API request

Status code Name Use case
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
Next we need to tell the application when to use the routes. We currently have the fol-
lowing line in app.js telling the application to check the server application routes for
all incoming requests:

app.use('/', routes);

Notice the '/' as the first parameter. This enables us to specify a subset of URLs for
which the routes will apply. For example, we’ll define all of our API routes starting
with /api/. By adding the line shown in the following code snippet we can tell the
application to use the API routes only when the route starts with /api:

app.use('/', routes);
app.use('/api', routesApi);

Okay, let’s set up these URLs.

SPECIFYING THE REQUEST METHODS IN THE ROUTES

Up to now we’ve only used the GET method in the routes, like in the following code
snippet from our main application routes:

router.get('/location', ctrlLocations.locationInfo);

Using the other methods of POST, PUT, and DELETE is as simple as switching out the
get with the respective keywords of post, put, and delete. The following code snip-
pet shows an example using the POST method for creating a new location:

router.post('/locations', ctrlLocations.locationsCreate);

Note that we don’t specify /api at the front of the path. We specify in app.js that these
routes should only be used if the path starts with /api, so it’s assumed that all routes
specified in this file will be prefixed with /api.

SPECIFYING REQUIRED URL PARAMETERS

It’s quite common for API URLs to contain parameters for identifying specific docu-
ments or subdocuments—locations and reviews in the case of Loc8r. Specifying these
parameters in routes is really simple; you just prefix the name of the parameter with a
colon when defining each route.

 Say you’re trying to access a review with the ID abc that belongs to a location with
the ID 123; you’d have a URL path like this:

/api/locations/123/reviews/abc

Swapping out the IDs for the parameter names (with a colon prefix) gives you a path
like this:

/api/locations/:locationid/reviews/:reviewid

With a path like this Express will only match URLs that match that pattern. So a loca-
tion ID must be specified and must be in the URL between locations/ and /reviews,
Licensed to Mark Watson <nordickan@gmail.com>

169Setting up the API in Express

ne
es for
tions

e
es for
ws
and a review ID must also be specified at the end of the URL. When a path like this is
assigned to a controller the parameters will be available to use in the code, with the
names specified in the path, locationid and reviewid in this case.

 We’ll review exactly how you get to them in just a moment, but first we need to set
up the routes for our Loc8r API.

DEFINING THE LOC8R API ROUTES

Now we know how to set up routes to accept parameters, and we also know what
actions, methods, and paths we want to have in our API. So we can combine all of this
to create the route definitions for the Loc8r API.

 If you haven’t done so yet, you should create an index.js file in the app_api/routes
folder. To keep the size of individual files under control we’ll separate the locations
and reviews controllers into different files. The following listing shows how the defined
routes should look.

var express = require('express');
var router = express.Router();
var ctrlLocations = require('../controllers/locations');
var ctrlReviews = require('../controllers/reviews');

// locations
router.get('/locations', ctrlLocations.locationsListByDistance);
router.post('/locations', ctrlLocations.locationsCreate);
router.get('/locations/:locationid', ctrlLocations.locationsReadOne);
router.put('/locations/:locationid', ctrlLocations.locationsUpdateOne);
router.delete('/locations/:locationid', ctrlLocations.locationsDeleteOne);

// reviews
router.post('/locations/:locationid/reviews', ctrlReviews.reviewsCreate);
router.get('/locations/:locationid/reviews/:reviewid',

ctrlReviews.reviewsReadOne);
router.put('/locations/:locationid/reviews/:reviewid',

ctrlReviews.reviewsUpdateOne);
router.delete('/locations/:locationid/reviews/:reviewid',

ctrlReviews.reviewsDeleteOne);

module.exports = router;

In this router file we need to require the related controller files. We haven’t created
these controller files yet, and will do so in just a moment. This is a good way to
approach it, because by defining all of the routes and declaring the associated control-
ler functions here we develop a high-level view of what controllers are needed.

 The application now has two sets of routes: the main Express application routes
and the new API routes. The application won’t start at the moment though, because
none of the controllers referenced by the API routes exist.

Listing 6.1 Routes defined in app_api/routes/locations.js

Include controller file
(we’ll create this next)

Defi
rout
loca

Defin
rout
revie

Export
routes
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
6.2.2 Creating the controller placeholders

To enable the application to start we can create placeholder functions for the control-
lers. These functions won’t really do anything, but they will stop the application from
falling over while we’re building the API functionality.

 The first step, of course, is to create the controller files. We know where these
should be and what they should be called because we’ve already declared them in the
app_api/routes folder. We need two new files called locations.js and reviews.js in
the app_api/controllers folder.

 You can create a placeholder for each of the controller functions as a blank export
function, like in the following code snippet. Remember to put each controller into
the correct file, depending on whether it’s for a location or a review.

module.exports.locationsCreate = function (req, res) { };

To test the routing and the functions, though, we’ll need to return a response.

RETURNING JSON FROM AN EXPRESS REQUEST

When building the Express application we rendered a view template to send HTML to
the browser, but with an API we instead want to send a status code and some JSON
data. Express makes this task really easy with the following commands:

res.status(status);
res.json(content);

You can use these two commands in the placeholder functions to test the success, as
shown in the following code snippet:

module.exports.locationsCreate = function (req, res) {
 res.status(200);
 res.json({"status" : "success"});
};

Returning JSON and a response status is a very common task for an API, so it’s a good
idea to move these two statements into their own function. It also makes the code eas-
ier to test. So create a sendJsonResponse function in both controller files and call this
from each of the controller placeholders as follows:

var sendJsonResponse = function(res, status, content) {
 res.status(status);
 res.json(content);
};

module.exports.locationsCreate = function (req, res) {
 sendJsonResponse(res, 200, {"status" : "success"});
};

Send response status
code, such as 200

Send response data, such
as {“status” : “success”}

New utility function
that accepts response
object, a status code,
and a data object

Calling new function from
each controller function
Licensed to Mark Watson <nordickan@gmail.com>

171Setting up the API in Express
Now we can send a JSON response and associated status code with a single line. We’ll
use this a lot in our API!

6.2.3 Including the model

It’s vitally important that the API can talk to the database; without it the API isn’t going
to be much use! To do this with Mongoose, we first need to require Mongoose into
the controller files, and then bring in the Location model. Right at the top of the con-
troller files, above all of the placeholder functions, add the following two lines:

var mongoose = require('mongoose');
var Loc = mongoose.model('Location');

The first line gives the controllers access to the database connection, and the second
brings in the Location model so that we can interact with the Locations collection.

 If we take a look at the file structure of our application, we see the app_api/models
folder containing the database connection and the Mongoose setup is inside the
app_server folder. But it’s the API that’s dealing with the database, not the main Express
application. If the two applications were separate the model would be kept part of the
API, so that’s where it should live.

 Just move the app_api/models folder from the app_server folder into the app_api
folder, giving the folder structure like that shown in figure 6.4.

 We need to tell the application that we’ve moved the app_api/models folder, of
course, so we need to update the line in app.js that requires the model to point to the
correct place:

require('./app_api/models/db');

Figure 6.4 Folder structure of the
application at this point: app_api has
models, controllers, and routes, and
app_server has views, controllers, and routes
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
With that done, the application should start again and still connect to your database.
The next question is, how can we test the API?

6.2.4 Testing the API

You can quickly test the GET routes in your browser by heading to the appropriate
URL, such as http://localhost:3000/api/locations/1234. You should see the success
response being delivered to the browser as shown in figure 6.5.

This is okay for testing GET requests, but it doesn’t get you very far with POST, PUT,
and DELETE methods. There are a few tools to help you test API calls like this, but my
current favorite is an extension for Chrome called Postman REST Client.

 Postman enables you to test API URLs with a number of different request methods,
allowing you to specify additional query string parameters or form data. After you
click the Send button it will make a request to the URL you’ve specified and display
the response data and status code.

 Figure 6.6 shows a screenshot of Postman making a PUT request to the same URL
as before.

 It’s a good idea to get Postman or another REST client up and running now. You’ll
need to use one a lot during this chapter as we build up a REST API. Let’s get started
by using the GET requests to read data from MongoDB.

6.3 GET methods: Reading data from MongoDB
GET methods are all about querying the database and returning some data. In our routes
for Loc8r we have three GET requests doing different things, as listed in table 6.6.

 We’ll look at how to find a single location first, because it provides a good intro-
duction to the way Mongoose works. Next we’ll locate a single document using an ID,
and then we’ll expand into searching for multiple documents.

Figure 6.5 Testing a
GET request of the API
in the browser
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000/api/locations/1234

173GET methods: Reading data from MongoDB
6.3.1 Finding a single document in MongoDB using Mongoose

Mongoose interacts with the database through its models, which is why we imported
the Locations model as Loc at the top of the controller files. A Mongoose model has
several associated methods to help manage the interactions as noted in the follow-
ing sidebar.

 For finding a single database document with a known ID in MongoDB, Mongoose
has the findById method.

Table 6.6 Three GET requests of the Loc8r API

Action Method URL path Parameters Example

Read list of
locations

GET /locations http://loc8r.com/api/
locations

Read a specific
location

GET /locations locationid http://loc8r.com/api/
locations/123

Read a specific
review

GET /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Figure 6.6 Using the Postman REST Client in Chrome to test a PUT request to the API
Licensed to Mark Watson <nordickan@gmail.com>

http://loc8r.com/api/locations
http://loc8r.com/api/locations
http://loc8r.com/api/locations/123
http://loc8r.com/api/locations/123
http://loc8r.com/api/locations/123/reviews/abc
http://loc8r.com/api/locations/123/reviews/abc

174 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
APPLYING THE FINDBYID METHOD TO THE MODEL

The findById method is relatively straightforward, accepting a single parameter, the
ID to look for. As it’s a model method, it’s applied to the model like this:

Loc.findById(locationid)

This will not start the database query operation; it just tells the model what the query
will be. To start the database query Mongoose models have an exec method.

RUNNING THE QUERY WITH THE EXEC METHOD

The exec method executes the query and passes a callback function that will run
when the operation is complete. The callback function should accept two parameters,
an error object and the instance of the found document. As it’s a callback function
the names of these parameters can be whatever you like.

 The methods can be chained as follows:

Loc
 .findById(locationid)
 .exec(function(err, location) {
 console.log("findById complete");
 });

This approach ensures that the database interaction is asynchronous, and therefore
doesn’t block the main Node process.

TIP If you’re not 100% comfortable with callbacks, scopes, and where the
variables come from, take a look online at appendix D, section D.4, “Under-
standing JavaScript Callbacks.”

Mongoose query methods
Mongoose models have several methods available to them to help with querying the
database. Here are some of the key ones:

■ findGeneral search based on a supplied query object
■ findByIdLook for a specific ID
■ findOneGet the first document to match the supplied query
■ geoNearFind places geographically close to the provided latitude and longitude
■ geoSearchAdd query functionality to a geoNear operation

We’ll use some of these but not all of them in this book.

Apply findById method to
Location model using Loc

Execute query

Log message
when complete
Licensed to Mark Watson <nordickan@gmail.com>

175GET methods: Reading data from MongoDB
USING THE FINDBYID METHOD IN A CONTROLLER

The controller we’re working with to find a single location by ID is locationsReadOne,
in the locations.js file in app_api/controllers.

 We know the basic construct of the operation: apply the findById and exec meth-
ods to the Location model. To get this working in the context of the controller we
need to do two things:

■ Get the locationid parameter from the URL and pass it to the findById
method.

■ Provide an output function to the exec method.

Express makes it really easy to get the URL parameters we defined in the routes. The
parameters are held inside a params object attached to the request object. With our
route being defined like so

app.get('/api/locations/:locationid', ctrlLocations.locationsReadOne);

we can access the locationid parameter from inside the controller like this:

req.params.locationid

For the output function we can use the sendJsonResponse function that we created
earlier. Putting this all together gives us the following:

module.exports.locationsReadOne = function(req, res) {
 Loc
 .findById(req.params.locationid)
 .exec(function(err, location) {
 sendJsonResponse(res, 200, location);
 });
};

And now we have a very basic API controller. You can try it out by getting the ID of one
of the locations in MongoDB and going to the URL in your browser, or by calling it in
Postman. To get one of the ID values you can run the command db.locations
.find() in the Mongo shell and it will list all of the locations you have, which will each
include the _id value. When you’ve put the URL together the output should be a full
location object as stored in MongoDB; you should see something like figure 6.7.

 Did you try out the basic controller? Did you put an invalid location ID into the
URL? If you did you’ll have seen that you got nothing back. No warning, no message,
just a 200 status telling you that everything is okay, but no data returned.

Get locationid from URL
parameters and give it
to findById method

Define callback to accept
possible parameters

Send document found
as a JSON response
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
CATCHING ERRORS

The problem with that basic controller is that it only outputs a success response,
regardless of whether it was successful or not. This isn’t good behavior for an API. A
good API should respond with an error code when something goes wrong.

 To respond with error messages the controller needs to be set up to trap poten-
tial errors and send an appropriate response. Error trapping in this fashion typically
involves if statements. Every if statement must either have a corresponding else
statement, or it must include a return statement.

TIP Your API code must never leave a request unanswered.

With our basic controller there are three errors we need to trap:

■ The request parameters don’t include locationid.
■ The findById method doesn’t return a location.
■ The findById method returns an error.

The status code for an unsuccessful GET request is 404. Bearing this in mind the
final code for the controller to find and return a single location looks like the fol-
lowing listing.

Figure 6.7 Basic controller for finding a single location by ID returns a JSON object to the
browser if the ID is found
Licensed to Mark Watson <nordickan@gmail.com>

177GET methods: Reading data from MongoDB

If M
did
co
be

send
o

200
module.exports.locationsReadOne = function(req, res) {
 if (req.params && req.params.locationid) {
 Loc
 .findById(req.params.locationid)
 .exec(function(err, location) {
 if (!location) {
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 return;
 } else if (err) {
 sendJsonResponse(res, 404, err);
 return;
 }
 sendJsonResponse(res, 200, location);
 });
 } else {
 sendJsonResponse(res, 404, {
 "message": "No locationid in request"
 });
 }
};

Listing 6.2 uses both of the two methods of trapping with if statements. Error trap 1 B
uses an if to check that the params object exists in the request object, and that the
params object contains a locationid value. This loop is closed off with an else f for
when either the params object or the locationid value isn’t found. Error trap 2 c
and error trap 3 d both use an if to check for an error returned by Mongoose. Each
if includes a return statement, which will prevent any following code in the callback
scope from running. If no error was found the return statement is ignored and the
code moves on to send the successful response e.

 Each of these traps provides a response for success and failure, leaving no room
for the API to leave a requester hanging. If you wish you can also throw in a few
console.log statements so that it’s easier to track what’s going on in terminal; the
source code in GitHub will have some.

 Figure 6.8 shows the difference between a successful request and a failed request,
using the Postman extension in Chrome.

 That’s one complete API route dealt with. Now it’s time to look at the second GET
request to return a single review.

6.3.2 Finding a single subdocument based on IDs

To find a subdocument you first have to find the parent document like we’ve just done
to find a single location by its ID. Once you’ve found the document you can look for a
specific subdocument.

Listing 6.2 locationsReadOne controller

Error trap 1: check
that locationid exists
in request parameters

 b

Error trap 2: if Mongoose
doesn’t return a location, send
404 message and exit function
scope using return statement

 c

Error trap 3: if Mongoose returned an
error, send it as 404 response and exit
controller using return statement

 dongoose
n’t error,
ntinue as
fore and
 location
bject in a
response

 e

If request parameters didn’t
include locationid, send
appropriate 404 response

 f
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
This means that we can take the locationsReadOne controller as the starting point
and add a few modifications to create the reviewsReadOne controller. These modifica-
tions are

■ Accept and use an additional reviewid URL parameter.
■ Select only the name and reviews from the document, rather than having Mon-

goDB return the entire document.
■ Look for a review with a matching ID.
■ Return the appropriate JSON response.

To do these things we can use a couple of new Mongoose methods.

LIMITING THE PATHS RETURNED FROM MONGODB
When you retrieve a document from MongoDB you don’t always need the full docu-
ment; sometimes you just want some specific data. Limiting the data being passed
around is also better for bandwidth consumption and speed.

Figure 6.8 Testing successful (left) and failed (right) API responses using Postman
Licensed to Mark Watson <nordickan@gmail.com>

179GET methods: Reading data from MongoDB

at

 a
er
 Mongoose does this through a select method chained to the model query. For
example, the following code snippet will tell MongoDB that we only want to get the
name and the reviews of a location:

Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec();

The select method accepts a space-separated string of the paths we want to retrieve.

USING MONGOOSE TO FIND A SPECIFIC SUBDOCUMENT

Mongoose also offers a helper method for finding a subdocument by ID. Given an
array of subdocuments Mongoose has an id method that accepts the ID you want to
find. The id method will return the single matching subdocument, and it can be used
as follows:

Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec(
 function(err, location) {
 var review;
 review = location.reviews.id(req.params.reviewid);
 }
);

In this code snippet a single review would be returned to the review variable in the
callback.

ADDING SOME ERROR TRAPPING AND PUTTING IT ALL TOGETHER

Now we’ve got the ingredients needed to make the reviewsReadOne controller. Start-
ing with a copy of the locationsReadOne controller we can make the modifications
required to return just a single review.

 The following listing shows the reviewsReadOne controller in review.js (modifica-
tions in bold).

module.exports.reviewsReadOne = function(req, res) {
 if (req.params && req.params.locationid && req.params.reviewid) {
 Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec(
 function(err, location) {
 var response, review;
 if (!location) {
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 return;

Listing 6.3 Controller for finding a single review

Pass reviewid
from parameters
into id method

Verify th
reviewid
exists as
parametAdd Mongoose

select method
to model query,
stating that we
want to get name
of location and
its reviews
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

s

 } else if (err) {
 sendJsonResponse(res, 400, err);
 return;
 }
 if (location.reviews && location.reviews.length > 0) {
 review = location.reviews.id(req.params.reviewid);
 if (!review) {
 sendJsonResponse(res, 404, {
 "message": "reviewid not found"
 });
 } else {
 response = {
 location : {
 name : location.name,
 id : req.params.locationid
 },
 review : review
 };
 sendJsonResponse(res, 200, response);
 }
 } else {
 sendJsonResponse(res, 404, {
 "message": "No reviews found"
 });
 }
 }
);
 } else {
 sendJsonResponse(res, 404, {
 "message": "Not found, locationid and reviewid are both required"
 });
 }
};

When this is saved and ready you can test it using Postman again. You need to have
correct ID values, which you can get directly from MongoDB via the Mongo shell. The
command db.locations.find() will return all of the locations and their reviews. You
can test what happens if you put in a false ID for a location or a review, or try a review
ID from a different location.

6.3.3 Finding multiple documents with geospatial queries

The homepage of Loc8r should display a list of locations based on the user’s current
geographical location. MongoDB and Mongoose have some special geospatial query
methods to help find nearby places.

 Here we’ll use the Mongoose method geoNear to find a list of locations close to a
specified point, up to a specified maximum distance. geoNear is a model method that
accepts three parameters:

■ A geoJSON geographical point
■ An options object
■ A callback function

Check that
returned
location
has review

Use Mongoose
subdocument
.id method as

a helper for
searching for
matching ID

If review isn’t found return
an appropriate response

If review is found
build response
object returning
review and location
name and ID

If no reviews are found
return an appropriate
error message
Licensed to Mark Watson <nordickan@gmail.com>

181GET methods: Reading data from MongoDB
The following code snippet shows the basic construct:

Loc.geoNear(point, options, callback);

Unlike the findById method, geoNear doesn’t have an exec method. Instead, geoNear is
executed immediately and the code to run on completion is sent through in the callback.

CONSTRUCTING A GEOJSON POINT

The first parameter of the geoNear method is a geoJSON point. A geoJSON point is a
simple JSON object containing a latitude and a longitude in an array. The construct
for a geoJSON point is shown in the following code snippet:

var point = {
 type: "Point",
 coordinates: [lng, lat]
};

The route set up here to get a list of locations doesn’t have the coordinates in the URL
parameters, meaning that they’ll have to be specified in a different way. A query string
is ideal for this data type, meaning that the request URL will look more like this:

api/locations?lng=-0.7992599&lat=51.378091

Express, of course, gives you access to the values in a query string, putting them into a
query object attached to the request object—for example, req.query.lng. The lon-
gitude and latitude values will be strings when retrieved, but they need to be added to
the point object as numbers. JavaScript’s parseFloat function can see to this. Putting
it all together, the following code snippet shows how to get the coordinates from the
query string and create the geoJSON point required by the geoNear function:

module.exports.locationsListByDistance = function(req, res) {
 var lng = parseFloat(req.query.lng);
 var lat = parseFloat(req.query.lat);
 var point = {
 type: "Point",
 coordinates: [lng, lat]
 };
 Loc.geoNear(point, options, callback);
};

Naturally, this controller will not work yet as options and callback are both currently
undefined. We’ll work on these now, starting with the options.

ADDING REQUIRED QUERY OPTIONS TO GEONEAR

The geoNear method only has one required option: spherical. This determines
whether the search will be done based on a spherical object or a flat plane. It’s generally
accepted these days that Earth is round, so we’ll set the spherical option to be true.

Declare
object Define it as

type “Point”

Set longitude and
latitude coordinates in
an array, longitude first

Get coordinates
from query string
and convert from
strings to numbersCreate geoJSON

point

Send point as first parameter
in geoNear method
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
 In creating an object to hold the options we have the following code snippet:

var geoOptions = {
 spherical: true
};

Now the search will be based on coordinates on a sphere.

LIMITING GEONEAR RESULTS BY NUMBER

You’ll often want to look after the API server—and the responsiveness seen by end
users—by limiting the number of results when returning a list. In the geoNear method
adding an option called num does this. You simply specify the maximum number of
results you want to have returned.

 The following code snippet shows this added to the previous geoOptions object,
limiting the size of the returned data set to 10 objects:

var geoOptions = {
 spherical: true,
 num: 10
};

Now the search will bring back no more than the 10 closest results.

LIMITING GEONEAR RESULTS BY DISTANCE

When returning location-based data, another way to keep the processing of the API
under control is to limit the list of results by distance from the central point. In theory,
this is just a case of adding another option called maxDistance. The challenge is that
MongoDB does the calculations in radians rather than meters or miles, and expects
the maxDistance to be supplied as radians. This allows MongoDB to easily do these
calculations on any size sphere, not just Earth, but that doesn’t help us here.

 The calculations to convert between physical distances and radians are quite straight-
forward, as shown in figure 6.9.

Radians

Radius

Radians = distance/radius

Distance = radians radius⋅

Distance

Figure 6.9 Relationship between distance
and radians, and how to convert one to the
other given a known radius
Licensed to Mark Watson <nordickan@gmail.com>

183GET methods: Reading data from MongoDB
The radius of Earth is 6,371 kilometers, or 3,959 miles, but we’ll be using kilometers
in this book because, frankly, they’re easier to work with! Given this information we
can create a function called theEarth, exposing two methods to make the calculations
for us. The following code snippet should go near the top of the API controller loca-
tions.js file, just after the Mongoose is required and the model set up:

var theEarth = (function(){
 var earthRadius = 6371; // km, miles is 3959

 var getDistanceFromRads = function(rads) {
 return parseFloat(rads * earthRadius);
 };

 var getRadsFromDistance = function(distance) {
 return parseFloat(distance / earthRadius);
 };

 return {
 getDistanceFromRads : getDistanceFromRads,
 getRadsFromDistance : getRadsFromDistance
 };
})();

Now we have some reusable functions for making the distance calculations.

TIP If this pattern of coding isn’t familiar to you take a look at appendix D,
section D.5, “Writing Modular JavaScript.”

We can now add the maxDistance value to the options, and add these options to the
controller as follows:

module.exports.locationsListByDistance = function(req, res) {
 var lng = parseFloat(req.query.lng);
 var lat = parseFloat(req.query.lat);
 var point = {
 type: "Point",
 coordinates: [lng, lat]
 };
 var geoOptions = {
 spherical: true,
 maxDistance: theEarth.getRadsFromDistance(20),
 num: 10
 };
 Loc.geoNear(point, geoOptions, callback);
};

Extra credit
Try taking the maximum distance from a query string value instead of hard-coding it
into the function. The code on GitHub for this chapter has the answer to this.

Define fixed value
for radius of Earth

Create function to convert
radians to distance

Create function to convert
distance to radians

Expose these
two functions

Create options
object, including
setting maximum
distance to 20 km

Update geoNear function
to use geoOptions object
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
That’s the last of the options we need for our geoNear database search, so now it’s
time to start working with the output.

LOOKING AT THE GEONEAR OUTPUT

The completion callback for the geoNear method has three parameters, in this order:

1 An error object
2 A results object
3 A stats object

With a successful query the error object will be undefined, the results object will con-
tain an array of results, and the stats object will contain information about the query,
like time taken, number of documents scanned, the average distance, and the maxi-
mum distance of the documents returned. We’ll start by working with a successful
query before adding in the error trapping.

 Following a successful geoNear query MongoDB returns an array of objects. Each
object contains a distance value and a returned document from the database. In other
words, MongoDB doesn’t add the distance to the data. The following code snippet
shows an example of the returned data, truncated for brevity:

[{
 dis: 0.002532674663406363,
 obj: {
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS'
 }
}]

This array only has one object, but a successful query is likely to have several objects
returned at once. The geoNear method actually returns the entire document in the
obj object. There are two problems here:

■ The API shouldn’t return more data than necessary.
■ We want to return the distance in a meaningful way (not radians) as an integral

part of the returned data set.

So rather than simply sending the returned data back as the response there’s some
processing to do first.

PROCESSING THE GEONEAR OUTPUT

Before the API can send a response we need to make sure it’s sending the right thing,
and only what’s needed. We know what data is needed by the homepage listing as
we’ve already built the homepage controller in app_server/controllers/location.js.
The homelist function sends a number of location objects like the following example:

{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
Licensed to Mark Watson <nordickan@gmail.com>

185GET methods: Reading data from MongoDB

thr
geo

re
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}

To create an object along these lines from the results, we simply need to loop through
the results and push the relevant data into a new array. This processed data can then
be returned with a status 200 response. The following code snippet shows how this
might look:

Loc.geoNear(point, options, function (err, results, stats) {
 var locations = [];
 results.forEach(function(doc) {
 locations.push({
 distance: theEarth.getDistanceFromRads(doc.dis),
 name: doc.obj.name,
 address: doc.obj.address,
 rating: doc.obj.rating,
 facilities: doc.obj.facilities,
 _id: doc.obj._id
 });
 });
 sendJsonResponse(res, 200, locations);
});

If you test this API route with Postman—remembering to add longitude and latitude
coordinates to the query string—you’ll see something like figure 6.10.

If you test this by sending coordinates too far away from the test data you should still
get a 200 status, but the returned array will be empty.

ADDING THE ERROR TRAPPING

Once again we’ve started by building the success functionality, and now we need to add
in some error traps to make sure that the API always sends the appropriate response.

 The traps we need to set should check that

■ The parameters have all been sent correctly.
■ The geoNear function hasn’t returned an error.

The listing on the next page shows the final controller all put together, including
these error traps.

Extra credit
Try passing the results to an external named function to build the list of locations.
This function should return the processed list, which can then be passed into the
JSON response.

Create new array
to hold processed
results data

Loop
ough
Near

query
sults

Get distance
and convert
from radians to
kilometers, using
helper function
previously created

Push rest of
required data into
return object

Send processed data
back as a JSON response
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
module.exports.locationsListByDistance = function(req, res) {
 var lng = parseFloat(req.query.lng);
 var lat = parseFloat(req.query.lat);
 var point = {
 type: "Point",
 coordinates: [lng, lat]
 };
 var geoOptions = {
 spherical: true,
 maxDistance: theEarth.getRadsFromDistance(20),
 num: 10
 };

Listing 6.4 Locations list controller locationsListByDistance

Figure 6.10 Testing the location list route in Postman should give a 200 status and a list of results,
depending on the geographical coordinates sent in the query string.
Licensed to Mark Watson <nordickan@gmail.com>

187POST methods: Adding data to MongoDB

s
 if (!lng || !lat) {
 sendJsonResponse(res, 404, {
 "message": "lng and lat query parameters are required"
 });
 return;
 }
 Loc.geoNear(point, geoOptions, function(err, results, stats) {
 var locations = [];
 if (err) {
 sendJsonResponse(res, 404, err);
 } else {
 results.forEach(function(doc) {
 locations.push({
 distance: theEarth.getDistanceFromRads(doc.dis),
 name: doc.obj.name,
 address: doc.obj.address,
 rating: doc.obj.rating,
 facilities: doc.obj.facilities,
 _id: doc.obj._id
 });
 });
 sendJsonResponse(res, 200, locations);
 }
 });
};

This completes the GET requests that our API needs to service, so moving forward it’s
time to tackle the POST requests.

6.4 POST methods: Adding data to MongoDB
POST methods are all about creating documents or subdocuments in the database,
and then returning the saved data as confirmation. In the routes for Loc8r we have
two POST requests doing different things, listed in Table 6.7.

POST methods work by taking form data posted to them and adding it to the database.
In the same way that URL parameters are accessed using req.params and query strings
are accessed via req.query, Express controllers access posted form data via req.body.

 Let’s make a start by looking at how to create documents.

Table 6.7 Two POST requests of the Loc8r API

Action Method URL path Parameters Example

Create new
location

POST /locations http://api.loc8r.com/locations

Create new
review

POST /locations/
locationid/
reviews

locationid http://api.loc8r.com/locations/
123/reviews

Check lng and lat
query parameter
exist in right
format; return a
404 error and
message if not

If geoNear query returns error, send
this as response with 404 status
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

Cre
of
by

a
s

6.4.1 Creating new documents in MongoDB

In the database for Loc8r each location is a document, so this is what we’ll be creating
in this section. Mongoose really couldn’t make the process of creating MongoDB doc-
uments much easier for you. You take your model, apply the create method, and
send it some data and a callback function. This is the minimal construct, as it would
be attached to our Loc model:

So that’s pretty simple. There are two main steps to the creation process:

1 Take the posted form data and use it to create a JavaScript object that matches
the schema.

2 Send an appropriate response in the callback depending on the success or fail-
ure of the create operation.

Looking at step 1 we already know that we can get data sent to us in a form by using
req.body, and step 2 should be pretty familiar by now. So let’s jump straight into the
code. The following listing shows the full locationsCreate controller for creating a
new document.

module.exports.locationsCreate = function(req, res) {
 Loc.create({
 name: req.body.name,
 address: req.body.address,
 facilities: req.body.facilities.split(","),
 coords: [parseFloat(req.body.lng), parseFloat(req.body.lat)],
 openingTimes: [{
 days: req.body.days1,
 opening: req.body.opening1,
 closing: req.body.closing1,
 closed: req.body.closed1,
 }, {
 days: req.body.days2,
 opening: req.body.opening2,

Listing 6.5 Complete controller for creating a new location

Loc.create(dataToSave, callback);

Model name

JavaScript object

containing data that

matches the schema

The create method Runs on completion;

expects two parameters:

• Error object

• Document as saved

in the database

Apply create
method to model

ate array
 facilities
 splitting
 comma-
eparated

list

Parse coordinates from
strings to numbers
Licensed to Mark Watson <nordickan@gmail.com>

189POST methods: Adding data to MongoDB
 closing: req.body.closing2,
 closed: req.body.closed2,
 }]
 }, function(err, location) {
 if (err) {
 sendJsonResponse(res, 400, err);
 } else {
 sendJsonResponse(res, 201, location);
 }
 });
};

This shows how easy it can be to create a new document in MongoDB and save some
data. For the sake of brevity we’ve limited the openingTimes array to two entries, but
this could easily be extended, or better yet put into a loop checking for the existence
of the values.

 You might also notice that there’s no rating being set. Remember in the schema
that we set a default of 0, as in the following snippet:

rating: {type: Number, "default": 0, min: 0, max: 5},

This is applied when the document is created, setting the initial value to be 0. Some-
thing else about this code might be shouting out at you. There’s no validation!

VALIDATING THE DATA USING MONGOOSE

This controller has no validation code inside it, so what’s to stop somebody from
entering loads of empty or partial documents? Again, we started this off in the Mon-
goose schemas. In the schemas we set a required flag to true in a few of the paths.
When this flag is set, Mongoose will not send the data to MongoDB.

 Given the following base schema for locations, for example, we can see that name
and coords are both required fields:

var locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: [Number], index: '2dsphere', required: true},
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});

If either of these fields is missing, the create method will raise an error and not
attempt to save the document to the database.

 Testing this API route in Postman looks like figure 6.11. Note that the method is set
to post, and that the data type selected (above the list of names and values) is x-www-
form-urlencoded.

Supply callback function,
containing appropriate
responses for success
and failure
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
6.4.2 Creating new subdocuments in MongoDB

In the context of Loc8r locations, reviews are subdocuments. Subdocuments are cre-
ated and saved through their parent document. Put another way, to create and save a
new subdocument you have to

1 Find the correct parent document.
2 Add a new subdocument.
3 Save the parent document.

Finding the correct parent isn’t a problem as we’ve already done that, and can use it
as the skeleton for the next controller, reviewsCreate. When we’ve found the parent
we can call an external function to do the next step, as shown in the following listing.

module.exports.reviewsCreate = function(req, res) {
 var locationid = req.params.locationid;
 if (locationid) {
 Loc
 .findById(locationid)
 .select('reviews')

Listing 6.6 Controller for creating a review

Figure 6.11 Testing a POST method in Postman, ensuring that the method and form data settings are correct
Licensed to Mark Watson <nordickan@gmail.com>

191POST methods: Adding data to MongoDB

ay,

t

t

 .exec(
 function(err, location) {
 if (err) {
 sendJsonResponse(res, 400, err);
 } else {
 doAddReview(req, res, location);
 }
 }
);
 } else {
 sendJsonResponse(res, 404, {
 "message": "Not found, locationid required"
 });
 }
};

This isn’t doing anything particularly new; we’ve seen it all before. By putting in a call
to a new function we can keep the code neater by reducing the amount of nesting and
indentation, and also make it easier to test.

ADDING AND SAVING A SUBDOCUMENT

Having found the parent document, and retrieved the existing list of subdocuments,
we then need to add a new one. Subdocuments are essentially arrays of objects, and
the easiest way to add a new object to an array is to create the data object and use the
JavaScript push method. The following code snippet demonstrates this:

location.reviews.push({
 author: req.body.author,
 rating: req.body.rating,
 reviewText: req.body.reviewText
});

This is getting posted form data, hence using req.body.
 Once the subdocument has been added, the parent document must be saved

because subdocuments cannot be saved on their own. To save a document Mongoose
has a model method save, which expects a callback with an error parameter and a
returned object parameter. The following code snippet shows this in action:

location.save(function(err, location) {
 var thisReview;
 if (err) {
 sendJsonResponse(res, 400, err);
 } else {
 thisReview = location.reviews[location.reviews.length - 1];
 sendJsonResponse(res, 201, thisReview);
 }
});

The document returned by the save method is the full parent document, not just the
new subdocument. To return the correct data in the API response—that is, the sub-
document—we need to retrieve the last subdocument from the array B.

Successful find operation
will call new function to
add review, passing
request, response, and
location objects

Find last
review in
returned arr
as MongoDB
will return
entire paren
document,
not just new
subdocumen

 b
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

s

a

 When adding documents and subdocuments you need to keep in mind any impact
this may have on other data. In Loc8r adding a review will add a new rating. This new
rating will impact the overall rating for the document. So on the successful save of a
review we’ll call another function to update the average rating.

 Putting everything we have together in the doAddReview function, plus a little
extra error trapping, gives us the following listing.

var doAddReview = function(req, res, location) {
 if (!location) {
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 } else {
 location.reviews.push({
 author: req.body.author,
 rating: req.body.rating,
 reviewText: req.body.reviewText
 });
 location.save(function(err, location) {
 var thisReview;
 if (err) {
 sendJsonResponse(res, 400, err);
 } else {
 updateAverageRating(location._id);
 thisReview = location.reviews[location.reviews.length - 1];
 sendJsonResponse(res, 201, thisReview);
 }
 });
 }
};

UPDATING THE AVERAGE RATING

Calculating the average rating isn’t particularly complicated, so we won’t dwell on it
too long. The steps are

1 Find the correct document given a provided ID.
2 Loop through the review subdocuments adding up the ratings.
3 Calculate the average rating value.
4 Update the rating value of the parent document.
5 Save the document.

Turning this list of steps into code gives us something along the lines of the following
listing, which should be placed in the reviews.js controller file along with the review-
based controllers.

Listing 6.7 Adding and saving a subdocument

When provided with a
parent document …

push new data
into subdocument
array…

before
saving it

On successful
ave operation

call function
to update

verage rating

Retrieve last review added
to array and return it as

JSON confirmation response
Licensed to Mark Watson <nordickan@gmail.com>

193PUT methods: Updating data in MongoDB

w
var updateAverageRating = function(locationid) {
 Loc
 .findById(locationid)
 .select('rating reviews')
 .exec(
 function(err, location) {
 if (!err) {
 doSetAverageRating(location);
 }
 });
};

var doSetAverageRating = function(location) {
 var i, reviewCount, ratingAverage, ratingTotal;
 if (location.reviews && location.reviews.length > 0) {
 reviewCount = location.reviews.length;
 ratingTotal = 0;
 for (i = 0; i < reviewCount; i++) {
 ratingTotal = ratingTotal + location.reviews[i].rating;
 }
 ratingAverage = parseInt(ratingTotal / reviewCount, 10);
 location.rating = ratingAverage;
 location.save(function(err) {
 if (err) {
 console.log(err);
 } else {
 console.log("Average rating updated to", ratingAverage);
 }
 });
 }
};

You might have noticed that we’re not sending any JSON response here, and that’s
because we’ve already sent it. This entire operation is asynchronous and doesn’t need
to impact sending the API response confirming the saved review.

 Adding a review isn’t the only time we’ll need to update the average rating. This is
why it makes extra sense to make these functions accessible from the other control-
lers, and not tightly coupled to the actions of creating a review.

 What we’ve just done here offers a sneak peak at using Mongoose to update data in
MongoDB, so let’s now move on to the PUT methods of the API.

6.5 PUT methods: Updating data in MongoDB
PUT methods are all about updating existing documents or subdocuments in the data-
base, and then returning the saved data as confirmation. In the routes for Loc8r we
have two PUT requests doing different things, listed in table 6.8.

Listing 6.8 Calculating and updating the average rating

Find correct
document given
supplied ID

Loop through revie
subdocuments
adding up ratings

Calculate
average

rating
value

Update rating
value of parent
documentSave parent

document
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
PUT methods are similar to POST methods because they work by taking form data
posted to them. But instead of using the data to create new documents in the data-
base, PUT methods use the data to update existing documents.

6.5.1 Using Mongoose to update a document in MongoDB

In Loc8r we might want to update a location to add new facilities, change the open
times, or amend any of the other data. The approach to updating data in a document
is probably starting to look familiar, following these steps:

1 Find the relevant document.
2 Make some changes to the instance.
3 Save the document.
4 Send a JSON response.

This approach is made possible by the way that an instance of a Mongoose model
maps directly to a document in MongoDB. When your query finds the document you
get a model instance. If you make changes to this instance and then save it, Mongoose
will update the original document in the database with your changes.

USING THE MONGOOSE SAVE METHOD

We’ve actually already seen this in action, when updating the average rating value.
The save method is applied to the model instance that the find function returns. It
expects a callback with the standard parameters of an error object and a returned
data object.

 A cut-down skeleton of this approach is shown in the following code snippet:

 Loc
 .findById(req.params.locationid)
 .exec(
 function(err, location) {
 location.name = req.body.name;
 location.save(function(err, location) {
 if (err) {
 sendJsonResponse(res, 404, err);
 } else {
 sendJsonResponse(res, 200, location);
 }

Table 6.8 Two PUT requests of the Loc8r API for updating locations and reviews

Action Method URL path Parameters Example

Update a specific
location

PUT /locations locationid http://loc8r.com/api/
locations/123

Update a specific
review

PUT /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Find document
to update

Make change to model
instance, changing a
value of one path

Save
document

with
Mongoose’s

save method

Return success or
failure response
Licensed to Mark Watson <nordickan@gmail.com>

http://loc8r.com/api/locations/123
http://loc8r.com/api/locations/123
http://loc8r.com/api/locations/123/reviews/abc
http://loc8r.com/api/locations/123/reviews/abc

195PUT methods: Updating data in MongoDB
 });
 }
);
};

Here we can clearly see the separate steps of finding, updating, saving, and respond-
ing. Fleshing out this skeleton into the locationsUpdateOne controller with some
error trapping and the data we want to save gives us the following listing.

module.exports.locationsUpdateOne = function(req, res) {
 if (!req.params.locationid) {
 sendJsonResponse(res, 404, {
 "message": "Not found, locationid is required"
 });
 return;
 }
 Loc
 .findById(req.params.locationid)
 .select('-reviews -rating')
 .exec(
 function(err, location) {
 if (!location) {
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 return;
 } else if (err) {
 sendJsonResponse(res, 400, err);
 return;
 }
 location.name = req.body.name;
 location.address = req.body.address;
 location.facilities = req.body.facilities.split(",");
 location.coords = [parseFloat(req.body.lng),

parseFloat(req.body.lat)];
 location.openingTimes = [{
 days: req.body.days1,
 opening: req.body.opening1,
 closing: req.body.closing1,
 closed: req.body.closed1,
 }, {
 days: req.body.days2,
 opening: req.body.opening2,
 closing: req.body.closing2,
 closed: req.body.closed2,
 }];
 location.save(function(err, location) {
 if (err) {
 sendJsonResponse(res, 404, err);
 } else {
 sendJsonResponse(res, 200, location);
 }

Listing 6.9 Making changes to an existing document in MongoDB

Find location
document by
supplied ID

Update
paths with
values from
submitted
form

Save
instance Send appropriate

response, depending
on outcome of save
operation
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
 });
 }
);
};

There’s clearly a lot more code here, now that it’s fully fleshed out, but we can still
quite easily identify the key steps of the update process.

 The eagle-eyed among us may have noticed something strange in the select
statement:

.select('-reviews -rating')

Previously we’ve used the select method to say which columns we do want to select.
By adding a dash in front of a path name we’re stating that we don’t want to retrieve it
from the database. So this select statement says to retrieve everything except the
reviews and the rating.

6.5.2 Updating an existing subdocument in MongoDB

Updating a subdocument is exactly the same as updating a document, with one excep-
tion. After finding the document you then have to find the correct subdocument to
make your changes. After this, the save method is applied to the document, not the
subdocument. So the steps to updating an existing subdocument are

1 Find the relevant document.
2 Find the relevant subdocument.
3 Make some changes to the subdocument.
4 Save the document.
5 Send a JSON response.

For Loc8r the subdocuments we’re updating are reviews, so when a review is changed
we’ll have to remember to recalculate the average rating. That’s the only additional
thing we’ll need to add in, above and beyond the five steps. The following listing
shows this all put into place in the reviewsUpdateOne controller.

module.exports.reviewsUpdateOne = function(req, res) {
 if (!req.params.locationid || !req.params.reviewid) {
 sendJsonResponse(res, 404, {
 "message": "Not found, locationid and reviewid are both required"
 });
 return;
 }
 Loc
 .findById(req.params.locationid)
 .select('reviews')
 .exec(
 function(err, location) {
 var thisReview;

Listing 6.10 Updating a subdocument in MongoDB

Find parent
document
Licensed to Mark Watson <nordickan@gmail.com>

197DELETE method: Deleting data from MongoDB
 if (!location) {
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 return;
 } else if (err) {
 sendJsonResponse(res, 400, err);
 return;
 }
 if (location.reviews && location.reviews.length > 0) {
 thisReview = location.reviews.id(req.params.reviewid);
 if (!thisReview) {
 sendJsonResponse(res, 404, {
 "message": "reviewid not found"
 });
 } else {
 thisReview.author = req.body.author;
 thisReview.rating = req.body.rating;
 thisReview.reviewText = req.body.reviewText;
 location.save(function(err, location) {
 if (err) {
 sendJsonResponse(res, 404, err);
 } else {
 updateAverageRating(location._id);
 sendJsonResponse(res, 200, thisReview);
 }
 });
 }
 } else {
 sendJsonResponse(res, 404, {
 "message": "No review to update"
 });
 }
 }
);
};

The five steps for updating are clear to see in this listing: find the document, find the
subdocument, make changes, save, and respond. Once again a lot of the code here’s
error trapping, but it’s vital for creating a stable and responsive API. You really don’t
want to save incorrect data, send the wrong responses, or delete data you don’t want
to. Speaking of deleting data, let’s move on to the final of the four API methods we’re
using: DELETE.

6.6 DELETE method: Deleting data from MongoDB
The DELETE method is, unsurprisingly, all about deleting existing documents or
subdocuments in the database. In the routes for Loc8r we have a DELETE request
for deleting a location, and another for deleting a review. The details are listed in
Table 6.9.

 We’ll start by taking a look at deleting documents.

Find
subdocument

Make changes to
subdocument from
supplied form data

Save parent
document

Return a JSON
response, sending
subdocument object on
basis of successful save
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
6.6.1 Deleting documents in MongoDB

Mongoose makes deleting a document in MongoDB extremely simple by giving us the
method findByIdAndRemove. This method expects just a single parameter—the ID of
the document to be deleted.

 The API should respond with a 404 in case of an error and a 204 in case of success.
The following listing shows this all in place in the locationsDeleteOne controller.

module.exports.locationsDeleteOne = function(req, res) {
 var locationid = req.params.locationid;
 if (locationid) {
 Loc
 .findByIdAndRemove(locationid)
 .exec(
 function(err, location) {
 if (err) {
 sendJsonResponse(res, 404, err);
 return;
 }
 sendJsonResponse(res, 204, null);
 }
);
 } else {
 sendJsonResponse(res, 404, {
 "message": "No locationid"
 });
 }
};

That’s the quick and easy way to delete a document, but you can break it into a two-
step process and find it then delete it if you prefer. This does give you the chance to
do something with the document before deleting if you need to. This would look like
the following code snippet:

Loc
 .findById(locationid)
 .exec(
 function (err, location) {
 // Do something with the document
 Loc.remove(function(err, location){

Table 6.9 Two DELETE requests of the Loc8r API for deleting locations and reviews

Action Method URL path Parameters Example

Delete a specific
location

DELETE /locations locationid http://loc8r.com/api/
locations/123

Delete a specific
review

DELETE /locations/
locationid/
reviews

locationid
reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Listing 6.11 Deleting a document from MongoDB given an ID

Call findByIdAndRemove
method, passing in
locationid

Execute method

Respond with
success or
failure
Licensed to Mark Watson <nordickan@gmail.com>

199DELETE method: Deleting data from MongoDB
 // Confirm success or failure
 });
 }
);

So there’s an extra level of nesting there, but with it comes an extra level of flexibility
should you need it.

6.6.2 Deleting a subdocument from MongoDB

The process for deleting a subdocument is no different from the other work we’ve
done with subdocuments—everything is managed through the parent document. The
steps for deleting a subdocument are

1 Find the parent document.
2 Find the relevant subdocument.
3 Remove the subdocument.
4 Save the parent document.
5 Confirm success or failure of operation.

Actually deleting the subdocument itself is really easy, as Mongoose gives us another
helper method. You’ve already seen that we can find a subdocument by its ID with the
id method like this:

location.reviews.id(reviewid)

Mongoose allows you to chain a remove method to the end of this statement like so:

location.reviews.id(reviewid).remove()

This will delete the subdocument from the array. Remember, of course, that the par-
ent document will need saving after this to persist the change back to the database.
Putting all the steps together—with a load of error trapping—into the reviewsDelete-
One controller looks like the following listing.

module.exports.reviewsDeleteOne = function(req, res) {
 if (!req.params.locationid || !req.params.reviewid) {
 sendJsonResponse(res, 404, {
 "message": "Not found, locationid and reviewid are both required"
 });
 return;
 }
 Loc
 .findById(req.params.locationid)
 .select('reviews')
 .exec(
 function(err, location) {
 if (!location) {

Listing 6.12 Finding and deleting a subdocument from MongoDB

Find relevant
parent document
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application
 sendJsonResponse(res, 404, {
 "message": "locationid not found"
 });
 return;
 } else if (err) {
 sendJsonResponse(res, 400, err);
 return;
 }
 if (location.reviews && location.reviews.length > 0) {
 if (!location.reviews.id(req.params.reviewid)) {
 sendJsonResponse(res, 404, {
 "message": "reviewid not found"
 });
 } else {
 location.reviews.id(req.params.reviewid).remove();
 location.save(function(err) {
 if (err) {
 sendJsonResponse(res, 404, err);
 } else {
 updateAverageRating(location._id);
 sendJsonResponse(res, 204, null);
 }
 });
 }
 } else {
 sendJsonResponse(res, 404, {
 "message": "No review to delete"
 });
 }
 }
);
};

Again, most of the code here’s error trapping; there are seven possible responses the
API could give and only one of them is the successful one. Actually deleting the sub-
document is really easy; you just have to make absolutely sure that you’re deleting the
right one.

 As we’re deleting a review here, which will have a rating associated to it, we also
have to remember to call the updateAverageRating function to recalculate the aver-
age rating for the location. This should only be called if the delete operation is suc-
cessful, of course.

 And that is it. We’ve now built a REST API in Express and Node that can accept
GET, POST, PUT, and DELETE HTTP requests to perform CRUD operations on a Mon-
goDB database.

6.7 Summary
In this chapter we’ve covered

■ The best practices for creating a REST API, including URLs, request methods,
and response codes

Find and
delete
relevant
subdocument
in one step

Save parent
document

Return appropriate
success or failure
response
Licensed to Mark Watson <nordickan@gmail.com>

201Summary
■ How the POST, GET, PUT, and DELETE HTTP request methods map onto com-
mon CRUD operations

■ Mongoose helper methods for creating the helper methods
■ Interacting with the data through Mongoose models, and how one instance of

the model maps directly to one document in the database
■ Managing subdocuments through their parent documents because you cannot

access or save a subdocument in isolation
■ Making the API robust by checking for any possible errors you can think of, so

that a request is never left unanswered

Coming up next in chapter 7 we’re going to see how to use this API from inside the
Express application, finally making the Loc8r site database-driven!
Licensed to Mark Watson <nordickan@gmail.com>

Consuming a REST API:
Using an API from

inside Express
This chapter is an exciting one! Here’s where we tie the front end to the back end
for the first time. We’ll remove the hard-coded data from the controllers, and
end up showing data from the database in the browser instead. On top of this
we’ll push data back from the browser into the database via the API, creating new
subdocuments.

 The technology focus for this chapter is on Node and Express. Figure 7.1 shows
where this chapter fits into the overall architecture and our grand plan.

 In this chapter we’ll discuss how to call an API from within Express, and how to
deal with the responses. We’ll make calls to the API to read from the database and
write to the database. Along the way we’ll look at handling errors, processing data,
and creating reusable code by separating concerns. Toward the end we’ll cover the

This chapter covers
■ Calling an API from an Express application
■ Handling and using data returned by the API
■ Working with API response codes
■ Submitting data from the browser back to

the API
■ Validation and error traps
202

Licensed to Mark Watson <nordickan@gmail.com>

203How to call an API from Express
various layers of the architecture to which we can add validation, and why these differ-
ent layers are useful.

 We’ll start off by looking at how to call an API from the Express application.

7.1 How to call an API from Express
The first part we need to cover is how to call an API from Express. This isn’t actually
limited to our API; the approach can be used to call any API.

 Our Express application needs to be able to call the API URLs that we set up in
chapter 6—sending the correct request method, of course—and then be able to inter-
pret the response. To help with doing this we’ll use a module called request.

7.1.1 Adding the request module to our project

The request module is just like any of the other packages we’ve used so far, and can
be added to our project using npm. To install the latest version and add it to the pack-
age.json file, head to terminal and type the following command:

$ npm install --save request

When npm has finished doing its thing, we can include request into the files that will
use it. In Loc8r we only have one file that needs to make API calls, and that’s the file

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Working with Express

and Node.js to interact

with our API

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 7.1 This chapter will focus on updating the Express application from chapter 4 to
interact with the REST API developed in chapter 6.
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 7 Consuming a REST API: Using an API from inside Express
with all of the controllers for the main server-side application. So right at the top of
locations.js in app_server/controllers add the following line to require request:

var request = require('request');

Now we’re good to go!

7.1.2 Setting up default options

Every API call with request must have a fully qualified URL, meaning that it must
include the full address and not be a relative link. But this URL will be different for
development and live environments.

 To avoid having to make this check in every controller that makes an API call, we
can set a default configuration option once at the top of the controllers file. To use the
correct URL depending on the environment we can use our old friend the NODE_ENV
environment variable.

 Putting this into practice, the top of the controllers file should now look some-
thing like the following listing.

var request = require('request');
var apiOptions = {
 server : "http://localhost:3000"
};
if (process.env.NODE_ENV === 'production') {
 apiOptions.server = "https://getting-mean-loc8r.herokuapp.com";
}

With this in place every call we make to the API can reference apiOptions.server and
will use the correct base URL.

7.1.3 Using the request module

The basic construct for making a request is really simple, being just a single command
taking parameters for options and a callback like this:

Listing 7.1 Adding request and default API options to the locations.js controllers file

Set default server URL
for local development

If application running in production mode set different
base URL; change to be live address of application

request(options, callback)

JavaScript object

defining the request

Function to run when a

response is received
Licensed to Mark Watson <nordickan@gmail.com>

205How to call an API from Express
The options specify everything for the request, including the URL, request method,
request body, and query string parameters. These indeed are the options we’ll be using
in this chapter and they’re detailed in table 7.1.

The following code snippet shows an example of how you might put these together
for a GET request. A GET request shouldn’t have a body to send, but might have query
string parameters.

var requestOptions = {
 url : "http://yourapi.com/api/path",
 method : "GET",
 json : {},
 qs : {
 offset : 20
 }
};

There are many more options that you could specify, but these are the common four,
and the ones we’ll be using in this chapter. For more information on other possible
options, take a look at the reference in the GitHub repository: https://github.com/
mikeal/request.

 The callback function runs when a response comes back from the API, and has
three parameters: an error object, the full response, and the parsed body of the
response. The error object will be null unless an error has been caught. Three pieces
of data are going to be most useful in our code: the status code of the response, the
body of the response, and any error thrown. The following code snippet shows an
example of how you might structure a callback for the request function:

function(err, response, body) {
 if (err) {
 console.log(err);

Table 7.1 Four common request options for defining a call to an API

Option Description Required

url Full URL of the request to be made, including protocol,
domain, path, and URL parameters

Yes

method The method of the request, such as GET, POST, PUT, or
DELETE

No—defaults to GET if not
specified

json The body of the request as a JavaScript object; an
empty object should be sent if no body data is needed

Yes—ensures that the response
body is also parsed as JSON

qs A JavaScript object representing any query string
parameters

No

Define URL of API
call to be made

Set request method

Define body of request,
even if it’s an empty
JSON object

Optionally add any query
string parameters that
might be used by API

If error has been passed
through, do something with it
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/mikeal/request
https://github.com/mikeal/request

206 CHAPTER 7 Consuming a REST API: Using an API from inside Express
 } else if (response.statusCode === 200) {
 console.log(body);
 } else {
 console.log(response.statusCode);
 }
}

The full response object contains a huge amount of information, so we won’t go into
it here. You can always check it out yourself in a console.log statement when we start
adding the API calls into our application.

 Putting the parts together, the skeleton for making API calls looks like the following:

var requestOptions = {
 url : "http://yourapi.com/api/path",
 method : "GET",
 json : {},
 qs : {
 offset : 20
 }
};
request(requestOptions, function(err, response, body) {
 if (err) {
 console.log(err);
 } else if (response.statusCode === 200) {
 console.log(body);
 } else {
 console.log(response.statusCode);
 }
});

Let’s move on and put this theory into practice, and start building the Loc8r control-
lers to use the API we’ve already built.

7.2 Using lists of data from an API: The Loc8r homepage
By now the controllers file that will be doing the work should already have the
request module required in, and some default values set. So now comes the fun
part—let’s update the controllers to call the API and pull the data for the pages from
the database.

 We’ve got two main pages that pull data: the homepage showing a list of locations,
and a Details page giving more information about a specific location. Let’s start at the
beginning and get the data for the homepage from the database.

 The current homepage controller contains just a res.render statement sending
hard-coded data to the view. But the way we want it to work is to render the homepage
after the API has returned some data. The homepage controller is going to have quite
a lot to do anyway, so let’s move this rendering into its own function.

If response status code is 200
(request was successful),
output JSON body of response

If response status wasn’t
200, do something else

Define options
for request

Make request,
sending through
options, and
supplying a callback
function to use
responses as needed
Licensed to Mark Watson <nordickan@gmail.com>

207Using lists of data from an API: The Loc8r homepage
7.2.1 Separating concerns: Moving the rendering into a named function

There are a couple of reasons for moving the rendering into its own named function.
First, we decouple the rendering from the application logic. The process of rendering
doesn’t care where or how it got the data; if it’s given data in the right format it will
use it. Using a separate function helps us get closer to the testable ideal that each
function should do just one thing. An additional bonus related to this is that it
becomes reusable, so we can call it from multiple places.

 The second reason for creating a new function for the homepage rendering is that
the rendering process occurs inside the callback of the API request. As well as mak-
ing the code hard to test, it also makes it hard to read. The level of nesting required
makes for a rather large, heavily indented controller function. As a point of best prac-
tice you should try to avoid these, as they’re hard to read and understand when you
come back to them.

 The first step is to make a new function called renderHomepage in the locations.js file
in the app_server/controllers folder, and move the contents of the homelist controller
into it. Remember to ensure it accepts the req and res parameters too. Listing 7.2 shows
a very snipped down version of what we’re doing here. You can now call this from the
homelist controller, as also shown in the listing, and things will still work as before.

var renderHomepage = function(req, res){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 …
 });
};
module.exports.homelist = function(req, res){
 renderHomepage(req, res);
};

This is a start, but we’re not there yet—we want data!

7.2.2 Building the API request

We’ll get the data we want by asking the API for it, and to do this we need to build the
request. To build the request we need to know the URL, method, JSON body, and
query string to send. Looking back at chapter 6, or indeed the API code itself, we can
see that we need to supply the information shown in table 7.2.

Listing 7.2 Moving the contents of the homelist controller into an external function

Table 7.2 Information needed to make a request to the API for a list of locations

Parameter Value

URL SERVER:PORT/api/locations

Method GET

Include all code from
res.render call here
(snipped down for brevity)

Call new renderHomepage
function from homelist
controller
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 7 Consuming a REST API: Using an API from inside Express
Mapping this information into a request is quite straightforward. As we saw earlier in
the chapter the options for a request are just a JavaScript object. For the time being
we’ll hard-code values for longitude and latitude into the options, as it’s quicker and
easier for testing. Later in the book we’ll make the application location-aware. For
now we’ll choose coordinates close to where the test data is stored. The maximum dis-
tance is set to be 20 kilometers.

 When we make the request we’ll pass through a simple callback function to call the
renderHomepage function so that we don’t leave the browser hanging.

 Putting this into code, into the homelist controller, looks like the following listing.

module.exports.homelist = function(req, res){
 var requestOptions, path;
 path = '/api/locations';
 requestOptions = {
 url : apiOptions.server + path,
 method : "GET",
 json : {},
 qs : {
 lng : -0.7992599,
 lat : 51.378091,
 maxDistance : 20
 }
 };
 request(
 requestOptions,
 function(err, response, body) {
 renderHomepage(req, res);
 }
);
};

If you save this and run the application again, the homepage should display exactly as
before. We might now be making a request to the API, but we’re ignoring the response.

7.2.3 Using the API response data

Seeing as we’re going to the effort of calling the API, the least we can do is use the data
it’s sending back. We can make this more robust later, but we’ll start with making it
work. In making it work we’re going to assume that a response body is returned to the

JSON body null

Query string lng, lat, maxDistance

Listing 7.3 Update the homelist controller to call the API before rendering the page

Table 7.2 Information needed to make a request to the API for a list of locations (continued)

Parameter Value

Set path for API request
(server is already set
at top of file)

Set request options,
including URL, method,
empty JSON body, and
hard-coded query
string parameters

Make request, sending
through request options

Supplying callback to
render homepage
Licensed to Mark Watson <nordickan@gmail.com>

209Using lists of data from an API: The Loc8r homepage
callback, and we can just pass this straight into the renderHomepage function, as high-
lighted in the following listing.

 request(
 requestOptions,
 function(err, response, body) {
 renderHomepage(req, res, body);
 }
);

Seeing as we coded the API, we know that the response body returned by the API should
be an array of locations. The renderHomepage function needs an array of locations to
send to the view, so let’s try just passing it straight through, making the changes high-
lighted in bold in the following listing.

var renderHomepage = function(req, res, responseBody){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 sidebar: "Looking for wifi and a seat? Loc8r helps you find places to

work when out and about. Perhaps with coffee, cake or a pint? Let Loc8r
help you find the place you're looking for.",

 locations: responseBody
 });
};

Can it really be that easy? Try it out in the browser and see what happens. Hopefully
you’ll get something like figure 7.2.

 That looks pretty good, right? We need to do something about how the distance
is displayed, but other than that all of the data is coming through as we wanted.
Plugging in the data was quick and easy because of the work we did upfront design-
ing the views, building controllers based on the views, and developing the model
based on the controllers.

 We’ve made it work. Now we need to make it better. There’s no error trapping yet,
and the distances need some work.

7.2.4 Modifying data before displaying it: Fixing the distances

At the moment the distances in the list are displaying 15 decimal places and no unit
of measurement, so they’re extremely accurate and totally useless! We want to say

Listing 7.4 Update the contents of the homelist controller to use the API response

Listing 7.5 Update the renderHomepage function to use the data from the API

Pass body returned by
request to renderHomepage
function

Add additional
responseBody
parameter to
function
declaration

Remove hard-coded array
of locations and pass
responseBody through instead
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 7 Consuming a REST API: Using an API from inside Express
whether each distance is in meters or kilometers, and round the numbers off to the
nearest meter or to one decimal place of a kilometer. This should be done before
sending the data to the renderHomepage function, as that function should just be
reserved for handling the actual rendering, not sorting out the data.

 To do this we need to loop through the array of returned locations, formatting the
distance value of each one. Rather than doing this inline we’ll create an external func-
tion (in the same file) called _formatDistance that accepts a distance value and
returns it nicely formatted.

 Putting this all together looks like the following listing. Note that the framework of
the homelist controller has been left out in this code snippet to keep things short,
and the request statement still sits inside the controller.

request(
 requestOptions,
 function(err, response, body) {
 var i, data;
 data = body;

Listing 7.6 Adding and using a function to format the distance returned by the API

Figure 7.2 The first look at using data from the database in the browser—it’s pretty close!

Assign returned
body data to a
new variable
Licensed to Mark Watson <nordickan@gmail.com>

211Using lists of data from an API: The Loc8r homepage
 for (i=0; i<data.length; i++) {
 data[i].distance = _formatDistance(data[i].distance);
 }
 renderHomepage(req, res, data);
 }
);

var _formatDistance = function (distance) {
 var numDistance, unit;
 if (distance > 1) {
 numDistance = parseFloat(distance).toFixed(1);
 unit = 'km';
 } else {
 numDistance = parseInt(distance * 1000,10);
 unit = 'm';
 }
 return numDistance + unit;
};

If you make these changes and refresh the page you should see that the distances are
now tidied up a bit and are actually useful, as shown in figure 7.3.

Loop through array,
formatting distance
value of location

Send modified data to
be rendered instead of
original body

If supplied distance is over
1 km, round to one decimal
place and add km unit

Otherwise convert to meters
and round to nearest meter
before adding m unit

Figure 7.3 The homepage is looking better again after formatting the distances returned by the API.
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 7 Consuming a REST API: Using an API from inside Express
That’s better; the homepage is now looking more like we want it. For extra credit you
can add some error trapping to the _formatDistance function to make sure that a
distance parameter has been passed, and that it’s a number.

7.2.5 Catching errors returned by the API

So far we’ve assumed that the API is always going to return an array of data along with
a 200 success code. But this isn’t necessarily the case. We coded the API to return a 200
status even if no locations are found nearby. As things stand, when this happens the
homepage will display without any content in the central area. A far better user expe-
rience will be to output a message to the user that there are no places nearby.

 We also know that our API can give 404 errors, so we’ll need to make sure we han-
dle these appropriately. We don’t really want to show a 404 to the user in this case,
because the error will not be due to the homepage itself being missing. The better
option again here is to send a message to the browser in the context of the homepage.

 Handling these scenarios shouldn’t be too difficult; let’s see how to do it, starting
with the controller.

MAKING THE REQUEST CALLBACK MORE ROBUST

One of the main reasons for catching errors is to make sure that they don’t cause code
to fail. The first point of weakness is going to be in the request callback where we’re
manipulating the response before sending the data off to be rendered. This is fine if
the data is always going to be consistent, but we don’t have that luxury.

 The request callback currently runs a for loop to format the distances no matter
what data is returned by the API. We should really only run this when the API returns a
200 code and some results.

 The following listing shows how we can easily achieve this by adding in a simple if
statement, checking the status code and the length of the returned data.

request(
 requestOptions,
 function(err, response, body) {
 var i, data;
 data = body;
 if (response.statusCode === 200 && data.length) {
 for (i=0; i<data.length; i++) {
 data[i].distance = _formatDistance(data[i].distance);
 }
 }
 renderHomepage(req, res, data);
 }
);

Updating this piece of code should prevent this callback from falling over and throw-
ing an error if the API responds with a status code other than 200. The next link in the
chain is the renderHomepage function.

Listing 7.7 Validate that the API has returned some data before trying to use it

Only run loop to
format distances if API
returned a 200 status
and some data
Licensed to Mark Watson <nordickan@gmail.com>

213Using lists of data from an API: The Loc8r homepage
DEFINING OUTPUT MESSAGES BASED ON THE RESONSE DATA

Just like the request callback, our original focus for the renderHomepage function is
to make it work when passed an array of locations to display. Now that this might be
sent different data types we need to make it handle the possibilities appropriately.

 The response body could be one of three things:

■ An array of locations
■ An empty array, when no locations are found
■ A string containing a message when the API returns an error

We already have the code in place to deal with an array of locations, so we need to
address the other two possibilities. When catching these errors we also want to set a
message that can be sent to the view.

 To do this we need to update the renderHomepage function to also do the following:

■ Set a variable container for a message.
■ Check to see whether the response body is an array; if not, set an appropriate

message.
■ If the response is an array, set a different message if it’s empty (that is, no loca-

tions are returned).
■ Send the message to the view.

The following listing shows how this looks in code.

var renderHomepage = function(req, res, responseBody){
 var message;
 if (!(responseBody instanceof Array)) {
 message = "API lookup error";
 responseBody = [];
 } else {
 if (!responseBody.length) {
 message = "No places found nearby";
 }
 }
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 sidebar: "Looking for wifi and a seat? Loc8r helps you find places to

work when out and about. Perhaps with coffee, cake or a pint? Let Loc8r
help you find the place you're looking for.",

 locations: responseBody,
 message: message
 });
};

Listing 7.8 Outputting messages if the API doesn’t return location data

Define a variable
to hold a message

If response isn’t array, set
message, and set responseBody
to be empty array

If response is array with
no length, set message

Add message to variables
to send to view
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 7 Consuming a REST API: Using an API from inside Express
The only surprise in there is when we set the responseBody to be an empty array if
it was originally passed through as a string. We’ve done this to prevent the view
from throwing an error. The view expects an array to be sent in the locations vari-
able; it effectively ignores it if an empty array is sent, but will throw an error if a
string is sent.

 The last link in this chain is to update the view to display a message when one
is sent.

UPDATING THE VIEW TO DISPLAY THE ERROR MESSAGES

So we’re catching the errors from the API, and we’re now also working with them to
pass something back to the user. The final step is to let the user see the message by
adding a placeholder into the view template.

 We don’t need to do anything fancy here—a simple div with a class of error to con-
tain any messages will suffice. The following listing shows the block content section of
the homepage view locations-list.jade in app_server/views.

block content
 #banner.page-header
 .row
 .col-lg-6
 h1= pageHeader.title
 small #{pageHeader.strapline}
 .row
 .col-xs-12.col-sm-8
 .error= message
 .row.list-group
 each location in locations
 .col-xs-12.list-group-item
 h4
 a(href="/location")= location.name
 small
 +outputRating(location.rating)
 span.badge.pull-right.badge-default= location.distance
 p.address= location.address
 p
 each facility in location.facilities
 span.label.label-warning= facility

 .col-xs-12.col-sm-4
 p.lead= sidebar

That’s pretty easy—basic, but easy. It will certainly do for now. All that’s left is to test it.

TESTING THE API ERROR TRAPPING

As with any new code, we now need to make sure that it works. A really easy way to test
this is by changing the query string values that we’re sending in the requestOptions.

Listing 7.9 Update the view to display an error message when needed

Add a div into main
content area and have
it display a message if
one is sent
Licensed to Mark Watson <nordickan@gmail.com>

215Using lists of data from an API: The Loc8r homepage
 To test the “no places found nearby” trap we can either set the maxDistance to a
very small number (remembering that it’s specified in kilometers), or set the lng and
lat to a point where there are no locations. For example

requestOptions = {
 url : apiOptions.server + path,
 method : "GET",
 json : {},
 qs : {
 lng : 1,
 lat : 1,
 maxDistance : 0.002
 }
};

You can use a similar tactic to test the 404 error. The API expects all of the query
string parameters to be sent, and will return a 404 if one of them is missing. So to
quickly test the code you can just comment one of them out as shown in the follow-
ing code snippet:

requestOptions = {
 url : apiOptions.server + path,
 method : "GET",
 json : {},
 qs : {
 // lng : -0.7992599,
 lat : 51.378091,
 maxDistance : 20
 }
};

Fixing an interesting bug
Did you try testing the API error trapping by setting lng or lat to 0? You should have
been expecting to see the “No places found nearby” message, but instead saw “API
lookup error.” This is due to a bug in the error trapping in our API code.

In the locationsListByDistance controller, check to see whether the lng and lat
query string parameters have been omitted by using a generic “falsey” JavaScript
test. Our code simply has this: if (!lng || !lat).

In falsey tests like this, JavaScript looks for any of the values that it considers to be
false, such as an empty string, undefined, null, and, importantly for us, 0. This intro-
duces an unexpected bug into our code. If someone happened to be on the equator
or on the Prime Meridian (that’s the Greenwich Mean Time line) they’d receive an
API error.

This can be fixed by verifying the falsey test to say, “If it’s false but not zero.” In code
this looks like this: if ((!lng && lng!==0) || (!lat && lat!==0)) .

Updating your controller in the API will remove this bug.

Change query string values
sent in request to get no
results returned

Comment out one query
string parameter in request
to help test what happens
when API returns 404
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 7 Consuming a REST API: Using an API from inside Express
Do these two things one at a time and refresh the homepage to see the different mes-
sages coming through. These are shown in figure 7.4.

 That shows the homepage set up nicely. Our Express application is querying the
API we built, which pulls data from the MongoDB database and passes it back to the
application. When the application gets a response from the API, it works out what to
do with it and either shows the data or an error message in the browser.

 Now let’s do the same thing for the Details page, this time working with single
instances of data.

7.3 Getting single documents from an API: The Loc8r
Details page
The Details page should display all of the information we have about a specific loca-
tion, from the name and address, to ratings, reviews, facilities, and a location map. At
the moment this is using data hard-coded into the controller, and looks like figure 7.5.

 In this section we’ll update the application to allow us to specify which location we
want the details for, get the details from the API, and output them to the browser.
We’ll also add in some error trapping, of course.

7.3.1 Setting URLs and routes to access specific MongoDB documents

The current path we have to the Details page is just /location. This doesn’t offer a
way to specify which location we want to look at. To address this we can borrow the

Figure 7.4 Showing the error message in the views after trapping the errors being returned by the API
Licensed to Mark Watson <nordickan@gmail.com>

217Getting single documents from an API: The Loc8r Details page

id
o
gle
approach from the API routes, where we specify the ID of the location document as a
URL parameter.

 The API route for a single location is /api/locations/:locationid. We can do the
same thing for the main Express application and update the route to contain the
locationid parameter. The main application routes for locations are in locations.js in
the /routes folder. The following code snippet shows the simple change needed to
update the location detail route to accept the locationid URL parameter:

router.get('/', ctrlLocations.homelist);
router.get('/location/:locationid', ctrlLocations.locationInfo);
router.get('/location/review/new', ctrlLocations.addReview);

Okay, great … but where do we get the IDs of the locations from? Thinking about the
application as a whole, the homepage is the best place to start, as that’s where the
links for the Details page come from.

Figure 7.5 The Details page as it is now, using data hard-coded into the controller

Add location
parameter t
route for sin
location
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 7 Consuming a REST API: Using an API from inside Express
 When the API for the homepage returns an array of locations, each location object
contains its unique ID. This entire object is already passed to the view, so it shouldn’t
be too difficult to update the homepage view to add this ID as a URL parameter.

 It’s not difficult at all in fact! The following listing shows the little change that
needs to be made in the locations-list.jade file to append the unique ID of each loca-
tion to the link through to the Details page.

block content
 #banner.page-header
 .row
 .col-lg-6
 h1= pageHeader.title
 small #{pageHeader.strapline}
 .row
 .col-xs-12.col-sm-8
 .error= message
 .row.list-group
 each location in locations
 .col-xs-12.list-group-item
 h4
 a(href="/location/#{location._id}")= location.name
 small
 +outputRating(location.rating)
 span.badge.pull-right.badge-default= location.distance
 p.address= location.address
 p
 each facility in location.facilities
 span.label.label-warning= facility

 .col-xs-12.col-sm-4
 p.lead= sidebar

If only everything in life was that easy. The homepage now contains unique links for
each of the locations, and they all click through to the Details page. Now we just need
to make them show the correct data.

7.3.2 Separating concerns: Moving the rendering into
a named function

Just like we did for the homepage, we’ll move the rendering of the Details page into
its own named function. Again, this is to keep the rendering functionality separate
from the API call and data processing.

 The following listing shows a trimmed-down version of the new renderDetailPage
function, and how it’s called from the locationInfo controller.

Listing 7.10 Update the list view to add the location ID to the relevant links

As each location in array is
looped through, pull unique

ID from object and append it
to href for link to Details page
Licensed to Mark Watson <nordickan@gmail.com>

219Getting single documents from an API: The Loc8r Details page
var renderDetailPage = function (req, res) {
 res.render('location-info', {
 title: 'Starcups',
 ...
 });
};
module.exports.locationInfo = function(req, res){
 renderDetailPage(req, res);
};

Now we’re set up with a nice, clear controller, ready to query the API.

7.3.3 Querying the API using a unique ID from a URL parameter

The URL for the API call needs to contain the ID of the location. Our Details page now
has this ID as the URL parameter locationid, so we can get the value of this using
req.params and add it to the path in the request options. The request is a GET
request, and as such the json value will be an empty object.

 Knowing all of this we can use the pattern we created in the homepage controller
to build and make the request to the API. We’ll call the renderDetailPage function
when the API responds. All of this is shown together in the following listing.

module.exports.locationInfo = function(req, res){
 var requestOptions, path;
 path = "/api/locations/" + req.params.locationid;
 requestOptions = {
 url : apiOptions.server + path,
 method : "GET",
 json : {}
 };
 request(
 requestOptions,
 function(err, response, body) {
 renderDetailPage(req, res);
 }
);
};

If you run this now you’ll see the same static data as before, as we’re not yet passing the
data returned from the API into the view. You can add some console log statements into
the request callback if you want to have a quick look at what’s being returned.

Listing 7.11 Move the contents of the locationInfo controller into an external
function

Listing 7.12 Update the locationInfo controller to call the API

Create new function called
renderDetailPage and move
all contents of locationInfo
controller into it

Call new function from
controller, remembering to pass
it req and res parameters

Get locationid parameter
from URL and append it
to API path

Set all request options
needed to call API

Call renderDetailPage
function when API has
responded
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 7 Consuming a REST API: Using an API from inside Express

n

 If you’re happy that all is working as it should, it’s time for us to pass the data into
the view.

7.3.4 Passing the data from the API to the view

We’re currently assuming that the API is returning the correct data—we’ll get around
to error trapping soon. This data only needs a small amount of preprocessing: the
coordinates are returned from the API as an array, but the view needs them to be
named key-value pairs in an object.

 The following listing shows how we can do this in the context of the request state-
ment, transforming the data from the API before sending it to the renderDetailPage
function.

request(
 requestOptions,
 function(err, response, body) {
 var data = body;
 data.coords = {
 lng : body.coords[0],
 lat : body.coords[1]
 };
 renderDetailPage(req, res, data);
 }
);

The next logical step is to update the renderDetailPage function to use this data
rather than the hard-coded data. To make this work we need to make sure that the
function accepts the data as a parameter, and then update the values passed through
to the view as required. The following listing highlights the changes needed in bold.

var renderDetailPage = function (req, res, locDetail) {
 res.render('location-info', {
 title: locDetail.name,
 pageHeader: {title: locDetail.name},
 sidebar: {
 context: 'is on Loc8r because it has accessible wifi and space to sit

down with your laptop and get some work done.',
 callToAction: 'If you\'ve been and you like it - or if you don\'t -

please leave a review to help other people just like you.'
 },
 location: locDetail
 });
};

Listing 7.13 Preprocessing data in the controller

Listing 7.14 Update renderDetailPage to accept and use data from the API

Create copy of returned
data in new variable

Reset coords property to be an
object, setting lng and lat using
values pulled from API response

Send transformed
data to be rendered

Add new parameter for
data in function definitio

Reference specific items of
data as needed in function

Pass full locDetail data object
to view, containing all details
Licensed to Mark Watson <nordickan@gmail.com>

221Getting single documents from an API: The Loc8r Details page
We’re able to take the approach of sending the full object through like this, because
we originally based the data model on what was needed by the view and the controller.
If you run the application now you should see that the page loads with the data pulled
from the database. A screenshot of this is shown in figure 7.6.

 The eagle-eyed reader will have noticed a problem with the screenshot in figure 7.6.
The review doesn’t have a date associated with it.

7.3.5 Debugging and fixing the view errors

So, we have a problem with the view. It’s not outputting the review date correctly. Per-
haps we shouldn’t have gotten overconfident about the fact that our data model was
based on the view and controller? Let’s take a look at what’s going on.

 Starting with a look at the Jade file location—info.jade in app_server/views—we
can isolate the line that outputs this section:

small.reviewTimestamp #{review.timestamp}

Figure 7.6 Details page pulling in data from MongoDB via the API
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 7 Consuming a REST API: Using an API from inside Express
Now we need to check the schema to see if we changed something when defining the
model. The schema for reviews is in locations.js in app_api/models, and looks like the
following code snippet:

var reviewSchema = new mongoose.Schema({
 author: String,
 rating: {type: Number, required: true, min: 0, max: 5},
 reviewText: String,
 createdOn: {type: Date, "default": Date.now}
});

Ah yes, here we can see that we changed the timestamp to be called createdOn, which
is a more accurate name for the path.

 Updating the Jade file using these values looks like the following:

small.reviewTimestamp #{review.createdOn}

Making these changes and refreshing the page gives us figure 7.7.

Success! Of sorts. The date is now showing, but not quite in the user-readable format
that we’d like to see. We should be able to fix this using Jade.

FORMATTING DATES USING A JADE MIXIN

Back when we were setting up the views we used a Jade mixin to output the rating stars
based on the rating number provided. In Jade, mixins are like functions—you can
send parameters when you call them, run some JavaScript code if you wish, and have
them generate some output.

 Formatting dates is something that could be useful in a number of places, so let’s
create a mixin to do it. Our outputRating mixin is in the sharedHTMLfunc-
tions.jade file in app_server/views/_includes. Let’s add a new mixin called format-
Date to that file.

 In this mixin we’ll largely use JavaScript to convert the date from the long ISO for-
mat into the more readable format of Day Month Year, for example 24 June 2014. The
ISO date object actually arrives here as a string, so the first thing to do is convert it into

Figure 7.7 Pulling the name and date directly from the returned data; the format of the date isn’t very
user friendly
Licensed to Mark Watson <nordickan@gmail.com>

223Getting single documents from an API: The Loc8r Details page

ar

nam
m

a JavaScript date object. When that’s done we’ll be able to use various JavaScript date
methods to access the various parts of the date.

 The following listing shows how this is done in a mixin—remember that lines of
JavaScript in a Jade file must be prefixed with a dash.

mixin formatDate(dateString)
 -var date = new Date(dateString);
 -var monthNames = ["January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"];
 -var d = date.getDate();
 -var m = monthNames[date.getMonth()];
 -var y = date.getFullYear();
 -var output = d + ' ' + m + ' ' + y;
 =output

That mixin will now take a date and process it to output in the format that we want. As
the mixin will render the output, we simply need to call it from the correct place in the
code. The following code demonstrates this, again based on the same two isolated lines
from the whole template:

span.reviewAuthor #{review.author.displayName}
small.reviewTimestamp
 +formatDate(review.createdOn)

The call to the mixin should be placed on a new line, so you’ll need to remember to
take care with the indentation—the date should be nested inside the <small> tag.

 Now the Details page is complete and looking like it should, as shown in figure 7.8.
 Excellent; that’s exactly what we wanted. If the URL contains an ID that’s found in

the database then the page displays nicely. But what happens if the ID is wrong, or isn’t
found in the database?

7.3.6 Creating status-specific error pages

If the ID from the URL isn’t found in the database, the API will return a 404 error. This
error originates from the URL in the browser, so the browser should also return a
404—the data for the ID wasn’t found, so in essence the page cannot be found.

 Using techniques we’ve already seen in this chapter we can quite easily catch when
the API returns a 404 status, using response.statusCode in the request callback. We
don’t really want to deal with it inside the callback, so we’ll just pass the flow into a
new function that we can call, _showError.

Listing 7.15 Create a Jade mixin to format the dates

Convert date provided
from string to date object

Set up
ray of
values

for
es of

onths
Use JavaScript data methods to extract
and convert required parts of date

Put parts back together in desired
format and render output

Call mixin from its own line, passing
creation date of review; make sure
that new line is correctly indented
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 7 Consuming a REST API: Using an API from inside Express
CATCHING ALL ERROR CODES

Even better than just trapping for a 404 response, we can flip it over and look for any
response from the API that isn’t a 200 success response. We can pass the status code to
the _showError function and let it figure out what to do. To enable the _showError
function to keep control we’ll also pass through the req and res objects.

 The following listing shows how to update the request callback to render the
Details page for successful API calls, and route all other errors to the catch-all function
_showError.

request(
 requestOptions,
 function(err, response, body) {
 var data = body;
 if (response.statusCode === 200) {

Listing 7.16 Trap any errors caused by the API not returning a 200 status

Figure 7.8 The complete Details page. The ID of the location is passed from the URL to the API, and
the API retrieves the data and passes it back to the page to be formatted and rendered correctly.

Check for successful
response from API
Licensed to Mark Watson <nordickan@gmail.com>

225Getting single documents from an API: The Loc8r Details page

Use
para

re
 data.coords = {
 lng : body.coords[0],
 lat : body.coords[1]
 };
 renderDetailPage(req, res, data);
 } else {
 _showError(req, res, response.statusCode);
 }
 }
);

Great, so now we’ll only try to render the Details page if we have something from the
API to display. So what shall we do with the errors? Well, for now we just want to send a
message to the users letting them know that there’s a problem.

DISPLAYING ERROR MESSAGES

We don’t want to do anything fancy here, just let the user know that something is
going on and give them some indication of what it is. We have a generic Jade template
already that’s suitable for this; in fact, it’s called generic-text.jade and expects just a
title and some content. That will do us.

 If you wanted to you could create a unique page and layout for each type of error,
but for now we’re good with just catching it and letting the user know. As well as let-
ting the user know, we should also let the browser know by returning the appropriate
status code when the page is displayed.

 Listing 7.17 shows what the _showError function looks like, accepting a status
parameter that, as well as being passed through as the response status code, is also
used to define the title and content of the page. Here we have a specific message for a
404 page and a generic message for any other errors that are passed.

var _showError = function (req, res, status) {
 var title, content;
 if (status === 404) {
 title = "404, page not found";
 content = "Oh dear. Looks like we can't find this page. Sorry.";
 } else {
 title = status + ", something's gone wrong";
 content = "Something, somewhere, has gone just a little bit wrong.";
 }
 res.status(status);
 res.render('generic-text', {
 title : title,
 content : content
 });
};

Listing 7.17 Create an error-handling function for API status codes that aren’t 200

Continue with
rendering page if
check successful

If check wasn’t successful,
pass error through to
_showError function

If status passed
through is 404, set title

and content for page

Otherwise set a
generic catch-all

message

 status
meter
to set

sponse
status Send data to view

to be compiled and
sent to browser
Licensed to Mark Watson <nordickan@gmail.com>

226 CHAPTER 7 Consuming a REST API: Using an API from inside Express
This function can be reused from any of the controllers where we might find it useful.
It’s also built in such a way that we can easily add new, specific error messages for par-
ticular codes if we want to.

 You can test the 404 error page by just slightly changing the location ID in the URL,
and you should see something like figure 7.9.

 That brings us to the end of the Details page. We can successfully display all of the
information from the database for a given location, and also display a 404 message to
the visitor if the location can’t be found.

 Following through the user journey, our next and final task is to add the ability to
add reviews.

7.4 Adding data to the database via the API:
Add Loc8r reviews
In this section we’ll see how to take form data submitted by a user, process it, and post
it to the API. Reviews are added to Loc8r by clicking the Add Review button on a loca-
tion’s Details page, filling in a form, and submitting it. At least that’s the plan anyway.
We currently have the screens to do this, but not the underlying functionality to make
it happen. We’re going to change that right now.

 Here’s a quick list of the things we’re going to need to do:

1 Make the review form aware of which location the review will be for.
2 Create a route for the form to POST to.

Figure 7.9 The 404 error page displayed when the location ID in the URL isn’t found in the database
by the API
Licensed to Mark Watson <nordickan@gmail.com>

227Adding data to the database via the API: Add Loc8r reviews
3 Send the new review data to the API.
4 Show the new review in place on the Details page.

Note that at this stage in the development we don’t have an authentication method in
place, so we have no concept of user accounts.

7.4.1 Setting up the routing and views

The first item on our list is really about getting the ID of the location to the Add
Review page in a way that we can use it when the form is submitted. After all, this is the
unique identifier that the API will need to add a review.

 The best approach for getting the ID to the page will be to contain it in the URL,
like we did for the Details page itself.

DEFINING THE TWO REVIEW ROUTES

Getting the location ID into the URL will mean changing the route of the Add Review
page to add a locationid parameter. While we’re at it, we can deal with the second
item on the list and create a route for the form to POST to. Ideally, this should have
the same path as the review form, and be associated with a different request method
and different controller.

 The following code snippet shows how we can update the routes in index.js in the
/routes folder:

router.get('/', ctrlLocations.homelist);
router.get('/location/:locationid', ctrlLocations.locationInfo);
router.get('/location/:locationid/reviews/new', ctrlLocations.addReview);
router.post('/location/:locationid/reviews/new', ctrlLocations.doAddReview);

Those are all of the routes we’ll need for this section, but restarting the application
will fail because the POST route references a controller that doesn’t exist. We can fix
this by adding a placeholder function into the controller file. Add the following code
snippet into locations.js in app_server/controllers and the application will fire up suc-
cessfully once again:

module.exports.doAddReview = function(req, res){
};

Now the application will start again, but if you click through to the Add Review page
you’ll get an error. Oh yes, we need to update the link to the Add Review page from
the Details page.

Insert locationid parameter into
existing route for review form

Create new route on same URL but using POST
method and referencing different controller
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 7 Consuming a REST API: Using an API from inside Express
FIXING THE LOCATION DETAIL VIEW

We need to add the location ID to the href specified in the Add Review button on the
Details page. The controller for this page passes through the full data object as returned
from the API, which, along with the rest of the data, will contain the _id field. This
data object is called location when passed to the view.

 The following code snippet shows a single line from the location-info.jade tem-
plate in the app_server/views folder. This shows how to add the location ID to the link
for the Add Review button.

a.btn.btn-default.pull-right(href="/location/#{location._id}/reviews/new")
| Add review

With that updated and saved, we can now click through to a review form for each indi-
vidual location. There are just a couple of issues here: the form still doesn’t post any-
where, and the name of the location is currently hard-coded into the controller.

UPDATING THE REVIEW FORM VIEW

Next we want to make sure that the form posts to the correct URL. When the form is
submitted now, it just makes a GET request to the /location URL as shown in the fol-
lowing code snippet:

form.form-horizontal(action="/location", method="get", role="form")

This line is taken from the location-review-form.jade file in app_server/views. The
/location path is no longer valid in our application, and we also want to use a POST
request instead of a GET request. The URL we want to post the form to is actually the
same as the URL for the Add Review: /location/:locationid/reviews/new.

 A really easy way to achieve this is to set the action of the form to be an empty
string, and set the method to be post, as shown in the following code snippet:

form.form-horizontal(action="", method="post", role="form")

Now when the form is submitted it will make a POST request to the URL of the cur-
rent page.

CREATING A NAMED FUNCTION FOR RENDERING THE ADD REVIEW PAGE

As with the other pages, we’ll move the rendering of the page into a separate named
function. This allows us the separation of concerns we’re looking for when coding,
and prepares us for the next steps.

 The following listing shows how this should look in the code.

Licensed to Mark Watson <nordickan@gmail.com>

229Adding data to the database via the API: Add Loc8r reviews

fo

var renderReviewForm = function (req, res) {
 res.render('location-review-form', {
 title: 'Review Starcups on Loc8r',
 pageHeader: { title: 'Review Starcups' }
 });
};

/* GET 'Add review' page */
module.exports.addReview = function(req, res){
 renderReviewForm(req, res);
};

This might look a little odd, creating a named function and then having the call to that
function be the only thing in the controller, but it will be very useful in just a moment.

GETTING THE LOCATION DETAIL

On the Add Review page we want to display the name of the location in order to
retain a sense of context for the user. This means we want to hit the API again, give it
the ID of the location, and get the information back to the controller and into the
view. We’ve just done this for the Details page, albeit with a different controller. If we
approach this right we shouldn’t have to write much new code.

 Rather than duplicating the code and having to maintain two pieces, we’ll go for a
DRY (don’t repeat yourself) approach. The Details page and the Add Review page
both want to call the API to get the location information and then do something with
it. So why not create a new function that does just this? We’ve already got most of the
code in the locationInfo controller, we just need to change how it calls the final
function. Instead of calling the renderDetailPage explicitly, we’ll make it a callback.

 So we’ll have a new function called getLocationInfo that will make the API
request. Following a successful request, this should then invoke whatever callback
function was passed. The locationInfo controller will now call this function, passing
a callback function that simply calls the renderDetailPage function. Similarly, the
addReview controller can also call this new function, passing it the renderReviewForm
function in the callback.

 This gives us one function making the API calls that will have different outcomes
depending on the callback function sent through. The following listing shows this all
in place.

var getLocationInfo = function (req, res, callback) {
 var requestOptions, path;
 path = "/api/locations/" + req.params.locationid;
 requestOptions = {
 url : apiOptions.server + path,
 method : "GET",

Listing 7.18 Create an external function to hold the contents of the addReview
controller

Listing 7.19 Create a new reusable function to get location information

Create new function render-
ReviewForm and move contents
of addReview controller into it

Call new function from within
addReview controller, passing
through same parameters

New function getLocationIn
accepts callback as third
parameter and contains all
code that used to be in
locationInfo controller
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 json : {}
 };
 request(
 requestOptions,
 function(err, response, body) {
 var data = body;
 if (response.statusCode === 200) {
 data.coords = {
 lng : body.coords[0],
 lat : body.coords[1]
 };
 callback(req, res, data);
 } else {
 _showError(req, res, response.statusCode);
 }
 }
);
};

module.exports.locationInfo = function(req, res){
 getLocationInfo(req, res, function(req, res, responseData) {
 renderDetailPage(req, res, responseData);
 });
};

module.exports.addReview = function(req, res){
 getLocationInfo(req, res, function(req, res, responseData) {
 renderReviewForm(req, res, responseData);
 });
};

TIP If this approach of creating your own callback handlers is new or confus-
ing to you, take a look online at appendix D, particularly section D.4, “Under-
standing JavaScript callbacks.”

And there we have a nice DRY approach to the problem. It would have been very easy
to just copy and paste the API code from one controller to another, which, if we’re
being honest, is absolutely fine if you’re figuring out your code and what you need to
make it work. But when you see two pieces of code doing pretty much exactly the
same thing, always ask yourself how you can make it DRY—it makes your code cleaner
and easier to maintain.

DISPLAYING THE LOCATION DETAIL

We’re forgetting one thing here. The function for rendering the form still contains
hard-coded data instead of using the data from the API. A quick tweak to the function
will change that, as is illustrated in the following listing.

Following successful API
response, invoke callback
instead of named function

In locationInfo
controller call
getLocationInfo
function, passing a
callback function
that will call
renderDetailPage
function upon
completion

Also call
getLocationInfo
from addReview
controller, but
this time pass
renderReviewForm
in callback
Licensed to Mark Watson <nordickan@gmail.com>

231Adding data to the database via the API: Add Loc8r reviews

var renderReviewForm = function (req, res, locDetail) {
 res.render('location-review-form', {
 title: 'Review ' + locDetail.name + ' on Loc8r',
 pageHeader: { title: 'Review ' + locDetail.name }
 });
};

And with that the Add Review page is looking good once again, displaying the correct
name based on the ID found in the URL, as shown in figure 7.10.

7.4.2 POSTing the review data to the API

By now we have the Add Review page set up and ready to go, including the posting
destination. We’ve even got the route and controller for the POST action in place. The
controller, doAddReview, is just an empty placeholder, though.

 The plan for this controller is as follows:

1 Get the location ID from the URL to construct the API request URL.
2 Get the data posted in the form and package it up for the API.

Listing 7.20 Removing hard-coded data from the renderReviewForm function

Figure 7.10 Add Review page pulling in the location name via the API, based on the ID
contained in the URL

Update renderReview-
Form function to accept
new parameter
containing data

Swap out hard-coded
data for data references
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 7 Consuming a REST API: Using an API from inside Express
3 Make the API call.
4 Show the new review in place if successful.
5 Display an error page if not successful.

The only part of this that we haven’t seen yet is passing the data to the API; so far we’ve
just passed an empty JSON object to ensure that the response is formatted as JSON.
Now we’re going to take the form data and pass it to the API in the format it expects.
We have three fields on the form, and three references that the API expects. All we
need to do is map one to the other. The form fields and model paths are shown in
table 7.3.

Turning this mapping into a JavaScript object is pretty straightforward. We just need
to create a new object containing the variable names that the API expects, and use
req.body to get the values from the posted form. The following code snippet shows
this in isolation, and we’ll put it into the controller in just a moment:

var postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
};

Now that we’ve seen how that works, we can add it into the standard pattern we’ve
been using for these API controllers and build out the doAddReview controller.
Remember that the status code the API returns for a successful POST operation is 201,
not the 200 we’ve been using so far with the GET requests. The following listing shows
the doAddReview controller using everything we’ve learned so far.

module.exports.doAddReview = function(req, res){
 var requestOptions, path, locationid, postdata;
 locationid = req.params.locationid;
 path = "/api/locations/" + locationid + '/reviews';
 postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
 };

Table 7.3 Mapping the names of the form fields to the model paths expected by the API

Form field API references

name author

rating rating

review reviewText

Listing 7.21 doAddReview controller used to post review data to the API

Get location ID from URL
to construct API URL

Create data object
to send to API using
submitted form data
Licensed to Mark Watson <nordickan@gmail.com>

233Protecting data integrity with data validation
 requestOptions = {
 url : apiOptions.server + path,
 method : "POST",
 json : postdata
 };
 request(
 requestOptions,
 function(err, response, body) {
 if (response.statusCode === 201) {
 res.redirect('/location/' + locationid);
 } else {
 _showError(req, res, response.statusCode);
 }
 }
);
};

Now we can create a review and submit it, and then see it on the Details page, as
shown in figure 7.11.

 Now that it all works, let’s take a quick look at adding form validation.

7.5 Protecting data integrity with data validation
Whenever an application accepts external input and adds it to a database you need to
make sure that the data is complete and accurate—as much as you can, or as much as
it makes sense to. For example, if someone is adding an email address you should
check that it’s a valid email format, but you can’t programmatically validate that it’s a
real email address.

Set request options, including path, setting
POST method and passing submitted form
data into json parameter

Make the
request

Redirect to Details page if
review was added successfully
or show an error page if API
returned an error

Figure 7.11 After filling in and submitting the review form, the review is shown in situ on the Details page.
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 7 Consuming a REST API: Using an API from inside Express
In this section we’re going to look at the ways we can add validation to our applica-
tion, to prevent people from submitting empty reviews. There are three places that we
can add validation:

■ At the schema level, using Mongoose, before the data is saved
■ At the application level, before the data is posted to the API
■ At the client side, before the form is submitted

We’ll look at each of these in turn, and add some validation at every step.

7.5.1 Validating at the schema level with Mongoose

Validating the data before saving it is arguably the most important stage. This is the
final step, the one last chance to make sure that everything is as correct as it can be.
This stage is particularly important when the data is exposed through an API; if we
don’t have control over all of the applications using the API we can’t guarantee the
quality of the data that we’re going to get. So it’s important to ensure that the data is
valid before saving it.

UPDATING THE SCHEMA

When we first set up the schema in chapter 5, we looked at adding some validation
in Mongoose. We set the rating path to be required, but we also want the author
displayName and reviewText to be required. If any of these fields are missing, a
review won’t make sense. Adding this to the schema is simple enough, and looks like
the following listing (the schema is in locations.js in the app_api/model folder).

var reviewSchema = new mongoose.Schema({
 author: {type: String, required: true}
 rating: {type: Number, required: true, min: 0, max: 5},
 reviewText: {type: String, required: true},
 createdOn: {type: Date, "default": Date.now}
});

Once this is saved we can no longer save a review without any review text. We can try,
but we’ll see the error page shown in figure 7.12.

 On the one hand it’s good that we’re protecting the database, but it’s not a great
user experience. We should try to catch that error and let the visitor try again.

CATCHING MONGOOSE VALIDATION ERRORS

If you try to save a document with one or more required paths missing or empty, Mon-
goose will return an error. It does this without having to make a call to the database, as

Listing 7.22 Adding validation to reviews at the schema level

Make each of these
paths a required
field because if any
of them are
missing, a review
won’t make sense

createdOn doesn’t need to be required
because Mongoose automatically populates

it when a new review is created
Licensed to Mark Watson <nordickan@gmail.com>

235Protecting data integrity with data validation
it’s Mongoose itself that holds the schema and knows what is and isn’t required. The
following code snippet shows an example of such an error message:

{
 message: 'Validation failed',
 name: 'ValidationError',
 errors: {
 'reviews.1.reviewText': {
 message: 'Path `reviewText` is required.',
 name: 'ValidatorError',
 path: 'reviewText',
 type: 'required',
 value: ''
 }
 }
}

In the flow of the application this happens inside the callback from the save function.
If we take a look at the save command inside the doAddReview function (in loca-
tions.js in app_api/controllers) we can see where the error bubbles up and where we
set the 400 status. The following code snippet shows this, including a temporary con-
sole log statement to show the output of the error to terminal:

location.save(function(err, location) {
 var thisReview;
 if (err) {
 console.log(err);
 sendJSONresponse(res, 400, err);

Figure 7.12 Error message shown when trying to save a review without any review text, now that the
schema says it’s required

Mongoose validation errors are
returned through error object
following attempted save action
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 7 Consuming a REST API: Using an API from inside Express
 } else {
 updateAverageRating(location._id);
 thisReview = location.reviews[location.reviews.length - 1];
 sendJSONresponse(res, 201, thisReview);
 }
});

Our API uses the sendJSONresponse function to return this message as the response
body, alongside the 400 status. So we can look for this information in our application
by looking at the response body when the API returns a 400 status.

 The place to do this is in the app_server, in the doAddReview function in control-
lers/locations.js, to be precise. When we’ve caught a validation error we want to let
the user try again by redirecting to the Add Review page. So that the page knows that
an attempt has been made, we can pass a flag in the query string.

 The following listing shows this code in place, inside the request statement call-
back for the doAddReview function.

request(
 requestOptions,
 function(err, response, body) {
 if (response.statusCode === 201) {
 res.redirect('/location/' + locationid);
 } else if (response.statusCode === 400 && body.name && body.name ===

"ValidationError") {
 res.redirect('/location/' + locationid + '/reviews/new?err=val');
 } else {
 console.log(body);
 _showError(req, res, response.statusCode);
 }
 }
);

So now when the API returns a validation error we can catch it and send the user back
to the form to try again. Passing a value in the query string means that we can look for
this in the controller that displays the review form, and send a message to the view to
alert the user to the problem.

DISPLAY AN ERROR MESSAGE IN THE BROWSER

To display an error message in the view, we need to send a variable to the view if we see
the err parameter passed in the query string. The renderReviewForm function is
responsible for passing the variables into the view. When it’s called it’s also passed the
req object, which contains the query object, making it quite easy to pass the err
parameter when it exists. The following listing highlights the simple change required
to make this happen.

Listing 7.23 Trapping validation errors returned by the API

Add in check to see if status is
400, if body has a name, and if

that name is ValidationError

If true redirect to review
form, passing an error

flag in query string
Licensed to Mark Watson <nordickan@gmail.com>

237Protecting data integrity with data validation
var renderReviewForm = function (req, res, locDetail) {
 res.render('location-review-form', {
 title: 'Review ' + locDetail.name + ' on Loc8r',
 pageHeader: { title: 'Review ' + locDetail.name },
 error: req.query.err
 });
};

The query object is always part of the req object, regardless of whether it has any con-
tent. This is why we don’t need to error trap this and check that it exists—if the err
parameter isn’t found it will just return undefined.

 All that remains is to do something with this information in the view, letting the
user know what the problem is. We’ll show a message to the user at the top of the
form, if a validation error was bubbled up. To give this some style and presence on
the page we’ll use a Bootstrap alert component; this is just a div with some relevant
classes and attributes. The following code snippet shows the two lines needed added
in place in the location-review-form view:

form.form-horizontal(action="", method="post", role="form")
 - if (error == "val")
 .alert.alert-danger(role="alert") All fields required, please try again

So now when the API returns a validation error we catch this and display a message to
the user. Figure 7.13 shows how this looks.

 This type of validation at the API level is important, and is generally a great place to
start because it always protects a database against inconsistent or incomplete data, no
matter the origin. But the experience for end users isn’t always the best—they have to
submit the form, and it makes a roundtrip to the API before the page reloads with an
error. There’s clearly room for improvement here, and the first step is to perform
some validation at the application level before the data is passed to the API.

7.5.2 Validating at the application level with Node and Express

Validation at the schema level is the backstop, the final line of defense in front of a
database. An application shouldn’t rely solely on this, and you should try to prevent
unnecessary calls to the API, reducing overhead and speeding things up for the user.
One way to do this is to add validation at the application level, checking the submitted
data before sending it to the API.

 In our application, the validation required for a review is pretty simple; we can add
some simple checks to ensure that each of the fields has a value. If this fails then we
redirect the user back to the form, adding the same query string error flag as before.
If the validation checks are successful then we allow the controller to continue into
the request method. The listing on the next page shows the additions needed in the
doAddReview controller in locations.js in the app_server/controllers folder.

Listing 7.24 Update the controller to pass a query string error string to the view

Send new error variable
to view, passing it query
parameter when it exists
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 7 Consuming a REST API: Using an API from inside Express
module.exports.doAddReview = function(req, res){
 var requestOptions, path, locationid, postdata;
 locationid = req.params.locationid;
 path = "/api/locations/" + locationid + '/reviews';
 postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
 };
 requestOptions = {
 url : apiOptions.server + path,
 method : "POST",
 json : postdata
 };
 if (!postdata.author || !postdata.rating || !postdata.reviewText) {
 res.redirect('/location/' + locationid + '/reviews/new?err=val');
 } else {
 request(
 requestOptions,
 function(err, response, body) {

Listing 7.25 Adding some simple validation to an Express controller

Figure 7.13 The validation error message showing in the browser, the end result of a process
kicked off by Mongoose catching the error and returning it

If any of three required data
fields are falsey, then redirect

to Add Review page, appending
query string used to display

error message

Otherwise continue
as before
Licensed to Mark Watson <nordickan@gmail.com>

239Protecting data integrity with data validation

C
fo
mi

v

 if (response.statusCode === 201) {
 res.redirect('/location/' + locationid);
 } else if (response.statusCode === 400 && body.name && body.name ===

"ValidationError") {
 res.redirect('/location/' + locationid + '/reviews/new?err=val');
 } else {
 console.log(body);
 _showError(req, res, response.statusCode);
 }
 }
);
 }
};

The outcome for this will be the same as before—if the review text is missing then the
user gets shown the error message on the Add Review page. The user doesn’t know
that we’re no longer posting data to the API, but it’s one less roundtrip and so it
should be a faster experience. But we can make it even faster with the third tier of val-
idation: browser-based validation.

7.5.3 Validating in the browser with jQuery

Just like application-level validation speeds things up by not requiring a call to the API,
client-side validation in the browser can speed things up by catching an error before
the form is submitted to the application, by removing yet another call. Catching an
error at this point will keep the user on the same page.

 To get JavaScript running in the browser, we need to place it in the public folder in
the application. Express treats the contents of this folder as static files to be down-
loaded to the browser instead of being run on the server. If you don’t have a folder
called javascripts in your public folder already, create one now. Inside this new
folder create a new file called validation.js.

WRITING THE JQUERY VALIDATION

Inside this new validation.js file we’ll put a jQuery function that will do the following:

■ Listen for the submit event of the review form.
■ Check to see that all of the required fields have a value.
■ If one is empty, show an error message like we’ve used in the other types of vali-

dation, and prevent the form from submitting.

We won’t dive into the semantics of jQuery here, assuming you have some familiarity
with it or a similar library. The following listing shows the code to do this.

$('#addReview').submit(function (e) {
 $('.alert.alert-danger').hide();
 if (!$('input#name').val() || !$('select#rating').val() ||

!$('textarea#review').val()) {

Listing 7.26 Creating a jQuery form validation function

Listen for submit
event of review
form

heck
r any
ssing
alues
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 7 Consuming a REST API: Using an API from inside Express
 if ($('.alert.alert-danger').length) {
 $('.alert.alert-danger').show();
 } else {
 $(this).prepend('<div role="alert" class="alert alert-danger">All

fields required, please try again</div>');
 }
 return false;
 }
});

For this to work we need to ensure that the form has an ID of addReview set so that the
jQuery can listen for the correct event. We also need to add this script to the page so
that the browser can run it.

ADDING THE JQUERY TO THE PAGE

We’ll include this jQuery file at the end of the body, along with the other client-side
JavaScript files. These are set in the layout.jade view in app_server/views, right at
the very bottom. Add a new line below the others pointing to the new file, as shown in
the following code snippet:

script(src='/bootstrap/js/bootstrap.min.js')
script(src='/javascripts/validation.js')

That’s all there’s to it. The form will now validate in the browser without the data being
submitted anywhere, removing a page reload and any associated calls to the server.

TIP Client-side validation can seem like it’s all that you need, but the other
types are vital to the robustness of an application. JavaScript can be turned off
in the browser, removing the ability to run this validation, or the validation
could be bypassed and have data posted directly to either the form action
URL or the API endpoint.

7.6 Summary
In this chapter we’ve covered

■ Using the request module to make API calls from Express
■ Making POST and GET requests to API endpoints
■ Separating concerns by keeping rendering functions away from the API

request logic
■ Applying a simple pattern to the API logic in each controller
■ Using the status code of the API response to check for success or failure
■ Applying data validation in three places in the architecture, and when and why

to use each

Coming up next in chapter 8 we’re going to introduce Angular into the mix, and start
playing with some interactive front-end components on top of the Express application.

Show or
inject error

message
onto page
if value is

missing
Prevent form from submitting
if value is missing
Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Adding a dynamic front
end with Angular

AngularJS is one of the most exciting and fastest growing technologies of
our time and is a key part of the MEAN stack. We’ve done a lot of work with
Express so far, which is the server-side framework. Angular is the client-side frame-
work, which enables us to build entire applications that run in the browser.

 We’ll get to know Angular in chapter 8, see what all the fuss is about, and get
into the particular syntax semantics and jargon associated with it. Angular can
have a steep learning curve, but it doesn’t have to. As we get started with Angular
in chapter 8, we’ll see how to use it to build a component for an existing web
page, including calling our REST API to get data.

 Chapters 9 and 10 focus on how to use Angular to build a single page applica-
tion. Building on what you’ve learned in chapter 8, we’ll re-create Loc8r as an
SPA. We’ll focus on best practices throughout, learning how to build a modular
application that is easily maintainable using components that can easily be
reused. By the end of part 3 we will have a fully functioning single page applica-
tion interacting with our REST API to create and read data.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Adding Angular
components to

an Express application
Here it comes. It’s now time to take a look at the final part in the MEAN stack:
Angular! We’re going to look at how to include Angular into the Express applica-
tion, and develop a couple of components to improve our existing Loc8r applica-
tion. As we go we’ll discuss some of the semantics and key technical terms found in
the Angular world. Unlike the other parts of the stack, Angular is opinionated,
meaning that things have to be done in a certain way.

 Figure 8.1 shows where we are in the overall plan, adding Angular into the front
end of the existing Express application.

 The approach taken in this chapter is what you’d do if you wanted to enhance a
page, project, or application with a bit of Angular. Building a full application

This chapter covers
■ Getting to know Angular
■ Adding Angular to an existing page
■ Filtering lists of data
■ Using an API for reading data
■ Some Angular jargon: controllers, scope, filters,

directives, services
243

Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 8 Adding Angular components to an Express application
entirely in Angular is coming up in chapters 9 and 10. We’ll use this chapter to get to
know Angular a bit too.

 In this chapter we’ll focus on improving the experience of the homepage. We’ll
use Angular to load the data into the list of locations, and add the ability for users to
search and filter the list. To start off we’ll use static data to get the hang of Angular
before pulling data from the API, and using the HTML5 location APIs to get the geo-
graphical position of the user.

8.1 Getting Angular up and running
Angular is the second JavaScript framework in the MEAN stack, with Express being the
other. Express, as we’ve seen, sits on the server, whereas Angular sits on the client side
in the browser. Like Express, Angular helps you separate your concerns, dealing with
views, data, and logic in distinct areas. The approach is very much in the MVC style,
but Angular has been defined as an MVW framework, where the W stands for “what-
ever works for you.” Sometimes it might be controllers, or the view-model, or services.
It depends on what you’re doing at any given point.

 Now that you know a little bit about it, let’s get on with the cool stuff. We’ll start by
playing a little with some basics of Angular, coming to terms with the concept of two-
way data binding, including views, models, view-models, and controllers.

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Adding AngularJS

to the front end of

our Express app.

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 8.1 Chapter 8 focuses on adding Angular to the front end of the existing Express
application.
Licensed to Mark Watson <nordickan@gmail.com>

245Getting Angular up and running
 Angular is a client-side framework, so it doesn’t take much installation. The pro-
cess is covered in appendix A, but it’s essentially as simple as downloading the latest
stable version from http://angularjs.org.

8.1.1 Uncovering two-way data binding
So what does two-way data binding actually mean? Back in chapter 1 we talked briefly
about how the data model and the view are bound together in Angular, and that both
are live. This means that changes to the view update the model, and changes to the
model update the view. Remember that we’re not talking about any type of database
here—all of this happens in the browser. Figure 8.2 illustrates this two-way binding.

Pictures may paint a thousand words, but examples are better yet. So let’s look at our
first bit of Angular coding.

STARTING WITH A PAGE OF HTML
Say we have a very simple HTML page, where we have an input box and somewhere to
display the input. In the following code snippet we have an input field and an <h1>
tag, and we want to take whatever text is entered into the input box and immediately
display it after the Hello in the h1:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Angular binding test</title>
</head>
<body>
 <input />
 <h1>Hello </h1>
</body>
</html>

Model

Model

updates

view

View

updates

model

View

Browser

Figure 8.2 In Angular the view
and model are bound together
with two-way data binding, all in
the browser.
Licensed to Mark Watson <nordickan@gmail.com>

http://angularjs.org

246 CHAPTER 8 Adding Angular components to an Express application
If you’re experienced in JavaScript or jQuery you’re probably thinking about how
you’d do this, possibly writing code to bind to keystroke events on the input field and
then injecting that into the <h1> tag. It’s doable, and it’s not that hard. But with Angu-
lar you can actually do something like this without coding any JavaScript at all!

MAKING THE PAGE AN ANGULAR APPLICATION

To make the page an Angular application we have to include Angular in the page;
Angular may be extremely clever but it cannot read your mind! Adding it’s simple; it’s
just a single external JavaScript file that you can either download and reference
directly or reference a CDN version.

 Assuming we download and reference it locally we need to add it to the page
as follows:

<script src="angular.min.js"></script>

Just referencing the file isn’t enough; we need to tell Angular that this page is an
Angular application. To do this we can add a simple attribute, ng-app to the opening
<html> tag, like so:

<html ng-app>

This tells Angular that anything nested inside the <html> tag can be considered part
of the application.

TIP ng-app can be assigned to any element on the page if you want to limit
the area that Angular has access to. It’s often put into the <html> tag so that
Angular can work anywhere within the page.

BINDING INPUT AND OUTPUT

As mentioned, we’re going to take the input from the form and show it in the HTML
without writing any JavaScript. It sounds unlikely, but we’re really going to do it. We
just need to bind an Angular model to the input and the output, and Angular will do
the rest. Both bindings will need to reference the same name, so that Angular knows
that they share the same model.

 First we bind the input to the model, giving it a name—for example, myInput—
like this:

<input ng-model="myInput" />

Next we output the value of the model where we want it in the HTML. Angular uses
double curly braces {{ }} to define these bindings. To bind the model variable into
the view we simply put the name in between the double curly braces, like this:

<h1>Hello {{ myInput }}</h1>

Putting everything together, we should end up with the following listing.

Licensed to Mark Watson <nordickan@gmail.com>

247Getting Angular up and running
<!DOCTYPE html>
<html ng-app>
<head>
<script src="angular.min.js"></script>
 <meta charset="utf-8">
 <title>Angular binding test</title>
</head>
<body>
 <input ng-model="myInput" />
 <h1>Hello {{ myInput }}</h1>
</body>
</html>

Doesn’t look like much, does it? But run it in a browser and try it out, as demonstrat-
ing it in screenshots doesn’t really do it justice. If you run it in a browser and start typ-
ing in the input box you should see behavior like that shown in figure 8.3.

Listing 8.1 Simple Angular binding, binding a model to input and output

Figure 8.3 With simple data binding in Angular, as soon as text is typed into the input box
it’s output inside the <h1> tag. This is all achieved without having to write a single line of code.
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 8 Adding Angular components to an Express application
This works because the Angular model is bound to both the input and the output.
There may be two elements on the page, but there’s only one model holding the data.

 This example is all very well and good, but chances are that you want to do some-
thing more with Angular. And that’s going to involve some coding.

8.1.2 Setting up for greatness (and JavaScript code)

To cover the necessary concepts and jargon for getting started with some Angular cod-
ing we’ll go for the simple goal of assigning a default value to the myInput model. To
do this we’ll need to define our Angular application as a module, and create a control-
ler to manage the scope. Don’t worry if that didn’t make sense—it will by the time we
get to the end of this section.

CREATING AN ANGULAR APPLICATION AS A MODULE

To create and code an Angular application we need to define a module. A module is
defined in JavaScript with a name that we choose, and this name is then referenced by
the ng-app attribute in the HTML.

 Let’s start with this bit so that it’s done. We simply add the name of the Angular
application or module as a value of the ng-app attribute in the <html> tag. In the follow-
ing code snippet we’re saying that we’ll be using an Angular application called myApp:

<html ng-app="myApp">

In an external JavaScript file we can create the definition for this application using a
simple setter statement. We have to define the same name, of course, as follows:

angular.module('myApp', []);

This use of the setter syntax is the best practice for defining a module, but to make
sense of a common approach that you’ll likely see in online code samples take a look
at the following sidebar.

A common but inferior approach
The best practice for defining a module is to use the setter syntax like this:

angular.module('myApp', []);

But it’s quite common among online code examples to see this being assigned to a
variable, like this:

var myApp = angular.module('myApp', []);

The prevalence of this approach is largely due to the original Angular documentation
showing this method, but it’s slowly being changed as the documentation gets
updated. It’s better to use the setter syntax for a few reasons. It allows you to use
the getter syntax for controllers and more that we’ll see soon, and it makes the code
easier to read and reduces the risk of reusing an existing variable name.

This is good.

This isn’t so good.
Licensed to Mark Watson <nordickan@gmail.com>

249Getting Angular up and running
DEFINING A CONTROLLER

Once an application has been defined it can have controllers attached to it. A control-
ler is defined in JavaScript and attached to a specific HTML element. The controller
can then work inside the associated element.

 For our example we’ll attach the controller to the body. This is done using the
Angular attribute ng-controller, giving it the name of the controller we want to use.
The following code snippet provides the controller name myController:

<body ng-controller="myController">

Now it’s the turn of the code. Having defined the application module using the set-
ter syntax, we can use the getter syntax to define a controller. The following code
snippet shows how to attach a controller called myController to an Angular module
called myApp:

angular
 .module('myApp')
 .controller('myController', function() {
 // controller code here
 });

This works well, but it would be better for readability, reusability, and testability to
use a named function instead of an anonymous function. In the following code snip-
pet we do just that, creating a new named function myController to hold the con-
troller code:

var myController = function() {
 // controller code here
};
angular
 .module('myApp')
 .controller('myController', myController);

If you refresh the page at this point the mini-application should still work, taking the
contents of the input and displaying it as you type. Next we’ll look at scope to see how
to give our model a default value.

INTRODUCING SCOPE

Angular applications have scopes just like JavaScript code does. Similar in concept
to the JavaScript global scope, Angular has a rootScope. The rootScope is everything
within an application, and is implicitly created with the ng-app directive in the
HTML. The model for the first version of our “Hello world!” application was held
within this scope.

 Nested within the rootScope can be one or more child scopes. A child scope is also
implicitly created whenever the ng-controller directive is added to the HTML. When
we added the controller to the application we actually moved the model out of the
rootScope and into the scope of the controller.

Get myApp module.

Assign controller myController,
including controller code in
anonymous function.

Put controllers in
named functions for
better coding practice.
Licensed to Mark Watson <nordickan@gmail.com>

250 CHAPTER 8 Adding Angular components to an Express application
 In Angular, scope ties together the view, model, and controller, as they all use the
same scope. We’ve witnessed scope working with the model and view, even though we
didn’t know it. We can make it more obvious by playing with it in the controller.

 The controller function can take a $scope parameter because the scope has
already been created by Angular. This must be called $scope because behind the
scenes it’s dependent on the Angular provider $scopeProvider. This $scope parame-
ter gives us direct access to the model. So setting a default value is as simple as using
the standard JavaScript dot notation for accessing object properties. The following
code snippet shows how we can update the controller function to accept the $scope
parameter and use it to set a default value:

var myController = function($scope) {
 $scope.myInput = "world!";
};

Just because we’ve assigned it a default value, it doesn’t set that value in stone. Updating
the input field will still update the model and display it. Figure 8.4 shows this in action.

 At the start of this section we said that we’d define our Angular application as a
module and create a controller to manage the scope. That might not have made sense
at the start, but hopefully it does now. These are the foundation building blocks of
knowledge for Angular.

Accept $scope parameter
to have access to scope.

myInput is property of scope,
so it’s easy to assign it a value.

Figure 8.4 The controller assigns a default value via the scope, but we can still change
that value using the input.
Licensed to Mark Watson <nordickan@gmail.com>

251Displaying and filtering the homepage list
So now that we know what we’re doing and where Angular is coming from, let’s start
adding some components to the Loc8r application.

8.2 Displaying and filtering the homepage list
In this section we’re going to see how to add an Angular component to an applica-
tion; in this case we’re going to replace existing functionality. We’re going to change
the way the homepage is coded, using Angular to display the list of locations on the
homepage rather than having Express deliver the HTML. Throughout the course of
this section we’ll cover quite a lot of Angular functionality that will be useful in most
other projects, including filtering lists, data format filters, services, dependency injec-
tion, and using directives for adding in reusable HTML.

8.2.1 Adding Angular to an Express application

From what we’ve just learned in section 8.1 we know what we’ll need to do to add
Angular into the Loc8r application. We’ll need to do the following:

■ Download the Angular library file.
■ Create a new JavaScript file for our code.
■ Include these files in the HTML.
■ Define the Angular application in the HTML.

This shouldn’t take long, so let’s get started.

ADDING THE JAVASCRIPT FILES TO THE PROJECT

As Angular is a client-side framework we need to ensure that Express sends the Java-
Script files to the browser rather than trying to run them. The public folder is already
set up to deliver static files, so that’s the perfect place for adding a couple of new
JavaScript files.

 Inside the public folder create a new folder called Angular. Drop the downloaded
minimized Angular library file in here. In the same folder create a new JavaScript file
called loc8rApp.js—this will hold our Angular code for this chapter.

 While we’re here, let’s create the Angular module setter for our application, which
we’ll call loc8rApp. In loc8rApp.js enter the following code snippet and save it:

angular.module('loc8rApp', []);

And that will do us for now. Next we need to update the views to include the JavaScript
and define the Angular application.

SETTING UP THE HTML
Updating the views is pretty easy. We’ll add everything we need at this stage to the
layout.jade file so that any of the pages in the application can use Angular.

 First let’s add the two JavaScript file links in with the other external files at the bot-
tom of the Jade file, as shown in the following listing.
Licensed to Mark Watson <nordickan@gmail.com>

252 CHAPTER 8 Adding Angular components to an Express application
script(src='/angular/angular.min.js')
script(src='/angular/loc8rApp.js')
script(src='/javascripts/jquery-1.11.1.min.js')
script(src='/bootstrap/js/bootstrap.min.js')
script(src='/javascript/validation.js')

Then we just need to define the Angular application in the HTML, which we’ll do in
the <html> tag again. The following code snippet shows how to do this in Jade syntax,
using the loc8rApp name:

html(ng-app='loc8rApp')

And with that, all pages of Loc8r are primed for some Angular action.

8.2.2 Moving data delivery from Express to Angular

If we’re going to use Angular to display the list of locations, then Angular will need to
have the data for that list. We’ll start off validating the approach by using data hard-
coded in Angular—much like we did when building the Express application—before
eventually pulling it from the database.

 To achieve this we need to do three things:

■ Remove the API call from the Express controller for the homepage.
■ Add some hard-coded data into the Angular application scope.
■ Update the view template to bind to the Angular data.

We’ll get going by updating Express.

REMOVING THE HOMEPAGE API CALL FROM EXPRESS

As it stands, pretty much everything in the Express controller for the homepage
(homelist in app_server/controllers/locations.js) is concerned with hitting the API
for the data. We can remove this and just call the renderHomepage function, as shown
in the following code snippet:

module.exports.homelist = function(req, res){
 renderHomepage(req, res);
};

The renderHomepage function is also set to deal with incoming data, which is no
longer needed. In the following listing we remove any references to responseBody
and message.

var renderHomepage = function(req, res){
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',

Listing 8.2 Adding the Angular library and application code to the HTML

Listing 8.3 Taking the dynamic content out of the renderHomepage Express function
Licensed to Mark Watson <nordickan@gmail.com>

253Displaying and filtering the homepage list

 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 sidebar: "Looking for wifi and a seat? Loc8r helps you find places to

work when out and about. Perhaps with coffee, cake or a pint? Let Loc8r
help you find the place you're looking for."

 });
};

That’s all we need to do for the controller function. Now we jump over to the Angular
code for a moment to add some data into the scope.

ADDING HARD-CODED DATA INTO THE ANGULAR SCOPE

We’re going to start off with hard-coding some data into the scope so that we can get
the view sorted out. The first step is to create a function for our controller code in
loc8rApp.js in /public/angular. We’ll call this locationListCtrl, make sure we pass in
the $scope parameter, and assign an array of location objects to a property called data.

 The following listing shows how this looks with a couple of locations in it; you’ll
probably want to add a few more so that you can test the filtering.

var locationListCtrl = function ($scope) {
 $scope.data = {
 locations: [{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '0.296456',
 _id: '5370a35f2536f6785f8dfb6a'
 },{
 name: 'Costy',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 5,
 facilities: ['Hot drinks', 'Food', 'Alcoholic drinks'],
 distance: '0.7865456',
 _id: '5370a35f2536f6785f8dfb6a'
 }]};
};

That’s all we need to do in the controller to get the data into the scope so that the view
can use it. We’ll update the code soon to get the real data from the database. The last
thing to remember is to attach the controller to the Angular application. To do this,
we’ll use the module getter syntax at the very bottom of the loc8rApp.js file, after the
controller code, as shown in the following code snippet:

angular
 .module('loc8rApp')
 .controller('locationListCtrl', locationListCtrl);

Listing 8.4 Create an Angular controller and some test data in loc8rApp.js

Create new function to
hold Angular controller
code, remembering to
have function accept
$scope parameter

Create data property
attached to $scope and
assign some location
values to it
Licensed to Mark Watson <nordickan@gmail.com>

254 CHAPTER 8 Adding Angular components to an Express application
Now the controller is attached to the application and pushing data into the scope. But
the view doesn’t define the Angular controller anywhere so it won’t be used yet, and
it’s still using the Express data bindings. So let’s jump back over to the Express appli-
cation and update the homepage view.

UPDATE THE JADE VIEW TO BIND TO THE ANGULAR CONTROLLER

The Jade view is still currently trying to use the Express bindings, and will fail because
we’ve deleted all of the code from Express. So we need to add the ng-controller
directive to a relevant element, swap out the Jade loop for an Angular loop, and
change the Jade data bindings to Angular data bindings.

 The trick here is to use an Angular loop. Rather than using a for loop Angular
has a directive called ng-repeat that allows us to repeat through the elements of an
array. The ng-repeat directive will loop through an array, outputting the HTML and
data bindings for each entry in the array. For more information, check out the fol-
lowing sidebar.

Using ng-repeat to loop through data objects
Angular’s ng-repeat directive will loop through a given array, rendering the HTML for
each of the pieces of data. For example, let’s start with this simple controller adding
an array of data to the scope:

var myController = function($scope) {
 $scope.items = ["one", "two", "three"];
};

You can output the items in the array using the ng-repeat directive like this:

<body ng-controller="myController">

 <li ng-repeat="item in items">{{ item }}

</body>

The resulting output, omitting the attributes that Angular will add to the HTML ele-
ments, is this:

 one
 two
 three

Note that Angular will start the repetition on the element where you put the ng-
repeat directive, so you must be careful to put it in the right place. In this example
it would be very easy to accidentally put it into the tag instead of the tag,
but this would output the following markup:

 one

Licensed to Mark Watson <nordickan@gmail.com>

255Displaying and filtering the homepage list

n

l

$sco
Everything we want to do is contained in the main content column of the page, so
that’s a good place to define the controller. Inside that controller all of the Jade data
bindings and loops need to be swapped out for their Angular counterparts. The fol-
lowing listing runs through the changes made to make this happen.

.col-xs-12.col-sm-8(ng-controller="locationListCtrl")
 .error {{ message }}
 .row.list-group
 .col-xs-12.list-group-item(ng-repeat="location in data.locations")
 h4
 a(href="/location/{{ location._id }}") {{ location.name }}
 small {{ location.rating }}
 span.badge.pull-right.badge-default {{ location.distance }}
 p.address {{ location.address }}
 p
 span.label.label-warning.label-facility(ng-repeat="facility in

location.facilities")
 | {{ facility }}

That’s the last piece of the puzzle for our first pass at getting Angular running in the
homepage. We’ve added the scripts, defined the application in the HTML and Java-
Script, created the controller, and bound the data into the HTML. So now when we
reload the homepage, we get something like figure 8.5.

 We can see from figure 8.5 that a few things need tweaking. We had been using
Express to format the distance before sending it to the view, and had also used a Jade
mixin to output rating stars instead of just a number. Angular gives us a couple of
tools to achieve these things in a different way: filters and directives. We’ll look at fil-
ters first.

8.2.3 Using Angular filters to format data

Filters allow you to specify your chosen format for a given piece of data. Angular has
some built-in filters such as formatting a date, currency, and text. You can apply these
filters directly within the data binding in the HTML. To apply one insert a pipe | after
the value followed by the name of the filter.

 two

 three

This is probably not what you were after. ng-repeat is extremely handy and very pow-
erful, but just be careful you put it in the right place.

Listing 8.5 Changing the Jade bindings to Angular bindings

Define Angular controller
on central column div

Start
g-repeat
for each
item in

ocations
array in
pe.data

Output
details for
each location

Add nested ng-repeat loop to
output facilities for each location
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 8 Adding Angular components to an Express application
The following code snippet shows an example of using the currency filter:

<div>{{ 123.2345 | currency }}</div>
<!-- Output: $123.23 -->

Some of the filters allow you to specify options. The currency filter can be told to out-
put a different currency symbol, as shown in the following code snippet:

<div>{{ 123.2345 + 321.321 | currency:"£" }}</div>
<!-- Output: £444.56 -->

The filters aren’t limited to working with numbers, of course; you can also work with
strings and dates. A couple of quick examples are as follows:

<div>{{ "Let's shout" | uppercase }}</div>
<!-- Output: LET’S SHOUT -->
{{ timestamp | date:"d MMM yyyy" }}
<!-- Output: 21 Aug 2014 -->

The built-in filters that come with Angular are pretty good. While it’s very useful to
have these at your disposal you may find you need to do something different, which is
the case we have with Loc8r when we want to format the distances. The good news is,
you can create your own custom filters for your application.

Figure 8.5 The homepage data being supplied and rendered by Angular instead of Express. There are
some layout issues that need fixing.

Requires timestamp to be
set in scope as date object
Licensed to Mark Watson <nordickan@gmail.com>

257Displaying and filtering the homepage list

_isNu
h

fun
is c
di

Ex
CREATING A CUSTOM FILTER

The Loc8r API returns distances as long numbers such as 0.296456. This distance is
actually in kilometers, but doesn’t explicitly state any unit of measurement. We want
this to look better to the end user.

 We’ve already solved this problem in Express, but now we need to solve it in Angu-
lar. As we’re using JavaScript in the back end and the front end we can lift most of the
code we need from Express and pop it into Angular.

 In Express, in locations.js in app_server/controllers, we had two functions for for-
matting the data, _isNumeric and _formatDistance. We can keep the logic of these
functions intact. The only change we need to make when we move it into the Angular
application is to change the formatDistance function to return a function that does
the processing, rather than doing the processing itself. The following listing shows the
code we need to put into our Loc8rApp.js file.

var _isNumeric = function (n) {
 return !isNaN(parseFloat(n)) && isFinite(n);
};
var formatDistance = function () {
 return function (distance) {
 var numDistance, unit;
 if (distance && _isNumeric(distance)) {
 if (distance > 1) {
 numDistance = parseFloat(distance).toFixed(1);
 unit = 'km';
 } else {
 numDistance = parseInt(distance * 1000,10);
 unit = 'm';
 }
 return numDistance + unit;
 } else {
 return "?";
 }
 };
};

This shows how to create a custom filter, but now we need to add it to the application
and use it in the HTML.

ADDING AND USING CUSTOM FILTERS

When we have our custom filter built, we want to add it to our application so that
we can use it. At the bottom of the loc8rApp.js file we can chain it to the Angular
module getter syntax, where we registered the controller for the application. The
principle is the same, but rather than defining a controller, this time we’re defining
a filter.

Listing 8.6 Creating a custom filter to apply formatting to distances

meric
elper
ction
opied
rectly
from
press
code

To be used as Angular filter
formatDistance function must
return a function that accepts
distance parameter rather than
accepting it itself

Contents of
function remain
same and can be
copied directly
from Express
application
Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 8 Adding Angular components to an Express application
 The following code snippet shows how this section of the file should now look:

angular
 .module('loc8rApp')
 .controller('locationListCtrl', locationListCtrl)
 .filter('formatDistance', formatDistance);

With this in place the filter is now available to the application, so we can reference it
in the code, just like we would with any other filter. In the following code snippet we
add the filter to the relevant place in the Jade template:

.col-xs-12.list-group-item(ng-repeat="location in data.locations")
 h4
 a(href="/location/{{ location._id }}") {{ location.name }}
 small {{ location.rating }}
 span.badge.pull-right.badge-default {{ location.distance | formatDistance

}}
 p.address {{ location.address }}

This should now be formatting our distance nicely like before, and we should have
something that looks like figure 8.6.

 And that wraps up a quick tour of filters, taking a look at some of the native Angu-
lar filters and how to create your own. Next up on the to-do list is using directives for
HTML snippets with the aim of adding back the rating stars.

Figure 8.6 Custom Angular filter formats and displays the distances in the way we want
Licensed to Mark Watson <nordickan@gmail.com>

259Displaying and filtering the homepage list
8.2.4 Using Angular directives to create HTML snippets

In Angular, directives essentially allow you to create HTML snippets. A single snippet
can be used by as many different controllers and views as you like. This is a really
handy feature for making your application more consistent and easier to maintain.
And because these snippets run in the context of an Angular application, they also
come with all of the data-binding goodness we’ve seen so far.

 As an added bonus, browsers can cache directives that are saved as HTML files,
helping to speed up your application when users switch between views. But let’s back
up a bit and start off by seeing how to add a directive to our application.

ADDING A DIRECTIVE TO AN ANGULAR APPLICATION

We’ll start off in our Angular application to set up the code for a basic directive, and
build up from there. A directive is added to an Angular application using the now-
familiar module getter syntax and a named function. For the starting point of our
directive we want to return a simple template that outputs the rating as a number, so
in the browser it will look the same as it does now.

 The following listing shows what needs to be added/updated in loc8rApp.js.

var ratingStars = function () {
 return {
 template : "{{ location.rating }}"
 };
};

angular
 .module('loc8rApp')
 .controller('locationListCtrl', locationListCtrl)
 .filter('formatDistance', formatDistance)
 .directive('ratingStars', ratingStars);

This simple template is exactly the same as we currently have in the Jade template. It’s
important that the name of the function is in camelCase—you’ll see why next when we
update the Jade view to use this new directive.

ATTACHING A DIRECTIVE TO THE HTML TEMPLATE

Having a directive in the Angular application is all very well and good, but we need to
tell the HTML where we want to use it. The default way to do this is to add an attribute
into the tag that will contain the directive.

 The attribute name is important, and must match that of the directive name, but
in a different format. Unlike JavaScript, HTML isn’t case sensitive, so it doesn’t make
sense to use camelCase here. Instead, the uppercase letters are converted to lowercase
letters and prefixed with a dash. So the directive name ratingStars would be refer-
enced in HTML as rating-stars.

Listing 8.7 Creating a directive and adding it to the Angular module

Create new function ratingStars
and return a basic template,
binding to rating of location

Register directive
with application
Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 8 Adding Angular components to an Express application
 In raw HTML, when applied to a div, it would look like the following:

<div rating-stars></div>

In our homepage we want to add this to a small tag. Jade templates allow us to add in
attributes without a value, which is what we need here. In the following code snippet
we do exactly this:

h4
 a(href="/location/{{ location._id }}") {{ location.name }}
 small(rating-stars)

This simple change allows Angular to bind the ratingStars directive to the small
tag, inserting the contents within it. If you reload the page now you shouldn’t actu-
ally see any changes, as all we’ve done is change the way that Angular outputs the
number.

 This number is a good start, but the idea of a directive is that it’s reusable. What we
have is reusable, but next we’ll make it even more so by removing its reliance on hav-
ing a value assigned to location.rating in the current scope. We’ll do this by using
what’s known as an isolate scope.

PASSING VARIABLES TO DIRECTIVES WITH AN ISOLATE SCOPE

Our current template for showing the rating will only work when the directive is
included in a scope that contains a value for location.rating. This might seem fine
for now, but what if we want to show the rating stars for each review in a list of reviews?
That’s not likely to reference an object called location.rating, and even if it does it’s
not likely to be the piece of data we actually want to use.

 To address this problem we can create an isolate scope for the directive by adding
the scope option to the directive’s definition. Listing 8.8 shows how to do this, creat-
ing a new scope variable thisRating for the directive. The value of '=rating' tells
Angular to look for an attribute called rating on the same HTML element that
defined the directive.

var ratingStars = function () {
 return {
 scope: {
 thisRating : '=rating'
 },
 template : "{{ thisRating }}"
 };
};

Listing 8.8 Updating the directive to use an isolate scope for the rating

Apply empty
attribute name
to small tag that
will hold rating

Add scope option to directive
definition to create isolate scope

Create new variable
thisRating and tell
Angular to get value
from attribute
called rating

Update template
to use new
variable
Licensed to Mark Watson <nordickan@gmail.com>

261Displaying and filtering the homepage list
This directive now expects the HTML element to which it’s bound to contain a rating
attribute, which in turn holds the value of the rating. The following code snippet
shows the update we need to make to the Jade template to make this happen:

h4
 a(href="/location/{{ location._id }}") {{ location.name }}
 small(rating-stars, rating="location.rating")

This update means that wherever we want to use rating stars we can add two attributes
to an HTML element, one to bind the directive and one to pass the rating value. So the
directive is no longer dependent on a specific value existing in the parent scope.

 After all that, it’s still not showing stars. We’ll address that now.

USING AN EXTERNAL HTML FILE FOR THE TEMPLATE

As a rule of thumb, unless a directive template is very simple it should exist in its own
HTML file. Our directive to display rating stars will be a little more complex than just
displaying the number sent to it, so we’ll put it into an external HTML file. As well as
separating concerns—keeping markup separate from application logic—this approach
has the added bonus of browsers being able to cache HTML files.

 To move a template into an external HTML file, the first thing to do is to take
template out of the directive definition and replace it with templateUrl. templateUrl
should hold the path to the HTML file. The following listing shows how we can update
the ratingStars directive to use a file, /angular/rating-stars.html.

var ratingStars = function () {
 return {
 scope: {
 thisRating : '=rating'
 },
 templateUrl: '/angular/rating-stars.html'
 };
};

This HTML file doesn’t exist yet, so we’ll create that now. In the /public/angular
folder create a file called rating-stars.html. In that file we’ll start with the HTML
needed to output a rating; the following code snippet shows the markup used to dis-
play a three-star rating:

Listing 8.9 Update the directive to use an external file for the template

Create new
attribute called
rating and give
it rating value

Change template to
templateUrl and set
path to HTML file we
want to use

Classes output a solid star,
giving three solid stars

Classes output a hollow
star, giving two hollow stars
Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 8 Adding Angular components to an Express application
To make the template smart we can use an Angular binding to insert the -empty class
suffix where appropriate. For example, if the rating is less than two, only the first star
should be solid, and the remaining four hollow. We’ll use the JavaScript ternary oper-
ator (a shorthand for a simple if-else conditional statement) to achieve this, as
shown in the following listing.

<span class="glyphicon glyphicon-star{{ thisRating<1 ? '-empty' : ''}}">
<span class="glyphicon glyphicon-star{{ thisRating<2 ? '-empty' : ''}}">
<span class="glyphicon glyphicon-star{{ thisRating<3 ? '-empty' : ''}}">
<span class="glyphicon glyphicon-star{{ thisRating<4 ? '-empty' : ''}}">
<span class="glyphicon glyphicon-star{{ thisRating<5 ? '-empty' : ''}}">

For each star, if thisRating is less than the number of stars, Angular will add the
-empty suffix to the class. Reloading the page now gives us our stars back, as shown
in figure 8.7.

 That finalizes sorting out how to get the list to display correctly using Angular. But
what we set out to do was add a text input so that we could filter the results. Let’s do
that now.

Listing 8.10 Creating the Angular rating star template

Figure 8.7 The Angular directive for the rating is now complete and shows the rating stars back
in place.
Licensed to Mark Watson <nordickan@gmail.com>

263Getting data from an API
FILTERING A LIST OF RESULTS WITH ANGULAR

Earlier in this chapter we saw how we could change the output of a particular piece of
data by using a filter. Some quite astounding news is that we can do exactly the same
thing with a list of results by adding a filter to the ng-repeat directive. We’re actually
going to filter the list of locations on the homepage without using any JavaScript.

 The aim is for the list to be filtered according to whatever a user types in, so we’re
going to create an input box. We’ll bind an input field to the model, and then apply
this as a filter to the ng-repeat directive. It’s really as simple as that.

 The following listing shows how to set this up in the Jade template for the homepage.

.col-xs-12.col-sm-8(ng-controller="locationListCtrl")
 label(for="filter") Filter results
 input#filter(type="text", name="filter", ng-model="textFilter")
 .error {{ message }}
 .row.list-group
 .col-xs-12.list-group-item(ng-repeat="location in data.locations | filter

: textFilter")

That’s all there is to it. Think of all the effort you’d have to go to if you wanted to
manually program this functionality from scratch! Before we look at a screenshot
we’ll add a tweak to the CSS in public/stylesheets/style.css to prevent it from looking
too cramped:

#filter {margin-left: 4px;}

Now we can see what it looks like and how it works in figure 8.8.
 I think we can all agree that that’s pretty neat. But we must not forget that the data

for this is currently hard-coded into the controller. In the next section we’ll see how to
make use of our API and pull the data from the database.

8.3 Getting data from an API
In this section we’re going to do a couple of things. First we’re going to give ourselves
a pat on the back for having the foresight to create a REST API for our database. When
we’ve calmed down a bit we’ll use our API from Angular to get the data for the home-
page, and then also make the page location-aware. This step will mean that the appli-
cation will start to show places that are near you, not just near the coordinates you
hard-coded in.

 Okay, let’s get started. We’ll begin by moving the data out of the controller and
into a service.

Listing 8.11 Creating and applying the text filter for the list of results

Create new input field
and bind it to model

with a name, textFilter

Apply filter to ng-repeat
directive, referencing textFilter
Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 8 Adding Angular components to an Express application
8.3.1 Using services for data

Services are self-contained units of functionality that can be combined to provide the
complete functionality of a software application. You’ll end up using services quite a
lot in Angular, as most application logic should be deferred to services, making it reus-
able from multiple controllers. In our case here, we’ll be creating a data service that
we can use elsewhere.

 When accessing data, a controller shouldn’t care where the data comes from; it just
needs to know who to ask for it. This is what we’re going to do right now—move the
data from the controller to a service, and have the controller call the service.

CREATING A SIMPLE DATA SERVICE

The method of defining a service in Angular shouldn’t be much of a surprise by now.
We’ll create a named function and then register the service with the application.

 So let’s define a function called loc8rData and have it return the data that’s cur-
rently being held in the controller. We’ll then register it with our application. The fol-
lowing listing shows both of these steps.

Figure 8.8 The text filter in action on the homepage, filtering the list of results as a user types
Licensed to Mark Watson <nordickan@gmail.com>

265Getting data from an API
var loc8rData = function () {
 return [{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '0.296456',
 _id: '5370a35f2536f6785f8dfb6a'
 }];
};
angular
 .module('loc8rApp')
 .controller('locationListCtrl', locationListCtrl)
 .filter('formatDistance', formatDistance)
 .directive('ratingStars', ratingStars)
 .service('loc8rData', loc8rData);

That seems fairly intuitive, right? And in keeping with the patterns we’ve seen so far in
this chapter.

USING A SERVICE FROM A CONTROLLER

To use a service from a controller we first have to pass the service to the controller.
Passing the service in is easy—just add the name of the service as a parameter in the
function definition for the controller.

 When the service has been passed to the controller it can be used, just as you
might expect. The following code snippet shows how to update the controller func-
tion to accept the service and use it:

var locationListCtrl = function ($scope, loc8rData) {
 $scope.data = { locations: loc8rData };
};

Reloading the application now shouldn’t show any changes in the homepage. The
change we’ve made here is behind the scenes getting ready for the next step: getting
the data from our API.

8.3.2 Making HTTP requests from Angular to an API

Making HTTP requests from JavaScript is nothing particularly new. jQuery has had
good Ajax support for a while, and in chapter 7 we used the request module to make
HTTP requests from Node. Angular has a built-in service called $http to manage this
type of request.

 We’ll now use the $http service to make the call to our API and retrieve the data
for the homepage. This request will be asynchronous, of course, so we’ll also see how
to handle that.

Listing 8.12 Creating a simple data service and adding it to the module

Create new
named function
to return data

Register service
with application

Pass service name into
controller function as
parameter

Call service, which
will then return data
Licensed to Mark Watson <nordickan@gmail.com>

266 CHAPTER 8 Adding Angular components to an Express application
ADDING AND USING THE $HTTP SERVICE

Adding the $http service to the application is very easy—in fact, we only need to use it
in our data service. Remember that the controller shouldn’t care how the data is
obtained, it just knows who to ask.

 There are two key things we need to know about the $http service to get started
with it:

■ The $http service is given to another service by passing it as a parameter to the
function, much like we’ve done with $scope in the controller.

■ The $http service has a get method that expects a single parameter—the
URL—to be called.

If we put these two things together we can update our data service function loc8rData
to look like the following code snippet (remember to put in coordinates near to you
or the locations you’ve added):

var loc8rData = function ($http) {
 return $http.get('/api/locations?lng=-0.79&lat=51.3&maxDistance=20');
}

So now, instead of returning some hard-coded data, the data service returns to the call
the $http.get method. If you reload the page now expecting to see the data in the
homepage you’ll be disappointed. You’ll even be able to see in the JavaScript console
of your browser (depending on your browser) that an XHR request to the API has
loaded and returned some data.

 So why isn’t the page showing the data? Well that’s because the $http.get is asyn-
chronous, and our controller is trying to use it in a synchronous way. Let’s see how to
use it properly.

HANDLING THE ASYNCHRONOUS NATURE OF $HTTP

Because $http goes off dealing with web services, there’s no idea of how long it’s going
to take to execute. Nobody wants their entire JavaScript program to stop working while
we’re waiting for a response, so it makes sense that $http runs asynchronously.

 Our controller code is currently just this:

var locationListCtrl = function ($scope, loc8rData) {
 $scope.data = { locations: loc8rData };
};

This is running synchronously, and as we’ve seen it will not work with $http. $http
instead returns a promise with two methods: success and error. What this means is
that rather than expecting the $http.get call to return data, it will invoke either its
success method or its error method.

Pass $http service
into existing service
function

Remove hard-coded data and return $http.get
call, ensuring that it’s calling correct URL
Licensed to Mark Watson <nordickan@gmail.com>

267Getting data from an API

th
t

 Let’s clarify this with a bit of code. loc8rData now returns the $http.get method,
so we’ll start by invoking that. We then chain the success and error methods to it
using the dot syntax. When loc8rData has received a response it will invoke either the
success or error method, depending on the response.

 The scaffolding for this looks like the following listing, which also shows how to
take the data returned from a successful request and pass it into the scope.

var locationListCtrl = function ($scope, loc8rData) {
 loc8rData
 .success(function(data) {
 $scope.data = { locations: data };
 })
 .error(function (e) {
 console.log(e);
 });
};

With that in place we’ll once again be able to see the data from the database showing
up on our homepage. This is the minimum functionality, but as the code is asynchro-
nous it would be good to let the user know what’s happening while the empty page
displays and the $http request is being made.

TELLING THE USER WHAT’S GOING ON

A problem with asynchronous data calls in the client side is that a user will first see the
page rendered without any content. This will last until the asynchronous call completes
and returns some data. This isn’t great! If your page remains free of data for even just a
very short time users may well see the empty page and click the back button.

 So when making asynchronous calls for data, always let the user know that you’re
doing something and that something is happening in the background. In Loc8r we’ll
do this by outputting a simple message, largely because we already have the HTML in
place for it.

 Inside the Jade template we already have a div set up to hold a message, as high-
lighted in bold in the following code snippet:

.col-xs-12.col-sm-8(ng-controller="locationListCtrl")
 label(for="filter") Filter results
 input#filter(type="text", name="filter", ng-model="textFilter")
 .error {{ message }}

This div and message were part of the original Jade template when we were using
Express to generate the final HTML. We updated message to be an Angular binding
when we set up the Angular controller instead. So we can use this message binding in
the scope in our controller. The following listing shows how to update the scope to
show a different message at different points in the process.

Listing 8.13 Updating the controller to work asynchronously with the $http promises

Invoke loc8rData
service, which returns
$http.get call

On successful response,
pass returned data into
callback function

Apply
is data

o scope If web service returned error,
pass error to callback function
Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 8 Adding Angular components to an Express application
var locationListCtrl = function ($scope, loc8rData) {
 $scope.message = "Searching for nearby places";
 loc8rData
 .success(function(data) {
 $scope.message = data.length > 0 ? "" : "No locations found";
 $scope.data = { locations: data };
 })
 .error(function (e) {
 $scope.message = "Sorry, something's gone wrong ";
 });
};

Just something as simple as that can make a huge difference to the user experience. If
you want to take it to the next level and include an Ajax Spinner—usually an animated
GIF of a spinning wheel—go ahead! But we’ll stick with what we’ve got for the time
being because we’ve got something cool coming up.

 Now we’re going to make our application show places that are actually near you,
not just near the coordinates that you hard-coded in.

8.3.3 Adding HTML geolocation to find places near you

The main premise of Loc8r is that it will be location-aware, and thus able to find
places that are near you. So far we’ve been faking it by hard-coding geographic coordi-
nates into the API requests. We’re going to change that right now by adding in HTML5
geolocation.

 To get this working we’ll need to do the following:

■ Add a call to the HTML5 location API into our Angular application.
■ Only look for places when we have the location.
■ Pass the coordinates to our Angular data service, removing the hard-coded

location.
■ Output messages along the way so the user knows what’s going on.

Starting at the top, we’ll add the geolocation JavaScript function by creating a new
service.

CREATING AN ANGULAR GEOLOCATION SERVICE

Being able to find the location of the user feels like something that would be reusable,
in this project and other projects. So to snap it off as a piece of standalone functional-
ity we’ll create another service to hold this. As a rule, any code that’s interacting with
APIs, running logic, or performing operations should be externalized into services.
Leave the controller to control the services, rather than perform the functions.

 We won’t get distracted by diving into the details of how the HTML5/JavaScript
geolocation API works right now. We’ll just say that modern browsers have a method

Listing 8.14 Setting an output message at various points in the process

Set default message letting
user know that we’re doing
something in background

If request returns
successfully and

there’s some data,
clear the message;
otherwise let user
know that nothing

was found
If asynchronous call returns an

error, let user know that
something has gone wrong
Licensed to Mark Watson <nordickan@gmail.com>

269Getting data from an API

C
se
c

geoloc
on the navigator object that you can call to find the coordinates of the user. The user
has to give permission for this to happen. The method accepts two parameters, a suc-
cess callback and an error callback, and looks like the following:

navigator.geolocation.getCurrentPosition(cbSuccess, cbError);

We’ll need to wrap the standard geolocation script in a function so that we can use it
as a service, and also error trap against the possibility that the current browser doesn’t
support this. The following listing shows the code needed to create the geolocation
service and provide a getPosition method that the controller can call.

var geolocation = function () {
 var getPosition = function (cbSuccess, cbError, cbNoGeo) {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(cbSuccess, cbError);
 }
 else {
 cbNoGeo();
 }
 };
 return {
 getPosition : getPosition
 };
};

That code gives us a geolocation service, with a method getPosition that we can
pass three callback functions to. This service will check to see whether the browser
supports geolocation and then attempt to get the coordinates. The service will then
call one of the three different callbacks depending on whether geolocation is sup-
ported and whether it was able to successfully obtain the coordinates.

 The next step is to add it to the application.

ADDING THE GEOLOCATION SERVICE TO THE APPLICATION

To use our new geolocation service we need to register it with the application and
inject it into the controller.

 The following code snippet highlights in bold the addition we need to make to the
module definition to register the service with the application.

angular
 .module('loc8rApp')
 .controller('locationListCtrl', locationListCtrl)
 .filter('formatDistance', formatDistance)
 .directive('ratingStars', ratingStars)
 .service('loc8rData', loc8rData)
 .service('geolocation', geolocation);

Listing 8.15 Create a geolocation service returning a method to get the current
position

reate
rvice
alled
ation

Define function called getPosition that
accepts three callback functions for

success, error, and not supported

If geolocation
supported, call native

method, passing
through success and

error callbacks

If geolocation isn’t
supported, invoke not
supported callback

Return getPosition
function so it can be
invoked from controller
Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 8 Adding Angular components to an Express application

def
mess

l

Once the geolocation service has been registered we then need to inject it into the
locationListCtrl controller so that it can use it. To do this we just need to add the
name of the service to the parameters being accepted by the controller function. The
following code snippet demonstrates this (the contents of the controller aren’t included
in this snippet for the sake of brevity):

var locationListCtrl = function ($scope, loc8rData, geolocation) {
 // controller code
};

This approach is probably looking familiar by now. The next step is to get the control-
ler to interact with the service.

USING THE GEOLOCATION SERVICE FROM THE CONTROLLER

The controller now has access to the geolocation service, so let’s use it! Calling it will
be pretty easy; we just need to call geolocation.getPosition and pass it the three
callbacks we want to use.

 Inside the controller we’ll create three functions, one for each of the possible
outcomes:

■ Successful geolocation attempt
■ Unsuccessful geolocation attempt
■ Geolocation not supported

We’ll also update the messages being displayed to the user, letting them know that the
system is doing something. This is particularly important now because geolocation
can take a second or two.

 The following listing shows the controller after all of these updates are made, cre-
ating the new functions and calling the geolocation service to kick it off.

var locationListCtrl = function ($scope, loc8rData, geolocation) {
 $scope.message = "Checking your location";

 $scope.getData = function (position) {
 $scope.message = "Searching for nearby places";
 loc8rData
 .success(function(data) {
 $scope.message = data.length > 0 ? "" : "No locations found";
 $scope.data = { locations: data };
 })
 .error(function (e) {
 $scope.message = "Sorry, something's gone wrong";
 });
 };

Listing 8.16 Updating the controller to use the new geolocation service

Add name of geolocation service to
parameters accepted by controller function

Set
ault
age b

Function
to run if
geolocation
is successfu

 c
Licensed to Mark Watson <nordickan@gmail.com>

271Getting data from an API

on

d
er
 $scope.showError = function (error) {
 $scope.$apply(function() {
 $scope.message = error.message;
 });
 };

 $scope.noGeo = function () {
 $scope.$apply(function() {
 $scope.message = "Geolocation not supported by this browser.";
 });
 };

 geolocation.getPosition($scope.getData,$scope.showError,$scope.noGeo);
};

The first thing we did here is tell users that we’re finding their location by setting a
default message B. We then created a function to run when geolocation is success-
ful c. The native geolocation API passes a position object to this callback. This func-
tion will then call the loc8rData service to get the list of locations.

 Next we have a function to run when geolocation is supported but not successful d.
The native geolocation API passes an error object to the callback containing a mes-
sage property that we can output to the user. Note the $scope.$apply() wrapper and
take a look at the sidebar to see what it is and why it’s there.

 The noGeo function e will run if geolocation isn’t supported by the browser, and
set a message to be output to the user. Note again the use of $scope.$apply().

 Finally, we call our geolocation service f, passing the three callback functions as
parameters.

About $scope.$apply()
In the code snippet that manages the geolocation functionality we use $scope
.$apply() in two out of the three callbacks after updating a value in the scope. If we
hadn’t done this, the messages wouldn’t have displayed in the browser. But why, and
why only two of the callbacks?

$scope.$apply() is used when Angular may not know about some updates to the
scope. This typically occurs after an asynchronous event, such as a callback or user
action. The purpose of the function is to push changes in scope over to the view.

$scope.$apply() is actually used a lot in Angular, but most of the time you don’t
see it. We didn’t use it with the success callback, because in that case the changes
in scope were made within the returned promises of the $http service. Behind the
scenes Angular wraps these promises inside a $scope.$apply() function so that
you don’t have to. Most of the native Angular events, in fact, are wrapped inside one,
saving you time and effort most of the time.

Function to run if
geolocation is supported
but not successful

 d

Function
to run if
geolocati
isn’t
supporte
by brows

 e

Pass the function to our
geolocation service f
Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 8 Adding Angular components to an Express application
If you reload the application in your browser you’ll now be prompted to share your
location, which you can allow or deny. If you deny the browser access to your location
the $scope.showError callback function will be invoked and an error message will be
displayed on the screen. Figure 8.9 shows how this looks in Chrome.

 If you say no to test this error message there is a good chance that your browser will
remember this setting. If it does you can manage the settings in your browser’s prefer-
ences or options to let you test what happens if you say yes.

 If you do say yes then the application will call our data service to get the data from
the API. This sounds good but we’ve missed one step: we haven’t passed the coordi-
nates to the data service yet, so it’s still using the hard-coded lat and lng values. Let’s
change this now.

PASSING THE GEOLOCATION COORDINATES TO THE DATA SERVICE

We’re almost there. The geolocation service is returning coordinates to the Angular
application, so we now just need to get these coordinates over to our data service so
that we can add them to the API call.

 The first thing to do is modify the loc8rData service, wrapping the call to the API
in a function so that we can pass data to it. We can’t pass parameters into the loc8rData
function itself because it’s a service constructor. In the following listing we’ll set up the

Figure 8.9 With geolocation added Loc8r will now ask your permission to know your location; if you say no then
a simple message is displayed.
Licensed to Mark Watson <nordickan@gmail.com>

273Getting data from an API
new nested function to accept two parameters, lat and lng, and update the call to the
API to use them.

var loc8rData = function ($http) {
 var locationByCoords = function (lat, lng) {
 return $http.get('/api/locations?lng=' + lng + '&lat=' + lat +

'&maxDistance=20');
 };
 return {
 locationByCoords : locationByCoords
 };
};

Our loc8rData service now has a method locationByCoords that the controller can
access, passing it the coordinates. So let’s make the update to the controller.

 We’ve seen that the geolocation API returns a position parameter to the success
callback, which in this case we’ve called $scope.getData. position is a JavaScript
object containing various pieces of data, including a coords path that holds values for
latitude and longitude.

 The following listing shows how to update the $scope.getData function in the
controller, modifying the call to the data service to use the new method and pass
through the parameters.

$scope.getData = function (position) {
 var lat = position.coords.latitude,
 lng = position.coords.longitude;
 $scope.message = "Searching for nearby places";
 loc8rData.locationByCoords(lat, lng)
 .success(function(data) {
 $scope.message = data.length > 0 ? "" : "No locations found";
 $scope.data = { locations: data };
 })
 .error(function (e) {
 $scope.message = "Sorry, something's gone wrong";
 });
};

And that’s the last piece of the puzzle. Loc8r now finds your current location and lists
the places near you, which was the whole idea from the very start. You can also filter
the results on the homepage using the text input.

Listing 8.17 Updating the loc8rData service to return a function instead of data

Listing 8.18 Update the controller to pass the coordinates to the services

Create new function inside
service function, accepting two
parameters, lat and lng

Remove hard-coded values in
API call and replace with lng
and lat variables

Return locationByCoords
function making it accessible
as method of service

Define variables to hold
latitude and longitude values
from position object

Instead of just calling
loc8rData service name,
update code to call new

locationByCoords
method, passing the lat

and lng variables
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 8 Adding Angular components to an Express application
Figure 8.10 shows the homepage now. It doesn’t look much different from when we
started this chapter, but the main content area of the homepage is now an Angular
module.

 And that’s it. Nearly. As we’ve been merrily adding in Angular to the homepage
we’ve actually introduced a bug on the Add Review page. Now we’ll see what that bug
is and how to fix it.

8.4 Ensuring forms work as expected
By adding Angular to the site template in layout.jade we’ve inadvertently created a
bug in the form that adds a review. When we created the review form we kept the
action blank, as this meant that the form would submit to the current URL. This is
exactly what we wanted and has worked well for us so far. So, what’s the problem?

 When Angular encounters a form without an action it prevents the submit action
from happening. In many ways this makes sense. If you’re creating an Angular appli-
cation and include a form, you’ll probably want Angular to handle the form and man-
age the submission and destination. You don’t want to manually prevent it from
submitting each time, so Angular helps you out by doing it for you.

Figure 8.10 Visually the only difference to the homepage from the start of the chapter is the addition
of the filter textbox; under the hood, however, the main content area is now being generated by Angular,
which is also finding your actual location and displaying results close by.
Licensed to Mark Watson <nordickan@gmail.com>

275Summary
 This is very helpful, except for the situation we find ourselves in now. The way to fix
it is to add an action to the form; this will stop Angular from interfering with the form.

 Step one is to pass the current URL to Jade from the controller. An easy way to get
an accurate representation of the URL is via the originalUrl property of the req
object. The following listing shows the update required to the renderReviewForm
function in locations.js in the app_server/controllers folder.

var renderReviewForm = function (req, res, locDetail) {
 res.render('location-review-form', {
 title: 'Review ' + locDetail.name + ' on Loc8r',
 pageHeader: { title: 'Review ' + locDetail.name },
 error: req.query.err,
 url: req.originalUrl
 });
};

Step two is to simply output this url parameter in the action attribute of the form
definition in location-review-form.jade in the app_server/views folder. This is shown
in the following code snippet:

form.form-horizontal(action="#{url}", method="post", role="form")

With those two small updates the form will continue to work as before and Angular
will ignore it.

8.5 Summary
In this chapter we’ve covered

■ Simple binding and two-way data binding
■ The best practice of using the getter and setter syntax for defining a module

and its components
■ Defining controllers in code and HTML to manage the application
■ How scope works in Angular, particularly the rootScope and controller-level

scopes
■ Creating HTML snippets with directives
■ Using filters to modify the output of text and also entire repeated items of HTML
■ Using services to add reusable pieces of functionality and work with data
■ The $http service for making asynchronous calls to an API
■ When and why to use $scope.$apply()
■ Working with the HTML5 location API

Coming up next in chapter 9 we’re going to start converting the whole of the Loc8r
application into a single-page application using Angular. So take a deep breath and
get ready—it’s going to be a good one!

Listing 8.19 Pass the URL from the review form controller
Licensed to Mark Watson <nordickan@gmail.com>

Building a single-page
application with Angular:

Foundations
We saw in chapter 8 how to use Angular to add a component to an existing page.
Over the next two chapters we’re going to take Angular to the next level and use it
to create a single-page application. This means that instead of running the entire
application logic on the server using Express, we’ll be running it all in the browser
using Angular. By the end of this chapter we’ll have the framework for an SPA in
place, and have the first part up and running by using Angular to route to the
homepage and display the content.

 Figure 9.1 shows where we’re at in the overall plan, recreating the main applica-
tion as an Angular SPA.

This chapter covers
■ Setting up Express to deliver a single-page

application
■ Best practices for organizing code in a large

Angular application
■ Using Angular to do the URL routing instead

of Express
■ Combining and minifying several Angular files

into one
276

Licensed to Mark Watson <nordickan@gmail.com>

277Setting the groundwork for an Angular SPA
In a normal development process you probably wouldn’t create an entire application
on the server and then recreate it as an SPA. Ideally, your early planning phases will
have defined whether or not you want an SPA, enabling you to start in the appropriate
technology. For the learning process we’re going through now it’s a good approach;
we’re already familiar with the functionality of the site and the layouts have already
been created. This will let us focus on the more exciting prospect of seeing how to
build a full Angular application.

 We’ll start off by updating the encapsulating Express application to include a client-
side application, before creating the homepage. As we go through the process of adding
controllers, services, filters, and directives, we’ll explore various best practices such as
protecting the global scope, making reusable components, and minifying the code for
better browser performance.

9.1 Setting the groundwork for an Angular SPA
In this section we’ll be setting up a few things so that we can use the rest of the chapter
to build the functionality of the SPA. In chapter 8 we put all of the Angular code for
the homepage component into one file. This is okay to do for a relatively small one-off
component, but you probably noticed that at around 140 lines or so it was already get-
ting a bit hard to manage and find the piece of code you were looking for.

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Using AngularJS

to recreate our app

as an SPA.

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 9.1 This chapter will recreate the Loc8r application as an Angular SPA, moving
the application logic from the back end to the front end.
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 9 Building a single-page application with Angular: Foundations
 For reasons of manageability, code quality, and reusability, the best practice for
building an Angular SPA is to have one file per piece of functionality. So each control-
ler, service, directive, and filter should have its own file. That’s the approach we’re
going to take here, which brings with it a need for good organization.

9.1.1 Getting base files in place

We need to get organized and get the base files for our application in the right place
so that we can easily build it up. We’ll start with creating a new folder at the root of the
application to hold the SPA code.

CREATING AN APP_CLIENT FOLDER FOR THE CLIENT-SIDE APPLICATION

The very first thing we need to do is create a place inside our main Express applica-
tion for the Angular SPA to live. We already have a naming convention for separat-
ing out the main parts of our application with folders called app_server and
app_api. Adding to this family, create a new folder called app_client in the root of
the application.

 This is where we’ll keep all of the application code for the Angular SPA. We want
the JavaScript code that we’ll put in the folder to be given to the browser to run,
rather than running on the server. To make this happen we need to tell Express that
this folder contains “static” content, to be delivered directly to the browser as it is,
when requested.

 You may remember from way back in the book that this is configured in the main
Express app.js file. In there we already have the public folder set to be static. In the fol-
lowing code snippet we duplicate this line in app.js and set the folder name to be
app_client:

app.use(express.static(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'app_client')));

Now whenever the browser requests a resource from our new folder it will be deliv-
ered directly as is.

CREATING THE MAIN SPA APPLICATION FILE

Inside the app_client folder we’ll have a main application file. We saw in chapter 8
how to use the module setter and getter syntax, and this distributed file approach is
where the syntax really starts to come into its own. The main file will contain the one
and only module setter for our application.

 In the app_client folder create a new file called app.js, and add the Angular mod-
ule setter shown here:

angular.module('loc8rApp', []);

With the module setter in place we’ll now be able to add controllers, filters, and more
to the application by using the module getter syntax.
Licensed to Mark Watson <nordickan@gmail.com>

279Switching from Express routing to Angular routing
ADDING THE MAIN SPA APPLICATION FILE TO THE JADE LAYOUT

The Angular application will be needed in the browser, of course, and we no longer
need the homepage component that we built in chapter 8. So we can update the refer-
ence in layout.jade (in app_server/views) as follows:

script(src='/angular/angular.min.js')
script(src='/app.js')

That’s it for the first round of basics. We’ve got somewhere to put our application
code, and we created the module setter and added it to the Jade layout so that it will
come down to the browser.

 If you try it now though, you’ll get a JavaScript error in your browser as it’s still try-
ing to use the Jade template for the homepage, but without the Angular component
from chapter 8 attached to it.

 We’ll need to create some new application code to run the entire homepage, but
first we need to let Angular take control of the routing.

9.2 Switching from Express routing to Angular routing
One of the principles of an SPA is that the page doesn’t fully reload when a visitor nav-
igates from one screen to another. The browser shouldn’t make a request to the server
every time a user clicks to look at a different page. But we also want visitors to be able
to visit any of the URLs directly, and be shown the correct content the first time.

 At the moment, when a user visits a URL for our site the browser sends a request to
the server, which processes the request before sending the HTML for the page to the
browser. See loop 1 in figure 9.2 for a visual of this process. This happens for every
new page request while the user is on our site, with the server resending the entire
page each time.

 In an SPA, when a visitor first goes to a URL on the site the browser sends a request
to the server. As loop 2 in figure 9.2 shows, the server then returns the full application
to the browser, and it’s this client-side application that processes the request before
displaying the correct page to the visitor. When the user clicks to go to another page
in the site, the application in the browser processes the request and changes what the
user sees, rather than making another request to the server. This shorter process is
shown in loop 3 in figure 9.2.

 The interesting thing about this for us right now is how the browser knows what to
display for different URLs. In Express we set up a bunch of routes that point to differ-
ent controllers. In Angular we can actually do something similar, but first we need to
stop Express from taking over.

9.2.1 Switching off the Express routing

As shown in figure 9.2, every page requested of the application is routed through
Express. A URL request comes in and Express decides which controller should be

Replace existing link to
angular/loc8rApp.js with /app.js
Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 9 Building a single-page application with Angular: Foundations
User enters

URL

Browser sends

request to server

Server

processes

request

Server sends HTML for

the page to the browser

User sees

correct page

1. Server application request loop

User enters

URL

Browser sends

request to server

Server sends

application

to browser
Application

processes request

and renders page
User sees

correct page

2. SPA initial request loop

User changes

URL

Application processes

request and renders page

User sees

correct page

3. SPA subsequent request loop

Figure 9.2 Three different request loops associated with different approaches. Server
applications hit the server for every new page request, but SPAs typically only hit the server
for the initial page load. Subsequent requests are handled by the SPA itself.
Licensed to Mark Watson <nordickan@gmail.com>

281Switching from Express routing to Angular routing
used to handle it. We want to move to a different approach, where Express will be
used to deliver the containing page and Angular application, and Angular will do the
rest of the routing.

 To take control of the application routing away from Express we’ll do two things:

■ Create a new Express controller to deliver a basic template to the browser.
■ Update the Express homepage route to use a new controller.

CREATING A NEW EXPRESS CONTROLLER TO DELIVER A PAGE TEMPLATE

Before updating the main Express route we’ll give it a new controller to use. The ques-
tion is: what do we want to send to the browser? In our SPA we want to keep the naviga-
tion and footer the same on all pages, and change the central content as the user
clicks around. Our layout.jade template contains the header, footer, and a place-
holder for the central content. Sounds like a perfect candidate to be reused.

 The following code snippet shows the new controller to add to the end of the
others.js file in app_server/controllers:

module.exports.angularApp = function(req, res){
 res.render('layout', { title: 'Loc8r' });
};

When we call this controller it will just send the layout to the browser. So next we need
to call it.

CHANGING THE HOMEPAGE ROUTING

The route for the homepage is in the index file of app_server/routes, and we now
need to update this to use our new controller. The following code snippet shows the
update required to the routing:

router.get('/', ctrlOthers.angularApp);
router.get('/location/:locationid', ctrlLocations.locationInfo);
router.get('/location/:locationid/review/new', ctrlLocations.addReview);
router.post('/location/:locationid/review/new', ctrlLocations.doAddReview);

What about the other Express routes?
The rest of the Express routes are effectively redundant now, and won’t be used. You
can delete them or comment them out if you wish. Leaving them in won’t conflict with
the Angular routing because all of the paths in Angular will be slightly different.

To avoid page reloads, the default behavior of Angular is to change the URL's paths
after a #, which is traditionally a page anchor. The original intent of the # in a URL
was to take a visitor to a specific point on a long page; Angular uses it to take a visitor
to a specific point in an application.

In the Express version, the URL path for the About page looked like this:

/about

Set homepage route
to use new controller
Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 9 Building a single-page application with Angular: Foundations
Now visiting the homepage will give you a pretty bare page as shown in figure 9.3, with
just the navigation and a footer (the footer at this stage is hidden behind the naviga-
tion due to the lack of content).

 Let’s move on to the next step and add some Angular routing.

9.2.2 Adding ngRoute (angular-route) to the application

Older versions of Angular had routing built in to the main library, but this has since
been made an external dependency so that it can be maintained in its own right. So
we’ll need to download this and add it to our application.

 As it’s a core piece of functionality you can download the file from code.angu-
larjs.org. This site maintains a folder for each release of Angular, so you can make sure
you download the correct version. We’re using Angular 1.2.19, so we can head to
code.angularjs.org/1.2.19/ to see a list of possible downloads.

 The module we want is called angular-route, so download the two following mini-
fied files:

■ angular-route.min.js
■ angular-route.min.js.map

(continued)

With Angular routing set up, the URL path for the same page would look like this:

/#/about

We’ll address this further in chapter 10 when we look at how to remove the # from
Angular URLs for better deep linking.

Figure 9.3 With Express only rendering the layout.jade template in the browser the
homepage is quite bare, and ready for some Angular code.
Licensed to Mark Watson <nordickan@gmail.com>

http://code.angularjs.org
http://code.angularjs.org
http://code.angularjs.org/1.2.19/

283Switching from Express routing to Angular routing
Now it’s time to add the files to the application.

ADDING THE ANGULAR-ROUTE FILES TO THE APPLICATION

We’ll move these library files into the new app_client folder so that browsers can use
them as static files. To keep things tidy create a new folder called lib inside app_client
and place the two angular-route files in there. This will help keep library files separate
from our application code.

 The browser needs to know to get the JavaScript file, of course, so once again we need
to add a link to the file inside layout.jade as shown in the following code snippet:

script(src='/angular/angular.min.js')
script(src='/lib/angular-route.min.js')
script(src='/app.js')

Now the browser knows about the JavaSript file and will download it, which will in
turn reference the .map file to display more meaningful error messages if necessary.
This is good, but our Angular application doesn’t know that we want to use it, so let’s
address that now.

ADDING ANGULAR-ROUTE TO THE ANGULAR APPLICATION

To add angular-route to our Angular application we need to add it to the module
definition as a dependency. The name of the file might be angular-route but the
name of the module is ngRoute, so this is the dependency we need to add. This
module generates a provider called $routeProvider that we can pass to an Angular
config function. The config function is where we’ll define the different routes for
our application.

 All of this is shown together in the following listing, which shows the updated con-
tents of app_client/app.js in its entirety.

angular.module('loc8rApp', ['ngRoute']);

function config ($routeProvider) {
 $routeProvider
 .when('/', {
 })
 .otherwise({redirectTo: '/'});
}

angular
 .module('loc8rApp')
 .config(['$routeProvider', config]);

The Angular syntax and use of dependency injection, modules, and providers can make
this look more complicated than it is. Our module needs to use ngRoute to enable rout-
ing B, and the config function c is where we define the routes. The module needs to
be told about the config function d using the module getter syntax.

Listing 9.1 Adding ngRoute and config to the Angular application

Add ngRoute as
module dependency b

Module config
function to hold
route definitions

 c

Add config to module, passing
through $routeProvider as
dependency

 d
Licensed to Mark Watson <nordickan@gmail.com>

284 CHAPTER 9 Building a single-page application with Angular: Foundations
 The routing as it stands won’t do much, but here the syntax is pretty clear. When
the URL path '/' is called—that is, the homepage—it will do nothing; if a different
URL is called, it will redirect to the homepage. As we go through this chapter we’ll add
more .when sections to this configuration so that we can show the different pages. But
first, let’s get the homepage doing something.

9.3 Adding the first views, controllers, and services
In this section we’re going to reinstate the homepage functionality. To do this we’ll
need to create an Angular view and controller, and also use the services we created in
chapter 8 for geolocation and hitting the data API.

 In section 9.1 we talked about splitting the functionality into separate files, and
that’s what we’re going to do here. Every view, controller, and service should be con-
tained in its own separate file, and these files should be grouped together in logical
folders. This means grouping them together based on what they do, rather than the
file type. For example, the controller and view for the homepage are tightly bound to
each other so we’ll put them together in the same folder.

TIP: BEST PRACTICE Each view, controller, service, and filter should be con-
tained in a separate file. The files should have a consistent naming conven-
tion, and be grouped together in functional folders.

With that in mind, let’s start by creating a folder called home inside the app_client
folder. This will house our homepage files, starting with the view.

9.3.1 Creating an Angular view

Here we’re going to create the HTML template for the homepage content, attach it to
the Angular routing, and display it on the page. So let’s get straight into it and create
the view.

CREATING THE VIEW TEMPLATE

We already know how the homepage should look and behave, and we’ve already got a
template for it including some Angular bindings. That template is in Jade, but now we
need to convert it to HTML making sure to replace any Jade binding with Angular
equivalents. Inside the home folder in app_client create a new file for our view called
home.view.html.

 Listing 9.2 shows the contents of the home.view.html file after it has been con-
verted from Jade. Note that for now we’ve removed the formatDistance filter from
the location distance badge to prevent any errors; we’ll add it back in later.

<div id="banner" class="page-header">
 <div class="row">
 <div class="col-lg-6"></div>
 <h1>

Listing 9.2 Angular view template for the homepage, home.view.html
Licensed to Mark Watson <nordickan@gmail.com>

285Adding the first views, controllers, and services
 {{ pageHeader.title }}
 <small>{{ pageHeader.strapline }}</small>
 </h1>
 </div>
</div>

<div class="row">
 <div class="col-xs-12 col-sm-8">
 <label for="filter">Filter results</label>
 <input id="filter" type="text", name="filter", ng-model="textFilter">
 <div class="error">{{ message }}</div>
 <div class="row list-group">
 <div class="col-xs-12 list-group-item" ng-repeat="location in

data.locations | filter : textFilter">
 <h4>
 {{ location.name }}
 <small class="rating-stars" rating-stars

rating="location.rating"></small>
 {{ location.distance

}}
 </h4>
 <p class="address">{{ location.address }}</p>
 <p>
 <span class="label label-warning label-facility" ng-

repeat="facility in location.facilities">
 {{ facility }}

 </p>
 </div>
 </div>
 </div>
 <div class="col-xs-12 col-sm-4">
 <p class="lead">{{ sidebar.content }}</p>
 </div>
</div>

This HTML isn’t doing anything we haven’t seen before, and when the data is plugged
in we’ll be back to our familiar homepage. The next step is to tell the Angular module
to use this view for the homepage.

ASSIGNING A VIEW TO A ROUTE

Angular needs to know about our new view template, and when to apply it. For this we
go back to our route config function in app_client/app.js. Inside the when statement
for the homepage path, we specify a templateUrl option pointing to our new HTML
file, as follows:

function config ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html'
 })
 .otherwise({redirectTo: '/'});
}

Update pageHeader bindings
to be Angular bindings

Remove
formatDistance
filter, for now

Update sidebar
content to be
Angular binding

Add templateUrl to
route config to specify
view template to use
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 9 Building a single-page application with Angular: Foundations
With that in place Angular will now use the home.view.html template when the URL
path is '/'. There’s just one problem—we haven’t told Angular where to show this
template in the browser. Not to worry, that’s just a very simple addition to the base
HTML template.

DEFINING WHERE TO SHOW THE ANGULAR VIEW

In chapter 8 when we took some pieces of HTML and made them external, we
included them back into the application as directives. What we’re going to do here is
the same, using a directive that comes with ngRoute. This directive is called ng-view
and is used by Angular as a container in which the views can be switched.

 Applying it is super simple. In layout.jade we already have a .container that cur-
rently holds the block content statement, designed to bring in the Jade content for
individual pages. The following code snippet shows how we can add a new div with
ng-view as an attribute inside the container for Angular to use:

.container
 div(ng-view)
 block content

With that in place you can head to the browser and see what you’ve got. Not a lot, but
more than before! There’s no data attached to the view, but you should at least be able
to see the Filter Results input box that’s part of the view.

 Next we’ll give it some data by adding a controller.

9.3.2 Adding a controller to a route

The process of adding a controller to a route is also not particularly difficult. There
are a few steps to take:

1 Create a controller in its own file.
2 Attach the controller to the Angular application.
3 Tell the route config function when to use the controller.
4 Tell the browser about the file.

Let’s start at the beginning, creating the new file and the controller.

CREATING THE CONTROLLER

In the same folder as the home.view.html file create a new file home.controller.js—
naming conventions don’t come much more simple than this! In this file we’ll use the
module getter syntax to add a new controller to the application, and define a basic
controller to add some data to the scope so that we can see the page header and side-
bar content in the browser.

 This step isn’t really anything new to us, so let’s look at the content of the new con-
troller file in the following listing.

Add empty div as
ng-view container, where
Angular inserts views
Licensed to Mark Watson <nordickan@gmail.com>

287Adding the first views, controllers, and services
angular
 .module('loc8rApp')
 .controller('homeCtrl', homeCtrl);

function homeCtrl ($scope) {
 $scope.pageHeader = {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 };
 $scope.sidebar = {
 content: "Looking for wifi and a seat etc etc"
 };
}

The new homeCtrl controller simply binds a few data elements that we used to send to
Jade from the Express controllers, but technically this is nothing alien to us after chap-
ter 8. One thing that starts to become apparent when building up an application
using separate files is the great benefit of using the module getter/setter syntax. Each
controller, service, or filter can be added to the application from its own file. The
great benefit here is that you don’t have to try to manage a full list of dependencies
from within the main app.js file.

ADDING A CONTROLLER TO THE ROUTE CONFIG FUNCTION

The route config function needs to know which controller to use for which path. This
is another simple step, adding a controller option to the config function for the
homepage path. The controller option takes the name of the controller to be used as
a string, as follows:

function config ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl'
 })
 .otherwise({redirectTo: '/'});
}

We’re nearly there—now we just need to tell the browser about the file so that it can
download it.

TELLING THE BROWSER ABOUT THE CONTROLLER FILE

No great surprises here; we need to add the script file to layout.jade so that the browser
will download it and Angular can use the contents. The following code snippet shows
the change needed to the bottom of layout.jade to add the new controller file:

script(src='/angular/angular.min.js')
script(src='/lib/angular-route.min.js')
script(src='/app.js')
script(src='/home/home.controller.js')

Listing 9.3 Creating the new homepage controller

Use module getter to
add new controller
to application

Define new
controller
homeCtrl and
bind some data
for page header
and sidebar

Add controller option to
config for route, giving
name of controller as string
Licensed to Mark Watson <nordickan@gmail.com>

288 CHAPTER 9 Building a single-page application with Angular: Foundations
Now if you head over to the browser and view the homepage again you can see that
the header and sidebar both have content showing. You should see something like the
screenshot in figure 9.4.

 Before we move on, we’re going to update our controller to use a bit of best practice.

9.3.3 Controller best practice: Using the controllerAs syntax

Angular offers a way to create a view model that you can bind your data to, rather than
attaching everything directly to the $scope object. There are a few advantages to fol-
lowing this approach. First, it forces you to contain your data correctly, avoiding the
possibility of assigning a value directly to $scope. It also keeps your $scope object
clean; you can still use it if you need to when publishing or subscribing to $scope
events. So $scope should be reserved for special cases when it’s actually needed, such
as working with $scope.$apply.

 So how does it work and what does it look like? Let’s start with the route definition.

DECLARING CONTROLLERAS IN A ROUTE DEFINITION

The first step is to tell Angular that you want to use this controller with the
controllerAs syntax. This is just a case of adding an option to the definition of the
route. You specify an option of controllerAs and pass it the name of the ViewModel
you want to use as a string.

Figure 9.4 The first look at our SPA, setting the data for the homepage header and sidebar in
the Angular homeCtrl controller
Licensed to Mark Watson <nordickan@gmail.com>

289Adding the first views, controllers, and services

A
t

va
 Another piece of best practice is to choose a standard name; the typical choice is
vm, which stands for ViewModel. The following code snippet shows this in place in the
route definition:

function config ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl',
 controllerAs: 'vm'
 })
 .otherwise({redirectTo: '/'});
}

We’ll use this vm variable in both the controller and the view, and put all of the data
objects currently in $scope inside it.

DEFINING THE VIEWMODEL IN THE CONTROLLER

Behind the scenes, when you use a controller in an application it’s generated using
JavaScript’s new method, creating a single instance. When the controllerAs syntax is
used, Angular uses this inside the function, and binds it to $scope.

 Using this in JavaScript can be problematic, as it’s very context-sensitive. Each
nested function will have its own this, rather than inheriting from the parent scope.
To work around this issue, simply define a variable at the top of the controller, and
assign this as the value.

 We’re going to declare a variable called vm as a matter of consistency and best prac-
tice, but it could be anything you want. The name of the variable defined here doesn’t
have to match that defined in the route definition.

 When you’ve declared vm to be equal to this, you can update all of the data bind-
ings, changing $scope to vm. With all of the references to $scope gone, you can now
also remove $scope from the function definition. The updated home controller is
shown in the following listing.

function homeCtrl () {
 var vm = this;
 vm.pageHeader = {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 };
 vm.sidebar = {
 content: "Looking for wifi and a seat? Etc etc…"
 };
}

USING THE VIEWMODEL IN THE VIEW

The final step in using the controllerAs syntax is using the ViewModel variable in
the view. The data in each data binding now lives inside the vm object, so all of the

Listing 9.4 Updating the home controller to use vm and the controllerAs syntax

Add controllerAs option to
route definition, passing
variable name to be used
as string

Remove $scope from
function definition

ssign
his to

vm
riable

Update data
bindings to use
vm instead of
$scope
Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 9 Building a single-page application with Angular: Foundations

bi
add
in
ea
bindings must be updated. In the following listing you can see this in place for the
home.view.html file.

<div id="banner" class="page-header">
 <div class="row">
 <div class="col-lg-6"></div>
 <h1>
 {{ vm.pageHeader.title }}
 <small>{{ vm.pageHeader.strapline }}</small>
 </h1>
 </div>
</div>

<div class="row">
 <div class="col-xs-12 col-sm-8">
 <label for="filter">Filter results</label>
 <input id="filter" type="text", name="filter", ng-model="textFilter">
 <div class="error">{{ vm.message }}</div>#
 <div class="row list-group">
 <div class="col-xs-12 list-group-item" ng-repeat="location in

vm.data.locations | filter : textFilter">
 <h4>
 {{ location.name }}
 <small class="rating-stars" rating-stars

rating="location.rating"></small>
 {{ location.distance

}}
 </h4>
 <p class="address">{{ location.address }}</p>
 <p>
 <span class="label label-warning label-facility" ng-

repeat="facility in location.facilities">
 {{ facility }}

 </p>
 </div>
 </div>
 </div>
 <div class="col-xs-12 col-sm-4">
 <p class="lead">{{ vm.sidebar.content }}</p>
 </div>
</div>

With that, the homepage is now back up and running using the controllerAs syntax.
We’ll use this approach for all controllers moving forward.

 Now we’re back to the task of getting the homepage working properly again, get-
ting the visitor’s location, and displaying a list of nearby results. In chapter 8 we created
some services to work with the geolocation and data, and we’re going to reintroduce
those services to our SPA.

Listing 9.5 Updating the home view to use vm data bindings

Update
data

ndings,
ing vm

front of
ch item
Licensed to Mark Watson <nordickan@gmail.com>

291Adding the first views, controllers, and services
9.3.4 Using services

In chapter 8 we created two services, geolocation and loc8rData. We’re going to lift
these straight out of there and add them as services in our SPA. To add each service
we’ll need to:

1 Create a new file.
2 Paste in the service code.
3 Register the service with the application.
4 Add the file to layout.jade.
5 Invoke the service from the home controller.

CREATING THE SERVICE FILES

Sticking with our approach of keeping everything in separate files we’ll create a new
file for each of the services. These services could well be reused all over the site and
aren’t necessarily subcomponents of the homepage. So rather than put them in the
home folder, create a new folder in app_client called common, and in that a new
folder called services, giving us app_client/common/services.

 Create a new file loc8rData.service.js in this folder and paste in the loc8rData ser-
vice code from chapter 8 as shown in the following listing, remembering to also regis-
ter it with the Angular application.

angular
 .module('loc8rApp')
 .service('loc8rData', loc8rData);

function loc8rData ($http) {
 var locationByCoords = function (lat, lng) {
 return $http.get('/api/locations?lng=' + lng + '&lat=' + lat +

'&maxDistance=20');
 };
 return {
 locationByCoords : locationByCoords
 };
}

We’ll tell the browser about this file in just a moment, but first we’ll do the same thing
for the geolocation service as shown in the next listing, this time in a new file called
geolocation.service.js.

angular
 .module('loc8rApp')
 .service('geolocation', geolocation);

function geolocation () {
 var getPosition = function (cbSuccess, cbError, cbNoGeo) {

Listing 9.6 Create the loc8rData service

Listing 9.7 Create the geolocation service
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 9 Building a single-page application with Angular: Foundations
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(cbSuccess, cbError);
 }
 else {
 cbNoGeo();
 }
 };
 return {
 getPosition : getPosition
 };
}

There’s nothing new in either of these files. We’ve just taken the code we’ve already
created, put each service into its own file, and registered them with the Angular appli-
cation. Now we need to tell the browser to download them.

GETTING THE FILES TO THE BROWSER

No major surprises here; we’re going to add these two files to the list of scripts being
included in layout.jade, as follows:

script(src='/angular/angular.min.js')
script(src='/lib/angular-route.min.js')
script(src='/app.js')
script(src='/home/home.controller.js')
script(src='/common/services/loc8rData.service.js')
script(src='/common/services/geolocation.service.js')

Pretty simple. Now we need to bring in the code to use the services.

USING THE SERVICES FROM THE CONTROLLER
Again, we’ve actually done the hard work already, as the code exists in the controller we
created in chapter 8. So we’re going to lift the code out of there and in to homeCtrl in
our SPA.

 The following listing shows the homepage controller after this has been done,
including replacing all instances of $scope with vm. Remember, of course, to pass the
names of the services into the controller so that it can use them.

function homeCtrl (loc8rData, geolocation) {
 var vm = this;
 vm.pageHeader = {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 };
 vm.sidebar = {
 content: "Looking for wifi and a seat? Etc etc"
 };
 vm.message = "Checking your location";

Listing 9.8 Update the homepage controller to use the two services

Pass names of services
into controller
Licensed to Mark Watson <nordickan@gmail.com>

293Adding the first views, controllers, and services

funct

co
in cha
repla

in
of

w

 vm.getData = function (position) {
 var lat = position.coords.latitude,
 lng = position.coords.longitude;
 vm.message = "Searching for nearby places";
 loc8rData.locationByCoords(lat, lng)
 .success(function(data) {
 vm.message = data.length > 0 ? "" : "No locations found nearby";
 vm.data = { locations: data };
 })
 .error(function (e) {
 vm.message = "Sorry, something's gone wrong";
 });
 };

 vm.showError = function (error) {
 vm.$apply(function() {
 vm.message = error.message;
 });
 };

 vm.noGeo = function () {
 vm.$apply(function() {
 vm.message = "Geolocation is not supported by this browser.";
 });
 };

 geolocation.getPosition(vm.getData,vm.showError,vm.noGeo);

}

That looks good, right? There’s just one problem. $apply is a method of $scope, and
vm doesn’t inherit it and can’t access it because vm is also a child of $scope. So we’ll
have to add $scope back in.

USE $SCOPE WHEN NEEDED

The controllerAs syntax that we’re using is ideal for decluttering and avoiding abuse
of $scope. Following this approach you only use $scope when you absolutely need it,
which helps provide an additional layer of clarity and understanding to your code and
the process going on behind it.

 To use $scope.$apply in the home controller we just need to pass in $scope like any
other dependency, and then change the current vm.$apply calls back to $scope.$apply.
The following listing shows the changes needed (keep the rest of the code in place as
it’s omitted here for brevity).

function homeCtrl ($scope, loc8rData, geolocation) {

 vm.showError = function (error) {
 $scope.$apply(function() {
 vm.message = error.message;
 });
 };

 vm.noGeo = function () {
 $scope.$apply(function() {

Listing 9.9 Updates needed to use $scope.$apply in the home controller

Paste
ionality

from
ntroller
pter 8,
cing all
stances
 $scope
ith vm

Pass $scope into
controller as
dependency

Update instances
of vm.$apply to be
$scope.$apply
Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 9 Building a single-page application with Angular: Foundations
 vm.message = "Geolocation is not supported by this browser.";
 });
 };
}

Okay, now we’re good to go. Now the scope will update again following the asynchro-
nous actions of the geolocation service.

TIP: BEST PRACTICE Only use $scope when you actually need it; use the View-
Model controllerAs approach where you can.

Trying out the site now will display a list of locations as shown in figure 9.5.
 We’re getting there—just a couple of tweaks to go, which we’ll do by reintroducing

the filters and directives.

9.3.5 Using filters and directives

The homepage now needs to output the rating stars and format the distances cor-
rectly. In chapter 8 we created a formatDistance filter and a ratingStar directive;
we’ll plug those in now. Going through things in this way should hopefully demon-
strate the power and benefit of creating reusable modules and components that you
can move around and plug into different projects as you need.

Figure 9.5 Homepage returning a list of locations using the geolocation and loc8rData services
Licensed to Mark Watson <nordickan@gmail.com>

295Adding the first views, controllers, and services
Sticking with the “one component, one file” approach we’ll create each filter and
directive separately, as individual files, and make sure the browser knows about each
of them, too.

CREATING THE FORMATDISTANCE FILTER FILE

The formatDistance filter is designed to be reusable; we’re currently only using it in
the homepage but it could be used anywhere. So, like the services, we’ll add it in the
common folder. In the app_client/common folder create a new folder called filters.
Inside the filters folder create a new file called formatDistance.filter.js.

 In the new file we need to put the formatDistance function we created in chapter
8, along with the _isNumeric helper function it uses. We also need to register the
function with the Angular application as a filter using the getter syntax. All of this
together is shown in the following listing.

angular
 .module('loc8rApp')
 .filter('formatDistance', formatDistance);

var _isNumeric = function (n) {
 return !isNaN(parseFloat(n)) && isFinite(n);
};

function formatDistance () {
 return function (distance) {
 var numDistance, unit;
 if (distance && _isNumeric(distance)) {
 if (distance > 1) {
 numDistance = parseFloat(distance).toFixed(1);
 unit = 'km';
 } else {
 numDistance = parseInt(distance * 1000,10);
 unit = 'm';
 }
 return numDistance + unit;
 } else {
 return "?";
 }
 };
}

CREATING THE RATINGSTARS DIRECTIVE FILES

A directive requires two files, the JavaScript defining the directive and the HTML tem-
plate to be used. The ratingStars directive is used in multiple places, so again we’ll
base it in the app_client/common folder.

 Inside the common folder create a new folder called directive, and in the directive
folder create a new subfolder called ratingStars, so we have app_client/common/
directive/ratingStars. Copy the file /public/rating-stars.html that we created in chap-
ter 8 into this folder, and to fit with our SPA module naming convention, rename it
ratingStars.template.html.

Listing 9.10 Create the formatDistance.filter.js file
Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 9 Building a single-page application with Angular: Foundations
NOTE The folder and file naming convention we’re using in Angular is
informed by the “one function, one file” approach. Where we have one key
function in a file, we’ll name the file and containing folder after that function.

Now create a new file in the same folder called ratingStars.directive.js. This is where
we’ll hold the JavaScript code for the directive, and, of course, we also have to register
it with the JavaScript application.

 In the following listing we do exactly this, remembering to update the path of the
template URL.

angular
 .module('loc8rApp')
 .directive('ratingStars', ratingStars);

function ratingStars () {
 return {
 restrict: 'EA',
 scope: {
 thisRating : '=rating'
 },
 templateUrl: '/common/directives/ratingStars/ratingStars.template.html'
 };
}

We’ve also added a little something new in there, the restrict attribute. This tells
Angular to only use the ratingStars directive when the string rating-stars is found
in particular places. In this instance the E and the A stand for element and attribute,
respectively, so rating-stars can be its own element or an attribute of another ele-
ment. Other options are C for class and M for comment, but the best practice is to stick
with EA.

 Before we move on we’ll need to add the references to the formatDistance filter
file and the ratingStars directive file in layout.jade so that the browser can down-
load them.

SETTING UP THE HOMEPAGE VIEW

Next we need to make sure that the homepage view will make use of the directive and
filter. We haven’t made any changes to the HTML regarding the rating stars, but we did
take the filter out of the distance element to prevent Angular from throwing errors.

 So the following code snippet shows the only change we need to make in
home.view.html, reintroducing the formatDistance filter:

<h4>
 {{ location.name }}
 <small class="rating-stars" rating-stars rating="location.rating"></small>
 {{ location.distance |

formatDistance }}
</h4>

Listing 9.11 Create the ratingStars directive file
Licensed to Mark Watson <nordickan@gmail.com>

297Improving browser performance
And with that we’re done with the homepage! So let’s check it out in the browser. Fig-
ure 9.6 shows the homepage again with the rating stars back in and distance fixed.

 Okay, good stuff. So we’ve got things set up to run an SPA with Angular, and we’ve
got our first view up and running. But we’ve already added six JavaScript files to the
template for the browser to download and we’ve only built the homepage. That’s a lot
of requests for a browser to have to make. And even worse, the files are all using global
variables. So let’s take a moment to look at some techniques and best practices we can
use to address these issues, before continuing to build the application.

9.4 Improving browser performance
The modular approach that we’re taking to coding is great for the maintainability of the
codebase, but not so great for browsers if they have to go and download each of the little
files separately. We’ve got quite a few already, and we’ve only done the homepage!

 In this section we’re going to

■ Reduce the number of global variables.
■ Reduce the number of files the browser downloads.
■ Reduce the overall file size of the JavaScript.

Figure 9.6 With the addition of the formatDistance filter and the ratingStars directive the
homepage is looking good again.
Licensed to Mark Watson <nordickan@gmail.com>

298 CHAPTER 9 Building a single-page application with Angular: Foundations
Let’s start with the global variables. We’ll tackle this by wrapping each file in an imme-
diately invoked function expression (IIFE).

9.4.1 Wrap each file in an IIFE

An IIFE is a way of encapsulating some JavaScript code in a unique scope, hiding the
contents from the global scope. You can read more about this in appendix D (online).

 In brief, an IIFE looks like the following code snippet, where we’re wrapping a
console.log statement:

(function() {
 console.log("Output immediately");
})();

This puts the console.log inside a function scope, and immediately invokes the func-
tion. And this is what we want to do with our application code. At the moment each file
is running in the global scope. This is bad because it clutters the global scope, increases
the risk of variable name collision, and exposes the application code to potential misuse.

NOTE Our Angular application doesn’t need the global scope to tie it together
as everything is connected through the module getter/setter angular.module-
('loc8rApp').

In the following listing we can see how this looks in app_client/app.js.

(function () {

 angular.module('loc8rApp', ['ngRoute']);

 function config ($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl',
 controllerAs: 'vm'
 })
 .otherwise({redirectTo: '/'});
 }

 angular
 .module('loc8rApp')
 .config(['$routeProvider', config]);

})();

We haven’t changed any of the actual code here, just wrapped the entire contents of
the file in an IIFE. Now we just need to go through and wrap each of the JavaScript
files we’ve created in this chapter in the same way:

■ /app_client/common/directives/ratingStars/ratingStars.directive.js
■ /app_client/common/filters/formatDistance.filter.js

Listing 9.12 Wrapping Angular application files in IIFEs, for example, app.js

Open IIFE

Close and
invoke IIFE
Licensed to Mark Watson <nordickan@gmail.com>

299Improving browser performance
■ /app_client/common/services/geolocation.service.js
■ /app_client/common/services/loc8rData.service.js
■ /app_client/home/home.controller.js

That’s it for the first goal of reducing global variables. For the rest of this book we’ll assume
that each Angular JavaScript application file is wrapped in an IIFE.

 Now we want to look at reducing the number of files and the overall file size. This
will involve minifying the scripts. If we try that right now our application will break, so
let’s see why that is, and what we can do about it.

9.4.2 Manually injecting dependencies to protect against minification

Minifying the code we have now will break the application. This is because we’re
injecting the names of the dependencies into controller and service functions as
parameters. During minification these names get minified into single letters.

 The definition for homeCtrl, for example, looks like this:

function homeCtrl ($scope, loc8rData, geolocation)

But if minified it would look something like this:

function homeCtrl(a,b,c){

Just to be clear, minification doesn’t break JavaScript code. Each function we create
would work independently. The problem arises with Angular because the parame-
ters aren’t mere parameters to be used solely in the context of the function. The
parameters are also references to the names of other parts of the application, such
as services. Looking at the example of the preceding code snippets, our application
knows what the service loc8rData is, but doesn’t know anything about a service
called b.

 We can protect against this by manually injecting the dependencies as strings,
which won’t get changed during a minify process. For this, Angular provides a $inject
method against the constructors for controllers and services. The $inject method
accepts an array of strings. These strings are the dependencies for a particular control-
ler or service and match those being passed through as parameters.

 This is one of those times when an example really sheds light on what we’re talking
about. In the following code snippet we add the dependency injection for the home-
page controller, just before the definition of the function:

homeCtrl.$inject = ['$scope', 'loc8rData', 'geolocation'];
function homeCtrl ($scope, loc8rData, geolocation) {

The $inject method is applied to the name of the function, accepted as an array of
the dependencies. The array should contain strings, because they don’t get changed
when code is minified. The contents of the array should be in the same order as the
parameters in the function.
Licensed to Mark Watson <nordickan@gmail.com>

300 CHAPTER 9 Building a single-page application with Angular: Foundations
 We only need to do one more thing for now, and that’s to inject $http into our
loc8rData service as follows:

loc8rData.$inject = ['$http'];
function loc8rData ($http) {

When organized and handled like this, dependency injection is quite simple. Just
remember to do it for every controller or service that needs it. Now we’re ready to
minify the scripts.

9.4.3 Using UglifyJS to minify and concatenate scripts

To minify and concatenate the Angular application scripts we’re going to use a third-
party tool called UglifyJS. The aim is that when the Node application starts up in
Express, UglifyJS will take the source files of our Angular application and put them all
into one file and compress it. We’ll update our application to use this single output
file, instead of the multiple files we’re using at the moment.

 So let’s get started, and install UglifyJS.

INSTALLING UGLIFYJS
Adding a new npm module and updating package.json is quite easy—we’ve done it a
few times already.

 Open a command line at the root folder of the application, where the pack-
age.json file is. In the command line run the following:

$ npm install uglify-js --save

This will install the UglifyJS module and add it to package.json.

ADDING UGLIFYJS TO THE APPLICATION

Now that the installation is done, it’s time to bring it into the application. We’re going
to do this right down in the root of the application in /app.js, where everything starts.
UglifyJS needs to be required in, and we also need to reference a default Node mod-
ule called fs. This stands for filesystem—we’ll need access to the filesystem to save the
new uglified file.

 The following listing shows the changes needed to /app.js to bring the two mod-
ules in.

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
require('./app_api/models/db');
var uglifyJs = require("uglify-js");
var fs = require('fs');

Great, we’ve got it in place. Let’s use it!

Listing 9.13 Adding UglifyJS to the Node application
Licensed to Mark Watson <nordickan@gmail.com>

301Improving browser performance

u
.

pr
on

o

UGLIFYING JAVASCRIPT FILES

We’ll use UglifyJS to combine all of our Angular application files into one and then
minify them. This process happens in memory, so once the combined file is generated
we’ll use the filesystem to save it.

 We want this to happen quite early on when the application starts, so we’ll insert
the code quite high up in the main app.js file in the root of the project. Just below the
view engine declaration will do. There are three distinct sections of the code we want
to add in:

1 List all of the files we want to combine in an array.
2 Call UglifyJS to combine and minify the file in memory.
3 Save the uglified code into the public folder.

In the following listing we can see the code we need to add, starting off by defining an
array of the files we want to uglify.

routeapp.set('views', path.join(__dirname, 'app_server', 'views'));
app.set('view engine', 'jade');
var appClientFiles = [
 'app_client/app.js',
 'app_client/home/home.controller.js',
 'app_client/common/services/geolocation.service.js',
 'app_client/common/services/loc8rData.service.js',
 'app_client/common/filters/formatDistance.filter.js',
 'app_client/common/directives/ratingStars/ratingStars.directive.js'
];
var uglified = uglifyJs.minify(appClientFiles, { compress : false });

fs.writeFile('public/angular/loc8r.min.js', uglified.code, function (err){
 if(err) {
 console.log(err);
 } else {
 console.log('Script generated and saved: loc8r.min.js');
 }
});

Now when you restart the Node application you’ll find that a new file, loc8r.min.js
has been added to the folder public/angular. At this stage the minified file is 2,160
bytes, down from around 3,575 for the individual files. So as well as reducing the
number of requests the browser has to make from six to one, we’ve reduced the file
size by around 40%. Saving 1.5 kb might not seem like a lot at the moment, but
remember that our application is currently very small, and only deals with the
homepage.

 Of course, the browser won’t get the benefit if we don’t tell it about the new file.

Listing 9.14 Uglifying and saving the new file

Step 1:
define
array of
files to
uglifyRun

glifyJs
minify
ocess
 array
f files

Save
generated
file
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 9 Building a single-page application with Angular: Foundations

Co

ind
USING THE NEW MINIFIED FILE IN THE HTML
Swapping out the separate files for a single file in the HTML is a snap. We just need to
update layout.jade, commenting out the individual files and adding in the new mini-
fied file, as shown in the following code snippet:

script(src='/angular/loc8r.min.js')
//- script(src='/app.js')
//- script(src='/common/services/loc8rData.service.js')
//- script(src='/common/services/geolocation.service.js')
//- script(src='/common/directives/ratingStars/ratingStars.directive.js')
//- script(src='/common/filters/formatDistance.filter.js')
//- script(src='/home/home.controller.js')

Why comment out, rather than delete? It’s a lot harder to debug a single minified file
than the original individual files. All errors will be on line 1, function and variable
names will be changed, and so on. So if we’re having problems we can flip back to
using the individual files for debugging. Then we’ll be shown filenames and line num-
bers in a useful way again.

 It’s possible to automate some of this by using a build system or task runner such as
Gulp or Grunt. You could set these up to only build the minified file when you want to
deploy to production. Or you could set them up to watch for changes to certain files
and create the minified version on-the-fly. They can even generate a source map,
which maps the minified file back to the originals for easier debugging.

 We’re not going to cover Gulp or Grunt in detail here, but they’re definitely
worth exploring.

PREVENTING A NODEMON RECURSIVE LOOP

Everything is working as it should, but if you start the application up using nodemon
you’ll notice that the application restarts several times right at the beginning. This is
because nodemon restarts the application when the files change, and we’re rebuild-
ing the minified file every time the application starts. So perhaps this loop isn’t such a
big surprise.

 We can fix this by telling nodemon to ignore changes to any files in the public
folder. This folder contains static resources to be served to the browser, so we don’t
need an application rebuild to reflect any updates.

 Passing configuration options to nodemon is a simple case of creating a node-
mon.json file in the root folder of the application. Using the following code snippet
will set it to verbose mode (so you get lots of information in the console) and crucially
sets it to ignore everything in the public folder:

{
 "verbose": true,
 "ignore": ["public/*"]
}

Add in reference to new
concatenated minified file

mment
out

ividual
files
Licensed to Mark Watson <nordickan@gmail.com>

303Summary
Now if you restart the application using nodemon you’ll see some different messages
in terminal, and most importantly it won’t restart several times!

 Right, let’s get on with building the application and adding some more pages.

9.5 Summary
In this chapter we’ve covered

■ Setting Express to deliver the SPA
■ Using Angular routing instead of Express to deliver the pages
■ Attaching views and controllers to routes
■ Using the controllerAs syntax
■ The best practice of using separate files for everything
■ Protecting the global scope using IIFEs
■ Dependency injection
■ Minifying and concatenating the separate files into one small application file

Coming up next in chapter 10 we’ll build upon our SPA foundation, and look at new
things like adding additional pages, removing the # from URLs, using route parame-
ters, adding prebuilt AngularUI components, and pushing data back to the database.
In short: lots of cool stuff.
Licensed to Mark Watson <nordickan@gmail.com>

Building an SPA with
Angular: The next level
In this chapter we’re continuing on with the work we started in chapter 9 by build-
ing a single-page application. By the end of this chapter the Loc8r application will
be a single Angular application that uses our API to get the data.

 Figure 10.1 shows where we’re at in the overall plan, still re-creating the main
application as an Angular SPA.

 We’ll start off by decoupling the Angular application from the server-side appli-
cation—it’s still being incorporated into a Jade template. As part of this we’ll see
how to make pretty URLs, removing the #. When this is done we’ll create the miss-
ing pages and functionality and see how to inject HTML into a binding, use URL

This chapter covers
■ Making pretty URLs
■ Adding multiple views to an SPA
■ Going from one page to another without

reloading the application
■ Using AngularUI to get Twitter Bootstrap

components as preconfigured Angular
directives
304

Licensed to Mark Watson <nordickan@gmail.com>

305A full SPA: Removing reliance on the server-side application
parameters in routes, and use prebuilt directives based on Twitter Bootstrap compo-
nents. Along the way we’ll keep an eye on best practices, of course.

10.1 A full SPA: Removing reliance on the server-side
application
As our application stands right now, the navigation, page framework, header, and
footer are all held in a Jade template. To use this template we have a controller in
app_server. This works okay and might be just right for some scenarios. But to have a
real SPA we want everything to do with the client-side application in app_client. The
theory here is that the entire SPA could easily be moved and hosted anywhere, if you
wanted to take it out of the encapsulating Express application, to a CDN for example.

 To achieve this we’ll start by creating the host HTML page in app_client and updat-
ing the Express routing to point to this. Following on from this we’ll take the sections
of the HTML page and make them into reusable components as directives. Finally
we’ll look at a way of making pretty URLs by removing the #.

10.1.1 Creating an isolated HTML host page

Okay, so the first step here is to create the host HTML page in a way that doesn’t rely
on the server application routes and controllers.

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Using AngularJS

to re-create our app

as an SPA.

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 10.1 This chapter continues the work we started in chapter 9 of re-creating the
Loc8r application as an Angular SPA, moving the application logic from the back end to
the front end.
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 10 Building an SPA with Angular: The next level
CREATE A NEW INDEX.HTML

The HTML we want to start with is the same as that already being generated by the lay-
out.jade file. If we grab that and convert it to HTML it will look like the following list-
ing. Save this file in app_client/index.html.

<!DOCTYPE html>
<html ng-app="loc8rApp">
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Loc8r</title>
 <link rel="stylesheet" href="/bootstrap/css/amelia.bootstrap.css">
 <link rel="stylesheet" href="/stylesheets/style.css">
 </head>
 <body>
 <div class="navbar navbar-default navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">Loc8r
 <button type="button" data-toggle="collapse" data-target="#navbar-

main" class="navbar-toggle"><span
class="icon-bar"></button>

 </div>
 <div id="navbar-main" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 About

 </div>
 </div>
 </div>
 <div class="container">
 <div ng-view>
 </div>
 <footer>
 <div class="row">
 <div class="col-xs-12"><small>© Simon Holmes 2014</small></div>
 </div>
 </footer>
 </div>
 <script src="/angular/angular.min.js"></script>
 <script src="/lib/angular-route.min.js"></script>
 <script src="/lib/angular-sanitize.min.js"></script>
 <script src="/angular/loc8r.min.js"></script>
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/

jquery.min.js"></script>
 <script src="/bootstrap/js/bootstrap.min.js"></script>
 <script src="/javascript/validation.js"></script>
 </body>
</html>

Nothing magical here, so let’s move on and update the application to actually use this.

Listing 10.1 Host page converted into HTML
Licensed to Mark Watson <nordickan@gmail.com>

307A full SPA: Removing reliance on the server-side application
ROUTING TO THE STATIC HTML FILE FROM EXPRESS

Let’s take a moment to think about when we want to send this index.html file to the
browser. Definitely when someone visits the homepage, that’s given. But if we can get
rid of the # from the URLs, which we’re going to look at in a couple of pages, we’ll
want to show it for all manner of URLs.

 As we’re using Angular to do the routing, we don’t want to double up on that and
also manage the routes in Express too. But we don’t want to return this HTML file for
all of the requests, because we’re also serving the API requests from this application, and
delivering static resources (such as CSS, Javascript, and images). So what shall we do?

 You may remember that Express routing stops at the first match, after all middle-
ware is applied. If no route match is found it continues through. We can use this fea-
ture to our advantage here. By disabling all of the routes for app_server, no requests
to those URLs will match and so they’ll fall through to the end.

 At the end we can capture all unmatched URL requests and send our new HTML
file. The following code snippet shows the changes we need to make to app.js to make
this happen, including commenting out the original routes:

// require('./routes')(app);
require('./app_api/routes')(app);

app.use(function(req, res) {
 res.sendfile(path.join(__dirname, 'app_client', 'index.html'));
});

If you restart the application and head to the homepage you’ll see that it works just as
it did before, but now we’ve removed the reliance on the server application routes
and controllers to deliver the base HTML page.

TIP When using this approach all unmatched URLs will respond by sending
the HTML file that loads the Angular application. So your Angular routing
should deal with unknown requests in a suitable manner.

Now let’s make all of that HTML part of the Angular application.

10.1.2 Making reusable page framework directives

So we’re now sending a basic HTML page to deliver our application, but this page has
quite a lot of markup in it. This markup would be better off inside the application so
that we can work with it more easily in Angular. Remember that with Angular you want
to build the DOM, rather than manipulate it afterwards as you would with jQuery.

 From the HTML page we’ll take the footer and navigation and turn them into
directives, so that we can include them on any page we want to. We’ll do the same for
the page header, which is currently in the homepage view.

Comment out or delete the line
requiring server application routes

Add catchall app.use function to respond to any
requests that make it this far by sending HTML file
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 10 Building an SPA with Angular: The next level
 You may remember from chapter 8 that a directive is comprised of two main parts.
Each directive will have a JavaScript file to define it and a view template to display it.
In turn, each JavaScript file will have to be added to app.js so that the application can
use it, and each directive will be placed as an element (or an attribute of an element)
into host views where required.

MAKING A FOOTER DIRECTIVE

The footer is the most basic component we have because it requires just a small
amount of HTML. There’s a slight catch. If you want to use a directive as an element,
you can’t give it the name of an existing tag. So we can’t call the footer directive
footer and try to include it in the site as <footer> because the HTML specification
already contains a footer tag.

 So we’ll call our footer footerGeneric and create a folder in app_client/common/
directives called footerGeneric. In this folder we’ll put both the HTML and JavaScript
files required for the directive.

 Starting off with the HTML we can create a file called footerGeneric.template.html
and paste in the HTML for a footer, as shown in the following code snippet:

<footer>
 <div class="row">
 <div class="col-xs-12"><small>© Simon Holmes 2014</small></div>
 </div>
</footer>

Next we need to create the associated JavaScript file as footerGeneric.directive.js. In
the following listing we use this file to define the new directive, register it with the
main application, and assign the HTML file we’ve just created as the view template.

(function () {

 angular
 .module('loc8rApp')
 .directive('footerGeneric', footerGeneric);

 function footerGeneric () {
 return {
 restrict: 'EA',
 templateUrl: '/common/directives/footerGeneric/

➥ footerGeneric.template.html'
 };
 }

})();

When that file is in place and saved, remember to add it to the appClientFiles array
in app.js. Now when we want to include a footer in one of our Angular pages we can
use the new element <footer-generic></footer-generic>.

Listing 10.2 Defining the generic footer as a directive: footerGeneric.directive.js
Licensed to Mark Watson <nordickan@gmail.com>

309A full SPA: Removing reliance on the server-side application
MOVING THE NAVIGATION INTO A DIRECTIVE

The navigation directive is very similar in approach to the footer. It contains more
HTML but doesn’t need to do anything clever with the data. So we’ll just create another
folder called navigation in the same place as the footer directive folder, app_client/
common/directives.

 This folder will host the HTML and JavaScript files again. The following listing
shows the HTML we need for the navigation template.

<div class="navbar navbar-default navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">Loc8r
 <button type="button" data-toggle="collapse" data-target="#navbar-main"

class="navbar-toggle"><span class="icon-
bar"></button>

 </div>
 <div id="navbar-main" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 About

 </div>
 </div>
</div>

The next listing shows the JavaScript definition for the navigation directive.

(function () {

 angular
 .module('loc8rApp')
 .directive('navigation', navigation);

 function navigation () {
 return {
 restrict: 'EA',
 templateUrl: '/common/directives/navigation/navigation.template.html'
 };
 }

})();

Don’t forget to add the JavaScript file to the array in app.js! The main reasons for cre-
ating these separate files and folders are maintainability and reusability. If each file
and folder does one thing, it’s easier to know where to go to fix or update something.
It’s also easier to take a component from one project to another.

CREATING A DIRECTIVE FOR THE PAGE HEADER

The page header is slightly different as a directive. It needs to display different data on
different pages. Like we did with the rating-stars directive we’ll create an isolate
scope in Angular and pass the data through.

Listing 10.3 Navigation HTML: navigation.template.html

Listing 10.4 Defining the navigation directive: navigation.directive.js
Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 10 Building an SPA with Angular: The next level
 As before, create a new folder called pageHeader and create the empty HTML and
JavaScript files we’ll need. We’ll start with the HTML that is in the following code snip-
pet. We can lift this directly from the homepage view template, but we need to change
the data binding. As we’re using an isolate scope we won’t have direct access to the
data in vm. Instead, we’ll say that we want the data for the title and strapline to be held
in an object called content. For example

<div id="banner" class="page-header">
 <div class="row">
 <div class="col-lg-6"></div>
 <h1>
 {{ content.title }}
 <small>{{ content.strapline }}</small>
 </h1>
 </div>

Next up we define the directive as we’ve done with the others, this time adding the
scope option back in as shown in listing 10.5. We’ll use the scope option to pass
through the content object that the HTML expects. To pass the content object
through, this directive expects to receive it from the binding when it’s used.

(function () {

 angular
 .module('loc8rApp')
 .directive('pageHeader', pageHeader);

 function pageHeader () {
 return {
 restrict: 'EA',
 scope: {
 content : '=content'
 },
 templateUrl: '/common/directives/pageHeader/pageHeader.template.html'
 };
 }

})();

When we use this directive in a controller view we’ll need to pass through the content
object as an attribute of the element. For example, we’ll be using it like this:

<page-header content="vm.pageHeader"></page-header>

Using an isolate scope like this protects the directive from any changes in scope
names. So long as you pass it the content it expects it doesn’t care what you called it
before. Once again this makes code really reusable.

 Again, don’t forget to add this file to the appClientFiles array in the Express
app.js file.

Listing 10.5 Defining the page header directive: pageHeader.directive.js

Directive will expect title
and strapline to be passed
through as properties of
object called content

Define isolate scope,
passing through
content object
Licensed to Mark Watson <nordickan@gmail.com>

311A full SPA: Removing reliance on the server-side application
FINAL HOMEPAGE TEMPLATE

Now that we’ve created all of the directives we can add them to our homepage view
template as shown in the following listing. The new directives are shown in bold, but
to keep the DOM structure intact we’ve also had to add a little bit of the container
markup from the index.html file.

<navigation></navigation>

<div class="container">
 <page-header content="vm.pageHeader"></page-header>

 <div class="row">
 <div class="col-xs-12 col-sm-8">
 <label for="filter">Filter results</label>
 <input id="filter" type="text", name="filter", ng-model="textFilter">
 <div class="error">{{ vm.message }}</div>
 <div class="row list-group">
 <div class="col-xs-12 list-group-item" ng-repeat="location in

vm.data.locations | filter : textFilter">
 <h4>
 {{ location.name }}
 <small class="rating-stars" rating-stars

rating="location.rating"></small>
 {{ location.distance

| formatDistance }}
 </h4>
 <p class="address">{{ location.address }}</p>
 <p>
 <span class="label label-warning label-facility" ng-

repeat="facility in location.facilities">
 {{ facility }}

 </p>
 </div>
 </div>
 </div>
 <div class="col-xs-12 col-sm-4">
 <p class="lead">{{ vm.sidebar.content }}</p>
 </div>
 </div>

 <footer-generic></footer-generic>
</div>

Using directives like this—so long as they’re named well—makes it really easy to
understand the structure of your view at a glance, without getting bogged down in
loads of markup.

 We’ve taken all the markup from the index.html file, so what does that look
like now?

Listing 10.6 Complete homepage view template
Licensed to Mark Watson <nordickan@gmail.com>

312 CHAPTER 10 Building an SPA with Angular: The next level
FINAL INDEX.HTML FILE

Having taken all of the HTML markup and moved it into directives and views, there’s
not much left in the index.html file. But that’s exactly what we wanted. As the control-
lers and views are now managing the entire content of a page we need to move the
ng-view directive into the body tag.

 We can see this in action in the following listing, with the new minimal
index.html file.

<!DOCTYPE html>
<html ng-app="loc8rApp">
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Loc8r</title>
 <link rel="stylesheet" href="/bootstrap/css/amelia.bootstrap.css">
 <link rel="stylesheet" href="/stylesheets/style.css">
 </head>
 <body ng-view>
 <script src="/angular/angular.min.js"></script>
 <script src="/lib/angular-route.min.js"></script>
 <script src="/angular/loc8r.min.js"></script>
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/

jquery.min.js"></script>
 <script src="/bootstrap/js/bootstrap.min.js"></script>
 <script src="/javascript/validation.js"></script>
 </body>
</html>

Now we really do have an SPA. We have a single minimal HTML file, with everything
else being managed by Angular. Figure 10.2 shows the browser view and the HTML
source.

 Next we’re going to look at an option for removing the # from URLs.

10.1.3 Removing the # from URLs

A common request for SPAs is to have pretty URLs. Our URLs aren’t bad, but they do all
have that # in them. Angular provides a method of removing them from the address bar,
but please note that this doesn’t work well with Internet Explorer 9 or below. If you need
to support early versions of Internet Explorer, don’t use this part.

 The HTML5 spec allows browsers to push states into the navigation history. The
main reason for this is to give browsers a way to use the back button in an SPA, pre-
venting the back button from taking them straight away from the site they’re look-
ing at.

 Angular routing can make use of this. We just have to switch it on!

Listing 10.7 Final index.html file

ng-view directive
now sits in body
tag so that we
can control full
page in Angular
Licensed to Mark Watson <nordickan@gmail.com>

313A full SPA: Removing reliance on the server-side application
USING $LOCATIONPROVIDER AND THE HTML5 MODE

To make use of this HTML5 mode we need to add a new provider to the Angular appli-
cation configuration. We’re already using $routeProvider, and now we need to pass
in $locationProvider. This is native to Angular so we don’t have to download any
additional libraries.

 Enabling the HTML5 mode will be a simple one-liner, like this:

$locationProvider.html5Mode(true);

In the following listing we make some changes to app_client/app.js to update the tem-
plate URLs, pass $locationProvider into config, and set the html5Mode to be true.

(function () {

 angular.module('loc8rApp', ['ngRoute']);

 function config ($routeProvider, $locationProvider) {
 $routeProvider

Listing 10.8 Enabling the HTML5 history API

Figure 10.2 Now a real SPA, the source of the HTML page is minimal but the application is still fully functional.

Accept
$locationProvider as
a parameter in config
Licensed to Mark Watson <nordickan@gmail.com>

314 CHAPTER 10 Building an SPA with Angular: The next level
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl',
 controllerAs: 'vm'
 })
 .otherwise({redirectTo: '/'});

 $locationProvider.html5Mode(true);
 }

 angular
 .module('loc8rApp')
 .config(['$routeProvider', '$locationProvider', config]);

})();

Now when you reload the application, in a modern browser, the URL for the home-
page will no longer end in #/. Instead, it will be nice and clean on your domain. If you
load it in IE9, the page will still work, but it will have the #.

WORKING WITH INTERNET EXPLORER

This type of routing won’t work in IE8 or 9 as they don’t have access to the HTML5 API.
The application will still be usable in these browsers and Angular will fall back to using
the #. So navigating through the application works just fine, albeit with the /#/ ele-
ment in the URL.

 The problem arises if someone copies and pastes a deep link without a hash and
tries to use it in IE9. Internet Explorer will just render the homepage, as that’s the way
our default routing is set up.

 Now, you didn’t hear this from me, but here’s a nasty little fix that you can put
right at the top of the homepage controller if you want to. When the homepage con-
troller runs it will check to see what the path name of the URL is. If it’s not for the
homepage—that is, just a /—it will take the path name, prefix it with a #, and redirect
the page, as follows:

if (window.location.pathname !== '/') {
 window.location.href = '/#' + window.location.pathname;
}

I did say it was nasty. If someone pastes a URL without a # into IE9 they’ll get a flicker
as the homepage starts to load before Angular redirects to the correct route. It’s not
ideal, so think hard before going down this route if you need to support older versions
of Internet Explorer.

 Right, that’s enough of nasty hacking! Let’s get back to it and add another page to
our application.

10.2 Adding additional pages and dynamically
injecting HTML
The concept of an SPA is that the server delivers one page to the browser, and the client-
side application does everything else. In this section we’re going to see how to include

Set html5Mode
to be true

Add $location-
Provider as
dependency
for config
Licensed to Mark Watson <nordickan@gmail.com>

315Adding additional pages and dynamically injecting HTML
additional pages by adding the About page. We’ll also deal with an issue that arises
when you try to inject HTML into an Angular binding.

10.2.1 Adding a new route and page to the SPA

You’ve probably got an idea of how this is going to work, using the config in app.js to
add the route, pointing to a new template and controller. If that is what you were
thinking then you were spot on!

UPDATING THE NAVIGATION LINK

The first step we need to take is to update the About entry in the main navigation. It
currently points to /about, but that’s not good for the Angular routing. Even though
we’re using the HTML5 mode and you don’t see the # in the URL, the paths all need to
come after a #. So all we need to do is update navigation.template.html, inserting a #
into the About link as shown in the following code snippet:

<ul class="nav navbar-nav">
 About

Well, that was an easy first step. Next we’ll jump into Angular and add the routing
definition.

ADDING THE ROUTE DEFINITION

Now we need to add a route to the Angular $routeProvider configuration in
app_client/app.js. To do this we can duplicate the entry for the homepage and change
the path, template URL, and controller name.

 Just like we did when creating the About page on the server side we’ll define a
reusable generic view for a simple page of text. In the following listing we can see the
new route added to config making all of the required changes.

 function config ($routeProvider, locationProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl',
 controllerAs: 'vm'
 })
 .when('/about', {
 templateUrl: '/common/views/genericText.view.html',
 controller: 'aboutCtrl',
 controllerAs: 'vm'
 })
 .otherwise({redirectTo: '/'});
 $locationProvider.html5Mode(true);
 }

Listing 10.9 Add a new Angular route definition for the About page

Add # to About
page link

Set new path to
be /about Define path for

generic view
template

Tell route to use
controller called
'aboutCtrl'

Keep
controllerAs
set to 'vm'
Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 10 Building an SPA with Angular: The next level
Seeing this in place gives us a good idea of what we need to do next. This route con-
tains a controller and a view template that don’t exist yet. Let’s deal with the control-
ler first.

CREATING THE CONTROLLER

This is going to be a new controller, so it needs a new file. So in app_client create a
folder called about, and in there create a new file called about.controller.js. This will
hold the controller for the About page.

 In this file we’ll create an IIFE to protect the scopes, attach the controller to the
loc8rApp application, and, of course, define the controller. The controller in this case
is fairly simple—we just need to set the page title and the page content. For the con-
tent we’ll take what we’re using in Express. This is in the about export in app_server/
controllers/main.js. Your text should have some line breaks in as \n; you’ll need them
in to follow through the rest of this section.

 In the following listing we can see the complete code for the about.controller.js
file. I’ve trimmed down the text in the main content area to save ink and trees.

(function () {

 angular
 .module('loc8rApp')
 .controller('aboutCtrl', aboutCtrl);

 function aboutCtrl() {
 var vm = this;

 vm.pageHeader = {
 title: 'About Loc8r',
 };
 vm.main = {
 content: 'Loc8r was created to help people find places to sit down and

get a bit of work done.\n\nLorem ipsum dolor sit amet, consectetur
adipiscing elit.'

 };
 }

})();

As controllers go this is pretty simple. No magic going on here; we’re just using the
vm variable to hold the view model data like we did with the homepage controller.
We, of course, need to make sure the application knows about this file. The follow-
ing code snippet shows us adding it to the appClientFiles array in the main app.js
file in Express:

var appClientFiles = [
 'app_client/app.js',
 'app_client/home/home.controller.js',
 'app_client/about/about.controller.js',

Listing 10.10 Creating the Angular controller for the About page
Licensed to Mark Watson <nordickan@gmail.com>

317Adding additional pages and dynamically injecting HTML
 'app_client/common/services/geolocation.service.js',
 'app_client/common/services/loc8rData.service.js',
 'app_client/common/filters/formatDistance.filter.js',
 'app_client/common/directives/ratingStars/ratingStars.directive.js'
];

When the Node application restarts our new file will be added to the single minified
file we’re now using. But if we try to view the page now it will just be empty, as we
haven’t created the view template yet.

CREATING THE NEW COMMON TEMPLATE

For this new generic text template we’ve already defined in the route config where
the file will be: /app_client/common/views/genericText.view.html. So go ahead and
create this file. From our original Jade templates we also know what the markup needs
to be. Converting the Jade to an Angular template and adding in our layout directives
gives us the following:

<navigation></navigation>

<div class="container">
 <page-header content="vm.pageHeader"></page-header>

 <div class="row">
 <div class="col-md-6 col-sm-12">
 <p>{{ vm.main.content }}/p>
 </div>
 </div>

 <footer-generic></footer-generic>
</div>

Again, nothing unusual here. Just some HTML and standard Angular bindings. If we
take a look at this page in the browser we’ll see that the content is coming through,
but the line breaks aren’t displaying, as illustrated in figure 10.3.

 This isn’t ideal. We want our text to be readable, and shown as originally intended.
If we can change the way the distances appear on the homepage using a filter, why not
do the same thing to fix the line breaks? Let’s give it a shot and create a new filter.

10.2.2 Creating a filter to transform the line breaks

So, we want to create a filter that will take the provided text and replace each instance
of \n with a
 tag. We’ve actually already solved this problem in Jade, using a
JavaScript replace command as shown in the following code snippet:

p !{(content).replace(/\n/g, '
')}

With Angular we can’t do this inline; instead we need to create a filter and apply it to
the binding.
Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 10 Building an SPA with Angular: The next level
CREATING ADDHTMLLINEBREAKS FILTER

This is likely to be a common filter, so we’ll put it in the common filters folder along-
side formatDistance.filter.js. Again, the contents of the file need to be wrapped in an
IIFE, and the filter needs to be registered with the application.

 The filter itself is fairly straightforward, returning a function that accepts incoming
text and replaces each \n with a
. Create a new file called addHtmlLineBreaks
.filter.js and enter the contents shown in the following code snippet:

(function () {

 angular
 .module('loc8rApp')
 .filter('addHtmlLineBreaks', addHtmlLineBreaks);

 function addHtmlLineBreaks () {
 return function (text) {
 var output = text.replace(/\n/g, '
');
 return output;
 };
 }

})();

Figure 10.3 The content for the About page is coming through from the controller, but the line breaks are being
ignored.
Licensed to Mark Watson <nordickan@gmail.com>

319Adding additional pages and dynamically injecting HTML
Before you can do anything with this new filter remember to add it to the appClient-
Files array in the Express app.js. When you’ve done that, let’s try using it.

APPLYING THE FILTER TO THE BINDING

Applying a filter to a binding is pretty simple—we’ve already done it a few times. In
the HTML we just add the pipe character (|) after the data object being bound, and
follow it with the name of the filter like this:

<p>{{ vm.main.content | addHtmlLineBreaks }}</p>

Simple, right? But if we try it in the browser all isn’t quite as we’d hoped. As we can see
in figure 10.4, the line breaks are being replaced with
 but they’re being dis-
played as text instead of being rendered as HTML.

Hmmmm. Not quite what we wanted, but at least the filter seems to be working!
There’s a very good reason for this output: security. Angular protects you and your
application from malicious attacks by preventing HTML from being injected into a
data binding. Think about when we let visitors write reviews for locations, for exam-
ple. If they could put any HTML in that they wanted, someone could easily insert a
<script> tag and run some JavaScript hijacking the page.

 But there’s a way to let a subset of HTML tags through into a binding, which we’ll
look at now.

10.2.3 Sending HTML through an Angular binding

We’re not the first to have a legitimate reason to want to pass some HTML into a bind-
ing, so Angular has an answer to this. We can use a service called angular-sanitize,
which allows a certain subset of HTML tags to be included in a data binding.

DOWNLOADING NG-SANITIZE

In chapter 9 we downloaded angular-route from code.angularjs.org, and now we need
to do the same for angular-sanitize. Find the correct branch again for the release of

Figure 10.4 The
 tags being
inserted with our filter are being
rendered as text rather than HTML tags.
Licensed to Mark Watson <nordickan@gmail.com>

http://code.angularjs.org

320 CHAPTER 10 Building an SPA with Angular: The next level
Angular you’re using (1.2.19 in my case) and download the two minimized angular-
sanitize files angular-sanitize.min.js and angular-sanitize.min.js.map. Put these files along-
side the angular-route files in /app_client/lib.

 When they’re in place, bring them to the browser by adding a reference to the
JavaScript file in index.html as shown in the following code snippet:

<script src="/angular/angular.min.js"></script>
<script src="/lib/angular-route.min.js"></script>
<script src="/lib/angular-sanitize.min.js"></script>
<script src="/angular/loc8r.min.js"></script>

Okay, next up we need to tell the application we want to use the service.

ADDING NGSANITIZE AS AN APPLICATION DEPENDENCY

To tell our application that we want to use angular-sanitize we use the same approach
that we used for ngRoute and add it as a dependency in the module setter. In this case
the name of the service exposed to the application is ngSanitize, so as shown in the
following code snippet, add this to the array of dependencies in app_clients/app.js:

angular.module('loc8rApp', ['ngRoute', 'ngSanitize']);

Now that this is available to the application we don’t have to update the controller or
the filter. But we don’t necessarily want every single data binding to go through the
sanitizer; rather, we want to hand pick which should be allowed to parse some HTML.
Angular is looking out for us again here, because to use ngSanitize you have to bind
your data to a directive, rather than an inline data binding.

BINDING TO THE HTML ELEMENT AS A DIRECTIVE

So ngSanitize doesn’t just interfere with all data bindings in all templates, it exposes
a directive that you bind to. This directive is called ng-bind-html. As with other direc-
tives this is added as an attribute of an HTML element, with the binding and filter
passed through as the value.

 In the following code snippet we can see how to use this, passing in our content data
binding and the addHtmlLineBreaks filter. This is in the genericText.view.html file:

<div class="row">
 <div class="col-md-6 col-sm-12">
 <p ng-bind-html="vm.main.content | addHtmlLineBreaks"></p>
 </div>
</div>

This time if you reload the page in the browser you should see the line breaks in
place, looking like figure 10.5.

 Great news; it’s always nice to see a win and have a few pieces of a puzzle fall into
place. In this little section we’ve seen how to add a new page to an SPA, and also how
to inject HTML into an Angular binding. Next we’re going to look at a more interest-
ing page and get the Details page running in our SPA.
Licensed to Mark Watson <nordickan@gmail.com>

321More complex views and routing parameters
10.3 More complex views and routing parameters
In this section we’re going to add the Details page to the Angular SPA. One of the cru-
cial aspects here will be retrieving the location ID from the URL parameter to ensure
we get the correct data. Using URL parameters in this way is common practice, and is
a very useful technique to know in any framework. We’ll also have to update the data
service to hit the API asking for specific location details. As we translate the Jade view
into an Angular template we’ll also discover some additional things that Angular does
to help us lay out things.

 Before we get into the fun stuff we need to get the basic route, controller, and view
in place.

10.3.1 Getting the page framework in place

We’ve done this a couple of times now, so we’ll speed through it here. We need to add
the route config and create the controller and view files it defines. The controller will
also need to add it to application files so that we can use it.

Figure 10.5 Using the addHtmlLineBreaks filter in conjunction with ngSanitize we now see the line
breaks rendering as intended.
Licensed to Mark Watson <nordickan@gmail.com>

322 CHAPTER 10 Building an SPA with Angular: The next level
DEFINING THE PAGE ROUTE

In app_client/app.js we need to add in the new route. As we want to accept a URL
parameter we’ll define the route in the same way we did in Express, by putting a
locationid variable at the end of the path, preceded by a semi-colon. The new route
in situ is shown in the following listing.

 function config ($routeProvider, locationProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home/home.view.html',
 controller: 'homeCtrl',
 controllerAs: 'vm'
 })
 .when('/about', {
 templateUrl: '/common/views/genericText.view.html',
 controller: 'aboutCtrl',
 controllerAs: 'vm'
 })
 .when('/location/:locationid', {
 templateUrl: '/locationDetail/locationDetail.view.html',
 controller: 'locationDetailCtrl',
 controllerAs: 'vm'
 })
 .otherwise({redirectTo: '/'});
 $locationProvider.html5Mode(true);
 }

CREATING THE CONTROLLER FILE

The Details page template and controller are going to be tightly coupled; they’re not
likely to work with any other templates or controllers. Bearing this in mind we’ll put
them together in the same folder. Create a new folder called locationDetail in
app_client and set up the controller framework shown in the following listing in a new
file called locationDetail.controller.js.

(function () {

 angular
 .module('loc8rApp')
 .controller('locationDetailCtrl', locationDetailCtrl);

 function locationDetailCtrl () {
 var vm = this;

 vm.pageHeader = {
 title: 'Location detail page'
 };
 }

})();

Listing 10.11 Add the Details page route to the Angular application configuration

Listing 10.12 Controller framework for the Details page
Licensed to Mark Watson <nordickan@gmail.com>

323More complex views and routing parameters
The crucial step that’s easy to forget: add this file to the appClientFiles array in the
Express app.js file.

CREATING THE VIEW TEMPLATE

Inside the same folder as the controller file create the view template file called loca-
tionDetail.view.html. For now we’ll just put the standard page framework in here, as
you can see in the following code snippet:

<navigation></navigation>

<div class="container">
 <page-header content="vm.pageHeader"></page-header>

 <footer-generic></footer-generic>
</div>

UPDATING THE LINKS IN THE HOMEPAGE LIST

The files are now in place, but we also need to be able to navigate to the Details pages
from the homepage listing. Like we did with the About link, we need to add a # to the
front of the links in the list so that Angular can access them.

 In home.view.html find the line that renders the location name—it’s nested in the
<h4> tag. As demonstrated in the following code snippet add a /# to the front of
the href:

<h4>
 {{ location.name }}

And there we go, that’s the basics in place. Let’s see about getting that URL parameter
and using it to get the correct data.

10.3.2 Using URL parameters in controllers and services

Getting and using a URL parameter is a pretty common requirement, so it’s no
major surprise that Angular has a built-in service to help here. That service is called
$routeParams and it’s super easy to use.

USING $ROUTEPARAMS TO GET URL PARAMETERS

To use $routeParams in a controller we need to inject it as a dependency and pass it
into the function. Once it’s in the controller, $routeParams surfaces as an object hold-
ing any URL parameters it has matched. It’s so easy to use; let’s just look at it in code,
updating the locationDetailCtrl function as shown in the following code snippet:

locationDetailCtrl.$inject = ['$routeParams'];
function locationDetailCtrl ($routeParams) {
 var vm = this;
 vm.locationid = $routeParams.locationid;
 vm.pageHeader = {
 title: vm.locationid
 };
}

Inject $routeParams service
into controller, protecting
against minification

Pass $routeParams
into controller so we
can use it

Get locationid from
$routeParams and save
it in view model

Use locationid
in page title
Licensed to Mark Watson <nordickan@gmail.com>

324 CHAPTER 10 Building an SPA with Angular: The next level
See? How easy was that? We can see in the screenshot in figure 10.6 that the location
ID is being taken from the URL and output in the page header. This is not where we
want to end up, but it’s good to see it working.

 Let’s use that location ID to get some data from the API so that we can make the
page useful again. To do so we’ll need to create the data service to hit the right API.

CREATING THE DATA SERVICE TO CALL THE API
In the API we built in chapter 6 we created an end point that would accept a location
ID and return the associated data. The URL path for this is /api/location/:locationid.
To interrogate this URL we’ll add a new method to our loc8rData service.

 The following listing shows how simple this is, adding and exposing a new
locationById method that accepts a locationid parameter. The method then uses
the locationid in the $http call to the API end point.

function loc8rData ($http) {
 var locationByCoords = function (lat, lng) {
 return $http.get('/api/locations?lng=' + lng + '&lat=' + lat +

'&maxDistance=20');
 };

 var locationById = function (locationid) {
 return $http.get('/api/locations/' + locationid);
 };

 return {
 locationByCoords : locationByCoords,
 locationById : locationById
 };
}

Listing 10.13 Add a method to the data service to call the API

Figure 10.6 Using $routeParams we can get the location ID from the URL and use it in
a controller, shown here by outputting it in the page header.

Create new locationById
method, accepting
locationid parameter

... that uses
locationid in
a call to API

Expose locationById
method so that we
can call it from
controller
Licensed to Mark Watson <nordickan@gmail.com>

325More complex views and routing parameters

locat
m

loc
as pa
USING THE SERVICE TO GET DATA

To use the service we need to inject the loc8rData service into the controller. Once
it’s there we can follow the pattern we used on the homepage when we hit the API to
get the list of locations. As a reminder, the data service using the $http method is
asynchronous; upon completion it will invoke either the success or error promise.

 In the following listing we inject loc8rData into the locationDetailCtrl func-
tion, and call the locationById method passing the location ID as the parameter. On
a successful completion of the request we save the returned data to the view model in
vm.data.location and display the location name in the page header.

locationDetailCtrl.$inject = ['$routeParams', 'loc8rData'];
function locationDetailCtrl ($routeParams, loc8rData) {
 var vm = this;
 vm.locationid = $routeParams.locationid;

 loc8rData.locationById(vm.locationid)
 .success(function(data) {
 vm.data = { location: data };
 vm.pageHeader = {
 title: vm.data.location.name
 };
 })
 .error(function (e) {
 console.log(e);
 });
}

So that’s pretty powerful and pretty easy. We can see it working in the browser in fig-
ure 10.7, outputting a location name in the page header.

Listing 10.14 Using the service from the controller to get the location data

Inject loc8rData
service as
dependency
and pass to
controller

Call
ionById
ethod,

passing
ation ID
rameter

If request is successful save
returned data in view model

Output location name
to page header

If request isn’t successful output
error message to browser console

Figure 10.7 Proving that we’re getting data from the API by outputting the location name
in the page header
Licensed to Mark Watson <nordickan@gmail.com>

326 CHAPTER 10 Building an SPA with Angular: The next level
That’s another good step complete. Now we need to put the view together.

10.3.3 Building the Details page view

The next step is to rebuild the view. We’ve got a Jade template with Jade data-bindings,
and we need to transform this into HTML with Angular bindings. There are quite a
few bindings to put in place and some loops using ng-repeat. We’ll also use the
rating-stars directive again to show the overall rating and the rating for each
review. And we’ll need to allow line breaks in the review text by using the addHtml-
LineBreaks filter.

GETTING THE MAIN TEMPLATE IN PLACE

The following listing shows everything in place with the bindings in bold. This code
should be added to the locationDetail.view.html file, between the page header and
footer. There are some pieces we’ve left out, such as the opening times, which we’ll fill
in when we’ve got this in place and tested.

<div class="row">
 <div class="col-xs-12 col-md-9">
 <div class="row">
 <div class="col-xs-12 col-sm-6">
 <p class="rating" rating-stars rating="vm.data.location.rating"></p>
 <p>{{ vm.data.location.address }}</p>
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h2 class="panel-title">Opening hours</h2>
 </div>
 <div class="panel-body">
 <!-- Opening times to go here -->
 </div>
 </div>
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h2 class="panel-title">Facilities</h2>
 </div>
 <div class="panel-body">
 <span class="label label-warning label-facility" ng-

repeat="facility in vm.data.location.facilities">

 {{ facility }}

 </div>
 </div>
 </div>
 <div class="col-xs-12 col-sm-6 location-map">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h2 class="panel-title">Location map</h2>
 </div>
 <div class="panel-body">

Listing 10.15 Angular view for the Details page

Use rating-stars
directive to show

average rating for
location

Loop through
facilities
Licensed to Mark Watson <nordickan@gmail.com>

327More complex views and routing parameters

r

s

 <img src="http://maps.googleapis.com/maps/api/staticmap?center={{
vm.data.location.coords[1] }},{{ vm.data.location.coords[0]
}}&zoom=17&size=400x350&sensor=false&markers={{
vm.data.location.coords[1] }},{{ vm.data.location.coords[0]
}}&scale=2" class="img-responsive img-rounded">

 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-xs-12">
 <div class="panel panel-primary review-panel">
 <div class="panel-heading"><a href="" class="btn btn-default pull-

right">Add review
 <h2 class="panel-title">Customer reviews</h2>
 </div>
 <div class="panel-body review-container">
 <div class="review" ng-repeat="review in

vm.data.location.reviews">
 <div class="row">
 <div class="well well-sm review-header">
 </

span>
 {{ review.author }}
 <small class="reviewTimestamp">{{ review.createdOn }}</

small>
 </div>
 <div class="col-xs-12">
 <p ng-bind-html="review.reviewText | addHtmlLineBreaks"></p>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 <div class="col-xs-12 col-md-3">
 <p class="lead">{{ vm.data.location.name }} is on Loc8r because it has

accessible wifi and space to sit down with your laptop and get some work
done.</p>

 <p>If you've been and you like it - or if you don't - please leave a
review to help other people just like you.</p>

 </div>
</div>

Now that’s quite a long code listing! But that’s to be expected, as there’s quite a lot
going on in the Details page. If you look at the page in the browser you’ll see there are
a few things that could be fixed. We’re not showing the opening times yet, the reviews
are coming through oldest first, and data of the reviews needs formatting.

ADDING IF-ELSE STYLE LOGIC WITH NG-SWITCH TO SHOW THE OPENING TIMES

It’s not unusual to want some type of if-else logic in a template, to let you show dif-
ferent chunks of HTML depending on a certain parameter. For each opening time we

Loop through
reviews

Using
ating-stars
directive to
how rating

for each
review

Apply addHtmlLineBreaks
filter to review text and

bind as HTML
Licensed to Mark Watson <nordickan@gmail.com>

328 CHAPTER 10 Building an SPA with Angular: The next level

Ru

tim

d
t
want to display the days in the range, and either a closed message or the opening and
closing times. In our Jade template we had a bit of logic, a simple if statement check-
ing whether closed was true, as shown in the following code snippet:

if time.closed
| closed
else
| #{time.opening} - #{time.closing}

We want to do something similar in our Angular view. Instead of using if, Angular
works along the line of JavaScript’s switch method, where you define which condition
you want to check at the top, and then provide different options depending on the
value of the condition.

 The key directives here are ng-switch-on for defining the condition to switch on,
ng-switch-when for providing a specific value, and ng-switch-default for providing
a backup option if none of the specific values matched. We can see all of these in
action in the following listing, where we add the opening times to the HTML view.

<div class="panel-heading">
 <h2 class="panel-title">Opening hours</h2>
</div>
<div class="panel-body">
 <p ng-repeat="time in vm.data.location.openingTimes" ng-switch

on="time.closed">
 {{ time.days }} :
 closed
 {{ time.opening + " - " +

time.closing }}
 </p>
</div>

And with that we now have a bit of logic in the view. Note that as all of the ng-switch
commands are directives they need to be added to HTML tags. Okay, let’s get the
reviews showing most recent first.

CHANGING THE DISPLAY ORDER OF A LIST USING THE ORDERBY FILTER

To help us order things in an ng-repeat list, Angular comes with a native filter called
orderBy. Note that orderBy can only be used on arrays, so if you want to sort an object
it needs to be converted to an array first.

 The orderBy filter can take a couple of arguments. First, you need to state what the
list is to be ordered on. This can be a function, but the more common use is to pro-
vide a property name of the list being sorted. This is what we’re going to do, using the
createdOn property of each review.

 The second argument is optional, and defines whether you want to reverse the
order or not. This is a Boolean value and defaults to false if left out. We’ll set it to
true as we want to show the latest date first.

Listing 10.16 Using ng-switch to display the opening times

n switch
based on
value of
e.closed

When
time.close
is true jus
output
closed

Otherwise default action
is to output opening and
closing times
Licensed to Mark Watson <nordickan@gmail.com>

329More complex views and routing parameters
 The following listing shows how we update the view template to add the filter to
the ng-repeat directive.

<div class="review" ng-repeat="review in vm.data.location.reviews |
orderBy:'createdOn':true">

 <div class="well well-sm review-header">

 {{ review.author }}
 <small class="reviewTimestamp">{{ review.createdOn }}</small>
 </div>
 <div class="col-xs-12">
 <p ng-bind-html="review.reviewText | addHtmlLineBreaks"></p>
 </div>
</div>

And now if you reload the page you should see your reviews showing in the correct
order with most recent first. It’s a little hard to tell though, as the date format is not
exactly user friendly. Let’s fix it.

FIXING THE DATE FORMAT USING THE DATE FILTER

Another filter that comes with Angular is the date filter, which will format a given date
in the style that you want. This takes just one argument: the format for your date.

 To apply your formatting you send a string describing the output you want. There
are too many different options to go into here, but the format is quite easy to get the
hang of. To get the format “1 December 2014” we’ll send the string 'd MMMM yyyy' as
shown in the following listing.

<div class="review" ng-repeat="review in vm.data.location.reviews |
orderBy:'createdOn':true">

 <div class="well well-sm review-header">

 {{ review.author }}
 <small class="reviewTimestamp">{{ review.createdOn | date : 'd MMMM yyyy'

}}</small>
 </div>
 <div class="col-xs-12">
 <p ng-bind-html="review.reviewText | addHtmlLineBreaks"></p>
 </div>
</div>

And with that we’re done with the layout and formatting of the Details page. The next
and final step is to allow reviews to be added, but we’re going to drop the concept of
an extra page to do this. Instead we’re going to do it in a modal overlay on the Details
page, to provide a slicker experience.

Listing 10.17 Showing the reviews by date using the orderBy filter

Listing 10.18 Applying a date filter to format the review dates

Add orderBy filter to ng-repeat, specifying
sort property and reverse setting
Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 10 Building an SPA with Angular: The next level
10.4 Using AngularUI components to create a modal popup
In this final section we’re going to see how to add third-party components to an Angu-
lar application, and how to post form data. In Loc8r we’ll now enable users to add
reviews directly from the Details page, by creating a modal popup that displays when
users click the Add Review button. The modal will display the review form, allowing
users to input their name, rating, and review. When users submit their reviews we’ll
post them to the API so that they’re saved in the database, and add them to the reviews
on the page. All of this will happen without leaving the Details page.

 The first step then is to create a modal popup to display when somebody clicks the
Add Review button.

10.4.1 Getting AngularUI in place

Rather than creating a modal from scratch and figuring out all of the controlling code
behind it, we can leverage the hard work of the AngularUI team. They’ve created a
number of Bootstrap components written in pure Angular. These components rely
only on Angular, no longer jQuery or Bootstrap’s own JavaScript.

DOWNLOADING ANGULARUI
You can get your hands on AngularUI at http://angular-ui.github.io/bootstrap/. You
can download the entire library, which defines around 20 components. This is a bit
overkill if you just want to use a single component in your application. So you can
instead choose to create your own custom build by clicking the Build button. You can
then select the components you want—just Modal in our case as shown in figure 10.8—
and download the modules.

 Using a custom build like this will dramatically reduce the file size; in this case
we’ve gone from 65 kb to 13 kb. Open the zip file you’ve downloaded and copy the
two minified JavaScript files to the lib folder in app_client.

 Now you can reference them in index.html along with the other library files,
before our main application file, as shown in the following code snippet:

<script src="/angular/angular.min.js"></script>
<script src="/lib/angular-route.min.js"></script>
<script src="/lib/angular-sanitize.min.js"></script>
<script src="/lib/ui-bootstrap-custom-0.12.0.min.js"></script>
<script src="/lib/ui-bootstrap-custom-tpls-0.12.0.min.js"></script>
<script src="/angular/loc8r.min.js"></script>

With the files added we can now use them in the application.

USING ANGULARUI IN THE APPLICATION

To use AngularUI components in our application we need to define it as a depen-
dency at the application level. When this is done we need to define the modal compo-
nent as a dependency of the controller for the page we’ll use it in.
Licensed to Mark Watson <nordickan@gmail.com>

http://angular-ui.github.io/bootstrap/

331Using AngularUI components to create a modal popup
First, to add AngularUI as an application dependency we simply need to add
'ui.bootstrap' to the array of dependencies in app_client/app.js, as shown in the
following code snippet:

angular.module('loc8rApp', ['ngRoute', 'ngSanitize', 'ui.bootstrap']);

And now that they’re in the application, we tell the controller that we want to use the
modal component by injecting a $modal dependency, as shown in the following code
snippet. Remember that we need to pass it as a parameter into the controller function
and add it to the $inject array.

locationDetailCtrl.$inject = ['$routeParams', '$modal', 'loc8rData'];
 function locationDetailCtrl ($routeParams, $modal, loc8rData) {

With those two pieces in place we can now carry on and create the modal.

Figure 10.8 Create a custom build of AngularUI using just the component you need.
Licensed to Mark Watson <nordickan@gmail.com>

332 CHAPTER 10 Building an SPA with Angular: The next level
10.4.2 Adding and using a click handler

Reminding ourselves of what we want to achieve, the aim is to pop up a modal dia-
logue box when a user clicks the Add Review button. So we need to add a click han-
dler to the button, create the corresponding function in the controller, and then look
at how to create the modal.

ADDING THE NG-CLICK HANDLER

To listen for a click that calls a method in our Angular application, rather than use
href or onclick we should use Angular’s click handler ng-click. This behaves in a
similar way to onclick, but gives access to your view model methods.

 In the following code snippet we add an ng-click handler to the Add Review
button in locationDetail.view.html that will call a function in our view model called
popupReviewForm:

<a ng-click="vm.popupReviewForm()" class="btn btn-default pull-right">Add
review

Okay, the next step is to create the popupReviewForm method in the controller.

ADDING THE METHOD CALLED BY THE CLICK HANDLER

Creating the method in the controller is a simple case of declaring vm.popupReview-
Form as a function. In the following listing we add the new function and set it to fire a
simple alert so that we can test that the ng-click and the method are working
together as expected.

function locationDetailCtrl ($routeParams, $modal, loc8rData) {
 var vm = this;
 vm.locationid = $routeParams.locationid;

 loc8rData.locationById(vm.locationid)
 .success(function(data) {
 vm.data = { location: data };
 vm.pageHeader = {
 title: vm.data.location.name
 };
 })
 .error(function (e) {
 console.log(e);
 });

 vm.popupReviewForm = function () {
 alert("Let's add a review!");
 };
}

So if we make these changes and navigate to a location Details page on our site we
should see an alert when we click the Add Review button. Figure 10.9 shows this in
action, proving that we’ve linked the button and the method correctly.

Listing 10.19 Adding the method to the controller
Licensed to Mark Watson <nordickan@gmail.com>

333Using AngularUI components to create a modal popup
10.4.3 Creating a Bootstrap modal with AngularUI

Now it’s time to create the modal dialogue box. Even though we’re not doing it here,
it’s quite conceivable that you’d have several actions on a page that could fire a modal
window. To prevent any cross-contamination of code each modal is created as a new
instance, with its own template and controller.

 So we’re going to look at how to define an instance, and then add the view and
controller.

DEFINING AN ANGULARUI MODAL INSTANCE

We’re going to use the popupReviewForm handler from the previous section to define
a new modal instance. We’ll assign a template URL and a controller against this just
like we do for a directive or route definition.

 The syntax for this is the following:

vm.popupReviewForm = function () {
 var modalInstance = $modal.open({
 templateUrl: '/reviewModal/reviewModal.view.html',
 controller: 'reviewModalCtrl as vm',
 });
};

Note that we’re using a different approach to the controllerAs syntax here. The
modal component can use the approach but doesn’t currently support using the
controllerAs option to specify it. Instead, we define the view model name inline, just
like we would if defining it inside an HTML element.

ADDING THE MODAL VIEW

To create the HTML for the review modal we’ll blend a combination of the review
form we’ve already got and the template markup for a Bootstrap modal. For good

Figure 10.9 Testing
that the Add Review
click handler works by
using a simple Alert box
Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 10 Building an SPA with Angular: The next level

trig
m

Clos
measure we’ll add in some data bindings to the form fields, and define a function we
can use to cancel the modal.

 If we put all this together we end up with the following listing. Save this as a new
file in the location we specified as the template URL in listing 10.19: reviewModal
.view.html in app_client/reviewModal/.

<div class="modal-content">
 <form id="addReview" name="addReview" role="form" class="form-horizontal">
 <div class="modal-header">
 <button type="button" ng-click="vm.modal.cancel()" class="close"><span

aria-hidden="true">×Close</button>
 <h4 id="myModalLabel" class="modal-title">Add your review for {{

vm.locationName }}</h4>
 </div>
 <div class="modal-body">
 <div class="form-group">
 <label for="name" class="col-xs-2 col-sm-2 control-label">Name</label>
 <div class="col-xs-10 col-sm-10">
 <input id="name" name="name" required="required" ng-

model="vm.formData.name" class="form-control"/>
 </div>
 </div>
 <div class="form-group">
 <label for="rating" class="col-xs-10 col-sm-2 control-label">Rating</

label>
 <div class="col-xs-12 col-sm-2">
 <select id="rating" name="rating" ng-model="vm.formData.rating"

class="form-control input-sm">
 <option>5</option>
 <option>4</option>
 <option>3</option>
 <option>2</option>
 <option>1</option>
 </select>
 </div>
 </div>
 <div class="form-group">
 <label for="review" class="col-sm-2 control-label">Review</label>
 <div class="col-sm-10">
 <textarea id="review" name="review" rows="5" required="required"

ng-model="vm.formData.reviewText" class="form-control"></textarea>
 </div>
 </div>
 </div>
 <div class="modal-footer">
 <button ng-click="vm.modal.cancel()" type="button" class="btn btn-

default">Cancel</button>
 <button type="submit" class="btn btn-primary">Submit review</button>
 </div>
 </form>
</div>

Listing 10.20 HTML view for the modal popup

Add Close button and specify
method in view model to trigger

Add
model

data
bindings
for form

fields

In Cancel
button

ger same
ethod as
e button
Licensed to Mark Watson <nordickan@gmail.com>

335Using AngularUI components to create a modal popup
Nothing too complex here, just a lot of markup. To use the view, of course, we’ll need
to create the controller.

CREATING THE MODAL CONTROLLER

When we defined the modal in the location view controller we specified a controller
name that we’d use: reviewModalCtrl. Now it’s time to create that in a file called
reviewModal.controller.js, alongside the view we’ve just created.

 We’ll start off with the basic controller construct. A modal controller has a depen-
dency on $modalInstance—created by the AngularUI component—that we’ll inject.
$modalInstance has a dismiss method that we can invoke when either the Cancel or
Close button is clicked. To do this we’ll create the vm.modal.cancel method we refer-
ence in the view, and use it to dismiss the modal. All of this is tied together in the fol-
lowing listing.

(function () {

 angular
 .module('loc8rApp')
 .controller('reviewModalCtrl', reviewModalCtrl);

 reviewModalCtrl.$inject = ['$modalInstance'];
 function reviewModalCtrl ($modalInstance) {
 var vm = this;

 vm.modal = {
 cancel : function () {
 $modalInstance.dismiss('cancel');
 }
 };

 }

})();

When that’s in place, remember to add it to the array of scripts to concatenate in the
Express app.js file. If you now reload the page and click the Add Review button you
should see the modal popup display, as shown in Figure 10.10. Clicking on the Cancel
button, or anywhere outside the modal, should dismiss it.

 That’s a great start, but the name of the location doesn’t display in the modal
header. Let’s fix that by passing data into the modal.

10.4.4 Passing data into the modal

Passing data from the page controller into the view model of the modal controller is a
three-step process:

1 In the modal definition resolve the variables we want to use.
2 Inject these as dependencies into the modal controller.
3 Map them to objects in the modal view model.

Listing 10.21 Starting point for the review modal controller

Inject $modalInstance
into controller

Create vm.modal.cancel()
method and use it to call
$modalInstance.dismiss method
Licensed to Mark Watson <nordickan@gmail.com>

336 CHAPTER 10 Building an SPA with Angular: The next level
RESOLVING VARIABLES IN THE MODAL INSTANCE DEFINITION

The first step in passing data to the modal controller is to get the variables into the
modal instance definition. This is done using a resolve option. The resolve option
is mapped to an object containing one or more parameters that you want to use in
the modal. Each parameter should be mapped to a function that returns a value or
an object.

 We want to have access to the location ID and the location name in our modal, so
we’ll resolve a parameter called locationData, and have it return an object contain-
ing both the location ID and the name. The following listing shows the additions we
need to make to the modal instance definition.

var modalInstance = $modal.open({
 templateUrl: '/reviewModal/reviewModal.view.html',
 controller: 'reviewModalCtrl as vm',
 resolve : {
 locationData : function () {

Listing 10.22 Using resolve to pass variable values into the modal

Figure 10.10 The modal popup in action, showing the review form

Add resolve option,
mapping to object

Add parameter that
maps to function
Licensed to Mark Watson <nordickan@gmail.com>

337Using AngularUI components to create a modal popup
 return {
 locationid : vm.locationid,
 locationName : vm.data.location.name
 };
 }
 }
});

This will enable the modal controller to use a locationData parameter, if we inject it
as a dependency.

DEPENDENCY INJECTING THE RESOLVED PARAMETERS AND ADDING TO THE VIEW MODEL

For the modal controller to use the parameter we’ve just created, we need to inject it
as a dependency. We’ll do this exactly like we would any other dependency injection,
as shown in the following code snippet. We’ll also take this opportunity to save the
parameter as a property of the view model.

reviewModalCtrl.$inject = ['$modalInstance', 'locationData'];
function reviewModalCtrl ($modalInstance, locationData) {
 var vm = this;
 vm.locationData = locationData;

With that in place, we can now use the values of the locationData parameter in
the modal.

USING THE DATA PASSED THROUGH

Now that we have the data available in the modal view model we can use it in a bind-
ing in the modal view. The following code snippet shows how we update the modal
title to display the location name:

<h4 id="myModalLabel" class="modal-title">Add your review for {{
vm.locationData.locationName }}</h4>

By reloading the page in the browser and clicking the Add Review button again you
can see the data in action, as shown in figure 10.11.

 Okay, we’re looking good. The final thing we need to do is hook up the form, so
that when it’s submitted a review is added.

10.4.5 Using the form to submit a review

Now is the time to make our review form work and actually add a review to the data-
base when it’s submitted. To get to this end point we have a few steps involved:

1 Have Angular handle the form when it’s submitted.
2 Validate the form so that only complete data is accepted.
3 Add a POST handler to our loc8rData service.
4 POST the review data to the service.
5 Push the review into the list in the Details page.

Function should
return an object
or single value

Inject new
parameter
from modal
definition

Save parameter
into view model
Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 10 Building an SPA with Angular: The next level
ADDING ONSUBMIT FORM HANDLERS

When working with a form in HTML you’d typically have an action and a method to
tell the browser where to send the data and the HTTP request method to use. You
might also have an onSubmit event handler if you wanted to do anything with the
form data using JavaScript before it was sent.

 In an Angular SPA we don’t want the form to submit to a different URL taking us to
a new page. We want Angular to handle everything. For this we can use Angular’s
ng-submit listener to call a function in the view model. The following code snippet
shows how this is used, adding it into the form definition, calling a function in the
controller that we’ll write in just a moment:

<form id="addReview" name="addReview" role="form" ng-submit="vm.onSubmit()"
class="form-horizontal">

Next we need to create the corresponding onSubmit function inside the review
modal controller. To test that it’s working we’ll simply log the form data to the con-
sole and then return false to prevent the form from submitting. When we built
the view for the form we used a property on the view model for each input. Well we
actually went one better and put each item as a child property of vm.formData,
which makes it nice and easy to get all of the data together. The following code

Figure 10.11 Displaying the name of the location inside the modal popup
Licensed to Mark Watson <nordickan@gmail.com>

339Using AngularUI components to create a modal popup
snippet shows the starting point for the onSubmit function to be added to the review
modal controller:

vm.onSubmit = function () {
 console.log(vm.formData);
 return false;
};

Now that we can capture the form data we’ll add in some validation.

VALIDATING THE SUBMITTED FORM DATA

Before we blindly send every form submission to the API to save to the database, we
want to do some quick validation to ensure that all of the fields are filled in. If any
of them aren’t filled in we’ll display an error message. Your browser may prevent
forms from being submitted with empty required fields; if this is the case for you,
temporarily remove the required attribute from the form fields to test the Angular
validation.

 When a form is submitted we’ll start off by removing any existing error messages
before checking whether each data item in the form is truthy. If any return false—
that is, have no data—we’ll set a form error message in the view model and return
false. If all of the data exists we’ll continue to log it to the console as before.

 The following listing shows how we need to change the onSubmit function in the
review modal controller to handle this validation piece.

vm.onSubmit = function () {
 vm.formError = "";
 if(!vm.formData.name || !vm.formData.rating || !vm.formData.reviewText) {
 vm.formError = "All fields required, please try again";
 return false;
 } else {
 console.log(vm.formData);
 return false;
 }
};

Now that we’re creating an error message we want to show it to users when it’s gener-
ated. For this we’ll add a new Bootstrap alert div into the modal view template, and
bind the message as the content. We only want to show the div when there’s an error
message to display, so we’ll add an Angular directive called ng-show. ng-show accepts
an expression as the value, and if it evaluates as truthy it will display the element, oth-
erwise it will hide it.

 So for us, we can use it to check whether vm.formError has a value, and only
show the alert div if it has. The following code snippet shows the addition we need

Listing 10.23 Adding some basic data validation to the onSubmit handler

Output all form data to console
to test that function is working

Return false to prevent form from
submitting and reloading page

Reset any existing
error messages.

If any form fields
are false set an
error message.

Otherwise log submitted
data to console.
Licensed to Mark Watson <nordickan@gmail.com>

340 CHAPTER 10 Building an SPA with Angular: The next level
to make to the review modal view template, adding the alert right near the top of
the modal body:

<div class="modal-body">
 <div role="alert" ng-show="vm.formError" class="alert alert-danger">{{

vm.formError }}</div>
 <div class="form-group">

We can see this in action in figure 10.12.

UPDATING THE DATA SERVICE TO ACCEPT NEW REVIEWS

Before we can use this form to post review data we need to add a method to our data
service that talks to the correct API endpoint and can post the data. We’ll call this new
method addReviewById and have it accept two parameters: a location ID and the
review data.

 The contents of the method will be just the same as the others, except we’ll be
using post instead of get to call the API. The following listing highlights in bold the
changes required to the loc8rData function in loc8rData.service.js.

Figure 10.12 When an incomplete form is submitted, an error message is displayed.
Licensed to Mark Watson <nordickan@gmail.com>

341Using AngularUI components to create a modal popup

n

function loc8rData ($http) {
 var locationByCoords = function (lat, lng) {
 return $http.get('/api/locations?lng=' + lng + '&lat=' + lat +

'&maxDistance=20');
 };

 var locationById = function (locationid) {
 return $http.get('/api/locations/' + locationid);
 };

 var addReviewById = function (locationid, data) {
 return $http.post('/api/locations/' + locationid + '/reviews', data);
 };

 return {
 locationByCoords : locationByCoords,
 locationById : locationById,
 addReviewById : addReviewById
 };
}

Brilliant; now we can use this data service from our modal.

SENDING THE FORM DATA TO THE DATA SERVICE

So we’ve got our form data being posted and we’ve got a data service ready to post it to
the API. Let’s hook these two up. We’ll use the data service just like we’ve done before;
using this new method is no different. We start off by calling the method, which will
resolve to either a success or error promise as the data service is using the asynchro-
nous $http method.

 To keep the code tidy we’ll move this functionality into its own function called
doAddReview. This is all shown in the following listing, including the important part of
injecting the loc8rData service into the controller.

reviewModalCtrl.$inject = ['$modalInstance', 'loc8rData', 'locationData'];
function reviewModalCtrl ($modalInstance, loc8rData, locationData) {
 var vm = this;
 vm.locationData = locationData;

 vm.onSubmit = function () {
 vm.formError = "";
 if (!vm.formData.name || !vm.formData.rating || !vm.formData.reviewText)

{
 vm.formError = "All fields required, please try again";
 return false;
 } else {
 vm.doAddReview(vm.locationData.locationid, vm.formData);
 }
 };

Listing 10.24 Adding a new addReviewById method to the data service

Listing 10.25 Sending complete form data to the data service

Inject loc8rData service
as dependency

On successful
form submissio
send details to
new function
Licensed to Mark Watson <nordickan@gmail.com>

342 CHAPTER 10 Building an SPA with Angular: The next level
 vm.doAddReview = function (locationid, formData) {
 loc8rData.addReviewById(locationid, {
 author : formData.name,
 rating : formData.rating,
 reviewText : formData.reviewText
 })
 .success(function (data) {
 console.log("Success!");
 })
 .error(function (data) {
 vm.formError = "Your review has not been saved, try again";
 });
 return false;
 };

 vm.modal = {
 cancel : function () {
 $modalInstance.dismiss('cancel');
 }
 };

}

And now we can send reviews to the database. Just one last thing to make it slick: when
the review is sent we want to close the modal popup and add the review to the list.

CLOSING THE MODAL AND DISPLAYING THE REVIEW

Closing the modal and adding the new review to the list are closely tied together. We
could just use the dismiss method as we’ve done for the Close and Cancel buttons,
but there’s a better way.

 The modal instance has a close method as well as a dismiss method. The close
method can actually pass some data back to the parent controller. We can use this to
pass the review data from the modal controller up into the location view controller.
When a new review is posted to the API, we set it up so that the response to a successful
posting would return the review object from the database.

 We know that this data will be in the correct format to be displayed in the page so
it’s the best source of data to send back to the parent controller. So we need to call the
modal close method in the success callback of the addReviewById call. Instead of
calling it directly we’ll create a helper method like we did for the Cancel button. It all
comes together in the following listing.

vm.doAddReview = function (locationid, formData) {
 loc8rData.addReviewById(locationid, {
 author : formData.name,
 rating : formData.rating,
 reviewText : formData.reviewText
 })

Listing 10.26 Passing review data into the modal’s close method

New function
formats data and
sends it to new
service method

If service returns as successful,
outputs a message to console

Otherwise use
formError to

display an alert
message in modal
Licensed to Mark Watson <nordickan@gmail.com>

343Using AngularUI components to create a modal popup
 .success(function (data) {
 vm.modal.close(data);
 })
 .error(function (data) {
 vm.formError = "Your review has not been saved, please try again";
 });
 return false;
};

vm.modal = {
 close : function (result) {
 $modalInstance.close(result);
 },
 cancel : function () {
 $modalInstance.dismiss('cancel');
 }
};

The question now arises: How do we use this data? Good question! The close method
returns a promise to the parent controller where we defined the modal instance in the
first place. We can hook into this promise, and when it’s resolved simply push the new
review into the array of reviews as shown in the following listing.

vm.popupReviewForm = function () {
 var modalInstance = $modal.open({
 templateUrl: '/reviewModal/reviewModal.view.html',
 controller: 'reviewModalCtrl as vm',
 resolve : {
 locationData : function () {
 return {
 locationid : vm.locationid,
 locationName : vm.data.location.name
 };
 }
 }
 });

 modalInstance.result.then(function (data) {
 vm.data.location.reviews.push(data);
 });
};

As the array of reviews is bound to the view template, Angular will automatically
update the list of reviews showing. And because we set it up to order by the newest
review first, this review will appear at the top of the list as shown in figure 10.13. How
easy is that?

 And that’s it. Our Angular SPA is complete. So let’s take a look at what we’ve
learned.

Listing 10.27 Resolving the modal instance promise to update the review list

When new review has been successfully
added to database, send returned data
to modal close helper method

Create helper method to call
modal instance close method,
passing through supplied data

When modal promise
is resolved...

Push returned data
into array of reviews;
Angular binding will
do the rest
Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 10 Building an SPA with Angular: The next level
Figure 10.13 Add a review in the modal, and when submitted, the modal closes and the review appears at the
top of the list without the page reloading.
Licensed to Mark Watson <nordickan@gmail.com>

345Summary
10.5 Summary
In this chapter we’ve covered

■ Taking the whole application code into the client
■ Making pretty URLs using the HTML5 history API
■ Adding multiple views to the application
■ Safely binding text containing HTML elements
■ Using URL parameters
■ Adding if style logic using ng-switch and ng-show
■ Using prebuilt AngularUI components
■ Posting data to the API using the $http service

Coming up next in the final chapter we are going to see how to manage authenticated
sessions, by adding the ability for users to register and log in before leaving reviews.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 4

Managing
authentication

and user sessions

The ability to identify individual users is a key piece of functionality for most
web applications. Visitors should be able to register their details so that they can
log back in as returning users at a later date. When users are registered and
logged in, the application should be able to make use of the data.

 In chapter 11 we’ll look at how authentication works in the MEAN stack. The
focus will be on managing this when you have all of the application code in the
browser as an Angular SPA. Authentication touches every technology layer of
the application; we’ll cover saving user data to the database, securing API end-
points, and managing a session in the browser.

 By the end of part 4 we’ll have a fully functioning user registration and login
system added to our Loc8r application, which uses the active user’s data during
the session.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Authenticating users,
managing sessions,
and securing APIs
In this chapter we’re going to improve upon the existing application by making
users log in before they can leave reviews. This is an important topic, as many web
applications need to let users log in and manage a session.

 Figure 11.1 shows where we’re at in the overall plan, now working with the Mon-
goDB database, Express API, and Angular single-page application.

 Our first stop will be an overview of how to approach authentication in a MEAN
stack application, before updating Loc8r one piece at a time, working through the
architecture from back to front. So we’ll update the database and data schemas

This chapter covers
■ Adding authentication in the MEAN stack
■ Using Passport to manage authentication

in Express
■ Generating JSON Web Tokens in Express
■ Registering and logging in a user
■ Securing API endpoints in Express
■ Using local storage and Angular to manage

a user session
349

Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
first, before upgrading the API, and finally modifying the front end. By the end of the
chapter we’ll be able to register new users, log them in, maintain a session, and do
actions that only logged-in users can complete.

11.1 How to approach authentication in the MEAN stack
How to manage authentication in a MEAN application is seen as one of the great mys-
teries of the stack, particularly when using an SPA. This is largely because the entire
application code is delivered to the browser, so how do you hide some of it? How do
you define who can see or do what?

11.1.1 Traditional server-based application approach

Much of the confusion arises because people are very familiar with the traditional
approach of application authentication and user session management.

 In a traditional setup, the application code sits and runs on the server. For users to
log in they enter their username and password into a form that gets posted to the
server. The server then checks against a database to validate the login details. Assuming

Express app
Encapsulating

Express app

Express

Node.js

AngularJS

Working with the MongoDB database,

the Express and Node.js API, and the

Angular SPA to bring authentication

to the application

Angular SPA

AngularJS

Database API

Express

Node.js

MongoDB

Figure 11.1 This chapter adds an authentication system to the application
that touches most parts of the architecture, such as the database, API, and
front-end SPA.
Licensed to Mark Watson <nordickan@gmail.com>

351How to approach authentication in the MEAN stack
the login is okay, the server will set a flag or session parameter in users’ sessions on the
server to declare that they’re logged in.

 The server may or may not set a cookie on users’ browsers with the session infor-
mation. This is quite common, but isn’t technically required to manage the authenti-
cated session—it’s the server that maintains the vital session information. This flow is
illustrated in figure 11.2.

 When users then request a secure resource or try to submit some data to the data-
base, it’s the server that validates their session and whether or not it can continue. The
two flows are illustrated in figures 11.3 and 11.4.

 That’s what the traditional approach looks like, but does it work for the MEAN
stack?

Server sets

cookie on browser

Server updates

session information

Browser sends

credentials to server

Database returns

user details

Server queries database

with credentials

ServerBrowser Database

Figure 11.2 In a traditional server application the server and database validate user
credentials and add them to users’ sessions on the server.

Server returns

page to browser

Browser sends cookie

with request for new page

Server validates

user’s session

ServerBrowser

Figure 11.3 In a traditional server application the server validates users’
sessions before continuing with a secure request.

Browser sends cookie

and data to server

Server validates

user’s session

Server updates

data in database

ServerBrowser Database

Figure 11.4 In a traditional server application the server validates users’ sessions before
pushing data to a database.
Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
USING THE TRADITIONAL APPROACH IN THE MEAN STACK

This traditional approach isn’t a very neat fit for the MEAN stack. The approach relies
on the server reserving some resources for each user so that it can maintain the ses-
sion information. You may remember from all the way back in chapter 1 that Node
and Express don’t maintain sessions for each user—the entire application for all users
runs on a single thread.

 That said, a version of the approach can be used in the MEAN stack if you’re using
a server-side application based on Express, like we built up in the book through chap-
ter 7. Rather than using server resources to maintain session information, Express can
use a database to store the data. MongoDB can be used; another popular option for
this is Redis, which is a lightning-fast key-value store.

 We’re not going to cover that approach in this book; we’re going to look at the
more complicated scenario of adding authentication to an SPA hitting an API for data.

11.1.2 Full MEAN stack approach
Authentication in the MEAN stack poses two problems:

■ The API is stateless as Express and Node have no concept of user sessions.
■ The application logic is already delivered to the browser, so you can’t limit the

code that gets delivered.

The logical solution to these problems is to maintain some kind of session state in the
browser, and let the application decide what it can and cannot display to the current
user. This is the only fundamental change in approach. There are a few technical dif-
ferences, but this is the only major shift.

 A great way to securely keep user data in the browser in order to maintain a session
is to use a JSON Web Token (JWT). We’ll look at these in more detail later in this chap-
ter when we start using them, but in essence a JWT is a JSON object encrypted into a
string that’s meaningless to the human eye, but can be decoded and understood by
both the application and the server.

 Let’s see how this looks at a high level, starting with the login process.

MANAGING THE LOGIN PROCESS

Figure 11.5 illustrates the flow of a login process. Users post their credentials to the
server (via an API); the server validates these using the database, and returns a token
to the browser. The browser will save this token to reuse it later.

Server sends

token to browser

Server generates

JSON web token

Browser sends

credentials to server

Database returns

user details

Server queries database

with credentials

ServerBrowser Database

Figure 11.5 The login flow in a MEAN application, returning a JSON Web Token to the browser
after the server validates user credentials
Licensed to Mark Watson <nordickan@gmail.com>

353How to approach authentication in the MEAN stack
This is very similar to the traditional approach, but instead of storing each user’s ses-
sion data on the server, it’s stored in the browser.

CHANGING VIEWS DURING AN AUTHENTICATED SESSION

While users are in a session, they’ll need to be able to change a page or view, and the
application will need to know what they should be allowed to see. So here, as illus-
trated in figure 11.6, the application will decode the JWT and use the information to
show the appropriate data to users.

This is where the change from the traditional approach is really obvious. The server is
completely unaware that users are doing anything, until they need to access the API
and database.

SECURELY CALLING AN API
If parts of the application are restricted to authenticated users, then it’s quite likely
that there will be some database actions that can only be used by authenticated users.
As the API is stateless, it has no idea of who is making each call, unless you tell it. The
JWT comes back into play here. As figure 11.7 shows, the token will be sent to the API
endpoint, which will decode the token before validating whether the user is permitted
to make that call.

Okay, so that covers the approach at a high level, and now we’ve got a good idea what
we’re aiming for. We’ll make the first step toward building this into our Loc8r applica-
tion by setting up MongoDB to store user details.

Browser displays

page to user

User clicks to

change view

BrowserUser Application

validates token

Figure 11.6 Using data inside the JWT, the SPA can determine which resources
users can use or see.

Browser sends token

and data to server

Server validates

user’s token

Server updates

data in database

ServerBrowser Database

Figure 11.7 When calling an authenticated API endpoint, the browser sends the JWT along
with the data; the server decodes the token to validate a user’s request.
Licensed to Mark Watson <nordickan@gmail.com>

354 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
11.2 Creating a user schema for MongoDB
Usernames and passwords naturally have to be stored in the database. To do that in
the MEAN stack we need to create a Mongoose schema. Passwords should never—
absolutely never—be stored in a database as plain text, as doing so presents a massive
security breach if the database is ever compromised. So we’ll have to do something
else as we generate the schema.

11.2.1 One-way password encryption: Hashes and salts

The thing to do here is run a one-way encryption on the password. One-way encryp-
tion prevents anyone from decrypting the password, while still making it quite easy to
validate a correct password. When users try to log in, the application can encrypt a
given password and see if it matches the stored value.

 Just encrypting isn’t quite enough, though. If several people used the word “pass-
word” as their password (it happens!) then the encryption for each will be the same.
Any hackers looking through the database could see this pattern and identify poten-
tially weak passwords.

 This is where the concept of a salt comes in. A salt is a random string generated by
the application for each user that’s combined with the password before encryption.
The resulting encrypted value is called the hash, as illustrated in figure 11.8.

The salt and the hash are both stored in the database rather than just a single “pass-
word” field. Using this approach, all hashes should be unique, and passwords are
well protected.

11.2.2 Building the Mongoose schema

We’ll start by creating the file that will hold the schema and require it into the appli-
cation. In the folder app_api/models/ let’s create a new file called users.js.

 Next we’ll pull that into the application by referencing it in the db.js file in the
same folder. It should be required alongside the existing line that brings in the loca-
tions model, as shown in the following code snippet:

// BRING IN YOUR SCHEMAS & MODELS
require('./locations');
require('./users');

Okay, now we’re ready to build the basic schema.

Encryption Hash

User password

Random salt

and Figure 11.8 A hash is created by
combining a user’s password with a
random salt and encrypting them.
Licensed to Mark Watson <nordickan@gmail.com>

355Creating a user schema for MongoDB
BASIC USER SCHEMA

What do we want in the user schema? We know we need a display name to show on
reviews, plus a hash and a salt for the password. Let’s also add an email address, and
have this be the unique identifier that users log in with.

 In the new user.js file we’ll require Mongoose and define a new userSchema as
shown in the following listing.

var mongoose = require('mongoose');

var userSchema = new mongoose.Schema({
 email: {
 type: String,
 unique: true,
 required: true
 },
 name: {
 type: String,
 required: true
 },
 hash: String,
 salt: String
});

The email and name will both be set from the registration form, but the hash and salt
will both be created by the system. The hash, of course, will be derived from the salt and
the password supplied via the form.

 Now we’ll see how to set the salt and the hash, using a piece of Mongoose function-
ality we haven’t touched on yet: methods.

11.2.3 Setting encrypted paths using Mongoose methods

Mongoose allows us to add methods to a schema, which get exposed as model meth-
ods. Such methods give the code direct access to the model attributes.

 The ideal outcome is to be able to do something along the lines of the following
pseudocode:

var User = mongoose.model('User');
var user = new User();
user.name = "User’s name";
user.email = "test@example.com";
user.setPassword("myPassword");
user.save();

Let’s see how we can add a method to Mongoose to achieve this.

Listing 11.1 Basic Mongoose schema for users

Email should be
required and unique

Name is also required, but
not necessarily unique

Hash and salt are
both just strings

Instantiate
user model

Create
new user

Set name and
email values

Call a setPassword
method to set passwordSave new

user
Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
ADDING A METHOD TO A MONGOOSE SCHEMA

Methods can be added to a schema after the schema has been defined, before the model
is compiled. In the application code, methods are designed to be used once the
model has been instantiated.

 Adding a method to a schema is fairly straightforward, simply by chaining onto
.methods of the schema. It’s also easy to pass in an argument. See the following snip-
pet, for example, which will be the outline for the actual setPassword method:

userSchema.methods.setPassword = function(password){
 this.salt = SALT_VALUE;
 this.hash = HASH_VALUE;
};

Unusually for a snippet of JavaScript, this in a Mongoose method actually refers to
the model itself. So in the preceding example setting this.salt and this.hash in the
method would actually set them in the model.

 Before we can save anything, though, we need to generate a random salt value and
encrypt the hash. Fortunately, there’s a native Node module for that: crypto.

USING THE CRYPTO MODULE FOR ENCRYPTION

Encryption is such a common requirement there’s a module built into Node called
crypto. It comes with several methods for managing the encryption of data; we’ll look
at the following two:

■ randomBytes—To generate a cryptographically strong string of data to use as
the salt

■ pbkdf2Sync—To create the hash from the password and the salt; pbkdf2 stands
for password-based key derivation function 2, an industry standard

We’re going to use these methods to create a random string for the salt, and for encrypt-
ing the password and salt into the hash. The first step is to require crypto in the top
of the users.js file:

var mongoose = require('mongoose');
var crypto = require('crypto');

Second, we’ll update the setPassword method to set the salt and the hash for users.
To set the salt we’ll use the randomBytes method to generate a random 16-byte string.
Then we’ll use the pbkdf2Sync method to create the encrypted hash from the pass-
word and the salt. Here it is all shown together:

userSchema.methods.setPassword = function(password){
 this.salt = crypto.randomBytes(16).toString('hex');
 this.hash = crypto.pbkdf2Sync(password, this.salt, 1000,

➥ 64).toString('hex');
};

Now when the setPassword method is called and supplied with a password, the salt
and the hash will be generated for users, and added to the model instance. The pass-
word is never saved anywhere, and not even stored in memory.

Create a random
string for salt

Create
encrypted hash
Licensed to Mark Watson <nordickan@gmail.com>

357Creating a user schema for MongoDB
11.2.4 Validating a submitted password

The other aspect of storing a password is being able to retrieve it when users try to log
in—we need to be able to validate their credentials. Having encrypted the password
we can’t decrypt it, so what we need to do is use the same encryption on the password
the user is trying to log in with, and see if it matches the stored value.

 We can do the hashing and validation in a simple Mongoose method. Add the fol-
lowing method to users.js. It will be called from a controller once a user has been
found with a given email address, and will return true or false depending on
whether the hashes match:

userSchema.methods.validPassword = function(password) {
 var hash = crypto.pbkdf2Sync(password, this.salt, 1000, 64).toString('hex');
 return this.hash === hash;
};

That’s it—it’s pretty simple, right? We’ll see these methods in action when we gener-
ate the API controllers.

 The final thing the controller will need help to do is generate a JSON Web Token
to include some of the model data.

11.2.5 Generating a JSON Web Token

A JWT (pronounced “jot”) is used to pass data around, in our case between the API on
the server and the SPA in the browser. A JWT can also be used by the server that gener-
ated the token to authenticate a user, when it’s returned in a subsequent request.

 Let’s take a quick look at the parts of a JWT.

THREE PARTS OF A JWT
A JWT is comprised of three random-looking, dot-separated strings. These can be
quite long; here’s a real-world example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJfaWQiOiI1NTZiZWRmNDhmOTUzOTViMTlhNjc1
ODgiLCJlbWFpbCI6InNpbW9uQGZ1bGxzdGFja3RyYWluaW5nLmNvbSIsIm5hbWUiOiJTaW1vbiBIb
2xtZXMiLCJleHAiOjE0MzUwNDA0MTgsImlhdCI6MTQzNDQzNTYxOH0.GD7UrfnLk295rwvIrCikbk
AKctFFoRCHotLYZwZpdlE

This is pretty meaningless to the human eye, but you should be able to spot the two
dots and therefore the three separate parts. These three parts are

■ Header—An encoded JSON object containing the type and the hashing algo-
rithm used

■ Payload—An encoded JSON object containing the data, the real body of the token
■ Signature—An encrypted hash of the header and payload, using a “secret” that

only the originating server knows

Note that the first two parts aren’t encrypted—they’re encoded. This means that it’s
easy for the browser—or indeed other applications—to decode them. Most modern
Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
browsers have a native function called atob() that will decode a Base64 string. A sister
function called btoa() will encode to a Base64 string.

 The third part, the signature, is encrypted. To decrypt it you need to use the secret
that was set on the server; this secret should remain on the server and never be
revealed in public.

 The good news is that there are libraries to deal with all of the complicated parts of
the process. So let’s install one of these libraries into our application and create a
schema method to generate a JWT.

GENERATING A JWT FROM EXPRESS

The first step toward generating a JWT is to include an npm module called jsonweb-
token from the command line:

$ npm install jsonwebtoken --save

Then we need to require it at the top of the users.js file:

var mongoose = require('mongoose');
var crypto = require('crypto');
var jwt = require('jsonwebtoken');

Finally, we need to create a schema method, which we’ll call generateJwt. To gener-
ate a JWT we’ll need to provide the payload—that is, the data—and a secret value. In
the payload we’ll send the user’s _id, email, and name. We should also set an expiry
date for the token, after which the user will have to log in again to generate a new one.
We’ll use a reserved field in a JWT payload for this, exp, which expects the expiry data
as a Unix number value.

 To generate a JWT, we simply need to call a sign method on the jsonwebtoken
library, sending the payload as a JSON object and the secret as a string. This will return
a token, which we can then return out of the method. The following listing shows this
all in place.

userSchema.methods.generateJwt = function() {
 var expiry = new Date();
 expiry.setDate(expiry.getDate() + 7);

 return jwt.sign({
 _id: this._id,
 email: this.email,
 name: this.name,
 exp: parseInt(expiry.getTime() / 1000),
 }, 'thisIsSecret');
};

When this generateJwt method is called, it will use the data from the current user
model to create a unique JWT and return it.

Listing 11.2 Create a schema method to generate a JWT

Create expiry date object
and set for seven days

Call jwt.sign method and
return what it returns

Pass payload
to method

Including exp as Unix
time in secondsSend secret for hashing

algorithm to use
Licensed to Mark Watson <nordickan@gmail.com>

359Creating a user schema for MongoDB
 There’s just one problem with this code: the secret shouldn’t really be visible in the
code, so let’s quickly deal with that now.

KEEPING THE SECRET SECRET WITH ENVIRONMENT VARIABLES

If you’re going to be pushing your code around in version control, like GitHub for
example, you don’t want to have the secret published. Exposing your secret dramati-
cally weakens your security model—with your secret anybody could issue fake tokens
that your application believes to be genuine. To keep secrets a secret, it’s often a good
idea to set them as environment variables.

 Here’s an easy way to do it, that lets you keep track of environment variables in the
code on your machine. First create a file in the root of the project called .env, and set
the secret as follows:

JWT_SECRET=thisIsSecret

In this case the secret is thisIsSecret, but it can be whatever you want it to be, so
long as it’s a string. Now we need to make sure this file isn’t included in any Git commits
by adding a line to the .gitignore file in the project. As a minimum the .gitignore
file should have the following content:

Dependency directory
node_modules

Environment variables
.env

To read and use this new file to actually set environment variables, we’ll need to install
and use a new npm module called dotenv. We’ll do this with the following command
in terminal:

$ npm install dotenv --save

The dotenv module should be required into the app.js file as the very first line in the
file as shown here:

require('dotenv').load();
var express = require('express');

Now all that remains is to update the user schema to replace the hard-coded secret
with the environment variable, highlighted in bold in the following snippet:

userSchema.methods.generateJwt = function() {
 var expiry = new Date();
 expiry.setDate(expiry.getDate() + 7);

 return jwt.sign({
 _id: this._id,
 email: this.email,
 name: this.name,
 exp: parseInt(expiry.getTime() / 1000),
 }, process.env.JWT_SECRET);
};

Don’t keep secrets in
code; use environment
variables instead
Licensed to Mark Watson <nordickan@gmail.com>

360 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
Of course your production environment will need to know about this environment
variable too. You may remember the command from when we set the database URI on
Heroku. It’s the same thing here, so run the following command in terminal:

$ heroku config:set JWT_SECRET=thisIsSecret

And that’s the last step. So with the MongoDB and Mongoose side of things covered,
next we’ll look at using Passport to manage authentication.

11.3 Creating an authentication API with Passport
Passport is a Node module by Jared Hanson that’s designed to make authentication in
Node easy. One of its key strengths is that it can accommodate several different meth-
ods of authentication, called strategies. Examples of these strategies include

■ Facebook
■ Twitter
■ OAuth
■ Local username and password

You can find many more different strategies by searching for “passport” on the npm
website. Using Passport you can easily use one or more of these approaches to let
users log in to your application. For Loc8r, we’re going to use the local strategy as
we’re storing usernames and password hashes in the database.

 We’ll start by installing the modules.

11.3.1 Installing and configuring Passport

Passport is separated out into a core module and separate modules for each of the
strategies. So we’ll install the core module and the local strategy module via npm,
using the following commands in terminal:

$ npm install passport --save
$ npm install passport-local --save

When both of those are installed we can create the configuration for our local strategy.

CREATING A PASSPORT CONFIG FILE

It’s the API in our application that will be using Passport, so we’ll create the config
inside the app_api folder. Inside app_api create a new folder called config, and inside
that create a new file named passport.js.

 At the top of this file we’ll need to require Passport and the local strategy module,
as well as Mongoose and the user model. This is shown in the following snippet:

var passport = require('passport');
var LocalStrategy = require('passport-local').Strategy;
var mongoose = require('mongoose');
var User = mongoose.model('User');

Now we can configure the local strategy.
Licensed to Mark Watson <nordickan@gmail.com>

361Creating an authentication API with Passport
CONFIGURING A LOCAL STRATEGY

To set a Passport strategy you use a passport.use method and pass it a new strategy
constructor. This constructor takes an options parameter and a function that does
most of the work. The skeleton of this looks like the following:

passport.use(new LocalStrategy({},
 function(username, password, done) {
 }
));

By default a Passport local strategy expects and uses the fields username and password.
We have password so that one’s okay, but instead of username we’re using email. Pass-
port allows you to override the username field in the options object as shown in the
following snippet:

passport.use(new LocalStrategy(
 usernameField: 'email'
 },
 function(username, password, done) {
 }
));

Next is the main function, which is really just a Mongoose call to find users given the
username and password supplied into the function. Our Mongoose function will need
to do the following:

■ Find a user with the email address supplied.
■ Check whether the password is valid.
■ Return the user object if the user is found and the password is valid.
■ Otherwise return a message stating what’s wrong.

As the email address is set to be unique in the schema we can use the Mongoose find-
One method. The other interesting point to note is that we’ll make use of the valid-
Password schema method we created earlier to check whether the supplied password
is correct.

 The following listing shows the local strategy in its entirety.

passport.use(new LocalStrategy({
 usernameField: 'email'
 },
 function(username, password, done) {
 User.findOne({ email: username }, function (err, user) {
 if (err) { return done(err); }
 if (!user) {
 return done(null, false, {
 message: 'Incorrect username.'
 });
 }

Listing 11.3 Full Passport local strategy definition

Search MongoDB
for user with
supplied email
address

If no user is found,
return false and a
message
Licensed to Mark Watson <nordickan@gmail.com>

362 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
 if (!user.validPassword(password)) {
 return done(null, false, {
 message: 'Incorrect password.'
 });
 }
 return done(null, user);
 });
 }
));

Now that we have Passport installed and a strategy configured, we need to register it
with the application.

ADDING PASSPORT AND THE CONFIG TO THE APPLICATION

To add our Passport settings to the application we need to do three things in app.js:

1 Require Passport.
2 Require the strategy config.
3 Initialize Passport.

There’s nothing complicated about any of these three things; the important thing is
where they go in app.js.

 Passport should be required before the database models, and the configuration after
the database models. Both should be in place before the routes are defined. If we reor-
ganize the top of app.js slightly, we can bring in Passport and the config as follows:

require('dotenv').load();
var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var uglifyJs = require("uglify-js");
var fs = require('fs');
var passport = require('passport');

require('./app_api/models/db');
require('./app_api/config/passport');

var routes = require('./app_server/routes/index');
var routesApi = require('./app_api/routes/index');

The strategy needs to be defined after the model definitions, because it needs the user
model to exist.

 Passport should be initialized in app.js after the static routes have been defined,
and before the routes that are going to use authentication—in our case the API routes.
The following snippet shows this in place:

app.use(express.static(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'app_client')));

app.use(passport.initialize());

app.use('/api', routesApi);

Call
validPassword
method, passing
supplied
password

If password is
incorrect, return
false and a message

If we’ve got to the end we
can return user object

Require Passport before
model definition

Require strategy after
model definition
Licensed to Mark Watson <nordickan@gmail.com>

363Creating an authentication API with Passport
With that in place, Passport is now installed, configured, and initialized in our applica-
tion. What we’ll do now is create the API endpoints we need to let users register and
log in.

11.3.2 Creating API endpoints to return JSON Web Tokens

To enable users to log in and register via our API, we’ll need to have two new end-
points. To do this we’ll need to add two new route definitions and two new corre-
sponding controllers. When we’ve got endpoints in place we can test them using
Postman and also validate that the registration endpoint has worked by using the
Mongo shell to look inside the database. First up, adding the routes.

ADDING THE AUTHENTICATION ROUTE DEFINITIONS

The route definitions for the API are held in the index.js file in app_api/routes, so
that’s where we’ll start. Our controllers are separated out into logical collections, cur-
rently locations and reviews. It makes sense to add a third collection for the authenti-
cation. The following snippet shows this added at the top of the file:

var ctrlLocations = require('../controllers/locations');
var ctrlReviews = require('../controllers/reviews');
var ctrlAuth = require('../controllers/authentication');

We haven’t created this controllers/authentication file yet; we’ll do that in the next
step when we code up the related controllers. Next we’ll add the route definitions
themselves toward the end of the file (but before the module.exports line). We want
two, one each for registration and login, which we’ll create at /api/register and /api/
login, respectively as shown in the following snippet:

router.post('/register', ctrlAuth.register);
router.post('/login', ctrlAuth.login);

These both need to be post actions, of course, as they’re accepting data, and
remember that we don’t need to specify the /api part of the routes as that’s added
when the routes are required inside app.js. Now we need to add the controllers
before we can test.

CREATING THE REGISTER CONTROLLER

We’ll look at the register controller first, but to start with we need to create the file
specified in the route definitions. So in the app_api/controllers folder create a new
file, authentication.js, and enter the code in the following snippet to require the
things we’re going to need and bring in the sendJSONresponse function again:

var passport = require('passport');
var mongoose = require('mongoose');
var User = mongoose.model('User');

var sendJSONresponse = function(res, status, content) {
 res.status(status);
 res.json(content);
};
Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
The registration process won’t actually use Passport at all. We can do what we need
with Mongoose, as we’ve already set up the various helper methods on the schema.

 The register controller will need to do the following:

1 Validate that the required fields have been sent.
2 Create a new model instance of User.
3 Set the name and email address of the user.
4 Use the setPassword method to create and add the salt and the hash.
5 Save the user.
6 Return a JWT when saved.

This seems like quite a lot of things to do, but fortunately it’s all pretty easy—we’ve
done the hard work already by creating the Mongoose methods. Now we just need
to tie it all together. The following listing shows the complete code for the register
controller.

module.exports.register = function(req, res) {
 if(!req.body.name || !req.body.email || !req.body.password) {
 sendJSONresponse(res, 400, {
 "message": "All fields required"
 });
 return;
 }

 var user = new User();

 user.name = req.body.name;
 user.email = req.body.email;

 user.setPassword(req.body.password);

 user.save(function(err) {
 var token;
 if (err) {
 sendJSONresponse(res, 404, err);
 } else {
 token = user.generateJwt();
 sendJSONresponse(res, 200, {
 "token" : token
 });
 }
 });
};

In terms of this piece of code there’s nothing particularly new or complex here, but it
really highlights the power of the Mongoose methods. This registration controller
could have been really complex had everything been written in line, which would
have been tempting if we’d started here instead of with Mongoose. But as it is, the
controller is easy to read and understand—just what you want from your code. Next
up, the login controller.

Listing 11.4 Register controller for the API

Respond with
an error status
if not all
required fields
are found

Create a new user
instance and set
name and email

Use setPassword method
to set salt and hash

Save new user
to MongoDB

Generate a JWT using
schema method and
send it to browser
Licensed to Mark Watson <nordickan@gmail.com>

365Creating an authentication API with Passport
CREATING THE LOGIN CONTROLLER

The login controller will rely on Passport to do the difficult stuff. We’ll start by simply
validating that the required fields have been filled, and then hand over everything to
Passport. Passport will do its thing—attempting to authenticate the user using the
strategy we specify—and then tell us whether it was successful or not. If it was success-
ful we can use the generateJwt schema method again to create a JWT before sending
it to the browser.

 All of this, including the syntax required to initiate the passport.authenticate
method, is shown in the following listing. This should be added to the new authentica-
tion.js file.

module.exports.login = function(req, res) {
 if(!req.body.email || !req.body.password) {
 sendJSONresponse(res, 400, {
 "message": "All fields required"
 });
 return;
 }

 passport.authenticate('local', function(err, user, info){
 var token;

 if (err) {
 sendJSONresponse(res, 404, err);
 return;
 }

 if(user){
 token = user.generateJwt();
 sendJSONresponse(res, 200, {
 "token" : token
 });
 } else {
 sendJSONresponse(res, 401, info);
 }
 })(req, res);

};

With the login controller we can see that once again all of the complicated work is
abstracted out, this time primarily by Passport. This leaves the code really easy to read,
follow, and understand, which should always be a goal to have in mind when coding.

 Now that we’ve built these two endpoints in our API, let’s test them.

TESTING THE ENDPOINTS AND CHECKING THE DATABASE

When we built the bulk of the API back in chapter 6 we tested the endpoints with Post-
man. We can do the same here. Figure 11.9 shows testing the register endpoint, and
how it returns a JWT. The URL to test is localhost:3000/api/register, creating form

Listing 11.5 Login controller for the API

Validate that
required fields
have been
supplied

Pass name of
strategy and
a callback to
authenticate
methodReturn an error if

Passport returns
an error

If Passport
returned a user
instance, generate
and send a JWT

Otherwise return
info message (why
authentication failed)

Make sure that req and res
are available to Passport
Licensed to Mark Watson <nordickan@gmail.com>

366 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
fields for name, email, and password. Remember to select the x-www-form-urlencoded
form type.

 Figure 11.10 shows testing of the login endpoint, including the return of a Pass-
port error message as well as a JWT when successful. The URL for this test is local-
host:3000/api/register and requires email and password form fields.

 As well as seeing in the browser that JWTs are returned when expected, we can also
take a look in the database and check to see whether the user has been created. We’ll
go back to the Mongo shell for this, which we haven’t used for a while:

$ mongo
> use Loc8r
> db.users.find()

Or you can find a particular user by specifying the email address of course:

> db.users.find({email : "simon@fullstacktraining.com"})

Figure 11.9 Trying out the /api/register endpoint in Postman, returning a JWT when successful
Licensed to Mark Watson <nordickan@gmail.com>

367Creating an authentication API with Passport
Whichever you use you should see one or more user documents returned from the
database, looking something like this:

{ "hash" :
"1255e9df3daa899bee8d53a42d4acf3ab8739fa758d533a84da5eb1278412f7a7bdb36e888ae
b80a9eec4fb7bbe9bcef038f01fbbf4e6048e2f4494be44bc3d5", "salt" :
"40368d9155ea690cf9fc08b49f328e38", "email" : "simon@fullstacktraining.com",
"name" : "Simon Holmes", "_id" : ObjectId("558b95d85f0282b03a603603"), "__v"
: 0 }

I’ve made the path names bold to make them easier to pick out in print, but you
should be able to see all of the expected data there.

 Now that we’ve created the endpoints to enable users to register and log in, the
next thing we’re going to look at is how to restrict certain endpoints to authenticated
users only.

Figure 11.10 Using the api/login endpoint in Postman, testing correct and incorrect credentials
Licensed to Mark Watson <nordickan@gmail.com>

368 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
11.4 Securing relevant API endpoints
It’s a pretty common requirement in web applications to limit access to API endpoints
to authenticated users only. In Loc8r, for example, we want to make sure that only reg-
istered users can leave reviews. To do this there are really two parts:

■ Only allow users sending a valid JWT with their request to call the new review API.
■ Inside the controller validate that the user exists and can create a review.

We’ll start by adding authentication to the routes in Express, before getting into
the controller.

11.4.1 Adding authentication middleware to Express routes

In Express, middleware can be added to routes, as you’ll see in just a moment. This
middleware gets in the middle of the route and the controller. So once a route is
called, the middleware is activated before the controller, and can prevent the control-
ler from running or change the data being sent.

 We want to use middleware that will validate the supplied JWT, and then extract the
payload data and add it to the req object for the controller to use. It’s no surprise that
there’s an npm module for this and it’s called express-jwt, so let’s install it now with
the following command in terminal:

$ npm install express-jwt --save

Now we can use it in the routes file.

SETTING UP THE MIDDLEWARE

To use express-jwt we need to require it and configure it. When included, express-
jwt exposes a function that can be passed an options object, which we’ll use to send
the secret and also specify the name of the property we want to add to the req object
to hold the payload.

 The default property added to req is user, but in our code user is an instance of
the Mongoose User model. So we’ll set it to payload to avoid confusion and maintain
consistency—it’s what it’s called in Passport and inside the JWT after all.

 Open up the API routes file, app_api/routes/index.js, and add the setup to the top
of the file, highlighted in bold in the following snippet:

var express = require('express');
var router = express.Router();
var jwt = require('express-jwt');
var auth = jwt({
 secret: process.env.JWT_SECRET,
 userProperty: 'payload'
});

Now that the middleware is configured, we can add the authentication to the routes.

Require express-jwt
module

Set secret using same
environment variable as before

Define property on
req to be payload
Licensed to Mark Watson <nordickan@gmail.com>

369Securing relevant API endpoints
ADDING AUTHENTICATION MIDDLEWARE TO SPECIFIC ROUTES

Adding middleware to the route definitions is really simple. We simply need to refer-
ence it in the router commands, in between the route and the controller. It really does
go in the middle!

 The following snippet shows how to add it to the post, put, and delete review meth-
ods, while leaving get open—the reviews are supposed to be readable by the public:

router.post('/locations/:locationid/reviews', auth,

➥ ctrlReviews.reviewsCreate);
router.get('/locations/:locationid/reviews/:reviewid',

➥ ctrlReviews.reviewsReadOne);
router.put('/locations/:locationid/reviews/:reviewid', auth,

➥ ctrlReviews.reviewsUpdateOne);
router.delete('/locations/:locationid/reviews/:reviewid', auth,

➥ ctrlReviews.reviewsDeleteOne);

So that’s the middleware configured and applied. In just a moment we’ll take a look at
how to use it in the controller, but first let’s see how to deal with an invalid token that
the middleware rejects.

DEALING WITH AUTHENTICATION REJECTION

When the supplied token is invalid—or perhaps doesn’t exist at all—the middleware
will actually throw an error to prevent the code from continuing. So what we need to
do is catch this error, and return an unauthorized message and status (401).

 The best place to add this is with the other error handlers in app.js. We’ll add it as
the first error handler so that generic handlers don’t intercept it. The following snip-
pet shows the new error handler to be added to app.js:

// error handlers
// Catch unauthorised errors
app.use(function (err, req, res, next) {
 if (err.name === 'UnauthorizedError') {
 res.status(401);
 res.json({"message" : err.name + ": " + err.message});
 }
});

With that in place and the app restarted we can test that the rejection occurs by using
Postman again, this time submitting a review. We can use the same POST request that
we had when first testing the API, the result of which is shown in figure 11.11.

 As expected, trying to call the newly protected API endpoint without including a
valid JWT in the request returns an unauthorized status and message. Just what we
wanted. Let’s move on to what happens when a request is authorized by the middle-
ware and continues on to the controller.

11.4.2 Using the JWT information inside a controller

In this section we’re going to see how to use the data from the JWT that has just been
extracted by the middleware in Express and added to the req object. We’re going to
Licensed to Mark Watson <nordickan@gmail.com>

370 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
use the email address to get the user’s name from the database, and add it to the
review document.

ONLY RUN THE MAIN CONTROLLER CODE IF THE USER EXISTS

The first thing to do, as shown in listing 11.6, is to take the reviewsCreate controller
and wrap the contents in a new function that we’ll call getAuthor. This new function
should accept the req and res objects, with the existing controller code in a callback.

 The whole point of the getAuthor function will be to validate that the user exists in
the database, and return the user’s name for use in the controller. So we can pass this
through as userName to the callback, and in turn pass it through to the doAddReview
function.

module.exports.reviewsCreate = function(req, res) {
 getAuthor(req, res, function (req, res, userName) {
 if (req.params.locationid) {
 Loc
 .findById(req.params.locationid)
 .select('reviews')
 .exec(
 function(err, location) {

Listing 11.6 Update the create review controller to get the user’s name first

Figure 11.11 Trying to add a review without a valid JWT now results in a 401 response.

Call getAuthor function,
and pass original
controller code in as a
callback; pass user’s
name into callback
Licensed to Mark Watson <nordickan@gmail.com>

371Securing relevant API endpoints
 if (err) {
 sendJSONresponse(res, 400, err);
 } else {
 doAddReview(req, res, location, userName);
 }
 }
);
 } else {
 sendJSONresponse(res, 404, {
 "message": "Not found, locationid required"
 });
 }
 });
};

Looking at this highlights the two things we still need to do: write the getAuthor func-
tion and update the doAddReview function. Let’s write the getAuthor function, so that
we can see how to get the JWT data.

VALIDATING THE USER AND RETURNING THE NAME

The idea of the getAuthor function is to validate that the email address is associated
with a user on the system, and return the name to use. It will need to do the following:

■ Check that there’s an email address in the req object.
■ Use the email address to find a user.
■ Send the user’s name to the callback function.
■ Trap errors and send appropriate messages.

The full code for the getAuthor function is in listing 11.7. The very first thing to do is
check for the payload property on req, and in turn check that it has an email prop-
erty. Remember that payload is the property we specified when we added authentica-
tion to the Express routes. After that it’s simply a case of using req.payload.email in
a Mongoose query, passing the user’s name through to the callback if successful.

var User = mongoose.model('User');
var getAuthor = function(req, res, callback) {
 if (req.payload && req.payload.email) {
 User
 .findOne({ email : req.payload.email })
 .exec(function(err, user) {
 if (!user) {
 sendJSONresponse(res, 404, {
 "message": "User not found"
 });
 return;
 } else if (err) {
 console.log(err);
 sendJSONresponse(res, 404, err);
 return;
 }

Listing 11.7 Use data from the JWT to query the database

Pass user’s
name into
doAddReview
function

Close getAuthor
function

Ensure the User
model is available

Validate that JWT
information is on
request object

Use email address
to find user
Licensed to Mark Watson <nordickan@gmail.com>

372 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
 callback(req, res, user.name);
 });

 } else {
 sendJSONresponse(res, 404, {
 "message": "User not found"
 });
 return;
 }
};

Now when the callback is invoked it will run what was the original code in the control-
ler, finding a location and passing the information to the doAddReview function. It’s
also now passing the username to the function, so let’s quickly update doAddReview to
use the user’s name and add it to the review documents.

SETTING THE USER’S NAME ON REVIEWS

The change to the doAddReview function is really simple, and is shown in listing 11.8.
We were already saving the author of the review, getting the data from req.body
.author. Now we have another parameter being passed to the function, and can use
this instead. The updates are highlighted in bold.

var doAddReview = function(req, res, location, author) {
 if (!location) {
 sendJSONresponse(res, 404, "locationid not found");
 } else {
 location.reviews.push({
 author: author,
 rating: req.body.rating,
 reviewText: req.body.reviewText
 });
 location.save(function(err, location) {
 var thisReview;
 if (err) {
 sendJSONresponse(res, 400, err);
 } else {
 updateAverageRating(location._id);
 thisReview = location.reviews[location.reviews.length - 1];
 sendJSONresponse(res, 201, thisReview);
 }
 });
 }
};

That simple change brings us to the end of the back-end work. We’ve created a new
user schema, generated and consumed JWTs, created an authentication API, and
secured some other API routes. That’s quite a lot already! And now we’re going to
move to the front end and focus on integrating this into the Angular app.

Listing 11.8 Saving the username in the review

Run callback, passing
user’s name

Add an author
parameter to
function definition

Use author parameter
when creating review
subdocument
Licensed to Mark Watson <nordickan@gmail.com>

373Creating Angular authentication service
11.5 Creating Angular authentication service
In an Angular app, just like any other application, authentication is likely to be needed
across the board, in several different places. So really the obvious thing to do is create
an authentication service that can be used anywhere it’s needed.

 This service should be responsible for everything related to authentication, includ-
ing saving and reading a JWT, returning information about the current user, and call-
ing the login and register API endpoints.

 We’ll start by looking at how to manage the user session.

11.5.1 Managing a user session in Angular

Let’s assume for a moment that a user has just logged in, and the API has returned a
JWT. What should we do with the token? Since we’re running an SPA, we could just
keep it in the application memory. This will be okay unless the user decides to refresh
the page, which reloads the application, losing anything in memory. Not ideal.

 So next we look to save the token somewhere a bit more robust, allowing the
application to read it whenever it needs to. The question is, should we use cookies
or local storage?

COOKIES VERSUS LOCAL STORAGE

The traditional approach to saving user data in a web application is to save a cookie,
and that’s certainly an option. But cookies are really there to be used by server appli-
cations, with each request to the server sending the cookies along in the HTTP header
to be read. In an SPA we don’t really need this; the API endpoints are stateless and
don’t get or set cookies.

 So let’s look somewhere else, toward local storage, which is really designed for
client-side applications. With local storage the data stays in the browser and doesn’t
get transmitted with requests.

 Local storage is also really easy to use with JavaScript. Look at the following snippet
that would set and get some data:

window.localStorage['my-data'] = 'Some information';
window.localStorage['my-data']; // Returns 'Some information'

Right, so that’s settled; we’ll use local storage in Loc8r to save the JWT.

CREATING A SERVICE TO SAVE AND READ A JWT IN LOCAL STORAGE

We’ll start building the authentication service by creating the methods to save a JWT
in local storage and read it back out again. We’ve just seen how easy it is to work with
localStorage in JavaScript, so now we just need to wrap this in an Angular service
that exposes two methods, saveToken and getToken.

 No real surprises here, but the saveToken method should accept a value to be
saved, and getToken should return a value. First we’ll create a new file called authenti-
cation.service.js inside app_client/common/services. Listing 11.9 shows the contents
of the new service, including the first two methods. In Angular it’s best practice to use
Licensed to Mark Watson <nordickan@gmail.com>

374 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
$window instead of the native window object—primarily for testing reasons—so we’ll
inject it into the service. The service also needs to be registered with the application,
and must return the methods.

(function () {
 angular
 .module('loc8rApp')
 .service('authentication', authentication);

 authentication.$inject = ['$window'];
 function authentication ($window) {

 var saveToken = function (token) {
 $window.localStorage['loc8r-token'] = token;
 };

 var getToken = function () {
 return $window.localStorage['loc8r-token'];
 };

 return {
 saveToken : saveToken,
 getToken : getToken
 };
 }
})();

And there we go, a pretty simple service to handle saving loc8r-token to local-
Storage and reading it back out again. Don’t forget to add a reference to this file in
the appClientFiles array in app.js!

 Next we’ll look at logging in and registering.

11.5.2 Allowing users to sign up, sign in, and sign out

To use the service to enable users to register, log in, and log out, we’ll need to add
three more methods. Let’s start with registering and logging in.

CALLING THE API TO REGISTER AND LOG IN
We’ll need two methods to register and log in, which will post the form data to the
register and login API endpoints we created earlier in this chapter. When successful
these endpoints both return a JWT, so we can use the saveToken method to save them.

 The following snippet shows the two new methods to add to the service. Don’t for-
get that register and login will also need to be added to the return statement to
expose the methods. Here’s the code:

register = function(user) {
 return $http.post('/api/register', user).success(function(data){
 saveToken(data.token);
 });
};

Listing 11.9 Create the authentication service with the first two methods

Register new service
with application

Inject $window
service

Create a saveToken
method to save a value
to localStorage

Create a getToken
method to read a value
from localStorage

Expose methods
to application
Licensed to Mark Watson <nordickan@gmail.com>

375Creating Angular authentication service
login = function(user) {
 return $http.post('/api/login', user).success(function(data) {
 saveToken(data.token);
 });
};

Remember that $http returns promises, which is why we chain the success method
to the request. Now to look at signing out.

DELETING LOCALSTORAGE TO SIGN OUT

The user session in the Angular application is managed by saving the JWT in local-
Storage. If the token is there, is valid, and hasn’t expired, then we can say that the
user is logged in. We can’t change the expiry date of the token from within the Angu-
lar app—only the server can do that. What we can do is delete it.

 So to enable users to log out we can create a new logout method in the authentica-
tion service to remove the Loc8r JWT, as shown in the following snippet:

logout = function() {
 $window.localStorage.removeItem('loc8r-token');
};

This will simply remove the loc8r-token item from the browser’s localStorage.
Again, don’t forget that logout will have to be added to the return statement so that
it can be exposed to the application.

 Now we have methods to get a JWT from the server, save it in localStorage, read it
from localStorage, and also delete it. So the next question is: How do we use it in the
application to see that a user is logged in to get data out of it?

11.5.3 Using the JWT data in the Angular service

The JWT saved in the browser’s localStorage is what we use to manage a user’s ses-
sion. It will be used to validate whether a user is logged in. If a user is logged in, the
application can also read the user information stored inside.

 First we’ll add a method to check whether somebody is logged in.

CHECKING THE LOGGED-IN STATUS

To check whether a user is currently logged in to the application, we need to check to
see if the loc8r-token exists in localStorage. We can use the getToken method for
that. But the existence of a token isn’t enough. Remember that the JWT has expiry
data embedded in it, so if a token exists we’ll need to check that too.

 The expiration date and time of the JWT is part of the payload, which is the second
chunk of data. Remember that this part is just an encoded JSON object; it’s encoded
rather than encrypted, so we can decode it. In fact, we’ve already talked about the
function to do this: atob.

 So, stitching this all together, we want to create a method that

1 Gets the stored token
2 Extracts the payload from the token
Licensed to Mark Watson <nordickan@gmail.com>

376 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

3 Decodes the payload
4 Validates that the expiry date hasn’t passed

This method should simply return true if a user is logged in, and false if not. The
following snippet shows this put together in a method called isLoggedIn:

var isLoggedIn = function() {
 var token = getToken();

 if(token){
 var payload = JSON.parse($window.atob(token.split('.')[1]));

 return payload.exp > Date.now() / 1000;
 } else {
 return false;
 }
};

There’s not much code there, but it’s doing a lot. And once we’ve referenced it in the
return statement in the service, the application will be able to quickly check whether
a user is logged in at any given point.

 The next and final method to add to the authentication service will get some user
information from the JWT.

GETTING USER INFORMATION FROM THE JWT
We want the application to be able to get a user’s email address and name from the
JWT. We’ve just seen in the isLoggedIn method how to extract data from the token,
and our new method will do exactly the same thing.

 So we’ll create a new method called currentUser. The first thing this will do is val-
idate that there’s a user logged in by calling the isLoggedIn method. If there’s a user
logged in it will get the token by calling the getToken method, before extracting and
decoding the payload and returning the data we’re after. The following snippet shows
how this looks:

var currentUser = function() {
 if(isLoggedIn()){
 var token = getToken();
 var payload = JSON.parse($window.atob(token.split('.')[1]));
 return {
 email : payload.email,
 name : payload.name
 };
 }
};

With that done and referenced in the return statement the Angular authentication
service is complete. Looking back over the code you can see how this is pretty
generic and easy to copy from one application to another. All you’d probably have
to change is the name of the token and the API URLs, so we’ve got a nice reusable
Angular service.

Get token from
storage

If token exists
get payload,
decode it,
and parse it
to JSON

Validate whether expiry
date has passed
Licensed to Mark Watson <nordickan@gmail.com>

377Creating register and login pages
 Now that the service is in the application, we can use it. So let’s keep moving for-
ward and create the login and register pages.

11.6 Creating register and login pages
Everything we’ve done so far is great, but without a way for visitors to the website to
actually register and log in it would be pretty useless! So that’s what we’ll do now.

 In terms of functionality we want a register page for new users to set their details
and sign up, and a login page for returning users to input their username and pass-
word. When users have gone through either of these processes and are successfully
authenticated, the application should send them back to the page they were on when
they started the process.

 Let’s begin with register page.

11.6.1 Building the register page

To develop a working registration page there are a few things to do:

1 Define the route in the Angular application config.
2 Create the view for the page.
3 Create the controller for the page.
4 Get it to redirect to the previous page when successful.

And, of course, we’ll want to test it when it’s done. Step one is to define the route.

DEFINING THE ROUTE IN THE ANGULAR APP

First we’ll define the route for the registration page in the Angular application config,
which is in app_client/app.js. The route will be /register, and we’ll put the view file in
a new folder hierarchy of app_client/auth/register/.

 So the new route to add to the config looks like the following snippet:

.when('/register', {
 templateUrl: '/auth/register/register.view.html',
 controller: 'registerCtrl',
 controllerAs: 'vm'
})

There’s nothing new or exciting here, so save that and we’ll move on to creating
the view.

BUILDING THE REGISTRATION VIEW

Okay, so now we’re going to build the view for the registration page. Aside from the
normal header and footer there are a few things we’re going to need. Primarily we’ll
need a form to allow visitors to input their name, email address, and provide a pass-
word. In this form we should also have an area to display any errors, and on the page
we’ll also pop in a link to the login form, in case users realize that they’re already
logged in.

 The following listing shows the view all pieced together. Notice how the input
fields have the credentials in the view model bound to them using ng-model.
Licensed to Mark Watson <nordickan@gmail.com>

378 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

<navigation></navigation>

<div class="container">
 <page-header content="vm.pageHeader"></page-header>

 <div class="row">
 <div class="col-md-6 col-sm-12">
 <p class="lead">Already a member? Please log in

➥ instead.</p>
 <form ng-submit="vm.onSubmit()">
 <div role="alert" ng-show="vm.formError" class="alert alert-

➥ danger">{{ vm.formError }}</div>
 <div class="form-group">
 <label for="name">Full name</label>
 <input type="text" class="form-control" id="name"

➥ placeholder="Enter your name" ng-model="vm.credentials.name">
 </div>
 <div class="form-group">
 <label for="email">Email address</label>
 <input type="email" class="form-control" id="email"

➥ placeholder="Enter email" ng-model="vm.credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password"

➥ placeholder="Password" ng-model="vm.credentials.password">
 </div>
 <button type="submit" class="btn btn-default">Register!</button>
 </form>
 </div>
 </div>

 <footer-generic></footer-generic>
</div>

Again, the important thing to note here is that a user’s name, email, and password are
bound to the view model in the object vm.credentials. Now to look at the flip-side of
this and code up the corresponding controller.

CREATING THE REGISTRATION CONTROLLER SKELETON

Based on the view, we’ll need to set up a few things in the register controller. We’ll
need the title text for the page header of course, and a vm.onSubmit function to han-
dle the form submission. We’ll also give all of the credentials properties a default
empty string value.

 Listing 11.11 shows all this. But there’s one more thing. When users have regis-
tered we want a way to send them back to the page they were on before. To do this
we’ll use a query string parameter called page. So on any page that we create a link to
the register URL, we’ll include a query string stating the current URL; for example,
something like this: /#register?page=/about.

Listing 11.10 Full view for the registration page

Link to switch
to login page

A div to
display
errors

Input for
user’s
name

Input for
email
address

Input for
password
Licensed to Mark Watson <nordickan@gmail.com>

379Creating register and login pages
 In the controller, also included as part of listing 11.11, we’ll capture this as
vm.returnPage, providing a default of the homepage if the query string can’t be
found. To get the query string we’ll need to inject Angular’s $location service into
the controller.

(function () {

 angular
 .module('loc8rApp')
 .controller('registerCtrl', registerCtrl);

 registerCtrl.$inject = ['$location','authentication'];
 function registerCtrl($location, authentication) {
 var vm = this;

 vm.pageHeader = {
 title: 'Create a new Loc8r account'
 };

 vm.credentials = {
 name : "",
 email : "",
 password : ""
 };

 vm.returnPage = $location.search().page || '/';

 vm.onSubmit = function () {
 };

 }
})();

One thing to notice is how we get the page parameter from the query string by run-
ning a search on the $location. Now that we’re getting that returnPage value we
should make sure that we pass it through if the user chooses to click on the login link
in the page. To do that we simply need to update the link in the view highlighted in
bold in the following snippet:

<p class="lead">Already a member? Please <a href="/#login?page={{
vm.returnPage }}">log in instead.</p>

Now that we’ve got that set up we can look at coding up the onSubmit function.

HANDLING THE REGISTER FORM SUBMISSION

When the register form is submitted the first thing the code should do is validate that
all of the fields have been filled in. If any are missing we can show the error in the
form, just like we did when adding reviews. When this basic validation is passed, we
can move on with registering a user.

 To register a user we’ll call the register method in the authentication service,
passing it the credentials. Remember that the register method uses the $http service,

Listing 11.11 Skeleton of the register controller

Inject $location and
authentication
services into
controller

Instantiate
credentials

Get page to
return to from
query string

Create a placeholder
for onSubmit function
Licensed to Mark Watson <nordickan@gmail.com>

380 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
so it will return promises that we can chain to. So if the method returns an error we
can display this on the form. But if registration was successful we’ll clear the query
string object and then set the application path to be the returnPage we captured ear-
lier. This will redirect the user to that path.

 All of this is shown in the following snippet, which is to be added to the register
controller:

vm.onSubmit = function () {
 vm.formError = "";
 if (!vm.credentials.name || !vm.credentials.email ||

➥ !vm.credentials.password) {
 vm.formError = "All fields required, please try again";
 return false;
 } else {
 vm.doRegister();
 }
};

vm.doRegister = function() {
 vm.formError = "";
 authentication
 .register(vm.credentials)
 .error(function(err){
 vm.formError = err;
 })
 .then(function(){
 $location.search('page', null);
 $location.path(vm.returnPage);
 });
};

Don’t forget to add this controller file to the appClientFiles array in app.js. With this
in place you can try out the register page and functionality by starting the application
running and heading to http://localhost:3000/register.

 When you’ve done this and successfully registered as a user, open up the browser
development tools and look for the resources. As illustrated in figure 11.12 you
should be able to see a loc8r-token under the Local Storage folder.

 Okay, so we’ve added the ability for a new user to register. Now let’s enable a
returning user to log in.

11.6.2 Building the login page

The approach to the login page is very similar to the register page. It’s mainly copying
and pasting so we’ll go through the steps quite quickly.

 First we need to add the new route to app.js:

.when('/login', {
 templateUrl: '/auth/login/login.view.html',
 controller: 'loginCtrl',
 controllerAs: 'vm'
})

If any credentials
are missing, show
an error

Otherwise continue
to register

Call authentication
register method,
passing credentials

Show a form error
if registration fails

If registration was
successful clear query
string and redirect user
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000/register

381Creating register and login pages

lo

r

Then we need to create the view file, login.view.html. We can see from the route
where we want this to be. It’s very similar to the register view, so it’s probably easiest to
duplicate that and edit it. All we need to do is remove the name input and change a
couple of pieces of text. The following snippet highlights the changes in bold we need
to make in the login view:

<div class="col-md-6 col-sm-8">
 <p class="lead">Not a member? Please <a href="/#register?page={{

➥ vm.returnPage }}">register first.</p>
 <form ng-submit="vm.onSubmit()">
 <div role="alert" ng-show="vm.formError" class="alert alert-danger">{{

➥ vm.formError }}</div>
 <div class="form-group">
 <label for="email">Email address</label>
 <input type="email" class="form-control" id="email" placeholder="Enter

➥ email" ng-model="vm.credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password"

➥ placeholder="Password" ng-model="vm.credentials.password">
 </div>
 <button type="submit" class="btn btn-default">Sign in!</button>
 </form>
</div>

Figure 11.12 Finding the loc8r-token in the browser

Change
gin link
to be a
egister

link
Note that name
input is removed

Change
text on
button
Licensed to Mark Watson <nordickan@gmail.com>

382 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
And finally the login controller, which again is very similar to the register controller.
The changes we need to make are

■ Change the name of the controller.
■ Change the page title.
■ Remove references to the name field.
■ Rename doRegister to doLogin.
■ Call the login method of the authentication service instead of the register

method.

So let’s create login.controller.js as a copy of register.controller.js and make the
changes. The following snippet shows the content of the file (without the IIFE wrap-
per for brevity), and highlights in bold the changes made:

angular
 .module('loc8rApp')
 .controller('loginCtrl', loginCtrl);

loginCtrl.$inject = ['$location','authentication'];
function loginCtrl($location, authentication) {
 var vm = this;

 vm.pageHeader = {
 title: 'Sign in to Loc8r'
 };

 vm.credentials = {
 email : "",
 password : ""
 };

 vm.returnPage = $location.search().page || '/';

 vm.onSubmit = function () {
 vm.formError = "";
 if (!vm.credentials.email || !vm.credentials.password) {
 vm.formError = "All fields required, please try again";
 return false;
 } else {
 vm.doLogin();
 }
 };

 vm.doLogin = function() {
 vm.formError = "";
 authentication
 .login(vm.credentials)
 .error(function(err){
 vm.formError = err;
 })
 .then(function(){
 $location.search('page', null);
 $location.path(vm.returnPage);
 });
 };
}

Change name
to loginCtrl

Change
page title

Remove
references
to name
credential

Rename
doRegister
to doLogin

Call login method
instead of register
Licensed to Mark Watson <nordickan@gmail.com>

383Working with authentication in the Angular app
That was easy! There’s no need to dwell on this, as functionally it works just like the
register controller. Just remember to add it to the appClientFiles array in app.js so
that it’s included in the application code.

 Now we’ll move onto the final stage and actually make use of the authenticated ses-
sion in the Angular application.

11.7 Working with authentication in the Angular app
Once you have a way to authenticate users, the next step is to make use of that infor-
mation. In Loc8r we’re going to do two things:

■ Change the navigation based on whether the visitor is logged in or not.
■ Use the user information when creating reviews.

Let’s tackle the navigation first.

11.7.1 Updating navigation

One thing currently missing from the navigation is a sign-in link. So we’ll add one in
the conventional place—the top right of the screen. But when a user is logged in, we
don’t want to display a sign-in message; it would be better to display the user’s name
and give an option to sign out.

 That’s what we’ll do in this section, starting by adding a right-hand section to the
navigation bar.

ADDING A RIGHT-HAND SECTION TO THE NAVIGATION

The navigation for Loc8r is set up as a directive that we include in every page; the files
are in common/directives/navigation. The following snippet highlights in bold the
markup we need to add to the template to put a sign-in link on the right-hand side:

<div id="navbar-main" class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 About

 <ul class="nav navbar-nav navbar-right">
 Sign in

</div>

This will be our starting point. But to apply some logic behind this—for example,
to display a user’s name when logged in—we’re going to need to add a controller to
the directive.

USING A CONTROLLER WITH A DIRECTIVE

So far the directives we’ve used have consisted of a directive definition and HTML tem-
plate. But it’s possible to link a controller to a directive to give even more functional-
ity, so that’s what we’ll do here.

 This is done by adding a controller property to the directive definition, which
can be set with the inline version of the controllerAs syntax. Because a directive is
Licensed to Mark Watson <nordickan@gmail.com>

384 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
nested inside other pages with a view model already defined, a view model name other
than vm is required to avoid conflicts. The following snippet shows how to add a con-
troller to a directive definition, supplying a view model name of navvm:

function navigation () {
 return {
 restrict: 'EA',
 templateUrl: '/common/directives/navigation/navigation.template.html',
 controller: 'navigationCtrl as navvm'
 };
}

Okay then, let’s create the related controller.

CREATING THE NAVIGATION CONTROLLER

First we’ll create a new file in the same folder as the directive definition and template
called navigation.controller.js; let’s add this to the appClientFiles array in app.js.
This controller will need to do a few things, and talk to the authentication service
quite a lot. But the first thing it needs to do is get the current URL path so that we can
add it to the “Sign in” link—remember that we want the user to be sent back to their
original page after logging in.

 So we’ll create the new controller definition and pass in the native $location ser-
vice and our authentication service, as we know we’ll need both. For coding consis-
tency we’ll name the view model in the function vm—this is an internal reference for
the controller function and doesn’t have to match what’s in the template.

 The following snippet shows the starting point of the navigation controller, and
exposes the current path as vm.currentPath:

(function () {
 angular
 .module('loc8rApp')
 .controller('navigationCtrl', navigationCtrl);

 navigationCtrl.$inject = ['$location', 'authentication'];
 function navigationCtrl($location, authentication) {
 var vm = this;

 vm.currentPath = $location.path();

 }
})();

With the current path exposed we can now use this in the template to add to the sign-
in link as a query string value like this:

Sign in

Now when users log in or register successfully they’ll be returned to their starting
point to continue whatever it was they were doing. Our next step is for signed-in users
to show their name and a logout option instead of the link to sign in.
Licensed to Mark Watson <nordickan@gmail.com>

385Working with authentication in the Angular app
SHOWING A USER'S NAME AND A LOGOUT LINK: THE CONTROLLER

A secondary purpose of this part of navigation is to validate to users that they’re
logged in by displaying their name instead of the sign-in link. While we’re at it we’ll
also add a dropdown option to enable users to sign out.

 So this is where we actually get to use the methods of our authentication service,
and some of the data from the JWT saved in local storage. In this navigation controller
we want to know whether a user is logged in or not—to display the correct navigation
item and also the user’s name. Listing 11.12 shows the controller updated with calls to
the isLoggedIn and currentUser methods on the authentication service.

 We also want a logged-in user to be able to sign out. Again we created a method for
this in the authentication service, so we just need a way to call this before redirecting
users to the page they were on when they started the process. We could redirect to a
specific confirmation page, but the homepage will do for now. This is also part of the
controller code in the following listing.

function navigationCtrl($location, authentication) {
 var vm = this;

 vm.currentPath = $location.path();

 vm.isLoggedIn = authentication.isLoggedIn();

 vm.currentUser = authentication.currentUser();

 vm.logout = function() {
 authentication.logout();
 $location.path('/');
 };
}

With the functions in place we can update the view accordingly.

SHOWING THE USER’S NAME AND A LOGOUT LINK: THE HTML TEMPLATE

To display the correct navigation item depending on the user’s logged-in status we’ll
use Angular’s native ng-show and ng-hide directives, and look up the value of
isLoggedIn from the controller. If isLoggedIn returns true then we’ll hide the sign-
in link and display the other markup.

 Creating a dropdown menu with Bootstrap takes a fair amount of markup, so the
following snippet highlights the important parts in bold:

<ul class="nav navbar-nav navbar-right">
 <li ng-hide="navvm.isLoggedIn"><a href="/#login/?page={{ navvm.currentPath

➥ }}">Sign in
 <li ng-show="navvm.isLoggedIn" class="dropdown">

Listing 11.12 Using the authentication services methods in the navigation controller

Find out whether
visitor is logged in

Get current
user’s name

Create a logout function;
redirect to homepage
when complete

Hide sign-in link for
logged-in users

Show dropdown nav
for logged-in users
Licensed to Mark Watson <nordickan@gmail.com>

386 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
 {{

➥ navvm.currentUser.name }}
 <ul class="dropdown-menu" role="menu">
 Logout

When that’s all in place we’ll have a fully functioning authentication system in Loc8r,
which validates the current visitor’s status and displays some of the saved information
in the browser. And now we move onto the final piece of functionality: adding a user’s
name to a review.

11.7.2 Adding user data to a review

The main use case for authentication in Loc8r is to only accept reviews from regis-
tered and logged-in users. There’s some housekeeping to do, like only showing the
Add Review button to logged-in users, and removing the name field from the form.
The new and important part in this section is how to pass the JWT from the
loc8rData service to the API endpoint. Let’s start with the fun stuff and then we’ll
tidy up afterwards.

PASSING A JWT TO A SECURE API ENDPOINT

A JWT is sent with the request to an API endpoint as an HTTP header called Authori-
zation. In Loc8r the call to add a review is in the loc8rData service, which is in
app_client/common/services. The call itself uses the $http.post method.

 Adding an HTTP header to the method is a simple case of adding a headers object
to the call, as part of an options parameter as shown in listing 11.13. The options
parameter comes after the URL and data parameters, and the content of the Authori-
zation header should be the word Bearer followed by a space and the JWT. We’ll need
to inject our authentication service into this service to get the token. All of this is high-
lighted in bold in the following listing.

loc8rData.$inject = ['$http', 'authentication'];
function loc8rData ($http, authentication) {
 var locationByCoords = function (lat, lng) {
 return $http.get('/api/locations?lng=' + lng + '&lat=' + lat +

➥ '&maxDistance=20');
 };

 var locationById = function (locationid) {
 return $http.get('/api/locations/' + locationid);
 };

 var addReviewById = function (locationid, data) {
 return $http.post('/api/locations/' + locationid + '/reviews', data, {

Listing 11.13 Update the data service to pass the JWT

Display
user’s
name

Add logout link to
dropdown menu

Inject authentication
service
Licensed to Mark Watson <nordickan@gmail.com>

387Working with authentication in the Angular app

$locat
authen
 headers: {
 Authorization: 'Bearer '+ authentication.getToken()
 }
 });
 };

 return {
 locationByCoords : locationByCoords,
 locationById : locationById,
 addReviewById : addReviewById
 };
}

With this header in place the API endpoint for adding a review will now be able to
read the JWT it’s expecting, and validate the user accordingly. Now we’ll quickly tidy
up, first only showing the Add Review button when a user is logged in.

SHOWING DIFFERENT BUTTONS BASED ON THE CURRENT USER’S STATUS

Here we’re going to show different content in a page depending on whether the cur-
rent visitor is logged in or not. When a user is on a location detail page we only want
to show the Add Review button if they’re logged in. If the user isn’t logged in, we can
change this button to be a prompt to log in.

 Based on some of the things we’ve done earlier in this chapter, such as using
currentPath and isLoggedIn along with ng-show and ng-hide, the following snippet
highlights in bold the changes to make in the locationDetail.view.html file:

<div class="panel-heading">
 <a ng-show="vm.isLoggedIn" ng-click="vm.popupReviewForm()" class="btn

➥ btn-default pull-right">Add review
 <a ng-hide="vm.isLoggedIn" href="/#/login?page={{ vm.currentPath }}"

➥ class="btn btn-default pull-right">Login to add review
 <h2 class="panel-title">Customer reviews</h2>
</div>

That’s pretty straightforward from a view perspective; we just need to make sure that
the corresponding controller has the view model methods isLoggedIn and current-
Path. As the following snippet shows we just need to pass in the $location and
authentication services and define the methods. Note that this snippet only shows a
part of the controller; the rest of the code should be left as is:

locationDetailCtrl.$inject = ['$routeParams', '$location', '$modal',

➥ 'loc8rData', 'authentication'];
function locationDetailCtrl ($routeParams, $location, $modal, loc8rData,

➥ authentication) {
 var vm = this;
 vm.locationid = $routeParams.locationid;

 vm.isLoggedIn = authentication.isLoggedIn();

 vm.currentPath = $location.path();

Add an options
parameter to
pass a new
HTTP header
containing JWT

Inject
ion and
tication
services

Create isLoggedIn
method to get
current visitor state

Get current URL
path of visitor
Licensed to Mark Watson <nordickan@gmail.com>

388 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
With those changes saved the button will behave differently for logged-in users. Both
states are shown in figure 11.13.

 This is good and works nicely. But when the user clicks the button to add a review,
the form in the modal popup still contains an input for the user’s name.

REMOVING THE NAME FIELD FROM THE REVIEW FORM

We no longer need users to enter their name into the form, as the API will take it from
the JWT. So we can delete the following snippet from the reviewModal.view.html file:

<div class="form-group">
 <label for="name" class="col-xs-2 col-sm-2 control-label">Name</label>
 <div class="col-xs-10 col-sm-10">
 <input id="name" name="name" required="required" ng-

model="vm.formData.name" class="form-control"/>
 </div>
</div>

Without the form field, we no longer need to validate for it, or send the value to the
API, so we can also delete references to it from the controller. The following snippet
highlights in bold the pieces to be deleted from reviewModal.controller.js:

vm.onSubmit = function () {
 vm.formError = "";
 if (!vm.formData.name || !vm.formData.rating || !vm.formData.reviewText) {
 vm.formError = "All fields required, please try again";
 return false;
 } else {
 vm.doAddReview(vm.locationData.locationid, vm.formData);
 }
};

vm.doAddReview = function (locationid, formData) {
 loc8rData.addReviewById(locationid, {
 author : formData.name,
 rating : formData.rating,
 reviewText : formData.reviewText
 })

Figure 11.13 The two different states of the Add Review button, depending on whether the user is logged in
or not
Licensed to Mark Watson <nordickan@gmail.com>

389Summary
 .success(function (data) {
 vm.modal.close(data);
 })
 .error(function (data) {
 vm.formError = "Your review has not been saved, please try again";
 });
 return false;
};

Figure 11.14 shows how the review form now looks without the name field.
 And with that update we’ve completed the authentication section. Users must be

logged in to add a review, and through the authentication system the review will
be given the correct username.

11.8 Summary
In this chapter we’ve covered

■ How to approach authentication in the MEAN stack
■ Encrypting passwords with hashes and salts
■ Using Mongoose model methods to add functions to schemas
■ How to create a JSON Web Token with Express
■ Managing authentication on the server with Passport
■ Making routes in Express available to authenticated users only

Figure 11.14 The final review form without a name field. Note the user’s name in the top right and the logged-
in version of the Add Review button.
Licensed to Mark Watson <nordickan@gmail.com>

390 CHAPTER 11 Authenticating users, managing sessions, and securing APIs
■ Using local storage to manage a user session in the browser
■ How to use JWT data inside Angular
■ Adding controllers to Angular directives
■ Passing a JWT from Angular to an API via HTTP headers

And that brings us to the end of the book. By now you should have a good idea of the
power and capabilities of the MEAN stack and be empowered to get building some
cool stuff!

 You now have a platform to build REST APIs, server-side web applications, and
browser-based single-page applications. You can create database-driven sites, APIs, and
applications, and publish them to a live URL.

 When starting your next project remember to take a little time to think about the
best architecture and user experience. Spend a little time planning to make your
development time more productive and enjoyable. And never be afraid to refactor
and improve your code and application as you go.

 If you’re looking for the next thing to learn, take a look a Gulp at www.gulpjs.com,
a great build system for automating activities such as code linting, minification, and
concatenation. Depending on your projects you may want to delve deeper into Angu-
lar, Express, Node, Mongo, or Mongoose.

 Really, we’ve just scratched the surface of what these amazing technologies can
offer. So please, dive in, build things, try stuff, keep learning, and, most importantly,
have fun!
Licensed to Mark Watson <nordickan@gmail.com>

http://www.gulpjs.com

appendix A
Installing the stack

Before you can build anything on the MEAN stack you’ll need to install the software
to run it. This is really easy to do on Windows, Mac OS X, and the more popular
Linux distributions like Ubuntu.

 As Node underpins the stack, that’s the best place to start. Node now also ships
with npm included, which will be very useful for installing some of the other software.

A.1 Installing Node and npm
The best way to install Node and npm depends on your operating system. When
possible it’s recommended to download an installer from the Node website at
http://nodejs.org/download/. This location always has the latest version as main-
tained by the Node core team.

A.1.1 Installing Node on Windows

Windows users should simply download an installer from the Node website.

This appendix covers
■ Installing Node and npm
■ Installing Express globally
■ Installing MongoDB
■ Installing Angular
391

Licensed to Mark Watson <nordickan@gmail.com>

http://nodejs.org/download/

392 APPENDIX A Installing the stack
A.1.2 Installing Node on Mac OS X

The best option for Mac OS X users is to simply download an installer from the Node
website. Alternatively, you can install Node and npm using the Homebrew package
manager, as detailed on Joyent’s Node wiki on GitHub at https://github.com/joyent/
node/wiki/Installing-Node.js-via-package-manager.

A.1.3 Installing Node on Linux

There aren’t any installers for Linux users, but you can download binaries from the
Node website if you’re comfortable working with them.

 Alternatively, Linux users can also install Node from package managers. Package man-
agers don’t always have the latest version, so be aware of that. A particularly out-of-date
one is the popular apt system on Ubuntu. There are instructions for using a variety of
package managers, including a fix for apt on Ubuntu, on Joyent’s Node wiki on GitHub
at https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager.

A.1.4 Verifying installation by checking version

Once you have Node and npm installed you can check the versions you have with a
couple of terminal commands:

$ node --version
$ npm --version

These will output the versions of Node and npm that you have on your machine. The
code in this book is built using Node 4.2.1 and npm 2.2.0.

A.2 Installing Express globally
To be able to create new Express applications on-the-fly from the command line, you
need to install Express generator. You can do this from the command line, using npm.
In terminal you simply run the following command:

$ npm install -g express-generator

If this fails due to a permissions error you’ll need to run this as an administrator. On
Windows right-click the command prompt icon and select Run As Administrator. Now
try the preceding command again in this new window. On Mac and Linux you can
prefix the command with sudo as shown in the following code snippet; this will
prompt you for a password:

$ sudo npm install -g express-generator

When the generator has finished installing Express you can verify it by checking the
version number from terminal:

$ express --version

The version of Express used in the code samples in this book is 4.9.0.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

393Installing Angular
 If you run into any problems with this installation process, the documentation for
Express is available on its website at http://expressjs.com/.

A.3 Installing MongoDB
MongoDB is also available for Windows, Mac OS X, and Linux. Detailed instructions
about all of the following options are available in the MongoDB online documenta-
tion at http://docs.mongodb.org/manual/installation/.

A.3.1 Installing MongoDB on Windows

There are some direct downloads available from http://docs.mongodb.org/manual/
installation/ for Windows, depending on which version of Windows you’re running.

A.3.2 Installing MongoDB on Mac OS X

The easiest way to install MongoDB for Mac OS X is to use the Homebrew package
manager, but if you prefer, you can also choose to install MongoDB manually.

A.3.3 Installing MongoDB on Linux

There are also packages available for a few Linux distributions as detailed at http://
docs.mongodb.org/manual/installation/. If you’re running a version of Linux that
doesn’t have MongoDB available in a package, you can choose to install it manually.

A.3.4 Running MongoDB as a service

Once you have MongoDB installed, you’ll probably want to run it as a service so that it
automatically restarts whenever you reboot. Again, there are instructions for doing
this in the MongoDB installation documentation.

A.3.5 Checking the MongoDB version number

MongoDB installs not only itself, but also a Mongo shell, so that you can interact with
your MongoDB databases through the command line. You can check the version num-
ber of MongoDB and the Mongo shell independently. To check the shell version, run
the following in terminal:

$ mongo --version

To check the version of MongoDB run this:

$ mongod --version

This book uses version 2.4.6 of both MongoDB and the Mongo shell.

A.4 Installing Angular
Angular doesn’t take much installation because it’s really just a library file that you
need to download and place in the correct spot in your folder structure. You can
download Angular from its homepage at http://angularjs.org/.
Licensed to Mark Watson <nordickan@gmail.com>

http://expressjs.com/
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://angularjs.org/
http://docs.mongodb.org/manual/installation/

394 APPENDIX A Installing the stack
 It will give you some options when starting the download. You want to download
the minified build of the stable branch. The version used throughout this book is 1.2.19.

 When downloaded, create a new folder called angular inside your application’s
public folder and place the JavaScript file in there.
Licensed to Mark Watson <nordickan@gmail.com>

appendix B
Installing and preparing

the supporting cast

There are several technologies that can help with developing on the MEAN stack,
from front-end layouts to source control and deployment tools. This appendix cov-
ers the installation and setup of the supporting technologies used throughout this
book. As the actual install instructions tend to change over time, this appendix will
point you toward the best place to get the instructions and anything you need to
look out for.

B.1 Twitter Bootstrap
Bootstrap is not really installed as such, but rather added to your application. This
is as simple as downloading the library files, unzipping them, and placing them
into the application.

This appendix covers
■ Adding Twitter Bootstrap and a custom theme
■ Installing Git
■ Installing a suitable command-line interface
■ Signing up for Heroku
■ Installing Heroku toolbelt
395

Licensed to Mark Watson <nordickan@gmail.com>

396 APPENDIX B Installing and preparing the supporting cast
 The first step is to download Bootstrap. You can get this from www.getbootstrap.com.
Make sure that you download the distribution zip and not the source. At the time of
writing Bootstrap is on version 3.0.2 and the distribution zip contains three folders:
css, fonts, and js.

 Once you have it downloaded and unzipped, the files need to be moved into the
public folder in your Express application. To keep the files together and the top level
clean, create a new folder called Bootstrap in the public folder and copy the unzipped
files into there. The public folder in your application should now look like figure B.1.

That will give you access to the default look and feel of Bootstrap, but you probably
want your application to stand out from the crowd a bit. You can do this by adding in
a theme.

B.1.1 Getting the Amelia theme

The Loc8r application in this book uses a Bootstrap theme called Amelia from Boots-
watch. Since writing this Bootswatch has removed the Amelia theme from their web-
site, but you can download both the original CSS file and the minified version from my
GitHub repository at https://github.com/simonholmes/amelia. Once you’ve down-
loaded the amelia.bootstrap.css and amelia.bootstrap.min.css files, you can copy them
into the /public/bootstrap/css folder in your application.

B.1.2 Tidying up the folders

If you wish you can tidy up your Bootstrap folder by removing some of the duplicates.
You’ll notice that there are readable and minified versions of the CSS and JavaScript

Figure B.1 The structure and
contents of the public folder after
Bootstrap has been added
Licensed to Mark Watson <nordickan@gmail.com>

http://www.getbootstrap.com
https://github.com/simonholmes/amelia

397Setting up Heroku
files, and also a pair of default Bootstrap-theme CSS files. Unless you’re going to hack
around in the files you only really need the minified versions.

B.2 Installing Git
The source code for this book is managed using Git, so the easiest way to access it is
with Git. Also, Heroku relies on Git for managing the deployment process and push-
ing code from your development machine into a live environment. So you need to
install Git if you don’t already have it.

 You can verify if you have it with a simple terminal command:

$ git --version

If this responds with a version number then you already have it installed and can move
onto the next section. If not, then you’ll need to install Git.

 A good starting point for Mac OS X and Windows users who are new to Git is to
download and install the GitHub user interface from https://help.github.com/articles/
set-up-git.

 You don’t need a GUI though, and you can install just Git by itself using the instruc-
tions found on the main Git website at http://git-scm.com/downloads.

B.3 Installing a suitable command-line interface
You can get the most out of Git by using a CLI, even if you’ve downloaded and
installed a GUI. Some are better than others, and you can’t actually use the native Win-
dows command prompt, so if you’re on Windows then you’ll definitely need to run
something else. Here’s what I use in a few different environments:

■ Mac OS X Mavericks and later: native terminal
■ Mac OS X pre-Mavericks (10.8.5 and earlier): iTerm
■ Windows: GitHub shell (this comes installed with the GitHub GUI)
■ Ubuntu: native terminal

If you have other preferences and the Git commands work, then by all means use what
you already have and you’re used to.

B.4 Setting up Heroku
This book uses Heroku for hosting the Loc8r application in a live production environ-
ment. You can do this too—for free—so long as you sign up, install the toolbelt, and
log in through terminal.

B.4.1 Signing up for Heroku

To use Heroku you’ll need to sign up for an account, of course. For the purposes of
the application you’ll be building through this book a free account will be fine. Simply
head over to www.heroku.com and follow the instructions to sign up.
Licensed to Mark Watson <nordickan@gmail.com>

https://help.github.com/articles/set-up-git
https://help.github.com/articles/set-up-git
http://git-scm.com/downloads
http://www.heroku.com

398 APPENDIX B Installing and preparing the supporting cast
B.4.2 Installing Heroku toolbelt

Heroku toolbelt contains the Heroku command-line shell and a utility called Fore-
man. The shell is what you’ll use from terminal to manage your Heroku deployment,
and Foreman is very useful for making sure what you’ve built on your machine is set
up to run properly on Heroku. You can download the toolbelt for Mac OS X, Win-
dows, and Linux from toolbelt.heroku.com.

B.4.3 Logging in to Heroku using terminal

Once you’ve signed up for an account and installed the toolbelt on your machine, the
last step is to log in to your account from terminal. Enter the following command:

$ heroku login

This will prompt you for your Heroku login credentials, and will most likely gener-
ate a new SSH public key and upload it for you. Now you’re all set up and ready to go
with Heroku.
Licensed to Mark Watson <nordickan@gmail.com>

http://toolbelt.heroku.com

appendix C
Dealing with all

of the views

Chapter 4 covers setting up the controllers and the views for the static, clickable
prototype. The “how” and “why” are covered in that chapter in more detail, so this
appendix will really focus on what the end results should be.

C.1 Moving the data from the views to the controllers
Part of this includes moving the data back down the MVC flow from the views into
the controllers. The example in chapter 4 deals with this in the Loc8r homepage,
but it needs to be done for the other pages too. We’ll start with the Details page.

C.1.1 Details page

The Details page is the largest and most complex of the pages, with the most data
requirements, but following the homepage is the most logical place for it to go.
The first step is setting up the controller.

This appendix covers
■ Removing the data from all views, except

the homepage
■ Moving the data into the controllers
399

Licensed to Mark Watson <nordickan@gmail.com>

400 APPENDIX C Dealing with all of the views
SETTING UP THE CONTROLLER

The controller for this page is called locationInfo in the locations.js file in
app_server/controllers. When you’ve analyzed the data in the view, and collated it
into a JavaScript object, your controller will look something like the following listing.

module.exports.locationInfo = function(req, res){
 res.render('location-info', {
 title: 'Starcups',
 pageHeader: {title: 'Starcups'},
 sidebar: {
 context: 'is on Loc8r because it has accessible wifi and space to sit

➥ down with your laptop and get some work done.',
 callToAction: 'If you\'ve been and you like it - or if you don\'t -

➥ please leave a review to help other people just like you.'
 },
 location: {
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: {lat: 51.455041, lng: -0.9690884},
 openingTimes: [{
 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 },{
 days: 'Saturday',
 opening: '8:00am',
 closing: '5:00pm',
 closed: false
 },{
 days: 'Sunday',
 closed: true
 }],
 reviews: [{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place. I can\'t say enough good things

➥ about it.'
 },{
 author: 'Charlie Chaplin',
 rating: 3,
 timestamp: '16 June 2013',
 reviewText: 'It was okay. Coffee wasn\'t great, but the wifi was

➥ fast.'
 }]
 }
 });
};

Listing C.1 locationInfo controller

Include latitude
and longitude
coordinates to
use in Google
Map image

Add array of open
times, allowing for
different data on
different days

Array for
reviews left by
other users
Licensed to Mark Watson <nordickan@gmail.com>

401Moving the data from the views to the controllers
A part to note here is the latitude and longitude being sent through. You can get your
current latitude and longitude from this website: http://www.where-am-i.net/.

 You can geocode an address—that is, get the latitude and longitude of it—from
this website: http://www.latlong.net/convert-address-to-lat-long.html. Your views will
actually be using the lat and lng to display a Google Map image of the correct loca-
tion, so it’s worthwhile doing this for the prototype stage.

UPDATING THE VIEW

As this is the most complex, data-rich page, it stands to reason that it will have the larg-
est view template. You’ve already seen most of the technicalities in the homepage lay-
out, such as looping through arrays, bringing in includes, and defining and calling
mixins. There are a couple of extra things to look out for in this template though,
both of which are annotated and highlighted in bold.

 First, this template uses an if-else conditional statement. This looks like Java-
Script without the brackets. Second, the template uses a JavaScript replace function
to replace all line breaks in the text of reviews with
 tags. This is done using a
simple regular expression, looking for all occurrences of the characters \n in the text.
The following listing shows the location-info.jade view template in full.

extends layout

include _includes/sharedHTMLfunctions

block content
 .row.page-header: .col-lg-12
 h1= pageHeader.title
 .row
 .col-xs-12.col-md-9
 .row
 .col-xs-12.col-sm-6
 p.rating
 +outputRating(location.rating)
 p= location.address
 .panel.panel-primary
 .panel-heading
 h2.panel-title Opening hours
 .panel-body
 each time in location.openingTimes
 p
 | #{time.days} :
 if time.closed
 | closed
 else
 | #{time.opening} - #{time.closing}
 .panel.panel-primary
 .panel-heading
 h2.panel-title Facilities
 .panel-body
 each facility in location.facilities

Listing C.2 location-info.jade view template in app_server/views

Bring in sharedHTMLfunctions
include, which contains
outputRating mixin

Call outputRating mixin,
sending it rating of
current location

Loop through
array of open
times, checking
whether location
is closed using an
inline if-else
statement
Licensed to Mark Watson <nordickan@gmail.com>

http://www.where-am-i.net/
http://www.latlong.net/convert-address-to-lat-long.html

402 APPENDIX C Dealing with all of the views
 span.label.label-warning
 span.glyphicon.glyphicon-ok
 | #{facility}
 |
 .col-xs-12.col-sm-6.location-map
 .panel.panel-primary
 .panel-heading
 h2.panel-title Location map
 .panel-body
 img.img-responsive.img-rounded(src="http://maps.googleapis.com/

➥ maps/api/

➥ staticmap?center=#{location.coords.lat},#{location.coords.lng}&

➥ zoom=17&size=400x350&sensor=false&markers=#{location.coords.lat},

➥ #{location.coords.lng}&scale=2")
 .row
 .col-xs-12
 .panel.panel-primary.review-panel
 .panel-heading
 a.btn.btn-default.pull-right(href="/location/review/new") Add

➥ review
 h2.panel-title Customer reviews
 .panel-body.review-container
 each review in location.reviews
 .row
 .review
 .well.well-sm.review-header
 span.rating
 +outputRating(review.rating)
 span.reviewAuthor #{review.author}
 small.reviewTimestamp #{review.timestamp}
 .col-xs-12
 p !{(review.reviewText).replace(/\n/g, '
')}
 .col-xs-12.col-md-3
 p.lead #{location.name} #{sidebar.context}
 p= sidebar.callToAction

A question that may arise from this is, why replace line breaks with
 tags every
time? Why don’t you just save the data with
 tags in? That way you only have to
run the replace function once, when the data is saved. The answer is that HTML is
just one method of rendering text; it just happens to be the one we’re using here. Fur-
ther down the line you may want to pull this information into a native mobile applica-
tion. You don’t want the source data tainted with HTML markup that you don’t use in
that environment. So the answer, really, is to keep the data clean.

C.1.2 Add Review page

The Add Review page is really simple at the moment; there’s only one piece of data in
it: the title in the page header. So updating the controller shouldn’t pose much of a
problem. See the following listing for the full code of the addReview controller, in
locations.js in the app_server/controllers folder.

Build URL for Google Maps
static image, inserting lat
and lng using Jade variables

Loop through each
review, calling
outputRating mixin
again to generate
markup for stars

Code replaces
any line breaks

in review text
with

tag so that
renders as

intended by
author
Licensed to Mark Watson <nordickan@gmail.com>

403Moving the data from the views to the controllers
module.exports.addReview = function(req, res){
 res.render('location-review-form', {
 title: 'Review Starcups on Loc8r',
 pageHeader: { title: 'Review Starcups' }
 });
};

Not much to talk about here; we’ve just updated the text inside the titles. The fol-
lowing listing shows the corresponding view, location-review-form.jade, in app_
server/views.

extends layout

block content
 .row.page-header
 .col-lg-12
 h1= pageHeader.title
 .row
 .col-xs-12.col-md-6
 form.form-horizontal(action="/location", method="get", role="form")
 .form-group
 label.col-xs-2.col-sm-2.control-label(for="name") Name
 .col-xs-10.col-sm-10
 input#name.form-control(name="name")
 label.col-xs-10.col-sm-2.control-label(for="rating") Rating
 .col-xs-12.col-sm-2
 select.form-control.input-sm(name="rating")
 option 5
 option 4
 option 3
 option 2
 option 1
 .form-group
 label.col-sm-2.control-label(for="review") Review
 .col-sm-10
 textarea#review.form-control(name="review", rows="5")
 button.btn.btn-default.pull-right Add my review
 .col-xs-12.col-md-4

Again, nothing complicated or new here, so let’s move on to the About page.

C.1.3 About page

The About page doesn’t contain a huge amount of data either, just a title and some
content. So let’s pull that out of the view and into the controller. Note that the content
in the view currently has some
 tags in it, so replace each
 tag with \n when
you put it into the controller. These are highlighted in bold in the following listing;
the about controller is in app_server/controllers/others.js.

Listing C.3 addReview controller

Listing C.4 location-review-form.jade template
Licensed to Mark Watson <nordickan@gmail.com>

404 APPENDIX C Dealing with all of the views
module.exports.about = function(req, res){
 res.render('generic-text', {
 title: 'About Loc8r',
 content: 'Loc8r was created to help people find places to sit down and

➥ get a bit of work done.\n\nLorem ipsum dolor sit amet, consectetur

➥ adipiscing elit. Nunc sed lorem ac nisi dignissim accumsan. Nullam

➥ sit amet interdum magna. Morbi quis faucibus nisi. Vestibulum mollis

➥ purus quis eros adipiscing tristique. Proin posuere semper tellus, id

➥ placerat augue dapibus ornare. Aenean leo metus, tempus in nisl eget,

➥ accumsan interdum dui. Pellentesque sollicitudin volutpat ullamcorper.'
 });
};

Aside from removing the HTML from the content there’s not much going on here. So
let’s take a quick look at the view, and we’ll be done. The following listing shows the
final generic-text view that is used for the About page in app_server/views—the view
will have to use the same piece of code as we saw in the reviews section to replace the
\n line breaks with HTML
 tags.

extends layout

block content
 #banner.page-header
 .row
 .col-md-6.col-sm-12
 h1= title
 .row
 .col-md-6.col-sm-12
 p !{(content).replace(/\n/g, '
')}

This is a really simple, small, reusable template for whenever you just want to output
some text on a page.

Listing C.5 about controller

Listing C.6 generic-text.jade template

Replace all line
breaks with

tags when rendering
HTML
Licensed to Mark Watson <nordickan@gmail.com>

index
Symbols

{ } curly braces 246
(hash), removing from URLs

Internet Explorer incompatibility 314
overview 312–313
using $locationProvider and HTML5

mode 313–314
#{ } interpolation delimeters 108
<html> tag 246
= (equal sign) 109
| (pipe character) 104, 319
$apply method 293
$http service 265–268
$inject method 299
$locationProvider 313–314
$routeParams 323–324
$routeProvider 283, 315
$scope parameter 250
$scope, using only when needed 293–294
$scope.$apply 293
$scope.$apply() 271
$scopeProvider 250

A

Active Server Pages. See ASP (Active Server Pages)
Amelia theme 396
analytics, for SPAs 27
Angular

adding to Express application 251–252
creating module 248
defining controller 249
directives

adding to Angular application 259
attaching to HTML template 259–260

filtering list of results using 263
overview 259
passing variables to 260–261
using external HTML file for template

261–262
filters, custom 255–258
general discussion 244–245
getting data from API

adding geolocation service 268–274
making HTTP requests from Angular

265–268
using services 264–265

providing data to Angular
adding hard-coded data into Angular

scope 253–254
binding Jade view to Angular controller

254–255
removing homepage API call from

Express 252–253
scope 249–251
testing application 274
two-way binding 245–248

Angular SPAs
adding pages

adding route definition 315–316
creating controller 316–317, 322–323
creating view template 317, 323
overview 315
updating navigation links 315, 323

AngularUI
creating modal dialog 333–335
downloading 330
overview 330
passing data into modal dialog 335–337
submitting data using form 337
using in application 330–331
405

Licensed to Mark Watson <nordickan@gmail.com>

INDEX406
Angular SPAs (continued)
controllers

adding file to HTML 287–288
adding to route config function 287
creating 286–287
defining ViewModel in 289
using controllerAs syntax 288–289
using ViewModel in view 289–290

Details page view example
changing display order using orderBy

filter 328–329
creating view template 326–327
fixing date format using date filter 329
if-else style logic with ng-switch 327–328
overview 326

directives 295–296, 307–312
file structure

adding main SPA application file to Jade
layout 279

app_client folder 278
main SPA application file 278

filters 295, 317–319
ng-click handler

adding handler to page 332
adding method called by click handler 332

performance
injecting dependencies manually 299–300
minifying and concatenating scripts using

UglifyJS 300–303
wrapping each file in IIFE 298–299

preventing application restarts from
nodemon 302

removing # from URLs
Internet Explorer incompatibility 314
overview 312–313
using $locationProvider and HTML5

mode 313–314
removing reliance on server-side application

creating directives for HTML host page
sections 307–312

creating isolated HTML host page 305–307
overview 305

routing
adding angular-route module 282–284
overview 279
turning off Express routing 279–282

sending HTML through Angular binding
adding ng-Sanitize dependency 320
binding to HTML element as directive 320
downloading ng-Sanitize 319–320

services
adding file to HTML 292
creating files for 291–292
using $scope when needed 293–294
using from controller 292–293

using URL parameters in controllers and services
creating data service to call API 324
using $routeParams to get URL

parameters 323–324
using service to get data 325–326

views
assigning to route 285–286
creating template 284–285
defining where to show 286

AngularJS
architecture design stages 45
authentication service using

checking logged-in status 375–376
cookies vs. local storage 373
getting user information from JWT 376–377
overview 373
saving and reading JWTs 373–374
signing in and out 374–375

disadvantages of 18–19
installing 393–394
jQuery vs. 16
overview 16
SPAs and 18
two-way data binding 16–18

Apache 7
API (application programming interface) 161

architecture design stages 41, 43
for data layer 33–34
using in Angular application

adding geolocation service 268–274
making HTTP requests from Angular

265–268
using services 264–265

applications
restarting

automatically with nodemon 63–64
overview 62–63

update process using Heroku 79
architecture design

blog engine architecture
API for data layer 33–34
hybrid architecture 30–33
requirements for 29–30

common architecture 25
development stages

building data API 41, 43
building static site 40–42
connecting database to application 41,

43–45
creating database and data model 40, 43
finalizing application 41, 45
refactoring code into AngularJS SPA 45

hardware
development 47
production 47–49
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 407
architecture design (continued)
planning

choosing architecture 36–38
screens 35
wrapping in Express project 38–39

SPAs
analytics and browser history 27
crawling and indexing 26–27
pros and cons 28
speed of initial load 27–28

Array type 134
ASP (Active Server Pages) 8
authenticate method 365
authentication

adding JWT user data to review 386–389
Angular service for

checking logged-in status 375–376
cookies vs. local storage 373
getting user information from JWT

376–377
overview 373
saving and reading JWTs 373–374
signing in and out 374–375

API endpoint security
using authentication middleware 368–369
using JWTs inside controller 369–372

creating API with Passport
adding to application 362–363
configuring local strategy 361–362
creating endpoints to return JWTs 363–367
creating Passport config file 360
installing 360

login page 380–383
MEAN stack approach

changing views during authenticated
session 353

login process 352–353
overview 352
securely calling API 353

register page
creating registration controller 378–379
defining route 377
handling form submission 379–380
view for 377–378

traditional server-based application
approach 350–352

updating navigation links 383–386
user schema for MongoDB

generating JWT (JSON Web Token)
357–360

Mongoose methods 355–356
Mongoose schema 354–355
one-way password encryption 354
validating submitted password 357

Authorization header 386

B

Backbone 6
BitBucket 20
blocking code 11
blog engine architecture

API for data layer 33–34
hybrid architecture 30–33
requirements for 29–30

Boolean type 133
Bootstrap

adding to application 70
referencing files in application 72–73
responsive grid system 88–89
testing 73

Bootswatch 396
branches, Git 77
browser

history and SPA analytics 27
validation using jQuery 239–240

Buffer type 133
buffered code 109

C

camelCase 259
Cascading Style Sheets. See CSS
CLI (command-line interface) 58, 397
close method 342
CodeIgniter 5
collections in MongoDB 132
Colors library 11
config function 283
connection file, Mongoose 128–129
controllerAs syntax 333, 383
controllers

Angular
adding file to HTML 287–288
adding to route config function 287
creating 286–287
defining 249
defining ViewModel in 289
using controllerAs syntax 288–289
using URL parameters in 323–326
using ViewModel in view 289–290

creating 85–86
for REST API 170–171
moving view data to 107–109,

117–119
MVC structure 68–70
testing 86–87

cookies 373
crawling, SPAs 26–27
CRUD (create, read, update, and delete)

160
Licensed to Mark Watson <nordickan@gmail.com>

INDEX408
crypto module 356
pbkdf2Sync method 356
randomBytes method 356

CSS (Cascading Style Sheets)
Bootstrap breakpoints and 88
Twitter Bootstrap features 19
web development history and 4

--css option 59
curly braces { } 246

D

data layer, creating API for 33–34
data modeling

importance of 130–131
Mongoose

adding to application 122–124
capturing process termination events

127–128
closing connection 126–127
connection file 128–129
creating connection 124–125
monitoring connection 126
overview 131–133
schema paths 133–134

overview 120–122
schemas

compiling into models 145–146
creating 135–136
default values 136
geographic data in 137–138
number boundary validation

136–137
required fields 136
subdocuments 138–143

See also REST API
databases

architecture design stages 40, 43
relational vs. document 13–14
using data layer API 41, 43–45

date filter 329
Date type 133
dates, formatting 222–223
defining controller, defining 249
DELETE method, REST API

deleting document 198–199
deleting subdocument 199–201
overview 197–198

dependencies
injecting manually 299–300
installing with npm

adding packages to project 57
overview 56–57
updating packages 57

versions in package.json file 56

development
architecture design stages

building data API 41, 43
building static site 40–42
connecting database to application 41, 43–45
creating database and data model 40, 43
finalizing application 41, 45
refactoring code into AngularJS SPA 45

hardware 47
directives, Angular 295–296

adding to Angular application 259
attaching to HTML template 259–260
filtering list of results using 263
overview 259
passing variables to 260–261
using external HTML file for template 261–262

dismiss method 342
document databases 13–14
documents in MongoDB 132
Dojo 5
DOM (Document Object Model) 16
dotenv module 359
dynos, Heroku 77–78

E

-ejs option 59
EJS template engine 60
Ember 6
encryption

password 354
using crypto module 356

equal sign (=) 109
exports method 68
Express

adding Angular to 251–252
calling REST API from

request module 203–206
setting default options 204

creating project 58–61
generating JWT 358–359
HTML responses 12
installing 392–393
Jade template engine 60
MVC using

controllers 68–70
folder structure 65–66
overview 64–65
route definitions 67–68
routes folder 66–67
views folder 66

overview 12
requests, handling of 62
REST API in

controllers 170–171
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 409
Express (continued)
model 171–172
overview 167
routes 167–169

restarting application
automatically restarting with nodemon 63–64
overview 62–63

routes
controller files for 83–84
overview 82–83
testing 86–87

routing URLs 12
session support 13
template engines 60
testing installation 61–62
turning off routing 279–282
validation at application level 237–239

express-jwt module 368

F

falsey tests 215
filters, Angular 255–258, 295
find method 174–175
findById method 174–176
findOne method 174
for loops 113
Foreman utility 75
form submissions

adding onSubmit form handlers 338–339
closing modal and displaying review 342
overview 337–338
sending data to data service 341–342
updating data service 340–341
validating data 339–340

frameworks
opinionated 16
web development history 5–6

full-stack development
advantages of 6–7
defined 3–4
developers for 6
Git 20
Heroku hosting 20–21
MEAN stack advantages 7
Twitter Bootstrap

CSS classes 19
overview 19
responsive grid layout 19
theme support 20

web development history and
general discussion 4–5
libraries and frameworks 5–6
moving application code to front end 6

See also MEAN stack

G

geographic coordinates 149
GeoJSON format 137–138
geolocation

adding service to application 269–270
creating Angular service 268–269
passing coordinates to data service

272–274
using service from controller 270–272

geoNear method 174, 180–182, 184
geoSearch method 174
GET method, REST API

multiple documents 180–187
overview 172–173
single document 173–177
single subdocument 177–180

Git
branches 77
cloning repository 54
installing 397
overview 20
storing application in 76

GitHub 20
Glyphicon system 113
Gmail 28
Google 4, 26
Google Cloud 74

H

hardware
development 47
production 47–49

hashes 354
Heroku

create Heroku application 76
creating Procfile 75
deploying to 77
hosting with 20–21
installing toolbelt 398
logging into terminal 398
package.json file updates for 74–75
production mode for 156
signing up 397
starting web dyno 77–78
storing application in Git 76
testing application on live URL 78
testing with Foreman utility 75
update process using 79

history, browser, for SPAs 27
--hogan option 59
Hogan template engine 60
HTML5 (Hypertext Markup Language 5),

history API 27
Licensed to Mark Watson <nordickan@gmail.com>

INDEX410
HTTP status codes 166–167
hybrid architecture 30–33

I

id path 133
IIFE (immediately-invoked function

expression) 298–299
IIS (Internet Information Services) 7
includes, Jade 115
indentation in Jade 91
indexes

in MongoDB 137
MongoDB features 14–15

installing
CLI 397
Git 397
Heroku toolbelt 398
Twitter Bootstrap 395–396
UglifyJS 300

Internet Explorer 314
Internet Information Services. See IIS
interpolation 108
_isNumeric helper function 295

J

Jade template engine
binding views to Angular controller 254–255
footer 91
formatting dates 222–223
includes in templates 115
inline code in 113
layout template 90, 92–93
looping repetitive data in 109–110
mixins 113–115
navigation component 90–91
overview 60
page templates 93–105
template overview 71–72
wrapping content 91

JavaScript 8
jQuery 70, 307

AngularJS vs. 16
browser validation 239–240
web development history and 5

—jshtml option 59
JsHtml template engine 60
JSON (JavaScript Object Notation) 14
json option 205
jsonwebtoken module 358
JWT (JSON Web Token)

generating from Express 358–359
keeping secret out of commits 359–360
reading 373–374, 376–377

three parts of 357–358
using inside controller 369–372

L

latitude/longitude coordinates 149
libraries, web development history 5–6
Linux

installing MongoDB 393
installing Node.js 392

load time, for SPAs 27–28
Loc8r application

architecture design stages
building data API 43
building static site 41–42
connecting database to application 43–45
creating database and data model 43
finalizing application 45
refactoring code into AngularJS SPA 45

overview 21–22
schema 143–145
views

About page 104–105
Add Review page 102–103
Details page 98–101

local storage 373
login page 380–383
loops

in Jade templates 109–113
ng-repeat directive 254

M

Mac OS X 397
installing MongoDB 393
installing Node.js 392

MEAN stack
advantages of 7
AngularJS

disadvantages of 18–19
jQuery vs. 16
overview 16
SPAs and 18
two-way data binding 16–18

authentication in
changing views during authenticated

session 353
login process 352–353
overview 352
securely calling API 353

Express
HTML responses 12
overview 12
routing URLs 12
session support 13
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 411
MEAN stack (continued)
how components work together 22–23
MongoDB

data modeling with Mongoose 15–16
indexing features 14–15
JSON format 14
relational vs. document databases 13–14
transactions not supported 15

Node.js
efficiency of 8–11
JavaScript language importance 8
npm 11–12
overview 7–8

See also individual components
method option 205
Microsoft 8
Microsoft Windows 127
middleware 62
minification

using files in HTML 302
using UglifyJS 301

Mixed type 134
mixins, Jade 113–115, 222–223
Mocha library 11
modal dialogs

adding view 333–335
creating controller 335
defining instance 333
passing data into

dependency injecting resolved
parameters 337

overview 335–336
resolving variables in 336–337
using data passed through 337

model, for REST API 171–172
model-view-controller. See MVC
modules, Angular, defining 248
MongoDB

creating database 148–151
data modeling with Mongoose 15–16
indexing features 14–15, 137
installing 393
JSON format 14
MongoLab

database URI 153–154
setting up 152–153

named connections 130
pushing up data 154–155
relational vs. document databases 13–14
shell for

listing collections 148
listing local databases 147
starting 147
using specific database 147–148
viewing collection contents 148

subdocuments, adding 151
testing database connection 158–159
transactions not supported 15
user schema for

generating JWT 357–360
Mongoose methods 355–356
Mongoose schema 354–355
one-way password encryption 354
validating submitted password 357

using production database 156–157
See also REST API

Mongoose
adding to application 122–124
capturing process termination events 127–128
closing connection 126–127
connection file 128–129
creating connection 124–125
data modeling with 15–16
methods 355–356
monitoring connection 126
overview 131–133
query methods 174
schemas 354–355

compiling into models 145–146
creating 135–136
default values 136
geographic data in 137–138
number boundary validation 136–137
paths for 133–134
required fields 136
subdocuments 138–143
validation in 234–237

MVC (model-view-controller)
controllers 68–70

creating 85–86
moving view data to 107–109, 117–119
testing 86–87

folder structure for 65–66
overview 64–65
route definitions 67–68
routes

controller files for 83–84
overview 82–83
testing 86–87

routes folder 66–67
views

Bootstrap grid system 88–89
footer 91
including reusable layout components 115
inline code in 113
Jade mixins 113–115
layout template 90, 92–93
looping repetitive data in 109–113
moving data to controller 107–109,

117–119
Licensed to Mark Watson <nordickan@gmail.com>

INDEX412
MVC (model-view-controller) (continued)
navigation component 90–91
page templates 93–105
wrapping content 91

views folder 66

N

new method 289
ng-app attribute 246
ng-click handler

adding handler to page 332
adding method called by click handler

332
ng-controller attribute 249
ng-hide directive 385
ng-repeat directive 254, 263
ngRoute module 283
ng-sanitize

adding dependency 320
downloading 319–320

ng-show directive 339, 385
ng-switch 327–328
Node.js

efficiency of 8–11
installing 391–392
installing dependencies with npm

adding packages to project 57
overview 56–57
updating packages 57

JavaScript language importance 8
npm 11–12
overview 7–8
package.json file

dependency versions in 56
overview 55–56

validation at application level 237–239
NODE_ENV environment variable 156–157,

204
Nodejitsu 74
node_modules folder 56
nodemon

automatically restarting applications with
63–64

preventing application restarts 302
nonblocking code 11–12
npm (Node Package Manager)

installing 391–392
installing dependencies

adding packages to project 57
overview 56–57
updating packages 57

overview 11–12
Number type 133

O

ObjectId type 134
ODM (Object-Document Modeler) 131
onclick handler 332
onSubmit form handler 338–339
OpenShift 74
opinionated frameworks 16
orderBy filter 328–329

P

PaaS (platform as a service) 7, 21, 48, 74
package.json file

dependency versions in 56
overview 55–56
updating for Heroku support 74–75

parseFloat function 181
Passport

adding to application 362–363
configuring local strategy 361–362
creating endpoints to return JWTs 363–367
creating Passport config file 360
installing 360

password encryption 354
pbkdf2Sync method 356
performance, Angular SPAs

injecting dependencies manually
299–300

minifying and concatenating scripts
using UglifyJS 300–303

wrapping each file in IIFE 298–299
PhantomJS 26
pipe character (|) 104, 319
platform as a service. See PaaS
POST method, REST API

creating document 188–189
creating subdocument 190–193
overview 187–188

Procfile, creating 75
production, hardware 47–49
projects

Bootstrap in
adding to application 70
referencing files in application 72–73
testing 73

creating 58–61
Heroku hosting

create Heroku application 76
creating Procfile 75
deploying to Heroku 77
package.json file updates 74–75
starting web dyno on Heroku 77–78
storing application in Git 76
testing application on live URL 78
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 413
projects (continued)
testing with Foreman utility 75
update process 79

installing dependencies with npm
adding packages to project 57
overview 56–57
updating packages 57

Jade template engine 60
MVC structure

controllers 68–70
folder structure 65–66
overview 64–65
route definitions 67–68
routes folder 66–67
views folder 66

package.json file
dependency versions in 56
overview 55–56

restarting application
automatically restarting with nodemon

63–64
overview 62–63

template engines 60
testing installation 61–62

PUT method, REST API
overview 193–194
updating document 194–196
updating subdocument 196–197

Q

qs option 205
queries, methods for 174

R

randomBytes method 356
register page

creating registration controller 378–379
defining route 377
handling form submission 379–380
view for 377–378

relational databases 13–14
render method 68
require function 68
required fields 136
responsive layouts, Twitter Bootstrap

features 19
REST (REpresentational State Transfer) 25,

161
REST API

adding reviews using
getting location detail 229–231
overview 226–227
POST data to API 231–233

rendering function 228–229
routes for 227
views for 228

calling from Express
request module 203–206
setting default options 204

consuming lists from
catching errors returned from 212–216
creating request 207–208
modifying data before display 209–212
rendering function 207
using response data 208–209

consuming single documents
catching errors returned from

223–226
creating URLs and routes for

documents 216–218
formatting dates 222–223
passing data to view 220–223
querying using unique ID from URL

219–220
rendering function 218–219

DELETE method
deleting document 198–199
deleting subdocument 199–201
overview 197–198

GET method
multiple documents 180–187
overview 172–173
single document 173–177
single subdocument 177–180

HTTP status codes 166–167
in Express

controllers 170–171
model 171–172
overview 167
routes 167–169

overview 160–162
POST method

creating document 188–189
creating subdocument 190–193
overview 187–188

PUT method
overview 193–194
updating document 194–196
updating subdocument 196–197

request methods 163–165
request URLs 162–163
responses from 165–166
subdocuments and 164–165

restarting applications
automatically restarting with nodemon

63–64
overview 62–63

rootScope 249
Licensed to Mark Watson <nordickan@gmail.com>

INDEX414
routes
controller files for 83–84
definitions for 67–68
for REST API 167–169
MVC structure 66–67
overview 82–83
testing 86–87

routing
Angular

adding angular-route module 282–284
overview 279
turning off Express routing 279–282

Express support 12

S

salt, defined 354
schemas

compiling into models 145–146
creating 135–136
default values 136
geographic data in 137–138
paths for 133–134
subdocuments 138–143
time information in 141
types in 133
validation

number boundaries 136–137
required fields 136

validation in
catching errors 234–236
displaying error messages 236–237
overview 234

scope, Angular 249–251
security, for API endpoints

using authentication middleware 368–369
using JWTs inside controller 369–372

SEO (search engine optimization) 26
services, Angular 264–265

adding file to HTML 292
creating files for 291–292
using $scope when needed 293–294
using from controller 292–293
using URL parameters in

creating data service to call API 324
using $routeParams to get URL

parameters 323–324
using service to get data 325–326

sessions, Express support 13
SIGINT event 126
SIGTERM event 127
source control, Git 20
SPAs (single-page applications)

analytics and browser history 27
AngularJS and 18

crawling and indexing 26–27
pros and cons 28
speed of initial load 27–28

SPAs, Angular
adding pages

adding route definition 315–316
creating controller 316–317, 322–323
creating view template 317, 323
overview 315
updating navigation links 315, 323

AngularUI
creating modal dialog 333–335
downloading 330
overview 330
passing data into modal dialog 335–337
submitting data using form 337
using in application 330–331

controllers
adding file to HTML 287–288
adding to route config function 287
creating 286–287
defining ViewModel in 289
using controllerAs syntax 288–289
using ViewModel in view 289–290

Details page view example
changing display order using orderBy

filter 328–329
creating view template 326–327
fixing date format using date filter 329
if-else style logic with ng-switch 327–328
overview 326

directives 295–296, 307–312
file structure

adding main SPA application file to Jade
layout 279

app_client folder 278
main SPA application file 278

filters 295, 317–319
ng-click handler

adding handler to page 332
adding method called by click handler

332
performance

injecting dependencies manually
299–300

minifying and concatenating scripts
using UglifyJS 300–303

wrapping each file in IIFE 298–299
preventing application restarts from

nodemon 302
removing # from URLs

Internet Explorer incompatibility 314
overview 312–313
using $locationProvider and HTML5

mode 313–314
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 415
SPAs, Angular (continued)
removing reliance on server-side application

creating directives for HTML host page
sections 307–312

creating isolated HTML host page
305–307

overview 305
routing

adding angular-route module 282–284
overview 279
turning off Express routing 279–282

sending HTML through Angular binding
adding ngSanitize dependency 320
binding to HTML element as directive

320
downloading ng-Sanitize 319–320

services
adding file to HTML 292
creating files for 291–292
using $scope when needed 293–294
using from controller 292–293

using URL parameters in controllers
and services
creating data service to call API 324
using $routeParams to get URL

parameters 323–324
using service to get data 325–326

views
assigning to route 285–286
creating template 284–285
defining where to show 286

stateless, defined 161
static site construction

controllers
creating 85–86
moving view data to 107–109, 117–119
testing 86–87

routes
controller files for 83–84
overview 82–83
testing 86–87

views
Bootstrap grid system 88–89
footer 91
including reusable layout components

115
inline code in 113
Jade mixins 113–115
layout template 90, 92–93
looping repetitive data in 109–113
moving data to controller 107–109,

117–119
navigation component 90–91
page templates 93–105
wrapping content 91

strategies, authentication 360
String type 133
subdocuments

adding 151
defined 141
in REST API

creating 190–193
deleting 199–201
finding 177–180
updating 196–197

in schema 138–143
REST API and 164–165

switch method 328

T

template engines
Express support 12
Jade template engine 60
overview 60

terminal 58
testing

Angular application 274
Bootstrap 73
Heroku deployment 78

themes, Twitter Bootstrap features 20
this keyword 289
times, storing in database 141
transactions, database 15
troubleshooting

application restarts from nodemon 302
application start errors 86

Twitter Bootstrap
CSS classes 19
getting Amelia theme 396
installing 395–396
overview 19
responsive grid layout 19
theme support 20
tidying up folders for 396–397

two-way binding 16–18, 245–248

U

Ubuntu 397
UglifyJS

adding to application 300
installing 300
processing files 301
using minified files in HTML 302

Underscore library 11
updates, process for Heroku deployment 79
url option 205
URLs (Uniform Resource Locators) 162–163
use method 361
Licensed to Mark Watson <nordickan@gmail.com>

INDEX416
V

V8 JavaScript engine 4
validating data 339–340
validation

application-level 237–239
browser 239–240
overview 233–234
schema

catching errors 234–236
displaying error messages 236–237
number boundaries 136–137
overview 234
required fields 136

views
Angular

assigning to route 285–286
creating template 284–285
defining where to show 286

Bootstrap grid system 88–89
footer 91
including reusable layout components 115
inline code in 113

Jade mixins 113–115
layout template 90, 92–93
looping repetitive data in 109–113
moving all data out of 399–404
moving data to controller 107–109, 117–119
MVC structure 66
navigation component 90–91
page templates 93–105
wrapping content 91

VM (virtual machine) 47

W

web development history
general discussion 4–5
libraries and frameworks 5–6
moving application code to front end 6

web servers
multithreaded 9–10
single-threaded 10–11

Windows
installing MongoDB 393
installing Node.js 391
Licensed to Mark Watson <nordickan@gmail.com>

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Node.js in Action
Mike Cantelon, Marc Harter,

T.J. Holowaychuk, Nathan Rajlich

ISBN: 9781617290572
416 pages
$44.99
October 2013

Node.js in Practice
by Alex Young, Marc Harter

ISBN: 9781617290930
424 pages
$49.99
December 2014

Express in Action
Node applications with Express and its companion tools
by Evan M. Hahn

ISBN: 9781617292422
245 pages
$39.99
November 2015

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/express-in-action
https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/express-in-action
www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

AngularJS in Action
by Lukas Ruebbelke

ISBN: 9781617291333
192 pages
$44.99
July 2015

Secrets of the JavaScript Ninja
by John Resig, Bear Bibeault

ISBN: 9781933988696
392 pages
$39.99
December 2012

Amazon Web Services in Action
by Michael Wittig, Andreas Wittig

ISBN: 9781617292880
424 pages
$49.99
September 2015

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/angularjs-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja
https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/angularjs-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja
https://www.manning.com/books/amazon-web-services-in-action
www.manning.com

Simon Holmes

T
raditional web dev stacks use a different programming
language in every layer, resulting in a complex mashup of
code and frameworks. Together, the MongoDB database,

the Express and AngularJS frameworks, and Node.js
constitute the MEAN stack—a powerful platform that uses
only one language, top to bottom: JavaScript. Developers
and businesses love it because it’s scalable and cost-effective.
End users love it because the apps created with it are fast and
responsive. It’s a win-win-win!

Getting MEAN teaches you how to develop web applications
using the MEAN stack. First, you’ll create the skeleton of a
static site in Express and Node, and then push it up to a live
web server. Next, add a MongoDB database and build an API
before using Angular to handle data manipulation and applica-
tion logic in the browser. Finally you’ll add an authentication
system to the application, using the whole stack. When you
fi nish, you’ll have all the skills you need to build a dynamic
data-driven web application.

What’s Inside
● Full-stack development using JavaScript
● Responsive web techniques
● Everything you need to get started with MEAN
● Best practices for effi ciency and reusability

Readers should have some web development experience. This
book is based on MongoDB 2, Express 4, Angular 1, and
Node.js 4.

Simon Holmes has been a full-stack developer since the late
1990s and runs Full Stack Training Ltd.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/getting-mean-with-mongo-express-angular-and-node

$44.99 / Can $51.99 [INCLUDING eBOOK]

Getting MEAN
with Mongo, Express, Angular, and Node

WEB DEVELOPMENT

M A N N I N G

“Looking to go full stack?
Getting MEAN will take

you there.”
—Matt Merkes, MyNeighbor

“Fantastic explanations
 and up-to-date,

 real-world examples.”—Rambabu Posa
LGL Assessment

“From novice to experienced
 developer, all who want to

use the MEAN stack will
 get useful advice here.”

—Davide Molin
CodingShack.com

“A ground-up explanation of
MEAN stack layers.”—Andrea Tarocchi, Red Hat

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions
	Code downloads
	Author Online
	About the cover illustration

	Part 1—Setting the baseline
	1 Introducing full-stack development
	1.1 Why learn the full stack?
	1.1.1 A very brief history of web development
	1.1.2 The trend toward full-stack developers
	1.1.3 Benefits of full-stack development
	1.1.4 Why the MEAN stack specifically?

	1.2 Introducing Node.js: The web server/platform
	1.2.1 JavaScript: The single language through the stack
	1.2.2 Fast, efficient, and scalable
	1.2.3 Using prebuilt packages via npm

	1.3 Introducing Express: The framework
	1.3.1 Easing your server setup
	1.3.2 Routing URLs to responses
	1.3.3 Views: HTML responses
	1.3.4 Remembering visitors with session support

	1.4 Introducing MongoDB: The database
	1.4.1 Relational versus document databases
	1.4.2 MongoDB documents: JavaScript data store
	1.4.3 More than just a document database
	1.4.4 What is MongoDB not good for?
	1.4.5 Mongoose for data modeling and more

	1.5 Introducing AngularJS: The front-end framework
	1.5.1 jQuery versus AngularJS
	1.5.2 Two-way data binding: Working with data in a page
	1.5.3 Using AngularJS to load new pages
	1.5.4 Are there any downsides?

	1.6 Supporting cast
	1.6.1 Twitter Bootstrap for user interface
	1.6.2 Git for source control
	1.6.3 Hosting with Heroku

	1.7 Putting it together with a practical example
	1.7.1 Introducing the example application
	1.7.2 How the MEAN stack components work together

	1.8 Summary

	2 Designing a MEAN stack architecture
	2.1 A common MEAN stack architecture
	2.2 Looking beyond SPAs
	2.2.1 Hard to crawl
	2.2.2 Analytics and browser history
	2.2.3 Speed of initial load
	2.2.4 To SPA or not to SPA?

	2.3 Designing a flexible MEAN architecture
	2.3.1 Requirements for a blog engine
	2.3.2 A blog engine architecture
	2.3.3 Best practice: Build an internal API for a data layer

	2.4 Planning a real application
	2.4.1 Planning the application at a high level
	2.4.2 Architecting the application
	2.4.3 Wrapping everything in an Express project
	2.4.4 The end product

	2.5 Breaking the development into stages
	2.5.1 Rapid prototype development stages
	2.5.2 The steps to build Loc8r

	2.6 Hardware architecture
	2.6.1 Development hardware
	2.6.2 Production hardware

	2.7 Summary

	Part 2—Building a Node web application
	3 Creating and setting up a MEAN project
	3.1 A brief look at Express, Node, and npm
	3.1.1 Defining packages with package.json
	3.1.2 Installing Node dependencies with npm

	3.2 Creating an Express project
	3.2.1 Installing the pieces
	3.2.2 Creating a project folder
	3.2.3 Configuring an Express installation
	3.2.4 Creating an Express project and trying it out
	3.2.5 Restarting the application

	3.3 Modifying Express for MVC
	3.3.1 A bird’s eye view of MVC
	3.3.2 Changing the folder structure
	3.3.3 Using the new views and routes folders
	3.3.4 Splitting controllers from routes

	3.4 Import Bootstrap for quick, responsive layouts
	3.4.1 Download Bootstrap and add it to the application
	3.4.2 Using Bootstrap in the application

	3.5 Make it live on Heroku
	3.5.1 Getting Heroku set up
	3.5.2 Pushing the site live using Git

	3.6 Summary

	4 Building a static site with Node and Express
	4.1 Defining the routes in Express
	4.1.1 Different controller files for different collections

	4.2 Building basic controllers
	4.2.1 Setting up controllers
	4.2.2 Testing the controllers and routes

	4.3 Creating some views
	4.3.1 A look at Bootstrap
	4.3.2 Setting up the HTML framework with Jade templates and Bootstrap
	4.3.3 Building a template

	4.4 Adding the rest of the views
	4.4.1 Details page
	4.4.2 Adding Review page
	4.4.3 The About page

	4.5 Take the data out of the views and make them smarter
	4.5.1 How to move data from the view to the controller
	4.5.2 Dealing with complex, repeating data
	4.5.3 Manipulating the data and view with code
	4.5.4 Using includes and mixins to create reusable layout components
	4.5.5 The finished homepage
	4.5.6 Updating the rest of the views and controllers

	4.6 Summary

	5 Building a data model with MongoDB and Mongoose
	5.1 Connecting the Express application to MongoDB using Mongoose
	5.1.1 Adding Mongoose to our application
	5.1.2 Adding a Mongoose connection to our application

	5.2 Why model the data?
	5.2.1 What is Mongoose and how does it work?

	5.3 Defining simple Mongoose schemas
	5.3.1 The basics of setting up a schema
	5.3.2 Using geographic data in MongoDB and Mongoose
	5.3.3 Creating more complex schemas with subdocuments
	5.3.4 Final schema
	5.3.5 Compiling Mongoose schemas into models

	5.4 Using the MongoDB shell to create a MongoDB database and add data
	5.4.1 MongoDB shell basics
	5.4.2 Creating a MongoDB database

	5.5 Getting our database live
	5.5.1 Setting up MongoLab and getting the database URI
	5.5.2 Pushing up the data
	5.5.3 Making the application use the right database

	5.6 Summary

	6 Writing a REST API: Exposing the MongoDB database to the application
	6.1 The rules of a REST API
	6.1.1 Request URLs
	6.1.2 Request methods
	6.1.3 Responses and status codes

	6.2 Setting up the API in Express
	6.2.1 Creating the routes
	6.2.2 Creating the controller placeholders
	6.2.3 Including the model
	6.2.4 Testing the API

	6.3 GET methods: Reading data from MongoDB
	6.3.1 Finding a single document in MongoDB using Mongoose
	6.3.2 Finding a single subdocument based on IDs
	6.3.3 Finding multiple documents with geospatial queries

	6.4 POST methods: Adding data to MongoDB
	6.4.1 Creating new documents in MongoDB
	6.4.2 Creating new subdocuments in MongoDB

	6.5 PUT methods: Updating data in MongoDB
	6.5.1 Using Mongoose to update a document in MongoDB
	6.5.2 Updating an existing subdocument in MongoDB

	6.6 DELETE method: Deleting data from MongoDB
	6.6.1 Deleting documents in MongoDB
	6.6.2 Deleting a subdocument from MongoDB

	6.7 Summary

	7 Consuming a REST API: Using an API from inside Express
	7.1 How to call an API from Express
	7.1.1 Adding the request module to our project
	7.1.2 Setting up default options
	7.1.3 Using the request module

	7.2 Using lists of data from an API: The Loc8r homepage
	7.2.1 Separating concerns: Moving the rendering into a named function
	7.2.2 Building the API request
	7.2.3 Using the API response data
	7.2.4 Modifying data before displaying it: Fixing the distances
	7.2.5 Catching errors returned by the API

	7.3 Getting single documents from an API: The Loc8r Details page
	7.3.1 Setting URLs and routes to access specific MongoDB documents
	7.3.2 Separating concerns: Moving the rendering into a named function
	7.3.3 Querying the API using a unique ID from a URL parameter
	7.3.4 Passing the data from the API to the view
	7.3.5 Debugging and fixing the view errors
	7.3.6 Creating status-specific error pages

	7.4 Adding data to the database via the API: Add Loc8r reviews
	7.4.1 Setting up the routing and views
	7.4.2 POSTing the review data to the API

	7.5 Protecting data integrity with data validation
	7.5.1 Validating at the schema level with Mongoose
	7.5.2 Validating at the application level with Node and Express
	7.5.3 Validating in the browser with jQuery

	7.6 Summary

	Part 3—Adding a dynamic front end with Angular
	8 Adding Angular components to an Express application
	8.1 Getting Angular up and running
	8.1.1 Uncovering two-way data binding
	8.1.2 Setting up for greatness (and JavaScript code)

	8.2 Displaying and filtering the homepage list
	8.2.1 Adding Angular to an Express application
	8.2.2 Moving data delivery from Express to Angular
	8.2.3 Using Angular filters to format data
	8.2.4 Using Angular directives to create HTML snippets

	8.3 Getting data from an API
	8.3.1 Using services for data
	8.3.2 Making HTTP requests from Angular to an API
	8.3.3 Adding HTML geolocation to find places near you

	8.4 Ensuring forms work as expected
	8.5 Summary

	9 Building a single-page application with Angular: Foundations
	9.1 Setting the groundwork for an Angular SPA
	9.1.1 Getting base files in place

	9.2 Switching from Express routing to Angular routing
	9.2.1 Switching off the Express routing
	9.2.2 Adding ngRoute (angular-route) to the application

	9.3 Adding the first views, controllers, and services
	9.3.1 Creating an Angular view
	9.3.2 Adding a controller to a route
	9.3.3 Controller best practice: Using the controllerAs syntax
	9.3.4 Using services
	9.3.5 Using filters and directives

	9.4 Improving browser performance
	9.4.1 Wrap each file in an IIFE
	9.4.2 Manually injecting dependencies to protect against minification
	9.4.3 Using UglifyJS to minify and concatenate scripts

	9.5 Summary

	10 Building an SPA with Angular: The next level
	10.1 A full SPA: Removing reliance on the server-side application
	10.1.1 Creating an isolated HTML host page
	10.1.2 Making reusable page framework directives
	10.1.3 Removing the # from URLs

	10.2 Adding additional pages and dynamically injecting HTML
	10.2.1 Adding a new route and page to the SPA
	10.2.2 Creating a filter to transform the line breaks
	10.2.3 Sending HTML through an Angular binding

	10.3 More complex views and routing parameters
	10.3.1 Getting the page framework in place
	10.3.2 Using URL parameters in controllers and services
	10.3.3 Building the Details page view

	10.4 Using AngularUI components to create a modal popup
	10.4.1 Getting AngularUI in place
	10.4.2 Adding and using a click handler
	10.4.3 Creating a Bootstrap modal with AngularUI
	10.4.4 Passing data into the modal
	10.4.5 Using the form to submit a review

	10.5 Summary

	Part 4—Managing authentication and user sessions
	11 Authenticating users, managing sessions, and securing APIs
	11.1 How to approach authentication in the MEAN stack
	11.1.1 Traditional server-based application approach
	11.1.2 Full MEAN stack approach

	11.2 Creating a user schema for MongoDB
	11.2.1 One-way password encryption: Hashes and salts
	11.2.2 Building the Mongoose schema
	11.2.3 Setting encrypted paths using Mongoose methods
	11.2.4 Validating a submitted password
	11.2.5 Generating a JSON Web Token

	11.3 Creating an authentication API with Passport
	11.3.1 Installing and configuring Passport
	11.3.2 Creating API endpoints to return JSON Web Tokens

	11.4 Securing relevant API endpoints
	11.4.1 Adding authentication middleware to Express routes
	11.4.2 Using the JWT information inside a controller

	11.5 Creating Angular authentication service
	11.5.1 Managing a user session in Angular
	11.5.2 Allowing users to sign up, sign in, and sign out
	11.5.3 Using the JWT data in the Angular service

	11.6 Creating register and login pages
	11.6.1 Building the register page
	11.6.2 Building the login page

	11.7 Working with authentication in the Angular app
	11.7.1 Updating navigation
	11.7.2 Adding user data to a review

	11.8 Summary

	Appendix A—Installing the stack
	A.1 Installing Node and npm
	A.1.1 Installing Node on Windows
	A.1.2 Installing Node on Mac OS X
	A.1.3 Installing Node on Linux
	A.1.4 Verifying installation by checking version

	A.2 Installing Express globally
	A.3 Installing MongoDB
	A.3.1 Installing MongoDB on Windows
	A.3.2 Installing MongoDB on Mac OS X
	A.3.3 Installing MongoDB on Linux
	A.3.4 Running MongoDB as a service
	A.3.5 Checking the MongoDB version number

	A.4 Installing Angular

	Appendix B—Installing and preparing the supporting cast
	B.1 Twitter Bootstrap
	B.1.1 Getting the Amelia theme
	B.1.2 Tidying up the folders

	B.2 Installing Git
	B.3 Installing a suitable command-line interface
	B.4 Setting up Heroku
	B.4.1 Signing up for Heroku
	B.4.2 Installing Heroku toolbelt
	B.4.3 Logging in to Heroku using terminal

	Appendix C—Dealing with all of the views
	C.1 Moving the data from the views to the controllers
	C.1.1 Details page
	C.1.2 Add Review page
	C.1.3 About page

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Back cover

