
Prepared exclusively for jabez zhang

Prepared exclusively for jabez zhang

Early praise for Node.js the Right Way

Node.js the Right Way really is the right way to get a fast start with modern server-
side JavaScript programming. It goes far beyond the basic mechanics of JavaScript
and Node and shows you what really goes into making a quality server-side
application.

➤ Allen Wirfs-Brock
Project editor, ECMAScript Language Specification

If you’re just getting started with Node, skip everything else––this is the only book
you’ll need.

➤ Rick Waldron
Software engineer, Bocoup, LLC

Finally, a book that teaches that Node.js is much more than a bare-bones web-
scale application server for hipsters.

➤ Eric Redmond
Coauthor of Seven Databases in Seven Weeks

Node.js the Right Way is a great read that quickly demonstrates Node’s flexibility
and power. It’s perfect for any JavaScript developer who’s interested in exploring
the world of server infrastructure.

➤ Xavi Ramirez
Baydin, Inc.

Prepared exclusively for jabez zhang

Node.js the Right Way is the right book to read. Skipping “Hello World” in favor
of applicable examples, Wilson delivers a comprehensive introduction that is
detailed yet engaging.

➤ Daniel Renfro
Lead software engineer at Vistaprint

This book is a fantastic way to explain Node. I even used some of Jim’s example
code in a personal project (especially Chapter 7).

➤ Mitchell Foley
Software engineer at Google

Prepared exclusively for jabez zhang

Node.js the Right Way
Practical, Server-Side JavaScript That Scales

Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Prepared exclusively for jabez zhang

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-73-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2013

Prepared exclusively for jabez zhang

http://pragprog.com

Contents

Acknowledgments vii

Preface ix

1. Getting Started 1
Node’s Niche 2
How Node Applications Work 3
Aspects of Node.js Development 5
Get Node.js 7

2. Wrangling the File System 9
Programming for the Node.js Event Loop 10
Spawning a Child Process 13
Capturing Data from an EventEmitter 15
Reading and Writing Files Asynchronously 17
The Two Phases of a Node Program 20
Wrapping Up 20

3. Networking with Sockets 23
Listening for Socket Connections 24
Implementing a Messaging Protocol 28
Creating Socket Client Connections 31
Testing Network Application Functionality 32
Extending Core Classes in Custom Modules 35
Wrapping Up 39

4. Robust Messaging Services 41
Advantages of ØMQ 42
Importing External Modules with npm 42
Message-Publishing and -Subscribing 44
Responding to Requests 48
Routing and Dealing Messages 52

Prepared exclusively for jabez zhang

Clustering Node.js Processes 54
Pushing and Pulling Messages 59
Wrapping Up 62

5. Accessing Databases 65
Advantages of CouchDB 66
Creating a Package 67
Making RESTful Requests 68
Importing Real Data 70
Unit Testing with Nodeunit 73
Throttling Node.js 75
Querying Data with Mapreduce Views 81
Wrapping Up 85

6. Scalable Web Services 87
Advantages of Express 88
Serving APIs with Express 88
Writing Modular Express Services 91
RESTful APIs with Promises 94
Yielding Control with Generators 99
Using Generators with Promises 101
Wrapping Up 104

7. Web Apps 107
Storing Express Sessions in Redis 108
Creating a Single-Page Web Application 110
Authenticating with Passport 113
Authorizing APIs with Custom Middleware 116
Creating Authenticated APIs 118
Client-Side MVC 120
Wrapping Up 125
Parting Thoughts 126

Contents • vi

Prepared exclusively for jabez zhang

Acknowledgments
This was a surprisingly difficult book to write, and I couldn’t have done it
without a lot of help. I’m especially thankful for my editor, Jackie Carter—your
thoughtful feedback made this book what it is today.

I’d also sincerely like to thank the whole team at The Pragmatic Bookshelf.
Thanks for your kind patience while I figured out how to write this book. And
thanks to the entire team, who worked so hard to polish this book and find
all of my mistakes.

I’d like to thank all my reviewers. Your keen observations have helped make
this book even more technically correct (the best kind of correct). In no par-
ticular order:

Xavi RamirezGary KatsevmanDaniel Rinehart

Mitch FoleyDavid LaPalomentoDaniel Renfro

Trevor BurnhamJarrett CrugerJesse Streb

Eric Redmond

And I want to thank my wonderful family, too. Ruthy, you are my inspiration;
with your quiet perseverance, you can achieve anything. Emma and Jimmy,
even though you’re both growing up too fast, I can’t wait to see all the great
things you’ll do.

For anyone I missed, I hope you’ll accept my apologies. Any omissions were
certainly not intentional.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Preface
Two big shifts are happening right now in the practice of writing software,
and Node.js is at the forefront of both.

First, software is becoming increasingly asynchronous. Whether you’re waiting
for a Big Data job, interacting with end users, or simply responding to an API
call, chances are you’ll need asynchronous programming techniques.

Second, JavaScript has quietly become the world’s standard virtual
machine—in web browsers, modern NoSQL databases, and now on the server
as well.

Node.js is right at the intersection of these trends, and it’s ready to take off
in a big way.

Why Node.js the Right Way

In March of 2010, I gave a lightning talk titled “Full-Stack JavaScript” at the
NoSQL Boston conference. Back then, and even more so now, I knew that
using JavaScript for every layer of the application stack was not only possible,
but a great way to reduce software complexity.

The Right Way in this book’s title refers to both the process of learning Node
and the practice of writing Node.

Learning Node.js

As for any growing technology, there are lots of resources available for learning
Node.js. Many are intently focused on serving up web resources. The web is
great, but it’s not enough, and it’s not the whole story of Node.

Ruby is more than Rails, and Python is more than Django. Node.js is more
than serving web content, and this book treats it that way.

Node.js the Right Way teaches you the core concepts you’ll need to be an
effective Node.js programmer, no matter what kinds of programs you need to
write.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Writing Node.js

One thing I love about JavaScript is that there are seven ways to do anything.
There’s breathing room, where developers can explore and experiment and
find better approaches to everything.

The community of Node developers, conventions in Node.js development, and
even the semantics of the JavaScript language itself are all rapidly evolving.
With eyes to the near future, the code examples and recommendations in this
book reflect current best practices and standards.

What’s in This Book

This book is for developers who want to learn how to write asynchronous
JavaScript for the server using Node.js. Some prior JavaScript experience will
help, but you don’t have to be an expert.

Chapter 1, Getting Started, on page 1, introduces the Node.js event loop,
explaining how it empowers Node to be highly parallel and single-threaded
at the same time. This chapter also outlines the five aspects of Node.js
development that frame each subsequent chapter and has some brief
instructions on getting Node installed on your machine.

The remaining chapters each deal with a specific practical programming area.

Wrangling the File System

In Chapter 2, Wrangling the File System, on page 9, we’ll get our first look
at writing Node.js programs. If you’ve done any server-side programming in
the past, chances are you’ve had to access a file system along the way. We’ll
start in this familiar domain, using Node’s file-system tools to create asyn-
chronous, nonblocking file utilities. You’ll use Node’s ubiquitous EventEmitter
and Stream classes to pipe data, and you’ll spawn and interact with child
processes.

Networking with Sockets

We’ll expand on those concepts while exploring Node’s network I/O capabilities
in Chapter 3, Networking with Sockets, on page 23. We’ll create TCP servers
and client programs to access them. We’ll also develop a simple JSON-based
protocol and a custom module for working with these messages. This will
offer insight into Node application design and provide experience creating
testable and fault-tolerant systems.

Preface • x

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Robust Message-Passing

Then, in Chapter 4, Robust Messaging Services, on page 41, we’ll branch away
from the Node core and into the realm of third-party libraries. You’ll use npm
to import and build ØMQ (pronounced “Zero-M-Q”)—a high-efficiency, low-
latency library for developing networked applications. With ØMQ, we’ll
develop programs that communicate using several important patterns, such
as publish/subscribe and request/response. We’ll create suites of programs
that work together in concert, and you’ll learn the clustering tools to manage
them.

Accessing Databases

Chapter 5, Accessing Databases, on page 65, introduces databases and how
to interact with them asynchronously in Node. In particular, we’ll work with
CouchDB—a RESTful, JSON document database. You’ll learn how to parse
XML documents, throttle Node using a worker queue, and develop and run
unit tests. The database we create in this chapter is the foundation for
RESTful APIs you’ll develop in later chapters.

Scalable Web Services

Node has fantastic support for writing HTTP servers, and in Chapter 6, Scal-
able Web Services, on page 87, we’ll do exactly that. You’ll use Express, a
popular Node.js web framework for routing requests. We’ll dive deeper into
REST semantics, and you’ll use objects called promises for managing asyn-
chronous code flows. You’ll also learn about a bleeding-edge feature of
ECMAScript called generator functions, and how they couple with promises
in interesting ways.

Web Apps

Finally, in Chapter 7, Web Apps, on page 107, we’ll build a front end for our
web services. We’ll use a Node module called Passport for implementing
authenticated APIs that use Google account credentials. And we’ll serialize
our session data in Redis—a very fast key/value datastore. You’ll learn the
basics of writing a static single-page web application that uses RESTful APIs,
including how to pull in dependencies using a front-end package manager
called Bower.

What This Book Is Not

Before you commit to reading this book, you should know what it doesn’t
cover.

report erratum • discuss

What This Book Is Not • xi

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Everything About Everything

At the time of this writing, npm houses more than 43,000 modules, with an
average growth rate of 100-plus new modules per day.1 Since the ecosystem
and community around Node.js is growing and changing so rapidly, this book
does not attempt to cover everything. Instead, this short book teaches you
the essentials you need to get out there and start coding.

The book also stays close to the topic of Node.js. You’ll learn a lot about
clustering Node processes and how to write scalable web services, but little
about front-end concerns like HTML, CSS, and browser JavaScript.

JavaScript Beginner’s Guide

The JavaScript language is one of the most misunderstood languages in wide
use today. Although this book does discuss language syntax from time to
time (especially where it’s brand-new), this is not a beginner’s guide to
JavaScript.

A Note to Windows Users

The examples in this book assume you’re using a Unix-like operating system.
We’ll make use of standard input and output streams, and pipe data between
processes. The shell session examples have been tested with Bash, but other
shells may work as well.

If you run Windows, I recommend setting up Cygwin.2 This will give you the
best shot at running the example code successfully, or you could run a Linux
virtual machine.

Code Examples and Conventions

The code examples in this book contain JavaScript, shell sessions, and a few
HTML/XML excerpts. For the most part, code listings are provided in
full—ready to be run at your leisure.

Samples and snippets are syntax-highlighted according to the rules of the
language. Shell commands are prefixed by $.

When you write Node.js code, you should always handle errors and exceptions,
even if you just rethrow them. You’ll learn how to do this throughout the
book. However, some of the code examples lack error handling. This is to aid
readability and save space only—you should always handle your errors.

1. http://www.modulecounts.com/
2. http://cygwin.com/

Preface • xii

report erratum • discussPrepared exclusively for jabez zhang

http://www.modulecounts.com/
http://cygwin.com/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Online Resources

The Pragmatic Bookshelf’s page for this book is a great resource.3 You’ll find
downloads for all the source code presented in this book, and feedback tools,
including a community forum and an errata-submission form.

Thanks for choosing this book to show you Node.js the right way.

Jim R. Wilson (jimbojw, hexlib)

November 2013

3. http://pragprog.com/book/jwnode/node-js-the-right-way

report erratum • discuss

Online Resources • xiii

Prepared exclusively for jabez zhang

http://pragprog.com/book/jwnode/node-js-the-right-way
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 1

Getting Started
A lot of the buzz around Node.js is focused on the Web. In truth, Node serves
a bigger purpose that people often miss. Let’s see where Node fits in the
broader scheme of things by making a map.

Imagine the universe of all possible programs as an immense sea. Programs
that have similar purposes are near to each other, and programs that differ
are further apart. With that picture in mind, take a look at the following figure.
It shows a close-up of one particular outcrop in this sea, the Island of I/O-
Bound Programs.

Figure 1—Map of the Island of I/O-Bound Programs

I/O-bound programs are constrained by data access. These are programs
where adding more processing power or RAM often makes little difference.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

East of the mountain range, we find the client-side programs. These include
GUI tools of all stripes, consumer applications, mobile apps, and web apps.
Client-side programs interact directly with human beings, often by waiting
patiently for their input.

West of the mountains are the server-side programs. This vast expanse is
Node.js territory.

Deep within the server-side region lies the Web—that old guard of HTTP, Ajax,
REST, and JSON. The websites, apps, and APIs that consume so much of
our collective mental energy live here.

Because we spend so much time thinking about the Web, we overemphasize
Node’s use in developing web applications. People ask, “How is Node better
for making web apps?” or, “How can I make a REST service with Node?”

These are good questions, but they miss the point. Node is great for a wider
range of things, and this book explores that larger world.

Node’s Niche

Since JavaScript’s first appearance in 1995, it has been solving problems all
along the front-end/back-end spectrum. The following figure shows this
spectrum and where Node.js fits within it.

Figure 2—Node’s place in the JavaScript spectrum

In the web browser on the right, much of the scripting involves waiting for
user interaction. Click here, drag that, choose a file, etc. JavaScript has been
extraordinarily successful in this space.

Chapter 1. Getting Started • 2

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

On the left, back-end databases are investing heavily in JavaScript. Document-
oriented databases like MongoDB and CouchDB use JavaScript extensively
—from modifying records to ad-hoc queries and mapreduce jobs. Other
datastores, like Neo4j and Elasticsearch, present data in JavaScript Object
Notation (JSON). These days, you can even write SQL functions for Postgres
in JavaScript with the right plug-in.

Many middleware tasks are I/O-bound, just like client-side scripting and
databases. These server-side programs often have to wait for things like a
database result, feedback from a third-party web service, or incoming connec-
tion requests. Node.js is designed for exactly these kinds of applications.

How Node Applications Work

Node.js couples JavaScript with an event loop for quickly dispatching opera-
tions when events occur. Many JavaScript environments use an event loop,
but it is a core feature of Node.js.

Node’s philosophy is to give you low-level access to the event loop and to
system resources. Or, in the words of core committer Felix Geisendörfer, in
Node “everything runs in parallel except your code.”1

If this seems a little backwards to you, don’t worry. The following figure shows
how the event loop works.

Figure 3—The Node.js event loop

1. http://www.debuggable.com/posts/understanding-node-js:4bd98440-45e4-4a9a-8ef7-0f7ecbdd56cb

report erratum • discuss

How Node Applications Work • 3

Prepared exclusively for jabez zhang

http://www.debuggable.com/posts/understanding-node-js:4bd98440-45e4-4a9a-8ef7-0f7ecbdd56cb
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

As long as there’s something left to do, Node’s event loop will keep spinning.
Whenever an event occurs, Node invokes any callbacks (event handlers) that
are listening for that event.

As a Node developer, your job is to create the callback functions that get
executed in response to events. Any number of callbacks can respond to any
event, but only one callback function will ever be executing at any time.

Everything else your program might do—like waiting for data from a file or
an incoming HTTP request—is handled by Node, in parallel, behind the scenes.
Your application code will never be executed at the same time as anything
else. It will always have the full attention of Node’s JavaScript engine while
it’s running.

Single-Threaded and Highly Parallel

Other systems try to gain parallelism by running lots of code at the same
time, typically by spawning many threads. But not Node.js. For JavaScript,
Node is a single-threaded environment. At most, only one line of your code
will ever be executing at any time.

Node gets away with this by doing most I/O tasks using nonblocking
techniques. Rather than waiting line-by-line for an operation to finish, you
create a callback function that will be invoked when the operation eventually
succeeds or fails.

Your code should do what it needs to do, then quickly hand control back over
to the event loop so Node can work on something else. We’ll develop practical
examples of this throughout the book, starting in Chapter 2, Wrangling the
File System, on page 9.

If it seems strange to you that Node achieves parallelism by running only one
piece of code at a time, that’s because it is. It’s an example of something I call
a backwardism.

Backwardisms in Node.js

A backwardism is a concept that’s so bizarre that at first it seems completely
backwards. You’ve probably experienced many backwardisms while learning
to program, whether you noticed them or not.

Take the concept of a variable. In algebra it’s common to see equations like
“7x + 3 = 24.” Here, x is called a variable; it has exactly one value, and your job
is to figure out what that value is.

Chapter 1. Getting Started • 4

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Then when you start learning how to program, you quickly run into statements
like “x = x + 7.” Now x is still called a variable, but it can have any value that
you assign to it. It can even have different values at different times.

From algebra’s perspective, this is a backwardism. The equation “x = x + 7”
makes no sense at all. The notion of a variable in programming is not just a
little different—it’s 100 percent backwards. But once you understand the
concept of assignment, the programming variable makes perfect sense.

So it is with Node’s single-threaded event loop. From a multithreaded perspec-
tive, running just one piece of code at a time seems silly. But once you
understand event-driven programming—with nonblocking APIs—it becomes
clear.

Programming is chock-full of backwardisms like these, and Node.js is no
exception. Starting out, you’ll frequently run into code that looks like it should
work one way, but it actually does something quite different.

That’s OK! With this book, you’ll learn Node by making compact programs
that interact in useful ways. As we run into more of Node’s backwardisms,
we’ll dive in and explore them.

Aspects of Node.js Development

Node.js is a surprisingly big subject, so let’s break it down into different
aspects. There are many aspects of Node.js development we might talk about,
ranging from basic JavaScript syntax to revision control. This book focuses
on five in particular:

• Practical programming
• Architecture and core
• Patterns
• JavaScriptisms
• Supporting code

Let’s explore each of these briefly.

Practical Programming

Practical programming is all about producing real code that does something
useful. Interacting with a file system, establishing socket connections, or
serving web applications are all examples of practical programming.

Each of the remaining chapters of this book focuses on one particular practical
domain. Through code examples specific to each domain, you’ll learn Node’s
architecture, patterns, JavaScriptisms, and supporting code.

report erratum • discuss

Aspects of Node.js Development • 5

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Architecture and Core

Understanding Node’s architecture will help you to harness its features while
avoiding performance-crushing pitfalls. For example, Node uses an event loop
written in C for scheduling work. But it executes application code in a Java-
Script environment. How information is shuttled between these layers is the
kind of impactful architectural detail you’ll learn.

Patterns

Like any successful codebase with a healthy ecosystem, Node.js has a number
of repeating patterns. Some of these patterns are baked into the core while
others mostly appear in third-party libraries. Examples include the use of
callbacks, error-handling techniques, and classes like EventEmitter and Stream,
which are used liberally for event dispatching.

As we progress through different practical programming domains, we’ll natu-
rally encounter these and other patterns. When we do, you’ll discover why
they’re useful and how to use them effectively.

JavaScriptisms

JavaScript is the language of Node programs, so you’ll be seeing quite a lot
of it. The code examples in this book make use of the latest available Java-
Script features. Some of these features may be unfamiliar to you, even if
you’ve done JavaScript development before.

JavaScriptisms discussed in this book include things like the nature of
functions and object inheritance. ECMAScript Harmony—the code name for
the next version of the JavaScript spec—packs some new features we’ll use,
too.

Supporting Code

Code does not live in isolation; it takes a village to support any individual
program. Supporting code covers lots of things, from unit testing to perfor-
mance benchmarks to deployment scripts. We’ll use supporting code
throughout the book to make our programs more robust, more scalable, and
more manageable.

With these five aspects, you’ll be able to develop applications that make the
most use out of the platform while using idiomatic Node.js style. The example
applications you’ll develop in this book are functional and small, and aim to
clearly demonstrate the five aspects. But to use them, you’ll need to get Node.js
installed first.

Chapter 1. Getting Started • 6

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Get Node.js

To install Node.js, you have several choices based on your operating system
and your comfort with building from source code.

This book assumes you’re using the latest stable version of Node.js. If you
install a different version—for example, by building from the latest source
code—the code examples in this book may not work. From the command line
you can run node --version to see what version you have installed if you’re not
sure.

$ node --version
v0.10.20

The easiest way to get Node is to download an installer from nodejs.org.2

Another popular option is Node Version Manager (nvm).3 If you’re using a
Unix-like OS (like Mac OS X or Linux), you can install nvm like so:

$ curl https://raw.github.com/creationix/nvm/master/install.sh | sh

Then install a specific version:

$ nvm install v0.10.20

If you have trouble, you can get help on the Node mailing lists and IRC
channel, both linked from the Node.js community page.4

We’ve got a lot of ground to cover, and we don’t have many pages to do it. So
if you’re ready, let’s begin in the oh-so-familiar domain of file-system access.

2. http://nodejs.org/download/
3. https://github.com/creationix/nvm
4. http://nodejs.org/community/

report erratum • discuss

Get Node.js • 7

Prepared exclusively for jabez zhang

http://nodejs.org/download/
https://github.com/creationix/nvm
http://nodejs.org/community/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 2

Wrangling the File System
As a programmer, chances are you’ve had to access a file system at some
point: reading files, writing files, renaming and deleting files. We’ll start our
Node.js journey in this familiar area, creating useful, asynchronous file utili-
ties. Along the way we’ll explore the following aspects of Node development.

Architecture and Core
On the architecture front, you’ll see how the event loop shapes a program’s
flow. We’ll use buffers for transporting data between Node’s JavaScript
engine and its native core, and we’ll use Node’s module system to bring
in core libraries.

Patterns
Inside our programs, we’ll use common Node patterns like callbacks for
handling asynchronous events. We’ll harness Node’s EventEmitter and Stream
classes to pipe data around.

JavaScriptisms
We’ll take a look at some JavaScript features and best practices like
“functions as first-class citizens” and block scoping.

Supporting Code
You’ll learn how to spawn and interact with child processes, capture their
output, and detect state changes.

We’ll begin by creating a tool that watches a file for changes. This will give
you a peek into how the event loop works while introducing Node’s file-system
APIs.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Programming for the Node.js Event Loop

Let’s get started by developing a couple of simple programs that watch files
for changes and read arguments from the command line. Even though they’re
short, these applications offer insights into Node’s event-based architecture.

Watching a File for Changes

Watching files for changes is a convenient problem to start with because it
demands asynchronous coding while demonstrating important Node concepts.
Taking action whenever a file changes is just plain useful in a number of
cases, ranging from automated deployments to running unit tests.

Open a terminal to begin. On the command line, navigate to an empty direc-
tory. You’ll use this directory for all of the code examples in this chapter.
Once there, use the touch command to create a file called target.txt.

$ touch target.txt

This file will be the target for our watcher program. Now open your favorite
text editor and enter the following:

file-system/watcher.js
const fs = require('fs');
fs.watch('target.txt', function() {

console.log("File 'target.txt' just changed!");
});
console.log("Now watching target.txt for changes...");

Save this file as watcher.js in the same directory as target.txt. Let’s see how this
program works.

First, notice the const keyword at the top. This JavaScriptism (part of
ECMAScript Harmony) sets up a variable with a constant value. The require()
function pulls in a Node module and returns it. In our case, we’re calling
require('fs') to incorporate Node’s built-in file-system module.1

In Node.js, a module is a self-contained bit of JavaScript that provides func-
tionality to be used elsewhere. The output of require() is usually a plain old
JavaScript object. There’s nothing particularly special about it, aside from
the functionality provided by the module.

Node’s module implementation is based on the CommonJS module specifica-
tion.2 Modules can depend on other modules, much like libraries in other

1. http://nodejs.org/api/fs.html
2. http://wiki.commonjs.org/wiki/Modules/1.1

Chapter 2. Wrangling the File System • 10

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/watcher.js
http://nodejs.org/api/fs.html
http://wiki.commonjs.org/wiki/Modules/1.1
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

programming environments, which import or #include other libraries. In Chapter
3, Networking with Sockets, on page 23, you’ll learn how to create your own
modules.

Next we call the fs module’s watch() method, which polls the target file for
changes and invokes the supplied callback function whenever it does.

In JavaScript, functions are first-class citizens. This means they can be
assigned to variables and passed as parameters to other functions. Our call-
back function is an anonymous function; it doesn’t have a name.

The callback function calls console.log() to echo a message to standard output
whenever the file changes. Let’s try it out.

Return to the command line and launch the watcher program using node, like so:

$ node --harmony watcher.js
Now watching target.txt for changes...

The --harmony parameter tells Node to use the latest ECMAScript Harmony
features available. ECMAScript Harmony is the code name for the next version
of ECMAScript, the standard behind the JavaScript language. Not all Harmony
features are ready for prime time, but the ones we’ll use in this book are OK
(except where noted).

After the program starts, Node will patiently wait until the target file is
changed. To trigger a change, open another terminal to the same directory
and touch the file again:

$ touch target.txt

The terminal running watcher.js will output the string File ’target.txt’ just
changed!, and then the program will go back to waiting.

Visualizing the Event Loop

The program we wrote in the last section is a good example of the Node event
loop at work. Recall the event-loop figure from How Node Applications Work,
on page 3. Our simple file-watcher program causes Node to go through each
of these steps, one by one.

To run the program, Node does the following.

1. It loads the script, running all the way through to the last line, which
produces the Now watching message in the console.

2. It sees that there’s more to do, because of the call to watch().

report erratum • discuss

Programming for the Node.js Event Loop • 11

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

3. It waits for something to happen, namely for the fs module to observe a
change to the file.

4. It executes our callback function when the change is detected.

5. It determines that the program still has not finished, and resumes waiting.

Node.js programs go through these steps, then the event loop spins until
either there’s nothing left to do or the program exits by some other means.
For example, if an exception is thrown and not caught, the process will exit.
We’ll see how this works next.

Reading Command-Line Arguments

Now let’s make our program more useful by taking in the file to watch as a
command-line argument. This will introduce the process global object and how
Node deals with exceptions.

Open your editor and enter this:

file-system/watcher-argv.js
const

fs = require('fs'),
filename = process.argv[2];

if (!filename) {
throw Error("A file to watch must be specified!");

}
fs.watch(filename, function() {

console.log("File " + filename + " just changed!");
});
console.log("Now watching " + filename + " for changes...");

Save the file as watcher-argv.js. You can run it like so (note the target.txt argument
at the end):

$ node --harmony watcher-argv.js target.txt
Now watching target.txt for changes...

You should see the same output and behavior as the first watcher.js program.
After outputting Now watching target.txt for changes... the script will diligently
wait for changes to the target file.

This program uses process.argv to access the incoming command-line arguments.
argv stands for argument vector; it’s an array containing node and the full path
to the watcher-argv.js as its first two elements. The third element (that is, at
index 2) is target.txt, the name of our target file.

Notice that if a target file name is not provided the program will throw an
exception. You can try that by simply omitting the target.txt parameter:

Chapter 2. Wrangling the File System • 12

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/watcher-argv.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$ node --harmony watcher-argv.js

/full/path/to/script/watcher-argv.js:7
throw Error("A file to watch must be specified!");

^
Error: A file to watch must be specified!

Any unhandled exception thrown in Node will halt the process. The exception
output shows the offending file, and the line number and position of the
exception.

Processes are important in Node. It’s pretty common in Node development to
spawn separate processes as a way of breaking up work, rather than putting
everything into one big Node program. In the next section, you’ll learn how
to spawn a process in Node.

Spawning a Child Process

Let’s enhance our file-watching example program even further by having it
spawn a child process in response to a change. To do this, we’ll bring in Node’s
child-process module and dive into some Node patterns and classes. You’ll also
learn how to use streams to pipe data around.

To keep things simple, we’ll make our script invoke the ls command with the
-lh options. This will give us some information about the target file whenever
it changes. You can use the same technique to spawn other kinds of processes,
as well.

Open your editor and enter this:

file-system/watcher-spawn.js
"use strict";
const

fs = require('fs'),
spawn = require('child_process').spawn,
filename = process.argv[2];

if (!filename) {
throw Error("A file to watch must be specified!");

}

fs.watch(filename, function() {
let ls = spawn('ls', ['-lh', filename]);
ls.stdout.pipe(process.stdout);

});
console.log("Now watching " + filename + " for changes...");

Save the file as watcher-spawn.js and run it with node as before:

report erratum • discuss

Spawning a Child Process • 13

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/watcher-spawn.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$ node --harmony watcher-spawn.js target.txt
Now watching target.txt for changes...

If you go to a different console and touch the target file, your Node program
will produce something like this:

-rw-r--r-- 1 jimbo staff 0B Dec 19 22:45 target.txt

The username, group, and other aspects of the file will be different from the
preceding output, but the format should be the same.

The program we just made begins with the string "use strict" at the top. Strict
mode was introduced in ECMAScript version 5—it disables certain problem-
atic JavaScript language features and makes others throw exceptions.
Generally speaking, it’s a good idea to use strict mode.

Strict mode is also required to use certain ECMAScript Harmony features in
Node, such as the let keyword. Like const, let declares a variable, but a variable
declared with let can be assigned a value more than once.

Keep in mind that by using Harmony features (like let), your code will require
the --harmony flag until these features become enabled by default. For example,
const is already available without the --harmony flag, but not so for let.

Next, notice that we added a new require() at the beginning of the program.
Calling require('child_process') returns the child process module. We’re only
interested in the spawn() method, so we save that to a constant with the same
name and ignore the rest of the module.

spawn = require('child_process').spawn,

Remember, functions are first-class citizens in JavaScript, so we’re free to
assign them directly to variables like we did here.

Next, take a look at the callback function we passed to fs.watch().

function() {
let ls = spawn('ls', ['-lh', filename]);
ls.stdout.pipe(process.stdout);

}

The first parameter to spawn() is the name of the program we wish to execute;
in our case it’s ls. The second parameter is an array of command-line argu-
ments. It contains the flags and the target file name.

The object returned by spawn() is a ChildProcess.3 Its stdin, stdout, and stderr proper-
ties are Streams that can be used to read or write data. We want to send the

3. http://nodejs.org/api/child_process.html

Chapter 2. Wrangling the File System • 14

report erratum • discussPrepared exclusively for jabez zhang

http://nodejs.org/api/child_process.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

standard output from the child process directly to our own standard output
stream. This is what the pipe() method does.

Sometimes you’ll want to capture data from a stream, rather than just piping
it forward. Let’s see how to do that.

Capturing Data from an EventEmitter
EventEmitter is a very important class in Node.4 It provides a channel for events
to be dispatched and listeners notified. Many objects you’ll encounter in Node
inherit from EventEmitter, like the Streams we saw in the last section.

Now let’s modify our previous program to capture the child process’s output
by listening for events on the stream. Open an editor to the watcher-spawn.js file
from the previous section, then find the call to fs.watch(). Replace it with this:

file-system/watcher-spawn-parse.js
fs.watch(filename, function() {

let
ls = spawn('ls', ['-lh', filename]),
output = '';

ls.stdout.on('data', function(chunk){
output += chunk.toString();

});

ls.on('close', function(){
let parts = output.split(/\s+/);
console.dir([parts[0], parts[4], parts[8]]);

});
});

Save this updated file as watcher-spawn-parse.js. Run it as usual, then touch the
target file in a separate terminal. You should see output something like this:

$ node --harmony watcher-spawn-parse.js target.txt
Now watching target.txt for changes...
['-rw-r--r--', '0B', 'target.txt']

The new callback starts out the same as before, creating a child process and
assigning it to a variable called ls. It also creates an output variable, which will
buffer the output coming from the child process.

Next we add event listeners. An event listener is a callback function that is
invoked when an event of a specified type is dispatched. Since the Stream class
inherits from EventEmitter, we can listen for events from the child process’s
standard output stream.

4. http://nodejs.org/api/events.html

report erratum • discuss

Capturing Data from an EventEmitter • 15

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/watcher-spawn-parse.js
http://nodejs.org/api/events.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

ls.stdout.on('data', function(chunk){
output += chunk.toString();

});

The on() method adds a listener for the specified event type. We listen for data
events because we’re interested in data coming out of the stream.

Events can send along extra information, which arrives in the form of
parameters to the callbacks. Data events in particular pass along a buffer
object.5 Each time we get a chunk of data, we append it to our output.

A Buffer is Node’s way of representing binary data. It points to a blob of
memory allocated by Node’s native core, outside of the JavaScript engine.
Buffers can’t be resized and they require encoding and decoding to convert
to and from JavaScript strings.

Calling toString() explicitly converts the buffer’s contents to a JavaScript string
using Node’s default encoding (UTF-8). This means copying the content into
Node’s heap, which can be a slow operation, relatively speaking. If you can,
it’s better to work with buffers directly, but strings are more convenient.

Like Stream, the ChildProcess class extends EventEmitter, so we can add listeners
to it, as well.

ls.on('close', function(){
let parts = output.split(/\s+/);
console.dir([parts[0], parts[4], parts[8]]);

});

After a child process has exited and all its streams have been flushed, it emits
a close event. When the callback printed here is invoked, we parse the output
data by splitting on sequences of one or more whitespace characters (using
the regular expression /\s+/). Finally, we use console.dir() to report on the first,
fifth, and ninth fields (indexes 0, 4, and 8), which correspond to the permis-
sions, size, and file name, respectively.

We’ve seen a lot of Node’s features in this small problem space of file-watching.
You now know how to use key Node classes, including EventEmitter, Stream,
ChildProcess, and Buffer. You also have firsthand experience writing asynchronous
call-back functions and coding for the event loop.

Let’s expand on these concepts in the next phase of our file-system journey:
reading and writing files.

5. http://nodejs.org/api/buffer.html

Chapter 2. Wrangling the File System • 16

report erratum • discussPrepared exclusively for jabez zhang

http://nodejs.org/api/buffer.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Reading and Writing Files Asynchronously

Earlier in this chapter, we wrote a series of Node programs that could watch
files for changes. Now let’s explore Node’s methods for reading and writing
files. Along the way we’ll see two common error-handling patterns in Node:
error events on EventEmitters and err callback arguments.

There are a few different approaches to reading and writing files in Node. The
simplest way is to read in or write out the entire file at once. This technique
works well for small files. Other approaches read and write by creating Streams
or staging content in a buffer. Here’s an example of the whole-file-at-once
approach:

file-system/read-simple.js
const fs = require('fs');
fs.readFile('target.txt', function (err, data) {

if (err) {
throw err;

}
console.log(data.toString());

});

Save this file as read-simple.js and run it as usual with node --harmony:

$ node --harmony read-simple.js

You’ll see the contents of target.txt echoed to the command line. If the file is
empty, all you’ll see is a blank line.

Notice how the first parameter to the readFile() callback handler is err. If readFile()
is successful, then err will be false. Otherwise the err parameter will contain
an Error object. This is a common error-reporting pattern in Node, especially
for built-in modules. In our example’s case, we throw the error if there was
one. Recall that an uncaught exception in Node will halt the program by
escaping the event loop.

The second parameter to our callback, data, is a buffer; the same kind that
was passed to our various callbacks in previous sections.

Writing a file using the whole-file approach is similar. Here’s an example:

file-system/write-simple.js
const fs = require('fs');
fs.writeFile('target.txt', 'a witty message', function (err) {

if (err) {
throw err;

}
console.log("File saved!");

});

report erratum • discuss

Reading and Writing Files Asynchronously • 17

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/read-simple.js
http://media.pragprog.com/titles/jwnode/code/file-system/write-simple.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This program writes “a witty message” to target.txt (creating it if it doesn’t exist,
or overwriting it if it does). If for any reason the file couldn’t be written, then
the err parameter will contain an Error object.

Creating Read and Write Streams

You create a read stream or a write stream by using fs.createReadStream() and
fs.createWriteStream(), respectively. For example, here’s a very short program
called cat.js. It uses a file stream to pipe a file’s data to standard output:

file-system/cat.js
#!/usr/bin/env node --harmony
require('fs').createReadStream(process.argv[2]).pipe(process.stdout);

Because the first line starts with #!, you can execute this program directly in
Unix-like systems. It doesn’t need to be passed into the node program.

Use chmod to make it executable:

$ chmod +x cat.js

Then, to run it, send the name of the chosen file as an additional argument:

$./cat.js <file_name>

The code in cat.js does not bother assigning the fs module to a variable. The
require() function returns a module object, so we can call methods on it
directly.

You can also listen for data events from the file stream instead of calling pipe().
The following program called read-stream.js does this:

file-system/read-stream.js
const

fs = require('fs'),
stream = fs.createReadStream(process.argv[2]);

stream.on('data', function(chunk) {
process.stdout.write(chunk);

});
stream.on('error', function(err) {

process.stderr.write("ERROR: " + err.message + "\n");
});

Here we use process.stdout.write() to echo data, rather than console.log(). The
incoming data chunks already contain any newline characters from the input
file. We don’t need the extra line that console.log() would add.

When working with an EventEmitter, the way to handle errors is to listen for
error events. Let’s trigger an error to see what happens. Run the program, but
specify a file that doesn’t exist:

Chapter 2. Wrangling the File System • 18

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/file-system/cat.js
http://media.pragprog.com/titles/jwnode/code/file-system/read-stream.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$ node --harmony read-stream.js no-such-file
ERROR: ENOENT, open 'no-such-file'

Since we’re listening for error events, Node invokes our handler (and then
proceeds to exit normally). If you don’t listen for error events, but one happens
anyway, Node will throw an exception. And as we saw before, an uncaught
exception will cause the process to terminate.

Blocking the Event Loop with Synchronous File Access

The file-access methods we’ve discussed in this chapter so far are asyn-
chronous. They perform their I/O duties—waiting as necessary—completely
in the background, only to invoke callbacks later. This is by far the preferred
way to do I/O in Node.

Even so, many of the methods in the fs module have synchronous versions
as well. These end in *Sync, like readFileSync, for example. Doing synchronous
file access might look familiar to you if you haven’t done a lot of async devel-
opment in the past. However, it comes at a substantial cost.

When you use the *Sync methods, the Node.js process will block until the
I/O finishes. This means Node won’t execute any other code, won’t trigger
any callbacks, won’t process any events, won’t accept any connections—noth-
ing. It’ll just sit there indefinitely waiting for the operation to complete.

However, synchronous methods are simpler to use since they lack the callback
step. They either return successfully or throw an exception, without the need
for a callback function. There actually are cases where this style of access is
OK; we’ll discuss them in the next section.

Here’s an example of how to read a file using the readFileSync() method:

const
fs = require('fs'),
data = fs.readFileSync('target.txt');

process.stdout.write(data.toString());

The return value of readFileSync() is a buffer—the same as the parameter passed
to callbacks of the asynchronous readFile() method we saw before.

Performing Other File-System Operations

Node’s fs module has many other methods that map nicely onto POSIX con-
ventions. (POSIX is a family of standards for interoperability between operating
systems—including file-system utilities.) To name a few examples, you can
copy() files and unlink() (delete) them. You can use chmod() to change permissions
and mkdir() to create directories.

report erratum • discuss

Reading and Writing Files Asynchronously • 19

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

These functions rely on the same kinds of callback parameters we’ve used in
this chapter. They’re all asynchronous by default, but many come with
equivalent *Sync versions.

The Two Phases of a Node Program

Given the cost that blocking has on the Node event loop, you might think it’s
always bad to use synchronous file-access methods. To understand when it’s
OK, you can think of Node programs as having two phases.

In the initialization phase, the program is getting set up, bringing in libraries,
reading configuration parameters, and doing other mission-critical tasks. If
something goes wrong at this early stage, not much can be done, and it’s best
to fail fast. The only time you should consider synchronous file access is
during the initialization phase of your program.

The second phase is the operation phase, when the program churns through
the event loop. Since many Node programs are networked, this means
accepting connections, making requests, and waiting on other kinds of I/O.
You should never use synchronous file-access methods during this phase.

The require() function is an example of this principle in action—it synchronously
evaluates the target module’s code and returns the module object. Either the
module will successfully load, or the program will fail right away.

As a rule of thumb, if your program couldn’t possibly succeed without the
file, then it’s OK to use synchronous file access. If your program could con-
ceivably continue about its business, then it’s better to take the safe route
and stick to asynchronous I/O.

Wrapping Up

In this chapter we’ve used Node to perform file operations in Node’s evented,
asynchronous, callback-oriented way. You learned how to watch files for
changes, and read and write files. You also learned how to spawn child pro-
cesses and access command-line arguments.

Along the way, we covered the EventEmitter class. We used the on() method to
listen for events and handle them in our callback functions. And we used
Streams—which are a special kind of EventEmitter—to process data in buffered
chunks or pipe it directly to other streams.

Oh, and let’s not forget about errors. You learned Node’s convention of passing
an err argument to callbacks, and how error events can be captured from an
EventEmitter.

Chapter 2. Wrangling the File System • 20

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Keep these patterns in mind as you continue through the book. Third-party
libraries sometimes have different styles, but the concepts you’ve learned
here reappear throughout the Node ecosystem.

In the next chapter we’ll dig into the other form of server-side I/O: network
connections. We’ll explore the domain of networked services, building on the
concepts and practices developed here.

Here are some bonus questions for you to try out your newly gained Node
knowledge.

Fortifying Code

The various example programs we developed in this chapter lack many safety
checks. Consider the following questions, and how you’d change the code to
address them:

• In the file-watching examples, what happens if the target file doesn’t exist?
• What happens if a file being watched gets deleted?

Expanding Functionality

In an early example of our file-watcher program, we pulled the filename to
watch from process.argv. Consider these questions:

• Instead, how would you take the process to spawn from process.argv?
• How would you pass an arbitrary number of additional parameters from
process.argv to the spawned process (e.g., node --harmony watcher-hw.js ls -l -h)?

report erratum • discuss

Wrapping Up • 21

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 3

Networking with Sockets
Node.js is built from the ground up to do networked programming. In this
chapter, we’ll explore Node’s built-in support for low-level socket connections.
TCP sockets form the backbone of modern networked applications, and
understanding them will serve you well as we do more complex networking
through the rest of the book.

As you develop socket-based servers and clients, you’ll learn about the follow-
ing Node.js aspects.

Architecture and Core
The asynchronous programming techniques we explored in the last
chapter will be even more important here. You’ll learn how to extend
Node.js classes like EventEmitter. You’ll create custom modules to house
reusable code.

Patterns
A network connection has two endpoints. A common pattern is for one
endpoint to act as the server while the other is the client. We’ll develop
both kinds of endpoints in this chapter, as well as a JavaScript Object
Notation (JSON)-based protocol for client/server communication.

JavaScriptisms
The JavaScript language has an interesting inheritance model. You’ll learn
about Node’s utilities for creating class-like relationships between objects.

Supporting Code
Testing is important to ensure that our programs behave the way we
expect them to. In this chapter, we’ll develop a test server that behaves
badly on purpose to probe edge cases of our protocol.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

To begin, we’ll develop a simple and complete TCP server program. Then we’ll
iteratively improve the server as we address concerns such as robustness,
modularity, and testability.

Listening for Socket Connections

Networked services exist to do two things: connect endpoints and transmit
information between them. No matter what kind of information is transmitted,
a connection must first be made.

In this section, you’ll learn how to create socket-based services using Node.js.
We’ll develop an example application that sends data to connected clients,
then we’ll connect to this service using standard command-line tools. By the
end, you’ll have a good idea of how Node does the client/server pattern.

Binding a Server to a TCP Port

TCP socket connections consist of two endpoints. One endpoint binds to a
numbered port while the other endpoint connects to a port.

This is a lot like a telephone system. One phone binds a given phone number
for a long time. A second phone places a call—it connects to the bound
number. Once the call is answered, information (sound) can travel both ways.

In Node.js, the bind and connect operations are provided by the net module.
Binding a TCP port to listen for connections looks like this:

"use strict";
const

net = require('net'),
server = net.createServer(function(connection) {

// use connection object for data transfer
});

server.listen(5432);

The net.createServer() method takes a callback function and returns a Server
object. Node invokes the callback function whenever another endpoint con-
nects. The connection parameter is a Socket object that you can use to send or
receive data.

Calling server.listen() binds the specified port. In this case, we’re binding TCP
port number 5432. Figure 4, A Node.js server binding a TCP socket for listening,
on page 25 shows this basic setup. The figure shows our one Node.js process
whose server binds a TCP port. Any number of clients—which may or may not
be Node.js processes—can connect to that bound port.

Chapter 3. Networking with Sockets • 24

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Figure 4—A Node.js server binding a TCP socket for listening

Our server program doesn’t do anything with the connection yet. Let’s fix that
by using it to send some useful information to the client.

Writing Data to a Socket

In Chapter 2, Wrangling the File System, on page 9, we developed some
simple file utilities that would take action whenever a target file changed.
Let’s reuse the file changes as a source of information for our example net-
worked service. This will give us something to code against as we dig into
aspects of Node.js development.

Open your favorite text editor and enter this:

networking/net-watcher.js
'use strict';
const

fs = require('fs'),
net = require('net'),

filename = process.argv[2],

server = net.createServer(function(connection) {

// reporting
console.log('Subscriber connected.');
connection.write("Now watching '" + filename + "' for changes...\n");

// watcher setup
let watcher = fs.watch(filename, function() {
connection.write("File '" + filename + "' changed: " + Date.now() + "\n");

});

report erratum • discuss

Listening for Socket Connections • 25

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/net-watcher.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

// cleanup
connection.on('close', function() {
console.log('Subscriber disconnected.');
watcher.close();

});

});

if (!filename) {
throw Error('No target filename was specified.');

}

server.listen(5432, function() {
console.log('Listening for subscribers...');

});

Save the file as net-watcher.js. Most of the code here is taken from previous
examples in the book, so it should look pretty familiar. The novel parts to the
net-watcher program begin inside the callback function given to createServer().
This callback function does three things:

• It reports that the connection has been established (both to the client
with connection.write and to the console).

• It begins listening for changes to the target file, saving the returned
watcher object. This callback sends change information to the client using
connection.write.

• It listens for the connection’s close event so it can report that the subscriber
has disconnected and stop watching the file, with watcher.close().

Finally, notice the callback passed into server.listen() at the end. Node invokes
this function after it has successfully bound port 5432 and is ready to start
receiving connections.

Connecting to a TCP Socket Server with Telnet

Now let’s run the net-watcher program and confirm that it behaves the way
we expect. This will require a little terminal juggling.

To run and test the net-watcher program, you’ll need three terminal sessions:
one for the service itself, one for the client, and one to trigger changes to the
watched file. In the first terminal, run the net-watcher program:

$ node --harmony net-watcher.js target.txt
Listening for subscribers...

This program creates a service listening on TCP port 5432. To connect to it,
open a second terminal and use the telnet program like so:

Chapter 3. Networking with Sockets • 26

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$ telnet localhost 5432
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Now watching target.txt for changes...

Back in the first terminal, you should see this:

Subscriber connected.

Finally, to trigger a change to the watched file, open a third terminal and touch
the file target.txt:

$ touch target.txt

In the telnet terminal, after a moment you should see a line like this:

File 'target.txt' changed: Sat Jan 12 2013 12:35:52 GMT-0500 (EST)

You can kill the telnet session by typing Ctrl-] and then Ctrl-C . If you do, you’ll
see the following line appear in the first terminal:

Subscriber disconnected.

To terminate the net-watcher service, type Ctrl-C from its terminal.

The following figure outlines the setup we just created. The net-watcher pro-
cess (box) binds a TCP port and watches a file—both resources are shown as
ovals.

Figure 5—A Node.js program watching a file and reporting changes to connected TCP
clients

More than one subscriber can connect and receive updates simultaneously.
If you open additional terminals and connect to port 5432 with telnet, they’ll
all receive updates when you touch the target file.

report erratum • discuss

Listening for Socket Connections • 27

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

TCP sockets are useful for communicating between networked computers.
But if you need processes on the same computer to communicate, Unix
sockets offer a more efficient alternative. The net module can create this kind
of socket as well, which we’ll look at next.

Listening on Unix Sockets

To see how the net module uses Unix sockets, let’s modify the net-watcher
program to use this kind of communication channel. Keep in mind that Unix
sockets work only on Unix-like environments.

Open the net-watcher.js program and change the server.listen() section to this:

server.listen('/tmp/watcher.sock', function() {
console.log('Listening for subscribers...');

});

Save the file as net-watcher-unix.js, then run the program as before:

$ node --harmony net-watcher-unix.js target.txt
Listening for subscribers...

To connect a client, we now need nc instead of telnet. nc is short for netcat, a
TCP/UDP socket utility program that also supports Unix sockets.

$ nc -U /tmp/watcher.sock
Now watching target.txt for changes...

Unix sockets can be faster than TCP sockets because they don’t require
invoking network hardware. However, they’re local to the machine.

That concludes the basics of creating network socket servers in Node. We
discovered how to create socket servers and connect to them using common
client utility programs like telnet and nc. This framework will supply the
backdrop for the rest of the examples in the chapter.

Next, we’ll beef up our service by transforming the data into a parsable format.
This will put us in position to develop custom client applications.

Implementing a Messaging Protocol

We’ve just explored how to create socket servers that listen for incoming
connections in Node. So far, our example programs have sent plain-text
messages that are meant to be read by a human. In this section, we’ll design
and implement a better protocol.

A protocol is a set of rules that defines how endpoints in a system communi-
cate. Any time you develop a networked application in Node, you’re working

Chapter 3. Networking with Sockets • 28

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

with one or more protocols. Here we’ll create a protocol based on passing
JSON encoded messages over TCP.1

JSON is incredibly prevalent in Node.js programming and in JavaScript
programming generally. We’ll use it extensively for data serialization and
configuration throughout the book. JSON is significantly easier to program
clients against than plain text, and it’s still human-readable.

We’ll implement client and server endpoints that use our new JSON-based
protocol. This will give us opportunities to develop test cases and refactor our
code into reusable modules.

Serializing Messages with JSON

Let’s develop the message-passing protocol that uses JSON to serialize mes-
sages. Each message is a JSON-serialized object, which is a hash of key-value
pairs. Here’s an example JSON object with two key-value pairs:

{"key":"value","anotherKey":"anotherValue"}

The net-watcher service we’ve been developing in this chapter sends two kinds
of messages that we need to convert to JSON:

• When the connection is first established, the client receives the string
Now watching target.txt for changes...

• Whenever the target file changes, the client receives a string like this: File
’target.txt’ changed: Sat Jan 12 2013 12:35:52 GMT-0500 (EST)

We’ll encode the first kind of message this way:

{"type":"watching","file":"target.txt"}

The type field indicates that this is a watching message—the specified file is now
being watched.

The second type of message is encoded this way:

{"type":"changed","file":"target.txt","timestamp":1358175733785}

Here the type field announces that the target file has changed. The timestamp
field contains an integer value representing the number of milliseconds since
midnight, January 1, 1970. This happens to be an easy time format to work
with in JavaScript. For example, you can get the current time in this format
with Date.now().

1. http://json.org/

report erratum • discuss

Implementing a Messaging Protocol • 29

Prepared exclusively for jabez zhang

http://json.org/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Notice that there are no line breaks in our JSON messages. Although JSON
is whitespace agnostic—it ignores whitespace outside of string values—our
protocol will use newlines to separate messages. We’ll call this protocol Line-
Delimited JSON (LDJ).

Switching to JSON Messages

Now that we’ve defined an improved, computer-accessible protocol, let’s
modify the net-watcher service to use it. Then we’ll create client programs
that receive and interpret these messages.

Our task is to use JSON.stringify() to encode message objects and send them out
through connection.write(). Open your editor to the net-watcher.js program. Find
the following line:

connection.write("Now watching '" + filename + "' for changes...\n");

And replace it with this:

connection.write(JSON.stringify({
type: 'watching',
file: filename

}) + '\n');

Next, find the call to connection.write() inside the watcher:

connection.write("File '" + filename + "' changed: " + Date.now() + "\n");

And replace it with this:

connection.write(JSON.stringify({
type: 'changed',
file: filename,
timestamp: Date.now()

}) + '\n');

Save this updated file as net-watcher-json-service.js. Run the new program with
node --harmony as always, remembering to specify a target file. Then connect
using telnet from a second terminal:

$ telnet localhost 5432
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
{"type":"watching","file":"target.txt"}

When you touch the target.txt file, you’ll see output like this from your client:

{"type":"changed","file":"target.txt","timestamp":1367038720325}

Now we’re ready to write a client program that processes these messages.

Chapter 3. Networking with Sockets • 30

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Creating Socket Client Connections

So far in this chapter, we’ve explored the server side of Node sockets. Here
we’ll write a client program in Node to receive JSON messages from our
net-watcher-json-service program. We’ll start with a naive implementation, and
then improve upon it through the rest of the chapter.

Open an editor and insert this:

networking/net-watcher-json-client.js
"use strict";
const

net = require('net'),
client = net.connect({port: 5432});

client.on('data', function(data) {
let message = JSON.parse(data);
if (message.type === 'watching') {

console.log("Now watching: " + message.file);
} else if (message.type === 'changed') {

let date = new Date(message.timestamp);
console.log("File '" + message.file + "' changed at " + date);

} else {
throw Error("Unrecognized message type: " + message.type);

}
});

Save this program as net-watcher-json-client.js.

This short program uses net.connect() to create a client connection to localhost
port 5432, then waits for data. The client object is a Socket, just like the
incoming connection we saw on the server side.

Whenever a data event happens, our callback function takes the incoming
buffer object, parses the JSON message, and then logs an appropriate message
to the console.

To run the program, first make sure the net-watcher-json-service is running. Then,
in another terminal, run the client:

$ node --harmony net-watcher-json-client.js
Now watching: target.txt

If you touch the target file, you’ll see output like this:

File 'target.txt' changed at Mon Jan 14 2013 19:35:14 GMT-0500 (EST)

Success! This program works, but it’s far from perfect. Consider what happens
when the connection ends or if it fails to connect in the first place. This pro-
gram only listens for data events, not end events or error events. We could listen
for these events and take appropriate action when they happen.

report erratum • discuss

Creating Socket Client Connections • 31

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/net-watcher-json-client.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

But there’s actually a deeper problem lurking in our code—caused by
assumptions we’ve made about message boundaries. In the next section we’ll
develop a test that exposes this bug so we can fix it.

Testing Network Application Functionality

Functional tests assure us that our code does what we expect it to do. In this
section, we’ll develop a test for our networked file-watching server and client
programs. We’ll create a mock server that conforms to our LDJ protocol while
exposing flaws in the client.

After we write the test, we’ll fix the client code so that it passes. This will bring
up many Node concepts, include extending core classes, creating and using
custom modules, and developing on top of EventEmitters. But first we need to
understand a problem lurking in our client/server programs as currently
written.

Understanding the Message-Boundary Problem

When you develop networked programs in Node, they’ll often communicate
by passing messages. In the best case, a message will arrive all at once. But
sometimes messages will arrive in pieces, split into distinct data events. To
develop networked applications, you’ll need to deal with these splits when
they happen.

The LDJ protocol we developed earlier separates messages with newline
characters. Each newline character is the boundary between two messages.
Here’s an example of a series of messages, with newline characters specifically
called out:

{"type":"watching","file":"target.txt"}\n
{"type":"changed","file":"target.txt","timestamp":1358175758495}\n
{"type":"changed","file":"target.txt","timestamp":1358175779021}\n

Recall the service we’ve been developing so far in this chapter. Whenever a
change happens, it encodes and sends a message to the connection, including
the trailing newline. Each line of output corresponds to a single data event in
the connected client. Or, to put it another way, the data event boundaries
exactly match up with the message boundaries.

Our client program currently relies on this behavior. It parses each message
by sending the contents of the data buffer directly into JSON.parse():

client.on('data', function(data) {
let message = JSON.parse(data);
// ...

});

Chapter 3. Networking with Sockets • 32

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

But consider what would happen if a message were split down the middle,
and arrived as two separate data events. Such a split could easily happen in
the wild, especially for large messages. The following figure shows an example
of a split message.

Figure 6—A JSON message split into two data events

Let’s create a test service that sends a split message like this one and find
out how the client responds.

Implementing a Test Service

Writing robust Node applications means gracefully handling network problems
like split inputs, broken connections, and bad data. Here we’ll implement a
test service that purposefully splits a message into multiple chunks.

Open your editor and enter this:

networking/net-watcher-json-test-service.js
"use strict";
const

net = require('net'),

server = net.createServer(function(connection) {

console.log('Subscriber connected');

// send the first chunk immediately
connection.write(
'{"type":"changed","file":"targ'

);

// after a one second delay, send the other chunk
let timer = setTimeout(function(){
connection.write('et.txt","timestamp":1358175758495}' + "\n");
connection.end();

}, 1000);

// clear timer when the connection ends
connection.on('end', function(){

report erratum • discuss

Testing Network Application Functionality • 33

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/net-watcher-json-test-service.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

clearTimeout(timer);
console.log('Subscriber disconnected');

});

});

server.listen(5432, function() {
console.log('Test server listening for subscribers...');

});

Save this file as net-watcher-json-test-service.js and run it:

$ node --harmony net-watcher-json-test-service.js
Test server listening for subscribers...

This test service differs from our previous net-watcher-json-service in a few ways.
Rather than setting up a file-system watcher, as we did for the real service,
here we just return the first predetermined chunk immediately.

Then we set up a timer to send the second chunk after a one-second delay.
The JavaScript function setTimeout() takes two parameters: a function to invoke
and an amount of time in milliseconds. After the specified amount of time,
the function will be called.

Finally, whenever the connection ends, we use clearTimeout() to unschedule the
callback. Unscheduling the callback is necessary since it would fail if it were
to execute. After the connection has closed, any calls to connection.write() will trigger
error events.

At last, let’s find out what happens when we connect with the client program:

$ node --harmony net-watcher-json-client.js

undefined:1
{"type":"changed","file":"targ

^
SyntaxError: Unexpected end of input

at Object.parse (native)
at Socket.<anonymous> (./net-watcher-json-client.js:10:20)
at Socket.EventEmitter.emit (events.js:96:17)
at TCP.onread (net.js:397:14)

The error Unexpected end of input tells us that the message was not complete
and valid JSON. Our client attempted to send half a message to JSON.parse(),
which expects only whole, properly formatted JSON strings as input.

At this point, we’ve successfully simulated the case of a split message coming
from the server. Now let’s fix the client to work with it.

Chapter 3. Networking with Sockets • 34

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Extending Core Classes in Custom Modules

The Node program we made in the last section exposed a flaw in our client
code; namely, that it doesn’t buffer its inputs. Any message that arrives as
multiple data events will crash it.

So really the client program has two jobs to do. One is to buffer incoming
data into messages. The other is to handle each message when it arrives.

Rather than cramming both of these jobs into one Node program, the right
thing to do is to turn at least one of them into a Node module. We’ll create a
module that handles the input-buffering piece so that the main program can
reliably get full messages. Along the way, we’ll need to talk about custom
modules and extending core classes in Node.

Extending EventEmitter
To relieve the client program from the danger of split JSON messages, we’ll
implement an LDJ buffering client module. Then we’ll incorporate it into the
network-watcher client.

Inheritance in Node

First let’s have a look at how Node does inheritance. The following code sets
up LDJClient to inherit from EventEmitter.

networking/ldj.js
const

events = require('events'),
util = require('util'),
// client constructor
LDJClient = function(stream) {

events.EventEmitter.call(this);
};

util.inherits(LDJClient, events.EventEmitter);

LDJClient is a constructor function, which means other code should call new LDJ-
Client(stream) to get an instance. The stream parameter is an object that emits
data events, such as a Socket connection.

Inside the constructor function, we call the EventEmitter constructor on this.
That line of code is roughly equivalent to calling super() in languages with
classical inheritance.

Finally, we call util.inherits() to make LDJClient’s prototypal parent object the
EventEmitter prototype. If this sounds cryptic to you, don’t worry. It’s like saying
“class LDJClient inherits from EventEmitter” in languages with a classical inheritance

report erratum • discuss

Extending Core Classes in Custom Modules • 35

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/ldj.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

model. It means that if you look for a property on an LDJClient and it’s not there,
the EventEmitter is the next place to look.

There are other ways to do inheritance in JavaScript, but this is how Node.js’s
own modules are structured. We’ll investigate some alternatives in later
chapters. But for now, let’s follow the Node.js core library style.

Code to use LDJClient might look like this:

const client = new LDJClient(networkStream);
client.on('message', function(message) {

// take action for this message
});

Even though the client object doesn’t have an on() method directly, its prototypal
grandparent, EventEmitter, does.

The inheritance framework is now in place, but we haven’t implemented
anything to emit message events. Let’s look at this next, and talk about
buffering data events in Node.

Buffering Data Events

It’s time to use the stream parameter in the LDJClient to retrieve and buffer input.
The goal is to take the incoming raw data from the stream and convert it into
message events containing the parsed message objects.

Take a look at the following updated constructor function. It appends
incoming data chunks to a running buffer string and scans for line endings
(which should be JSON message boundaries).

networking/ldj.js
LDJClient = function(stream) {

events.EventEmitter.call(this);
let

self = this,
buffer = '';

stream.on('data', function(data) {
buffer += data;
let boundary = buffer.indexOf('\n');
while (boundary !== -1) {
let input = buffer.substr(0, boundary);
buffer = buffer.substr(boundary + 1);
self.emit('message', JSON.parse(input));
boundary = buffer.indexOf('\n');

}
});

};

Chapter 3. Networking with Sockets • 36

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/ldj.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This constructor function starts out by calling the EventEmitter constructor,
just like before. Then we set up the local variable self to capture this.

In JavaScript, the value of this is assigned inside each function when it is
invoked, at runtime. The value of this is not tightly bound to any particular
object like in classical languages. It’s more like a special variable.

Setting a separate variable (self) to the same value guarantees that we’re
referring to the correct object inside our data event handler. You have to be
careful about this in JavaScript, especially when nested functions are involved.

Inside the data event handler, we append raw data to the end of the buffer
and then pull completed messages off the front. Each message string is sent
through JSON.parse() and finally emitted by the LDJClient as a message event via
self.emit(). At this point, the problem we started with (handling split messages)
is effectively solved. Whether ten messages come in on a single data event or
only half of one does, they’ll all precipitate message events on the LDJClient
instance.

Next we need to put this class into a Node module so our upstream client can
use it.

Exporting Functionality in a Module

Let’s pull together the previous code samples and expose LDJClient as a module.
Open a text editor and insert the following:

networking/ldj.js
"use strict";
const

events = require('events'),
util = require('util'),
// client constructor
LDJClient = function(stream) {

events.EventEmitter.call(this);
let
self = this,
buffer = '';

stream.on('data', function(data) {
buffer += data;
let boundary = buffer.indexOf('\n');
while (boundary !== -1) {

let input = buffer.substr(0, boundary);
buffer = buffer.substr(boundary + 1);
self.emit('message', JSON.parse(input));
boundary = buffer.indexOf('\n');

}
});

};

report erratum • discuss

Extending Core Classes in Custom Modules • 37

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/ldj.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

util.inherits(LDJClient, events.EventEmitter);

// expose module methods
exports.LDJClient = LDJClient;
exports.connect = function(stream){

return new LDJClient(stream);
};

Save the file as ldj.js. The code for this module is the combination of previous
examples, plus the new exports section at the end.

In a Node module, the exports object is the bridge between the module code
and the outside world. Any properties you set on exports will be available to
code that pulls in the module.

In our case, we export the LDJClient constructor function and a convenience
method called connect(). This method makes it a little easier for upstream code
to create an LDJClient instance.

Code to use the LDJ module will look something like this:

const
ldj = require('./ldj.js'),
client = ldj.connect(networkStream);

client.on('message', function(message) {
// take action for this message

});

Notice that the require() function takes an actual path here, rather than the
shorthand module names we’ve seen previously, like fs, net, and util. When a
path is provided to require(), it will attempt to resolve the path relative to the
current file.

Our module is done! Finally, let’s augment the network-watching client to
use the module, bringing it all together.

Importing a Custom Node Module

It’s time to make use of our custom module. Let’s modify the client to use it
rather than reading directly from the stream.

Open a text editor and enter the following:

networking/net-watcher-ldj-client.js
"use strict";
const

net = require('net'),
ldj = require('./ldj.js'),

Chapter 3. Networking with Sockets • 38

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/networking/net-watcher-ldj-client.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

netClient = net.connect({ port: 5432 }),
ldjClient = ldj.connect(netClient);

ldjClient.on('message', function(message) {
if (message.type === 'watching') {

console.log("Now watching: " + message.file);
} else if (message.type === 'changed') {

console.log(
"File '" + message.file + "' changed at " + new Date(message.timestamp)

);
} else {

throw Error("Unrecognized message type: " + message.type);
}

});

Save this file as net-watcher-ldj-client.js. Note that it’s similar to our net-watcher-json-
client from Creating Socket Client Connections, on page 31. The major difference
is that instead of sending data buffers directly to JSON.parse(), this program relies
on the ldj module to produce message events.

To make sure it solves the split-message problem, run the test service:

$ node --harmony net-watcher-json-test-service.js
Test server listening for subscribers...

Then use the new client to connect to it:

$ node --harmony net-watcher-ldj-client.js
File 'target.txt' changed at Mon Jan 14 2013 10:02:38 GMT-0500 (EST)

Success! You now have a server and client that use a custom message format
to communicate. Let’s review what we covered before moving on to even bigger
things.

Wrapping Up

This chapter explored how to write socket-based networked applications in
Node. We developed both ends of a server/client interaction and created a
JSON-based protocol for them to communicate.

When our assumptions about the protocol began to fail us, we developed a
test case to expose the problem. We saw how to write a custom Node module
and how to extend Node core classes, including EventEmitter. We also learned
one technique for buffering streamed data and incrementally scanning it for
messages.

Writing simple networked applications in Node, like the ones in this chapter,
doesn’t take very much code. With only a few lines, you can have a functioning
server or client application.

report erratum • discuss

Wrapping Up • 39

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

However, writing robust applications is harder when you consider all the ways
in which a networked application might fail. In the next chapter, we’ll use a
super-high-performance messaging library to take our Node applications to
the next level.

The following bonus questions ask you to improve the code from this chapter,
making it more testable, more robust, and more modular.

Testability

The server and client programs we developed in this chapter are somewhat
coupled. For example, to test our client-side program we had to develop
another server application.

• How could you divide up and expose the functionality to make it more
testable?

Hint: consider how you might separate out functionality into testable
modules.

Robustness

The LDJClient developed in this chapter is somewhat fragile. The questions in
this section ask you to expand on its implementation in key ways.

• The LDJClient handles the case in which a properly formatted JSON string
is split over multiple lines, but what happens if an incoming line is not a
properly formatted JSON string?

• What should happen in this case?

• What, if any, events should LDJClient emit other than message events?

Separating Concerns

The LDJClient takes care of two separable concerns: splitting incoming data into
lines, and parsing lines as JSON. How would you further separate LDJClient
into two modules, one for each of these concerns?

Lastly, the net-watcher.js at the beginning of this chapter sets up a new watcher
for each connected client. If you had thousands of connected clients, this
would mean thousands of watchers. How could you decouple the watching
of the file from the notification of the connected clients?

Chapter 3. Networking with Sockets • 40

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 4

Robust Messaging Services
When you write Node.js programs, you’ll often use more than just the core
libraries. Node’s package manager, npm, offers a rich collection of community-
developed modules you can use. In this chapter, you’ll learn how to make the
most out of third-party modules.

In particular, we’re going to explore how to write robust messaging services
in Node. We saw the beginnings of networked application development last
chapter, and now it’s time to take it to the next level. Creating these messaging
applications will expose you to the following aspects of Node.js development.

Architecture and Core
Node.js is single-threaded, but you can still take advantage of multiple
cores or processors by running more processes. In this chapter, you’ll
use Node’s cluster module to create and manage a pool of Node.js worker
processes.

Patterns
The endpoints of a networked application can have many roles, and
communicate in many ways. We’ll explore powerful messaging patterns
like publish/subscribe, request/response, and push/pull. These patterns
appear often in networked application design; you’ll be a better program-
mer knowing when and how to apply them.

JavaScriptisms
Functions in JavaScript are variadic. This means they can be called with
any number of arguments, whether you planned to receive them or not.
The messaging library we’ll use takes advantage of this feature to send
message data to your callbacks.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Supporting Code
npm is an integral part of the Node ecosystem. You’ll learn how to use
and manage modules provided through npm. Sometimes modules have
external dependencies beyond npm; you’ll learn how to build those, too.

To create our robust messaging services, we’ll use a cross-platform library
called ØMQ (pronounced “Zero-M-Q”). The MQ stands for message queue.
ØMQ provides high-scalability and low-latency messaging. And with its event-
loop-based development model, ØMQ goes with Node.js like peanut butter
goes with jelly.

After a brief overview of ØMQ, we’ll take it for a spin by making improved
versions of some of the applications we developed in previous chapters. Then
we’ll quickly move on to new messaging patterns. Let’s get to it!

Advantages of ØMQ

It’s fair to ask why we’d use ØMQ for messaging, as opposed to writing
everything ourselves. The answer is that the Node community believes in the
Unix philosophy: “do one thing well.” The committers keep the Node core
small and tight, leaving everything else to the broader base of developers who
publish their modules through npm.

Although the Node.js core has great, low-level support for binding and con-
necting to sockets, it leaves out higher-level messaging patterns. ØMQ’s
purpose is to expose high-level messaging patterns and take care of many
low-level networking concerns for you. Take the following examples:

• ØMQ endpoints automatically reconnect if they become unhitched for
any reason—like if there’s a hiccup in the network or if a process restarts.

• ØMQ delivers only whole messages, so you don’t have to create buffers
to deal with chunked data.

• ØMQ’s low-overhead protocol takes care of many routing details, like
sending responses back to the correct clients.

With ØMQ, like with any good library, your application can focus on what
really matters. Now, let’s get everything set up with npm so we can build fast,
robust messaging applications in Node with ØMQ.

Importing External Modules with npm

npm is your gateway to a large and growing pool of open source Node modules.
They do everything from stream parsing to connection pooling to session
management. You’ll rarely write a Node application that doesn’t use at least

Chapter 4. Robust Messaging Services • 42

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

one module from npm. We’ll use many external modules in this book, and
zmq (the Node binding for ØMQ) is the first.

Modules managed by npm can be pure JavaScript or a combination of Java-
Script and native addon code.1 Addons are dynamically linked shared
objects—they provide the glue for working with native libraries written in C
or C++.

The vast majority of modules can be installed through the npm command-line
tool alone, even if they contain addons. But a few, like the zmq module, have
additional requirements as well. To use ØMQ with Node, you have to install
the ØMQ base library first; then you can pull in the zmq module through npm.

Installing the ØMQ Base Library

Installing the ØMQ library is fairly straightforward on most platforms. Binary
and source packages are available from the project download page.2

If you’re using Mac OS X with Homebrew, you can quickly install ØMQ from
the command line.3

$ brew install zmq
==> Downloading http://download.zeromq.org/zeromq-3.2.3.tar.gz
100.0%
==> Patching
patching file tests/test_disconnect_inproc.cpp
==> ./configure --prefix=/usr/local/Cellar/zeromq/3.2.3
==> make
==> make install
...
==> Summary
/usr/local/Cellar/zeromq/3.2.3: 54 files, 2.3M, built in 31 seconds

To test whether ØMQ was installed successfully, you can try to load its man
page with man zmq.

Installing the zmq Node Module

Once you’ve installed the base ØMQ library, you can use npm to pull down
the zmq Node module.

Create a directory called messaging and navigate to this directory on the com-
mand line. Then install zmq:

1. http://nodejs.org/api/addons.html
2. http://www.zeromq.org/intro:get-the-software
3. http://brew.sh

report erratum • discuss

Importing External Modules with npm • 43

Prepared exclusively for jabez zhang

http://nodejs.org/api/addons.html
http://www.zeromq.org/intro:get-the-software
http://brew.sh
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$ npm install zmq
npm http GET https://registry.npmjs.org/zmq
npm http 200 https://registry.npmjs.org/zmq

> zmq@2.4.0 install ./node_modules/zmq
> node-gyp rebuild

CXX(target) Release/obj.target/zmq/binding.o
SOLINK_MODULE(target) Release/zmq.node
SOLINK_MODULE(target) Release/zmq.node: Finished

zmq@2.4.0 node_modules/zmq

Notice the call to node-gyp about halfway though. node-gyp is a cross-platform
tool for compiling native addons. If anything went wrong with the build, the
output should tell you.

When you run the preceding command, npm will download the zmq module
to a folder called node_modules under the current directory. To test that the
module was installed successfully, run this command:

$ node --harmony -p -e 'require("zmq")'

The -e flag tells Node to evaluate the provided string, and the -p flag tells it to
print that output to the terminal.

If you see a bunch of details about the zmq module fly by, then you’re all set.
If you see an exception being thrown, then you’ll need to stop and
troubleshoot.

Now that the library and the Node module are installed, it’s time to start
programming Node.js with ØMQ!

Message-Publishing and -Subscribing

ØMQ supports a number of different message-passing patterns that work
great in Node. We’ll start with the publish/subscribe pattern (PUB/SUB).

Recall the code we wrote in Chapter 3, Networking with Sockets, on page 23,
when we developed a networked file-watching service and a client to connect
to it. They communicated over TCP by sending Line-Delimited JavaScript
Object Notation (JSON) messages. The server would publish information in
this format, and any number of client programs could subscribe to it.

We had to work hard to make our client code safely handle the message-
boundary problem. We created a separate module dedicated to buffering
chunked data and emitting messages. Even so, we were left with questions
like how to handle network interrupts or server restarts.

Chapter 4. Robust Messaging Services • 44

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

ØMQ makes all of this simpler by taking care of low-level details like buffering
and reconnecting. Let’s see how much easier it is by implementing a watcher
that uses ØMQ PUB/SUB instead of naked TCP. This will get us used to the
ØMQ way of doing things, and set us up to explore other messaging patterns
with Node and ØMQ.

Publishing Messages over TCP

First, let’s implement the PUB half of a PUB/SUB pair using the zmq module.
Open an editor and enter the following:

messaging/zmq-watcher-pub.js
'use strict';
const

fs = require('fs'),
zmq = require('zmq'),

// create publisher endpoint
publisher = zmq.socket('pub'),

filename = process.argv[2];

fs.watch(filename, function(){

// send message to any subscribers
publisher.send(JSON.stringify({

type: 'changed',
file: filename,
timestamp: Date.now()

}));

});

// listen on TCP port 5432
publisher.bind('tcp://*:5432', function(err) {

console.log('Listening for zmq subscribers...');
});

Save the file as zmq-watcher-pub.js. This program is similar to ones we developed
in previous chapters, with a few differences.

First, instead of requiring the net module, now we’re requiring zmq. We use it
to create a publisher endpoint by calling zmq.socket('pub').

Importantly, we have only one call to fs.watch(). Our servers from the last
chapter would invoke watch() once for each connected client. Here we have
just one file-system watcher, which invokes the publisher’s send() method.

report erratum • discuss

Message-Publishing and -Subscribing • 45

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/messaging/zmq-watcher-pub.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Notice that the string we send to publisher.send() is the output of JSON.stringify().
ØMQ does not do any formatting of messages itself—it is only interested in
pushing bytes down the wire. It’s our job to serialize and deserialize any
messages we send through ØMQ.

Finally, we call publisher.bind('tcp://*:5432') to tell ØMQ to listen on TCP port 5432
for subscribers.

Let’s get the publisher running:

$ node --harmony zmq-watcher-pub.js target.txt
Listening for zmq subscribers...

Even though this service uses TCP, we can’t simply use telnet to get anything
out of it. A ØMQ server requires a ØMQ client because of its high-performance
binary protocol.

Now let’s implement the subscriber end.

Subscribing to a Publisher

Implementing the SUB portion of the ØMQ PUB/SUB pair requires even less
code than the publisher. Open an editor and enter this:

messaging/zmq-watcher-sub.js
"use strict";
const

zmq = require('zmq'),

// create subscriber endpoint
subscriber = zmq.socket('sub');

// subscribe to all messages
subscriber.subscribe("");

// handle messages from publisher
subscriber.on("message", function(data) {

let
message = JSON.parse(data),
date = new Date(message.timestamp);

console.log("File '" + message.file + "' changed at " + date);
});

// connect to publisher
subscriber.connect("tcp://localhost:5432");

Save this file as zmq-watcher-sub.js. It uses zmq.socket('sub') to make a subscriber
endpoint.

Chapter 4. Robust Messaging Services • 46

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/messaging/zmq-watcher-sub.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Calling subscriber.subscribe("") tells ØMQ that we want to receive all messages. If
you only want certain messages, you can provide a string that acts as a prefix
filter. You must call subscribe() at some point in your code—you won’t receive
any messages until you do.

The subscriber object inherits from EventEmitter. It emits a message event whenever
it receives one from a publisher, so we use subscriber.on() to listen for them.

Lastly, we use subscriber.connect() to establish the client end of the connection.

Let’s see how these pieces fit together. With the PUB program still running
in one terminal, fire up zmq-watcher-sub in a second one:

$ node --harmony zmq-watcher-sub.js

Then, in a third terminal, touch the target file:

$ touch target.txt

In the subscriber terminal, you should see output something like this:

File 'target.txt' changed at Wed May 22 2013 21:34:10 GMT-0400 (EDT)

So far, things look pretty great. The publisher and subscriber programs are
able to successfully communicate over the PUB/SUB socket pair.

But it gets even better. Keep those services running; next we’ll cover how
ØMQ handles network interruptions.

Automatically Reconnecting Endpoints

Let’s see what happens when one of the endpoints gets disconnected unex-
pectedly. Try killing the publisher in its terminal via Ctrl-C .

Afterwards, switch over to the subscriber terminal. You may notice that
something strange happened—nothing. The subscriber keeps waiting for
messages even though the publisher is down, like nothing happened.

Start up the publisher again in the first terminal, then touch the target file.
The subscriber should log a File changed message to the console. It’s as
though they were connected the whole time.

From ØMQ’s perspective, it doesn’t matter which endpoint starts up first.
And it automatically reestablishes the connection when an endpoint comes
back online. These characteristics add up to a robust platform that gives you
stability without a lot of work on your part.

In our previous examples, both the PUB and SUB endpoints were made from
zmq.socket(). This means they both have the power to either bind() or connect().

report erratum • discuss

Message-Publishing and -Subscribing • 47

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Our code had the publisher bind a TCP socket (as the server) and the sub-
scriber connect (as the client), but ØMQ doesn’t force you to do it this way.
We could have flipped it around and had the subscriber bind a socket to
which the publisher connects.

When you design a networked application, you’ll typically have the stable
parts of your architecture bind and have the transient parts connect to them.
With ØMQ, you get to decide which parts of your system will be stable, and
you get to decide which messaging pattern best suits your needs. But you
don’t have to decide them at the same time, and it’s easy to change your mind
later. ØMQ provides flexible, durable pipes for constructing distributed
applications.

Like Node.js, ØMQ doesn’t have a data-center scaling strategy out of the box.
But both provide you with building blocks to get you there.

Next we’ll look at a different messaging pattern: request/response. Then we’ll
tie this in with Node’s clustering support to manage a pool of worker processes.

Responding to Requests

The REQ/REP (request/reply) pattern is quite common in networked program-
ming, particularly in Node. We’ll use this pattern often in the next couple of
chapters, and ØMQ has great support for it. As you’ll see in a minute, this is
where the “Q” of ØMQ becomes apparent.

In ØMQ, a REQ/REP pair communicates in lockstep. A request comes in,
then a reply goes out. Additional incoming requests are queued and later
dispatched by ØMQ. Your application, however, is only aware of one request
at a time.

Let’s see how this works, again using the file system as a source of information
for building a service. In this scenario, a responder waits for a request for file
data, then serves up the content when asked. We’ll start with the responder
—the REP (reply) part of the REQ/REP pair.

Implementing a Responder

Open an editor and enter the following:

messaging/zmq-filer-rep.js
'use strict';
const

fs = require('fs'),
zmq = require('zmq'),
// socket to reply to client requests
responder = zmq.socket('rep');

Chapter 4. Robust Messaging Services • 48

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/messaging/zmq-filer-rep.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

// handle incoming requests
responder.on('message', function(data) {

// parse incoming message
let request = JSON.parse(data);
console.log('Received request to get: ' + request.path);

// read file and reply with content
fs.readFile(request.path, function(err, content) {

console.log('Sending response content');
responder.send(JSON.stringify({
content: content.toString(),
timestamp: Date.now(),
pid: process.pid

}));
});

});

// listen on TCP port 5433
responder.bind('tcp://127.0.0.1:5433', function(err) {

console.log('Listening for zmq requesters...');
});

// close the responder when the Node process ends
process.on('SIGINT', function() {

console.log('Shutting down...');
responder.close();

});

Save the file as zmq-filer-rep.js. The program creates a ØMQ REP and uses it to
respond to incoming requests.

When a message event happens, we parse out the request from the raw data.
Next we call fs.readFile() to asynchronously retrieve the requested file’s content.
When it arrives, we use the responder’s send() method to reply with a JSON
serialized response, including the file content and a timestamp. We also
include the process ID (pid) of the Node process in the response.

The responder binds to TCP port 5433 of the loopback interface (IP 127.0.0.1)
to wait for connections. This makes the responder the stable endpoint of the
REP/REQ pair.

Finally, we listen for SIGINT events on the Node process. This Unix signal
indicates that the process has received an interrupt signal from the
user—typically invoked by pressing Ctrl-C in the terminal. The clean thing to
do in this case is ask the responder to gracefully close any outstanding
connections.

report erratum • discuss

Responding to Requests • 49

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Start the program in a terminal as usual with node --harmony:

$ node --harmony zmq-filer-rep.js
Listening for zmq requesters...

Looks like our responder is ready! But to connect to it, we’ll need to develop
a client, so let’s put one together.

Issuing Requests

Creating a requester to work with our responder is pretty short. Open an
editor and enter this:

messaging/zmq-filer-req.js
"use strict";
const

zmq = require('zmq'),
filename = process.argv[2],
// create request endpoint
requester = zmq.socket('req');

// handle replies from responder
requester.on("message", function(data) {

let response = JSON.parse(data);
console.log("Received response:", response);

});
requester.connect("tcp://localhost:5433");
// send request for content
console.log('Sending request for ' + filename);
requester.send(JSON.stringify({

path: filename
}));

Save the file as zmq-filer-req.js.

This program starts off by creating a ØMQ REQ socket. Then we listen for
incoming message events and interpret the data as a JSON serialized response
(which we log to the console). The end of the program kicks off the request
by connecting to REP socket over TCP and finally calling requester.send(). The
JSON request message contains the requested file’s path as specified on the
command line.

Let’s see how these REQ and REP sockets work together. With the zmq-filer-rep
program still running in one terminal, run this command in another:

$ node --harmony zmq-filer-req.js target.txt
Sending request for target.txt
Received response: { content: '', timestamp: 1370271311810, pid: 32730 }

Success! The REP endpoint received the request, processed it, and sent back
a response.

Chapter 4. Robust Messaging Services • 50

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/messaging/zmq-filer-req.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Trading Synchronicity for Scale

There is a catch to using ØMQ REP/REQ socket pairs with Node. Each end-
point of the application operates on only one request or one response at a
time. There is no parallelism.

We can see this in action by making a small change to the requester program.
Open the zmq-filer-req.js file from last section. Find the code that sends the
request and wrap it in a for loop like this:

for (let i=1; i<=3; i++) {
console.log('Sending request ' + i + ' for ' + filename);
requester.send(JSON.stringify({

path: filename
}));

}

Save this file as zmq-filer-req-loop.js. With the responder still running, invoke the
new script using node --harmony:

$ node --harmony zmq-filer-req-loop.js target.txt
Sending request 1 for target.txt
Sending request 2 for target.txt
Sending request 3 for target.txt
Received response: { content: '', timestamp: 1370301866142, pid: 35925 }
Received response: { content: '', timestamp: 1370301866144, pid: 35925 }
Received response: { content: '', timestamp: 1370301866147, pid: 35925 }

We see that the loop queued three requests, and then we received three
responses. This shouldn’t be too surprising, but let’s take a look at the
responder window:

$ node --harmony zmq-filer-rep.js
Listening for zmq requesters...
Received request to get: target.txt
Sending response content
Received request to get: target.txt
Sending response content
Received request to get: target.txt
Sending response content

The responder program sent a response to each request before even becoming
aware of the next queued request. This means Node’s event loop was left
spinning while the fs.readFile() for each request was being processed.

For this reason, a simple REQ/REP pair is probably not going to suit your
high-performance Node.js needs. Next we’ll construct a cluster of Node pro-
cesses using more advanced ØMQ socket types to scale up our throughput.

report erratum • discuss

Responding to Requests • 51

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Routing and Dealing Messages

The REQ/REP socket pair we explored makes request/reply logic easy to code
by operating sequentially. A given requester or responder will only ever be
aware of one message at a time. For parallel message processing, ØMQ
includes the more advanced socket types ROUTER and DEALER. Let’s explore
these a bit; then we’ll be ready to construct our Node.js cluster.

Routing Messages

You can think of a ROUTER socket as a parallel REP socket. Rather than
replying to only one message at a time, a ROUTER socket can handle many
requests simultaneously. It remembers which connection each request came
from and will route reply messages accordingly.

Recall from Implementing a Messaging Protocol, on page 28, that any time you
do networked programming, you’re working with one or more protocols. ØMQ
uses the ZeroMQ Message Transport Protocol for exchanging messages.4 This
protocol uses a sequence of low-overhead frames to compose messages. A
ROUTER socket uses these frames to route each reply message back to the
connection that issued the request.

Most of the time your Node programs can ignore the underlying details of
ØMQ frames because the simpler socket types only need one frame per mes-
sage. But the ROUTER socket type uses multiple frames.

Here’s an example of how to create a ROUTER socket in Node, with a message
handler that grabs all the incoming frames.

const
zmq = require('zmq'),
router = zmq.socket('router');

router.on('message', function() {
let frames = Array.prototype.slice.call(null, arguments);

// ...
});

Previously, our message handlers would take a data parameter, but notice
how this handler function doesn’t take any. The zmq module actually passes
all the frames for a message to the handler as arguments to the handler
function. It can do this because JavaScript functions are variadic—they can
receive any number of arguments when called.

4. http://rfc.zeromq.org/spec:15

Chapter 4. Robust Messaging Services • 52

report erratum • discussPrepared exclusively for jabez zhang

http://rfc.zeromq.org/spec:15
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The arguments object inside a function is an array-like object that contains all
the arguments that were passed in. Using Array.prototype.slice.call(null, arguments)
returns a real JavaScript Array instance with the same contents.

Now that we can get all the frames, let’s look at the DEALER socket type.

Dealing Messages

If a ROUTER socket is a parallel REP socket, then a DEALER is a parallel
REQ. A DEALER socket can send multiple requests in parallel.

Let’s see how a dealer and router work together in Node. Take a look at this
code sample:

const
zmq = require('zmq'),
router = zmq.socket('router'),
dealer = zmq.socket('dealer');

router.on('message', function() {
let frames = Array.prototype.slice.call(null, arguments);
dealer.send(frames);

});
dealer.on('message', function() {

let frames = Array.prototype.slice.call(null, arguments);
router.send(frames);

});

Here we create both a ROUTER socket and a DEALER socket. Whenever either
receives a message, it strips out the frames and sends them to the other
socket.

This means incoming requests to the router will be passed off to the dealer
to send out to its connections. Likewise, incoming replies to the dealer will
be forwarded back to the router, which directs each reply back to the connec-
tion that requested it.

The code sample doesn’t include any calls to bind() or connect(), so it’s not a
functional example yet. Even so, you can see the basic structure we’re after
in Figure 7, A Node.js program using both ROUTER and DEALER ØMQ sockets,
on page 54.

The box in the center of the figure is the Node program. An incoming REQ
socket connects to the ROUTER. When it issues a request message, the
ROUTER bounces it over to the DEALER. The DEALER then picks one of the
REP sockets connected to it to forward the request.

report erratum • discuss

Routing and Dealing Messages • 53

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Figure 7—A Node.js program using both ROUTER and DEALER ØMQ sockets

When the REP connection produces a reply, it follows the reverse route. The
DEALER receives the reply and bounces it back to the ROUTER. The ROUTER
looks at the message’s frames to determine its origin and sends the reply
back to the connected REQ that sent the initial request.

From the perspective of the REQ and REP sockets, nothing has changed.
Each still operates in lockstep, handling one message at a time from the
application’s perspective. Meanwhile, the ROUTER/DEALER pair can load-
balance among the REQ and REP sockets connected on both ends.

Now it’s time to put these new socket types to use. Next we’ll develop a clus-
tered Node.js application on top of the REQ, REP, ROUTER, and DEALER
sockets we’ve just explored.

Clustering Node.js Processes

In multithreaded systems, doing more work in parallel means spinning up
more threads. But Node.js uses a single-threaded event loop, so to take
advantage of multiple cores or multiple processors on the same computer,
you have to spin up more Node processes.

This is called clustering and it’s what Node’s built-in cluster module does.
Clustering is a useful technique for scaling up your Node application when
there’s unused CPU capacity available. Scaling a Node application is a big
topic with lots of choices based on your particular scenario, but no matter
how you end up doing it, you’ll probably start with clustering.

To explore how the cluster module works, we’ll build up a program that
manages a pool of worker processes to respond to ØMQ requests. This will

Chapter 4. Robust Messaging Services • 54

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

be a drop-in replacement for our previous responder program. It will use
ROUTER, DEALER, and REP sockets to distribute requests to workers.

In all, we’ll end up with a short and powerful program that combines cluster-
based, multiprocess work distribution and load-balanced message-passing
to boot.

Forking Worker Processes in a Cluster

Back in Spawning a Child Process, on page 13, we used the child_process mod-
ule’s spawn() function to fire up a process. This works great for executing non-
Node processes from your Node program. But for spinning up copies of the
same Node program, forking is a better option.

Each time you call the cluster module’s fork() method, it creates a worker process
running the same script as the original. To see what I mean, take a look at
the following code snippet. It shows the basic framework for a clustered Node
application.

const cluster = require('cluster');

if (cluster.isMaster) {
// fork some worker processes
for (let i = 0; i < 10; i++) {

cluster.fork();
}

} else {
// this is a worker process, do some work

}

First, we check whether the current process is the master process. If so, we
use cluster.fork() to create additional processes. The fork method launches a new
Node.js process running the same script, but for which cluster.isMaster is false.

The forked processes are called workers. They can intercommunicate with
the master process through various events.

For example, the master can listen for workers coming online with code like
this:

cluster.on('online', function(worker) {
console.log('Worker ' + worker.process.pid + ' is online.');

});

When the cluster module emits an online event, a worker parameter is passed
along. One of the properties on this object is process—the same sort of process
that you’d find in any Node.js program.

report erratum • discuss

Clustering Node.js Processes • 55

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Similarly, the master can listen for processes exiting:

cluster.on('exit', function(worker, code, signal) {
console.log('Worker ' + worker.process.pid + ' exited with code ' + code);

});

Like online, the exit event includes a worker object. The event also includes the
exit code of the process and what operating-system signal (like SIGINT or SIGTERM)
was used to halt the process.

Building a Cluster

Now it’s time to put everything together, harnessing Node clustering and the
ØMQ messaging patterns we’ve been talking about. We’ll build a program
that distributes requests to a pool of worker processes.

Our master Node process will create ROUTER and DEALER sockets and spin
up the workers. Each worker will create a REP socket that connects back to
the DEALER.

The following figure illustrates how all these pieces fit together. As in previous
figures, the rectangles represent Node.js processes. The ovals are the resources
bound by ØMQ sockets, and the arrows show which sockets connect to which
endpoints.

Figure 8—A Node.js cluster that routes requests to a pool of workers

The master process is the most stable part of the architecture (it manages
the workers), so it’s responsible for doing the binding. The cluster’s worker
processes and clients of the service all connect to endpoints bound by the

Chapter 4. Robust Messaging Services • 56

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

master process. Remember that the flow of messages is decided by the socket
types, not which socket happens to bind or connect.

Now let’s get to the code. Open your favorite editor and enter the following.

messaging/zmq-filer-rep-cluster.js
'use strict';Line 1

const-

cluster = require('cluster'),-

fs = require('fs'),-

zmq = require('zmq');5

-

if (cluster.isMaster) {-

-

// master process - create ROUTER and DEALER sockets, bind endpoints-

let10

router = zmq.socket('router').bind('tcp://127.0.0.1:5433'),-

dealer = zmq.socket('dealer').bind('ipc://filer-dealer.ipc');-

-

// forward messages between router and dealer-

router.on('message', function() {15

let frames = Array.prototype.slice.call(arguments);-

dealer.send(frames);-

});-

-

dealer.on('message', function() {20

let frames = Array.prototype.slice.call(null, arguments);-

router.send(frames);-

});-

-

// listen for workers to come online25

cluster.on('online', function(worker) {-

console.log('Worker ' + worker.process.pid + ' is online.');-

});-

-

// fork three worker processes30

for (let i = 0; i < 3; i++) {-

cluster.fork();-

}-

-

} else {35

-

// worker process - create REP socket, connect to DEALER-

let responder = zmq.socket('rep').connect('ipc://filer-dealer.ipc');-

-

responder.on('message', function(data) {40

-

// parse incoming message-

let request = JSON.parse(data);-

console.log(process.pid + ' received request for: ' + request.path);-

45

report erratum • discuss

Clustering Node.js Processes • 57

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/messaging/zmq-filer-rep-cluster.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

// read file and reply with content-

fs.readFile(request.path, function(err, data) {-

console.log(process.pid + ' sending response');-

responder.send(JSON.stringify({-

pid: process.pid,50

data: data.toString(),-

timestamp: Date.now()-

}));-

});-

55

});-

-

}-

Save this file as zmq-filer-rep-cluster.js. This program is a little longer than our
previous Node programs, but it should look familiar to you since it’s based
entirely on snippets we’ve already discussed.

Notice that the ROUTER listens for incoming TCP connections on port 5433
on line 11. This allows the cluster to act as a drop-in replacement for the
zmq-filer-rep.js program we developed earlier.

On line 12, the DEALER socket binds an interprocess connection (IPC) end-
point. This is backed by a Unix socket like the one we used in Listening on
Unix Sockets, on page 28.

By convention, ØMQ IPC files should end in the file extension .ipc. In this
case, the filer-dealer.ipc file will be created in the current working directory that
the cluster was launched from (if it doesn’t exist already).

Let’s run the cluster program to see how it works:

$ node --harmony zmq-filer-rep-cluster.js
Worker 37174 is online.
Worker 37172 is online.
Worker 37173 is online.

So far so good—the master process spun up the workers, and they’ve all
reported in. In a second terminal, fire up our REQ loop program (zmq-filer-req-
loop.js):

$ node --harmony zmq-filer-req-loop.js
Sending request 1 for target.txt
Sending request 2 for target.txt
Sending request 3 for target.txt
Received response: { pid: 37174, data: '', timestamp: 1371652913066 }
Received response: { pid: 37172, data: '', timestamp: 1371652913075 }
Received response: { pid: 37173, data: '', timestamp: 1371652913083 }

Chapter 4. Robust Messaging Services • 58

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Just like our earlier reply program, this clustered approach answers each
request in turn.

But notice that the reported process ID (pid) is different for each response
received. This shows that the master process is indeed load-balancing the
requests to different workers.

Now you have the tools to build a Node.js cluster. There are a few more ben-
efits to using the cluster module for managing worker processes. We’ll come
to those in Chapter 6, Scalable Web Services, on page 87.

Up next, we’ll examine one more messaging pattern offered by ØMQ before
closing out the chapter.

Pushing and Pulling Messages

So far we’ve worked with two major message-passing patterns; first we looked
at publish/subscribe, then request/reply. There’s one more pattern offered
by ØMQ that’s sometimes good to use with Node.js—PUSH/PULL.

Pushing Jobs to Workers

The PUSH and PULL socket types are useful when you have a queue of jobs
that you want to fairly assign among a pool of available workers.

Recall that with a PUB/SUB pair, each subscriber will receive all messages
sent by the publisher. In a PUSH/PULL setup, only one puller will receive
each message sent by the pusher.

So PUSH will round-robin-distribute messages to connected sockets, just like
the DEALER. But unlike the DEALER/ROUTER flow, there is no backchannel.
A message traveling from a PUSH socket to a PULL socket is one-way; the
puller can’t send a response back through the same socket.

Here’s a quick example showing how to set up a PUSH socket and distribute
100 jobs. Note that the example is incomplete—it doesn’t call bind() or connect()
—but it does demonstrate the concept.

const
zmq = require('zmq'),
pusher = zmq.socket('push');

// wait until pullers are connected and ready, then send 100 jobs ...
for (let i = 0; i < 100; i++) {

pusher.send(JSON.stringify({
details: "details about this job."

});
}

report erratum • discuss

Pushing and Pulling Messages • 59

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

And here’s an associated PULL socket.

const
zmq = require('zmq'),
puller = zmq.socket('pull');

// connect to the pusher, announce readiness to work, then wait for work ...

puller.on('message', function(data) {
let job = JSON.parse(data.toString());

// do the work described in the job
});

Like with ØMQ sockets, either end of a PUSH/PULL pair can bind or connect
—the choice comes down to which is the stable part of the architecture.

Using the PUSH/PULL pattern in Node brings up a couple of potential pitfalls
hidden in these simple examples. Let’s explore them, and what to do to avoid
them.

Avoiding Common Pitfalls

The two common pitfalls you’re likely to encounter with the PUSH/PULL
pattern in Node.js are the first-joiner problem and the limited-resource
problem.

The First-Joiner Problem

The first-joiner problem is the result of ØMQ being so fast at sending messages
and Node.js being so fast at accepting them. Since it takes time to establish
a connection, the first puller to successfully connect will pull many or all of
the available messages before the second joiner even has a chance to get into
the rotation.

To fix this problem, the pusher needs to wait until all of the pullers are ready
to receive messages before pushing any. Let’s consider a real-world scenario
and how we’d solve it.

Say you have a Node cluster, and the master process plans to PUSH a bunch
of jobs to three worker processes. Before the master can start pushing, the
workers need a way to signal back to the master that they’re ready to start
pulling jobs. They also need a way to communicate the results of the jobs
that they’ll eventually complete.

Figure 9, A Node.js cluster that pushes work to a pool of workers, on page 61
shows this scenario.

Chapter 4. Robust Messaging Services • 60

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Figure 9—A Node.js cluster that pushes work to a pool of workers

As in previous diagrams, rectangles are Node processes, ovals are resources,
and heavy arrows point in the direction the connection is established. The
job, ready, and result messages are shown as light arrow boxes pointing in the
direction they are sent.

In the top half of the figure, we have the main communication channel—the
master’s PUSH socket hooked up to the workers’ PULL sockets. This is how
jobs will be sent to workers.

In the bottom half of the figure, we have a backchannel. This time the master
has a PULL socket connected to each worker’s PUSH sockets. The workers
can PUSH messages like their readiness to work or job results back to the
master.

The master process is the stable part of the architecture, so it binds while
the workers connect. Since all of the processes are local to the same machine,
it makes sense to use IPC for the transport.

The bonus challenge in Bidirectional Messaging, on page 63, will ask you to
implement the PUSH/PULL cluster described earlier. Note, however, that this
is just one solution to the first-joiner problem. You could choose to use a
different messaging pattern for the backchannel, like request/reply.

The Limited-Resource Problem

The other common pitfall is the limited-resource problem. Node.js is at the
mercy of the operating system with respect to the number of resources it can
access at the same time. In Unix-speak, these are called file descriptors.

report erratum • discuss

Pushing and Pulling Messages • 61

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Whenever your Node program opens a file or a TCP connection, it uses one
of its available file descriptors. When there are none left, Node will start failing
to connect to resources when asked. This is an extremely common problem
for Node.js developers. I have yet to meet a Node developer who hasn’t grappled
with the limited-resource problem at one time or another.

Strictly speaking, this problem isn’t limited to the PUSH/PULL scenario, but
it’s very likely to happen there, and here’s why. Since Node.js is asynchronous,
the puller process can start working on many jobs simultaneously. Every
time a message event comes in, the Node process invokes the handler and
starts working on the job. If these jobs require accessing system resources
—and they almost certainly will—you’re liable to exhaust the pool of available
file descriptors. Then jobs will quickly start failing.

We’ll explore this topic and its solutions in more detail in Chapter 5, Accessing
Databases, on page 65, when we limit the number of concurrent database
connections through a technique called connection pooling.

Wrapping Up

This chapter brought us out of the Node.js core and into the larger world of
npm. We discussed how to install and use third-party modules with binary
components. In particular, we covered how to use ØMQ.

ØMQ supports a number of message-passing patterns; we got to know several
of them. We saw how ØMQ does the publish/subscribe pattern, the request/
reply pattern, and the PUSH/PULL pattern. These patterns are now tools at
your disposal for designing networked applications in Node.js, even if you
choose not to use the ØMQ library itself.

We also explored Node’s clustering capabilities. Using features of Node’s cluster
module, we spun up a number of worker processes and distributed requests
to them. We’ll use these capabilities again in Chapter 6, Scalable Web Services,
on page 87.

The following bonus questions ask you to modify and create new Node.js and
ØMQ programs using what you learned from the chapter.

In the next chapter, we’ll cover how to use Node to interact asynchronously
with several popular databases.

Error Handling

The zmq-filer-rep.js program we created uses fs.readFile() to serve up file contents.
However, it doesn’t handle the error case.

Chapter 4. Robust Messaging Services • 62

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

• What should the program do in the case of an error?

• How would you change the protocol to support sending an error to the
requester?

Later in this same program, we listen for the Unix signal SIGINT to detect the
user’s Ctrl-C in the terminal.

• What happens if the program ends in some other way, like SIGTERM (the
termination signal)?

• What happens if there’s an unhandled Node.js exception?

Hint: you can listen for the uncaughtException event on the process object.

Robustness

In Building a Cluster, on page 56, we created a Node.js cluster that spins up
three worker processes. In the master process, we listened for online events
and logged a message when the workers came up. But we didn’t specify what
should happen when a worker process ends.

• What happens when you kill a worker process from the command line?

Hint: use kill [pid] from the command line, where [pid] is the worker’s process
ID.

• How would you change the zmq-filer-rep-cluster.js program to fork a new
worker whenever one dies?

Bidirectional Messaging

For this project, you’ll need to use ØMQ PUSH/PULL sockets and the Node.js
clustering techniques you learned in this chapter. Your clustered program
will spin up a pool of three workers and distribute thirty jobs between them.
Although this seems like a lot to do, the whole program should be less than
100 lines of code.

Create a Node.js program that uses the cluster and zmq modules and does the
following.

The master process should

• Create a PUSH socket and bind it to an IPC endpoint—this socket will be
for sending jobs to the workers.

• Create a PULL socket and bind to a different IPC endpoint—this socket
will receive messages from workers.

report erratum • discuss

Wrapping Up • 63

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

• Keep a count of ready workers (initialized to 0).

• Listen for messages on the PULL socket, and

– If the message is a ready message, increment the ready counter, or
– If the message is a result message, output it to the console.

• Spin up three worker processes.

• When the ready counter reaches 3, send thirty job messages out through
the PUSH socket.

Each worker process should

• Create a PULL socket and connect it to the master’s PUSH endpoint.

• Create a PUSH socket and connect it to the master’s PULL endpoint.

• Listen for messages on the PULL socket, and

– Treat this as a job and respond by sending a result message out on the
PUSH socket.

• Send a ready message out on the PUSH socket.

Result messages should include at least the process ID of the worker. This
way you can inspect the console output and confirm that the workload is
being balanced among the worker processes.

If you get completely stuck, consult the working example available in the
downloadable code that accompanies this book. You can do it. Good luck!

Chapter 4. Robust Messaging Services • 64

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 5

Accessing Databases
Data must persist, and databases are a great way to make that happen. As
we’ve seen, Node.js does network I/O asynchronously, and this certainly
includes interacting with databases. No matter which database you choose,
you’ll have to become comfortable making asynchronous requests to it.

Working with databases will offer a convenient context for exploring the fol-
lowing aspects of Node development.

Architecture and Core
Node.js is fast—really fast. It’s easy in Node to exhaust system resources
or overload other systems it talks to. You’ll learn what to do to mitigate
these kinds of problems and how to react to them when they happen.

Patterns
Asynchronous JavaScript programming can become complex when you
have many tasks that depend on each other. You’ll learn a couple of
techniques for executing tasks in batches or in sequence using an npm
module called async. You’ll also work extensively with RESTful APIs.

JavaScriptisms
Sometimes JavaScript code gets executed in a different context than where
it was originally written. You’ll learn how to export JavaScript functions
from one environment to another.

Supporting Code
In previous chapters we’ve tested our code by running it in different sce-
narios. Here you’ll use common testing tools with npm to code and run
unit tests.

Different databases use different protocols for communicating with clients. Some
databases use simple text-based commands over TCP, and some have their own
binary protocols. Still other databases use Representational State Transfer (REST).

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

We’ll use CouchDB for exploring databases with Node.1 CouchDB uses REST
for everything, from creating databases to reporting the system status to
executing mapreduce queries. Using CouchDB to learn about asynchronous
database access in Node has several advantages.

Advantages of CouchDB

Interacting with CouchDB is all about making proper HTTP requests. This
will give us the opportunity to talk about HTTP and RESTful practices—infor-
mation that will be handy in Chapter 6, Scalable Web Services, on page 87,
when we’ll implement our own RESTful web services. And the techniques
you’ll use here apply to other RESTful APIs, like those published by Amazon
and Google.

As a bonus, CouchDB speaks JavaScript. Whenever you store data in
CouchDB, you send it a JavaScript Object Notation (JSON) document. A
document is a JSON object with a couple of special attributes that we’ll see
shortly. Indexing and querying in CouchDB is done with mapreduce views
written in JavaScript, also accessible through REST.

Lastly, npm itself uses CouchDB extensively. The metadata about modules
in npm is stored and queried in CouchDB. There is significant overlap between
the Node.js core developer group and the CouchDB community.

Let’s get CouchDB up and running. Then we’ll build out a toolkit for working with
it. CouchDB is easy to install on many platforms. Binaries are available from the
project website, or you can use a package manager. If you’re using Mac OS X
with Homebrew, you can install CouchDB with the command brew install couchdb.

Once you have CouchDB installed, start it from the command line with the
couchdb command.

$ couchdb
Apache CouchDB 1.2.1 (LogLevel=info) is starting.
Apache CouchDB has started. Time to relax.
[info] [<0.31.0>] Apache CouchDB has started on http://127.0.0.1:5984/

The specific version of CouchDB doesn’t matter much for our purposes. We’ll
focus on using basic, RESTful operations, which haven’t changed from version
to version.

Throughout this chapter, you’ll develop a number of Node scripts and modules.
The first thing you’ll need to do is set aside a space for them, starting with a
package descriptor.

1. https://couchdb.apache.org/

Chapter 5. Accessing Databases • 66

report erratum • discussPrepared exclusively for jabez zhang

https://couchdb.apache.org/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Creating a Package

Create a directory on your machine somewhere called databases. We’ll use this
directory for all programs, data files, and examples from this chapter. Next,
open an editor and enter the following:

databases/package.json
{

"name": "book-tools",
"version": "0.1.0",
"description": "Tools for creating an ebook database.",
"author": "Your Name <you@yoursite.com> (http://yoursite.com/path)"

}

Save this file in your project directory as package.json.

In a Node.js project, the package.json file describes many aspects of the project
and its dependencies.2 This short example includes only the basics: the
project’s name, version, short description, and author. For your own projects,
rather than create a package.json file by hand, you can use npm init. This will
prompt you for all the important information.

When you install a module through npm, you have the choice of saving it as
a dependency in the package.json. You do this with the --save flag. Run the fol-
lowing command from your project directory:

$ npm install --save request

This will install the request module and record it as a dependency in your
package.json. If you take a look at your package.json file again, you’ll see that
there’s now a dependencies section that looks like this:

"dependencies": {
"request": "~2.26.0"

}

When you describe your dependencies in a package.json file, npm can install
them all for you. This is most useful when distributing your module, or when
collaborators work on the same code base. To install all of the dependencies
for the current project, just run npm install with no additional arguments.

Next, let’s use the freshly installed request module to start making REST
requests to CouchDB.

2. https://npmjs.org/doc/json.html

report erratum • discuss

Creating a Package • 67

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/package.json
https://npmjs.org/doc/json.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Making RESTful Requests

At its core, REST is a set of principles built on top of HTTP. With REST, each
URL path points to a specific resource. In other words, URLs are things. This
is in direct contrast to many server designs where a given path invokes a
script that does something (URLs are actions).

HTTP itself is a request/reply protocol where each request is made to a URL
with a particular method. The HTTP method for an incoming request deter-
mines what kind of action the server should take on the resource indicated
in the URL.

Any database you work with will offer at least the four basic operations: create,
read, update, and delete (CRUD). RESTful datastores like CouchDB use a
different HTTP method (or verb) for each operation. You use POST to create,
GET to read, PUT to update, and DELETE to (you guessed it) delete records.

REST from the Command Line

Node’s built-in http module has functions for making HTTP requests, but the
request module makes it much easier. To learn how to use the request module,
we’ll first put together a command-line interface (CLI) tool for working with
CouchDB. We’ll use the CLI to set up a CouchDB database initially and try
out some REST semantics.

Open your editor and enter this:

databases/dbcli.js
#!/usr/bin/env node --harmony
const

request = require('request'),
options = {

method: process.argv[2] || 'GET',
url: 'http://localhost:5984/' + (process.argv[3] || '')

};
request(options, function(err, res, body) {

if (err) {
throw Error(err);

} else {
console.log(res.statusCode, JSON.parse(body));

}
});

Save this file as dbcli.js. Though short, this program lets you do quite a lot with
your CouchDB server. First, this script pulls in the request module. Unlike the
modules we’ve seen so far, which were JavaScript Objects, the request module object
is actually a function. The main way you use the module it is by calling it.

Chapter 5. Accessing Databases • 68

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/dbcli.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The request() function takes two arguments: an options object and a callback.
The most important options to set are the HTTP method and the URL you
plan to hit. In our case, we grab both the method and path information from
the command-line arguments, with sensible defaults.

Since our script starts with the #! directive, it can be executed directly. To
make the file executable, go to the terminal and run this:

$ chmod +x dbcli.js

Now it’s time to try it out. Assuming your CouchDB server is running, you
should see output like the following:

$./dbcli.js
200 { couchdb: 'Welcome', version: '1.2.1' }

When you issue an HTTP GET request to the server’s root (/), CouchDB gives
you a welcome message.

Using the CLI for CouchDB REST

A database in CouchDB is basically a big collection of documents. Each
database lives at a URL path one level down from the root. For example, if
you had a database called books it would live at /books. Let’s see what happens
when we try and GET the as-yet-uncreated books database:

$./dbcli.js GET books
404 { error: 'not_found', reason: 'no_db_file' }

Since there is no books database yet, we get an HTTP 404 Not Found status
code. To make a database, use the HTTP verb PUT.

$./dbcli.js PUT books
201 { ok: true }

CouchDB returned a 201 Created status code to tell us that it successfully cre-
ated the database.

The difference between POST and PUT is subtle but important. If you already
have the full URL for the RESTful thing you’re working on, then you use PUT.
Otherwise, you use POST. So if you’re updating an existing resource, PUT is
always correct, but to create a new resource you use PUT only if you know
the full URL to where that resource will be.

In the case of the books database, we know that it will live at /books, so PUT
is the correct verb to use.

Now when we GET the books database, CouchDB responds with a 200 OK
status code and information about the database:

report erratum • discuss

Making RESTful Requests • 69

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

$./dbcli.js GET books
200 { db_name: 'books',

doc_count: 0,
doc_del_count: 0,
update_seq: 0,
purge_seq: 0,
compact_running: false,
disk_size: 79,
data_size: 0,
instance_start_time: '1376409945081320',
disk_format_version: 6,
committed_update_seq: 0 }

If you wanted to remove the books database, you’d use the DELETE HTTP
verb. Don’t do this now, though; we’ll need the books database for our next
task, importing lots of data using Node.js.

Importing Real Data

Next we’ll use the request module to import a whole bunch of data into the
books database. As we do so, we’ll run into the limited-resource problem we
first saw in The Limited-Resource Problem, on page 61. This will give us a
backdrop for experimenting with asynchronous coding techniques.

First we need to get some data to work with. We’ll use the catalog data from Project
Gutenberg, a site dedicated to making public-domain works available as free
ebooks.3

Downloading Project Gutenberg Data

Project Gutenberg produces catalog download bundles that contain Resource
Description Framework (RDF) files for each of their 43,000-plus books. (RDF
is an XML-based format.) The bz2 version of the catalog file is about 13 MB.
Fully extracted, it contains more than 500 MB of RDF files.

To download and extract the rdf-files.tar.bz2, open a terminal to your databases/
project directory and run the following commands.

$ curl -O http://www.gutenberg.org/cache/epub/feeds/rdf-files.tar.bz2
$ tar -xvjf rdf-files.tar.bz2
x cache/epub/0/pg0.rdf
x cache/epub/1/pg1.rdf
x cache/epub/10/pg10.rdf
...
x cache/epub/9998/pg9998.rdf
x cache/epub/9999/pg9999.rdf
x cache/epub/999999/pg999999.rdf

3. http://www.gutenberg.org

Chapter 5. Accessing Databases • 70

report erratum • discussPrepared exclusively for jabez zhang

http://www.gutenberg.org
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This will create a cache directory that contains all the RDF files. Each RDF file
is named after its Project Gutenberg ID and contains the metadata about one
book. For example, book number 132 is Lionel Giles’s 1910 translation of
The Art of War by Sunzi.

Here’s a stripped-down excerpt from cache/epub/132/pg132.rdf that shows only
the fields that we care about.

<rdf:RDF>
<pgterms:ebook rdf:about="ebooks/132">

<dcterms:subject>
<rdf:Description>

<dcam:memberOf rdf:resource="http://purl.org/dc/terms/LCSH"/>
<rdf:value>Military art and science -- Early works to 1800</rdf:value>
<rdf:value>War -- Early works to 1800</rdf:value>

</rdf:Description>
</dcterms:subject>
<dcterms:title>The Art of War</dcterms:title>

</pgterms:ebook>
<pgterms:agent rdf:about="2009/agents/4349">

<pgterms:name>Sunzi (6th cent. BC)</pgterms:name>
</pgterms:agent>
<pgterms:agent rdf:about="2009/agents/5101">

<pgterms:name>Giles, Lionel</pgterms:name>
</pgterms:agent>

</rdf:RDF>

The important pieces of information that we’d like to extract are as follows:

• The Gutenberg ID
• The book’s title
• The list of authors (agents)
• The list of subjects

Ideally, we’d like to have all of this information formatted as a JSON document
suitable for passing in to CouchDB. But to get a nice JSON representation,
we’ll have to parse the RDF file.

Parsing XML Data with Node

To parse the XML files, we’ll use cheerio, a jQuery-like library for working
with XML documents in Node.

First, install cheerio through npm and save the dependency:

$ npm install --save cheerio

Next, inside your databases project, make a lib directory. We’ll create our RDF
parsing utility as a module.

report erratum • discuss

Importing Real Data • 71

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Then, open an editor and enter this:

databases/lib/rdf-parser.js
'use strict';Line 1

const-

fs = require('fs'),-

cheerio = require('cheerio');-

5

module.exports = function(filename, callback) {-

fs.readFile(filename, function(err, data){-

if (err) { return callback(err); }-

let-

$ = cheerio.load(data.toString()),10

collect = function(index, elem) {-

return $(elem).text();-

};-

-

callback(null, {15

_id: $('pgterms\\:ebook').attr('rdf:about').replace('ebooks/', ''),-

title: $('dcterms\\:title').text(),-

authors: $('pgterms\\:agent pgterms\\:name').map(collect),-

subjects: $('[rdf\\:resource$="/LCSH"] ~ rdf\\:value').map(collect)-

});20

});-

};-

Save the file as lib/rdf-parser.js.

Like the request module we used earlier, this module sets its exports to a
function. Users of the module will call this function, passing in a path to a
file and a callback to invoke with the extracted data.

The main module function reads the specified file asynchronously, then loads
the data into cheerio. Cheerio gives back an object we assign to the $ variable.
This object works much like the jQuery global function $—it provides methods
for querying and modifying elements.

The collect() function is a utility method for extracting an array of text nodes
from a set of element nodes. The bulk of the logic for this module is encapsu-
lated in the four lines inside the callback() invocation:

• First up, in line 16, we look for the <pgterms:ebook> tag, read its rdf:about=
attribute, and pull out just the numerical portion.

• In line 17, we grab the text content of the <dcterms:title> tag.

• In line 18, we find all the <pgterms:name> elements under a <pgterms:agent>
and collect their text contents in an array.

Chapter 5. Accessing Databases • 72

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/lib/rdf-parser.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

• Lastly, in line 19, we use the sibling operator (~) to find the <rdf:value>
elements that are siblings of any element whose rdf:resource= attribute ends
in LCSH, and collect their text contents.

LCSH stands for Library of Congress Subject Headings.4 They are a collection
of indexing terms for use in bibliographic records. We’ll use these later to find
books on a given subject.

This code is a little dense, but fortunately it doesn’t have side effects. That
is, this code selects data from a complex schema and reformats it into a
simple JavaScript object. Not bad for four lines of code!

OK, so how do we find out if it worked? One way is to write a one-liner and
see that it outputs something like we expect:

$ node --harmony -e \
'require("./lib/rdf-parser.js")("cache/epub/132/pg132.rdf", console.log)'

null { _id: 132,
title: 'The Art of War',
authors: ['Sunzi (6th cent. BC)', 'Giles, Lionel'],
subjects:
['Military art and science -- Early works to 1800',

'War -- Early works to 1800'] }

This is good for a first pass, but we can do better. Next let’s see how to create
a unit test for this module.

Unit Testing with Nodeunit

Let’s create a unit test for our RDF parser module. This will confirm that it
does what we believe it should, and will give us an opportunity to see how to
do unit testing in Node.

There are many unit-testing frameworks available through npm. A few of the
most popular ones are mocha,5 vows,6 and nodeunit.7 We’ll use nodeunit
because it’s a relatively simple unit-testing framework, with support for
asynchronous tests and deep equality checks.

Many Node modules are meant to be used as a library, but some modules,
like nodeunit, are intended to run as stand-alone programs on the command
line, too. To install such a module globally, use npm’s -g flag:

$ npm install -g nodeunit

4. https://en.wikipedia.org/wiki/Library_of_Congress_Subject_Headings
5. http://visionmedia.github.io/mocha/
6. http://vowsjs.org/
7. https://npmjs.org/package/nodeunit

report erratum • discuss

Unit Testing with Nodeunit • 73

Prepared exclusively for jabez zhang

https://en.wikipedia.org/wiki/Library_of_Congress_Subject_Headings
http://visionmedia.github.io/mocha/
http://vowsjs.org/
https://npmjs.org/package/nodeunit
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

You can confirm that it has been installed successfully by asking for its path
through which:

$ which nodeunit
/usr/local/bin/nodeunit

Now let’s make a unit test. Inside your database project directory, create a
subdirectory called test. Then copy the pg132.rdf file into it.

$ mkdir test
$ cp cache/epub/132/pg132.rdf test/

Next, open a text editor and enter the following:

databases/test/pg132.json
{

"_id": "132",
"title": "The Art of War",
"authors": [

"Sunzi (6th cent. BC)",
"Giles, Lionel"

],
"subjects": [

"Military art and science -- Early works to 1800",
"War -- Early works to 1800"

]
}

Save this JSON file as test/pg132.json.

Now we can write a unit test that uses these fixtures. Open your editor and
enter this:

databases/test/test-rdf-parser.js
'use strict';
const

rdfParser = require('../lib/rdf-parser.js'),
expectedValue = require('./pg132.json');

exports.testRDFParser = function(test) {
rdfParser(__dirname + '/pg132.rdf', function(err, book) {

test.expect(2);
test.ifError(err);
test.deepEqual(book, expectedValue, "book should match expected");
test.done();

});
};

Save this file as test-rdf-parser.js. This test module exposes one method called
testRDFParser(), which uses the rdf-parser module to read and parse pg132.rdf. It
then performs a deep equality check between the received object and the
expected output as defined in pg132.json.

Chapter 5. Accessing Databases • 74

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/test/pg132.json
http://media.pragprog.com/titles/jwnode/code/databases/test/test-rdf-parser.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Note that here we’re using require() to read the contents of a JSON file, as
opposed to a Node module. For your convenience, when you require a file
that ends in .json, Node will parse it and return the object as though it were
assigned to exports.

Also, notice the __dirname variable used in finding the path to pg132.rdf. __dirname
always points to the directory containing the module file being executed.
Without this, the path would be calculated relative to the current working
directory—where the nodeunit command was called from.

To execute the test, we run nodeunit through node --harmony and pass it the
test/ directory:

$ node --harmony $(which nodeunit) test/

test-rdf-parser
✔ testRDFParser

OK: 2 assertions (437ms)

Great! Since our module only has one method, we’ll leave the test as it is. If
we had more methods to test, we could either add more exports to this test
file, or add more files to the test directory.

Throttling Node.js

With our RDF parsing module in place and well tested, let’s turn our attention
to getting all those thousands of records into the database.

But one word of caution before we proceed: the code in this section attempts
to demonstrate performance-related problems and their solutions. The speed
of your hardware and the settings of your operating system may make it
easier or harder to see these effects.

Alright—to crawl the cache directory, we’ll use a module called file, which is
available through npm.8 Install and save it as usual, and we’ll begin:

$ npm install --save file

The file module has a convenient method called walk() that traverses a directory
tree and calls a callback for each file it finds.

Naive File Parsing at Scale

Let’s use this method to find all the RDF files and send them through our
RDF parser. Open a text editor and enter this:

8. https://npmjs.org/package/file

report erratum • discuss

Throttling Node.js • 75

Prepared exclusively for jabez zhang

https://npmjs.org/package/file
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

databases/list-books.js
'use strict';
const

file = require('file'),
rdfParser = require('./lib/rdf-parser.js');

console.log('beginning directory walk');

file.walk(__dirname + '/cache', function(err, dirPath, dirs, files){
files.forEach(function(path){

rdfParser(path, function(err, doc) {
if (err) {

throw err;
} else {

console.log(doc);
}

});
});

});

Save the file as list-books.js in your databases project. This short program walks
down the cache directory and passes each RDF file it finds into the RDF parser.
The parser’s callback just echoes the JSON out to the console if there wasn’t
an error.

Run the program, and let’s see what it produces:

$ node --harmony list-books.js
beginning directory walk

./list-books.js:12
throw err;

^
Error: EMFILE, open './cache/epub/12292/pg12292.rdf'

Failure! The problem here is masked by the innocuous-looking Error: EMFILE.
This kind of error occurs when you’ve exhausted the number of file descriptors
available on the system (typically just over 10,000).

There are a couple of ways to solve this problem. One way is to increase the
maximum number of file descriptors in the operating system. However, that’s
only a temporary fix, until you run into even bigger file sets.

Another way would be to modify the rdf-parser module to retry when it receives
an EMFILE error. A third-party module called graceful-fs does this, for example.9

9. https://npmjs.org/package/graceful-fs

Chapter 5. Accessing Databases • 76

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/list-books.js
https://npmjs.org/package/graceful-fs
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

But you can’t always count on your dependency modules to be graceful with
file handling, so we’ll use another approach: work queuing. Rather than
immediately sending each file path into the RDF parser, we’ll queue them as
work to be done and let the queue throttle the number of concurrently running
tasks.

Queuing to Limit Work in Progress

For this we’ll use the async module.10 Go ahead and install it now.

$ npm install --save async

Async offers low-overhead mechanisms for managing asynchronous code.
For example, it has methods for executing a sequence of asynchronous tasks
sequentially or in parallel, with a callback to invoke when they’re all done.

We need the ability to run a whole bunch of tasks, but limit the number that
are running at any time. For this we need async.queue().

Open your editor and enter this:

databases/list-books-queued.js
'use strict';
const

async = require('async'),
file = require('file'),
rdfParser = require('./lib/rdf-parser.js'),

work = async.queue(function(path, done) {
rdfParser(path, function(err, doc) {
console.log(doc);
done();

});
}, 1000);

console.log('beginning directory walk');
file.walk(__dirname + '/cache', function(err, dirPath, dirs, files){

files.forEach(function(path){
work.push(path);

});
});

Save this file as list-books-queued.js. Notice that we create a work object by passing
async.queue() a worker function and a concurrency limit of 1,000. This object
has a push() method that we use to add more paths for processing.

10. https://npmjs.org/package/async

report erratum • discuss

Throttling Node.js • 77

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/list-books-queued.js
https://npmjs.org/package/async
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The worker function we used to create the queue takes two arguments: path
and done. The path argument is the path to an RDF file discovered by walking
the directory tree. done is a callback that our worker function has to call to
signal to the work queue that it’s free to dequeue the next path.

In Node.js, it’s common for the last argument to a callback to be a done or next
function. Technically, you can name this argument whatever you want (it’s
your function, after all). But naming it done or next signals that this is a callback
function that takes no arguments and should be called exactly once when
you’re finished doing whatever it is that you’re doing. By contrast, callback
functions named callback often take one or more arguments, starting with an
err argument.

Now let’s give this program a try and see if it works better. There may be a
long pause between when you kick off the program and when you start seeing
anything happen—this is to be expected.

$ node --harmony list-books-queued.js
{ _id: 0, title: '', authors: [], subjects: [] }
{ _id: 10,

title: 'The Bible, Old and New Testaments, King James Version',
authors: [],
subjects: ['Religion'] }

{ _id: 1,
title: 'United States Declaration of Independence',
authors: ['United States'],
subjects: ['United States -- History -- Revolution, 1775-1783 -- Sources'] }

{ _id: 1000,
title: 'La Divina Commedia di Dante',
authors: ['Dante Alighieri'],
subjects: ['Poetry'] }

...

Great! This program will run for quite a while if you let it. Instead, go ahead
and kill it with Ctrl-C .

Now on to the last step: pumping these records into the database.

Putting It All Together

With a working parser and a throttled queue, we’re ready to add the last piece:
putting the records into the database.

Open your editor to the list-books-queued.js file one more time. First, add an extra
require to the top of the file to pull in the request module like we did for the
dbcli.js program. Then, find the callback we pass into rdfParser(). Replace what’s
there with this:

Chapter 5. Accessing Databases • 78

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

databases/import-books.js
rdfParser(path, function(err, doc) {

request({
method: 'PUT',
url: 'http://localhost:5984/books/' + doc._id,
json: doc

}, function(err, res, body) {
if (err) {
throw Error(err);

}
console.log(res.statusCode, body);
done();

});
});

Save this new file as import-books.js. Instead of dumping the parsed object (doc)
directly to the console, now we PUT it into the database using request(). Then
we take the response we get from the database and send that to the console.

Time to find out if it works. Kick it off on the command line:

$ node --harmony import-books.js
beginning directory walk

./import-books.js:18
throw Error(err);

^
Error: Error: write ECONNRESET

at Error (<anonymous>)
at Request._callback (./import-books.js:18:17)
at self.callback (./node_modules/request/index.js:148:22)
at Request.EventEmitter.emit (events.js:100:17)

...

Well, the error isn’t EMFILE, so we didn’t run out of file descriptors. The error
ECONNRESET means that the TCP connection to the database died abruptly.
This shouldn’t be very surprising; we tried to open upwards of a thousand
connections to it at the same time.

The easiest thing we can do is dial back the concurrency for the work queue.
Rather than allowing 1,000 concurrent jobs, change it to only 10. When you’re
done, clear out the books database and try running the import again:

$./dbcli.js DELETE books
200 { ok: true }
$./dbcli.js PUT books
201 { ok: true }
$ node --harmony import-books.js
beginning directory walk
201 { ok: true, id: '0', rev: '1-453265faaa77a714d46bd72f62326186' }

report erratum • discuss

Throttling Node.js • 79

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/import-books.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

201 { ok: true, id: '1', rev: '1-52a8081284aa74919298d724e5b73589' }
201 { ok: true,

id: '10002',
rev: '1-cf704abd67ec797f318dc6c949c7beed' }

201 { ok: true,
id: '10000',
rev: '1-4ccce019854dd45ba6a7c5c064c4460b' }

...

Recall that 201 is the HTTP status code for Created. The 201s above mean
the database is successfully creating our documents.

This program will take quite a while to complete. You can check on its progress
using the dbcli program we made earlier from a second terminal. Run ./dbcli.js
GET books and look at the doc_count property in the output to see how many
records have been imported.

Dealing with Update Conflicts

But one more thing before we move on to querying. There’s something strange
about that first entry—let’s take a look at book 0:

$./dbcli.js GET books/0
200 { _id: '0',

_rev: '1-453265faaa77a714d46bd72f62326186',
title: '',
authors: [],
subjects: [] }

The book with id 0 has no title, no authors, and no subjects. It turns out that
this record is just a template; the RDF file that produced this document is
pretty much empty.

We don’t need this document, so let’s delete it. Try removing it with DELETE:

$./dbcli.js DELETE books/0
409 { error: 'conflict', reason: 'Document update conflict.' }

CouchDB responded with a 409 Conflict status code. This is actually a good
thing—CouchDB guards against conflicts and race conditions by demanding
a revision ID for updates to an existing document. Since our request didn’t
include a rev parameter at all, it didn’t match the document we were
attempting to delete.

So, to DELETE or PUT a document that exists, you need to provide a revision:

$./dbcli.js DELETE books/0?rev=1-453265faaa77a714d46bd72f62326186
200 { ok: true, id: '0', rev: '2-1ab4213771c4fbf4c48e11c246e8a6fc' }

Chapter 5. Accessing Databases • 80

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Different databases and RESTful services deal with conflicts differently.
Relying on a rev parameter is a characteristic specific to CouchDB.

With that extra document out of the way, it’s time to start querying the data.

Querying Data with Mapreduce Views

Different databases offer different ways of querying data, but most include
some concept of indexing. When you index data in a database, you make it
available for quick retrieval by some field or attribute of the data.

With CouchDB, you write mapreduce functions, which produce views. A view
is a kind of index that maps values back to documents. With a view, you can
query for documents with particular attributes or fields—like finding a book
by its author.

We’ll create two views for our Gutenberg data set: one for finding books by
author, and one for finding books on a given subject. Since CouchDB views
consist of JavaScript code, we’ll keep them in a Node.js module and write a
small utility program for loading them into CouchDB.

Cross-Environment Scripting with Node

Most of the time when you write JavaScript code, you intend for that code to
be executed in the same environment in which you wrote it. For example, if
you write a method in a Node module, you probably expect that some future
Node process will run that function.

Sometimes, though, the JavaScript code you write might be destined for a
different environment. I call this cross-environment scripting—writing Java-
Script in one environment but executing it in another. In our case, we’ll be
writing functions in Node that we intend to run in CouchDB.

Let’s write the view code. Open a text editor and enter this:

databases/lib/views.js
module.exports = {

by_author: {
map: function(doc) {
if ('authors' in doc) {

doc.authors.forEach(emit);
}

}.toString(),
reduce: '_count'

},

by_subject: {
map: function(doc) {

report erratum • discuss

Querying Data with Mapreduce Views • 81

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/lib/views.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

if ('subjects' in doc) {
doc.subjects.forEach(function(subject){

emit(subject, subject);

subject.split(/\s+--\s+/).forEach(function(part){
emit(part, subject);

});
});

}
}.toString(),

reduce: '_count'
}

};

Save this file in your project’s lib directory as views.js.

The first view is the by_author view—this will let us find books by a particular
author. Its map() function emits a key for each author of each document that
has an authors array (that is, each book we’ve imported). We have to check
whether the document has an authors key in case the database has any
documents that aren’t books.

The second view is by_subject. For each subject in the subjects array, we emit
the whole subject as well as each part (separated by two dashes). For example,
say a book has the subject “Assassins – Drama”. The by_subject mapper would
emit “Assassins – Drama”, “Assassins”, and “Drama”. This lets us find books
by full or partial subject.

Both views’ map functions have to be encoded as strings so we can put them
into CouchDB, since it allows only JSON documents (and true functions are
not allowed in JSON). The reduce function for both views is CouchDB’s built-
in _count function. This will let us find out how many books are available by
a particular author, or in a particular subject.

Now let’s get these views into the database.

Callback Chaining with async.waterfall

CouchDB stores views in special documents called design documents. You
use regular REST commands to add and remove design documents, just like
you would any other document. So we need to PUT into CouchDB a design
document that contains our views.

Let’s write a script that creates or updates a design document to house these
views. Open your editor again and enter this:

Chapter 5. Accessing Databases • 82

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

databases/make-views.js
#!/usr/bin/env node --harmony
'use strict';
const

async = require('async'),
request = require('request'),
views = require('./lib/views.js');

async.waterfall([

// get the existing design doc (if present)
function(next) {

request.get('http://localhost:5984/books/_design/books', next);
},

// create a new design doc or use existing
function(res, body, next) {

if (res.statusCode === 200) {
next(null, JSON.parse(body));

} else if (res.statusCode === 404) {
next(null, { views: {} });

}
},

// add views to document and submit
function(doc, next) {

Object.keys(views).forEach(function(name) {
doc.views[name] = views[name];

});
request({
method: 'PUT',
url: 'http://localhost:5984/books/_design/books',
json: doc

}, next);
}

], function(err, res, body) {
if (err) { throw err; }
console.log(res.statusCode, body);

});

Save the file as make-views.js in your project directory and make the file exe-
cutable using chmod in a terminal. This program uses the async module’s
waterfall() method to execute a sequence of asynchronous functions. Using the
waterfall method cleans up code that would otherwise have to be highly
indented due to nested callbacks.

waterfall() takes two arguments: an array of functions to execute sequentially
and a summary function to call when everything is finished. Each function
in the array takes some number of arguments and finally a next callback to
pass results forward into the next function.

report erratum • discuss

Querying Data with Mapreduce Views • 83

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/databases/make-views.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Our first function kicks off a request for the design document called
_design/books, using the next function as its callback. If this is your first time
running this program, there won’t be a _desing/books document yet and the
request will return a 404 Not Found status code.

The second function checks to see whether we got a 404 Not Found or a 200
OK. For a 200 OK, we just want to parse out the JSON returned in the
response body and pass that forward. For a 404 Not Found, we have to create
a skeleton design document to pass to the next function.

The third function copies the views we put in the views.js module onto the
design document. Then it issues a PUT request to the database to save the
newly created or updated document. Like our earlier request, we use the next
function for the callback to request().

Finally, the summary function reports the returned status code and response
body from the last request. This will produce output just like our dbcli.js
program.

Let’s try it out! Open a terminal and run make-views.js:

$./make-views.js
201 { ok: true,

id: '_design/books',
rev: '1-7e273ea81e766d078ea17f0c4950fe2a' }

OK, cool—the design doc is in the database. Now we should be able to query
the views. Like all gestures in CouchDB, querying a view is done via REST.

For example, we can get a list of all authors and the number of books to their
name. We do this by getting the _design/books document with the special suffix
_view/by_author to tell CouchDB that we want the results of the generated view:

$./dbcli.js GET books/_design/books/_view/by_author?group=true
200 { rows:

[{ key: '"Colored Quartet" (name unknown)', value: 1 },
{ key: '(Mrs.) L. P.', value: 1 },
{ key: '`Abdu\'l-Bahá', value: 19 },
{ key: 'A Gentleman of Elvas [pseud.]', value: 1 },
{ key: 'A--a', value: 1 },
{ key: 'A-No. 1', value: 1 },
{ key: 'A. C. F.', value: 1 },
{ key: 'A. L. O. E.', value: 5 },
{ key: 'A.E.', value: 2 },

...

It may take a while for the results to come back, especially if you just
recently added the _design/books document. To process the map function,

Chapter 5. Accessing Databases • 84

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CouchDB sends every document in the database through it to produce the
view. As new documents are added, CouchDB will incrementally update the
generated views (it doesn’t have to run through them all each time).

The group=true parameter tells CouchDB that we want the result of running
the reduce function as well. Since our reduce function is a basic count, the
value field of each row is the number of books attributed to that author. So,
for example, the author “A.E.” is credited with two books.

CouchDB allows you to ask for a subset of view records by specifying a spe-
cific key or a startkey and endkey as URL parameters. We’ll use these capabilities
in Chapter 6, Scalable Web Services, on page 87, when we build our own
RESTful interface for querying the data.

Wrapping Up

This chapter covered a lot of ground against the backdrop of working with
databases. To start, we created a project directory complete with a package.json
file for managing dependencies through npm.

By choosing CouchDB—a RESTful, JSON-based, document-oriented data-
store—we got a detailed look at how RESTful APIs work. We used the request
module to simplify making HTTP client requests from Node.

Step by step, you created scripts to import large amounts of data into
CouchDB with Node. We saw how Node’s extreme speed sometimes works
against it, exhausting system resources and overwhelming other services. To
fix this, we explored techniques for queuing work using the async module.
Along the way you learned how to use nodeunit to develop and run unit tests
for your modules.

Robustness

We dealt with the ECONNRESET problem in Putting It All Together, on page
78, by turning the concurrency down from 1,000 to 10.

• What would happen if we still got an ECONNRESET?
• How would you change the code to retry the operation?

report erratum • discuss

Wrapping Up • 85

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 6

Scalable Web Services
A lot of the buzz around Node.js centers on using it for writing scalable web-
sites, apps, and services. In this chapter we’ll develop robust, RESTful,
JavaScript Object Notation (JSON)-based web services. Creating web services
will be our backdrop for digging into these aspects of Node development:

Architecture and Core
You’ll learn how to use Node’s built-in http module to create a basic HTTP
server.

Patterns
Some Node modules have their own ecosystem of plug-ins that provide
additional behavior. We’ll use plug-ins for Express and learn how its
middleware pattern provides hooks for additional functionality. We’ll also
use promises, a powerful abstraction for writing asynchronous code.

JavaScriptisms
ECMAScript Harmony introduces new concepts called iterators and gen-
erators. You’ll learn how to create and use generators, and how they
combine with promises to simplify asynchronous programming.

Supporting Code
For our project, we’ll use more features of npm, like specifying scripts to
start our project. We’ll also use nodemon to monitor our Node programs
and automatically restart them when the source changes.

Node.js comes with support for low-overhead HTTP servers out of the box using
the http module.1 But writing services against the low-level http module directly
can be a lot of work. So we’ll use Express for developing our web services.2

1. http://nodejs.org/api/http.html
2. http://expressjs.com/

report erratum • discussPrepared exclusively for jabez zhang

http://nodejs.org/api/http.html
http://expressjs.com/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Because the code samples are getting more involved, you should go grab the
code download that comes with this book rather than trying to type it all in.
In the code download, you’ll find a web-services directory that contains all the
code from this chapter. Go get it now if you don’t have it, then let’s get started
with Express.

Advantages of Express

Express is a web application framework for Node modeled after the Ruby
project Sinatra.3 Express provides a lot of the plumbing code that you’d
otherwise end up writing yourself. To see why, let’s take a look at a basic
Node.js server using only the http module.

web-services/server.js
const

http = require('http'),
server = http.createServer(function(req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

});
server.listen(3000, function(){

console.log('ready captain!');
});

This is quite similar to creating a basic TCP server using the net module. First
we bring in the http module, call its createServer() method with a callback, and
finally use server.listen() to bind a TCP socket for listening. The callback function
uses information from the incoming HTTP request (req) to send an appropriate
response (res).

What’s remarkable about this example isn’t what it does, but rather what it
doesn’t do. There are lots of little jobs a typical web server would take care
of that this code doesn’t touch. Here are some examples:

• Routing based on URL paths
• Managing sessions via cookies
• Parsing incoming requests (like form data or JSON)
• Rejecting malformed requests

The Express framework helps with these and myriad other tasks.

Serving APIs with Express

As for all Node modules, to use Express you have to install it with npm. The
example project we’re working from already specifies a dependency on Express,

3. http://www.sinatrarb.com/

Chapter 6. Scalable Web Services • 88

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/server.js
http://www.sinatrarb.com/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

so all we have to do is run npm install. If you were making your own project,
you’d want to run npm install --save express to pull down the latest Express avail-
able and record the dependency in your package.json file.

Let’s take a look at a Hello World Express app to get a feel for how it works.
Then we’ll expand on this skeleton to make our own RESTful APIs. In the
terminal, navigate to the hello subdirectory of the example project. Here is the
content of the server.js file you’ll find there:

web-services/hello/server.js
#!/usr/bin/env node --harmony
'use strict';
const

express = require('express'),
app = express();

app.use(express.logger('dev'));
app.get('/api/:name', function(req, res) {

res.json(200, { "hello": req.params.name });
});
app.listen(3000, function(){

console.log("ready captain.");
});

First, this program brings in the express module and creates an app. Like the
request module we worked with in the last chapter, the express module is itself
a function. When you call this function, Express creates an application context
for you. By convention, we name this variable app.

Express functionality is provided through something called middleware, which
are asynchronous functions that manipulate the request and response objects.
To specify middleware for your app, you call app.use(), passing in the middleware
you want. In our case, we’re using the logger middleware set to dev mode, which
will log to the console all requests coming in.

Next we use app.get() to tell Express how we want to handle HTTP GET requests
to the /api/:name path. The :name chunk in the path is called a named route
parameter. When the API is hit, Express will grab that part of the URL and
make it available in req.params.

In addition to get(), Express has put(), post(), and del() to register handlers for
PUT, POST, and DELETE requests, respectively. In our case, we tell the
response object, res, to send back as JSON an object whose hello key is set to
the name parameter.

Finally, this program listens on TCP port 3000 for incoming HTTP requests,
and logs a message to the console when it’s ready to receive connections.
Let’s run the app to see what it does.

report erratum • discuss

Serving APIs with Express • 89

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/hello/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Running a Server with npm

Instead of starting the server with node directly, this time we’ll use npm. Open
a terminal to the hello directory and run npm start:

$ npm start

> hello@0.1.0 start ./hello
> node --harmony server.js

ready captain.

npm knows how to run this server because of the scripts hash in the package.json
file. If you open the package.json, you’ll find a section that looks like this:

"scripts": {
"start": "node --harmony ./server.js"

},

You can add more scripts to the scripts hash—for example, it’s common to add
a test item so that you can run npm test to execute your project’s unit tests.

Testing REST Endpoints with curl
With the Hello server running, let’s try it out. In a separate console, request
the /api/* path with curl:

$ curl -i http://localhost:3000/api/jimbo
HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: application/json
Content-Length: 22
Date: Tue, 10 Sep 2013 14:41:22 GMT
Connection: keep-alive

{
"hello": "jimbo"

}

curl is a useful command-line tool for issuing HTTP requests to a given server.
Adding the -i flag tells curl that it should output the HTTP headers in addition
to the JSON body. Back in the server terminal, you should see this (thanks
to the logger middleware):

GET /api/ 200 7ms - 22b

OK, now that we’ve got the basic outline of an Express REST service under
control, let’s build something with a bit more bite to it.

Chapter 6. Scalable Web Services • 90

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Writing Modular Express Services

Throughout the remainder of the chapter, we’re going to build a RESTful web
service with Express for creating and managing book bundles. These are
basically named reading lists. Our app will be called Better Book Bundle
Builder (or b4 for short).

We’ll work extensively with the books database we set up in Chapter 5,
Accessing Databases, on page 65, as well as a new database called b4. Our
application will work roughly as follows:

• It will communicate with two databases: the books database and the b4
database.

• To the b4 application, the books database is read-only (we will not add,
delete, or overwrite any documents in it).

• The b4 database will store user data, including the book bundles that
users make.

To create the b4 database, make sure CouchDB is running, then use curl from
the command line:

$ curl -X PUT http://localhost:5984/b4
{"ok":true}

The -X flag lets you specify which HTTP method to use. We’ll use curl a lot in
this chapter for testing our web services.

Now we’re ready to create our modular, RESTful web services.

Separating Server Code into Modules

Just like our Hello World example, the main entry point for the b4 service is
the server.js file. But instead of assigning a handler with app.get() directly, now
we specify some configuration parameters and pull in the API modules.

Here’s the part of b4/server.js that differs from the Hello World version:

web-services/b4/server.js
const config = {

bookdb: 'http://localhost:5984/books/',
b4db: 'http://localhost:5984/b4/'

};

require('./lib/book-search.js')(config, app);
require('./lib/field-search.js')(config, app);
require('./lib/bundle.js')(config, app);

report erratum • discuss

Writing Modular Express Services • 91

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Each of the three API modules is a function that takes two arguments: our
config hash and the Express app to add routes to.

Let’s run the server and then we’ll dig into the API modules. This time, instead
of using npm start, we’ll use nodemon. Short for “Node Monitor,” nodemon runs a
Node.js program and then automatically restarts it whenever the source code
changes.

To get nodemon, install it globally through npm:

$ npm install -g nodemon

Now use nodemon to start up the b4 service.

$ nodemon --harmony server.js
16 Sep 19:05:50 - [nodemon] v0.7.8
16 Sep 19:05:50 - [nodemon] to restart at any time, enter `rs`
16 Sep 19:05:50 - [nodemon] watching: ./web-services/b4
16 Sep 19:05:50 - [nodemon] starting `node --harmony server.js`
ready captain.

Now let’s dig into the search APIs.

Implementing Search APIs

To build a book bundle, a user has to be able to discover books to add to it.
So our modular web service will have two search APIs: field search (for discov-
ering authors and subjects) and book search (for finding books by a given
author or subject).

The Node.js code for these two APIs is quite similar—so we’ll focus on the
field search here and leave the book search for the wrap-up questions at the
end.

The field search API helps users to find authors or subjects based on a
starting string. For example, to get a list of subjects that start with Croc, you’d
make a request like this:

$ curl http://localhost:3000/api/search/subject?q=Croc
[

"Crocheting",
"Crocheting -- Patterns",
"Crockett, Davy, 1786-1836",
"Crocodiles",
"Crocodiles -- Juvenile fiction"

]

This API could be employed, for instance, in a user interface so that when a
user starts typing a subject, suggestions automatically pop up.

Chapter 6. Scalable Web Services • 92

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Let’s take a look at how this is accomplished in code. Here is the content of
the lib/field-search.js file in your b4 project:

web-services/b4/lib/field-search.js
'use strict';Line 1

const request = require('request');-

module.exports = function(config, app) {-

app.get('/api/search/:view', function(req, res) {-

request({5

method: 'GET',-

url: config.bookdb + '_design/books/_view/by_' + req.params.view,-

qs: {-

startkey: JSON.stringify(req.query.q),-

endkey: JSON.stringify(req.query.q + "\ufff0"),10

group: true-

}-

}, function(err, couchRes, body) {-

-

// couldn't connect to CouchDB15

if (err) {-

res.json(502, { error: "bad_gateway", reason: err.code });-

return;-

}-

20

// CouchDB couldn't process our request-

if (couchRes.statusCode !== 200) {-

res.json(couchRes.statusCode, JSON.parse(body));-

return;-

}25

-

// send back just the keys we got back from CouchDB-

res.json(JSON.parse(body).rows.map(function(elem){-

return elem.key;-

}));30

-

});-

});-

};-

This program does a lot in a small space. Let’s dig into it a piece at a time.

First, in line 3, we set module.exports to a function. This is how we create a
module that is itself a function (like request and express). When you write mod-
ules that do just one thing, this is a handy pattern.

Next up, we call app.get() in line 4 to register a route with the Express app.
Once the route callback function starts, it immediately makes a request to
CouchDB, starting on line 5. To build out the request URL, we use the value
in req.params.view, which Express extracted from the URL.

report erratum • discuss

Writing Modular Express Services • 93

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/lib/field-search.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

So, for instance, when someone requests /api/search/subject, this will trigger a
request to the CouchDB view _design/books/_view/by_subject. Notice that we don’t
check whether req.params.view is one of our expected values—this is left as an
exercise at the end of the chapter.

To limit the results coming back from CouchDB, we specify query string
parameters in the qs object. We pull the incoming URL parameter q on line 9.
When an incoming request contains ?q=Croc, then req.query.q will be the string
“Croc” (without quotes).

When receiving a request for a view, CouchDB uses the startkey and endkey
parameters to bind the results. In our case, we want all the keys that start
with the query string. Using req.query.q + "\ufff0" for the endkey guarantees that
we’ll get all the keys that start with our query param. And setting group to true
for this view tells CouchDB that we want unique keys only (no duplicates).

Finally, starting on line 13, we have our handler function for when the
CouchDB request returns. There are three outcomes we have to account for:

• The error case—CouchDB didn’t respond, so we should send 502 Bad
Gateway back to the requester.

• The non-success case—CouchDB responded, but it wasn’t the HTTP 200
OK result that we expected, so we pass it verbatim back to the requester.

• The success case—CouchDB responded with the data we’re after, so we
parse the JSON and extract just the keys to send back.

This example demonstrates some of the challenges you’ll face writing RESTful
APIs. The nice thing about REST is that it gives you a good basis for an API.
For a variety of cases, the HTTP specification prescribes very specific status
codes.4

However, doing it right can be a challenge since you have to account for a
variety of success and non-success cases. Promises offer one way of managing
asynchronous code that can help with these challenges, as we’ll see in
upcoming sections as we build out more RESTful APIs.

RESTful APIs with Promises

One thing I really love about JavaScript is its extreme flexibility. In JavaScript
there are seven different ways of doing anything, and you get to pick the one
you like. This is especially true of managing asynchronous code.

4. http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Chapter 6. Scalable Web Services • 94

report erratum • discussPrepared exclusively for jabez zhang

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

We’ve already seen a number of approaches to working with asynchronous
code in JavaScript. Early on, we used regular Node.js callbacks, and then
talked about EventEmitters and streams. We explored the async module and its
suite of asynchronous coding utilities, as well.

Now let’s turn to the RESTful APIs for editing book bundles. Here we’ll talk
about promises—another approach to managing asynchronous code.

Creating a Resource through POST with a Promise

The first thing we’ll need for our bundle API is a way to create them. For that,
we’ll create an Express route that handles POST requests. Inside the handler,
we’ll use a promise to keep track of the request.

Whenever a regular JavaScript function starts executing, it will finish in one
of two ways: either it will run to completion, or it will throw an exception. For
synchronous code, this is good enough; but for asynchronous code we need
a bit more. Node.js callbacks use two arguments to reflect these two cases
(e.g., function(err, data){...}), and EventEmitters use different event types.

A promise is an object that encapsulates these two results for an asynchronous
operation. Once the operation is completed, the promise will either be resolved
(success case) or rejected (error case). You use the then() method to attach
success and error handlers to a promise.

Let’s see how this works by using a promise with the result of a request() to
our CouchDB server. There are many promise libraries available through
npm—we’ll use kriskowal’s Q module.5 Q is a full-featured promise library
with lots of helper methods for interoperating with different asynchronous
code-management approaches.

Open the lib/bundle.js file and take a look. At the top, you’ll see that we bring
in the request and Q modules.

Then, inside the module.exports function, you’ll find the following code. It’s the
source of the POST handler for creating a bundle:

web-services/b4/lib/bundle.js
app.post('/api/bundle', function(req, res) {Line 1

let deferred = Q.defer();-

request.post({-

url: config.b4db,-

json: { type: 'bundle', name: req.query.name, books: {} }5

}, function(err, couchRes, body) {-

-

5. https://npmjs.org/package/q

report erratum • discuss

RESTful APIs with Promises • 95

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/lib/bundle.js
https://npmjs.org/package/q
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

if (err) {-

deferred.reject(err);-

} else {10

deferred.resolve([couchRes, body]);-

}-

});-

-

deferred.promise.then(function(args) {15

let couchRes = args[0], body = args[1];-

res.json(couchRes.statusCode, body);-

}, function(err) {-

res.json(502, { error: "bad_gateway", reason: err.code });-

});20

});-

This code adds a route using app.post() that sends forward a POST to CouchDB
and returns its results. You can try it out with curl like so:

$ curl -X POST http://localhost:3000/api/bundle/
{

"ok": true,
"id": "9122b028cd8683df0813b0fc69000377",
"rev": "1-7ef008d5d399c6ba0b1602e09434406f"

}

In line 2, we create a Deferred object. This class is something specific to the Q
module—it provides methods for working with the promise.

When the request eventually finishes, we’ll either reject the promise, passing
forward the error (line 9), or we’ll resolve the promise, passing along the
CouchDB response and body (line 11).

Meanwhile, in line 15, we call the promise’s then() method, passing in two
functions. The first function will be called when the promise is resolved
(success). The second function will be called if the promise happens to be
rejected.

Although there’s nothing to stop you from creating Deferred objects in this
way, you usually don’t have to. Instead, Q offers shortcut methods that
produce promises for you when you’re working with familiar patterns like
Node callbacks. Let’s see how these work next, as we write an API for
retrieving a bundle.

Retrieving a Resource through GET and nfcall()
Still working from lib/bundle.js, let’s see the router for GET requests for a bundle.
Like the POST handler we just looked at, this implementation uses a promise
for the request to CouchDB, but it doesn’t explicitly create a Deferred object.

Chapter 6. Scalable Web Services • 96

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

web-services/b4/lib/bundle.js
app.get('/api/bundle/:id', function(req, res) {Line 1

Q.nfcall(request.get, config.b4db + '/' + req.params.id)2

.then(function(args) {3

let couchRes = args[0], bundle = JSON.parse(args[1]);4

res.json(couchRes.statusCode, bundle);5

}, function(err) {6

res.json(502, { error: "bad_gateway", reason: err.code });7

})8

.done();9

});10

You can call this API with curl by passing in the ID of a previously created
bundle.

$ curl http://localhost:3000/api/bundle/9122b028cd8683df0813b0fc69000377
{

"_id": "9122b028cd8683df0813b0fc69000377",
"_rev": "1-7ef008d5d399c6ba0b1602e09434406f",
"type": "bundle",
"books": {}

}

In line 1, we create an Express route for /api/bundle/:id with app.get(). But then
in line 2, instead of calling request() directly, we call Q.nfcall(request.get...).

Q’s nfcall() method is short for “Node Function Call.” It takes a function that
expects a regular Node.js callback as its last parameter (like request()), invokes
the function, and returns a promise. In effect, it does automatically what our
POST handler did explicitly by creating a Deferred.

After that, we call the promise’s then() method with success and failure handlers
just as before. And lastly we call done() on the promise chain to force any
unhandled rejected promises to throw.

In Node.js, promises have a habit of swallowing errors. Calling done() on a
promise chain is Q’s Golden Rule—whenever you make a promise, you should
either return it so someone else can deal with it, or call done.

When you have only one promise, it’s not clear how the abstraction helps
with managing asynchronous code. The benefits start to become more obvious
when you have a chain of asynchronous operations that you need to manage.

Updating a Resource through PUT with Chained Promises

We’ve looked at a couple of GET routes and one POST so far. Here we’ll
examine the code to update a bundle’s name property, which uses HTTP PUT.

report erratum • discuss

RESTful APIs with Promises • 97

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This code uses promises to manage asynchronous behavior to an even greater
extent than previous APIs we’ve seen. Here’s the code for the PUT route that
powers setting a bundle’s name:

web-services/b4/lib/bundle.js
app.put('/api/bundle/:id/name/:name', function(req, res) {Line 1

Q.nfcall(request.get, config.b4db + '/' + req.params.id)-

.then(function(args) {-

let couchRes = args[0], bundle = JSON.parse(args[1]);-

if (couchRes.statusCode !== 200) {5

return [couchRes, bundle];-

}-

-

bundle.name = req.params.name;-

return Q.nfcall(request.put, {10

url: config.b4db + '/' + req.params.id,-

json: bundle-

});-

})-

.then(function(args) {15

let couchRes = args[0], body = args[1];-

res.json(couchRes.statusCode, body);-

})-

.catch(function(err) {-

res.json(502, { error: "bad_gateway", reason: err.code });20

})-

.done();-

});-

This endpoint starts off much like the GET bundle API. It invokes request.get
through Q.nfcall() to make a promise, and proceeds to use the then() method to
handle the response. So far so good.

Now, an important thing to understand about then() is that it returns a new
promise that will be fulfilled or rejected depending on what happens in then’s
success and failure callbacks. In other words, when you call then() on a
promise, you set up a promise chain; each promise depends on the one that
came before.

This REST handler has two calls to then()—one on line 3 and the other on line
15. The second then’s handlers will be called depending on how the first one
goes.

So let’s take a look at the first then’s callback. Once we extract the couchRes
and bundle from the args array, we check to see if we got the 200 OK status
code we were hoping for. If not, on line 6 we return an array with the couchRes
and bundle. Q interprets this return statement as a successful resolution of
the promise and calls the second then’s handler function.

Chapter 6. Scalable Web Services • 98

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

If we get the 200 OK status we’re after, then the function continues to over-
write the bundle’s name field. We do another Q.nfcall() to PUT the bundle document
back into CouchDB, and return the promise that this produces on line 10.
Q waits for this subpromise to finish, then uses its value to resolve the original
promise, at which point the second then’s handler gets invoked.

So in either case—whether we return a value directly or another promise—Q
knows what to do.

Lastly, notice the catch() method at the end of the promise chain on line 19.
catch() is like then() except that it only takes an error handler, not a success
handler. The catch handler will be called if any of the promises up the chain
are rejected (either explicitly or by a function throwing an exception).

The name catch is not a coincidence. Just like a try/catch block lets you cap-
ture exceptions in synchronous code, the catch handler lets you capture
exceptions in promise-driven asynchronous code.

Promises are a powerful abstraction for working with asynchronous code,
but to use them effectively you really need a firm grasp of how they work.
They offer the possibility of simplifying your asynchronous workflow, especially
when combined with another powerful abstraction: generators.

Next let’s explore how generators work and see how they work with promises
to make code that reads like it’s synchronous but runs asynchronously.

Yielding Control with Generators

ECMAScript Harmony introduces a new concept called a generator. A gener-
ator is like a function except that you can suspend its execution and resume
later.

This feature isn’t quite ready for prime time, and you’ll need a version of Node
higher than 0.10.x to try it out (unstable 0.11, for example). However, this is
the direction ECMAScript is heading, and it’ll be production-ready before you
know it.

Once a regular JavaScript function starts executing, it can finish in one of
two ways. Either it finishes normally by getting to the end or hitting a return
statement, or it finishes abnormally, throwing an exception. In both cases,
the function will run to conclusion.

Generators are different. With a generator, you can yield a value without
actually finishing execution, and then pick up where you left off.

report erratum • discuss

Yielding Control with Generators • 99

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Counting Down with a Generator

Let’s see how this works with a short example. Open your text editor and
enter this:

web-services/countdown.js
'use strict';
const

countdown = function* (count) {
while (count > 0) {
yield count;
count -= 1;

}
},

counter = countdown(5),

callback = function(){
let item = counter.next();
if (!item.done) {
console.log(item.value);
setTimeout(callback, 1000);

}
};

callback();

Save the file as countdown.js. This program counts down from five at one-second
intervals, sending each value to the console:

$ node --harmony countdown.js
5
4
3
2
1

The countdown() function is a generator function. The asterisk (*) in function*() is
what tells the JavaScript engine to treat this function differently.

When you call countdown with a starting value, what you get back is a generator.
In our case, we call countdown with 5 and store the generator to a variable called
counter.

The code inside the generator function starts executing the first time you call
the generator’s next() method. It runs until it hits a yield, then sends back that
value.

Our example calls counter.next() inside of a function called callback. This callback
function saves the object returned by counter.next() into a variable called item.
This object has two properties of note:

Chapter 6. Scalable Web Services • 100

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/countdown.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

• done—either true or false; indicates whether the generator function has
run to completion.

• value—the last value yielded or returned.

So the callback function checks whether the generator still has more to do,
and if so, logs the yielded value and sets a timeout to check again in one
second.

Generators and Asynchronous Code

Because generators can pause their execution indefinitely, they offer a clever
way to deal with asynchronous code. The countdown example doesn’t show it,
but inside your generator function, you can grab the value coming in through
yield.

For example, say your generator function contains the following line:

let x = yield;

In this case, the value of x would be whatever was passed into generator.next()
while it was suspended on the yield. So if you called generator.next(8), then x
would be 8.

When the generator function and the calling code cooperate, you can do some
really neat things. Consider this line from a hypothetical generator function:

let data = yield "./my-text-file.txt";

This line suspends execution after yielding the string "./my-text-file.txt" and
expects to continue when it receives the data from that file. If the calling code
knows to treat the string as a filename, it could do something like fs.readFile()
and then pass the data back to the generator with generator.next(data).

It turns out that promises are a great fit for achieving this kind of coordination,
as we’ll see next.

Using Generators with Promises

Let’s return to our Express APIs for working with book bundles. So far we
have ways of creating and retrieving bundles, and we can update the name
property of a bundle.

Now we’ll make an API for adding books to a bundle using the PUT HTTP
verb. This code will have to make several asynchronous calls: one to get the
existing bundle, one to get book details, and one to put the bundle data back.
To do all this, we’ll use promises and generators to flatten and simplify the
chain of operations.

report erratum • discuss

Using Generators with Promises • 101

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Using the PUT book API

Before we get into the code, let’s take a look at how this API works. That way,
when we dive into the code it’ll be more clear what it’s doing.

To use the PUT book API, we need a bundle, so make one with the POST API
through curl:

$ curl -X POST http://localhost:3000/api/bundle?name=War%20Books
{

"ok": true,
"id": "d476de5d13555f2e8dd0eaac7c000984",
"rev": "1-d90a9d2a08880d9f29e6fa4515702d50"

}

Request the bundle with GET to see what’s in it so far (your bundle ID may
be different):

$ curl http://localhost:3000/api/bundle/d476de5d13555f2e8dd0eaac7c000984
{

"_id": "d476de5d13555f2e8dd0eaac7c000984",
"_rev": "1-d90a9d2a08880d9f29e6fa4515702d50",
"type": "bundle",
"name": "War Books",
"books": {}

}

Then, let’s add Sunzi’s The Art of War (Project Gutenberg ID 132):

$ curl -X PUT \
http://localhost:3000/api/bundle/d476de5d13555f2e8dd0eaac7c000984/book/132

{
"ok": true,
"id": "d476de5d13555f2e8dd0eaac7c000984",
"rev": "2-537b36e10212810fa3d081a9afc64282"

}

Finally, let’s see what was added to the bundle:

$ curl http://localhost:3000/api/bundle/d476de5d13555f2e8dd0eaac7c000984
{

"_id": "d476de5d13555f2e8dd0eaac7c000984",
"_rev": "2-537b36e10212810fa3d081a9afc64282",
"type": "bundle",
"name": "War Books",
"books": {

"132": "The Art of War"
}

}

Success! The “War Books” bundle now contains The Art of War.

Chapter 6. Scalable Web Services • 102

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Let’s take a look at the PUT handler that made this happen. This will be the
last code block we inspect in the chapter, but it’s also the most complex.

Yielding Promises with Q.async

Here’s the section of lib/bundle.js that implements adding a book to a bundle
with PUT:

web-services/b4/lib/bundle.js
app.put('/api/bundle/:id/book/:pgid', function(req, res) {Line 1

-

let-

get = Q.denodeify(request.get),-

put = Q.denodeify(request.put);5

-

Q.async(function* (){-

let args, couchRes, bundle, book;-

-

// grab the bundle from the b4 database10

args = yield get(config.b4db + req.params.id);-

couchRes = args[0];-

bundle = JSON.parse(args[1]);-

-

// fail fast if we couldn't retrieve the bundle15

if (couchRes.statusCode !== 200) {-

res.json(couchRes.statusCode, bundle);-

return;-

}-

20

// look up the book by its Project Gutenberg ID-

args = yield get(config.bookdb + req.params.pgid);-

couchRes = args[0];-

book = JSON.parse(args[1]);-

25

// fail fast if we couldn't retrieve the book-

if (couchRes.statusCode !== 200) {-

res.json(couchRes.statusCode, book);-

return;-

}30

-

// add the book to the bundle and put it back in CouchDB-

bundle.books[book._id] = book.title;-

args = yield put({url: config.b4db + bundle._id, json: bundle});-

res.json(args[0].statusCode, args[1]);35

-

})()-

.catch(function(err) {-

res.json(502, { error: "bad_gateway", reason: err.code });-

});40

});-

report erratum • discuss

Using Generators with Promises • 103

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The first thing to notice is line 4, where we call Q.denodeify() for request.get and
request.put. The denodeify() method takes a Node.js-style function (one that expects
a callback) and returns a new promise-producing function from it. Using
denodeify is a convenient way to avoid calling Q.nfcall() all over the place.
Instead, you just denodeify the functions you plan to use, and call them later
knowing they’ll produce promises.

Right after that, in line 7, we call Q.async() with a generator function. Q’s async
method returns a new promise-producing function that will start running the
generator when you invoke it. We invoke this function right away on line 37.

Inside the generator, any time we yield a promise, Q will wait for the promise
to resolve, then resume execution with the resolved value. For example, on
line 11, we yield a promise for a get call to CouchDB. When the request finish-
es, the promise is resolved and Q gives us back the value, which we assign
to args. This is much like the calls to then(function(args){...}) we saw earlier, but
written in a more linear style.

If the HTTP status code from CouchDB was something other than the 200
OK we were hoping for, we send it back to the requester verbatim and return
early. Otherwise, we move on to the second asynchronous call in line 22.
Again we yield a promise for a get call to CouchDB, and again we check that
everything was OK when it comes back.

Finally, on line 33, we add the book to the bundle and yield again—this time
waiting on a put. When the put is finished, we send the results back to the
requester. And if anything went wrong during all of this asynchronousness,
we catch it on line 38.

This API makes three asynchronous requests, but does it in only one function
thanks to Q.async and generator functions. On the plus side, writing code in
this way has the potential to make it look like synchronous, linear code. But
reaping this benefit means working deeply with promises and relying on some
seemingly magical coordination logic.

Wrapping Up

This chapter took us on a crash course through writing RESTful APIs with
Express. You learned how to create an Express-based web service and how
to modularize your endpoints into separate files. You saw how to add script
commands to npm and how to use nodemon for restarting your service as you
make changes.

We also dug deep into promises, a novel way for managing asynchronous
code. We used the Q library to create and chain promises, and handle error

Chapter 6. Scalable Web Services • 104

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

cases where promises are revoked. You also saw how to convert Node.js-style
functions—which expect a callback—into promise-generating functions.

Finally, we used ECMAScript Harmony’s generator functions with Q to write
synchronous-looking code that’s actually asynchronous. Although this code
is easy to read, it masks some powerful logic that goes on behind the scenes.

We saw how Express’s route methods (get(), post(), and friends) provide an easy
way to set up path-based routing. And we used Express middleware to easily
provide logging capabilities to all our routes.

You can do a whole lot more with Express and middleware than we covered
in this chapter. In Chapter 7, Web Apps, on page 107, we’ll build on what we
have here as we create a web-based client for using our book and bundle
APIs.

Code Organization

Take a look at the lib/book-search.js file included in the code for this chapter. It’s
nearly identical to lib/field-search.js—both make requests to CouchDB views and
return collated results.

• How would you refactor the code in these APIs to minimize the amount
of duplicate code?

Hint: you don’t need to fully grok the book-search code to identify what’s
different from field-search and how you could refactor out the parts that
are the same.

400 Bad Request

In the lib/field-search.js file, we make a request to CouchDB by concatenating
the base URL with the user-provided view:

url: config.bookdb + '_design/books/_view/by_' + req.params.view,

Notice that we use the req.params.view value without sanitizing it first. But we
know that the only views we support are by author and by subject.

Change the code to inspect the incoming view string before concatenating it
to make the URL. If the view isn’t one of our expected values, respond with
HTTP 400 Bad Request, including a JSON object explaining the problem.

DELETE

The book-bundle API we explored in this chapter has a method for adding a
book to a bundle.

report erratum • discuss

Wrapping Up • 105

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

• How would you write an Express API endpoint for removing a book from
a bundle with DELETE?

• What should your API do if the book isn’t already in the bundle to begin
with?

• What should your API do if the targeted bundle doesn’t already exist?

The lib/bundle.js already has a REST endpoint for this. Take a look if you get
stuck.

Promises and Deferreds

We used promises a lot in this chapter to manage success and failure cases
for asynchronous requests, relying on the then() method to assign callbacks
for when the promise is resolved or rejected. And we often sent array values
to resolve promises (like [couchRes, body]).

Q implements the Promises/A specification.6 Although this specification only
requires a then() method, Q promises have more. For example, then() handlers
always get one parameter, but Q’s spread() method can handle multiple
parameters.

• How would you change the API endpoints in this chapter to use spread()
instead of then()?

• Was it the right choice to send array values to resolve promises? If not,
what would you use instead?

6. http://wiki.commonjs.org/wiki/Promises/A

Chapter 6. Scalable Web Services • 106

report erratum • discussPrepared exclusively for jabez zhang

http://wiki.commonjs.org/wiki/Promises/A
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

CHAPTER 7

Web Apps
By now, you’ve mastered several approaches to handling asynchronous
JavaScript code. You know how to use and write RESTful web services. You
understand messaging patterns, and how to use Express.

With all of that knowledge and experience, we’re now in position to develop
a web application. This will take us through the following Node.js aspects:

Architecture and Core
At this stage you’ve moved past the Node.js core in many respects. Node
is the underlying technology that’s letting you reach beyond.

Patterns
You’ll dive deeper into Express middleware, using it to implement a custom
authentication handler. We’ll use passport—an Express plug-in—so that
users of our application can log in with their Google accounts. The client-
side code uses model-view-controller (MVC) to separate concerns.

JavaScriptisms
Although the Node code in this book takes advantage of the latest available
ECMAScript Harmony features, those features aren’t available in many
web browsers. You’ll learn some differences between ECMAScript 5 and
ECMAScript 6 as we code JavaScript for the browser. You’ll also use
jQuery to perform a variety of client-side operations.

Supporting Code
Just like npm makes it easy to pull in Node modules, Bower is used to
manage client-side dependencies. We’ll use Bower to pull in jQuery,
Bootstrap, Handlebars, and others. We’ll also use Redis, a fast key-value
store, for managing session data.

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Developing web applications is an enormous topic. You could fill a library
with books on all the myriad concepts you need to know to master it. I’ve
been doing it for over a decade, and I’m still learning every day.

So instead of trying to explore everything there is to know, we’ll focus on
what’s specific to Node.js. The code download that accompanies this book
contains a web-app directory, which has all the code from this chapter and
more. I encourage you to go grab it if you haven’t already, since we won’t
cover everything that’s in there.

The application b4 builds on the web services that we developed last chapter.
This means you’ll need CouchDB running, along with the data from Chapter
5, Accessing Databases, on page 65.

Once you have those prerequisites, let’s dive in!

Storing Express Sessions in Redis

Whenever you have a user-facing web application, you’ll almost always use
sessions. A session is data that’s attached to a particular user. As the user
browses pages on the site or uses the web application, the server keeps track
of the user through a session cookie. On each request, the server reads the
cookie, retrieves the session data, then uses it when generating a response.

Exactly where you store this session data is up to you. By default, Express
will keep the data in memory, but this doesn’t readily scale. Once you have
more than one Node.js process, the session data should really be stored to
be in a shared place. That way, no matter which process services a user’s
request, it will have the correct information.

Let’s see how to enable sessions in Express, and how to use Redis for storing
the session data.

Enabling Sessions in Express

To enable sessions, add the cookieParser and session middleware to your app:

app.use(express.cookieParser());
app.use(express.session({ secret: 'unguessable' }));

The cookieParser middleware is responsible for parsing incoming cookies from
the client, and the session middleware stores the session data attached to the
cookie. The secret parameter is necessary to prevent cookie tampering and
spoofing—set it to something unique to your application. Express session
cookies are signed with this secret string.

Chapter 7. Web Apps • 108

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Using Redis to Store Session Data

Redis is an extremely fast key/value store with tunable durability. This means
you can keep it fast but risk losing data if the server were to crash, or you
can sacrifice speed for greater durability guarantees.

By default, Redis keeps data in memory and then periodically writes it to
disk. This makes it blazingly fast, but disaster-prone since a process crash
would mean lost data.

Its speed makes Redis an ideal database for storing session data. If the server
tips over, then the sessions might be lost, but at worst this means that your
users will have to log in again.

To use Redis with your Node/Express app, first you’ll have to install it.
Installing Redis differs by platform, but once you have it installed, starting it
up is a single command:

$ redis-server
...
[8344] 10 Sep 20:38:41.564 # Server started, Redis version 2.6.13

Using Redis with Express takes a couple of npm modules: redis and connect-
redis. Run npm install --save to get them and add them to your package.json.

As an experiment, let’s modify the server.js file from the last chapter’s “Hello
World” app to use Redis for session storage. Open the server.js file and add
this to the const declarations at the top:

web-app/hello/server.js
redisClient = require('redis').createClient(),
RedisStore = require('connect-redis')(express),

The first line constructs a client for the Redis database. This will immediately
open a TCP socket to your Redis server. The second line produces a class you
can use to instantiate a Redis-based backing store for sessions.

Finally, in the middleware section of your server.js file, use the cookie and
session middleware with Redis like so:

web-app/hello/server.js
app.use(express.cookieParser());
app.use(express.session({

secret: 'unguessable',
store: new RedisStore({

client: redisClient
})

}));

report erratum • discuss

Storing Express Sessions in Redis • 109

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/hello/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/hello/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

app.get('/api/:name', function(req, res) {
res.json(200, { "hello": req.params.name });

});

app.listen(3000, function(){
console.log("ready captain.");

});

Here we create a new instance of RedisStore based on our redisClient for the session
middleware to use. With those changes in place, start up the server:

$ npm start

> hello@0.1.0 start ./hello
> node --harmony ./server.js

ready captain.

Then, in a second terminal, let’s check out the HTTP headers with curl:

$ curl -i -X HEAD http://localhost:3000/api/test
HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: application/json; charset=utf-8
Content-Length: 21
Set-Cookie: connect.sid=s%3A-Coz4SVOKykt-fb5bTv7CHOj.IKL445JyFaKDq2aJ2%2FC95dh

87pgElsNmc2mq3mpbjNE; Path=/; HttpOnly
Date: Fri, 27 Sep 2013 22:03:52 GMT
Connection: keep-alive

Notice the long Set-Cookie header—this is the session cookie. You can confirm
that the data has been saved in Redis with the redis-cli command-line tool:

$ redis-cli KEYS 'sess:*'
1) "sess:-Coz4SVOKykt-fb5bTv7CHOj"

Here we’ve asked for all the keys in Redis that start with sess:—that is, the
stored session data. Typically you won’t go digging around in Redis for this
data yourself, but it’s helpful to confirm that everything is working.

Let’s return now to the b4 application, which will use Redis for session storage
in just this way. With Redis running, we can build a stateful web application
on top our RESTful services.

Creating a Single-Page Web Application

A single-page web application consists of an HTML page, CSS to style it, and
JavaScript to perform the application logic. All of these things can be delivered
as static files, meaning they don’t require any special server-side processing.
You can just serve them up from the file system.

Chapter 7. Web Apps • 110

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

In this section, you’ll see how to serve static content from Express alongside
your RESTful APIs. Some of the static content will come from third-party
dependencies, which we’ll pull from Bower.

Serving Static Content with Express

Express comes with a convenient way to serve static files. All you have to do
is use the express.static middleware and provide a directory. For example, these
lines appear in the b4 server:

web-app/b4/server.js
app.use(express.static(__dirname + '/static'));
app.use(express.static(__dirname + '/bower_components'));

These two lines tell Express to serve static content out of the static/ and bow-
er_components/ directories of the project. This means that if Express can’t find
a particular route, it’ll fall back to serving the static content, checking these
directories one at a time.

The static middleware is special in this regard. Most of the time, middleware
has its effect in the middle of the request processing, but static appends its
effect to the end of the chain (even after the route handlers have run).

For instance, the project’s static/ directory contains three files: index.html, app.css,
and app.js. These contain the HTML, CSS, and client-side JavaScript for the
b4 application, respectively.

With the server running, when you request http://localhost:3000/index.html, Express
will serve up static/index.html because we don’t have an explicit route for it.

Installing Bower Components

Bower is a package manager for front-end code, like JavaScript libraries. You
install Bower components in much the same way you install npm modules.

Here’s the bower.json file from the b4 application:

web-app/b4/bower.json
{

"name": "b4",
"version": "0.0.1",
"dependencies": {

"jquery": "~2.0.3",
"bootstrap": "~3.0.0",
"typeahead.js": "~0.9.3",
"typeahead.js-bootstrap.css": "*",
"handlebars": "~1.0.0"

}
}

report erratum • discuss

Creating a Single-Page Web Application • 111

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/bower.json
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Like a package.json file, it contains a list of dependencies. Our app depends on
these front-end packages:

• jquery—Extraordinarily popular JavaScript library for Ajax and DOM
manipulation

• bootstrap—Pretty CSS styles for web applications

• typeahead.js—JavaScript library for autocompleting text fields

• typeahead.js-bootstrap.css—Bootstrap-compatible CSS for typeahead.js

• handlebars—HTML templating library

To install these packages, first install Bower through npm (if you haven’t
already):

$ npm install -g bower

Then install the Bower components:

$ bower install

Now you should have a bower_components/ directory containing all of the above.

Structuring a Single-Page App

With the server ready to serve the static content, and Bower components in
place, we can put together the main entry point of our single-page app: the
index.html file. Here’s what the top of that file contains:

web-app/b4/static/index.html
<!doctype html>
<html>
<head>

<meta charset="utf-8">
<title>b4 - The Better Book Bundle Builder</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="bootstrap/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="bootstrap/dist/css/bootstrap-theme.min.css">
<link rel="stylesheet"

href="typeahead.js-bootstrap.css/typeahead.js-bootstrap.css">
<link rel="stylesheet" href="app.css">

</head>
<body class="container">

The first line—<!doctype html>—tells the browser that this is an HTML5 docu-
ment. Then we enter the document’s <head> section, which contains the title,
some <meta> tags, and a bunch of style sheets.

Chapter 7. Web Apps • 112

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/index.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The viewport <meta> tag tells mobile devices that the width of the page should
match the device width (e.g., 320px on an iPhone) instead of the default,
which may be much larger. It also tells the device to start off at a scale of 1.0,
meaning unzoomed.

The style sheets correspond to our dependencies; first the Bootstrap core and
theme, then the typeahead styles, and finally our own app.css file. The app.css
file comes last, so we can easily override any styles that may have come before.

The container class on the <body> element is a Bootstrapism. It tells Bootstrap
to automatically grow or shrink the width of the body so it looks good at a
variety of screen sizes.

Next, let’s check out the bottom of index.html:

web-app/b4/static/index.html
<script src="jquery/jquery.min.js"></script>
<script src="bootstrap/dist/js/bootstrap.min.js"></script>
<script src="typeahead.js/dist/typeahead.min.js"></script>
<script src="handlebars/handlebars.js"></script>
<script src="app.js"></script>

</body>
</html>

Like the head, this is where we bring in a bunch of dependencies and our
own code. app.js is last so we can use all the other libraries in our application
logic.

The vast middle of the index.html file contains the visual content of the applica-
tion, such as templates for rendering views. We’ll get to this, but before we
do, we need a few more APIs.

Specifically, we need authenticated endpoints for doing user-specific actions.
We’ll develop those next, then return to the client side to pull it all together.

Authenticating with Passport

Passport is an Express plug-in that provides middleware for a variety of third-
party logins. Using passport you can unobtrusively add support for logging
in with Twitter, Facebook, and other services.

We’re going to use passport to support authentication with Google credentials.
Go get the passport and passport-google modules from npm if you don’t have them
already (npm install --save passport passport-google).

To add passport, first add this to your const declarations at the top of your
server.js file:

report erratum • discuss

Authenticating with Passport • 113

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/index.html
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

web-app/b4/server.js
passport = require('passport'),
GoogleStrategy = require('passport-google').Strategy;

Then you need to initialize the passport middleware. Add this right after
app.use(express.session...):

web-app/b4/server.js
app.use(passport.initialize());
app.use(passport.session());

Passport’s different authentication mechanisms are called strategies. The
second line in the previous code brings in the Google authentication strategy.

Configuring Passport Strategies

Passport itself and the strategies you use both require a bit of configuration
to be useful. Here’s a short example of how to configure passport with the
Google strategy.

web-app/b4/server.js
passport.serializeUser(function(user, done) {

done(null, user.identifier);
});
passport.deserializeUser(function(id, done) {

done(null, { identifier: id });
});

This code sets up passport’s serialization and deserialization functions and
tells passport to use the Google strategy we pulled in earlier.

Use the serializeUser() method to specify what information about the user should
actually be stored in the session. You can still keep other data elsewhere, but
this is the data that gets associated with the session cookie.

Typically, you’ll only store the minimum amount of information necessary to
look up whatever else you need. Here, we’re just storing the identifier string,
which is a unique, user-specific URL provided by Google.

The deserializeUser() method is where you take the stored session data and turn
it back into a rich object for use by your application. This operation must be
light and fast since it will happen on virtually every request to your server.
With the exception of some user-specific APIs we’ll develop shortly, we don’t
need anything more than the identifier for our book-bundler app. So here we
just construct an object containing the identifier we stored previously.

Next we tell passport to use() the Google strategy we brought in earlier:

Chapter 7. Web Apps • 114

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

web-app/b4/server.js
passport.use(new GoogleStrategy({

returnURL: 'http://localhost:3000/auth/google/return',
realm: 'http://localhost:3000/'

},
function(identifier, profile, done) {

profile.identifier = identifier;
return done(null, profile);

}
));

The callback function is invoked once the authentication succeeds. This is
your opportunity to grab any additional information tied to this user’s account
from your own database. Just like our deserializeUser() callback, we mainly make
note of the identifier.

The returnURL parameter is the full URL you want Google to send users to after
they’ve authenticated. Localhost is correct for our development application,
but you’ll need to set this to the real public URL of your own services.

Routing Authentication Requests

Finally, we need to set up some routes. We need to handle three kinds of
requests in total: one for initiating the authentication, one for the returnURL
where users come back after authenticating, and one for logging out.

Here’s a small amount of code that provides these three endpoints:

web-app/b4/server.js
app.get('/auth/google/:return?',

passport.authenticate('google', { successRedirect: '/' })
);
app.get('/auth/logout', function(req, res){

req.logout();
res.redirect('/');

});

The first route here works for both /auth/google and /auth/google/return. It uses the
passport.authenticate() middleware, which will automatically redirect end users
to Google’s sign-in page and process the incoming token when they get back.
In your own applications, you may want to take additional actions in either
of these cases, but redirecting to the application root (/) is sufficient for our
app.

Lastly, the /auth/logout route provides a way for users to clear out their session
cookies and the associated session data.

report erratum • discuss

Authenticating with Passport • 115

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

That’s all there is to it! It might seem like this is a lot of steps to get authenti-
cation to work. But it really is providing a lot of value—once you get passport
set up, the job of authenticating users is done for you.

Authorizing APIs with Custom Middleware

With passport’s Google strategy set up and Redis configured to store session
information, we’re in position to develop some protected user APIs. Unlike
the book and bundle APIs we developed in the last chapter, these APIs will
provide access to information specifically for logged-in users.

Here are the endpoints we’ll create, and the HTTP verbs they’ll support. They
all return JavaScript Object Notation (JSON):

• /api/user (GET)—Basic information about the user (like the user’s identifier)

• /api/user/bundles (GET)—Object that maps bundle IDs to bundle names

• /api/user/bundles (PUT)—Overwrites the bundle mapping object with the
provided JSON body

Implementing these APIs will give us a chance to develop some custom Express
middleware. We’ll also have to modify our redisClient to be more tolerant of
failures so we can report them through the API.

Tolerating Redis Errors

Redis is a fairly robust service, but like all things it can go down from time
to time. For this reason, the connect-redis session plug-in is tolerant of Redis
errors. Whenever Redis is unreachable, the plug-in will silently ignore it—in
effect rendering your application sessionless, but otherwise unaffected.

We can do better. REST demands that we use the best HTTP status codes
available to depict the state of the resource and the system serving it. To do
that, we’ll need to know more about what’s going on with Redis.

Let’s start by adding some nice logging with the npmlog module—the same one
that npm uses for its colorful log messages. Use npm install to get it, then add
this to your const declarations:

log = require('npmlog'),

Let’s add some logging for key events to our redisClient:

web-app/b4/server.js
redisClient

.on('ready', function() { log.info('REDIS', 'ready'); })

.on('error', function(err) { log.error('REDIS', err.message); });

Chapter 7. Web Apps • 116

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Here we’re adding handlers for the ready event, which fires whenever Redis is
connected and awaiting commands, and the error event. Handling the error
event prevents Node from throwing an exception (recall that unhandled error
events on EventEmitters throw). To see how this works, start up your b4 server
then kill the redis-server process in another terminal. You’ll see output like this:

$ npm start

> b4@0.1.0 start ./b4
> node --harmony ./server.js

ready captain.
info REDIS ready
ERR! REDIS Redis connection to 127.0.0.1:6379 failed - connect ECONNREFUSED
ERR! REDIS Redis connection to 127.0.0.1:6379 failed - connect ECONNREFUSED

The redisClient object includes a Boolean property ready, which we can check in
our middleware. Let’s do that next.

Implementing Custom Middleware

You’ve already learned how to implement route handlers in Express; now let’s
see how to create custom middleware. The difference between middleware
and route handlers is that middleware is meant to be a link in the chain,
while route handlers are meant to be at the very end of the chain. A middle-
ware function takes three parameters: a request object (req), a response object
(res), and a function (next) to call when the middleware is done.

Let’s create a middleware function that enforces our passport session. If
everything goes according to plan it’ll call the next function, but if anything
goes wrong it’ll give an appropriate, RESTful response.

web-app/b4/server.js
const authed = function(req, res, next) {

if (req.isAuthenticated()) {
return next();

} else if (redisClient.ready) {
res.json(403, {
error: "forbidden",
reason: "not_authenticated"

});
} else {

res.json(503, {
error: "service_unavailable",
reason: "authentication_unavailable"

});
}

};

report erratum • discuss

Authorizing APIs with Custom Middleware • 117

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

First, we check req.isAuthenticated(). This is a method added by passport that
returns true only if the incoming session cookie matches a known session.
If the user is authenticated, we immediately call next() to move down the
middleware chain.

Otherwise, find out if redisClient.ready is true. If it is, then the user truly isn’t
authenticated (not a system error) and the correct code is 403 Forbidden. We
can’t use 401 Unauthorized because that requires a WWW-Authenticate
header, which tells the browser what authentication mechanisms are available
(and there’s no provision for cookie-based sessions).

Lastly, if redisClient.ready is false, then there’s no way the user could have
authenticated. The appropriate response is 503 Service Unavailable, since
any authenticated APIs can’t meaningfully operate until Redis comes back
online.

Alright, now that we have custom middleware, let’s apply it to some authen-
ticated APIs.

Creating Authenticated APIs

We need to create new, user-specific APIs, and we want them to use our
authed() middleware. But we certainly don’t want all the other routes (like our
static file serving) to be authenticated. Those still need to be served without
any authentication. So we can’t just call app.use() like we would with other
middleware.

When you specify a route in Express, you can include middleware that you
wish to apply to only that route. We’ll use this feature for the /api/user route:

web-app/b4/server.js
app.get('/api/user', authed, function(req, res){

res.json(req.user);
});

This short route handler is all we need, thanks to the authed() function we
already made. By the time the route handler is invoked, the middleware has
already confirmed that the session is valid and the user property on the request
will have the right data.

Once logged in, requests to /api/user will return something like this:

{
"identifier": "https://www.google.com/accounts/o8/id?id=..."

}

Chapter 7. Web Apps • 118

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This is the object that comes out of the deserializeUser() callback we defined
earlier. Next, let’s see how to implement the /api/user/bundles endpoint:

web-app/b4/server.js
app.get('/api/user/bundles', authed, function(req, res) {

let userURL = config.b4db + encodeURIComponent(req.user.identifier);
request(userURL, function(err, couchRes, body) {

if (err) {
res.json(502, { error: "bad_gateway", reason: err.code });

} else if (couchRes.statusCode === 200) {
res.json(JSON.parse(body).bundles || {});

} else {
res.send(couchRes.statusCode, body);

}
});

});

First we construct a userURL, which consists of our CouchDB b4 database root
and the identifier for the session. This implies a schema decision; the user
documents in the b4 database will have same _id as the Google identifier. In your
own applications you might want to use an app-specific ID for your users,
but keep in mind that you’ll need a mapping or lookup function to find users
by their passport ID.

Next we call out to CouchDB using the request() function, as we’ve done many
times before. We handle the various error conditions, and if we get back a
200 OK status, then we extract the bundles property from the document and
send that back to the requester.

Putting the bundles hash back into the user document is only slightly trickier:

web-app/b4/server.js
app.put('/api/user/bundles', [authed, express.json()], function(req, res) {

let userURL = config.b4db + encodeURIComponent(req.user.identifier);
request(userURL, function(err, couchRes, body) {

if (err) {
res.json(502, { error: "bad_gateway", reason: err.code });

} else if (couchRes.statusCode === 200) {
let user = JSON.parse(body);
user.bundles = req.body;
request.put({ url: userURL, json: user }).pipe(res);

} else if (couchRes.statusCode === 404) {
let user = { bundles: req.body };
request.put({ url: userURL, json: user }).pipe(res);

} else {
res.send(couchRes.statusCode, body);

}
});

});

report erratum • discuss

Creating Authenticated APIs • 119

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/server.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Notice that now we’re providing two middleware functions in an array. First
is the authed middleware that we used before, and second is express.json(). The
built-in express.json middleware parses each incoming request’s content body
when the Content-Type header is set to application/json. This way, when we access
req.body, it’s already an object and not just a buffer.

After that, it’s a pretty typical RESTful API. First we try to get the user object
from CouchDB. If it already exists, we overwrite the bundles and put it back.
If it doesn’t already exist, we create a new document with those bundles and
put it in. Error cases are handled in the usual way.

Note here that we’re using the pipe() feature of the request module to send a
response forward to res. The usage is quite similar to a basic Stream’s pipe
method, but operates on higher-level Request and Response objects.

That wraps up the server side of this application. Next let’s finish up by
exploring some of the client side.

Client-Side MVC

Throughout this chapter we’ve kept a clean delineation between the server-
side code (RESTful, JSON APIs) and the client-side code (static HTML, CSS,
and JavaScript). The benefit of this separation is that you can completely
change your user-facing code without having to modify your Node server. In
fact, you could implement a non-browser front end, such as a command-line
interface, and your APIs would continue to work just fine.

But at some point you have to create an interface your users can interact
with, and that’s what we’ll do here. Please keep in mind that front-end web
development is a fast-moving target; the state of the art is advancing every
day. To build a front end for the b4 APIs, we’ll use MVC.

The MVC software-design pattern is a popular and convenient way to structure
user-facing applications. Unfortunately, because it’s so popular, people have
different ideas about what MVC means and how it works. So first we have to
agree on a working definition for the examples in this book.

• Model—The business logic and data for the application
• View—Representation of the model that is shown to the user
• Controller—Code that receives user interaction to inform the model

In our application, the model will be responsible for keeping track of the book
bundles for the user. The view will be the Document Object Model (DOM) in
the browser, as rendered by the model. And the controller logic will be invoked
by events on the DOM.

Chapter 7. Web Apps • 120

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Hash-Based Views

When a web application consists of only a single page, you need some way of
denoting that different content is being shown. One way to do this is with
URL hashes—the content after the # symbol in a URL.

For example, consider the URL http://localhost:3000/#list-bundles. We want this to
correspond to the view that shows the user’s bundles.

Open the static/index.html file in the b4 project. In there you’ll find <div>s like
this:

<div id="welcome-view" class="view">
<h2>Welcome</h2>
...

</div>
<div id="list-bundles-view" class="view">

<h2>Your Bundles</h2>
...

</div>

We want exactly one of these views visible at a time, and for that we need a
little client-side JavaScript. Here’s the showView() function from static/app.js:

web-app/b4/static/app.js
showView = function(selected) {

window.location.hash = '#' + selected;
$('.view').hide().filter('#' + selected + '-view').show();

},

This function takes a selected parameter, which is the name of the view we
want to show. First we set window.location.hash to match the specified view. For
example, if we call showView('list-bundles'), that updates the page’s URL to end in
#list-bundles.

The next part is pretty concise, thanks to jQuery. We find all of the <div>s on
the page with class view, hide them, then find just the one whose ID matches
our chosen view, and show it.

The showView() function works great if we want to set the view programmatically,
but we should also respond to direct URL changes. To do that, we listen to
the hashchange event on the window:

web-app/b4/static/app.js
$(window).on('hashchange', function(event){

var view = (window.location.hash || '').replace(/^#/, '');
if ($('#' + view + '-view').length) {

showView(view);
}

});

report erratum • discuss

Client-Side MVC • 121

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/app.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/app.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

This code starts out by grabbing the window.location.hash and saving it in a vari-
able called view. var is an older JavaScript keyword. It’s just like let except that
it’s scoped to the nearest function(){} as opposed to the nearest pair of curly
braces {}.

Not all browsers support let at the time of this writing, so it’s much safer to
use var in client-side code.

Next this function checks whether there’s an element on the page with the
matching view ID, and if so, calls showView().

Now there’s only one more view-navigation task to take care of: what to do
when the page first loads. On startup, the page should find out whether users
are authenticated. If so, users should see the list-bundles view; otherwise, send
them to the welcome view, where they’ll have a link to log in.

Here’s the startup view code:

web-app/b4/static/app.js
$.ajax({

url: '/api/user',
accepts: 'application/json'

})

.then(function(data, status, xhr) {
getBundles();

}, function(xhr, status, err) {
showView('welcome');

});

First, we kick off an asynchronous request /api/user with jQuery’s $.ajax(). This
method is like a promise-producing request().

We call then() with two handlers, one for success and one for failure. If the
request was successful, we move on to getBundles(); otherwise we show the user
the welcome view.

Next, let’s look at some more client-side request code.

Synchronizing Models with REST APIs

In our single-page web app, once the user logs in he’ll see the list-bundles view.
But before we can render it, we need to know what bundles the user has
already made.

The static/app.js file in the b4 project contains a variable called bundles. This is a
local copy of the actual user bundles stored on the server. To start, the web
app needs to pull down the remote copy—this is what getBundles() does:

Chapter 7. Web Apps • 122

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/app.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

web-app/b4/static/app.js
getBundles = function() {

$.ajax({
url: '/api/user/bundles'

})
.then(function(data, status, xhr) {

bundles = data;
showBundles();

}, function(xhr, status, err) {
if (xhr.status >= 500) {
showErr(xhr, status, err);

}
bundles = {};
showBundles();

});
},

Here we use the $.ajax() function to pull down /api/user/bundles. If the request
succeeds, we use the value returned; otherwise we start with an empty object
({}). If the request fails with a status code in the 500 range (like 502 Bad
Gateway), then we show the error using the showErr() function. In either case,
we move on to showBundles(). Going the other direction, we have a saveBundles()
function that saves the bundles on the server:

web-app/b4/static/app.js
saveBundles = function(bundles, callback) {

$.ajax({
type: 'PUT',
url: '/api/user/bundles',
data: JSON.stringify(bundles),
contentType: 'application/json; charset=utf-8',
accepts: 'application/json'

})
.then(function(data, status, xhr) {

callback(null, data);
}, function(xhr, status, err) {

callback(err);
});

},

This function takes a bundles object to push, and a Node-style callback function
that will be called on success or failure. It uses $.ajax() to PUT the bundles
object up to /api/user/bundles. The contentType option indicates that the data is
already pre-serialized as JSON and doesn’t require form encoding.

That covers the client-side code for interacting with the user APIs we developed
this chapter. The b4 app contains similar code for using the APIs we developed in
previous chapters—like the book-search and bundle-modification APIs. Now let’s
produce a user interface for our data.

report erratum • discuss

Client-Side MVC • 123

Prepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/app.js
http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/app.js
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Generating HTML with Handlebars

The b4 app uses templates for generating HTML from input data. A template
is basically HTML with holes where data will get filled in. There are many of
JavaScript templating engines to choose from—this app uses Handlebars.1

Handlebars replaces named tokens in a source string with values from a
context object. It also supports looping over objects and arrays, and conditional
logic (if/else). For example, here’s the Handlebars template for generating a
table to display a user’s list of bundles:

web-app/b4/static/index.html
<table class="table">Line 1

<thead>-

<tr>-

<th>Bundle Name</th>-

<th class="actions">Actions</th>5

</tr>-

</thead>-

<tbody>-

{{#each bundles}}-

<tr data-id="{{@key}}">10

<td>{{this}}</td>-

<td class="actions">-

<button type="button" class="btn edit">-

<abbr title="edit bundle" class="glyphicon glyphicon-pencil">-

edit bundle15

</abbr>-

</button>-

<button type="button" class="btn delete">-

<abbr title="delete bundle" class="glyphicon glyphicon-trash">-

delete bundle20

</abbr>-

</button>-

</td>-

</tr>-

{{/each}}25

</tbody>-

</table>-

Starting on line 9, we loop over the bundles object. For each key/value pair,
we add a <tr> whose data-id attribute is set to the current key. And inside that
row we add a <td> element with the text set to the current value ({{this}}).

Our b4 app compiles and executes the Handlebars templates entirely on the
client side, but you can push some or all of these tasks to the server since
Handlebars can run in Node.js as well.

1. http://handlebarsjs.com/

Chapter 7. Web Apps • 124

report erratum • discussPrepared exclusively for jabez zhang

http://media.pragprog.com/titles/jwnode/code/web-app/b4/static/index.html
http://handlebarsjs.com/
http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

For example, you could compile the templates in Node, and then just perform
the data replacement in the browser. Or you could perform the data replace-
ment in Node too, and serve up HTML chunks instead of JSON. Each of these
options has advantages depending on your particular application.

Wrapping Up

This chapter showed both sides of web application development, from the
Node.js server out to the browser. It took us further into web services as we
developed stateful, session-based user APIs. And we used Redis, a fast
key/value datastore for housing our session data in a scalable way.

By bringing in passport—an Express plug-in—we provided seamless support
for logging in with Google credentials. And we developed custom Express
middleware to authorize requests to our RESTful user APIs.

To power the client side, we served static content, both for our single-page
application itself and its dependencies, which we got from Bower, an
un-opinionated front-end package manager. We used jQuery’s Ajax capabilities
to synchronize our model objects with our REST services, and its DOM-
manipulation functions to implement custom hash-based views. Lastly, we
explored templating with Handlebars as part of implementing client-side MVC.

RESTful API Design

Consider the user-bundles API (/api/user/bundles) we designed in this chapter.
On PUT, it always overwrites the whole list of bundles whenever any of them
change.

• What would happen if the incoming response body weren’t valid JSON?

• What would happen if the incoming response body were a JSON serialized
array (as opposed to the object that we expect)?

• In your opinion, what should ideally happen in these cases, and how
would you change the code to make that so?

Instead of just using PUT to overwrite everything, you could have different
verbs and endpoints for adding and deleting bundles from a user’s collection.

• What route would you use to DELETE a bundle from a user’s collection?

• What HTTP verb would you use to add a bundle to a user’s collection?

report erratum • discuss

Wrapping Up • 125

Prepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

Parting Thoughts

By now you’ve learned quite a bit about how to use Node for both web and
non-web server-side JavaScript projects. Node.js is inherently asynchronous
—and while this may have been unfamiliar to you to begin with, you’ve learned
several techniques for managing asynchronous JavaScript code.

You’ve used Node.js to implement middleware applications that perform a
variety of tasks, from seeding databases with information to doling out work
to a cluster of worker processes. You’ve developed custom protocols and
worked with familiar ones like HTTP. You have made RESTful web services
as well as services that use other communication patterns such as push/pull
and publish/subscribe.

Along the way, you learned how to use a number of useful npm modules. You
used Express for simplifying the development of REST endpoints, and node-
unit for running unit tests on your data processing code. The request module
was super useful for making HTTP requests, and async and Q made managing
asynchronous code flows easier (each in their own way).

The world of Node.js is still expanding rapidly. There are lots of ways to attack
any given problem, and there’s always someone out there trying it in a new
way. As you go forward and develop your own style, keep your eyes and ears
open for new approaches and new techniques. It’s an exciting time to be a
Node developer.

Good luck, and happy coding!

Chapter 7. Web Apps • 126

report erratum • discussPrepared exclusively for jabez zhang

http://pragprog.com/titles/jwnode/errata/add
http://forums.pragprog.com/forums/jwnode

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(300 pages) ISBN: 9781937785598. $38
http://pragprog.com/book/bhh52e

Async JavaScript
With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you’ll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
http://pragprog.com/book/tbajs

Prepared exclusively for jabez zhang

http://pragprog.com/book/bhh52e
http://pragprog.com/book/tbajs

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

Prepared exclusively for jabez zhang

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

Prepared exclusively for jabez zhang

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp

Sound and Games
Add live sound to your apps, and explore a faster way of building mobile games for Android
and iOS.

Programming Sound with Pure Data
Sound gives your native, web, or mobile apps that extra
dimension, and it’s essential for games. Rather than
using canned samples from a sample library, learn
how to build sounds from the ground up and produce
them for web projects using the Pure Data program-
ming language. Even better, you’ll be able to integrate
dynamic sound environments into your native apps or
games—sound that reacts to the app, instead of
sounding the same every time. Start your journey as
a sound designer, and get the power to craft the sound
you put into your digital experiences.

Tony Hillerson
(200 pages) ISBN: 9781937785666. $36
http://pragprog.com/book/thsound

Create Mobile Games with Corona
Develop cross-platform mobile games with Corona us-
ing the Lua programming language! Corona is experi-
encing explosive growth among mobile game develop-
ers, and this book gets you up to speed on how to use
this versatile platform. You’ll use the Corona SDK to
simplify game programming and take a fun, no-non-
sense approach to write and add must-have gameplay
features. You’ll find out how to create all the gaming
necessities: menus, sprites, movement, perspective
and sound effects, levels, loading and saving, and game
physics. Along the way, you’ll learn about Corona’s
API functions and build three common kinds of mobile
games from scratch that can run on the iPhone, iPad,
Kindle Fire, Nook Color, and all other Android smart-
phones and tablets.

Printed in full color.

Silvia Domenech
(220 pages) ISBN: 9781937785574. $36
http://pragprog.com/book/sdcorona

Prepared exclusively for jabez zhang

http://pragprog.com/book/thsound
http://pragprog.com/book/sdcorona

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
http://pragprog.com/book/bhtmux

Practical Vim
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS—if you master the techniques in
this book, you’ll never need another text editor. In more
than 100 Vim tips, you’ll quickly learn the editor’s core
functionality and tackle your trickiest editing and
writing tasks.

Drew Neil
(346 pages) ISBN: 9781934356982. $29
http://pragprog.com/book/dnvim

Prepared exclusively for jabez zhang

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dnvim

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/jwnode
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/jwnode

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

Prepared exclusively for jabez zhang

http://pragprog.com/book/jwnode
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/jwnode
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Why Node.js the Right Way
	What’s in This Book
	What This Book Is Not
	Code Examples and Conventions
	Online Resources

	1. Getting Started
	Node’s Niche
	How Node Applications Work
	Aspects of Node.js Development
	Get Node.js

	2. Wrangling the File System
	Programming for the Node.js Event Loop
	Spawning a Child Process
	Capturing Data from an EventEmitter
	Reading and Writing Files Asynchronously
	The Two Phases of a Node Program
	Wrapping Up

	3. Networking with Sockets
	Listening for Socket Connections
	Implementing a Messaging Protocol
	Creating Socket Client Connections
	Testing Network Application Functionality
	Extending Core Classes in Custom Modules
	Wrapping Up

	4. Robust Messaging Services
	Advantages of ØMQ
	Importing External Modules with npm
	Message-Publishing and -Subscribing
	Responding to Requests
	Routing and Dealing Messages
	Clustering Node.js Processes
	Pushing and Pulling Messages
	Wrapping Up

	5. Accessing Databases
	Advantages of CouchDB
	Creating a Package
	Making RESTful Requests
	Importing Real Data
	Unit Testing with Nodeunit
	Throttling Node.js
	Querying Data with Mapreduce Views
	Wrapping Up

	6. Scalable Web Services
	Advantages of Express
	Serving APIs with Express
	Writing Modular Express Services
	RESTful APIs with Promises
	Yielding Control with Generators
	Using Generators with Promises
	Wrapping Up

	7. Web Apps
	Storing Express Sessions in Redis
	Creating a Single-Page Web Application
	Authenticating with Passport
	Authorizing APIs with Custom Middleware
	Creating Authenticated APIs
	Client-Side MVC
	Wrapping Up
	Parting Thoughts

