

WordPress 3 Complete

Create your own complete website or blog from scratch
with WordPress

April Hodge Silver

 BIRMINGHAM - MUMBAI

WordPress 3 Complete

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1180111

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849514-10-1

www.packtpub.com

Cover Image by Charwak A (charwak86@gmail.com)

Credits

Authors
April Hodge Silver

Reviewers
Grigore Alexandru

Srikanth AD

Natalie MacLees

Acquisition Editor
Usha Iyer

Development Editor
Susmita Panda

Technical Editor
Kavita Iyer

Copy Editor
Neha Shetty

Editorial Team Leader
Akshara Aware

Project Team Leader
Ashwin Shetty

Project Coordinator
Poorvi Nair

Proofreader
Clyde Jenkins

Indexer
Tejal Daruwale

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

April Hodge Silver has been designing and developing new websites from
scratch since 1999, just before her graduation from Columbia University. Early in her
career, she worked for several web companies and startups, including DoubleClick
and About.com. Since 2004, she has been self-employed through her company,
Springthistle Design, and has worked with a staggering variety of companies,
non-profits, and individuals to realize their website dreams. In her professional
work, April's focus is always on usability, efficiency, flexibility, clean design, and
client happiness. WordPress is the best solution for many of Springthistle's Clients,
though April also develops custom web applications using PHP and MySQL. More
about April's professional work at http://springthistle.com.

In her free time, April enjoys creating recipes in the kitchen, reading books, and
creating artwork, which she displays at http://artistapril.com.

I am so grateful to everyone at Packt who worked with me to make
this book possible. Also, many thanks go to my wife Tessa, who
supported me in so many ways while I was working on this book.
Finally, thanks go to Ruth and Hazel, who provided key guidance
on commas.

About the Reviewers

Grigore Alexandru is a XHTML/CSS/JAVASCRIPT programmer, with major
WordPress knowledge and coding skills, currently working at OSF-Global Services
in Romania. He is currently studying at the FEAA College in the A.I Cuza University
in Iasi, Romania, learning economical sciences.

Alex perfected his skills during the work at OSF-Global services, learning in depth
about CSS/XHTML coding skills, as well as jQuery programming and other web
based tech. Currently, Alex is developing for the company at which he currently
works and also for ThemeForest WordPress and HTML sections.

First of all, I would like to thank my company for letting me advance
on my skills, and also I would like to thank PACKT Publishing for
allowing me to review the second WordPress book so far. I hope that
we will work together again in the future.

Srikanth AD is a web developer, SEO consultant, and tech blogger. He is
passionate about web development and optimizing websites for better search
engine visibility and ranking.

He contributes articles and reviews pertaining to web design trends, web
applications, and other resources across multiple blogs. He has written articles for
some of the popular blogs, such as MakeUseOf, TheNextWeb, QuickOnlineTips,
and 1stWebDesigner.

Portfolio: http://www.srikanth.techonaut.com.

Natalie MacLees is the founder of Purple Pen Productions (purplepen.com), an
interactive agency based in Los Angeles, California. She has been designing websites
since 1997 and is a passionate advocate of both accessibility and usability. She loves
teaching and sharing her knowledge, both in seminars and workshops and also with
her clients. She discovered WordPress a few years ago as a flexible, extendable, and
quick way to build robust websites that clients could manage on their own. She is the
organizer of the Southern California WordPress Meetup Group.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

•
•
•

Table of Contents
Preface 1
Chapter 1: Introduction to WordPress 7

What is WordPress? 7
Use it for a blog or a website 8
Blog: Definition and common terms 8

Common terms 8
Why choose WordPress? 10

A long time in refining 10
Active in development 10
Large community of contributors 10
Amazingly extendable 10
Detailed feature list 11
New feature list since 2.7 11

Learning more 13
Online WordPress resources 13

WordPress news 13
The Codex 14
Support from other users 15
Theme and plugin directories 15
WordPress.com 15

Summary 16
Chapter 2: Getting Started 17

Where to build your WordPress website 17
Using WordPress.com 19
Installing WordPress manually 22

Preparing the environment 22
Downloading WordPress 23
Upgrading from an earlier version of WordPress 24
Uploading the files 25

Table of Contents

[ii]

Installing WordPress 27
Learning more 32

The WP Admin panel 32
Changing general blog information 35
Your first post 36
Your first comment 39
Retrieving a lost password 41

Summary 41
Chapter 3: Creating Blog Content 43

WP Admin conventions 43
Lists of items 43

Posting on your blog 45
Adding a simple post 45
Common post options 48

Categories and tags 49
Images in your posts 51
Using the Visual editor versus the HTML editor 57
Drafts, timestamps, and managing posts 58

Advanced post options 60
Excerpt and the MORE tag 60
Trackbacks 61
Discussion 62
Custom Fields 63
Protecting content 64
Pretty permalinks 65

Additional writing options 66
Press This 66
Posting via e-mail 67

Discussion on your blog—comments 68
Adding a comment 68
Discussion settings 70

Submission, notification, and moderation settings 70
When to moderate or blacklist a comment 72
Avatar display settings 73

Moderating comments 74
How to eliminate comment spam 76

Getting a WordPress.com API key 77
Activating Akismet 78

Adding and managing categories 80
Summary 81

Chapter 4: Pages, Plugins, Image Galleries Menus, and More 83
Pages 83

Adding a page 84
Managing pages 88

Table of Contents

[iii]

Menus 88
Adding a Menu 89
Displaying a Menu 92

Widgets 93
Links 94

Adding a new link 96
Displaying links 97
Managing links and categories 99

Media library 100
Adding plugins 102

Finding your plugin 103
Installing and activating the plugin 103

Auto-installation 104
Download, (unzip?), upload 105

Configuring and/or implementing—if necessary 107
Adding an image gallery 108

Choosing a post or page 109
Uploading images 110
Using a lightbox plugin 114

Making your website mobile-friendly 116
Summary 118

Chapter 5: Choosing and Installing Themes 119
Finding themes 120

WordPress Theme Directory 120
Finding more themes 123

Some theme basics 123
What makes a theme? 124
Factors to consider when choosing a theme 124

Installing and changing themes 125
Adding a theme within the WP Admin 125
Downloading, extracting, uploading 129

Summary 131
Chapter 6: Developing Your Own Theme 133

Setting up your design 134
Designing your theme to be WordPress-friendly 134
Converting your design to code 136

Examining the HTML structure 137
Examining the CSS 140

Converting your build into a theme 146
Creating the theme folder 146

Table of Contents

[iv]

Adding WordPress content 151
The <head> tag 151
The header and footer 152
The sidebar 155

Main column—the loop 157
Creating templates within your theme 162

Understanding the WordPress theme 162
Breaking it up 163

header.php 163
footer.php 163
sidebar.php 164
Your four template files 165

Archive template 166
Single template 168
Page template 171
Generated classes for body and post 172
Other WordPress templates 173
Creating and using a custom template 174

Making your theme widget-friendly 178
Making sure your sidebar is one big tag 178
Adding functions.php 179
Adding conditional code to sidebar 179
Adding some widgets 180
Further widgetizing options 181

Learning more 181
Enabling a menu in your theme 182
Creating a child theme 183

Creating the new theme directory 183
Creating the stylesheet 183
Using your child theme 184

Sharing your theme 185
Summary 186

Chapter 7: Feeds and Podcasting 187
Feed basics 188

Feed readers 188
Learning more 189

Your built-in WordPress feeds 190
Adding feed links 191

Feeds for the whole website 192
Feeds for categories 194
Feeds for post comments 195

Table of Contents

[v]

Tracking subscribers with FeedBurner 196
Burn your feed on FeedBurner 196
FeedBurner plugin 197

Podcasting 198
Creating a podcast 198

Record yourself 198
Make a post 199

Dedicated podcasting 201
Podcasting plugins 203
Using a service to host audio files for free 204

Summary 204
Chapter 8: Developing Plugins and Widgets 205

Plugins 205
Plugin code requirements 206
Basic plugin—adding link icons 206

Naming and organizing the plugin files 207
Writing the plugin's core functions 208
Adding hooks to the plugin 209
Trying out the plugin 211

Adding an admin page 213
Adding management page functions 214
Modifying the regex() function 216
Adding hooks 217
Trying out the plugin 217

Plugin with DB access—capturing searched words 218
Getting the plugin to talk to the database 219
Adding management page functions 219
Adding hooks 220
Trying out the plugin 221

Learning more 222
Widgets 223

Recent posts from a Category Widget 223
Naming the widget 224
Widget structure 224
Widget initiation function 225
Widget form function 226
Widget save function 228
Widget print function 229
Initiate and hook up the widget 230
Final widget code 230
Trying out the widget 233
Learning more 234

Bundling a widget with a plugin 235

Table of Contents

[vi]

Shortcodes 235
How do shortcodes work? 235
Creating a simple shortcode 235
Adding options to the shortcode 237
Enabling shortcodes in widgets 239

Summary 240
Chapter 9: Community Blogging 241

Concerns for a multiuser blog 241
Users roles and abilities 242

Administrator 242
Editor 242
Author 244
Contributor 245
Subscriber 245

Managing users 246
Enabling users to self-register 249
Learning more 250

User management plugins 251
Creating a multi-site website 252
Summary 253

Chapter 10: Creating a Non-Blog Website 255
Our client is a bookstore 255
The Design 256
New features covered in this chapter 261
Introducing the initial theme 261

What we are starting with 262
Initial theme files and functionality 262

functions.php 262
header.php 263
footer.php 264
index.php 264

Setting up the starter content 265
Checking out the frontend 268

Adding plugins 270
Contact Form 7 271
April's Call Posts 273
Smooth Slider 275

Installing the plugin 275
Adding content to the plugin 276
Adding the plugin to your theme 277

Table of Contents

[vii]

Creating a custom post type: book 279
Registering a new post type 279

Adding labels 280
Adding messages 281
Creating book template files 284

Registering and using a custom taxonomy 288
Customizing the admin display 290
Finalizing the bookstore website 292

Summary 293
Chapter 11: Administrator's Reference 295

System requirements 295
Enabling permalinks 296

The importance of backing up 296
Easy, quick, frequent content backups 296
Backing up everything 297
Verifying your backups 297

Upgrading WordPress 298
What about the built-in upgrader? 298
Do it gradually for a big jump 298
Steps for upgrading 298
Backing up your database 299
Backing up your WordPress files 299
Put WordPress in Maintenance Mode 299
Deactivating all your plugins 299
Downloading and extracting WordPress 300
Deleting old files 300
Uploading the new files 300
Running the WordPress upgrade program 300
Updating permalinks and .htaccess 301
Installing updated plugins and themes 301

Migrating or restoring a WordPress site 301
Setting file permissions 303

What are file permissions? 303
Permissions for WordPress 303
How to set permissions 304

Troubleshooting 304
Troubleshooting during installation 304

Headers already sent 304
Page comes with only PHP code 305
Cannot connect to MySQL database 305

Table of Contents

[viii]

Basic troubleshooting 306
Cannot see posts 306
Making a site totally private 306
I don't receive the e-mailed passwords 307

Tips for theme development 307
Template tags 307
Class styles generated by WordPress 310
Learning more 310

Summary 311
Index 313

Preface
WordPress 3 Complete begins from scratch, starting with how to install WordPress,
all the way to the most advanced topics such as creating your own themes,
writing plugins, and including custom post types in your website. Starting with
downloading and installing the core WordPress software, you will take a detailed
look at WordPress settings and also choose the settings that will work best for your
website or blog. After that, the book will teach you all about content management
functionality for your site from posts and pages to categories and tags, all the way to
links, media, menus, images, galleries and more. Finally, you'll learn how to create
your own themes and plugins to enhance the overall functionality of your website.
Once you're done with WordPress 3 Complete, you'll be an expert in everything
WordPress, from content management through technical steps such as backing up
your site.

What this book covers
Chapter 1, Introduction to WordPress, explains how WordPress is an excellent software
that can run your website (blog or not). It's packed with excellent features, and is
so flexible that it can really do anything you want, and it has a wealth of online
resources. Additionally, it's super easy-to-use, and you need no special skills
or prior experience to use it. Last but not least, it is free!

Chapter 2, Getting Started, explains how to install WordPress on a remote server,
change the basic default settings of your blog, write posts, and comment on
those posts.

Chapter 3, Creating Blog Content, teaches everything you need to know to add content
to your blog and manage that content, be it about posts, categories and comments, or
tags, spam, and excerpts.

Preface

[2]

Chapter 4, Pages, Plugins, Image Galleries Menus, and More, explores all of the content
WordPress can manage that's not directly about blogging. You can also learn about
static pages, menus, bookmark links, the media library, image galleries, plugins,
and more.

Chapter 5, Choosing and Installing Themes, describes how to manage the basic look of
your WordPress website. You also learn where to find themes, why they are useful,
and how to implement new themes on your WordPress website.

Chapter 6, Developing Your Own Theme, explains how to make your own theme. With
just the most basic HTML and CSS abilities, you can create a design and turn it into
a fully functional WordPress theme.

Chapter 7, Feeds and Podcasting, explains what an RSS feed is and how to make feeds
available for our WordPress blog. It also explores how to syndicate a whole blog or
just posts within a certain category, and how to create your own podcast with or
without the help of plugins.

Chapter 8, Developing Plugins and Widgets, teaches everything you need to know about
creating basic plugins and widgets, how to structure the PHP file, where to put your
functions, and how to use hooks. It also teaches about adding management pages
and adding a widget that is related to a plugin.

Chapter 9, Community Blogging, explains how to manage a group of users working
with a single blog, which is a community of users. Community blogging can play an
important role in a user group, or a news website. It also explains how to manage the
different levels of privileges for users in a community.

Chapter 10, Creating a Non-Blog Website, explores designing and building a basic
theme that focuses primarily on non-blog content. It also creates multiple widget
areas, multiple menu areas, and a smooth slider to the homepage.

Chapter 11, Administrator's Reference, covers many of the common administrative tasks
you may face when you're managing a WordPress-driven website. This includes
backing up your database and files, moving your WordPress installation from one
server or folder to another, and doing general problem-solving and troubleshooting.

What you need for this book
A Computer
A Web browser
A text editor
FTP software

•

•

•

•

Preface

[3]

Users may like a text editor that highlights code (such as Coda, TextMate, HTMLKit,
and so on), but a simple text editor is all that's required.

Users may like to run a local copy of WordPress on their computer, in which case
they need a server like Apache and MySQL installed (though WAMP and MAMP
would take care of all that for them), but it's also not necessary as they could do the
entire thing remotely.

Who this book is for
This book is a guide to WordPress for both beginners and those who have slightly
more advanced knowledge of WordPress. If you are new to blogging and want to
create your own blog or website in a simple and straightforward manner, then this
book is for you. It is also for people who want to learn to customize and expand the
capabilities of a WordPress website. You do not require any detailed knowledge of
programming or web development, and any IT-confident user will be able to use
the book to produce an impressive website.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
 <meta charset="UTF-8" />
 <title>Blog title</title>
 <style type="text/css">@import url("style.css");</style>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function ahs_doctypes_regex($text) {
 $types = get_option('ahs_supportedtypes');
 $types = ereg_replace(',[]*','|',$types);
 $text =

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " To add
a new page, go to your WP Admin and navigate to Pages | Add New ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to WordPress
These days, everyone has a good reason to have a website. It's not just large
companies anymore. Individuals, families, and small or independent businesses all
need to have one. Some individuals and small businesses don't have the financial
resources to hire a website development company or a freelance web developer to
create a website for them. This is where WordPress comes in very handy. WordPress
is an open source web software application that you can use to create and maintain
an online website, even if you have a minimum of technical expertise.

Since it is a web application, WordPress does not need to be installed on your home
computer. It can live on the server (a kind of computer) that belongs to your website
hosting company. It is also free, easy to use, and packed with excellent features.
Originally, WordPress was an application meant to run a blog website, but it has
now evolved into a fully-featured Content Management System (CMS).

In this chapter, we'll explore:

The reasons that will make you choose WordPress to run your website
The greatest advantages of WordPress
Online resources for WordPress

What is WordPress?
WordPress is an open source blog engine. Open source means that nobody owns
it, everybody works on it, and anyone can contribute to it. Blog engine means a
software application that can run a blog. It's a piece of software that lives on the web
server and makes it easy for you to add and edit posts, themes, comments, and all of
your other content. More expansively, WordPress can be called a publishing platform
because it is by no means restricted to blogging.

•

•

•

Introduction to WordPress

[8]

WordPress was originally a fork of an older piece of software named b2/cafelog.
WordPress was developed by Matt Mullenweg and Mike Little, but is now
maintained and developed by a team of developers that includes Mullenweg.

Use it for a blog or a website
There are generally two popular types of websites for which WordPress is meant
to be used.

Normal website with relatively static content—pages, subpages, and so on.
Blog website—chronologically organized, frequently updated, categorized,
tagged, and archived.

For those of you unfamiliar with blog websites and blogging terminology, let's take
a look at the basics.

Blog: Definition and common terms
A blog, which is short for weblog, is a website that usually contains regular entries
like any other kind of log. These entries can be of various types such as commentary,
descriptions of events, photos, videos, personal remarks, or political ideas. They are
usually displayed in reverse chronological order, with the most recent additions on
the top. These entries can be organized in a variety of ways—by date, by topic, by
subject, and so on.

A blog is a special type of website that gets updated regularly. Unlike a site where
the content is static, a blog behaves more like an online diary, wherein the blogger
posts regular updates. Hence, blogs are dynamic with ever-changing content. A blog
can be updated with new content and the old content can be changed or deleted at
any time.

Most blogs focus their content on a particular subject—for example current events,
hobbies, technical expertise—or else they are more like personal online diaries.

According to Wikipedia, the term weblog was first used in 1997, and people started
using blogs globally in 1999. The terms weblog, weblogging, and weblogger were
added to the Oxford Dictionary in 2003, though these days most people leave
off the "we" part.

Common terms
If you are new to the world of blogging, you may want to familiarize yourself with
the following common terms.

•

•

Chapter 1

[9]

Post
Each entry in the blog is called a post. Every post usually has a number of different
parts. Of course, the two most obvious parts are title and content. The content is text,
images, links, and so on. Posts can even contain multimedia. Every post also has a
publication timestamp, and most also have one or more categories, tags, comments,
and so on. It is these posts, or entries, that are displayed in reverse chronological
order on the main page of the blog. The latest post is displayed first in order to give
the viewer the latest news on the subject.

Categories and tags
Categories and tags are ways to organize and find posts within a blog and even
across blogs. Categories are like topics, whereas tags are more like keywords.
For example, for a blog about food and cooking, there might be a category called
Recipes, but every post in that category would have different tags (for example,
soup, baked, vegetarian, dairy-free, and so on).

Comments
Most blogs allow visitors to post comments about the posts. This gives readers the
opportunity to interact with the writer of the blog, thus making the whole enterprise
interactive. Often, the writer of the blog will respond to comments by posting
additional comments with the single click of a reply button, which makes for a
continuous public online conversation or dialogue.

Theme
The theme for a blog is the design and layout that you choose for your blog. In most
blogs, the content (for example, posts) is separate from the visual layout. This means
you can change the visual layout of your blog at any time without having to worry
about the content being affected. One of the best things about themes is that it takes
only seconds to install and start using a new one. Plus, there are thousands of free or
low-cost themes available online so you can take your pick (or make your own!).

RSS
RSS is an acronym for Really Simple Syndication, and Chapter 7 addresses the topic
of feeds in detail. For now, understand that RSS and feeds are a way to syndicate
the content of your blog so that people can subscribe to it. This means people do not
actually have to visit your blog regularly to see what you've added. Instead, they
can subscribe and have new content delivered to them via e-mail or through a feed
reader such as Google Reader.

Introduction to WordPress

[10]

Page
It's important to understand the difference between a page and a post. Unlike posts,
pages do not depend on having timestamps and are not displayed in chronological
order. They also do not have categories or tags. A page is a piece of content with only
a title and content (an example would be About Me or Contact Us). It is likely that the
number of pages on your site remains relatively static, whereas new posts are added
every day or so. Thus pages have static content, while posts have dynamic content.

Why choose WordPress?
WordPress is not the only publishing platform out there, but it has an awful lot to
recommend it. In the following sections, I've called attention to WordPress's most
outstanding features.

A long time in refining
In web years, WordPress has been around for quite a while and was in development
the whole time, getting better constantly. WordPress's very first release, Version 0.70,
was released in May, 2003. Since then, it has had ten major releases, with a number of
minor ones in between. Each release came with more features and better security.

Active in development
WordPress is a constantly evolving application. It's never left alone to stagnate. The
developers are working continually to keep it ahead of spammers and hackers, and
also to evolve the application based on the evolving needs of its users.

Large community of contributors
WordPress is not being developed by a lonely programmer in a dark basement room.
On the contrary, there is a large community of people working on it collaboratively
by developing, troubleshooting, making suggestions, and testing the application.
With such a large group of people involved, the application is likely to continue
to evolve and improve without pause.

Amazingly extendable
In addition to having an extremely strong core, WordPress is also quite extendable.
This means that once you get started with it, the possibilities are nearly limitless.
Any additional functionality that you can dream of can be added by means of a
plugin that you or your programmer friends can write.

Chapter 1

[11]

Detailed feature list
Here is a detailed list of many features of WordPress:

Compliant with W3C standards
Unlimited categories and subcategories
Automatic syndication (RSS and Atom)
Uses XML RPC interface for trackbacks and remote posting
Allows posting via e-mail and mobile devices
Supports plugins and themes
Imports data from other blogs (Moveable Type, Textpattern, Greymatter,
b2evolution, and blogger)
Easy to administer and blog without any previous experience
Convenient, fully functional, built-in search
Instant and fast publishing of content—no re-building of pages required
Multilanguage capable
Link manager, also known as a blogroll or link list
Allows password-protected content
Comments manager and spam protection
Built-in workflow (write, draft, review, and publish)
Intelligent text formatting via a WYSIWYG editor

New feature list since 2.7
Since the last edition of this book was published, quite a staggering number of new
features have been added to the WordPress software. If you're new to WordPress,
this list may not mean a whole lot to you, but if you're familiar with WordPress
and have been using it for a long time, you'll find this list quite enlightening.

Scrolling back to the same location after saving a file in the Plugin and
Theme editors
Adding support for "include" and "exclude" to [gallery]
Showing "Draft updated" instead of "Post updated" when saving draft
Renaming various menu items, for example Posts | Edit becomes Posts |
Posts, and Links | Edit becomes Links | Links, and so on

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Introduction to WordPress

[12]

Moving Tools | Upgrade menu option to Dashboard | Updates and
overhauling of user interface so themes, plugins, and core upgrade
under one panel
Improved revision comparison user interface
Lots of new template files for custom taxonomies and custom post types,
among others
Not asking for confirmation when marking a comment as spam
Not notifying post to author of his/her own comments
Showing absolute date instead of relative date for scheduled posts
Addition toggle all button to the Gallery tab in the uploader
Browsing the theme directory and installing themes from the admin
Allowing the dashboard widgets to be arranged in up to four columns
Allowing "No role for this blog" to be chosen in Users | Add New panel
Choosing username and password during installation rather than
using "admin"
Multisite now built in
Supporting time zones and automatic daylight savings time adjustment
Supporting IIS 7.0 URL Rewrite Module
Faster loading of admin pages via script compression and concatenation
Lots of arguments added to template functions
Addition of password strength meter to Add User and Edit User
New default theme "Twenty Ten" takes full advantage of the current features
of WordPress
Custom header and background APIs
Support for shortlinks (though you need a plugin to realize this fully)
A lighter admin color scheme to increase accessibility and put the focus more
squarely on your content.
Contextual help text accessed under the Help tab of every screen in the
WordPress administration
Changes Remove link on widgets to Delete because it doesn't just remove it,
it deletes the settings for that widget instance
Syntax highlighting and function lookup built into plugin and theme editors

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[13]

Learning more
If you'd like to see detailed complete lists of all new features added since WordPress
version 2.7, take a look at these links:

http://codex.wordpress.org/Version_2.8

http://codex.wordpress.org/Version_2.9

http://codex.wordpress.org/Version_3.0

Also, you can read a fully explained feature list at http://wordpress.org/about/
features/.

Online WordPress resources
One very useful characteristic of WordPress is that it has a large, active online
community. Everything you will ever need for your WordPress website can likely
be found online, and probably for free.

WordPress news
As WordPress is always actively developed, it's important to keep yourself
up-to-date with the software community about their latest activities.

If you visit the Dashboard of your own WordPress site regularly, you'll be able
to stay up-to-date with WordPress news and software releases. There are widgets
on the dashboard that display latest news and announcements, and an alert
always appears when there is a new version of WordPress available for download
and installation.

If you prefer to visit the website, then the most important spot to visit or subscribe
to is WordPress Releases. Whenever there is a new release—be it a major release,
or an interim bug fix, or an upgrade—it will be here: http://wordpress.org/
development/category/releases/.

Also, be sure to stay tuned to the main WordPress blog at http://wordpress.org/
development/.

•

•

•

Introduction to WordPress

[14]

The Codex
The WordPress Codex is the central repository of all the information the official
WordPress team has published to help people work with WordPress.

The Codex has some basic tutorials for getting started with WordPress, such as
a detailed step-by-step discussion of installation, lists of every template tag and
hook, and a lot more. Throughout this book, I'll be providing links to specific pages
within the Codex, which will provide more or advanced information on the topics
in this book.

Chapter 1

[15]

Support from other users
The online WordPress community asks questions and responds with solutions on the
WordPress forum: http://support.wordpress.org. That's an excellent place to go
if you can't find the answer to a problem in the codex. If you have the question, then
probably someone else has had it as well, and WordPress experts spend time in the
forum answering questions and giving solutions. There's also an IRC channel where
you can get additional support.

Theme and plugin directories
There are official directories for themes and for plugins on wordpress.org. Though
not every theme and plugin is available here, the ones that are here have been vetted
by the community to some extent. Anything you download from these directories is
likely to be relatively bug-free. Plugins and themes that you get from other sources
can have malicious code, so be careful. You can also see what the community thinks
of these downloads by looking at ratings, comments, and popularity.

Additionally, plugins in the Plugin Directory are automatically upgradable from
within your WordPress Administration Panel, whereas other plugins have to be
upgraded manually. We'll cover this in more detail in a later chapter. You can find
the Theme Directory at http://wordpress.org/extend/themes/ and the Plugin
Directory at http://wordpress.org/extend/plugins/.

WordPress.com
You'll notice that all of the URLs above belong to wordpress.org. There is
another website, Wordpress.com, which is actually a free blog-hosting service.
Anyone can open an account on WordPress.com and instantly have his or her
own WordPress-driven website. According to WordPress.com, there were over
16 million blogs on WordPress.com and over 25 million active installations of the
WordPress.org software as of December 2010.

In Chapter 2, we will discuss all of the differences between having your blog on
WordPress.com versus downloading the software from WordPress.org and
hosting it yourself, but the basic difference is the level of control. If your blog is
on WordPress.com, you have less control over plugins, themes, and other details
of the blog because everything is managed and made worry-free by the
WordPress.com service.

Introduction to WordPress

[16]

Summary
Having a website of your own is essential these days, whether you are an individual,
a small business, or some other group. It is whether you are blogging regularly,
or just want some accurate static content up on the Internet. In this chapter, we
reviewed basic information about blogging and common blog terms for those
of you who are new to the concept.

WordPress is excellent software application that can run your website (blog or not).
It's packed with excellent features, is so flexible that it can really do anything you
want, and it has a wealth of online resources. Additionally, it's super easy-to-use,
and you need no special skills or prior experience to use it. Last, but not least,
it is free!

In the next chapter, we will explore the choices and steps involved in installing
WordPress and getting started.

Getting Started
This chapter will guide you through the process of setting up WordPress and
customizing its basic features. You can choose between a couple of options regarding
where your WordPress installation will live. Keep in mind that WordPress is
relatively small (under 10 MB), easy to install, and easy to administer.

WordPress is available in easily downloadable formats from its website,
http://wordpress.org/download/. WordPress is a free, open source application,
and is released under GNU General Public License (GPL). This means that anyone
who produces a modified version of software released under the GPL is required
to keep those same freedoms, that people buying or using the software may
also modify and redistribute, attached to his or her modified version. This way,
WordPress and other software released under GPL are kept open source.

In this chapter, you will learn how to:

Create a free blog on WordPress.com
Install WordPress manually on your web host
Perform basic setup tasks in the WordPress Admin panel

Where to build your WordPress website
The first decision you have to make is where your blog is going to live. You have two
basic options for the location where you will create your site. You can:

Use WordPress.com
Install on a server (hosted or your own)

Let's look at some of the advantages and disadvantages of each of these two choices.

•

•

•

•

•

Getting Started

[18]

The advantage of using WordPress.com is that they take care of all of the technical
details for you. The software is already installed; they'll upgrade it for you whenever
there's an upgrade; and you're not responsible for anything else. Just manage your
content! The big disadvantage is that you lose almost all of the theme and plugin
control you'd have otherwise. WordPress.com will not let you upload or edit your
own theme, though it will let you (for a fee) edit the CSS of any theme you use.
WordPress.com will not let you upload or manage plugins at all. Some plugins are
installed by default (most notably Akismet, for spam blocking, and a fancy statistics
plugin), but you can neither uninstall them nor install others. Additional features
are available for a fee as well. This chapter will cover creating a blog on WordPress.
com, and you can learn about navigating around the WP Admin in the next chapter.
However, much of what this book covers will be impossible on WordPress.com.

The huge advantage of installing WordPress on another server (which means either a
server that belongs to the web host with which you signed up, or a server you set up
on your own computer) is that you have control over everything. You can add and
edit themes, add and remove plugins, and even edit the WordPress application files
yourself if you want. You'll have to keep your own WordPress software up-to-date,
but that's relatively simple, and we'll cover it in this chapter. The only disadvantage
is that you have to do the installation and maintenance yourself, which, as you'll
see, shouldn't be too intimidating. Plus, some web hosts provide a one-click or
easy-to-use installer, which lets you skip over some of the nitty-gritty steps
involved in manual installation.

As I said, we'll discuss using WordPress.com in this chapter. However, you will have
to install WordPress on your own server if you want to accomplish any of the more
advanced topics from this book.

The following table is a brief overview of the essential differences between using
WordPress.com versus installing WordPress on your own server:

WordPress.com Your own server
Installation You don't have to install

anything, just sign up
Install WordPress yourself, either manually
or via your host's control panel (if offered)

Themes Use any theme made available
by WordPress.com

Use any theme available anywhere, written
by anyone (including yourself)

Plugins No ability to choose or add
plugins

Use any plugin available anywhere, written
by anyone (including yourself)

Upgrades WordPress.com provides
automatic upgrades

You have to upgrade it yourself when
upgrades are available

Widgets Widget availability depends on
available themes

You can widgetize any theme yourself

Chapter 2

[19]

WordPress.com Your own server
Maintenance You don't have to do any

maintenance
You're responsible for the maintenance of
your site

Advertising No advertising allowed Advertise anything and in any amount
you like

Using WordPress.com
WordPress.com (http://wordpress.com) is a free service provided by the
WordPress developers, where you can register a blog or non-blog website easily and
quickly with no hassle. However, because it is a hosted service, your control over
some things will be more limited than it would be if you hosted your own WordPress
website. As mentioned before, WordPress.com will not let you edit or upload your
own themes or plugins. Aside from this, WordPress.com is a great place to maintain
your personal site if you don't need to do anything fancy with a theme. To get started,
go to http://wordpress.com, which will look something like the following:

Getting Started

[20]

To register your free website, click on the loud orange-and-white Sign up now
button. You will be taken to the signup page. In the following screenshot, I've
entered my username (what I'll sign in with) and a password (note that the password
measurement tool will tell you if your password is strong or weak), as well as my
e-mail address. Be sure to check the Legal flotsam box and leave the Gimme a blog!
radio button checked. Without it, you won't get a website.

Chapter 2

[21]

After providing this information and clicking on the Next button, WordPress will
ask for other choices (Blog Domain, Blog Title, Language, and Privacy), as shown
in following screenshot. You can also check if it's a private blog or not. Note that you
cannot change the blog domain later! So be sure it's right.

After providing this information and clicking on Signup, you will be sent to a page
where you can enter some basic profile information. This page will also tell you that
your account is set up, but your e-mail ID needs to be verified. Be sure to check your
inbox for the e-mail with the link, and click on it. Then, you'll be truly done with
the installation.

Now, you can skip the next section of this chapter, which is about installing
WordPress manually. You can go directly to the section on the WP Admin
panel to start learning about it.

Getting Started

[22]

Installing WordPress manually
The WordPress application files can be downloaded for free if you want to do a
manual installation. If you've got a website host, this process is extremely easy and
requires no previous programming skills or advanced blog user experience.

Some web hosts offer automatic installation through the host's online control panel.
However, be a little wary of this because some hosts offer automatic installation, but
they do it in a way that makes updating your WordPress difficult or awkward, or
restricts your ability to have free rein with your installation in the future.

Preparing the environment
A good first step is to make sure you have an environment setup that is ready for
WordPress. This means two things: making sure that you verify that the server
meets the minimum requirements, and making sure that your database is ready.

For WordPress to work, your web host must provide you with a server that does the
following two things:

Support PHP, which must be at least Version 4.3.
Provide you with write access to a MySQL database. MySQL has to be at
least Version 4.1.2.

You can find out if your host meets these two requirements by contacting your web
host. If your web server meets these two basic requirements, you're ready to move
on to the next step.

As far as web servers go, Apache is the best. However, WordPress will also run on a
server running the Microsoft IIS server (though using permalinks will be difficult, if
possible at all).

Enabling mod_rewrite to use pretty permalinks

If you want to use permalinks, your server must be running Unix,
and Apache's mod_rewrite option must be enabled. Apache's
mod_rewrite is enabled by default in most web hosting accounts. If
you are hosting your own account, you can enable mod_rewrite by
modifying the Apache web server configuration file. You can check
the URL http://www.tutorio.com/tutorial/enable-mod-
rewrite-on-apache to learn how to enable mod_rewrite on your
web server. If you are running on shared hosting, then ask your system
administrator to install it for you. However, it is more likely that you
already have it installed on your hosting account.

•

•

Chapter 2

[23]

Downloading WordPress
Once you have checked out your environment, you need to download WordPress
from http://wordpress.org/download/. Take a look at the following screenshot
in which the download links are available on the right side:

The.zip file is shown as a big blue button because that'll be the most useful
format for the most people. If you are using Windows, Mac, or Linux operating
systems, your computer will be able to unzip that downloaded file automatically.
(The .tar.gz file is provided because some Unix users prefer it.)

A further note on location
We're going to cover installing WordPress remotely. However, if you plan
to develop themes or plugins, I suggest that you also install WordPress
locally on your own computer's server. Testing and deploying themes and
plugins directly to the remote server will be much more time-consuming
than working locally. If you look at the screenshots I will be taking of my
own WordPress installation throughout the book, you'll notice that I'm
working locally (for example, http://wpbook:8888/ is a local URL).

Getting Started

[24]

After you download the WordPress .zip file, extract the files, and you'll get a folder
called wordpress. It will look like the following screenshot:

Upgrading from an earlier version of WordPress
If you are upgrading an existing installation of WordPress, you should probably
leave this chapter and instead read the section on Upgrading WordPress in Chapter 11
of this book.

Chapter 2

[25]

Uploading the files
Now, we need to upload all these files to our web server using any FTP client (or
simply put them in our local server directory on our local computer). FTP stands for
File Transfer Protocol. There are several FTP clients available on the Internet, which
are either freeware (no cost) or as shareware (a small fee). If you don't already have
an FTP client, try one of these:

Filezilla—http://filezilla-project.org/download.php?type=client
(for Mac or Windows)
Fetch—http://fetchsoftworks.com/ (for Mac only)
SmartFTP—http://www.smartftp.com/ (for Windows only)

You can also use the popular web-based FTP application net2ftp at
http://www.net2ftp.com. These services are useful if you don't want to install
a desktop application on your computer. You can also check if your host provides
browser-based FTP software.

In my screenshots you'll see that I'm using Transmit, which is the professional FTP
software I use on my Mac. It works the same way as the examples above.

A note about security: whenever possible, you should use Secure FTP
(called sFTP) rather than regular FTP. If you're using sFTP, all of the data
sent and received are encrypted, whereas with FTP, data are sent in plain
text and can be easily nabbed by hackers. Check both your FTP software
and your hosting options, and select sFTP if it's available.

Using your FTP client or service, connect to your FTP server using the server
address, username, and password provided to you by your host. Next, open the
folder where you want WordPress to live. You may want to install WordPress in
your root folder, which will mean that visitors will see your WordPress website's
home page when they go to your main URL—for example, http://yoursite.
com. Alternatively, you may want to install WordPress in a subfolder; for example:
http://yoursite.com/blog/.

•

•

•

Getting Started

[26]

On the left side, you will see the files from your local folder, and on the right side
you will see your remote folder. (Note: the FTP client you are using may have a
slightly different layout, but this is the general idea):

Now select all of the WordPress files on your local machine from the left pane,
and drag all of them to the right pane. You can watch as your FTP client uploads the
files one at a time and they appear in the right panel. This could take a few minutes,
so be patient!

If you're installing WordPress on your local server, just be sure to place the
WordPress files in the correct webroot directory on your computer.

Once all of the files are done uploading, you're ready to do the installation.

Chapter 2

[27]

Installing WordPress
Now it's time to install WordPress. For example, I will be working on my local server
and just put brand-new WordPress files at http://wpbook:8888/. So, this is going
to be the URL of my WordPress website. If you access your WordPress URL via your
browser, it will look like the following:

It says that you need to create a file named wp-config.php before proceeding
further. WordPress (and I) recommend that you do this manually, rather than using
the Create a Configuration File link. If you do choose to use the config creator, you'll
need the information below as well (though there will be no opportunity for the
security phrases).

Open the wordpress folder and find the file named wp-config-sample.php. Make
a copy of this file and name it wp-config.php. We'll modify this file together. Don't
worry; you need not be a PHP programmer. Just open this file with a simple editor
such as Notepad. The following is the copied text from the original wp-config.php
file. Note that I've removed most of the comments, so that we can focus on the items
we need to change.

<?php
/** The name of the database for WordPress */
define('DB_NAME', 'database_name_here');

/** MySQL database username */
define('DB_USER', 'username_here');

Getting Started

[28]

/** MySQL database password */
define('DB_PASSWORD', 'password_here');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

define('AUTH_KEY', 'put your unique phrase here');
define('SECURE_AUTH_KEY', 'put your unique phrase here');
define('LOGGED_IN_KEY', 'put your unique phrase here');
define('NONCE_KEY', 'put your unique phrase here');
define('AUTH_SALT', 'put your unique phrase here');
define('SECURE_AUTH_SALT', 'put your unique phrase here');
define('LOGGED_IN_SALT', 'put your unique phrase here');
define('NONCE_SALT', 'put your unique phrase here');

$table_prefix = 'wp_';
?>

One thing to know about PHP is that any text that comes after a double
slash (//), or between a slash-star and star-slash (/* */), is a comment.
It's not actual PHP code. Its purpose is to inform you what that line or
that section is about.

As you can see from the previous code, there are a number of settings that you can
insert here. Let's walk through the most important ones.

As I mentioned in an earlier section, you need to have write access to a database.
Most large web hosts offer you a way to create your own databases, with usernames
and passwords, via an online control panel. If you're not sure how to do this, just
e-mail or call your hosting provider for this information. You'll need four pieces of
information about your database for the WordPress configuration file. They are:

Database server—for example, localhost
Username—for example, localdbuser
Password—for example, 62dcx0hnm
Database name—for example, wpbookdb

•

•

•

•

Chapter 2

[29]

Your database server might not be localhost. If it's not, you can ask your hosting
provider, or take a look at this handy cheat sheet: http://codex.wordpress.org/
Editing_wp-config.php#Possible_DB_HOST_values.

Once you have those four things, you can fill them into your wp-config.php file.
For example, see how mine is filled out here:

// ** MySQL settings ** //
define('DB_NAME', 'wpbookdb');
define('DB_USER', 'localdbuser');
define('DB_PASSWORD', '62dcx0hnm');
define('DB_HOST', 'localhost');

Next, for security purposes, you really should put some unique phrases into the
unique keys. The secret keys are used by WordPress to add random elements to your
passwords and are also used in some other situations. This will help to keep your
WordPress installation uniquely protected. No one else is likely to choose the same
unique keys that you chose, and therefore, breaking or hacking into your site will be
more difficult. You can get some secret keys generated by going to https://api.
wordpress.org/secret-key/1.1/salt/. Once I did that, I got the following, which
I can paste directly over the default code in wp-config.php:

define('AUTH_KEY', 'uu|6#00Pc/3h?Pg5:Zc#:S=;<3mdw-ai');
define('SECURE_AUTH_KEY', 'vy1.@Nr@Zb^G|0Vfz-|TH5&W');
define('LOGGED_IN_KEY', 'sryMVd`jVpiMWWQqx~!v XE5@fJMTt2[Z');
define('NONCE_KEY', 'i,+UPpMR>Mj3o}(B**^<T:/md,YFF76d]Kf');
define('AUTH_SALT', 'n.8Li=9OjV+_p|}e5yN2k<s{!KJs|[S&Zh');
define('SECURE_AUTH_SALT', 'I#2vPT^u[5vLX|`MzPg/J*y]RTfr');
define('LOGGED_IN_SALT', 'gR%QP^c*jfFUy,iQ}-0g_%;%H)pN0B5');
define('NONCE_SALT', '&L);.IH`v{]zYLO2:h_t#J0D-p)cvyc');

The only other thing you may want to consider is the table prefix. I strongly
recommend using a prefix. If you want to install WordPress more than once, you'll
need to use different prefixes in your different installations. If you are using this
same database for other things, it'll be handy if the tables are grouped based on
what they're being used for. So either leave the following line as it is, or choose
another prefix:

$table_prefix = 'wpbook_';

Learning more: The WordPress codex has a long and detailed page that
describes everything about editing your wp-config.php file: http://
codex.wordpress.org/Editing_wp-config.php.

Getting Started

[30]

Now, go back to your browser and reload the page that's pointing to your WordPress
installation. If your configuration file makes sense to WordPress, you'll be taken
directly to the installation page.

Chapter 2

[31]

(If you've ever installed an earlier version of WordPress, you'll notice some
differences, like the ability to choose your first username and password!) Now, fill
out the installation form (you will be able to change all of these later, so don't be
too worried about getting locked into your choices):

Site title: Fill in the name of your blog (in my case it's 'Daily Cooking').
Username: Note that the default username is 'admin', but for security
purposes, you're better off picking another username. If someone ever tries
to hack your blog, they will be halfway there if they already know your
username. I've chosen 'ahsilver'.
Password: Choose a secure password, one that has both upper and lowercase
letters, a number or two, and even a few punctuation marks.
Your E-Mail: Double-check that this is correct, because this is the e-mail
address WordPress will use to contact you about the blog, comments, and
so on. If you do not get an e-mail from your WordPress site shortly after
installing, check your spam folder.

Now, click on Install WordPress. You're done with the install!

You can click on Log In to get to the login page. Or you can always enter your
WordPress Admin panel (also known as the WP Admin) by pointing your browser
to http://yoursite.com/wp-admin. If you're not already logged in, this URL will
redirect you to the login page.

•

•

•

•

Getting Started

[32]

Learning more
If you'd like to see an even more detailed step-by-step guide for manual installation,
take a look at this page in the WordPress Codex: http://codex.wordpress.org/
Installing_WordPress.

Also, you can find more detailed installation instructions—as well as specifics
on changing file permissions, using FTP, using languages, importing from other
blogging engines, and more—in the WordPress Codex here: http://codex.
wordpress.org/Getting_Started_with_WordPress#Installation.

The WP Admin panel
WordPress installs a powerful and flexible administration area where you can
manage all of your website content, and do much more. Throughout the book,
I'll be referring to this in shorthand as the WP Admin.

Now that you've successfully installed WordPress, it's time for our first look at the
WP Admin. There are some immediate basic changes that I recommend doing right
away to make sure your installation is set up properly.

You can always get to the WP Admin by going to this URL: http://yoursite.com/
wp-admin/. Your first time here, you'll be re-directed to the login page. In the future,
WordPress will check to see if you're already logged in and, if so, you'll skip the
login page. Following is the login page:

Chapter 2

[33]

To log in, just enter the username and password you chose during the installation.
Then click on Log In. Note for the future that on this page there is a link you can
use to retrieve your lost password.

Whenever you log in, you'll be taken directly to the Dashboard of the WP Admin.
Following is a screenshot of the WP Admin that you will see immediately after you
log into the blog you just installed:

You'll see a lot of information and options here, which we will explore throughout
this book. For now, we will focus on the items that we need to touch upon right after
a successful installation. First, let's take a brief look at the top of the WP Admin and
the Dashboard.

Getting Started

[34]

The very top bar, which I'll refer to as the top bar, is mostly a medium grey
and contains:

A link to the front page of your WordPress website
A rollover drop-down menu with handy links to New Post, Drafts, New
Page, Upload, and Comments
Your username linked to your profile
A link to log out

You'll also notice the Screen Options tab, which appears on many screens within the
WP Admin. If you click on it, it will slide down a checklist of items on the page to
show or hide. It will be different on each page. I encourage you to play around with
that by checking and unchecking items, as you find you need them or don't need them.

On the left, of course, is the main menu:

•

•

•

•

Chapter 2

[35]

You can click on any word in the main menu to be taken to the main page for
that section, or you can click on the rollover arrow to slide down the subpages for
that section. For example, if you click on the arrow next to Settings, you'll see the
subpages for the Settings section:

In this book, when describing to you which page within the WP Admin to go to, I'll
write things such as "navigate to Settings | Privacy" or "navigate to Posts | Add
New". This always describes the path you should take to get there via the main menu.

The top menu and the main menu exist on every page within the WP Admin. The
main section on the right contains information for the current page you're on. In this
case, we're on the Dashboard. It contains boxes that have a variety of information
about your blog, and about WordPress in general.

Before WordPress 3, the first thing you'd have to do would be to change the
password to something easier to remember. However, now that you can choose your
password during installation, this is no longer necessary. Let's jump right to general
site settings.

Changing general blog information
You may need to change and add some general blog information (such as blog
title, one-sentence description, and so on) after a successful installation to get your
website set up with the correct information. To get started with this, navigate
to Settings in the main menu.

Getting Started

[36]

There are many options you can set here, most of which are pretty self-explanatory.
We'll look at the most important ones, and you can explore the rest on your own.
Obviously, you can change your blog's title. You can see from my screenshots that
I've called mine Daily Cooking:

You can also change the blog description, which is used in most themes as a subtitle
for the blog, like the subtitle of a book. The default description is Just another
WordPress site. You'll probably want to change that! I'll change mine to 'Exploring
cooking every day of the week'.

The only other thing you probably want to take a look at on this page is the Timezone:

Whether you have a blog (with timestamps on every post) or not, it's important that
WordPress knows what timezone you're in, in case you want to schedule a page or
post for the future, show users accurate timestamps, or even just make sure that
e-mail notifications are correctly time-stamped.

The pull-down menu will show you different UTC settings, along with cities. Just
choose a city in your timezone. After you save the changes you made, the time that
shows further down the page (next to Time Format) will change to the time you
chose, so that you can check and make sure it's correct.

When you're done making changes to this page, be sure to click on the Save Changes
button at the bottom of the page.

Your first post
For this chapter, and the next few chapters, we'll be focusing on using WordPress
to run a blog website. In a later chapter, we'll talk more specifically about using
WordPress for a non-blog website.

Chapter 2

[37]

So, with that in mind, let's add the first piece of content to your new blog—a blog
post. (This won't be the very first post on the blog itself, because WordPress created
a post, a comment, and a page for you when it installed. It will be YOUR first post,
however!). To create a post, just click on New Post on the top menu. You'll be taken
to the following page:

Getting Started

[38]

As you can see, there are a lot of options for your post (which we'll explore in more
detail in Chapter 3). For now, just worry about the basics. Every post should have, at
minimum, a title and some content. So go ahead and write in some text for those two
things. When you are happy with it, click on the Publish button.

You'll get a yellow note telling you that the post is published. Take a look at the
front page of your site by clicking on the name of your site in the top bar. You'll
see the following:

Chapter 2

[39]

Your first comment
Now let's see what it's like to post a comment. One of the great things about blogs
is that they give you, the writer, the opportunity to spark a conversation with your
readers. WordPress comes with a fantastic commenting system that allows visitors
to add comments to your blog. To add your own comment to your first post, click
on the Leave a comment link underneath your first post. You'll be taken to the
post's individual page at the bottom, where you can find a comment form like
the following:

Getting Started

[40]

Your visitors, who won't already be logged into the WP Admin, will see a form that
looks like the following instead:

As you're already logged in, all you have to do is write something in the text area
and click on Submit Comment. Then, you'll see your comment show up under the
post, and that's it. Later, we'll explore how you can control which comments show
up right away, and which comments have to wait for you to verify them as valid,
as well as which fields are required for visitors.

Chapter 2

[41]

Retrieving a lost password
If you have lost your password and can't get into your WP Admin panel, you can
easily retrieve your password by clicking on the Lost your password? link on the
login page. A newly generated password will be e-mailed to you at the e-mail
address you gave during the WordPress installation. This is why you need to
be sure that you enter a valid e-mail address. Otherwise, you will not be able
to retrieve your password.

Summary
You have learned a lot of things from this chapter. Now you are able to install
WordPress on a remote server, change the basic default settings of your blog,
write posts, and comment on those posts.

In the next chapter, we will learn about all the other aspects of a blog post that you
can control and additional ways to add posts, as well as the intricacies of managing
and controlling commenting and discussion on your blog.

Creating Blog Content
Now that your WordPress installation is up and running, you are ready to start
creating content. In this chapter, you will first become familiar with the WP Admin's
display and editing features and conventions. Then, you'll learn how to control all of
the information associated with a post, not just the title and content. You will also learn
about comments—what they are for and how to manage them. Additionally, we will
explore how to keep your content organized and searchable using tags and categories.

WP Admin conventions
In the WP Admin, you have the ability to manage a number of different types of
things (objects)—this includes posts, categories, pages, links, media uploads, and more.
WordPress uses a similar format for the various screens. Let's explore them below.

Lists of items
For every object in WordPress you might want to manage, there will be a page listing
them. For example, let's have a look at what a list of posts might look like:

Creating Blog Content

[44]

As you can see, the name of the object is at the top, and the list of items has columns.
Let's take a look at the important elements:

Each item in the list shows its Title. You can always click on an item title
to edit it.
If you hover your mouse over an item's row, as I hovered over "Hello World"
in the preceding screenshot, you will see four additional links. Three are
self-explanatory (Edit, Trash, View). You can use Quick Edit to edit most
of the basic information about a post (other than the content, custom fields
and most plugin-added items). If you click on Quick Edit, you'll quickly see
what's available:

You can make changes, and then click on Update, or click on Cancel if you've
changed your mind.

The area above the list of posts lets you choose whether to view All posts,
Published Posts, Drafts, or Trash.
Just below those links is the Bulk Actions menu and its Apply button.
Choose one or more posts by clicking on their checkboxes (or check the
top checkbox to check every item) and click Apply. Then choose Edit or
Trash from the Bulk Actions menu, and you'll be able to bulk delete or
bulk edit posts.
The filter menu lets you choose options from the Dates and Categories
pull-down lists, and then click on the Filter button to only show items that
meet those qualifications.

•

•

•

•

•

•

Chapter 3

[45]

At the very top is Screen Options. This tab, which appears on every screen
will allow you (on list pages like this one) to hide or show particular columns
and choose the number of items to show per page.

Posting on your blog
The central activity you'll be doing with your blog is adding posts. A post is like an
article in a magazine; it's got a title, content, and an author (in this case, you, though
WordPress allows multiple authors to contribute to a blog). If a blog is like an online
diary, then every post is an entry in that diary. A blog post also has a lot of other
information attached to it, such as a date, excerpt, tags, and categories. In this section,
you will learn how to create a new post and what kind of information to attach to it.

Adding a simple post
Let's review the process of adding a simple post to your blog, which we carried
out in the previous chapter. Whenever you want to add content or carry out a
maintenance process on your WordPress website, you have to start by logging into
the WP Admin (WordPress Administration panel) of your site. To get to the admin
panel, just point your web browser to http://yoursite.com/wp-admin.

Remember that if you have installed WordPress in a subfolder
(for example, blog), then your URL has to include the
subfolder (that is, http://yoursite.com/blog/wp-admin).

When you first log in to the WP Admin, you'll be at the Dashboard. The Dashboard
has a lot of information on it don't worry about that right now. We'll discuss the
Dashboard in detail later in the book.

The quickest way to get to the Add New Post page at any time is to click on the
New Post link at the top of the page in the top bar.

•

Creating Blog Content

[46]

This is the Add New Post page:

Chapter 3

[47]

To add a new post to your site quickly, all you have to do is:

1. Type in a title into the text field under Add New Post (for example,
Making Lasagne).

2. Type the text of your post in the content box. Note that the default view is
Visual, but you actually have a choice of the HTML view as well.

3. Click on the Publish button, which is at the far right. Note that you can
choose to save a draft or preview your post.

In the following image, the title field, the content box, and the Publish button of the
Add New Post page are highlighted:

Once you click on the Publish button, you have to wait while WordPress performs
its magic. You'll see yourself still on the Edit Post screen, but now the following
message would have appeared telling you that your post was published, and
giving you a link to View post:

Creating Blog Content

[48]

If you view the front page of your site, you'll see that your new post has been added
at the top (newest posts are always at the top):

Common post options
Now that we've reviewed the basics of adding a post, let's investigate some of the
other options on the Add New Post and Edit Post pages. In this section we'll look
at the most commonly used options, and in the next section we'll look at the more
advanced options.

Chapter 3

[49]

Categories and tags
Categories and tags are two types of information that you can add to a blog post. We
use them to organize the information in your blog by topic and content (rather than
just by, say, date), and to help visitors find what they are looking for on your blog.

Categories are primarily used for structural organizing. They can be hierarchical,
meaning a category can be a parent of another category. A relatively busy blog
will probably have at least 10 categories, but probably not more than 15 or 20. Each
post in such a blog is likely to have from one up to, maybe four categories assigned
to it. For example, a blog about food and cooking might have these categories:
Cooking Adventures, In The Media, Ingredients, Opinion, Recipes Found, Recipes
Invented, and Restaurants. Of course, these numbers are just suggestions; you can
create and assign as many categories as you like.

Tags are primarily used as shorthand for describing the topics covered in a particular
blog post. A relatively busy blog will have anywhere from 15 to 60 tags in use. Each
post in this blog is likely have three to ten tags assigned to it. For example, a post on
the food blog about a recipe for butternut squash soup may have these tags: soup,
vegetarian, autumn, hot, easy. Again, you can create and assign as many tags as
you like.

Let's add a new post to the blog. After you give it a title and content, let's add tags
and categories. When adding tags, just type your list of tags into the Tags box on
the right, separated by commas:

Then click on the Add button. The tags you just typed in will appear below the text
field with little xs next to them. You can click on an x to delete a tag. Once you've
used some tags in your blog, you'll be able to click on the Choose from the most
popular tags link in this box so that you can easily re-use tags.

Categories work a bit differently than tags. Once you get your blog going, you'll
usually just check the boxes next to existing categories in the Categories box. In this
case, as we don't have any existing categories, we'll have to add one or two.

Creating Blog Content

[50]

In the Categories box on the right, click on the + Add New Category link. Type your
category into the text field, and click on the Add button. Your new category will
show up in the list, already checked. Look at the following screenshot:

If in the future you want to add a category that needs a parent category, select Parent
category from the pull-down menu before clicking on the Add button. If you want to
manage more details about your categories, move them around, rename them, assign
parent categories, and assign descriptive text, you can do so on the Categories page,
which we'll see in detail later in this chapter.

Click on the Publish button, and you're done (you can instead choose to schedule a
post; we'll explore that in detail in a few pages). When you look at the front page of
your site, you'll see your new post on the top, your new category in the sidebar, and
the tags and category (that you chose for your post) listed under the post itself.

Chapter 3

[51]

Images in your posts
Almost every good blog post needs an image! An image will give the reader an
instant idea of what the post is about, and the image will draw people's attention in
as well. WordPress makes it easy to add an image to your post, control default image
sizes, make minor edits to that image, and designate a featured image for your post.

Adding an image to a post
Luckily, WordPress makes adding images to your content very easy. Let's add an
image to the post we just created. You can click on Edit underneath your post on the
front page of your site to get there quickly. Alternatively, go back to the WP Admin,
open Posts in the main menu, and then click on the post's title.

To add an image to a post, first you'll need to have that image on your computer.
Before you get ready to upload an image, make sure that your image is optimized
for the Web. Huge files will be uploaded slowly and slow down the process of
viewing your site. You can re-size and optimize images using software such as GIMP
or Photoshop. For the example in this chapter, I have used a photo of butternut
squash soup that I took from the website where I got the recipe, and I know it's on
the desktop of my computer. Once you have a picture on your computer and know
where it is, carry out the following steps to add the photo to your blog post:

1. Click on the little photo icon, which is next to the word Upload/Insert and
below the box for the title:

2. In the box that appears, click on the Select Files button, and browse
to your image.

Creating Blog Content

[52]

3. Then, click on Open and watch the uploader bar. When it's done, you'll have
a number of fields you can fill in:

The only fields that are important right now are Title, Alignment, and Size.
Title is a description for the image, Alignment will tell the image whether to
have text wrap around it, and Size is the size of the image. As you can see,
I've chosen the Left alignment and the Medium size.

4. Now, click on Insert into Post. This box will disappear, and your image
will show up in the post on the edit page itself (in the Visual editor, that
is. If you're using the HTML editor, then the image code HTML will
be displayed):

Chapter 3

[53]

5. Now, click on the Update Post button, and go look at the front page of your
site again. There's your image!

Controlling default image sizes
You may be wondering about those image sizes. What if you want bigger or smaller
thumbnails? Whenever you upload an image, WordPress creates three versions
of that image for you. You can set the pixel dimensions of those three versions by
opening Settings in the main menu, and then clicking on Media. This takes you
to the Media Settings page:

Here you can specify the size of the uploaded images for:

Thumbnail size
Medium size
Large size

•

•

•

Creating Blog Content

[54]

If you change the dimensions on this page, and click on the Save Changes button,
only images you upload in the future will be affected. Images you've already
uploaded to the site will have had their thumbnail, medium, and large versions
created already using the old settings. It's a good idea to decide what you want your
three media sizes to be early on in your blog, so you can set them and have them
applied to all images, right from the start.

Media Settings Tip: Be sure to set the width of the "large" size to
the width of your content column on your site. That way, those
images will always fit nicely without being too large.

Editing an uploaded image
As of WordPress 2.9, you can now make minor edits on images you've uploaded.
I often find that the default thumbnail cropping doesn't suit me. For example,
following is a photo of a person on a mountaintop, and right next to it is the
thumbnail version WordPress created:

Chapter 3

[55]

You can't see the person on the mountaintop! So I want to edit the thumbnail image.
Just after you've uploaded an image, or after you pull it up in the "add media"
screen, you'll see a button that says Edit Image, just underneath the thumbnail
in the image above. Click it and you'll get a little editing screen:

Creating Blog Content

[56]

Use your mouse to draw a box as I have done in the preceding image. On the right,
in the box marked Image Crop, you'll see the pixel dimensions of your selection.
Click the crop icon (top left), then the Thumbnail radio button (bottom right), and
then Save (just below your photo). You now have a new thumbnail!

You can also use this screen to rotate and resize your images. Play around a little and
you can become familiar with the details.

Designating a post thumbnail or featured image
As of WordPress 2.9, you can designate a single image that represents your post.
This is referred to as the post thumbnail or featured image. Some themes will make
use of this, and some will not. The default theme, the one we've been using, is named
TwentyTen, and it uses the featured image in the header of the site. If a post doesn't
have a featured image, it will use a default.

For this particular theme, TwentyTen, the featured image has to be 948 pixels wide
and 198 pixels tall. Note that this may be different for other themes. Many themes do
not have any particular requirement for a post thumbnail, and only use them, in their
thumbnail form, in search results and other post listings.

Let's designate a featured image for the post we just created. I've found a butternut
squash image that will work well for my soup post. First, follow the steps above
to upload the image. Then, instead of clicking Insert into post, click Use as
featured image:

Chapter 3

[57]

After doing that, you don't even have to update the post! Just clicking that link
takes care of it. When you go to the post page, you'll see your featured image
in the header:

Using the Visual editor versus the HTML editor
WordPress comes with a Visual editor, otherwise known as a WYSIWYG editor
(pronounced wissy-wig, and stands for What You See Is What You Get). This is the
default editor for typing and editing your posts. If you're comfortable with HTML,
you may prefer to write and edit your posts using the HTML editor—particularly
useful if you want to add special content or styling.

Creating Blog Content

[58]

To switch from the rich text editor to the HTML editor, click on the HTML tab next
to the Visual tab at the top of the content box:

You'll see your post in all its raw HTML glory, and you'll get a new set of buttons
that lets you quickly bold and italicize text, as well as add link code, image code,
and so on.

You can make changes and swap back and forth between the tabs to see the result.

Drafts, timestamps, and managing posts
There are three additional, simple but common, items I'd like to cover in this section:
drafts, timestamps, and managing posts.

Drafts
WordPress gives you the option to save a draft of your post so that you don't have
to publish it right away but can still save your work. If you've started writing a
post and want to save a draft, just click on the Save Draft button at the right (in the
Publish box), instead of the Publish button. Even if you don't click on the Save Draft
button, WordPress will attempt to save a draft of your post for you, about once a
minute. You'll see this in the area just below the content box. The text will say
Saving Draft... and then show the time of the last draft saved:

At this point, after a manual save or an auto-save, you can leave the Edit Post
page and do other things. You'll be able to access all of your draft posts from the
Dashboard or from the Edit Posts page.

Timestamps
WordPress will also let you alter the timestamp of your post. This is useful if you
are writing a post today that you wish you'd published yesterday, or if you're
writing a post in advance and don't want it to show up until the right day. By
default, the timestamp will be set to the moment you publish your post. To change

Chapter 3

[59]

it, just find the Publish box, and click on the Edit link (next to the calendar icon and
Publish immediately), and fields will show up with the current date and time for
you to change:

Change the details, click on the OK button, and then click on Publish to publish
your post (or save a draft).

Managing posts
If you want to see a list of your posts so that you can easily skim and manage
them, you just need to go to the Edit Posts page in the WP Admin by navigating
to Posts in the main menu. You'll see a detailed list of your posts, as seen in the
following screenshot:

There are are many things you can do on this page, as with every management page
in the WP Admin, as we discussed at the beginning of this chapter.

Creating Blog Content

[60]

Advanced post options
By now, you have a handle on the most common and simple options for posts, and
you may be wondering about some of the other options on the Edit Post page. We'll
cover them all in this section.

A quick display tip:
When you first visit the Edit Post page, all of the four advanced options
(Excerpt, Send Trackbacks, Custom Fields, and Discussion) are "open"
below the post content. If you never use them and want to clean up the
look of this page, you can single-click each bar and they'll collapse. You
can also rearrange them by dragging them to form a new order.
You can also use Screen Options (top right of the page) to uncheck
certain boxes, and thus not display them at all.

Excerpt and the MORE tag
WordPress offers theme designers the option to show a post's excerpt (instead of its
full content) on pages within the theme.

This is how the excerpt works:

If you enter some text into the excerpt box on the Edit Post page, that text
will be used as the post's excerpt on theme pages that call for it.
If you do not enter any text into the excerpt box, WordPress will use the first
55 words of the post's content (which is stripped of HTML tags) followed by
[…] (which is not a link).
If you do not enter any text into the excerpt box, and the theme you are using
does something special, the number of words and the final text could be
different. For example, the TwentyTen theme replaces the […] with a link
to Continue Reading.

•

•

•

Chapter 3

[61]

You never are required to enter excerpt text. You'll only want to do it if your
content's default excerpt doesn't suit you (and if the theme you are using makes
use of the excerpt at all).

The MORE tag (<!-- more -->) should not be confused with the excerpt. This is
different from the excerpt because you, not the theme designer, control its use. Text
before this tag, for any post that has it, will be the only thing that's shown on all blog
pages (for example homepage, category page, search results page, and so on). The
full post text will only show up on the single post page. All you have to do is put
the <!-- more --> link at the spot in your post where you'd like the cut-off to be.
WordPress will automatically cut off the post there and replace it with a Read the
rest of this post link.

To add this tag to a post, first place your cursor on the spot where you'd like the post
to be split up. Then click on the more tag button in the editor. If you're using the
Visual editor, the button you want to click looks like the following:

If you're using the HTML editor, the button looks like this:

Trackbacks
Trackbacks are useful if you write a blog post that is a response to an old post on
someone else's blog and you want them to know about it.

Be aware that this is not necessary for current up-to-date WordPress
sites, which use an automated system called "pingbacks".

Creating Blog Content

[62]

If you want to notify an older blog via trackback, just copy the trackback URL from
that person's blog post and paste it into this box. An excerpt of your blog post will
show up as a comment on their blog post.

Trackbacks are becoming somewhat out-of-date with the advent of pinging. In fact,
many WordPress themes are written to essentially disable trackbacks. Pinging is
WordPress' way of notifying popular update services, such as Ping-o-Matic!, which
other people use to keep up-to-date with your blog and other people's blogs. We will
explain more about pinging in the following section.

Discussion
The Discussion box has two checkboxes in it: one for allowing comments, and the
other for trackbacks and pingbacks. When you first install WordPress, both these
checkboxes will be checked by default. You have to uncheck them if you want
to turn off the comments or trackbacks and pingbacks for the post.

Pingbacks are essentially the same as trackbacks, but differ in two important ways:

The notification from your blog to the blog of the person you're commenting
on happens automatically—you don't have to enter a special URL into a
special field. All you have to do is link your blog post to their blog post.
Pingbacks don't send any content.

If you uncheck the Allow comments box, visitors will not be able to comment on this
blog post.

•

•

Chapter 3

[63]

If you uncheck the Allow trackbacks and pingbacks on this page box, when other
people mention your blog post and link to it on their own websites, your blog
post won't notice and won't care. So, if you are using WordPress to run a non-blog
website, this is the best option for you.

If the box stays checked, other people's pingbacks about this post will show up under
your post along with comments, if any. If you're using WordPress to run a blog
website, you'll want pingback to stay checked—especially if you want sites such
as Technorati and other rating/authority sites to stay alerted.

If you want either or both of these boxes to be unchecked by default, go to Settings
and then Discussion in the main menu. You can uncheck either or both of the boxes
labeled Allow link notifications from other blogs (pingbacks and trackbacks) and
Allow people to post comments on the article:

Learning more:
To learn more about trackbacks and pingbacks you can visit the
following sites:
http://www.tamba2.org.uk/wordpress/ping.
http://codex.wordpress.org/Introduction_to_
Blogging#Trackbacks.
http://codex.wordpress.org/Introduction_to_
Blogging#Pingbacks.

Custom Fields
Custom Fields is a way for you to add additional information about your blog posts
that are not part of WordPress by default. By default, every WordPress post has
many pieces of information (fields) such as title, content, date, categories, and so on.
If there is a field you want all or many of your posts to have, you can add it here
(in the Custom Field).

Creating Blog Content

[64]

For example, let's say you are a gadget reviewer and every blog post is a review of
some new gadget. Every time you write a review, you're writing it about a product
made by some company, and you'd like to have that company's logo associated with
the blog post. You can make a custom field called company_logo and the value can
be the path to the logo image.

To display or make use of this custom field information, you either have to modify
your theme files manually, or use a plugin.

Learning more
Read more about custom fields in the WordPress codex at
http://codex.wordpress.org/Using_Custom_Fields.

Protecting content
WordPress gives you the option to hide posts. You can hide a post from everyone but
yourself by marking it Private, or you can hide it from everyone but the people with
whom you share a password by marking it as Password protected. To implement
this, look at the Publish box at the upper right of the Edit Post page. If you click on
the Edit link next to Visibility: Public, a few options will appear:

If you click on the Password protected radio button, you'll get a box where you can
type a password. Visitors to your blog will see the post title along with a note that
they have to type in a password to read the post.

If you click on the Private radio button, the post will not show up on the blog at all to
any viewers, unless you are the viewer and you are logged in.

If you leave the post Public and check the Stick this post to the front page checkbox,
this post will be the first post on the front page, regardless of its publication date.

Be sure to click on the OK button if you make any changes.

Chapter 3

[65]

Pretty permalinks
Permalinks are the permanent links to a particular post; a URL that will never
change. For example, right now, the URL for my Butternut Squash soup post is
http://wpbook:8888/?p=15 and that won't ever change. WordPress gives you a
way to prettify your URLs. If I modify the permalinks settings for this website, the
URL would instead be http://packt:8888/2008/11/butternut-squash-soup/.
The very last part of the URL, butternut-squash-soup, is called the post's slug.
WordPress chooses the slug by taking my post title, making it all lowercase, removing
all punctuation, and replacing spaces with dashes. If I'd prefer it to be something else,
such as squash-soup, I can change it in the area just below the post's title:

Just click on Edit to change the slug. Readable URLs are something that Google
search loves, so using them helps to optimize your site for search engines. It also
helps users figure out what a post is about before clicking on the URL.

By default, pretty permalinks will not be turned on for your WordPress installation.
To turn them on, navigate to Settings | Permalinks. Click on one of the radio
buttons, for example Month and name, and click on Save Changes at the bottom
of the page:

Creating Blog Content

[66]

As mentioned in Chapter 2, your server environment has to be friendly to pretty
permalinks (that is running Apache, with mod_rewrite turned on). If you have
trouble getting pretty permalinks to work on your blog, send the error WordPress
gives you to your hosting company, and they can usually help you understand
what you can do to fix the problem with your server.

If the Permalinks page has a permissions problem and can't edit your .htaccess file,
WordPress will give you some lines of code that you can copy and paste into a blank
file. You can then upload that file via FTP, name it .htaccess, and thus create
it yourself.

Additional writing options
In addition to simply logging into the WP Admin, you have two other choices of
ways for adding posts to your blog.

Press This
WordPress offers a neat bookmark called Press This. You can put it into your
browser's bookmarks or favorites, which will let you quickly write a blog post about
the website you're visiting. (This used to be named the bookmarklet.) You may have
encountered this same feature as offered by Facebook, Del.ico.us, and other social
networking sites.

You just have to add Press This to your browser once, and then you can use it
anytime. To add the Press This link to your browser in the WP Admin, go to the
Tools page. On the bottom of the Tools page is a Press This link. Just use your
mouse, and drag it up to your browser's bookmark bar.

Now you can use it! For example, if you're reading a newspaper website and
you read an article you'd like to mention in a blog post, just click the Press This
bookmark (or favorite). A window will pop up with the Edit Post page in it and
the URL of the site at which you're looking already written in as a link:

Chapter 3

[67]

You can then write whatever additional text you want, add tags and categories, and
then either save it as a draft or publish it right away.

Posting via e-mail
If you want to add a post to your blog without having to open the WP Admin and
log in, you can set up your WordPress installation to accept posts sent via e-mail.
First, you have to set up a special secret e-mail address that is accessible via POP.
WordPress will check that e-mail address and turn any e-mails in it into posts. If you
decide to set up this feature, you will have to be sure not to use this e-mail address
for any other purpose!

Creating Blog Content

[68]

Once you have the e-mail address set up at your mail server, go to your WP Admin
and navigate to Settings | Writing. Scroll down a bit to Post via e-mail:

Now just enter the server, login name, and password into the Writing Settings page
and be sure to click on the Save Changes button. Note that on this page, WordPress
provides you with three random strings you could use for the e-mail address, so you
might want to visit this page first to get one, then set up your POP account, and then
return to this page to set up Post via e-mail.

Discussion on your blog—comments
Comments are an important part of most of the blogs. While you are the only person
who can write blog posts, the visitors to your blog can add comments to your posts.
This can fuel a sense of community within a blog, allow people to give you feedback
on your writing, and give your visitors a way to help or talk to other visitors. The
only downside of commenting is that unscrupulous people will try to misuse your
blog's ability to accept comments, and will try to post spam or advertisements in
your blog instead of relevant comments. Luckily, the WordPress community is
always developing more ways of fighting spam.

Adding a comment
If you look at the front page of your blog, you'll see that every post has a link that
says Leave a comment at the bottom. Clicking on that link will take you to the
bottom of the post page, which is where comments can be added, as we saw in
Chapter 2.

Chapter 3

[69]

If you're logged into the WP Admin, you'll see your name and a space to write your
comment. If you're not logged in, you'll see a comment form that any other visitor
will see (as above). This form includes fields to fill in name, e-mail, and website,
along with the commenting text area.

Once you type in the required information and click on the Post Comment button,
the comment will be entered into the WordPress database along with all of your
other blog information. How soon it shows up on the site depends on your
discussion settings.

Creating Blog Content

[70]

Discussion settings
In the preceding screenshot, notice that Name and Mail are both marked required
(*). As the owner of this blog, you can change the requirements for comments. First,
log into the WP Admin and navigate to Settings | Discussion. We explored the first
box (Default article settings) earlier in this chapter.

Submission, notification, and moderation settings
Let's focus on the checkboxes on this page that relate only to submission,
notification, and moderation. The boxes that are checked on this page will determine
how much moderation and checking a comment has to go through before it gets
posted on the blog.

The default settings are relatively strict. The only way to make a more strictly
controlled discussion on your blog is to check An administrator must always
approve the comment. This option means that no matter what, all comments go
into the moderation queue and do not show up on the site until you manually
approve them.

Let's look at the settings having to do with submission. These two options control
what the user has to do before he or she is even able to type in a comment:

Comment author must fill out name and e-mail
As you noticed in the screenshot in the Adding a comment section, Name
and Mail are required. If you leave this checked, then anyone posting a
comment will encounter an error if they try to leave either of the fields blank.
This doesn't add a huge amount of security because robots know how to fill
out a name and an e-mail, and because anyone can put fake information in
there. However, it does help your blog readers to keep a track of who is
who if a long discussion develops, and it can slightly discourage utterly
impulsive commenting.

Users must be registered and logged in to comment

Most bloggers do not check this box because it means that only visitors who
register for the blog can comment. Most bloggers don't want random people
registering, and most visitors don't want to be compelled to register for your
blog. If you check this box, there's a good chance you'll get no comments
(which may be what you want). Alternatively, if you're setting up a blog
for a closed community of people, this setting might be useful.

•

•

Chapter 3

[71]

Now let's look at the settings that have to do with moderation. These two options have
to do with the circumstances that allow comments to appear on the site. They are by
the Before a comment appears header:

An administrator must always approve the comment
As I mentioned before, if this box is checked, every comment has to be
manually approved by you before it appears on the site.
Comment author must have a previously approved comment
If you uncheck the box above this, but check this one, then you've relaxed
your settings a little bit. This means that if the person commenting has
commented before and had his or her comment approved, then the person's
future comments don't have to be verified by you; they'll just appear on the
website immediately. The person just has to enter the same name and e-mail
as the one in the previously approved comment.
Now let's look at the settings that have to do with notification. These
two options are under the Email me whenever header. These options are
related to the circumstances of receiving an e-mail notification about the
comment activity.
Anyone posts a comment
This is generally a good setting to keep. You'll get an e-mail whenever
anyone posts a comment—whether or not it needs to be moderated. This will
make it easier for you to follow the discussion on your blog, and to be aware
of a comment that is not moderated and requires deletion quickly.
A comment is held for moderation
If you're not particularly interested in following every comment on your
blog, you can uncheck the Anyone posts a comment checkbox and only
leave this one checked. You will only get an e-mail about legitimate-looking
comments that appear to need moderation and need your approval.
The remaining settings, which are all by the Other comment settings header,
have to do with comment display and are pretty self-explanatory. You won't be
able to see many of these settings in action until you have lots of comments.

•

•

•

•

Creating Blog Content

[72]

When to moderate or blacklist a comment
If you scroll down the page a bit, you'll see the Comment Moderation area:

This is an extension of the moderation settings from the top of the page. Note that if
you've checked the An administrator must approve the comment checkbox, you can
safely ignore this Comment Moderation box. Otherwise, you can use this box to help
WordPress figure out which comments are probably ok and which might be spam or
inappropriate for your blog. You can tell WordPress to suspect a comment if it has
more than a certain number of links, as spam comments often are just a list of URLs.

The larger box is for you to enter suspect words and IP addresses:

Here you can type words that are commonly found in spam (you can figure
this out by looking in your junk mail in your e-mail!), or just uncouth words
in general.
The IP addresses you will enter into this box would be those of any
comments you've gotten in the past from someone who comments
inappropriately or adds actual spam. Whenever WordPress receives a
comment on your blog, it captures the IP address for you so that you'll
have them handy.

Scroll down a bit more, and you'll see the Comment Blacklist box:

•

•

Chapter 3

[73]

Unlike the Comment Moderation box we just saw, which tells WordPress how to
identify the comments to suspect, the Comment Blacklist box tells WordPress how
to identify comments that are almost definitely bad. These comments won't be added
to the moderation queue and you won't get an e-mail about them; they'll be marked
right away as spam.

Avatar display settings
The final box on this page is the Avatars box:

An avatar is an image that is a person's personal icon. Visitors who are very active
on the Internet and comment frequently may have set up an avatar that they like
to use. If so, it will show up on your blog if you leave the Show Avatars radio
button checked.

The second box, Maximum Rating, will tell WordPress if it should not show avatars
that have been rated too highly.

Creating Blog Content

[74]

The third box, Default Avatar, tells WordPress what avatar to use for visitors who
do not come with their own avatar. When you installed WordPress, it created a
comment for you on the first post, and also created a default avatar for you. You
can see the default avatar, Mystery Man, in use on the Hello World! post:

If you want to create your own avatar that will follow you around the Internet, I
suggest you sign up for a Gravatar (Globally Recognized Avatar). This service
was started by the WordPress people; if you have registered for WordPress.com,
you can login with those same credentials and set up your Gravatar at
http://gravatar.com.

Moderating comments
Now that we've thoroughly explored the settings for which comments need to
be moderated, let's discuss what you actually need to do to moderate comments.
Moderating means that you look over a comment that is in limbo and decide
whether it's good or bad. If it's good, it gets to appear on the website; and if it is bad,
it's either marked as spam or is deleted and is never seen by anyone but you and the
poster who wrote it.

Chapter 3

[75]

To view comments waiting for moderation, log in to your WP Admin and navigate
to Comments in the main menu.

If you have any comments waiting for moderation, there will be a little number in
the main menu telling you how many comments await moderation.

This main Comments page is fully featured, just like the Posts page. For each
comment, you see the following information from left to right:

Comment text, along with links to Approve it so that it shows up on the site,
you can also mark it as Spam, Delete it, Edit it, Quick Edit it, or Reply to it
Commenter name, avatar, e-mail address, and IP
Comment submission time and date

•

•

•

Creating Blog Content

[76]

The title of the post on which the comment was made (which is also a link
to edit that post), a number in parentheses indicating how many approved
comments are already there on that post (which is also a link that will filter
the comments list so that it shows only comments on this page), and a link to
the post itself (indicated with a hash #)

Comments that are awaiting moderation have a yellow background, like the first
comment in the preceding screenshot (you can also see my Gravatar, which shows
up for the second comment).

You can click on the Quick Edit link for any post to open form fields right within this
list. This will allow you to edit the text of the post and the commenter's name, e-mail,
and URL.

You can use the links at the top—All, Pending, Approved, and Spam—to filter
the list based on those statuses. You can also filter either pings or comments with
the Show all comment types pull-down filter menu. You can check one or more
comments to apply any of the bulk actions available in the Bulk Actions menus at
the top and bottom of the list.

Another quick way to get to this page, or to apply an action to a comment, is
to use the links in the e-mail that WordPress sends you when a comment is held
for moderation.

How to eliminate comment spam
Comment spam are comments that get posted on your blog that have spam content,
just like spam e-mail. If you've set up your moderation settings to be relatively
secure, then these comments won't appear on your blog. However, you may get
dozens of e-mail a day from WordPress asking you to moderate comments that it
knows need moderation, but doesn't know are spam.

The best tool available for eliminating comment spam from your blog is the
Akismet plugin. This plugin, which comes (though inactive) with your WordPress
installation, utilizes the Akismet spam-fighting service. We'll be discussing plugins
in more detail later in this book. For now, we'll review how to get Akismet working
on your blog. If your blog is built on WordPress.com, then Akismet is already
activated by default on your blog.

Learning more
You can learn more about the Akismet spam-fighting service at
http://akismet.com/.

•

Chapter 3

[77]

Getting a WordPress.com API key
The Akismet plugin requires that you have a WordPress.com API key. To get one,
you have to create an account at WordPress.com, even if you don't have a blog there.
Follow the instructions in Chapter 2 to create an account at WordPress.com. Once
your account is active, log in to WordPress.com and use the menu at the very top
to go to your My Account, and then Personal Settings. Once there, you'll see your
WordPress.com API key right at the top:

Select and copy that text. You may want to paste it into a text file to be sure you
have it.

Creating Blog Content

[78]

Activating Akismet
Now go back to your WordPress installation and navigate to Plugins in the
main menu:

Chapter 3

[79]

You'll see Akismet listed as the first plugin. Click on the Activate link. A yellow
message bar will appear at the top of the page that says Akismet is almost ready.
You must enter your WordPress.com API key for it to work. Click on that link
and you'll be taken to a page where you can enter your API key you copied from
WordPress.com:

Paste your API key into the box. I suggest you also check the box below it to discard
spam comments automatically. Akismet is very good at identifying which comment
is actually spam, and checking this box will make those comments disappear.
However, if you're concerned about Akismet misidentifying comments, leave this
unchecked.

Now click on Update options>> and your blog is protected from comment spam!

Creating Blog Content

[80]

Adding and managing categories
Earlier in this chapter, you learned how to add a category quickly when adding a
post. Now let's talk about how to manage your categories in a bigger way. First,
navigate to Posts | Categories in your WP Admin. You'll see the Categories page:

Chapter 3

[81]

This is a useful page that combines the ability to add, edit, and review all of your
categories. As you can see, any category that you've added via the Edit Post page
is listed. You can Edit, Quick Edit, or Delete any category by clicking on the
appropriate link in the list.

If you add a category on this page, you can also choose its slug. The slug is the
short bit of text that shows up in the URL of your site if you have pretty permalinks
enabled. If you don't choose a slug, WordPress will create one for you by taking
the category name, reducing it to all lowercase, replacing spaces with dashes, and
removing any other punctuation mark.

Another thing you can do on this page is choose a parent category for any
category. If you choose to use parent categories, your categories will be
displayed hierarchically.

Summary
In this chapter, you learned everything you need to know to add content to your
blog and manage that content. You learned about posts, categories, and comments.
You discovered tags, spam, and excerpts. You also learned about adding and editing
images, using the rich text editor, changing timestamps, customizing excerpts, and
the different ways of posting.

Your control of your blog content is complete, and you are well equipped to set your
blog on fire!

In the next chapter, you'll learn about all the other types of content that you can
manage on your website with WordPress.

Pages, Plugins, Image
Galleries Menus, and More

You now have the blog part of your website fully under control. By now, you've
probably noticed that WordPress offers you a lot more than simply posts, comments,
and categories.

In this chapter, we will explore and control all of the other content types that
WordPress already has. You'll be able to create static pages that aren't a part of your
ongoing blog, bookmark links that will drive visitors to other websites, and add and
manage built-in image galleries to display photos and other images. You'll also learn
how to manage navigation menus and also add plugins, which will enhance the
capabilities of your entire website.

Pages
At first glance, pages look very similar to posts. Both pages and posts have a title
and a content area in which we can write extended text. However, pages are handled
quite differently from posts. Pages don't have a timestamp, categories, or tags. Posts
belong to your blog, which are meant to be a part of an ongoing expanding section
of your website, and are added regularly. Pages are more static and aren't generally
expected to change that much.

Pages, Plugins, Image Galleries Menus, and More

[84]

When you installed WordPress, a page was automatically created for you (along
with the first post and first comment). You can see it by clicking on the About link
in the main navigation menu at the top of your site:

Adding a page
To add a new page, go to your WP Admin, and navigate to Pages | Add New, or
use the drop-down menu in the top grey menu by clicking on the arrow next to New
Post and choosing New Page. This will take you to the Add New Page screen:

Chapter 4

[85]

The minimum you need to do to create a new page is type in a title and some
content. Then, click on the blue Publish button, just as you would for a post, and
your new page will appear linked in the main navigation of your website, next
to About.

You'll recognize most of the fields on this page from the Add New Post page, and
they work the same for pages as they do for posts. Let's talk about the one new
section, the box called Attributes.

Parent
WordPress allows you to structure your pages hierarchically. This way, you can
organize your website's pages into main pages and subpages, which is useful if
you're going to have a lot of pages on your site. For example, if I were writing this
blog along with three other authors, we would each have one page about us on the
site, but they'd be subpages of the main About page. If I were adding one of these
pages, I'd choose About as the parent page for this new page.

Template
Theme designers often offer alternate templates that can be used for special pages.
The TwentyTen WordPress theme comes with one additional templates: One
Column, No Sidebar. Let's try using that template.

Pages, Plugins, Image Galleries Menus, and More

[86]

Just give your new page a title (for example, History) and some content. Then,
choose One Column, No Sidebar from the Template pull-down menu, and publish
your page. When you go to your site and click on the History link in the main
navigation, you'll see the following:

As you can see, the sidebar doesn't appear at all, which makes this different from
pages that use the default template (such as the About page that we looked at
earlier). All that appears is your content.

This particular template can be useful if you want to have a page that removes
the distraction of the sidebar. Other themes may come with a variety of templates,
depending on what the theme designer thought you'd find useful. If you're creating
your own WordPress theme, you can create any number of templates that have
different layouts or have special content.

Chapter 4

[87]

Order
By default, the pages in your page list on the sidebar or main navigation of your blog
will be in alphabetical order by page title. If you want them in some other order, you
can specify it by entering numbers in the Order box for all of your pages. Pages with
lower numbers (0) will be listed before pages with higher numbers (5).

As you can see, this method of ordering pages is quite clunky, especially if you want
to rearrange a bunch of pages in relation to each other. Luckily, there is a plugin
named pageMash that makes ordering pages much easier. pageMash creates an
additional management page in the WP Admin that displays all of your pages in
draggable divs:

Simply rearrange the blue and green divs, and then click on the Update button.

You can download pageMash from http://wordpress.org/extend/plugins/
pagemash/. Later in this chapter, we'll look in more detail at adding and
using plugins.

Pages, Plugins, Image Galleries Menus, and More

[88]

Managing pages
To see a list of all the pages on your website in the WP Admin, navigate to
Pages | Edit in the main menu. You'll see the Pages screen:

By now this list format should begin to look familiar to you. You've got your list of
pages, and in each row are a number of useful links allowing you to Edit, Quick
Edit, Delete, or View the page. You can click on an author's name to filter the list
by that author. You can use the two links at the top, All and Published, to filter the
pages by status. You can check boxes and mass-edit pages by using the Bulk Actions
menu at the top and bottom of the list. You can also search your pages with the
search box at the top.

Menus
As of WordPress 3.0, there are now Menus available within the WP Admin. Not all
themes will support menus, but luckily for us, TwentyTen does.

The Menus feature lets you create custom menus with links to pages, category or
tag archives, and even arbitrary links to any URL. Then you can place your custom
menu into your theme.

Chapter 4

[89]

Adding a Menu
Let's take a look at the Menus management screen. To get there, just navigate to
Appearance | Menus:

Pages, Plugins, Image Galleries Menus, and More

[90]

To create your first menu, enter a title where it says Enter menu name here, and then
click on the Create Menu button. Your new menu will be created, with nothing in it,
and all of the grayed-out areas of the page will become available. You can select
a checkbox next to a page, and click on Add to Menu:

You can enter a URL in the Custom Links box, and click on Add to Menu:

You can click checkboxes next to one or more categories, and click on Add to Menu:

Chapter 4

[91]

Then, be sure to click on Save Menu in the upper-right corner. Following is what my
new menu looks like now:

You can also drag items to the right to make them subitems of the item above. For
example, I'll add my About page to the menu and make sure History is a subitem.
Now, my menu looks like the following:

Pages, Plugins, Image Galleries Menus, and More

[92]

You can make more menus by using the + tab at the top to repeat the process above.
Now you might ask: I created my new menu, but how do I make it show up on my
site? Read on...

Displaying a Menu
If you have a menu-enabled theme, then once you have one menu, a new box will
appear on the Menus page showing you the menu locations. TwentyTen has just
one menu location, and it's named Primary Navigation:

In that pull-down menu, you'll see a list of all the menus you created. You can choose
to have one of them displayed in the Primary Navigation. If I choose the menu I just
created to show there (and click on Save in that box), then my primary navigation on
the website will look like the following:

As you can see, TwentyTen displays subitems in a rollover menu activated by the
location of your mouse cursor. The other place that your menus can be used is in
an instance of the Custom Menu widget.

Chapter 4

[93]

Widgets
A widget is a small box of content, dynamic or not, that shows up somewhere on
a widget-enabled site. Often, that location is in the sidebar of a blog, but that's not
a rule. A widget area can be anywhere a theme developer wants it to be. Common
widgets contain:

A monthly archive of blog posts
Recent comments posted on the blog
A clickable list of categories
A tag cloud
A search box, and so on

Most themes these days are widget-enabled, with one or more widget areas (they
work like locations for menus) available on your blog. To control the widgets on
your new TwentyTen-themed website, navigate to Appearance | Widgets:

•
•
•
•
•

Pages, Plugins, Image Galleries Menus, and More

[94]

TwentyTen comes with a whopping SIX widget areas. One of them, which is your
right sidebar, comes pre-loaded with six widgets in it:

You can click on the little down arrow at the right of any widget to expand the
details and see the options. You can drag a new widget in from the collection of
Available Widgets on the left. You can drag existing widgets up and down to
change their order. You can delete a widget by expanding it, and then clicking on
Delete. Experiment with putting widgets into different widget areas and then refresh
your blog to see how they look. Always be sure to click Save if you make changes to
a widget. In the next section, we'll specifically look at the process of adding a Links
widget to the sidebar.

Links
WordPress gives you a very powerful way of organizing external links or bookmarks
on your site. This is a way to link other related blogs—websites you like, websites
that you think your visitors will find useful, or just any category of link you
want—to your blog. Speaking of categories, you can create and manage link
categories that are separate from your blog categories.

Chapter 4

[95]

When you installed WordPress, it created the link category Blogroll, along with
a number of links in that category. You can see them on the main Links screen
in the WP Admin:

Pages, Plugins, Image Galleries Menus, and More

[96]

Adding a new link
Let's add a new link to the Blogroll category. In your WP Admin, navigate to Links
| Add New. This will take you to the Add New Link page, which has a number of
boxes in which you can add information about your new link:

Of all the fields on this page, it's the top two that are the most important. You need
to give your link a Name, which is the text people will see and can click on. You also
need to give a Web Address, which is the URL of the website. You can optionally
add a description, which will show up when visitors hover over the link and
possibly in other places, depending on your theme.

Chapter 4

[97]

The other two most-often used fields on this page are Categories and Target. The
Categories box in the preceding screenshot should look familiar because it's very
similar to the Categories selection box for Posts (However, Link Categories and Post
Categories are completely separate from each other.). You can assign a category to
the new link that you're adding or create a new category by clicking on the + Add
New Category link. Your links will be organized by the categories on your website.

The Target box lets you choose whether your visitors will be taken to a new
window, or a new tab, when they click on the link. I generally recommend using
_blank when sending people to an external website.

The other boxes on this page are used less commonly. You can use the Link
Relationship (XFN) boxes to specify XFN (XHTML Friends Network) relationships
between you and any individuals to which you link.

Learning more: If you want to learn more about XFN take a look at this
website: http://gmpg.org/xfn/.

The final Advanced box at the bottom of this page will allow you to specify:

An image that belongs with this link (for example, the logo of the company
whose site to which you are linking)
The RSS feed for the website to which you're linking
Any notes you have about the site, beyond what you entered into the
Description box
A rating for the site from 0 to 9

To make use of any of these pieces of information, you need to have a theme that
recognizes and makes use of them.

At the top right of the page is a Save box with a checkbox that you can check if you
want to keep the link private; that is, if you don't want it to show up on your site to
anyone but you. Click on the Add Link button in that box to save your new link.

Displaying links
The TwentyTen theme doesn't come with any feature that actually shows your links.
The easiest way to display them is to add a Links widget to your sidebar. Other
themes may have other built-in ways to display links.

•

•

•

•

Pages, Plugins, Image Galleries Menus, and More

[98]

To add a Links widget, navigate to the widgets page and drag the links widget over
to the Primary Widget Area box:

After you click on the Save button, visit your website again and you'll see the list of
links added to the sidebar:

Chapter 4

[99]

Managing links and categories
You can manage your links just as you manage posts and pages by navigating to
Links. From here, you can click on the name of a link to edit it, click on the URL to
visit it, and see which categories you've chosen for it. Using the View all Categories
pull-down menu, you can filter links by categories, change the order, and do
bulk deletes.

Just as with post categories, you can manage and add new link categories
on the Link Categories page. You can access this page by navigating to
Links | Link Categories:

From this page, you can both add a new category using the form at the left, and also
manage your existing categories using the table at the right.

Pages, Plugins, Image Galleries Menus, and More

[100]

Media library
The media library is where WordPress stores all of your uploaded files—images,
PDFs, music, video, and so on. To see your media library, navigate to Media in the
main menu:

This is the now-familiar management table. My media library has only two photos.
I uploaded one to insert into the Butternut Squash soup post, and one to be the
Featured Image for that post. As you can see from preceding screenshot, it shows
me the following:

A thumbnail of the image. If this were another type of media, I'd see an icon
representing the type of media.
The title that I gave the file when I uploaded it, along with the
format extension.
The author.
Information about which post or page the file is attached to. This will be
important when it comes to making an image gallery. The uploaded file will
be attached to the post or page that you are editing while uploading a file.

•

•

•

•

Chapter 4

[101]

The number of comments waiting on the attached post or page.
The date when the file was uploaded.

If you hover over the row with your mouse, links for Edit, Delete Permanently, and
View will appear. You can click on the file's title or the Edit link to edit the Title,
Caption, Description, Alt text, and even the image itself. More on that in a bit.

You can also add a new file to your media library. Navigate to Media | Add New to
get a page similar to the upload media page that you got while uploading a file for a
post. When you click on the Select Files button and select the file to be uploaded, it
will upload it and then give you the same options you got when uploading an item
through a page or post.

•

•

Pages, Plugins, Image Galleries Menus, and More

[102]

Enter a title, caption, and description if you want, and click on the Save all
changes button.

Your new item will appear in the media library and will be unattached to any post or
page. However, you'll still be able to use what you just uploaded in any post or page.

To do that, click on the Upload/Insert button as you did before on the Add/Edit Post
or Add/Edit Page screen. However, instead of choosing a file From Computer, click
on the Media Library tab on the top of the box:

When you click on the Show link that is next to the image you want to use, you'll
get the same set of options you got after uploading an image. Now you can click on
the Insert into Post button. The media item will now show as Attached to that post
or page.

Adding plugins
Plugins are little packages of code that you can add to WordPress to increase its
functionality. Developers all over the world create plugins! Many of them are
available for use at no cost; others ask for a donation or a small fee.

Chapter 4

[103]

The steps for installing a plugin are simple:

1. Find your plugin.
2. Install and activate it.
3. Configure and/or implement it (if necessary).

Finding your plugin
The best place to find plugins is the WordPress Plugin Directory at
http://wordpress.org/extend/plugins/. There are more plugins every day
(as of this writing, there are 12,644) and millions of downloads (143,376,466 and
counting). You can search plugins by topic and by tag, as well as see a list of the
most popular, newest, and recently updated plugins. This is the best available
plugin resource and you should always go here first when looking for a plugin.

You can also do Google searches. I recommend searching for the problem you're
trying to solve and see what plugins other users recommend and why. Often, there
are multiple plugins that perform similar functions, and you will find the feedback of
other WordPress users valuable in choosing between them. However, as you do this,
be sure to keep an eye out for malicious or poorly-coded plugins that could break
your website or allow someone to hack into it. I am always wary of a new plugin
with no reviews, comments, or feedback from users, in addition, of course, to those
plugins that have bad feedback about them on the Internet.

For the purposes of this section of the book, I'll walk you through adding a plugin
that I think everyone should have. It's called WP-DB-Backup and it adds the ability
to easily create a complete database export of your blog.

Installing and activating the plugin
There are two ways to get the plugin into your WordPress installation.

Install from within the WP Admin
Install manually

The first option, installing from within the WP Admin, is generally quicker and
easier, but it's not possible in all cases. You need to be using WordPress 2.7 or
higher, and you have to be on a server that's configured correctly, in a way that lets
WordPress add files. Plus, the plugin you want to install has to be available in the
WordPress Plugin Repository.

In the following section, we'll go over auto-installation first, and then the manual
method.

•

•

Pages, Plugins, Image Galleries Menus, and More

[104]

Auto-installation
If you meet the server and WordPress version requirements for auto-installation,
then you can search for and install a new plugin from within the WP Admin. Just
navigate to Plugins | Add New. If you already know the plugin you want, type its
name into the search box.

When you see the plugin, you can click Details to see the plugin's details:

Chapter 4

[105]

I recommend you always look at this information carefully. Be sure to watch for
version compatibility. In this case, the details tell me that this plugin is not officially
compatible with the latest version of WordPress, which means you should proceed
with caution and be prepared for undocumented bugs. In this particular case, I have
personally tested this plugin and know it works fine with this version of WordPress.
At this point, you click Install Now, and you're done installing! The next screen you
see will invite you to activate the plugin:

In the case of this plugin, I do recommend you go ahead and activate it. However, if
you're running a live blog and are about to implement a plugin that will immediately
change the appearance of your blog, you should be cautious.

Download, (unzip?), upload
If your situation doesn't match the three requirements above (plugin repository, 2.7+,
server setup), then you'll need to install your plugin manually.

First, download the plugin from the plugin repository or other website. In this case
you're downloading from the following page: http://wordpress.org/extend/
plugins/wp-db-backup/.

Just click on the orange Download button, and save the resulting ZIP file on your
computer where you can find it again. (Before downloading any plugin, check the
plugin compatibility, just like in the section above on Auto-installation).

Pages, Plugins, Image Galleries Menus, and More

[106]

At this point, if your server is set up correctly, you'll be able to upload the ZIP file
directly on the Plugins | Add New | Upload page:

If this automatic uploader doesn't work for you, you can do this the
old-fashioned way:

First unzip, that is, extract the ZIP file you downloaded so that it's a folder, probably
named, in this case, wp-db-backup.

Using your FTP client, upload this folder inside the wp-content/plugins/ folder
of your WordPress installation. You'll also see the two plugins that WordPress came
with in that folder—akismet and hello.php.

Chapter 4

[107]

Now, go to your WP Admin and navigate to Plugins. You'll see the three plugins on
this page. Just click on the Activate link in the WordPress Database Backup row:

Now, you are ready for the final step, which is to actually make use of this plugin.

Configuring and/or implementing—if
necessary
In the case of this plugin, all you have to do is use it. You'll have a new link in your
menu to which you can navigate. It's Tools | Backup. When you go to this page,
you'll be able to choose the tables to back up. If you've installed any plugins that add
additional tables, you'll have the option to choose them as well; I always do. I also
always check the two boxes to exclude spam comments and post revisions.

Pages, Plugins, Image Galleries Menus, and More

[108]

You can now decide if you want to save the backup to your server, download it, or
have it e-mailed to you. I suggest downloading it every time.

There is also an option of scheduling regular backups. This is not 100% reliable, so
you should probably set up a reminder to check if your backup has been e-mailed
to you or not. The frequency you choose should depend on how often you edit your
site—once a week is probably often enough for most people.

For other plugins, the configuration and/or implementation steps may be different.

You may not have to do anything. Some plugins simply change the way
WordPress does some things, and activating them is all you need to do.
You may have to configure a plugin's details before it begins to work. Some
plugins need you to make choices and set new settings.
There may not be a configuration page, but you may have to add some code
to one of your theme's template files.

If you're unsure of what to do after you've uploaded and activated your plugin, be
sure to read the readme file that came with your plugin, or look at the FAQ on the
plugin's website.

Many plugin authors accept donations. I strongly recommend giving donations to
the authors of plugins that you find useful. It helps to encourage everyone in the
community to continue writing great plugins that everyone can use.

In the next section, we'll add another useful plugin.

Adding an image gallery
You can add an image gallery to any page or post in your website using WordPress's
built-in Image Gallery functionality. There are just three simple steps:

1. Choose a post or page for your image gallery.
2. Upload the images you want in that gallery.
3. Add the special code to the page or post, and save it.

Let's get started.

•

•

•

Chapter 4

[109]

Choosing a post or page
For my food blog, I'm going to create a new page named My Food Photos for my
image gallery. You can always do this on an existing page or post. Following is
my new page:

Note where I have left my cursor. I made sure to leave it in a spot on the page
where I want my gallery to appear, that is, underneath my introductory text
(After creating this page, I will also navigate to Appearance | Menus to add it
as a subpage under About.).

Pages, Plugins, Image Galleries Menus, and More

[110]

Uploading images
Now click on the Upload/Insert image icon and upload some photos (you can choose
multiple photos at once).

For each photo you upload, enter the title (and a caption if you'd like). When you're
done, click on the Save All Changes button. You'll be taken to the Gallery tab, which
will show all of the photos you've uploaded to be attached to this page:

Chapter 4

[111]

If you want to upload more photos at this point, just click on the From Computer tab
at the top, and upload another photo.

When you've uploaded all the photos you want (you can add more later), you
may want to change the order of the photos. Just enter the numbers 1 through 6
(or however many photos you have) in the Order column:

Pages, Plugins, Image Galleries Menus, and More

[112]

Make sure you click Save All Changes.

On most computers, you can, instead of entering numbers, simply drag-and-drop
images. WordPress will then generate the order numbers for you automatically.

Then, you can review the Gallery Settings. There are a number of ways to use the
gallery, but there is a single approach that I've found works for most people. You can
experiment on your own with other settings and plugins, of course! I suggest you set
Link thumbnails to to be Image File instead of Attachment Page. You can leave the
other settings as they are for now.

Once all of your settings are done, click on the Insert gallery button. This overlay box
will disappear, and you'll see your post again. The page will have the gallery icon
placeholder in the spot where you left the cursor, as seen in the following screenshot:

Chapter 4

[113]

If you're in the HTML view, you'll see the gallery shortcode in that spot:

Note that because I'm uploading these photos while adding/editing this particular
page, all of these photos will be "attached" to this page. That's how I know they'll be
in the gallery on this page. Other photos that I've uploaded to other posts or pages
will not be included in this gallery.

Learning more
The [gallery] shortcode is quite powerful! For example, you can
actually give it a list of Media ID numbers—any Media item in your
Media Library—to include, or you can tell it to just exclude certain
items that are attached to this post or page. You can also control how
the Thumbnail version of each image shows whether the medium or
large. There is more! Take a look at the codex to get all of the parameters:
http://codex.wordpress.org/Gallery_Shortcode.

Pages, Plugins, Image Galleries Menus, and More

[114]

Now, publish or save your page. When you view the page, there's a gallery
of your images as follows:

If you click on one of the images, you'll be linked to the larger version of the image.
Now, this is not ideal for navigating through a gallery of images. Let's add a plugin
that will streamline your gallery.

Using a lightbox plugin
A lightbox effect is when the existing page content fades a little and a new item
appears on top of the existing page. You've seen this effect already in the WP Admin
when you clicked on Add/Insert image. We can easily add the same effect to your
galleries by adding a plugin. There are a number of lightbox plugins available, but
the one I like these days uses jQuery Colorbox. Find this plugin, either through
the WP Admin or in the Plugins Repository (http://wordpress.org/extend/
plugins/jquery-colorbox/), and install it.

Chapter 4

[115]

Once you've activated the plugin, navigate to Settings | jQuery Colorbox:

Use the Theme pull-down to choose the theme you want (the preview image will
update to give you an idea of what it will look like); I've chosen Theme #4. Then you
can choose to either Automate jQuery Colorbox for all images or Automate jQuery
Colorbox for images in WordPress galleries. You can choose whether to automate
for all images; I certainly suggest you automate for images in galleries. You can
experiment with the other settings on this page (if you routinely upload very large
images, you'll want to use the areas that let you set the maximum size of the colorbox
and resize images automatically). You'll want to disable the warning (the very last
check box on the page). Then, click on Save Changes.

Pages, Plugins, Image Galleries Menus, and More

[116]

Now, when I go to my image gallery page and click on the first image, the colorbox
is activated, and I can click Next and Back to navigate through the images:

Making your website mobile-friendly
One last thing you might want to do before putting your new website live is to make
it mobile-friendly. Mobile devices have very small screens—certainly much smaller
than most computers. The design of your theme is probably not ideal for mobile
devices. There are many plugins available that will detect if a visitor is using a
mobile browser and serve up a different theme instead.

Chapter 4

[117]

By far, the most popular plugin for this purpose is WPTouch, which you can find at
http://wordpress.org/extend/plugins/wptouch/. It renders blogs especially
quite nicely for the Iphone and Ipod touch.

You can do your own online research and experimentation to figure out which
mobile plugin suits your website the best. You can start by looking at plugins with
the mobile tag in the WordPress Plugins Repository:

http://wordpress.org/extend/plugins/tags/mobile.

Pages, Plugins, Image Galleries Menus, and More

[118]

Summary
This chapter explored all of the content WordPress can manage that's not directly
about blogging. You learned about static pages, menus, bookmark links, the media
library, image galleries, plugins, and more.

You are now fully equipped to use the WordPress Admin panel to control all of your
website's content. Next, you'll want to control the display. In the next chapter, we
will start discussing themes.

Choosing and Installing
Themes

One of the greatest advantages of using a CMS (Content Management System)
for your blog or website is that you are able to change the look and feel of your
website without being knowledgeable about HTML and CSS. Almost every CMS
allows users to customize the look of their site without having to worry about their
content being changed. These managed looks are named themes. On other platforms
(for example, Blogger, Joomla!, Drupal, and so on), themes are sometimes called
templates or layouts.

Thousands of WordPress themes are available for download free of cost, and
thousands more are available at a pretty low cost. Many of the free themes are
developed by members of the WordPress community and listed on WordPress's
main website at http://wordpress.org/extend/themes/.

Before you change the theme of your current site, you will want to know:

Some basic things about the theme you're considering
How to choose the theme that best suits your content and audience
How to install a theme
How to modify static content inside these themes

In this chapter, we will discuss all of these topics. This chapter is a ground-up
guide to using themes. In the next chapter, we will discuss the advanced topic
of developing your own themes.

If you are using WordPress.com to host your WordPress website, you
cannot upload themes to your site; you have to choose from the hundred
or so themes that WordPress.com makes available to you. So, you can
skip forward to the Previewing and activating section of this chapter.

•
•
•
•

Choosing and Installing Themes

[120]

Finding themes
There are dozens of websites that offer WordPress themes for you to download and
implement on your website. Many theme developers offer their themes for free,
whereas some charge a small fee. Of course, if you cannot find a free theme that fits
your needs, you can always hire a theme developer to create a customized theme for
you, or you can be your own theme developer (see Chapter 6).

WordPress Theme Directory
The first place you should always go to when looking for a theme is the official
WordPress Theme Directory at http://wordpress.org/extend/themes/. This is
where everyone in the WordPress community uploads their free themes and tags
them with keywords that describe the basic look, layout, and function of their theme.
Look at the following screenshot:

Chapter 5

[121]

By looking at the list of popular themes on the right, you can see which themes
are chosen most often. TwentyTen, as you already know, is the default theme that
WordPress uses automatically when you first install it.

To get a better idea of what a theme will look like than what's offered by the
thumbnail, just click on the title of the theme (in my case Graphene). You'll be
taken to the theme's detail page:

Choosing and Installing Themes

[122]

This page shows you the theme's description, all of the tags that apply to it, the
average rating given to it by other users, and some comments on the theme. If you
click on the Preview button, you'll get to see the theme actually in action. The theme
in action will look as shown in the following screenshot:

This preview is very useful. It not only shows you exactly what the theme will look
like and what is included in the sidebar, but also includes examples of a variety
of different HTML and element styles so that you can see how they'll look. These
elements include:

Images
Headings (1, 2, 3, 4, 5, and 6)
Paragraphs
Lists
Forms

•

•

•

•

•

Chapter 5

[123]

Tables
Blockquote
Code
Links

If you browse through this site and find a theme you like, make note of it; we'll
discuss how to add it to your WordPress site later on in this chapter.

Finding more themes
If you can't find a theme in the directory that you like, you have other options.
There are other sites with free themes, and also sites that sell themes for a price.
Most commercial themes are offered at two prices. The first price is simply the cost
of buying the theme for your own use and can be anywhere from $30 to $80. The
second price is the price you pay if you want to be the only user of the theme and
that can be anywhere from $500 to $1,500.

Most good commercial theme sites let you see a preview of the theme in action
before you buy it. Some also let you customize the theme before download. As with
any other online shopping experience, do a little research before buying to make
sure you'll be getting a quality theme with decent support. There are plenty of
badly-coded themes out there, and even themes with malicious code. Before buying
a theme, verify the source of the theme and see if you can find feedback or reviews
from anyone else who has purchased it.

To find more sites that offer themes, just do a Google search for "WordPress themes"
and you'll get over sixty million hits. Also, keep in mind that you can choose a basic
theme now and customize it or create your own from scratch later as you build skills
by reading this book.

Some theme basics
So that you'll be better informed when choosing and installing themes, let's take a
quick look at some factors to consider when choosing a theme, and what actually
makes a theme.

•

•

•

•

Choosing and Installing Themes

[124]

What makes a theme?
A WordPress theme is actually a collection of files in a folder. There are no special or
unusual formats, just a few requirements for those files in the theme folder. The only
requirements for a folder to be a valid WordPress theme are:

1. It should have a style.css file and an index.php file.
2. The style.css file must have the basic theme information in its first

five lines.

There are a number of additional files that you'll find in most theme folders.
They are:

A screenshot.png file—this is the little thumbnail that shows what the
theme looks like
An images folder—this is where all images associated with the theme live
A variety of files that are used for different purposes (for example,
header.php, footer.php, page.php, single.php, archive.php, and so on)

You don't have to worry about these details now, but knowing them will help you
identify what is going on in the themes you download for now. This will also be
useful in the next chapter when we discuss making your own theme from scratch.

When you download a theme, you are actually just downloading a zipped folder.

Factors to consider when choosing a theme
As you look through all of the available themes, you'll see that there is quite a variety
of both look and feel, and layout. When considering a theme, make sure to ask
yourself the following questions:

Do I like the design of the header?
Are the sidebars (if any) flexible? Can I choose how many sidebars I want to
display? Is it widget-ready?
Is it complex or simple? Which do I prefer?
How flexible is the content and layout? Can I choose the column count
and widths?
Does it offer a Theme Settings page where I can customize layout, category
display, homepage, and other options?

At this point in WordPress's development, I recommend rejecting any theme that
does not support widgets.

•

•

•

•

•

•

•

•

Chapter 5

[125]

Installing and changing themes
Now that you've chosen the theme you want to use, you'll need to install it into your
WordPress website.

You'll have two choices.
1. You'll have two choices, as you did when adding new plugins. If you

are using WordPress 2.6.3 or above, and if the theme you want is in the
WordPress theme directory, and if your server is set up properly, you can
add the theme directly from within the WP Admin.

2. If any of those three conditions are not met, you'll have to download, extract,
and then upload the theme.

Adding a theme within the WP Admin
As mentioned in the preceding section, you can add a theme directly from within
your WP Admin if you've chosen a theme from the WordPress theme directory, if
you're using a current-enough version of WordPress, and if your server settings
allow. First, navigate to Appearance, and then click on the Install Themes tab:

Choosing and Installing Themes

[126]

This will look similar to the Add New Plugins page because you have some
sub-navigation links at the top (Search, Upload, Featured, Newest, Recently
Updated) along with a search box. You also see checkboxes that will let you narrow
down the type of theme for which you're looking (by color, by columns, by feature,
and so on). The theme programmers tag their themes with this information, and this
is how the theme directory knows which themes meet these criteria.

I've already found a theme I like, so I'll put its name in the search box:

Chapter 5

[127]

If I click on Preview, I will see the same theme preview that I saw on the main
theme directory page. Note that at this point, the theme preview will be the same
as the preview on the theme directory page, rather than a preview of your own
site's content. Until the theme is installed, you won't see a preview of your own site.
If I click on Install and then confirm by clicking Install Now, this theme will be
downloaded and added to my collection of themes:

Choosing and Installing Themes

[128]

If I click on the thumbnail or the Preview link on this page (Appearance), I will see
a preview of the theme with my own content in it:

If I like it, I can activate the theme in one of two ways:

1. By clicking Activate Graphene in the upper-right corner of the preview
window, or

2. By clicking Activate in the Graphene box on the main Appearance page

After activating, this theme will be used for my site instead of TwentyTen, the
default WordPress theme.

Chapter 5

[129]

Downloading, extracting, uploading
If you can't install a theme from within the WP Admin for one of the three reasons,
you'll have to use the following steps instead.

Once you find a theme that you want to use, download it to your computer, to your
desktop for example. When this is done, you'll see a ZIP file on your desktop (for
example, graphene.1.0.7.zip).

At this point, you can upload the ZIP file through the WP Admin by navigating to
Appearance | Install Themes | Upload.

You can choose the ZIP file and upload it that way. If that doesn't work, continue
with the steps below to extract and upload the theme files.

If you're using Mac, the ZIP file may have automatically been unzipped for you, in
which case you'll see a folder on your desktop instead of the ZIP file or in addition
to the ZIP file (for example, graphene). If not, then just do the extraction/unzipping
manually so that you have the theme folder on your desktop.

Choosing and Installing Themes

[130]

Following are the file contents of the Graphene folder that I downloaded:

It's got a style.css file and an index.php file, and so I know it's definitely
a valid theme.

Now you need to upload the theme folder to your WordPress website. As you
did in Chapter 2, you need to FTP to your server. Once there, navigate to your
WordPress website's installation folder. Next, go to the wp-content folder and
then to the themes folder. You'll see one theme folder in here already, named
twentyten (and possibly others as well). These are the themes that come
pre-installed with WordPress.

Upload the folder you just unzipped (for example, graphene) into the themes folder
on your server. That's it!

Now when you go to Appearance in your WP Admin, the theme will appear.
You can Preview and Activate just as if you'd added it from within the WP Admin
(in the preceding section).

Chapter 5

[131]

Summary
This chapter described how to manage the basic look of your WordPress website.
You have learned where to find themes, why they are useful, and how to implement
new themes on your WordPress website.

In the next chapter, you will learn, step-by-step, how to build your own theme
from scratch.

Developing Your Own Theme
You know how to find themes on the Web and install them for use on your
WordPress site. However, you may not be able to find the perfect theme, you may
want to create a thoroughly personalized theme, or you may be a website designer
with a client who wants a custom theme.

In this chapter, you'll learn how to turn your own design into a fully functional
WordPress theme that you'll be able to use on your own site. You'll also learn how
to convert your theme folder into a ZIP file that can be shared with other WordPress
users on the Web.

All you will need before we get started is:
Your own design
The ability to slice and dice your design to turn it into HTML

We'll start out with tips on slicing and dicing, so that your HTML and CSS files are
as WordPress-friendly as possible, and then cover the steps for turning that HTML
build into a fully functional theme.

Note that I assume that you are already comfortable writing and working with
HTML and CSS. You don't need to be familiar with PHP, because I'll be walking
you through all of the PHP code.

This chapter covers only the very basics of theme creation. This topic
actually deserves a whole book, and it has one! I highly recommend the
book WordPress 2.8 Theme Design by Tessa Blakeley Silver (a 3.0 update
to this book is due out soon). This book covers in detail everything you
can possibly want to know about creating your own theme, including
even such details as choosing a color scheme, considering typography,
writing the best CSS, and laying out your HTML using Rapid Design
Comping. If this chapter leaves you wanting more, go there!

•

•

Developing Your Own Theme

[134]

Setting up your design
Just about any design in the world can be turned into a WordPress theme. However,
there are some general guidelines you can follow—both in the design and the
HTML/CSS build of your theme—which will easily convert the design into a theme.

Designing your theme to be
WordPress-friendly
While you can design your blog any way that you want, a good way to start would
be with one of the standard blog layouts.

Note that while these different standard layouts have differing numbers of columns
and column widths, they all have these essential parts:

Header
Main column
Side column(s)
Footer

•

•

•

•

Chapter 6

[135]

WordPress expects your theme to follow this pattern, and so it provides functions
that make it easier to create a theme that has this pattern. As you're designing your
first blog theme, I suggest including these parts. Also, a design that stays within the
same general design patterns of WordPress themes will most easily accommodate
existing plugins and widgets.

The two-column layout is the simplest and the easiest to implement as a WordPress
theme, so we'll be using this layout as an example in this chapter. Following is a
screenshot of the design I created in Photoshop for my food blog:

Developing Your Own Theme

[136]

Note that this layout has a header, main column, side column, and footer:

Now that the design is complete, we're ready for the next step, namely, turning the
design into code.

Converting your design to code
The next step towards turning your ideal design into a WordPress theme is to slice
images out of your design and write HTML and CSS files that put it all together.
For the purpose of this chapter, I assume that you already know basically how
to do this, and let's also assume we're working with a tableless layout! We'll cover
some pointers on how to do your slicing and dicing in a way that will fit best
into WordPress.

If you'd like to learn how to do Rapid Design Comping, which is how
to turn your design into HTML quickly and easily, be sure to check out
the book WordPress 2.8 Theme Design, by Tessa Blakeley Silver. She
discusses this for a whole chapter.

Chapter 6

[137]

The first thing I do is turn my design into HTML and put it in a folder. You can name
this folder anything you like; I choose to call it HTML build. My HTML build folder,
which has my HTML, CSS, and image files, looks like this:

We will now take a look at some of the choices I made when writing these HTML
and CSS files so that you can take advantage of these tips and tricks.

Examining the HTML structure
Following is the very basic (not final) layout of my HTML file for my food
blog design:

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>
 <meta charset="UTF-8" />
 <title>Blog title</title>
 <style type="text/css">@import url("style.css");</style>
</head>
<body>

<div id="container">
 <div id="header">
 <div id="mainnav">

 Navigation list item

 </div><!-- /mainnav -->
 <h1>My Blog Title</h1>
 <div id="description">this is My subtitle</div>
 </div><!-- /header -->

 <div id="content">
 <div id="copy">
 <div class="post">
 <h2>Post Title</h2>
 <div class="post-date">Post Date</div>
 <p>Post Content</p>

Developing Your Own Theme

[138]

 <div class="categories">Categories</div>
 <div class="tags">Tags</div>
 <div class="comments">Comments</div>
 </div>
 </div>
 <div id="sidebar">
 <h3>Categories</h3>

 category list item

 <h3>Archives</h3>

 archive list item

 </div><!-- /sidebar →
 <div style="clear: both"> </div>
 </div><!-- /content -->

 <div id="footer">
 Footer text
 </div><!-- /footer -->
</div><!-- /container -->

</body>
</html>

You can see that I've separated out these four major parts:

The header is in the div with id="header"
The side column is in the div with id="sidebar"
The main column is in the div with id="copy"
The footer is in the div with id="footer"

I'd like to call your attention to a few other things I've done here:

The mainnav is in an unordered list (ul)
I did this because WordPress has a function that spits out the navigation of
your site in the order you choose. When WordPress spits out the list, every
linked item is in a list item tag (li).
Archives and Categories are similar
There are going to be a number of items that you may want to add to your
sidebar, including widgets. Many of these items will be lists with titles, so
I've prepared for that in my HTML.

•

•

•

•

•

•

Chapter 6

[139]

Within the div id="copy" is a div with class="post"
Even though this basic layout has just one post in it, I know that I'll want to
show more than one post at a time. I've created this div expecting that it'll be
repeated for each post. Also, WordPress expects this div to be named post.
(We'll get into that later.)

Now that I've got my basic layout, I'm going to add a few more HTML elements
to flesh it out a bit, including more information in the <head> as well as the search
box, and some additional CSS. Then, I'll fill up the sidebar, header, content, and
footer with a bunch of dummy text so that it looks almost exactly like my theme's
design in Photoshop. I'm not including the complete HTML here, but you can find
it in the code bundle for this chapter (in the folder named HTML_build) if you'd like
to do the same. However, note that I've left most of the text a little different.
This is my trick to remind myself, later, to replace the static text with dynamic
WordPress-generated text.

•

Developing Your Own Theme

[140]

Examining the CSS
Let's now take a look at the CSS. First, we'll review the CSS that displays everything
you see in the design. Note that I've got styles for my five key parts, namely, header,
sidebar, copy, post, and footer. They are as follows:

body {
 margin: 0px;
 background: #ddd url('images/bg-body.gif') repeat-x;
 font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
 font-size: 14px;
}

a, a:visited {
 color: #397cc6;
 text-decoration: none;
}

a:hover {
 text-decoration: underline;
}

/*** STRUCTURAL PLACEMENT - - - - - - - - -- - - - - - - - */

#container {
 margin: 0 auto;
 width: 837px;
}

#header {
 margin: 35px 0 0 0;
 height: 343px;
 background: url('images/header.jpg') no-repeat;
}

#mainnav {
 padding: 40px 0 0 30px;
}

#content {
 background: #fff url('images/bg-content.gif');
 padding: 0 10px 0 10px;
}

Chapter 6

[141]

#copy {
 width: 590px;
 float: right;
}

#sidebar {
 width: 200px;
 float: left;
 background-color: #F7F7F7;
}

#footer {
 background: url('images/footer.gif') no-repeat;
 height: 79px;
}

/*** STYLING PIECES - - - - - - - - - - - - - - - - - - - */

/* header title */
#header h1 {
 color: #fff;
 font-size: 24px;
 font-weight: normal;
 margin: 140px 0 5px 500px;
 text-transform: lowercase;
}

#header h1 a {
 color: #fff;
 text-decoration: none;
}

#header h1 a:hover {
 background-color: #9A8A71;
}

#header #description {
 color: #fff;
 margin: 0 0 5px 500px;
 text-transform: lowercase;
}

/* main (top) navigation */
#mainnav ul {

Developing Your Own Theme

[142]

 margin: 0;
 padding: 0;
}

#mainnav li {
 margin: 0;
 padding: 0 30px 0 0;
 display: inline;
 color: #82aedf;
}

#mainnav ul li:before {
 content: "\00A4 \0020 \0020";
}

#mainnav a, #mainnav a:visited {
 color: #bad2ee;
 text-transform: uppercase;
 text-decoration: none;
}

#mainnav a:hover {
 text-decoration: underline;
}

/* sidebar */

#sidebar {
 padding: 0 0 20px 0;
}

#sidebar h3 {
 color: #b7b6b6;
 font-weight: normal;
 font-size: 18px;
 margin: 30px 0 5px 10px;
}

#sidebar h3.first {
 margin-top: 0;
}

Chapter 6

[143]

#sidebar ul {
 margin: 0 0 0 10px;
 padding: 0;
}

#sidebar li {
 margin: 0;
 padding: 0;
 list-style-type: none;
}

#sidebar input {
 background-color: #ededed;
 border: 1px solid #ccc;
 padding: 4px;
 margin-left: 10px;
}

/* posts */
.post {
 border-bottom: 3px solid #f7f7f7;
 padding: 0 0 15px 0;
}

.post h2 {
 color: #c1ae90;
 font-weight: normal;
 margin: 0;
}

.post h2 a {
 color: #c1ae90;
}

.post .categories, .post .tags, .post .post-date {
 color: #bababa;
 font-size: 12px;
}
.post .tags { width: 480px; }

.post .post-date {
 float: right;
 margin-top: -18px;
}

Developing Your Own Theme

[144]

.post .comments {
 font-size: 12px;
 float: right;
 margin-top: -20px;
}

.post .comments a, .post .comments a:visited {
 background: url('images/icon-comments.gif') no-repeat 0 3px;
 padding: 1px 0 1px 18px;
}

.post img {
 padding: 5px;
 border: 4px solid #e2e2e2;
 margin: 10px;
}

/* footer */

#footer {
 color: #dedede;
 font-size: 20px;
 text-align: center;
 padding-top: 20px;
 text-transform: lowercase;
}

#footer a, #footer a:visited {
 color: #dedede;
}

#footer a:hover {
 color: #bbb;
}

However, beyond this, there are some other styles we should add. When WordPress
spits out items that include page lists, category lists, archive lists, images, galleries,
and so on, it gives many of these items a particular class name. If you know these
class names, you can prepare your stylesheet to take advantage of them.

Chapter 6

[145]

When you add an image to a post or page, WordPress gives you the option to have
it to the right, left, or at the center of the text. Depending on what you choose,
WordPress will give the image the class alignleft, alignright, or aligncenter.
Let's add alignleft and alignright to the stylesheet:

/* WordPress styles */
.alignright {
 float: right;
}

.alignleft {
 float: left;
}

.aligncenter {
 display: block;
 margin: 0 auto;
}

When you add an image with a caption, WordPress gives it the class wp-caption.
There are three essential entries you'll want to make in your stylesheet to style the
caption box, which are:

.wp-caption {
 padding-top: 5px;
 border: 4px solid #e2e2e2;
 text-align: center;
 background-color: #fff;
 margin: 10px;
}

.wp-caption img {
 margin: 0;
 padding: 0;
 border: 0 none;
}

.wp-caption p.wp-caption-text {
 font-size: 11px;
 line-height: 17px;
 padding: 0 4px 5px;
 margin: 0;
}

Developing Your Own Theme

[146]

I've designed my caption box to match my images without caption that I styled in
.post img.

Another useful class is current_page_item. WordPress adds this to the list item
in the pages menu, on the page that you are currently working. This gives you the
ability to visually mark a page that the user is currently viewing. I'll mark it with
an underline using the following code:

#mainnav .current_page_item a, #mainnav .current_page_item a:visited {
 text-decoration: underline;
}

We'll be coming back to the #mainnav's CSS later when we enable the theme
for Menus.

WordPress uses many other classes that you can take advantage of when building
your stylesheet. I've listed a few of them in Chapter 11.

Now that you've got your HTML and CSS lined up, you're ready for the next step:
turning the HTML build into a WordPress theme.

Converting your build into a theme
You'll be turning your HTML build into a theme, which is composed of a number
of template files and other scripts. We are going to first dig into the inner workings
of a theme so as to get familiar with how it's put together. Then we'll actually turn
the HTML build into a theme folder that WordPress can use. Finally, we'll replace
the dummy text in your build with WordPress functions that spit out content. As I
mentioned in an earlier chapter, doing development for your WordPress website on
a local environment can make the whole process much smoother. Consider getting a
server up and running on your home computer using WAMP, MAMP, or some other
way to install Apache and MySQL.

Creating the theme folder
The first step to turning your HTML build into a theme is to create your theme
folder, and give it everything it needs to be recognized as a theme by WordPress.
Let's look at an overview of the steps and then take them one by one:

1. Name your folder, and create backup copies of your build files.
2. Prepare the essential files.
3. Add a screenshot of your theme named screenshot.png.

Chapter 6

[147]

4. Upload your folder.
5. Activate your theme.

Let's take these steps one by one now:

1. Name your folder, and make backup copies.
You'll want to give your build folder a sensible name. I'm naming my
theme Muffin Top because of the muffins in my header image. I'll name
the folder muffintop.
Now I suggest creating backup copies of your HTML and CSS files. As you'll
eventually be breaking up your build into template files, you can easily lose
track of where your code came from. By keeping a copy of your original
build, you'll be able to go back to it for reference.

2. Prepare the essential files.
WordPress has only the following two requirements to recognize your folder
as a theme:

A file called index.php
A file called style.css with an introductory comment

Just re-name index.html to index.php, and that takes care of the
first requirement.
To satisfy the second requirement, your stylesheet needs to have an
introductory comment that describes the basic information for the whole
theme: title, author, and so on. Also, it has to be at the very top of the
stylesheet. I've added this comment to my style.css file.
 /*
 Theme Name: Muffin Top
 Theme URI: http://springthistle.com/wordpress/projects
 Description: Design created especially for April's Food Blog
for
 WordPress Complete.
 Version: 1.0
 Author: April Hodge Silver
 Author URI: http://springthistle.com/
 Tags: brown, blue, fixed width, two columns, widgets, food
 */

When you add this comment section to your stylesheet, just replace all of the
details with those that are relevant to your theme.

°

°

Developing Your Own Theme

[148]

3. Add a screenshot.
Remember when we first learned how to activate a new theme that there
were thumbnail versions of the themes in your Appearance tab? You'll want
a thumbnail of your own design. It has to be a PNG file and with the name
screenshot.png. Just do the following:

Flatten a copy of your design in Photoshop.
Change the image width to 300px and the height to 225
Save for web as a PNG-8.

4. Name your file screenshot.png, and save it in your build folder.
Now that I've got my theme ready to upload, my theme folder looks like this:

5. Upload your folder.
Using your FTP software, upload your template folder to wp-content/
themes/ in your WordPress build. It will share the themes folder with
twentyten and any other theme you've added as you installed WordPress.
In the following screenshot, you can see my muffintop theme (highlighted
in the following screenshot) living in the themes folder:

°

°

°

Chapter 6

[149]

6. Activate your theme.
You've got the absolute basic necessities in there now, so you can activate
your theme (though it won't look like much yet). Log in to your WP Admin
and navigate to Appearance. There you'll see your theme waiting for you.

Developing Your Own Theme

[150]

When you click on the thumbnail or Activate link of your theme, an overlay
window will appear on top of the page with a preview of what your site will
look like. Don't be alarmed if it's not perfect. The stylesheet is not yet being
pulled in correctly.

Click on the link in the upper-right corner to activate your theme. This is
another good reason to have a development server. You wouldn't want
to have this incomplete theme active on a live site while you finish the
final pieces!

Speaking of final pieces, your theme is now ready to have all of the WordPress
content added.

Chapter 6

[151]

Adding WordPress content
Right now, your index.php file is your only theme file. We'll be breaking it up into
template files a bit later. First, we need to replace the dummy text with WordPress
functions that will spit out your actual content into your theme.

The <head> tag
First we'll set up the <head></head> section of your HTML file. Let's start with the
stylesheet. WordPress provides a function that knows where your stylesheet lives.
Replace the code that calls in the stylesheet (style.css) in your index.php file
with this:

<link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>"
type="text/css" media="screen" />

Using this function instead of a hardcoded call to the stylesheet will come in handy if
you ever have a need to rename your theme folder. Now, when you look at your site,
you see your theme, along with the dummy text, in all its glory.

Next, you'll want WordPress to be able to place your blog's name in the title bar of
your browser. So replace your dummy title with the following code in the title tag:

<title><?php bloginfo('name'); ?></title>

This will spit out the title of the current page, then an arrow, and then the title of
your blog. Later, you may want to download the All-in-one-SEO plugin, which will
change the <title> page by page, depending on what's appropriate.

You need to add another important chunk of code to put header tags into your
theme for the RSS feed, the Atom feed, the pingback URL, and other miscellaneous
WordPress stuff. Add the following three lines in your <head> section:

<link rel="alternate"
 type="application/rss+xml"
 title="<?php bloginfo('name'); ?> RSS Feed"
 href="<?php bloginfo('rss2_url'); ?>" />
<link rel="alternate"
 type="application/atom+xml"
 title="<?php bloginfo('name'); ?> Atom Feed"
 href="<?php bloginfo('atom_url'); ?>" />
<link rel="pingback"
 href="<?php bloginfo('pingback_url'); ?>" />

Add the following line right before the closing </head> tag:

<?php wp_head(); ?>

Developing Your Own Theme

[152]

Now add the body_class() function to the body tag, so it looks like this:

<body <?php body_class() ?>>

Your header now looks something like this:

<head>
 <title><?php bloginfo('name'); ?></title>
 <meta name="robots"
 content="index, follow"></meta>
 <meta name="distribution"
 content="global"></meta>
 <meta name="description"
 content="discovering new recipes and food daily"></meta>
 <meta name="keywords"
 content="april hodge silver, food, recipes"></meta>
 <link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>"
type="text/css" media="screen" />
 <link rel="alternate"
 type="application/rss+xml"
 title="<?php bloginfo('name'); ?> RSS Feed"
 href="<?php bloginfo('rss2_url'); ?>" />
 <link rel="alternate"
 type="application/atom+xml"
 title="<?php bloginfo('name'); ?> Atom Feed"
 href="<?php bloginfo('atom_url'); ?>" />
 <link rel="pingback"
 href="<?php bloginfo('pingback_url'); ?>" />
 <?php wp_head(); ?>
</head>
<body <?php body_class() ?>>

The header and footer
It's time to start adding the content that you can see. Let's first replace the dummy
text in the main navigation bar and header with WordPress content tags.

Chapter 6

[153]

WordPress will generate a linked list of pages for you, as I mentioned earlier. Just
replace your dummy text with this code, replacing the whole tag:

<?php
 if (function_exists('wp_nav_menu')) wp_nav_menu('depth=2');
 else {
 echo '';
 wp_list_pages('title_li=&sort_column=menu_order&depth=2');
 echo '';
 }
?>

What's this code saying? First, it checks to see if the wp_nav_menu() function exists.
It was added in WordPress 3.0, so some older installations might not have it. If that
function doesn't exist, the code calls an older function that lists pages. The arguments
tell the functions to not print a greater depth than 2, because the CSS isn't prepared
to handle it.

Next, you can replace your dummy blog title and dummy blog description with the
following two tags:

<?php bloginfo('name'); ?>
<?php bloginfo('description'); ?>

These tags pull information from where you set the blog name and description in the
WP Admin, and you can simply change them from the Settings | General page.

Finally, if you want to link the blog title in the header to the homepage of the blog,
use the following for the URL:

<?php bloginfo('url'); ?>

Now, the part of your HTML that describes the header looks like this:

<div id="header">
 <div id="mainnav">
 <?php
 if (function_exists('wp_nav_menu')) wp_nav_menu('depth=2');
 else {
 echo '';
 wp_list_pages('title_li=&sort_column=menu_order&depth=2');
 echo '';
 }
 ?>
 </div><!-- /mainnav -->

Developing Your Own Theme

[154]

 <h1><a href="<?php bloginfo('url'); ?>"><?php bloginfo('name');
?></h1>
 <div id="description"><?php bloginfo('description'); ?></div>
</div><!-- /header -->

Are you wondering why you should bother with some of this when you could have
just typed your blog title, URL, and description to the theme? One reason is that if
you ever want to change your blog's title, you can just do it in one quick step in the
WP Admin and it will change all over your site. The other reason is that if you want
to share your theme with others, you'll need to give them the ability to easily change
the name through their own WP Admin panel. Keep in mind, anything, anything at
all, that will change from site to site based on the site's purpose and content, should
not be hard-coded into the theme but should be to be dynamically generated.

Now when I refresh the site, my dummy text in the header has been replaced with
actual content from my blog:

Just to tie things up, I'm going to add the same code to my footer for displaying the
home URL and blog title, and also the important function wp_footer(), which many
plugins need to hook into. My footer section now looks like the following:

<div id="footer">
 <a href="<?php echo get_option('home'); ?>/">
 <?php bloginfo('name'); ?> is powered by wordpress
</div><!-- /footer -->

</div><!-- /container -->

<?php wp_footer() ?>
</body>
</html>

Chapter 6

[155]

The sidebar
Now we can move along to adding WordPress-generated content in the sidebar,
which still has just the dummy text:

Starting at the top, replace your dummy text for the list of categories with
the following WordPress categories tag. Again, be sure to place it within
the tag.

<?php wp_list_categories('title_li='); ?>

Just like with pages, you need to turn off the default title by using title_li=.

Now, replace your dummy text for the list of archives with this tag:

<?php wp_get_archives(); ?>

The final item in the sidebar is the search box. This can be entirely replaced by a
WordPress function.

<?php get_search_form(); ?>

Now, the part of your HTML that describes the sidebar looks something like
the following:

 <div id="sidebar">
 <h3 class="first">Categories</h3>

 <?php wp_list_categories('title_li='); ?>

Developing Your Own Theme

[156]

 <h3>Archives</h3>

 <?php wp_get_archives(); ?>

 <h3>Search</h3>
 <?php get_search_form(); ?>
 </div><!-- /sidebar -->

(Later in the chapter, we'll be making this a widget-ready area, but for now, we'll
keep it like this.)

Save this file and reload your theme, and you'll see that your dummy text has been
replaced with WordPress output for the Categories and Archives lists, and the
Search form.

In my case, the search form doesn't look quite the way I want. So I'm going to add
these WordPress styles to my stylesheet to hide the label and the submit button:

.screen-reader-text, #searchsubmit {
 display: none;
}

Chapter 6

[157]

Main column—the loop
The most important part of the WordPress code comes next. It's called the loop,
and it's an essential part of your theme. The loop's job is to display your posts in
chronological order, choosing only those posts which are appropriate. You need
to put all of your other post tags inside the loop. The basic loop text, which has to
surround your post information, is displayed using the following code:

<?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>
 <div id="post-<?php the_ID(); ?>" <?php post_class() ?>>
 <!-- individual post information -->
 </div>
 <?php endwhile; ?>

 <div class="navigation">
 <div class="alignleft">
 <?php next_posts_link('« Older Entries') ?></div>
 <div class="alignright">
 <?php previous_posts_link('Newer Entries »') ?></div>
 </div>
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something that
 isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

There are three basic parts of the loop:

Individual post information
Next and previous posts links
What to do if there are no appropriate posts

Note that you can style your next and previous post links using the navigation
class. We already added alignright and alignleft, so we're all set with them.
Also, we will reuse the handy get_search_form() function that we used in
the sidebar.

•

•

•

Developing Your Own Theme

[158]

We are going to paste the loop we just saw into our index.php file in the place
where the main column lives. In my case, that's the div with id="copy". First,
however, let's replace the comment <!-- individual post information --> with
the dummy text from our HTML build. Now, the part of your HTML that describes
your main column looks something like the following:

 <div id="copy">

 <?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>
 <div id="post-<?php the_ID(); ?>" <?php post_class()
?>>
 <h2>Butternut Squash Soup</h2>
 <div class="post-date">November 21st, 2008</div>

 <p>My first paragraph.</p>
 <p>My second paragraph.</p>

 <div class="categories">Posted in:
 Recipes Found</div>
 <div class="tags">Tags:
 autumn,
 easy,
 soups
 </div>
 <div class="comments">
 5 Comments</div>
 </div>
 <?php endwhile; ?>

 <div class="navigation">
 <div class="alignleft">
 <?php next_posts_link('« Older Entries') ?>
 </div>
 <div class="alignright">
 <?php previous_posts_link('Newer Entries »') ?>
 </div>
 </div>
 <?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for
 something that isn't here.</p>
 <?php get_search_form(); ?>
 <?php endif; ?>

 </div><!-- /copy -->

Chapter 6

[159]

Now that we've got the basic loop in the theme, we can replace our dummy text with
more WordPress tags.

The post title and the URL that links to the post can be replaced with these two
WordPress tags:

<?php the_permalink() ?>
<?php the_title(); ?>

The date of the post is expressed by this tag:

<?php the_time('F jS, Y') ?>

The funny-looking code, F jS, Y, is PHP date formatting code.

Learning more:
You can look up for more options on how to display the date on a PHP
website at: http://us3.php.net/manual/en/function.date.php.

Now replace your dummy placeholder text for the actual content of the post
with this code:

<?php the_content(); ?>

Your categories and tags lists get expressed by the following two tags:

<?php the_category(', ') ?>
<?php the_tags(); ?>

By default, the the_category()function spits out your categories in a linked list.
Since I want them to display categories separated by comments, I have to add the ',
' argument that tells the function to put something else. In this case, it is a comma
and a space between category names.

Finally, you can set up your comments link with this tag:

<?php comments_popup_link('Leave a Comment »',
 '1 Comment »',
 '% Comments »'); ?>

Here, you can see that there are three arguments passed, separated by commas:

The first option tells WordPress the text that it has to display when there are
no comments.
The second option tells WordPress the text that it has to display when there
is just one comment.

•

•

Developing Your Own Theme

[160]

The third option tells WordPress text that it has to display for more than one
comment. The percent symbol (%) gets replaced with the actual number of
existing comments.

The section of your HTML that contains your main loop now looks something
like this:

 <div id="copy">

 <?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>
 <div id="post-<?php the_ID(); ?>" <?php post_class() ?>>
 <h2>
 <a href="<?php the_permalink() ?>">
 <?php the_title(); ?>
 </h2>
 <div class="post-date">
 <?php the_time('F jS, Y') ?></div>

 <?php the_content(); ?>

 <div class="categories">Posted in:
 <?php the_category(', ') ?>
 </div>
 <div class="tags">Tags:
 <?php the_tags(); ?>
 </div>
 <div class="comments">
 <?php comments_popup_link('Leave a Comment
 »',
 '1 Comment »',
 '% Comments »'); ?>
 </div>
 </div>
 <?php endwhile; ?>

 <div class="navigation">
 <div class="alignleft">
 <?php next_posts_link('« Older Entries') ?>
 </div>
 <div class="alignright">
 <?php previous_posts_link('Newer Entries »') ?>
 </div>
 </div>

•

Chapter 6

[161]

 <?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for
 something that isn't here.</p>
 <?php get_search_form(); ?>
 <?php endif; ?>

 </div><!-- /copy -->

Phew! Now save your index.php and reload your website. Your theme is in action!

Developing Your Own Theme

[162]

Learning more:
If you'd like to learn more about the useful built-in WordPress template
tags and functions you can implement when building up your theme, you
can find it in "WordPress 2.8 Theme Design", by Tessa Blakeley Silver.

Creating templates within your theme
You've now got a functional basic template for your theme. It works great on the
main blog page and successfully loads content for anything you can click on in
your site.

However, we want slightly different templates for other types of content on our site.
For example, a single post page needs to have a comments form where visitors can
post comments; the Page page doesn't need to show the date, category, or tags; and
the category page should show the category name.

Before we can create other templates, we need to break up the main index.php file
into parts so that these different templates can share the common elements. I've
mentioned many times the importance of the header, sidebar, and footer. We're
going to break them up now. First, let's take a quick look at how it works.

Understanding the WordPress theme
The WordPress theme is actually composed of a number of template files. This
allows the different parts of the site (such as the frontend, blog archive, page, single
post, search results, and so on) to have different purposes. Breaking the index.php
file into template files allows us to not only share some common parts of the design,
but also have different code in the different parts.

As I mentioned earlier, we'll soon be breaking up the four main pieces of the design
(header, sidebar, main column, and footer) so that WordPress can make good use of
them. That's because while the header and footer are probably shared by all pages,
the content in the main column will be different. Also, you may want the sidebar on
some pages, but not on others.

We'll first create these template files, and then move on to other, more optional
template files.

Chapter 6

[163]

Breaking it up
We're going to break up the index.php file by removing some of the code into three
new files:

header.php
footer.php
sidebar.php

header.php
First, cut out the entire top of your index.php file. This means cutting the doctype
declaration, the <head>, any miscellaneous opening tags, and the header div. In my
case, I'm cutting out all the way from this, the first few lines:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

through and including these lines:

 </div><!-- /header -->

 <div id="content">

Then, paste this text into a new file named header.php that you created within your
theme folder.

Now at the very top of the index.php file (that is, where you just cut the header text
from) write in this line of WordPress PHP code:

<?php get_header(); ?>

This is a WordPress function that includes the header.php file you just created.
If you save everything and reload your website now, nothing should change. If
something changes, then you've made a mistake.

footer.php
Next, we will create the footer file. To create this, first cut out all of the text at the
very bottom of the index.php file, from the clearing div just inside the #content div,
and all the way through the </html> tag. In my case, this is the entire text I cut:

 <div style="clear: both"> </div>
 </div><!-- /content -->

 <div id="footer">
 <a href="<?php echo get_option('home'); ?>/">

Developing Your Own Theme

[164]

 <?php bloginfo('name'); ?> is powered by wordpress
 </div><!-- /footer -->

</div><!-- /container -->
<?php wp_footer() ?>
</body>
</html>

Paste the text you just cut into a new footer.php file that you create within your
theme folder.

Now, at the very bottom of the index.php file (from where you just cut the footer
text) write in the following line of WordPress PHP code:

<?php get_footer(); ?>

This is a special WordPress function that includes the footer.php file you just
created. Again, you should save everything and reload your website to make sure
nothing changes.

sidebar.php
There is just one more essential template file to create. For this one, cut out the entire
div containing your sidebar. In my case, it's the following text:

 <div id="sidebar">
 <h3 class="first">Categories</h3>

 <?php wp_list_categories('title_li='); ?>

 <h3>Archives</h3>

 <?php wp_get_archives(); ?>

 <h3>Search</h3>
 <?php get_search_form(); ?>
 </div><!-- /sidebar -->

Paste this text into a new file in your theme folder named sidebar.php.

Now in index.php, add this function in the place you just cut your sidebar from:

<?php get_sidebar(); ?>

Chapter 6

[165]

This will include the sidebar. In the case of my design, I will want the sidebar on
every page. So it's not very crucial for it to be a separate file. I could have included it
in the footer.php file. However, in some templates, including the default template
that came with your WordPress installation, the designer prefers to not include the
sidebar in some views such as the Page and single posts.

Your four template files
You've now got four template files in your theme folder, namely, header.php,
footer.php, sidebar.php, and the now-much-shorter index.php. By the way, my
index.php file now has only the three WordPress functions and the loop. Following
is the entire file:

<?php get_header(); ?>

<div id="copy">

 <?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>
 <div id="post-<?php the_ID(); ?>" <?php post_class() ?>>
 <h2><a href="<?php the_permalink() ?>">
 <?php the_title(); ?></h2>
 <div class="post-date"><?php the_time('F jS, Y') ?></div>

 <?php the_content(); ?>
 <div class="categories">Posted in:
 <?php the_category(', ') ?></div>
 <div class="tags">Tags: <?php the_tags(); ?></div>
 <div class="comments">
 <?php comments_popup_link('No Comments »',
 '1 Comment »',
 '% Comments »'); ?>
 </div>
 </div>
 <?php endwhile; ?>

 <div class="navigation">
 <div class="alignleft">
 <?php next_posts_link('« Older Entries') ?></div>
 <div class="alignright">
 <?php previous_posts_link('Newer Entries »') ?>
 </div>
 </div>
 <?php else : ?>

Developing Your Own Theme

[166]

 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
 that isn't here.</p>
 <?php get_search_form(); ?>
 <?php endif; ?>

</div><!-- /copy -->

<?php get_sidebar(); ?>

<?php get_footer(); ?>

After creating individual template files, my theme folder looks like this:

This whole cutting-and-pasting process to create these four files was just to set the
scene for the real goal of making alternative template files.

Archive template
WordPress is now using the index.php template file for every view on your site.
Let's make a new file—one that will be used when viewing a monthly archive,
category archive, or tag archive.

To create your archive template, make a copy of index.php and name this copy
archive.php. When someone is viewing a category or a monthly archive of my site,
I want them to see an excerpt of the post content instead of the full post content. So,
I edit archive.php and replace the_content() with the_excerpt().

Chapter 6

[167]

Now navigate to a monthly archive on the site by clicking on one of the month
names in the sidebar. Following is how it will look now:

Instead of showing the full body of the post, WordPress has printed the first 55
words of the content followed by […]. However, if you go back to the main page
of the blog, you can see that it still displays the full content. This is the power of
template files.

Learning more:
You can alter the appearance of the excerpt in your theme if you don't like
the 55 words and […] display. Take a look in the codex for details: http://
codex.wordpress.org/Function_Reference/the_excerpt.

Let's make one more change to the archive template. I'd like it to display a message
that lets the users know what type of archive page they are on. To do that, just add
this code inside copy div:

<h2 class="pagetitle">
 <?php if (is_category()) { ?>
 Archive for the '<?php single_cat_title(); ?>' Category
 <?php } elseif(is_tag()) { ?>
 Posts Tagged '<?php single_tag_title(); ?>'
 <?php } elseif (is_month()) { ?>
 Archive for <?php the_time('F, Y'); ?>
 <?php } ?>
</h2>

Developing Your Own Theme

[168]

I also added a new style to my stylesheet to color this class dark grey.

Now, when I click on a month, category, or tag, I see a new heading at the top of the
page that lets me know where I am:

Single template
The next template we need to create is for the single post view. To view a single post,
you can usually just click on the post title. Right now, the single post page looks like
the site's front page (because it's using index.php); except with just one post. At the
very least, this page should have a comment form added!

To get started, again make a copy of index.php, and name the copy single.php.
This is the template that WordPress will look for first when it's serving a single post.
If it doesn't find single.php, it'll use index.php.

To add a comment form to single.php, simply add the following code just before
<?php endwhile; ?>:

<?php comments_template(); ?>

Chapter 6

[169]

Now, when you view an individual post, you'll see that the list of comments and the
comment form have both appeared.

At this point, you may want to add some CSS to handle styling the comments list.
You could start by copying the comments-related CSS from the twentyten theme.

There are two other changes I recommend for single.php:

Remove the code for next posts and previous posts.
Add code to display links for next post and previous post.

•

•

Developing Your Own Theme

[170]

To remove the code for the previous and next posts, which is only relevant
on pages that show multiple posts at a time, just delete the entire div with
class="navigation":

<div class="navigation">
 <div class="alignleft">
 <?php next_posts_link('« Older Entries') ?></div>
 <div class="alignright">
 <?php previous_posts_link('Newer Entries »') ?></div>
</div>

To add links to the next and previous single post, insert this code near the top of the
page just above the div with the post_class() function:

<div class="navigation">
 <div class="alignleft">
 <?php previous_post_link('« %link') ?></div>
 <div class="alignright">
 <?php next_post_link('%link »') ?></div>
</div>

I also added some additional CSS to handle the navigation div. Now your next and
previous posts are linked to the current post page by their titles like this:

Chapter 6

[171]

Page template
The last template we're going to create is for the static page view. On my food blog
site that would be the About page, for example:

I want to get rid of the date, categories, tags, and comments because they don't apply
to my pages, only to my posts. Make a copy of index.php and name the copy
page.php. When you edit the file, remove the code for the date, categories, and tags:

<div class="post-date"><?php the_time('F jS, Y') ?></div>
<div class="categories">Posted in: <?php the_category(', ') ?></div>
<div class="tags">Tags: <?php the_tags(); ?></div>

I do not want to let visitors comment on pages, I’ll remove the comments link
as well:

<div class="comments"><?php comments_popup_link('No Comments »',
'1 Comment »', '% Comments »'); ?></div>

Developing Your Own Theme

[172]

For extra credit, you can remove the anchor tag from the page title, and also remove
the entire div with class="navigation" because it's not relevant to static pages.
Now my About page looks much cleaner.

Generated classes for body and post
As you're modifying your theme to make accommodations for different types of
pages, you should also know about the CSS classes that WordPress will put into your
theme. One of them is classes in the body tag and the others are classes in the post
div. If you look carefully at the code we've been using, you'll see these two functions:

body_class()

post_class()

The body_class() function adds a whole bunch of classes to the body tag,
depending on the page you're viewing. For example, the main page of my
site has these classes in the body:

<body class="home blog logged-in">

My Butternut Squash Soup single post page's body tag looks like this:

<body class="single single-post postid-15 logged-in">

•

•

Chapter 6

[173]

My About page page looks like this:

<body class="page page-id-2 page-template page-template-default
logged-in">

If I wanted to style anything differently on different pages, I could do it largely with
CSS, without having to create another template.

The post_class() function does something similar with the post div, giving the
div different classes depending on the characteristics of the post itself. For example,
my Butternut Squash Soup post's div has these classes:

<div id="post-15" class="post-15 post type-post hentry category-
recipes tag-hot tag-soup tag-vegetarian">

and my About page's post div has these:

<div id="post-2" class="post-2 page type-page hentry">

By using these classes in my stylesheet, I could style every post differently
depending on its category, tag, post-type, and so on. Keep that in mind as
you design your next theme!

Other WordPress templates
In addition to archive.php, single.php, and page.php, there are a number of
other standard template files that WordPress looks for before using index.php for
particular views. We're not going to create those files here, but you should feel free
to experiment on your WordPress installation. These files are:

archive.php trumps index.php when a category, tag, date, or author page
is viewed
single.php trumps index.php when an individual post is viewed
page.php trumps index.php when looking at a static page
search.php trumps index.php when the results from a search are viewed
404.php trumps index.php when the URI address finds no existing content.
front-page.php trumps index.php when the home page is viewed
A custom template page, selected via the WP Admin, trumps page.php
when that particular page is viewed
category.php trumps archive.php, which trumps index.php when a
category is viewed
A custom category-ID.php page trumps category.php when a particular
category is viewed

•

•

•

•

•

•

•

•

•

Developing Your Own Theme

[174]

tag.php trumps archive.php, which trumps index.php when a tag page
is viewed
A custom tag-tagname.php page trumps tag.php when a particular tag
is viewed
author.php trumps archive.php when an author page is viewed
date.php trumps archive.php when a date page is viewed

In addition to what's listed above, there are also template files that would be
applicable in a situation that includes a custom taxonomy or a custom post type.

Learning more:
You can find a detailed flow chart of the template hierarchy here:
http://codex.wordpress.org/Template_Hierarchy. You can
get a more detailed discussion of creating these built-in template pages
in "WordPress 2.8 Theme Design", by Tessa Blakeley Silver.

In this chapter, we've experimented with the uses of quite a number of WordPress
template tags. In Chapter 11, I have listed more of the most useful template tags.

Next, we'll explore making custom templates for pages.

Creating and using a custom template
WordPress allows you to create custom templates. These can be used only for pages
(not for posts). A custom template allows you to display the content differently, or
easily use built-in WordPress functions within a template.

Up to WordPress version 2.9.2, the bundled theme was named default, and it had an
archives template. Let's create an archives template for this new theme. We want our
archives template to display a complete list of categories, monthly archives, and tags
in use on the site.

To do this, we need to create a template. These are the steps we'll take:

1. Create the template file by copying an existing file in the custom theme.
2. Add WordPress functions to the template file.
3. Tell the Blog Archives page to use the custom template file instead

of page.php.

•

•

•

•

Chapter 6

[175]

Let's get started.

1. Create the template file.
Make a copy of page.php within your theme, and give it a new name. I like
to prepend all of my custom template files with tmpl_ so that they are sorted
separately from all the WordPress template files that I will create. I'll name
this file tmpl_archives.php.
In order for WordPress to be able to identify this file as a template file, we
need to add a specially styled comment to the top of the page (just as we
did with style.css). The comment needs to be formatted like this:
 <?php
 /* Template Name: Blog Archives */
 ?>

In the WP Admin panel, the template will be identified by this template
name, so make sure the name signals to you for what the template is used.

2. Add WordPress functions.
Edit your new template file and remove the loop entirely. That is, remove it
from <?php if (have_posts()) : ?> to <?php endif; ?>, and everything in
between. Instead of the loop, we'll add some WordPress functions that will
display what we want. Because we are creating a custom template, we can
add any of the WordPress functions we discovered earlier in the chapter, as
well as any other WordPress function (see Chapter 11).
First, let's add a complete list of categories and monthly archives. In the spot
where the loop was present, insert this code:
 <h3>Categories</h3>

 <?php wp_list_categories('title_li='); ?>

 <h3>Archives</h3>

 <?php wp_get_archives(); ?>

This should look familiar—I copied and pasted it directly from sidebar.php.
3. Apply the template to a page.

Leave your HTML editor, and log in to your WP Admin. You need to edit
or create the page in which you want to use this template. In this case, I will
create a page and name it Blog Archives.

Developing Your Own Theme

[176]

On the Edit Page page, look for the Template menu within the Attributes
box (at the right, by default).

Change it from Default Template to Blog Archives, and click on Update
Page. (Note that you can also change a page's template using Quick Edit
on the Pages | Edit page). Now, when you return to the frontend of your
website and click on the Blog Archives page, you'll see that the categories
and monthly archives are as follows:

Chapter 6

[177]

To make this a bit more exciting, let's add one more WordPress function
to tmpl_archives.php. Underneath the monthly list, add this code:
 <h3>Tags</h3>
 <?php wp_tag_cloud(''); ?>

This function prints all of the tags in use on the site, one after the other
(inline, not in a list format), and increases the font size of the tags that have
been used more often. Save the template file and re-load the Blog Archives
page to see the tag cloud (not so impressive right now because I have very
few posts and tags in use), as shown in the following screenshot:

There is no limit to the number of custom templates you can make in your
WordPress theme.

Now that we are done making templates for the muffintop theme, take a look at how
the theme directory has grown:

Developing Your Own Theme

[178]

Making your theme widget-friendly
If you want to be able to use the widgets in your theme, you will need to make
your theme widget-friendly (also know as widgetizing your theme). Widgetizing
is actually pretty easy, and involves just the following three steps:

1. Ensure that your sidebar is one big, unordered list.
2. Add a functions.php file with a special function in it.
3. Add conditional code to your sidebar.

Nearly all of the PHP code you need to add in steps 2 and 3 can be pasted
from already existing files, so the non-programmers out there shouldn't be too
intimidated! Let's get started.

Making sure your sidebar is one big tag
This is actually not a requirement, but it's becoming the standard for WordPress
sidebars among the theme-writing community. As we will be editing the sidebar
anyway, let's modify it first to be one big tag. Another standard is that the
headings should be <h2>s, so I'll make that change as well.

For your sidebar to be one long UL, every item in the UL will contain a Header and
another UL.

<div id="sidebar">

 <h2 class="first">Categories</h2>

 <?php wp_list_categories('title_li='); ?>

 <h2>Archives</h2>

 <?php wp_get_archives(); ?>

 <h2>Search</h2>
 <?php get_search_form(); ?>

</div><!-- /sidebar -->

Chapter 6

[179]

All I did to change my sidebar.php was add a at the beginning of the sidebar
div and a at the end, and I put each item (categories, archives, and search)
into a tag.

After making these changes, I also tweaked my stylesheet so that the display isn't
affected negatively.

Adding functions.php
Your theme folder now needs a new file named functions.php with the following
as its contents:

<?php
if (function_exists('register_sidebar'))
 register_sidebar();
?>

If your sidebar.php is not in a single big , or your headers are not <h2>s, then
you're going to need slightly more complicated code in your functions.php file.
You can look up those details in the WordPress Codex. (Refer to the next Learning
more section.)

Adding conditional code to sidebar
The third and final step is to add conditional code to your sidebar.php. This code
says, "If the person using this theme wants to use widgets, don't show this stuff. If he
or she doesn't want to use widgets, do show this stuff." That way, a person not using
widgets will see whatever default items you put into the sidebar.php.

At the top of the sidebar.php, just under the opening tag, add this line of code:

<?php if (!function_exists('dynamic_sidebar')
 || !dynamic_sidebar()): ?>

At the bottom of the sidebar, just above the closing , add this line of code:

<?php endif; ?>

Developing Your Own Theme

[180]

Adding some widgets
Your theme is ready for widgets! You can now go to WP Admin, navigate to
Appearance | Widgets, and add widgets (when you do, the three default items
will disappear). For example, as you see in the following screenshot I added
three widgets:

Chapter 6

[181]

Be sure to click on Save, and then return to your website and reload the page. The
default items you had placed in the sidebar have been replaced with widgets, as
shown in the following screenshot:

Further widgetizing options
What we just covered is the simplest way to widgetize a theme. There are actually a
lot of options that you could utilize when adding the code to your sidebar.php and
functions.php pages. For example, there are options that allow you to:

Widgetize more than one sidebar, giving each a name
Widgetize a part of your sidebar, but leave in some default items
Widgetize a sidebar that is not one big long
Widgetize a sidebar whose item titles are not <h2>s
Customize the search form widget

Learning more
To learn about the variety of options available and how to take advantage of them,
take a look at the Codex: http://codex.wordpress.org/Widgetizing_Themes.

•

•

•

•

•

Developing Your Own Theme

[182]

Enabling a menu in your theme
As of WordPress 3, users can now control more easily what appears in menus.
Instead of having to show "all pages" in the menu, you can choose to show a
selection of pages and/or categories, and/or other options (as we saw in Chapter 4).

Because we used the wp_nav_menu() function in the header of the site (in the file
header.php), if the user creates a menu in Appearance | Menus, the first menu
they create will show up in that spot.

For example, here is the Muffin Top theme with the menu I created in Chapter 4:

It looks a little like a disaster, but that just means I need to clean up my CSS to allow
for subpages. Another change in the CSS is that the list item's s are no longer
given the page-item class, but instead get the menu-item class. Once I clean up my
CSS and add a rollover menu, my nav is ready to go:

(You can find the CSS changes I made in the code packet for this chapter.)

If you want to have more than one navigation menu in your theme, you can register
multiple navigation menu locations and let the user create multiple menus and
choose which menu goes in which location. To learn more about that, check out
this page of the codex: http://codex.wordpress.org/Navigation_Menus.

Chapter 6

[183]

Learning more: The wp_nav_menu() function is quite powerful, and
can take a number of parameters that will let you control the classes
and IDs, the name of the menu, and more. Take a look here in the
codex for details: http://codex.wordpress.org/Function_
Reference/wp_nav_menu.

Creating a child theme
If you can find an existing theme or theme framework that you like, and you just
want to use your CSS and HTML skills, you can create a child theme. A child
theme uses the parent theme as a starting point and, without changing the theme
framework itself, alters just the bits you want to alter. There are some themes, named
theme frameworks, that were created specifically with the idea that you would come
along and make child themes for them.

Let's take a quick look at how to make a child theme.

Creating the new theme directory
Since it comes bundled, let's make a child theme of twentyten and call it twentyeleven.
Create a new folder in wp-content/themes/, and name it twentyeleven.

Creating the stylesheet
The only file you need to start with in this directory is the stylesheet. The stylesheet
needs the usual header, plus a new line:

/*
Theme Name: Twenty Eleven
Description: A Child Theme of Twenty Ten
Version: 1.0
Author: April Hodge Silver
Author URI: http://springthistle.com/
Template: twentyten
*/

Developing Your Own Theme

[184]

The key line in that code is Template: twentyten. This tells WordPress that your
new theme is a child theme of twentyten, the directory name of the twentyten
theme. To make your child theme start out with the CSS from the parent theme,
add this code below the comment:

@import url(../twentyten/style.css);

Using your child theme
That's it! Your new theme now shows up on the Appearance page:

You have a child theme. It will use all of the Twenty Ten styles, template files,
functions and everything else. If you activate it, it will present your site as if
you were using Twenty Ten.

If you want to change anything, do so in your twentyeleven folder. You will
override the Twenty Ten original template file if you create a template file (for
example, single.php, index.php, archive.php, and so on). The functions.php
file works a little differently, however. If you create a functions.php file, it will be
in addition to the Twenty Ten original functions.php file; it will not override. If
you want to override a specific function in the Twenty Ten functions.php file, just
create a function with the same name; your new one will take precedence.

Chapter 6

[185]

In the future, you can update Twenty Ten when it has updates available without
worrying about overwriting the changes you made through the Twenty Eleven
child theme.

Learning more: The WordPress codex has a page devoted to learning
about child themes: http://codex.wordpress.org/Child_Themes.
There's also a page with a list of popular theme frameworks: http://
codex.wordpress.org/Theme_Frameworks. Of course, you can
always do a search on the web for both free and paid theme frameworks.

Sharing your theme
If you want to turn your template into a package that other people can use, you just
have to take the following steps:

1. Make sure you have the rights to redistribute images, icons, photos, and so
on, that you included in your theme.

2. Remove all unnecessary files from your theme's folder. Be sure you don't
have backup versions or old copies of any of your files. If you do delete any
file, be sure to retest your theme to ensure you didn't accidentally delete
something important.

3. Make sure the comment at the top of the style.css file is complete
and accurate.

4. Create a Readme.txt file. This is a good place to let future users know with
what version of WordPress your theme is compatible and if it has any special
features or requirements.

5. Zip the folder and post your theme ZIP file on your own website for people
to download, or post it directly in the WordPress Theme Directory at
http://wordpress.org/extend/themes.

These steps are outlined in a rather general way. If you'd like more details on the
process of preparing and sharing your theme in the WordPress community, I highly
recommend taking a look at the book "WordPress 2.8 Theme Design", by Tessa Blakeley
Silver. In this book, the author spends an entire chapter discussing the details
involved with sharing your theme and makes recommendations regarding licensing,
alternative packaging techniques, getting feedback, versioning, and tracking
theme usage.

Developing Your Own Theme

[186]

Summary
You have now crossed to the other side of the theming world. You have learned how
to make your own theme. With just the most basic HTML and CSS abilities, you can
create a design and turn it into a fully functional WordPress theme.

In this chapter we saw how to:

Turn your HTML build into a basic theme
Create WordPress templates to influence the display of a variety of views on
your site
Create custom templates to be applied to pages within your site
Make your new theme widget-ready
Create a child theme
Share your theme with everyone else in the WordPress community

•

•

•

•

•

•

Feeds and Podcasting
Let's start out with a definition. For those of you who aren't sure, this is what a "feed"
is (when it comes to websites):

A web feed is a data format used for providing users with frequently updated
content. (Wikipedia)

Let's take a closer look at this concept. The key idea here is "frequently updated
content". A website that features a blog or updated news or any type of content that
changes regularly will want to offer users a feed. This is because most users will not
want (or remember) to visit every such website every day, and users will lose track
of which websites have new content today, which don't, what they've already seen,
and so on.

Instead, they'll use a feed aggregator (or feed reader). The users tells the feed reader
about all of the regularly updated websites in which they are interested, and the feed
reader grabs the updated content and displays it all in one place. I, for example, use
a reader named Google Reader, and I have given it the feeds for the Planet Money
blog, a craigslist search for "wheelbarrow", lifehacker's mac-os-x tag, my sister's
family blog, and more. I just have to visit my Google Reader page once a day to see
which items have been updated, and I'm done. No need to visit multiple websites.
This also adds up to a saving in terms of page load time, as feeds contain fewer
advertisements and have only the textual content in which you'll be interested,
you don't have to wait for website design elements or ads to render.

What this all boils down to is this: If YOU are going to create a website with
frequently updated content, you'll want to offer your users a feed so that they can
add it to their reader. Also, you'll want to be sure you are familiar with feeds and
feed readers so that you can both understand what your users are seeing and also
offer your users everything they are likely to want.

Feeds and Podcasting

[188]

In this chapter, you will learn about feeds, how to provide feeds for your own
website's content, and some useful plugins to make all this happen.

Feed basics
Feeds are pure content (or just summaries of content) presented in a structured way
via XML, and are usually organized with the most recent information on top. You
can always stay up-to-date using feed aggregators (software that can read feeds).
Using them, you can also have the content you want delivered or collected for you in
the way and place you want. This applies not only to written content from blogs or
new websites, but also audio and video content (that is, podcasts).

Typically, web feeds are either in RSS (Really Simple Syndication) or Atom format.
RSS has changed over the past decade, and thus is often referred by a version
number. The most up-to-date version of RSS is RSS 2.0.1. The older versions that
are still somewhat in use are 0.91 and 1.0. For our purposes in this book, we'll use
RSS 2; but you should know that some software is only capable of reading the older
versions. If you ever find that you have readers on your blog who write to you
complaining that their feed reader can't read your RSS feed, then you could consider
publishing links for the older formats (we'll review how to do that later in the
chapter), or using a web tool (such as FeedBurner). Tools such as these can serve up
feeds in different formats, so your visitors can receive your content in whichever
way they choose.

Feed readers
Your subscribers will read your content using a feed reader. Feed readers are either
web-based or client-side software, which grab the XML content from all the feeds
you want and format it legibly. WordPress was programmed with this need in mind
and it automatically helps you format your posts so that they come in nicely through
the feed readers.

You may want to take a look at your blog in a few feed readers to see how your
content looks. There are a few different basic types of feed readers—online,
desktop, mobile, and so on.

Bloglines and Google Reader are the most popular online feed-reading tools. You
can easily add new feeds, organize them into folders and sections, see which feeds
have been updated, and also see which items within each feed you have already
read. Following is a screenshot of Google Reader:

Chapter 7

[189]

Feedreader and Thunderbird are two easy-to-use and free desktop feed readers.
You can download and install them on your computer to control your feed reading
at home.

There are also feed readers for iPhones and smart phones.

The Firefox browser comes with a built-in feed reader that displays a formatted feed
instead of the source XML (Safari does this, too). While Firefox doesn't provide the
organizational or tracking features in real feed readers, it can be useful for quickly
checking what your own feed looks like.

Learning more
You can find an extensive list of these and other feed readers on Wikipedia:
http://en.wikipedia.org/wiki/List_of_feed_aggregators.

Feeds and Podcasting

[190]

Your built-in WordPress feeds
Luckily for you, feed generation is automated in WordPress. The WordPress
installation has a feed generator included. The feed generator generates feeds from
posts, comments, and even categories. It also generates all versions of RSS and
Atom feeds.

You can find the feed generator for your WordPress blog (that we created in the
previous chapter) if you point your browser to any of the following URLs (replace
wpbook:8888 with the URL of your WordPress installation), and if you have pretty
permalinks turned on for your site:

RSS 2—http://wpbook:8888/feed/

RDF/RSS 1.0 feed—http://wpbook:8888/feed/rdf/

RSS 0.92 feed—http://wpbook:8888/feed/rss/

Atom—http://wpbook:8888/feed/atom/

Comments—http://wpbook:8888/comments/feed/

If you do not have permalinks turned on for your site, you will need to use the
following URLs instead:

RSS 2—http://wpbook:8888/?feed=rss2

RDF/RSS 1.0 feed—http://wpbook:8888/?feed=rdf

RSS 0.92 feed—http://wpbook:8888/?feed=rss

Atom—http://wpbook:8888/?feed=atom

Comments—http://wpbook:8888/?feed=comments

•

•

•

•

•

•

•

•

•

•

Chapter 7

[191]

This is what I see in Firefox 3 when I browse to the RSS 2 URL:

Adding feed links
WordPress automatically generates even the feed links that you see in the preceding
screenshot, so you don't have to type them in or remember what they are for. If
you're using an existing theme, there's a good chance it's already got the feed links
in it, in which case you can skip the following section. If it doesn't, or if you want
to learn more about adding feed links to your own templates, continue on here!

You can use handy built-in WordPress functions to add feeds to your theme. Let's
add a variety of feeds to the theme we created in Chapter 6. We'll add a feed for the
whole website, the individual categories, and the comments on posts.

Feeds and Podcasting

[192]

Feeds for the whole website
First, let's add feeds for all the posts and all the comments on the website. If you're
not already using the theme we created in Chapter 6, you may want to download it
now from http://www.packtpub.com/files/code/4101_Code.zip and install it
on your blog, because that is where we'll be adding the feeds.

Using your FTP software or the built-in WordPress theme editor, edit the footer.php
file in your muffintop folder. Just after the "is powered by wordpress" text,
add this:

<a href="<?php bloginfo('rss2_url'); ?>" class="rss">Posts
<a href="<?php bloginfo('comments_rss2_url'); ?>"
class="rss">Comments

I've also added an RSS icon in GIF format to the theme's images folder, and the
following CSS to the stylesheet:

.rss, p.rss a {
 background: url('images/rss.gif') no-repeat;
 padding: 0 0 0 17px;
 color: #E69730;
}

p.rss { background: none; padding: 0; }

#footer .rss {
 background-position: 0 7px;
 padding: 0 8px 0 17px;
 filter:alpha(opacity=50);
 opacity: .5;
 -moz-opacity:.5;
 color: #999;
}

#footer .rss:hover {
 color: #999;
 filter:alpha(opacity=100);
 opacity: 1;
 -moz-opacity:1;
}

Chapter 7

[193]

Now when you reload your site, you'll see links for those two feeds in the footer. See
the following screenshot:

WordPress will generate the feed URLs for you based on your site settings so that
you don't have to hardcode them into your template. If you want to add links
for other kinds of feeds, replace rss2_url in the earlier mentioned link with
the following:

For RSS 1.0—rdf_url

For RSS 0.92—rss_url

For Atom—atom_url

There's another important way to offer full site feeds on your site. When you look
at blog websites, you often see the feed icon in the browser's address bar:

You can click on that icon and see a list of feeds offered by the site:

The code for this is inserted in the <head> tag of the HTML where you need to have
special <link> tags that communicate about the site's feeds to the browser. We
actually included them in the previous chapter when we wrote the <head> for the
muffintop theme. They look like this:

 <link rel="alternate"
 type="application/rss+xml"
 title="<?php bloginfo('name'); ?> RSS Feed"

•

•

•

Feeds and Podcasting

[194]

 href="<?php bloginfo('rss2_url'); ?>" />
 <link rel="alternate"
 type="application/atom+xml"
 title="<?php bloginfo('name'); ?> Atom Feed"
 href="<?php bloginfo('atom_url'); ?>" />

Again, if you have a reason to make other types of feeds available, just add new lines
with the options I offered above, and replace rss2_url, atom_url, and so on.

Feeds for categories
Some site visitors may want to only subscribe to posts in a particular category. Let's
add an RSS feed that is category-specific.

Using your FTP software or the built-in WordPress theme editor, edit the
archive.php file in your theme folder. (Remember that this is the proprietary
template file that WordPress uses for the category page). Add the following
code just before <?php if (have_posts()) : ?>:

If you're using permalinks, your category feed code will be this:
<?php if (is_category()) { ?>
 <p><a href="<?php echo get_category_link($cat);?>/feed"
class="rss"><?php single_cat_title(); ?> feed</p>
<?php } ?>

If you're not using permalinks, your category feed code will be this:
<?php if (is_category()) { ?>
 <p><a href="<?php echo get_category_
link($cat);?>&feed=rss" class="rss"><?php single_cat_title(); ?>
feed</p>
<?php } ?>

I am using permalinks, and so I added the code in the first item to the archive.php.
Now, here is one of my category pages with the feed link I just added:

•

•

Chapter 7

[195]

Feeds for post comments
On the individual posts page, we can add a feed to allow users to subscribe to the
comments on a particular post. Sometimes a single post on a blog can draw a lot
of attention, with dozens or hundreds of people adding comments. People who
comment, and even those who don't comment, may be interested in following the
thread, or subscribing to it.

Using your FTP software or the built-in WordPress theme editor, edit the single.
php file in your theme folder. If you're using the theme we built during Chapter 6,
find the code that we added in it, which includes the comments template <?php
comments_template(); ?> and add this code just before it:

<p class="rss">
 <?php post_comments_feed_link('Subscribe to these comments'); ?>
</p>

(If you are not using the theme we built in Chapter 6, you can add the preceding text
anywhere in single.php so long as it is inside the if and while loops of the loop.)
Now, when you look at a single post page, you'll see the subscription link just above
the comments form:

Learning more: More built-in feed are available within WordPress.
Learn about them here: http://codex.wordpress.org/
WordPress_Feeds.

Feeds and Podcasting

[196]

Tracking subscribers with FeedBurner
Unlike visitors to your website's pages, your feed users cannot be tracked through
normal site-tracking software such as Google Analytics or Site Meter. The most
popular way to track feed users is through the free services provided by FeedBurner.

To use FeedBurner, you will need to divert all of your feed links through FeedBurner
instead of sending people directly to your WordPress RSS feeds. FeedBurner will
then keep a track of the number of subscribers for you and provide you with a
separate dashboard, statistics, and other features.

Burn your feed on FeedBurner
I'll need to create a FeedBurner account before you can start using it. Just go to
http://feedburner.google.com/, log in with your Google account, and follow
the sign up instructions. You'll have the option to choose your FeedBurner URL.

Then click on Next, and you're done.

Chapter 7

[197]

FeedBurner plugin
You're going to need the FeedBurner plugin. This plugin will tell WordPress
that when someone clicks on one of your feed URLs, which are generated by
WordPress, redirect them through FeedBurner. You can download the plugin here:
http://wordpress.org/extend/plugins/feedburner-plugin/.

Upload and activate the plugin as you learned in Chapter 4. Then go to the
configuration screen by navigating to Settings | FeedBurner. Enter your
FeedBurner URL into the appropriate text box.

As you can see, you can add a comments feed if you want to track that as well.

Starting immediately, the feed URLs that WordPress generates (though they look
the same) will actually redirect the user to FeedBurner so that it can collect stats.

You won't be able to see your user data right away. FeedBurner will take a few days
to collect statistics on your subscribers. Once it has enough data, you'll be able to log
in and see how many subscribers you have, which feed readers they are using, and a
lot of other data.

Feeds and Podcasting

[198]

Podcasting
A podcast is a special feed that includes a reference to an audio or video file instead
of just text. People use a podcasting client (like iTunes or Juice) to collect and listen
to the episodes.

Fun fact: The word "podcast" is a combination of iPod and broadcasting.

Have you ever considered creating your own podcast? It's like having your own
radio or TV show. Your subscribers, instead of reading your posts at their computers,
can listen through their headphones to your content at any time.

Adding a podcast to your WordPress blog is outrageously easy. While generating
your blog's RSS feeds, WordPress automatically adds an <enclosure> tag (available
in RSS 2.0) if a music file is linked within that post, and this tag is read by podcast
clients. Therefore, all you have to do is make a post; WordPress will do the rest
for you.

Creating a podcast
For basic podcasting, there are just two steps you have to take:

1. Record.
2. Post.

Let's look at these steps in detail.

Record yourself
You can record your voice, a conversation, music, or any other sound you'd like to
podcast using any commercial or free software and save it as an MP3 file. You may
also find that you need to do some editing afterwards.

Some good free software to consider using are as follows:

I recommend using Audacity, which is a free, cross-platform sound
recorder, and editor. You can download Audacity from http://audacity.
sourceforge.net/. You may have to do a bit of extra fiddling to get the
MP3 part working, so pay attention to the additional instructions at that
point. You may also want to use a leveling tool such as the Levelator, which
can be found at http://www.conversationsnetwork.org/levelator.

•

Chapter 7

[199]

Another option is a free application that runs on Windows named WavePad.
You can download WavePad from http://www.nch.com.au/wavepad/.
If you are working on a Mac and want some free software, take a look
at Garage Band. It comes with the OS, so it will already be installed on
your computer.
If you are working on Mac and want to use a commercial software, Sound
Studio is an excellent choice. You can find it at http://www.apple.com/
downloads/macosx/audio/soundstudio.html.

Make a post
Now that you've created an MP3 file and it's sitting on your computer, you're ready
to make a WordPress post that will be the home for the first episode of your podcast.

1. In the WP Admin, click on New Post on the top menu. Enter some initial
text into your post if you want to provide an explanation of this episode.
I suggest you also, at this point, add a new category to your blog
called Podcast.

2. Next, click on the music icon in the media uploader:

•

•

•

Feeds and Podcasting

[200]

3. When the form fields appear, click on Browser uploader or Select Files
to find your MP3 file. WordPress will upload it, and then show you this
screen with options:

You can enter a caption and description in this area. However, none of
it will be used in your default podcast. You can use plugins, which we'll
discuss in a few pages, to take advantage of the information you type
in here.

4. If the Link URL field is empty, click on File URL, and WordPress will put
the URL of the MP3 file you just uploaded in that space.

5. Click on Insert into Post.
6. Make any other changes or additions you want to make to your post, publish

the post, and you're done.

Chapter 7

[201]

That's it. Your website's RSS 2.0 feed and its Atom Feed can now be used by podcast
clients to pick up your podcast.

You can use your own podcast client (iTunes, in my case) to subscribe right away.
In iTunes, I go to Advanced | Subscribe to podcast and paste in the RSS URL of
the new Podcast category I just created (http://wpbook:8888/category/podcast/
feed). My podcast shows up like this:

Here's how things map out:

WordPress item Podcast item Example
Blog or Category title Podcast title Daily Cooking | Podcast
Blog description Podcast description Exploring cooking every day...
Post title Podcast episode title title Podcast: Sizzling Lasagne
Post content Podcast description In this, the first episode of...

Dedicated podcasting
Setting up a dedicated podcast is easy—we already did it above! You just need to
use a separate category for all of your podcast posts. Whenever you post a podcast
episode, be sure to assign it to this category only. Furthermore, in addition to
providing a link to the podcast feed on the archive page, you'll want to make this
link available in the sidebar of your site.

First, go to the archive page for your podcast category and copy the URL. In my case
it's http://wpbook:8888/category/podcast/feed. Also, to make things easier for
iTunes users, you can add an iTunes-specific link. It is the same as your other link,
but replace http:// with itpc://.

Now create a new text widget for your sidebar, and add this HTML to it:

The Podcast</
a>
iTunes Podcast
feed

Feeds and Podcasting

[202]

Like this:

Now, that part of my sidebar looks like this:

Chapter 7

[203]

Learning more: The WordPress codex has a section on getting started
with podcasting. Take a look here: http://codex.wordpress.org/
Podcasting.

Podcasting plugins
We just learned that it's quite easy to add a podcast to your WordPress website.
However, if you want additional features, you may want to use a podcasting plugin.
Some additional features might be:

Automatic feed generation
Preview of what your podcast will look like in iTunes
Download statistics
Automatic inclusion of a player within your post on your website
Support for separate category podcasts

There are quite a number of podcast-related plugins available in the WordPress
Plugin Repository. The two most popular are:

PodPress: http://wordpress.org/extend/plugins/podpress/
Podcasting Plugin by TSG: http://wordpress.org/extend/plugins/
podcasting/

Also there are hundreds more, which you can find by looking at all plugins tagged
podcasting: http://wordpress.org/extend/plugins/tags/podcasting. You'll
have to read the plugin descriptions and user reviews to decide which of these might
be the best match for you.

If you want to have your podcast listed in the iTunes podcast directory, take a look
at iPodCatter. It helps users create a valid feed for the iTunes podcast directory and
specify the itunes:duration and itunes:explicit tags on a per-episode basis.
You can download this plugin from http://garrickvanburen.com/wordpress-
plugins/wpipodcatter.

•

•

•

•

•

•

•

Feeds and Podcasting

[204]

Using a service to host audio files for free
If you anticipate having a large number of subscribers, or if you plan on producing
such a large volume that you'll run out of space on your own server, you can use an
external hosting service that will host your audio files either for a fee or even free of
cost. Some options to consider are:

archive.org

libsyn.org

podbean.com

If you choose to do this, first upload your file to the service you chose, and make
a copy of the URL it gives you for the file.

Now you need to insert it into your WordPress post. However, some services,
such as archive.org, give you a URL that actually redirects to the music content
behind the scenes. This interferes with WordPress's file-detection process. Tom
Raftery proposes a good solution on this blog at http://www.tomrafteryit.net/
wordpress-podcasts-not-showing-up-fixed/.

To implement the fix, do the following when creating a post:

Scroll down to the section named Custom fields.
Select enclosure from the Name drop-down menu (if there isn't one already,
click on Enter new, and just type enclosure into the Name box), paste
the URL of your music file in the Value box, and finally, click on
Add Custom Field.

That's all you have to do because WordPress takes care of the rest.

Summary
Feeds are an easy and popular way to syndicate content—be it written blog content
or audio or video podcast content. In this chapter, we learned what an RSS feed is
and how to make feeds available for our WordPress blog. We also explored how to
syndicate a whole blog or just posts within a certain category, and how to create your
own podcast with or without the help of plugins.

Although different versions of RSS are available, RSS 2.0 is the most up-to-date and
feature-rich format.

•

•

•

•

•

Developing Plugins and
Widgets

Earlier in this book, you learned how to install plugins. Plugins are essentially a
way to add to or extend WordPress's built-in functionality. There are thousands of
useful plugins available from the online WordPress community, and they perform
all different kinds of functions. In the earlier chapters, we installed plugins that
catch spam, allow FeedBurner to track RSS followers, add a lightbox to your photo
galleries, backup the WordPress database, and more. You can also get plugins
that manage your podcasts, create a Google XML site map, integrate with social
bookmarking sites, track your stats, translate into other languages, and much more.

Sometimes, however, you'll find yourself in a situation where the plugin you need
just doesn't exist. Luckily, it's quite easy to write a plugin for WordPress that you can
use on your own site and share with the larger community if you want. All you need
is some basic PHP knowledge, and you can write any plugin you want.

This chapter is divided into three major parts. In the first part, we'll create two plugins
using an easy-to-follow step-by-step process. In the second part, we'll create a widget
using the built-in WordPress Widget class. In the third part, we'll look at shortcodes.

Plugins
In this section, we'll create a plugin via a simple step-by-step process. We'll first see
what the essential requirements are, then try out the plugin, and then briefly discuss
the PHP code.

Developing Plugins and Widgets

[206]

Plugin code requirements
Just as there were requirements for a theme, there are requirements for a plugin. At
the very least, your plugin must have:

A PHP file with a unique name
A specially structured comment at the top of the file

That's it. Then, of course, you must have some functions or processing code, but
WordPress will recognize any file that meets these two requirements as a plugin.

Basic plugin—adding link icons
As a demonstration, we will create a simple plugin that adds icons to document links
within WordPress. For example, in an earlier chapter we added a link to an MP3 file.
It looks like the following now:

Once this plugin is complete, the link will look like the following instead:

To accomplish this, we have to do the following:

1. Provide images of the icons that will be used.
2. Have a PHP function that identifies the links to documents and adds a

special CSS class to them.

•

•

Chapter 8

[207]

3. Have a PHP function that creates the CSS classes for displaying the icons.
4. Tell WordPress that whenever it prints the content of a post (that is, using the

the_content()function), it has to run the first PHP function.
5. Tell WordPress to include the new styles in the <head> tag.

Keep this list in mind as we move forward. Once all these five requirements are met,
the plugin will be done.

Let's get started!

Naming and organizing the plugin files
Every plugin should have a unique name so that it does not come into conflict with
any other plugin in the WordPress universe. When choosing a name for your plugin
and the PHP file, be sure to choose something unique. You may even want to do a
Google search for the name you choose in order to be sure that someone else isn't
already using it.

In this case, as my plugin will be composed of multiple files (a PHP file and
some image files) I'm going to create a folder to house my plugin. I'll name the
plugin Add Document Type Styles, and the folder name, ahs_doctypes_styles,
will be prefixed with my initials as extra security to keep it unique. The PHP file,
doctypes_styles.php, will live in this folder. I've also collected a number of
document type icons.

The folder I created for my plugin now looks like this:

Now that I've got the images in my folder, I've taken care of the first requirement in
the list of requirements my plugin has to meet.

Note: If your plugin has any unusual installation or configuration options,
you may also want to include a readme.txt file in this folder that
explains this. This readme file will be useful both as a reminder to you
and as an instructional document to others who may use your plugin in
the future. If you plan to submit your plugin to the WordPress plugin
directory, you will be required to create a readme file.

Developing Plugins and Widgets

[208]

As mentioned earlier, your plugin has to start with a special comment that tells
WordPress how to describe the plugin to users on the plugins page. Now that I've
got my folder and a blank PHP file created, I'll insert the special comment. It has
to be structured like this:

/*
Plugin Name: Add Document Type Styles
Plugin URI: http://springthistle.com/wordpress/plugin_doctypes
Description: Detects URLs in your post and page content and applies
style to those that link to documents so as to identify the document
type. Includes support for: pdf, doc, mp3 and zip.
Version: 1.0
Author: April Hodge Silver
Author URI: http://springthistle.com
*/

Another good piece of information to have in your plugin is about licensing. Most
plugins use the GPL (GNU General Public License). This license essentially means
that anyone can use, copy, and enhance your code, and that they are not allowed
to prevent anyone else from redistributing it. I've also added a note about the GPL
to my plugin's PHP file.

That's all about the introductory code. Now we can add the meat.

Writing the plugin's core functions
The core of any plugin is the unique PHP code that you bring to the table. This is the
part of the plugin that makes it what it is. Since this plugin is so simple, it only has
a few lines of code in the middle.

The second requirement the plugin has to meet is "Have a PHP function that identifies
links to documents and adds a special class to them". The following function does
just that. Note that in keeping with my efforts to ensure that my code is unique, I've
prefixed both of my functions with ahs_doctypes_:

function ahs_doctypes_regex($text) {
 $text = ereg_replace(
 'href=([\'|"][[:alnum:]|[:punct:]]*)
 \.(pdf|doc|mp3|zip)([\'|"])',
 'href=\\1.\\2\\3 class="link \\2"',
 $text);
 return $text;
}

When the function is given some $text, it will perform a search for any HTML
anchor tag linking to a PDF, DOC, MP3, or ZIP file, and replace it with a class
to that anchor. Then the function returns the altered $text.

Chapter 8

[209]

The third requirement the plugin has to meet is "Have a PHP function that creates
classes for displaying the icons". The following function does just that:

function ahs_doctypes_styles() {
 echo "<!-- for the plugin Document Type Styles -->\n";
 echo "<style>\n.link { background-repeat: no-repeat; padding: 2px
0 2px 20px; }\n";
 echo ".pdf { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-pdf.gif'); }\n";
 echo ".doc { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-doc.gif'); }\n";
 echo ".mp3 { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-mp3.gif'); }\n";
 echo ".zip { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-zip.gif'); }\n";
 echo "</style>\n\n";
}

That's it.

Adding hooks to the plugin
We get our code to actually run when it is supposed to by making use of WordPress
hooks. The way in which plugin hooks work is—at various times while WordPress is
running, it checks to see if any plugins have registered functions to run at that time.
If there are, the functions are executed. These functions modify the default behavior
of WordPress. The WordPress Codex says it best:

[…] There are two kinds of hooks:

1. Actions: Actions are the hooks that the WordPress core launches at specific
points during execution, or when specific events occur. Your plugin can specify
that one or more of its PHP functions are executed at these points, using the
Action API.

2. Filters: Filters are the hooks that WordPress launches to modify text of various
types before adding it to the database or sending it to the browser screen. Your
plugin can specify that one or more of its PHP functions is executed to modify
specific types of text at these times, using the Filter API.

This means you can tell WordPress to run your plugin's functions at the same time
when it runs any of its built-in functions. In our case, we want our plugin's first
function, ahs_doctypes_regex(), to be run as a filter along with WordPress's
the_content(). (This is the fourth requirement a plugin has to meet.)

Developing Plugins and Widgets

[210]

Now add the following code to the bottom of the plugin:

add_filter('the_content', 'ahs_doctypes_regex');

This uses the add_filter hook that tells WordPress to register a function named
ahs_doctypes_regex() when it is running the function called the_content(). By
the way, if you have more than one function that you want added as a filter to the
content, you can add a third argument to the add_filter() function. This third
argument would be a number from 1-9, and WordPress would run your functions
in the order from smallest to largest.

All that's left in our list of requirements that a plugin has to meet is the fifth
requirement, "Tell WordPress to include the new styles in the <head> tag". Now, we
need to add a hook using add_action() to WordPress's wp_head() function, which
is included in the <head></head> tag of every decent WordPress theme.

add_action('wp_head', 'ahs_doctypes_styles');

Here is the complete plugin PHP file (minus the license, which I removed for
space considerations):

<?php
/*
Plugin Name: Add Document Type Styles
Plugin URI: http://springthistle.com/wordpress/plugin_doctypes
Description: Detects URLs in your post and page content and applies
style to those that link to documents so as to identify the document
type. Includes support for: pdf, doc, mp3 and zip.
Version: 1.0
Author: April Hodge Silver
Author URI: http://springthistle.com
*/

function ahs_doctypes_regex($text) {
 $types = ereg_replace(',[:space:]*','|',$types);
 $text = ereg_replace('href=([\'|"][[:alnum:]|[:punct:]]*)\
.(pdf|doc|mp3|zip)([\'|"])','href=\\1.\\2\\3 class="link \\2"',$text);
 return $text;
}

function ahs_doctypes_styles() {
 echo "<!-- for the plugin Document Type Styles -->\n";
 echo "<style>\n.link { background-repeat: no-repeat; padding: 2px
0 2px 20px; }\n";
 echo ".pdf { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-pdf.gif'); }\n";
 echo ".doc { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-doc.gif'); }\n";

Chapter 8

[211]

 echo ".mp3 { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-mp3.gif'); }\n";
 echo ".zip { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-zip.gif'); }\n";
 echo "</style>\n\n";
}

add_filter('the_content', 'ahs_doctypes_regex');
add_action('wp_head', 'ahs_doctypes_styles');
?>

Please make sure that there are no blank spaces before <?php and
after ?>. If there are any spaces, the PHP will break, complaining
that headers have already been sent.

Make sure you save and close this PHP file. You can now do one of two things:

Using your FTP client, upload ahs_doctypes_styles/ to your
wp-content/plugins/ folder
Zip up your folder into ahs_doctypes_styles.zip and use the plugin
uploader in the WP Admin to add this plugin to your WordPress installation

Once the plugin is installed, it will show up on the plugins page:

Now you can activate it. That's all you have to do! Let's take a look at the plugin.

Trying out the plugin
If you look at the podcast post we created in an earlier chapter, you'll notice that an
MP3 icon has been added to it.

•

•

Developing Plugins and Widgets

[212]

You can also try adding a new post with links to PDF, ZIP, or DOC files. This can be
done by uploading the files and clicking on Insert into Post.

When you view this post, you'll see that icons have been automatically added to it by
the plugin:

Now that you've learned about a basic plugin that uses hooks to piggyback on
the existing WordPress functionality, let's enhance this plugin by giving the user
some controls.

Chapter 8

[213]

Adding an admin page
As you have already seen, some plugins add a page to the WP Admin where you
or the user can edit plugin options. We've seen this with Akismet, DB Backup,
FeedBurner, and jQuery Colorbox. Now let's modify our plugin to give the user
some control over which document types are supported.

First, deactivate the plugin we just wrote. We'll make changes to it and then
reactivate it.

Following is what the new management page will look like when we are done:

Developing Plugins and Widgets

[214]

Following are the steps we'll carry out to modify the plugin in order to make this
new page possible:

Add functions that create an admin page and save the user's input in
a new option.
Modify the ahs_doctypes_regex() and the ahs_doctypes_styles()
function so that they retrieve and use the user's input.
Add hooks for the admin page functions.

Let's get started!

Adding management page functions
The management page that we will create is going to add an option to the WP
Admin. This uses the existing space in the WordPress options table in the database,
so no database modifications are required. The name of the new option has to be
unique. I'm going to call the new option ahs_supportedtypes, and I'll be sure to
use supportedtypes_ in all of my function names to ensure that they are unique.

There are six functions we need to add to the plugin so that an admin page can be
added to the WP Admin. Let's take a look at the first two.

function set_supportedtypes_options() {
 add_option("ahs_supportedtypes","pdf,doc,mp3,zip");
}

function unset_supportedtypes_options () {
 delete_option("ahs_supportedtypes");
}

The first function adds the new option ahs_supportedtypes when the plugin is
activated, and also sets the default value. The second function removes the new
option when the plugin is deactivated.

Let's look at the new third function:

function modify_menu_for_supportedtypes() {
 add_submenu_page(
 'Document Types', // Page <title>
 'Document Types', // Menu title
 7, // What level of user
 __FILE__, //File to open
 'supportedtypes_options' //Function to call
);
}

•

•

•

Chapter 8

[215]

This function adds a new item to the Settings menu in the WP Admin using
add_submenu_page. This takes five arguments, namely, page title, menu link text,
the user at the maximum level who can access the link, what file to open (none, in
this case), and the function to call, supportedtypes_options(), which is the fourth
new function we are adding.

function supportedtypes_options () {
 echo '<div class="wrap"><h2>Supported Document Types</h2>';
 if ($_REQUEST['submit']) {
 update_supportedtypes_options();
 }
 print_supportedtypes_form();
 echo '</div>';
}

This function actually displays our new page. It prints a title, checks to see
if someone has clicked on the submit button, and if it is clicked, the
supportedtypes_options() function updates options, and then prints the form.

The new fifth function we have to add is responsible for updating options if the
submit button has been clicked.

 $updated = false;
 if ($_REQUEST['ahs_supportedtypes']) { update_option('ahs_
supportedtypes', $_REQUEST['ahs_supportedtypes']); $updated = true; }

 if ($updated) {
 echo '<div id="message" class="updated fade">';
 echo '<p>Supported Types successfully updated!</p>';
 echo '</div>';
 } else {
 echo '<div id="message" class="error fade">';
 echo '<p>Unable to update Supported Types!</p>';
 echo '</div>';
 }
}

The last function we need to add, the new sixth function, prints the form that users
will see.

function print_supportedtypes_form () {
 $val_ahs_supportedtypes = stripslashes(get_option('ahs_
supportedtypes'));
 echo <<<EOF
<p>Document types supported by the Add Document Types plugin are
listed below.
To add a new type, take the following steps, in
this order:

Developing Plugins and Widgets

[216]

 Upload the icon file for the new doctype to <i>wp-content/
plugins/ahs_doctypes_styles/</i> and be sure to call it icon-EXT.gif
where EXT is the extension of the new doctype
 Add the extention of the new doctype to the list below,
keeping with the comma-separated format.

</p>

<form method="post">
 <input type="text" name="ahs_supportedtypes" size="50"
value="$val_ahs_supportedtypes" />
 <input type="submit" name="submit" value="Save Changes" />
</form>
EOF;
}

Those six functions together will take care of adding a link in the menu, adding the
management page for that link, and updating the new option.

Modifying the regex() function
Now that the users are able to edit the list of supported document types by
appending the document types they want, we should have a way of telling the
regex() function to use the user's list instead of a built-in list. To do that, we
need to use get_option('ahs_supportedtypes') in our regex() function. The
get_option() function will retrieve the value that the user has saved in the new
option we just created. Modify your regex() function so that it looks like this:

function ahs_doctypes_regex($text) {
 $types = get_option('ahs_supportedtypes');
 $types = ereg_replace(',[]*','|',$types);
 $text = ereg_replace('href=([\'|"][[:alnum:]|[:punct:]]*)\
.('.$types.')([\'|"])','href=\\1.\\2\\3 class="link \\2"',$text);
 return $text;
}

We also have to tell the function that prints the styles into the <head> tag to use the
user's list. Modify the ahs_doctypes_styles() function so that it looks like this:

function ahs_doctypes_styles() {
 $types = split(",[]*",get_option('ahs_supportedtypes'));
 echo "<!-- for the plugin Document Type Styles -->\n";
 echo "<style>\n.link { background-repeat: no-repeat; padding: 2px
0 2px 20px; }\n";
 foreach ($types as $type) {

Chapter 8

[217]

 echo ".$type { background-image: url('".WP_PLUGIN_URL."/ahs_
doctypes_styles/icon-$type.gif'); }\n";
 }
 echo "</style>\n\n";
}

Adding hooks
We have added our management page functions, but now we have to tell WordPress
to use them. To do that, we just need to add the following three new hooks:

add_action('admin_menu','modify_menu_for_supportedtypes');
register_activation_hook(__FILE__,"set_supportedtypes_options");
register_deactivation_hook(__FILE__,"unset_supportedtypes_options");

The first hook tells WordPress to add our link to the menu when it creates the menu
with admin_menu(). The next two hooks tell WordPress to call the activation and
deactivation functions when the plugin is activated or deactivated.

Trying out the plugin
We have added all of the new functions. Now, I'll change the version number in my
initial comment from 1.0 to 1.1, change the description, and save the file. Next, I
will go to the plugin page and see the updated plugin information:

Now, I can reactivate the plugin. Now when you look at the Settings menu, you will
see that the new link has been added.

Developing Plugins and Widgets

[218]

Click on it to see the management page.

If you follow the two steps here on the management page (upload the file icon and
add the extension to the option), then that new document type will be supported.

There are already a number of ways in which this plugin could be improved. Some
of them are:

Instead of making the user upload his or her new icon using FTP, the
plugin could allow the user to upload the new icon directly via the new
management page
The plugin could display the icons for the supported document types on the
management page, so the users can see what they look like
The plugin could check to make sure that for every document type in the
option field there is an existing icon, else it displays an error to the user

Perhaps you'd like to try to make these changes yourself!

Plugin with DB access—capturing searched
words
We're going to leave the doctypes plugin behind now, and create a new plugin,
featuring active use of the database. Let's create a simple plugin that stores all the
words that visitors search for using the blog's search function.

The database table structure for this plugin will be as follows:

table wp_searchedwords:

Field Type Null Key Default Extra
id int(11) YES PRI NULL auto_increment
word Varchar(255) NULL

Now, let's write the plugin code.

•

•

•

Chapter 8

[219]

Getting the plugin to talk to the database
The first part of this plugin has to be run only when the plugin is activated. This will
be the initialization function, and it has to check to see if the database table exists;
and if not, create it.

function searchedwords_init($content) {
 if (isset($_GET['activate']) && $_GET['activate'] == 'true') {
 global $wpdb;
 $result = mysql_list_tables(DB_NAME);
 $current_tables = array();
 while ($row = mysql_fetch_row($result)) {
 $current_tables[] = $row[0];
 }
 if (!in_array("wp_searchedwords", $current_tables)) {
 $result = mysql_query(
 "CREATE TABLE `wp_searchedwords` (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 word VARCHAR(255)
)");
 }
 }
 if (!empty($_GET['s'])) {
 $current_searched_words = explode(" ",urldecode($_
GET['s']));
 foreach ($current_searched_words as $word) {
 mysql_query("insert into wp_searchedwords values(null
,'{$word}')");
 }
 }
}

The preceding function also stores the searched word in the database table if a search
has just been performed.

Adding management page functions
We now need a familiar-looking function that adds a management page to the admin
menu. In this case, we're using add_management_page() instead of add_submenu_
page() because this plugin is more of a tool than something that needs settings.

function modify_menu_for_searchedwords() {
 if (function_exists('add_submenu_page')) {
 add_management_page(
 "Searched Words",

Developing Plugins and Widgets

[220]

 "Searched Words",
 1,
 __FILE__,
 'searchedwords_page'
);
 }
}

We also need a function that retrieves the information from the database and
displays it on the new management page.

function searchedwords_page() {
 $result = mysql_query('SELECT COUNT(word) AS occurence, word FROM
wp_searchedwords GROUP BY word ORDER BY occurance DESC');
 echo '<style>.searchwords { padding: 0px; border: 3px solid #ddd}
.searchwords td { border-top: 2px solid #e0e0e0; padding: 3px; margin:
0; } .searchwords th { background-color: #e0e0e0; padding: 5px 3px
1px 3px; margin: 0; }</style>';
 echo '<div class="wrap"><h2>Searched Words</h2>';
 echo '<table class="searchwords">';
 if (mysql_num_rows($result)>0) {
 echo '<tr><th>Search words</th><th># searches</th></tr>';
 while ($row = mysql_fetch_row($result)) {
 echo "<tr><td>{$row[1]}</td><td>{$row[0]}</td></
tr>";
 }
 } else {
 echo '<tr><td colspan="2"><h3>No searches have been
preformed yet</h3></td></tr>';
 }
 echo '</table></div>';
}

That's it, only two. The previous plugin had more functions because data was being
captured from the user and being saved. Here, that's not necessary.

Adding hooks
Lastly, we just need to add two hooks:

add_filter('init', 'searchedwords_init');
add_action("admin_menu","modify_menu_for_searchedwords");

The first hook tells WordPress to run the initialization function when the plugin
is activated, or when a search is performed. The second hook modifies the admin
menu to add a link to the new management page.

Chapter 8

[221]

Trying out the plugin
As with the last plugin, you can now either upload your plugin using FTP to
wp-content/plugins, or you can turn it into a ZIP file and add it using the
uploader in the WP Admin.

Once you've installed it, activate it. Look at the menu under Tools and you'll see a
link to the new management page:

When you click on Searched Words, you'll see a new page that the plugin created:

Developing Plugins and Widgets

[222]

The new page shows that no searches have been performed since the plugin was
activated. Do a few searches on your site and return to this page:

Learning more
There are hundreds of hooks available in WordPress—way too many to cover in
this book. You can learn more about the hooks discussed in this book, as well as
learn about all of the other hooks available, by going online. Start out at these online
reference sites:

The Plugin API contains very thorough information about writing plugins
and using hooks:
http://codex.wordpress.org/Plugin_API

For a complete list of action hooks:
http://codex.wordpress.org/Plugin_API/Action_Reference

•

•

Chapter 8

[223]

For a complete list of filter hooks:
http://codex.wordpress.org/Plugin_API/Filter_Reference

You may also want to take a step back and look at the general Plugin
Resources page in the WordPress Codex:
http://codex.wordpress.org/Plugin_Resources

If you want to submit your plugin to the WordPress Plugin Repository, you'll
have to take steps similar to those you took when preparing a theme, and
you'll also have to get hooked up to the WordPress SVN repository. Learn
more about how to submit a plugin to the WordPress Plugin Repository at:
http://codex.wordpress.org/Plugin_Submission_and_Promotion

Widgets
Writing a widget bears some similarities to writing a plugin, but in some ways
it's easier because there is a widget class that you can leverage for some of
the functionality.

Recent posts from a Category Widget
In this section, we will see how to write a widget that displays recent posts from a
particular category in the sidebar. The user will be able to choose how many recent
posts to show and whether or not to show an RSS feed link. It will look like the
following screenshot:

Let's get started!

•

•

•

Developing Plugins and Widgets

[224]

Naming the widget
Widgets, like plugins, need to have a unique name. Again, I suggest you search the
Web for the name you want to use in order to be sure of its uniqueness. Because
of the widget class, you don't need to worry so much about uniqueness in your
function and variable names, since the widget class unique-ifies them for you.

I've given this widget the filename ahs_postfromcat_widget.php.

As for the introduction, this comment code is the same as what you use for the
plugin. For this widget, the introductory comment is this:

/*
Plugin Name: April's List Posts Cat Widget
Plugin URI: http://springthistle.com/wordpress/plugin_postfromcat
Description: Allows you to add a widget with some number of most
recent posts from a particular category
Author: April Hodge Silver
Version: 1.0
Author URI: http://springthistle.com
*/

Widget structure
When building a widget using the widget class, your widget needs to have the
following structure:

class UNIQUE_WIDGET_NAME extends WP_Widget {

 function UNIQUE_WIDGET_NAME() {
 $widget_ops = array();
 $control_ops = array();
 $this->WP_Widget();
 }

 function form ($instance) {
 // prints the form on the widgets page
 }

 function update ($new_instance, $old_instance) {
 // used when the user saves their widget options
 }

 function widget ($args,$instance) {
 // used when the sidebar calls in the widget
 }

Chapter 8

[225]

}

// initiate the widget

// register the widget

Of course, we need an actual unique widget name. I'm going to use
Posts_From_Category. Now, let's flesh out this code one section at a time.

Widget initiation function
Let's start with the widget initiation function. Blank, it looks like this:

function Posts_From_Category() {
 $widget_ops = array();
 $control_ops = array();
 $this->WP_Widget();
 }

In this function, which has the same name as the class itself and is therefore the
constructor, we initialize various things that the WP_Widget class is expecting. The
first two variables, to which you can give any name you want, are just a handy way
to set the two array variables expected by the third line of code.

Let's take a look at these three lines of code:

The $widget_ops variable is where you can set the class name, which is
given to the widget div itself, and the description, which is shown in the
WP Admin on the widgets page.
The $control_ops variable is where you can set options for the control box
in the WP Admin on the widget page, like the width and height of the widget
and the ID prefix used for the names and IDs of the items inside.
When you call the parent class' constructor, WP_Widget(), you'll tell it the
widget's unique ID, the widget's display title, and pass along the two arrays
you created.

For this widget, my code now looks like this:

function Posts_From_Category() {
 $widget_ops = array(
 'classname' => 'postsfromcat',
 'description' => 'Allows you to display a list of recent
posts within a particular category.');

 $control_ops = array(
 'width' => 250,

•

•

•

Developing Plugins and Widgets

[226]

 'height' => 250,
 'id_base' => 'postsfromcat-widget');

 $this->WP_Widget('postsfromcat-widget', 'Posts from a Category',
$widget_ops, $control_ops);
}

Widget form function
This function has to be named form(). You may not rename it if you want the
widget class to know what it's purpose is. You also need to have an argument in
there, which I'm calling $instance, that the class also expects. This is where current
widget settings are stored.

This function needs to have all of the functionalities to create the form that users will
see when adding the widget to a sidebar. Let's look at some abbreviated code and
then explore what it's doing:

<?php
function form ($instance) {

 $defaults = array('catid' => '1', 'numberposts' => '5');
 $instance = wp_parse_args((array) $instance, $defaults); ?>

 <p>
 <label for="<?php echo $this->get_field_id('title');
?>">Title:</label>
 <input type="text" name="<?php echo $this->get_field_
name('title') ?>" id="<?php echo $this->get_field_id('title') ?> "
value="<?php echo $instance['title'] ?>" size="20"> </p>

 <p>
 <label for="<?php echo $this->get_field_id('catid');
?>">Category ID:</label>
 <?php wp_dropdown_categories('hide_empty=0&hierarchical=1&id
='.$this->get_field_id('catid').'&name='.$this->get_field_name('catid'
).'&selected='.$instance['catid']); ?>
 </p>

 <p>
 <label for='<?php echo $this->get_field_id('numberposts');
?>">Number of posts:</label>
 <select id="<?php echo $this->get_field_id('numberposts');
?>" name="<?php echo $this->get_field_name('numberposts'); ?>">
 <?php for ($i=1;$i<=20;$i++) {

Chapter 8

[227]

 echo '<option value="'.$i.'"';
 if ($i==$instance['numberposts']) echo '
selected="selected"';
 echo '>'.$i.'</option>';
 } ?>
 </select>
 </p>

 <p>
 <input type="checkbox" id="<?php echo $this->get_field_
id('rss'); ?>" name="<?php echo $this->get_field_name('rss'); ?>"
<?php if ($instance['rss']) echo 'checked="checked"' ?> />
 <label for="<?php echo $this->get_field_id('rss'); ?>">Show
RSS feed link?</label>
 </p>

 <?php
}
?>

First, I set some defaults, which in this case is just for the number of posts, which I
think it would be nice to set to 5. You can set other defaults in this array as well.

Then you use a WordPress function named wp_parse_args(), which creates an
$instance array that your form will use. What's in it depends on what defaults
you've set and what settings the user has already saved.

Then you create form fields. Note that for each form field, I make use of the built-in
functions that will create unique names and IDs and input existing values.

$this->get-field_id creates a unique ID based on the widget instance
(remember, you can create more than one instance of this widget).
$this->get_field_name() creates a unique name based on the
widget instance.
The $instance array is where you will find the current values for the
widget, whether they are defaults or user-saved data.

•

•

•

Developing Plugins and Widgets

[228]

All the other code in there is just regular PHP and HTML. Note that if you give the
user the ability to set a title, name that field "title", WordPress will show it on the
widget form when it's minimized. The widget form this will create will look like this:

Widget save function
When a user clicks the save button on the widget form, WordPress uses AJAX to
run your save function. You need to be sure to save whatever the user types in,
which is all we're doing in this case, but you can put other functionalities here if
it's appropriate for your widget (for example, database interactions, conversions,
calculations, and so on). The final code for this function is as follows:

function update ($new_instance, $old_instance) {
 $instance = $old_instance;

 $instance['catid'] = $new_instance['catid'];
 $instance['numberposts'] = $new_instance['numberposts'];
 $instance['title'] = $new_instance['title'];
 $instance['rss'] = $new_instance['rss'];

 return $instance;
}

Be sure this function is named update() and is prepared to accept two instances,
one with old data and one with the just-submitted data. You can write your code to
check the $new_instance for problems, and thus return the $old_instance if the
new one isn't valid. The $instance you return will be what's shown in the update
widget form.

Chapter 8

[229]

Widget print function
The third main function in your widget class is the one that is called by the sidebar
when it's time to actually show the widget to people visiting the website. It needs
to retrieve any relevant saved user data and print out information for the website
visitor. In this case, our final print function looks like this:

function widget ($args,$instance) {
 extract($args);

 $title = $instance['title'];
 $catid = $instance['catid'];
 $numberposts = $instance['numberposts'];
 $rss = $instance['rss'];

 global $wpdb;
 $posts = get_posts('numberposts='.$numberposts.'&category='.$catid
);
 $out = '';
 foreach($posts as $post) {
 $out .= 'ID).'">'.$post-
>post_title.'';
 }
 if ($rss) $out .= '<a href="'.get_category_
link($catid).'feed/" class="rss">Category RSS';
 $out .= '';

 echo $before_widget;
 echo $before_title.$title.$after_title;
 echo $out;
 echo $after_widget;
}

The first thing I do is extract the data in the instance, which has the information the
website administrator had saved when filling out the widget form. Then, the widget
contacts the database to get the posts in the category and prints them out in a nice
bulleted list.

The last four lines are important. There are four variables that the theme developer
set when activating the sidebar as a widget-ready area. We set them ourselves, back
in Chapter 6. They are:

$before_widget

$before_title

$after_title

$after_widget

Be sure to use those so that theme developers are happy with your widget.

•

•

•

•

Developing Plugins and Widgets

[230]

Initiate and hook up the widget
That's it for widget functionality! Now you just need to add a little code that will
hook the widget up to the rest of WordPress.

function ahspfc_load_widgets() {
 register_widget('Posts_From_Category');
}

add_action('widgets_init', 'ahspfc_load_widgets');

This tells WordPress that when it initiates widgets, it should be sure to register our
new widget.

Final widget code
Here is the complete widget code:

<?php
/*
Plugin Name: April's List Posts Cat Widget
Plugin URI: http://springthistle.com/wordpress/plugin_postfromcat
Description: Allows you to add a widget with some number of most
recent posts from a particular category
Author: April Hodge Silver
Version: 1.0
Author URI: http://springthistle.com
*/

class Posts_From_Category extends WP_Widget {

 function Posts_From_Category() {
 /* Widget settings. */
 $widget_ops = array(
 'classname' => 'postsfromcat',
 'description' => 'Allows you to display a list of
recent posts within a particular category.');

 /* Widget control settings. */
 $control_ops = array(
 'width' => 250,
 'height' => 250,
 'id_base' => 'postsfromcat-widget');

 /* Create the widget. */

Chapter 8

[231]

 $this->WP_Widget('postsfromcat-widget', 'Posts from a
Category', $widget_ops, $control_ops);
 }

 function form ($instance) {

 /* Set up some default widget settings. */
 $defaults = array('numberposts' => '5');
 $instance = wp_parse_args((array) $instance, $defaults);
?>

 <p>
 <label for="<?php echo $this->get_field_id('title');
?>">Title:</label>
 <input type="text" name="<?php echo $this->get_field_
name('title') ?>" id="<?php echo $this->get_field_id('title') ?> "
value="<?php echo $instance['title'] ?>" size="20">
 </p>

 <p>
 <label for="<?php echo $this->get_field_id('catid');
?>">Category ID:</label>
 <?php wp_dropdown_categories('hide_empty=0&hierarchic
al=1&id='.$this->get_field_id('catid').'&name='.$this->get_field_name(
'catid').'&selected='.$instance['catid']); ?>
 </p>

 <p>
 <label for="<?php echo $this->get_field_
id('numberposts'); ?>">Number of posts:</label>
 <select id="<?php echo $this->get_field_
id('numberposts'); ?>" name="<?php echo $this->get_field_
name('numberposts'); ?>">
 <?php for ($i=1;$i<=20;$i++) {
 echo '<option value="'.$i.'"';
 if ($i==$instance['numberposts']) echo '
selected="selected"';
 echo '>'.$i.'</option>';
 } ?>
 </select>
 </p>

 <p>

Developing Plugins and Widgets

[232]

 <input type="checkbox" id="<?php echo $this->get_
field_id('rss'); ?>" name="<?php echo $this->get_field_name('rss');
?>" <?php if ($instance['rss']) echo 'checked="checked"' ?> />
 <label for="<?php echo $this->get_field_id('rss');
?>">Show RSS feed link?</label>
 </p>

 <?php
 }

 function update ($new_instance, $old_instance) {
 $instance = $old_instance;

 $instance['catid'] = $new_instance['catid'];
 $instance['numberposts'] = $new_instance['numberposts'];
 $instance['title'] = $new_instance['title'];
 $instance['rss'] = $new_instance['rss'];

 return $instance;
 }

 function widget ($args,$instance) {
 extract($args);

 $title = $instance['title'];
 $catid = $instance['catid'];
 $numberposts = $instance['numberposts'];
 $rss = $instance['rss'];

 // retrieve posts information from database
 global $wpdb;
 $posts = get_posts('numberposts='.$numberposts.'&category='.
$catid);
 $out = '';
 foreach($posts as $post) {
 $out .= '<a href="'.get_permalink($post-
>ID).'">'.$post->post_title.'';
 }
 if ($rss) $out .= '<a href="'.get_category_
link($catid).'feed/" class="rss">Category RSS';
 $out .= '';

 //print the widget for the sidebar
 echo $before_widget;
 echo $before_title.$title.$after_title;

Chapter 8

[233]

 echo $out;
 echo $after_widget;
 }

}

function ahspfc_load_widgets() {
 register_widget('Posts_From_Category');
}

add_action('widgets_init', 'ahspfc_load_widgets');

?>

Trying out the widget
Your widget is ready to go! Save all of your changes, and upload your widget to
wp-content/plugins. Go to the Installed Plugins page, and you'll see your widget
waiting to be activated:

Activate it, and then navigate to Appearance | Widgets. You'll see the widget
waiting to be added to a sidebar:

Developing Plugins and Widgets

[234]

Drag the widget to a sidebar, and then click on the little down arrow to edit it. You'll
see the options slide down, as shown in the following image:

You can enter a Title or leave it blank for the default, choose the Category to use,
choose the Number of posts, and choose whether or not to Show RSS feed link.
Then click on Save as you would with any widget. When you return to the frontend
of the site and reload, posts from the category you chose are displayed in the sidebar
as follows:

Learning more
You can browse the following online reference sites to learn more about widgets:

The WordPress Widgets API is located at:
http://codex.wordpress.org/Widgets_API

WordPress lists a number of widgets on the following page:
http://codex.wordpress.org/WordPress_Widgets

•

•

Chapter 8

[235]

If you want to find more widgets to install on your website, visit the widgets
section of the Plugin Repository at: http://wordpress.org/extend/
plugins/tags/widget

Bundling a widget with a plugin
If you're writing a plugin and you'd like to make a widget available with it, you
don't have to create a separate widget plugin. Just include all of the widget code, like
what we created in the preceding section, in with your plugin's PHP file. When the
user activates the plugin, the widget you created will automatically show up on the
widgets page in the WP Admin. No need for a separate file!

Shortcodes
Shortcodes are a handy way to let a nontechnical person, that is, the editor of the
website, include dynamic functionality within pages and posts, without having
to actually use any PHP.

How do shortcodes work?
The way a shortcode works is that you tell WordPress to look at text within square
brackets ([]) and evaluate it by running a PHP function. That PHP function can
live in your functions.php file of your theme, or in a plugin file, or in a widget
file. Let's create a simple shortcode and include it in with our theme by adding it
to functions.php.

Creating a simple shortcode
Let's say you want to add a page with your bio on it and the text of your most recent
post. Your bio won't change every day, but your most recent post will. We can create
a shortcode for that.

First, let's write a function (with a unique name!) that grabs the data for the most
recent post on the blog and put it in the theme's functions.php file. It looks like this:

function recent_post_func() {
 $posts = get_posts('numberposts=1');
 $out = '';
 foreach ($posts as $post) {
 setup_postdata($post);
 $out .= '<div class="ahs_recentpost"';
 $out .= '<h4>ID).'">'.get_
the_title($post->ID).'</h4>';
 $out .= apply_filters('the_content', get_the_content());

•

Developing Plugins and Widgets

[236]

 $out .= '</div>';
 }
 return $out;
}

Note that this function does not echo or print anything. It just returns a string. If
you let your function print, it won't look right on the website.

Now, we tell WordPress that this function is a shortcode, and we tell it what the
shortcode is using a hook. Be sure to choose something unique! I've chosen
ahs_recentpost as the name for this shortcode, so the hook looks like this:

add_shortcode('ahs_recentpost', 'recent_post_func');

If you look at the function itself, you'll see I've put a unique class on that div so that
the blog user can add some custom CSS if they want to style the div. For example:

.ahs_recentpost {
 border: 1px solid #ccc;
 background: #f0f0f0;
 padding: 15px;
 margin: 0 10px 15px 0;
}

.ahs_recentpost h4 {
 margin: 0;
}

Finally, create the bio page and include the shortcode in it.

Chapter 8

[237]

When you view the page, you'll see the most recent post has been included:

Adding options to the shortcode
Perhaps the user will want to choose to show their own most recent post, rather than
the most recent post on the blog, if they share the blog with other writers. To enable
them to do that, we need to add options to the shortcode.

Modify the first few lines of your shortcode function so that it looks like this:

function recent_post_func($atts) {
 extract(shortcode_atts(array(
 'authorid' => null,
 'numberposts' => 1,
), $atts));

 $args = 'numberposts='.$numberposts;
 if ($authorid) $args .= '&author='.$authorid;

 $posts = get_posts($args);

// no change below this point

Developing Plugins and Widgets

[238]

As you can see, we've added an $atts argument to the function (WordPress will
hand this off automatically), and used extract() to turn the options the user
submits into variables available in the function. The values in the array passed
to extract() sets the defaults, in case the user chooses no options. The last three
lines just act on the information the user has submitted.

Now, the user can, instead of just using [ahs_recentpost] in their page, tell it how
many recent posts to show, and which author ID, if any, to use:

[ahs_recentpost numberposts="2" authorid="1"]

Now my bio page looks like this:

Obviously, there is no limit to the number of options that you can make available
to the shortcode users. Also, if you want to make a shortcode available with a plugin
or widget, you can just include the function and hook in your plugin or widget
PHP file.

Chapter 8

[239]

Enabling shortcodes in widgets
By default, shortcodes are ignored in widget. So, if you were to add a Text widget
with your shortcode in it, as shown in the following screenshot:

Then all that would show is the shortcode itself:

Developing Plugins and Widgets

[240]

Add a single line to your functions.php file (or plugin or widget file):

add_filter('widget_text', 'do_shortcode');

And now all shortcodes on the site will be evaluated in widgets:

Summary
In this chapter, you learned everything you needed to know about creating basic
plugins and widgets. Now you know how to structure the PHP file, where to put
your functions, and how to use hooks. You also learned about adding management
pages and enabling plugins and widgets to have database access. On top of all that,
you learned how to create shortcodes, a powerful tool that lets you make dynamic
functionality available to all WordPress users. With your already-existing knowledge
of PHP and HTML, you now have tools to get started with writing every plugin and
widget your heart may desire.

Community Blogging
So far in this book, we've focused on looking at a personal website, one that belongs
to and is used by just one person. However, many blogs are used in a different
way—there may be a single blog or website with a variety of writers, editors, and
administrators. This makes the site more like a community project or even an
online magazine.

In this chapter, we'll discuss allowing a blog to have multiple authors with
differing levels of control over blog administration and content. We'll explore user
management for multiple users on one blog, as well as other aspects of blogging as
a member of a community. We'll also take some time to look at using a non-blog
website with multiple users.

As of WordPress 3.0, multi-blog capability is now built into Wordpress directly
(previously, it was necessary to set up a separate piece of software, named
WordPress MU (multi-user)). We'll touch on this topic briefly in this chapter as well.

Concerns for a multiuser blog
A multiuser blog is useful when a group of people with similar interests want
to collaborate and share space to publish their writing, or if an organization or
company wants to have an online magazine. If that group wants to publish news
on a particular topic, or on many topics in a broad sense, then they'll each need to
be able to log in and post their content, update their profile, and so on. For example,
I can decide that I want every member of my family to be able to contribute to my
Daily Cooking blog. Each of my sisters and brothers and cousins and aunts and
uncles can add their recipes and discoveries regarding food, which has the potential
to make my food blog a richer and more exciting place for visitors.

However, content moderation is also of essential importance to a multiuser blog.
The best way to keep a blog clean and on topic is by using a moderation flow that
restricts the display of content until it travels through an approval process.

Community Blogging

[242]

Users roles and abilities
WordPress includes the ability to have an unlimited number of users. Each of the
users can be assigned one of the five roles. Let's look at these roles one at a time,
starting with the most powerful.

Administrator
When you installed WordPress, it created a user for you with administrative powers.
This role is called administrator, and every WordPress site must have at least one
admin (you will not be allowed to delete them all). As you have already seen in the
earlier chapters, administrators can do everything.

The administrator's primary purpose is to manage everything
about the website.

In general, you're not going to want to have a lot of administrators on a single blog
or website. It is best to keep just one administrator for a blog with 10 to 20 authors
and editors or perhaps up to three administrators for a blog with dozens of users.

Some examples of actions that only a user with an administrator role can take are:

Switch blog theme
Add, edit, activate, or deactivate plugins
Add, edit, or delete users
Manage general blog options and settings

Editor
After the administrator, the editor has the most powerful role. This role is for
users who need to manage everything about the content of a website, but don't
need to be able to change the basic structure, design or functionality of the blog
itself (that's for administrators).

The editor's primary purpose is to manage all of the content of
the blog.

•

•

•

•

Chapter 9

[243]

To get an idea of how the screen looks when a user logs in as an editor, let's take a
look at the editor's menu (on the right) in comparison with the administrator's menu
(on the left):

As you can see, the top section is unchanged. However, nearly the entire bottom
menu, with Appearance, Plugins, Users (which is replaced by Profile), and Settings,
has disappeared. We can see that the editor is left only with the ability to edit his or
her own profile, and to access the Tools section, which includes any plugin pages
that allow editor-level access (for example, Searched Words, Document Types).

Community Blogging

[244]

The examples of actions that a user with an editor role can take are:

Moderate comments
Manage categories and links
Edit other users' content

Author
Authors have much less access than editors. Authors can add and edit their own
posts, and manage posts made by their subordinates. However, they can neither
edit posts made by other authors, nor manage comments on posts that don't belong
to them.

The author's primary purpose is to manage his or her
own content.

To get an idea of the experience of a user with an author role, let's take a look at the
author's menu (on the right) in comparison with the editor's menu (on the left):

•

•

•

Chapter 9

[245]

As you can see, the Links and Pages sections have disappeared, and so has the
management page, which was available to editors (Document Types). The Tags
and Categories sublinks have also disappeared. Additionally, if the author looks at
the complete list of posts, he or she will only have the ability to View, and not Edit,
Quick Edit, or Delete, posts that he or she did not author:

Contributor
Contributors are only able to write posts and submit them for review. These posts
will be in Pending Review status until an author, editor, or administrator publishes
them. Contributors cannot upload images or other files, cannot view the media
library, add categories, and edit comments, or any of the other tasks available to
more advanced users.

The contributor's primary purpose is to submit content for
consideration.

Subscriber
Subscribers have no ability to do anything at all. They can log in and edit their
profile, that's it. Depending on the permissions set in Settings | Discussion, blog
visitors may have to sign up as subscribers in order to be able to post comments.
Also, there are some plugins that handle sending informational updates to
subscribers, such as newsletters or e-mail notifications of new posts.

Community Blogging

[246]

Managing users
To manage users, log in (as an administrator, of course) and navigate to Users. You'll
see a list of your existing users:

Chapter 9

[247]

When we installed WordPress, it created only your first user (which is how you've
been logging in all this time). Let's create a new user, and assign that user the next
most powerful role of editor. To do this, navigate to Users | Add New. You'll see the
Add New User form:

As you can see, only the Username, E-mail address, and Password are required. You
can also change the Role from the default (Subscriber) to one of the other roles. In
this case, I've selected Editor. Then, I click on the Add User button.

Community Blogging

[248]

I can repeat this process to add an author, a contributor and a subscriber. When I'm
done, the Users page (where the users can be managed) will look like this:

As with any other management list in WP Admin, you can roll over a row to see
the management links. In this case, you can Edit or Delete users. You can use the
checkboxes and the Bulk Actions menu, or use the filter links to view only users
with particular roles. You can change the role of one or more users on this page by
checking the box (or boxes) and using the Change role to... drop-down menu.

Chapter 9

[249]

Enabling users to self-register
Adding users yourself is not the only way to add users to your WordPress website. You
can also give your users the ability to register themselves. First, navigate to Settings |
General and make sure you've checked Anyone can register next to Membership:

I strongly recommend leaving New User Default Role as Subscriber, though
Contributor could also be fine if the purpose of your blog requires it. However,
allowing new users to automatically be assigned a role with more power than
that is just asking for trouble.

Next, add a link somewhere on your blog that links users to the login and
registration pages. The easiest way to do this is to use the widget named Meta,
which comes with your WordPress installation. It will add a widget to your
sidebar with a few useful links, including Log in and Register.

Community Blogging

[250]

Of course, if this is not exactly the collection of links you want, you can create
your own widget! Users clicking on Register will be taken to the following basic
registration page that asks for only Username and E-mail:

After submitting this form, the user will be e-mailed a password, and the main site
administrator will be sent an e-mail notification of the new registration. The user can
now log in and edit his/her profile, or do more if an administrator changes their role.

Learning more
You can learn more about the built-in WordPress roles and capabilities here:
http://codex.wordpress.org/Roles_and_Capabilities.

Chapter 9

[251]

User management plugins
At the time of this writing, there were over 100 plugins tagged users in the WordPress
Plugin Directory: http://wordpress.org/extend/plugins/tags/users. They add
functionality that allows you to do the following things (among many others):

Send an e-mail to registered blog users
Assign multiple authors to a single post
Generate and display user profiles of registered users
Restrict which categories different roles of users can use on their posts
Track which pages your logged-in users are viewing

There are three plugins that people often find useful when a number of people edit a
website, especially if they have a range of authority over final website content.

Peter's Post Notes: http://www.theblog.ca/wordpress-post-notes
allows each user to add a note whenever they edit a post.
Peter's Collaboration Emails: http://www.theblog.ca/wordpress-
collaboration-emails allows you to set up sending of e-mails (along
with the note that has been included, via the first plugin above) whenever a
contributor authors a new post, when the post is published, and if the post's
status is changed again.
Genki Pre-Publish Reminder: http://ericulous.com/2007/03/19/wp-
plugin-genki-pre-publish-reminder/ allows you to create a list of
reminder steps to complete before publishing a post. This reminder appears
on the Add Post page.

Even more powerful are the plugins that let you control what certain users are
allowed to do within the WP Admin if the exact structure of the five roles WordPress
offers you by default aren't quite right. The two most commonly used are:

Role Manager: http://www.im-web-gefunden.de/wordpress-plugins/
role-manager/. This very powerful plugin allows you to control exactly
which of the capabilities each of your existing five roles has. For example,
if you want your Authors to be able to edit other people's posts this plugin
would allow you to add that capability to that role. It also lets you create
entirely new roles. For example, you could create a new role named
PowerAuthor that is also allowed to edit widgets.
Adminimize: http://wordpress.org/extend/plugins/adminimize/.
Without digging too deeply into the backend of roles and capabilities, this
plugin lets you streamline the administration interface. You can hide certain
menu items and also some boxes on the Add/Edit screens.

•

•

•

•

•

•

•

•

•

•

Community Blogging

[252]

Creating a multi-site website
As I mentioned on the first page of this chapter, there used to be a separate version
of WordPress named WordPress MU (pronounced myoo) that allowed you to
create a master blog with many subblogs—essentially giving each user their own
(limited) blog.

Well, as of WordPress 3.0, this capability is built directly into every download of
WordPress, and just has to be enabled. If you go to the old WordPress MU URL,
you'll see this:

You may be wondering what makes a WordPress site, which can have multiple
users, different from a WordPress MU site. WordPress MU is now thought of as MS,
or Multi-Site, rather than multiuser. It allows you to have a main website and for
every user to have their own subsite, which gets its own subdomain or subdirectory.
As the administrator of the site, you can choose how much flexibility to give users:

How much control they have over their own sidebars and widgets
How many themes they can choose from (if any)
How many plugins they can choose from (if any)

•

•

•

Chapter 9

[253]

Websites that use WordPress MS include:

wordpress.com

blogs.nytimes.com

metblogs.com

trueslant.com

blog.mozilla.com and more

A full discussion on setting up and administering the WordPress MS capabilities
is outside of the scope of this book. However, you can find a thorough and
helpful tutorial in the WordPress codex here: http://codex.wordpress.org/
Create_A_Network.

Summary
In this chapter, we learned how to manage a group of users working with a single
blog, which is a community of users. Community blogging can play an important
role in a user group, or a news website. We also learned how to manage the different
levels of privileges for users in a community.

In the next chapter, we'll walk through the process of creating a complete non-blog
website from scratch.

•

•

•

•

•

Creating a Non-Blog Website
As you have seen while reading this book, WordPress comes fully equipped to
power a blog with all of its particular requirements of post handling, categorization,
chronological display, and so on. However, powering blogs is not WordPress's
only purpose. In fact, there are millions of websites out there right now running
WordPress where blogging is not the primary focus of the website. I myself have
built many such sites.

A non-blog website is likely to primarily be a brochure website or an informational
website. It may have an area (like Announcements or Recent News) that utilizes
some of WordPress's blog functionality, but is primarily composed of hierarchical
pages and perhaps even some other information.

In this chapter, we will create a theme and a complete non-blog website from
scratch. We will focus on creating a design appropriate to the purposes of the
website, implementing it into a functional theme, and we will even discover how
to make a new type of information object using WordPress 3.0's new custom post
type functionality.

Our client is a bookstore
For the purposes of this chapter, we are a website development company with a new
client. Our new client is a bookstore named True to the Book, located in a fictional
town (Speciality) in a fictional state in the US (HQ). They are a small, independent
bookstore that focuses on books for children. They want to have a website where
people can learn about:

Announcements about events going on at the store
Books the store owners recommend
The store's history, location, and philosophy

•

•

•

Creating a Non-Blog Website

[256]

They've asked for a design that is relatively clean and non-intrusive, easy to navigate,
and not cluttered with too much stuff. They'd especially like to be able to update the
website themselves, as they do not have the revenue to pay someone every time they
need to add an announcement or a book or change their phone number.

The Design
In consultation with the store owners, we come up with a brand-new design for their
website. Let's look at the screen types we've designed:

Chapter 10

[257]

The homepage fulfils a few of the bookstore's requirements:

A slideshow where the owners can specify a few books to feature, to catch
people's attention and keep the site fresh.
An introductory paragraph about the store.
A list of the 5 most recent announcements.
A sidebar with the monthly special, store location, and search. Right from the
homepage, the visitor will have access to the information they are most likely
to want.

•

•

•

•

Creating a Non-Blog Website

[258]

The announcements page has the following features:

Announcements listed in reverse chronological order (like a blog)
An RSS link to subscribe to announcements
Recent archives in the sidebar, as well as the global search box

•

•

•

Chapter 10

[259]

Every regular page on the site will have the same sidebar as the homepage, as well as
the title of the page and its content; clean and simple.

There will be book pages, one for each book category that lists the books, showing,
for each, a thumbnail image of the cover, the book title and author, and an excerpt of
the book summary. Clicking on either the cover or the title should take the visitor to
the book page itself.

Creating a Non-Blog Website

[260]

The sidebar, shared by both book pages and book category pages, needs to have a list
of book categories to make browsing easier in addition to the global search.

The book page itself should show a larger version of the book cover, the author
and title, the complete book summary, and also the categories to which that
book belongs.

Chapter 10

[261]

New features covered in this chapter
This chapter will involve making a new theme from scratch. Many of the features
this new theme needs have already been covered in previous chapters (enabling a
sidebar, common template tags, adding a custom menu to a widget, and so on). We
will gloss over these briefly here.

However, there are a number of new pieces of functionality we have not explored in
previous chapters, and this is on what we will be focusing. These include:

Designating a template page to be the front page of the website
Creating multiple sidebars
Creating a custom post type with a custom taxonomy
Altering custom post type display in the WP Admin
Creating theme files for a custom post type

Before getting started, I strongly recommend that you get the code packet for this
chapter. Included in the code packet, you will find:

Initial theme
Final theme
Content export
Book images for the three books
Plugins recommended in this chapter

Let's get started!

Introducing the initial theme
We're not going to go over every step of creating the initial starter theme, because
we've covered much of that functionality in previous chapters. I've included the
initial theme in the content download for this book. Let's take a look at what we're
starting with.

•

•

•

•

•

•

•

•

•

•

Creating a Non-Blog Website

[262]

What we are starting with
In the previous chapters, we already learned the basics of creating a theme, starting
with the stylesheet, index.php, and screenshot.png, and moving on to create the
basic theme files (header.php, footer.php, functions.php, and so on). For the
purposes of getting started with this chapter, I'm going to assume you can create
those files on your own. In the code download for this book, the basic files have been
provided, so you can download that, and follow along as we add the new stuff.

Initial theme files and functionality
The basic theme with which we are starting, which you can create yourself using
skills from earlier chapters or download, has the following files:

functions.php

footer.php

header.php

index.php

page.php

style.css

as well as images required by the design and the screenshot.png. Except for
page.php and style.css, which have nothing new about them, let's look at each
file, and look at the areas with bits of code that expand on what we learned earlier
in the book.

functions.php
In addition to adding theme support for custom thumbnails and automatic feed
links, we've got code in the functions.php file, specifying navigation menu areas.
These are like sidebar areas, in that they designate a spot where users can insert
a particular menu they create. This code looks like this:

register_nav_menus(array(
 'main' => 'Main Navigation',
 'foot' => 'Footer Navigation',
));

Our theme has two menu areas, one in the header and one in the footer. This code
will put these two areas on the Menus page in the WP Admin so users can choose
which menu goes in which spot. We'll see how to designate a particular spot in the
theme when we look at header.php and footer.php.

•

•

•

•

•

•

Chapter 10

[263]

The other important thing in our functions.php file is the code specifying
three sidebar areas. In Chapter 6, we learned how to register a single sidebar. The
register_sidebar() function actually takes parameters, like so many other
WordPress functions. If you specify different names for your sidebars, you can have
multiple sidebars. So our sidebar code in functions.php looks like this:

register_sidebar(array(
 'name' => 'Pages Widget Area',
));

register_sidebar(array(
 'name' => 'Blog Widget Area',
));

register_sidebar(array(
 'name' => 'Books Widget Area',
));

(For this particular theme, I added some CSS-related code to the sidebars as well,
which you'll see in the downloaded code. For our purposes here, however, it's
not important).

header.php
The header.php file is mostly just HTML, though of course it has the WordPress
functions bloginfo('stylesheet_url'), wp_head(), body_class(), and other
standard ones we saw in earlier chapters. The only new thing I'd like to point out
here is the wp_nav_menu() function, which looks like this:

<?php wp_nav_menu('theme_location=main&depth=2') ?>

We've passed it two pieces of information. The first is theme_location. This matches
one of the two navigation menus we registered in functions.php, in this case the
one we called main. The second argument is depth. I've set up the son of suckerfish
mouseover CSS for this menu, but it's only configured to handle two levels of items.
If a user puts in more than 2, the menu would look bad. depth=2 tells WordPress to
ignore third and above-level menu items.

Creating a Non-Blog Website

[264]

footer.php
The footer.php file is pretty simple, being only 20 lines long, and most of that is
HTML. One item in there is the second nav menu:

<?php wp_nav_menu('theme_location=foot&depth=1') ?>

Almost identical to the one in the header, except for the different theme location and
the depth of 1.

If you look at the CSS, you'll see that the website's sidebar is right here in the footer.
I didn't bother to separate it out into sidebar.php because it will be included on all
pages along with the footer anyway. In the sidebar is some conditional code that will
tell WordPress which widget area to display depending on if the user is visiting a
page or a blog-related page:

<?php
if (is_page() || is_search()) dynamic_sidebar('Pages Widget Area');
else dynamic_sidebar('Blog Widget Area');
?>

The argument passed to dynamic_sidebar() tells it which widgetized area to
show, depending on if the user is looking at a page or search results, or if the user
is looking at an announcement or announcement archive. We'll be adding another
condition to this area when we add our custom post type.

index.php
Remember that index.php is the file WordPress will look at by default for
everything. This website will have only a few types of views, namely, pages, blog
archive (the announcements), search results, books, and book archives. I'll be
creating special templates for pages and books, so index.php will actually only be
handling the blog archive and search results. It will therefore need next and previous
page links, some code to handle 404 (not found) errors, and the loop.

There's a bit of conditional code I included in index.php so that it can handle search
and archives just a little differently from single posts. This is simpler than creating
archive.php, search.php, and single.php in addition to index.php when they are
all nearly identical. Within the loop, instead of simply putting the_content(), we've
got the following:

<?php
 if (is_archive() || is_search()) {

 if (has_post_thumbnail($post->ID))

Chapter 10

[265]

 echo ''.get_the_
post_thumbnail($post->ID, array(75,75), array('class'=>"alignleft")).
'';
 the_excerpt();

 } else the_content('Continue reading →');
?>

This code says "If it's an archive or search results, display the excerpt" and
"otherwise, show the full content". There's another bit of new code in the code
block above, which references has_post_thumbnail() and looks like this:

if (has_post_thumbnail($post->ID))
echo ''.get_the_post_
thumbnail($post->ID, array(75,75), array('class'=>"alignleft")).'</
a>';

This code says "if there is a featured image specified for this item, print an HTML
image tag for it at 75x75 pixels, with class alignleft". As we are planning to use
featured images for our books, this will make them stand out in the search results.

Setting up the starter content
In order to be able to see our content conforming to the theme, let's start with some
initial content and settings.

1. Initial settings. There are some basic settings that make sense for a non-blog
website. After you've gotten a name and tagline figured out and set up your
local time on the main Settings page, navigate to Settings | Discussion. The
bookstore doesn't want to have to manage comments, so uncheck the box
next to Allow people to post comments on new articles. You may want to
change other settings on this page as well to discourage pingbacks, and
so on.

2. Sample post. Delete the sample post and comment WordPress created when
it was installed.

3. Default category. Change the category Uncategorized to Announcements;
as the bookstore doesn't plan to have multiple categories, this should be
the default.

Creating a Non-Blog Website

[266]

4. Create content. Create a few pages and posts. Here are mine:

5. Under Settings | Reading, set the default page to Home and the default Blog
page to Announcements. This way, people will see a page, the homepage,
when they first come to the site, and not the latest blog posts. To see the latest
blog posts, what WordPress thinks of as the blog main page, they'll go to a
separate page in the hierarchy, the page you've named Announcements.

Chapter 10

[267]

6. Under Appearance | Menus, create two menus, one for the header, and one
for the footer, and give them to their assigned places. I named my two menus
Header and Footer:

Creating a Non-Blog Website

[268]

7. Under Appearance | Widgets, create a few widgets, and assign them to
the two sidebars we are using. I've created three each for the Pages and
Blog sidebars:

Checking out the frontend
With the initial theme and some start content installed, this is what our website
looks like.

Chapter 10

[269]

Homepage:

Announcements page:

Creating a Non-Blog Website

[270]

Search results:

Adding plugins
Let's add some useful plugins to the bookstore website. The store owners don't want
people to be able to comment on posts or pages, but they do want people to be able
to e-mail them. They also want to show the most recent 5 announcements on the
homepage, and they'd like a featured item slider as well. Let's take care of these one
at a time.

Chapter 10

[271]

Contact Form 7
There are many plugins that will add a contact form to your WordPress site, some
of them very powerful. We are going to use Contact Form 7 for this website, because
it's relatively straightforward and easy to install. Download this plugin here:
http://wordpress.org/extend/plugins/contact-form-7/.

Once you've installed and activated the plugin, navigate to its settings page:

Creating a Non-Blog Website

[272]

All of the default settings here will work just fine, though you may want to scroll
down a bit and change the e-mail address if it's wrong. All you need to do initially
is copy the shortcode at the top of the page (in brown), and paste it into your
Contact page:

Chapter 10

[273]

Update the page, and take a look at the contact page with the functioning form:

April's Call Posts
April's Call Posts is a plugin I wrote, because I found that a lot of my clients wanted
to be able to include a list of posts on pages other than archive pages. This powerful
plugin provides a shortcode that enables you to do just that. As the bookstore wants
to be able to show its most recent 5 announcements on the homepage, it will find
this shortcode useful. Download it here: http://wordpress.org/extend/plugins/
aprils-call-posts/.

Creating a Non-Blog Website

[274]

Once you've installed and activated the plugin, insert the shortcode into the
Home page:

When you update the page, and revisit the main page of your site, you'll see the call
posts' shortcode at work:

Chapter 10

[275]

The little pencils are direct links to edit the posts; don't worry, they only show up if
you're logged in.

Smooth Slider
The last plugin we'll be adding is named Smooth Slider. We'll primarily be using it
for books, which we'll be creating later in the chapter, but let's go ahead and install
it now.

Installing the plugin
Get the plugin here: http://wordpress.org/extend/plugins/smooth-slider/.

Once you've got it installed and activated, take a look at the settings page:

Creating a Non-Blog Website

[276]

I've already changed a few things about the display like some colors, and the title of
the box, and so on. You can leave the default settings or change the display as well.

This plugin adds a box to every Add/Edit screen in the WP Admin, allowing you
to feature posts or pages. Just to get started, let's add a page to the slider.

Adding content to the plugin
Find the page you want included in the slider, and edit it. When editing the page,
you'll see a new box below the content area:

Chapter 10

[277]

I've checked the Add this post/page to box and also selected Smooth slider in the
menu next to it, and then updated the page. Do this for a few other pages or posts as
well. When you revisit the Smooth Slider management page, you'll see the items you
selected in the list:

Adding the plugin to your theme
We'd like to show the slider only on the homepage. To do that, we just add some
conditional code to page.php, telling it to detect if we are on the homepage, and if
so, and if the plugin function exists, display the slider. Find your page.php file and
right above the loop (while()) add this:

<?php
if (is_front_page())

Creating a Non-Blog Website

[278]

 if (function_exists('get_smooth_slider'))
 get_smooth_slider();
?>

We've got a great non-blog website. It has pages and announcements and a
customized homepage and two sidebars with different sets of widgets and two
menus. Now let's move on to the really exciting page—creating custom post types.

Chapter 10

[279]

Creating a custom post type: book
The custom post type functionality was added to WordPress in version 3.0 because
people wanted to be able to specify new objects. The most commonly known objects
are posts and pages, but there are actually already three other custom types in the
WordPress backend: attachments, revisions, and nav menus.

We're going to create a custom post type named book.

To specify that you'd like to have a custom post type in your theme, you can
add some code to your theme's functions.php file. This is what we'll be doing.
However, keep in mind that you can also attach the custom post type to a plugin
or a widget if you don't want it to be tied to a particular theme.

Registering a new post type
To register a new post type, all you have to do is add some simple code to your
functions.php file. It's good practice to tie the creation of the new type to the init
of the theme, so that it gets called a at good point in the booting process, so we'll
use the hook for init. Your initial custom post type code looks like this:

add_action('init', 'book_init');
function book_init() {
 register_post_type('book');
}

The register_post_type() function takes an array as its second parameter, and in
that array you can specify whether the object is public, whether it should be involved
in rewriting the URL, what elements it supports on its editing page, and so on. Let's
set up an array of all the arguments and then pass it to the function. Now our code
looks like this:

add_action('init', 'book_init');
function book_init() {
 $args = array(
 'public' => true,
 'publicly_queryable' => true,
 'query_var' => true,
 'rewrite' => array('slug' => 'books'),
 'capability_type' => 'post',
 'hierarchical' => false,
 'menu_position' => null,
 'supports' => array('title','editor','custom-fields','thumbnail'),
);
 register_post_type('book',$args);
}

Creating a Non-Blog Website

[280]

I've chosen each of these parameters because they make sense for the book custom
post type. Let's take a look at them:

public. This means that the post type is available publicly, like posts and
pages are, rather than hidden behind the scenes. It'll get a UI, it can be shown
in navigation menus, and so on.
publicly_queryable. This defaults to the same value as public, but I've
restated it anyway.
query_var. Allows queries to be made for this particular post type.
rewrite: Specifies that the post type can be used in the rewrite rules for
pretty permalinks.
capability_type: On which of the existing object types will this object be
based? In this case, it's posts.
Hierarchical: Whether each item can have a parent item, like pages do.
menu_position: This refers to the location in the WP Admin's main
navigation menu. The default is "below comments"
supports: This an array of the capabilities users see when creating or editing
an item. For books, we're including four of ten possible items.

These are just some of the arguments you can pass. Read about the
others in the Codex: http://codex.wordpress.org/Function_
Reference/register_post_type.

Now that we've got the basic post type set up, let's add some labels.

Adding labels
You can add labels to your custom post type so that WordPress knows what to say
when talking about it. First, let's simply create an array of all the labels. Put this as
the first thing inside the book_init() function:

$labels = array(
 'name' => _x('Books', 'post type general name'),
 'singular_name' => _x('Book', 'post type singular name'),
 'add_new' => _x('Add New', 'book'),
 'add_new_item' => __('Add New Book'),
 'edit_item' => __('Edit Book'),
 'new_item' => __('New Book'),
 'view_item' => __('View Book'),
 'search_items' => __('Search Books'),
 'not_found' => __('No books found'),
 'not_found_in_trash' => __('No books found in Trash'),
);

•

•

•

•

•

•

•

•

Chapter 10

[281]

Then add a single line of code to the args array, telling it to use the labels.

$args = array(
 'labels' => $labels,

 'public' => true,
 …

The next step is to add messages, which is what WordPress tells the user when they
are doing stuff with books.

Adding messages
Whenever a user updates, previews, or does anything with a book, you'll want them
to see an accurate message. All we need to do is create an array of messages, and
then hook them in to WordPress. Here's the code:

add_filter('post_updated_messages', 'book_updated_messages');
function book_updated_messages($messages) {
 $messages['book'] = array(
 0 => '', // Unused. Messages start at index 1.
 1 => sprintf(__('Book updated. View book'),
esc_url(get_permalink($post_ID))),
 2 => __('Custom field updated.'),
 3 => __('Custom field deleted.'),
 4 => __('Book updated.'),
 5 => isset($_GET['revision']) ? sprintf(__('Book restored to
revision from %s'), wp_post_revision_title((int) $_GET['revision'],
false)) : false,
 6 => sprintf(__('Book published. View book'),
esc_url(get_permalink($post_ID))),
 7 => __('Book saved.'),
 8 => sprintf(__('Book submitted. <a target="_blank"
href="%s">Preview book'), esc_url(add_query_arg('preview',
'true', get_permalink($post_ID)))),
 9 => sprintf(__('Book scheduled for: %1$s. Preview book"),
 // translators: Publish box date format, see http://php.net/
date
 date_i18n(__('M j, Y @ G:i'), strtotime($post->post_date)
), esc_url(get_permalink($post_ID))),
 10 => sprintf(__('Book draft updated. <a target="_blank"
href="%s">Preview book'), esc_url(add_query_arg('preview',
'true', get_permalink($post_ID)))),
);

 return $messages;
}

Creating a Non-Blog Website

[282]

This code creates a function named book_updated_messages() that sets up an array
of messages and returns it. We call this using the filter for post_updated_messages.

Now, our custom post type is ready to use! Go to your WP Admin, and reload it.
You'll see a new menu has appeared under Comments. It's called Books. Let's
add a book:

Note that I've given it a custom field named book_author, and I've also uploaded a
featured image for the book cover.

Chapter 10

[283]

I'll also add a couple more. Now, when you go to the main Books page, you'll see
your books listed:

If you click on View for one of these books, you'll see the book displayed using the
index.php theme template.

Let's make some new template files to display our books.

Creating a Non-Blog Website

[284]

Creating book template files
WordPress needs to know how to display your new post type. We have to create
a template for a single book and one for the list of books.

First we'll make a book version of single.php. It must be named single-post
type name.php, which in our case is single-book.php. Using page.php as your
starting point (as it's already the closest to what we'd like our book page to look like),
let's add display of the custom field book_author and display the featured image
automatically. The loop now looks like this:

<?php get_header() ?>

<?php if (have_posts()) : ?>

 <?php while (have_posts()) : the_post(); ?>

 <div <?php post_class() ?> id="post-<?php the_ID(); ?>">
 <h2><?php the_title(); ?></h2>

 <div class="entry">
 By <?php echo get_post_meta($post->ID, 'book_author',
true); ?>
 <?php if (has_post_thumbnail($post->ID)) echo get_the_
post_thumbnail($post->ID, 'medium', array('class'=>"alignleft")); ?>
 <?php the_content(); ?>
 </div>
 <div class="clr"> </div>
 </div>

 <?php endwhile; endif; ?>

<?php get_footer() ?>

Chapter 10

[285]

Now, when you visit a single book page, the author's name is displayed and the
book's cover shows up automatically:

Our next task is a page that will show a listing of the books, like index.php does.
There's a problem, however. If you go to the domain /books, you get a 404 error.
There are trac tickets for this, so it may be fixed soon. In the meantime, C. Murray
Consulting has provided a great plugin that fixes this problem. You can get it here:
http://wordpress.org/extend/plugins/simple-custom-post-type-archives/.

Once you've installed and activated this plugin, you can create a template file named
type-book.php that will function as your listing of books. This will look very similar
to index.php, except that you probably want to include a thumbnail of the book
cover, the book author, and always just an excerpt of the summary. You can see
the full code I settled on if you look at the code download for this chapter. In the
meantime, here is the important part:

 <?php if (has_post_thumbnail($post->ID)) echo get_the_post_
thumbnail($post->ID, 'thumbnail', array('class'=>"alignleft")); ?>

 <h3><a href="<?php the_permalink() ?>" rel="bookmark"><?php the_
title(); ?></h3>
 <small>By <?php echo get_post_meta($post->ID, 'book_author',
true); ?></small>

 <?php echo the_excerpt(); ?>

Creating a Non-Blog Website

[286]

Now, when I navigate to the main books page, I'll see them listed:

One thing that I'd like to change about both of these pages is to instruct them to
display a book-specific sidebar instead of the blog sidebar. The first step is to add
a function to functions.php that checks to see if we are looking at a book page.
Following is the function:

function is_book() {
 global $wp_query;
 if ('book' == $wp_query->query_vars['post_type']) return true;
 else return false;
}

Chapter 10

[287]

Now let's open footer.php and add some new conditional code. Add an if
statement and an else to the conditional sidebar area, and now you'll have this:

<?php
if (is_book()) dynamic_sidebar('Books Widget Area');

else

if (is_page() || is_search()) dynamic_sidebar('Pages Widget Area');
else dynamic_sidebar('Blog Widget Area');
?>

I'm also going to make some other changes now:

1. Add a Books item to the main navigation menu and the footer
navigation menu.

2. Add a Books item to the Books Widget Area.

Creating a Non-Blog Website

[288]

Registering and using a custom taxonomy
The bookstore wants to be able to categorize their books, and they don't want to
mix book categories and post categories. Even though they are using just one post
category for now (Announcements), they may need the flexibility in the future
to add additional categories. So, we are going to create a custom taxonomy named
Book Categories.

Add the following code to your functions.php file:

add_action('init', 'build_taxonomies', 0);
function build_taxonomies() {
 register_taxonomy(
 'book_category',
 'book',
 array(
 'hierarchical' => true,
 'label' => 'Book Category',
 'query_var' => true,
 'rewrite' => true,
)
);
}

Like the register_post_type() function, the register_taxonomy() function
allows you to register a new taxonomy within WordPress. You can read up on the
details of all of the parameters you can add in the codex (http://codex.wordpress.
org/Function_Reference/register_taxonomy). For now, you can see we're calling
it a book_category; it belongs to the object type book, it's hierarchical, you can
query it, and it needs to be included in the rewrite of URLs.

Next, we need to make this taxonomy available to books. Simply find the $args
array we used when registering the book post type, and add this item to the array:

'taxonomies' => array('book_category'),

Chapter 10

[289]

When you return to the WP Admin and edit a book, you'll see the Book categories
have appeared on the right, and they are also in the main navigation on the left.

After you've added some categories and assigned them to the books, let's take a look
at displaying those categories on the front of the website. First, we'll add them to the
single book display. Open single-book.php, and add this code in an appropriate
place within the loop, for example, after the_content():

<?php echo get_the_term_list($post->ID,'book_category','Categories:
 ',', ','') ?>

Creating a Non-Blog Website

[290]

You're using the function get_the_term_list(), which takes the following
arguments:

ID of the post ($post->ID)
Name of the taxonomy (book_category)
Print before the list (Categories:)
Separate items in the list with (,)
Print after the list ()

Also, now that you've got categories, you can visit Appearance | Menus, and add
links to those categories to your header menu, and you can also create a custom
menu with all the categories and add it to the Books Sidebar.

Note that if, at any point during the creation of your custom post
type and custom taxonomy, you get a 404 from WordPress when you
don't think you should, then visit Settings | Permalinks. Sometimes
WordPress needs to refresh the permalinks to make the new links
work correctly.

Customizing the admin display
The final thing we can do to realize our new Book custom post type fully is to change
its display in the admin. Books don't need to be displayed in the admin in order
of post publication date. We don't need to know the WordPress user who created
it, and we do want to see the book categories and the thumbnail. Let's go back to
functions.php.

First, we'll change the default sort order to be post_title:

add_filter('posts_orderby', 'ahs_orderby');
function ahs_orderby($sql) {
 global $wpdb, $wp_query;
 if (is_admin() && is_book()) {
 return $wpdb->prefix . "posts.post_title ASC";
 }
 return $sql;
}

What this snippet of code does is create a new function, ahs_orderby(), that says "if
the user is in the WP Admin, and if he or she is working with a book object, then add
some SQL to the query for ordering by post_title". Then, this function is hooked
into the posts_orderby hook WordPress provides.

•

•

•

•

•

Chapter 10

[291]

Next, we'll change the columns that are displayed:

add_filter('manage_posts_columns', 'ahs_custom_columns');
function ahs_custom_columns($defaults) {
 global $wp_query;
 if (is_book()) {
 unset($defaults['comments']);
 unset($defaults['author']);
 unset($defaults['categories']);
 unset($defaults['date']);
 $defaults['book_category'] = 'Categories';
 $defaults['thumbnail'] = 'Image';
 }
 return $defaults;
}

add_action('manage_posts_custom_column', 'ahs_show_columns');
function ahs_show_columns($name) {
 global $post;
 switch ($name) {
 case 'book_category':
 echo get_the_term_list($post->ID,'book_category','',',
','');
 break;
 case 'thumbnail':
 if (has_post_thumbnail($post->ID)) echo get_the_post_
thumbnail($post->ID, array('50','50'));
 break;
 }
}

The first bit says "don't show comments, author, date, and categories, but do show
book categories and thumbnail", and the second bit says "for the book categories
column, print the list of categories and for the thumbnail column, print the
get_post_thumbnail() function".

Creating a Non-Blog Website

[292]

Revisit the Books page in the WP Admin, and it now looks like the
following screenshot:

Finalizing the bookstore website
All of the coding for our custom bookstore is complete. The last step we should do
at this point is change the three items in the Smooth Slider from posts and pages
to books instead. Once that's done, the site is ready to hand over to the client.

Chapter 10

[293]

Summary
We covered a lot of excellent material in this chapter. In addition to designing and
building a basic theme that focuses primarily on non-blog content, we also created
multiple widget areas, multiple menu areas, added a smooth slider to the homepage,
used April's Call Posts to display a few recent posts on the homepage, created a
custom post type and custom taxonomy, specified which sidebars should display
under which types of conditions, and even modified the display of the WP Admin's
books page. We created a complete, new, powerful, non-blog website. Be proud!

In the next and final chapter of this book, we'll cover some general maintenance and
troubleshooting for WordPress administrators, as well as provide a list of useful
functions, CSS, and template files.

Administrator's Reference
This chapter will provide information to help you with the WordPress administrative
tasks. A few topics that have been covered elsewhere in the book are explained in
greater detail here.

I'll review the essentials, and then give you some important links that you can visit
for more details. This chapter is a kind of a 'cheat sheet' to which you can refer for
quick answers to common administrative issues.

System requirements
The minimum system requirement for WordPress is a web server with the following
software installed:

PHP Version 4.3 or greater
MySQL Version 4.1.2 or greater

Although Apache and Nginx are highly recommended by the WordPress developers,
any server running PHP and MySQL will do.

Learn more about system requirements at: http://wordpress.org/
about/requirements/.

Your system will also need to be set up in a particular way if you want to use pretty
permalinks, which give you nice-looking URLs throughout your site.

•

•

Administrator’s Reference

[296]

Enabling permalinks
If you want to be able to use the built-in WordPress permalinks, you must have an
Apache web server with mod_rewrite enabled.

If you are using Windows IIS, there are still ways to implement permalinks; the most
straightforward being to buy Helicon's ISAPI_Rewrite (http://www.helicontech.
com/isapi_rewrite/), though you'd need cooperation from your hosting company.
There are other ways as well; start at the following codex link. This topic is too
extensive to be explored in depth in this book, but I encourage you to search the
Internet for other people's solutions.

Learn more about permalinks at: http://codex.wordpress.org/
Using_Permalinks.

The importance of backing up
You never know when there could be a glitch in your server or a lightning strike,
so it's a good idea to make regular backups of your site. There are a couple of
approaches, which I will outline in the following sections.

Easy, quick, frequent content backups
The most important part of your site, and also the part that you will never be able
to re-create is the content contained in the database. You should back up your
database frequently. Exactly how often, will depend on the number of times you
change your content.

If you're running a blog, do a backup whenever you've posted 2 or 3 new posts. If
you're running a non-blog website, backup every time you make significant changes
to your content or add new pages.

The question you should ask yourself is, "If my server or host completely fizzles out
today, how much time would it take me to re-create what's not already backed up?"

Luckily, your website content is pretty easy to back up. You can directly export
the content of your database using phpMyAdmin or any other database tools
provided by your host. Even easier, install the WordPress Database Backup
plugin. It's small, uncomplicated, reliable, and easy to use. You can download
it at: http://wordpress.org/extend/plugins/wp-db-backup/.

Chapter 11

[297]

Once it's installed and activated, you can navigate to Tools | Backup, and download
a backup file to your computer. This plugin also allows you to schedule backups
daily, weekly, or monthly. It is much easier to schedule a backup to take place once a
month or week automatically, even if you update only sporadically. It is a good rule
of thumb to have a regularly scheduled backup running no matter how rarely the
site is updated.

Backing up everything
In addition to your database, there are other irreplaceable files that make up your
WordPress website. These include:

The theme you are using
The plugins you've installed and activated
The files you've uploaded

WordPress stores all of these things in the same folder named wp-content/. Every
time you change your theme and install a new plugin, you should make sure that
you have a backup of these things on your home computer. After that, you don't
need to back these two things up regularly because they won't change.

However, the files you upload are a collection that changes over time as you add
more files. If you add a photo with each blog post, then that collection changes as
frequently as you post. You should be sure to create a backup of the wp-content/
uploads/ folder pretty regularly, which you can easily do via FTP. If you have an
FTP program with a synchronize feature, then you won't have to constantly re-
download older files, or do a lot of hunting and pecking for new ones.

If the thought of getting going with FTP is too intimidating, you can try out the
BackupWordPress plugin. It will create archive backups of your WordPress files,
as well as an SQL backup. However, I recommend this plugin with caveats only,
since the plugin is still a) officially in beta, b) has not been updated since November
2007, and c) is officially only compatible up to WordPress 2.3.1. People with newer
versions have had mixed success. On a bright note, as of this writing, I have been in
contact with the developer and hope to look into helping get this plugin up-to-date.

Verifying your backups
Be sure to verify your backups! Every time you download a database export or
use FTP to download files, make sure to take a close look at the downloaded files.
Sometimes backups get interrupted or there are glitches in the system. It's better
to find that out right in the beginning, rather than when you need to rely on your
backups later.

•

•

•

Administrator’s Reference

[298]

Upgrading WordPress
In Chapter 2, we briefly discussed upgrading your existing WordPress version
to the latest available version. In this section, we will take a closer look at the
upgrade process.

What about the built-in upgrader?
As of WordPress 2.6, you can upgrade in one click from within WordPress. You can
use the built-in upgrade to replace steps 3 to 7 in the following list, but you should
still carry out the other steps. Also, the built-in upgrade does not work on all servers.

Do it gradually for a big jump
Something to keep in mind is that if you're upgrading from a very early version of
WordPress to a very recent version, you should do it in steps. That is, if you find
yourself in a situation where you have to upgrade across a large span of version
numbers, for example from 2.2 to 3.0.3, I highly recommend doing it in stages. Do
the complete upgrade from 2.2 to 2.3.3, then from 2.3.3 to 2.5, then from 2.5 to 2.7,
and finally from 2.7 to 3.0.3. When doing this, you can usually do the full content and
database backup just once, but verify in between versions that the gradual upgrades
are going well before you move onto the next one.

You can download the previous stable versions of WordPress from this page:
http://wordpress.org/download/release-archive/.

Of course, another option would be to simply do a new installation of the latest
version of WordPress and then move your previous content into it, and I encourage
you to consider this course of action. However, sometimes contents are harder to
move than it is to do the upgrades; this will be up to you to decide your specific
server situation and your comfort level with the choices.

Steps for upgrading
The steps involved in upgrading WordPress are as follows:

1. Back up your database.
2. Back up your WordPress files.
3. Put WordPress in Maintenance Mode.
4. Deactivate all your plugins.
5. Download and extract WordPress.
6. Delete old files.

Chapter 11

[299]

7. Upload the new files.
8. Run the WordPress upgrade program.
9. Update permalinks and .htaccess.
10. Install updated plugins and themes.

Backing up your database
Before upgrading WordPress, you should always back up the database. If anything
goes horribly wrong with your upgrade, you won't lose everything. We reviewed
how to back up your WordPress website earlier in this chapter, so you can refer back
for specific instructions.

Backing up your WordPress files
Remember, the complete content of what creates your site is contained not only in
the database, but also in certain files on the server. Always back up all of your files
as well, just in case something goes wrong with the upgrade.

Again, refer back to the backup instructions above if you need to review the steps.

Put WordPress in Maintenance Mode
If you think that visitors or other users will want to visit a WordPress site during
the time you're upgrading it, you might want to consider putting the site into
Maintenance Mode. This can be done relatively easily with a plugin like the
following one: http://wordpress.org/extend/plugins/maintenance-mode/.
It will show a splash page to non-administrative users while you're working on the
site, and you can even set it to be active for only a specific period of time. If you
don't want to use a plugin, there are other ways as well.

Deactivating all your plugins
The plugins that you have installed with your current version of WordPress may
not work with the newest version of WordPress. Also, if you leave them active
while upgrading, your new WordPress installation may break. So, before upgrading
WordPress, you should play it safe and deactivate all the active plugins. If you're
using the built-in upgrader, you don't have to worry about this step because the
upgrader does it for you.

To deactivate plugins, log into your WP Admin and navigate to Plugins. Deactivate
everything at once by clicking the master checkbox at the top of the table, choosing
Deactivate from the Bulk Actions menu, and clicking on Apply.

Administrator’s Reference

[300]

Downloading and extracting WordPress
Now, download the WordPress ZIP file onto your computer from
http://wordpress.org/download/.

After downloading WordPress, extract all of the files in a new folder
named wordpress.

Deleting old files
Now delete all the files and folders of your previous WordPress installation
except these:

wp-config.php

wp-content/

wp-includes/languages/ (if you have used a specific language pack)
.htaccess (if you have used custom permalinks)

The easiest way to delete the files and folders that you will be replacing is to access
your server via FTP.

Uploading the new files
If you're not already connected via FTP, connect now. Select all of the files in the
wordpress folder on your computer, except for the wp-content folder, and upload
them to your server.

Running the WordPress upgrade program
WordPress takes care of the next step for you: running the upgrade. This script
usually takes a look at your database and makes alterations to it, so that it is
compatible with the new version of WordPress.

To access it, just point your browser to your WordPress website, and you'll be
prompted to do the upgrade. Alternatively, you can take a shortcut by going
directly to http://yourwordpresssite.com/wp-admin/upgrade.php.

Click on the Upgrade WordPress link.

•

•

•

•

Chapter 11

[301]

Updating permalinks and .htaccess
You may have to update the permalink settings so that they match the previous
installation. Your permalink settings dictate what the .htaccess file should look
like. If WordPress cannot access your .htaccess file because of permissions
problems, then the permalinks page will display a message letting you know about
it. That message will also tell you what text needs to be in the .htaccess file, so that
you can create or update it yourself.

Installing updated plugins and themes
In your WP Admin, visit the plugins page again. If there are new versions of any of
your installed but now inactive plugins, there'll be a note telling you so. If you have
any plugins that are not part of the WordPress Plugin Directory, this is a good time
to check the websites for those plugins to see if there's an upgrade available.

You can also take a look at the Plugin Compatibility lists on this page:
http://codex.wordpress.org/Plugins/Plugin_Compatibility.

Once you're sure that the plugins you want to use are up-to-date, activate them one
at a time so that there are no problems.

This is also a good time to check for updates for the theme you are using. In the
wp-content folder on your computer (which you did not upload, remember?)
there is an updated version of the default theme twentyten, which I always like
to have around even if I'm not using it. You can simply replace the entire
wp-content/themes/twentyten folder with the new one.

You can check for a new version of the theme you are using on the developer's
website, or in the WordPress Theme Directory. Of course, you have to be sure you
haven't made any theme customizations directly to the theme you're using. If you
have, they will be overwritten when you run the theme upgrade. If you want to
customize an existing theme, be sure to make a child theme (covered in an earlier
chapter of this book).

Migrating or restoring a WordPress site
Sometimes you may find yourself in a situation where you need to move your
WordPress website from one server to another or from one URL to another.
Alternatively, if something gets fried on your server and is restored, you need
to recreate your damaged WordPress site. Here you'll essentially need to do the
same things as you would in a migration.

Administrator’s Reference

[302]

I highly recommend that you check out this page in the WordPress codex, which has
detailed step-by-step instructions to migrate your WordPress website under a variety
of different circumstances: http://codex.wordpress.org/Moving_WordPress.

This page will be kept up-to-date as time moves on. If you need to do a migration and
don't have access to the codex right now, you can follow these steps for migration:

1. Download a backup of your database (as described earlier in this chapter, in
the section on backing up). If your URL is going to change, you may want to
use a different plugin to download your database. It's called WP Migrate DB:
http://wordpress.org/extend/plugins/wp-migrate-db/. This plugin
will change URLs for you (or you can do so manually, as described in
step 4 below).

2. Download all of your files (as described earlier in this chapter, in the section
on backing up).

3. Look in your downloaded files for wp-config.php. Find the lines that define
the connection to the database.
Edit these lines so that they now have the database name, database username,
database password, and database hostname for your new database.

4. If your URL is going to change, and you did not use the WP Migrate DB
plugin, do this: Open the SQL file that you downloaded in a text editor,
and do a global search for your old URL to replace it with the new one.
Save the changes.

5. Upload all of your files to your new server.
6. Implement your SQL file in your new database.
7. Change the permissions of your wp-content folder if necessary, so that you'll

be able to upload files without any problems.
8. Change the absolute path of your WordPress folder in the database. You

can do this by running a PHP file inside your WordPress wp-content folder.
The code of this PHP file is <? echo getcwd() ?>. Now, execute this
file using your browser and grab the result. Then, run the following SQL
command by replacing the old path with the new path on your own server,
on your database:
update wp_options set option_value='/new/path' where
 option_name='fileupload_realpath'

9. Log in to your new WP Admin, and check the permalinks. You may have
to reset them if your .htaccess didn't come over properly.

You're done!

Chapter 11

[303]

If you're restoring your site on the same server, with no changes in the location or
the database, then you can skip steps 3, 4, and 8. Steps 1 and 2 (to back up) should be
done before the meltdown!

Setting file permissions
To install and maintain WordPress properly, you may need to change permissions
to different files and folders in the WordPress folder so that uploads and built-in
updates will work from within WordPress. Usually, this affects people on Unix
servers, though it affects some Windows servers as well.

What are file permissions?
File permissions are settings that indicate who is allowed to do what. That is,
some users may have permission to alter the contents of a file, some may have
permission to only read it, and some may not even have read/write access. In
addition to read/write permissions, there are also "execute" permissions. If a
file is executable, then this permission indicates who can execute that file.

For Unix file permissions at a glance, look at the following chart:

File/Folder Owner
permission

Group
permission

User
permission

Total Numerical
equivalent

/ rwx rw rw rwxrw-rw- 766

/.htaccess rwx rw rw rwxrw-rw- 766

/wp-admin rwx r-- r-- rwxr--r-- 744

/wp-includes rwx r-- r-- rwxr--r-- 744

/wp-content rwx rwx rw- rwxrwxrw- 776

/wp-content/
themes

rwx rwx rw- rwxrwxrw- 776

/wp-content/
plugins

rwx rw- rw- rwxrw-rw- 766

Permissions for WordPress
The best permission scheme for a WordPress installation is for all of the files to be
owned by your user (your server's user, not your WordPress user), and be writable
by your user. On top of that, any file that WordPress will need to modify (such as
just about anything in wp-content) should be group-owned by both your user and
the webserver's user (often called dhapache or nobody).

Administrator’s Reference

[304]

If you've installed your own WordPress website yourself, then you shouldn't need
to modify any permissions for all WordPress functionality to work.

If you're having trouble using the built-in upgrader or plugin installer, do not chmod
everything to 777 (world-writable). Instead, check with the hosting provider or
people who run your server, and ask what they recommend.

How to set permissions
You can change permissions to files and folders using any FTP client. If you have
shell access, you can use shell commands to change file permissions. If you're using
an FTP client, select the files you want to change permissions for and look for menus
like Get Info, File Attributes, or Change Permissions. There will be a GUI, often
with checkboxes, that lets you choose permissions for different files. Some hosting
control panels, such as Fantastico for example, allow you to change permissions
through the control panel itself.

If you are using shell, change the file permissions with the chmod command. For
example, the wp-admin folder should be set as rwxr--r-- or 744; and to change
the permissions for the wp-admin/ folder, run the following command:

chmod –R wp-admin 744

Learn more about WordPress and file permissions at:
http://codex.wordpress.org/Changing_File_Permissions.

Troubleshooting
In this section, we will discuss problems that may arise during installation and
execution of WordPress, and provide solutions for troubleshooting them.

Troubleshooting during installation
Most of the problems discussed here have been taken from the WordPress
installation FAQs (Frequently Asked Questions) and Troubleshooting FAQs.

Headers already sent
Problem : When you point your browser at your website, you may get an error that
displays a headers already sent message on your page. The whole page may look
scrambled, and it will not function.

Chapter 11

[305]

Cause: WordPress uses PHP session functions. If anything is sent by the server
to the browser before these session functions, even if just a blank space, then the
session functions will not work properly.

Solution: You have to figure out where the error lies. Usually, it is a file that you
have edited manually. If you remember, you edited the wp-config.php file while
installing WordPress. Open the file with your text editor, and make sure that there
is nothing before <?php in the first line or after ?> in the last line.

Page comes with only PHP code
Problem: When you point your browser at your website it displays the PHP code
instead of its contents.

Cause: This happens when your server is not parsing PHP, but is instead treating it
the same as any text or HTML file. This is a server configuration problem; either PHP
is not installed on your server or it is not configured to function properly.

Solution: To solve this problem, contact the system administrator for your server or
try installing PHP.

Cannot connect to MySQL database
Problem: WordPress cannot connect to the MySQL database, and is displaying
an error.

Cause: This might happen if:

The database parameters are incorrect
The daemon/service is not running properly
In MySQL Version 4.1 and later, the password encryption settings have
been changed a bit, as a result of which PHP cannot connect to some
versions of MySQL

Solution: To solve this problem, you can try the following:

1. Open your wp-config.php file, and check that the database parameters
are correct.

2. If you are sure that these settings are correct, check if the MySQL
daemon/service is running properly. If MySQL is not running, run this service.
If MySQL is already running, try restarting the service. If you are not running
your own server, check in with your hosting company's support people.

•

•

•

Administrator’s Reference

[306]

3. If you are sure that your database parameters are fine, and MySQL is also
running, then connect to MySQL using your MySQL command-line tool and
run these commands:

 set password = OLD_PASSWORD('your_current_password');
 flush privileges;

This will use the old encryption of passwords so that PHP can connect
to MySQL.

Basic troubleshooting
As you have probably already figured out, the best place to look for troubleshooting
tips is the WordPress.org website, both the codex and the support forum. The codex
even has a page devoted to basic troubleshooting: http://codex.wordpress.org/
Troubleshooting.

If you're more technically inclined, take a look at this handy article on using the
build in Debugging Mode in WordPress: http://fuelyourcoding.com/simple-
debugging-with-wordpress/.

Below are some of the most common problems people encounter when setting up
WordPress; if you don't see yours here, I encourage you to visit the codex.

Cannot see posts
Problem: Posts are not seen, and the message "search doesn't meet criteria"
is displayed.

Cause: This can happen because of caching. For example, you have searched once,
and WordPress stored the search result inside its cache; so every time you visit the
page, you see the old result.

Solution: You can solve this problem by clearing the cache and cookies from
your browser.

Making a site totally private
Need: If you are running your blog for a personal and private group (or for your
own official department) so that only members of your group can see it, then you
would want to secure it with some kind of authentication.

Solution: WordPress has no built-in facility to do this, but there are many plugins
(such as Members Only) that will force visitors to log in as a WordPress user before
they can see the site at all.

Chapter 11

[307]

I don't receive the e-mailed passwords
Problem: You don't receive the e-mailed passwords.

Cause: This problem may happen if your web server has no SMTP (Simple Mail
Transfer Protocol) server installed, or if the mail function is explicitly disabled.

Solution: Please contact your system administrator, or try installing Sendmail
(or any other mail server) properly.

Tips for theme development
In Chapter 6, we covered theme development pretty thoroughly, though you can
get a much more in-depth tutorial in theme development from the excellent book
"WordPress Theme Design", Packt Publishing, ISBN 9781847193094.

This section lists the top template tags and stylesheet classes that you'll want to have
if you're going to be developing themes. These are the most essential (with some of
my personal favorites thrown in).

Template tags
Following is a partial list of WordPress template tags. For a complete list, visit the
Codex. This is a good place to start: http://codex.wordpress.org/Template_Tags.

In the list that follows, I do not cover the parameters that can be passed to these
functions. You'll want to visit the Codex to find out about the default settings for
each tag and how to override them.

The header and informational tags are as follows:

The tag What it does
wp_title() Prints an appropriate title for your blog (the post title, the

archives title, the page title, or whatever is appropriate for
the current page)

bloginfo('name') Prints out the name of your blog, as specified on the main
options page in your WP Admin

wp_head() An essential part of the <head></head> tag, because a
variety of things get printed out by this tag, depending on
the details of the blog

bloginfo('stylesheet_
url')

Prints out the path to the stylesheet of the current theme

Administrator’s Reference

[308]

The tag What it does
bloginfo('rss2_url') Prints out the RSS 2.0 feed URL for your blog
body_class() Prints out a list of appropriate class names in the body tag.

It should be used to replace <body> like this:

<body <?php body_class(); ?>>

The following tags can be used inside the loop:

The tag What it does
the_title() Prints out the title of the current post or page
the_time() Prints out the date and time of the post or page
the_content() Prints out the formatted post or page content
the_category() Prints out a list of the categories that belong to this post
the_tags() Prints out a list of the tags associated with this post
the_author() Prints out the name of the post or page author
edit_post_link() If the person viewing the blog is a logged-in blog user, this

tag will print out a link for editing the post (very handy!)
the_permalink() Prints out the URL of the post or page itself (must be used

within a tag)

The tag What it does
comments_popup_link() If comments_popup_script is not used, this displays a

normal link to the comments for the post or page
post_class() If you put this tag inside the <div> for your posts, it will

generate a list of classes for the categories and tags that
belong to this post. For example, if you put this in your
template:
<div <?php post_class(); ?>>

WordPress will print something like this:
<div class="post category-recipes category-
locavore tag-holiday tag-pasta tag-recipe
tag-spinach">

get_post_meta() Use this function to get the value stored in a custom field.
Just pass this function the current post id, the name of the
custom field you want, and true to get the value of that
custom field

get_the_post_thumbnail() Prints out a complete img tag for the featured image

Chapter 11

[309]

The following tags can be used for lists and navigation:

The tag What it does
prev_post_link() When viewing a single post, this prints a link to the previous

post (the one with the next newest timestamp)
next_post_link() When viewing a single post, this prints a link to the next post

(the one with the next newer timestamp)
wp_list_pages() Prints a list of all the pages in your WordPress site
wp_get_archives() Prints a list of archives (by post, by month, and so on)

The following tags can be used to include PHP files:

The tag What it does
get_header() Includes header.php from the current theme folder
get_footer() Includes footer.php from the current theme folder
get_sidebar() Includes sidebar.php from the current theme folder
comments_template() Prints the standard list of comments and comment-submission

forms, unless there is a file in the theme folder named
comments.php, in which case that is included instead

get_search_form() Prints the standard search form
include(TEMPLATEPATH.
'/filename.php')

Includes filename.php from the current theme folder

The following are some of the most useful conditional tags. Note that some of them
can take a parameter, so be sure to look them up in the codex for details.

The tag What it does
is_front_page() Returns true if user is viewing the front page of the site,

regardless of whether it's the most recent blog post or a page
is_home() Returns true if user is viewing the main page of your blog,

which can either be the front page of your site or the page you
designated as the Posts page in Settings | Reading

is_page() Returns true if user is viewing a page
is_single Returns true if user is viewing a single post
is_archive() Returns true if user is viewing an archive page of blog posts

(monthly, yearly, category, tag, and so on)
is_search() Returns true if user is viewing search results
has_post_thumbnail() Returns true if the post (only parameter is a post ID) has a

featured image or designated thumbnail assigned to it

Administrator’s Reference

[310]

Learn more about conditional tags at: http://codex.wordpress.
org/Conditional_Tags.

Class styles generated by WordPress
WordPress helpfully applies classes to just about everything it generates, thus
making it easy for you to style WordPress-generated elements on your page.
Here is a starter list of those styles. If you want to know what the other styles are,
create a templates and view the source of the page it creates.

Class or ID Where to find it
.page_item On the of every page in the generated page list
.current_page_item On the of the current page in the generated

page list
.current_page_parent On the of the parent of the current page in the

generated page list
.page-item-23 On the of the page with ID=23 (there is one of

these for each page) in the generated page list
.menu-item On the of every item in the generated nav list. As

with pages, menu-item-parent, current-menu-item,
etc are also generated for appropriate items.

.widget On the of every widget

.cat-item On the of every category in the generated
category list

.current-cat On the of the current category in the generated
category list

.cat-item-13 On the of the category with ID=13 (there is one of
these for each category) in the generated category list

#searchform On the <form> for the generated search form

Learning more
If you want a complete list of template tags, refer to the WordPress Codex at
http://codex.wordpress.org/Template_Tags.

Chapter 11

[311]

Summary
In this chapter, we covered many of the common administrative tasks you may face
when you're managing a WordPress-driven website. This includes backing up your
database and files, moving your WordPress installation from one server or folder
to another, and doing general problem-solving and troubleshooting.

We also covered some of the most basic and useful template tags that you'll need
when creating your own WordPress themes.

You should now feel well-equipped to address all of the more and less usual
administrative tasks for your website or blog.

WordPress is a top-notch CMS, which has matured tremendously over the years. The
WordPress Admin panel is designed to be user-friendly, and is continually being
improved. The code that underlies WordPress is robust, and is the creation of a large
community of dedicated developers. Additionally, WordPress's functionality can be
extended through the use of plugins.

I hope you have enjoyed this book, and have gotten a strong start with administering
and using WordPress for your own site, whatever it may be. Be sure to stay
connected to the WordPress open source community!

Index
Symbols
$control_ops variable 225
$widget_ops variable 225
(<!-- more -->). See MORE tag
.tar.gz file 23
<head> tag

about 151, 207
setting up 151, 152

[gallery] shortcode 113
404.php 173

A
About link 84
actions 209
add_filter hook 210
Add New Post page

about 47
content box 47
Publish button 47
title field 47

admin display
customizing 290, 291

Adminimize 251
administrator

about 242
need for 242

admin page
adding 213, 214

advanced post options
about 60
custom fields 63, 64
Discussion box 62
excerpt 60
MORE tag 61

permalinks 65, 66
post, hiding 64
trackbacks 61

ahs_doctypes_regex() function 209, 214
ahs_doctypes_styles() function 214
Akismet plugin

about 18, 76
activating 78, 79
comment spam, eliminating 76

Akismet spam-fighting service
URL 76

announcements page
for bookstore website 258-260

April's Call Posts plugin 273-275
archive.org

audio files, hosting for free 204
archive.php 173
Atom format 188
Audacity 198
audio files

hosting, archive.org used 204
author

about 244
need for 244, 245

author.php 174
auto-installation, plugins 104, 105
avatar 73
Avatars box 73

B
b2/cafelog 8
backups, WordPress site

about 296
verifying 297

[314]

blog
about 8, 45
categories, adding to 80, 81
comments, adding to 68, 69
common terminologies 8-10
comparing, with website 8
new post, adding 49
posting, via e-mail 67
simple post, adding to 45

blog engine 7
bloginfo('name') tag 307
bloginfo('rss2_url') tag 308
bloginfo('stylesheet_url') tag 307
Bloglines 188
blog post

about 45
categories, adding to 49, 50
tags, adding to 49

blog post, WP Admin panel 36, 38
body_class() function 152, 172
body_class() tag 308
book_init() function 280
book_updated_messages() function 282
bookmarklet 66
bookstore website

about 255
announcements page 269
announcements page, features 258-260
design 256
finalizing 292
homepage 269
plugins, adding to 270
requisites 257
search results 270

book template files
creating 284-287

built-in feeds, WordPress 190

C
capability_type parameter 280
categories

about 49
adding, to blog 80, 81
adding, to blog post 49, 50
feed links, adding for 194
managing 80, 81, 99

versus tags 49
category-ID.php 173
category.php 173
child theme

creating 183
using 184

chmod command 304
code

theme design, converting to 136, 137
code requisites

for plugins 206
Codex

about 14
URL 32

Comment Blacklist box 72, 73
Comment Moderation area 72
comments

about 9, 68
adding, to blog 68, 69
discussion settings 70, 71
feed links, adding for 195
moderating 74-76

comments_popup_link() tag 308
comments_template() tag 309
comment spam

about 76
eliminating, Akismet plugin used 76

common post options
about 48
categories 49
images, adding to post 51-53
tags 49

common terminologies, blog
about 8
categories 9
comments 9
page 10
post 9
RSS 9
tags 9
theme 9

conditional code
adding, to sidebar.php 179

Contact Form 7 plugin
about 271
navigating, to settings page 272, 273

[315]

content
adding, to initial theme 265-267
adding, to Smooth Slider plugin 276
protecting 64

Content Management System (CMS)
about 7
advantages 119

contributor 245
conventions, WP Admin panel 44
CSS

examining 140-146
custom fields 63, 64
custom post type

admin display, customizing 290, 291
creating 279

custom taxonomy
registering 288-290
using 288-290

custom template
creating 174-177
using 174-177

D
Dashboard, WP Admin panel 33 45
date.php 174
DB access plug-in

management page functions, adding 220
dedicated podcast

setting up 201
design

for bookstore website 256
detail page, WordPress Theme Directory

122
discussion settings, comments 70, 71
Discussion box 62
document

links icon, adding to 206
downloading

plugins 105, 106
themes 129
WordPress 23

draft
about 58
saving, for post 58

dynamic_sidebar() function 264

E
e-mail

blog, posting via 67
edit_post_link() tag 308
editor 242, 243
excerpt

about 60
working 60

F
featured image. See post thumbnail
feed aggregator 187
FeedBurner

about 196, 197, 205
account, creating 196
subscribers, tracking with 196
URL, for downloading 197

FeedBurner account
creating 196

feed links
adding 191
adding, for categories 194
adding, for post comments 195

Feedreader 189
feed readers

about 188
Bloglines 188
Feedreader 189
Google Reader 188
reference site 189
Thunderbird 189

feeds
about 188
adding, on website 192, 193
feed readers 188, 189

Fetch
URL 25

file permissions 303
Filezilla

URL 25
filters 209
footer.php file 163, 164, 264
form() function 226, 227
front-page.php 173

[316]

functions.php
about 262
adding, to theme folder 179
structure 263

G
Garage Band 199
general blog settings, WP Admin panel 35,

36
General Public License. See GPL
generated class styles, WordPress

#searchform 310
.cat-item 310
.cat-item-13 310
.current-cat 310
.current_page_item 310
.current_page_parent 310
.menu-item 310
.page-item-23 310
.page_item 310
.widget 310

Genki Pre-Publish Reminder 251
get_footer() tag 309
get_header() tag 309
get_post_meta() tag 308
get_search_form() tag 309
get_sidebar() tag 309
get_the_post_thumbnail() tag 308
Globally Recognized Avatar. See Gravatar
Google Reader 187, 188
GPL 17, 208
Graphene folder 130
Gravatar

about 74
URL 74

H
has_post_thumbnail() tag 309
header.php file 163, 263
header and informational tags

about 307
bloginfo('name') 307
bloginfo('rss2_url') 308
bloginfo('stylesheet_url') 307
body_class() 308

wp_head() 307
wp_title() 307

Hierarchical parameter 280
hooks

adding 217, 220
adding, to plugins 209, 210
types 209

hooks, types
about 209
actions 209
filters 209

HTML build
converting, to theme 146-150

HTML build, converting to theme
<head> tag, setting up 151, 152
about 146
footer 152, 154
header 152, 154
loop 157-161
sidebar 155, 156
theme folder, creating 146-150
WordPress content, adding 151

HTML editor
about 58
versus Visual editor 57, 58

HTML structure
examining 137, 138

I
image gallery

adding 108, 109
adding, to pages 108, 109
adding, to posts 108, 109
image, uploading 110-113

images
adding, to post 51-53
uploaded image, editing 54-56
uploading 110-113

include(TEMPLATEPATH. '/filename.php')
309

index.php file
about 124, 264, 265
breaking up 163-166

info site, WP Admin panel 32
initial theme

about 261

[317]

content, adding to 265-267
settings, adding to 265-267

initiation function 225
installation, plugins 103
installation, Smooth Slider plugin 276
installation, themes 125
installation, WordPress

environment, preparing 22
files, uploading 25, 26
manually 22, 27-31
troubleshooting problems 304, 305

installing
plugins 103
themes 125
WordPress, manually 22, 27-31

iPodCatter 203
is_archive() tag 309
is_front_page() tag 309
is_home() tag 309
is_page() tag 309
is_search() tag 309
is_single tag 309

L
labels

adding 280, 281
layouts 119
leave a comment link, WP Admin panel 39,

40
Levelator 198
lightbox plugin 114, 115
link icons

adding, to document 206
links

about 94
displaying 97, 98
managing 99

login page, WP Admin panel 33
loop 157-159

M
main menu, WP Admin panel 34, 35
management page functions

adding 214-219
media library 100-102

menu
enabling, in themes 182

menu_position parameter 280
menus

about 88
creating 89-92
displaying 92

messages
adding 281-283

mod_rewrite option 22
MORE tag 61
muffintop theme 193
multi-site web site

creating 252, 253
multiuser blog 241

N
net2ftp

URL 25
new link

adding 96, 97
new post

adding, to blog 49
new post type

registering 279, 280
new post type, registering

about 279, 280
book template files, creating 284-287
labels, adding 280, 281
messages, adding 281-283

new theme directory
creating 183

next_post_link() tag 309
non-blog website 255

O
open source 7
options

adding, to shortcodes 237, 238

P
page 10
page.php 173

[318]

pageMash
about 87
pages, ordering 87
URL, for downloading 87

pages
about 83
adding 84, 85
comparing, with posts 83
image gallery, adding to 108, 109
managing 88
ordering 87
structuring 85

parent category 50
permalinks

about 22, 65, 66
enabling 296
updating 301

Peter's Collaboration Emails 251
Peter's Post Notes 251
Ping-o-Matic! 62
pingbacks

about 62
info site 63
versus trackbacks 62

pinging 62
plug-ins, creating

hooks, adding 210
plugin files

naming 207, 208
organizing 207, 208

plugins
about 102, 205
adding, to bookstore website 270
April's Call Posts 273-275
auto-installation, performing for 104, 105
code requisites 206
configuring, steps 107, 108
Contact Form 7 271-273
deactivating 299
downloading 105, 106
files, naming 207, 208
files, organizing 207, 208
for podcasting 203
hooks, adding to 209, 210
improving, ways 218, 219
installing 103
new post, adding with links 212

reference sites 222
searching 103
Smooth Slider 275

podcast
about 198
creating 198

podcast, creating
about 198
post, creating 199, 201
recording yourself 198

PodPress 203
post

about 9, 45, 83
adding, to blog 45
adding, to WordPress site 47
comparing, with pages 83
creating 199, 201
draft, saving for 58
hiding 64
image gallery, adding to 108, 109
images, adding to 51-53
managing 59
timestamp, altering for 58

post_class() function 173
post_class() tag 308
post thumbnail

about 56
designating 56, 57

Press This bookmark 66
prev_post_link() tag 309
print function 229
publicly_queryable parameter 280
public parameter 280
publishing platform 7

Q
query_var parameter 280

R
Really Simple Syndication. See RSS
regex() function

modifying 216
register_post_type() function 279, 288
register_sidebar() function 263
register_taxonomy() function 288

[319]

rewrite parameter 280
Role Manager 251
RSS

about 9, 188
versions 188

S
save function 228
screenshot.png file 124
search.php 173
settings

adding, to initial theme 265-267
shortcodes

about 235
enabling, in widgets 239, 240
inserting, in home page 274
options, adding to 237, 238
working 235

sidebar
about 155, 156
text widget, adding for 201, 202

sidebar.php
conditional code, adding to 179

sidebar.php file 164, 165
simple shortcode

creating 235, 237
single.php 173
site, WordPress

post, adding to 47
size

specifying, for uploaded images 53
slug 65, 81
SmartFTP

URL 25
Smooth Slider plugin

about 275
adding, to theme 277, 278
content, adding to 276
installing 276
URL, for installing 275

Sound Studio 199
static page view template

creating 171, 172
style.css file 124

stylesheet
about 183
creating 183, 184

subscribers
about 245
tracking, with FeedBurner 196

supports parameter 280
synchronize feature 297

T
tag-tagname.php 174
tag.php 174
tags

about 49
adding, to blog post 49
versus categories 49

templates
about 85, 86, 119
archiving 166, 168
creating, within theme 162
custom template, creating 175
index.php file, breaking up 163-166
single post view template, creating 168-170
static page view template, creating 171, 172

text widget
creating, for sidebar 201, 202

the_author() tag 308
the_category() tag 308
the_content()function 207
the_content() tag 308
the_permalink() tag 308
the_tags() tag 308
the_time() tag 308
the_title() tag 308
theme

about 9
theme design

converting, to code 136, 137
CSS, examining 140-146
HTML structure, examining 137, 138
making, WordPress-friendly 134, 136
setting up 134

theme development
tips 307

[320]

theme files
about 262
footer.php 264
functions.php 262, 263
header.php 263
index.php 264, 265

theme folder
creating 146-150
functions.php, adding to 179

theme frameworks 183
themes

about 9, 119
activating 128
adding, within WP Admin panel 125, 126
designing, to be WordPress-friendly 134,

136
downloading 129
extracting 129
HTML build, converting to 146-150
installing 125
making, widget-friendly 178
menu, enabling in 182
searching 120, 123
selecting, factors 124
sharing 185
Smooth Slider plugin, adding to 277, 278
templates, creating within 162
uploading 130
widgets, adding to 180, 181

Thunderbird 189
timestamp

altering, for post 58
top bar, WP Admin panel 34
trackbacks

about 61
info site 63
versus pingbacks 62

TwentyTen
about 56, 85, 92, 121
widgets area 94

U
uploaded image

editing 54-56
size, specifying for 53

user management plugins
about 251
Genki Pre-Publish Reminder 251
Peter's Collaboration Emails 251
Peter's Post Notes 251

user roles, WordPress
about 242
administrator 242
author 244, 245
contributor 245
editor 242, 243
subscriber 245

users
enabling, for self registration 249, 250
managing 246-248

V
Visual editor

about 57
versus HTML editor 57, 58

W
WavePad 199
web feed 187
weblog. See blog
website

blog, comparing with 8
What You See Is What You Get. See WYSI-

WYG editor
widget

about 93, 223
activating 233, 234
adding, to themes 180, 181
bundling 235
code 230-233
contents 93
form() function 226, 227
initiation function 225
naming 224
print function 229
save function 228
shortcodes, enabling in 239, 240
structure 224

[321]

widgetizing
about 178
options 181
sidebar, as big tag 178, 179

widgetizing options 181
WordPress

about 7, 17
advantages 10
Akismet plugin, activating 78, 79
basic troubleshooting 306, 307
built-in feeds 190
categories, managing 99
custom post type functionality 255
database settings 28, 29
detailed feature list 11
downloading 23
features 7
feed links, adding 191
generated class styles 310
history 8
images, adding to post 51-53
installing, manually 22, 27-31
installing, requisites 22
lightbox plugin, using 114, 115
links 94
links, displaying 97, 98
links, managing 99
media library 100-102
menus 88
menus, creating 89-92
menus, displaying 92
new link, adding 96, 97
multiuser blog 241
online resources 13
ordering method, applying for pages 87
pages 83
pages, adding 84, 85
pages, managing 88
pages, structuring 85
permissions 303, 304
placing, in Maintenance Mode 299
plugins 102-205
shortcodes 235
system requisites 295
template tags 307
upgrading 298

upgrading, steps 298-301
URL, for downloading 23
user management plugins 251
user roles 242
users, managing 246-248
widgets 93
WP Admin panel 32, 45

WordPress, advantages
about 10
active development 10
contributors 10
detailed feature list 11
extendable feature 10
releases 10

WordPress, building
WordPress.com versus own server, differ-

ences 19
WordPress, online resources

about 13
Codex 14
plugin directories 15
theme 15
WordPress.com 15, 16
WordPress news 13

WordPress, upgrading
steps 298-301

WordPress.com
about 19
WordPress site, building 17-21

WordPress 2.7
feature list 11, 12

WordPress files
backing up 299

WordPress MU 252
WordPress news 13
WordPress Plugin Directory 103
WordPress site

backing up 296
building, on own server 17, 18
building, options 17, 18
building, WordPress.com used 17-21
feeds, adding on 192, 193
making, mobile friendly 116, 117
migrating 301, 302
post, adding to 47
restoring 301, 302

[322]

WordPress templates
404.php 173
about 173
archive.php 173
author.php 174
category-ID.php 173
category.php 173
date.php 174
front-page.php 173
page.php 173
search.php 173
single.php 173
tag-tagname.php 174
tag.php 174

WordPress theme
about 119, 124, 162
additional files 124
requisites 124
sharing 185

WordPress Theme Directory
about 120
detail page 122
screenshot 121

WordPress upgrade program
running 300

wp-config.php file 27
WP-DB-Backup 103
wp_footer() function 154
wp_get_archives() tag 309
wp_head() tag 307
wp_list_pages() tag 309

wp_nav_menu() function 153, 183, 263
wp_title() tag 307
WP Admin panel

about 32, 43, 45
comment, posting in 39, 40
conventions 44
Dashboard 33, 45
general blog settings 35, 36
info site 32
login page 33
lost password, retrieving 41
main menu 34, 35
post, blogging 36, 38
theme, adding to 125-127
top bar 34
URL 45

WPTouch 117
writing options, blog post 66

Press This 66
WYSIWYG editor 57

X
XHTML Friends Network (XFN) 97

Z
zip file

about 23
extracting 106

Thank you for buying
WordPress 3 Complete

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WordPress 3 Site Blueprints
ISBN: 978-1-847199-36-2 Paperback: 230 pages

Ready-made plans for 9 different professional
WordPress sites

1. Everything you need to build a varied
collection of feature-rich customized WordPress
websites for yourself

2. Transform a static website into a dynamic
WordPress blog

3. In-depth coverage of several WordPress themes
and plugins

4. Packed with screenshots and step-by-step
instructions to help you complete each site

WordPress and Flash 10x
Cookbook
ISBN: 978-1-847198-82-2 Paperback: 268 pages

Over 50 simple but incredibly effective recipes to take
control of dynamic Flash content in Wordpress

1. Learn how to make your WordPress blog or
website stand out with Flash

2. Embed, encode, and distribute your video
content in your Wordpress site or blog

3. Build your own .swf files using various plugins

4. Develop your own Flash audio player using
audio and podcasting plugins

Please check www.PacktPub.com for information on our titles

WordPress 2.9 E-Commerce
ISBN: 978-1-84719-850-1 Paperback: 284 pages

Build a proficient online store to sell products and
services

1. Earn huge profits by transforming WordPress
into an intuitive and capable platform for e-
Commerce

2. Build and control a vast product catalog to sell
physical items and digital downloads

3. Configure and integrate various payment
gateways into your store for your customers’
convenience

4. Promote and market your store online for
increased profits

WordPress Plugin Development:
Beginner’s Guide
ISBN: 978-1-847193-59-9 Paperback: 296 pages

Build powerful, interactive plug-ins for your blog and
to share online

1. Everything you need to create and distribute
your own plug-ins following WordPress coding
standards

2. Walk through the development of six complete,
feature-rich, real-world plug-ins that are being
used by thousands of WP users

3. Written by Vladimir Prelovac, WordPress
expert and developer of WordPress plug-ins
such as Smart YouTube and Plugin Central

Please check www.PacktPub.com for information on our titles

WordPress 2.8 Theme Design
ISBN: 978-1-849510-08-0 Paperback: 292 pages

Create flexible, powerful, and professional themes for
your WordPress blogs and web sites

1. Take control of the look and feel of your
WordPress site by creating fully functional
unique themes that cover the latest WordPress
features

2. Add interactivity to your themes using Flash
and AJAX techniques

3. Expert guidance with practical step-by-step
instructions for custom theme design

4. Includes design tips, tricks, and
troubleshooting ideas

WordPress 3.0 jQuery
ISBN: 978-1-849511-74-2 Paperback: 316 pages

Enhance your WordPress website with the
captivating effects of jQuery

1. Enhance the usability and increase visual
interest in your WordPress 3.0 site with easy-to-
implement jQuery techniques

2. Create advanced animations, use the UI plugin
to your advantage within WordPress, and
create custom jQuery plugins for your site

3. Turn your jQuery plugins into WordPress
plugins and share with the world

4. Implement all of the above jQuery
enhancements without ever having to make
a WordPress content editor switch over into
HTML view

Please check www.PacktPub.com for information on our titles

WordPress 2.8 Themes Cookbook
ISBN: 978-1-847198-44-0 Paperback: 312 pages

Over 100 simple but incredibly effective recipes for
creating powerful, custom WordPress themes

1. Take control of the look and feel of your
WordPress site

2. Quick recipes to get started and successfully
build advanced themes

3. Step-by-step instructions and useful
screenshots for easy learning

4. Give a professional look to your web site with
popular JavaScript libraries

WordPress MU 2.8: Beginner’s
Guide
ISBN: 978-1-847196-54-5 Paperback: 268 pages

Build your own blog network with unlimited users
and blogs, forums, photo galleries, and more!

1. Design, develop, secure, and optimize a blog
network with a single installation of WordPress

2. Add unlimited users and blogs, and give
different permissions on different blogs

3. Add social networking features to your blogs
using BuddyPress

4. Create a bbPress forum for your users to
communicate with each other

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to WordPress
	What is WordPress?
	Use it for a blog or a website
	Blog: Definition and common terms
	Common terms

	Why choose WordPress?
	A long time in refining
	Active in development
	Large community of contributors
	Amazingly extendable
	Detailed feature list
	New feature list since 2.7
	Learning more

	Online WordPress resources
	WordPress news
	The Codex
	Support from other users
	Theme and plugin directories
	WordPress.com

	Summary

	Chapter 2: Getting Started
	Where to build your WordPress website
	Using WordPress.com
	Installing WordPress manually
	Preparing the environment
	Downloading WordPress
	Upgrading from an earlier version of WordPress
	Uploading the files
	Installing WordPress
	Learning more

	The WP Admin panel
	Changing general blog information
	Your first post
	Your first comment
	Retrieving a lost password

	Summary

	Chapter 3: Creating Blog Content
	WP Admin conventions
	Lists of items

	Posting on your blog
	Adding a simple post
	Common post options
	Categories and tags
	Images in your posts
	Using the Visual editor versus the HTML editor
	Drafts, timestamps, and managing posts

	Advanced post options
	Excerpt and the MORE tag
	Trackbacks
	Discussion
	Custom Fields
	Protecting content
	Pretty permalinks

	Additional writing options
	Press This
	Posting via e-mail

	Discussion on your blog—comments
	Adding a comment
	Discussion settings
	Submission, notification, and moderation settings
	When to moderate or blacklist a comment
	Avatar display settings

	Moderating comments
	How to eliminate comment spam
	Getting a WordPress.com API key
	Activating Akismet

	Adding and managing categories
	Summary

	Chapter 4: Pages, Plugins, Image Galleries Menus, and More
	Pages
	Adding a page
	Managing pages

	Menus
	Adding a Menu
	Displaying a Menu

	Widgets
	Links
	Adding a new link
	Displaying links
	Managing links and categories

	Media library
	Adding plugins
	Finding your plugin
	Installing and activating the plugin
	Auto-installation
	Download, (unzip?), upload

	Configuring and/or implementing—if necessary

	Adding an image gallery
	Choosing a post or page
	Uploading images
	Using a lightbox plugin

	Making your website mobile-friendly
	Summary

	Chapter 5: Choosing and Installing Themes
	Finding themes
	WordPress Theme Directory
	Finding more themes

	Some theme basics
	What makes a theme?
	Factors to consider when choosing a theme

	Installing and changing themes
	Adding a theme within the WP Admin
	Downloading, extracting, uploading

	Summary

	Chapter 6: Developing Your Own Theme
	Setting up your design
	Designing your theme to be WordPress-friendly
	Converting your design to code
	Examining the HTML structure
	Examining the CSS

	Converting your build into a theme
	Creating the theme folder
	Adding WordPress content
	The <head> tag
	The header and footer
	The sidebar

	Main column—the loop

	Creating templates within your theme
	Understanding the WordPress theme
	Breaking it up
	header.php
	footer.php
	sidebar.php
	Your four template files

	Archive template
	Single template
	Page template
	Generated classes for body and post
	Other WordPress templates
	Creating and using a custom template

	Making your theme widget-friendly
	Making sure your sidebar is one big tag
	Adding functions.php
	Adding conditional code to sidebar
	Adding some widgets
	Further widgetizing options
	Learning more

	Enabling a menu in your theme
	Creating a child theme
	Creating the new theme directory
	Creating the stylesheet
	Using your child theme

	Sharing your theme
	Summary

	Chapter 7: Feeds and Podcasting
	Feed basics
	Feed readers
	Learning more

	Your built-in WordPress feeds
	Adding feed links
	Feeds for the whole website
	Feeds for categories
	Feeds for post comments
	Tracking subscribers with FeedBurner
	Burn your feed on FeedBurner
	FeedBurner plugin

	Podcasting
	Creating a podcast
	Record yourself
	Make a post

	Dedicated podcasting
	Podcasting plugins
	Using a service to host audio files for free

	Summary

	Chapter 8: Developing Plugins and Widgets
	Plugins
	Plugin code requirements
	Basic plugin—adding link icons
	Naming and organizing the plugin files
	Writing the plugin's core functions
	Adding hooks to the plugin
	Trying out the plugin

	Adding an admin page
	Adding management page functions
	Modifying the regex() function
	Adding hooks
	Trying out the plugin

	Plugin with DB access-capturing searched words
	Getting the plugin to talk to the database
	Adding management page functions
	Adding hooks
	Trying out the plugin

	Learning more

	Widgets
	Recent posts from a Category Widget
	Naming the widget
	Widget structure
	Widget initiation function
	Widget form function
	Widget save function
	Widget print function
	Initiate and hook up the widget
	Final widget code
	Trying out the widget
	Learning more

	Bundling a widget with a plugin

	Shortcodes
	How do shortcodes work?
	Creating a simple shortcode
	Adding options to the shortcode
	Enabling shortcodes in widgets

	Summary

	Chapter 9: Community Blogging
	Concerns for a multiuser blog
	Users roles and abilities
	Administrator
	Editor
	Author
	Contributor
	Subscriber

	Managing users
	Enabling users to self-register
	Learning more

	User management plugins
	Creating a multi-site website
	Summary

	Chapter 10: Creating a Non-Blog Website
	Our client is a bookstore
	The Design
	New features covered in this chapter
	Introducing the initial theme
	What we are starting with
	Initial theme files and functionality
	functions.php
	header.php
	footer.php
	index.php

	Setting up the starter content
	Checking out the frontend

	Adding plugins
	Contact Form 7
	April's Call Posts
	Smooth Slider
	Installing the plugin
	Adding content to the plugin
	Adding the plugin to your theme

	Creating a custom post type: book
	Registering a new post type
	Adding labels
	Adding messages
	Creating book template files

	Registering and using a custom taxonomy
	Customizing the admin display
	Finalizing the bookstore website

	Summary

	Chapter 11: Administrator's Reference
	System requirements
	Enabling permalinks

	The importance of backing up
	Easy, quick, frequent content backups
	Backing up everything
	Verifying your backups

	Upgrading WordPress
	What about the built-in upgrader?
	Do it gradually for a big jump
	Steps for upgrading
	Backing up your database
	Backing up your WordPress files
	Put WordPress in Maintenance Mode
	Deactivating all your plugins
	Downloading and extracting WordPress
	Deleting old files
	Uploading the new files
	Running the WordPress upgrade program
	Updating permalinks and .htaccess
	Installing updated plugins and themes

	Migrating or restoring a WordPress site
	Setting file permissions
	What are file permissions?
	Permissions for WordPress
	How to set permissions

	Troubleshooting
	Troubleshooting during installation
	Headers already sent
	Page comes with only PHP code
	Cannot connect to MySQL database

	Basic troubleshooting
	Cannot see posts
	Making a site totally private
	I don't receive the e-mailed passwords

	Tips for theme development
	Template tags
	Class styles generated by WordPress
	Learning more

	Summary

	Index

