
Foundational CSS3 Components

Eric A. Meyer

CSS and
Documents

Excerpt from

CSS: The Definitive Guide,

4th Edition

CSS and Documents

Eric A. Meyer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

CSS and Documents
by Eric A. Meyer

Copyright © 2012 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kristen Borg
Copyeditor: Rachel Leach
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-09-25 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342470 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. CSS and Documents, the image of a salmon, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-34247-0

[LSI]

1348245482

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342470

Table of Contents

Preface . v

CSS and Documents . 1
A Brief History of (Web) Style 1
Elements 2

Replaced and Nonreplaced Elements 3
Element Display Roles 3

Bringing CSS and HTML Together 6
The link Tag 7
The style Element 11
The @import Directive 12
HTTP Linking 13
Inline Styles 14

Media Queries 15
Usage 15
Media Types 15
Media Descriptors 16
Media Feature Descriptors 18
New Value Types 20

Style Sheet Contents 20
Markup 21
Rule Structure 21
Whitespace Handling 22
Media Blocks 24
CSS Comments 24

Summary 25

iii

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

v

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “CSS and Documents by Eric A. Meyer
(O’Reilly). Copyright 2012 O’Reilly Media, Inc., 978-1-449-34247-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/css-and-documents.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

vi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/css-and-documents
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CSS and Documents

Cascading Style Sheets (CSS) is a powerful tool that transforms the presentation of a
document or a collection of documents, and it has spread to nearly every corner of the
web as well as into many ostensibly non-web environments. For example, Gecko-based
browsers use CSS to affect the presentation of the browser chrome itself, many RSS
clients let you apply CSS to feeds and feed entries, and some instant message clients
like Adium use CSS to format chat windows. Aspects of CSS can be found in the syntax
used by JavaScript frameworks like jQuery. It’s everywhere!

A Brief History of (Web) Style
CSS was first proposed in 1994, just as the Web was beginning to really catch on. In
fact, the first draft of what would eventually become CSS (titled Cascading HTML Style
Sheets) was published mere days before the first release of Mozilla (soon to be Netscape
Navigator) was announced.

At the time, browsers gave all sorts of styling power to the user—the presentation
preferences in Mosaic, for example, permitted all manner of font family, size, and color
to be defined by the user on a per-element basis. None of this was available to document
authors; all they could do was mark a piece of content as a paragraph, as a heading of
some level, as preformatted text, or one of a handful of other element types. If a user
configured his browser to make all level-one headings tiny and pink and all level-six
headings huge and red, well, that was his lookout.

It was into this milieu that CSS was introduced. Its goal was simple: provide a simple,
declarative styling language that was flexible for authors and, most importantly, pro-
vided styling power to authors and users alike. By means of the “cascade,” these styles
could be combined and prioritized so that both authors and readers had a say—though
readers always had the last say.

Work quickly advanced and by late 1996, CSS1 was finished. While the newly estab-
lished CSS Working Group moved forward with CSS2, browsers struggled to imple-
ment CSS1 in an interoperable way. Although each individual piece of CSS was fairly
simple on its own, the combination of those pieces created some surprisingly complex

1

behaviors. There were also some unfortunate missteps in early implementations, such
as the now-infamous discrepancy in box model implementations. These problems
threatened to derail CSS altogether, but fortunately some clever proposals were imple-
mented, and browsers began to harmonize. Within a few years, thanks to increasing
interoperability and high-profile developments such as the CSS-based redesign of
Wired magazine and the CSS Zen Garden, CSS began to really catch on.

Before all that happened, though, the CSS Working Group had finalized the fairly
weighty CSS2 specification in early 1998. Once CSS2 was finished, work immediately
began on CSS3 (as well as a clarified version of CSS2 called CSS2.1). In keeping with
the spirit of the times, CSS3 was constructed as a series of (theoretically) standalone
modules instead of a single monolithic specification. This approach reflected the then-
active XHTML specification, which was split into modules for similar reasons.

The rationale for modularizing CSS3 was that each module could be worked on at its
own pace, and particularly critical (or popular) modules could be advanced along the
W3C’s progress track without being held up by others. Indeed, this has turned out to
be the case. By early 2012, three CSS3 modules (along with CSS1 and CSS 2.1) had
reached full Recommendation status—CSS Color Level 3, CSS Namespaces, and Se-
lectors Level 3. At that same time, seven modules were at Candidate Recommendation
status, and several dozen others were in various stages of Working Draft-ness. Under
the old approach, colors, selectors, and namespaces would have had to wait for every
other part of the specification to be done or cut before they could be part of a completed
specification. Thanks to modularization, they didn’t have to wait.

The flip side of that advantage is that it’s very hard to speak of a single “CSS3 specifi-
cation.” There really isn’t any such thing, nor can there be. Even if every other CSS3
module were completed by, say, late 2014, there would already be a Selectors Level 4
in process, and possibly nearing completion. Would we then speak of it as CSS4? What
about all the CSS3 features still coming into play?

So while we can’t really point to a single tome and say, “There is CSS3,” we can talk
of features by the module name under which they are introduced. The flexibility mod-
ules permit more than makes up for the semantic awkwardness they sometimes create.

Elements
Elements are the basis of document structure. In HTML, the most common elements
are easily recognizable, such as p, table, span, a, and div. Every single element in a
document plays a part in its presentation.

2 | CSS and Documents

Replaced and Nonreplaced Elements
Although CSS depends on elements, not all elements are created equally. For example,
images and paragraphs are not the same type of element, nor are span and div. In CSS,
elements generally take two forms: replaced and nonreplaced.

Replaced elements

Replaced elements are those where the element’s content is replaced by something that
is not directly represented by document content. Probably the most familiar HTML
example is the img element, which is replaced by an image file external to the document
itself. In fact, img has no actual content, as you can see in this simple example:

This markup fragment contains only an element name and an attribute. The element
presents nothing unless you point it to some external content (in this case, an image
specified by the src attribute). If you point to a valid image file, the image will be placed
in the document. If not, it will either display nothing or the browser will show a “broken
image” placeholder.

In a like manner, the input element is also replaced—by a radio button, checkbox, or
text input box, depending on its type.

Nonreplaced elements

The majority of HTML elements are nonreplaced elements. This means that their con-
tent is presented by the user agent (generally a browser) inside a box generated by the
element itself. For example, hi there is a nonreplaced element, and the
text “hi there” will be displayed by the user agent. This is true of paragraphs, headings,
table cells, lists, and almost everything else in HTML.

Element Display Roles
In addition to replaced and nonreplaced elements, CSS2.1 uses two other basic types
of elements: block-level and inline-level. These types will be more familiar to authors
who have spent time with HTML markup and its display in web browsers; the elements
are illustrated in Figure 1.

Figure 1. Block- and inline-level elements in an HTML document

Elements | 3

Block-level elements

Block-level elements generate an element box that (by default) fills its parent element’s
content area and cannot have other elements at its sides. In other words, it generates
“breaks” before and after the element box. The most familiar block elements from
HTML are p and div. Replaced elements can be block-level elements, but usually they
are not.

List items are a special case of block-level elements. In addition to behaving in a manner
consistent with other block elements, they generate a marker—typically a bullet for
unordered lists and a number for ordered lists—that is “attached” to the element box.
Except for the presence of this marker, list items are in all other ways identical to other
block elements.

Inline-level elements

Inline-level elements generate an element box within a line of text and do not break up
the flow of that line. The best inline element example is the a element in HTML. Other
candidates are strong and em. These elements do not generate a “break” before or after
themselves, so they can appear within the content of another element without disrupt-
ing its display.

Note that while the names “block” and “inline” share a great deal in common with
block- and inline-level elements in HTML, there is an important difference. In HTML,
block-level elements cannot descend from inline-level elements. In CSS, there is no
restriction on how display roles can be nested within each other.

To see how this works, let’s consider a CSS property, display:

Values:
none | inline | block | inline-block | list-item | run-in | table | inline-table |
table-row-group | table-header-group | table-footer-group | table-row | table-
column-group | table-column | table-cell | table-caption | inherit

Initial value:
inline

Applies to:
All elements

Inherited:
No

Computed value:
Varies for floated, positioned, and root elements (see CSS2.1, section 9.7);
otherwise, as specified

You may have noticed that there are a lot of values, only three of which I’ve even come
close to mentioning: block, inline, and list-item.

4 | CSS and Documents

For the moment, let’s just concentrate on block and inline. Consider the following
markup:

<body>
<p>This is a paragraph with an inline element within it.</p>
</body>

Here we have two block elements (body and p) and an inline element (em). According
to the HTML specification, em can descend from p, but the reverse is not true. Typically,
the HTML hierarchy works out so that inlines descend from blocks, but not the other
way around.

CSS, on the other hand, has no such restrictions. You can leave the markup as it is but
change the display roles of the two elements like this:

p {display: inline;}
em {display: block;}

This causes the elements to generate a block box inside an inline box. This is perfectly
legal and violates no specification in CSS. You would, however, have a problem if you
tried to reverse the nesting of the elements in HTML:

<p>This is a paragraph improperly enclosed by an inline element.</p>

No matter what you do to the display roles via CSS, this is not legal in HTML.

While changing the display roles of elements can be useful in HTML documents, it
becomes downright critical for XML documents. An XML document is unlikely to have
any inherent display roles, so it’s up to the author to define them. For example, you
might wonder how to lay out the following snippet of XML:

<book>
 <maintitle>Cascading Style Sheets: The Definitive Guide</maintitle>
 <subtitle>Third Edition</subtitle>
 <author>Eric A. Meyer</author>
 <publisher>O'Reilly and Associates</publisher>
 <pubdate>November 2006</pubdate>
 <isbn type="print">978-0-596-52733-4</isbn>
</book>
<book>
 <maintitle>CSS Pocket Reference</maintitle>
 <subtitle>Third Edition</subtitle>
 <author>Eric A. Meyer</author>
 <publisher>O'Reilly and Associates</publisher>
 <pubdate>October 2007</pubdate>
 <isbn type="print">978-0-596-51505-8</isbn>
</book>

Since the default value of display is inline, the content would be rendered as inline
text by default, as illustrated in Figure 2. This isn’t a terribly useful display.

You can define the basics of the layout with display:

book, maintitle, subtitle, author, isbn {display: block;}
publisher, pubdate {display: inline;}

Elements | 5

You’ve now set five of the seven elements to be block and two to be inline. This means
each of the block elements will be treated much as div is treated in HTML, and the two
inlines will be treated in a manner similar to span.

This fundamental ability to affect display roles makes CSS highly useful in a variety of
situations. You could take the preceding rules as a starting point, add a few other styles
for greater visual impact, and get the result shown in Figure 3.

Figure 3. Styled display of an XML document

Before learning how to write CSS in detail, we need to look at how one can associate
CSS with a document. After all, without tying the two together, there’s no way for the
CSS to affect the document. We’ll explore this in an HTML setting since it’s the most
familiar.

Bringing CSS and HTML Together
I’ve mentioned that HTML documents have an inherent structure, and that’s a point
worth repeating. In fact, that’s part of the problem with web pages of old: too many of
us forgot that documents are supposed to have an internal structure, which is altogether
different than a visual structure. In our rush to create the coolest-looking pages on the
Web, we bent, warped, and generally ignored the idea that pages should contain in-
formation with some structural meaning.

That structure is an inherent part of the relationship between HTML and CSS; without
it, there couldn’t be a relationship at all. To understand it better, let’s look at an example
HTML document and break it down by pieces:

Figure 2. Default display of an XML document

6 | CSS and Documents

<html>
<head>
<title>Eric's World of Waffles</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<link rel="stylesheet" type="text/css" href="sheet1.css" media="all">
<style type="text/css">
/* These are my styles! Yay! */
@import url(sheet2.css);
</style>
</head>
<body>
<h1>Waffles!</h1>
<p style="color: gray;">The most wonderful of all breakfast foods is
the waffle—a ridged and cratered slab of home-cooked, fluffy goodness
that makes every child's heart soar with joy. And they're so easy to make!
Just a simple waffle-maker and some batter, and you're ready for a morning
of aromatic ecstasy!
</p>
</body>
</html>

The result of this markup and the applied styles is shown in Figure 4.

Figure 4. A simple document

Now, let’s examine the various ways this document connects to CSS.

The link Tag
First, consider the use of the link tag:

<link rel="stylesheet" type="text/css" href="sheet1.css" media="all">

The link tag is a little-regarded but nonetheless perfectly valid tag that has been hanging
around the HTML specification for years, just waiting to be put to good use. Its basic
purpose is to allow HTML authors to associate other documents with the document
containing the link tag. CSS uses it to link style sheets to the document; in Figure 5, a
style sheet called sheet1.css is linked to the document.

These style sheets, which are not part of the HTML document but are still used by it,
are referred to as external style sheets. This is because they’re style sheets that are ex-
ternal to the HTML document. (Go figure.)

Bringing CSS and HTML Together | 7

To successfully load an external style sheet, link must be placed inside the head element
but may not be placed inside any other element, rather like title. This will cause the
web browser to locate and load the style sheet and use whatever styles it contains to
render the HTML document in the manner shown in Figure 5. Also shown in Fig-
ure 5 is the loading of the external sheet2.css via the @import declaration. Imports must
be placed at the beginning of the style sheet that contains them, but they are otherwise
unconstrained.

And what is the format of an external style sheet? It’s simply a list of rules, just like
those we saw in the previous section and in the example HTML document, but in this
case, the rules are saved into their own file. Just remember that no HTML or any other
markup language can be included in the style sheet—only style rules. Here are the
contents of an external style sheet:

h1 {color: red;}
h2 {color: maroon; background: white;}
h3 {color: white; background: black;
 font: medium Helvetica;}

That’s all there is to it—no HTML markup or comments at all, just plain-and-simple
style declarations. These are saved into a plain-text file and are usually given an exten-
sion of .css, as in sheet1.css.

An external style sheet cannot contain any document markup at all, only
CSS rules and CSS comments, both of which are explained later in the
chapter. The presence of markup in an external style sheet can cause
some or all of it to be ignored.

Figure 5. A representation of how external style sheets are applied to documents

8 | CSS and Documents

The filename extension is not required, but some older browsers won’t recognize the
file as containing a style sheet unless it actually ends with .css, even if you do include
the correct type of text/css in the link element. In fact, some web servers won’t hand
over a file as text/css unless its filename ends with .css, though that can usually be
fixed by changing the server’s configuration files.

Attributes

For the rest of the link tag, the attributes and values are fairly straightforward. rel
stands for “relation,” and in this case, the relation is stylesheet. The attribute type is
always set to text/css. This value describes the type of data that will be loaded using
the link tag. That way, the web browser knows that the style sheet is a CSS style sheet,
a fact that will determine how the browser deals with the data it imports. After all, there
may be other style languages used in the future, so it’s important to declare which
language you’re using.

Next, we find the href attribute. The value of this attribute is the URL of your style
sheet. This URL can be either absolute or relative, depending on what works for you.
In our example, of course, the URL is relative. It just as easily could have been something
like http://meyerweb.com/sheet1.css.

Finally, we have a media attribute. The value of this attribute is one or more media
descriptors, which are rules regarding media types and the features of those media, with
each rule separated by a comma. Thus, for example, you can use a linked style sheet
in both screen and projection media:

<link rel="stylesheet" type="text/css" href="visual-sheet.css"
 media="screen, projection">

Media descriptors can get quite complicated, and are explained in detail later in the
chapter. For now, we’ll stick with the basic media types shown.

Note that there can be more than one linked style sheet associated with a document.
In these cases, only those link tags with a rel of stylesheet will be used in the initial
display of the document. Thus, if you wanted to link two style sheets named basic.css
and splash.css, it would look like this:

<link rel="stylesheet" type="text/css" href="basic.css">
<link rel="stylesheet" type="text/css" href="splash.css">

This will cause the browser to load both style sheets, combine the rules from each, and
apply them all to the document. For example:

<link rel="stylesheet" type="text/css" href="basic.css">
<link rel="stylesheet" type="text/css" href="splash.css">

<p class="a1">This paragraph will be gray only if styles from the
stylesheet 'basic.css' are applied.</p>
<p class="b1">This paragraph will be gray only if styles from the
stylesheet 'splash.css' are applied.</p>

Bringing CSS and HTML Together | 9

The one attribute that is not in your example markup, but could be, is the title at-
tribute. This attribute is not often used, but it could become important in the future
and, if used improperly, can have unexpected effects. Why? We will explore that in the
next section.

Alternate style sheets

It’s also possible to define alternate style sheets. These are defined by making the value
of the rel attribute alternate stylesheet, and they are used in document presentation
only if selected by the user.

Should a browser be able to use alternate style sheets, it will use the values of the
link element’s title attributes to generate a list of style alternatives. So you could write
the following:

<link rel="stylesheet" type="text/css"
 href="sheet1.css" title="Default">
<link rel="alternate stylesheet" type="text/css"
 href="bigtext.css" title="Big Text">
<link rel="alternate stylesheet" type="text/css"
 href="zany.css" title="Crazy colors!">

Users could then pick the style they want to use, and the browser would switch from
the first one, labeled “Default” in this case, to whichever the user picked. Figure 6 shows
one way in which this selection mechanism might be accomplished (and in fact was,
early in the resurgence of CSS).

Figure 6. A browser offering alternate style sheet selection

As of early 2012, alternate style sheets were supported in most Gecko-
based browsers like Firefox, and in Opera. They could be supported in
the Internet Explorer family through the use of JavaScript but are not
natively supported by those browsers. The WebKit family did not sup-
port selecting alternate style sheets. (Compare this to the age of the
browser shown in Figure 6. It’s almost shocking.)

10 | CSS and Documents

It is also possible to group alternate style sheets together by giving them the same
title value. Thus, you make it possible for the user to pick a different presentation for
your site in both screen and print media. For example:

<link rel="stylesheet" type="text/css"
 href="sheet1.css" title="Default" media="screen">
<link rel="stylesheet" type="text/css"
 href="print-sheet1.css" title="Default" media="print">
<link rel="alternate stylesheet" type="text/css"
 href="bigtext.css" title="Big Text" media="screen">
<link rel="alternate stylesheet" type="text/css"
 href="print-bigtext.css" title="Big Text" media="print">

If a user selects “Big Text” from the alternate style sheet selection mechanism in a
conforming user agent, then bigtext.css will be used to style the document in the screen
medium, and print-bigtext.css will be used in the print medium. Neither sheet1.css nor
print-sheet1.css will be used in any medium.

Why is that? Because if you give a link with a rel of stylesheet a title, then you are
designating that style sheet as a preferred style sheet. This means that its use is preferred
to alternate style sheets, and it will be used when the document is first displayed. Once
you select an alternate style sheet, however, the preferred style sheet will not be used.

Furthermore, if you designate a number of style sheets as preferred, then all but one of
them will be ignored. Consider:

<link rel="stylesheet" type="text/css"
 href="sheet1.css" title="Default Layout">
<link rel="stylesheet" type="text/css"
 href="sheet2.css" title="Default Text Sizes">
<link rel="stylesheet" type="text/css"
 href="sheet3.css" title="Default Colors">

All three link elements now refer to preferred style sheets, thanks to the presence of a
title attribute on all three, but only one of them will actually be used in that manner.
The other two will be ignored completely. Which two? There’s no way to be certain,
as HTML doesn’t provide a method of determining which preferred style sheets should
be ignored and which should be used.

If you simply don’t give a style sheet a title, then it becomes a persistent style sheet and
is always used in the display of the document. Often, this is exactly what an author
wants.

The style Element
The style element is one way to include a style sheet, and it appears in the document
itself:

<style type="text/css">...</style>

style should always use the attribute type; in the case of a CSS document, the correct
value is "text/css", just as it was with the link element.

Bringing CSS and HTML Together | 11

The style element should always start with <style type="text/css">, as shown in the
preceding example. This is followed by one or more styles and is finished with a closing
</style> tag. It is also possible to give the style element a media attribute, which func-
tions in the same manner as previously discussed for linked style sheets.

The styles between the opening and closing style tags are referred to as the document
style sheet or the embedded style sheet (because this kind of style sheet is embedded
within the document). It will contain many of the styles that will apply to the document,
but it can also contain multiple links to external style sheets using the @import directive.

The @import Directive
Now we’ll discuss the stuff that is found inside the style tag. First, we have something
very similar to link: the @import directive:

@import url(sheet2.css);

Just like link, @import can be used to direct the web browser to load an external style
sheet and use its styles in the rendering of the HTML document. The only major dif-
ference is in the actual syntax and placement of the command. As you can see,
@import is found inside the style container. It must be placed before the other CSS rules
or it won’t work at all. Consider this example:

<style type="text/css">
@import url(styles.css); /* @import comes first */
h1 {color: gray;}
</style>

Like link, there can be more than one @import statement in a document. Unlike link,
however, the style sheets of every @import directive will be loaded and used; there is no
way to designate alternate style sheets with @import. So, given the following markup:

@import url(sheet2.css);
@import url(blueworld.css);
@import url(zany.css);

…all three external style sheets will be loaded, and all of their style rules will be used
in the display of the document.

As with link, you can restrict imported style sheets to one or more media by providing
media descriptors after the style sheet’s URL:

@import url(sheet2.css) all;
@import url(blueworld.css) screen;
@import url(zany.css) projection, print;

As noted in the section about the link element, media descriptors can get quite com-
plicated, and are explained in detail later in the chapter.

12 | CSS and Documents

@import can be highly useful if you have an external style sheet that needs to use the
styles found in other external style sheets. Since external style sheets cannot contain
any document markup, the link element can’t be used—but @import can. Therefore,
you might have an external style sheet that contains the following:

@import url(http://example.org/library/layout.css);
@import url(basic-text.css);
@import url(printer.css) print;
body {color: red;}
h1 {color: blue;}

Well, maybe not those exact styles, but you get the idea. Note the use of both absolute
and relative URLs in the previous example. Either URL form can be used, just as with
link.

Note also that the @import directives appear at the beginning of the style sheet, as they
did in our example document. CSS requires the @import directive to come before any
other rules in a style sheet. An @import that comes after other rules (e.g., body {color:
red;}) will be ignored by conforming user agents.

Older versions of Internet Explorer for Windows do not ignore any
@import directive, even those that come after other rules. Since other
browsers do ignore improperly placed @import directives, it is easy to
mistakenly place the @import directive incorrectly and thus alter the dis-
play in other browsers.

HTTP Linking
There is another, far more obscure way to associate CSS with a document: you can link
the two together via HTTP headers.

Under Apache, this can be accomplished by adding a reference to the CSS file in
a .htaccess file. For example:

Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"

This will cause supporting browsers to associate the referenced style sheet with any
documents served from under that .htaccess file. The browser will then treat it as if it
were a linked style sheet. Alternatively, and probably more efficiently, you can add an
equivalent rule to the server’s httpd.conf file:

<Directory /path/to/ /public/html/directory>
Header add Link "</ui/testing.css>;rel=stylesheet;type=text/css"
</Directory>

The effect is exactly the same in supporting browsers. The only difference is in where
you declare the linking.

No doubt you noticed the use of the term “supporting browsers.” As of early 2012, the
widely used browsers that support HTTP linking of style sheets are the Firefox family
and Opera. That restricts this technique mostly to development environments based

Bringing CSS and HTML Together | 13

on one of those browsers. In that situation, you can use HTTP linking on the test server
to mark when you’re on the development site as opposed to the public site. It’s also an
interesting way to hide styles from the WebKit and Internet Explorer families, assuming
you have a reason to do so.

There are equivalents to this technique in common scripting languages
such as PHP and IIS, both of which allow the author to emit HTTP
headers. It’s also possible to use such languages to explicitly write a
link element into the document based on the server offering up the
document. This is a more robust approach in terms of browser support:
every browser supports the link element.

Inline Styles
For cases where you want to simply assign a few styles to one individual element,
without the need for embedded or external style sheets, employ the HTML attribute
style to set an inline style:

<p style="color: gray;">The most wonderful of all breakfast foods is
the waffle—a ridged and cratered slab of home-cooked, fluffy goodness...
</p>

The style attribute can be associated with any HTML tag whatsoever, except for those
tags that are found outside of body (head or title, for instance).

The syntax of a style attribute is fairly ordinary. In fact, it looks very much like the
declarations found in the style container, except here the curly braces are replaced by
double quotation marks. So <p style="color: maroon; background: yellow;"> will set
the text color to be maroon and the background to be yellow for that paragraph only.
No other part of the document will be affected by this declaration.

Note that you can only place a declaration block, not an entire style sheet, inside an
inline style attribute. Therefore, you can’t put an @import into a style attribute, nor
can you include any complete rules. The only thing you can put into the value of a
style attribute is what might go between the curly braces of a rule.

Use of the style attribute is not generally recommended. Indeed, it is very unlikely to
appear in XML languages other than HTML. Many of the primary advantages of CSS—
the ability to organize centralized styles that control an entire document’s appearance
or the appearance of all documents on a web server—are negated when you place styles
into a style attribute. In many ways, inline styles are not much better than the font
tag, although they do have a good deal more flexibility in terms of what visual effects
they can apply.

14 | CSS and Documents

Media Queries
With media queries, an author can define the media environment in which a given style
sheet is used by the browser. In the past, this was handled by setting media types via
the media attribute on the link element, on a style element, or in the media descriptor
of an @import or @media declaration. Media queries take this concept several steps fur-
ther by allowing authors to choose style sheets based on the features of a given media
type, using what are called media descriptors.

Usage
Media queries can be employed in the following places:

• The media attribute of a link element.

• The media attribute of a style element.

• The media descriptor portion of an @import declaration.

• The media descriptor portion of an @media declaration.

Queries can range from simple media types to complicated combinations of media types
and features.

Media Types
The most basic form of media queries are media types, which first appeared in CSS2.
These are simple labels for different kinds of media. They are:

all
Use in all presentational media.

aural
Use in speech synthesizers, screen readers, and other audio renderings of the
document.

braille
Use when rendering the document with a Braille device.

embossed
Use when printing with a Braille printing device.

handheld
Use on handheld devices like personal digital assistants or web-enabled
cell phones.

print
Use when printing the document for sighted users and also when displaying a “print
preview” of the document.

Media Queries | 15

projection
Use in a projection medium, such as a digital projector used to present a slideshow
when delivering a speech.

screen
Use when presenting the document in a screen medium like a desktop computer
monitor. All web browsers running on such systems are screen-medium user
agents.

tty
Use when delivering the document in a fixed-pitch environment like a teletype
printer.

tv
Use when the document is being presented on a television.

The majority of these media types are not supported by any current web browser. The
three most widely supported ones are all, screen, and print. As of this writing, some
browsers also support projection, which allows a document to be presented as a
slideshow, whereas several mobile-device browsers support the handheld type.

Multiple media types can be specified using a comma-separated list. The following four
examples are all equivalent ways of applying a style sheet (or a block of rules) in both
screen and projection media.

<link type="text/css" href="frobozz.css" media="screen, projection">
<style type="text/css" media="screen, projection">...</style>
@import url(frobozz.css) screen, projection;
@media screen, projection {...}

Things get interesting when you add feature-specific descriptors, such as values that
describe the resolution or color depth of a given medium, to these media types.

Media Descriptors
The placement of media queries will be very familiar to any author who has ever set a
media type on a link element or an @import declaration. Here are two essentially equiv-
alent ways of applying an external style sheet when rendering the document on a color
printer:

<link href="print-color.css" type="text/css" media="print and (color)"
rel="stylesheet">

@import url(print-color.css) print and (color);

Anywhere a media type can be used, a media query can be used. This means that,
following on the examples of the previous section, it is possible to list more than one
query in a comma-separated list:

<link href="print-color.css" type="text/css"
 media="print and (color), projection and (color)" rel="stylesheet">

16 | CSS and Documents

@import url(print-color.css) print and (color), projection and (color);

In any situation where even one of the media queries evaluates to “true,” the associated
style sheet is applied. Thus, given the previous @import, print-color.css will be applied
if rendering to a color printer or to a color projection environment. If printing on a
black-and-white printer, both queries will evaluate to “false” and print-color.css will
not be applied to the document. The same holds true in any screen medium, a grayscale
projection environment, an aural media environment, and so forth.

Each media descriptor is composed of a media type and one or more listed media
features, with each media feature descriptor enclosed in parentheses. If no media type
is provided, then it is assumed to be all, which makes the following two examples
exactly equivalent:

@media all and (min-resolution: 96dpi) {...}

@media (min-resolution: 960dpi) {...}

Generally speaking, a media feature descriptor is formatted like a property-value pair
in CSS. There are a few differences, most notably that some features can be specified
without an accompanying value. Thus, for example, any color-based medium will be
matched using (color), whereas any color medium using a 16-bit color depth is
matched using (color: 16). In effect, the use of a descriptor without a value is a true/
false test for that descriptor: (color) means “is this medium in color?”

Multiple feature descriptors can be linked with the and logical keyword. In fact, there
are two logical keywords in media queries:

and
Links together two or more media features in such a way that all of them must be
true for the query to be true. For example, (color) and (orientation: landscape)
and (min-device-width: 800px) means that all three conditions must be satisfied:
if the media environment has color, is in landscape orientation, and the device’s
display is at least 800 pixels wide, then the style sheet is used.

not
Negates the entire query so that if all of the conditions are true, then the style sheet
is not applied. For example, not (color) and (orientation: landscape) and (min-
device-width: 800px) means that if the three conditions are satisfied, the statement
is negated. Thus, if the media environment has color, is in landscape orientation,
and the device’s display is at least 800 pixels wide, then the style sheet is not used.
In all other cases, it will be used.

Note that the not keyword can only be used at the beginning of a media query. It
is not legal to write something like (color) and not (min-device-width: 800px).
In such cases, the query will be ignored. Note also that browsers too old to un-
derstand media queries will always skip a style sheet whose media descriptor starts
with not.

Media Queries | 17

There is no OR keyword for use in media queries. Instead, the commas that separate
a list of queries serve the function of an OR—screen, print means “apply if the media
is screen or print.” Instead of screen and (max-color: 2) or (monochrome), which is
invalid and thus ignored, you should write screen and (max-color: 2), screen and
(monochrome).

There is one more keyword, only, which is designed to create deliberate backwards
incompatibility. Yes, really.

only
Used to hide a style sheet from browsers too old to understand media queries. For
example, to apply a style sheet in all media, but only in those browsers that un-
derstand media queries, you write something like @import url(new.css) only
all. In browsers that do understand media queries, the only keyword is ignored
and the style sheet is applied. In browsers that do not understand media queries,
the only keyword creates an apparent media type of only all, which is not valid.
Thus, the style sheet is not applied in such browsers. Note that the only keyword
can only be used at the beginning of a media query.

Media Feature Descriptors
So far we’ve seen a number of media feature descriptors in the examples, but not a
complete list of the possible descriptors and their values. Let us fix that now!

Note that none of the following values can be negative, and remember that feature
descriptors are always enclosed in parentheses.

Descriptors: width, min-width, max-width
Values: <length>

Refers to the width of the display area of the user agent. In a screen-media web
browser, this is the width of the viewport plus any scrollbars. In paged media, this
is the width of the page box. Thus, (min-width: 850px) applies when the viewport
is greater than 850 pixels wide.

Descriptors: device-width, min-device-width, max-device-width
Values: <length>

Refers to the width of the complete rendering area of the output device. In screen
media, this is the width of the screen. In paged media, this is the width of the page.
Thus, (max-device-width: 1200px) applies when the device’s output area is less
than 1200 pixels wide.

Descriptors: height, min-height, max-height
Values: <length>

Refers to the height of the display area of the user agent. In a screen-media web
browser, this is the height of the viewport plus any scrollbars. In paged media, this
is the height of the page box. Thus, (height: 567px) applies when the viewport’s
height is precisely 567 pixels tall.

18 | CSS and Documents

Descriptors: device-height, min-device-height, max-device-height
Values: <length>

Refers to the height of the complete rendering area of the output device. In screen
media, this is the height of the screen. In paged media, this is the height of the page.
Thus, (max-device-height: 400px) applies when the device’s output area is less
than 400 pixels tall.

Descriptors: aspect-ratio, min-aspect-ratio, max-aspect-ratio
Values: <ratio>

Refers to the ratio that results from comparing the width media feature to the
height media feature (see the definition of <ratio> in the next section). Thus, (min-
aspect-ratio: 2/1) applies to any viewport whose width-to-height ratio is at least
2:1.

Descriptors: device-aspect-ratio, min-device-aspect-ratio, max-device-aspect-
ratio
Values: <ratio>

Refers to the ratio that results from comparing the device-width media feature to
the device-eight media feature (see the definition of <ratio> in the next section).
Thus, (device-aspect-ratio: 16/9) applies to any output device whose display
area width-to-height is exactly 16:9.

Descriptors: color, min-color, max-color
Values: <integer>

Refers to the presence of color-display capability in the output device, with an
optional number representing the number of bits used in each color components.
Thus, (color) applies to any device with any color depth at all, whereas (min-
color: 4) means there must be at least four bits used per color component. Any
device that does not support color will return 0.

Descriptors: color-index, min-color-index, max-color-index
Values: <integer>

Refers to the total number of colors available in the output device’s color lookup
table. Any device that does not use a color lookup table will return 0. Thus, (min-
color-index: 256) applies to any device with a minimum of 256 colors available.

Descriptors: monochrome, min-monochrome, max-monochrome
Values: <integer>

Refers to the presence of a monochrome display, with an optional number of bits-
per-pixel in the output device’s frame buffer. Any device that is not monochrome
will return 0. Thus, (monochrome) applies to any monochrome output device,
whereas (min-monochrome: 2) means any monochrome output device with a min-
imum of two bits per pixel in the frame buffer.

Descriptors: resolution, min-resolution, max-resolution
Values: <resolution>

Refers to the resolution of the output device in terms of pixel density, measured in
either dots-per-inch (dpi) or dots-per-centimeter (dpcm); see the definition of

Media Queries | 19

<resolution> in the next section for details. If an output device has pixels that are
not square, then the least dense axis is used; for example, if a device is 100dpcm
along one axis and 120dpcm along the other, then 100 is the value returned. Ad-
ditionally, in such non-square cases, a bare resolution feature query can never
match (though min-resolution and max-resolution can).

Descriptor: orientation
Values: portrait | landscape

Refers to the output device’s total output area, where portrait is returned if the
media feature height is equal to or greater than the media feature width. Otherwise,
the result is landscape.

Descriptor: scan
Values: progressive | interlace

Refers to the scanning process used in an output device with a media type of tv.

Descriptor: grid
Values: 0 | 1

Refers to the presence (or absence) of a grid-based output device, such as a tty
terminal. A grid-based device will return 1; otherwise, 0 is returned.

New Value Types
There are two new value types introduced by media queries that (as of early 2012) are
not used in any other context. These types are used in conjunction with specific media
features, which are explained in the next section.

<ratio>
A ratio value is two positive <integer> values separated by a solidus (/) and optional
whitespace. The first value refers to the width, and the second to the height. Thus,
to express a height-to-width ratio of 16:9, you can write 16/9 or 16 / 9. As of this
writing, there is no facility to express a ratio as a single real number, or to use a
colon separator instead of a solidus.

<resolution>
A resolution value is a positive <integer> followed by either of the unit identifiers
dpi (dots per inch) or dpcm (dots per centimeter). In CSS terms, a “dot” is any display
unit, the most familiar of which is the pixel. As usual, whitespace is not permitted
between the <integer> and the identifier. Therefore, a display whose display has
exactly 150 pixels (dots) per inch is matched with 150dpi.

Style Sheet Contents
So after all of that, what about the actual contents of the style sheets? You know, stuff
like this:

h1 {color: maroon;}
body {background: yellow;}

20 | CSS and Documents

Styles such as these comprise the bulk of any embedded style sheet—simple and com-
plex, short and long. Rarely will you have a document where the style element does
not contain any rules, although it’s possible to have a simple list of @import declarations
with no actual rules like those shown above.

Before we get going on the rest of the book, though, there are a few top-level things to
cover regarding what can or can’t go into a style sheet.

Markup
There is no markup in style sheets. This might seem obvious, but you’d be surprised.
The one exception is HTML comment markup, which is permitted inside style ele-
ments for historical reasons:

<style type="text/css"><!--
h1 {color: maroon;}
body {background: yellow;}
--></style>

That’s it.

Rule Structure
To illustrate the concept of rules in more detail, let’s break down the structure.

Each rule has two fundamental parts: the selector and the declaration block. The dec-
laration block is composed of one or more declarations, and each declaration is a pairing
of a property and a value. Every style sheet is made up of a series of rules. Figure 7 shows
the parts of a rule.

Figure 7. The structure of a rule

The selector, shown on the left side of the rule, defines which piece of the document
will be affected. In Figure 7, h1 elements are selected. If the selector were p, then all p
(paragraph) elements would be selected.

The right side of the rule contains the declaration block, which is made up of one or
more declarations. Each declaration is a combination of a CSS property and a value of
that property. In Figure 7, the declaration block contains two declarations. The first
states that this rule will cause parts of the document to have a color of red, and the

Style Sheet Contents | 21

second states that part of the document will have a background of yellow. So, all of the
h1 elements in the document (defined by the selector) will be styled in red text with a
yellow background.

Vendor prefixing

Sometimes you’ll see pieces of CSS with dashes and labels in front of them, like this:
-o-border-image. These are called vendor prefixes, and are a way for browser vendors
to mark properties, values, or other bits of CSS as being experimental or proprietary
(or both). As of mid-2012, there were quite a few vendor prefixes in the wild, with the
most common being shown in Table 1.

Table 1. Some common vendor prefixes

Prefix Vendor

-epub- International Digital Publishing Forum ePub format

-moz- Mozilla-based browsers (e.g., Firefox)

-ms- Microsoft Internet Explorer

-o- Opera-based browsers

-webkit- WebKit-based browsers (e.g., Safari and Chrome)

As Table 1 implies, the generally accepted format of a vendor prefix is a dash, a label,
and a dash, although a few prefixes erroneously omit the first dash.

The uses and abuses of vendor prefixes are long, tortuous, and beyond the scope of
this book. Suffice to say that they started out as a way for vendors to test out new
features, thus helping speed interoperability without worrying about being locked into
legacy behaviors that were incompatible with other browsers. This avoided a whole
class of problems that nearly strangled CSS in its infancy. Unfortunately, prefixed
properties were then publicly deployed by web authors and ended up causing a whole
new class of problems. As of this writing, the future of vendor prefixes is in serious
doubt; it is possible that within a few years they will have been abandoned.

Please always remember that if you see prefixed CSS in the wild, treat whatever
you find with caution and test across multiple browsers—each, possibly, with its own
prefix—before using what you have found in your own designs.

Whitespace Handling
CSS is basically insensitive to whitespace between rules, and largely insensitive to
whitespace within rules, although there are a few exceptions.

In general, CSS treats whitespace just like HTML does: any sequence of whitespace
characters is collapsed to a single space for parsing purposes. Thus, you can format the
hypothetical rainbow rule in the following ways:

22 | CSS and Documents

rainbow: infrared red orange yellow green blue indigo violet ultraviolet;
rainbow:
 infrared red orange yellow green blue indigo violet ultraviolet;
rainbow:
 infrared
 red
 orange
 yellow
 green
 blue
 indigo
 violet
 ultraviolet
 ;

…as well as any other separation patterns you can think up. The only restriction is that
the separating characters be whitespace: an empty space, a tab, or a newline, alone or
in combination, as many as you like.

Similarly, you can format series of rules with whitespace in any fashion you like. These
are just five of an effectively infinite number of possibilities:

html{color:black;}
body {background: white;}
p {
 color: gray;}
h2 {
 color : silver ;
 }
ol
 {
 color
 :
 silver
 ;
}

As you can see from the first rule, whitespace can be largely omitted. Indeed, this is
usually the case with “minified” CSS, which is CSS that’s had every last possible bit of
extraneous whitespace removed. The rules after the first two use progressively more
extravagant amounts of whitespace until, in the last rule, pretty much everything that
can be separated onto its own line has been.

Any of these approaches are valid, so you should pick the formatting that makes the
most sense—that is, is easiest to read—in your eyes, and stick with it.

There are some places where the presence of whitespace is actually required. The most
common example is when separating a list of keywords in a value, as in the hypothetical
rainbow examples. Those must always be whitespace-separated.

Style Sheet Contents | 23

Media Blocks
In cases where you want to embed media-specific rules into a style sheet (as opposed
to making entire style sheets media-specific using the media attribute or a media-de-
scribed @import declaration), you can use an @media block. It looks like this:

h1 {color: maroon;}
@media projection {
 body {background: yellow;}
}

In this example, h1 elements will be colored maroon in all media, but the body element
will get a yellow background only in a projection medium.

You can have as many @media blocks as you like in a given style sheet, each with its own
set of media descriptors (see later in this chapter for details). You could even encapsu-
late all of your rules in an @media block if you chose:

@media all {
 h1 {color: maroon;}
 body {background: yellow;}
}

However, since this is exactly the same as if you stripped off the first and last line shown,
there isn’t a whole lot of point to doing so.

The indentation shown in this section was solely for purposes of clarity.
You do not have to indent the rules found inside an @media block, but
you’re welcome to do so if it makes your CSS easier for you to read.

CSS Comments
CSS does allow for comments. These are very similar to C/C++ comments in that they
are surrounded by /* and */:

/* This is a CSS1 comment */

Comments can span multiple lines, just as in C++:

/* This is a CSS1 comment, and it
can be several lines long without
any problem whatsoever. */

It’s important to remember that CSS comments cannot be nested. So, for example, this
would not be correct:

/* This is a comment, in which we find
 another comment, which is WRONG
 /* Another comment */
 and back to the first comment */

Of course, this is hardly ever desirable to nest comments, so this limitation is no big deal.

24 | CSS and Documents

One way to create “nested” comments accidentally is to temporarily
comment out a large block of a style sheet that already contains a com-
ment. Since CSS doesn’t permit nested comments, the “outside”
comment will end where the “inside” comment ends.

Unfortunately, there is no “rest of the line” comment pattern such as // or # (the latter
of which is reserved for ID selectors anyway). The only comment pattern in CSS
is /* */. Therefore, if you wish to place comments on the same line as markup, then
you need to be careful about how you place them. For example, this is the correct way
to do it:

h1 {color: gray;} /* This CSS comment is several lines */
h2 {color: silver;} /* long, but since it is alongside */
p {color: white;} /* actual styles, each line needs to */
pre {color: gray;} /* be wrapped in comment markers. */

Given this example, if each line isn’t marked off, then most of the style sheet will become
part of the comment and thus will not work:

h1 {color: gray;} /* This CSS comment is several lines
h2 {color: silver;} long, but since it is not wrapped
p {color: white;} in comment markers, the last three
pre {color: gray;} styles are part of the comment. */

In this example, only the first rule (h1 {color: gray;}) will be applied to the document.
The rest of the rules, as part of the comment, are ignored by the browser’s rendering
engine.

CSS comments are treated by the CSS parser as if they do not exist at
all, and so do not count as whitespace for parsing purposes. This
means you can put them into the middle of rules—even right inside
declarations!

Summary
With CSS, it is possible to completely change the way elements are presented by a user
agent. This can be executed at a basic level with the display property, and in a different
way by associating style sheets with a document. The user will never know whether
this is done via an external or embedded style sheet, or even with an inline style. The
real importance of external style sheets is the way in which they allow authors to put
all of a site’s presentation information in one place, and point all of the documents to
that place. This not only makes site updates and maintenance a breeze, but it helps to
save bandwidth since all of the presentation is removed from documents.

To make the most of the power of CSS, authors need to know how to associate a set
of styles with the elements in a document. To fully understand how CSS can do all of
this, authors need a firm grasp of the way CSS selects pieces of a document for styling,
which is the subject of another title, “Selectors, Specificity, and the Cascade.”

Summary | 25

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internationally
recognized expert on the subjects of HTML, CSS, and web standards. A widely read
author, he is a past member of the CSS&FP Working Group and was the primary creator
of the W3C's CSS1 Test Suite. In 2006, Eric was inducted into the International Acad-
emy of Digital Arts and Sciences for “international recognition on the topics of HTML
and CSS” and helping to “inform excellence and efficiency on the Web.”

Eric is currently the principal founder at Complex Spiral Consulting, which counts
among its clients a wide variety of corporations, educational institutions, and govern-
ment agencies. He is also, along with Jeffrey Zeldman, co-founder of An Event Apart
(“The design conference for people who make websites”), and he speaks regularly at
that conference as well as many others. Eric lives with his family in Cleveland, Ohio,
which is a much nicer city than you've been led to believe. A historian by training and
inclination, he enjoys a good meal whenever he can and considers almost every form
of music to be worthwhile.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	CSS and Documents
	A Brief History of (Web) Style
	Elements
	Replaced and Nonreplaced Elements
	Replaced elements
	Nonreplaced elements

	Element Display Roles
	Block-level elements
	Inline-level elements

	Bringing CSS and HTML Together
	The link Tag
	Attributes
	Alternate style sheets

	The style Element
	The @import Directive
	HTTP Linking
	Inline Styles

	Media Queries
	Usage
	Media Types
	Media Descriptors
	Media Feature Descriptors
	New Value Types

	Style Sheet Contents
	Markup
	Rule Structure
	Vendor prefixing

	Whitespace Handling
	Media Blocks
	CSS Comments

	Summary

