
[ 1 ]



Bootstrap 4 By Example

Learn responsive web development with Bootstrap 4's 
front end framework

Silvio Moreto

BIRMINGHAM - MUMBAI



Bootstrap 4 By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 2070916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-887-6

www.packtpub.com



Credits

Author
Silvio Moreto

Reviewer
Paula Barcante

Commissioning Editor
Ashwin Nair

Acquisition Editor
Smeet Thakkar

Content Development Editor
Pooja Mhapsekar

Technical Editor
Tanmayee Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda



About the Author

Silvio Moreto is a developer with more than 7 years of experience with frontend 
technologies and has created many websites and web applications using the 
Bootstrap framework. From simple pages to complex ones, he has always used the 
Bootstrap framework.

Silvio is also the creator of the bootstrap-select plugin (http://silviomoreto.
github.io/bootstrap-select/), which is a very popular plugin among the 
community. It is for replacing a selected element by a Bootstrap button drop-down 
element. Silvio foresaw that a plugin like this one was missing in the original 
framework, and it could be useful for the community. So he created the plugin, and 
the community helps him maintain it.

Besides this, he is very active in the open source community, participating in some 
open source repository and issue communities, such as Stack Overflow. Also, he 
finished third in the worldwide Django Dash 2013 challenge.

First, I would like to thank my wife to supporting me throughout 
the writing process of the book. I would also like to thank my dog 
for staying beside me every night when I was writing and being 
the inspiration to some scenarios in the book. Then I want to thank 
the editors from Packt Publishing for their understanding and for 
guiding me through the completion of the book.

http://silviomoreto.github.io/bootstrap-select/
http://silviomoreto.github.io/bootstrap-select/


About the Reviewer

Paula Barcante is a 23 year old UX designer with a passion for frontend 
development. She learned development on her own by reading books and taking 
free online courses. She began using Bootstrap 4 years ago and has continued using 
it ever since. Paula's passion lies in designing and developing beautiful experiences 
for users around the world. Most recently, she began working as a UX designer for 
Amazon.com. She is always happy to chat with those who are passionate about 
design or frontend development. Her work can be found at paulabarcante.com.



www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib 


[ i ]

Table of Contents
Preface vii
Chapter 1: Getting Started 1

Getting Bootstrap 2
Setting up the framework 3

Folder structure 4
Warming up the sample example 4
Bootstrap required tags 6

Building our first Bootstrap example 8
The container tag 9

Optionally using the CDN setup 12
Community activity 13

Tools 14
Bootstrap and web applications 14
Browser compatibility 15
Summary 16

Chapter 2: Creating a Solid Scaffolding 17
Understanding the grid system 17
Building our scaffolding 18

Setting things up 19
Offset columns 21
Completing the grid rows 22
Nesting rows 22
Finishing the grid 24

Fluid container 26
We need some style! 26

There are headings everywhere 28
Playing with buttons 29
More typography and code tags 30



Table of Contents

[ ii ]

Manipulating tables 35
Styling the buttons 38

Like a boss! 39
Final thoughts 40

Box-sizing 40
Quick floats 41
Clearfix 41
Font definitions for typography 42

Summary 42
Chapter 3: Yes, You Should Go Mobile First 45

Making it greater 45
Bootstrap and the mobile-first design 47
How to debug different viewports at the browser 47
Cleaning up the mess 50
Creating the landing page for different devices 51

Mobile and extra small devices 52
Tablets and small devices 57
Desktop and large devices 59
Summary 60

Chapter 4: Applying the Bootstrap Style 63
Changing our grid layout 63

Starting over the grid system 65
The header 65
The introduction header 66
The about section 69
The features section 71
The price table section 73
The footer 76

Forming the forms 79
Newsletter form 79
Contact form 81
The sign-in form 85

Images 87
Helpers 89

Floating and centering blocks 89
Context colors 89
Spacing 90
Responsive embeds 91

Summary 92



Table of Contents

[ iii ]

Chapter 5: Making It Fancy 93
Using Bootstrap icons 93
Paying attention to your navigation 97

Until the navigation collapse 98
Using different attachments 100
Coloring the bar 101

Dropping it down 101
Customizing buttons dropdown 104

Making an input grouping 105
Getting ready for flexbox! 107

Understanding flexbox 107
Playing with Bootstrap and flexbox 109

Summary 110
Chapter 6: Can You Build a Web App? 111

Understanding web applications 111
Creating the code structure 112

Adding the navigation 112
Adding the search input 115
Time for the menu options! 116

The option at the thumbnail 116
Adding the Tweet button 117

Customizing the navigation bar 118
Setting up the custom theme 118
Fixing the list navigation bar pseudo-classes 119

You deserve a badge! 120
Fixing some issues with the navigation bar 121

Do a grid again 125
Playing the cards 125

Learning cards in Bootstrap 4 126
Creating your own cards 127
Adding Cards to our web application 128
Another card using thumbnails 131

Implementing the main content 133
Making your feed 134
Doing some pagination 140

Creating breadcrumbs 141
Finishing with the right-hand-side content 142
Summary 147



Table of Contents

[ iv ]

Chapter 7: Of Course, You Can Build a Web App! 149
Alerts in our web app 150

Dismissing alerts 151
Customizing alerts 151

Waiting for the progress bar 153
Progress bar options 154
Animating the progress bar 155

Creating a settings page 156
Pills of stack 157
Tabs in the middle 161

Adding the tab content 163
Using the Bootstrap tabs plugin 163

Creating content in the user info tab 164
The stats column 167
Labels and badges 169

Summary 171
Chapter 8: Working with JavaScript 173

Understanding JavaScript plugins 173
The library dependencies 174
Data attributes 174
Bootstrap JavaScript events 175

Awesome Bootstrap modals 175
Modal general and content 177
The modal header 177
The modal body 178
The modal footer 178

Creating our custom modal 179
A tool for your tip 181
Pop it all over 184

Popover events 187
Making the menu affix 189
Finishing the web app 191
Summary 196

Chapter 9: Entering in the Advanced Mode 197
The master plan 198
The last navigation bar with flexbox 199

The navigation search 203
The menu needs navigation 204
Checking the profile 209



Table of Contents

[ v ]

Filling the main fluid content 210
From the side stacked menu 211
I heard that the left menu is great! 212
Learning the collapse plugin 214
Using some advanced CSS 218

Filling the main content 219
Rounding the charts 221
Creating a quick statistical card 224
Getting a spider chart 227

Overhead loading 230
Fixing the toggle button for mobile 232
Summary 233

Chapter 10: Bringing Components to Life 235
Creating the main cards 235

The other card using Bootstrap components 239
Creating our last plot 242

Fixing the mobile viewport 244
Fixing the navigation menu 248
The notification list needs some style 251
Adding the missing left menu 252
Aligning the round charts 254

Learning more advanced plugins 256
Using the Bootstrap carousel 256

Customizing carousel items 258
Creating slide indicators 258
Adding navigation controls 260
Other methods and options for the carousel 261

The Bootstrap spy 262
Summary 267

Chapter 11: Making It Your Taste 269
Customizing a Bootstrap component 269

The taste of your button 270
Using button toggle 271
The checkbox toggle buttons 272
The button as a radio button 273
Doing the JavaScript customization 274

Working with plugin customization 274
The additional Bootstrap plugins 280
Creating our Bootstrap plugin 281

Creating the plugin scaffold 282



Table of Contents

[ vi ]

Defining the plugin methods 287
The initialize method and plugin verifications 287
Adding the Bootstrap template 288
Creating the original template 290

The slide deck 291
The carousel indicators 292
The carousel controls 293

Initializing the original plugin 293
Making the plugin alive 294

Creating additional plugin methods 296
Summary 298

Index 301



[ vii ]

Preface
Frontend development can be separated into two eras, before Bootstrap and after 
Bootstrap. In 2011, the greatest frontend framework ever was released. Also, in the 
same year, the adoption and use of the framework grew in great numbers, reaching 
almost every segment of the market.

The reason of this is as follows: imagine how painful it was to create a simple,  
nice button, for instance. You had to declare a lot of classes and styles in your code. 
This was the foresee of Bootstrap, created by some developers from Twitter. The 
framework was a paradigm change for developing a fast-paced web page frontend.

The greatness of Bootstrap lies in three aspects. The first is the style sheet,  
which contains some basic CSS for almost every HTML element in a uniform  
and beauty way.

The second aspect is the components. They can be reused by just copying and 
pasting code. The last aspect is the JavaScript plugin, which includes some very 
common additional elements that cannot be found elsewhere.

Take a deep dive into the Bootstrap frontend framework with the help of examples 
that will illustrate the usage of each element and component in a proper way. By 
seeing examples, you will get a better understanding of what is happening and 
where you want to reach.

During the book, along the examples, you will be able to nail the framework and 
develop some very common examples using Bootstrap. These are a landing page, 
a web application, and a dashboard, which is desired by 10 out 10 web developers. 
You will face these kind of page countless number of times during your life as a 
developer, and you will do that using Bootstrap at its finest, including component 
customizations, animations, event handling, and external library integration.



Preface

[ viii ]

We will start from the basics of the framework, but we will not hesitate from 
going further to really nail the framework. If you complete the book's examples by 
yourself, we can guarantee that you will become a true Bootstrap master.

This book is the first one to offer support for version 4 of Bootstrap. However, we 
will offer support for version 3 as well. So, you will be ready for whatever comes 
your way.

What this book covers
Chapter 1, Getting Started, introduces the Bootstrap framework and teaches you how 
to set up the environment.

Chapter 2, Creating a Solid Scaffolding, starts the landing page example using the grid 
system.

Chapter 3, Yes, You Should Go Mobile First, talks about mobile-first development and 
how to do it.

Chapter 4, Applying the Bootstrap Style, uses the Bootstrap theme and some Bootstrap 
elements.

Chapter 5, Making It Fancy, is about adding more Bootstrap elements to the landing 
page example.

Chapter 6, Can You Build a Web App?, challenges us to create a web application using 
Bootstrap.

Chapter 7, Of Course, You Can Build a Web App!, creates the web application page 
using only Bootstrap elements and components.

Chapter 8, Working with JavaScript, starts using some JavaScript plugins in the web 
application example.

Chapter 9, Entering in the Advanced Mode, is the start of the dashboard example using 
advanced components and plugin integrations.

Chapter 10, Bringing Components to Life, completes the dashboard example while 
making the final customizations for our web page.

Chapter 11, Making It Your Taste, is the final challenge, where we customize Bootstrap 
plugins and create a new plugin for the framework.



Preface

[ ix ]

What you need for this book
To follow this book's developments, you will need a web browser on your computer, 
preferably Google Chrome, because it will be used in some examples. But other 
browsers can work as well.

Also, you will need some basic knowledge in HTML, CSS, and JavaScript 
beforehand. Despite the fact that we will initially talk in a slow pace about those 
technologies, it will be good for you to know some basic concepts about them.

Another plus is knowledge of the jQuery library, which is a dependency of 
Bootstrap. We will actually use jQuery in Chapter 7, Of Course, You Can Build a Web 
App!, and they will be very simple examples. So just keep in mind to train some 
jQuery skills.

Who this book is for
Bootstrap By Example is perfect for frontend developers interested in fast, mobile-first, 
and responsive development. Bootstrap is the most famous frontend framework, 
with a big community that needs you as a new member in this world of extensive 
support for different devices, resolutions, browsers, and ready-to-use components. 
With this book, you will acquire your ticket to it and play around like a pro.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Then, we created a <div> tag using the .navbar-right class to provide a set 
padding CSS rules and place the list to the right to appear the same way as before."

A block of code is set as follows:

<html>
  <head></head>
  <body>Hello World!</body>
</html>



Preface

[ x ]

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

<html>
  <head></head>
  <body>Hello World!</body>
</html>

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "The 
preceding screenshot shows the final result of the Features section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors


Preface

[ xi ]

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/BootstrapByExample_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/BootstrapByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BootstrapByExample_ColorImages.pdf


Preface

[ xii ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


[ 1 ]

Getting Started
With the advent and increase in popularity of the mobile web, developers have had 
to adapt themselves to handling new challenges, such as different layouts in different 
resolutions, the new user experience paradigm, and optimization for low-bandwidth 
connections. While facing this, there were also a lot of old problems related to 
browser compatibility and lack of patterns in the community.

This was the outline scenario when the Bootstrap framework arrived. Developed 
by Twitter, the main goal of Bootstrap is to provide a web frontend framework for 
responsive developing with cross-browser compatibility. It is awesome! Developers 
fell in love with it and started to adopt it right away.

Therefore, to cover this book's objective of presenting the Bootstrap framework to 
build responsive, mobile-first websites faster than ever before, we must get started 
by setting up our work environment in the best recommended way. Thus, the topics 
that we will cover in this chapter are:

• Getting Bootstrap
• Setting up Bootstrap in a web page
• Building the first Bootstrap example
• The container element tag
• Support sources
• Framework compatibility



Getting Started

[ 2 ]

Getting Bootstrap
There is some version of the framework, but in this book, we will provide support 
for the latest Bootstrap 3 version (which is v3.3.5), along with the newest version 4 
(which is 4.0.0-alpha). When a feature or component is differently supported by one 
of these versions, we will point it out properly.

First of all, access the official website at http://getbootstrap.com/ and click on 
the Download Bootstrap button, as shown in the following screenshot:

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to have the 
files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and 
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code files.
• Choose from the drop-down menu where you purchased this book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the 
folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

http://getbootstrap.com/
http://www.packtpub.com
http://www.packtpub.com/support


Chapter 1

[ 3 ]

Then you will be redirected to another page that contains these buttons:

• Download Bootstrap: This is the release with the files already compiled.
• Download source: Use this if you want to get the source for customization. 

This requires knowledge of the Less language.
• Download Sass: Here, you can get the source code in the Sass language.

Click on the Download Bootstrap button to get the framework, since we will cover 
the full framework using, not Sass, but just HTML, CSS, and JavaScript. After the 
download, extract the files and you will see that the framework is organized in folders.

Other versions and releases
Check out the official repository at https://github.com/twbs/
bootstrap/ to pick up other versions and see the new releases 
under development. You will also be able to see other features and 
community activity.

If you want to go hands-on straightforward with version 4, go to http://v4-alpha.
getbootstrap.com/ and download it, or enter the GitHub repository and select the 
corresponding branch of version 4.

After you've extracted the files, you will see some folders. The first one, in 
alphabetical order, is css. Here, you will find the main CSS file (named bootstrap.
css), other files related to the minified version, and a bootstrap-theme.css file, 
which is a simple theme of using the Bootstrap components.

There is also a fonts folder; it contains the files used for the icon components that 
we will see in future chapters. Finally, there is a folder named js, where we can find 
the bootstrap.js file, the minified version, and the specification for npm.

What is the npm file?
The npm is the most famous package manager for JavaScript. It is set 
as the default package manager in the Node.js environment.

Setting up the framework
Now that we have downloaded the framework and covered its basic file architecture, 
we will advance to setting up Bootstrap on a web page.

https://github.com/twbs/bootstrap/
https://github.com/twbs/bootstrap/
http://v4-alpha.getbootstrap.com/
http://v4-alpha.getbootstrap.com/


Getting Started

[ 4 ]

Folder structure
First, let's explicit the folder structure that we will be using in this book. In a folder 
that we will call main_folder, we extract the Bootstrap contents and create a file 
called hello_world.html at the same level. Inside the Bootstrap contents will be 
some folders for fonts, CSS, and JavaScript. The final layout should be like this:

Warming up the sample example
Now, we will add the recommended setup of the Bootstrap framework to the hello_
world.html file. Open it in your preferred code editor and add the outline HTML 
code, like this:

<!DOCTYPE html>
<html>
<head>
    <title>Hello World!</title>
</head>
<body>
    Hello World
</body>
</html>

Next, add the code for loading css inside the head tag:

<!DOCTYPE html>
<html>
<head>
    <title>Hello World!</title>
    <link rel="stylesheet" href="css/bootstrap.css">



Chapter 1

[ 5 ]

</head>
<body>
    Hello World
</body>
</html>

And at the end of the body tag, load the JavaScript file:

<!DOCTYPE html>
<html>
<head>
    <title>Hello World!</title>
    <link rel="stylesheet" href="css/bootstrap.css">
</head>
<body>
    Hello World
    <script src="js/bootstrap.js"></script>
</body>
</html>

Open the hello_world.html file in a browser (we will use Google Chrome in this 
book) and open the JavaScript console. In Chrome, it can be found at Options button 
(the hamburger button on right upper corner. Go to More Tools | Developer Tools, 
just as shown in the following screenshot, and click on Console in the opened 
window. You will see a message saying Bootstrap's JavaScript requires jQuery:



Getting Started

[ 6 ]

jQuery is a cross-platform JavaScript library, and it is the only third-party 
requirement for Bootstrap. To get it, we recommend the download from the official 
website and the latest version (https://jquery.com/download/). Bootstrap 
requires version 1.9 or higher.

Just use versions above 2.x if you do not want to add support for Internet 
Explorer 6, 7, and 8. In this book, we will use version 1.11.3.

Copy the jQuery file inside the js folder, and load it in the HTML code at the end of 
the body tag but before the bootstrap.js loads, like this:

<script src="js/jquery-1.11.3.js"></script>
<script src="js/bootstrap.js"></script>

Bootstrap required tags
Bootstrap has three tags that must be at the beginning of the <head> tag. These tags 
are used for text encoding and improved visualization on mobile devices:

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">

The viewport tag is related to the mobile-first philosophy. By adding it, you ensure 
proper rendering in mobile devices and touch zooming.

You can also disable the zoom functionality by appending user-scalable=no in 
the content key. With this option, users will only be able to scroll on the web page, 
resulting in a feel of using a native mobile application.

If you are going to use this tag, you must be sure that users need not use 
the zoom feature and it will create a good user experience. Therefore, 
use it with caution.

Also, if you want to add support for older versions of the Internet Explorer (IE) 
browser (older than version 9), you must add some libraries to have fallback 
compatibility for the HTML5 and CSS3 elements. We will add them via CDN, which 
is the Bootstrap recommendation. So, add these lines at the end of the <head> tag:

<!--[if lt IE 9]>
    <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></
script>

https://jquery.com/download/


Chapter 1

[ 7 ]

    <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script> <![endif]-->

Do you know what CDN is?
CDN, the abbreviation of Content Delivery Network, is a term used to 
describe a network of computers that are connected in order to deliver 
some content. A CDN should provide high availability and performance.

At this point, the file should be like this:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width,
initial-scale=1">
    <title>Hello World!</title>

    <link rel="stylesheet" href="css/bootstrap.css">

    <!--[if lt IE 9]>
      <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
      </script>
      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
      </script>
    <![endif]-->
  </head>
  <body>
    Hello World!

    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
  </body>
</html>

This is our base page example! Keep it for the purpose of coding every example of 
this book and for any other web page that you will develop.



Getting Started

[ 8 ]

We would like to point out that Bootstrap requires the doctype HTML5 style before 
the <html> tag:

<!DOCTYPE html>
<html>
    ... <!--rest of the HTML code -->
</html>

Building our first Bootstrap example
Now we are all set for the framework. Replace the Hello World! line in the body tag 
with this:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-
scale=1">
    <title>Hello World!</title>

    <link rel="stylesheet" href="css/bootstrap.css">

    <!--[if lt IE 9]>
      <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
</script>
      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
    <![endif]-->
  </head>
  <body>

    <div class="jumbotron">
      <h1>Hello, world!</h1>
      <p>This is our first sample example that will be more  
awesome in the next chapters!</p>
      <a class="btn btn-primary btn-lg" href="#" role="button">
        Bootstrap by Example, Chapter 1



Chapter 1

[ 9 ]

      </a>
    </div>

    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
  </body>
</html>

Open the hello_world.html file in the browser, and it must appear like what is 
shown in the following screenshot:

Congratulations! You have created your first Bootstrap web page. It is simple but 
very important to understand the details of how to set the framework correctly to 
keep the recommendation pattern.

Furthermore, we added some components in this example that will be explained in 
future chapters, but you can start becoming familiar with the CSS classes used and 
the placement of the elements.

The container tag
You may notice that in our example, the page content is too close to the left-hand 
side and without a margin/padding. This is because Bootstrap has a required 
element called container that we have not added in the example.



Getting Started

[ 10 ]

The container tag must be placed to wrap the site content and nest the grid system 
(we will present the grid system, called scaffolding, in the next chapter). There are 
two options for using the container element.

The first one is for creating a web page responsive with a fixed-width container. This 
one will add responsive margins depending on the device viewport:

<div class="container">
    ...
</div>

In case you want a full-width container, covering the entire width of the viewport, 
use container-fluid:

<div class="container-fluid">
    ...
</div>

In our example, we will create a fixed-width responsive website. So, our code will be 
like this:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-
scale=1">
    <title>Hello World!</title>

    <link rel="stylesheet" href="css/bootstrap.css">

    <!--[if lt IE 9]>
      <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.
min.js">
</script>
      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
    <![endif]-->
  </head>
  <body>
    <div class="container">
        <div class="jumbotron">
            <h1>Hello, world!</h1>



Chapter 1

[ 11 ]

            <p>This is our first sample example that will be more  
awesome in the next chapters!</p>
            <a class="btn btn-primary btn-lg" href="#"  
role="button">
              Bootstrap by Example, Chapter 1
            </a>
        </div>
    </div>

    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
  </body>
</html>

The next screenshot shows what our example looks like with the addition of the 
container class. I recommend for practicing and complete understanding, that you 
change the container class to .container-fluid and see what happens. Change 
your viewport by resizing your browser window and see how Bootstrap adapts your 
page visualization:

The preceding image shows the differences between using .container and 
.container-fluid. See the differences of the margins in the sides.

Soon during this book, you will be able to create more complex and beautiful 
websites, using more advanced Bootstrap components such as the show case shown 
in the following screenshot, which is an example of a landing page.



Getting Started

[ 12 ]

Do not worry. We will start at a slow pace to reveal the basics of Bootstrap and how 
to use it properly on our web page. The following example is our first goal when we 
develop a landing page example. Just keep in mind that we will always use the same 
basis presented in this chapter.

Optionally using the CDN setup
Bootstrap also offers a setup using CDN to load the framework. It's much easier to 
set up but comes with some regards. Instead of the <link> that we created to load 
the CSS, we must load it from CDN using this:

<link rel="stylesheet"  
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/
bootstrap.min.css">



Chapter 1

[ 13 ]

And to load the JavaScript file, replace the JavaScript <script> tag with the 
following line:

<script  
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.
js"></script>

There is some discussion on whether or not to use CDN. We will not touch upon this 
point, but the main pro is having the content provided faster with high availability. 
The main con is that you cannot have direct control over what is in the content 
provided, having unreliable imported code.

The decision of whether or not to use CDN depends on the case. You should 
consider the different arguments and choose an option that best fits your web page. 
There is no right or wrong, just different points of view.

Community activity
The Bootstrap framework is discussed in several places across the Internet. It is 
important to have an engaged community that keeps evolving the framework and 
supporting it. You can have support and acquire more knowledge by going to some 
other resources, such as the following:

• The Bootstrap official GitHub repository. Here (https://github.com/
twbs/bootstrap), you can find the road map development and the newest 
releases, report issues, and solve them by making a pull request.

• The Bootstrap official documentation (http://getbootstrap.com/) 
provides some additional information of the framework's usage and support.

• Bootstrap Blog (http://blog.getbootstrap.com/) is the best way to follow 
news about Bootstrap and read the releases notes.

• Bootstrap Expo (http://expo.getbootstrap.com/) is a showcase web 
page where you can see some beautiful websites that use the framework and 
resources to be used within such as plugins, themes, and so on.

• Stack Overflow questions related to Bootstrap (http://stackoverflow.
com/questions/tagged/twitter-bootstrap). This is one of the best means 
of communication to get help from for your issues. Search for questions 
related to yours, and if you can't find something related, I guarantee that you 
will have an answer very soon.

There are many other resources spread across the Internet. Use them all to your 
advantage, and appreciate the taste of developing in fast pace with the best frontend 
framework of our time.

https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
http://getbootstrap.com/
http://blog.getbootstrap.com/
http://expo.getbootstrap.com/
http://stackoverflow.com/questions/tagged/twitter-bootstrap
http://stackoverflow.com/questions/tagged/twitter-bootstrap


Getting Started

[ 14 ]

Tools
Bootstrap has an official HTML lint called Bootlint (https://github.com/twbs/
bootlint). It checks the DOM for mistakes in using Bootstrap elements and 
components. Add Bootlint to avoid mistakes that delay your development. Check 
out the repository for installation and usage instructions.

Bootstrap and web applications
Bootstrap is one of the best frameworks for building web apps. Since you may 
use the same layout pattern across the web app, with premade classes and themes 
provided by the framework, you can speed up your development while maintaining 
the coherence of the elements used.

After the framework's release, Twitter adopted it like many other web apps as 
well. The following screenshot shows a great example of a fluid web app that uses 
Bootstrap with a fluid container:

https://github.com/twbs/bootlint
https://github.com/twbs/bootlint


Chapter 1

[ 15 ]

Browser compatibility
The Bootstrap framework supports the most recent versions of the most used 
browsers. However, depending on the browser, the elements' rendering might look a 
little different from others, such as in the Chrome and Firefox Linux versions.

Internet Explorer's (IE) old versions do not have some properties from CSS3 and 
HTML5 that are used in the framework, so be aware of this when supporting these 
browsers. The following table presents the official browser compatibility.

Also, with the new version 4 of the framework, some compatibilities have been 
dropped. They decided to drop the support that existed for IE8, since it was dragging 
down the addition of new features, and now Bootstrap is able to take advantage of 
the use of some new CSS features.

With regard to this, version 4 moved from pixels to rems and ems measures to make 
responsive and resizing easier, and with that, they dropped support for iOS 6 as well:

Chrome Firefox Internet Explorer Opera Safari
Android Yes Yes N/A No N/A

iOS Yes N/A N/A No Yes (iOS 7 + 
for v4)

OS X Yes Yes N/A Yes Yes
Windows Yes Yes Yes (IE9 + for v4) Yes No

The meaning of em and rem
The units em and rem have moved from trending to reality! They are 
enforced as present in our context and have now gained the support 
of Bootstrap. The main difference between em and rem is that they 
are relative unit metrics, while pixels are not. em is a unit relative 
to the parent font size and rem is a unit relative to the root element, 
perfectly fitting this responsivity development context.



Getting Started

[ 16 ]

Summary
In this chapter, you learned some basic concepts about using the Bootstrap 
framework. These are the key points for creating web sites with high quality. 
Knowing them in depth gives you a huge advantage and helps with the handling of 
future problems.

The chapter's goal was to show the recommended setup for the Bootstrap 
framework, presenting the placement of the tags, libraries import, and creating a 
very simple web page. Remember that consistency across the website is the main 
thing about Bootstrap, saving your precious time.

Also keep in mind that when starting a new web page, you have to guarantee a good 
placement of the main tags and components no matter how you created it (manually, 
boilerplate, or in other ways). Many problems stem from inadequate groundwork.

We also presented some resources from which you can acquire further knowledge 
or any kind of help. You now belong to a big "open arms" community that you can 
always count on.

Now that we have this background, let's attack some real-world problems! In the 
next chapter, we will start developing a very common real-life example, which is a 
landing page, while presenting some Bootstrap components, HTML elements, and 
grid systems.



[ 17 ]

Creating a Solid Scaffolding
In this chapter, you will start learning some new Bootstrap elements and 
components. By doing this, you will first understand the concepts of the Bootstrap 
grid system and move on to some basic components. Now, we are going to start the 
development of a responsive sample landing page. First, we will use the base theme 
of the framework, and in future, we will apply our own style.

The main structure of this chapter is as follows:

• The Bootstrap grid system
• Typography
• Tables
• Buttons

Understanding the grid system
The basis of the Bootstrap framework relies in its grid system. Bootstrap offers 
components that allow us to structure a website in a responsive grid layout.



Creating a Solid Scaffolding

[ 18 ]

To exemplify this, imagine an electronic square sheet table that can be divided into 
many rows and columns, as shown in the following screenshot. In the table, you can 
create as many lines as you want while merging cells. But what would happen if you 
wanted to change the layout of a single row? That could be painful.

The Bootstrap grid system works in a different way. By letting you define a set 
of rows, each one having a set of independent columns, it allows you to build a 
solid grid system for your web page. Also, each column can have different sizes to 
perfectly fit your template.

This not being enough, the Bootstrap grid system adapts for every viewport and 
resolution, which we call responsiveness.

To start learning about the grid system, we will introduce it using the example 
of a landing page. As you will see, Bootstrap will allow us to create a complete 
scaffolding that will automatically adjust the content for any viewport.

Building our scaffolding
For our landing page, we will use the grid presented in the following image. As 
you can see, it is represented by seven rows, each containing a different number of 
columns. In this first example, we will use a nonmobile viewport, which we will 
discuss in the next chapter.



Chapter 2

[ 19 ]

Setting things up
To start that, let's use our default layout presented in Chapter 1, Getting Started. Add 
inside the div.container tag another div with the .row class:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-
scale=1">
    <title>Landing page</title>

    <link rel="stylesheet" href="css/bootstrap.css">

    <!--[if lt IE 9]>
      <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
</script>



Creating a Solid Scaffolding

[ 20 ]

      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
    <![endif]-->
  </head>
  <body>
    <div class="container">
      <div class="row"></div>
    </div>

    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
  </body>
</html>

The hierarchy for the grid system always follows the sequence of a container that 
wraps rows and multiple columns. Keep in mind to always use this sequence to get a 
proper output.

Now that we have our .container with the first .row, let's create our first column. 
Every row is subdivided into 12 parts, so you can have up to 12 columns in a single 
row.

To identify a column, we must follow the template of .col-*-*. The first asterisk 
means the viewport for the column, and the other one means the size of the column. 
We will explain more about that, but to create our first column, we create a column 
identified by .col-md-12 inside our row:

<div class="container">
  <div class="row">
    <header class="col-md-12">
      HEADER
    </header>
  </div>
</div>

In this column, the md in.col-md-12 means that for the viewport medium (which 
means the md identifier), the column must have a 12-column width. In other words, 
the column fills the entire width of this row. This column will fill the complete 
width because it is our header, and as we can see in the previous image, this row is 
composed of just a single row.



Chapter 2

[ 21 ]

So, to create a column in the Bootstrap grid system, you must follow the recipe of 
.col-*-* for every column. While you can set an integer from 1 to 12 for the width, 
for the viewport, you must set the correct class prefix. In this table, you can see the 
breakdown of class prefix usage and on which resolution it can be used:

Extra small 
devices 
(phones < 544 
px / 34 em)

Small devices 
(tablets ≥ 544 
px / 34 em 
and < 768 px / 
48 em)

Medium 
devices 
(desktops ≥ 
768 px /48 em 
and < 900 px / 
62 em)

Large devices 
(desktops ≥ 
900 px / 62 em 
and < 1,200 px 
75 em)

Extra large 
devices 
(desktops 
≥ 1,200 px / 
75 em)

Grid 
behavior

Horizontal 
lines at all 
times

Collapse at start and fit the column grid

Container's 
fixed width Auto 544 px or 34 

rem
750 px or 45 
rem

970 px or 60 
rem

1170 px 
or 72.25 
rem

Class prefix .col-xs-* .col-sm-* .col-md-* .col-lg-*
.col-
xl-*

Number of 
columns 12

Column 
fixed width Auto ~ 44 px or 

2.75 rem
~ 62 px or 
3.86 rem

~ 81 px or 
5.06 rem

~ 97 px 
or 6.06 
rem

What will happen if I create a row with more than 12 columns?
Try adding a number of columns with a number higher than 12, for 
instance, five columns with the .col-md-3 class. Knowing that every row 
is treated as a unit of 12 columns, the next ones will wrap in a new line.

Offset columns
Our second row is divided into three equal-sized columns, and the first one is 
an offset column, or in other words, an empty column that will be filled by a left 
margin. Therefore, the second row will be like this:

<div class="row">
  <div class="col-md-offset-4 col-md-4">1/3</div>
  <div class="col-md-4">1/3</div>
</div>



Creating a Solid Scaffolding

[ 22 ]

As you can see, by adding the .col-md-offset-4 class, we create a margin to the 
left four, sized in just this .row. By having each row independent of the others, we 
can properly customize the layout to appear just as it is supposed to be.

What happens if I add more than two offsets in a single column?
If you do that, you will find yourself in a funny situation. As a tip, only 
one offset is applied for an element, but which one? The answer is, the 
smallest offset!

Completing the grid rows
Now we will advance to the third row in our scaffolding. If you've got the spirit, you 
should have no problems with this row. For training, try doing it by yourself and 
check the solution in the book afterwards! I am sure you can handle it.

So, this row is composed of two columns. The first column must fill 4 out of the 12 
parts of the row and the other column will fill the rest. The row in the HTML should 
look like this:

<div class="row">
  <div class="col-md-4"></div>
  <div class="col-md-8"></div>
</div>

About the fourth row—it is composed of a quarter divisor, followed by a half divisor, 
followed by a last quarter divisor. Using this in base 12, we will have the following 
grid in the row:

<div class="row">
  <div class="col-md-3">1/4</div>
  <div class="col-md-6">1/2</div>
  <div class="col-md-3">1/4</div>
</div>

Nesting rows
In the fifth and sixth rows, we will show how you can create a row using two 
options. In the fifth row, we will create just as we are doing in the other rows, while 
in the sixth row, we will use the concept of nesting rows.



Chapter 2

[ 23 ]

So, in the fifth row, create it just as you were doing before; create a row with four 
equally sized rows, which means that each column will have the .col-md-3 class:

<div class="row">
  <div class="col-md-3">1/4</div>
  <div class="col-md-3">1/4</div>
  <div class="col-md-3">1/4</div>
  <div class="col-md-3">1/4</div>
</div>

For the sixth row, we will use nesting rows. So, let's create the first .row, having 
three columns:

<div class="row">
  <div class="col-md-3">1/4</div>
  <div class="col-md-6"></div>
  <div class="col-md-3">1/4</div>
</div>

As you can see, the first and the last column use the same class of columns in row 
five—the .col-md-3 class—while the middle column is double the size, with the 
.col-md-6 class.

Let's nest another .row inside the middle column. When you create a new nested 
row, the columns inside of it are refreshed and you have another set of 12-sized 
columns to put inside it. So, inside this new row, create two columns with the .col-
md-6 class to generate two columns representing a fourth of the row:

<div class="row">
  <div class="col-md-3">1/4</div>
  <div class="col-md-6">
    <div class="row">
      <div class="col-md-6">1/4</div>
      <div class="col-md-6">1/4</div>
    </div>
  </div>
  <div class="col-md-3">1/4</div>
</div>

The concept of nesting rows is pretty complex, since you can infinitely subdivide a 
row, although it is great to create small grid components inside your page that can be 
used in other locations.



Creating a Solid Scaffolding

[ 24 ]

Finishing the grid
To create the last row, we need to create the .col-md-2 column, followed by .col-
md-7 and .col-md-3. So, just create a row using the <footer> tag with those 
columns. The complete scaffolding will be this:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-
scale=1">
    <title>Landing page</title>
    <link rel="stylesheet" href="css/bootstrap.css">
    <!--[if lt IE 9]>
      <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
</script>
      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
    <![endif]-->
  </head>
  <body>
    <div class="container">
      <!-- row 1 -->
      <div class="row">
        <header class="col-md-12">
          HEADER
        </header>
      </div>

      <!-- row 2 -->
      <div class="row">
        <div class="col-md-offset-4 col-md-4">1/3</div>
        <div class="col-md-4">1/3</div>
      </div>

      <!-- row 3 -->
      <div class="row">
        <div class="col-md-4"></div>
        <div class="col-md-8"></div>
      </div>



Chapter 2

[ 25 ]

      <!-- row 4 -->
      <div class="row">
        <div class="col-md-3">1/4</div>
        <div class="col-md-6">1/2</div>
        <div class="col-md-3">1/4</div>
      </div>

      <!-- row 5 -->
      <div class="row">
        <div class="col-md-3">1/4</div>
        <div class="col-md-3">1/4</div>
        <div class="col-md-3">1/4</div>
        <div class="col-md-3">1/4</div>
      </div>

      <!-- row 6 – nesting rows -->
      <div class="row">
        <div class="col-md-3">1/4</div>
        <div class="col-md-6">
          <div class="row">
            <div class="col-md-6">1/4</div>
            <div class="col-md-6">1/4</div>
          </div>
        </div>
        <div class="col-md-3">1/4</div>
      </div>

      <!-- row 7 -->
      <footer class="row">
        <div class="col-md-2">1/2</div>
        <div class="col-md-7">7/12</div>
        <div class="col-md-3">1/4</div>
      </footer>
    </div>

    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
  </body>
</html>



Creating a Solid Scaffolding

[ 26 ]

Fluid container
You can easily switch the actual example grid with a fluid full-width layout. To do 
so, replace the farthest .container with .container-fluid:

<div class="container-fluid">
  …
</div>

We need some style!
Now, we will start using some of the CSS provided for Bootstrap to make our 
components responsive and more elegant. Our main goal is to make our grid page 
like what is shown in this screenshot:



Chapter 2

[ 27 ]

Let's break down each row and learn about typography and some other components. 
We will do this without using a single custom line of CSS!

Getting started with the first row, you may see that this row has a gray background, 
which is not present in the rest of the layout. To create this, we must make a 
change in our grid by creating a new .container for this row. So, create another 
.container and place it inside the first row:

<div class="container">
  <!-- row 1 -->
  <div class="row">
    <header class="col-md-12">
    </header>
  </div>
</div>
<div class="container">
  <!—- the others rows (2 to 7) -->
</div>

Now, to make the gray area, we will use a class in Bootstrap called .jumbotron. The 
jumbotron is a flexible Bootstrap component that can extend to the entire viewport 
to showcase some content, in this case the header. So, wrap the container inside a 
div.jumbotron:

<div class="jumbotron">
  <div class="container">
    <!-- row 1 -->
    <div class="row">
      <header class="col-md-12">
      </header>
    </div>
  </div>
</div>

Inside the header, as we can see in the layout, we must create a title, a subtitle, and 
a button. For the title, let's use the <h1> and <h2> heading elements. For the button, 
let's create a link with the .btn, .btn-default, and .btn-lg classes. We will 
mention more about these components in the next subsections:

<div class="jumbotron">
  <div class="container">
    <!-- row 1 -->
    <div class="row">
      <header class="col-md-12">
        <h1>A simple landing page example</h1>



Creating a Solid Scaffolding

[ 28 ]

        <h2>Sub title for support</h2>
        <a class="btn btn-default btn-lg" href="#" role="button">
          Link
        </a>
      </header>
    </div>
  </div>
</div>

There are headings everywhere
Bootstrap provides styled headings from h1 to h6. You should always use them in 
order of importance, from <h1> to <h6> (the least important).

Do you know why headings are important?
Heading are very important for Search Engine Optimization (SEO). 
They suggest for search engines what is important in your page context. 
You must keep the hierarchy for page coherence, and do not skip any 
tag (that is, jump from heading 3 to heading 5). Otherwise, the structure 
will be broken and not relevant for SEO.

The heading has classes for identifying its style. So, if your most important phrase is 
not the biggest one at times, you can swap the sizes by adding heading classes, just 
as in the following example:

<h1 class="h3">Heading 1 styled as heading 3</h1>
<h2 class="h1">Heading 2 styled as heading 1</h2>
<h3 class="h2">Heading 3 styled as heading 2</h3>



Chapter 2

[ 29 ]

Playing with buttons
The other element of the first row is a button! We can apply button classes for 
hyperlinks, button elements, and inputs. To make one of these elements a button, 
just add the .btn class followed by the kind of button, in this case the kind .btn-
default, which is a blue button. The next table shows every possibility of color 
classes for a button:

Button class Output

.btn-default

.btn-primary

.btn-success

.btn-info

.btn-warning

.btn-danger

.btn-link

We have also added the .btn-lg class in the first row button. This class will increase 
the size of the button. Bootstrap also provides some other button size classes, such as 
.btn-sm for small buttons and .btn-xs for even smaller ones.

You can also make a button span the full width of the parent element with the .btn-
block class, changing the display of the button to block.



Creating a Solid Scaffolding

[ 30 ]

More typography and code tags
With regards to the second row, we have a row that contains a heading and 
complementary small text after that.

To add lighter and secondary text to the heading, we can add a <small> tag or any 
other tag with the .small class inside the heading. The HTML for the first column  
in the second row should be like the following:

<div class="row">
  <div class="col-md-offset-4 col-md-4">
    <h3>
      Some text with <small>secondary text</small>
    </h3>
  </div>
  <div class="col-md-4">
    <h3>
      Add to your favorites
      <small>
        <kbd><kbd>ctrl</kbd> + <kbd>d</kbd></kbd>
      </small>
    </h3>
  </div>
</div>

Note that inside the small tag, we have added a <kbd> tag, which is an HTML 
element that creates a user-like input keyboard. Refresh the web browser and you 
will see this row as shown here:

For the third row, we have a code snippet and an image. To create a code snippet, 
use the <pre> tag for multiple lines of code. The <pre> tag is present in HTML for 
creating preformatted text, such as a code snippet. You have the option of adding the 
.pre-scrollable class, which will add a scrollbar if the code snippet reaches the 
maximum height of 350 px (or 21.8 em).



Chapter 2

[ 31 ]

For this row, in the right column, we have an image. For that, just create an <img> 
tag and add the .img-responsive class, which will make the images automatically 
responsive-friendly to the viewport. The HTML for the third row is as follows:

<div class="row">
  <div class="col-md-3">
    <pre>&lt;p&gt;I love programming!&lt;/p&gt;
&lt;p&gt;This paragraph is on my landing page&lt;/p&gt;
&lt;br/&gt;
&lt;br/&gt;
&lt;p&gt;Bootstrap by example&lt;/p&gt;
    </pre>
  </div>
  <div class="col-md-9">
    <img src="imgs/center.png" class="img-responsive">
  </div>
</div>

Refresh your browser and you will see the result of this row as shown in the 
following screenshot:



Creating a Solid Scaffolding

[ 32 ]

In the fourth row, we have images in both the left and right columns and a 
testimonial in the middle. Bootstrap provides a typographic theme for doing block 
quotes, so just create a <blockquote> tag. Inside it, create a <footer> tag to identify 
the source, and wrap the name in a <cite> tag, like this:

<div class="row">
  <div class="col-md-3">
    <img src="imgs/bs.png" class="img-responsive">
  </div>
  <div class="col-md-6">
    <blockquote>
      <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.  
Integer posuere erat a ante.</p>
      <footer>Testimonial from someone at <cite title="Source  
Title">Source Title</cite></footer>
    </blockquote>
  </div>
  <div class="col-md-3">
    <img src="imgs/packt.png" class="img-responsive">
  </div>
</div>

Moving on, we must advance to the fifth row. This row is here just to show the 
different ways in which we can apply typography and coding elements tags using 
Bootstrap. Let's go through each one to describe its usage.

In the first column, we have a piece of inline code. To do that, wrap the snippet in 
a <code> tag. From the first to the fourth column of this row, we are presenting the 
alignment classes. Using these, you can easily realign text content in a paragraph tag. 
The code for the row is as follows:

<div class="row">
  <div class="col-md-3">
    <p class="text-left"><code>&lt;Left&gt;</code></p>
  </div>
  <div class="col-md-3">
    <p class="text-center">Center</p>
  </div>
  <div class="col-md-3">
    <p class="text-justify">Jusitfy</p>



Chapter 2

[ 33 ]

  </div>
  <div class="col-md-3">
    <p class="text-right">Right</p>
  </div>
</div>

Just use the right classes for a proper alignment. The result in the browser should 
look like this:

The sixth row is composed of four equally divided columns, but in this case, we 
are using the nesting rows option. On the first three columns, we added Bootstrap 
text transformation classes to make the text lowercase, uppercase, and capitalized, 
respectively. The code for this row should be like the following:

<div class="row">
  <div class="col-md-3">
    <h3>Lowercase</h3>
    <p class="text-lowercase">
      Lorem ipsum dolor ... consequat.
    </p>
  </div>
  <div class="col-md-6">
    <div class="row">
      <div class="col-md-6">
        <h3>Uppercase</h3>
        <p class="text-uppercase">
          Lorem ipsum dolor ... consequat.
        </p>
      </div>
      <div class="col-md-6">
        <h3>Capitalize</h3>
        <p class="text-capitalize">
          Lorem ipsum dolor ... consequat.
        </p>
      </div>
    </div>
  </div>
  <div class="col-md-3">
    <h3>Strong and italic</h3>
    <p>
      <strong>Lorem ipsum</strong> dolor ... <em>consequat</em>.
    </p>
  </div>
</div>



Creating a Solid Scaffolding

[ 34 ]

Pay attention to the last column, where we are using the <strong> tags to make the 
text bold and the <em> tag to make the text italic. Refresh your web browser and see 
the result, like this:

Alternative usage of bold and italic elements
You can use the <b> and <i> tags to make the text bold and italic, 
respectively. Although, in HTML5 the <b> tag is now used to 
stylistically offset, such keywords in paragraphs and the <i> tag are 
used for alternate voice markup.

Finally, we are going through the footer, which is the last row. If you take a look at 
the full layout image (the one presented at the beginning of this section), you will 
notice that it is composed of three columns. The first column contains a logo image, 
the middle one contains an inline list, and the last one has the company's contact 
address.

For the first column, we should just create an <img> tag with the .img-responsive 
class. For the second column, the inline list, we must create a <ul> tag. By default, 
every <li> inside a <ul> has the bullets on the left-hand side. To remove them, 
apply the .unstyled Bootstrap class. Also, a <ul> will create the <li> elements as 
a block. In our case, we want the <li> to appear side by side, so we use the .list-
inline Bootstrap class to create this effect.

To present contact information in the last column, we will use the <address> tag. 
Bootstrap offers a CSS theme for this tag; you just need to keep the formatting along 
with the <br> tags, as shown in this code:

<footer class="row jumbotron">
  <div class="col-md-2">
    <img src="imgs/logo.png" class="img-responsive">
  </div>
  <div class="col-md-7">
    <ul class="list-inline list-unstyled">
      <li><a href="#">Documentation</a></li>
      <li><a href="#">Packt publisher</a></li>
      <li><a href="#">Twitter</a></li>
      <li><a href="#">Bootstrap</a></li>



Chapter 2

[ 35 ]

      <li><a href="#">Contact</a></li>
    </ul>
  </div>
  <div class="col-md-3">
    <address>
      <strong>Name, Inc.</strong><br>
      Address line 1<br>
      Address line 2<br>
      <abbr title="Phone">P:</abbr> (123) 456-7890
    </address>
  </div>
</footer>

Pay attention to the <footer> tag. We added the .jumbotron class to make it 
rounded and give it a gray background. The following screenshot presents to us the 
result of the footer:

Manipulating tables
The Bootstrap framework offers a wide variety for table customization. To present 
them, we will create a new row before the <footer> and a price table for our landing 
page, like this:



Creating a Solid Scaffolding

[ 36 ]

To do this, we must create a regular table with the <table>, <thead>, <tbody>, <tr>, 
<th>, and <td> tags. The table will have three columns and eight rows. Therefore, 
the HTML code should be like this:

<div class="row">
  <div class="col-md-10 col-md-offset-1">
    <table>
      <thead>
        <tr>
          <th>
            <h4>Free plan</h4>
          </th>
          <th>
            <h4>Standard plan</h4>
          </th>
          <th>
            <h4>Premium plan</h4>
          </th>
        </tr>
      </thead>
      <tbody>
        <tr>
          <td>
            <h3>$ 0</h3>
          </td>
          <td>
            <h3>$ 99</h3>
          </td>
          <td>
            <h3>$ 999</h3>
          </td>
        </tr>
        <tr>
          <td>Lorem ipsum</td>
          <td>Lorem ipsum</td>
          <td>Lorem ipsum</td>
        </tr>
        <tr>
          <td>Lorem ipsum</td>
          <td>Lorem ipsum</td>
          <td>Lorem ipsum</td>
        </tr>
        <tr>
          <td>Dolor sit amet</td>



Chapter 2

[ 37 ]

          <td>Lorem ipsum</td>
          <td>Lorem ipsum</td>
        </tr>
        <tr>
          <td>-</td>
          <td>Dolor sit amet</td>
          <td>Lorem ipsum</td>
        </tr>
        <tr>
          <td>-</td>
          <td>-</td>
          <td>Lorem ipsum</td>
        </tr>
        <tr>
          <td><a href="#">Purchase</a></td>
          <td><a href="#">Purchase</a></td>
          <td><a href="#">Purchase</a></td>
        </tr>
      </tbody>
    </table>
  </div>
</div>

Right now, we have no secrets in our table. Let's start using CSS Bootstrap styles! 
First of all, add the .table class to the <table> tag (duh!). This seems redundant, 
but it's an option of the framework used to make it explicit.

Then, we will apply some specific styles. To make the rows striped, we add the 
.table-striped class to <table> as well. We want this table to have borders, so 
we add the .table-bordered class to make it like that. Last but not least, add the 
.table-hover class to enable hover state in the <tbody> rows.

Now we will move on to the <tr> tag inside <thead>. To make its background 
green, we add the .success class. Similar to buttons, every cell, row, or table in a 
<table> tag can receive color classes, officially called Bootstrap contextual classes.

Contextual classes follow the same colors meant for buttons. So, for the second 
column, we apply the .info class to get a cyan background color, and we use a 
.danger class to get a red background color in the last column.

The framework also offers the .active class, which offers the same color 
of hover and the .warning class, which offers a yellow color.



Creating a Solid Scaffolding

[ 38 ]

Inside each <th> tag, we have an <h4> typography tag. If you take a look at the 
image showing how the table should look, you will notice that the heading texts are 
in the center. You may remember how to do that; just apply the .text-center class 
in the headings.

The themed <thead> tag will be like this:

<thead>
  <tr>
    <th class="success">
      <h4 class="text-center">Free plan</h4>
    </th>
    <th class="info">
      <h4 class="text-center">Standard plan</h4>
    </th>
    <th class="danger">
      <h4 class="text-center">Premium plan</h4>
    </th>
  </tr>
</thead>

Now we will move on to the first table row in <tbody>, which is the price row. We 
just need to center <h4> in the same way as we did in the <thead> row—by adding 
the .text-center class:

<h3 class="text-center">$ 0</h3>

The next five rows have no specific style, but the last one has buttons and some tricks!

Styling the buttons
Do you remember how to apply the color theme in the buttons? You just need 
to follow the <thead> column color style, prepending .btn-* in the Bootstrap 
contextual classes. For instance, the first one will have the .btn-success class to 
turn a green button.

Furthermore, the button must fill the full width of the cell. To make the button span 
the complete parent width, add the .btn-block class and the magic is completely 
done! The code for the last row is as follows:

<tr>
  <td><a href="#" class="btn btn-success btn-block">Purchase</a></td>
  <td><a href="#" class="btn btn-info btn-block">Purchase</a></td>
  <td><a href="#" class="btn btn-danger btn-block">Purchase</a></td>
</tr>



Chapter 2

[ 39 ]

Like a boss!
Right now, we have finished the first version of our landing page! It should look like 
what is shown in the next screenshot. Note that we did it without a single line of 
custom CSS!:



Creating a Solid Scaffolding

[ 40 ]

This is the power of Bootstrap. Can you feel it? You can do beautiful things very 
quickly. Bootstrap is a must-have tool for prototyping!

Change the viewport of your page by resizing the window and you will see how 
nicely Bootstrap adapts to any resolution. You don't have to worry about it if you 
have done a great job at making the grid and placing the elements.

Final thoughts
Before ending this chapter, we must get some things clear. Bootstrap offers some 
helper classes mixins and some vendor's mixins, which offer cross-browser 
compatibility support.

Box-sizing
Bootstrap 3 started using box-sizing: border-box for all elements and pseudo-
elements. With this enabled, the width and height properties start to include the 
padding and the border but not the margin.

With that, it is easier to set the right sizing for your elements. This is because any 
change that you make in the element, such as customizing the padding of a .row, 
will reflect the width and height of the whole element. The following figure shows 
you the differences of box-sizing.



Chapter 2

[ 41 ]

Pseudo-elements are the text placed after the : sign in the CSS style. They 
are used to style specific parts of elements, such as :after and :before, 
which are the most common pseudo-elements.

Quick floats
Bootstrap offers quick classes to make an element float. Add the .pull-left or 
.pull-right class to make the elements float left or right, respectively. Keep in 
mind that both classes apply the !important modifier to avoid override issues:

<div class="pull-left"></div>
<div class="pull-right"></div>

In the next chapters, we will present the navbar components. Remember 
that if you want to align an element inside a navbar, you should use 
.navbar-left and .navbar-right instead of .pull-left and 
.pull-right.

Clearfix
Clearfix is a way of clearing the floating of an element related to its child element. 
The Bootstrap columns are all floated left, and the parent row has a clearfix. This 
makes every column appear right next to each other, and the row does not overlap 
with other rows. This figure exemplifies how clearfix works:

So, if you want to add the clearfix to a new element or pseudo-element, add the 
.clearfix class and you can get the hard work quickly done.



Creating a Solid Scaffolding

[ 42 ]

Font definitions for typography
In the following table, the font sizes for default text and heading are presented. It 
describes the heading, font family, and line height. It is important to make it explicit 
for you to deeply understand the Bootstrap default configuration if you want a 
different customization.

CSS option Default value
font-family "Helvetica Neue", Helvetica, Arial, and sans-serif
line-height 1.42857143 (almost 20 px)
font-size 14 px (0.875 em)
h1 font-size 36 px (2.25 em)
h2 font-size 30 px (1.875 em)
h3 font-size 24 px (1.5 em)
h4 font-size 18 px (1.125 em)
h5 font-size 14 px (0.875 em)
h6 font-size 12 px (0.75 em)
Heading line-
height

16 px (1 em)

Summary
In this chapter, we started our example of creating a landing page. By now, we can 
create a beautiful page without a single line of CSS or JavaScript!

First, we were able to reveal the secrets behind Bootstrap's scaffolding and 
understand its proper usage. You learned how to set rows inside a container, 
columns inside rows, and settings classes for a specific viewport. We played some 
tricks on columns as well, making nested rows, offsetting columns, and using 
multiple containers.

The basis of scaffolding will be important throughout the book, and it is in fact 
the basis of the Bootstrap framework. The power to manipulate it is a key factor in 
understanding the framework. I advise you to try out some new combinations of 
rows in your landing page and see what happens. Further in this book, we will show 
you some other grid combinations and custom layouts.



Chapter 2

[ 43 ]

Furthermore, we played with buttons, which is another key factor in Bootstrap. We 
presented some of the basis of button configurations and customizations. During the 
rest of this book, some more options will be presented in many different ways, but 
respecting the basis that you have just learned.

Tables are also a very common element in web pages, and Bootstrap offers a wide 
variety of customizations for them. We showed an example with all the main table 
features that you can for sure use in your daily tasks.

Finally, we saw some tricks of the framework. As I already said, you must 
understand the roots of Bootstrap to understand the magic. In an easy way, 
Bootstrap offers helpers to make our work as fast as it can get.

In the next chapter, we will dive into mobile-first development and different 
viewport configurations, making our landing page best fit for any device. We will 
also show a nice way to debug our page for any virtual devices.





[ 45 ]

Yes, You Should  
Go Mobile First

You should be asking yourself, "I thought that we should first do the layout in 
mobile and then go to the desktop version. Why are we in the opposing way?"

Sorry, you are right! We should always go mobile-first. We went the opposite 
direction just for learning purposes and now we are going to fix it.

In the current chapter, we will focus on mobile design and site responsiveness with 
the help of the Bootstrap framework by learning how to change the page layout for 
different viewport, changing the content, and more. The key points of the chapter are 
as follows:

• Mobile-first development
• Debugging for any device
• Bootstrap grid system for different resolutions

To figure out what, we will continue with the landing page that we developed in the 
last chapter.

Making it greater
Maybe you have asked yourself (or even searched for) the reason for the mobile-
first paradigm trend. It is simple and makes complete sense for speeding up your 
development.



Yes, You Should Go Mobile First

[ 46 ]

The main argument for the mobile-first paradigm is that it is easier to make it than to 
shrink it. In other words, if you make a desktop version of the web page (known as 
responsive design or mobile last) first and then adjust the website for mobile, it has a 
99 percent probability of breaking the layout at some point and you will have to fix a 
lot of things.

On the other hand, if you create the mobile version first, naturally the website will 
use (or show) less content than the desktop version. So, it will be easier to just add 
the content, place the things in the right places, and create the fully responsiveness 
stack.

The following figure tries to illustrate this concept. Going mobile last, you will get 
a degraded, sharped, and crappy layout and you will get a progressively enhanced, 
future-friendly, awesome web page if you go mobile first. The following figure tries 
to illustrate the design flow of each paradigm. You can see what happens to the poor 
elephant… Mobile-first naturally grows the elephant instead of adjusting it:



Chapter 3

[ 47 ]

Bootstrap and the mobile-first design
In the beginning of Bootstrap, there was no concept of mobile-first. It was first used 
for responsive design web pages. With the Version 3 of the framework, the concept 
of mobile-first became very solid in the community.

The whole code of the scaffolding system was rewritten to become mobile-first from 
the start. They decided to reformulate how to set the grid instead of just adding 
mobile styles. This made a great impact in compatibility between versions older than 
v3, but was crucial for making the framework even more popular.

As we saw in the first chapter, to ensure the proper rendering of the page, set the 
correct viewport at the <head> tag:

<meta name="viewport" content="width=device-width, initial-scale=1">

How to debug different viewports at the 
browser
Let's see how to debug different viewports using the Google Chrome web browser. 
Even if you already know that you can skip this section, it is important to refresh the 
steps for doing that.

First of all, open the current landing page project that we will continue working with 
in this chapter in the Google Chrome browser. In the page, you need to select the 
Developer tools option. There are many ways to open this menu:

• Right-click at any place on the page and click on the last option  
Element inspector

• Go to the setting (the sandwich button at the top-right of the address bar), 
click on More tools, and select Developer tools

• The shortcut to open it is Ctrl + Shift + I (cmd for OS X users)
• F12 in Windows also works (this is an Internet Explorer legacy)



Yes, You Should Go Mobile First

[ 48 ]

In the Developer tools, click in the mobile phone on the left of a magnifier, as shown 
in the following screenshot:

It will change the display of the viewport to a certain device and you can also set a 
specific network usage to limit the data bandwidth. Chrome will show a message 
telling you that for properly visualization you may need to reload the page to get the 
correct rendering.

As shown in the next screenshot, we have activated the Device mode for an iPhone 
5 device. When we set this viewport, problems started appearing because we did not 
make the landing page with mobile-first methodology.



Chapter 3

[ 49 ]

 

The first problem is in the second row of our layout. See how Ctrl + D breaks to a 
new line. That is not supposed to happen.

Another problem is that we have a horizontal scroll for this device due to some 
unknown reason. That sucks! We will have more work than with the opposite 
direction that starts with the mobile page. Keep it as a lesson for not repeating the 
same mistake.

Now, we can debug our website in different devices with different resolutions. You 
may see that the mouse cursor has changed to a gray circle. Also, the click actions 
have changed to tap actions. With that, you can fully test the website without the 
physical device.

Let's first clean out the messy parts in the layout before playing some tricks with the 
mobile version.



Yes, You Should Go Mobile First

[ 50 ]

Cleaning up the mess
First, we will stop the line from breaking in the Ctrl + D text in the second row of our 
design. For fixing this issue, we will create our first line of CSS code. Add the <head> 
tag to a custom CSS file. Remember to place it below the bootstrap.css import line:

<link rel="stylesheet" href="css/base.css">

In the base.css file, create a helper class rule for .nowrap:

.nowrap {
    white-space: nowrap;
}

In the HTML file, add the created class to the <kbd> element (line 43):

<kbd class="nowrap"><kbd>ctrl</kbd> + <kbd>d</kbd></kbd>

Reload the page and you'll see that one problem is solved. Now, let's fix the 
horizontal scroll. Can you figure out what is making the unintended horizontal 
scroll? A tip, the problem is in the table!

What is the meaning of the white-space CSS property?
The white-space property specifies how whitespace is handled inside 
an element. The default is normal, where the line breaks will occur 
when needed. nowrap will prevent line break by creating a new line 
and pre will only wrap on line breaks.

The problem is caused by the buttons with the display block that make the content 
of each column larger than intended. To fix this, we will create our first CSS media 
query:

@media (max-width: 48em) {
    table .btn {
        font-size: 0.75rem;
        font-size: 3.5vw;
    }
}

Breaking down each line, first we see the current media query. The rule is that for 
max-width of 48em (defined in Bootstrap as small devices), apply the following rules. 
If the view port is greater than 48em, the rule will not be applied.



Chapter 3

[ 51 ]

For the .btn elements inside the table element, we changed the font size (this was 
causing the horizontal overflow). We used a new way to set the font size based on 
the viewport with the 3.5vw value. Each 1vw corresponds to 1 percent of the total 
viewport. If we change the viewport, we will change the font size dynamically 
without breaking the layout.

Since it is a new property, nowadays just Chrome 20-34 and Safari 6 or higher have this 
rendering feature. For this reason, we added the other line with font-size: 0.75rem 
as a fallback case. If the browser can't handle the viewport font size, it will already had 
decreased the font to 12px, which is a font that does not break the layout.

Creating the landing page for different 
devices
Now that we have fixed everything and learned some things about media queries and 
CSS3 properties, let's play with our layout and change it a bit for different devices. We 
will be starting with mobile and go further until we reach large desktops.

To do so, we must apply the column class for the specific viewport, as we did for 
medium displays using the .col-md-* class. The following table was presented in 
the previous chapter to show the different classes and the resolutions applicable for 
specific classes:

Extra small 
devices 
(phones < 
544px / 34em)

Small devices 
(tablets ≥ 
544px / 34em 
and < 768px / 
48em)

Medium 
devices 
(desktops ≥ 
768px /48em < 
900px / 62em)

Large devices 
(desktops ≥ 
900px / 62em < 
1200px 75em)

Extra-large 
devices 
(Desktops 
≥ 1200px / 
75em) 

Grid 
behavior

Horizontal 
lines at all 
times

Collapse at start and fit column grid

Container 
fixed 
width

Auto 544px or 
34rem

750px or 
45rem

970px or 
60rem

1170px or 
72.25rem

Class 
prefix .col-xs-* .col-sm-* .col-md-* .col-lg-*

.col-
xl-*

Number of 
columns 12 columns

Column 
fixed 
width

Auto ~ 44px or 
2.75rem

~ 62px or 
3.86rem

~ 81px or 
5.06rem

~ 97px or 
6.06rem



Yes, You Should Go Mobile First

[ 52 ]

Mobile and extra small devices
To adapt our landing page to mobile devices, we will be using the Chrome mobile 
debug tool with the device iPhone 5 set and no network throttling.

You might have noticed that for small devices, Bootstrap just stacks each column 
without the referring for different rows. Some of our rows seem fine in this new 
grid, like the header and the second one. In the third row, it is a bit strange that the 
portion of code and the image are not in the same line, as shown in the following 
screenshot:



Chapter 3

[ 53 ]

For doing that, we need to add the class columns prefix for extra small devices, 
which is .col-xs-*, where * is the size of the row from 1 to 12. Add the class .col-
xs-5 and .col-xs-7 for the columns of the respective row (near line 49). Refresh the 
page and you will see now how the columns are side-by-side. The code is as follows:

<div class="row">
  <!-- row 3 -->
  <div class="col-md-3 col-xs-5">
    <pre>&lt;p&gt;I love programming!&lt;/p&gt;
&lt;p&gt;This paragraph is on my landing page&lt;/p&gt;
&lt;br/&gt;
&lt;br/&gt;
&lt;p&gt;Bootstrap by example&lt;/p&gt;
    </pre>
  </div>
  <div class="col-md-9 col-xs-7">
    <img src="imgs/center.png" class="img-responsive">
  </div>
</div>

Although the image of the web browser is too small on the right, it would be better 
if it was a more vertical stretched image, such a mobile phone (what a coincidence!). 
To make it, we need to hide the browser image in extra small devices and display an 
image of a mobile device. Add the new mobile image below the old one, as shown in 
the code:

<img src="imgs/mobile.png" class="img-responsive">

You will see both images stacked up vertically in the right column. Then, we need 
to use a new concept of availability classes. We need to hide the browser image and 
display the mobile image just for this kind of viewport, which is extra small. For that, 
add the class .hidden-xs in the browser image and add the class .visible-xs in 
the mobile image:

<div class="row">
  <!-- row 3 -->
  <div class="col-md-3 col-xs-5">
    <pre>&lt;p&gt;I love programming!&lt;/p&gt;
&lt;p&gt;This paragraph is on my landing page&lt;/p&gt;
&lt;br/&gt;
&lt;br/&gt;
&lt;p&gt;Bootstrap by example&lt;/p&gt;
    </pre>



Yes, You Should Go Mobile First

[ 54 ]

  </div>
  <div class="col-md-9 col-xs-7">
    <img src="imgs/center.png" class="img-responsive hidden-xs">
    <img src="imgs/mobile.png" class="img-responsive visible-xs">
  </div>
</div>

Now this row seems nice! The browser image was hidden in extra small devices 
and the mobile image is shown only for this viewport in question. The following 
screenshot shows the final display of this row:



Chapter 3

[ 55 ]

Moving on to the next row, the fourth one, it is the testimonial row surrounded by 
two images. It would be nicer if the testimonial appeared first and both of the images 
were displayed after it, splitting the same row. For this, we will repeat almost the 
same techniques presented in the previous row. Let's do it again for practice.

The first change is to hide the Bootstrap image with the class .hidden-xs. After that, 
create another image tag with the Bootstrap image in the same column of the PACKT 
image. The final code of the row should be like this:

<div class="row">
  <!-- row 4 -->
  <div class="col-md-3 hidden-xs">
    <img src="imgs/bs.png" class="img-responsive">
  </div>
  <div class="col-md-6 col-xs-offset-1 col-xs-11">
    <blockquote>
      <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.  
Integer posuere erat a ante.</p>
      <footer>Testimonial from someone at <cite title="Source  
Title">Source Title</cite></footer>
    </blockquote>
  </div>
  <div class="col-md-3 col-xs-7">
    <img src="imgs/packt.png" class="img-responsive">
  </div>
  <div class="col-xs-5 visible-xs">
    <img src="imgs/bs.png" class="img-responsive">
  </div>
</div>

We made plenty of things now and they are highlighted in bold. First is the 
.hidden-xs in the first column of Bootstrap image, which hid the column for this 
viewport.

Afterwards, in the testimonial, we changed the grid for mobile, adding a column 
offset with size 1 and making the testimonial fill the rest of the row with the class 
.col-xs-11.

Finally, as we said, we want to split in the same row both images from PACKT and 
Bootstrap. For that, make the first image column fill seven columns with the class 
.col-xs-7.

The other image column is a little more complicated. Since it is just visible for mobile 
devices, we add the class .col-xs-5. This will make the element span five columns 
in extra small devices. Moreover, we hide the column for other viewports with the 
class .visible-xs.



Yes, You Should Go Mobile First

[ 56 ]

As we can see, this row has more than 12 columns (1 offset, 11 testimonial, 7 PACKT 
image, 5 Bootstrap image). This process is called column wrapping, and it happens 
when you put more than 12 columns in the same row so the groups of extra columns 
will wrap to the next lines.

Availability classes
Just like the .hidden-*, there are the .visible-*-* classes for 
each variation of display and column from 1 to 12. There is also a way 
to change the display CSS property using the class .visible-*-*, 
where the last * means block, inline, or inline-block. Use this to set the 
properly visualization for different visualizations.

The following screenshot shows the result of the changes. As you can see, we made 
the testimonial appears first, with one column of offset and both images appearing 
below it:



Chapter 3

[ 57 ]

Tablets and small devices
After completing the mobile visualizations, let's go further to tablets and small 
devices, which are devices from 48em to 62em. Most of this these devices are tablets 
or old desktop monitors. For this example, we are using the iPad Mini in the portrait 
position with a resolution of 768 x 1024 pixels.

For this resolution, Bootstrap handles the rows just like extra small devices by just 
stacking up each one of the columns, making them fill the total width of the page. So 
if we do not want that to happen, we have to manually set the column fill for each 
element with the class .col-sm-*.

If you see how our example is presented now, there are two main problems. The first 
one is the second row, where the headings are in separated lines when they could be 
in the same. So, we just need to apply the grid classes for small devices with the class 
.col-sm-6 for each column, splitting them into equal sizes:

<div class="row">
  <div class="col-md-offset-4 col-md-4 col-sm-6">
    <h3>
      Some text with <small>secondary text</small>
    </h3>
  </div>
  <div class="col-md-4 col-sm-6">
    <h3>
      Add to your favorites
      <small>
        <kbd class="nowrap"><kbd>ctrl</kbd> + <kbd>d</kbd></kbd>
      </small>
    </h3>
  </div>
</div>

The result should be as shown in the following screenshot:



Yes, You Should Go Mobile First

[ 58 ]

The second problem in this viewport is again the testimonial row! Because of the 
classes that we have added for mobile viewport, now the testimonial has an offset 
column and different column span. We must add the classes for small devices and 
make this row with the Bootstrap image on the left, the testimonial in the middle, 
and the PACKT image at the right position:

<div class="row">
  <div class="col-md-3 hidden-xs col-sm-3">
    <img src="imgs/bs.png" class="img-responsive">
  </div>
  <div class="col-md-6 col-xs-offset-1 col-xs-11 col-sm-6 col-sm-
offset-0">
    <blockquote>
      <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.  
Integer posuere erat a ante.</p>
      <footer>Testimonial from someone at <cite title="Source 
Title">Source Title</cite></footer>
    </blockquote>
  </div>
  <div class="col-md-3 col-xs-7 col-sm-3">
    <img src="imgs/packt.png" class="img-responsive">
  </div>
  <div class="col-xs-5 hidden-sm hidden-md hidden-lg">
    <img src="imgs/bs.png" class="img-responsive">
  </div>
</div>

As you can see, we had to reset the column offset in the testimonial column. It 
happened because it kept the offset that we added for extra small devices. Moreover, 
we are just ensuring that the images columns had to fill just three columns. Here's 
the result:



Chapter 3

[ 59 ]

Everything else seems fine! These viewport was easier to setup. See how Bootstrap 
helps us a lot? Let's move to the final viewport: desktop or large devices.

Desktop and large devices
Last but not least, we enter the grid layout for desktop and large devices. We 
skipped medium devices, because we first coded for that viewport.

Deactivate the device mode in Chrome and put your page in a viewport with a width 
larger or equal to 1200 pixels or 75em.

The grid prefix that we will be using is .col-lg-*. If you take a look at the landing 
page, you will see that everything is well placed and we don't need to make changes! 
However, we would like to make some tweaks to make our layout fancier and learn 
some stuffs of Bootstrap grid.

We want to touch upon column ordering. It is possible to change the order of column 
in the same row by applying the classes .col-lg-push-* and .col-lg-pull-* 
(note that we are using the large devices prefix, but any other grid class prefix can be 
used).

The .col-lg-push-* means that the column will be pushed to the right by the * 
columns, where * is the number of columns pushed. On the other hand, .col-lg-
pull-* will pull the column in the left direction by *, where * is the number of 
columns as well. Let's test this trick in the second row by changing the order of the 
both columns:

<div class="row">
  <div class="col-md-offset-4 col-md-4 col-sm-6 col-lg-push-4">
    <h3>
      Some text with <small>secondary text</small>
    </h3>
  </div>
  <div class="col-md-4 col-sm-6 col-lg-pull-4">
    <h3>
      Add to your favorites
      <small>
        <kbd class="nowrap"><kbd>ctrl</kbd> + <kbd>d</kbd></kbd>
      </small>
    </h3>
  </div>
</div>



Yes, You Should Go Mobile First

[ 60 ]

We just added the class .col-lg-push-4 to the first column and .col-lg-pull-4 to 
the other one to get this result. By doing this, we changed the order of both columns 
in second row, as shown in the following screenshot:

Summary
We have completed another chapter. Here, we discussed why we should always 
go mobile-first if we want to make a web page for every viewport, from mobile to 
large desktop. Making things bigger is always easier and causes less issues, so start 
small with mobile devices and evolve the web page until it reaches large desktop 
resolutions.

We saw how to debug different devices using our browser and set the right classes 
for each viewport. We now have our example of landing page with full stack 
responsiveness, working well in any device.

We covered the grid options for various devices resolutions using the mobile-first 
methodology—starting with mobile and going further until the large desktop 
version.

The main lesson of this chapter was that we always should go mobile-first. We did 
not follow this approach at first and because of that, we faced some problems that we 
could have eliminated if we had started mobile-first.



Chapter 3

[ 61 ]

It was not mentioned before, but going mobile-first helps the whole team. The 
designer will have a bigger picture of what he or she needs to reach and what 
information is important from the beginning. The backend developer can focus on 
the main features and optimize them for mobile before moving on to the rest of the 
page content delivery. Mobile-first is also part of the development strategy.

At this point, we have our landing page fully set at all resolutions. Using Bootstrap, 
we took a shortcut towards responsivity, doing all the groundwork with a few lines 
of code in HTML and some more in CSS.

In the next chapter, we will apply some customizable styles to make the page a little 
less like a Bootstrap page. We will also see how to create landing pages for different 
uses by customizing the components.





[ 63 ]

Applying the Bootstrap Style
After making our landing page mobile-first and fully responsive for any device, it is 
time to go further into the Bootstrap framework, adding more and more components 
along with the style improvement.

This is the main objective of this chapter. We will take a step forward in terms 
of layout improvement, taking in regards the use of Bootstrap components. The 
chapter's key points are:

• Layout improvement
• Bootstrap forms
• Using images in Bootstrap
• Bootstrap helpers

By the end of this chapter, our landing page will almost be done, and you will be 
able to handle every HTML component customized by Bootstrap.

Changing our grid layout
First of all, the grid that we used for the current landing page is just a showcase of 
Bootstrap's potential and possibilities of customization. In this chapter, our objective 
is to make the grid fancier and more beautiful. To do this, we will change the grid to 
be like the one presented in the next figure.



Applying the Bootstrap Style

[ 64 ]

We will go a little faster this time, since you already know how to create the grid 
using Bootstrap. Also, we will go mobile-first, as we discussed in the last chapter, 
but the screenshots will be taken from larger viewports just to improve the 
understandability.



Chapter 4

[ 65 ]

Starting over the grid system
As you can see in the grid image, we split the grid into six parts. This time, each part 
will be a section that we will present step by step. If you are starting the example 
from scratch, don't forget to keep the boilerplate that we presented previously.

The header
So, we will start with the header. The code for representing the grid presented 
should be this one, to be placed right after the <body> tag:

<header>
  <div class="container">
    <!-- row 1 -->
    <div class="row">
      <a class="brand pull-left" href="#">Company name</a>
      <ul class="list-inline list-unstyled pull-right">
        <li><a href="#about">About</a></li>
        <li><a href="#features">Features</a></li>
        <li><a href="#pricing">Pricing</a></li>
        <li><a href="#contact">Contact</a></li>
      </ul>
    </div>
  </div>
</header>

As you can see, the <header> tag is wrapping all of our .container, making it 
similar to a section. Just for the note, to have the brand link placed on the left-hand 
side and the list on the right-hand side, we added the .pull-left and .pull-right 
classes to it, respectively. These are two Bootstrap helpers.

Now, let's modify our CSS to change the header style. Remember to import the 
custom CSS file at <header>:

<link rel="stylesheet" href="css/base.css">

For that part, we will change the background color and the alignment to a better 
placement of the link and list elements, so let's customize and override some styles 
from Bootstrap:

header {
  background-color: #F8F8F8;
}

header ul {



Applying the Bootstrap Style

[ 66 ]

  margin: 0;
}

header a,
header li {
  padding: 1.4rem 0;
  color: #777;
  font-weight: bold;
}

The header will look like what is shown in the following screenshot:

The introduction header
We have called the introduction header section 2 of our grid. In this section, we have a 
big name of the company followed by the tagline and some buttons. The code for this 
row should be as follows:

<section id="intro-header">
  <div class="container">
    <!-- row 2 -->
    <div class="row">
      <div class="wrap-headline">
        <h1 class="text-center">Company name</h1>
        <h2 class="text-center">Tagline message</h2>
        <hr>
        <ul class="list-inline list-unstyled text-center">
          <li>
            <a class="btn btn-default btn-lg" href="#"  
role="button">Sign in</a>
          </li>
          <li>
             <a class="btn btn-primary btn-lg" href="#"  
role="button">Sign up</a>
          </li>
        </ul>
      </div>
    </div>
  </div>
</section>



Chapter 4

[ 67 ]

So, we have wrapped the entire container in a section, just as we said we would. 
There is no secret here; we used <h1> for the company name and <h2> for the tagline. 
We placed the buttons in a centered list, just like the headlines, using the .text-
center helper class, and the buttons are all set as before.

We will place a big image as the background for the #intro-header section. To do 
this, we edit the CSS file as follows:

section#intro-header {
  background-image: url(../imgs/landscape.jpg);
  background-size: cover;
}

The background set as cover will do the trick for us to make the image cover full 
width, although the size of the section is too small right now. For that, we will use 
our .wrap-headline element to do the trick and make it bigger:

section#intro-header .wrap-headline {
  position: relative;
  padding-top: 20%;
  padding-bottom: 20%;
}

As you may notice, we let a 20% padding at the top and bottom relative to our 
current position. With this, the height of the section becomes responsive to any 
viewport.

Moving on, we add some more CSS rules just for formatting, as follows:

section#intro-header {
  background-image: url(../imgs/landscape.jpg);
  background-size: cover;
}

section#intro-header .wrap-headline {
  position: relative;
  padding-top: 20%;
  padding-bottom: 20%;
}

section#intro-header h1,
section#intro-header h2 {
  color: #FFF;
}



Applying the Bootstrap Style

[ 68 ]

section#intro-header h2 {
  font-size: 1.5rem;
}

section#intro-header hr {
  width: 10%;
}

section#intro-header .btn-default {
  background-color: rgba(255, 255, 255, 0.5);
  border: none;
}

The final output of those two sections should be like the one shown in the following 
screenshot. Pretty fancy, isn't it?



Chapter 4

[ 69 ]

The about section
So, for the about section, we will place a container that wraps all of the section as 
well. We will play with two rows equally divided, in which we will display an image 
and text alternated side by side. The code for this section should be as follows:

<section id="about">
  <div class="container">
    <!-- row 3 -->
    <div class="row">
      <div class="col-sm-6">
        <img src="imgs/mock_ipad.jpg" class="img-responsive">
      </div>
      <div class="col-sm-6">
        <h3>Lorem ipsum dolor sit amet</h3>
        <p>
          Lorem ipsum dolor...
        </p>
      </div>
    </div>
    <hr>

    <!-- row 4 -->
    <div class="row">
      <div class="col-sm-6">
        <h3>Lorem ipsum dolor sit amet</h3>
        <p>
          Lorem ipsum dolor...
        </p>
      </div>
      <div class="col-sm-6">
        <img src="imgs/mock_nexus.jpg" class="img-responsive">
      </div>
    </div>
  </div>
</section>

At this section, we just created two rows with two columns in each one. Since the 
columns are equally divided, they receive the .col-sm-6 class. We added the .img-
responsive class to the images to keep the ratio over the viewport and placed some 
text content on the image side of the column.



Applying the Bootstrap Style

[ 70 ]

For the CSS, we add some rules to increase the margin between the content and the 
top portion of the page:

section#about img {
  margin-top: 6.5rem;
  margin-bottom: 5rem;
}

section#about h3 {
  margin-top: 10rem;
}

The following screenshot shows the resultant output of this section. Check whether 
the result of your code is similar to the following screenshot, and then let's move on 
to the features section:



Chapter 4

[ 71 ]

The features section
The features section is composed of two lines of three columns, although we will 
create only one .row element and use the column wrapper technique. Do you 
remember it?

The column wrapper technique uses more than 12 parts of columns in a single row. 
The columns that overflow the .row will then be placed in the line below, creating 
the effect similar to having two .row elements:

<section id="features">
  <div class="container">

    <!-- row 5 -->
    <div class="row">
      <div class="col-sm-12">
        <h3 class="text-center">Features</h3>
        <p class="text-center">Features headline message</p>
      </div>
    </div>

    <!-- row 6 -->
    <div class="row">
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">Feature</div>
      </div>
      </div>
    </div>
  </div>
</section>



Applying the Bootstrap Style

[ 72 ]

In this section, we created two rows. The first one holds the title and headline of the 
section with the <h3> and <p> tags, respectively. The second row is just composed of 
six equal columns with the .col-sm-2 and .col-md-4 classes. The use of .col-sm-2 
will place the .feature elements in a single line when using a small viewport.

Now, edit the CSS, and let's change the text color and add some padding between 
the features columns list:

section#features {
  background-color: #eef2f5;
  border-top: 0.1rem solid #e9e9e9;
  border-bottom: 0.1rem solid #e9e9e9;
}

section#features * {
  color: #657C8E;
}

section#features .feature {
  padding-top: 2rem;
  padding-bottom: 4rem;
  text-align: center;
}

The following screenshot presents the final output for the features section. Then it is 
time for us to start modifying the price table. It should be easy since we have already 
done the groundwork for it.



Chapter 4

[ 73 ]

The price table section
For the price table section, we will use the same table from the Manipulating tables 
section in Chapter 2, Creating a Solid Scaffolding, but with a few modifications to make 
it prettier. We will make some small changes, as presented in the following code:

<section id="pricing">
  <div class="container">

    <!-- row 7 -->
    <div class="row">
      <div class="col-sm-12">
        <h3 class="text-center price-headline">Price table</h3>
      </div>
    </div>

    <!-- row 8 -->
    <div class="row">
      <div class="col-sm-10 col-sm-offset-1">
        <table class="table table-striped table-hover">
          <thead>
            <tr>
              <th class="success">
                <h4 class="text-center white-text">Free plan</h4>
              </th>
              <th class="info">
                <h4 class="text-center white-text">Standard  
plan</h4>
              </th>
              <th class="danger">
                <h4 class="text-center white-text">Premium  
plan</h4>
              </th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td class="success">
                <h3 class="text-center white-text">$ 0</h3>
              </td>
              <td class="info">
                <h3 class="text-center white-text">$ 99</h3>
              </td>



Applying the Bootstrap Style

[ 74 ]

              <td class="danger">
                <h3 class="text-center white-text">$ 999</h3>
              </td>
            </tr>
            <tr>
              <td>Lorem ipsum</td>
              <td>Lorem ipsum</td>
              <td>Lorem ipsum</td>
            </tr>
            <tr>
              <td>Lorem ipsum</td>
              <td>Lorem ipsum</td>
              <td>Lorem ipsum</td>
            </tr>
            <tr>
              <td>Dolor sit amet</td>
              <td>Lorem ipsum</td>
              <td>Lorem ipsum</td>
            </tr>
            <tr>
              <td>-</td>
              <td>Dolor sit amet</td>
              <td>Lorem ipsum</td>
            </tr>
            <tr>
              <td>-</td>
              <td>-</td>
              <td>Lorem ipsum</td>
            </tr>
            <tr>
              <td><a href="#" class="btn btn-success btn-
block">Purchase</a></td>
              <td><a href="#" class="btn btn-info btn-
block">Purchase</a></td>
              <td><a href="#" class="btn btn-danger btn-
block">Purchase</a></td>
            </tr>
          </tbody>
        </table>
      </div>
    </div>
  </div>
</section>



Chapter 4

[ 75 ]

The first change is that we added a header, <h3>, in this section in the first row. 
Furthermore, we added the .success, .info, and .danger classes to the first <tr> 
in <tbody> (they are highlighted in bold).

Also in <table>, we removed the .table-bordered class to take out the border 
from it. Finally, we changed some colors in the CSS file and created the .white-text 
class, which is highlighted in the code as well:

section#pricing h3.price-headline {
  margin-top: 5rem;
  margin-bottom: 3rem;
}

section#pricing .white-text {
  color: #FFF;
}

section#pricing thead .success {
  background-color: #78CFBF;
}

section#pricing thead .info {
  background-color: #3EC6E0;
}

section#pricing thead .danger {
  background-color: #E3536C;
}

section#pricing tbody .success {
  background-color: #82DACA;
}

section#pricing tbody .info {
  background-color: #53CFE9;
}

section#pricing tbody .danger {
  background-color: #EB6379;
}



Applying the Bootstrap Style

[ 76 ]

The following screenshot presents the result of the price table. Finally, to sum it up, 
we will advance to the footer, which contains the contact information:

The footer
For the footer, we will have five columns, the first one being the logo with a .col-
sm-2. This will be followed by three info columns, each one with a .col-sm-2 as 
well. The last column is the address column, with the .col-sm-4 class. The HTML 
code is as follows:

<footer>
  <div class="container">
    <div class="col-sm-2">
      <img src="imgs/logo.png" class="img-responsive">
    </div>
    <div class="col-sm-2">
      <h5>The company</h5>
      <ul class="list-unstyled">
        <li><a href="#">Documentation</a></li>
        <li><a href="#">Packt publisher</a></li>
        <li><a href="#">About us</a></li>
        <li><a href="#">Contact</a></li>
      </ul>
    </div>



Chapter 4

[ 77 ]

    <div class="col-sm-2">
      <h5>Social</h5>
      <ul class="list-unstyled">
        <li><a href="#">Facebook</a></li>
        <li><a href="#">Twitter</a></li>
        <li><a href="#">Blog</a></li>
      </ul>
    </div>
    <div class="col-sm-2">
      <h5>Support</h5>
      <ul class="list-unstyled">
        <li><a href="#">Contact</a></li>
        <li><a href="#">Privacy police</a></li>
        <li><a href="#">Terms & conditions</a></li>
        <li><a href="#">Help desk</a></li>
      </ul>
    </div>
    <div class="col-sm-4">
      <address>
        <strong>Name, Inc.</strong>
        Address line 1<br>
        Address line 2<br>
        <abbr title="Phone">P:</abbr> (123) 456-7890
      </address>
    </div>
  </div>
</footer>

Now, let's prettify the footer with some CSS rules:

footer {
  background-color: #191919;
  color: #ADADAD;
  margin-top: 3em;
}

footer h5,
footer img {
  margin-top: 5em;
  font-weight: bold;
}

footer address {
  margin-top: 5em;



Applying the Bootstrap Style

[ 78 ]

  margin-bottom: 5em;
  color: #5A5A5A;
}

footer ul {
  margin-bottom: 5em;
}

footer address strong {
  color: #ADADAD;
  display: block;
  padding-bottom: 0.62em;
}

footer a {
  font-weight: 300;
  color: #5A5A5A;
}

footer a:hover {
  text-decoration: none;
  color: #FFF;
}

So, we basically changed the background to a shaded one, added some margins to 
make the footer larger, and modified the links' colors. And we are done with the new 
layout! See in the following screenshot how the final layout for the footer looks:

Resize the viewport and you will see how the page correctly adapts to any kind 
of resolution. So we have made the page again, this time with the mobile-first 
perspective in mind, adding more content and using Bootstrap as our backup. Nicely 
done!



Chapter 4

[ 79 ]

Forming the forms
The Web would not be the same without forms. They are one of the major methods 
of interacting with a web page and sending data to consolidate. Since the beginning 
of the Web, the style and rendering of forms were a source of trouble, because they 
were displayed differently for each browser and there were placement problems.

This is one of the reasons Bootstrap appeared to make all web pages follow the same 
rendering pattern for any browser and device. For forms, this is no different. There 
are styles for almost every kind of element. We will start talking about forms in this 
section, although we will keep discussing them in later chapters as well, since they 
are an important element in frontend web development.

Newsletter form
To start easy, we will use an inline form in our landing page. Let's add a new row 
between the price table row and the footer with the following HTML code:

<section id="newsletter" class="text-center">
  <h4>Stay connected with us. Join the newsletter to receive fresh  
info.</h4>
  <form class="form-inline" method="POST">
    <div class="form-group">
      <input class="form-control" placeholder="You name">
    </div>
    <div class="form-group">
      <input class="form-control" placeholder="Your email">
    </div>
    <button type="submit" class="btn btn-primary">Join  
now!</button>
  </form>
</section>

OK, we're starting to break down every part of the code. The first part—we just 
created a new <section> and centralized it using the .text-center class from the 
Bootstrap helpers.

The first form type that you will learn about is .form-inline, which simply 
makes all the controls inside it the inline-block kind. Because of that, we are able 
to centralize the form using the .text-center helper. Also, this form will make 
the controls inline until the small viewport, when it changes the controls to become 
blocks, each one filling one line.



Applying the Bootstrap Style

[ 80 ]

Inside .form-inline, we have two div.form-group. Every element inside a <form> 
that contains the .form-group class will automatically be displayed as a block 
element. In almost every form element, we will have a .form-group, since it is an 
important wrapper for labels and controls for the purpose of optimizing spacing in 
Bootstrap.

In our case, since we set the form to be the inline kind (because of the .form-inline 
class), the .form-group elements will be inline elements as well.

The two <input> are not magical; just place it in your code as shown. The same 
applies to the button, by using the .btn-primary class to make it blue.

The CSS for this section is quite simple. We have just made some tweaks for better 
rendering:

section#newsletter {
  border-top: 1px solid #E0E0E0;
  padding-top: 3.2em;
  margin-top: 2em;
}

section#newsletter h4 {
  padding: 1em;
}

section#newsletter form {
  padding: 1em;
  margin-top: 2em;
  margin-bottom: 5.5em;
}

Our first form is complete! The following screenshot shows the final output of the 
form:



Chapter 4

[ 81 ]

This one was the simplest form. Now let's crack some other forms to nail it in 
Bootstrap.

Contact form
To make a contact form, we need to create another HTML file. Name it contact.
html and use the same header and footer that you used earlier in the landing page. 
The final output is shown in the next image. Let's break down each part of the form 
to achieve the final result:

First of all, we need to create the grid for this form. As you can see, the form is in the 
center of the page, so to do that, create this HTML code:

<section id="contact" class="container">
  <div class="row">
    <div class="col-sm-offset-2 col-sm-8">
          …
    </div>
  </div>
</section>

We just created the grid for this container. Inside this column, we need to create a 
<form> element with the following code:

<form class="form-horizontal">
  <div class="form-group">



Applying the Bootstrap Style

[ 82 ]

    <label class="col-sm-2 control-label" for="contact-name">Name</
label>
    <div class="col-sm-10">
      <input class="form-control" type="text" id="contact-name"  
placeholder="Full name">
    </div>
  </div>
  <div class="form-group">
    <label class="col-sm-2 control-label" for="contact-email">Email</
label>
    <div class="col-sm-10">
      <input class="form-control" type="text" id="contact-email"  
placeholder="Contact email">
    </div>
  </div>
  <div class="form-group">
    <label class="col-sm-2 control-label" for="contact-
email">Message</label>
    <div class="col-sm-10">
      <textarea class="form-control" rows="3" placeholder="Type  
your message"></textarea>
    </div>
  </div>
  <div class="form-group">
    <div class="col-sm-offset-2 col-sm-10">
      <label class="checkbox">
        <input type="checkbox" value="">
        I want to subscribe to receive updates from the company.
      </label>
    </div>
  </div>
  <div class="form-group">
    <div class="col-sm-offset-2 col-sm-10">
      <button class="btn btn-success btn-lg"  
type="submit">Submit</button>
    </div>
  </div>
</form>

At first sight, it looks like a common form, with two input fields, a text area, a 
checkbox, and a submit button. The .form-horizontal class is responsible for 
aligning the labels and the inputs side by side horizontally. Note that we are using 
the .col-sm-* grid classes in both labels and inputs in a grid of 12 parts inside 
.form-group, just like the column nesting technique.



Chapter 4

[ 83 ]

In the .form-group checkbox, we created a <div> with an offset of 2 to fill the part 
that is not needed in this case. Note that we are able to use the same grid classes to 
acquire the same results inside forms. To place the Bootstrap theme in the checkbox, 
just add the .checkbox class to the label wrapping the input.

We don't need much CSS in this section; just add some padding to give some space 
to the form:

section#contact form {
  padding-top: 9rem;
  padding-bottom: 3rem;
}

Let's start with some JavaScript
It's time to start playing with some JavaScript! Create a file named main.js inside 
the js folder, which also contains the Bootstrap JavaScript file and jQuery library. To 
do the groundwork in the JavaScript file, we need to load it after document is ready:

$(document).ready(function() {
    // document ready, place you code
});

Then, we will validate the form before sending it. To do that, attach an event handler 
to the form submission, like this:

$(document).ready(function() {
    $('#contact form').on('submit', function(e) {
        e.preventDefault();
    });
});

You may know this, but the e.preventDefault() code line is a method that 
prevents the default action from being triggered, the form submission in this case.

Moving on, we create the variables that we will use and the validation code:

$(document).ready(function() {
    $('#contact form').on('submit', function(e) {
        e.preventDefault();
        var $form = $(e.currentTarget),
            $email = $form.find('#contact-email'),
            $button = $form.find('button[type=submit]');
        
        if($email.val().indexOf('@') == -1) {
            vaca = $email.closest('form-group')



Applying the Bootstrap Style

[ 84 ]

            $email.closest('.form-group').addClass('has-error');
        } else {
            $form.find('.form-group').addClass('has-success').
removeClass('has-error');
            $button.attr('disabled', 'disabled');
            $button.after('<span>Message sent. We will contact you  
soon.</span>');
        }
    });
});

So, we first created our variables for the form, the email field, and the button 
element. After that, we performed a naïve validation on the email field, where if 
the @ character is present in the field, it is valid. If it is not present, we add the .has-
error class to the parent .form-group of the field. It will produce the elements 
inside the form group in red, as presented in the following screenshot:

Load the JavaScript file in the HTML of contact.html just below where bootstrap.
js loads:

<script src="js/bootstrap.js"></script>
<script src="js/main.js"></script>

If the @ sign is present in the field, we simply pass the validation by fake-sending it. 
When this happens, we add the .has-success class to each .form-group, making 
them green. We also add the attribute disabled to the button, changing its behavior 
and theme as Bootstrap does it.



Chapter 4

[ 85 ]

Finally, we add after the button a simple feedback message for the user, saying that 
the contact message was sent. The following screenshot shows the case where the 
contact message is successfully sent:

The sign-in form
Now that you have learned some more form styles in the contact file, we will play 
with another kind of form: the sign-in form.

Go back to the landing page HTML file, and in the sign in .btn located inside the 
introduction header, add the #sign-btn identifier:

<a id="sign-btn" class="btn btn-default btn-lg" href="#"  
role="button">Sign in</a>

After the <ul> that wraps the sign buttons, place the sign-in form code:

<form id="signin" class="form-inline text-center hidden-element">
  <div class="form-group">
    <div class="input-group">
      <div class="input-group-addon">@</div>
      <input type="text" class="form-control" id="signin-email"  
placeholder="Email">
    </div>
  </div>
  <div class="form-group">
    <div class="input-group">
      <div class="input-group-addon">*</div>



Applying the Bootstrap Style

[ 86 ]

      <input type="password" class="form-control" id="signin-password" 
placeholder="Password">
    </div>
  </div>
  <button type="submit" class="btn btn-default">Sign in</button>
</form>

The result should be like what is shown in the following screenshot, where the new 
form appears after the buttons:

Before moving on to fixing the layout, let's explain .input-group. Bootstrap offers 
this option to prepend or append things to an input using .input-group-addon. In 
this case, we prepend @ and * to each input. We could also have appended this to the 
inputs by placing .input-group-addon after the input instead of before.

For the CSS, we just added the .hidden-element rule. We could not use the 
.hidden Bootstrap helper because it applies the !important option, and we would 
not have been able to make it visible again without removing the class:

.hidden-element {
  display: none;
}



Chapter 4

[ 87 ]

Let's animate it a little! Go to the JavaScript file and add the event listener to the click 
on the sign-in button:

$(document).ready(function() {
    … // rest of the JavaScript code
    $('#sign-btn').on('click', function(e) {
        $(e.currentTarget).closest('ul').hide();
        $('form#signin').fadeIn('fast');
    });
});

By doing this, we hide the <ul> element that contains the sign buttons and show 
the sign in form. That was just the cherry on our pie, and we are done with forms 
by now! Refresh the web page in the browser, click on the Sign in button, and see 
the new form appearing. Moving forward, we will use some images and see how 
Bootstrap can help us with that.

Images
For images, Bootstrap offers some classes to make your day better. We have already 
discussed the use of the .img-responsive class, on which the image becomes 
scalable by setting max-width: 100% and height: auto.

The framework also offers three convenient classes to style your image. To make use 
of that, place the following code after the price table in the landing:

<section id="team">
  <div class="container">
    <div class="row">
     <div class="col-sm-12">
        <ul class="list-inline list-unstyled text-center">
          <li>
            <img src="imgs/jon.png" class="img-rounded">
            <h5>Jonny Doo</h5>
            <p>CEO</p>
          </li>
          <li>
            <img src="imgs/jon.png" class="img-circle">
            <h5>Jonny Doo</h5>
            <p>CTO</p>
          </li>
          <li>



Applying the Bootstrap Style

[ 88 ]

            <img src="imgs/jon.png" class="img-thumbnail">
            <h5>Jonny Doo</h5>
            <p>CIO</p>
          </li>
        </ul>
      </div>
    </div>
</section>

As you can notice, we simply created another container and row with a single 
column, .col-sm-12. Inside the column, we added an inline list with the elements, 
each one having one image with a different class. The .img-rounded class makes 
the corners rounded, .img-circle turns the image into a circular shape, and .img-
thumbnail adds a nice rounded border to the image, like this:

The preceding screenshot shows how this section is displayed. We also had to add 
some CSS code to increase margins and paddings, along with font customization:

section#team ul {
  margin: 5rem 0;
}

section#team li {
  margin: 0 5rem;
}

section#team h5 {
  font-size: 1.5rem;
  font-weight: bold;
}



Chapter 4

[ 89 ]

So, it's nice to have a backup of Bootstrap, even with the images, making our work 
easier and pacing up the development. By the way, Bootstraps offers tons of helpers 
with the same objective. We have already used some of them; now let's use even 
more.

Helpers
Helpers are Bootstrap classes that help us achieve certain customizations. They are 
planned to offer a single purpose and reduce CSS frequency of repeated rules. The 
goal is always the same: increase the pace of development.

Floating and centering blocks
We have talked previously about the .pull-left and .pull-right classes, which 
make the HTML element float to the left or right. To center the block, you can use the 
.center-block class.

To make use of this, go to the column that wraps the pricing table, and replace the.
col-sm-10.col-sm-offset-1 classes with .center-block. In the CSS, add the 
following rule:

section#pricing .center-block {
  width: 90%
}

Refresh the web page and you will see that the table stays centered, but now using a 
different approach.

Context colors
You can apply the same colors that we used in buttons and the price table to every 
element in the page. To do that, use these classes: .text-primary, .text-success, 
.text-warning, .text-info, .text-danger, and .text-muted.

In the images section that we have just made, apply the .text-info class to the <h5> 
elements and apply .text-muted in <p>:

<section id="team">
  <div class="container">
    <div class="row">
      <ul class="list-inline list-unstyled text-center">
        <li>
          <img src="imgs/jon.png" class="img-rounded">
          <h5 class="text-info">Jonny Doo</h5>



Applying the Bootstrap Style

[ 90 ]

          <p class="text-muted">CEO</p>
        </li>
        <li>
          <img src="imgs/jon.png" class="img-circle">
          <h5 class="text-info">Jonny Doo</h5>
          <p class="text-muted">CTO</p>
        </li>
        <li>
          <img src="imgs/jon.png" class="img-thumbnail">
          <h5 class="text-info">Jonny Doo</h5>
          <p class="text-muted">CIO</p>
        </li>
      </ul>
    </div>
</section>

Refresh the web page, and the headline element will be light blue and the paragraph 
text grey.

To make the opposite operation—changing the background to the context color—
apply the .bg-* class, where you can pass one of the color options (primary, info, 
warning, or danger).

Spacing
In Bootstrap 4, they added new helpers for margins and padding spacing. If you are 
using Sass, you can set a default $spacer and every margin will work like a charm 
by using these classes, although the default value for the spacer is 1rem.

Next, we will present a table with the classes for margin usage. In summary, you 
will use the .m-*-* regex, where the first option is the location, such as top, bottom, 
and so on. The second option is the size of the margin. Refer to this table for a better 
understanding of the usage:

Remove margin Default margin Medium margin 
(1.5 times)

Large margin (3 
times)

All .m-a-0 .m-a .m-a-md .m-a-lg

Top .m-t-0 .m-t .m-t-md .m-t-lg

Right .m-r-0 .m-r .m-r-md .m-r-lg

Bottom .m-b-0 .m-b .m-b-md .m-b-lg

Left .m-l-0 .m-l .m-l-md .m-l-lg

Horizontal .m-x-0 .m-x .m-x-md .m-x-lg

Vertical .m-y-0 .m-y .m-y-md .m-y-lg



Chapter 4

[ 91 ]

For the padding, the classes are almost the same; just use the .p-*-* prefix to get the 
expected result. Remember that the default spacer is 1rem, so the medium is 1.5rem 
and large is 3rem:

Remove margin Default 
padding

Medium 
padding (1.5 
times)

Large padding 
(3 times)

All .p-a-0 .p-a .p-a-md .p-a-lg

Top .p-t-0 .p-t .p-t-md .p-t-lg

Right .p-r-0 .p-r .p-r-md .p-r-lg

Bottom .p-b-0 .p-b .p-b-md .p-b-lg

Left .p-l-0 .p-l .p-l-md .p-l-lg

Horizontal .p-x-0 .p-x .p-x-md .p-x-lg

Vertical .p-y-0 .p-y .p-y-md .p-y-lg

Responsive embeds
The new version of Bootstrap 4 also allows us to make embeds responsive. So, there 
are classes for the <iframe>, <embed>, <video>, and <object> elements. To get the 
expected result, add the .embed-responsive class to your element:

<div class="embed-responsive embed-responsive-16by9">
  <iframe class="embed-responsive-item"  
src="//www.youtube.com/embed/dQw4w9WgXcQ"  
allowfullscreen></iframe>
</div>

We added the .embed-responsive-16by9 class to make the aspect ratio of the video 
16:9. You can also use the aspect ratios 21:9 and 4:3 with the .embed-responsive-
21by9 and .embed-responsive-4by3 classes respectively.



Applying the Bootstrap Style

[ 92 ]

Summary
In this chapter, we remade our landing page by applying the Bootstrap theme and 
customizing it, getting a much better result in the end. Right now, we have a clean 
web page, developed quickly using the mobile-first paradigm.

You also started to learn the use of some forms by going through three examples, one 
of these being a complementary contact page. Along with forms, we started using 
JavaScript! We performed form validation and some simple animations on our page, 
with regard to the template.

Finally, we presented the Bootstrap image options and a bunch of helpers. 
Remember that there are more helpers than the ones shown in this chapter, but don't 
worry, because we will see them in the upcoming chapters.

If you think you already have a fancy landing page, we will prove to you that we can 
improve it even more! We will talk about it again in the next chapter, reaching icons, 
more forms, buttons, and navigation bars.

Congratulations! You have reached this point of the book. Brace yourself, because the 
next level is coming. We will take a step forward by using more complex elements 
and components of Bootstrap.



[ 93 ]

Making It Fancy
It is finally time to take our last step through the landing page example. After 
learning all the basics of Bootstrap, passing from side to side of the grid system, 
mobile-first development, and using Bootstrap HTML elements, the landing page 
example has come to an end. Now it is time to go a little deeper and acquire more 
knowledge of this beautiful framework—Bootstrap.

In this chapter, we will focus on adding components all over the landing page. We 
will also touch upon the flexbox option, present in version 4. After all has been said, 
our landing page will be ready for the production stage. Get ready for the key points 
that we will cover in this chapter:

• Glyphicon icons
• Navigation bars
• The Drop-down component
• Input grouping
• Flexbox Bootstrap usage

Using Bootstrap icons
Bootstrap is such a nice thing! It provides for us more than 250 icons ready for 
use and fully resizable. The icons were created from the Glyphicon Halflings set 
(http://glyphicons.com/). They are fully rendered as fonts, so you can customize 
both size and color for each one of them. To make use of that, let's see the features 
section on the landing page. As you can see, we let this section be a little simpler. By 
adding some fonts, we will get a nicer result:

<section id="features">
  <div class="container">

http://glyphicons.com/


Making It Fancy

[ 94 ]

    <!-- row 5 -->
    <div class="row">
      <div class="col-sm-12">
        <h3 class="text-center">Features</h3>
        <p class="text-center">Features headline message</p>
      </div>
    </div>

    <!-- row 6 -->
    <div class="row">
      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-screenshot" aria-
hidden="true"></span>
          <span class="feature-tag">Product focus</span>
        </div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-education" aria-
hidden="true"></span>
          <span class="feature-tag">Teaching as a passion</span>
        </div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-send" aria-hidden="true"></
span>
          <span class="feature-tag">Spreading knowledge</span>
        </div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-hourglass" aria-
hidden="true"></span>
          <span class="feature-tag">Save your day time</span>
        </div>
      </div>
      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-sunglasses" aria-
hidden="true"></span>
          <span class="feature-tag">Make it fancy</span>
        </div>
      </div>



Chapter 5

[ 95 ]

      <div class="col-sm-2 col-md-4">
        <div class="feature">
          <span class="glyphicon glyphicon-heart" aria-
hidden="true"></span>
          <span class="feature-tag">Made with love</span>
        </div>
      </div>
      </div>
    </div>
  </div>
</section>

So, from the beginning, here is the code of the modified features section. The bold 
text corresponds to the icon additions. It is pretty simple to add an icon. Just check 
out the options at http://getbootstrap.com/components/#glyphicons, copy 
the class code, and use it in an element. Note that you must add both classes, 
.glyphicon and .glyphicon-*.

The aria-hidden property
You may have noticed that there is a property called aria-
hidden="true" present in all the icons. The reason for this is that the fonts 
are represented as Unicode characters, meaning they may represent words. 
Therefore, to prevent that accessibility, screen readers start reading those 
characters such as they are words, the aria-hidden attribute prevents that.

Even more, we made some changes to the CSS file, adding more rules for the current 
working section. Add the following style to the base.css file, located in the css 
folder:

section#features .feature {
  padding-top: 2rem;
  padding-bottom: 4rem;
  text-align: center;
}

section#features .glyphicon {
  font-size: 2rem;
}

section#features .glyphicon-heart {
  color: #E04C4C;
}

http://getbootstrap.com/components/#glyphicons


Making It Fancy

[ 96 ]

section#features .feature-tag {
  max-width: 10.7em;
  display: inline-block;
  text-align: left;
  margin-left: 1.5em;
  font-size: 1.7rem;
}

With this, we want to show some nice options that you can use with icons. The first 
one is that you can change the size of the icon by changing its font size. In our case, 
we set it to font-size: 2rem. The second one is that icons provide the option to 
change their color by just adding the CSS color rule. We applied it to the heart icon, 
because the heart must be red—color: #E04C4C.

The preceding screenshot shows the final result of the Features section. As you 
can see, it is pretty simple to use icons in Bootstrap. Also, the possibilities that the 
framework offers are very suitable for daily adjustments, such changing icons' colors 
and sizes.

Using other icons sets
There are plenty of other icon sets out there that can be used just like 
glyphicons for Bootstrap. Among all of them, it is worth mentioning Font 
Awesome (https://fortawesome.github.io/Font-Awesome/). It 
stands out from others, since it was the first icon set to use font encoding, 
together with a wide variety of icons.

https://fortawesome.github.io/Font-Awesome/


Chapter 5

[ 97 ]

Paying attention to your navigation
Bootstrap offers a very nice navigation bar to be placed at the top of website, or even 
in places where you want that behavior. Let's change our header section to make it 
our navigation bar. It will stick to the top of the web page, working as a navigation 
menu.

First of all, let's use a <nav> element and add to it the .navbar and .navbar-
default classes, which are required for the component, and the .navbar-fixed-
top class to fix the element at the top. Replace the <header> HTML section with the 
following code:

<nav class="navbar navbar-default navbar-fixed-top">
  <div class="navbar-header">
    <a class="navbar-brand" href="landing_page.html">Company name</a>
  </div>  
  <div class="navbar-right">
      <ul class="nav navbar-nav">
        <li><a href="#about">About</a></li>
        <li><a href="#features">Features</a></li>
        <li><a href="#pricing">Pricing</a></li>
        <li><a href="contact.html">Contact</a></li>
      </ul>
  </div>
</nav>

As was mentioned, the .navbar and .navbar-default classes are required for the 
navigation component. For the Company name link, we added a class, .navbar-
brand, which has the purpose of branding the heading with an appropriate font size 
and padding.

Then, we created a <div> tag using the .navbar-right class to provide a set 
padding CSS rules and place the list to the right to appear the same way as was 
before. For the CSS, just add the following rule to create a padding to the <body> of 
your page:

body {
  padding-top: 3.6em;
}

#nav-menu {
  margin-right: 1rem;
}



Making It Fancy

[ 98 ]

The result of the navigation bar should be like what is presented in the following 
screenshot:

Until the navigation collapse
Try to resize the web page and you will see that for small viewports, the horizontal 
list placed in the navigation will stack vertically, as illustrated in the next screenshot. 
Fortunately, Bootstrap has the option to collapse the lists at the navigation bar. The 
procedure for doing this is pretty simple and we will do it now.



Chapter 5

[ 99 ]

So, let's make the .nav-header collapses and create a toggle button to show or hide 
the list menu. Change the HTML to this:

<nav class="navbar navbar-default navbar-fixed-top">
  <div class="navbar-header">
    <a class="navbar-brand" href="landing_page.html">Company  
name</a>
    <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#nav-menu" aria-expanded="false">
      <span class="sr-only">Toggle navigation</span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
    </button>
  </div>

  <div id="nav-menu" class="collapse navbar-collapse navbar-right">
      <ul class="nav navbar-nav">
        <li><a href="#about">About</a></li>
        <li><a href="#features">Features</a></li>
        <li><a href="#pricing">Pricing</a></li>
        <li><a href="contact.html">Contact</a></li>
      </ul>
  </div>
</nav>

The new code is in bold. First, we added a <button> element to create our sandwich 
button (the one with three dashes). On data-target, we must add the element that is 
the collapse target, #nav-menu in our case.



Making It Fancy

[ 100 ]

Then, we must say which is the element to be collapsed in the small viewport, 
so for .navbar-right, we added the .collapse.navbar-collapse classes. The 
navigation bar should then appear like the one shown in the following screenshot. 
Hooray! Bootstrap has saved the day again!

In order to use .navbar-collapse, you should remember to load the 
Bootstrap JavaScript library as well.

Using different attachments
For this example, we fixed the navigation bar to the top of our web page, although 
we can use different attachments. For instance, we can attach the navigation bar to 
the bottom using the .navbar-fixed-bottom class.

If it is attached in the bottom, do not forget to change the <body> 
padding from top to bottom in the CSS code.



Chapter 5

[ 101 ]

The bar can also be static. For that, use the .navbar-static-* class, where the 
asterisk can mean top or bottom. If you are using the static navigation bars, you 
must place a container (static or fluid) right in the next level of the component:

<nav class="navbar navbar-default navbar-static-top">
  <div class="container">
    …
  </div>
</nav>

Coloring the bar
You can also change the color of the navigation bar. Bootstrap version 3 offers 
an inverted set of colors. To do so, add the .navbar-inverse class to the <nav> 
element, as follows:

<nav class="navbar navbar-inverse">
  …
</nav>

In version 4, they added other color options. So if the background of your navigation 
bar has a dark color, add the .navbar-dark class to make the text and other elements 
white. If the background has a light color, use the .navbar-light class to get the 
opposite result.

For the background color, you can pass a class called .bg-*, where the asterisk 
means a set of colors from Bootstrap. These are default, primary, info, success, 
warning, or danger:

<nav class="navbar navbar-dark bg-danger">
  …
</nav>

Dropping it down
It is time to go back to the buttons once more. Now we will use the buttons 
dropdown. Button dropdowns are great for grouping a set of options in a single 
button. It can be used in several situations.

Remember that it is necessary to use Bootstrap JavaScript for buttons 
drop-downs as well.



Making It Fancy

[ 102 ]

To make use of these, you just need to make some small markups and class usages. 
We will also go a little further and add a button dropdown to our new navigation 
bar. The complete HTML code of the <nav> tag is this one:

<nav class="navbar navbar-default navbar-fixed-top">
  <div class="navbar-header">
    <a class="navbar-brand" href="landing_page.html">Company  
name</a>
    <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#nav-menu" aria-expanded="false">
      <span class="sr-only">Toggle navigation</span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
    </button>
    <!-- <a class="btn btn-primary navbar-btn pull-right" href="#"  
role="button">Sign up</a> -->
  </div>

  <div class="btn-group pull-right">
    <button type="button" class="btn btn-primary dropdown-toggle" 
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
      Customer area <span class="caret"></span>
    </button>
    <ul class="dropdown-menu">
      <li><a href="#">Action</a></li>
      <li><a href="#">Another action</a></li>
      <li><a href="#">Something else here</a></li>
      <li role="separator" class="divider"></li>
      <li><a href="#">Separated link</a></li>
    </ul>
  </div>

  <div id="nav-menu" class="collapse navbar-collapse navbar-right">
      <ul class="nav navbar-nav">
        <li><a href="#about">About</a></li>
        <li><a href="#features">Features</a></li>
        <li><a href="#pricing">Pricing</a></li>
        <li><a href="contact.html">Contact</a></li>
      </ul>
  </div>
</nav>



Chapter 5

[ 103 ]

The highlighted code is the new one for the drop-down button. We have to create a 
<button>, followed by a list <ul>, all of that wrapped by a div.btn-group. It is a 
pretty strict piece of code that should be used for these components.

Regarding the CSS, we must add some spacing between the button and the list. So, 
the CSS for the button drop-down is as follows:

 nav .btn-group {
  margin: 0.8rem 2rem 0 0;
}

The result for the button is presented in the following screenshot:

Oops! If you see the example for large devices, the new button looks pretty good, 
although it looks badly placed for small devices. Let's fix this with a media query!

@media(max-width: 48em){
  nav .btn-group {
    position: absolute;
    top: 0;
    right: 4em;
  }
}



Making It Fancy

[ 104 ]

After the fix, the output that you get should be as shown in this screenshot:

Customizing buttons dropdown
The Bootstrap buttons dropdown offers some custom options. The first one that we 
will discuss is the split option. To do this, you need to change your HTML a bit:

<div class="btn-group pull-right">
  <button type="button" class="btn btn-primary">Customer  
area</button>
  <button type="button" class="btn btn-primary dropdown-toggle" data-
toggle="dropdown" aria-haspopup="true" aria-expanded="false">
    <span class="caret"></span>
    <span class="sr-only">Toggle Dropdown</span>
  </button>
  <ul class="dropdown-menu">
    <li><a href="#">Action</a></li>
    <li><a href="#">Another action</a></li>
    <li><a href="#">Something else here</a></li>
    <li role="separator" class="divider"></li>
    <li><a href="#">Separated link</a></li>
  </ul>
</div>



Chapter 5

[ 105 ]

The main difference is the bold text, where we create another button, which will be 
responsible for the split effect, as shown in the following screenshot:

Moving on, you can make the drop-down a "drop-up". To do that, simply add the 
class to div.btn-group:

<div class="btn-group dropup">
  ...
</div>

Making an input grouping
As we discussed in the last chapter, it is possible to group components together 
with inputs, as we did to the sign form in the home page. However, it is possible to 
add even more things to inputs. We will talk about some group options that can be 
useful.

First of all, let's exemplify the usage of grouping inputs and buttons. The main idea 
is almost the same—creating a div.input-group, and creating an input and a button 
inside this element, as shown in this HTML code:

<div class="input-group">
  <input type="text" class="form-control" placeholder="Type the  
page title...">
  <span class="input-group-btn">
    <button class="btn btn-success" type="button">Search</button>
  </span>
</div>

The output of the preceding code is shown in the following screenshot:



Making It Fancy

[ 106 ]

The only trick here is to add a <span> element wrapping the button. If you invert the 
input order with the button, you will prepend the button to the input:

<div class="input-group">
  <span class="input-group-btn">
    <button class="btn btn-success" type="button">Search</button>
  </span>
  <input type="text" class="form-control" placeholder="Type the page 
title...">
</div>

The output of the preceding code is shown in this screenshot:

 

Bootstrap also gives us the possibility to add any other kind of button. To exemplify 
this, let's now add a button dropdown grouped with an input. Replace <button> 
with the button dropdown that we just used in the previous example:

<div class="input-group">
  <span class="input-group-btn">
    <div class="btn-group pull-right">
        <button type="button" class="btn btn-primary dropdown-toggle" 
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
          Customer area <span class="caret"></span>
        </button>
        <ul class="dropdown-menu">
          <li><a href="#">Action</a></li>
          <li><a href="#">Another action</a></li>
          <li><a href="#">Something else here</a></li>
          <li role="separator" class="divider"></li>
          <li><a href="#">Separated link</a></li>
        </ul>
      </div>
  </span>
  <input type="text" class="form-control" placeholder="Type the  
page title...">
</div>



Chapter 5

[ 107 ]

It is pretty simple; you can add almost any kind of button, prepended or appended 
in an input. The following screenshot shows the result of the previous HTML code:

 

Can you append two buttons?
This is a small challenge for you. Can you append two buttons to the 
same input? Try to append some more buttons to .input-group and 
see what happens!

Getting ready for flexbox!
In version 4 of Bootstrap, flexbox support has finally arrived! However, it is an opt-in 
that can be used. The first step is to understand a little bit of flexbox, just in case you 
don't know, and then start using it. 

We will not add any other element to our landing page example, since support for 
flexbox just begun with Bootstrap 4. We will cover it only to clarify this new option.

Understanding flexbox
The definition of flexbox came out with the CSS3 specifications. Its main purpose 
is to better organize elements in a web page in a predictable manner. It can be 
seen as an option similar to float but one that offers a lot more choices, such as 
reordering elements and avoiding known issues of float, for example, the clearfix 
workaround.

For a hierarchical organization, first of all, you need to wrap the element of all the 
flex items (such as the columns inside a .row). It is also possible to play with the 
direction and axis from the wrapping element.



Making It Fancy

[ 108 ]

To exemplify the usage, let's create an HTML example. Create another file, named 
flexbox.html, use your base template and place the HTML code inside the <body> 
tag:

<body>
  <div class="wrapping-flex">
    <div class="item1">Item 1</div>
    <div class="item2">Item 2</div>
    <div class="item3">Item 3</div>
  </div>
</body>

So, in this case, we must make the div.wrapping-flex the flex wrapping element. 
Apply the following CSS and you will get the child elements placed inline:

.wrapping-flex {
  display: -webkit-flex;
  display: flex;
  background-color: #CCC;
}

.wrapping-flex > div {
  background-color: #ECA45A;
  margin: 1rem;
  padding: 1.5rem;
}

Create this is a sample HTML page and you will get the following output:

 

There are a plenty of options for flexbox. I do recommend the guide at https://
css-tricks.com/snippets/css/a-guide-to-flexbox/ for you to learn more 
about flexbox, since it is not our focus.

However, let's show a very powerful use case of flexbox. Have you ever faced a 
problem with aligning one div inside another vertically? I hope not, because it can 
be a pain in the neck, even more if you made it for older browsers.

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/


Chapter 5

[ 109 ]

With flexbox, we just have to apply the following CSS:

.wrapping-flex {
  display: -webkit-flex;
  display: flex;
  background-color: #CCC;
  height: 12rem;
  width: 50%;
  margin-left: 20%;
}

.wrapping-flex > div {
  background-color: #ECA45A;
  margin: 1rem;
  padding: 1.5rem;
}

.wrapping-flex .item2 {
  align-self: center;
  height: 5rem;
}

We added a height: 12rem to the wrapping element and set align-self: center 
and height: 5rem to the .item2 element. With that, we align the second flex child 
<div> in the center, while the other two children continue to occupy the full height, 
as shown in the following screenshot:

 

Playing with Bootstrap and flexbox
Version 4 of Bootstrap provides two ways to use flexbox. The first one is with Sass, 
where you need to set the $enable-flex variable to the true state.

The other option is to download the compiled CSS version using the flex opt-in. The 
compiled version can be found in the Bootstrap repository (https://github.com/
twbs/bootstrap/releases).

https://github.com/twbs/bootstrap/releases
https://github.com/twbs/bootstrap/releases


Making It Fancy

[ 110 ]

With regard to using flexbox, you will have limited browser support, since not all 
browsers are ready for this property. Consider using it if you will have access only 
from new browsers, such as Internet Explorer versions newer than v10.

Check out the currently available support for the flexbox property here:

http://caniuse.com/#feat=flexbox.

Summary
In this chapter, we took a big step towards more complex elements and theory. You 
deserve congratulations for nailing the first example of this book!

First, we presented icons in Bootstrap! It is a very handy tool to place the perfect icon 
in a perfect way on your page, by customizing the icon size and color. In version 4 
of Bootstrap, they dropped native support for Glyphicons, even though you can still 
use it as a third-party library.

Then we touched the navigations bar of Bootstrap and presented a bunch of options 
to customize it for our case. We played with some tricks to collapse the menu in the 
navigation bar, and added more components to it, such as the button dropdown.

Moreover, we again talked about input grouping by showing some more examples 
of its usage, such as a group of an input and a button.

Finally, we added some theory to the soup, by introducing flexbox and showing that 
you can use it in conjunction with Bootstrap in the new version 4.

In the next chapters, we will dive into another example. We will start creating a web 
app! For that, expect the use of even more Bootstrap elements and components. By 
the end of the explanation, you will be qualified to create any web application!

http://caniuse.com/#feat=flexbox


[ 111 ]

Can You Build a Web App?
Among all kinds of web pages, the web application is the one with the fastest growth 
in usage. So, we will take a deep dive into this area by developing a really nice web 
application. Actually, Bootstrap was mainly designed for this type of application, 
since it was developed at first for the Twitter web application.

Therefore, in this chapter and in the next ones, we will take the reverse path. Instead 
of developing Bootstrap for Twitter, we will develop an app like Twitter with 
Bootstrap. With that, we will touch upon even more components and elements of 
Bootstrap, as follows:

• Web application definitions
• A fully customized navigation bar
• Cards
• Thumbnails
• Pagination
• Breadcrumbs

This chapter will be a bit more difficult, but I believe you are ready for this.  
So, can you build a web app?

Understanding web applications
Web applications came from the mix of an application and a browser, of course! 
Basically, a web application is a client application that runs on a web browser. 
Thus most of the processes are done on the client machine and the server is just 
responsible for the data processing.



Can You Build a Web App?

[ 112 ]

This is interesting, since you can always deliver to the client the most updated 
version of the application, while the client does not need to upgrade the software. 
This leads to fast-paced and continuous development of the app.

Creating the code structure
Just as we always say when starting a new example, let's use the HTML boilerplate 
that we always use, keeping the same folder structure and so on:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-
scale=1">
    <title>Web App</title>

    <link rel="stylesheet" href="css/bootstrap.css">
    <link rel="stylesheet" href="css/base.css">

    <!--[if lt IE 9]>
      <script  
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
</script>
      <script  
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
</script>
    <![endif]-->
  </head>
  <body>
    <script src="js/jquery-1.11.3.js"></script>
    <script src="js/bootstrap.js"></script>
    <script src="js/main.js"></script>
  </body>
</html>

Adding the navigation
First of all, we will add the navigation bar to our web application. Before the start of 
the <body> tag, add the navigation bar, just as we did in the last chapter:

<nav class="navbar navbar-default navbar-fixed-top">
  <div class="container">



Chapter 6

[ 113 ]

    <div class="navbar-header">
      <a class="navbar-brand" href="webapp.html">
        <img src="imgs/logo.png" class="img-responsive">
      </a>
      <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#nav-menu" aria-expanded="false">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <!-- <a class="btn btn-primary navbar-btn pull-left"  
href="#" role="button">Sign up</a> -->
    </div>

    <div id="nav-menu" class="collapse navbar-collapse">
        <ul class="nav navbar-nav">
        </ul>
    </div>
  </div>
</nav>

First, we created a simple navigation bar with the collapse option, just as we did in 
the last chapter. The major difference this time is the addition of the image <img 
src="imgs/logo.png" class="img-responsive"> logo. The CSS for adjusting the 
logo is as follows:

.navbar-brand img {
  height: 100%
}

So, we need to create the items inside the list ul.nav.navbar-nav tag. Append the 
following code inside the list:

<ul class="nav navbar-nav">
  <li>
    <a href="#">
      Home
    </a>
  </li>
  <li>
    <a href="#">
      Notifications
    </a>
  </li>
  <li>



Can You Build a Web App?

[ 114 ]

    <a href="#">
      Messages
    </a>
  </li>
</ul>

Therefore, we should add some icons to each menu. Do you remember how to do 
this? We need to use the Bootstrap Glyphicons. Add the icons, as highlighted in this 
HTML code:

<ul class="nav navbar-nav">
  <li>
    <a href="#">
      <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
      Home
    </a>
  </li>
  <li>
    <a href="#">
      <span class="glyphicon glyphicon-bell" aria-hidden="true"></
span>
      Notifications
    </a>
  </li>
  <li>
    <a href="#">
      <span class="glyphicon glyphicon-envelope" aria-hidden="true"></
span>
      Messages
    </a>
  </li>
</ul>

The result right now should look like what is shown in the following screenshot:



Chapter 6

[ 115 ]

Adding the search input
In our navigation bar, we will add a search input. There are two tricks for this. The 
first is the input must be like an input group to have a magnifier icon on the right-
hand-side part. The second is that the input must be aligned to the right and not to 
the left in the <nav>. In the HTML, let's create a form after ul.nav.navbar-nav:

<div id="nav-menu" class="collapse navbar-collapse">
    <ul class="nav navbar-nav">
      …
    </ul>

    <form id="search" role="search">
      <div class="input-group">
        <input type="text" class="form-control" 
placeholder="Search...">
        <span class="glyphicon glyphicon-search" aria-hidden="true"></
span>
      </div>
    </form>
</div>

In the CSS, move the form to the right and add some padding:

nav form#search {
  float: right;
  padding: 0.5em;
}

nav form#search .glyphicon-search {
    z-index: 99;
    position: absolute;
    right: 0.7em;
    top: 50%;
    margin-top: -0.44em;
}

nav form#search .input-group .form-control {
    border-radius: 0.25em;
}



Can You Build a Web App?

[ 116 ]

Refresh the web page and check out the input. It should appear as shown in this 
screenshot:

Time for the menu options!
Our navigation bar is starting to appear like the navigation bar of a web application, 
but not close enough! Now, it's the turn of the menu options.

The option at the thumbnail
We will now do some crazy stuff: add a thumbnail together with a Bootstrap button 
dropdown. Just before form#search, add the button HTML:

<div id="nav-options" class="btn-group pull-right">
  <button type="button" class="btn btn-default dropdown-toggle  
thumbnail" data-toggle="dropdown" aria-haspopup="true" aria-
expanded="false">
    <img src="imgs/jon.png">
  </button>
  <ul class="dropdown-menu">
    <li><a href="#">Profile</a></li>
    <li><a href="#">Setting</a></li>
    <li role="separator" class="divider"></li>
    <li><a href="#">Logout</a></li>
  </ul>
</div>

Basically, we used the template for a button dropdown (which you learned about in 
the previous chapter) and just removed the .caret component present on it. Instead 
of adding some text, we added an image, that is, the profile image. In .btn-group, 
we applied the helper class from Bootstrap, .pull-right. Since it was placed before 
the form, the button will appear after the form.

Then, it's time for the CSS. We need to resize the image and properly set the margins 
and paddings:

#nav-options {
  margin: 0.5em;
}

#nav-options button.thumbnail {



Chapter 6

[ 117 ]

  margin: 0;
  padding: 0;
}

#nav-options img {
  max-height: 2.3em;
  border-radius: 0.3em;
}

The result of the addition of the button should be like what is shown in the following 
screenshot:

Adding the Tweet button
The last element present in the navigation bar is the Tweet button. To add it, we set 
following the HTML right before the button group option that we just added:

<button id="tweet" class="btn btn-default pull-right">
  <span class="glyphicon glyphicon-pencil" aria-hidden="true"></span>
  Tweet
</button>

For the CSS, we just need to add some margin:

#tweet {
  margin: 0.5em;
}

Finally, we have all the elements and components in our navigation bar, and it 
should look like this:



Can You Build a Web App?

[ 118 ]

Customizing the navigation bar
Now that we have our navigation bar done, it's time to customize the Bootstrap 
theme, add some tweaks, and fix viewport issues.

Setting up the custom theme
To be a little different, we will use a blue background color for our navigation bar. 
First, we need to add some simple CSS rules:

.navbar-default {
  background-color: #2F92CA;
}

.navbar-default .navbar-nav > li > a {
  color: #FFF;
}

Afterwards, let's add the active option to the list on the navigation. Add the .active 
class to the first element of the nav list (the Home one), presented in bold in the 
following code:

   <ul class="nav navbar-nav">
     <li class="active">
       <a href="#">
       <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
        Home
       </a>
     </li>
     … <!--others li and the rest of the code -->
   </ul>

Then, go to the CSS and set the following:

.navbar-default {
  background-color: #2F92CA;
}

.navbar-default .navbar-nav > li > a {
  color: #FFF;
}

.navbar-default .navbar-nav > .active > a {
  background-color: transparent;
  color: #FFF;



Chapter 6

[ 119 ]

  padding-bottom: 10px;
  border-bottom: 5px solid #FFF;
}

The result of this should be like the one presented in the following screenshot. You 
can see that Home is in the active state. To mark that, we've added a border below it 
for denotation:

Fixing the list navigation bar pseudo-classes
If you hover over any element in the navigation list, you will see that it has the 
wrong color. We will use some style to fix that—by using CSS3 transitions! The 
complete CSS for the customization should be like the following:

.navbar-default {
  background-color: #2F92CA;
}

.navbar-default .navbar-nav > li > a,

.navbar-default .navbar-nav > li > a:hover {
  color: #FFF;
  -webkit-transition: all 150ms ease-in-out;
  -moz-transition: all 150ms ease-in-out;
  -ms-transition: all 150ms ease-in-out;
  -o-transition: all 150ms ease-in-out;
  transition: all 150ms ease-in-out;
}

.navbar-default .navbar-nav > .active > a {
  background-color: transparent;
  color: #FFF;
  padding-bottom: 0.62em;
  border-bottom: 0.45em solid #FFF;}

.navbar-default .navbar-nav > .active > a:hover,

.navbar-default .navbar-nav > li > a:hover {
  background-color: transparent;
  color: #F3F3F3;
  padding-bottom: 0.62em;
  border-bottom: 0.45em solid #F3F3F3;
}



Can You Build a Web App?

[ 120 ]

CSS3 transitions
Transitions are an addition of CSS3 that allow us to change a 
property smoothly. We can pass in order the property (in our 
case, we used all), the time to complete the transition, and the 
animation function (we used ease-in-out).

Here, we had to change the default colors from the default Bootstrap navigation list. 
Also, by adding the transitions, we got a nice effect; when the user hovers over the 
menu, a border appears at the bottom of the item list.

You deserve a badge!
To finish the navigation bar, it would be nice to add some badges to the notifications 
item in the up list to show the number of new notifications, just as Twitter has on its 
website. For that, you will learn to use Bootstrap badges.

So, in the notifications item in the list, add the following highlighted HTML line:

<ul class="nav navbar-nav">
  <li class="active">
    <a href="#">
      <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
      Home
    </a>
  </li>
  <li>
    <a href="#">
      <span class="badge">5</span>
      <span class="glyphicon glyphicon-bell" aria-hidden="true"></
span>
      Notifications
    </a>
  </li>
  <li>
    <a href="#">
      <span class="glyphicon glyphicon-envelope" aria-hidden="true"></
span>
      Messages
    </a>
  </li>
</ul>



Chapter 6

[ 121 ]

For the CSS, set some positions, paddings, and borders:

.navbar-nav .badge {
  color: #2F92CA;
  background-color: #FFF;
  font-size: 0.7em;
  padding: 0.27rem 0.55rem 0.2rem 0.4rem;
  position: absolute;
  left: 0.37rem;
  top: 0.7rem;
  z-index: 99;
  border: 0.2rem solid #2F92CA;
}

Nicely done! Refresh the browser and you will see this pretty, beautiful badge:

Fixing some issues with the navigation bar
We now have three issues with the navigation bar. Can you guess them?

They are the Tweet button at the small viewport, the collapsed navigation menu 
collapse, and the color of the collapse hamburger button.

Well, first we will handle the easiest one—fix the Tweet button! For that, we will 
create another element to be placed at the left-hand side of the collapse button and 
just display it when they are in extra small resolution. First, add the .hidden-xs 
class to the current Tweet button:

<button id="tweet" class="btn btn-default pull-right hidden-xs">
  <span class="glyphicon glyphicon-pencil" aria-hidden="true"></span>
  Tweet
</button>

Secondly, at .navbar-header, after button.navbar-toggle, add the following 
highlighted button:

<div class="navbar-header">
  <a class="navbar-brand" href="webapp.html">
    <img src="imgs/logo.png" class="img-responsive">
  </a>



Can You Build a Web App?

[ 122 ]

  <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#nav-menu" aria-expanded="false">
    <span class="sr-only">Toggle navigation</span>
    <span class="icon-bar"></span>
    <span class="icon-bar"></span>
    <span class="icon-bar"></span>
  </button>

  <button id="tweet" class="btn btn-default pull-right visible-xs-
block">
    <span class="glyphicon glyphicon-pencil" aria-hidden="true"></
span>
    Tweet
  </button>
</div>

So, what we did is hide the Tweet button for extra small devices and show a new one 
in a different element. Set a mobile viewport and you can see the button's position 
fixed, as follows:

Next, let's fix the color of the collapse hamburger button. Just apply the next CSS to 
change its color:

.navbar-header .navbar-toggle,

.navbar-default .navbar-toggle:focus {
  background-color: #57A5D2;
}

.navbar-default .navbar-toggle:hover {
  background-color: #3986B3; 
}



Chapter 6

[ 123 ]

.navbar-default .navbar-toggle .icon-bar {
  background-color: #FFF;
}

Finally, let's customize the collapsed navigation bar using Bootstrap helpers. 
We add the .hidden-xs class to .nav-options and the .hidden-sm class to the 
form#search element, making them invisible for extra small and small devices 
respectively, just as we did to the Tweet button:

<div id="nav-options" class="btn-group pull-right hidden-xs">
  …
</div>

<form id="search" role="search" class="hidden-sm">
  …
</form>

Then, in the ul.nav.navbar-nav navigation list, create two items that will replace 
the ones hidden at the current viewport:

<ul class="nav navbar-nav">
  ...
  <!-- others elements list were hidden -->
  <li class="visible-xs-inline">
    <a href="#">
      <span class="glyphicon glyphicon-user" aria-hidden="true"></
span>
      Profile
    </a>
  </li>
  <li class="visible-xs-inline">
    <a href="#">
      <span class="glyphicon glyphicon-off" aria-hidden="true"></span>
      Logout
    </a>
  </li>
</ul>

Thus we are making them visible for extra small resolution with the  
.visible.xs-inline class, as long they are from an inline list.



Can You Build a Web App?

[ 124 ]

To wrap it up, let's remove the border in the active list item, since it does not seem 
nice at the bottom in the layout. Let's change it to a right border instead of bottom 
with the following CSS using a media query:

@media(max-width:34em){
  .navbar-default .navbar-nav > .active > a {
    border-bottom: none;
    border-left: 0.45em solid #FFF;
    padding-left: 0.5em;
  }
}

And we are done! Refresh the web page and see the final result of the navigation bar. 
It is awesome!



Chapter 6

[ 125 ]

Do a grid again
We have finally finished the navigation bar. Now it's time to the page main content. 
For that, we must create a page grid. Following how Twitter uses a three-column-
based layout, we will do the same. The HTML code for the scaffolding is the one that 
should be placed after the <nav> element:

<div class="container">
  <div class="row">
    <div id="profile" class="col-md-3 hidden-sm hidden-xs"></div>
    <div id="main" class="col-sm-12 col-md-6"> </div>
    <div id="right-content" class="col-md-3 hidden-sm hidden-xs"> </
div>
  </div>
</div>

To understand it, we just created a .container with a single .row. The .row 
contains three columns, the first and the last being visible only for medium and 
larger devices. This is because of the .hidden-sm and .hidden-xs classes. When 
both columns are hidden, the middle column fills the row completely. This is because 
of the .col-sm-12 class.

To finish that, add a padding-top to <body> in order to correct the page's position 
with respect to the navigation bar:

body {
  padding-top: 4em;
  background-color: #F5F8FA;
}

Playing the cards
Moving on, in our web application, we will create a new component containing the 
about information, named Card. We will take a break from page development to 
discuss this section in depth.

Cards are flexible container extensions that include internal options, such as header, 
footer, and other display options. In Bootstrap 4, there is a component called Card, 
but since we are supporting versions 3 and 4 in this book, we will teach both ways.



Can You Build a Web App?

[ 126 ]

Learning cards in Bootstrap 4
As was mentioned before, Bootstrap 4 provides Cards components. To make use of 
them, create a div.card element and start adding elements such as .card-block 
and .card-img-top:

<div class="card">
  <img class="card-img-top img-responsive"  
src="imgs/landscape.jpg">
  <div class="card-block">
    <h4 class="card-title">Name</h4>
    <p class="card-text">About text</p>
    <a href="#" class="btn btn-primary">Can add buttons</a>
  </div>
</div>

For the preceding code, the output will look like what is shown in the following 
screenshot. As we can see, the Card component is pretty simple and straightforward. 
The component offers some other options as well, but we will talk about that  
when needed.



Chapter 6

[ 127 ]

Creating your own cards
Like the famous quote, if you have lemons, make lemonade, in Bootstrap version 3, we 
do not have the Card component. However, we have the tools needed to make our 
own Card component for sure! So let's have some lemonade!

We will use the same classes and structures of Bootstrap 4, playing with only the 
CSS. Therefore, if you are using version 3, you will see the page render like this for 
the use of the same HTML from version 4:

To squeeze the first lemon, let's create the CSS for the .card class:

.card {
  position: relative;
  border: 0.1rem solid #e5e5e5;
  border-radius: 0.4rem;
  position: relative;
  background-color: #FFF;
}

Following this, just add two CSS rules for img.card-img-top and .card-block, as 
shown here:

.card-img-top {
  border-radius: 0.4rem 0.4rem 0 0;
}



Can You Build a Web App?

[ 128 ]

.card-block {
  padding: 1.25rem;
}

Done! We have our own card component ready for Bootstrap 3. The next screenshot 
presents the final result. Of course, there are some differences of typography and 
button color, but these are the differences because of the version; the component is 
perfectly done.

Can you finish the Card component?
We presented just a few options for the Card component in 
Bootstrap version 3. Can you do the rest? Try making some CSS 
rules for classes such as .card-img-bottom, .card-header, 
and .card-footer.

Adding Cards to our web application
Getting back to the web application, let's add the Card components inside 
div#profile, at the main container. The HTML code for this section will be as follows:

<div id="profile-resume" class="card">
  <img class="card-img-top img-responsive"  
src="imgs/landscape.jpg">



Chapter 6

[ 129 ]

  <div class="card-block">
    <img src="imgs/jon.png" class="card-img">
    <h4 class="card-title">Jonny Doo <small>@jonnydoo</small></h4>
    <p class="card-text">Dog goes woofy. Did you said squitly?</p>
    <ul class="list-inline list-unstyled">
      <li id="card-tweets">
        <a href="#">
          <span class="profile-stats">Tweets</span>
          <span class="profile-value">99k</span>
        </a>
      </li>
      <li class="card-following">
        <a href="#">
          <span class="profile-stats">Following</span>
          <span class="profile-value">7</span>
        </a>
      </li>
      <li class="card-followers">
        <a href="#">
          <span class="profile-stats">Followers</span>
          <span class="profile-value">132k</span>
        </a>
      </li>
    </ul>
  </div>
</div>

Breaking down the code, we added some components to .card-block. First of all 
is the .card-img element, which will represent the profile photography. Following 
this, we changed .card-title by adding a <small> tag inside <h4>. The last change 
is the addition of the <ul> list, representing some stats for the profile.

There is no secret in this HTML piece; we just added some elements in a 
straightforward way. Now it's time for the CSS rules. First, change the position and 
size of the img.card-img element:

.card-block img.card-img {
  top: 50%;
  margin-top: -36px;
  width: 72px;
  border: 3px solid #FFF;
  border-radius: 0.4rem;
  float: left;
  position: relative;
  z-index: 99;
}



Can You Build a Web App?

[ 130 ]

Since it is in the right place, let's correctly align .card-title and add some padding 
to .card-text:

.card-block .card-title {
  float: left;
  margin: 0;
  margin-left: 0.5em;
}

.card-block .card-title small {
  display: block;
}

.card-block .card-text {
  clear: both;
  padding-top: 0.25em;
  margin-bottom: 1.5em;
}

Can you change the card block to use flexbox?
Another challenge appears here. Since you have already learned 
about the usage of flexbox, try to replace the floats in the previous 
code with some flexbox CSS rules. Just keep in mind that it is 
recommended for Bootstrap 4 and works only on new browsers.

It is almost looking like the Twitter card on the left; we just need to change the list 
style inside the profile card. Add this CSS:

.card-block ul a:hover {
  text-decoration: none;
}

.card-block ul .profile-stats {
  color: #777;
  display: block;
  text-transform: uppercase;
  font-size: 0.63em;
}

.card-block ul .profile-value {
  color: #000;
  font-size: 1.2em;
  font-weight: bold;
  color: #2F92CA;
}



Chapter 6

[ 131 ]

Well done! It looks prettier than the Twitter component. In the following screenshot, 
we present the expected result:

Another card using thumbnails
After the #profile-resume card, we will create another one named #profile-
photo, which will contain photos of the user. Use the same cards methodology to 
place this new one after #profile-resume with the following HTML code:

<div id="profile-photo" class="card">
  <div class="card-header">Photos</div>
  <div class="card-block">
    <ul class="list-inline list-unstyled">
      <li>
        <a href="#" class="thumbnail"><img class="img-responsive"  
src="imgs/landscape-02.jpg"></a>
      </li>
      <li>
        <a href="#" class="thumbnail"><img class="img-responsive"  
src="imgs/landscape-03.jpg"></a>
      </li>
      <li>
        <a href="#" class="thumbnail"><img class="img-responsive"  
src="imgs/landscape-04.jpg"></a>
      </li>
      <li>
        <a href="#" class="thumbnail"><img class="img-responsive"  
src="imgs/landscape-05.jpg"></a>
      </li>
    </ul>
  </div>
</div>



Can You Build a Web App?

[ 132 ]

In this card we will create a new card element, .card-header. In Bootstrap 4, you 
can use the regarding class, but in version 3, you will need this CSS rule:

.card .card-header {
  border-radius: 0.4rem 0.4rem 0 0;
  padding: .75rem 1.25rem;
  background-color: #f5f5f5;
  border-bottom: 0.1em solid #e5e5e5;
  color: #4e5665;
  font-weight: bold;
}

Moving on, the rest of CSS for this card is simple. Just change the image's width and 
adjust some margins and paddings:

#profile-photo {
  margin-top: 2rem;
}

#profile-photo ul {
  margin: 0;
}

#profile-photo li {
  width: 48%;
  padding: 0;
}

Also note that we are using the .thumbnail class in the <a> tag that wraps the 
images. This class is useful for nicely styled thumbnail images. It can also be used to 
wrap text along with an image.

The photo card should look like what is shown in the following screenshot. Again, 
we will use some more cards in this web application, although we'll talk about that 
later, when needed.



Chapter 6

[ 133 ]

Implementing the main content
Moving on, we will implement the main content in the middle of the page. This 
content will hold the feeds while allowing new tweets.

We need to create the input to send a new message. To do this, create the following 
HTML code at the div#main element:

<div id="main" class="col-sm-12 col-md-6">
  <div id="main-card" class="card">
    <form id="new-message">
      <div class="input-group">
        <input type="text" class="form-control" placeholder="What  
is happening?">
        <span class="input-group-addon">
          <span class="glyphicon glyphicon-camera" aria-
hidden="true"></span>
        </span>
      </div>
    </form>
  </div>
</div>



Can You Build a Web App?

[ 134 ]

For that, we created a form, again making use of input groups, icons, and cards. Can 
you see the ease provided by Bootstrap again? We just placed the elements with the 
right classes and everything went perfect. The next CSS takes place with some rules 
regarding the color and padding of the form:

form#new-message {
  border-radius: 0.4rem 0.4rem 0 0;
  padding: 1em;
  border-bottom: 0.1em solid #CEE4F5;
  background-color: #EBF4FB;
}

form#new-message .input-group-addon {
  background-color: #FFF;
}

At this point, the result should be as shown in the following screenshot. Next up, we 
will create the other elements.

Making your feed
We have made cool things so far, but the feed is the core of the page. We will create a 
nice and friendly feed for our web app.



Chapter 6

[ 135 ]

As usual, let's create the HTML code first. The feed will work inside a stacked list. 
With that in mind, let's create the first element in the list:

<div id="main" class="col-sm-12 col-md-6">
  <div id="main-card" class="card">
    <form id="new-message">
      <div class="input-group">
        <input type="text" class="form-control" placeholder="What  
is happening?">
        <span class="input-group-addon">
          <span class="glyphicon glyphicon-camera" aria-
hidden="true"></span>
        </span>
      </div>
    </form>
    <ul id="feed" class="list-unstyled">
      <li>
        <img src="imgs/doge.jpg" class="feed-avatar img-circle">
        <div class="feed-post">
          <h5>Name <small>@namex - 3h</small></h5>
          <p> You can't hold a dog down without staying down with  
him!</p>
        </div>
        <div class="action-list">
          <a href="#">
            <span class="glyphicon glyphicon-share-alt" aria-
hidden="true"></span>
          </a>
          <a href="#">
            <span class="glyphicon glyphicon-refresh " aria-
hidden="true"></span>
            <span class="retweet-count">6</span>
          </a>
          <a href="#">
            <span class="glyphicon glyphicon-star" aria-
hidden="true"></span>
          </a>
        </div>
      </li>
    </ul>
  </div>
</div>



Can You Build a Web App?

[ 136 ]

The highlighted code is the code added for the list. To understand it, we created an 
element in the list containing the common stuff inside a post, such as an image, a 
name, text, and options. Add the .img-circle class to the image in the list to style it 
using Bootstrap image styles.

With the CSS, we will correctly style the page. For the list and the image, apply the 
following rules:

ul#feed {
  margin: 0;
}

ul#feed li {
  padding: 1em 1em;
}

ul#feed .feed-avatar {
  width: 13%;
  display: inline-block;
  vertical-align: top;
}

By doing this, you will be correcting the margins and padding while adjusting the 
size of the image avatar. For the post section, use this CSS:

ul#feed .feed-post {
  width: 80%;
  display: inline-block;
  margin-left: 2%;
}

ul#feed .feed-post h5 {
  font-weight: bold;
  margin-bottom: 0.5rem;
}

ul#feed .feed-post h5 > small {
  font-size: 1.2rem;
}

Finally, with regard to .action-list, set the following styles:

 ul#feed .action-list {
  margin-left: 13%;
  padding-left: 1em;
}



Chapter 6

[ 137 ]

ul#feed .action-list a {
  width: 15%;
  display: inline-block;
}

ul#feed .action-list a:hover {
  text-decoration: none;
}

ul#feed .action-list .retweet-count {
  padding-left: 0.2em;
  font-weight: bold;
}

Refresh your browser and you will get this result:

Awesome! Note that for the post, we did all the spacing using percentage values. 
This is also a great option because the page will resize with respect to the user's 
resolution very smoothly.



Can You Build a Web App?

[ 138 ]

We have only one problem now. Add another post and you will see that there is no 
divisor between the posts. To illustrate this, add a second post in the HTML code:

<ul id="feed" class="list-unstyled">
  <li>
    <img src="imgs/doge.jpg" class="feed-avatar img-circle">
    <div class="feed-post">
      <h5>Doge <small>@dogeoficial - 3h</small></h5>
      <p>You can't hold a dog down without staying down with  
him!</p>
    </div>
    <div class="action-list">
      <a href="#">
        <span class="glyphicon glyphicon-share-alt" aria-
hidden="true"></span>
      </a>
      <a href="#">
        <span class="glyphicon glyphicon-refresh" aria-
hidden="true"></span>
        <span class="retweet-count">6</span>
      </a>
      <a href="#">
        <span class="glyphicon glyphicon-star" aria-hidden="true"></
span>
      </a>
    </div>
  </li>

  <li>
    <img src="imgs/laika.jpg" class="feed-avatar img-circle">
    <div class="feed-post">
      <h5>Laika <small>@spacesog - 4h</small></h5>
      <p>That's one small step for a dog, one giant leap for  
giant</p>
    </div>
    <div class="action-list">
      <a href="#">
        <span class="glyphicon glyphicon-share-alt" aria-
hidden="true"></span>
      </a>
      <a href="#">
        <span class="glyphicon glyphicon-refresh" aria-
hidden="true"></span>
        <span class="retweet-count">6</span>
      </a>



Chapter 6

[ 139 ]

      <a href="#">
        <span class="glyphicon glyphicon-star" aria-hidden="true"></
span>
      </a>
    </div>
  </li>
</ul>

At the CSS, change it a little to correct the padding and add a border between the 
items, as follows:

ul#feed li {
  padding: 1em 1em;
  border-bottom: 0.1rem solid #e5e5e5;
}

ul#feed li:last-child {
  border-bottom: none;
}

The output results will be like this:



Can You Build a Web App?

[ 140 ]

Doing some pagination
Okay, I know that web applications such as Twitter usually use infinite loading and 
not pagination, but we need to learn that! Bootstrap offers incredible options for 
pagination, so let's use some of them right now.

From the start, create the HTML code for the component and insert it just after div.
main-card:

<nav class="text-center">
  <ul class="pagination pagination-lg">
    <li class="disabled"><a href="#" aria-label="Previous"><span  
aria-hidden="true">&laquo;</span></a></li>
    <li class="active"><a href="#">1 <span class="sr-only">(current)</
span></a></li>
    <li><a href="#">2</a></li>
    <li class="disabled"><a href="#">...</a></li>
    <li><a href="#">3</a></li>
    <li><a href="#">4</a></li>
    <li><a href="#" aria-label="Next"><span aria-
hidden="true">&raquo;</span></a></li>
  </ul>
</nav>

Thus, we must consider a few things here. Firstly, to center the pagination, we used 
the helper class from Bootstrap, .text-center. This is because ul.pagination does 
apply the display: inline-block style.

Secondly, we created a <ul> with the .pagination class, determined by the 
framework. We also added the .pagination-lg class, which is an option of 
pagination for making it bigger.

Lastly, the .disabled class is present in two items of the list, the previous link 
and the ellipsis ... one. Also, the list on page 1 is marked as active, changing its 
background color.



Chapter 6

[ 141 ]

Check out the result of adding pagination in this screenshot:

Creating breadcrumbs
To make use of Bootstrap breadcrumbs, we will add it to our web app. Note that we 
will do this step for learning purposes so that you will be able to create it when you 
need it.

Like pagination, Bootstrap offers a component for breadcrumbs as well. For that, 
create an ordered list just after the open tag div#main:

<div id="main" class="col-sm-12 col-md-6">

  <ol class="breadcrumb card">
    <li><a href="#">Home</a></li>
    <li><a href="#">Profile</a></li>
    <li class="active">Feed</li>
  </ol>
  …
</div>



Can You Build a Web App?

[ 142 ]

The cool thing about Bootstrap breadcrumbs is that the separator bars are 
automatically added through :before and the content CSS option, so you  
do not need to worry about them.

Note that the .card class was added to the breadcrumbs component to keep the web 
app style. The following screenshot presents the result of breadcrumbs:

Finishing with the right-hand-side 
content
Well, we are almost done. It is time to create the right-hand-side content of our web 
app. The right-hand-side content contains information such as Whom to follow and the 
about page. Let's create it!

Coming to the HTML, let's create another Card component inside div.right-
content, as follows:

<div id="right-content" class="col-md-3 hidden-sm hidden-xs">
  <div id="who-follow" class="card">
    <div class="card-header">
      Who to follow
    </div>



Chapter 6

[ 143 ]

    <div class="card-block">
      
    </div>
  </div>
</div>

Inside .card-block, create a vertical list:

<div id="right-content" class="col-md-3 hidden-sm hidden-xs">
  <div id="who-follow" class="card">
    <div class="card-header">
      Who to follow
    </div>
    <div class="card-block">
      <ul class="list-unstyled">
        <li>
          <img src="imgs/cat.jpg" class="img-rounded">
          <div class="info">
            <strong>Crazy cats</strong>
            <button class="btn btn-default">
              <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
            </button>
          </div>
        </li>
        <li>
          <img src="imgs/ration.jpg" class="img-rounded">
          <div class="info">
            <strong>Free ration alert</strong>
            <button class="btn btn-default">
              <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
            </button>
          </div>
        </li>
      </ul>
    </div>
  </div>
</div>



Can You Build a Web App?

[ 144 ]

So, the result without the CSS is not good, as shown in the following screenshot. We 
need to fix it.

First, we add margins for the items in the list:

div#who-follow li {
  margin-bottom: 2em;
}

div#who-follow li:last-child {
  margin-bottom: 0;
}

Then, we adjust the size of the image and the following text:

div#who-follow li img {
  width: 26%;
  display: inline-block;
  vertical-align: top;



Chapter 6

[ 145 ]

  margin-right: 2%;
}

div#who-follow li .info {
  width: 68%;
  display: inline-block;
}

To finish this, we adjust the content inside the .info element:

div#who-follow li .info strong {
  display: block;
  overflow:hidden;
  text-overflow: ellipsis;
}

div#who-follow li .info .glyphicon {
  color: #2F92CA;
}

The result should look like what is shown here:



Can You Build a Web App?

[ 146 ]

To end the main web page content, let's create another card that has content about 
the web app, such as help, privacy, and so on. After the div#who-follow, create 
another card:

<div id="app-info" class="card">
  <div class="card-block">
    © 2015 SampleApp
    <ul class="list-unstyled list-inline">
      <li><a href="#">About</a></li>
      <li><a href="#">Terms and Privacy</a></li>
      <li><a href="#">Help</a></li>
      <li><a href="#">Status</a></li>
      <li><a href="#">Contact</a></li>
    </ul>
  </div>
  <div class="card-footer">
    <a href="#">Connect other address book</a>
  </div>
</div>

First of all, note that we have just used .card-footer for this card. If you are using 
Bootstrap 3, add the next CSS:

.card .card-footer {
  border-radius: 0 0 0.4rem 0.4rem;
  padding: .75rem 1.25rem;
  background-color: #f5f5f5;
  border-top: 0.1em solid #e5e5e5;
  color: #4e5665;
}

For this card, we also need to add some margin within the card above:

div#app-info {
  margin-top: 2rem;
}



Chapter 6

[ 147 ]

That looks great! We have finished the majority of the components in our web 
application! The next image shows the final result that we will cover at this chapter. 
Great work!

Summary
In this chapter, we started the development of another example—an awesome web 
application like Twitter. We started creating every component with the help of 
Bootstrap, while also customizing each one. By the end of the chapter, we were done 
with the major part of the components to be added.

First, we created a fully customized navigation bar that works on any device. Just 
like at every component, we took special care with different visualizations for 
mobiles and desktops.

We talked a lot about cards. This is a new component in Bootstrap 4, but we created 
our own for version 3, so we nailed it all. Cards are present in every column, having 
different content and placements of items.

We also discussed the use of other Bootstrap components by making use of 
breadcrumbs, pagination, and thumbnails.

I hope now you feel confident about web application development, because in the 
next chapter, we will take a step further in this kind of development by using other 
Bootstrap components and more customization.





[ 149 ]

Of Course, You Can Build  
a Web App!

In this chapter, we will complete the elements of our web app with the use of 
other Bootstrap elements and components. By the end of this chapter, we will have 
covered the majority of elements present in Bootstrap, making you almost an expert 
as well as answering this question from the last chapter: can you build a web app?  
Of course you can!

We will cover some more complex Bootstrap components and elements. These are 
the key points of this chapter, and you will learn how to:

• Use Bootstrap alerts
• Customize alerts
• Progress bars
• CSS key frames
• Navigation components
• Tabs
• Labels and badges
• List groups

Even though these seem to be a lot of key points, they are easy to learn and master. 
So, I am sure you will be able to nail all of them.



Of Course, You Can Build a Web App!

[ 150 ]

Alerts in our web app
In the last chapter, we did almost everything related to page components. Now 
we will create some components that interact with the user. To start this, we will 
introduce alerts, which are very common components of every web app.

In order to learn about alerts, we should create some of them. The pattern for 
creation is pretty simple; just remember to import Bootstrap JavaScript as we have 
been doing all throughout the book.

The main class needed to create alerts is .alert. You can just follow this class 
with some other, regarding the type of alert, such as .alert-success for a success 
message. There are other classes available as well, such as .alert-info and .alert-
danger. Just replace the suffix of .alert with the one that you want to use.

It's time to create our first alert! Keeping the same code of the web app from the 
last chapter, right before div#main, you must have your ol.breadcrumb. Replace 
ol.breadcrumb with your .alert, like what is shown in this screenshot:

The HTML code for creating this alert is really simple:

<div class="alert alert-success" role="alert">
  You have made a new Tweet.
</div>



Chapter 7

[ 151 ]

As mentioned before, just create an element with the .alert class in combination 
with the state of the alert, .alert-success in this case.

Why do we use the role attribute?
In the preceding example, we made use of the role="alert" attribute 
in our .alert component. The role attribute was incorporated into 
HTML 5, coming from the ARIA 1.0 specification. The reason for using 
that is to keep the semantics for different items, for example, in this case, 
where we used a common <div> to describe a more semantic element 
that is an alert.

Dismissing alerts
Bootstrap is incredible! Did you realize that? We created an alert with just three lines 
of code!

Well, another reason to think about that is to create dismissible alerts. Just add the 
highlighted line to the alert component and you will get the expected result:

<div class="alert alert-success" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  You have made a new Tweet.
</div>

This will create a close button that will dismiss the component using the data-
dismiss="alert" attribute. Refresh the web page and you will see the alert like this:

Customizing alerts
Now, it's time for us to create our recipe for the alert. We have two tasks: add a title 
to .alert and use the links inside it.

First, create a heading element inside the alert:

<div class="alert alert-success" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  <h3>Tweet alert</h3>
  You have made a new Tweet.
</div>



Of Course, You Can Build a Web App!

[ 152 ]

Then, adjust the CSS for the heading inside the alert:

.alert h3 {
  margin: 0  0 1rem;
  font-size: 1.4em;
}

The final result of adding the title must be like what is shown in this screenshot:

For the second task, we have to add some links inside the component. Bootstrap can 
give us a little shortcut for this using the .alert-link class in the link. The class 
will give the correctly matching color for the link in response to the kind of the alert 
shown.

Therefore, the HTML code is simple:

<div class="alert alert-success" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  <h3>Tweet alert</h3>
  You have made a new Tweet.
  <a href="#" class="alert-link">Click here to review your  
tweets.</a>
</div>

To finish our first alert usage, let's just add one last fancy thing in the CSS, refresh the 
browser after that, and check the final result, as shown in the next screenshot:

.alert {
  border-left-width: 0.5rem;
}



Chapter 7

[ 153 ]

Waiting for the progress bar
Progress bars are very useful in web applications in cases where, for example, you 
need to wait for an action to be sent to the server while maintaining a feedback for 
the user that something is being done in the background.

For instance, we can create a progress bar to present the user that a new tweet is 
being posted. Likewise, other scenarios can suit well for a progress bar, for example, 
when you are uploading a file on the server or when the web client is loading some 
information.

To exemplify this, we will create another alert that will contain a progress bar inside 
for a new tweet post feedback, subliminally saying "Hey, wait until I finish my task!"

We replace the .alert code that we just created with the new one presented here:

<div class="alert alert-info" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  <h3>Posting new Tweet</h3>
</div>

This will produce a blue alert using the colors from .alert-info. In the new 
element, create the following code for the progress bar:

<div class="alert alert-info" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  <h3>Posting new Tweet</h3>
  <div class="progress">
    <div class="progress-bar progress-bar-info" role="progressbar"  
aria-valuenow="25" aria-valuemin="0" aria-valuemax="100"  
style="width: 25%">
    </div>
  </div>
</div>



Of Course, You Can Build a Web App!

[ 154 ]

The result of the progress bar in shown in the next screenshot. Let's understand each 
part of the new component:

We created a div.progress inside our alert component, which is the gray rectangle 
to be filled during the progress. Inside it, we have another tag, div.progress-bar, 
to create the inside filler that contains the .progress-bar-info class to make the bar 
blue, following the .info contextual color.

The progress bar also has some aria-* attributes and its size is set by the width: 
25% style. To change its size, just change the width style.

Progress bar options
Just like alerts, progress bars have the same contextual colors of Bootstrap. Just use 
the .progress-bar-* prefix while using the suffix of one of the contextual colors. It 
is also possible to apply stripe marks to the progress bar with the .progress-bar-
striped class:

<div class="alert alert-info" role="alert">
  <button type="button" class="close" data-dismiss="alert" aria-
label="Close"><span aria-hidden="true">&times;</span></button>
  <h3>Posting new Tweet</h3>
  <div class="progress">



Chapter 7

[ 155 ]

    <div class="progress-bar progress-bar-info progress-bar-striped 
active" role="progressbar" aria-valuenow="25" aria-valuemin="0"  
aria-valuemax="100" style="width: 25%">
    </div>
  </div>
</div>

Finally, you can also animate the strip using the .active class in conjunction with 
the .progress-bar-striped class. Check out the next screenshot to see the result of 
addition of the classes:

Animating the progress bar
Now we have a good opportunity to use the CSS @keyframes animations.

If you check out the CSS code when you add the .progress-bar-striped and 
.active classes, Bootstrap will load the following animation:

.progress-bar.active {
    animation: progress-bar-stripes 2s linear infinite;
}

This animation applies to the CSS selector, the @keyframe defined at progress-bar-
stripes:

@keyframes progress-bar-stripes {
  from {
    background-position: 40px 0;
  }
  to {
    background-position: 0 0;
  }
}

This means that the striped background will move from a position of 40 pixels to 0, 
repeating it every 2 seconds.



Of Course, You Can Build a Web App!

[ 156 ]

Well, nice to meet you progress-bar-stripes, but I can do another animation! 
Create the following @keyframe:

@keyframes w70 {
  from { width: 0%; }
  to { width: 70%; }
}

The goal of this key frame is to change the width of our progress bar from 0% to 70% 
of the maximum when the page loads. Now apply the new animation to .progress-
bar.active:

.progress-bar.active {
  animation: w70 1s ease forwards,
             progress-bar-stripes 2s linear infinite;
}

So, our animation will last 1 second and execute just once, since we defined it to 
be just forwards. Note that we must override the animations, so after the new 
animation, which is w70, add the current animation, which is progress-bar-
stripes. Refresh the page and see this fancy effect.

Creating a settings page
Moving on with our web app example, it is time to create a settings page for the 
application. We have already created a link for this in the navigation bar, inside the 
button group. Do you remember?

So, in the same folder as that of the web app HTML file, create another one named 
settings.html and update the link at the navigation bar:

<div id="nav-options" class="btn-group pull-right hidden-xs">
  <button type="button" class="btn btn-default dropdown-toggle 
thumbnail" data-toggle="dropdown" aria-haspopup="true" aria-
expanded="false">
    <img src="imgs/jon.png">
  </button>
  <ul class="dropdown-menu">
    <li><a href="#">Profile</a></li>
    <li><a href="settings.html">Setting</a></li>
    <li role="separator" class="divider"></li>
    <li><a href="#">Logout</a></li>
  </ul>
</div>



Chapter 7

[ 157 ]

In this page, we use the same template that we used in the web application, copying 
the navigation bar, the grid layout, and the left-hand side #profile column. So, the 
settings page will look like this:

Now we will add some content to this page. Our main goal here is to use some other 
navigation Bootstrap components that will be handy for us.

Pills of stack
The first navigation menu that we will use here is Pills, using the vertical stack 
option. Pills are a Bootstrap component used to create menus that can be horizontal 
or vertical. Many web apps use them for side menus, just as we will soon do.

The basic usage for navigation components is the use of the .nav class followed 
by another one regarding the navigation option. In our case, we will use the .nav-
pills class to create the desired effect in conjunction with the .nav-stacked class 
to vertically stack the pills. Create a .card element just after #profile and add the 
code related to the pills navigation:

<div id="profile-settings" class="card">
  <ul class="nav nav-pills nav-stacked">
    <li role="presentation" class="active">
      <a href="#">
        Account
        <span class="glyphicon glyphicon-chevron-right pull-right"  
aria-hidden="true"></span>
      </a>
    </li>



Of Course, You Can Build a Web App!

[ 158 ]

    <li role="presentation">
      <a href="#">
        Security
        <span class="glyphicon glyphicon-chevron-right pull-right"  
aria-hidden="true"></span>
      </a>
    </li>
    <li role="presentation">
      <a href="#">
        Notifications
        <span class="glyphicon glyphicon-chevron-right pull-right"  
aria-hidden="true"></span>
      </a>
    </li>
    <li role="presentation">
      <a href="#">
        Design
        <span class="glyphicon glyphicon-chevron-right pull-right"  
aria-hidden="true"></span>
      </a>
    </li>
  </ul>
</div>

In the CSS file, also add the following rule:

.row .card + .card {
  margin-top: 2rem;
}

With this, every .card element followed by another .card element will 
automatically create a margin, because of the use of the + selector. Open the settings 
page, and you will see the result like what is shown in the following screenshot:



Chapter 7

[ 159 ]

Basically, we created a list with the mentioned classes: .nav, .nav-pills, and .nav-
stacked. The list is composed of four items, containing a link and a left arrow icon. 
To place the arrows at the right-hand side, we again used the .pull-right helper 
together with the .glyphicon-chevron-right icon. In the first item, we added the 
.active class, which turned this item blue and changed the colors of both the text 
and the icon.



Of Course, You Can Build a Web App!

[ 160 ]

This is almost awesome! It just needs some adjustments in the CSS to look perfect. 
Let's use some :nth-child selectors to style some elements based on their position, 
such as the first item in the menu (:first-child) and the last item (:last-child). 
Add the following CSS:

#profile-settings .nav-stacked li {
  border-bottom: 1px solid #e5e5e5;
  margin: 0;
}

#profile-settings .nav-stacked a {
  border-radius: 0;
}

#profile-settings .nav-stacked li:first-child a {
  border-radius: 0.4rem 0.4rem 0 0;
}

#profile-settings .nav-stacked li:last-child {
  border-bottom: 0;
}

#profile-settings .nav-stacked li:last-child a {
  border-radius: 0 0 0.4rem 0.4rem;
}

We just removed unwanted margins and the border radius, while adding a 
border bottom to all elements in the list, except the last one. This is because of the 
#profile-settings .nav-stacked li:last-child selector, where we a specific 
rule only for the last item element.

We also changed border-radius for the first element and the last element to create a 
rounded border in the pill list. The .nav-pill menu will appear like what is shown 
in the next screenshot:



Chapter 7

[ 161 ]

Tabs in the middle
In the #main column, we must create a tab option with the settings content. Bootstrap 
also offers a tabs component with the navigation components. First, we will work 
with the markup and CSS style and use it with JavaScript.

Therefore, inside the #main tag, place the following markup, corresponding to the 
Bootstrap tabs:

<ul id="account-tabs" class="nav nav-tabs nav-justified">
  <li role="presentation" class="active">
    <a href="#account-user">User info</a>
  </li>
  <li role="presentation">
    <a href="#account-language">Language</a>
  </li>
  <li role="presentation">
    <a href="#account-mobile">Mobile</a>
  </li>
</ul>



Of Course, You Can Build a Web App!

[ 162 ]

Just like the Pills, to use tabs, create a list with the .nav and .nav-tabs classes. We 
used the .nav-justified class as well to make the tabs equally distributed over the 
component.

Moreover, we populated the list with some items. Each link of the item contains an 
identifier, which will be used to link each tab to the corresponding content. Keep that 
information at the moment.

Let's add some CSS rules to keep the same border colors that we are using:

#account-tabs > li {
  border-bottom: 0.1rem solid #e5e5e5;
}

#account-tabs a {
  border-bottom: 0;
}

#account-tabs li.active {
  border-bottom: 0;
}

Refresh the web page and you should see it like this:



Chapter 7

[ 163 ]

Adding the tab content
To add the tab content, we use the named tab panes. Each tab must be placed in an 
element with the .tab-pane class and have the corresponding identifier in the tab 
component. After the tab list, add the HTML code for the tab panes:

 <ul id="account-tabs" class="nav nav-tabs nav-justified">
  <li role="presentation" class="active">
    <a href="#account-user">User info</a>
  </li>
  <li role="presentation">
    <a href="#account-language">Language</a>
  </li>
  <li role="presentation">
    <a href="#account-mobile">Mobile</a>
  </li>
</ul>

<div class="tab-content">
  <div role="tabpanel" class="tab-pane active" id="account-user">
    User info tab pane
  </div>
  <div role="tabpanel" class="tab-pane" id="account-language">
    Language tab pane
  </div>
  <div role="tabpanel" class="tab-pane" id="account-mobile">
    Mobile tab pane
  </div>
</div>

Refresh the web page and you will see only the content of #account-user 
appearing, although clicking on other tabs will not cause any switch between them. 
This is because we have not initialized the component through JavaScript yet.

Using the Bootstrap tabs plugin
We can initialize the tabs with simple JavaScript code, like what is presented next. 
However, we will do that in a smarter way using data markup:

$('#account-tabs a').click(function (e) {
  e.preventDefault()
  $(this).tab('show')
})



Of Course, You Can Build a Web App!

[ 164 ]

For data markup, we must add the data-toggle="tab" attribute on the link 
elements, inside the list. Change the list markup for the following:

<ul id="account-tabs" class="nav nav-tabs nav-justified">
  <li role="presentation" class="active">
    <a href="#account-user" data-toggle="tab">User info</a>
  </li>
  <li role="presentation">
    <a href="#account-language" data-toggle="tab">Language</a>
  </li>
  <li role="presentation">
    <a href="#account-mobile" data-toggle="tab">Mobile</a>
  </li>
</ul>

If you are using pills, add the data-toggle="pill" attribute, just 
as we did for tabs.

Refresh the web browser and switch between the tabs. It works like a charm! To 
make it even fancier, add the .fade class to each .tab-pane to create a fade effect 
when changing tabs.

Creating content in the user info tab
Inside the .tab-pane identified by #account-user, let's add some content. Since it 
is a configuration menu, we will create a form to set the user settings. Again, we will 
work with some forms in Bootstrap. Do you remember how to use them?

In the form, we will have three inputs (name, username, and e-mail) followed by a 
button to save the changes. We will use the .form-horizontal class to make each 
form input next its label and stacked by each other. So, place the following code 
inside the #account-user element:

<div id="account-user" role="tabpanel" class="tab-pane active" >
  <form class="form-horizontal">
    <div class="form-group">
      <label class="col-sm-3 control-label">Name</label>
      <div class="col-sm-9">
        <input type="text" class="form-control" value="Jonny Doo">
      </div>



Chapter 7

[ 165 ]

    </div>
    <div class="form-group">
      <label class="col-sm-3 control-label">Username</label>
      <div class="col-sm-9">
        <div class="input-group">
          <div class="input-group-addon">@</div>
          <input type="text" class="form-control"  
value="jonnydoo">
        </div>
      </div>
    </div>
    <div class="form-group">
      <label class="col-sm-3 control-label">Email</label>
      <div class="col-sm-9">
        <input type="email" class="form-control"  
value="jonnydoo@dogmail.com">
      </div>
    </div>
    <div class="form-group">
      <div class="col-sm-offset-3 col-sm-9">
        <button type="submit" class="btn btn-primary">
          Save changes
        </button>
      </div>
    </div>
  </form>
</div>

Break through the code, we set the labels to fill a quarter of the form row, while 
the input fills the rest. We again used the input groups to add the @ sign before the 
username field.

Each label has the .col-sm-3 class and the input the .col-sm-9 class. As we said, 
the forms respect the grid system layout, so we can apply the same classes here. We 
also added the .col-sm-offset-3 class to the submit button for a correct offset.



Of Course, You Can Build a Web App!

[ 166 ]

Right now, the page should look like the following screenshot. Isn't it looking nicer?

CSS turn! We must make it look prettier, so let's play with some paddings. However, 
before anything, add the class to .card to the .tab-content. Next, let's fix the 
borders and margins in .tab-content by adding some padding and some negative 
margin, as follows:

#main .tab-content {
  padding: 2em;
  margin-top: -0.1rem;
}

Then, remove the border from the tab list and change the z-index of the tabs:

#account-tabs > li {
  border-bottom: 0;
}

#account-tabs {
  position: relative;
  z-index: 99;
}



Chapter 7

[ 167 ]

Finally, remove the margin from the save changes button using another nth recipe, 
as follows:

#main .form-horizontal .form-group:last-child {
  margin-bottom: 0;
}

Nice! Refresh the web app and see the result, like this:

With these changes, we have made the form from .tab-content look like a card. We 
also added some margins and padding to correct the designs. Lastly, with the margin 
top and z-index, we make the selected tab blend correctly with the content.

The stats column
To finalize the settings page, we must fill the right column of the web app. To do this, 
we will create a menu that presents some general statistics about the user.

In order to do that, we will use the Bootstrap List group component. List group is 
powerful in Bootstrap as it can seem similar to Bootstrap Cards, but it has more 
specific options for menu list generation, such as headers, disabled items, and much 
more.



Of Course, You Can Build a Web App!

[ 168 ]

So let's start doing this! Create the HTML markup at the #right-content element:

<div id="right-content" class="col-md-3 hidden-sm hidden-xs">
  <ul class="list-group">
    <li class="list-group-item list-group-item-info">
      Dog stats
    </li>
    <li class="list-group-item">
      Number of day rides
    </li>
    <li class="list-group-item">
      Captured mice
    </li>
    <li class="list-group-item">
      Postmen frightened
    </li>
    <li class="list-group-item">
      Always alert badge
    </li>
  </ul>
</div>

It is a simple list and we just added the .list-group class to the list, while adding 
the .list-group-item class for each item in the list. For the first item, we used the 
.list-group-item-info contextual color class to make it blue, according to the 
Bootstrap contextual colors.

Before we continue, we have to change the colors of the borders from list group to 
respect the same border color that we have been using:

.list-group-item {
  border-color: #e5e5e5;
}

The result that you should see right know is like the one presented in the next 
screenshot. List groups is a very handy component that we can use to achieve almost 
the same effect that we got using Pills, but here we are using fewer CSS rules.



Chapter 7

[ 169 ]

Labels and badges
Labels and badges are Bootstrap components that can easily highlight some text or 
information. They can be used in any place, as we did in the navigation bar, on the 
notification item.

Just like most of Bootstrap's components, labels follow the contextual colors of 
Bootstrap, while badges do not have this option. To consolidate their utilization, let's 
add some of them to the right menu, regarding the statistics, because after all we 
want to know our stats!

It will be pretty easy since we have worked with this before. For the three first items, 
we will use labels, and for the last one, we will use a badge with an icon. Just add the 
highlighted code to the current .list-group:

<div id="right-content" class="col-md-3 hidden-sm hidden-xs">
  <ul class="list-group">
    <li class="list-group-item list-group-item-info">
      Dog stats
    </li>
    <li class="list-group-item">
      Number of day rides
      <span class="label label-success">3</span>
    </li>



Of Course, You Can Build a Web App!

[ 170 ]

    <li class="list-group-item">
      Captured mice
      <span class="label label-danger">87</span>
    </li>
    <li class="list-group-item">
      Postmen frightened
      <span class="label label-default">2</span>
    </li>
    <li class="list-group-item">
      Always alert badge
      <span class="badge glyphicon glyphicon-star" aria-hidden="true">
      </span>
    </li>
  </ul>
</div>

We must pay attention to some points here. The first is that we used the .label class 
together with the contextual color class, like this: .label-*. Here, * is the name of 
the contextual class.

The second thing is that if you refresh your web page right now, you will see that 
Bootstrap does have a CSS for aligning all badges on the right, but it does not apply 
the same rule for labels. So, add the next CSS:

#right-content .list-group .label {
  float: right;
}

The third point is that we used badges and icons in the same span. This is possible, 
and then we just need to adjust the CSS render:

#right-content .list-group .label {
  padding: 0.3rem 0.6rem;
}

#right-content .list-group .badge.glyphicon-star {
  background-color: #f0ad4e;
  padding: 0.4rem;
  padding-left: 0.5rem;
}



Chapter 7

[ 171 ]

By adding these rules, we adjusted the padding for the labels, adjusted the padding 
for the badge, and correctly set the yellow background for the star badge. See the 
result in the browser; it must look like this:

Cool! We've done another page for our web app. The stats menu looks cute. We will 
not cover the other page settings menus in this book, since they follow almost the 
same structure that we showed in this example. Try doing that as homework.

Summary
In this chapter, we covered a bunch of Bootstrap components. Now you can say that 
you know all of the most important Bootstrap components, even the new ones in 
version 4. This chapter was a challenging one, since you had to learn so many details 
about different components, so congratulations!

First, we started working with alerts. We only used the component alert with data 
attributes, but in the coming chapters, we will use it as a JavaScript plugin, with 
more options and animations. Don't worry! This is a glimpse of future chapters.

Next, you learned about progress bars and made use of some customization, and 
using animations by CSS. With that, we achieved a cool result at the end and are now 
able to use progress bars when needed.



Of Course, You Can Build a Web App!

[ 172 ]

After that, we switched to the settings page. There, taking advantage of the same 
web application structure, we changed the layout. We did this by creating a menu 
using the pills navigator, and created a main component that used tabs.

For tabs, that was the first time we presented how to use a Bootstrap plugin by using 
JavaScript, but do not worry about this either. We will go deep into this subject in the 
next chapter.

To finish the chapter, we worked with other component, called list group. This 
component offers some more capabilities for creating stacked menus.

Inside the items, we studied the use of labels and badges, which are nice things that 
Bootstrap offers to us.

In the next chapter, we will start working with some Bootstrap JavaScript plugins. 
We will go back to the main web application page and play with some posts on the 
timeline. It will be fun. See you there!



[ 173 ]

Working with JavaScript
The whole Internet would not have been the same without JavaScript, and so is 
Bootstrap. The JavaScript plugins from Bootstrap account for a chunk of Bootstrap's 
success. By having them, Bootstrap has allowed all of us to use modals, alerts, 
tooltips, and other plugins out of the box.

Therefore, the main focus of this chapter is to explain the main Bootstrap JavaScript 
plugins by using them in our web application. In the previous chapters, we used 
a few plugins. The purpose of this chapter is to go deep into this subject. The key 
points that we will cover now are:

• General usage of Bootstrap JavaScript plugins
• Data attributes
• Modals
• Tooltips
• Popover
• Affix

Understanding JavaScript plugins
As I said, Bootstrap offers a lot of JavaScript plugins. They all come together 
when we download the framework, and all of them are ready for use when the 
bootstrap.js file is loaded in HTML, although each plugin can be downloaded 
individually as well from the Bootstrap website.



Working with JavaScript

[ 174 ]

Minifying JavaScript
In the production stage, you can use the minified version of Bootstrap 
JavaScript. We are not using that right now for learning purposes, but 
it is recommended that you use the minimal version when you go live.

The library dependencies
While we were setting up our development environment, we spoke about the need 
to import the jQuery library. Actually, jQuery is now the only required external 
dependency for Bootstrap.

Check out the bower.json file in the Bootstrap repository for further information 
about dependencies.

Bower
Bower is a package management control system for client-side 
components. To use Bower, you must have both Node and npm installed. 
Bower was developed by the developers of Twitter.

Data attributes
HTML5 introduced the idea of adding custom attributes to document tags in order to 
store custom information. Therefore, you can add an attribute to a tag with the data-
* prefix, retrieve the information in JavaScript, and not get started with some plugin 
in your browser. An overwhelming majority of web browsers do support the use of 
custom data attributes.

With that ideology, Bootstrap implemented all the plugins to be used with just 
data attributes. This goes towards the framework idea to increase the speed of 
development and prototyping. This is because you can make use of plugins without 
typing JavaScript code.

To control that methodology, Bootstrap implemented an API so that you can access 
all plugins through only data attributes. Sometimes, however, you may want to turn 
off access through the API. To do so, insert the following command at the beginning 
of your JavaScript code:

$(document).off('.data-api');



Chapter 8

[ 175 ]

To disable the API for some specific plugins, prepend the plugin namespace. For 
instance, to disable the alerts API, type this:

$(document).off('.alert.data-api');

Bootstrap JavaScript events
There is a set of events that Bootstrap produces for each plugin. They are triggered 
usually before and after the event starts. To exemplify this, let's say that we have a 
Bootstrap modal (you will learn about using modals in this chapter; don't worry) and 
we will call it to open by JavaScript:

$('#some-modal').modal();

When this happens, Bootstrap triggers the events called show.bs.modal and shown.
bs.modal. The first one is called before the open modal call and the other is called 
after the action. Let's say we want to customize our modal before it is shown. To do 
this, we must use the first event:

$('#some-modal').on('shown.bs.modal', function(e) {
  // do some customization before shown
});

The events can be used for all plugins. Just change the namespace (in this case, 
.modal is the namespace) to achieve the result.

Awesome Bootstrap modals
It's time to learn how to use modals! Modals are really present nowadays in web 
development and Bootstrap plugins, for that is really complete and easy to use. To 
use it, let's go back to our main web application page, the one containing the feeds.

First, we add the .hide helper class to the div.alert that we created at the #main 
column. We will play with alerts later. Now, go to the #tweet button on the 
navigation bar. We want to open a modal for tweets when clicking on this button. So, 
add the markup to the element:

<!-- modal launch button -->
<button id="tweet" class="btn btn-default pull-right visible-xs-block" 
data-toggle="modal" data-target="#tweet-modal">
  <span class="glyphicon glyphicon-pencil" aria-hidden="true"></span>
  Tweet
</button>



Working with JavaScript

[ 176 ]

What we did is the call to open a modal, recognized by the #tweet-modal ID and the 
data-toggle="modal" data attribute. We could also have done that via JavaScript 
with this code:

$('#tweet-modal').modal();

Create the modal by adding the next HTML code. We have created all the modals 
at the end of our HTML code, outside of all Bootstrap elements and right before the 
loading of the JavaScript libraries:

<div class="modal fade" id="tweet-modal" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
        <h4 class="modal-title">Modal title</h4>
      </div>
      <div class="modal-body">
        Modal content
      </div>
      <div class="modal-footer">
        <button type="button" class="btn btn-default" data-
dismiss="modal">
          Close
        </button>
        <button type="button" class="btn btn-primary">
          Save changes
        </button>
      </div>
    </div>
  </div>
</div>

Reload the web application, click on the Tweet button and see the magic happen! 
This code is a little more complex, so let's explain each part separately. The following 
screenshot shows what the first draft of our modal looks like. Now let's understand 
what we did.



Chapter 8

[ 177 ]

Modal general and content
The first tag used to initiate a modal is a <div> with the .modal class. Note that 
we also added the .fade class to create the effect of fade in and fade out when the 
modal appears and disappears.

Inside the .modal element, we created two more nested tags. The first one is .modal-
dialog, which will wrap all of the modal dialog. Inside it, we created .modal-
content, which will hold the content of the modal itself.

The modal header
Next, inside .modal-content we have the .modal-header element. In the modal 
header, we can add some title information about the modal. In our example, we have 
also added a close button that hides the modal using a data-dismiss="modal" data 
attribute.



Working with JavaScript

[ 178 ]

The modal body
The modal body is where you should place the main content of the modal. A cool 
feature inside the modal is the ability to use scaffolding.

To use the grid system inside the modal body, you do not need to create a container. 
Just create a .row inside .modal-body and start adding columns, as shown in the 
following example in bold:

<div class="modal fade" id="tweet-modal" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
        <h4 class="modal-title">Modal title</h4>
      </div>
      <div class="modal-body">
        <div class="row">
          <div class="col-sm-2">Use</div>
          <div class="col-sm-4">the</div>
          <div class="col-sm-6">grid system</div>
        </div>
      </div>
      <div class="modal-footer">
        <button type="button" class="btn btn-default" data-
dismiss="modal">
          Close
        </button>
        <button type="button" class="btn btn-primary">
          Save changes
        </button>
      </div>
    </div>
  </div>
</div>

The modal footer
At the end of the modal, you can create a .modal-footer element to place some 
other components, such as buttons, as we did in the previous example.



Chapter 8

[ 179 ]

Creating our custom modal
Now that you have learned how to use a Bootstrap modal, let's customize it for our 
example. First, let's add some content inside our .modal-body and edit .modal-
header and .modal-footer a little:

<div class="modal fade" id="tweet-modal" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
        <h4 class="modal-title">Dog a new tweet</h4>
      </div>
      <div class="modal-body">
        <textarea class="form-control" rows="4" placeholder="What you  
want to bark?" maxlength="140"></textarea>
      </div>
      <div class="modal-footer">
        <span class="char-count pull-left" data-max="140">140</span>
        <button type="button" class="btn btn-default" data-
dismiss="modal">
          Close
        </button>
        <button type="button" class="btn btn-primary">
          Tweet
        </button>
      </div>
    </div>
  </div>
</div>

Here, we added a heading to .modal-header, a textarea in .modal-body and a 
<span> element with the .char-count class in the footer.

The goal here is to type a tweet inside the textarea element and update the 
character count in the footer to show how many characters are left for the user to 
enter.



Working with JavaScript

[ 180 ]

For styling, go to the CSS and add a style rule for .char-count:

#tweet-modal .char-count {
  padding: 0.7rem 0;
}

Refresh the web browser and see the result of the tweet modal, as shown in the 
following screenshot. Now, we need to add some JavaScript to count the number of 
remaining characters to tweet.

So, for the JavaScript for the character count, open (or create it if you do not have it 
yet) the main.js file. Ensure that you have the document ready to create the script, 
by having the following code in your file:

$(document).ready(function() {
    // add code here
});

Then, we must create a function that updates the remaining characters each time a 
letter is typed. Therefore, let's create an event handler for keyup.



Chapter 8

[ 181 ]

The keyup event came from jQuery, which has a lot of event handlers that are 
triggered on different actions. There are also other events such as click, hover, and 
so on. In this case, keyup will trigger when you release a key that you pressed.

The basic usage to create a bind event is from a selector, call the .on function passing 
at the first argument of the event type (in this case, keyup), followed by the handler 
(in our case, a function). Here, we have presented the JavaScript code, and the event 
handler is in bold so as to highlight the usage:

$(document).ready(function() {
    var $charCount, maxCharCount;

    $charCount = $('#tweet-modal .char-count')
    maxCharCount = parseInt($charCount.data('max'), 10);

    $('#tweet-modal textarea').on('keyup', function(e) {
        var tweetLength = $(e.currentTarget).val().length;

        $charCount.html(maxCharCount - tweetLength);
  });
});

We used the keyup event handler to trigger the event after the key 
is released and the character is typed. Therefore, the new length of 
textarea is already computed when we make a comparison.

A tool for your tip
Tooltips are a very useful component for describing in detail an element or a web 
page. For example, when you have an image and want to describe it further, you add 
a tooltip. When users hover over the image, they see further information.

In our case, we will use tooltips for the buttons present in every tweet, such as Reply, 
Retweet, and Start. This Bootstrap plugin component is pretty simple and useful 
in many cases. To start it, just add the markup in bold to the tweets in the middle 
column (<li> in the ul#feed element):

<ul id="feed" class="list-unstyled">
  <li>
    <img src="imgs/doge.jpg" class="feed-avatar img-circle">
    <div class="feed-post">



Working with JavaScript

[ 182 ]

      <h5>Doge <small>@dogeoficial - 3h</small></h5>
      <p>You can't hold a dog down without staying down with  
him!</p>
    </div>
    <div class="action-list">
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Reply">
        <span class="glyphicon glyphicon-share-alt" aria-
hidden="true"></span>
      </a>
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Retweet">
        <span class="glyphicon glyphicon-refresh" aria-
hidden="true"></span>
        <span class="retweet-count">6</span>
      </a>
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Start">
        <span class="glyphicon glyphicon-star" aria-hidden="true"></
span>
      </a>
    </div>
  </li>

  <li>
    <img src="imgs/laika.jpg" class="feed-avatar img-circle">
    <div class="feed-post">
      <h5>Laika <small>@spacesog - 4h</small></h5>
      <p>That's one small step for a dog, one giant leap for  
giant</p>
    </div>
    <div class="action-list">
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Reply">
        <span class="glyphicon glyphicon-share-alt" aria-
hidden="true"></span>
      </a>
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Retweet">
        <span class="glyphicon glyphicon-refresh" aria-
hidden="true"></span>
        <span class="retweet-count">6</span>
      </a>
      <a href="#" data-toggle="tooltip" data-placement="bottom"  
title="Star">



Chapter 8

[ 183 ]

        <span class="glyphicon glyphicon-star" aria-hidden="true"></
span>
      </a>
    </div>
  </li>
</ul>

As you can notice, by using data attributes, you just need to add three of them to 
make a tooltip. The first one is data-toggle, which says the type of toggle. In our 
case, it is tooltip. The data-placement attribute is concerned with the placement of 
the tooltip (obviously). In this case, we set it to appear at the bottom, but we can set 
it to left, top, bottom, right, or auto. Finally, we add the title attribute, which is 
not a data attribute, because HTML already has the attribute title, so we can call it by 
this attribute.

Refresh the web app in the browser, hover the icon and you will see that… nothing 
happens! Unlike the other plugins, the tooltip and popover Bootstrap plugins cannot 
be activated simply through data attributes. They did this because of some issues, so 
it must be initialized through a JavaScript command. Therefore, add the following 
line to the main.js file:

$(document).ready(function() {
    ... // to rest of the code
    $('[data-toggle="tooltip"]').tooltip();
});

The [data-toggle="tooltip"] selector will retrieve all the tooltip elements and 
start it. You can also pass some options inside while calling the .tooltip() start 
function. The next table shows some main options (to see all of them, refer to the 
official documentation of Bootstrap) that can be passed through JavaScript or data 
attributes:

Option Type Default Description
animation Boolean true This adds fade in and fade out animation to a 

tooltip.
placement String or 

function
top This is the placement position of the tooltip. The 

options are the same as those mentioned for the 
usage with data attributes (top, bottom, left, 
right, and auto). You can pass auto with 
another option, such as auto left, which will 
always show the tooltip on the left as long as it is 
possible, and then show it on the right.

selector String false If you provide a selector, the tooltip will be 
delegated to the specified target.



Working with JavaScript

[ 184 ]

Option Type Default Description
trigger String hover 

focus
The trigger to the tooltip will be shown. The 
options are click, hover, focus, and manual. 
You can pass multiple options for trigger, unless 
you use manual, in which case you need to 
write a function to activate the plugin.

The tooltip plugin also has some useful methods for doing things such as showing 
all tooltips. You can call them using the .tooltip() method. As mentioned, if you 
want to show all tooltips, just use $('.tooltip-selector').tooltip('show'). 
The other options are hide, toggle, and destroy.

Pop it all over
In some cases, you may want to show more information that does not fit in a simple 
tooltip component. For that, Bootstrap has created popovers, which are components 
that create small overlays of content to show detailed secondary information.

The popover plugin is an extension of the tooltip plugin, so if you are using separate 
plugins, you must load both to make it work. Also, just like tooltips, popovers cannot 
be activated simply through data attributes. You must call them via JavaScript to 
make them work.

Let's use a popover in our web app example, on the right-hand-side column, the one 
identified by div#who-follow. We will add the popover to the Follow buttons, and 
for that, we need to do two things. The first one is to change the <button> element to 
an <a> element and then add the popover markup.

Why do we need to change buttons to links in popover?
Actually, we don't have to change the buttons' markup; we will do that 
just because of cross-browser compatibility. There are some browsers 
that do not support all the functionalities, such as the click Dismiss 
option present in the popover.

First, about the <buttons> inside the div#who-follow element. Change them to <a> 
elements in the HTML. Also add the role="button" and tabindex="-1" attributes 
to the links to fix the issue of cross-browser compatibility:

<div id="who-follow" class="card">
  <div class="card-header">
    Who to follow
  </div>



Chapter 8

[ 185 ]

  <div class="card-block">
    <ul class="list-unstyled">
      <li>
        <img src="imgs/cat.jpg" class="img-rounded">
        <div class="info">
          <strong>Crazy cats</strong>
          <a href="#" role="button" tabindex="-1" class="btn btn-
default">
            <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
          </a>
        </div>
      </li>
      <li>
        <img src="imgs/ration.jpg" class="img-rounded">
        <div class="info">
          <strong>Free ration alert</strong>
          <a href="#" role="button" tabindex="-1" class="btn btn-
default">
            <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
          </a>
        </div>
      </li>
    </ul>
  </div>

The code in bold refers to the changes from button to link. Now, we must add the 
popover markup. It is pretty simple and follows most of the data attributes presented 
in the tooltip plugin:

<div id="who-follow" class="card">
  <div class="card-header">
    Who to follow
  </div>
  <div class="card-block">
    <ul class="list-unstyled">
      <li>
        <img src="imgs/cat.jpg" class="img-rounded">
        <div class="info">
          <strong>Crazy cats</strong>
          <a href="#" role="button" tabindex="-1" class="btn btn-
default" data-toggle="popover" data-trigger="focus" title="You may 
want to follow">



Working with JavaScript

[ 186 ]

            <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
          </a>
        </div>
      </li>
      <li>
        <img src="imgs/ration.jpg" class="img-rounded">
        <div class="info">
          <strong>Free ration alert</strong>
          <a href="#" role="button" tabindex="-1" class="btn btn-
default" data-toggle="popover" data-trigger="focus" title="You may 
want to follow">
            <span class="glyphicon glyphicon-plus" aria-
hidden="true"></span> Follow
          </a>
        </div>
      </li>
    </ul>
  </div>

Just like the popover, add the following line to the JavaScript code to make popovers 
appear:

$(document).ready(function() {
    … // the rest of the JavaScript
    $('[data-toggle="popover"]').popover();
});

Refresh the web browser, click on the Follow button and see the popover appearing 
to the right of the button. Now we will make some changes using the options to 
customize it. First of all, let's create the content that will appear inside the popover 
and change its placement in JavaScript:

$(document).ready(function() {
    … // rest of the JavaScript
    var popoverContentTemplate = '' +
        '<img src="imgs/breed.jpg" class="img-rounded">' +
        '<div class="info">' +
            '<strong>Dog Breeds</strong>' +
            '<a href="#" class="btn btn-default">' +
                '<span class="glyphicon glyphicon-plus" aria-
hidden="true"></span>' +
                'Follow' +
            '</a>' +
        '</div>';



Chapter 8

[ 187 ]

    $('[data-toggle="popover"]').popover({
        placement: 'bottom',
        html: true,
        content: function() {
            return popoverContentTemplate;
        }
    });
});

In the preceding code, we changed the placement of the popover to bottom and 
set the content that will appear inside the popover to be HTML with the html: 
true option. The content was provided by a function that simply returned the 
popoverContentTemplate variable.

For instance, we could have used the template in very different ways that are more 
optimized, but we did this to show the method of adding HTML content onto a 
popover via JavaScript and using a function for that. We could have called and used 
some options of the target clicked button inside the function by accessing the current 
scope in the this variable.

Popover events
Popovers and tooltips provide some nice events. As was said before, Bootstrap 
triggers some events when plugin elements appear, hide, and are inserted. To play 
with these, let's use the show.bs.popover event, which is an event that is fired 
immediately when the popover is show. In this case, we want to create an action 
before the popover is show. We want to change the text of the Follow button that we 
clicked on to Following, while changing the icon next to the text from a plus sign 
to an okay sign. We can take advantage of the show.bs.popover Bootstrap event 
to make these changes. In the JavaScript file, insert the following delegation to the 
popovers:

$(document).ready(function() {
    … // the rest of the JavaScript code
    $('[data-toggle="popover"]').on('show.bs.popover', function()  
{
        var $icon = $(this).find('span.glyphicon');

        $icon.removeClass('glyphicon-plus').addClass('glyphicon-ok');
        $(this).append('ing');
    });
});



Working with JavaScript

[ 188 ]

The scope of this event is the element of data-toggle, which is the Follow button. 
We query the icon inside the button, and change it from glyphicon-plus to 
glyphicon-ok. Finally, we append the infinitive ing to Follow, which means that 
we are now following Crazy cats or Free ration alert suggestions:

To add a cherry to the pie, let's change the color of the icon from blue to green when 
the okay icon appears:

div#who-follow li .info .glyphicon-ok {
  color: #5cb85c;
}

Refresh the web browser and click on the Follow button. You should see something 
similar to this screenshot:

There are many other places where the Bootstrap events can be used. This is a nice 
example where we want to change the element that we are interacting with. Keep in 
mind to change it whenever you need some related interaction.



Chapter 8

[ 189 ]

Making the menu affix
The affix plugin is present only in version 3 of Bootstrap (it was removed in version 
4), and it aims to toggle the position of an element between fixed and relative, 
emulating the effect of position: sticky, which is not present in all browsers.

We will apply the sticky effect the left #profile element although we do not have 
enough elements to make a scroll on our web page. Therefore, to make it simple, 
replicate the <li> in ul#feed to increase the number of items in the list. Do this three 
times or more to make a scroll in your web browser.

In div#profile, add the markup related to affix:

<div id="profile" class="col-md-3 hidden-sm hidden-xs" data-
spy="affix" data-offset-top="0">
    …
    // rest of the profile HTML
</div>

Refresh the web browser. You will see that the affix is not working yet. Since we are 
making the left column with a fixed position with the affix plugin, it is removing the 
entire column from the grid, making the columns glitch from left to right.

So, we need a workaround for that. We must create some piece of JavaScript code 
using the events triggered for the plugin.

Let's use the affix.bs.affix event, which is an event fired just before the affixing 
of the element:

$(document).ready(function() {
    … // rest of the JavaScript code

    $('#profile').on('affix.bs.affix', function() {
        $(this).width($(this).width() - 1);
        $('#main').addClass('col-md-offset-3');
    }).on('affix-top.bs.affix', function() {
        $(this).css('width', '');
        $('#main').removeClass('col-md-offset-3');
    });
});

Thus, we have played with some tricks in the preceding JavaScript code.

In the first delegated event, .on('affix.bs.affix', handler),when the element 
switches to position: fixed, we keep the width of the left column. It would 
change the width because the .col-md-3 class does not have a fixed width; it uses a 
percentage width.



Working with JavaScript

[ 190 ]

We also added the offset to the middle column, corresponding to the detached left 
column, the .col-md-offset-3 class.

The affix-top.bs.affix event does the opposite action, firing when the element 
returns to the original top position and removing the custom width and the offset 
class in the middle column.

To remove the fixed width and return to the .col-md-3 percentage width, just add 
the $(this).css('width', '') line. Also remove the .col-md-offset-3 class 
from the #main content.

Refresh the web browser, scroll the page, and see the result, exemplified in the next 
screenshot. Note that the profile is fixed on the left while the rest of the content 
scrolls with the page:



Chapter 8

[ 191 ]

Finishing the web app
To finish the web application example, we just need to create another modal when 
we click on the Messages link at the navigation bar.

To create it, we will use the same methodology used to create the modal for the 
Tweet button. So, add the data attributes' markups to the Messages link in .nav.
navbar-nav, as follows:

<ul class="nav navbar-nav">
  <li class="active">
    <a href="#">
      <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
      Home
    </a>
  </li>
  <li>
    <a href="#">
      <span class="badge">5</span>
      <span class="glyphicon glyphicon-bell" aria-hidden="true"></
span>
      Notifications
    </a>
  </li>
  <li>
    <a href="#" role="button" data-toggle="modal" data-
target="#messages-modal">
      <span class="glyphicon glyphicon-envelope" aria-hidden="true"></
span>
      Messages
    </a>
  </li>
  <li class="visible-xs-inline">
    <a href="#">
      <span class="glyphicon glyphicon-user" aria-hidden="true"></
span>
      Profile
    </a>
  </li>
  <li class="visible-xs-inline">



Working with JavaScript

[ 192 ]

    <a href="#">
      <span class="glyphicon glyphicon-off" aria-hidden="true"></span>
      Logout
    </a>
  </li>
</ul>

The highlighted code says that this link plays the role button, toggling a modal 
identified by the #messages-modal ID. Create the base of this modal at the end of 
the HTML code, just after #tweet-modal:

<div id="messages-modal" class="modal fade" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
        <h4 class="modal-title">Dog messages</h4>
        <button type="button" class="btn btn-primary btn-message">New 
message</button>
      </div>
      <div class="modal-body">
      </div>
    </div>
  </div>
</div>

We made some changes in comparison to #tweet-modal. Firstly, we removed 
.modal-footer from this modal, since we do not need these options in the modal. 
Like almost the entire framework, Bootstrap allows us to include or exclude elements 
as per our wishes.

Secondly, we created a new button, New message, in the header, identified by the 
.btn-message class. To present the button correctly, create the following CSS style:

#messages-modal .btn-message {
  position: absolute;
  right: 3em;
  top: 0.75em;
}



Chapter 8

[ 193 ]

Now let's create the content inside the modal. We will add a list of messages in the 
modal. Check out the HTML with the content added:

<div class="modal fade" id="messages-modal" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close">
          <span aria-hidden="true">&times;</span>
        </button>
        <h4 class="modal-title">Dog messages</h4>
        <button type="button" class="btn btn-primary btn-message">New 
message</button>
      </div>
      <div class="modal-body">
        <ul class="list-unstyled">
          <li>
            <a href="#">
              <img src="imgs/laika.jpg" class="img-circle">
              <div class="msg-content">
                <h5>Laika <small>@spacesog</small></h5>
                <p>Hey Jonny, how is down there?</p>
              </div>
            </a>
          </li>
          <li>
            <a href="#">
              <img src="imgs/doge.jpg" class="img-circle">
              <div class="msg-content">
                <h5>Doge <small>@dogeoficial </small></h5>
                <p>Wow! How did I turned in to a meme?</p>
              </div>
            </a>
          </li>
          <li>
            <a href="#">
              <img src="imgs/cat.jpg" class="img-circle">
              <div class="msg-content">
                <h5>Cat <small>@crazycat</small></h5>
                <p>You will never catch me!</p>
              </div>



Working with JavaScript

[ 194 ]

            </a>
          </li>
          <li>
            <a href="#">
              <img src="imgs/laika.jpg" class="img-circle">
              <div class="msg-content">
                <h5>Laika <small>@spacesog</small></h5>
                <p>I think I saw you in Jupiter! Have you been there 
recently?</p>
              </div>
            </a>
          </li>
        </ul>
      </div>
    </div>
  </div>
</div>

To finish our job, we just create some style in the CSS in order to display our list 
correctly:

#messages-modal .modal-body {
  max-height: 32rem;
  overflow: auto;
}

#messages-modal li {
  padding: 0.75rem;
  border-bottom: 0.1rem solid #E6E6E6;
}

#messages-modal li:hover {
  background-color: #E6E6E6;
}

#messages-modal li a:hover {
  text-decoration: none;
}

#messages-modal li img {
  max-width: 15%;
}



Chapter 8

[ 195 ]

#messages-modal .msg-content {
  display: inline-block;
  color: #000;
}

#messages-modal .msg-content h5 {
  font-size: 1em;
  font-weight: bold;
}

In this CSS, we simply set a maximum height for the modal body, while adding a 
scroll overflow. For the list and the link, we changed the style for hover and adjusted 
the font weight, size, and color for display.

Refresh the web browser, click on the Messages link in the navigation bar and see 
your nice modal, as follows:



Working with JavaScript

[ 196 ]

Summary
In this chapter, we finished our web application example. The main objective here 
was to learn about the Bootstrap plugins that we had not described before.

First, you learned about data attributes and how to use them with Bootstrap. After 
that, we saw both the possible ways to call plugins: via pure JavaScript or just 
through data attributes APIs.

We started and finished plugins with modals. Modals are one of the main plugins 
in Bootstrap because they are very versatile and customizable. Thus, they are fit for 
multiple contexts where you need some interaction with the user but do not want to 
move to another page.

In the middle of the chapter, we talked about two plugins that are closely related. 
They are the tooltip and the popover. Both came from the same initial plugin but 
with different contexts. Tooltips are used for auxiliary content, and popovers are 
something midway between a modal and a tooltip, so they can display more  
content compared to tooltips, but not too much intrusive like modals.

Creating a web application that is Twitter-like is an important kind of knowledge, 
since this can be replicated to different sources. Web applications have 
revolutionized the Web in different ways, and Bootstrap has taken the lead by 
helping us create faster and more beautiful web pages.

In the next chapter, we will step into an even more challenging example—we will 
build a dashboard web application from scratch! Just like the web application 
presented in this chapter, web dashboards are very popular across the Internet, and 
building one will place us at the same stratum as some of the best web developers. 
Ready for the advanced level?



[ 197 ]

Entering in the Advanced 
Mode

Alright, there is no more time to spend on testing our skills. Now it's time to truly 
test ourselves with a big challenge: creating an admin dashboard using Bootstrap. 
Now Bootstrap can help us, but we must know how to handle the majority of the 
framework to deliver professional work.

We need a plan to build this dashboard from scratch to its final form. Therefore, 
we will follow a designer template and recreate it from an image to a web page. 
Following this concept, you will learn about:

• The fluid container
• The flexbox layout
• Bootstrap custom stacked navigation
• The collapse plugin
• Bootstrap and advanced CSS
• External plugin integration
• Single-page application loading

This is the final example of the book. Let's face it and nail the Bootstrap framework. I 
know you are thoroughly able to defeat this final boss!



Entering in the Advanced Mode

[ 198 ]

The master plan
As I mentioned, this is a professional job and it deserves a professional treatment. 
Now we will have a design guideline to follow. Up next is a screenshot of the 
dashboard that we have to reproduce by code:

As you can see, the dashboard is composed of a navigation header containing some 
information, a search bar, and notifications. On the left-hand side is a menu with the 
sections of the web application. In the center is a set of charts about the page status. It 
looks good in the screenshot and will look even better in the browser!



Chapter 9

[ 199 ]

The page scaffolding consists of the following:

• The Bootstrap navigation component at the header, which is affixed to the 
top of the page

• A fluid container with two columns
• The left-hand-side column contains the dashboard menu and is affixed
• The right-hand-side column is the main content, which holds a set of cards 

that display some statistics

First of all, before you create any element, create a new file using the same structure 
that we pointed out for starting every example in the book (refer to the Bootstrap 
required tags section in Chapter 1, Getting Started, for more information). Create a file 
named dashboard.html and apply the default starter HTML to the file. Now we are 
ready to go!

The last navigation bar with flexbox
You may be bored of doing navigation bars; however, because of the acquired 
experience, we will do this one very quickly, taking advantage of the code written in 
previous examples.

Create a <nav> element, and inside it, create a .container-fluid and a .row:

<nav class="navbar navbar-fixed-top">
  <div class="container-fluid">
    <div class="row">
    </div>
  </div>
</nav>

This .row element will have two columns, just as we mentioned that will be done 
for the main container. On the first one, let's create the dashboard title and a refresh 
button, as follows:

<nav class="navbar navbar-fixed-top">
  <div class="container-fluid">
    <div class="row">
      <div class="col-sm-3 top-left-menu">
        <div class="navbar-header">
          <a class="navbar-brand" href="webapp.html">
            <h1>dashboard</h1>
          </a>



Entering in the Advanced Mode

[ 200 ]

        </div>
        <a href="#" data-toggle="tooltip" data-placement="bottom"  
data-delay="500" title="Refresh data" class="header-refresh pull-
right">
          <span class="glyphicon glyphicon-repeat" aria-
hidden="true"></span>
        </a>
      </div>
    </div>
  </div>
</nav>

Note that for the refresh button, we have used .glyphicon and added a tooltip. Do 
not forget to activate the tooltip in the main.js file that you have loaded:

$(document).ready(function() {
    $('[data-toggle="tooltip"]').tooltip();
});

In the tooltip, we added a delay to it show up with the data-delay="500" attribute. 
We mentioned this as an option for tooltip, but haven't made use of it so far. This 
will just delay the appearance of the tooltip for 500 milliseconds, while hovering the 
refresh link.

Inside .nav-header, add .navbar-toggle, which will be displayed for small screens 
and collapse the menu:

<nav class="navbar navbar-fixed-top">
  <div class="container-fluid">
    <div class="row">
      <div class="col-sm-3 top-left-menu">
        <div class="navbar-header">
          <a class="navbar-brand" href="webapp.html">
            <h1>dashboard</h1>
          </a>
          <button type="button" class="navbar-toggle collapsed"  
data-toggle="collapse" data-target="#nav-menu" aria-expanded="false">
            <span class="sr-only">Toggle navigation</span>
            <span class="icon-bar"></span>
            <span class="icon-bar"></span>
            <span class="icon-bar"></span>
          </button>
        </div>
        <a href="#" data-toggle="tooltip" data-placement="bottom"  
data-delay="500" title="Refresh data" class="header-refresh pull-
right">



Chapter 9

[ 201 ]

          <span class="glyphicon glyphicon-repeat" aria-
hidden="true"></span>
        </a>
      </div>
    </div>
  </div>
</nav>

So far, we have no secrets. We have just replicated components that we used before. 
Following our pipeline, we should create some CSS rules to style our page, although 
first let's create some common CSS style. At the beginning of base.css, which is 
loaded in our HTML, we add the style:

.transition,

.transition:hover,

.transition:focus {

  -webkit-transition: all 150ms ease-in-out;
  -moz-transition: all 150ms ease-in-out;
  -ms-transition: all 150ms ease-in-out;
  -o-transition: all 150ms ease-in-out;
  transition: all 150ms ease-in-out;
}

html, body {
  position: relative;
  height: 100%;
  background-color: #e5e9ec;
}

First, we created a common .transition class to be used in multiples cases (we 
will use it in the chapter). Transitions were introduced in CSS3 and they allow us to 
create transition effects. In this case, it's an effect of ease-in-out for any element 
that has this class.

Also, for html and body, we changed the background and set the position and height 
to fill the entire screen.

Next, we must add the CSS for the navigation header:

nav.navbar-fixed-top {
  background-color: #FFF;
  border: none;
}



Entering in the Advanced Mode

[ 202 ]

nav .top-left-menu {
  background-color: #252830;
  display: -webkit-flex;
  display: flex;
  align-items: center;
}

.navbar-brand {
  height: auto;
}

.navbar-brand h1 {
  margin: 0;
  font-size: 1.5em;
  font-weight: 300;
  color: #FFF;
}

nav .header-refresh {
  margin-left: auto;
  color: #FFF;
}

Here, we changed the color of the elements. But the most important thing here is the 
usage of the flexbox rules (do you remember flexbox, which we discussed in Chapter 
5, Making It Fancy, in the Understanding flexbox section?). Remember that Bootstrap 4 
will support flex display, so it is nice to keep using it, since it should be the standard 
in the near future for every browser.

The result of this part must look like what is shown in the following screenshot:



Chapter 9

[ 203 ]

The navigation search
Following our design, we have to create a search form. So, just after the closure of 
.top-left-menu, add the form code, such as the portion in bold:

<nav class="navbar navbar-fixed-top">
  <div class="container-fluid">
    <div class="row">
      <div class="col-sm-3 top-left-menu">
        ...
      </div>

      <form id="search" role="search" class="hidden-xs col-sm-3">
        <div class="input-group">
          <span class="glyphicon glyphicon-search" aria-
hidden="true"></span>
          <input type="text" class="form-control transition"  
placeholder="Search...">
        </div>
      </form>

    </div>
  </div>
</nav>

As usual, it's CSS time:

nav form#search {
  padding: 0.9em;
}

nav form#search .input-group {
  display: -webkit-flex;
  display: flex;
  align-items: center;
}

nav form#search .input-group .form-control {
  border-radius: 0.25em;
  border: none;
  width: 70%;



Entering in the Advanced Mode

[ 204 ]

  padding-left: 1.9em;
  background-color: #F3F3F3;
  box-shadow: none;
}

nav form#search .input-group .form-control:focus {
  width: 100%;
  box-shadow: none;
}

nav form#search .glyphicon-search {
  z-index: 99;
  left: 1.7em;
}

In this CSS, we have again used the display: flex property. In addition to this, 
we created a pseudo-class rule for .form-control. The :focus, which is activated 
whenever the input has focus, in other words, is receiving some text. This :focus 
rule will change the width of the input when you focus the input, which happens 
when you click on it.

Refresh the web page and click on the input on the search form. Note that we applied 
the .transition class in this element, so when we focus it, the change of width is 
smoothed in a transition. The result should look like this:

The menu needs navigation
To finish the navigation bar, we have to create the right-hand-side content of the 
navigation bar, which we call #nav-menu. This menu will hold the notification list, 
placed as a button dropdown.

After <form>, place the presented HTML:

<div id="nav-menu" class="collapse navbar-collapse pull-right">
  <ul class="nav navbar-nav">
  </ul>
</div>



Chapter 9

[ 205 ]

Inside this <ul> tag, we will place the notifications. Right now, we just have this 
option, but with this list, we can add multiple items in the navigation bar. So, add the 
following code for the item:

<div id="nav-menu" class="collapse navbar-collapse pull-right">
  <ul class="nav navbar-nav">
    <li>
      <div id="btn-notifications" class="btn-group">
        <span class="badge">3</span>
        <button type="button" class="btn btn-link dropdown-toggle" 
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
          Notifications
        </button>
      </div>
    </li>
  </ul>
</div>

Explaining this item, we can say that it is a button for the notification. There is a 
wrapper element named #btn-notifications. Inside it is a .badge to verbalize 
the number of new notifications, and a button.btn that must seem like a link, so 
we applied the .btn-link class to it. The button also contains the tags needed for 
a Bootstrap drop-down button, such as the .dropdown-toggle class and the data-
toggle="dropdown" data property.

Therefore, every button.dropdown-toggle button needs a ul.dropdown-menu. Just 
after <button>, create the list:

<div id="nav-menu" class="collapse navbar-collapse pull-right">
  <ul class="nav navbar-nav">
    <li>
      <div id="btn-notifications" class="btn-group">
        <span class="badge">3</span>
        <button type="button" class="btn btn-link dropdown-toggle"  
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
          Notifications
        </button>
        <ul id="notification-list" class="dropdown-menu pull-right">
          <li>
            <a href="#">
              <span class="badge"></span>
              <img src="imgs/laika.jpg" class="img-circle">
              <div class="notification-message">
                <strong>Laika</strong>
                <p>Hey! How are you?</p>



Entering in the Advanced Mode

[ 206 ]

                <em class="since">2h ago</em>
              </div>
            </a>
          </li>
          <li>
            <a href="#">
              <span class="badge"></span>
              <img src="imgs/cat.jpg" class="img-circle">
              <div class="notification-message">
                <strong>Devil cat</strong>
                <p>I will never forgive you...</p>
                <em class="since">6h ago</em>
              </div>
            </a>
          </li>
          <li>
            <a href="#">
              <span class="badge"></span>
              <img src="imgs/doge.jpg" class="img-circle">
              <div class="notification-message">
                <strong>Doge</strong>
                <p>What are you doing? So scare. It's alright  
now.</p>
                <em class="since">yesterday</em>
              </div>
            </a>
          </li>
        </ul>
      </div>
    </li>
  </ul>
</div>

The new list element is pointed out in bold. Even though the content seems long, it is 
just a repetition of three items with different contents inside our notification list.

Refresh the page, open the dropdown, and you will feel an uncontrollable desire to 
add some CSS and stop the dropdown from being ugly anymore:

/*nav menu*/
nav #nav-menu {
  padding: 0.4em;
  padding-right: 1em;
}



Chapter 9

[ 207 ]

/*nav menu and notifications*/
#nav-menu #btn-notifications > .badge {
  color: #FFF;
  background-color: #f35958;
  font-size: 0.7em;
  padding: 0.3rem 0.55rem 0.3rem 0.5rem;
  position: absolute;
  right: -0.4rem;
  top: 1rem;
  z-index: 99;
}

#btn-notifications .btn-link {
  padding-top: 1.5rem;
  color: #252830;
  font-weight: 500;
}

#btn-notifications .btn-link:hover {
  text-decoration: none;
}

Great! This will make the button and notification badge appear more beautiful. Then 
it's time for #notification-list:

#notification-list {
  max-height: 20em;
  overflow: auto;
}

#notification-list a {
  display: -webkit-flex;
  display: flex;
  opacity: 0.7;
  margin: 1.5rem;
  border-radius: 0.5rem;
  padding: 0.5rem 1.3rem;
  background-color: #EFEFEF;
  position: relative;
}

#notification-list a:hover {
  color: #262626;
  text-decoration: none;
  opacity: 1;



Entering in the Advanced Mode

[ 208 ]

}

#notification-list img {
  display: inline-block;
  height: 35px;
  width: 35px;
  margin-right: 1em;
  margin-top: 1em;
}

#notification-list .notification-message {
  display: inline-block;
  white-space: normal;
  min-width: 25rem;
}

#notification-list .badge:empty {
  display: inline-block;
  position: absolute;
  right: 0.5rem;
  top: 0.5rem;
  background-color: #f35958;
  height: 1.4rem;
}

#notification-list em.since {
  font-size: 0.7em;
  color: #646C82;
}

For the notification, we did just some common rules, such as spacing, color, and so 
on. The only different thing is, again, the use of flexbox to align the content. See this 
screenshot for the final result of the navigation bar:

Did you notice that the images appear rounded? Do you know why? This 
is because of the .img-circle Bootstrap helper class; it is present in 
every <img> element.



Chapter 9

[ 209 ]

Checking the profile
In the navigation bar, the last present component is a picture that, when you click on 
it, opens a user menu, just like what we did in the example of the web application. 
With no further delay, place the next HTML just after the <ul> of #nav-menu:

<div id="nav-menu" class="collapse navbar-collapse pull-right">
  <ul class="nav navbar-nav">
    …
  </ul>

  <div id="nav-profile" class="btn-group pull-right">
    <button type="button" class="btn btn-link dropdown-toggle  
thumbnail" data-toggle="dropdown" aria-haspopup="true" aria-
expanded="false">
      <img src="imgs/jon.png" class="img-circle">
    </button>
    <ul class="dropdown-menu">
      <li><a href="#">Profile</a></li>
      <li><a href="settings.html">Setting</a></li>
      <li role="separator" class="divider"></li>
      <li><a href="#">Logout</a></li>
    </ul>
  </div>
</div>

So, it is another button dropdown. The CSS for this HTML is as follows:

#nav-profile {
  margin: 0.5em;
  margin-left: 1em;
}

#nav-profile button.thumbnail {
  margin: 0;
  padding: 0;
  border: 0;
}

#nav-profile img {
  max-height: 2.3em;
}



Entering in the Advanced Mode

[ 210 ]

We are done! Refresh the web browser and see the result, which should be like what 
is shown in this screenshot:

Filling the main fluid content
After the navigation bar, we must fill the main content using a fluid layout. For that, 
we create a .container-fluid, just as we did in the <nav>. Inside the container, we 
create a single .row and two columns with spacing three and nine, respectively:

<div class="container-fluid">
  <div class="row">
    <div id="side-menu" class="col-md-3 hidden-xs">
    </div>

    <div id="main" class="col-md-9">
    </div>
  </div>
</div>

It is a common grid, containing one row. In the row, the first column, #side-menu, is 
shown from small viewports up to larger ones, while the #main column fills 9 out of 
12 grids for medium resolutions.

However, we must not forget that #side-menu is actually an affix component. So, 
let's add the data properties to make it stitch to the top of the page, as we did in the 
web application example when you were learning this plugin:

<div class="container-fluid">
  <div class="row">
    <div id="side-menu" class="col-md-3 hidden-xs" data-spy="affix" 
data-offset-top="0">
    </div>

    <div id="main" class="col-sm-offset-3 col-md-9">
    </div>



Chapter 9

[ 211 ]

  </div>
</div>

Note that because of the addition of the affix, we must set an offset in the #main div 
with the .col-sm-offset-3 class.

From the side stacked menu
Let's fill #side-menu with content. At first, we have to create the profile block, which 
contains the user data. Place the following HTML inside the referred element:

<div id="side-menu" class="col-md-3 hidden-xs" data-spy="affix"  
data-offset-top="0">
  <div class="profile-block">
    <img src="imgs/jon.png" class="img-circle">
    <h4 class="profile-title">Jonny Doo  
<small>@jonnydoo</small></h4>
  </div>
</div>

Check out the page in the browser, and you will see that it is not displaying nicely. 
For the CSS, we must follow this style:

#side-menu {
  background-color: #1b1e24;
  padding-top: 7.2rem;
  height: 100%;
  position: fixed;
}

#side-menu .profile-block > * {
  display: inline-block;
}

#side-menu .profile-block img {
  width: 70px;
}

#side-menu .profile-title {
  color: #FFF;
  margin-left: 1rem;
  font-size: 1.5em;
  vertical-align: middle;
}

#side-menu .profile-title small {
  display: block;
}



Entering in the Advanced Mode

[ 212 ]

With that, the #side-menu should fill the entire left height, but if you resize the 
browser to a smaller resolution, you will see that #nav-header does not resize 
together with the main content. This is a small challenge. Do you know why it is 
happening?

That was a little prank! Did I get you? In #side-menu, we applied only the class for 
medium viewports, that is, the .col-md-3 class. What we should have done was 
apply the class for small devices as well to make it responsive to small viewports and 
resize like all the other elements, which needs the .col-sm-* class. In this case, just 
change the class of #side-menu and in the #main element as well:

<div class="container-fluid">
  <div class="row">
    <div id="side-menu" class="col-sm-3 hidden-xs" data-spy="affix" 
data-offset-top="0">
    </div>

    <div id="main" class="col-sm-offset-3 col-sm-9">
    </div>
  </div>
</div>

Here is a screenshot that shows the result of the side menu for the moment:

I heard that the left menu is great!
A web application is never a web application if it does not have a menu. After the 
profile info in #side-menu, we will add a stacked menu.

Hearing the word "stacked" for a menu, what you remember? Of course, the .nav-
stacked menu from Bootstrap! Let's create a .nav-stacked component in this 
menu. Therefore, after #profile-block, append the following HTML:

<ul class="nav nav-pills nav-stacked">
  <li>



Chapter 9

[ 213 ]

    <a href="#" class="transition">
      <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
      Overview
    </a>
  </li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-user" aria-hidden="true"></
span>
      Audience
    </a>
  </li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-usd" aria-hidden="true"></span>
      Finances
      <span class="glyphicon glyphicon-menu-left pull-right  
transition" aria-hidden="true"></span>
    </a>
  </li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-time" aria-hidden="true"></
span>
      Real time
      <span class="badge pull-right">12</span>
    </a>
  </li>
  <li class="nav-divider"></li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-briefcase" aria-
hidden="true"></span>
      Projects
      <span class="glyphicon glyphicon-menu-left pull-right  
transition" aria-hidden="true"></span>
    </a>
  </li>
</ul>

No secrets here! Just create a simple stacked list using the .nav, .nav-pills, and 
.nav-stacked classes. Bootstrap will do the magic for you. You will learn a little 
trick now—the collapse Bootstrap plugin.



Entering in the Advanced Mode

[ 214 ]

Learning the collapse plugin
Collapse is another plugin from Bootstrap that toggles the visualization behavior of 
an element. It will show or collapse an item regarding the trigger of an action.

The collapse plugin requires the transition plugin present in the 
Bootstrap framework.

To add the collapse event to an element, you should add a data attribute called data-
toggle="collapse". If the element is a link <a>, point the anchor to the identifier 
of the element, like this: href="#my-collapsed-element". If it is a <button>, add 
the data attribute pointing the identifier, like this for instance: data-target="#my-
collapsed-element". The difference between using href for a link and data-target 
for a button is because of the semantics of the element. Naturally, every link is 
expected to have a reference in the href, although we do not have this requirement in 
buttons. So, Bootstrap binds the element through a data-target data attribute.

We will create a sublist in our menu using the collapse plugin for the Finances and 
Projects entries. After the link of each one of these items, create a secondary list, as 
is pointed in the following highlighted HTML. Also, since we are using <a> tags, 
we add to the href the identifier of the element that will be collapsed and the data-
toggle corresponding to collapse:

<ul class="nav nav-pills nav-stacked">
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-home" aria-hidden="true"></
span>
      Overview
    </a>
  </li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-user" aria-hidden="true"></
span>
      Audience
    </a>
  </li>
  <li>
    <a href="#finances-opts" class="transition" role="button"  
data-toggle="collapse" aria-expanded="false" aria-controls="finances-
opts">



Chapter 9

[ 215 ]

      <span class="glyphicon glyphicon-usd" aria-hidden="true"></span>
      Finances
      <span class="glyphicon glyphicon-menu-left pull-right  
transition" aria-hidden="true"></span>
    </a>
    <ul class="collapse list-unstyled" id="finances-opts">
      <li>
        <a href="#" class="transition">
          Incomes
        </a>
      </li>
      <li>
        <a href="#" class="transition">
          Outcomes
        </a>
      </li>
    </ul>
  </li>
  <li>
    <a href="#" class="transition">
      <span class="glyphicon glyphicon-time" aria-hidden="true"></
span>
      Real time
      <span class="badge pull-right">12</span>
    </a>
  </li>
  <li class="nav-divider"></li>
  <li>
    <a href="#projects-opts" class="transition" role="button"  
data-toggle="collapse" aria-expanded="false" aria-controls="projects-
opts">
      <span class="glyphicon glyphicon-briefcase" aria-
hidden="true"></span>
      Projects
      <span class="glyphicon glyphicon-menu-left pull-right  
transition" aria-hidden="true"></span>
    </a>
    <ul class="collapse list-unstyled" id="projects-opts">
      <li>
        <a href="#" class="transition">
          Free ration nation
        </a>
      </li>
      <li>



Entering in the Advanced Mode

[ 216 ]

        <a href="#" class="transition">
          Cats going crazy
        </a>
      </li>
    </ul>
  </li>
</ul>

To make it clear, take as an example the first collapsed menu from Finances. Below 
the Finances link, we created the list to be collapsed, identified by #finances-opt. 
We also added the .collapse class, which is a Bootstrap class used to collapse 
elements.

Going back to the Finances link, add to the href the ID of the collapsed list, 
#finances-opt. Also, we added the data-toggle="collapse" required to 
Bootstrap Collapse work. Finally, we added the aria attributes, aria-controls and 
aria-controls, for semantic notation.

Refresh the browser and you will see how Bootstrap does almost the entire job for us. 
In the CSS, we need to add some simple styles for color and spacing:

#side-menu ul.nav {
  margin-top: 1rem;
}

#side-menu ul.nav a {
  color: #8b91a0;
}

#side-menu ul.nav a:hover,
#side-menu ul.nav a:focus {
  color: #FFF;
  background-color: inherit;
}

#side-menu ul.nav a .glyphicon {
  margin-right: 0.7rem;
}

#side-menu ul.nav a .glyphicon.pull-right {
  margin-top: 0.2rem;
}

#side-menu ul.nav a .badge {
  background-color: #1ca095;



Chapter 9

[ 217 ]

}

#side-menu ul.nav .nav-divider {
  background-color: #252830;
}

#side-menu ul.nav ul {
  margin-left: 10%;
}

#side-menu ul.nav ul a {
  display: block;
  background-color: #2b303b;
  padding: 1rem;
  margin-bottom: 0.3rem;
  border-radius: 0.25em;
}

#side-menu ul.nav ul a:hover {
  text-decoration: none;
  background-color: #434857;
}

Go to the browser and refresh it to see the result. It should look like what is shown in 
this screenshot:



Entering in the Advanced Mode

[ 218 ]

Using some advanced CSS
Let's add a cherry to this pie while learning other CSS properties. What do you think 
if we could rotate the arrow of the items that have collapsed menus by 90 degrees 
anticlockwise to create an opening effect? It would be awesome—even more if we 
did that with only CSS.

Add the next CSS rule for the effect using the transform property:

#side-menu ul.nav a:focus .glyphicon.pull-right {
  -moz-transform: rotate(-90deg);
  -webkit-transform: rotate(-90deg);
  -o-transform: rotate(-90deg);
  -ms-transform: rotate(-90deg);
  transform: rotate(-90deg);
}

This transform property will do exactly what we want; when the link is in focus 
(which means it is clicked on), the icon from the arrow will rotate 90 degrees 
anticlockwise, because of the minus signal.

To be more pro, let's use a supernew property called will-change. Add the style to 
the following selector:

#side-menu ul.nav a .glyphicon.pull-right {
  margin-top: 0.2rem;
  will-change: transform;
}

The will-change property
The will-change property optimizes animations by letting the browser 
know which elements will change and need careful treatment. Currently, 
this property is not supported by all browsers, but soon it will be. Check 
out its availability at http://caniuse.com/#feat=will-change.

http://caniuse.com/#feat=will-change


Chapter 9

[ 219 ]

Click to open a submenu and see the opening menu animation with the arrow 
rotation. The next screenshot presents an open menu:

Filling the main content
To finish the content of the first step of our dashboard, we will move on to the main 
content, referred to by the column identified by #main. In this section, we will create 
a set of cards almost similar to the cards made in the web application demo, along 
with the use of some external plugins for chart generation.



Entering in the Advanced Mode

[ 220 ]

However, before everything else, we need to create some common CSS in our main 
content. Add the following style to the base.css file:

#main {
  padding-top: 7.2rem;
  display: -webkit-flex;
  display: flex;
  align-items: stretch;
  flex-flow: row wrap;
}

.card {
  position: relative;
  border-radius: 0.25em;
  box-shadow: 0 1px 4px 0 rgba(0, 0, 0, 0.37);
  background-color: #FFF;
  margin: 1.25rem;
  flex-grow: 5;
}

.card * {
  color: #252830;
}

.card-block {
  padding: 2rem;
}

.card-block h2 {
  margin: 0;
  margin-bottom: 1.5rem;
  color: #252830;
}

As I said, we will play with cards inside this element, so let's create the classes that 
relate to it almost similarly to what we did in the cards for the web application 
example. In this case, even though you are using Bootstrap 4, you must add to those 
classes to correctly style the cards component.



Chapter 9

[ 221 ]

Our first card will be placed inside the #main element. So, create the following 
HTML. The first card will be an Overall analysis card:

<div id="main" class="col-sm-offset-3 col-sm-9">
  <div class="card" id="pie-charts">
    <div class="card-block">
      <h2>Overall analysis</h2>

    </div>
  </div>
</div>

Rounding the charts
The first plugin that we will use is called Easy Pie Chart (https://rendro.github.
io/easy-pie-chart/). This plugin generates only rounded pie charts. It is a 
lightweight, single-purpose plugin.

In order to use this plugin, you can get it through bower, through npm, or by simply 
downloading the ZIP file from the repository. In any case, what you will need to do 
at the end is load the plugin in the HTML file.

We will use the jQuery version of the plugin, so we place the JavaScript file in our js 
folder and load the plugin at the end of our file:

<script src="js/jquery-1.11.3.js"></script>
<script src="js/bootstrap.js"></script>
<script src="js/jquery.easypiechart.min.js"></script>
<script src="js/main.js"></script>

Inside our #pie-charts card that we just created, let's add some HTML that is 
needed for the corresponding plugin:

<div class="card" id="pie-charts">
  <div class="card-block">
    <h2>Overall analysis</h2>
    <div class="round-chart" data-percent="42">
      <span>
        42
        <small>
          % <br>
          recurring
        </small>
      </span>
    </div>

https://rendro.github.io/easy-pie-chart/
https://rendro.github.io/easy-pie-chart/


Entering in the Advanced Mode

[ 222 ]

    <div class="round-chart" data-percent="87">
      <span>
        87
        <small>
          % <br>
          aware
        </small>
      </span>
    </div>
  </div>
</div>

To make the Easy Pie Chart plugin work, you must apply it to an element, and you 
can pass arguments by data attributes. For example, in this case, we have data-
percent, which will say the fill of the chart.

Go to your JavaScript file (the main.js file), and inside the ready function (just as we 
did in Chapter 8, Working with JavaScript, Creating our custom modal), add the following 
code to initialize the plugin:

$(document).ready(function() {
    $('.round-chart').easyPieChart({
        'scaleColor': false,
        'lineWidth': 20,
        'lineCap': 'butt',
        'barColor': '#6d5cae',
        'trackColor': '#e5e9ec',
        'size': 190
    });
});

What we are telling here is the style of the chart. But we need more style! We append 
the following CSS to our base.css:

.round-chart {
  display: inline-block;
  position: relative;
}

.round-chart + .round-chart {
  float: right;
}

.round-chart span {
  font-size: 3em;



Chapter 9

[ 223 ]

  font-weight: 100;
  line-height: 1.7rem;
  width: 12rem;
  height: 4.4rem;
  text-align: center;
  position: absolute;
  margin: auto;
  top: 0;
  bottom: 0;
  left: 0;
  right: 0;
}

.round-chart span > small {
  font-size: 2rem;
  font-weight: 400;
}

What we are doing here, besides changing some spacing, is the centralization of the 
percentage text that we have added. Refresh the page and you should see something 
like this:

As you can see, the card has filled the entire line. This is because of the flexbox 
layout that we are using in the #main element. Check out the CSS that we used for 
this element:

#main {
  padding-top: 7.2rem;



Entering in the Advanced Mode

[ 224 ]

  display: -webkit-flex;
  display: flex;
  align-items: stretch;
  flex-flow: row wrap;
}

With the flex display, if we use align-items: stretch, the layout will stretch to 
fill the content in the cross axis.

The flex-flow style is a shorthand for flex-direction and flex-wrap. By using 
this property, we can apply both options to specify the direction of the items, in this 
case as a row, and set the row to wrap to the next lines.

Also, for each card, we have created the flex-grow: 5 property, which says to the 
element that it can assume five different sizes inside the #main container.

Creating a quick statistical card
The next card contains statistical information and we will create it just by using 
Bootstrap components. So, after the #pie-charts card, create another one in HTML:

<div class="card" id="quick-info">
  <div class="card-block">
    <h2>Quick stats</h2>
    <div class="quick-stats">
      <strong>Today:</strong>
      <span>78</span>
    </div>
    <div class="quick-stats">
      <strong>This month:</strong>
      <span>459</span>
    </div>
    <div class="quick-stats">
      <strong>All time:</strong>
      <span>54k</span>
    </div>
    <div class="quick-stats">
      <strong>Bounce rate:</strong>
      <span>81.08%</span>
    </div>



Chapter 9

[ 225 ]

    <div class="quick-stats">
      <strong>Session duration:</strong>
      <span>00:01:41</span>
    </div>
    <div class="quick-stats">
      <strong>New session:</strong>
      <span>63.86%</span>
    </div>
  </div>
</div>

The #quick-info card contains only the common elements that will be displayed, 
each one in a line inside .card. Add the next CSS style to correctly display this card:

#quick-info .card-block {
  display: flex;
  flex-direction: column;
}

#quick-info .quick-stats {
  font-size: 2rem;
  line-height: 3rem;
  border-bottom: 0.1rem solid #e5e9ec;
}

#quick-info .quick-stats strong {
  font-weight: 300;
}

#quick-info .quick-stats span {
  font-weight: 300;
  float: right;
  color: #8b91a0;
}



Entering in the Advanced Mode

[ 226 ]

In the web browser, you should see the following result:

But wait! If you look at the initial layout, you will realize that those two cards should 
be displayed side by side! What happened here?

This is another advantage of using the flexbox! With a flex display, each item inside 
the container will adapt for the display. The previous screenshot was taken from a 
medium viewport. If you take it from a large-resolution screen, you will see how the 
elements appear side by side, like this:



Chapter 9

[ 227 ]

Getting a spider chart
The next chart is called a spider chart. The Highcharts plugin (http://www.
highcharts.com/) is one of the most definitive plugins used to create charts. It 
provides a wide variety of charts divided over different modules, so you can load 
only the plugins that you will use.

Just like Easy Pie Chart, you can get Highcharts from different sources. After getting 
it, let's load the first Highcharts module that we need. Load them along with the 
other JavaScript files (the plugin is loaded using CDN in this case):

<script src="https://code.highcharts.com/highcharts.js"></script>
<script src="https://code.highcharts.com/highcharts-more.js"></script>

Create another .card in the HTML after #quick-info, this new one being identified 
by #performance-eval:

<div class="card" id="performance-eval">
  <div class="card-block">
    <h2>Performance evaluation</h2>
    <div class="spider-chart"></div>
  </div>
</div>

http://www.highcharts.com/
http://www.highcharts.com/


Entering in the Advanced Mode

[ 228 ]

Highcharts does not require too much HTML, but you need to customize it all over 
JavaScript. To initialize and customize the plugin, add the following code inside the 
ready function of the JavaScript:

$('#performance-eval .spider-chart').highcharts({

    chart: {
        polar: true,
        type: 'area'
    },

    title: {
        text: ''
    },

    xAxis: {
        categories: ['Taming', 'Acessory', 'Development',  
'Grooming', 'Awareness', 'Ration'],
        tickmarkPlacement: 'on',
        lineWidth: 0
    },

    yAxis: {
        gridLineInterpolation: 'polygon',
        lineWidth: 0,
        min: 0
    },

    tooltip: {
        shared: true,
        pointFormat: '<span style="color:{series.color}">{series.
name}:  
<b>${point.y:,.0f}</b><br/>'
    },

    legend: {
        align: 'right',
        verticalAlign: 'top',
        y: 70,
        layout: 'vertical'
    },

    series: [{
        name: 'Allocated resources',



Chapter 9

[ 229 ]

        data: [45000, 39000, 58000, 63000, 38000, 93000],
        pointPlacement: 'on',
        color: '#676F84'
    },
    {
        name: 'Spent resources',
        data: [83000, 49000, 60000, 35000, 77000, 90000],
        pointPlacement: 'on',
        color: '#f35958'
    }]

});

In this JavaScript code, we called the highcharts function for the selector chart 
#performance-eval .spider-chart. All the properties are fully described in the 
official documentation. Just note that we instructed the chart that we want a polar 
chart with the polar: true key inside the chart key option.

The dashboard application must look and feel like this:



Entering in the Advanced Mode

[ 230 ]

Overhead loading
Another cool feature from these plugins is that they provide animations for charts, 
making the final result very user friendly.

By loading the pieces of JavaScript code at the end of the HTML, we will acquire 
more speed in page rendering for the end user. The side effect of this is that the 
elements created by the JavaScript libraries will render the page after it is shown to 
the user, causing some temporary glitches in the screen.

To solve this, many pages use the strategy of creating an overlay loading that will be 
hidden after the document is ready.

To do this, just after the opening of the <body> tag, create a <div> to keep the 
loading, as follows:

<body>
  <div class="loading">
  </div>
  … <!—rest of the HTML content -->
</body>

We added a loading animated .svg file in the images folder, so in the CSS, we create 
the following rules:

.loading {
  position: fixed;
  z-index: 999;
  width: 100%;
  height: 100%;
  background-image: url('../imgs/loading.svg');
  background-repeat: no-repeat;
  background-attachment: fixed;
  background-position: center;
  background-color: #e5e9ec;
}

This will create an overlay element that will appear at the top of all elements, except 
for the navigation bar. This element will fill the complete width and height of the 
page, while containing the loading animated image in the center of it.



Chapter 9

[ 231 ]

Refresh the page and you will see the loading on top of your dashboard web 
application, as follows:

Now we must remove the loading image after the page is ready. So, in the beginning 
of the JavaScript file, before the first line inside the $(document).ready function, 
remove the loading element:

$(document).ready(function() {
    // when page is loaded, remove the loading
    $('.loading').remove();
    // below goes the rest of the JavaScript code
});

Done! Refresh the web browser and you may see the loading screen depending on 
your computer and network.

The loading element may see an overreaction now, because we still do not have too 
many cards on our dashboard, but we will keep adding them, so it is cautious to start 
handling this problem.



Entering in the Advanced Mode

[ 232 ]

Fixing the toggle button for mobile
We created our page using the principles of mobile-first development, although 
some of the components here are not appearing properly or are simply not 
appearing, and we must fix that.

First is the toggle button, .navbar-toggle, in the navigation bar. It is actually 
appearing, but with a really bad colorization. Let's fix that with some CSS:

.navbar-toggle {
  border-color: #252830;
  background-color: #e5e9ec;
  margin-top: 13px
}

.navbar-toggle .icon-bar {
  background-color: #252830;
}

The toggle button should appear like what is shown in the next screenshot, now 
using gray colors:



Chapter 9

[ 233 ]

As you can see, there are many other things that we can do to improve the 
visualization in mobiles and small viewports. We will fix all that in the next chapters 
while adding some more cool effects. Wait and you will see!

Summary
In this chapter, we started another example—the dashboard web application.

At first, it may appear a little difficult, but we are breaking down every line of code 
to explain it while using the top of the methodologies for frontend development.

This time, we have an initial design that we aim to create. This is cool because we do 
have a guideline on what we must do towards our final goal. Usually, when working 
in a project, you have this kind of scenario.

First, we created another navigation bar, this one being a little more complicated, 
using a fluid container. The rest of the navigation was made using almost the same 
methodology that we used when learning about this Bootstrap component.

On the left-hand-side menu, we customized the Bootstrap stacked navigation 
component, and you learned how to use the Bootstrap collapse plugin.

In the main content, we started to import external plugins to create nice charts for 
our dashboard. Also, we used the flex display to increase responsiveness, while 
using the best of CSS.

Finally, we created a loading element and fixed the first issue regarding viewports. 
Let's continue fixing this in the upcoming chapters.

Congratulations! The first chapter of the final example is nailed! I am pretty sure that 
you were able to understand the development concepts and how Bootstrap greatly 
increases our productivity.

In the next chapter, we will continue the construction of the dashboard—moreover, 
the main content—adding more external plugins and cards using Bootstrap 
components. We will also fix known issues for different viewports and explain the 
remaining Bootstrap plugins.





[ 235 ]

Bringing Components to Life
The last chapter was tough! Although the dashboard is not ready yet, following our 
layout, we must create three more cards in the main, while fixing issues regarding 
visualization for multiple viewports. After that, we will move on to creating more 
components for our dashboard. Let's proceed towards this new challenge!

In this chapter, we will cover the following topics:

• A custom checkbox
• External plugin integration
• Advanced Bootstrap media queries
• The viewport's advanced adjustments
• The Bootstrap Carousel plugin
• The Bootstrap Scrollspy plugin

Creating the main cards
Taking a look at our layout, we must create three more cards. The first of them is the 
hardest one, so let's face it!



Bringing Components to Life

[ 236 ]

The following .card is composed of an area chart with two series and some iOS-
styled checkboxes. This screenshot reminds us of what the card must look like:

For the chart area, we will again use the highcharts library, while for the checkbox, 
we will use a plugin called switchery (https://github.com/abpetkov/switchery). 
After we've considered the documentation, let's create the following HTML:

<div class="card" id="ration-stock">
  <div class="card-block">
    <h2>Ration stock info</h2>
    <div class="stacked-area"></div>
    <div class="switch">
      View main stocks
      <input type="checkbox" class="swithcery" checked />
      <div class="clearfix"></div>
    </div>
    <div class="switch">
      Hide empty stocks
      <input type="checkbox" class="swithcery" />
      <div class="clearfix"></div>
    </div>
  </div>
</div>

https://github.com/abpetkov/switchery


Chapter 10

[ 237 ]

Breaking the code down, to create the chart, we just have to set the div.stacked-
area element. For the checkbox, we must create an input with type="checkbox" and 
the .switchery class to identify it.

Load the CSS of switchery in <head>, after the Bootstrap CSS:

<link rel="stylesheet" href="css/switchery.min.css">

Also, in the HTML, import the switchery library in the bottom part that contains the 
JavaScript loads:

<script src="js/switchery.min.js"></script>

We do not need much CSS here, since most of it will be created by JavaScript. So, just 
add the following rules to specify the height of the chart and the font style for the 
checkbox text:

#ration-stock .stacked-area {
  height: 200px;
}

#ration-stock .switch {
  font-weight: 300;
  color: #8b91a0;
  padding: 0.5rem 0;
}

#ration-stock .switchery {
  float: right;
}

The JavaScript contains the core portion of this card. First, let's initialize the 
switchery plugin. In main.js, inside the .ready function, add these lines:

var elems, switcheryOpts;

elems =  
Array.prototype.slice.call(document.querySelectorAll('.switchery'));

switcheryOpts = {
    color: '#1bc98e'
};

elems.forEach(function(el) {
    var switchery = new Switchery(el, switcheryOpts);
});



Bringing Components to Life

[ 238 ]

In elems, we store the elements that contain the .switchery class. This plugin 
does not use jQuery, so we must create a query using native JavaScript. The query 
needed to select the elements follows the one provided in the documentation, and I 
recommend that you check it out for further information, since this is not the main 
focus of the book.

The query is performed by document.querySelectorAll('.switchery'). Array is 
a global JavaScript object used to create high-level list objects present in most recent 
browsers.

The prototype is an object present on every JavaScript object. It contains 
a set of properties and methods for the regarding object.

The slice function chops the array using a shallow copy into another array. In 
summary, we are getting an array of elements with the .switchery class.

Next, we set the options for the plugin, in this case just the background color, using 
the color property in the switcheryOpts variable. Finally, we start each Switchery 
object inside the forEach loop.

Refresh the web page and the new card should appear as what is shown in the 
following screenshot:



Chapter 10

[ 239 ]

The other card using Bootstrap components
To create the next card, we will use the Bootstrap progress bar component, labels, 
and badges. This card represents some kind of real-time information, and we will 
create it using the progress bar and make it animated through JavaScript.

First, let's create this new card identified by #real-time in the HTML. Place the code 
after the last card, #ration-stock:

<div class="card" id="real-time">
  <div class="card-block">
  <h2>Real time information</h2>
  </div>
</div>

After <h2>, we must create a list containing each item of the information. A label, a 
badge, a progress bar, and a piece of sample text compose the list. Create it like the 
highlighted HTML code shown here:

<div class="card" id="real-time">
  <div class="card-block">
  <h2>Real time information</h2>
    <ul class="list-unstyled">
      <li>
        Active dogs:
        <span class="label label-warning pull-right">255</span>
      </li>
      <li>
        Silo status:
        <span class="badge ok pull-right">
          <span class="glyphicon glyphicon-ok" aria-hidden="true"></
span>
        </span>
      </li>
      <li>
        Usage level:
        <div class="progress">
          <div class="progress-bar progress-bar-success"  
role="progressbar" aria-valuenow="25" aria-valuemin="0" aria-
valuemax="100" style="width: 25%">
            <span class="sr-only">25%</span>
          </div>
          <div class="progress-bar progress-bar-warning progress-
bar-striped active" role="progressbar" aria-valuenow="38" aria-
valuemin="0" aria-valuemax="100" style="width: 38%">



Bringing Components to Life

[ 240 ]

            <span class="sr-only">38% alocated</span>
          </div>
          <div class="progress-bar progress-bar-danger" 
role="progressbar" aria-valuenow="5" aria-valuemin="0" aria-
valuemax="100" style="width: 5%">
            <span class="sr-only">5% reserved</span>
          </div>
        </div>
      </li>
      <li>
        Free space:
        <span id="free-space" class="pull-right">
          32%
        </span>
      </li>
    </ul>
  </div>
</div>

Because we are mostly using only Bootstrap elements and components, we do not 
need too much CSS but just the following:

#real-time li {
  font-size: 1.8rem;
  font-weight: 300;
  border-bottom: 0.1rem solid #e5e9ec;
  padding: 0.5rem 0;
}

#real-time .badge.ok {
  background-color: #1bc98e;
}

#real-time .badge span,
#real-time .label {
  color: #FFF;
}

#real-time .badge,
#real-time .label {
  margin-top: 0.25rem;
}



Chapter 10

[ 241 ]

This CSS will change the font size of the text in the card and the borders from one 
to another item in the list. Also, for the badge and the labels, we've customized the 
colors and margins.

Refresh the page and it should look like this:

The new card looks nice! Now let's create some CSS to animate it. Let's change the free 
space percentage periodically. To do this, create the following JavaScript function:

changeMultiplier = 0.2;
window.setInterval(function() {
  var freeSpacePercentage;

  freeSpacePercentage = $('#free-space').text();
  freeSpacePercentage = parseFloat(freeSpacePercentage);

  delta = changeMultiplier * (Math.random() < 0.5 ? -1.0 : 1.0);

  freeSpacePercentage = freeSpacePercentage + freeSpacePercentage  
* delta;
  freeSpacePercentage = parseInt(freeSpacePercentage);

  $('#free-space').text(freeSpacePercentage + '%');
}, 2000);



Bringing Components to Life

[ 242 ]

With this JavaScript code, we are executing a function every 2 seconds. We did this 
because of the usage of the setInterval function, and we call it every 2,000 ms  
(or 2 seconds).

What is done first is just a parse of the text inside the #free-space percentage 
element. Then we create a delta that could be 20 percent positive or negative, 
randomly generated by using the changeMultiplier parameter.

Finally, we multiply the delta by the current value and update the value in the 
element. To update the value in the element, we use the .text() function from 
jQuery. This function sets the content for the element to the specified text passed as a 
parameter; in this case, it's the percentage change in freeSpacePercentage that we 
randomly generated.

Refresh the page and see the number update every 2 seconds.

Creating our last plot
The last card in the main content is another plot, this time a pie chart. Just like the 
last charts, let's again use the Highcharts library. Remember that we must first create 
a simple HTML card, placed after the last #real-time card:

<div class="card" id="daily-usage">
  <div class="card-block">
    <h2>Daily usage</h2>
    <div class="area-chart"></div>
  </div>
</div>

In the CSS, just set the height of the plot:

#daily-usage .area-chart {
  height: 200px;
}



Chapter 10

[ 243 ]

To complete it—the most important part for this card—create the function calls in the 
JavaScript:

$('#daily-usage .area-chart').highcharts({
    title: {
        text: '',
    },
    tooltip: {
        pointFormat: '{series.name}:  
<b>{point.percentage:.1f}%</b>'
    },
    plotOptions: {
        pie: {
            dataLabels: {
                enabled: true,
                style: {
                    fontWeight: '300'
                }
            }
        }
    },
    series: [{
        type: 'pie',
        name: 'Time share',
        data: [
            ['Front yard', 10.38],
            ['Closet', 26.33],
            ['Swim pool', 51.03],
            ['Like a boss', 4.77],
            ['Barking', 3.93]
        ]
    }]
});

As you can see in the preceding code, we set the graph to be of the pie type and 
create the share for each segment in the data array.



Bringing Components to Life

[ 244 ]

The following screenshot shows how the last card must be displayed on the web 
browser:

And we are done! The main page of the dashboard is complete. Now let's proceed to 
the next pages in this component.

Fixing the mobile viewport
If you resize the dashboard to a mobile visualization (treated as an extra-small 
viewport in Bootstrap,) you should see some problems with the elements that are not 
appearing correctly. As shown in the next screenshot, note that the search appears 
and the card with the round chart is completely unaligned.



Chapter 10

[ 245 ]

In this visualization mode, we are using the viewport of iPhone 6 in portrait 
orientation in the Chrome developer inspector:

Regarding the search bar, it will be better if this bar appears just when required, 
for example, when clicking on a button. So, next to the refresh button, let's create 
another icon to toggle the search bar.



Bringing Components to Life

[ 246 ]

The HTML for this section must be like the following code:

<div class="col-sm-3 top-left-menu">
  <div class="navbar-header">
    <a class="navbar-brand" href="dashboard.html">
      <h1>dashboard</h1>
    </a>

    <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#nav-menu" aria-expanded="false">
      <span class="sr-only">Toggle navigation</span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
      <span class="icon-bar"></span>
    </button>
  </div>
  <a href="#" id="search-icon" data-toggle="tooltip" data-
placement="bottom" data-delay="500" title="Display search bar"  
class="header-buttons pull-right visible-xs">
    <span class="glyphicon glyphicon-search" aria-hidden="true"></
span>
  </a>
  <a href="#" data-toggle="tooltip" data-placement="bottom" data-
delay="500" title="Refresh data" class="header-buttons pull-right">
    <span class="glyphicon glyphicon-repeat" aria-hidden="true"></
span>
  </a>
</div>

Let's discuss this code. First, we made a change in the class name. The link in the 
refresh icon was a .header-refresh. Now, since we have multiple header buttons, 
we changed it to a .header-button class for generalization.

We also added the Bootstrap tooltip for this button, just as we did for the refresh 
icon, displaying the message: "Display search bar".

To complete the changes, replace the class names in the CSS as well:

nav .header-buttons {
  margin-left: auto;
  color: #FFF;
}



Chapter 10

[ 247 ]

Then the header should look like this:

Now we have to fix the search bar. Let's change the classes on the form#search. 
Replace the classes from .hidden-sm.col-md-3 to just .col-sm-3 for better 
visualization.

Remember the gridding foundations? By setting the form for this class, it 
will fill 3 out of 12 columns in the template until the small viewports and 
appear as a line block for extra small viewports.

Now, let's hide the form using a media query in CSS for extra small viewports:

@media(max-width:48em){
  form#search {
    display: none;
  }
}

To toggle the visualization of the search input, let's add some JavaScript events. The 
first one is for opening the search when we click on the magnifier icon at the header, 
identified by #search-icon. So in our main.js file, we add the following function:

$('#search-icon').on('click', function(e) {
    e.preventDefault();
    $('form#search').slideDown('fast');
    $('form#search input:first').focus();
});

What this will do first is prevent the default click action with the 
e.preventDefault() caller. Then, we use the .slideDown function from jQuery, 
which slides down an element. In this case, it will toggle form#search.

After toggling the form, we add focus to the input, which will open the keyboard if 
we are accessing the page from a mobile phone.



Bringing Components to Life

[ 248 ]

To increment that, it would be nice if the search bar can hide when the user blurs the 
focus on the search input. To do this, add the following event handler to the JavaScript:

$('form#search input').on('blur', function(e) {
    if($('#search-icon').is(':visible')) {
        $('form#search').slideUp('fast');
    }
});

What we are doing here is using the blur event, which is triggered whenever 
the element loses the focus. The trigger performs a check to find out whether the 
#search-icon is visible, meaning that we are in the extra small viewport, and then 
hides the search bar using the slideUp function, doing the opposite of what the 
slideDown function does.

Fixing the navigation menu
Click on the collapse toggle navigation (the hamburger button) and you will see how 
the #nav-menu looks so messy, as shown in the next screenshot. We must fix it just 
like the way we did in the last web application example:



Chapter 10

[ 249 ]

To do this, we will first need to remove the .pull-right class from #nav-menu. The 
.pull-* classes add a float to the element by applying the !important flag, which 
cannot be overridden. In this case, we must override this style rule to remove the 
.pull-right class and add the float to the current element style rule:

#nav-menu {
  float: right;
}

Create a media query for extra small devices for #nav-menu and remove the float: 
right:

@media(max-width:48em){
  #nav-menu {
    float: none;
  }
}

After that, we must hide #nav-profile and move its button to the #nav-menu list. 
First, add the .hidden-xs class to the profile element:

<div id="nav-profile" class="btn-group pull-right hidden-xs">
    …
</div>

This will prevent the element from appearing for extra small devices using the 
Bootstrap viewport helper class. Then, in #nav-menu > ul, append the options that 
were in the #nav-profile drop-down button:

<div id="nav-menu" class="collapse navbar-collapse">
  <ul class="nav navbar-nav">
    <li>…</li>
    <li class="visible-xs">
      <a href="#">Profile</a>
    </li>
    <li class="visible-xs">
      <a href="settings.html">Setting</a>
    </li>
    <li class="visible-xs">
      <a href="#">Logout</a>
    </li>
  </ul>
</div>



Bringing Components to Life

[ 250 ]

Note that we make this new item list visible only for extra small viewports with the 
.visible-xs class.

These new item lists must now look just like the notification one, already present in 
this list. So, append the selector of the new item list to the current CSS style of #btn-
notification:

#btn-notifications .btn-link,
#nav-menu li a {
  padding-top: 1.5rem;
  color: #252830;
  font-weight: 500;
}

The opened list should look like this:

Now, try to change the viewport and see how the elements on the header correctly 
change its visualization. The #nav-profile will appear only for small-to-large 
viewports and will shrink into #nav-menu ul in a small visualization for extra small 
viewports.



Chapter 10

[ 251 ]

The notification list needs some style
If you click on the notification list to open it, you will see three problems: firstly, the 
badge holding the number of new notifications jumps to the right portion; then the 
notification button is not filling the entire width; and finally, the notification list can 
appear a little nicer when opened.

To fix the jumping badge on the notification button, just add the following CSS:

@media(max-width:48em){
  #nav-menu #btn-notifications > .badge {
    right: inherit;
    left: 10rem;
  }
}

Note that we use a media query to change the position of the badge for extra small 
viewports only.

To modify the notification button's width, we have to create a media query as well. 
So, add this CSS style to it:

@media(max-width:48em){
  #btn-notifications,
  #btn-notifications > button {
    width: 100%;
    text-align: left;
  }
}

This style will change the width for both the notification button dropdown and the 
button itself.

Finally, the style for the notification list must be changed. We create the next CSS 
rule in our main.css file, and it should instantly look good:

@media(max-width:48em){
  #notification-list {
    margin: 1.25rem;
    margin-left: 2rem;
    background-color: #e5e9ec;
  }

  #notification-list a {
    background-color: #FFF;
    opacity: 1;
  }
}



Bringing Components to Life

[ 252 ]

Awesome! Update your web browser and #notification-list should look like 
what is shown in this screenshot:

Adding the missing left menu
Where are the items of the left menu? If you check out the HTML of #side-menu, 
you will see that we have added the .hidden-xs class to it. So, we must move the 
navigation options to another place in this extra small viewport.



Chapter 10

[ 253 ]

Let's add the links to #nav-menu ul just as we did for #nav-profile:

<div id="nav-menu" class="collapse navbar-collapse">
  <ul class="nav navbar-nav">
    <li>…</li>
    <li class="visible-xs">
      <a href="#">Audience</a>
    </li>
    <li class="visible-xs">
      <a href="#">Finances</a>
    </li>
    <li class="visible-xs">
      <a href="#">Realtime</a>
    </li>
    <li class="visible-xs">
      <a href="#">Projects</a>
    </li>

    <li role="separator" class="divider visible-xs"></li>
    …
  </ul>
</div>

Modify the maximum height of #nav-menu when collapse is toggled with the style:

#nav-menu.navbar-collapse {
  max-height: 39rem;
}

For the .divider element in the list, create the following CSS:

#nav-menu .divider {
  height: 0.1rem;
  margin: 0.9rem 0;
  overflow: hidden;
  background-color: #e5e5e5;
}



Bringing Components to Life

[ 254 ]

Notice that in #nav-menu ul, the notification button will appear above the new 
elements added and the options from #nav-profile will appear below. The next 
screenshot represents the visualization of the final arrangement of the #nav-menu 
toggle:

Aligning the round charts
The .round-charts inside the #pie-charts element does not appear correctly 
aligned. However, we can quickly fix this with two CSS rules using media queries. 
So, create the following style:

@media(max-width:48em){
  .round-chart,
  .round-chart canvas {
    display: block;
    margin: auto;
  }



Chapter 10

[ 255 ]

  .round-chart + .round-chart {
    margin-top: 2rem;
    float: none;
  }
}

Refresh the web page and see the result, like the following screenshot:

Great! Now we have our dashboard nailed for every viewport and device! That was 
a thorough task, but with a great payoff, because we have now created a complete 
dashboard. Let's move forward to some other pages in our example.



Bringing Components to Life

[ 256 ]

Learning more advanced plugins
Now that we have created the main page of the dashboard example and nailed 
almost every element, plugin, and component in Bootstrap, let's use some other 
advanced JavaScript plugins to complete our journey.

For this part, let's create another file named audience.html in the same folder of 
dashboard.html. In this file, copy the exact same code of dashboard.html, except 
the HTML inside the div#main element, because that is where we will make some 
new changes.

Using the Bootstrap carousel
Bootstrap provides us with a nice plugin to slideshow components through cycling 
elements, although it's pretty verbose and a little complicated to understand at first 
sight.

First of all, we need to create an element inside our div#main:

<div id="main" class="col-sm-offset-3 col-sm-9">
  <div id="carousel-notification" class="carousel" data-
ride="carousel">
      …
  </div>
</div>

We must identify this element for the Bootstrap Carousel plugin, so we have called it 
#carousel-notification at our outmost div of the plugin.

Bootstrap will start a carousel via the data attributes for elements marked with data-
ride="carousel", just like our element. In addition, this element must have the 
.carousel class for the CSS style.

We must create the elements inside the slides for the carousel, so we use the 
following markup to create the notification slides:

<div id="main" class="col-sm-offset-3 col-sm-9">
  <div id="carousel-notification" class="carousel" data-
ride="carousel">
    <div class="carousel-inner" role="listbox">
      <div class="item active">
        <img src="imgs/doge.jpg" width="512">
        <div class="carousel-caption">
          <p>What are you doing? So scare. It's alright now.</p>
        </div>
      </div>
      <div class="item">



Chapter 10

[ 257 ]

        <img src="imgs/cat.jpg" width="512">
        <div class="carousel-caption">
          <p>I will never forgive you...</p>
        </div>
      </div>
      <div class="item">
        <img src="imgs/laika.jpg" width="512">
        <div class="carousel-caption">
          <p>Hey! How are you?</p>
        </div>
      </div>
    </div>
  </div>
</div>

Note that we have created three items. Each item has been created inside the 
.carousel-inner element. Inside this element, the items have been created with the 
.item class.

Inside each .item, there is an image followed by another element with the 
.carousel-caption class, which contains text to be displayed as captions for each 
slide. Note that the first slide also contains the .active class, which must necessarily 
be added to one (and only one) of the slides.

At this point, refresh Bootstrap carousel your browser and you should see the page 
like what is shown in this screenshot:



Bringing Components to Life

[ 258 ]

If you wait 5 seconds, you will see the image and caption change. You can set this 
interval value by the data-interval data attribute or through JavaScript, as an 
initializer parameter, as shown in this example:

$('.carousel').carousel({
  interval: 1000 // value in milliseconds
})

Also observe that there is no animation between the changes of the slides. To add it, 
put the .slide class into the .carousel element and you will see a left slide of the 
images.

Remember that versions 8 and 9 of Internet Explorer do not support CSS 
animations. Therefore, the Bootstrap carousel plugin will work unless 
you add transition fallbacks on your own, such as jQuery animations.

Customizing carousel items
For each item in the carousel, we just created a simple <p> element inside it. 
However, you can add other elements, as in the following example, where we are 
adding a heading 3:

<div class="item">
  <img src="imgs/laika.jpg" width="512">
  <div class="carousel-caption">
    <h3>Laika said:</h3>
    <p>Hey! How are you?</p>
  </div>
</div>

Creating slide indicators
The Bootstrap carousel also offers the ability to create bullet slide indicators. To do 
this, add the following code after the .carousel-inner element:

<div id="carousel-notification" class="carousel slide" data-
ride="carousel">
  <div class="carousel-inner" role="listbox">
    …
  </div>



Chapter 10

[ 259 ]

  <!-- Indicators -->
  <ol class="carousel-indicators">
    <li data-target="#carousel-notification" data-slide-to="0" 
class="active"></li>
    <li data-target="#carousel-notification" data-slide-to="1"></li>
    <li data-target="#carousel-notification" data-slide-to="2"></li>
  </ol>
</div>

We just created an ordered list, <ol>. On each item, we have to say which is the 
carousel element identifier through data-target (in this case, it is #carousel-
notification) and which slide each bullet will correspond to through data-slide-
to. To do this, we just create the number of list items from the same size of the image 
items and enumerate them.

Refresh the browser, and now you should see the carousel with the bullets and all 
the modifications (the slide transition, the heading on the image item, and the bullet 
identifier), like this:



Bringing Components to Life

[ 260 ]

Adding navigation controls
Another cool option in the Bootstrap carousel is creating side navigation controls to 
change slides from left to right.

We add the markup for this after the indicator's one, as shown in the following 
HTML code:

<div id="carousel-notification" class="carousel slide" data-
ride="carousel">
  <div class="carousel-inner" role="listbox">
    …
  </div>

  <!-- Indicators -->
  <ol class="carousel-indicators">
  </ol>

  <!-- Controls -->
  <a class="left carousel-control" href="#carousel-notification"  
role="button" data-slide="prev">
    <span class="glyphicon glyphicon-chevron-left" aria-
hidden="true"></span>
    <span class="sr-only">Previous</span>
  </a>
  <a class="right carousel-control" href="#carousel-notification" 
role="button" data-slide="next">
    <span class="glyphicon glyphicon-chevron-right" aria-
hidden="true"></span>
    <span class="sr-only">Next</span>
  </a>
</div>

As you can see, we created two carousel controls, one to the right and one to the left. 
Each of them must be inside an <a> tag identified by the .carousel-control class 
and the class for the action, which is .right or .left.

The href of the element represents the identifier of the carousel, just as data-
target in the bullet indicators. The data-slide indicates the action that should be 
performed by the control, which can be next to move to the next slide or prev to 
move to the previous slide.



Chapter 10

[ 261 ]

The next screenshot presents the final expected result of the carousel:

Using multiple Bootstrap carousels on the same page
If you plan to use multiple Bootstrap carousels on the same page, 
remember to correctly apply a unique id to the parent element (the one 
with the .carousel class). Also remember to update the target for the 
bullet indicator and slide controls.

Other methods and options for the carousel
Just like every Bootstrap plugin, the carousel offers a set of parameters and methods 
that can be used. Check out the official documentation for detailed info (http://
getbootstrap.com/javascript/#carousel-options).

There are some options that we should be talking about, such as wrap, which defines 
whether the carousel should be cyclic or not. By default, this option has the value 
true.

http://getbootstrap.com/javascript/#carousel-options
http://getbootstrap.com/javascript/#carousel-options


Bringing Components to Life

[ 262 ]

You can also call via JavaScript to the carousel go to a certain slide or just force a 
slide switch. To go to a certain slide, use this function:

$('.carousel').carousel(2); // which 2 is the slide enumerated as  
2 in the data-slide-to

To call the carousel to switch slides, use the same function but pass the prev or next 
string as the argument:

$('.carousel').carousel('next') // or 'prev'

Just like other Bootstrap plugins, the carousel is great for creating slide images on 
your page. There are a plenty of customizations available to fit the required styles. 
Always check out the documentation for further information.

The Bootstrap spy
You will now learn another Bootstrap plugin—Bootstrap Scrollspy. Scrollspy is a 
plugin used to automatically update any kind of Bootstrap navigation based on the 
scroll position. Many sites use it, including the Bootstrap documentation, in the side 
navigation. There, when you scroll the page, the active elements in the navigation 
bar change.

To exemplify the utilization of the plugin, let's create a .card on our audience.html 
page:

<div class="card">
  <div class="card-block">

  </div>
</div>

Inside .card-block, we will create two columns, the left one for the spy navigation 
and one to the right for the content itself. Remember to always place your .col-*-* 
inside a .row element:

<div class="card">
  <div class="card-block">
    <div class="row">
      <div class="col-sm-3" id="content-spy"></div>
      <div id="content" class="col-sm-9"></div>
    </div>
  </div>
</div>



Chapter 10

[ 263 ]

We are identifying the navigation column as #content-spy and the content column 
as just #content.

First, let's create the left navigation using the .nav-pills.nav-stacked Bootstrap 
component. Do you remember it? Let's refresh your memory by using it again, as 
follows:

<div class="card">
  <div class="card-block">
    <div class="row">
      <div class="col-sm-3" id="content-spy">
        <ul class="nav nav-pills nav-stacked">
          <li role="presentation" class="active">
            <a href="#lorem">The Lorem</a>
          </li>
          <li role="presentation">
            <a href="#eros">The Eros</a>
          </li>
          <li role="presentation">
            <a href="#vestibulum">The Vestibulum</a>
          </li>
        </ul>
      </div>
      <div id="content" class="col-sm-9"></div>
    </div>
  </div>
</div>

All we need to do is create a <ul> with the .nav, .nav-pills, and .nav-stacked 
classes. Then we create three item lists, each one with a link inside, referencing an  
ID in the HTML (#lorem, #eros, and #vestibulum). We will use these IDs later to 
refer to the Scrollspy.

Now create the content. It must be in the #content three <div>, each one with the  
ID corresponding to the references in the href of the link in the item list, as shown  
in this code:

<div class="card">
  <div class="card-block">
    <div class="row">
      <div class="col-sm-3" id="content-spy">
        <ul class="nav nav-pills nav-stacked">
          <li role="presentation" class="active">
            <a href="#lorem">The Lorem</a>
          </li>



Bringing Components to Life

[ 264 ]

          <li role="presentation">
            <a href="#eros">The Eros</a>
          </li>
          <li role="presentation">
            <a href="#vestibulum">The Vestibulum</a>
          </li>
        </ul>
      </div>
      <div id="content" class="col-sm-9">
        <div id="lorem">
          <h2>The Lorem</h2>
          <p>
            Lorem ipsum dolor sit amet… <!-- Rest of the text -->
          </p>
        </div>
        <div id="eros">
          <h2>The Eros</h2>
          <p>
            Curabitur eget pharetra risus… <!-- Rest of the text -->
          </p>
        </div>
        <div id="vestibulum">
          <h2>The Vestibulum</h2>
          <p>
            Integer eleifend consectetur… <!-- Rest of the text -->
            <img src="imgs/jon.png" class="img-responsive">
          </p>
        </div>
      </div>
    </div>
  </div>
</div>

Note the identifiers on each <div> corresponding to the href in the link of the item 
list. This is used to correlate the scroll with the active item in the nav element.

Do not forget to add the .img-responsive class to the image at the 
end of the third content item.



Chapter 10

[ 265 ]

To activate the plugin, we have two options. Activate it by data attributes or by 
JavaScript. If you choose JavaScript, place the call function in main.js:

$('#content').scrollspy({
  target: '#content-spy'
})

Refresh the page and see it working. If you want to use data attributes, place a data-
spy and a data-target in the #content element:

<div class="card">
  <div class="card-block">
    <div class="row">
      <div class="col-sm-3" id="content-spy">
        <ul class="nav nav-pills nav-stacked">
          <li role="presentation" class="active">
          <a href="#lorem">The Lorem</a>
          </li>
          <li role="presentation">
            <a href="#eros">The Eros</a>
          </li>
          <li role="presentation">
            <a href="#vestibulum">The Vestibulum</a>
          </li>
        </ul>
      </div>
      <div id="content" class="col-sm-9" data-spy="scroll" data-
target="#content-spy">
        <div id="lorem">
          <h2>The Lorem</h2>
          <p>
            Lorem ipsum dolor sit amet… <!-- Rest of the text -->
          </p>
        </div>
        <div id="eros">
          <h2>The Eros</h2>
          <p>
            Curabitur eget pharetra risus… <!-- Rest of the text -->
          </p>
        </div>
        <div id="vestibulum">
          <h2>The Vestibulum</h2>
          <p>



Bringing Components to Life

[ 266 ]

            Integer eleifend consectetur… <!-- Rest of the text -->
            <img src="imgs/jon.png" class="img-responsive">
          </p>
        </div>
      </div>
    </div>
  </div>
</div>

The data-spy must have the scroll value in order to identify that the spy must be 
active for the scrolling action. The data-target works just like the parameter target 
passed in the activation by JavaScript. It should represent the element that will spy 
on the element, #content-spy in this case.

To make a final effect for the scrolling, create the following CSS to limit the height 
and adjust the scroll of the content:

#content {
  height: 30em;
  overflow: auto;
}

Refresh your web browser and the card should appear like what is shown in the next 
screenshot. Note that here we have scrolled the content to the second item.



Chapter 10

[ 267 ]

Great! Now you have learned another Bootstrap plugin! The Scrollspy plugin is very 
useful, especially on pages with extensive content, subdivided into sections. Make 
great use of it.

Summary
In this chapter, we greatly finished our dashboard example. We had to create some 
cards from the last chapter and adjust the visualization for any viewport. The result 
is a great dashboard that can be used in multiple contexts and web applications.

The user experience and the visuals of the dashboard were impressive in the end, 
creating a desirable page for this kind of application that works on any device.

Then we moved forward to explain some more Bootstrap plugins. We analyzed 
Bootstrap Scrollspy, which is a great plugin for you when you are creating pages 
with large content and need to summarize the sections while the user is scrolling. We 
used this plugin just with sample content, but remember to use it whenever needed.

We analyzed the Bootstrap carousel as well. The carousel is a great plugin for 
making slides of images with caption text. In my opinion, the only downside to this 
plugin is that it is too much typed. Imagine if we could create the same carousel 
using lines of code. I think we can fix that in the last chapter!

In the next chapter, we will start a plugin customization and use the carousel as 
an example. We can create a kind of wrapper to reduce typing of the carousel 
and automate plugin creation. Also, we will go deep into some Bootstrap plugin 
customizations.

For sure, it will be another challenge to create a plugin for Bootstrap, but I am 
confident that we can nail that as well.





[ 269 ]

Making It Your Taste
At this point, you can be called a Bootstrap master around the world! You nailed the 
framework as few people do these days—you should be proud of that!

Now, you are about to face a challenge to overpass the boundaries of learning. In this 
chapter, we will see how to create and customize your own Bootstrap plugin. This 
could be tough, but if you reached this point you can go a step further to become a 
true Bootstrap master.

The topics covered are as follows:

• Customizing Bootstrap components
• Customizing Bootstrap plugins
• Creating a Bootstrap plugin

When we finish this chapter, we will also reach the end of the book. I hope this last 
chapter will help you empower yourself with all the Bootstrap framework skills.

To follow this chapter, create a sandbox.html file and just place the default template 
that we are using all over the book. We will place all the code snippets of this chapter 
in this file.

Customizing a Bootstrap component
In my years of experience of using Bootstrap, one of the major issues that I received 
is how can I change a Bootstrap component to appear like I need?

Most of the time, the answer is to take a look at the CSS and see how you can 
override the style. However, this orientation can be obscure sometimes and the 
developer will be unable to find a solution.



Making It Your Taste

[ 270 ]

In this section, we will customize some Bootstrap components. We did some of that 
in previous chapters, but now we will go a step further into this subject. Let's start 
customizing a single button.

The taste of your button
We must start with a button, because of two factors. First, it is a quite simple 
component and second we have to customize a button very often.

Let's assume we have a simple button placed in a page that already has the Bootstrap 
fully loaded. We will call it as the sandbox page. The HTML for it should be like this:

<button type="button" class="btn btn-primary" aria-pressed="false"  
autocomplete="off">
  This is a simple button
</button>

As we saw so many times, this button is a simple one with the .btn and .btn-
default classes that will make the button blue, as shown in the next screenshot:

If you want a different color for the button, you can use one of the others contextual 
classes provided by Bootstrap (.btn-success, .btn-info, .btn-warning, .btn-
danger, and so on) by using them together with the base class .btn class.

If you want to define a new color, the suggestion is to create a new class and define 
the necessary pseudo-class. Let's assume we want a purple button defined by a class 
.btn-purple. Define a CSS for it:

.btn-purple {
    color: #fff;
    background-color: #803BDB;
    border-color: #822FBA;
}



Chapter 11

[ 271 ]

This is the base CSS. Now we must define all the pseudo-classes for the button:

.btn-purple:hover,

.btn-purple:focus,

.btn-purple:active,

.btn-purple.active {
    color: #ffffff;
    background-color: #6B39AD;
    border-color: #822FBA;
}

Now, for every interaction with the button (such as hovering over it), the button will 
have a background color a little darker. Not all same pseudo-classes can have the 
same style; you can customize it as per your choice.

The next screenshot represents our new button. What we did was replace the .btn-
default for the class .btn-purple. The one on the left is .btn-purple and the one 
on the right is .btn-purple:hover:

Using button toggle
Bootstrap has a nice feature for button toggle. It is native from the framework and 
can be used in different ways. We will take a look at the single toggle button. For 
that, create a normal button in the sandbox page:

<button type="button" class="btn btn-primary" autocomplete="off">
  Single toggle
</button>

To make this button turn into a single toggle, we have to add the data attribute 
data-toggle="button" and the attribute aria-pressed="true". This will turn the 
button into a toggle button. Now when you click on the button, Bootstrap will add a 
class .active to it, making it appear pressed. The code is as follows:

<button type="button" class="btn btn-default" data-toggle="button"  
aria-pressed="false" autocomplete="off">
  Single toggle
</button>



Making It Your Taste

[ 272 ]

The checkbox toggle buttons
The toggle buttons can turn into buttons checkbox or buttons radio. At first, we need 
to remember the concept of button group. So let's create a simple .btn-group in the 
HTML:

<div class="btn-group">
  <button class="btn btn-default">
    Laika
  </button>
  <button class="btn btn-default">
    Jonny
  </button>
  <button class="btn btn-default">
    Doge
  </button>
</div>

The concept of using button groups is to create a div with the class .btn-group 
and insert a bunch of button elements inside it. However, we want a bunch of 
checkboxes, so let's substitute the button element for a label and input elements 
with type checkbox:

<div class="btn-group">
  <label class="btn btn-default">
    <input type="checkbox" autocomplete="off"> Laika
  </label>
  <label class="btn btn-default">
    <input type="checkbox" autocomplete="off"> Jonny
  </label>
  <label class="btn btn-default">
    <input type="checkbox" autocomplete="off"> Doge
  </label>
</div>

Refresh the page and you will see that the button list now has a checkbox input on 
each label, as shown in the following screenshot:



Chapter 11

[ 273 ]

To change it to toggle and hide the checkboxes, we just need to simple add the data 
attribute data-toggle="buttons".

There is an option to preselect a checkbox, just need to add the .active class to the 
label and add the attribute checked="checked" to the input:

<div class="btn-group" data-toggle="buttons">
  <label class="btn btn-default">
    <input type="checkbox" autocomplete="off"> Laika
  </label>
  <label class="btn btn-default active">
    <input type="checkbox" autocomplete="off" checked="checked">  
Jonny
  </label>
  <label class="btn btn-default">
    <input type="checkbox" autocomplete="off"> Doge
  </label>
</div>

The next image shows the final output of the checkbox with the second checkbox 
selected on the page reload:

The button as a radio button
The other option for the toggle button is to become a radio button. The 
procedure is very similar to the checkbox. We just need to change the input from 
type="checkbox" to type="radio":

<div class="btn-group" data-toggle="buttons">
  <label class="btn btn-default">
    <input type="radio" autocomplete="off"> Laika
  </label>
  <label class="btn btn-default active">
    <input type="radio" autocomplete="off" checked="checked"> Jonny
  </label>
  <label class="btn btn-default">
    <input type="radio" autocomplete="off"> Doge
  </label>
</div>

This will create a .btn-group formed by radio button, been just one selected at once.



Making It Your Taste

[ 274 ]

Doing the JavaScript customization
Buttons can be customized using JavaScript as well. For instance, any toggle button 
can be toggled by calling:

$('button selector').button('toggle')

This will toggle the state of the button from active to not active.

Before Version 3.3.6, it was possible to change the text of a button via JavaScript by 
calling the button passing a string. First, you should define a state text. For instance, 
let's define a button with the attribute data-statesample-text="What a sample":

<button type="button" class="btn btn-primary" autocomplete="off"  
data-statesample-text="What a sample">
  Single toggle
</button>

Using JavaScript, you can change the text with the value or the data text by calling:

$('button').button('statesample');

Reset the text to original with the following function:

$('button').button('reset');

However, this feature is deprecated after Version 3.3.6 and will be removed in 
Version 4 of Bootstrap.

Working with plugin customization
Just like the customization for components, it is also possible to customize the 
behavior of the Bootstrap plugins.

To illustrate that, let's consider the Bootstrap Modal. This plugin is one of the most 
used among the others. The Modal is able to create a separated flow in your web 
page without changing the context.



Chapter 11

[ 275 ]

Let's create an input and a button and make the button open the modal when clicked. 
What we are expecting here is when the user inputs the GitHub username at the 
input, we will get the info in the GitHub open API and show some basic info at the 
Modal. For this, create the following code in the sandbox page:

<!-- Button trigger modal -->
<input id="github-username" type="text" class="form-control"  
placeholder="Type your github username here">
<button type="button" class="btn btn-success btn-lg btn-block"  
data-toggle="modal" data-target="#githubModal">
  Launch demo modal
</button>

<!-- Modal -->
<div class="modal fade" id="githubModal" tabindex="-1"  
role="dialog">
  <div class="modal-dialog" role="document">
    <div class="modal-content">
      <div class="modal-header">
        <button type="button" class="close" data-dismiss="modal"  
aria-label="Close"><span aria-hidden="true">&times;</span></button>
        <h4 class="modal-title"></h4>
      </div>
      <div class="modal-body">
      </div>
      <div class="modal-footer">
        <button type="button" class="btn btn-default" data-
dismiss="modal">Close</button>
        <button type="button" class="btn btn-success">Save  
changes</button>
      </div>
    </div>
  </div>
</div>

Refresh the web page and you will see the input followed by a button. When you 
click on it, the Modal will show. The Modal is completely empty; to interact with 
that, we will play with some JavaScript.



Making It Your Taste

[ 276 ]

In the code, let's use the Bootstrap event show.bs.modal, which will be triggered 
whenever a Modal is shown (like we discussed previously):

$('#githubModal).on('show.bs.modal', function (e) {
    var $element = $(this),
        url = 'https://api.github.com/users/{username}';
});

Inside the function, we defined two variables. The $element corresponds to the 
triggered element, in this case it is the modal #githubModal. The url is the endpoint 
for the GitHub API. We will replace the {username} parameter on the string based 
on the text passed at the input by doing that:

$('#githubModal).on('show.bs.modal', function (e) {
    var $element = $(this),
        url = 'https://api.github.com/users/{username}';

    url = url.replace(/{username}/, $('#github-username').val());
});

Then, we must make a request to the API to retrieve the user info. To do so, we must 
make a GET request to the API, which will return us a JSON.

To make it clear, JSON is an open standard format to transmit data as a set of 
key-values. It is widely used to transfer data from web services and APIs, such as 
GitHub.

Moving on, to make the request to the server, we use the function $.get from 
jQuery. Pass a URL and a callback function with the JSON data object returned from 
the server:

$('#githubModal').on('show.bs.modal', function (e) {
    var $element = $(this),
        url = 'https://api.github.com/users/{username}';

    $.get(url, function(data) {
        console.log(data);
    });
});



Chapter 11

[ 277 ]

If everything is working so far, refresh your web browser, type your username on the 
input, and click on the button. After the modal opens, check your console terminal 
and you must see the data from the request, as shown in the following screenshot:

Now, it would be good if we parse the data and displayed some information on the 
modal. For that, let's use the same principle for replace the url variable. Along with 
the variables, let's add other ones related to the template.



Making It Your Taste

[ 278 ]

We want to create a template with two columns, the left one the user avatar image 
from the object and some basic info on the right. So, add the highlighted lines in your 
JavaScript:

$('#githubModal').on('show.bs.modal', function (e) {
    var $element = $(this),
        url = 'https://api.github.com/users/{username}',
        title = 'Hi, my name is {name}',
        content = '' +
            '<div class="row">' +
                '<img src="{img}" class="col-sm-3">' +
                '<p class="col-sm-9" id="bio">{bio}</p>' +
            '</div>',

        bio = '' +
            'At moment I have {publicRepo} public repos ' +
            'and {followers} followers.\n' +
            'I joined Github on {dateJoin}';

    $.get(url, function(data) {
        console.log(data);
    });
});

Here, we created three template variables that we will replace with the data from the 
get request. Inside the get function, let's replace the variables and create our final 
template.

The principle is the same as what we applied to the url, just replace the key, which 
is surrounded by curly brackets, with the value on data:

$('#githubModal').on('show.bs.modal', function (e) {
    var $element = $(this),
        url = 'https://api.github.com/users/{username}',
        title = 'Hi, my name is {name}',
        content = '' +
            '<div class="row">' +
                '<img src="{img}" class="col-sm-3">' +
                '<p class="col-sm-9" id="bio">{bio}</p>' +
            '</div>',



Chapter 11

[ 279 ]

        bio = '' +
            'At moment I have {publicRepo} public repos ' +
            'and {followers} followers.\n' +
            'I joined Github on {dateJoin}';

    url = url.replace(/{username}/, $('#github-username').val());

    $.get(url, function(data) {
        title = title.replace(/{name}/, data.name);

        bio = bio.replace(/{publicRepo}/, data.public_repos)
                 .replace(/{followers}/, data.followers)
                 .replace(/{dateJoin}/, data.created_at.split('T')
[0]);

        content = content.replace(/{img}/, data.avatar_url)
                         .replace(/{bio}/, bio);

        $element.find('.modal-title').text(title);
        $element.find('.modal-body').html(content);
    });
});

After all the replacements, we set the parsed template variables to the modal. We 
query the title to find the .modal-title and insert the text inside, while we insert 
the HTML for .modal-body.

The difference here is that we can pass an HTML or a simple text to jQuery. Take 
care when you pass an HTML to ensure that your HTML is not degenerated. That 
might cause issues for your client. So, pay attention when you want to set just a text, 
like for .modal-title, or a valid html, like for .modal-body.



Making It Your Taste

[ 280 ]

On the browser, type your GitHub username on the input, press the button, and you 
should see a nice modal, such as the one in the next screenshot:

So, we saw how to interact more with the Bootstrap plugins while customizing it for 
our own tasty.

Remember that the Bootstrap events exist for every Bootstrap plugin. They are 
friendly and can be very handy while interacting with the plugins, like in this case, to 
execute some action when the Modal shows.

The additional Bootstrap plugins
Bootstrap has plugins for almost anything. However, there are some missing 
components and plugins that would be nice to have in our web pages, for example, a 
data picker, or a color picker, or a select component. Bootstrap does not incorporate 
these plugins into the framework because they are not that generic for any 
application, so you should add it if you need.

Knowing that, the Bootstrap developers provide a list of additional Bootstrap 
resources that can be found at http://expo.getbootstrap.com/resources/.

http://expo.getbootstrap.com/resources/


Chapter 11

[ 281 ]

Creating our Bootstrap plugin
In the previous chapter, we discussed the Carousel Bootstrap plugin. Do you 
remember the HTML markup to use the plugin? It is a big markup as you can see 
from the following code:

<div id="carousel-notification" class="carousel slide" data-
ride="carousel">

  <!-- Wrapper for slides -->
  <div class="carousel-inner" role="listbox">
    <div class="item active">
      <img src="imgs/doge.jpg" width="512">
      <div class="carousel-caption">
        <h3>Doge said:</h3>
        <p>What are you doing? So scare. It's alright now.</p>
      </div>
    </div>
    <div class="item">
      <img src="imgs/cat.jpg" width="512">
      <div class="carousel-caption">
        <h3>Crazy cat said:</h3>
        <p>I will never forgive you...</p>
      </div>
    </div>
    <div class="item">
      <img src="imgs/laika.jpg" width="512">
      <div class="carousel-caption">
        <h3>Laika said:</h3>
        <p>Hey! How are you?</p>
      </div>
    </div>
  </div>

  <!-- Indicators -->
  <ol class="carousel-indicators">
    <li data-target="#carousel-notification" data-slide-to="0"  
class="active"></li>
    <li data-target="#carousel-notification" data-slide-to="1"></li>
    <li data-target="#carousel-notification" data-slide-to="2"></li>
  </ol>



Making It Your Taste

[ 282 ]

  <!-- Controls -->
  <a class="left carousel-control" href="#carousel-notification"  
role="button" data-slide="prev">
    <span class="glyphicon glyphicon-chevron-left" aria-
hidden="true"></span>
    <span class="sr-only">Previous</span>
  </a>
  <a class="right carousel-control" href="#carousel-notification"  
role="button" data-slide="next">
    <span class="glyphicon glyphicon-chevron-right" aria-
hidden="true"></span>
    <span class="sr-only">Next</span>
  </a>
</div>

There is a reason why the plugin has all these lines of code. With all of that, you are 
able to customize the plugin for your own use. However, it would be nice if we had a 
simple carousel with fewer lines of code. Can we do that?

The template that we are trying to create for new plugin will have only the HTML 
that will reflect the same action as the preceding code:

<div id="carousel-notification" class="bootstrap-carousel">
  <img src="imgs/doge.jpg" data-title="doge" data-content="Hey  
there!">
  <img src="imgs/laika.jpg" data-title="laika" data-content="Hey  
…!">
  <img src="imgs/cat.jpg" data-title="cat">
</div>

In the plugin, we will have only one div wrapping up everything. Inside that, we 
will have a sequence of img elements, each one containing the image source, the title 
via data-title, and the slide content via data-content.

Building a plugin from scratch is quite difficult, but we will be able to learn the 
concepts behind Bootstrap and master it when we finish the plugin.

Creating the plugin scaffold
First of all, let's define the directories and files that we are using. For the HTML, we 
will start a new one that will have the same base template that was used in all the 
other examples.



Chapter 11

[ 283 ]

Inside the imgs directory, we will keep the pet images that we used in the previous 
chapter. In this chapter, we will not use any CSS, so do not mind that.

Create a file named bootstrap-carousel.js inside the js folder and import it in 
the HTML just below the bootstrap.js load (bottom of the page):

<script src="js/jquery-1.11.3.js"></script>
<script src="js/bootstrap.js"></script>
<script src="js/bootstrap-carousel.js"></script>

Let's create the plugin base. Inside the bootstrap-carousel.js file, add the 
following lines:

+function ($) {
  'use strict';

  // BOOTSTRAP CAROUSEL CLASS DEFINITION
  // ======================
  var BootstrapCarousel   = function (element, options) {
    this.$element = $(element);
    this.options = $.extend({}, BootstrapCarousel.DEFAULTS,  
options);
  }

  BootstrapCarousel.VERSION = '1.0.0'
  BootstrapCarousel.DEFAULTS = {
  };

  BootstrapCarousel.prototype = {
  };

}(jQuery);

Here, we define a new function for jQuery. First, we define a class called 
BootstrapCarousel that will be our plugin. The function receives the element that 
will be applied the carousel and options that will be passed through data attributes 
or JavaScript initialization.

Why the plus symbol in the beginning of the function?
The plus (+) symbol forces to treat it as an expression so that any function 
after it should be called immediately. Instead of this symbol, we could 
use others unary operators to have the same effect (such as !, ~, or ()). 
Without the initial symbol, the function can be seen as the declaration 
of a function rather than an expression, which can create a syntax error.



Making It Your Taste

[ 284 ]

The variable options are then extended from the BootstrapCarousel.DEFAULT 
options. So, if an option is not provided, a default value will be used.

Let's define the VERSION of the plugin, the DEFAULT values, and the prototype that 
contains all the properties and methods for the class. Inside prototype, we will 
create the plugin methods and classes, and this is where the core logic will be stored.

Before creating the Bootstrap carousel logic, we must finish some tasks for plugin 
initialization. After prototype, let's create our plugin initialization:

+function ($) {
  'use strict';

  // BOOTSTRAP CAROUSEL CLASS DEFINITION
  // ======================
  var BootstrapCarousel   = function (element, options) {
    this.$element = $(element);
    this.options = $.extend({}, BootstrapCarousel.DEFAULTS,  
options);
  }

  BootstrapCarousel.VERSION = '1.0.0'
  BootstrapCarousel.DEFAULTS  = {
  };

  BootstrapCarousel.prototype = {
  };

  // BOOTSTRAP CAROUSEL PLUGIN DEFINITION
  // =======================
  function Plugin(option) {

    var args = arguments;
    [].shift.apply(args);

    return this.each(function () {
      var $this = $(this),
          data  = $this.data('bootstrap-carousel'),
          options = $.extend({}, BootstrapCarousel.DEFAULTS,  
$this.data(), typeof option == 'object' && option),
          value;



Chapter 11

[ 285 ]

      if (!data) {
        $this.data('bootstrap-carousel', (data = new  
BootstrapCarousel(this, options)));
      }

      if (typeof option == 'string') {
        if (data[option] instanceof Function) {
          value = data[option].apply(data, args);
        } else {
          value = data.options[option];
        }
      }
    })
  }

}(jQuery);

The class Plugin will receive the option called and arguments for the element and 
call it. Do not worry about this part. This is quite a common plugin initialization that 
is replicated over almost all plugins.

To end the plugin initialization, add the following highlighted code after the Plugin 
class:

+function ($) {
  'use strict';

  // BOOTSTRAP CAROUSEL CLASS DEFINITION
  // ======================
  var BootstrapCarousel   = function (element, options) {
    this.$element = $(element);
    this.options = $.extend({}, BootstrapCarousel.DEFAULTS,  
options);
  }

  BootstrapCarousel.VERSION = '1.0.0'
  BootstrapCarousel.DEFAULTS  = {
  };

  BootstrapCarousel.prototype = {
  };



Making It Your Taste

[ 286 ]

  // BOOTSTRAP CAROUSEL PLUGIN DEFINITION
  // =======================
  function Plugin(option) {
    …. // the plugin definition
  }

  var old = $.fn.bCarousel;
  $.fn.bCarousel = Plugin;
  $.fn.bCarousel.Constructor = BootstrapCarousel;

  // BOOTSTRAP CAROUSEL NO CONFLICT
  // =================
  $.fn.bCarousel.noConflict = function () {
    $.fn.bCarousel = old;
    return this;
  }

  // BOOTSTRAP CAROUSEL CLASS LOAD
  // ==============
  $(window).on('load', function () {
    $('.bootstrap-carousel').each(function () {
      var $carousel = $(this);
      Plugin.call($carousel, $carousel.data());
    })
  })

}(jQuery);

First, we associate the plugin with jQuery by in the line $.fn.bCarousel = 
Plugin;. Then, set that the constructor for the class initialization will be called for 
$.fn.bCarousel.Constructor = BootstrapCarousel;. Here, we named our 
plugin bCarousel, so we will can the plugin via JavaScript:

$('some element selected').bCarousel();

Then, we add the plugin again for conflict cases where you have more than one 
plugin with the same name.

In the last part of code, we initialize the plugin via data class. So, for each element 
identified by the class .bootstrap-carousel, the plugin will be initialized passing 
the data attributes related to it automatically.



Chapter 11

[ 287 ]

Defining the plugin methods
Now that we have our plugin well declared, we must fill the logic for it. We will 
create methods inside the prototype to create this behavior. We will only show this 
portion of the plugin code here.

The first method that we will create is init(). We will call it later to start the plugin. 
Before that, we have a few steps:

• Initial verifications
• Assigning the plugin elements and prerequisites
• Loading the original Bootstrap template
• Starting the Bootstrap plugin

The initialize method and plugin verifications
Actually, we have only one requirement from the Bootstrap original carousel plugin: 
the outmost div must have an id. Let's create the init function while making this 
assertion:

BootstrapCarousel.prototype = {
  init: function () {
    if(!this.$element.attr('id')){
      throw 'You must provide an id for the Bootstrap Carousel  
element.';
    }

    this.$element.addClass('slide carousel');
  }
};

Therefore, we check if the element has the attribute id using this.$element.
attr('id'). If not, we throw an error to the console and the developer will properly 
fix this issue. Note that we can access the plugin element using this.$element 
because we made this assignment at the start of the plugin.

In the last line of the function, we added some classes needed for the Bootstrap 
Carousel, in case we do not have it in the $element such as .slide and .carousel.



Making It Your Taste

[ 288 ]

Adding the Bootstrap template
To load the Bootstrap Carousel template, let's create another function called load 
inside the init method to start it:

BootstrapCarousel.prototype = {
  init: function () {
    if(!this.$element.attr('id')){
      throw 'You must provide an id for the Bootstrap Carousel  
element.';
    }

    this.$slides = this.$element.find('> img');
    this.$element.addClass('slide carousel');
    this.load();
  }

  load: function() {
  },
};

First, we must remove any Carousel elements that could be already present inside 
our $element. The elements that we must remove are the ones with the .carousel-
inner, .carousel-indicators, and .carousel-control classes. Also, we have to 
load and hide the slide images in the variable this.$slides:

load: function() {
  // removing Carousel elements
  this.$element.find('.carousel-inner, .carousel-indicators,  
.carousel-control').remove();

  // loading and hiding the slide images
  this.$slides = this.$element.find('> img');
  this.$slides.hide();
},

Next, we must make sure that there are not any other associations of Bootstrap 
Carousel in our plugin element. Append the following lines in the function:

this.$element.carousel('pause');
this.$element.removeData('bs.carousel');

First, we will pause the Carousel to stop any interaction and after use the function 
removeData in the bs.carousel, which is the name of the Carousel plugin.



Chapter 11

[ 289 ]

To continue, we must load the Bootstrap Carousel template. Inside the class 
prototype, we have to create a variable to hold the original template. The variable 
will have the following format:

template: {
  slide: '…',
  carouselInner: '…',
  carouselItem: '…',
  carouselIndicator: '…',
  carouselIndicatorItem: '…',
  carouselControls: '…',
},

We are not going to place the full code of each template because it is quite extensive, 
and it would be better to you to check the full code attached with the book and see 
each template. Although there are no secrets in the templates, they are just a big 
string with some marked parts that we will replace. The marked parts are defined as 
a string around curly brackets, for example, {keyName}. When creating the template, 
we just need to replace these parts of the string by calling .replace(/{keyName}/, 
'value').

Each key inside the template correspond to a certain part of the template. Let's 
explain each one:

• slide: This is the slide template of the new plugin and it is used to add slides 
via JavaScript

• carouselInner: This is the element inside the carousel that is parent for the 
items

• carouselItem: This is the item that contains the image and the caption of a 
slide

• carouselIndicator: This is the set of bullets at the bottom of the carousel
• carouselIndicatorItem: This represents each bullet of the indicator
• carouselControls: This is the controls to switch between left and right the 

carousel slides

At the end of the load method, add two more lines:

load: function() {
  this.$element.find('.carousel-inner, .carousel-indicators,  
.carousel-control').remove();
  this.$slides = this.$element.find('> img');
  this.$slides.hide();



Making It Your Taste

[ 290 ]

  this.$element.carousel('pause');
  this.$element.removeData('bs.carousel');

  this.$element.append(this.createCarousel());
  this.initPlugin();
},

So, we will append in the this.$element the template generated in the function 
createCarousel. After that, we just need to initialize the Bootstrap original Carousel 
plugin.

Creating the original template
The original template will be created in the function createCarousel. It is composed 
of two steps. The steps are as follows:

• We create the slide deck for the .carousel-inner element
• Then, we create the indicator and the controls, if needed

Thus, the createCarousel method is composed of the call of these three functions 
that will append the string template to a variable:

createCarousel: function() {
  var template = '';

  // create slides
  template += this.createSlideDeck();

  // create indicators
  if(this.options.indicators) {
    template += this.createIndicators();
  }

  // create controls
  if(this.options.controls) {
    template += this.createControls();
  }

  return template
},

Note that for the indicator and the controls we made, check before creating the 
template. We performed a check in the this.options variable to see if the developer 
passed the argument to add these components or not.



Chapter 11

[ 291 ]

So, we are defining the first two variables of our plugin. They can be passed through 
data attributes in the element, like data-indicators and data-controls. It defines 
whether the template will have these elements or not.

The slide deck
The slide deck will be created by the iterating of each this.$slide and loading the 
image source, the data-title and the data-content in this case. Also, for the first 
item, we must apply the class .active. The code is as follows:

createSlideDeck: function() {
  var slideTemplate = '',
      slide;

  for (var i = 0; i < this.$slides.length; i++) {
    slide = this.$slides.get(i);

    slideTemplate += this.createSlide(
      i == 0 ? 'active' : '',
      slide.src,
      slide.dataset.title,
      slide.dataset.content
    );
  };

  return this.template.carouselInner.replace(/{innerContent}/,  
slideTemplate);
},

In each iteration, we are calling another function named createSlide, where we are 
passing, if the slide is active, the image source, the item title, and the item content. 
This function will then replace the template using these arguments:

createSlide: function(active, itemImg, itemTitle, itemContent) {
  return this.template.carouselItem
      .replace(/{activeClass}/, active)
      .replace(/{itemImg}/, itemImg)
      .replace(/{itemTitle}/, itemTitle ||  
this.options.defaultTitle)
      .replace(/{itemContent}/, itemContent ||  
this.options.defaultContent);
}



Making It Your Taste

[ 292 ]

We performed a check for the title and the content. If there is no title or content 
provided, a default value will be assigned from this.options. Just like the 
indicators and controls, these options can be passed through data attributes such as 
data-default-title and data-default-content in the plugin HTML element.

Do not forget that these options can be also provided in the plugin 
initialization through JavaScript by calling .bCarousel({ 
defaultTitle: 'default title' }).

The carousel indicators
The function createIndicators is used to create the indicators. In this function, we 
will perform the same method of the one to create the slide deck. We will create each 
bullet and then wrap it in the list of .carousel-indicators:

createIndicators: function() {
  var indicatorTemplate = '',
      slide,
      elementId = this.$element.attr('id');

  for (var i = 0; i < this.$slides.length; i++) {
    slide = this.$slides.get(i);

    indicatorTemplate += this.template.carouselIndicatorItem
      .replace(/{elementId}/, elementId)
      .replace(/{slideNumber}/, i)
      .replace(/{activeClass}/, i == 0 ? 'class="active"' : '');
  }

  return this.template.carouselIndicator.replace(/{indicators}/,  
indicatorTemplate);
},

The only trick here is that each bullet must be enumerated and have a reference to 
the parent element id. Thus, we made the replacements for each this.$slides and 
returned the indicator template.

Why are replacing the key and surrounding with slashes?
Surrounding with slashes on JavaScript performs a regex search on the 
pattern provided. This can be useful for custom replaces and specific 
searches.



Chapter 11

[ 293 ]

The carousel controls
The controls create the arrows to switch slides from left to right. They follow the 
same methodology as the other templates. Just get a template and replace the keys. 
This method must be implemented like this:

createControls: function() {
  var elementId = this.$element.attr('id');

  return this.template.carouselControls
    .replace(/{elementId}/g, elementId)
    .replace(/{previousIcon}/, this.options.previousIcon)
    .replace(/{previousText}/, this.options.previousText)
    .replace(/{nextIcon}/, this.options.nextIcon)
    .replace(/{nextText}/, this.options.nextText);
},

Note that in the first replacement for the {elementId}, our regex has an append g. 
The g on the regex is used to replace all occurrences of the following pattern. If we 
do not use g, JavaScript will only replace the first attempt. In this template we have 
two {elementId} keys, using which we replace both at once.

We also have some options passed through plugin initialization for the previous and 
next icon and the text corresponding to that.

Initializing the original plugin
After creating the original template, we must start the original Carousel plugin. We 
defined a function called initPlugin with the following implementation:

initPlugin: function() {
  this.$element.carousel({
    interval: this.options.interval,
    pause: this.options.pause,
    wrap: this.options.wrap,
    keyboyard: this.options.keyboard
  });
},



Making It Your Taste

[ 294 ]

It just starts the plugin by calling this.$element.carousel while passing the 
carousel options on start. The options are loaded just like the others that we 
presented before. As shown, the options are loaded in the plugin class definition in 
the following line:

this.options = $.extend({}, BootstrapCarousel.DEFAULTS, options);

If any option is passed, it will override the default options present in 
BootstrapCarousel.DEFAULTS. We must create like this:

BootstrapCarousel.DEFAULTS = {
  indicators: true,
  controls: true,
  defaultTitle: '',
  defaultContent: '',
  nextIcon: 'glyphicon glyphicon-chevron-right',
  nextText: 'Next',
  previousIcon: 'glyphicon glyphicon-chevron-left',
  previousText: 'Previous',
  interval: 5000,
  pause: 'hover',
  wrap: true,
  keyboard: true,
};

Making the plugin alive
We are one step away from loading the plugin. To do so, create the following code in 
the HTML:

<div id="carousel-notification" class="bootstrap-carousel" data-
indicators="true" data-controls="true">
  <img src="imgs/doge.jpg" data-title="doge" data-content="Hey  
there!">
  <img src="imgs/laika.jpg" data-title="laika" data-content="Hey  
...!">
  <img src="imgs/cat.jpg" data-title="cat">
</div>



Chapter 11

[ 295 ]

In our plugin JavaScript, we have to ignite the prototype by calling the init function 
like this:

var BootstrapCarousel   = function (element, options) {
  this.$element = $(element);
  this.options = $.extend({}, BootstrapCarousel.DEFAULTS, options);

  this.init();
}

Hooray! Open the HTML file in our browser and see the plugin in action, as shown 
in the next screenshot. In the DOM, you can how we perfectly mime the Bootstrap 
Carousel plugin, reducing the declaration in almost 35 lines of code:



Making It Your Taste

[ 296 ]

Creating additional plugin methods
We are almost finishing our plugin. Now, it's time to add some methods to be called 
in the plugin, just like you can call .carousel('pause') on Bootstrap Carousel for 
instance.

When we were creating the plugin base, we created a class Plugin, which is the 
definition of the plugin. This part of the code is pretty common across the plugins 
and it is used on every native Bootstrap plugin:

function Plugin(option) {

  var args = arguments;
  [].shift.apply(args);

  return this.each(function () {
    var $this = $(this),
        data  = $this.data('bootstrap-carousel'),
        options = $.extend({}, BootstrapCarousel.DEFAULTS, $this.
data(), typeof option == 'object' && option),
        value;

    if (!data) {
      $this.data('bootstrap-carousel', (data = new 
BootstrapCarousel(this, options)));
    }

    if (typeof option == 'string') {
      if (data[option] instanceof Function) {
        value = data[option].apply(data, args);
      } else {
        value = data.options[option];
      }
    }
  })
}

If you take a look at the highlighted lines of code, here we check the option variable 
that is passed. If it is a string, we apply the function, calling the option function on 
the plugin.



Chapter 11

[ 297 ]

After that, we need to expose the function of the BootstrapCarousel class 
definition. So let's add two options, one to reload the plugin and another to add a 
slide to the carousel:

var BootstrapCarousel   = function (element, options) {
  this.$element = $(element);
  this.options = $.extend({}, BootstrapCarousel.DEFAULTS, options);

  // Expose public methods
  this.addSlide = BootstrapCarousel.prototype.addSlide;
  this.reload = BootstrapCarousel.prototype.load;

  this.init();
}

The highlighted lines represent the exposed methods. Now we need to implement 
them on the prototype.

Although one of the methods has already been implemented, the 
BootstrapCarousel.prototype.load when exposing it we renamed the expose 
from load to reload. Calling this method will erase all the Bootstrap Carousel original 
plugin, create the template again based on the images passed through our plugin, 
and generate the plugin again.

We need to implement the method BootstrapCarousel.prototype.addSlide. So, 
inside Bootstrap.prototype, create the following function:

addSlide: function(itemImg, itemTitle, itemContent) {
  var newSlide = this.template.slide
    .replace(/{itemImg}/, itemImg)
    .replace(/{itemTitle}/, itemTitle)
    .replace(/{itemContent}/, itemContent);
  this.$element.append(newSlide);
  this.load();
},

This function will receive itemImg, which is the source of an image; itemTitle, for 
the slide title caption; and itemContent for the paragraph on the caption as well.



Making It Your Taste

[ 298 ]

To create a new slide, we first use the template for a new one that can be found in the 
template variable this.template.slide:

template: {
      slide: '<img class="hide" src="{itemImg}" data-
title="{itemTitle}" data-content="{itemContent}">',
… // others template variable
}

Like creating the slide deck, indicators, and controls, we set a multiple keys 
identified around curly brackets and do a replace of them in the function.

After the replacements, the new slide is appended to this.$element, which also 
contains the others slides. Finally, we need to call the load function, which will do all 
the hard work to assign variables, hide elements, and start the original plugin.

Then, when you want to add a slide to the plugin, you just need to call:

$('.bootstrap-carousel').bCarousel('addSlide', 'imgs/jon.png',  
'New title image', 'This is awesome!');

With this plugin function, we are done! See, it is not too difficult to create a new 
plugin. We can now start incrementing it with more options for automation and 
customization.

Summary
In my opinion, this last chapter was awesome! We saw more about Bootstrap 
customization in terms of both components style and plugin interaction. Bootstrap is 
a great framework, but what makes it great is the extensibility potential that it has. 
It matches the perfect world where premade components and customization live in 
symbiosis.

To finish the book with a flourish, we developed a new Bootstrap plugin, the 
wrapper for Bootstrap Carousel. The plugin contemplates almost every pattern for 
the Bootstrap plugin, and it has been very helpful in creating a simple carousel with 
minimal verbosity.

The plugin is available on GitHub at github.com/silviomoreto/bootstrap-
carousel. Take a look at it and create a pull-request! There are a bunch of 
improvements and new features that could be added to the plugin—perhaps a 
method to remove slides?



Chapter 11

[ 299 ]

Also, the goal of creating a plugin is to make you able to create a new one in the 
future or understand a Bootstrap plugin if you need to adjust some part of it. I think 
you can now see the plugin's code with more familiarity and improve them.

I would like to congratulate you for reaching the end of the book. Understanding a 
complete framework such as Bootstrap is not a simple task and it is completed by 
just a small group of developers in the world. Be proud of your achievement.

The understanding of the plugin goes from the basic usage of the scaffolding from 
the creation of a plugin to the components, elements, and more. All of that was 
achieved using very useful examples that will be useful some day in your work. 

The cherry on top of the pie is that you also learned about Bootstrap 4, which was 
released recently. This means you are one of the few people who are completely 
ready to use the new version of the Bootstrap framework.

I hope you liked the journey through the world of Bootstrap and were able to learn 
a lot from this book. Now it is your turn! You must go and nail every frontend 
Bootstrap task that you face. I believe that with all the knowledge acquired from 
the examples covered in this book, you are more than ready to be a true Bootstrap 
master.





[ 301 ]

Index
A
affix plugin  189
aria-hidden property  95

B
badges  169-171
bold elements

usage  34
Bootstrap

about  2, 3, 40
and mobile-first design  47
and web applications  14
blog, URL  13
expo, URL  13
GitHub repository, URL  13
icons  93-96
modals  175
official documentation, URL  13
repository, URL  3
Stack Overflow, URL  13
URL  2
version 4, URL  3

Bootstrap component
button  270, 271
button, as radio button  273
button toggle  271
checkbox toggle buttons  272, 273
customizing  269
JavaScript, customizing  274

Bootstrap plugin, methods
Bootstrap Carousel template,  

adding  288-290
carousel controls  293
carousel indicators  292

creating  296-298
defining  287
initialize method  287
original plugin, initializing  293
original template, creating  290, 291
plugin, making alive  294, 295
slide deck  291
verifications  287

Bootstrap plugins
additional  280
creating  281, 282
scaffold, creating  282-286

Bootstrap repository
URL  109

Bootstrap resources
URL  280

Bootstrap Scrollspy  262-267
Bower  174
box-sizing  40, 41
breadcrumbs

creating  141, 142
browser compatibility  15
button

as radio button  273
buttons dropdown

about  101-103
customizing  104, 105

C
cards

adding, to web application  128-131
Bootstrap components used  239-242
creating  127, 128, 236-238
last plot, creating  242-244
learning, in Bootstrap 4  126



[ 302 ]

playing  125
thumbnails, using  131, 132

carousel
items, customizing  258
methods  261
options  261
options, URL  261
using  256-258

CDN setup
optional use  12

checkbox toggle buttons  272, 273
clearfix  41
community activity  13
contact form

about  81-83
JavaScript  83, 84

container tag  10-12
Content Delivery Network (CDN)  7

D
dashboard

about  198
charts, rounding  221-224
main content  219-221
quick statistical card, creating  224-226
spider chart, getting  227-229

devices
landing page, creating  51

E
Easy Pie Chart

URL  221
example

building  8, 9
container tag  9-12

F
flexbox

about  107-109
and Bootstrap  109
last navigation bar  199-202
URL  108, 110

fluid container  26

fluid content
advanced CSS  218, 219
collapse plugin  214-217
left menu  212, 213
main fluid content, filling  210
side stacked menu  211, 212

Font Awesome
URL  96

forms
contact form  81-83
forming  79
newsletter form  79, 80
sign-in form  85-87

framework
folder structure  4
sample example  4-6
setting up  3
tags  6-8

G
Glyphicon icons

about  95, 96
URL  93, 95

grid layout
about section  69, 70
changing  63
features section  71, 72
footer  76-78
forms, forming  79
grid system  65
header  65, 66
helpers  89
images  87, 88
introduction header  66-68
price table section  73-76

grid system  17, 18

H
helpers

about  89
context colors  89, 90
floating and centering blocks  89
responsive embeds  91
spacing  90



[ 303 ]

Highcharts plugin
URL  227

I
images  87, 88
input grouping

making  105-107
italic elements

usage  34

J
JavaScript plugins

about  173
data attributes  174
JavaScript events  175
library dependencies  174

jQuery
URL  6

L
labels  169-171
landing page

creating, for different devices  51
desktop and large devices  59
mobile and extra small devices  52-56
tablets and small devices  57-59

M
main content

feed, creating  134-139
implementing  133, 134
options, for pagination  140

menu affix
creating  189

mobile design
about  45, 46
and Bootstrap  47
and extra small devices  52
landing page, creating for different  

design  51
mess, cleaning  50, 51
viewports, debugging  47-49

mobile viewport
fixing  244-248
missing left menu, adding  252, 253
navigation menu, fixing  248-250
notification list, styling  251
round charts, aligning  254, 255

modals
about  175, 176
body  178
custom modal, creating  179-181
footer  178
general and content  177
header  177

N
navigation

about  97
adding  112-114
bar, coloring  101
collapse  98-100
different attachments, using  100
search input, adding  115
time, for menu options  116

navigation bar
customizing  118
custom theme, setting up  118, 119
finishing  120, 121
list navigation bar pseudo-classes,  

fixing  119, 120
some issues, fixing with  121-124

navigation bar, flexbox
about  199-202
finishing  204-208
navigation search  203, 204
profile, checking  209, 210

newsletter form  79, 80
npm file  3

O
overhead loading  230, 231



[ 304 ]

P
page grid

creating  125
page scaffolding  199
plugins

about  256
Bootstrap carousel, using  256-258
carousel items, customizing  258
carousel, methods  261
carousel, options  261
customization, working with  274-280
navigation controls, adding  260, 261
slide indicators, creating  258

plus (+) symbol  283
popover plugin

about  184-187
events  187, 188

progress bar
about  153, 154
animating  155, 156
options  154, 155

Q
quick floats  41

R
right-hand-side content

creating  142-146

S
scaffolding

building  18
grid, finishing  24
grid rows, finishing  22
offset columns  21
rows, nesting  22
setting up  19-21

settings page
about  156, 157
content, creating in user  

info tab  164-167
labels and badges  169-171

pills of stack  157-160
stats column  167
tab content, adding  163
tabs  161, 162
tabs plugin, using  163

sign-in form  85-87
slide deck  291, 292
spider chart

getting  227-229
style!

about  26, 27
buttons, playing with  29
headings  28
typography and code tags  30-35

switchery plugin
URL  236

T
tables

buttons, styling  38
manipulating  35-37

tabs plugin
using  163

tags  6-8
time, for menu options

option, at thumbnail  116, 117
Tweet button, adding  117

toggle button
fixing, for mobile  232, 233

tools
about  14
URL  14

tooltips  181-183
typography

font definitions  42

U
user info tab

content, creating  164-167

V
viewports

debugging, at browser  47-49



[ 305 ]

W
web app (web applications)

alerts  150, 151
alerts, customizing  151, 152
alerts, dismissing  151
code structure, creating  112
defining  111
finishing  191-195

white-space CSS property  50
will-change property

URL  218


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Getting Bootstrap
	Setting up the framework
	Folder structure
	Warming up the sample example
	Bootstrap required tags

	Building our first Bootstrap example
	The container tag

	Optionally using the CDN setup
	Community activity
	Tools

	Bootstrap and web applications
	Browser compatibility
	Summary

	Chapter 2: Creating a Solid Scaffolding
	Understanding the grid system
	Building our scaffolding
	Setting things up
	Offset columns
	Completing the grid rows
	Nesting rows
	Finishing the grid

	Fluid container
	We need some style!
	There are headings everywhere
	Playing with buttons
	More typography and code tags

	Manipulating tables
	Styling the buttons

	Like a boss!
	Final thoughts
	Box-sizing
	Quick floats
	Clearfix
	Font definitions for typography

	Summary

	Chapter 3: Yes, You Should 
Go Mobile First
	Making it greater
	Bootstrap and the mobile-first design
	How to debug different viewports at the browser
	Cleaning up the mess
	Creating the landing page for different devices
	Mobile and extra small devices
	Tablets and small devices
	Desktop and large devices
	Summary


	Chapter 4: Applying the Bootstrap Style
	Changing our grid layout
	Starting over the grid system
	The header
	The introduction header
	The about section
	The features section
	The price table section
	The footer

	Forming the forms
	Newsletter form
	Contact form
	The sign-in form

	Images
	Helpers
	Floating and centering blocks
	Context colors
	Spacing
	Responsive embeds


	Summary

	Chapter 5: Making It Fancy
	Using Bootstrap icons
	Paying attention to your navigation
	Until the navigation collapse
	Using different attachments
	Coloring the bar

	Dropping it down
	Customizing buttons dropdown

	Making an input grouping
	Getting ready for flexbox!
	Understanding flexbox
	Playing with Bootstrap and flexbox

	Summary

	Chapter 6: Can You Build a Web App?
	Understanding web applications
	Creating the code structure

	Adding the navigation
	Adding the search input
	Time for the menu options!
	The option at the thumbnail
	Adding the Tweet button

	Customizing the navigation bar
	Setting up the custom theme
	Fixing the list navigation bar pseudo-classes

	You deserve a badge!
	Fixing some issues with the navigation bar

	Do a grid again
	Playing the cards
	Learning cards in Bootstrap 4
	Creating your own cards
	Adding Cards to our web application
	Another card using thumbnails

	Implementing the main content
	Making your feed
	Doing some pagination

	Creating breadcrumbs
	Finishing with the right-hand-side content
	Summary

	Chapter 7: Of Course, You Can Build 
a Web App!
	Alerts in our web app
	Dismissing alerts
	Customizing alerts

	Waiting for the progress bar
	Progress bar options
	Animating the progress bar

	Creating a settings page
	Pills of stack
	Tabs in the middle
	Adding the tab content
	Using the Bootstrap tabs plugin

	Creating content in the user info tab
	The stats column
	Labels and badges

	Summary

	Chapter 8: Working with JavaScript
	Understanding JavaScript plugins
	The library dependencies
	Data attributes
	Bootstrap JavaScript events

	Awesome Bootstrap modals
	Modal general and content
	The modal header
	The modal body
	The modal footer

	Creating our custom modal
	A tool for your tip
	Pop it all over
	Popover events

	Making the menu affix
	Finishing the web app
	Summary

	Chapter 9: Entering in the Advanced Mode
	The master plan
	The last navigation bar with flexbox
	The navigation search
	The menu needs navigation
	Checking the profile

	Filling the main fluid content
	From the side stacked menu
	I heard that the left menu is great!
	Learning the collapse plugin
	Using some advanced CSS

	Filling the main content
	Rounding the charts
	Creating a quick statistical card
	Getting a spider chart

	Overhead loading
	Fixing the toggle button for mobile
	Summary

	Chapter 10: Bringing Components to Life
	Creating the main cards
	The other card using Bootstrap components
	Creating our last plot

	Fixing the mobile viewport
	Fixing the navigation menu
	The notification list needs some style
	Adding the missing left menu
	Aligning the round charts

	Learning more advanced plugins
	Using the Bootstrap carousel
	Customizing carousel items
	Creating slide indicators
	Adding navigation controls
	Other methods and options for the carousel

	The Bootstrap spy

	Summary

	Chapter 11: Making It Your Taste
	Customizing a Bootstrap component
	The taste of your button
	Using button toggle
	The checkbox toggle buttons
	The button as a radio button
	Doing the JavaScript customization

	Working with plugin customization
	The additional Bootstrap plugins
	Creating our Bootstrap plugin
	Creating the plugin scaffold

	Defining the plugin methods
	The initialize method and plugin verifications
	Adding the Bootstrap template
	Creating the original template
	The slide deck
	The carousel indicators
	The carousel controls

	Initializing the original plugin
	Making the plugin alive

	Creating additional plugin methods
	Summary

	Index



