

jQuery Design Patterns

Learn the best practices on writing efficient
jQuery applications to maximize performance
in large-scale deployments

Thodoris Greasidis

BIRMINGHAM - MUMBAI

jQuery Design Patterns

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1230216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-868-7

www.packtpub.com

Credits

Author
Thodoris Greasidis

Reviewer
Aamir Afridi

Commissioning Editor
Neil Alexander

Acquisition Editor
Aaron Lazar

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Pramod Kumavat

Copy Editors
Trishya Hazare

Kevin McGowan

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Thodoris Greasidis is a senior web engineer from Greece. He graduated with
honors from the University of Thessaly, holds a polytechnic diploma in computer,
networking, and communications engineering, and a master's degree in computer
science. He is a full-stack developer, responsible for implementing large-scale web
applications with intuitive interfaces and high-availability web services.

Thodoris is part of the Angular-UI team and has made many open source
contributions, with a special interest in Mozilla projects. He is also an active member
of the Athens AngularJS Meetup and a technical reviewer of Mastering jQuery UI,
Packt Publishing.

He is a JavaScript enthusiast and loves bitwise operations. His interests also include
NodeJS, Python, project scaffolding, automation, and artificial intelligence, especially
multi-agent systems.

A big thanks to everyone who supported me and showed
understanding for my limited free time while writing this book.

About the Reviewer

Aamir Afridi has been passionate about the Internet and web development since
2002. He holds a master's degree in e-commerce. Over the years that have followed,
he has worked for various companies and provided frontend engineering, including
mobile web apps and architecture services with a focus on semantic HTML, CSS, and
JavaScript/jQuery and anything else he can get his hands on. He has contributed
to JavaScript books as a technical reviewer. These days, he is exploring the
microservices architecture with NodeJS, MongoDB, and ReactJS at www.tes.com.
He blogs on http://aamirafridi.com.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

[i]

Table of Contents
Preface vii
Chapter 1: A Refresher on jQuery and the Composite Pattern 1

jQuery and DOM scripting 2
Manipulating the DOM using jQuery 3

Method Chaining and Fluent Interfaces 7
The Composite Pattern 8

How the Composite Pattern is used by jQuery 8
Comparing the benefits over the plain DOM API 11
Using the Composite Pattern to develop applications 13

A sample use case 14
The Composite Collection Implementation 14
An example execution 16
Alternative implementations 17

The Iterator Pattern 17
How the Iterator Pattern is used by jQuery 18
How it pairs with the Composite Pattern 20
Where can it be used 20

Summary 22
Chapter 2: The Observer Pattern 23

Introducing the Observer Pattern 23
How it is used by jQuery 26

The jQuery on method 26
The document-ready observer 30

Demonstrate a sample use case 32
How it is compared with event attributes 39
Avoid memory leaks 42

Table of Contents

[ii]

Introducing the Delegated Event Observer Pattern 43
How it simplifies our code 44
Compare the memory usage benefits 45

Summary 46
Chapter 3: The Publish/Subscribe Pattern 49

Introducing the Publish/Subscribe Pattern 50
How it differs from the Observer Pattern 51

How it is adopted by jQuery 52
Custom events in jQuery 52
Implementing a Pub/Sub scheme using custom events 52

Demonstrating a sample use case 53
Using Pub/Sub on the dashboard example 54
Extending the implementation 57
Using any object as a broker 59

Using custom event namespacing 59
Summary 60

Chapter 4: Divide and Conquer with the Module Pattern 61
Modules and Namespaces 61

Encapsulating internal parts of an implementation 62
Avoiding global variables with Namespaces 62
The benefits of these patterns 63
The wide acceptance 64

The Object Literal Pattern 64
The Module Pattern 67

The IIFE building block 67
The simple IIFE Module Pattern 69

How it is used by jQuery 71
The Namespace Parameter Module variant 72
The IIFE-contained Module variant 75

The Revealing Module Pattern 77
Using ES5 Strict Mode 78
Introducing ES6 Modules 79
Using Modules in jQuery applications 81

The main dashboard module 82
The categories module 83
The informationBox module 84
The counter module 86
Overview of the implementation 87

Summary 88

Table of Contents

[iii]

Chapter 5: The Facade Pattern 89
Introducing the Facade Pattern 89
The benefits of this pattern 90
How it is adopted by jQuery 91

The jQuery DOM Traversal API 92
The property access and manipulation API 95

Using Facades in our applications 97
Summary 100

Chapter 6: The Builder and Factory Patterns 101
Introducing the Factory Pattern 102

How it is adopted by jQuery 102
Using Factories in our applications 104

Introducing the Builder Pattern 109
How it is adopted by jQuery's API 110
How it is used by jQuery internally 114
How to use it in our applications 116

Summary 121
Chapter 7: Asynchronous Control Flow Patterns 123

Programming with callbacks 124
Using simple callbacks in JavaScript 125
Setting callbacks as object properties 125
Using callbacks in jQuery applications 126
Writing methods that accept callbacks 128
Orchestrating callbacks 129

Queuing in order execution 129
Running concurrently 131

Introducing the concept of Promises 132
Using Promises 135

Using the jQuery Promise API 135
Using Promises/A+ 137
Comparing jQuery and A+ Promises 138

Advanced concepts 140
Chaining Promises 141

Handling thrown errors 143
Joining Promises 144
How jQuery uses Promises 145
Transforming Promises to other types 145

Transforming to Promises/A+ 146
Transforming to jQuery Promises 146

Summarizing the benefits of Promises 147
Summary 148

Table of Contents

[iv]

Chapter 8: Mock Object Pattern 149
Introducing the Mock Object Pattern 150
Using Mock Objects in jQuery applications 152

Defining the actual service requirements 153
Implementing a Mock Service 154
Using the Mock Service 157

Summary 158
Chapter 9: Client-side Templating 159

Introducing Underscore.js 159
Using Underscore.js templates in our applications 161

Separating HTML templates from JavaScript code 162
Introducing Handlebars.js 165

Using Handlebars.js in our applications 166
Separating HTML templates from JavaScript code 168
Pre-compiling templates 169

Retrieving HTML templates asynchronously 170
Adopting it in an existing implementation 171
Moderation is best in all things 173

Summary 174
Chapter 10: Plugin and Widget Development Patterns 175

Introducing jQuery Plugins 176
Following jQuery principles 176

Working on Composite Collection Objects 177
Allowing further chaining 178

Working with $.noConflict() 179
Wrapping with an IIFE 179

Creating reusable plugins 181
Accepting configuration parameters 182
Writing stateful jQuery plugins 185
Implementing a stateful jQuery Plugin 186
Destroying a plugin instance 188
Implementing getter and setter methods 189
Using our plugin in our Dashboard application 191

Using the jQuery Plugin Boilerplate 192
Adding methods to your plugin 193

Choosing a name 195
Summary 196

Table of Contents

[v]

Chapter 11: Optimization Patterns 197
Placing scripts near the end of the page 198
Bundling and minifying resources 199

Using IIFE parameters 200
Using CDNs 201

Using JSDelivr API 201
Optimizing common JavaScript code 202

Writing better for loops 202
Writing performant CSS selectors 203
Writing efficient jQuery code 204

Minimizing DOM traversals 204
Caching jQuery objects 204
Scoping element traversals 205
Chaining jQuery methods 205

Don't overdo it 206
Improving DOM manipulations 206

Creating DOM elements 206
Styling and animating 207
Manipulating detached elements 209
Introducing the Flyweight Pattern 210

Using Delegate Observers 210
Using $.noop() 211
Using the $.single plugin 212

Lazy Loading Modules 213
Summary 217

Index 219

[vii]

Preface
Since its introduction in 2006, the jQuery library has made DOM traversals and
manipulations much easier. This has resulted in the appearance of Web pages with
increasingly complex user interactions, thus contributing to the maturing of Web as a
platform capable of supporting large application implementations.

This book presents a series of best practices that make the implementation of
Web applications more efficient. Moreover, we will analyze the most important
Design Patterns that Computer Science has to offer, which can be applied to
Web development. In this way, we will learn how to utilize techniques that are
thoroughly used and tested in other fields of programming, which were initially
created as generic methods to model solutions of complex problems.

In jQuery Design Patterns, we will analyze how various Design Patterns are
utilized in the implementation of jQuery and how they can be used to improve the
organization of our implementations. By adopting the Design Patterns demonstrated
in this book, you will be able to create better organized implementations that
resolve large problem categories faster. Moreover, when used by a developer team,
they can improve the communication between them and lead to homogenous
implementation, where every part of the code is easily understood by others.

What this book covers
Chapter 1, A Refresher on jQuery and the Composite Pattern, will teach the reader how to
write the code using the Composite Pattern and method chaining (Fluent Interface)
by analyzing how they are used for the implementation of jQuery itself. It also
demonstrates the Iterator Pattern that nicely pairs with the Composite Collection
objects that jQuery returns.

Preface

[viii]

Chapter 2, The Observer Pattern, will teach you how to respond to user actions
using the Observer Pattern. It also demonstrates how to use Event Delegation as a
way to reduce the memory consumption and complexity of the code that handles
dynamically injected page elements. Finally, it will teach you how to emit and listen
for Custom Events in order to achieve greater flexibility and code decoupling.

Chapter 3, The Publish/Subscribe Pattern, will teach you how to utilize the Pub/Sub
Pattern to create a central point to emit and receive application-level events,
as a way to decouple your code and business logic from the HTML that is used
for presentation.

Chapter 4, Divide and Conquer with the Module Pattern, demonstrates and compares
some of the most commonly used Module Patterns in the industry. It will teach
you how to structure your application in small independent Modules using
Namespacing, leading to expandable implementations that follow the Separation
of Concerns principle.

Chapter 5, The Facade Pattern, will teach you how to use the Facade Pattern to
wrap complex APIs into simpler ones that are a better match for the needs of
your application. It also demonstrates how to change parts of your application,
while keeping the same module-level APIs and avoid affecting the rest of
your implementation.

Chapter 6, The Builder and Factory Patterns, explains the concepts of and the
differences between the Builder and Factory Patterns. It will teach you how
and when to use each of them, in order to improve the clarity of your code by
abstracting the generation of complex results into separate dedicated methods.

Chapter 7, Asynchronous Control Flow Patterns, will explain how jQuery's Deferred and
Promise APIs work and compare them with the classical Callbacks Pattern. You will
learn how to use Promises to control the the execution of asynchronous procedures
to run either in an order or parallel to each other.

Chapter 8, Mock Object Pattern, teaches you how to create and use Mock Objects and
Services as a way to ease the development of your application and get a sense of its
functionality, long before all its parts are completed.

Chapter 9, Client-side Templating, demonstrates how to use the Underscore.js and
Handlebars.js templating libraries as a better and faster way to create complex
HTML structures with JavaScript. Through this chapter, you will get an overview
of their conventions, evaluate their features, and find the one that best matches
your taste.

Preface

[ix]

Chapter 10, Plugin and Widget Development Patterns, introduces the basic concepts and
conventions of jQuery Plugin development and analyzes the most commonly used
design patterns, so that you will be able to identify and use the best match for any
use case.

Chapter 11, Optimization Patterns, guides you with the best tips to create a highly
efficient and robust implementation. You will be able to use this chapter as a
checklist of best practices that improve the performance and lower the memory
consumption of your applications, before moving them to a production environment.

What you need for this book
In order to run the examples in this book, you will need to have a web server
installed on your system to serve the code files. For example, you can use
Apache or IIS or NGINX. In order to make the installation process of Apache
easier, you can use more complete development environment solutions, such as
XAMPP or WAMP Server.

In terms of technical proficiency, this book assumes that you already have some
experience of working with jQuery, HTML, CSS, and JSON. All the code samples
in the book use jQuery v2.2.0 and some of the chapters also discuss the respective
implementation in jQuery v1.12.0, which can be used in case support for older
browsers is needed.

Who this book is for
This book targets existing jQuery developers or new developers who want to take
their skills and understanding to an advanced level. It is a detailed introduction to
how the various industry standard patterns can be applied to jQuery applications,
and along with a set of the best practices, it can help large teams collaborate and
create well organized and extendable implementations.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "In the preceding
CSS code, we first defined some basic styles for the box, boxsizer, and clear
CSS classes."

Preface

[x]

A block of code is set as follows:

$.each([3, 5, 7], function(index){
 console.log(this + 1 + '!');
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$('#categoriesSelector').change(function() {
 var $selector = $(this);
 var message = { categoryID: $selector.val() };
 broker.trigger('dashboardCategorySelect', [message]);
});

We are following Google's JavaScript Style Guide, except from using four spaces for
indentation, in order to improve the readability of the code in the book. In short, we
are placing curly brackets on top and use single quotes for string literals.

For more information on Google's JavaScript Style Guide you can visit
the following URL: https://google.github.io/styleguide/
javascriptguide.xml

Any command-line input or output is written as follows:

npm install jquery

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
jQuery Object returned is an Array-like object that acts as a wrapper object and
carries the collection of the retrieved elements."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[xii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

A Refresher on jQuery and
the Composite Pattern

Until the Web 2.0 era started, the Web was just a document-based media and all it
offered was just interconnecting different pages/documents and client-side scripting
that was mostly limited to form validation. By 2005, Gmail and Google Maps were
released, and JavaScript proved itself as a language used by big enterprises to create
large-scale applications and provide rich user interface interactions.

Even though JavaScript has had very few changes since its original release, there was
a tremendous change in the expectations that the Enterprise world had about what
web pages should be capable of doing. Since then, web developers were required to
deliver complex user interactions and, finally, the term "web application" appeared
on the market. As a result, it started to become obvious that they should create some
code abstractions, define some best practices, and adopt all the applicable Design
Patterns that computer science had to offer. The wide adoption of JavaScript for
enterprise-grade applications helped the evolution of the language, which with
the EcmaScript2015/EcmaScript6 (ES6) specification was expanded in a way that
allowed even more Design Patterns to be easily utilized.

In August 2006, the jQuery library was first released by John Resig at
http://jquery.com, as an effort to create a convenient API to locate DOM
elements. Since then, it has been an integral part of a web developer's toolkit.
jQuery in its core uses several Design Patterns and tries to urge their use to the
developer through the methods that it provides. The Composite Pattern is one of
them and it is exposed to the developer through the very core jQuery() method,
which is used for DOM traversal, one of the highlights of the jQuery library.

http://jquery.com

A Refresher on jQuery and the Composite Pattern

[2]

In this chapter, we will:

• Have a refresher on DOM scripting using jQuery
• Introduce the Composite Pattern
• See how the Composite Pattern is used by jQuery
• Discuss the gains offered by jQuery over plain JavaScript DOM manipulations
• Introduce the Iterator Pattern
• Use the Iterator Pattern in an example application

jQuery and DOM scripting
By DOM scripting, we refer to any procedure that alters or manipulates the elements
of a web page after it has been loaded by the browser. The DOM API is a JavaScript
API that was standardized in 1998 and it provides to web developers a collection
of methods that allow the manipulation of the DOM tree elements that the browser
creates after loading and parsing the web page's HTML code.

For more information on the Document Object Mode (DOM) and its
APIs, you can visit https://developer.mozilla.org/en-US/
docs/Web/API/Document_Object_Model/Introduction.

By utilizing the DOM API in their JavaScript code, web developers can manipulate
the DOM's nodes and add new elements or remove existing elements from the page.
The primary use case for DOM scripting was initially limited to client-side form
validation, but as the years passed and JavaScript gained the trust of the Enterprise
world, more complex user interactions started to be implemented.

The initial version of the jQuery library was first released in August 2006 and it tried
to ease the way the web developers were traversing and manipulating the DOM tree.
One of its main goals was to provide abstractions that resulted in shorter, easier-to-
read, and less error-prone code, while also ensuring cross-browser interoperability.

These core principles that jQuery follows are clearly visible in its homepage, where it
presents itself as:

...a fast, small, and feature-rich JavaScript library. It makes things like HTML
document traversal and manipulation, event handling, animation, and Ajax much
simpler with an easy-to-use API that works across a multitude of browsers. With
a combination of versatility and extensibility, jQuery has changed the way that
millions of people write JavaScript.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

Chapter 1

[3]

The abstracted APIs that jQuery provided from the beginning, and the way that
different Design Patterns were orchestrated, led to wide acceptance among the
web developers. As a result, the jQuery library is referenced by more than 60%
of the most visited websites worldwide, according to several sources such as
BuiltWith.com (http://trends.builtwith.com/javascript/jQuery).

Manipulating the DOM using jQuery
To have a refresher on jQuery, we will go through an example web page that does
some simple DOM manipulations. In this example, we will load a simply structured
page that initially looks like the following figure:

DOM Manipulations
Doing DOM Manipulations is easy with JS!

Doing DOM Manipulations is easy with JS!

Doing DOM Manipulations is easy with JS!

Doing DOM Manipulations is easy with JS!

Doing DOM Manipulations is easy with JS!

We will use some jQuery code to change the page's content and layout and, in order
to make its effects clearly visible, we will set it to run about 700 milliseconds after the
page has loaded. The result of our manipulations will look like the following figure:

DOM Manipulations

Doing DOM
Manipulations is easy
with JS!
In case we need simple
things.

Doing DOM Manipulations is easy with JS!

Doing DOM Manipulations is easy with JS!

Doing DOM
Manipulations is easy
with JS!
In case we need simple
things.

Doing DOM
Manipulations is easy
with JS!
In case we need simple
things.

http://trends.builtwith.com/javascript/jQuery

A Refresher on jQuery and the Composite Pattern

[4]

Now let's review the HTML code required for the preceding example:

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Manipulations</title>
 <link rel="stylesheet" type="text/css"
 href="dom-manipulations.css">
 </head>
 <body>
 <h1 id="pageHeader">DOM Manipulations</h1>

 <div class="boxContainer">
 <div>
 <p class="box">
 Doing DOM Manipulations is easy with JS!
 </p>
 </div>
 <div>
 <p class="box">
 Doing DOM Manipulations is easy with JS!
 </p>
 </div>
 <div>
 <p class="box">
 Doing DOM Manipulations is easy with JS!
 </p>
 </div>
 </div>

 <p class="box">
 Doing DOM Manipulations is easy with JS!
 </p>
 <p class="box">
 Doing DOM Manipulations is easy with JS!
 </p>

 <script type="text/javascript"
 src="https://code.jquery.com/jquery-2.2.0.min.js"></script>
 <script type="text/javascript"
 src="jquery-dom-manipulations.js"></script>
 </body>
</html>

Chapter 1

[5]

The CSS code used is quite simple, containing only three CSS classes as follows:

.box {
 padding: 7px 10px;
 border: solid 1px #333;
 margin: 5px 3px;
 box-shadow: 0 1px 2px #777;
}

.boxsizer {
 float: left;
 width: 33.33%;
}

.clear { clear: both; }

The preceding code results in a page looking like the first figure when opened in a
browser and before our JavaScript code is executed. In the preceding CSS code, we
first defined some basic styles for the box, boxsizer, and clear CSS classes. The box
class styles the associated elements found in the page by using some padding, a thin
border, some margin around, and a small shadow below the elements in order to
make them look like a box. The boxsizer class will make the elements that use it to
take just 1/3rd of the width of their parent element and create a three-column layout.
Finally, the clear class will be used on an element as a break point for the column
layout so that all the elements that follow will be positioned below it. The boxsizer
and clear classes are not initially used by any element defined in the HTML code,
but will be used after the DOM manipulations that we will do in JavaScript.

In the <body> element of our HTML, we initially define an <h1> heading element
with ID pageHeader so that it is easily selectable through JavaScript. Right below
it, we define five paragraph elements (<p>) with the box class, having the first three
of them wrapped inside the three <div> elements and then inside another <div>
element with the boxContainer class.

Reaching our two <script> tags, we first include a reference to the jQuery library
from jQuery CDN. For more information, you can visit http://code.jquery.com/.
In the second <script> tag, we reference the JavaScript file with the required code,
for this example, which looks as follows:

setTimeout(function() {
 $('#pageHeader').css('font-size', '3em');

 var $boxes = $('.boxContainer .box');
 $boxes.append(
 '

<i>In case we need simple things</i>.');

http://code.jquery.com/

A Refresher on jQuery and the Composite Pattern

[6]

 $boxes.parent().addClass('boxsizer');

 $('.boxContainer').append('<div class="clear">');
}, 700);

All our code is wrapped inside a setTimeout call to delay its execution, according
to the use case described earlier. The first parameter of the setTimeout function call
is an anonymous function that will be executed after a timer of 700 milliseconds has
expired, as defined in the second argument.

At the first line of our anonymous callback function, we use the jQuery $() function
to traverse the DOM and locate the element with the ID pageHeader, and use the
css() method to increase its font-size to 3em. Next we provide a more complex
CSS selector to the $() function, to locate all the elements with the box class that are
descendants of the element with the boxContainer class, and then store the result in
a variable named $boxes.

Variable naming conventions
It is a common practice among developers to use naming
conventions for variables that hold objects of a certain type. Using
such conventions not only helps you remember what the variable
is holding, but also makes your code easier to understand by other
developers of your team. Among jQuery developers, it is common
to use variable names starting with a "$" sign when the variable
stores the result of the $() function (also know as a jQuery collection
object).

After we get a hold of the box elements that we are interested in, we append two
breaking spaces and some extra text in italics, at the end of each of them. Then, we
use the $boxes variable and traverse the DOM tree one level up, using the parent()
method. The parent() method returns a different jQuery object holding the parent
<div> elements of our initially selected boxes and then we chain a call to the
addClass() method to assign them the boxsizer CSS class.

If you need to traverse all the parent nodes of a selected element,
you can use the $.fn.parents() method. If you just need to find
the first ancestor element that matches a given CSS selector, consider
using the $.fn.closest() method instead.

Chapter 1

[7]

Finally, since the boxsizer class uses floats to achieve the three-column layout,
we need to clear the floats in the boxContainer. Once again, we traverse the DOM
using the simple .boxContainer CSS selector and the $() function. Then, we call
the .append() method to create a new <div> element with the .clear CSS class and
insert it at the end of the boxContainer.

After 700 milliseconds, our jQuery code will have finished, resulting in the
three-column layout as shown earlier. In its final state, the HTML code of our
boxContainer element will look as follows:

<div class="boxContainer">
 <div class="boxsizer">
 <p class="box">
 Doing DOM Manipulations is easy with JS!

<i>In case we need simple things</i>.
 </p>
 </div>
 <div class="boxsizer">
 <p class="box">
 Doing DOM Manipulations is easy with JS!

<i>In case we need simple things</i>.
 </p>
 </div>
 <div class="boxsizer">
 <p class="box">
 Doing DOM Manipulations is easy with JS!

<i>In case we need simple things</i>.
 </p>
 </div>
 <div class="clear"></div>
</div>

Method Chaining and Fluent Interfaces
Actually, in the preceding example, we can also go one step further and combine all
three box-related code statements into just one, which looks something as follows:

$('.boxContainer .box')
 .append('

<i>In case we need simple things</i>.')
 .parent()
 .addClass('boxsizer');

A Refresher on jQuery and the Composite Pattern

[8]

This Syntax Pattern is called Method Chaining and it is highly recommended by
jQuery and the JavaScript community in general. Method Chaining is part of the
Object Oriented Implementation Pattern of Fluent Interfaces where each method
relays its instruction context to the subsequent one.

Most jQuery methods that apply on a jQuery object also return the same or a new
jQuery element collection object. This allows us to chain several methods, not only
resulting in a more readable and expressive code but also reducing the required
variable declarations.

The Composite Pattern
The key concept of the Composite Pattern is to enable us to treat a collection
of objects in the same way as we treat a single object instance. Manipulating
a composition by using a method on the collection will result in applying the
manipulation to each part of it. Such methods can be applied successfully,
regardless of the number of elements that are part of the composite collection,
or even when the collection contains no elements.

Also, the objects of a composite collection do not necessarily have to provide the
exact same methods. The Composite Object can either expose only the methods that
are common among the objects of the collection, or can provide an abstracted API
and appropriately handle the method differentiations of each object.

Let's continue by exploring how the intuitive API that jQuery exposes is highly
influenced from the Composite Pattern.

How the Composite Pattern is used by jQuery
The Composite Pattern is an integral part of jQuery's architecture and is applied from
the very core $() function itself. Each call to the $() function creates and returns an
element collection object, which is often simply referred as a jQuery object. This is
exactly where we see the first principle of the Composite Patterns; in fact, instead
of returning a single element, the $() function returns a collection of elements.

The jQuery object returned is an Array-like object that acts as a wrapper object and
carries the collection of the retrieved elements. It also exposes a number of extra
properties as follows:

• The length of the retrieved element collection
• The context that the object was constructed

Chapter 1

[9]

• The CSS selector that was used on the $() function call
• A prevObject property in case we need to access the previous element

collection after chaining a method call

Simple Array-like object definition
An Array-like object is a JavaScript object { } that has a numeric
length property and the respective number of properties, with
sequential numeric property names. In other words, an Array-
like object that has the length == 2 property is expected to
also have two properties defined, "0" and "1". Given the above
properties, Array-like objects allow you to access their content
using simple for loops, by utilizing JavaScript's Bracket Property
Accessor's syntax:

for (var i = 0; i < obj.length; i++) {
 console.log(obj[i]);
}

We can easily experiment with the jQuery objects returned from the $() function and
inspect the properties described above, by using the developer tools of our favorite
browser. To open the developer tools on most of them, we just need to press F12 on
Windows and Linux or Cmd + Opt + I on Mac, and right after that, we can issue some
$() calls in the console and click on the returned objects to inspect their properties.

In the following figure, we can see what the result of the $('#pageHeader') call,
which we used in the example earlier, looks like in Firefox Developer Tools:

The result of the $('.boxContainer .box') call looks as follows:

A Refresher on jQuery and the Composite Pattern

[10]

The fact that jQuery uses Array-like objects as a wrapper for the returned elements
allows it to expose some extra methods that apply on the collection returned. This
is achieved through prototypical inheritance of the jQuery.fn object, resulting in
each jQuery object also having access to all the methods that jQuery provides. This
completes the Composite Pattern, which provides methods that, when applied to
a collection, are appropriately applied to each of its members. Because jQuery uses
Array-like objects with prototypical inheritance, these methods can be easily accessed
as properties on each jQuery object, as shown in the example in the beginning of the
chapter: $('#pageHeader').css('font-size', '3em');. Moreover, jQuery adds
some extra goodies to its DOM manipulating code, following the goal of smaller and
less error-prone code. For example, when using the jQuery.fn.html() method to
change the inner HTML of a DOM node that already contains child elements, jQuery
first tries to remove any data and event handlers that are associated with the child
elements, before removing them from the page and appending the provided
HTML code.

Let's take a look at how jQuery implements these collection-applicable methods.
For this task, we can either download and view the source code from the GitHub
page of jQuery (https://github.com/jquery/jquery/releases), or we can use a
tool such as the jQuery Source Viewer that is available at http://james.padolsey.
com/jquery.

Depending on the version you are using, you might get
different results to some degree. The most recent stable jQuery
version that was released and used as a reference while writing
this book, was v2.2.0.

One of the simplest methods to demonstrate how methods that apply to collections
are implemented, is jQuery.fn.empty(). You can easily locate its implementation in
jQuery's source code by searching for "empty:" or using the jQuery Source Viewer
and searching for "jQuery.fn.empty". Using either one of the ways will bring us to
the following code:

empty: function() {
 var elem, i = 0;

 for (; (elem = this[i]) != null; i++) {
 if (elem.nodeType === 1) {
 // Prevent memory leaks
 jQuery.cleanData(getAll(elem, false));

 // Remove any remaining nodes
 elem.textContent = "";

https://github.com/jquery/jquery/releases
http://james.padolsey.com/jquery
http://james.padolsey.com/jquery

Chapter 1

[11]

 }
 }

 return this;
}

As you can see, the code is not complex at all. jQuery iterates over all the items of the
collection object (referred to as this since we are inside the method implementation)
by using a plain for loop. For each item of the collection, that is, an Element Node,
it clears any data-* property values using the jQuery.cleanData() helper function,
and right after this, it clears its content by setting it to an empty string.

For more information on the different specified Node Types, you
can visit https://developer.mozilla.org/en-US/docs/
Web/API/Node/nodeType.

Comparing the benefits over the plain DOM
API
To clearly demonstrate the benefits that the Composite Pattern provides, we will
rewrite our initial example without the abstractions that jQuery offers. By using
just plain JavaScript and the DOM API, we can write an equivalent code that looks
as follows:

setTimeout(function() {
 var headerElement = document.getElementById('pageHeader');
 if (headerElement) {
 headerElement.style.fontSize = '3em';
 }
 var boxContainerElement =
 document.getElementsByClassName('boxContainer')[0];
 if (boxContainerElement) {
 var innerBoxElements =
 boxContainerElement.getElementsByClassName('box');
 for (var i = 0; i < innerBoxElements.length; i++) {
 var boxElement = innerBoxElements[i];
 boxElement.innerHTML +=
 '

<i>In case we need simple things</i>.';
 boxElement.parentNode.className += ' boxsizer';
 }

https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType
https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType

A Refresher on jQuery and the Composite Pattern

[12]

 var clearFloatDiv = document.createElement('div');
 clearFloatDiv.className = 'clear';
 boxContainerElement.appendChild(clearFloatDiv);
 }
}, 700);

Once again, we use setTimeout with an anonymous function and set 700
milliseconds as the second parameter. Inside the function itself, we use
document.getElementById to retrieve elements that are known to have a
unique ID in the page, and later document.getElementsByClassName when
we need to retrieve all the elements that have a specific class. We also use
boxContainerElement.getElementsByClassName('box') to retrieve all
the elements with the box class that are descendants of the element with the
boxContainer class.

The most obvious observation is that, in this case, we needed 18 lines of code in
order to achieve the same results. For comparison, when using jQuery, we only
needed 9 lines of code, that's half the number of lines of code compared to the later
implementation. Using the jQuery $() function with a CSS selector was an easier
way to retrieve the elements that we needed, and it also ensures compatibility
with browsers that do not support the getElementsByClassName() method.
However, there are more benefits than just the code line count and the improved
readability. As an implementer of the Composite Pattern, the $() function always
retrieves element collections, making our code more uniform when compared to
the differentiated handling of each getElement* method we used. We use the $()
function in exactly the same way, regardless of whether we just want to retrieve an
element with a unique ID or a number of elements with a specific class.

As an extra benefit of returning Array-like objects, jQuery can also provide more
convenient methods to traverse and manipulate the DOM, such as those we saw
in our first example, .css(), .append() and .parent(), which are accessible as
properties of the returned object. Additionally, jQuery also offers methods that
abstract more complex use cases such as .addClass() and .wrap() that have no
equivalent methods available as part of the DOM API.

Since the returned jQuery collection objects do not differ in anything other than the
elements they wrap, we can use any method of the jQuery API in the same way.
As we saw earlier, these methods apply to each element of the retrieved collection,
regardless of the element count. As a result, we do not need a separate for loop
to iterate over each retrieved element and apply our manipulations individually;
instead, we apply our manipulations (for example, .addClass()) directly to the
collection object.

Chapter 1

[13]

To continue providing the same execution safety guaranties in the later example, we
also need to add some extra if statements to check for null values. This is required
because, for example, if the headerElement is not found, an error will occur and
the rest of the lines of code will never be executed. Someone could argue that these
checks, such as if (headerElement) and if (boxContainerElement), are not
required in this example and can be omitted. This might appear to be correct in this
example, but actually this is among the top reasons for errors while developing
large-scale applications, where elements are created, inserted, and removed from the
DOM tree continuously. Unfortunately, programmers in all languages and target
platforms tend to first write their implementation logic and fill such checks at a
later time, often after they get an error when testing their implementation.

Following the Composite Pattern, even an empty jQuery collection object (one
that contains no retrieved elements) is still a valid collection object, where we can
safely apply any method that jQuery provides. As a result, we do not need the extra
if statements to check whether a collection actually contains any element before
applying a method such as .css(), just for the sake of avoiding a JavaScript
runtime error.

Overall, the abstractions that jQuery offers by using the Composite Pattern
lead to fewer lines of code, which is more readable, uniform, and with fewer
typo-prone lines (compare typing $('#elementID') versus document.
getElementById('elementID')).

Using the Composite Pattern to develop
applications
Now that we have seen how jQuery uses the Composite Pattern in its architecture
and also did a comparison on the benefits it provided, let's try to write an example
use case of our own. We will try to cover all concepts that we have seen earlier in
this chapter. We will structure our Composite to be an Array-like object, operate on
totally different structured objects, provide a Fluent API to allow chaining, and have
methods that apply on all the items of the collection.

A Refresher on jQuery and the Composite Pattern

[14]

A sample use case
Let's say that we have an application that at some point needs to perform operations
on numbers. On the other hand, the items that it needs to operate on come from
different sources and are not uniform at all. To make this example interesting, let's
suppose that one source of data provides plain numbers and another one provides
objects with a specific property that holds the number we are interested in:

var numberValues = [2, 5, 8];

var objectsWithValues = [
 { value: 7 },
 { value: 4 },
 { value: 6 },
 { value: 9 }
];

The objects returned by the second source of our use case could have a more complex
structure and probably some extra properties. Such changes wouldn't differentiate
our example implementation in any way, since when developing a Composite we are
only interested in providing a uniform handling over the common parts between the
targeted items.

The Composite Collection Implementation
Let's proceed and define the Constructor Function and the prototype that will
describe our Composite Collection Object:

function ValuesComposite() {
 this.length = 0;
}

ValuesComposite.prototype.append = function(item) {
 if ((typeof item === 'object' && 'value' in item) ||
 typeof item === 'number') {
 this[this.length] = item;
 this.length++;
 }

 return this;
};

ValuesComposite.prototype.increment = function(number) {
 for (var i = 0; i < this.length; i++) {
 var item = this[i];

Chapter 1

[15]

 if (typeof item === 'object' && 'value' in item) {
 item.value += number;
 } else if (typeof item === 'number') {
 this[i] += number;
 }
 }

 return this;
};

ValuesComposite.prototype.getValues = function() {
 var result = [];
 for (var i = 0; i < this.length; i++) {
 var item = this[i];
 if (typeof item === 'object' && 'value' in item) {
 result.push(item.value);
 } else if (typeof item === 'number') {
 result.push(item);
 }
 }
 return result;
};

The ValuesComposite() constructor function in our example is quite simple. When
invoked with the new operator, it returns an empty object with a length property
equal to zero, representing that the collection it wraps is empty.

For more information on the Prototype-based programming model
of JavaScript, visit https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Introduction_to_Object-
Oriented_JavaScript.

We first need to define a way that will enable us to populate our composite collection
objects. We defined the append method that checks whether the provided parameter
is one of the types that it can handle; in this case, it appends the parameter on
the Composite Object on the next available numeric property and increments the
length property value. For example, the first appended item, whether it is an object
with a value property or a plain number, will be exposed to the "0" property of the
Composite Object and will be accessible with the Bracket Property Accessor's syntax
as myValuesComposition[0].

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

A Refresher on jQuery and the Composite Pattern

[16]

The increment method is presented as a simple example method that can
manipulate such collections by operating over all the collection items. It accepts
a numeric value as a parameter and then appropriately handles it by adding it to
each item of our collection, based on their type. Since our composite is an Array-like
object, increment uses a for loop to iterate over all the collection items and either
increases the item.value (in case the item is an object) or the actual numeric value
stored (when the collection item stored is a number). In the same manner, we can
continue and implement other methods that will, for example, enable us to multiply
the collection items with a specific number.

In order to allow chaining the methods of our Composite Object, all the methods of
the prototype need to return a reference to the instance of the object. We achieve this
goal by simply adding a return this; statement as the last line for all the methods
that manipulate the collection, such as append and increment. Keep in mind that
methods such as getValues that do not manipulate the collection but are used to
return a result, by definition, can't be chained to relay the collection object instance
to subsequent method calls.

Finally, we implement the getValues method as a convenient way to retrieve the
actual numeric values of all the items in our collection. Similar to the increment
method, the getValues method abstracts away the handling between the different
item types of our collection. It iterates over the collection items, extracts each
numeric value, and appends them to a result array that it returns to its caller.

An example execution
Let's now see an actual example that will use the Composite Object we
just implemented:

var valuesComposition = new ValuesComposite();

for (var i = 0; i < numberValues.length; i++) {
 valuesComposition.append(numberValues[i]);
}

for (var i = 0; i < objectsWithValues.length; i++) {
 valuesComposition.append(objectsWithValues[i]);
}

valuesComposition.increment(2)
 .append(1)
 .append(2)
 .append({ value: 3 });

console.log(valuesComposition.getValues());

Chapter 1

[17]

When the preceding code is executed in a browser, by writing the code either in
an existing page or directly in the browser's console, it will log a result that looks
as follows:

► Array [4, 7, 10, 9, 6, 8, 11, 1, 2, 3]

We are using our data sources such as the numberValues and objectsWithValues
variables that were shown earlier. The preceding code iterates over both of them and
appends their items to a newly created Composite Object instance. We then proceed
by incrementing the values of our composite collection by 2. Right after this, we
chain the three item insertions using append, with the first two appending numeric
values and the third appending an object with a value property. Finally, we use
the getValues method in order to get an array with all the numeric values of our
collection and log it in our browser's console.

Alternative implementations
Keep in mind that a Composite does not need to be an Array-like object, but is
commonly preferred since JavaScript makes it easy to create such an implementation.
Additionally, Array-like implementations also have the benefit of allowing us to
iterate over the collection items using a simple for loop.

On the other hand, in case an Array-like object is not preferred, we can easily
use a property on the Composite Object to hold our collection items. For example,
this property can be named as items and be used to store and access the items
of the collection inside our methods using this.items.push(item) and
this.items[i], respectively.

The Iterator Pattern
The key concept of the Iterator Pattern is the use of a function with the single
responsibility to traverse a collection and provide access to its items. This function
is known as the iterator and provides a way to access the items of the collection,
without exposing implementation specifics and the underlying data structure used
by the collection object.

Iterators provide a level of encapsulation regarding the way the iteration occurs,
decoupling the iteration over the items of a collection from the implementation
logic of their consumers.

A Refresher on jQuery and the Composite Pattern

[18]

For more information on the Single Responsibility principle,
you can visit http://www.oodesign.com/single-
responsibility-principle.html.

How the Iterator Pattern is used by jQuery
As we saw earlier in this chapter, the jQuery core $() function returns an Array-
like object that wraps a collection of page elements and it also provides an iterator
function to traverse it and access each element individually. It actually goes one step
further and provides a generic helper method jQuery.each() that can iterate over
arrays, Array-like objects, and also object properties.

A more technical description can be found in jQuery API documentation page at
http://api.jquery.com/jQuery.each/, where the description of jQuery.each()
reads as follows:

A generic iterator function, which can be used to seamlessly iterate over both
objects and arrays. Arrays and Array-like objects with a length property (such as
a function's arguments object) are iterated by numeric index, from 0 to length-1.
Other objects are iterated via their named properties.

The jQuery.each() helper function is used internally in several places of the
jQuery source code. One of its uses is iterating over the items of a jQuery object
and applying manipulations on each of them, as the Composite Pattern suggests.
A simple search for the keyword .each(reveals 56 matches.

As of writing this book, the latest stable version is v2.2.0 and
this was used for the above statistics.

We can easily trace its implementation in jQuery's source, either by searching for
"each:" (note that there are two occurrences) or using the jQuery Source Viewer
and searching for "jQuery.each()" (like we did earlier in this chapter):

each: function(obj, callback) {
 var length, i = 0;

 if (isArrayLike(obj)) {
 length = obj.length;

http://www.oodesign.com/single-responsibility-principle.html
http://www.oodesign.com/single-responsibility-principle.html
http://api.jquery.com/jQuery.each/

Chapter 1

[19]

 for (; i < length; i++) {
 if (callback.call(obj[i], i, obj[i]) === false) {
 break;
 }
 }
 } else {
 for (i in obj) {
 if (callback.call(obj[i], i, obj[i]) === false) {
 break;
 }
 }
 }

 return obj;
}

This helper function is also accessible on any jQuery object by using the same
prototypical inheritance that we saw earlier for methods such as .append(). You
can easily find the code that does exactly this, by searching for "jQuery.fn.each()"
in jQuery Source Viewer or directly searching jQuery source code for each: (note
that there are two occurrences):

each: function(callback) {
 return jQuery.each(this, callback);
}

Using the method version of ".each()" enables us to directly iterate over the
elements of a jQuery collection object with a more convenient syntax.

The example code that follows showcases how the two flavors of .each() can be
used in our code:

// using the helper function on an array
$.each([3, 5, 7], function(index){
 console.log(this + 1);
});
// using the method on a jQuery object
$('.boxContainer .box').each(function(index) {
 console.log('I\'m box #' + (index + 1)); // index is zero-based
});

A Refresher on jQuery and the Composite Pattern

[20]

When executed, the preceding code will log the following on the browser's console:

How it pairs with the Composite Pattern
Since the Composite Pattern encapsulates a collection of items into a single object
and the Iterator Pattern can be used to iterate over an abstracted data structure,
we can easily characterize these two patterns as complementary.

Where can it be used
The Iterator Pattern can be used in our applications to abstract the way we access
items from a data structure. For example, let's suppose we need to retrieve all the
items that are greater than 4 from the following tree structure:

var collection = {
 nodeValue: 7,
 left: {
 nodeValue: 4,
 left: 2,
 right: {
 nodeValue: 6,
 left: 5,
 right: 9
 }
 },
 right: {
 nodeValue: 9,
 left: 8
 }
};

Chapter 1

[21]

Let's now implement our iterator function. Since tree data structures can have
nesting, we end up with the following recursive implementation:

function iterateTreeValues(node, callback) {
 if (node === null || node === undefined) {
 return;
 }

 if (typeof node === 'object') {
 if ('left' in node) {
 iterateTreeValues(node.left, callback);
 }
 if ('nodeValue' in node) {
 callback(node.nodeValue);
 }
 if ('right' in node) {
 iterateTreeValues(node.right, callback);
 }
 } else {
 // its a leaf, so the node is the value
 callback(node);
 }
}

Finally, we end up with an implementation that looks as follows:

var valuesArray = [];
iterateTreeValues(collection, function(value) {
 if (value > 4) {
 valuesArray.push(value);
 }
});
console.log(valuesArray);

When executed, the preceding code will log the following on the browser's console:

► Array [5, 6, 9, 7, 8, 9]

We can clearly see that the iterator simplified our code. We no longer bother with
the implementation specifics of the data structure used every time we need to access
some items that fulfill certain criteria. Our implementation works on top of the
generic API that the iterator exposes, and our implementation logic appears in the
callback that we provide to the iterator.

A Refresher on jQuery and the Composite Pattern

[22]

This encapsulation allows us to decouple our implementation from the data structure
used, given that an iterator with the same API will be available. For instance, in this
example, we can easily change the data structure used to a sorted binary tree or a
simple array and preserve our implementation logic the same.

Summary
In this chapter, we had a refresher on JavaScript's DOM Scripting API and jQuery.
We were introduced to the Composite Pattern and saw how it is used by the jQuery
library. We saw how the Composite Pattern simplifies our workflow after we
rewrote our example page without using jQuery, and later showcased an example
of using the Composite Pattern in our applications. Finally, we were introduced
to the Iterator Pattern and saw how well it pairs when used along with the
Composite Pattern.

Now that we have completed our introduction on how the Composite Pattern plays
an important role in the way we use jQuery methods every day, we can move on to
the next chapter where we will showcase the Observer Pattern and the convenient
way to utilize it in our pages using jQuery.

[23]

The Observer Pattern
In this chapter, we will showcase the Observer Pattern and the convenient way in
which we can utilize it in our pages using jQuery. Later on, we will also explain the
Delegated Event Observer Pattern variant, which when properly applied to web
pages can lead to code simplifications and also lessen the memory consumption
that a page requires.

In this chapter, we will:

• Introduce the Observer Pattern
• See how the Observer Pattern is used by jQuery
• Compare the Observer Pattern with using the event attributes
• Learn how to avoid memory leaks from observers
• Introduce the Delegated Event Observer Pattern and showcasing

its benefits

Introducing the Observer Pattern
The key concept of the Observer Pattern is that there is an object, often referred to as
the observable or the subject, whose internal state changes during its lifetime. There
are also several other objects, referred as the observers, that want to be notified in the
event that the state of the observable/subject changes, in order to execute
some operations.

The Observer Pattern

[24]

The observers may need to be notified about any kind of state change of the
observable or only specific types of changes. In the most common implementation,
the observable maintains a list with its observers and notifies them when an
appropriate state change occurs. In case a state change occurs to the observable, it
iterates through the list of observers that are interested for that type of state change
and executes a specific method that they have defined.

According to the definition of the Observer Pattern and the reference implementation
in Computer Science books, the observers are described as objects that implement a
well-known programming interface, in most cases, specific to each observable they
are interested in. In the case of a state change, the observable will execute the well-
known method of each observer as it is defined in the programming interface.

For more information on how the Observer Pattern is used in traditional,
object-oriented programming, you can visit http://www.oodesign.
com/observer-pattern.html.

http://www.oodesign.com/observer-pattern.html
http://www.oodesign.com/observer-pattern.html

Chapter 2

[25]

In the web stack, the Observer Pattern often uses plain anonymous callback functions
as observers instead of objects with well-known methods. An equivalent result, as
defined by the Observer Pattern, can be achieved since the callback function keeps
references to the variables of the environment that it was defined in—a pattern
commonly referenced as a Closure. The main benefit of using the Observer Pattern
over callbacks as invocation or initialization parameters is that the Observer Pattern
can support several independent handlers on a single target.

For more information on closures, you can visit https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Closures.

Defining a simple callback
A callback can be defined as a function that is passed as an argument to
another function/method or is assigned to a property of an object and
expected to be executed at some later point of time. In this way, the piece
of code that was handed our callback will invoke or call it, propagating
the results of an operation or event back to the context where the callback
was defined.

Since the pattern of registering functions as observers has proven to be more
flexible and straightforward to program, it can be found in programming languages
outside the web stack as well. Other programming languages provide an equivalent
functionality through language features or special objects such as subroutines,
lambda expressions, blocks, and function pointers. For example, Python also
defines functions as first-class objects such as JavaScript, enabling them to be
used as callbacks, while C# defines Delegates as a special object type in order
to achieve the same result.

The Observer Pattern is an integral part of developing web interfaces that respond
to user actions, and every web developer has used it to some degree, even without
noticing it. This is because the first thing that a web developer needs to do while
creating a rich user interface is to add event listeners to page elements and define
how the browser should respond to them.

This is traditionally achieved by using the EventTarget.addEventListener()
method on the page elements that we need to listen to for events such as a "click",
and providing a callback function with the code that needs to be executed when
that event occurs. It is worth mentioning that in order to support older versions of
Internet Explorer, testing for the existence of EventTarget.attachEvent(), and
using that instead, is required.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

The Observer Pattern

[26]

For more information on the addEventListener() and
attachEvent() methods, you can visit https://developer.
mozilla.org/en-US/docs/Web/API/EventTarget/
addEventListener and https://developer.mozilla.org/en-
US/docs/Web/API/EventTarget/attachEvent.

How it is used by jQuery
The jQuery library heavily uses the Observer Pattern in several parts of its
implementation, either directly by using the addEventListener method or creating
its own abstraction over it. Moreover, jQuery offers a series of abstractions and
convenient methods to make working with the Observer Pattern easier on the web
and also uses some of them internally to implement other methods as well.

The jQuery on method
The jQuery.fn.on() method is the central jQuery method for attaching event
handlers to elements, providing an easy way to adopt the Observer Pattern,
while keeping our code easy to read and reason. It attaches the requested event
handler over all the elements of a composite jQuery collection object returned by
the $() function.

Searching for jQuery.fn.on in jQuery's Source Viewer (which is available at
http://james.padolsey.com/jquery), or directly searching jQuery's source code
for on: function (the first character is a tab), will lead us to the method's definition,
which counts 67 lines of code. Actually, the first 55 lines of the internal on function
are just handling all the different ways that the jQuery.fn.on() method can be
invoked; near its end, we can see that it actually uses the internal method jQuery.
event.add():

jQuery.fn.extend({
 on: function(types, selector, data, fn) {
 return on(this, types, selector, data, fn);
 }
});

function on(elem, types, selector, data, fn, one) {

 /* 55 lines of code handling the method overloads */
 return elem.each(function() {
 jQuery.event.add(this, types, fn, data, selector);
 });
}

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/attachEvent
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/attachEvent
http://james.padolsey.com/jquery

Chapter 2

[27]

The jQuery.event object is the one-place stop for event handling in jQuery and its
implementation counts around 443 lines of code. It holds several helper functions
for managing events such as add, dispatch, fix, handlers, remove, simulate,
and trigger. All these functions are used internally by jQuery itself wherever the
Observer Pattern appears or managing events is required.

Searching for jQuery.event.add in jQuery's Source Viewer or jQuery.event =
directly in jQuery's source code, will lead us to the relatively long implementation
of the helper function that counts around 107 lines of code in jQuery v2.2.0. The
following code snippet shows a trimmed down version of that method, where
some code related to the technical implementation of jQuery and not related to
the Observer Pattern has been removed for clarity:

add: function(elem, types, handler, data, selector) {
 /* ... 4 lines of code ... */
 elemData = dataPriv.get(elem);
 /* ... 13 lines of code ... */

 // Make sure that the handler has a unique ID,
 // used to find/remove it later
 if (!handler.guid) {
 handler.guid = jQuery.guid++;
 }

 // Init the element's event structure and main handler,
 // if this is the first
 if (!(events = elemData.events)) {
 events = elemData.events = {};
 }
 /* ... 9 lines of code ... */

 // Handle multiple events separated by a space
 types = (types || "").match(rnotwhite) || [""];
 t = types.length;
 while (t--) {
 /* ... 30 lines of code ... */

 // Init the event handler queue if we're the first
 if (!(handlers = events[type])) {
 handlers = events[type] = [];
 handlers.delegateCount = 0;

 // Only use addEventListener if the special events handler
 // returns false
 if (!special.setup || special.setup.call(
 elem, data, namespaces, eventHandle) === false) {
 if (elem.addEventListener) {
 elem.addEventListener(type, eventHandle);

The Observer Pattern

[28]

 }
 }
 }

 /* ... 9 lines of code ... */

 // Add to the element's handler list, delegates in front
 if (selector) {
 handlers.splice(handlers.delegateCount++, 0,
 handleObj);
 } else {
 handlers.push(handleObj);
 }
 /* ... 3 lines of code ... */
 }
}

Now, let's see how the Observer Pattern is implemented by jQuery.event.add(),
by referring to the preceding highlighted code.

The handler variable in the arguments of the jQuery.event.add() method stores
the function that was originally passed as an argument to the jQuery.fn.on()
method. We can refer to this function as our observer function, since it is executed
when the appropriate event fires on the element that it was attached to.

In the first highlighted code area, jQuery creates and assigns a guid property to the
observer function that is stored in the handler variable. Keep in mind that assigning
properties to functions is possible in JavaScript, since functions are first-class objects.
The jQuery.guid++ statement is executed right after the assignment of the old
value and is required since jQuery.guid is a page-wide counter used by jQuery and
jQuery plugins internally. The guid property on the observer function is used as a
way to identify and locate the observer function inside the observer list that jQuery
has for each element. For example, it is used by the jQuery.fn.off() method to
locate and remove an observer function from the observer list associated with
an element.

jQuery.guid is a page-wide counter that is used by the plugins and
jQuery itself as a centralized way to retrieve unique integer IDs. It is often
used to assign unique IDs to elements, objects, and functions, in order to
make it easier to locate them in collections. It is the responsibility of each
implementer that retrieves and uses the current value of jQuery.guid
to also increase the property value (by one) after each use. Otherwise,
and since this is a page-wide counter that is used by both jQuery plugins
and jQuery themselves for identification, the page will probably face
malfunctions that are hard to debug.

Chapter 2

[29]

In the second and third highlighted code areas, jQuery initializes an array to hold
the observer lists for each individual event that may fire on that element. One thing
to note in the second highlighted code area is that the observer lists found in the
elemData variable are not a property on the actual DOM element. As shown in
the dataPriv.get(elem) statement, near the start of the jQuery.event.add()
method, jQuery uses separate mapping objects to hold the associations between
DOM elements and their observer lists. By using this data cache mechanism, jQuery
is able to avoid polluting the DOM elements with the extra properties that are
needed by its implementation.

You can easily locate the data cache mechanism implementation in
the source code of jQuery by searching for function Data(). This
will bring you to the constructor function of the Data class that is also
followed by the implementation of the class methods that are defined
in the Data.prototype object. For more information, you can visit
http://api.jquery.com/data.

The next highlighted code area is where jQuery checks whether the EventTarget.
addEventListener() method is actually available for that element and then uses
it to add the event listener to the element. In the final highlighted code area, jQuery
adds the observer function to its internal list, which holds all the observers of the
same event type that are attached to that specific element.

Depending on the version you are using, you might get different results
to some degree. The most recent stable jQuery version released and used
as reference while writing this book was v2.2.0.
In case you need to provide support for older browsers, for example,
Internet Explorer lower than version 9, then you should use the v1.x
versions of jQuery. The latest version as of the writing of this book was
v1.12.0, which offers the exact same API as the v2.2.x versions, but also
has the required code to work on older browsers.
In order to cover the implementation inconsistencies of older browsers,
the implementation of jQuery.event.add() in jQuery v1.x is a bit
longer and more complex. One of the reasons for this is because jQuery
also needs to test whether EventTarget.addEventListener()
is actually available in the browser that it is running and try to use
EventTarget.attachEvent() if this is not the case.

As we saw in the preceding code, the jQuery implementation follows the
operation model that the Observer Pattern describes, but it also incorporates
some implementation tricks in order to make it work more efficiently with the
APIs available to web browsers.

http://api.jquery.com/data

The Observer Pattern

[30]

The document-ready observer
Another convenient method that jQuery offers, which is widely used by developers,
is the $.fn.ready() method. This method accepts a function parameter and
executes it only after the DOM tree of the page has been fully loaded. Such a thing
can be useful in case your code is not loaded last in the page and you don't want to
block the initial page render, or the elements that it needs to manipulate are defined
later than its own <script> tag.

Keep in mind that the $.fn.ready() method works slightly differently
than the window.onload callback and the "load" event of the page,
which wait until all the resources of the page are loaded. For more
information, you can visit http://api.jquery.com/ready.

The following code demonstrates the most common way to use the
$.fn.ready() method:

$(document).ready(function() {
 /* this code will execute only after the page has been fully
 loaded */
})

If we try to locate the implementation of jQuery.fn.ready, we will see that it
actually uses jQuery.ready.promise internally to work:

jQuery.fn.ready = function(fn) {
 // Add the callback
 jQuery.ready.promise().done(fn);

 return this;
};
/* … a lot lines of code in between */
jQuery.ready.promise = function(obj) {
 if (!readyList) {

 readyList = jQuery.Deferred();

 // Catch cases where $(document).ready() is called
 // after the browser event has already occurred.
 // Support: IE9-10 only
 // Older IE sometimes signals "interactive" too soon

http://api.jquery.com/ready

Chapter 2

[31]

 if (document.readyState === "complete" ||
 (document.readyState !== "loading" &&
 !document.documentElement.doScroll)) {
 // Handle it asynchronously to allow ... to delay ready
 window.setTimeout(jQuery.ready);

 } else {
 // Use the handy event callback
 document.addEventListener("DOMContentLoaded",
 completed);

 // A fallback to window.onload, that will always work
 window.addEventListener("load", completed);
 }
 }
 return readyList.promise(obj);
};

As you can see in the preceding highlighted code areas of the implementation,
jQuery uses addEventListener to observe when the DOMContentLoaded event
is fired on the document object. Moreover, to ensure that it will work across a
wide range of browsers, it also observes for the load event to be fired on the
window object.

The jQuery library also provides shorter methods to add the above functionality
in your code. Since the aforementioned implementation does not actually need a
reference to the document, we can instead just write $().ready(function() {/*
... */ }). There also exists an overload of the $() function that achieves the same
result, which is used like $(function() {/* ... */ }). These two alternative
ways to use jQuery.fn.ready have been heavily criticized among developers, since
they commonly lead to misunderstandings. The second, shorter version in particular
can lead to confusion, since it looks like an Immediately Invoked Function
Expression (IIFE), a pattern that JavaScript developers use heavily and have
learned to recognize. In fact, it only differs by one character ($) and as a result,
its use is not suggested before a discussion with the rest of your developer team.

The $.fn.ready() method is also characterized as a method that
provides an easy way to implement the Lazy Initialization/Execution
Pattern in our code. The core concept of this pattern is to postpone the
execution of a piece of code or load a remote resource at a later point
of time. For example, we can wait for the page to be fully loaded until
we add our observers or wait for a certain event to happen before
downloading a web resource.

The Observer Pattern

[32]

Demonstrate a sample use case
In order to see the Observer Pattern in action, we will create an example showcasing
a skeleton implementation of a dashboard. In our example, the user will be able to
add information boxes to his dashboard related to some sample items and categories
that are available for selection on the header.

Our example will have three predefined categories for our items: Products , Sales,
and Advertisements. Each of these categories will have a series of related items that
will appear in the area right below the category selector. The user will be able to
select the desired category by using a drop-down selector and this will change the
visible selection items of the dashboard.

Our dashboard will initially contain a hint information box about the dashboard
usage. Whenever a user clicks on one of the category items, a new information box
will appear in our three-column layout dashboard. In the preceding image, the user
has added two new information boxes for Product B and Product D by clicking on
the associated buttons.

Chapter 2

[33]

The user will also be able to dismiss any of these information boxes by clicking on a
red close button on the top-right of each information box. In the preceding image, the
user dismissed the Product D information box, then added information boxes for the
Advertisement 3 and later the 1st, 2nd, and 3rd week items of the Sales category.

By just reading the above description, we can easily isolate all the user interactions
that are required for the implementation of our dashboard. We will need to add
observers for each one of these user interactions and write code inside the callback
functions that execute the appropriate DOM manipulations.

In detail, our code will need to:

• Observe changes done to the currently selected element and respond to such
event by hiding or revealing the appropriate items

• Observe the clicks on each item button and respond by adding a new
information box

• Observe the clicks on the close button of each information box and respond
by removing it from the page

Now let's proceed and review the HTML, CSS, and JavaScript code required for the
preceding example. Let's start with the HTML code and for reference, let's say that
we saved it in a file named Dashboard Example.html, as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>Dashboard Example</title>
 <link rel="stylesheet" type="text/css"
 href="dashboard-example.css">
 </head>
 <body>
 <h1 id="pageHeader">Dashboard Example</h1>

 <div class="dashboardContainer">
 <section class="dashboardCategories">
 <select id="categoriesSelector">
 <option value="0" selected>Products</option>
 <option value="1">Sales</option>
 <option value="2">Advertisements</option>
 </select>
 <section class="dashboardCategory">
 <button>Product A</button>
 <button>Product B</button>
 <button>Product C</button>

The Observer Pattern

[34]

 <button>Product D</button>
 <button>Product E</button>
 </section>
 <section class="dashboardCategory hidden">
 <button>1st week</button>
 <button>2nd week</button>
 <button>3rd week</button>
 <button>4th week</button>
 </section>
 <section class="dashboardCategory hidden">
 <button>Advertisement 1</button>
 <button>Advertisement 2</button>
 <button>Advertisement 3</button>
 </section>
 <div class="clear"></div>
 </section>

 <section class="boxContainer">
 <div class="boxsizer">
 <article class="box">
 <header class="boxHeader">
 Hint!
 <button class="boxCloseButton">✖</button>
 </header>
 Press the buttons above to add information boxes...
 </article>
 </div>
 </section>
 <div class="clear"></div>
 </div>

 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="dashboard-example.js">
 </script>
 </body>
</html>

In the preceding HTML, we placed all our dashboard-related elements inside a
<div> element with the dashboardContainer CSS class . This will enable us to have
a centric starting point to search for our dashboard's elements and also scope our
CSS. Inside it, we define two <section> elements in order to divide the dashboard
into logical areas using some HTML5 semantic elements.

Chapter 2

[35]

The first <section> with the dashboardCategories class is used to hold the
categories selector of our dashboard. Inside it, we have a <select> element with the
ID categoriesSelector that is used to filter the visible category items and three
subsections with the dashboardCategory class that are used to wrap the <button>
elements that will populate the dashboard with information boxes when clicked.
Two of them also have the hidden class so that only the first one is visible when
the page loads by matching the initially selected option (<option>) of the category
selector. Also, at the end of the first section, we also added a <div> with the
clear class that, as we saw in the first chapter, will be used to clear the floated
<button> elements.

The second <section> with the boxContainer class is used to hold the information
boxes of our dashboard. Initially, it contains only one with a hint about how to
use the dashboard. We use a <div> element with the boxsizer class to set the
box dimensions and an HTML5 <article> element with the box class to add the
required border padding and shadow, similar to the box elements from the
first chapter.

Each information box, besides its content, also contains a <header> element with the
boxHeader class and a <button> element with the boxCloseButton class that, when
clicked, removes the information box that contains it. We also used the ✖
HTML character code as the button's content in order to get a better-looking "x"
mark and avoid using a separate image for that purpose.

Lastly, since the information boxes are also floated, we also need a <div> with the
clear class at the end of the boxContainer.

In the <head> of the preceding HTML, we also reference a CSS file named as
dashboard-example.css with the following content:

.dashboardCategories {
 margin-bottom: 10px;
}

.dashboardCategories select,

.dashboardCategories button {
 display: block;
 width: 200px;
 padding: 5px 3px;
 border: 1px solid #333;
 margin: 3px 5px;
 border-radius: 3px;
 background-color: #FFF;
 text-align: center;

The Observer Pattern

[36]

 box-shadow: 0 1px 1px #777;
 cursor: pointer;
}

.dashboardCategories select:hover,

.dashboardCategories button:hover {
 background-color: #DDD;
}

.dashboardCategories button {
 float: left;
}

.box {
 padding: 7px 10px;
 border: solid 1px #333;
 margin: 5px 3px;
 box-shadow: 0 1px 2px #777;
}

.boxsizer {
 float: left;
 width: 33.33%;
}

.boxHeader {
 padding: 3px 10px;
 margin: -7px -10px 7px;
 background-color: #AAA;
 box-shadow: 0 1px 1px #999;
}

.boxCloseButton {
 float: right;
 height: 20px;
 width: 20px;
 padding: 0;
 border: 1px solid #000;
 border-radius: 3px;
 background-color: red;
 font-weight: bold;
 text-align: center;
 color: #FFF;

Chapter 2

[37]

 cursor: pointer;
}

.clear { clear: both; }

.hidden { display: none; }

As you can see in our CSS file, first of all we add some space below the element with
the dashboardCategories class and also define the same styling for the <select>
element and the buttons inside it. In order to differentiate it from the default
browser styling, we add some padding, a border with rounded corners, a different
background color when hovering the mouse pointer, and some space in between
them. We also define that our <select> element should be displayed alone in
its row as a block and that the category item buttons should float next to each
other. We again use the boxsizer and box CSS classes, as we did in Chapter 1,
A Refresher on jQuery and the Composite Pattern; the first one to create a three-column
layout and the second one to actually provide the styling of an information box. We
continue by defining the boxHeader class that is applied to the <header> elements
of our information boxes, and define some padding, a grey background color, a light
shadow, and also some negative margins so that it counterbalances the effect of the
box's paddings and places itself next to its border.

To complete the styling of the information boxes, we also define the boxCloseButton
CSS class that (i) floats the box's close buttons to the upper-right corner inside
the box <header>, (ii) defines a 20px width and height, (iii) overrides the default
browser's <button> styling to zero padding, and (iv) adds a single-pixel black
border with rounded corners and a red background color. Lastly, like in Chapter 1,
A Refresher on jQuery and the Composite Pattern we define the clear utility CSS class
to prevent the element from being placed next to the previous floating elements and
also define the hidden class as a convenient way of hiding elements of the page.

In our HTML file, we reference the jQuery library itself and also a JavaScript file
named as dashboard-example.js that contains our dashboard implementation.
Following the best practices of creating performant web pages, we have placed them
right before the </body> tag, in order to avoid delaying the initial page rendering:

$(document).ready(function() {

 $('#categoriesSelector').change(function() {
 var $selector = $(this);
 var selectedIndex = +$selector.val();
 var $dashboardCategories = $('.dashboardCategory');
 var $selectedItem = $dashboardCategories.eq(selectedIndex)
 .show();
 $dashboardCategories.not($selectedItem).hide();
 });

The Observer Pattern

[38]

 function setupBoxCloseButton($box) {
 $box.find('.boxCloseButton').click(function() {
 $(this).closest('.boxsizer').remove();
 });
 }

 // make the close button of the hint box work
 setupBoxCloseButton($('.box'));

 $('.dashboardCategory button').on('click', function() {
 var $button = $(this);
 var boxHtml = '<div class="boxsizer"><article class="box">' +
 '<header class="boxHeader">' +
 $button.text() +
 '<button class="boxCloseButton">✖' +
 '</button>' +
 '</header>' +
 'Information box regarding ' + $button.text() +
 '</article></div>';
 $('.boxContainer').append(boxHtml);
 setupBoxCloseButton($('.box:last-child'));
 });

});

We have placed all our code inside a $(document).ready() call, in order to delay
its execution until the DOM tree of the page is fully loaded. This would be absolutely
required if we placed our code in the <head> element, but it is also a best practice
that is good to follow in any case.

We first add an observer for the change event on the categoriesSelector element
using the `$.fn.change()` method, which is actually a shorthand method for the
$.fn.on('change', /* … */) method. In jQuery, the value of the this keyword
inside a function that is used as an observer holds a reference to the DOM element
that the event was fired. This applies to all jQuery methods that register observers,
from the core $.fn.on() to the $.fn.change() and $.fn.click() convenient
methods. So we use the $() function to make a jQuery object with the <select>
element and store it in the $selector variable. Then, we use $selector.val()
to retrieve the value of the selected <option> and cast it to a numeric value by
using the + operator. Right after this, we retrieve the <section> elements of
dashboardCategory and cache the result to the $dashboardCategories variable.
Then, we proceed by finding and revealing the category whose position is equal to
the value of the selectedIndex variable and also store the resulting jQuery object to
the $selectedItem variable. Finally, we are using the $selectedItem variable with
the $.fn.not() method to retrieve and hide all the category elements, except from
the one we just revealed.

Chapter 2

[39]

In the next code section, we define the setupBoxCloseButton function that will be
used to initialize the functionality of the close button. It expects a jQuery object with
the box elements as a parameter, and for each of them, searches their descendants
for the boxCloseButton CSS class that we use on the close buttons. Using $.fn.
click(), which is a convenient method for $.fn.on('click', /* fn */), we
register an anonymous function to be executed whenever a click event is fired
that uses the $.fn.closest() method to find the first ancestor element with the
boxsizer class and removes it from the page. Right after this, we call this function
once for the box elements that already existed in the page at the time when the page
was loaded. In this case, the box element with the usage hint.

An extra thing to keep in mind when using the $.fn.closest()
method is that it begins testing the given selector from the current
element of the jQuery collection before proceeding with its ancestor
elements. For more information, you can visit its documentation at
http://api.jquery.com/closest.

In the final code section, we use the $.fn.on() method to add an observer for
the click event on each of the category buttons. In this case, inside the anonymous
observer function, we use the this keyword, which holds the DOM element of
the <button> that was clicked, and use the $() method to create a jQuery object
and cache its reference in the $button variable. Right after this, we retrieve the
button's text content using the $.fn.text() method and along with it, construct
the HTML code for the information box. For the close button, we use the ✖
HTML character code that will be rendered as a prettier "X" icon. The template we
created is based on the HTML code of the initially visible hint box; for the needs of
this chapter's example, we use plain string concatenation. Lastly, we append the
generated HTML code for our box to the boxContainer, and since we expect it to be
the last element, we use the $() function to find it and provide it as a parameter to
the setupBoxCloseButton.

How it is compared with event attributes
Before the EventTarget.addEventListener() was defined in the DOM Level 2
Events specification, the event listeners were registered either by using the event
attributes that are available for HTML elements or the element event properties that
are available for DOM nodes.

http://api.jquery.com/closest

The Observer Pattern

[40]

For more information on the DOM Level 2 Event specification and event
attributes, you can visit http://www.w3.org/TR/DOM-Level-2-
Events and https://developer.mozilla.org/en-US/docs/Web/
Guide/HTML/Event_attributes, respectively.

The event attributes are a set of attributes that are available to HTML elements and
provide a declarative way of defining pieces of JavaScript code (preferably function
calls) that should be executed when a specific event is triggered on that element.
Because of their declarative nature and how simply they can be used, this is often
the first way that new developers get introduced to events in web development.

If we used event attributes in the above example, then the HTML code for the close
buttons in the information boxes will look as follows:

<article class="box">
 <header class="boxHeader">
 Hint!
 <button onclick="closeInfoBox();"
 class="boxCloseButton">✖</button>
 </header>
 Press the buttons above to add information boxes...
</article>

Also, we should change the template that is used to create new information boxes
and expose the closeInfoBox function on the window object, in order for it to be
accessible from the HTML event attribute:

window.closeInfoBox = function() {
 $(this).closest('.boxsizer').remove();
};

Some of the disadvantages of using event attributes over the Observer Pattern are:

• It makes it harder to define multiple separate actions that have to be executed
when an event fires on an element

• It makes the HTML code of the page bigger and less readable
• It is against the separation of concerns principle, since it adds JavaScript code

inside our HTML, possibly making a bug harder to track and fix
• Most of the time, it leads to the functions being called in the event attribute

getting exposed to the global window object, thereby "polluting" the
global namespace

http://www.w3.org/TR/DOM-Level-2-Events
http://www.w3.org/TR/DOM-Level-2-Events
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Event_attributes
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Event_attributes

Chapter 2

[41]

Using the element event properties would not require any changes to our HTML,
keeping all the implementation in our JavaScript files. The changes required in our
setupBoxCloseButton function will make it look as follows:

function setupBoxCloseButton($box) {
 var $closeButtons = $box.find('.boxCloseButton');
 for (var i = 0; i < $closeButtons.length; i++) {
 $closeButtons[i].onclick = function() {
 this.onclick = null;
 $(this).closest('.boxsizer').remove();
 };
 }
}

Note that, for convenience, we are still using jQuery for DOM manipulations,
but the resulting code still has some of the aforementioned disadvantages. More
importantly, in order to avoid memory leaks, we are also required to remove the
function assigned to the onclick property before removing the element from the
page, if it contains references to the DOM element that it is applied on.

Using the tools that today's browsers offer, we can even match the convenience that
the declarative nature of event attributes offers. In the following image, you can see
how the Firefox developer tools provide us with helpful feedback when we use them
to inspect a page element that has an event listener attached:

As you can see in the preceding image, all the elements that have observers
attached also have an ev sign right next to them, which when clicked, displays
a dialog showing all the event listeners that are currently attached. To make our
developing experience even better, we can directly see the file and the line that these
handlers were defined in. Moreover, we can click on them in order to expand and
reveal their code, or click on the sign in front of them to navigate to their source and
add breakpoints.

The Observer Pattern

[42]

One of the biggest benefits of using the Observer Pattern over event attributes is
clearly visible in the case where we need to take more than one action when a
certain event happens. Suppose that we also need to add a new feature in our
example dashboard, which would prevent a user from accidentally double-clicking
a category item button and adding the same information box twice to the dashboard.
The new implementation should ideally be completely independent from the
existing one. Using the Observer Pattern, all we need to do is add the following
code that observes for button clicks and disables that button for 700 milliseconds:

$(document).ready(function() {
 $('.dashboardCategory button').on('click', function() {
 var $button = $(this);
 $button.prop('disabled', true);

 setTimeout(function() {
 $button.prop('disabled', false);
 }, 700);
 });
});

The preceding code is indeed completely independent from the basic
implementation and we could place it inside the same or a different JS file and load it
to our page. This would be more difficult when using event attributes, since it would
require us to define both actions at the same time inside the same event handler
function; as a result, it would strongly couple the two independent actions.

Avoid memory leaks
As we saw earlier, there are some strong advantages of using the Observer Pattern to
handle events on a web page. When using the EventTarget.addEventListener()
method to add an observer to an element, we also need to keep in mind
that in order to avoid memory leaks, we also have to call the EventTarget.
removeEventListener() method before removing such elements from the
page so that the observers are also removed.

For more information on removing event listeners from elements,
you can visit https://developer.mozilla.org/en-US/docs/
Web/API/EventTarget/removeEventListener, or for the
jQuery equivalent method, visit http://api.jquery.com/off/.

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener
http://api.jquery.com/off/

Chapter 2

[43]

The jQuery library developers understood that such an implementation concern
could easily be forgotten or not handled properly, thereby making the adoption
of the Observer Pattern look more complex, so they decided to encapsulate the
appropriate handling inside the jQuery.event implementation. As a result, when
using any event handling jQuery method, such as the core $.fn.on() or any of
the convenient methods such as $.fn.click() or $.fn.change(), the observer
functions are tracked by jQuery itself and are properly unregistered if we later
decide to remove the element from the page. As we saw earlier in the
implementation of jQuery.event, jQuery stores a reference to the observers
of each element in a separate mapping object. Every time we a use a jQuery
method that removes DOM elements from the page, it first makes sure to remove
any observers attached to those elements or any of the descendant elements, by
checking the mapping object. As a result, the example code we used earlier is not
causing memory leaks even though we are not using any method that explicitly
removes the observers we add to the created elements.

Be careful when mixing jQuery and plain DOM manipulations
Even though all jQuery methods keep you safe from memory leaks
caused from observers that are never unregistered, keep in mind
it can't protect you if you remove elements using plain methods
from the DOM API. If methods such as Element.remove() and
Element.removeChild() are used and the removed elements or
their descendants have observers attached, then they are not going to
be unregistered automatically. The same applies when assigning to the
Element.innerHTML property.

Introducing the Delegated Event
Observer Pattern
Now that we have learned some advanced details about how to use the Observer
Pattern using jQuery, we will get introduced to a special variation of it that fits
perfectly to the web platform and provides some extra benefits. The Delegated
Event Observer Pattern (or simply Delegate Observer Pattern) is often used
in web development and it utilizes the bubbling feature that most events that are
fired on DOM elements have. For example, when we click on a page element,
the click event is immediately fired on it, and right after this it also fires on all its
parent elements until it reaches the root of our HTML document. Using a slightly
different overloaded version of the jQuery's $.fn.on method, we can easily create
and attach observers on page elements for delegated events that are fired on specific
child elements.

The Observer Pattern

[44]

The term "Event Delegation" describes the programming pattern
where the handler of an event is not attached directly to the element
of interest, but is instead attached to one of its ancestor elements.

How it simplifies our code
Reimplementing our dashboard example using the Delegated Event Observer
Pattern will require us to change only the code of the included JavaScript file
to the following:

$(document).ready(function() {

 $('#categoriesSelector').change(function() {
 var $selector = $(this);
 var selectedIndex = +$selector.val();
 var $dashboardCategories = $('.dashboardCategory');
 var $selectedItem = $dashboardCategories.eq(selectedIndex)
 .show();
 $dashboardCategories.not($selectedItem).hide();
 });

 $('.dashboardCategories').on('click', 'button', function() {
 var $button = $(this);
 var boxHtml = '<div class="boxsizer"><article class="box">' +
 '<header class="boxHeader">' +
 $button.text() +
 '<button class="boxCloseButton">✖' +
 '</button>' +
 '</header>' +
 'Information box regarding ' + $button.text() +
 '</article></div>';
 $('.boxContainer').append(boxHtml);
 });

 $('.boxContainer').on('click', '.boxCloseButton', function() {
 $(this).closest('.boxsizer').remove();
 });

});

Chapter 2

[45]

The most obvious difference is that the new implementation is shorter. The benefits
come by defining just one observer to a common ancestor element, for each action
that applies to more than one page element. For this reason, we use the $.fn.
on(events, selector, handler) overload variation of the $.fn.on() method.

Specifically, we add an observer to the page element with the dashboardCategories
CSS class and listen for the click events that originate from any of its <button>
descendants. Similarly, we add a single observer to the boxContainer element that
will be executed whenever a click event fires on any of its descendants that match the
.boxCloseButton CSS selector.

Since the above observers apply not only to the elements that existed in the page at
the moment they were registered, but also to any element that is added at any later
point of time and matches the specified CSS selector; we are able to decouple the
code that handles the clicks on the close buttons and place it in a separate observer,
instead of registering a new one every time a new information box is added. As
a result, the observer that adds the new information boxes in the dashboard is
simpler and only has to deal with creating the HTML of the box and insert it into
the dashboard, leading to a greater separation of concerns. Moreover, we no longer
need to handle the registration of the observer for the close button of the hint box in
a separate piece of code.

Compare the memory usage benefits
We will now compare the difference in memory usage when using the $.fn.on()
method with the simple and Delegated Event Observer Pattern variation. To achieve
this we will open the two implementations of our dashboard example and compare
their memory usage on Chrome. To open Chrome's developer tools, just press F12
and then navigate to the Timeline tab. We press the "record" button in the Chrome's
Timeline tab and then press each category item button 10 times, resulting in the
addition of 120 information boxes to our dashboard. After adding all the boxes, we
end up with 121 open boxes in total, since the hint box will still be open and then
stop the timeline recording.

The results in the timeline for our initial Observer Pattern implementation will look
as follows:

The Observer Pattern

[46]

Repeating the same process for the Delegated Event Observer Pattern
implementation will give a smoother timeline, revealing less object
allocations and Garbage Collections, as follows:

As you can see in the preceding images, we end up with 1192 page elements in both
cases, but in the first implementation we are using 134 event listeners, as compared
to the implementation with event delegation where we initially created three event
listeners and never actually added another.

Finally, as you can see from the blue line in the graph, the memory consumption of
the delegate version stayed relatively the same, adding up to just around 200 KB.
On the other hand, in the original implementation, the heap size increased more
than five times, gaining more than 1 MB of increase.

Adding so many elements may not be an actual use case, but the dashboard will
probably not be the only dynamic part of your page. As a result, in a relatively
complex web page, we could get similar improvements if we reimplemented
every applicable part of it using the Delegated Event Observer Pattern variant.

Summary
In this chapter, we learned about the Observer Pattern, how it can make the HTML
code of our web pages cleaner, and the way that decouples it from our application's
code. We learned how jQuery adds a protection layer to its methods in order to
protect us from undetected memory leaks, which may occur by adding observers
to elements, when not using the jQuery DOM manipulation methods.

Chapter 2

[47]

We also tried the Delegated Event Observer Pattern variant and used it to rewrite
our initial example. We compared the two implementations and saw how it
simplifies writing code that applies to many page elements when they are generated
after the page has been loaded. Finally, we had a comparison regarding the memory
consumption of the plain Observer Pattern with its delegate variant and highlighted
how it also lessens the memory consumption of our page by reducing the required
number of attached observers.

Now that we have completed our introduction on how the Observer Pattern is used
to listen to user actions, we can move on to the next chapter where we will learn
about custom events and the Publish/Subscribe Pattern and the way they can
lead to a more decoupled implementation.

[49]

The Publish/Subscribe
Pattern

In this chapter, we will showcase the Publish/Subscribe Pattern, a design pattern
quite similar to the Observer Pattern but with a more distinct role that is a better fit
for more complex use cases. We will see how it differs from the Observer Pattern
and how jQuery adopted some of its concepts and brought them to its Observer
Pattern implementation.

Later, we will proceed and rewrite our previous chapter's example using this pattern.
We will use this pattern's benefits to add some extra features and also reduce the
coupling of our code with the elements of the web page.

In this chapter, we will:

• Introduce the Publish/Subscribe Pattern
• Learn how it differs and what advantages it has over the Observer Pattern
• Learn how jQuery brings some of its features to its methods
• Learn how to emit custom events with jQuery
• Rewrite and extend the example from Chapter 2, The Observer Pattern,

using this pattern

The Publish/Subscribe Pattern

[50]

Introducing the Publish/Subscribe
Pattern
The Publish/Subscribe Pattern is a Messaging Pattern where the emitters of the
messages, called the publishers, multicast messages to a number of recipients, called
the subscribers, that have expressed their interest in receiving such messages. The
key concept of this pattern, which is also commonly referred to as the Pub/Sub
Pattern in short, is to provide a way to avoid dependencies between the publishers
and their subscribers.

An extra concept of this pattern is the use of topics that are used by the subscribers
in order to express that they are only interested in messages of a specific type. This
way, publishers filter subscribers before sending a message and distribute that
message only to the appropriate ones, thereby reducing the amount of traffic and
work required on both sides.

Another common variant is to use a central, application-wide object, known as the
broker, that relays messages produced by the publishers to the relevant subscribers.
The broker, in this case, acts as a well-known message handler to send and subscribe
to message topics. This enables us, instead of coupling different application parts
together, to only reference the broker itself and also the topic that our components
are interested in. Even though topics might not be an absolute requirement in the
first variant of this pattern, this variant plays an essential role in scalability since
there will commonly exist way less brokers (if not just one) than publishers
and subscribers.

Chapter 3

[51]

By following a subscription scheme, the code of the publisher is completely
decoupled from the subscribers, meaning that the publisher does not have to know
the objects depend on them. As a result, we do not need to hard code to the publisher
each separate action that should be executed on the different parts of our application.
Instead, the components of an application, and possibly third-party extensions,
subscribe to be notified only about topics/events that they need to know. In such
distributed architecture, adding a new feature to an existing application requires
minimal to no changes to the application components it depends on.

How it differs from the Observer Pattern
The most basic difference is that, by definition, the Pub/Sub Pattern is a
one-way-Messaging Pattern that can also pass a message, unlike the Observer
Pattern that just describes how to notify the observers about a specific state
change on the subject.

Moreover, unlike the Observer Pattern, the Pub/Sub Pattern with a broker results
in more loosely coupled code for the different parts of an implementation. This
is because the observers need to know their subject that is emitting the events;
however, on the other hand, the publishers and their subscribers only need to
know the broker that is used.

The Publish/Subscribe Pattern

[52]

How it is adopted by jQuery
Once again, the jQuery library provides us with a convenient way to take advantage
of the Pub/Sub Pattern in our code. Instead of extending its API by adding new
methods specifically named "publish" and "subscribe" and introducing new concepts,
the developers decided to extend the jQuery.fn.on() and jQuery.fn.trigger()
methods with the ability to handle and emit custom events. This way, jQuery can be
used to implement a publisher/subscriber communication scheme using the already
known convenient methods it provides.

Custom events in jQuery
Custom events allow us to use almost any user-defined string value as a common
event that we can add listeners for, and also manually fire it on page elements. As
an extra but a precious feature, custom events can also carry some extra data to be
delivered to the listeners of the event.

The jQuery library added its own custom events implementation, before it was
actually added to any web specification. This way, it was proved how useful they
can be when used in web development. As we saw in the previous chapter, in
jQuery, there is a specific part of the implementation that handles both the common
element event and also custom events. The jQuery.event object holds all the
internal implementations related to firing and listening to events. Also, the jQuery.
Event class is a dedicated wrapper that jQuery uses for the needs of both the
common element events and its custom events implementation.

Implementing a Pub/Sub scheme using
custom events
In the previous chapter, we saw how the jQuery.fn.on() method can be used to
add event listeners on elements. We also saw that its implementation is maintaining
lists with the added handlers and notifying them when required. Moreover, the
event name seems to have the same coordination purpose, just like the topic. This
implementation semantics seem to match exactly with the Pub/Sub Pattern as well.

Chapter 3

[53]

The jQuery.fn.trigger() method actually uses the internal jQuery.event.
trigger() method that is used to fire events in jQuery. It iterates over the internal
handlers list and executes them with the requested event along with any extra
parameters that the custom event defines. Once again, this also matches the
operation requirements of the Pub/Sub Pattern.

As a result, jQuery.fn.trigger() and jQuery.fn.on() seem to match the
needs of the Pub/Sub Pattern and can be used instead of separate "publish" and
"subscribe" methods, respectively. Since they are both available on the jQuery.fn
object, we can use these methods on any jQuery object. This jQuery object will act
as an intermediate entity between the publishers and the subscribers, in a way that
perfectly aligns with the definition of the broker.

A good common practice, which is also used by a lot of jQuery plugins, is to use
the outermost page element that holds the implementation of the application or
the plugin as the broker. On the other hand, jQuery actually allows us to use any
object as a broker, since all that it actually needs is a target to emit an observe for our
custom events. As a result, we could even use an empty object as our broker such
as $({}), in case using a page element seems too restricting or not clean enough
according to the Pub/Sub Pattern. This is actually what the jQuery Tiny Pub/Sub
library does, along with some method aliasing, so that we actually use methods
named "publish" and "subscribe" instead of jQuery's "on" and "trigger". For more
information on Tiny, you can visit its repository page at https://github.com/
cowboy/jquery-tiny-pubsub.

Demonstrating a sample use case
In order to see how the Pub/Sub Pattern is used, and make it easy to compare it with
the Observer Pattern, we are going to rewrite the dashboard example from Chapter 2,
The Observer Pattern, using this pattern. This will also clearly demonstrate how this
pattern can help us decouple the individual parts of an implementation and make it
more extendable and scalable.

https://github.com/cowboy/jquery-tiny-pubsub
https://github.com/cowboy/jquery-tiny-pubsub

The Publish/Subscribe Pattern

[54]

Using Pub/Sub on the dashboard example
For the needs of this demonstration, we will use the HTML and CSS files exactly
as we saw them in Chapter 2, The Observer Pattern.

To apply this pattern, we will only need to change the code in the JavaScript file with
our new implementation. In the following code snippet, we can see how the code
was changed in order to adapt to the Publisher/Subscriber Pattern:

$(document).ready(function() {
 window.broker = $('.dashboardContainer');

 $('#categoriesSelector').change(function() {
 var $selector = $(this);
 var message = { categoryID: $selector.val() };
 broker.trigger('dashboardCategorySelect', [message]);
 });

 broker.on('dashboardCategorySelect', function(event, message) {
 var $dashboardCategories = $('.dashboardCategory');
 var selectedIndex = +message.categoryID;
 var $selectedItem = $dashboardCategories.eq(selectedIndex)
 .show();
 $dashboardCategories.not($selectedItem).hide();
 });

 $('.dashboardCategory').on('click', 'button', function() {
 var $button = $(this);
 var message = { categoryName: $button.text() };
 broker.trigger('categoryItemOpen', [message]);
 });

Chapter 3

[55]

 broker.on('categoryItemOpen', function(event, message) {
 var boxHtml = '<div class="boxsizer"><article class="box">' +
 '<header class="boxHeader">' +
 message.categoryName +
 '<button class="boxCloseButton">✖' +
 '</button>' +
 '</header>' +
 'Information box regarding ' + message.categoryName +
 '</article></div>';
 $('.boxContainer').append(boxHtml);
 });

 $('.boxContainer').on('click', '.boxCloseButton', function() {
 var boxIndex = $(this).closest('.boxsizer').index();
 var message = { boxIndex: boxIndex };
 broker.trigger('categoryItemClose', [message]);
 });

 broker.on('categoryItemClose', function(event, message) {
 $('.boxContainer .boxsizer').eq(message.boxIndex).remove();
 });
});

Just like in our previous implementation, we use $(document).ready() in order to
delay the execution of our code until the page has been fully loaded. First of all, we
declare our broker and assign it to a new variable on the window object so that it is
globally available on the page. For our application's broker, we are using a jQuery
object with the outermost container of our implementation, which in our case is the
<div> element with the dashboardContainer class.

Even though using global variables is generally an anti-pattern,
we store the broker into a global variable since it is an important
synchronization point of the whole application and must be available
for every piece of our implementation, even to those that are stored
in separate .js files. As we will discuss in the next chapter about the
Module Pattern, the preceding code could be improved by storing
the broker as a property of the application's namespace.

The Publish/Subscribe Pattern

[56]

In order to implement the category selector, we are first observing the <select>
element for the change event. When the selected category changes, we create
our message using a plain JavaScript object with the value of the selected
<option> stored in the categoryID property. Then, we publish it in the
dashboardCategorySelect topic using the jQuery jQuery.fn.trigger() method
on our broker. This way, we move from a UI element event to a message with
application semantics that contains all the required information. Right below, in our
subscriber's code, we are using the jQuery.fn.on() method on our broker with the
dashboardCategorySelect topic as a parameter (our custom event), just like we
would do to listen for a simple DOM event. The subscriber then uses the categoryID
from the received message, just like we did in the implementation of the previous
chapter, to display the appropriate category items.

Following the same approach, we split the code that handles adding and closing
information boxes in our dashboard in publishers and subscribers. For the needs of
this demonstration, the message of the categoryItemOpen topic contains just the
name of the category we want to open. However, in an application where the box
content is retrieved from a server, we would probably use a category item ID instead.
The subscriber then uses the category item name from the message to create and
insert the requested information box.

Similarly, the message for the categoryItemClose topic contains the index of the
box that we want removed. Our publisher uses the jQuery.fn.closest() method
to traverse the DOM and reach the child elements of our boxContainer element and
then uses the jQuery.fn.index() method to find its position among its siblings.
The subscriber then uses jQuery.fn.eq() and the boxIndex property from the
received message to filter and remove only the requested information box from
the dashboard.

In a more complex application, instead of the box index, we can
associate each information box element with a newly retrieved
jQuery.guid using a mapping object. This will allow our publisher
to use that guid in the message instead of the (DOM-related) element
index. The subscriber will then search the mapping object for that
guid in order to locate and remove the appropriate box.
Since we are trying to demonstrate the advantages of the Pub/Sub
Pattern, this implementation change was not introduced in order to
ease the comparison with the Observer Pattern and is instead left as a
recommended exercise for the reader.

Chapter 3

[57]

To summarize the above, we used the dashboardCategorySelect,
categoryItemOpen, and categoryItemClose topics as our application-level
events in order to decouple the handling of the user actions from their origin
(the UI element). As a result, we now have dedicated reusable pieces of code that
manipulate our dashboard's content, which is equivalent to abstracting them into
separate functions. This allows us to programmatically publish a series of messages
so that we can, for example, remove all the existing information boxes and add all
the category items of the currently selected category. Alternatively, even better, make
the dashboard show all the items of each category for 10 seconds and then move to
the next one.

Extending the implementation
In order to demonstrate the scalability that the Pub/Sub Pattern brings with it, we
will extend our current example by adding a counter with the number of boxes that
are currently open in the dashboard.

For the counter implementation, we will need to add some extra HTML
to our page and also create and reference a new JavaScript file to hold the
counter implementation:

 ...
 </section>
 <div style="margin-left: 5px;">
 Open boxes:
 <output id="dashboardItemCounter">1</output>
 </div>
 <section class="boxContainer">
 ...

The Publish/Subscribe Pattern

[58]

In the HTML page of the example, we will need to add an extra <div> element
to hold our counter and some description text. For our counter, we are using an
<output> element, which is a semantic HTML5 element ideal to present results of
user actions. The browser will use it just like a normal element, so it will
appear right next to its description. Also, since there is initially a hint box open in
our dashboard, we use a 1 for its initial content:

$(document).ready(function() {
 broker.on('categoryItemOpen categoryItemClose',
 function (event, message) {
 var $counter = $('#dashboardItemCounter');
 var count = parseInt($counter.text());

 if (event.type === 'categoryItemOpen') {
 $counter.text(count + 1);
 } else if (event.type === 'categoryItemClose' && count > 0) {
 $counter.text(count - 1);
 }
 });
});

For the counter implementation itself, all we need to do is add an extra subscriber to
the dashboard's broker, which is globally available to other JavaScript files loaded
in the page, since we have attached it to the window object. We are simultaneously
subscribing to two topics, by passing them space delimited to the jQuery.fn.on()
method. Right after this, we locate the counter <output> element that has the
ID dashboardItemCounter and parse its text content as a number. In order to
differentiate our action, based on the topic that the message has received, we use the
event object that jQuery passes as the first parameter to our anonymous function,
which is our subscriber. Specifically, we use the type property of the event object
that holds the topic name of the message that was received and based on its value,
we change the content of the counter.

For more information on the event object that jQuery provides, you
can visit http://api.jquery.com/category/events/event-
object/.

Similarly, we could also rewrite the code that prevents accidental double-clicks on
the category item buttons. All that is needed is to add an extra subscriber for the
categoryItemOpen topic and use the categoryName property of the message to
locate the pressed button.

http://api.jquery.com/category/events/event-object/
http://api.jquery.com/category/events/event-object/

Chapter 3

[59]

Using any object as a broker
While in our example we used the outermost container element of our dashboard for
our broker, it is also common to use the $(document) object as a broker. Using the
application's container element is considered a good semantic practice, which also
scopes the emitted events.

As we described earlier in this chapter, jQuery actually allows us to use any object
as a broker, even an empty one. As a result, we could instead use something such
as window.broker = $({}); for our broker, in case we prefer it over using a
page element.

By using newly constructed empty objects, we can also easily create several brokers,
in case such a thing would be preferred for a specific implementation. Moreover,
in case a centralized broker is not preferred, we could just make each publisher the
broker of itself, leading to an implementation more like the first/basic variant of the
Pub/Sub Pattern.

Since in most cases, a declared variable is used to access the application's broker
within a page, there is little difference between the above approaches. Just choose
the one that better matches your team's taste, and in case you change your mind at a
later point, all you have to do is use a different assignment on your broker variable.

Using custom event namespacing
As a closing note for this chapter, we will present, in short, the mechanism
that jQuery provides for namespacing custom events. The main benefit of event
namespacing is that it allows us to use more specific event names that better
describe their purpose, while also helping us to avoid conflicts between different
implementation parts and plugins. It also provides a convenient way to unbind all
the events of a given namespace from any target (element or broker).

A simple example implementation will look as follows:

var broker = $({});
broker.on('close.dialog', function (event, message){
 console.log(event.type, event.namespace);
});
broker.trigger('close.dialog', ['messageEmitted']);
broker.off('.dialog');
// removes all event handlers of the "dialog" namespace

The Publish/Subscribe Pattern

[60]

For more information, you can visit the documentation page at http://docs.
jquery.com/Namespaced_Events and the article at https://css-tricks.com/
namespaced-events-jquery/ from the CSS-Tricks website.

Summary
In this chapter, we were introduced to the Publish/Subscribe Pattern. We saw
its similarities with the Observer Pattern and also learned its benefits by doing
a comparison of the two. We analyzed how the more distinct roles and the extra
features that the Publish/Subscribe Pattern offers make it an ideal pattern for more
complex use cases. We saw how jQuery developers adopted some of its concepts
and brought them to their Observer Pattern implementation as custom events.
Finally, we rewrote the example from the previous chapter using the Publish/
Subscribe Pattern, adding some extra features and also achieving greater
decoupling between the different parts and page elements of our application.

Now that we have completed our introduction to how the Publish/Subscribe Pattern
can be used as a first step to decouple the different parts of an implementation,
we can move on to the next chapter where we will be introduced to the Module
Pattern. In the next chapter, we will learn how to separate the different parts of an
implementation into independent modules and how to use namespacing to achieve
better code organization and define a strict API to achieve communication between
the different modules.

http://docs.jquery.com/Namespaced_Events
http://docs.jquery.com/Namespaced_Events
https://css-tricks.com/namespaced-events-jquery/
https://css-tricks.com/namespaced-events-jquery/

[61]

Divide and Conquer with the
Module Pattern

In this chapter, we will be introduced to the concepts of Modules and Namespacing
and see how they can lead to more robust implementations. We will showcase how
these design principles can be used in applications, by demonstrating some of the
most commonly used development patterns to create Modules in JavaScript.

In this chapter, we will:

• Review the concept of Modules and Namespacing
• Introduce the Object Literal Pattern
• Introduce the Module Pattern and its variants
• Introduce the Revealing Module Pattern and its variants
• Have a small dive into ES5 Strict Mode and ES6 Modules
• Explain how Modules can be used and benefit jQuery applications

Modules and Namespaces
The two main practices of this chapter are Modules and Namespaces, which are used
together in order to structure and organize our code. We will first analyze the main
concept of Modules that is code encapsulation and right after this, we will proceed to
Namespacing, which is used to logically organize an implementation.

Divide and Concur with the Module Pattern

[62]

Encapsulating internal parts of an
implementation
While developing a large-scale and complex web application, the need for a
well-defined, structured architecture becomes clear from the beginning. In order
to avoid creating a spaghetti code implementation, where different parts of our
code call each other in a chaotic way, we have to split our application into small,
self-contained parts.

These self-contained pieces of code can be defined as Modules. To document this
architecture principle, Computer Science has defined concepts such as Separation of
Concerns, where the role, operation, and the exposed API of each Module should be
strictly defined and focused on providing a generic solution to a specific problem.

For more information on Encapsulation and Separation of Concerns,
you can visit https://developer.mozilla.org/en-US/docs/
Glossary/Encapsulation and http://aspiringcraftsman.
com/2008/01/03/art-of-separation-of-concerns/.

Avoiding global variables with Namespaces
In JavaScript, the window object is also known as the Global Namespace, where each
declared variable and function identifier is attached by default. A Namespace can
be defined as a naming context where each identifier has to be unique. The main
concept of Namespacing is to provide a way to logically group all the related pieces
of a distinct and self-contained part of an application. In other words, it suggests
that we create groups with related functions and variables and make them accessible
under the same umbrella identifier. This helps to avoid naming collisions between
different parts of an application and other JavaScript libraries that are used, since we
only need to keep all the identifiers unique under each different Namespace.

A good example of Namespacing is the mathematical functions and constants that
JavaScript provides, which are grouped under the built-in JavaScript object called
Math. Since JavaScript provides more than 40 short-named mathematical identifiers,
such as E, PI, and floor(), in order to avoid naming conflicts and grouping them
together, it was designed to make them accessible as properties of the Math object
that acts as the Namespace of this built-in library.

https://developer.mozilla.org/en-US/docs/Glossary/Encapsulation
https://developer.mozilla.org/en-US/docs/Glossary/Encapsulation
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/

Chapter 4

[63]

Without proper Namespacing, each function and variable needs to be uniquely
named through the entire application, and collisions could happen between the
identifiers of different application parts or even with those of a third-party library
that an application uses. Finally, while Modules provide a way to isolate each
independent part of your application, Namespacing provides a way to structure
your different Modules to what becomes the architecture of the application.

The benefits of these patterns
Designing an application architecture based on Modules and namespacing leads to
better code organization and clearly separated parts. In such architectures, Modules
are used to group together parts of the implementation that are related, while
Namespaces connect them to each other to create the application structure.

This architecture helps to coordinate large developer teams, enabling the
implementation of independent parts to take place in parallel. It can also shorten the
development time needed to add a new functionality to the existing implementation.
This is because the existing pieces that are used can be located easily and the added
implementation has less chance of conflicting with the existing code.

The resulting code structures are not only cleanly separated, but since each
Module is designed to achieve a single goal, there is a good chance that it can
also be used in other similar applications. As an added benefit, since the role
of each Module is strictly defined, it also makes tracing the origin of a bug a
lot easier in a large codebase.

Divide and Concur with the Module Pattern

[64]

The wide acceptance
Both the community and the enterprise world realized that, in order to have
maintainable, large frontend applications written in JavaScript, they should
end up with a set of best practices that should be incorporated in every part
of their implementations.

The acceptance and adoption of Modules and Namespacing in JavaScript
implementations is clearly visible in the best practices and coding style guides
that the community and enterprises have released.

For example, Google's JavaScript Style Guide (available at https://google.
github.io/styleguide/javascriptguide.xml#Naming) describes and
suggests adopting namespacing in our implementations:

ALWAYS prefix identifiers in the global scope with a unique pseudo namespace
related to the project or library.

Moreover, the jQuery JavaScript Style Guide (available at https://contribute.
jquery.org/style-guide/js/#global-variables) suggests using global
variables so that:

Each project may expose at most one global variable.

Another example of acceptance among the developer community, comes
from the Mozilla Developer Network. Its guide for object-oriented JavaScript
(available at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Introduction_to_Object-Oriented_JavaScript#Namespace) also suggests using
Namespaces, to wrap the implementation of our application under a single exposed
variable, using something as simple as follows:

// global namespace
var MYAPP = MYAPP || {};

The Object Literal Pattern
The Object Literal Pattern is probably the simplest way to wrap all the related parts
of an implementation under an umbrella object that works as a Module. The name
of this pattern accurately describes the way it is used. The developer just needs
to declare a variable and assign an object with all the related parts that need to be
encapsulated into this Module.

https://google.github.io/styleguide/javascriptguide.xml#Naming
https://google.github.io/styleguide/javascriptguide.xml#Naming
https://contribute.jquery.org/style-guide/js/#global-variables
https://contribute.jquery.org/style-guide/js/#global-variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript#Namespace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript#Namespace

Chapter 4

[65]

Let's see how we can create a Module that provides unique integers to a page,
in a similar way how jquery.guid does it:

var simpleguid = {
 guid: 1,
 init: function() {
 this.guid = 1;
 },
 increaseCounter: function() {
 this.guid++;
 // or simpleguid.guid++;
 },
 getNext: function() {
 var nextGuid = this.guid;
 this.increaseCounter();
 return nextGuid;
 }
};

As seen above, a simple rule that you can follow in order to adopt this pattern is to
define all the variables and functions that each implementation needs as properties
of an object. Our code is reusable and does not pollute the Global Namespace, other
than just defining a single variable name for our Module, simpleguid in this case.

We can access the Module properties internally, either by using the this keyword,
such as this.guid, or using the full name of the Module such as simpleguid.guid.
In order to use the above Module in our code, we just need to access its property by
using its name. For example, calling the simpleguid.getNext() method will return
to our code the next-in-order numeric guid and also change the Module's state by
increasing the internal counter.

One of the negatives of this pattern is that it does not provide any privacy to the
internal parts of the Module. All the internal parts of the Module can be accessed
and be overridden by external code, even though we ideally prefer to only expose
the simpleguid.init() and simpleguid.getNext() methods. There are several
naming conventions that describe prepending or appending an underscore (_) to
the names of properties that are intended only for internal use, but this technically
doesn't fix this disadvantage.

Another disadvantage is that writing a big Module using an object literal can easily
get tiring. It's true that JavaScript developers are used to end their variables and
function definitions with semicolons (;), and trying to write a big Module using
commas (,) after each property can easily lead to syntactic errors.

Divide and Concur with the Module Pattern

[66]

Even though this pattern makes it easy to declare nested Namespaces for a Module,
it can also lead to big code structures with bad readability in case we need several
levels of nesting. For example, let's take a look at the following skeleton of a
Todo application:

var myTodoApp = {
 todos: [],
 addTodo: function(todo) { this.todos.push(todo); },
 getTodos: function() { return this.todos; },
 updateTodo: function(todo) { /*...*/ },
 imports: {
 fromGDrive: function() { /*...*/ },
 fromUrl: function() { /*...*/ },
 fromText: function() { /*...*/ }
 },
 exports: {
 gDrivePublicKey: '#wnanqAASnsmkkw',
 toGDrive: function() { /*...*/ },
 toFile: function() { /*...*/ },
 },
 share: {
 toTwitter: function(todo) { /*...*/ }
 }
};

Fortunately, this can be easily fixed by splitting the object literal to multiple
assignments for each submodule (and preferably to different files) as follows:

var myTodoApp = {
 todos: [],
 addTodo: function(todo) { this.todos.push(todo); },
 getTodos: function() { return this.todos; },
 updateTodo: function(todo) { /*...*/ },
};
/* … */
myTodoApp.exports = {
 gDrivePublicKey: '#wnanqAASnsmkkw',
 toGDrive: function() { /*...*/ },
 toFile: function() { /*...*/ },
};
/*...*/

Chapter 4

[67]

The Module Pattern
The key concept of the basic Module Pattern is to provide a simple function, class,
or object that the rest of the application can use, through a well-known variable
name. It enables us to provide a minimal API for a Module, by hiding the parts of the
implementation that do not need to be exposed. This way, we also avoid polluting
the Global Namespace with variables and utility functions that are needed for
internal use by our Module.

The IIFE building block
In this subsection, we will get a small introduction to the IIFE Design Pattern since
it's an integral part for all the variants of the Module Pattern that we will see in this
chapter. The Immediately Invoked Function Expression (IIFE) is a very commonly
used Design Pattern among JavaScript developers because of the clean way in
which it isolates blocks of code. In the Module Pattern, an IIFE is used to wrap all
the implementation in order to avoid polluting the Global Namespace and provide
privacy to the declarations to the Module itself.

Each IIFE creates a Closure with the variables and functions declared inside it. The
Closure that is created enables the exposed function of the IIFE to keep references
to the rest of the declarations of their environment and access them normally when
executed from other parts of an implementation. As a result, the non-exposed
declarations of the IIFE do not leak outside it, but are kept private and are accessible
only by the functions that are part of the created Closure.

For more information on IIFEs and Closures, you can visit https://
developer.mozilla.org/en-US/docs/Glossary/IIFE
and https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Closures.

An IIFE is most commonly used as follows:

(function() {
 var x = 7;
 console.log(x);
 // prints 7
})();

https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

Divide and Concur with the Module Pattern

[68]

Since the preceding code construct might look bizarre on first sight, let's see the
pieces that it is composed from. An IIFE is almost equivalent to declaring an
anonymous function, assigning it to a variable, and then executing it, as shown
in the following code:

var tmp = function() {
 var x = 7;
 console.log(x);
};

tmp();
// or
(tmp)();

In the preceding code, we define a function expression and execute it using tmp().
Since, in JavaScript, we can use parentheses around an identifier without changing
its meaning, we can also execute the stored function with (tmp)();. The final step, in
order to turn the preceding code into an IIFE, is to replace the tmp variable with the
actual anonymous function declaration.

As we saw earlier, the only difference is that, with an IIFE, we do need to declare a
variable just to hold the function itself. We only create an anonymous function and
invoke it immediately right after defining it.

Since the creation of an IIFE can be achieved in several ways, which might look
like an exercise of JavaScript's rules, the community of JavaScript developers has
concluded to the above code structure as a point of reference for this pattern. This
way of creating an IIFE is considered to have better readability and is used by large
libraries and as a result of its adoption, developers can easily recognize it inside large
JavaScript implementations.

An example of the less-widely-used ways to create an IIFE is the following
code structure:

(function() {
 // code
}());

Chapter 4

[69]

The simple IIFE Module Pattern
Since there is no actual name for this pattern, it is recognized by the fact that the
defined Module returns a single entity. For reference on how to create a reusable
library using this pattern, we will rewrite the simpleguid Module that we saw
earlier. The resulting implementation will look as follows:

var simpleguid = (function() {
 var simpleguid = {};
 var guid;

 simpleguid.init = function() {
 guid = 1;
 };

 simpleguid.increaseCounter = function() {
 guid++;
 };

 simpleguid.getNext = function() {
 var nextGuid = guid;
 this.increaseCounter();
 return nextGuid;
 };

 simpleguid.init();

 return simpleguid;
})();

This pattern uses an IIFE to define an object that acts as the Module container,
attaches properties to it, and later returns it. The variable simpleguid in the first line
of the preceding code is used as the Namespace of the Module and is assigned with
the value that is returned by the IIFE. The methods and properties that are defined
on the returned object are the only exposed parts of the Modules and constitute its
public API.

Once again, this pattern allows us to use the this keyword, in order to access the
exposed methods and properties of our Module. Furthermore, it also provides
the flexibility to execute any required initialization code before completing the
Module's definition.

Divide and Concur with the Module Pattern

[70]

Unlike the Object Literal Pattern, the Module Pattern enables us to create actual
private members in our Modules. Variables declared inside the IIFE, that are not
attached to the return value, such as the guid variable, act as private members and
are only accessible inside the Module by rest members of the created Closure.

Lastly, in case we need to define a nested Namespace, all we have to do is change
the assignment of the value returned by the IIFE. As an example of an application
structured with submodules, let's see how we will define the exporting submodule
for the Todo application skeleton that we saw earlier:

var myTodoApp = (function() {
 var myTodoApp = {};

 var todos = [];

 myTodoApp.addTodo = function(todo) {
 todos.push(todo);
 };

 myTodoApp.getTodos = function() {
 return todos;
 };

 return myTodoApp;
})();

myTodoApp.exports = (function() {
 var exports = {};

 var gDrivePublicKey = '#wnanqAASnsmkkw';

 exports.toGDrive = function() { /*...*/ };

 exports.toFile = function() { /*...*/ };

 return exports;
})();

Given that our application's Namespace myTodoApp has already been defined earlier,
the exports submodule can be defined as a simple property on it. A good practice
to follow will be to create one file for each one of the above Modules, using the IIFEs
as the landmarks to split your code. A widely used naming convention, which is also
suggested by Google's JavaScript Style Guide, is to use lowercase naming for your
files and add dashes to separate submodules. For example, by following this
naming convention, the preceding code should be defined in two files named
as mytodoapp.js and mytodoapp-exports.js for each Module, respectively.

Chapter 4

[71]

How it is used by jQuery
The Module Pattern is used within jQuery itself, in order to isolate the source code
of the CSS selector engine (Sizzle), which powers the $() function, from the rest of
the jQuery source. From the beginning, Sizzle was a big part of the jQuery source,
which is currently counting about 2135 lines of code; since 2009, it has been split into
a separate project named Sizzle, so it can be more easily maintained, be developed
independently, and be reusable by other libraries:

var Sizzle = (function(window) {

 /* 179 lines of code */

 function Sizzle(selector, context, results, seed) {
 /* 131 lines of code */
 }

 /*
 1804 lines of code , defining methods like:
 Sizzle.attr
 Sizzle.compile
 Sizzle.contains
 Sizzle.getText
 Sizzle.matches
 Sizzle.matchesSelector
 Sizzle.select
 */

 return Sizzle;

})(window);

jQuery.find = Sizzle;

Sizzle is added to the jQuery's source inside an IIFE, while its main function is
returned and assigned to jQuery.find for use.

For more information on Sizzle, you can visit
https://github.com/jquery/sizzle.

https://github.com/jquery/sizzle

Divide and Concur with the Module Pattern

[72]

The Namespace Parameter Module variant
In this variant, instead of returning an object from our IIFE and then assigning it to
the variable that acts as the Namespace of the Module, we create the Namespace and
pass it as a parameter to the IIFE itself:

(function(simpleguid) {
 var guid;

 simpleguid.init = function() {
 guid = 1;
 };

 simpleguid.increaseCounter = function() {
 guid++;
 };

 simpleguid.getNext = function() {
 var nextGuid = guid;
 this.increaseCounter();
 return nextGuid;
 };

 simpleguid.init();
})(window.simpleguid = window.simpleguid || {});

The last line of the Module definition tests whether the Module is already defined;
in case it is not, it initializes it to an empty object literal and assigns it to the global
object (window). In any case, the simpleguid parameter in the first line of the IIFE
will hold the Module's Namespace.

The above expression is almost equivalent to writing:
window.simpleguid = window.simpleguid !== undefined ?
 window.simpleguid : {};

Using the logical OR operator (||) makes the expression both shorter
and more readable. Moreover, this is a pattern that most web developers
have learned to easily recognize, and it appears in a lot of development
patterns and best practices.

Chapter 4

[73]

Once again, this pattern allows us to use the this keyword to access public members
from within the exported methods of the Module. At the same time, it allows us to
keep some functions and variables private, which will be accessible only by other
functions of the Module.

Even though it's considered a good practice to define each Module to its own JS file,
this variant also allows us to split the implementation of large Modules to more than
one file. This benefit comes as a result of checking whether the Module is already
defined, before initializing it to an empty object. This might be useful in some cases,
with the only limitation being that each partial file of a Module can access the private
members defined in its own IIFE.

Moreover, in order to avoid repetition, we can use a simpler identifier for the
parameter of the IIFE and write our Module as follows:

(function(namespace) {
 /* … */

 namespace.getNext = function() {
 var nextGuid = guid;
 this.increaseCounter();
 return nextGuid;
 };

 namespace.init();
})(window.simpleguid = window.simpleguid || {});

When it comes to applications with nested Namespaces, this pattern might start
feeling a little uncomfortable to read. The last line of the Module definition will
start to get longer for every extra level of nested namespacing that we define.
For example, let's see how the exports submodule of our Todo application
would look:

(function(exports) {
 var gDrivePublicKey = '#wnanqAASnsmkkw';

 exports.toGDrive = function() { /*...*/ };

 exports.toFile = function() { /*...*/ };

})(myTodoApp.exports = myTodoApp.exports || {});

Divide and Concur with the Module Pattern

[74]

As you can see, each extra level of the nested Namespace needs to be added on both
sides of the assignment that is passed as a parameter to the IIFE. For applications
with complex features that lead to multiple levels of nested Namespaces, this could
lead to Module definitions looking something like this:

(function(smallModule) {

 smallModule.method = function() { /*...*/ };

 return smallModule;
})(myApp.bigFeature.featurePart.smallModule =
 myApp.bigFeature.featurePart.smallModule || {});

Moreover, if we want to provide the same safety guaranties, as in the original code
sample, then we would need to add similar safe checks for each Namespace level.
With this in mind, the exports Module of our Todo application that we saw earlier
would need to have the following form:

(function(exports) {
 var gDrivePublicKey = '#wnanqAASnsmkkw';

 exports.toGDrive = function() { /*...*/ };

 exports.toFile = function() { /*...*/ };

})((window.myTodoApp = window.myTodoApp || {},
 myTodoApp.exports = myTodoApp.exports || {}));

As seen in the preceding code, we used the comma operator (,) to separate each
namespace existence check and wrapped the whole expression in an extra pair of
parenthesis so that the whole expression is used as the first parameter of the IIFE.
Using the comma operator (,) to join expressions will lead them to be evaluated in
order and pass the result of the last evaluated expression as the parameter of the
IIFE, and that result will be used as the Namespace of the Module. Keep in mind
that, for each extra nested Namespace level, we need to add an extra existence
check expression using the comma operator (,).

Chapter 4

[75]

A disadvantage of this pattern, especially when used for nested namespacing, is
that the Namespace definition of the Module is at the end of the file. Even though
it is highly recommended to name your JS files so that they properly represent
the Modules that they contain, for example, mytodoapp.exports.js; not having
the Namespace near the top of the file can sometimes be counterproductive
or misleading. An easy work-around for this problem would be to define the
Namespace before the IIFE and then pass it as a parameter. For example, the
preceding code using this technique would be transformed to something
as follows:

window.myTodoApp = window.myTodoApp || {};
myTodoApp.exports = myTodoApp.exports || {};

(function(exports) {
 var gDrivePublicKey = '#wnanqAASnsmkkw';

 exports.toGDrive = function() { /*...*/ };

 exports.toFile = function() { /*...*/ };

})(myTodoApp.exports);

The IIFE-contained Module variant
Like in the previous variants of the Module Pattern, this variant does not actually
have a specific variant name, but is recognized by the way the code is structured.
The key concept of this variant is to move all the Module's code inside the IIFE:

(function() {

 window.simpleguid = window.simpleguid || {};

 var guid;

 simpleguid.init = function() {
 guid = 1;
 };

 simpleguid.increaseCounter = function() {
 guid++;
 };

Divide and Concur with the Module Pattern

[76]

 simpleguid.getNext = function() {
 var nextGuid = guid;
 this.increaseCounter();
 return nextGuid;
 };

 simpleguid.init();
})();

This variant looks very similar to the previous one and mainly differs in the way
that the Namespace is created. First of all, it keeps the Namespace check and
initialization near the top of the Module, like a heading, making our code more
readable regardless of whether we use a separate file for the Module or not. Like
other variants of the Module Pattern, it supports private members for our Modules
and also allows us to use the this keyword to access public methods and properties,
making our code look more object-oriented.

Regarding implementations with nested Namespaces, the code structure of the
exports submodule of our Todo application skeleton will look as follows:

(function() {
 window.myTodoApp = window.myTodoApp || {};
 myTodoApp.exports = myTodoApp.exports || {};

 var gDrivePublicKey = '#wnanqAASnsmkkw';

 myTodoApp.exports.toGDrive = function() { /*...*/ };

 myTodoApp.exports.toFile = function() { /*...*/ };

})();

As seen in the preceding code, we also borrowed the Namespace definition
checks from the previous variant and, likewise, applied it to every level of nested
namespacing. Even though this is not absolutely necessary, it brings the benefits that
we discussed earlier such as enabling us to split a Module definition into several files
and even results in a more error-tolerant implementation regarding the import order
of the application's Modules.

Chapter 4

[77]

The Revealing Module Pattern
The Revealing Module Pattern is a variant of the Module Pattern with a known
and widely recognized name. What makes this pattern special is that it combines the
best parts of the Object Literal Pattern and the Module Pattern. All the members of
the Module are declared inside an IIFE, which at the end, returns an Object Literal
containing only the public members of the Module and is assigned to the variable
that acts as our Namespace:

var simpleguid = (function() {
 var guid = 1;

 function init() {
 guid = 1;
 }

 function increaseCounter() {
 guid++;
 }

 function getNext() {
 var nextGuid = guid;
 increaseCounter();
 return nextGuid;
 }

 return {
 init: init,
 getNext: getNext
 };
})();

One of the main benefits of this pattern that differentiates it from other variants
is that it allows us to write all the code of our Module inside the IIFE, just like we
would if they would be declared on the Global Namespace. Moreover, this pattern
does not require any variation on the way that the public and private members are
declared, making the code of the Module look uniform.

Divide and Concur with the Module Pattern

[78]

Since the returned Object Literal defines the publicly available members of the
Module, it is also a convenient easy way to inspect its public API, even if it is written
by someone else. Moreover, in case we need to expose a private method on our
Module's API, all we need to do is add an extra property to the returned Object
Literal without changing any part of its definition. Additionally, the use of an Object
Literal enables us to change the exposed identifiers for the Module's API, without
changing the names used by the Module's implementation internally.

Even if this is not clearly visible, the this keyword can be used for calls between
the public members of the Module. Unfortunately, using the this keyword is
discouraged for this pattern, since it breaks the uniformity of the function
declarations and can easily lead to errors, especially when changing the
visibility of a public method to private.

Since the Namespace definition is kept outside the body of the IIFE, this pattern
clearly separates the Namespace definition from the actual implementation of the
Module. Using this pattern to define a Module in a nested Namespace does not
affect the Module's implementation, which will not look different at any point
from a top-level Namespace Module. Rewriting the exports submodule of
our Todo skeleton application using this pattern will make it look like this:

myTodoApp.exports = (function() {
 var gDrivePublicKey = '#wnanqAASnsmkkw';

 function toGDrive() { /*...*/ }

 function toFile() { /*...*/ }

 return {
 toGDrive: toGDrive,
 toFile: toFile
 };
})();

As a result of this separation, we have less code repetition and we can easily change
the Namespace of a Module without affecting its implementation at all.

Using ES5 Strict Mode
A small but precious addition to all the Module Patterns that use IIFEs as their
basic building blocks, is the use of Strict Mode for JavaScript execution. This was
standardized in the fifth edition of JavaScript, and is an opt-in execution mode with
slightly different semantics, in order to prevent some of the common pitfalls of
JavaScript, but also having backwards compatibility in mind.

Chapter 4

[79]

Under this mode, the JavaScript runtime engine will prevent you from accidentally
creating a global variable and polluting the Global Namespace. Even in not-so-large
applications, it is quite possible that a var declaration before the initial assignment
of a variable can be missing, automatically promoting that to a global variable. To
prevent this case, strict mode throws an error in case an assignment is issued to an
undeclared variable. The following image show the error that is thrown by Firefox
and Chrome when a Strict Mode violation happens.

This mode can be enabled by adding the "use strict"; or 'use strict';
statement before any other statements. Even though this can be enabled on the
global scope, it is highly recommended that you enable it only inside the scope of a
function. Enabling it on the global scope might make third-party libraries that are
non-strict-mode compliant stop working or misbehave. On the other hand, the best
place to enable Strict Mode is inside the IIFE of a Module. The Strict Mode will be
recursively applied to all nested Namespaces, methods, and functions of that IIFE.

For more information on JavaScript's strict execution mode, you can
visit https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Strict_mode.

Introducing ES6 Modules
Even though JavaScript initially had no built-in packaging and namespacing support
like other programming languages, web developers filled the gaps by defining
and adopting some design patterns for this purpose. These software development
practices worked around the missing features of JavaScript and allowed large and
scalable implementations of complex applications on a programming language that
some years ago was mostly used for form validation.

This was until the 6th version of JavaScript, commonly referred to as ES6, was
released as a standard on June 2015 and introduced the concept of Modules as
part of the language.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Divide and Concur with the Module Pattern

[80]

ES6 is an abbreviation of ECMAScript 6th edition, which is also referred
to as Harmony or ECMAScript 2015, where ECMAScript is the term that
is used for the standardization process of JavaScript. The specification
can be found at http://www.ecma-international.org/ecma-
262/6.0/index.html#sec-modules.

As an example of ES6 Modules, we will see one of the many ways in which the
simpleguid Module can be written:

var es6simpleguid = {};
export default es6simpleguid;

var guid;

es6simpleguid.init = function() {
 guid = 1;
};

es6simpleguid.increaseCounter = function() {
 guid++;
};

es6simpleguid.getNext = function() {
 var nextGuid = guid;
 this.increaseCounter();
 return nextGuid;
};

es6simpleguid.init();

If we save this as a file named es6simpleguid.js, then we can import and use it in a
different file by simply writing the following code:

import es6simpleguid from 'es6simpleguid';
console.log(es6simpleguid.getNext());

Since ES6 Modules are by default in Strict Mode, writing your Modules today
using your preferred Module Pattern variant with Strict Mode enabled will make
your transition to ES6 Modules easier. Some of the above patterns require very few
changes to achieve this. For example, in the IIFE-contained Module Pattern variant,
all that is needed is remove the IIFE and the "use strict"; statement, replace the
creation of the Module's Namespace with a variable, and use the export keyword
on it.

http://www.ecma-international.org/ecma-262/6.0/index.html#sec-modules
http://www.ecma-international.org/ecma-262/6.0/index.html#sec-modules

Chapter 4

[81]

Unfortunately, at the time of writing this book, no browser has 100% support for ES6
Modules. As a result, special loaders or tools that transpile ES6 to ES5 are required so
that we can start writing our code using the new features of ES6.

For more information, you can visit ES6 Module loader's
documentation page at https://github.com/ModuleLoader/
es6-module-loader, and Babel transpiler (earlier known as
ES6toES5) at http://babeljs.io/.

Using Modules in jQuery applications
In order to demonstrate how the Module Pattern can lead to a better application
structure, we will reimplement the dashboard example that we saw in the previous
chapters. We will include all the functionalities that we have seen until now,
including the counter of the open information boxes. The HTML and CSS code used
is exactly the same as in the previous chapter and, as a result, our dashboard looks
exactly the same as before:

For this demonstration, we will refactor our JavaScript code into four small Modules
using the simple IIFE-contained Module variant. The dashboard Module will act
as the main entry of code execution and also as the central coordination point of
the dashboard application. The categories submodule will be responsible for the
implementation of the upper-top part of our dashboard. This includes category
selection, the presentation of appropriate buttons, and the handling of button
clicks. The informationBox submodule will be responsible for the main part of our
dashboard. It will provide methods to create and remove information boxes from the
dashboard. Finally, the counter submodule will be responsible for keeping the field
with the number of the currently open information boxes up-to-date, responding to
the user actions.

https://github.com/ModuleLoader/es6-module-loader
https://github.com/ModuleLoader/es6-module-loader
http://babeljs.io/

Divide and Concur with the Module Pattern

[82]

A single change that we need to make to the HTML of the page in order to support
this multimodule architecture is limited to the way in which the JavaScript files
are included:

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dashboard.js"></script>
<script type="text/javascript" src="dashboard.categories.js"></script>
<script type="text/javascript" src="dashboard.informationbox.js">
</script>
<script type="text/javascript" src="dashboard.counter.js"></script>

Even if this multifile structure makes the development and debugging
processes a lot easier, it is recommended that we combine all these files
before moving our application to a production environment. Several tools
specialized for this job exist; for example, the very simple and effective
grunt-contrib-concat project that is available at https://github.com/
gruntjs/grunt-contrib-concat.

The main dashboard module
The resulting code for the dashboard module will look as follows:

(function() {
 'use strict';

 window.dashboard = window.dashboard || {};

 dashboard.$container = null;

 dashboard.init = function() {
 dashboard.$container = $('.dashboardContainer');

 dashboard.categories.init();
 dashboard.informationBox.init();
 dashboard.counter.init();
 };

 $(document).ready(dashboard.init);
})();

https://github.com/gruntjs/grunt-contrib-concat
https://github.com/gruntjs/grunt-contrib-concat

Chapter 4

[83]

As we already mentioned, the dashboard module will be the central point
of our application. Since this is the starting point of execution for our
application, its main duty is to do all the required initializations for itself
and each submodule. The invocation of the init() method is wrapped inside
a call to the $(document).ready() method so that its execution is delayed until
the DOM tree of the page is fully loaded.

One important thing to note is that, during the initialization, we do a DOM traversal
in order to find the container element of the dashboard and store it to a public
property of the Module named $container. This element will be used by all the
methods of the dashboard that need to access the DOM tree, in order to scope their
code inside that container element, removing the need to constantly traverse the
whole DOM tree using complex selectors. Keeping references to key DOM elements
and reusing them in the different submodules, can make the application snappier
and also lessen the chance of accidentally interfering with the rest of the page; thus,
leading to less bugs that are also easier to resolve.

Cache elements but avoid memory leaks.
Keep in mind that maintaining references to DOM elements that
are constantly added and removed from the page adds extra
complexity to our application. This can even lead to memory leaks
in case we are accidentally keeping a reference to an element that
has already been removed from the page. For such elements, such
as the information boxes, it might be safer and more effective to
have delegated handling for the events triggered on them and to do
a scoped DOM traversal when needed, in order to retrieve a jQuery
object with fresh references of the elements.

The categories module
Let's proceed with the categories submodule:

(function() {
 'use strict';

 dashboard.categories = dashboard.categories || {};

 dashboard.categories.init = function() {
 dashboard.$container.find('#categoriesSelector')
 .change(function() {
 var $selector = $(this);
 var categoryIndex = +$selector.val();

Divide and Concur with the Module Pattern

[84]

 dashboard.categories.selectCategory(categoryIndex);
 });

 dashboard.$container.find('.dashboardCategories')
 .on('click', 'button', function() {
 var $button = $(this);
 var itemName = $button.text();
 dashboard.informationBox.openNew(itemName);
 });
 };

 dashboard.categories.selectCategory = function(categoryIndex) {
 var $dashboardCategories =
 dashboard.$container.find('.dashboardCategory');
 var $selectedItem =
 $dashboardCategories.eq(categoryIndex).show();
 $dashboardCategories.not($selectedItem).hide();
 };
})();

This submodule's initialization method uses the reference to the $container element
that the main Module provides and adds two observers to the page. The first handles
the change event on the <select> category and calls the selectCategory()
method with the numeric value of the selected category. The selectCategory()
method of this submodule will then handle revealing the appropriate category items,
decoupling it from the event handling code and making it a reusable functionality
available to the entire application.

Right after this, we create a single Delegated Event Observer that handles the click
event on the <button> category item. It extracts the text of the <button> pressed and
calls the openNew() method of the informationBox submodule that contains all the
implementation related to information boxes. In a non-demo grade application, a
parameter to such a method would probably be an identifier instead of a text value
that would be used to retrieve more details from a remote server.

The informationBox module
The informationBox submodule that contains the implementation parts related to
the main area of our dashboard has the following form:

(function() {
 'use strict';

Chapter 4

[85]

 dashboard.informationBox = dashboard.informationBox || {};

 var $boxContainer = null;

 dashboard.informationBox.init = function() {
 $boxContainer = dashboard.$container.find('.boxContainer');

 $boxContainer.on('click', '.boxCloseButton', function() {
 var $button = $(this);
 dashboard.informationBox.close($button);
 });
 };

 dashboard.informationBox.openNew = function(itemName) {
 var boxHtml = '<div class="boxsizer"><article class="box">' +
 '<header class="boxHeader">' +
 itemName +
 '<button class="boxCloseButton">✖' +
 '</button>'+
 '</header>' +
 'Information box regarding ' + itemName +
 '</article></div>';
 $boxContainer.append(boxHtml);
 };

 dashboard.informationBox.close = function($boxElement) {
 $boxElement.closest('.boxsizer').remove();
 };

})();

The first thing that this submodule's initialization code does is retrieve and store a
reference of the container that holds the information boxes to the $boxContainer
variable, using the $container property of the dashboard for scoping.

The openNew() method is responsible for creating the HTML required for a new
information box and adding it to the dashboard using the $boxContainer variable,
which acts like a private member of the Module, and is used for caching the
reference of the previously assigned DOM element. This is a good practice that can
improve the application's performance, since the stored element is never removed
from the page and is used during the initialization and the openNew() methods of
the Module. This way, we no longer need to execute slow DOM traversals every
time the openNew() method is called.

Divide and Concur with the Module Pattern

[86]

The close() method, on the other hand, is responsible for removing an existing
information box from the dashboard. It receives a jQuery composite collection object
as a parameter related to the target information box, which is based on the way that
the $.fn.closest() method works, and can either be the box element container or
any of its descendants.

Implementations of methods that provide flexibility regarding the way
that they can be called can make them usable by more parts of a large
application. The next logical step for this method, which is left as an
exercise to the reader, would be to make it accept as a parameter, the
index, or an identifier of the information box that needs to be closed.

The counter module
Lastly, here is how we rewrote the counter implementation, which we saw in the
previous chapter, as an independent submodule:

(function() {
 'use strict';

 dashboard.counter = dashboard.counter || {};

 var dashboardItemCounter;
 var $counter;

 dashboard.counter.init = function() {
 $counter = $('#dashboardItemCounter');

 var $boxContainer = dashboard.$container
 .find('.boxContainer');
 var initialCount = $boxContainer.find('.boxsizer').length;
 dashboard.counter.setValue(initialCount);

 dashboard.$container.find('.dashboardCategories')
 .on('click', 'button', function() {
 dashboard.counter.setValue(dashboardItemCounter + 1);
 });

 $boxContainer.on('click', '.boxCloseButton', function() {
 dashboard.counter.setValue(dashboardItemCounter - 1);
 });
 };

Chapter 4

[87]

 dashboard.counter.setValue = function (value) {
 dashboardItemCounter = value;
 $counter.text(dashboardItemCounter);
 };

})();

For this submodule, we are using the $counter variable as a private member to
cache a reference to the element that displays the count. Another private member
of the Module is the dashboardItemCounter variable, which at any point of time
will hold the number of visible information boxes in the dashboard. Keeping such
information on the members of our Modules reduces the times we need to reach
the DOM tree to extract information on the state of the application, making the
implementation more efficient.

Preserving the state of the application in the properties of JavaScript
objects or Modules instead of reaching the DOM to extract them, is
a very good practice that makes the application's architecture more
object-oriented, and is also adopted by most of the modern web
development frameworks.

During the initialization of the Module, we are giving an initial value to our counter
variable so that we are no longer dependent on the initial HTML of the page and
have a more robust implementation. Moreover, we are attaching two Delegated
Event Observers, one for clicks that will lead to the creation of new information
boxes and another one for clicks that will close them.

Overview of the implementation
With the above, we completed the rewrite of the dashboard skeleton application to
a modular architecture. All the available actions are exposed as public methods of
each of our submodules that can be invoked programmatically and this way they
are decoupled from the events that trigger them.

A good exercise for the reader would be to promote the decoupling even further, by
also adopting the Publisher/Subscriber Pattern in the above implementation. The
fact that the code is already structured into Modules will make such change a lot
easier to implement.

Divide and Concur with the Module Pattern

[88]

Another part that can be implemented in a different way is the way in which the
submodules are initialized. Instead of explicitly orchestrating the initialization
of each Module in our main dashboard Module, we could instead initialize each
submodule on its own by wrapping the invocation of the init() method in a
$(document).ready() call and issuing its initialization right after its declaration. On
the other hand, not having a central point to coordinate the initializations and relying
on page events can feel less deterministic. Another way to implement it would be
like the Publisher/Subscriber Pattern, by exposing a registerForInit() method on
our main Module, which would keep track of the Modules that have been requested
to be initialized using an array.

For more jQuery code organization tips, you can visit
http://learn.jquery.com/code-organization/concepts/.

Summary
In this chapter, we learned the concepts of Modules and Namespaces and
also the benefits that come from their adoption in large applications. We had
an in-depth analysis of the most widely adopted patterns and compared their
benefits and limitations. We learned by example how to develop Modules using
the Object Literal Pattern, the variants of the Module Pattern, and the Revealing
Module Pattern.

We continued with a small introduction to ES5's Strict Mode and saw how it can
benefit today's Modules. Then we proceeded by learning some details about the
standardized but not yet widely supported ES6 Modules. Lastly, we saw how the
architecture of the dashboard application can change dramatically after using the
Module Pattern in its implementation.

Now that we have completed our introduction on how to use Modules and
Namespaces, we can move on to the next chapter where we will be introduced to the
facade pattern. In the next chapter, we will learn about the philosophy of facades and
the uniform way that they define how code abstractions should be created so that
they are easily understandable and reusable by other developers.

http://learn.jquery.com/code-organization/concepts/

[89]

The Facade Pattern
In this chapter, we will showcase the Facade Pattern, a structural design pattern
that tries to define a uniform way regarding how developers should create
abstractions in their code. Initially, we will use this pattern to wrap complex APIs
and expose simpler ones that focus on the needs of our application. We will see
how jQuery embraces the concepts of this pattern in its implementation, how it
achieves encapsulating complex implementations that are integral parts of the web
developer's tool-belt into easy-to-use API's, and how this plays a critical role for its
wide adoption.

In this chapter, we will:

• Introduce the Facade Pattern
• Document its key concepts and benefits
• See how jQuery uses it in its implementation
• Write an example implementation where Facades are used to completely

abstract and decouple a third-party library

Introducing the Facade Pattern
The Facade is a structural software design pattern that deals with how abstractions
of the various parts of an implementation should be created. The key concept of the
Facade Pattern is to abstract an existing implementation and provide a simplified
API that better matches the use cases of the developed application. According
to most Computer Science bibliographies describing this pattern, a Facade is
most commonly implemented as a specialized class that is used to segment the
implementation of an application into smaller pieces of code, while providing an
interface that completely hides the encapsulated complexity. In the web development
world, it is also common to use plain objects or functions for the implementation of a
Facade, taking advantage of the way in which JavaScript treats functions as objects.

The Facade Pattern

[90]

In applications that have a modular structure, like the examples of the previous
chapter, it is also common to implement Facades as separate modules with their
own namespace. Moreover, for a larger implementation with very complex parts,
an approach with multiple levels of Facades can also be followed. Once again, the
Facades will be implemented as modules and submodules, having the top-level
Facade orchestrating the methods of its submodules, while providing an API that
completely hides the complexity of the entire subsystem.

The benefits of this pattern
Most of the time, the Facade Pattern is adopted for implementation parts that
have a relatively high degree of complexity and are used in several places of an
application, wherein large pieces of code can be replaced with a simple call to
the created Facade, leading not only to less code repetition, but also helping us to
increase the readability of the implementation. Since the Facade methods are usually
named by the higher-level application concepts that they encapsulate, the resulting
code is also easier to understand. The simplified API that a Facade provides through
its convenient methods, leads to an implementation that is easier to use, understand,
and also write unit tests for.

Moreover, having Facades to abstract complex implementations proves its usefulness
in cases where there is a need to introduce a change to the business logic of the
implementation. In case a Facade has a well-designed API with a prediction for
future requirements, such changes can often require modifications just to the
Facade's code, leaving the rest of the application's implementation untouched
and following the Separation of Concerns principle.

Chapter 5

[91]

In the same manner, using Facades to abstract the API of a third-party library to
better match the needs of each application, provides a degree of decoupling between
our code and the used library. In case the third-party library changes its API or
needs to be replaced with another one, the different modules of the application
will not need to be rewritten, since the implementation changes would be limited
to the wrapper Facade. In this case, all that is needed is to provide an equivalent
implementation using the new library API while keeping the Facade's API intact.

As an example of orchestrating method calls and using sensible defaults for specific
use cases, take a look at the following sample implementation:

function do (x, y) {
 var z = y - x / 2;
 var yy = Math.pow(y, 2);
 var b = 3 * Math.random(); // add some randomness to the result
 var i = 0; // for this case
 return LibraryA.doingMethod(x, z, i, yy, b);
}

How it is adopted by jQuery
A very large part of the jQuery implementation is dedicated to providing simpler,
shorter, and more convenient-to-use methods for things that the different JavaScript
APIs already allow us to achieve, but with more lines of code and effort. By taking
a look at the provided APIs of jQuery, we can distinguish some groups of related
methods. This grouping can also be seen in the way in which the source code is
structured, placing methods for related APIs near to each other.

The Facade Pattern

[92]

Even if the word Facade does not appear in jQuery's source code, the use of this
pattern can be witnessed by the way in which the related methods are defined on the
exposed jQuery object. Most of the time, the related methods that form a group are
implemented and defined as properties on an Object Literal and then attached to the
jQuery object with a single call to the $.extend() or the $.fn.extend() method. As
you might remember, from the beginning of this chapter, this matches almost exactly
with the implementation that Computer Science commonly uses to describe how a
Facade is implemented, with the exception that, in JavaScript, we can create a plain
object without needing to first define a class. As a result, jQuery itself can be seen as
a collection of Facades, where each one independently adds great value to the library
with the API of convenient methods that it provides.

For more information on $.extend() and $.fn.extend(), you can
visit http://api.jquery.com/jQuery.extend/ and http://api.
jquery.com/jQuery.fn.extend/.

Some of the abstracted API groups that are big parts of the jQuery implementation
and play a critical role to its adoption are as follows:

• The DOM Traversal API
• The AJAX API
• The DOM Manipulation API
• The Effects API

Also, a great example of how this pattern can be used to provide simplified APIs is
jQuery's Events API, which provides a variety of convenient methods for the most
common use cases that are easier to use than the respective plain JavaScript APIs.

The jQuery DOM Traversal API
At the time that jQuery was released, web developers could locate specific
DOM elements of a page only by using the very limited getElementById()
and getElementsByTagName() methods, since other methods, such as
getElementsByClassName(), were not widely supported by the existing browsers.
The jQuery team realized how the web development could be leveraged if there was
a simple API that would ease such DOM traversals, which would work the same
way across all browsers, be as effective as the familiar CSS Selectors, and did their
best to make such an implementation a reality.

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.fn.extend/
http://api.jquery.com/jQuery.fn.extend/

Chapter 5

[93]

The result of this effort is the now famous jQuery DOM Traversal API that is
exposed through the $() function, which played a serious role in the standardization
of the querySelectorAll() method as part of the Level 2 Selector API. The
implementation under the hood uses the methods provided by the DOM API and
counts about 2,135 lines of code in jQuery v2.2.0, while it is even bigger in the v1.x
versions that needed to support older browsers as well. As we saw in this chapter,
because of its complexity this implementation is now part of a separate stand-alone
project that is named Sizzle.

For more information on Sizzle and the querySelectorAll() method,
you can visit https://github.com/jquery/sizzle and https://
developer.mozilla.org/en-US/docs/Web/API/document/
querySelectorAll.

Regardless of its complex implementation, the exposed APIs are quite easy to use,
mostly using simple CSS Selectors as string parameters, making it an excellent
example of how a Facade can be used to completely hide the complexity of its inner
workings and expose a convenient API. Since Sizzle's API is still quite complex, the
jQuery library actually wraps it with its own API acting as an extra Facade level:

// Line 733
function Sizzle(selector, context, results, seed) { /* ... */ }

// Line 2678
jQuery.find = Sizzle;

The jQuery library first keeps a reference of Sizzle to the internal jQuery.find()
method and then uses it to implement all its exposed DOM Traversal methods,
which work on Composite Objects such as $.fn.find():

// Line 2769
jQuery.fn.extend({
 find: function(selector) {
 /* 15 lines of code */
 for (i = 0; i < len; i++) {
 jQuery.find(selector, self[i], ret);
 }
 /* 3 lines of code */
 return ret;
 }
});

https://github.com/jquery/sizzle
https://developer.mozilla.org/en-US/docs/Web/API/document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/document/querySelectorAll

The Facade Pattern

[94]

Finally, the famous $() function can actually be invoked in several ways, but even
when it is invoked with a CSS Selector as a string parameter, it actually has an extra
level of hidden complexity:

// Line 71
jQuery = function(selector, context) {
 return new jQuery.fn.init(selector, context);
};

// Line 2825
rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,
// Line 2735
init = jQuery.fn.init = function(selector, context, root) {
 /* 12 lines of code */
 if (typeof selector === "string") {
 if (/* ... */) {
 /* 3 lines of code */
 } else {
 match = rquickExpr.exec(selector);
 }

 // Match html or make sure no context is specified for #id
 if (match && (match[1] || !context)) {
 if (match[1]) {
 /* 27 lines of code */
 // HANDLE: $(#id)
 } else {
 elem = document.getElementById(match[2]);

 // Support: Blackberry 4.6
 // gEBID returns nodes no longer in the document (#6963)
 if (elem && elem.parentNode) {
 // Inject the element directly into the jQuery object
 this.length = 1;
 this[0] = elem;
 }

 this.context = document;
 this.selector = selector;
 return this;
 }

 // HANDLE: $(expr, $(...))
 } else if (!context || context.jquery) {

Chapter 5

[95]

 return (context || root).find(selector);

 // HANDLE: $(expr, context)
 // (which is just equivalent to: $(context).find(expr)
 } else {
 return this.constructor(context).find(selector);
 }
 } /* else ... 21 lines of code */
};

As you can see, in the preceding code, the $() is actually creating a new
object with $.fn.init(). Instead of being just an entry point to $.fn.find() or
jQuery.find(), it is actually a Facade that hides a level of optimization. Specifically,
it makes jQuery faster by avoiding invoking $.fn.find() and Sizzle, when simple
ID selectors are used by directly invoking the getElementById() method.

The property access and manipulation API
Another very interesting abstraction that follows the principles of the Facade
Pattern and can be found in jQuery's source, is the $.fn.prop() method. Like the
$.fn.attr(), $.fn.val(), $.fn.text(), and $.fn.html(), it belongs to a family
of methods that is characterized by the fact that each method is both a getter and a
setter of the related subject. The distinction of the method's execution mode is done
by inspecting the number of parameters that are passed during its invocation. This
convenient API allows us to have to remember less method signatures and make
the setters differ only by one extra parameter. For example, $('#myCheckBox').
prop('checked') will return true or false, based on the state of the selected
checkbox. On the other hand, $('#myCheckBox').prop('checked', true); will
programmatically check that checkbox for us. In the same concept, $('button').
prop('disabled', true); will disable all the <button> elements on a page.

The $.fn.prop() method does the jQuery Composite Object handling, but the
actual implementation of the Facade is the internal jQuery.prop() method. An
extra concern that adds complexity to the Facade's implementation is the fact that
there are some HTML attributes that have different identifiers for the corresponding
properties on the DOM elements:

jQuery.extend({

 prop: function(elem, name, value) {
 /* 8 lies of code */
 if (nType !== 1 || !jQuery.isXMLDoc(elem)) {
 // Fix name and attach hooks
 name = jQuery.propFix[name] || name;

The Facade Pattern

[96]

 hooks = jQuery.propHooks[name];
 }

 if (value !== undefined) {
 if (hooks && "set" in hooks &&
 (ret = hooks.set(elem, value, name)) !== undefined) {
 return ret;
 }
 return (elem[name] = value);
 }

 if (hooks && "get" in hooks &&
 (ret = hooks.get(elem, name)) !== null) {
 return ret;
 }
 return elem[name];
 },

 propHooks: {
 tabIndex: {
 get: function(elem) {
 var tabindex = jQuery.find.attr(elem, "tabindex");
 return tabindex ?parseInt(tabindex, 10) : /*...*/;
 }
 }
 },

 propFix: {
 "for": "htmlFor",
 "class": "className"
 }
});

The first highlighted code area efficiently resolves the property to attribute identifier
mismatch by using the propFix and propHooks objects to do the matching. The
propFix object acts like a simple dictionary to match the identifiers, while the
propHooks object holds a function that does the matching in a less-hard-coded
way, with programmatic testing. This is a generic implementation that can easily
be extended by adding extra properties to those two objects.

Chapter 5

[97]

The rest of the highlighted areas are responsible for the getter/setter mode of the
method. The overall implementation is to perform the following tasks:

• Check whether a value is passed as an argument and, if the property finds
that the assignment is successful, do the assignment and return the value.

• Alternatively, if there was no value passed, return the value of the requested
property if it is retrievable.

Using Facades in our applications
In order to demonstrate how facades can be used both to encapsulate complexity,
helping us enforce the Separation of Concerns principle, and also abstract third-party
library APIs into more convenient methods that are application centric, we are going
to demonstrate a very simple lottery application. Our "Element Lottery" application
will populate its container with some Lottery Ticket elements that will have a unique
ID and contain a random number.

The Facade Pattern

[98]

The winning ticket will be picked by randomly selecting one of the lottery elements,
based on a random index among the created unique IDs. The winning number will
then be announced to be the numeric content of the picked element. Let's see the
modules of our application:

(function() {
 window.elementLottery = window.elementLottery || {};

 var elementIDs;
 var $lottery;
 var ticketCount = 30;

 elementLottery.init = function() {
 elementIDs = [];
 $lottery = $('#lottery').empty();
 elementLottery.add(ticketCount);
 $('#lotteryTicketButton').on('click', elementLottery.pick);
 };

 elementLottery.add = function(n) {
 for (var i = 0; i < n; i++) {
 var id = this.uidProvider.get();
 elementIDs.push(id);
 $lottery.append(this.ticket.createHtml(id));
 }
 };

 elementLottery.pick = function() {
 var index = Math.floor(Math.random() * elementIDs.length);
 var result = $lottery.find('#' + elementIDs[index]).text();
 alert(result);
 return result;
 };

 $(document).ready(elementLottery.init);
})();

The main elementLottery module of our application initialized itself right after
the page was fully loaded. The add method is used to populate the lottery container
element with tickets. It uses the uidProvider submodule to generate unique
identifiers for the ticket elements, keeps track of them on the elementIDs array, uses
the ticket submodule to construct the appropriate HTML code, and finally appends
the element to the lottery. The pick method is used to randomly select the winning
ticket by randomly selecting one of the generated identifiers, retrieving the page
element with that ID, and displaying its content inside an alert box as the winning
result. The pick method is triggered by clicking on the button that we have added
an Observer during the initialization phase:

Chapter 5

[99]

(function() {
 elementLottery.ticket = elementLottery.ticket || {};

 elementLottery.ticket.createHtml = function(id) {
 var ticketNumber = Math.floor(Math.random() * 1000 * 10);
 return '<div id="' + id + '" class="ticket">' + ticketNumber +
 '</div>';
 };
})();

(function() {
 elementLottery.uidProvider = elementLottery.uidProvider || {};

 elementLottery.uidProvider.get = function() {
 return 'Lot' + simpleguid.getNext();
 };
})();

The ticket submobule acts as a Facade with a single method that is used to
encapsulate the generation of a random number and the creation of the HTML
code that will be used as the ticket. On the other hand, the uidProvide submodule
is a Facade that provides a single get method that encapsulates the way we use the
simpleguid module that we saw in the previous chapters. As a result, we can easily
change the library that is used to generate unique identifiers and the only place
that we will have to modify the existing implementation will be the uidProvide
submodule. For example, let's see how it will look if we decided to use the
great node-uuid library that generates 128-bit unique identifiers as strings of
hexadecimal characters:

(function() {
 elementLottery.uidProvider = elementLottery.uidProvider || {};

 elementLottery.uidProvider.get = function() {
 return uuid.v4();
 };
})();

For more information on the node-uui library, you can visit
https://github.com/broofa/node-uuid.

https://github.com/broofa/node-uuid

The Facade Pattern

[100]

Summary
In this chapter, we learned what a Facade actually is. We learned its philosophy and
the uniform way in which it defines how code abstractions should be created so that
they are easily understandable and reusable by other developers.

Starting from the simplest use cases of this pattern, we learned how to wrap a
complex API with a Facade and expose a simpler one that is focused on the needs
of our application and is a better match to its specific use cases. We also saw
how jQuery embraces the concepts of this pattern in its implementation and how
providing simple APIs for more basic web-developing techniques, such as DOM
Traversals, played a critical role for its wide adoption.

Now that we have completed our introduction to how the Facade Pattern can be
used to decouple and abstract parts of an implementation, we can move on to the
next chapter where we will be introduced to the Builder and Factory Patterns. In
the next chapter, we will learn how to use these two Creational Design Patterns to
abstract the process of generating and initializing new objects for specific use cases
and analyze how their adoption can benefit our implementations.

[101]

The Builder and
Factory Patterns

In this chapter, we will showcase the Builder and Factory Patterns, two of the most
commonly used Creational Design Patterns. These two design patterns have some
similarities with each other, share some common goals, and are dedicated to easing
the creation of complex results. We will analyze the benefits that their adoption can
bring to our implementations and also the ways in which they differ. Finally, we
will learn how to use them properly and choose the most appropriate one for the
different use cases of our implementations.

In this chapter, we will:

• Introduce the Factory Pattern
• See how the Factory Pattern is used by jQuery
• Have an example of the Factory Patten in a jQuery application
• Introduce the Builder Pattern
• Compare the Builder and Factory Patterns
• See how the Builder Pattern is used by jQuery
• Have an example of the Builder Patten in a jQuery application

The Builder and Factory Patterns

[102]

Introducing the Factory Pattern
The Factory Pattern is part of the group of Creational Patterns and overall it
describes a generic way for object creation and initialization. It is commonly
implemented as an object or function that is used to generate other objects.
According to the majority of Computer Science resources, the reference
implementation of the Factory Pattern is described as a class that provides a method
that returns newly created objects. The returned objects are commonly the instances
of a specific class or subclass, or they expose a set of specific characteristics.

The key concept of the Factory pattern is to abstract the way an object or a group
of related objects are created and initialized for a specific purpose. The point of
this abstraction is to avoid coupling an implementation with specific classes or the
way that each object instance needs to be created and configured. The result is an
implementation that works as an abstract way for object creation and initialization,
which follows the concept of Separation of Concerns.

The resulting implementations are only based on the object methods and properties
that are required by their algorithm or business logic. Such an approach can benefit
the modularity and extensibility of an implementation, by following the concept of
programming over Object Features and Functionality instead of Object Classes. This
gives us the flexibility to change the used classes with any other object that exposes
the same functionality.

How it is adopted by jQuery
As we have already noted in the earlier chapters, one of the early goals of jQuery was
to provide a solution that worked the same across all browsers. The 1.12.x version
series of jQuery are focused on providing support for browsers as old as Internet
Explorer 6 (IE6), while maintaining the same API with the newer v2.2.x versions that
only focus on modern browsers.

Chapter 6

[103]

In order to have a similar structure and maximize the common code between the
two versions, the jQuery team tried to abstract most compatibility mechanisms in
a different implementation layer. Such a development practice greatly improves
the readability of the code and reduces the complexity of the main implementation,
encapsulating it into different smaller pieces.

A great example of this is the implementation of the AJAX-related methods that
jQuery provides. Specifically, in the following code, you can find a part of it, as
found in version 1.12.0 of jQuery:

// Create the request object
// (This is still attached to ajaxSettings for backward compatibility)
jQuery.ajaxSettings.xhr = window.ActiveXObject !== undefined ?
 // Support: IE6-IE8
 function() {

 // XHR cannot access local files, always use ActiveX for that case
 if (this.isLocal) {
 return createActiveXHR();
 }
 // Support: IE 9-11
 if (document.documentMode > 8) {
 return createStandardXHR();
 }
 // Support: IE<9
 return /^(get|post|head|put|delete|options)$/i.test(this.type)
 && createStandardXHR() || createActiveXHR();

 } :
 // For all other browsers, use the standard XMLHttpRequest object
 createStandardXHR;

// Functions to create xhrs
function createStandardXHR() {
 try {
 return new window.XMLHttpRequest();
 } catch (e) {}
}

function createActiveXHR() {
 try {
 return new window.ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {}
}

The Builder and Factory Patterns

[104]

Every time a new AJAX request is issued on jQuery, the jQuery.ajaxSettings.xhr
method is used as a Factory that creates a new instance of the appropriate XHR object
based on the support of the current browser. Looking in more detail, we can see that
the jQuery.ajaxSettings.xhr method orchestrates the use of two smaller Factory
functions, with each responsible for a specific implementation of AJAX. Moreover, we
can see that it actually tries to avoid running the compatibility tests on every call by
directly wiring up its reference to the smaller createStandardXHR Factory function
when appropriate.

Using Factories in our applications
As an example use case of Factories, we will create a data-driven form where our
users will be able to fill some fields that are dynamically created and inserted into the
page. We will assume the existence of an array containing objects that describe each
form field that needs to be presented. Our Factory method will encapsulate the way
in which each form field needs to be constructed, and properly handle each specific
case, based on the characteristics defined on the related objects.

Chapter 6

[105]

The HTML code for this page is quite simple:

 <h1>Data Driven Form</h1>

 <form></form>

 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript"
 src="datadrivenform.js"></script>

It only contains an <h1> element with the page heading and an empty <form>
element that will host the generated fields. As for the CSS used, we only style the
<button> elements in the same way as we did in the previous chapters.

As for the JavaScript implementation of the application, we create a module and
declare dataDrivenForm as the namespace of this example. This module will contain
the data that describes our form, the Factory method that will generate the HTML
of each form element and, of course, the initialization code that will combine the
aforementioned parts to create the resulting form:

(function() {
 'use strict';

 window.dataDrivenForm = window.dataDrivenForm || {};

 dataDrivenForm.formElementHTMLFactory =
 function (type, name, title) {
 if (!title || !title.length) {
 title = name;
 }
 var topPart = '<div><label>' + title + ':
';
 var bottomPart = '</label></div>';
 if (type === 'text') {
 return topPart +
 '<input type="text" maxlength="200" name="' +
 name + '" />' +
 bottomPart;
 } else if (type === 'email') {
 return topPart +
 '<input type="email" required name="' + name + '" />' +
 bottomPart;
 } else if (type === 'number') {
 return topPart +
 '<input type="number" min="0" max="2147483647" ' +
 'name="' + name + '" />' +

The Builder and Factory Patterns

[106]

 bottomPart;
 } else if (type === 'date') {
 return topPart +
 '<input type="date" min="1900-01-01" name="' +
 name + '" />' +
 bottomPart;
 } else if (type === 'textarea') {
 return topPart +
 '<textarea cols="30" rows="3" maxlength="800" name="' +
 name + '" />' +
 bottomPart;
 } else if (type === 'checkbox') {
 return '<div><label>' + title + ':' +
 '<input type="checkbox" name="' + name + '" />' +
 '</label></div>';
 } else if (type === 'notice') {
 return '<p>' + name + '</p>';
 } else if (type === 'button') {
 return '<button name="' + name + '">' + title + '!</button>';
 }
 };

})();

Our Factory method will be invoked with three parameters. Starting from the most
important one, it accepts the type and the name of the form field and also the title
that will be used as its description. Since most form fields share some common
characteristics, like their title, the Factory method tries to abstract them in order to
have less code repetition. As you can see, the Factory method also contains some
sensible extra configuration for each field type, like the maxlength attribute of the
text fields, that is specific for this use case.

The object structure that will be used to represent each form element will be a plain
JavaScript object that has a type, name, and title property. The collection of objects
that describe the form fields will be grouped in an array and be available on the
dataDrivenForm.parts property of our module. In a real-world application, these
fields would commonly either be retrieved with an AJAX request or be injected into
some part of the HTML of the page. In the following code snippet, we can see the
data that will be used to drive the creation of our form:

dataDrivenForm.parts = [{
 type: 'text',
 name: 'firstname',
 title: 'First Name'
 }, {

Chapter 6

[107]

 type: 'text',
 name: 'lastname',
 title: 'Last Name'
 }, {
 type: 'email',
 name: 'email',
 title: 'e-mail address'
 }, {
 type: 'date',
 name: 'birthdate',
 title: 'Date of birth'
 }, {
 type: 'number',
 name: 'experience',
 title: 'Years of experience'
 }, {
 type: 'textarea',
 name: 'summary',
 title: 'Summary'
 }, {
 type: 'checkbox',
 name: 'receivenotifications',
 title: 'Receive notification e-mails'
 }, {
 type: 'notice',
 name: 'By using this form you accept the terms of use'
 }, {
 type: 'button',
 name: 'save'
 }, {
 type: 'button',
 name: 'submit'
 }];

Finally, we define and immediately invoke an init method for our module:

dataDrivenForm.init = function() {
 for (var i = 0; i < dataDrivenForm.parts.length; i++) {
 var part = dataDrivenForm.parts[i];
 var elementHTML = dataDrivenForm.formElementHTMLFactory(
 part.type, part.name, part.title);
 // check if the result is null, undefined or empty string
 if (elementHTML && elementHTML.length) {
 $('form').append(elementHTML);
 }

The Builder and Factory Patterns

[108]

 }
};

$(document).ready(dataDrivenForm.init);

The initialization code waits until the DOM of the page is fully loaded and then
uses the Factory method to create the form elements and attach them to the <form>
element of our page. An extra concern of the preceding code is to check the result of
the Factory method invocation before actually starting to use it.

Most Factories, when invoked with parameters for a case they can't handle, return
null or empty objects. As a result, it's a good common practice, when using
Factories, to check whether the result of each invocation is actually valid.

As you can see, having Factories that accept only simple parameters (for example,
strings and numbers), in many cases, leads to an increased number of parameters.
Even though these parameters may only be used in specific cases, the API of our
Factory starts to be awkwardly long and needs proper documentation for each
special case in order to be usable.

Ideally, a Factory method should accept as few arguments as possible, otherwise
it will start looking like a Facade that only provides a different API. Since, in some
cases, using a single string or numeric argument does not suffice, in order to avoid
using a huge number of parameters, we can follow a practice where the Factory is
designed to accept a single object as its parameter.

For example, in our case, we can just pass the whole object that describes the form
field as a parameter to the Factory method:

dataDrivenForm.formElementHTMLFactory = function
(formElementDefinition) {
 var topPart = '<div><label>' +
 formElementDefinition.title + ':
';
 var bottomPart = '</label></div>';
 if (formElementDefinition.type === 'text') {
 return topPart +
 '<input type="text" maxlength="200" name="' +
 formElementDefinition.name + '" />' +
 bottomPart;
 } /* ... */
};

This practice is suggested for the following cases:

• When we create generic Factories that are not focused on specific use cases
and we need to configure their results differently for each specific use case.

Chapter 6

[109]

• When the constructed objects have many optional configuration parameters
that largely differ. In this case, adding them as separate parameters to the
Factory method would lead to invocations that have a number of null
arguments, depending on which exact argument we are interested
in defining.

Another practice, especially in JavaScript programming, is to create a Factory
method that accepts a simple string or numeric value as its first argument and
optionally provide a complementary object as a second parameter. This enables us
to have a simple generic API that can be use-case-specific and also gives us some
extra points of freedom to configure some special cases. This approach is used by
the $.ajax(url [, settings]) method that allows us to generate simple
GET requests by just providing a URL and also accepts an optional settings
parameter that allows us to configure any aspect of the request. Changing the
above implementation to use this variation is left as an exercise for the reader,
in order to experiment and get familiar with the use of Factory methods.

Introducing the Builder Pattern
The Builder Pattern is part of the group of Creational Patterns and provides us a way
to create objects that require a lot of configuration before they reach the point where
they can be used. The Builder Pattern is often used for objects that accept many
optional parameters in order to define their operation. Another matching case is for
the creation of objects where their configuration needs to be done in several steps or
in a specific order.

The common paradigm for the Builder Pattern according to Computer Science is
that there is a Builder Object that provides one or more setter methods (setA(...),
setB(...)) and a single generation method that constructs and returns the newly
created result object (getResult()).

The Builder and Factory Patterns

[110]

This pattern has two important concepts. The first one is that the Builder Object
exposes a number of methods as a way to configure the different parts of the object
that is under construction. During the configuration phase, the Builder Object
preserves an internal state that reflects the effects of the invocations of the provided
setter methods. This can be beneficial when used to create objects that accept a large
number of configuration parameters, solving the problem of Telescopic Constructors.

Telescopic Constructors is an anti-pattern of object-oriented
programming that describes the situation where a class provides
several constructors that tend to differ on the number, the type, and
the combination of the arguments that they require. Object classes with
several parameters that can be used in many different combinations
can often lead to implementations falling into this anti-pattern.

The second important concept is that it also provides a generation method that
returns the actual constructed object based on the preceding configuration. Most of
the time, the instantiation of the requested object is done lazily and actually takes
place at the moment that this method is invoked. In some cases, the Builder Object
allows us to invoke the generation method more than once, allowing us to generate
several objects with the same configuration.

How it is adopted by jQuery's API
The Builder Pattern can also be found as part of the API that jQuery exposes.
Specifically, the jQuery $() function can also be used to create new DOM elements
by invoking it with an HTML string as an argument. As a result, we can create new
DOM elements and set their different parts as we need them, instead of having to
create the exact HTML string that is needed for the final result:

var $input = $('<input />');
$input.attr('type','number');
$input.attr('min', '0');
$input.attr('max', '100');
$input.prop('required', true);
$input.val(4);

$input.appendTo('form');

Chapter 6

[111]

The $('<input />') call returns a Composite Object containing an element that
is not attached to the DOM tree of the page. This unattached element is only an in-
memory object that is neither fully constructed nor fully functional until we attach
it to the page. In this case, this Composite Object acts like a Builder Object Instance
having an internal state of objects that are not yet finalized. Right after this, we do
a series of manipulations on it using some jQuery methods that act like the setter
methods described by the Builder Pattern.

Finally, after we apply all the required configurations, so that the resulting
object behaves in the desired way, we invoke the $.fn.appendTo() method.
The $.fn.appendTo() method works as the generation method of the Builder
Pattern, by attaching the in-memory element of the $input variable to the DOM
tree of the page, transforming it into an actual attached DOM element.

Of course, the above example can get more readable and less repetitive by utilizing
the Fluent API that jQuery provides for its methods, and also combine the $.fn.
attr() method invocations. Moreover, jQuery allows us to use almost all its
methods to do traversals and manipulations on the elements that are under
construction, just as we can on normal DOM element Composite Objects.
As a result, the above example can get a little more complete as follows:

$('<input />').attr({
 'type':'number',
 'min': '0',
 'max': '100'
 })
 .prop('required', true)
 .val(4)
 .css('display', 'block')
 .wrap('<label>') // wrap the input with a <label>
 .parent() // traverse one level up, to the <label>
 .prepend('Qty:#</span')
 .appendTo('form');

The result will look as follows:

The Builder and Factory Patterns

[112]

The criteria that allow us to categorize this overloaded way of invoking the $()
function as an implementation that adopts the Builder Pattern, is the fact that:

• It returns an object with an internal state containing partially constructed
elements. The contained elements are only in-memory objects that are not
part of the page's DOM tree.

• It provides us methods to manipulate its internal state. Most jQuery methods
can be used for this purpose.

• It provides us method(s) to generate the final result. We can use jQuery
methods such as $.fn.appendTo() and $.fn.insertAfter(), as a way to
complete the construction of the internal elements and make them part of the
DOM tree with properties that reflect their earlier in-memory representation.

As we have already seen in Chapter 1, A Refresher on jQuery and the Composite Pattern,
the primary way to use the $() function is to invoke it with a CSS selector as a string
parameter and in turn it will retrieve the matching page elements and return them
in a Composite Object. On the other hand, when the $() function detects that it has
been invoked with a string parameter that looks like a piece of HTML, it works as a
DOM element Builder. This overloaded way of invoking the $() function bases its
detection on the assumption that the provided HTML code starts and ends with the
inequality symbols < and >:

 init = jQuery.fn.init = function(selector, context) {
 /* 11 lines of code */
 // Handle HTML strings
 if (typeof selector === "string") {
 if (selector[0] === "<" &&
 selector[selector.length - 1] === ">" &&
 selector.length >= 3) {
 // Assume that strings that start and end with <> are HTML
 // and skip the regex check
 match = [null, selector, null];

 } /*...*/

 // Match html or make sure no context is specified for #id
 if (match && (match[1] || !context)) {

Chapter 6

[113]

 // HANDLE: $(html) -> $(array)
 if (match[1]) {
 /* 4 lines of code */
 jQuery.merge(this,
 jQuery.parseHTML(match[1], /*...*/));
 /* 16 lines of code */

 return this;
 }/*...*/
 }/*...*/
 }/*...*/
 };

As we can see in the preceding code, this overload uses the jQuery.parseHTML()
helper method that ultimately leads to a call of the createDocumentFragment()
method. The created Document Fragment is then used as a host of the under
construction tree structure of elements. After jQuery finishes converting the HTML
into elements, the Document Fragment is discarded and only it's hosted elements
are returned:

jQuery.parseHTML = function(data, context, keepScripts) {
 /* 17 lines of code */
 // Single tag
 if (parsed) {
 return [context.createElement(parsed[1])];
 }

 parsed = buildFragment([data], context, scripts);
 /* 5 lines of code */
 return jQuery.merge([], parsed.childNodes);
};

This results in the creation of a new jQuery Composite Object containing an
in-memory tree structure of elements. Even though these elements are not attached
to the actual DOM tree of the page, we can still do traversals and manipulations on
them like any other jQuery Composite Object.

For more information on Document Fragments, you can visit:
https://developer.mozilla.org/en-US/docs/Web/API/
Document/createDocumentFragment.

https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment
https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment

The Builder and Factory Patterns

[114]

How it is used by jQuery internally
An undoubtedly big part of jQuery is its AJAX-related implementation, which aims
to provide a simple API for asynchronous calls that is also configurable to a large
degree. Using the jQuery Source Viewer and searching for jQuery.ajax, or directly
searching jQuery's source code for "ajax:", will bring us the aforementioned
implementation. In order to make its implementation more straightforward and
also allow it to be configurable, jQuery internally uses a special object structure that
acts as a Builder Object for the creation and handling of each AJAX request. As we
will see, this is not the most common way of using a Builder Object, but it is actually
a special variant with some modifications in order to fit the requirements of this
complex implementation:

jqXHR = {
 readyState: 0,

 // Builds headers hashtable if needed
 getResponseHeader: function(key) {/* ... */},

 // Raw string
 getAllResponseHeaders: function() {/* ... */},

 // Caches the header
 setRequestHeader: function(name, value) {/* ... */},

 // Overrides response content-type header
 overrideMimeType: function(type) {/* ... */},

 // Status-dependent callbacks
 statusCode: function(map) {/* ... */},

 // Cancel the request
 abort: function(statusText) {/* ... */}
};

The main method that the jqXHR object exposes to configure the generated
asynchronous request is the setRequestHeader() method. The implementation of
this method is quite generic, enabling jQuery to set all the different HTTP headers for
the request, using only one method.

Chapter 6

[115]

In order to provide an even greater degree of flexibility and abstraction, jQuery
internally uses a separate transport object as a wrapper of the jqXHR object. This
transport object handles the part of actually sending the AJAX request to the server,
working like a partner builder object that cooperates with the jqXHR object for the
creation of the final result. This way, jQuery can fetch Scripts, XML, JSON, and
JSONP responses from the same or cross-origin servers, using the same API and
overall implementation:

transport = inspectPrefiltersOrTransports(transports, s, options,
 jqXHR);

// If no transport, we auto-abort
if (!transport) {
 done(-1, "No Transport");
} else {
 jqXHR.readyState = 1;
 /* 12 lines of code */
 try {
 state = 1;
 transport.send(requestHeaders, done);
 } catch (e) {/* 7 lines of code */}
}

Another special thing about this implementation of the Builder Pattern is that it
should be able to operate in both synchronous and asynchronous manner. As a
result, the send() method of the transport object that acts as the result generator
method of the wrapped jqXHR object can't just return a result object, but it is instead
invoked with a callback.

Finally, after the request is complete, jQuery uses the getResponseHeader() method
to retrieve all the required response headers. Right after this, the headers are used to
properly convert the received response that is stored in the responseText property
of the jqXHR object.

The Builder and Factory Patterns

[116]

How to use it in our applications
As an example use case of the Builder Pattern in a client-side application that uses
jQuery, we will create a simple data-driven multiple-choice quiz. The main reason
that the Builder Pattern is a better match for this case, as compared to the Factory
Pattern example that we saw earlier, is that the result is more complex and has more
degrees of configuration. Each question will be generated based on a model object
that will represent its desired properties.

Once again, the required HTML is very simple, containing just an <h1> element with
the header of the page, an empty <form> tag, and some references to our CSS and
JavaScript resources:

 <h1>Data Driven Quiz</h1>
 <form> </form>

 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="datadrivenquiz.js"></script>

Chapter 6

[117]

Besides the common, simple styles that we have seen in the previous chapters,
the CSS of this example additionally defines:

ul.unstyled > li {
 margin: 0;
 padding: 0;
 list-style: none;
}

For the needs of this example, we will create a module with a new namespace named
dataDrivenQuiz. As we saw earlier in this chapter, we will assume the existence of
an array containing the model objects that describe each multiple-choice question
that needs to be presented. Each of these model objects will have:

• A title property that will hold the question
• An options property that will be an array with the available answers

to choose from
• An optional acceptsMultiple property to signify whether we should use

radio or check boxes

The array with the model objects that describe the form questions will be available at
the dataDrivenQuiz.parts property of our module, while keeping in mind that our
implementation could easily be modified to fetch the models with an AJAX request:

dataDrivenQuiz.questions = [{
 title: 'Which is the most preferred way to write our JavaScript
code?',
 options: [
 'inline along with our HTML',
 'flat inside *.js files',
 'in small Modules, one per *.js file'
]
}, {
 title: 'What does the $() function returns when invoked with a CSS
selector?',
 options: [
 'a single element',
 'an array of elements',
 'the HTML of the selected element',
 'a Composite Object'
]
}, {
 title: 'Which of the following are Design Patterns',
 acceptsMultiple: true,
 options: [

The Builder and Factory Patterns

[118]

 'Garbage Collector',
 'Class',
 'Object Literal',
 'Observer'
]
}, {
 title: 'How can get a hold to the <body> element of a page?',
 acceptsMultiple: true,
 options: [
 'document.body',
 'document.getElementsByTagName(\'body\')[0]',
 '$(\'body\')[0]',
 'document.querySelector(\'body\')'
]
}];

Defining the data structures that are required to describe a problem,
before starting the actual implementation, allows us to focus on the
needs of the application and get an estimate of its overall complexity.

Given the preceding sample data, let's now proceed to the implementation of
our Builder:

function MultipleChoiceBuilder() {
 this.title = 'Untitled';
 this.options = [];
}
dataDrivenQuiz.MultipleChoiceBuilder = MultipleChoiceBuilder;

MultipleChoiceBuilder.prototype.setTitle = function(title) {
 this.title = title;
 return this;
};

MultipleChoiceBuilder.prototype.setAcceptsMultiple =
 function(acceptsMultiple) {
 this.acceptsMultiple = acceptsMultiple;
 return this;
 };

MultipleChoiceBuilder.prototype.addOption = function(title) {
 this.options.push(title);
 return this;

Chapter 6

[119]

};

MultipleChoiceBuilder.prototype.getResult = function() {
 var $header = $('<header>').text(this.title || 'Untitled');

 var questionGuid = 'quizQuestion' + (jQuery.guid++);
 var $optionsList = $('<ul class="unstyled">');
 for (var i = 0; i < this.options.length; i++) {
 var $input = $('<input />').attr({
 'type': this.acceptsMultiple ? 'checkbox' : 'radio',
 'value': i,
 'name': questionGuid,
 });

 var $option = $('');
 $('<label>').append($input, $('').text(this.options[i]))
 .appendTo($option);
 $optionsList.append($option);
 }
 return $('<article>').append($header, $optionsList);
};

Using the Prototypical Object-Oriented approach of JavaScript, we firstly define the
Constructor Function for our MultipleChoiceBuilder class. When the Constructor
Function is invoked using the new operator, it will create a new instance of the
Builder and initialize its title property to "Untitled" and the options property
to an empty array.

Right after this, we complete the definition of the Constructor Function of our
Builder, we attach it as a member of our module, and continue with the definition
of its setter methods. Following the Prototypical Class paradigm, the setTitle(),
setAcceptsMultiple(), and addOption() methods are defined as properties
of our Builder's Prototype and are used to modify the internal state of the under
construction element. Additionally, in order to enable us to chain several invocations
of these methods, which results in a more readable implementation, all of them end
with the return this; statement.

We complete the implementation of the Builder with the getResult() method that
has the duty of gathering all the parameters that are applied on the Builder object
instance and generating the resulting element wrapped inside a jQuery Composite
Object. In its first line, it creates a header of the question. Right after this, it creates
a element with the unstyled CSS class to hold the possible answers to the
question and a unique identifier that will be used as the name of the generated
<input> of the question.

The Builder and Factory Patterns

[120]

In the for loop that follows, we will:

• Create an <input /> element for each option of the question
• Properly set its type as a checkbox or a radio button, based on the value of

the acceptsMultiple property
• Use the for loop's iteration number as its value
• Set the unique identifier that we generated earlier for the question as the

input's name in order to group the answers
• Finally, add a <label> with the option's text, which wraps all of them inside

an , and append it to the question's .

Lastly, the header and the list of options are wrapped in an <article> element,
which is then returned as the final result of the Builder.

In the above implementation, we use the $.fn.text() method to assign the content
of the question's header and its available choices instead of string concatenation, in
order to properly escape the < and > characters that are found in their descriptions.
As an extra note, since some of the answers also contain single quotes, we need to
escape them in the model objects using a backslash (\').

Finally, in our module's implementation, we define and immediately invoke the
init method:

dataDrivenQuiz.init = function() {
 for (var i = 0; i < dataDrivenQuiz.questions.length; i++) {
 var question = dataDrivenQuiz.questions[i];
 var builder = new dataDrivenQuiz.MultipleChoiceBuilder();

 builder.setTitle(question.title)
 .setAcceptsMultiple(question.acceptsMultiple);

 for (var j = 0; j < question.options.length; j++) {
 builder.addOption(question.options[j]);
 }

 $('form').append(builder.getResult());
 }
};

$(document).ready(dataDrivenQuiz.init);

The execution of the initialization code is delayed until the DOM tree of the page is
fully loaded. Then the init() method iterates over the model objects array and uses
the Builder to create each question and populate the <form> element of our page.

Chapter 6

[121]

A good exercise for the reader would be to extend the above implementation in
order to support the client-side evaluation of the quiz. Firstly, this would require
you to extend the question objects to contain information about the validity of each
choice. Then, it would be suggested that you create a Builder that would retrieve
the answers from the form, evaluate them, and create a result object with the user
choices and the overall success on the quiz.

Summary
In this chapter, we learned the concepts of the Builder and Factory Patterns, two of
the most commonly used Creational Design Patterns. We analyzed their common
goals, their different approaches on abstracting the process of generating and
initializing new objects for specific use cases, and how their adoption can benefit our
implementations. Finally, we learned how to use them properly and how to choose
the most appropriate one for the different use cases of any given implementations.

Now that we have completed our introduction to the most important Creational
Design Patterns, we can move on to the next chapter where we will be introduced
to the development patterns that are used to program asynchronous and concurrent
procedures. In more detail, we will learn how to orchestrate the execution of
asynchronous procedures that run either in order or parallel to each other, by
using callbacks and jQuery Deferred and Promises APIs.

[123]

Asynchronous Control
Flow Patterns

This chapter is dedicated to development patterns that are used to ease the
programming of asynchronous and concurrent procedures.

At first, we will have a refresher on how Callbacks are used in JavaScript
programming and how they are an integral part of web development. We will
then proceed and identify their benefits and limitations when used in large and
complex implementations.

Right after this, we will be introduced to the concept of Promises. We will learn how
jQuery's Deferred and Promise APIs work and how they differ from ES6 Promises.
We will see where and how they are used internally by jQuery to simplify its
implementation and lead to more readable code. We will analyze their benefits, classify
the best matching use cases, and compare them with the classic Callback Pattern.

By the end of this chapter, we will be able to use jQuery Deferred and Promises to
efficiently orchestrate the execution of asynchronous procedures that run either in
order or parallel to each other.

In this chapter, we will:

• Have a refresher on how Callbacks are used in JavaScript programming
• Get introduced to the concept of Promises
• Learn how to use jQuery's Deferred and Promise APIs
• Compare jQuery Promises with ES6 Promises
• Learn how to orchestrate asynchronous tasks using Promises.

Asynchronous Control Flow Patterns

[124]

Programming with callbacks
A Callback can be defined as a function that is passed as an invocation argument to
another function or method (which is referred to as a Higher-Order Function) and is
expected to be executed at some later point of time. In this way, the piece of code
that was handed our Callback will eventually invoke it, propagating the results
of an operation or event back to the context that the Callback was defined.

Callbacks can be characterized as synchronous or asynchronous, based on the way
that the invoked method operates. A Callback is characterized as synchronous when
it is executed by a blocking method. On the other hand, JavaScript developers are
more familiar with asynchronous callbacks, also called deferred callbacks, which
are set to be executed after an asynchronous procedure finishes or when a specific
event occurs (page load, click, AJAX response arrival, and so on).

Callbacks are widely used in JavaScript applications since they are an integral part
of many core JavaScript APIs such as AJAX. Moreover, JavaScript implementations
of this pattern are almost word for word as described by the above simple definition.
This is a result of the way that JavaScript treats functions as objects and allows us to
store and pass method references as simple variables.

Chapter 7

[125]

Using simple callbacks in JavaScript
Perhaps one of the simplest examples of asynchronous callbacks in JavaScript is the
setTimeout() function. The following code demonstrates a simple use of it, where
we invoke setTimeout() with the doLater() function as a callback parameter and,
after 1000 milliseconds of waiting, the doLater() callback is invoked:

var alertMessage = 'One second passed!';
function doLater() {
 alert(alertMessage);
}
setTimeout(doLater, 1000);

As seen in the simple preceding example, the callback is executed in the context that
it was defined. The callback still has access to the variables of the context that it was
defined by creating a closure. Even though the preceding example uses a named
function defined earlier, the same applies for anonymous callbacks:

var alertMessage = 'One second passed!';
setTimeout(function() {
 alert(alertMessage);
}, 1000);

In many cases, using anonymous callbacks is a more convenient way of
programming, since it results in shorter code and also reduces the readability
noise, which is a result of defining several different named functions that are
used only once.

Setting callbacks as object properties
A small variation of the above definition also exists, where the callback function
is assigned to a property of an object instead of being passed as an argument of a
method invocation. This is commonly used in cases where there are several different
actions that need to take place during or after a method invocation is completed:

var c = new Countdown();

c.onProgress = function(progressStatus) { /*...*/ };
c.onDone = function(result) { /*...*/ };
c.onError = function(error) { /*...*/ };

c.start();

Asynchronous Control Flow Patterns

[126]

Another use case of the above variant is to add handlers on objects that have already
been instantiated and initialized. A good example of this case is the way we set up a
result handler for simple (non-jQuery) AJAX calls:

var r = new XMLHttpRequest();
r.open('GET', 'data.json', true);
r.onreadystatechange = function() {
 if (r.readyState != 4 || r.status != 200) {
 return;
 }
 alert(r.responseText);
};
r.send();

In the preceding code, we set an anonymous function on the onreadystatechange
property of the XMLHttpRequest object. This function acts as a callback and is
invoked every time there is a state change on the ongoing request. Inside our
callback, we check whether the request has completed with a successful HTTP
status code and display an alert with the response body. Like in this example,
where we initiate the AJAX call by invoking the send() method without passing
any arguments, it is common for APIs that use this variant to lead to minimal ways
of invoking their methods.

Using callbacks in jQuery applications
Perhaps the most common way in which callbacks are used in jQuery applications
is for event handling. This is logical since the first thing that every interactive
application should do is handle and respond to user actions. As we saw in earlier
chapters, one of the most convenient ways to attach event handlers to elements is by
using jQuery's $.fn.on() method.

Another common place where callbacks are used in jQuery is for AJAX requests,
where the $.ajax() method has the central role. Moreover, the jQuery library
also provides several other convenient methods to make AJAX requests that are
focused on the most common use cases. Since all these methods are executed
asynchronously, they also accept a callback as a parameter, as a way to make the
retrieved data available back to the context that initiated the AJAX request. One of
these convenient methods is $.getJSON(), which is a wrapper around $.ajax(),
and is used as a better matching API to execute AJAX requests that intend to retrieve
JSON responses.

Other widely used jQuery APIs accepting callbacks are as follows:

• The effects-related jQuery methods such as $.animate()
• The $(document).ready() method

Chapter 7

[127]

Let's now continue by demonstrating a code example where all the above methods
are used.

$(document).ready(function() {
 $('#fetchButton').on('click', function() {
 $.getJSON('AjaxContent.json', function(json) {
 console.log('done loading new content');

 $('#newContent').css({ 'display': 'none' })
 .text(json.data)
 .slideDown(function() {
 console.log('done displaying new content');
 });
 });
 });
});

The preceding code firstly delays its execution until the DOM tree of the page has
been fully loaded and then adds an Observer for clicks on the <button> with ID
fetchButton by using the jQuery's $.fn.on() method. Whenever the click event
is fired, the provided callback will be invoked and initiate an AJAX call to fetch the
AjaxContent.json file. For the needs of this example, we are using a simple JSON
file, like the following:

{ "data": "I'm the text content fetched by an AJAX call!" }

When the response is received and the JSON is parsed successfully, the callback is
invoked with the parsed object as a parameter. Finally, the callback itself locates the
page element with the ID newContent in the page, hides it, and then sets the data
field of the retrieved JSON as its text content. Right after this, we use the jQuery
$.fn.slideDown() method that makes the newly set page content appear, by
progressively increasing its height. Finally, after the animation is complete,
we write a log message to the browser console.

Further documentation regarding jQuery's $.ajax() , $.getJSON(), and
$.fn.slideDown() methods can be found at http://api.jquery.
com/jQuery.ajax/, http://api.jquery.com/jQuery.getJSON/,
and http://api.jquery.com/slideDown/.
Keep in mind that the $.getJSON() method might not work in some
browsers when the page is loaded through the filesystem, but works as
intended when served using any web server such as Apache, IIS, or nginx.

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/slideDown/

Asynchronous Control Flow Patterns

[128]

Writing methods that accept callbacks
When writing a function that utilizes one or more asynchronous APIs, that also
dictates that the resulting function will be asynchronous by definition. In that case, it
is obvious that simply returning a result value is not an option, since the result will
probably be available after the function invocation has already finished.

The easiest solution for asynchronous implementations is to use a callback as
a parameter of your function, which, as we discussed earlier, is hassle-free in
JavaScript. As an example, we will create an asynchronous function that
generates a random number of a specified range:

function getRandomNumberAsync (max, callbackFn) {
 var runFor = 1000 + Math.random() * 1000;
 setTimeout(function() {
 var result = Math.random() * max;
 callbackFn(result);
 }, runFor);
}

The getRandomNumberAsync() function accepts its max argument as the numeric
upper bound for the generated random number and also a callback function
that it will invoke with the generated result. It uses setTimeout() to emulate
an asynchronous calculation that ranges from 1000 to 2000 milliseconds. For the
generation of the result, it uses the Math.random() method, multiplying it with the
maximum allowed value, and finally invokes the provided callback with it. A simple
way to invoke this function will look as follows:

getRandomNumberAsync(10, function(number) {
 console.log(number); // returns a number between 0 and 10
});

Even though the above example uses setTimeout() to emulate asynchronous
processing, the implementation principles remain the same regardless of the
asynchronous API(s) that is used. For example, we can rewrite the above
function to retrieve its result through an AJAX call:

function getRandomNumberWS (max, callbackFn, errorFn) {
 $.ajax({
 url: 'https://qrng.anu.edu.au/API/jsonI.php?length=1&type=uint16',
 dataType: 'json',
 success: function(json) {
 var result = json.data[0] / 65535 * max;
 callbackFn(result);
 },

Chapter 7

[129]

 error: errorFn
 });
}

The preceding implementation uses the $.ajax() method that is invoked with an
object parameter, enclosing all the options of the request. Except for the URL for the
request, the object also defines the expected dataType of the result and the success
and error callbacks, which are wired with the respective parameters of our function.

Perhaps the only extra concern that the preceding code has to resolve is how to
handle errors inside the success callback so that the caller of the function can be
notified in case something goes wrong during the creation of the result. For example,
the AJAX request might return an empty object. Adding proper handling for such
cases is left as an exercise for the reader, after reading the rest of this chapter.

The Australian National University (ANU) provides free, truly
random, numbers to the public, through their REST Web Service. For
more information, you can visit http://qrng.anu.edu.au/API/
api-demo.php.

Orchestrating callbacks
We will now continue by analyzing some patterns that are commonly used to control
the execution flow when dealing with asynchronous methods that accept callbacks.

Queuing in order execution
As our first example, we will create a function that demonstrates how we can queue
the execution of several asynchronous tasks:

function getThreeRandomNumbers(callbackFn, errorFn) {
 var results = [];
 getRandomNumberAsync(10, function(number) {
 results.push(number);

 getRandomNumberAsync(10, function(number) {
 results.push(number);

 getRandomNumberWS(10, function(number) {
 results.push(number);
 callbackFn(results);
 }, function (error) {

http://qrng.anu.edu.au/API/api-demo.php
http://qrng.anu.edu.au/API/api-demo.php

Asynchronous Control Flow Patterns

[130]

 errorFn(error);
 });
 });
 });
}

In the preceding implementation, our function creates a queue of three random
number generations. The first two random numbers are generated from our sample
setTimeout() implementation and the third is retrieved from the aforementioned
web service though an AJAX call. In this example, all the numbers are gathered in
the result array, which is passed as an invocation parameter to the callbackFn
after all the asynchronous tasks have completed.

The preceding implementation is quite straightforward and just applies the
simple principles of the Callback Pattern repeatedly. For every extra or queued
asynchronous task, we just need to nest its invocation inside the callback of the task
that it depends on. Keep in mind that, in different use cases, we might only care to
return the result of the final task and have the results of the intermediate steps be
propagated as arguments for each subsequent asynchronous call.

Avoiding the Callback Hell anti-pattern
Even though writing code as shown in the above example is easy, when applied to
large and complex implementations, it can lead to bad readability. The triangular
shape that is created by the white-spaces in front of our code and the stacking of
several }); near its end, are the two signs that our code might lead to an anti-pattern
known as Callback Hell.

For more information, you can visit http://callbackhell.com/.

A way to avoid this anti-pattern is to unfold the nested callbacks, by creating
separate named functions at the same level with the asynchronous task that they are
used. After applying this simple tip to the above example, the resulting code looks
a lot cleaner:

function getThreeRandomNumbers(callbackFn, errorFn) {
 var results = [];

 getRandomNumberAsync(10, function(number) { // task 1
 results.push(number);
 task2();
 });

http://callbackhell.com/

Chapter 7

[131]

 function task2 () {
 getRandomNumberAsync(10, function(number) {
 results.push(number);
 task3();
 });
 }

 function task3 () {
 getRandomNumberWS(10, function(number) {
 results.push(number);
 callbackFn(results);
 }, errorFn);
 }
}

As you can see, the resulting code surely does not remind us of the characteristics
of the Callback Hell anti-pattern. On the other hand, it now needs more lines of
code for its implementation, mostly used for the additional function declarations
function taskX () { } that are now required.

A middle ground solution between the above two approaches is to
organize the related parts of such asynchronous execution queues in
small and manageable functions.

Running concurrently
Even though JavaScript in web browsers is single-threaded, making independent
asynchronous tasks run concurrently can make our applications work faster.
As an example, we will rewrite the preceding implementation to fetch all three
random numbers in parallel, which can make the result to be retrieved a lot faster
than before:

function getRandomNumbersConcurent(callbackFn, errorFn) {
 var results = [];
 var resultCount = 0;
 var n = 3;

 function gatherResult (resultPos) {
 return function (result) {
 results[resultPos] = result;
 resultCount++;
 if (resultCount === n) {
 callbackFn(results);
 }

Asynchronous Control Flow Patterns

[132]

 };
 }

 getRandomNumberAsync(10, gatherResult(0));
 getRandomNumberAsync(10, gatherResult(1));
 getRandomNumberWS(10, gatherResult(2), errorFn);
}

In the preceding code, we defined the gatherResult() helper function, which
returns an anonymous function that is used as a callback for our random number
generators. The returned callback function uses the resultPos parameter as the
index of the array where it will store the generated or retrieved random number.
Additionally, it tracks how many times it has been invoked, as a way to know
whether all three concurrent tasks have ended. Finally, right after the third and final
invocation of the callback, the callbackFn function is invoked with the results
array as a parameter.

Another great application of this technique, other than AJAX calls, is to access data
stored in IndexedDB. Retrieving many values from the database concurrently can
lead to performance gains, since the data retrievals can execute in parallel without
blocking each other.

For more information on IndexedDB, you can visit https://
developer.mozilla.org/en-US/docs/Web/API/
IndexedDB_API/Using_IndexedDB.

Introducing the concept of Promises
Promises, also known as Futures, are described by Computer Science as specialized
objects that are used for synchronization of asynchronous, concurrent, or parallel
procedures. They are also used as proxies to propagate the result of a task when
its generation completes. This way, a Promise object is like a contract where an
operation will eventually complete its execution, and anyone having a reference
to this contract can declare their interest to be notified about the result.

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

Chapter 7

[133]

Since they were introduced to JavaScript developers, as part of several libraries,
they revolutionized the way we use asynchronous functions and compose them in
implementation with complex synchronization schemes. This way, web developers
can create more flexible, scalable, and readable implementations, making method
invocations with callbacks look like a primitive pattern and effectively eliminating
the Callback Hell situations.

One of the key concepts of Promises is that asynchronous methods return an object
that represents their eventual result. Every Promise has an internal state that initially
starts as Pending. This internal state can change only once, from Pending to either
Resolved or Rejected, by using one of the resolve() or reject() methods that
every implementation provides. These methods can be invoked only to change
the state of a Pending Promise; in most cases, they are intended to be used only
by the original creator of the Promise object and not be available to its consumers.
The resolve() method can be invoked with the result of the operation as a single
parameter, while the reject() method is usually invoked with the Error that
caused the Promise object to get Rejected.

Asynchronous Control Flow Patterns

[134]

Another key concept of Promises is the existence of a then() method, giving them
the characterization of the "thenable", as a general term to describe promises among
all the different implementations. Every Promise object exposes a then() method
that is used by a caller in order to provide the function(s) that will be invoked when
the Promise is settled (Resolved or Rejected). The then() method can be invoked
with two functions as parameters, where the first is invoked in case the Promise
gets Resolved, while the second is invoked when it is Rejected. The first argument is
commonly referred to as the onFulfilled() callback, while the second is referred to
as the onRejected().

Every Promise preserves two internal list containing all the onFulfilled()
and onRejected() callback functions that are passed as arguments to the then()
method. The then() method can be invoked several times for each Promise, adding
new entries to the appropriate internal list, as far as the respective parameter is
actually a function. When a Promise eventually gets Resolved or Rejected, it iterates
over the appropriate list of callbacks and invokes them in order. Moreover, from the
point that a Promise gets settled and after, every further usage of the then() method
has, as a result, the immediate invocation of the appropriate provided callback.

Chapter 7

[135]

Based on its characteristics, a Promise can be likened to a Broker
from the Publish/Subscribe Pattern to some degree. Their key
differences include the facts that it can only be used for a single
Publish and that the Subscribers get notified of the result even if
they expressed their interest after the Publish took place.

Using Promises
As we said earlier, the concept of Promises revolutionized programming of
asynchronous tasks in JavaScript and, for a long time, they were the new big
thing that everyone was enthusiastic about. At that time, many specialized libraries
appeared where each one provided an implementation of Promises with slight
differences to each other. Moreover, Promise implementations became available
as part of utility libraries such as jQuery and web frameworks such as AngularJS
and EmberJS. At that time, the "CommonJS Promises/A" specification made its
appearance as a reference point and was the first attempt to define how Promises
should actually work across all implementations.

For more information on the "CommonJS Promises/A" specification,
you can visit http://wiki.commonjs.org/wiki/Promises/A.

Using the jQuery Promise API
A Promise-based API first appeared in the jQuery library in v1.5, based on the
"CommonJS Promises/A" design. This implementation introduced the additional
concept of the Deferred object, which works like a Promise Factory. The Deferred
objects expose a superset of the methods that Promises provide, where the additional
methods can be used to do manipulations to the state of its internal Promise.
Additionally, the Deferred object exposes a promise() method and returns the
actual Promise object, which does not expose any way to manipulate its internal
state and just exposes observation methods such as then().

In other words:

• Only code that has a reference to a Deferred object can actually change the
internal state of its Promise, by either resolving or rejecting it.

• Any piece of code that has a reference to a Promise object can't change its
state but just observe for its state to change.

http://wiki.commonjs.org/wiki/Promises/A

Asynchronous Control Flow Patterns

[136]

For more information on jQuery's Deferred object, you can visit
http://api.jquery.com/jQuery.Deferred/.

As a simple example of jQuery's Deferred object, let's see how we can rewrite the
getRandomNumberAsync() function that we saw earlier in this chapter, to use
Promises instead of Callbacks:

function getRandomNumberAsync (max) {
 var d = $.Deferred();
 var runFor = 1000 + Math.random() * 1000;
 setTimeout(function() {
 var result = Math.random() * max;
 d.resolve(result);
 }, runFor);
 return d.promise();
}

getRandomNumberAsync(10).then(function(number) {
 console.log(number); // returns a number between 0 and 10
});

Our target is to make an asynchronous function that returns a Promise that is
eventually resolved to the resulting random number. At first, a new Deferred object
is created and then the respective Promise object is returned, by using the promise()
method of the Deferred. When the asynchronous generation of the result is complete,
our method uses the resolve() method of the Deferred object to set the final state of
the Promise that was returned earlier.

The caller of our function uses the then() method of the returned Promise, to attach
a callback that will be invoked with the result as a parameter as soon as the Promise
gets Resolved. Moreover, a second callback can also be passed in order to get notified
in case the Promise gets Rejected. An important thing to notice is that, by following
the above pattern where functions always return Promises and never the actual
Deferred objects, we can be sure that only the creator of the Deferred object can
change the state of the Promise.

http://api.jquery.com/jQuery.Deferred/

Chapter 7

[137]

Using Promises/A+
After some time of hands-on experimentation with CommonJS Promises/A, the
community identified some of their limitations and also recommended some ways
to improve them. The result was the creation of the Promises/A+ specification,
as a way to improve the existing specification and also as a second attempt to
unify the various available implementations. The most important parts of the new
specification focused on how chaining Promises should work, making them even
more useful and convenient to work with.

For more information on the Promises/A+ specification, you can
visit https://promisesaplus.com/.

Finally, the Promises/A+ specification was published as part of the 6th version of
JavaScript, commonly referred as ES6, that was released as a standard on June, 2015.
As a result, Promises/A+ started to be implemented natively in browsers, removing
the need to use custom third-party libraries and pushing most of the existing
libraries to upgrade their semantics. As of writing of this book, native Promises/A+
compliant implementations have been available in most modern browsers, except for
IE11, making them available out-of-the-box to more than 65% of web users.

For more information on the adoption of A+ Promises in browsers,
you can visit http://caniuse.com/#feat=promises.

A rewrite of the getRandomNumberAsync() function using the now natively
implemented ES6 A+ Promises will look as follows:

function getRandomNumberAsync (max) {
 return new Promise(function (resolve, reject) {
 var runFor = 1000 + Math.random() * 1000;
 setTimeout(function() {
 var result = Math.random() * max;
 resolve(result);
 }, runFor);
 });
}

getRandomNumberAsync(10).then(function(number) {
 console.log(number); // returns a number between 0 and 10
});

https://promisesaplus.com/
http://caniuse.com/#feat=promises

Asynchronous Control Flow Patterns

[138]

As you can see, ES6 / A+ Promises are created by using the Promise constructor
function with the new keyword. The constructor is invoked with a function as a
parameter, which makes a closure that has access to both the variables of the context
that the Promise is created, but also gets access to the resolve() and reject()
functions as parameters, which is the only way to change the state of the newly
created Promise. After the setTimeout() function fires its callback, the resolve()
function is invoked with the generated random number as a parameter, changing
the state of the Promise object to Fulfilled. Finally, the caller of our function uses the
then() method of the returned Promise in exactly the same way as we saw in the
earlier implementation that was using jQuery.

Comparing jQuery and A+ Promises
We will now have an in-depth step-by-step analysis of the core concepts of the
jQuery and A+ Promise APIs, by also doing a side-by-side code comparison of
the two. This can be a great asset to have, since you will also be able to use it as a
reference while the implementations of Promises are gradually adapting to the ES6
A+ specification.

The need to understand from the beginning how the two variants differ seems even
greater, since the jQuery team has already announced that Version 3.0 of the library
will have Promises/A+ compliant implementation. Specifically, as of writing this
book, the first beta version is already out, making the time that the migration will
happen to appear even closer.

For more information on jQuery v3.0 A+ Promises implementation, you
can visit http://blog.jquery.com/2016/01/14/jquery-3-0-
beta-released/.

One of the most obvious differences between the two implementations is the way
that new Promises are created. As we saw, jQuery uses the $.Deferred() function
like a factory of a more complex object that provides direct access to the state of the
Promise and eventually extracts the actual Promise using a separate method. On
the other hand, A+ Promises use the new keyword and a function as a parameter,
which will be invoked by the runtime with the resolve() and reject() functions
as parameters:

var d = $.Deferred();
setTimeout(function() {
 d.resolve(7);
}, 2000);
var p = d.promise(); // jQuery Promise

http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/
http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/

Chapter 7

[139]

var p = new Promise(function(resolve, reject) { // Promises/A+
 setTimeout(function() {
 resolve(7);
 }, 2000);
});

Moreover, jQuery also provides another way to create Promises that look more like
the way that A+ Promises work. In this case, $.Deferred() can be invoked with a
function as an argument that receives the Deferred object as a parameter:

var d = $.Deferred(function (deferred) {
 setTimeout(function() {
 deferred.resolve(7);
 }, 2000);
});
var p = d.promise();

As we discussed earlier, the second possible outcome of a Promise is to be Rejected,
a feature that nicely pairs with the classical exceptions of JavaScript in synchronous
programming. Rejecting a Promise is commonly used for cases where an error occurs
during the processing of the result, or in situations where the result is not valid.
While ES6 Promises provide a reject() function as an argument to the function
passed to its constructor, in jQuery's implementation a reject() method is simply
exposed on the Deferred object itself.

var p = $.Deferred(function (deferred) {
 deferred.reject(new Error('Something happened!'));
}).promise();

var p = new Promise(function(resolve, reject) {
 reject(new Error('Something happened!'));
});

In both the implementations, the result of a Promise can be retrieved using the
then() method, which can be invoked with two functions as arguments, one to
handle the case that the Promise gets Fulfilled and one for the case where it
is Rejected:

p.then(function(result) { // works the same in jQuery & ES6
 console.log(result);
}, function(error) {
 console.error('An error occurred: ', error);
});

Asynchronous Control Flow Patterns

[140]

Both implementations also provide convenient methods to handle the case where
the Promise gets Rejected, but with different method names. Instead of using
p.then(null, fn), ES6 Promises provide the catch() method that nicely pairs
with the try...catch JavaScript expression, while jQuery's implementation provides,
for the same purpose, the fail() method:

p.fail(function(error) { // jQuery
 console.error(error);
});

p.catch(function(error) { // ES6
 console.error(error);
});

Moreover, as a jQuery exclusive feature, jQuery Promises also expose a done()
and an always() method. The callbacks provided to done() are invoked when the
Promise gets Fulfilled and is equivalent to using the then() method with a single
parameter, while the callbacks of the always() method are invoked when the
promise gets settled in both possible outcomes.

For more information on done() and always(), you can visit http://
api.jquery.com/deferred.done and http://api.jquery.com/
deferred.always.

Finally, both implementations provide an easy way to directly create Promises that
are already Resolved or Rejected. This can be useful as a starting value to implement
complex synchronization schemes or as an easy way to make synchronous functions
to operate like asynchronous ones:

var pResolved = $.Deferred().resolve(7).promise(); // jQuery
var pRejected = $.Deferred().reject(new Error('Something happened!'))
 .promise();

var pResolved = Promise.resolve(7); // ES6
var pRejected = Promise.reject(new Error('Something happened!'));

Advanced concepts
Another key concept of Promises that makes them unique and greatly increases their
usefulness is the ability to easily create compositions of several Promises that in turn
are Promises themselves. Composition is available in two forms, serial composition
that chains Promises together and parallel composition that uses special methods
to join the resolution of concurrent Promises into a new one. As we saw earlier in
this chapter, implementing such synchronization schemes can be hard to implement
with the traditional callback approach. Promises, on the other hand, try to solve this
problem in a more convenient and readable way.

http://api.jquery.com/deferred.done
http://api.jquery.com/deferred.done
http://api.jquery.com/deferred.always
http://api.jquery.com/deferred.always

Chapter 7

[141]

Chaining Promises
Every invocation of the then() method returns a new Promise, whose both final
status and result depends on the Promise that the then() method was called on, but
is also subject to the value returned by the attached callbacks. This allows us to chain
calls of the then() method, enabling us to compose Promises by serially joining
them. This way, we can easily orchestrate both asynchronous and synchronous
code, where each chaining step propagates its result to the next one and allows
us to construct the final result in a readable and declarative way.

Let's now proceed to analyzing all the different ways that chaining of calls to
the then() method works. Since we will be focusing on the concepts of Promise
composition by chaining, which works the same as jQuery and ES6 Promises, let's
suppose that there is a p variable that is holding a Promise object created by either
of the following lines of code:

var p = $.Deferred().resolve(7).promise();
//or
var p = Promise.resolve(7);

The simplest use case that demonstrates the power of chaining is when the invoked
callback returns a (non-promise) value. The newly created Promise uses the returned
value as its result, while preserving the same state as the Promise that the then()
method was called on:

p.then(function(x) { // works the same in jQuery & ES6
 console.log(x); // logs 7
 return x * 3;
}).then(function(x) {
 console.log(x); // logs 21
});

A special case to have in mind is that functions that do not return anything as a
result are handled like returning undefined. This essentially removes the result
value from the newly returned Promise, which now only preserves the parent
settlement status:

p.then(function(x) { // works the same in jQuery & ES6
 console.log(x); // logs 7
}).then(function(x) {
 console.log(x); // logs undefined
});

Asynchronous Control Flow Patterns

[142]

In the case where the invoked callback returns another Promise, its state and result
are used for the Promise returned by the then() method:

p.then(function(x) { // for jQuery Promises
 console.log(x); // logs 7
 var d2 = $.Deferred();
 setTimeout(function() {
 d2.resolve(x*3);
 }, 2000);
 return d2.promise();
}).then(function(x) {
 console.log(x); // logs 21
});

p.then(function(x) { // for the A+ Promises
 console.log(x); // logs 7
 return new Promise(function(resolve) {
 setTimeout(function() {
 resolve(x*3);
 }, 2000);
 });
}).then(function(x) {
 console.log(x); // logs 21
});

The preceding code samples demonstrate the implementations for both the jQuery
and A+ Promises, and both have equivalent results. In both cases, 7 is logged into the
console from the first then() method invocation and a new Promise is then returned
that will be Resolved at a later time using setTimeout(). After 2000 milliseconds,
that setTimeout() will fire its callback, the returned Promise will be Resolved with
21 as a value and, at that point, 21 will also be logged into the console.

One extra thing to note is the case where the original Promise gets settled and there
is no appropriate callback provided to the chained then() method. In this case, the
newly created Promise settles to the same state and result, as the Promise where the
then() method was called on:

p.then(null, function (error) { // works the same in jQuery & ES6
 console.error('An error happened!');
 // does not run, since the promise is resolved
}).then(function(x) {
 console.log(x); // logs 7
});

Chapter 7

[143]

In the preceding example, the callback with the console.error statement that is
passed as the second argument of the then() method, does not get invoked since
the Promise is resolved with 7 as its value. As a result, the callback of the chain
eventually receives a new Promise, which is also resolved with 7 as its value and logs
that in the console. Something to have in mind in order to deeply understand how
chaining of Promises works, is that p != p.then() in all cases.

Handling thrown errors
The final concept of chaining defines the case where exceptions are thrown during
the invocation of a then() callback. The Promise/A+ specification defined that the
newly created Promise is Rejected and that its result is the Error that was thrown.
Moreover, the Rejection will bubble through the entire chain of Promises, enabling
us to be notified about any error in the chain only defining the error handling once,
near to the end of the chain.

Unfortunately, this is not consistent in the implementation of the latest stable version
of jQuery, which as of the writing of this book is v2.2.0:

$.Deferred().resolve().promise().then(function() {
 throw new Error('Something happened!');
 // the execution stops here
}).then(null, function(x) {
 console.log(x); // nothing gets printed
});

$.Deferred().resolve().promise().then(function() {
 try { // this is a workaround
 throw new Error('Something happened!');
 } catch (e) {
 return $.Deferred().reject(e).promise();
 }
}).then(function(){
 console.log('Success'); // not printed
}).then(null, function(x) { // almost equivalent to .fail()
 console.log(x); // logs 'Something happened!''
});

Promise.resolve().then(function() {
 throw new Error('Something happened!');
}).then(function(){
 console.log('Success'); // not printed
}).then(null, function(x) { // equivalent to .catch()
 console.log(x); // logs 'Something happened!''
});

Asynchronous Control Flow Patterns

[144]

In the first case, the exception that is thrown stops the execution of the Promise
chain. The only way around it is probably explicitly adding a try...catch statement
inside the callback that is passed to the then() method, as shown in the second case
that is demonstrated.

Joining Promises
The other way of orchestrating Promises that run concurrently is by composing
them together. As an example, let's suppose the existence of two Promises, p1 and
p2, that get resolved with 7 and 11 as their values, after 2000 and 3000 milliseconds,
respectively. Since these two Promises are executed concurrently, the composed
Promise will only need 3000 milliseconds to get Resolved, as it is the greater of the
two durations:

// jQuery
$.when(p1, p2).then(function(result1, result2) {
 console.log('p1', result1); // logs 7
 console.log('p2', result2); // logs 11
 // this can be used to make our code look like A+
 var results = arguments;
});

// A+
Promise.all([p1, p2]).then(function(results) {
 console.log('p1', results[0]); // logs 7
 console.log('p2', results[1]); // logs 11
});

Both Promise APIs provide a specialized function that allows us to easily create
Promise compositions and also retrieve the individual results of the composition.
A composed Promise gets Resolved when all its parts get Resolved, while it gets
Rejected when any one of its parts gets Rejected. Unfortunately, the two Promise
APIs differ, not only by the name of the functions, but also by the way they are
invoked and the way they provide their results.

The jQuery implementation provides the $.when() method that can be invoked
with any number of arguments that we want to be composed. By using the then()
method on a composed jQuery Promise, we can get notified when the composition
gets settled as a whole and also access each individual result as arguments of
our callback.

Chapter 7

[145]

On the other hand, the A+ Promises specification provides us the Promise.all()
method that is invoked with an array as its single parameter that contains all the
Promises that we want to get composed. The returned composed Promise does not
differ at all from the Promises that we have seen so far and the callback of the then()
method is invoked with an array as its parameter, which contains all the results of
the Promises that are part of the composition.

How jQuery uses Promises
At the time that jQuery added an implementation of Promises to its API, it also
started to expose it through other asynchronous methods of its API. Perhaps the
most well-known example of this kind is the method of the $.ajax() family that
returns a jqXHR object, which is a specialized Promise object that also provides some
extra methods related to the AJAX request.

For more information on the jQuery's $.ajax() method and the
jqXHR object, you can visit http://api.jquery.com/jQuery.
ajax/#jqXHR. The jQuery team also decided to change the
implementation of several internal parts of the library to use Promises,
in order to improve their implementations. First of all, the $.ready()
method is implemented using Promises so that the provided callbacks
fire even if the page has already been loaded a long time before its
invocation. Also, some of the complex animations that jQuery provides
use Promises internally as the preferred way to synchronize the
execution of the sequential parts of the animation queue.

Transforming Promises to other types
Developing by using several different JavaScript libraries often makes many Promise
implementations available to our projects that unfortunately tend to have different
levels of compliance to the reference Promises specification. Composing Promises
returned by the methods of different libraries can often lead to problems that are
hard to track and resolve, as a result of their implementation inconsistencies.

In order to avoid confusions in such situations, it isn't considered a good practice to
transform all the Promises to a single type before attempting to compose them. The
suggested type for such situations is the Promises/A+ specification, since not only is
it widely accepted by the community but it is also part of the newly released version
of JavaScript (the ES6 language specification) that is already natively implemented in
many browsers.

http://api.jquery.com/jQuery.ajax/#jqXHR
http://api.jquery.com/jQuery.ajax/#jqXHR

Asynchronous Control Flow Patterns

[146]

Transforming to Promises/A+
For example, let's see how a jQuery Promise can be transformed to an A+ Promise
that is available in most recent browsers:

var jqueryPromise = $.Deferred().resolve('I will be A+ compliant')
 .promise();
var p = Promise.resolve(jqueryPromise);
p.then(function(result) {
 console.log(result);
});

In the preceding example, the Promise.resolve() method detects that it has been
invoked with a "thenable" and that the newly created A+ Promise that is returned
binds its status and result to those of the provided jQuery Promise. This is essentially
equivalent to doing something as follows:

var p = new Promise(function (resolve, reject) {
 jqueryPromise.then(resolve, reject);
});

Of course, this is not limited to Promises that are created by direct invocations of the
$.Deferred() method. The above technique can also be used to transform Promises
that are returned by any jQuery method. For example, this is how it can be used with
the $.getJSON() method:

var aPlusAjaxPromise = Promise.resolve($.getJSON('AjaxContent.json'));
aPlusAjaxPromise.then(function(result) {
 console.log(result);
});

Transforming to jQuery Promises
Even though I would generally not recommend this, it is also possible to transform
any Promise to a jQuery variant. The newly created jQuery Promise receives all
the extra functionalities that jQuery provides, but the transformation is not as
straightforward as the previous one:

var aPromise = Promise.resolve('I will be a jQuery Promise');
var p = $.Deferred(function (deferred) {
 aPromise.then(function(result) {
 return deferred.resolve(result);
 }, function(error) {
 return deferred.reject(error);
 });

Chapter 7

[147]

}).promise();
p.then(function(result) {
 console.log(result);
});

You should only use the preceding technique in cases where you need to extend
a big web application that is already implemented using jQuery Promises. On
the other hand, you should also consider upgrading such implementations, since
the jQuery team has already announced that Version 3.0 of the library will have
Promises/A+ compliant implementation.

For more information on jQuery v3.0 A+ Promises implementation,
you can visit http://blog.jquery.com/2016/01/14/
jquery-3-0-beta-released/.

Summarizing the benefits of Promises
Overall, the benefits of using Promises over plain Callbacks include:

• Having a unified way to handle the result of asynchronous invocations
• Having predictable invocation parameters for the used callbacks
• The ability to attach multiple handlers for each outcome of the Promise
• The guarantee that the appropriate attached handlers will execute even if the

Promise has already been Resolved (or Rejected)
• The ability to chain asynchronous operations, making them run in order
• The ability to easily create compositions of asynchronous operations, making

them run concurrently
• The convenient way of handling errors in Promise chains

Using a method that returns a Promise removes the need to directly pass functions of
one context to another as an invocation argument and the question regarding which
parameters are used as the success and the error Callbacks. Moreover, we already
know to some degree how to retrieve the result of any operation that returns a
Promise, by using the then() method, even before reading the documentation
about the method's invocation parameters.

http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/
http://blog.jquery.com/2016/01/14/jquery-3-0-beta-released/

Asynchronous Control Flow Patterns

[148]

Less parameters often means less complexity, smaller documentation, and less
searching every time we want to do a method invocation. Even better, there is a good
chance that there will only be a single or a few parameters, making the invocation
more sensible and readable. The implementation of asynchronous methods also
becomes less complex, since there is no longer the need to accept callback functions
as an extra argument or having to properly invoke them with the result.

Summary
In this chapter, we analyzed the development patterns that are used to program
asynchronous and concurrent procedures. We also learned how to use them to
efficiently orchestrate the execution of asynchronous procedures that run either in
order or parallel to each other.

At first, we had a refresher on how Callbacks are used in JavaScript programming
and how they are an integral part of web development. We analyzed their benefits
and limitations when used in large and complex implementations.

Right after this, we were introduced to the concepts of Promises. We learned how
jQuery's Deferred and Promise APIs work and how they differ from ES6 Promises.
We also saw where and how they are used internally by jQuery itself, as an
example of how they can lead to more readable code and simplify such
complex implementations.

In the next chapter, we will proceed to learning how to design, create, and use Mock
Objects and Mock Services in our applications. We will analyze the characteristics
that a proper Mock Object should have and understand how they can be used as
representative use cases and even as test cases for our code.

[149]

Mock Object Pattern
In this chapter we will showcase the Mock Object Pattern, a pattern to facilitate the
development of applications without actually being part of the final implementation.
We will learn how to design, create and use this industry-standard design pattern in
order to coordinate and complete the development of multi-part jQuery applications
faster. We will analyze the characteristics that a proper Mock Object should have and
understand how they can be used as representative use cases and even as test cases
for our code.

We will see how good application architecture makes it easier for us to use Mock
Objects & Services by matching individual parts of the application, and also realize
the benefits of using them during development. By the end of this chapter, we will
be able to create Mock Objects & Services to accelerate the implementation of our
application and also to get a sense of the overall functionality long before all of its
parts are completed.

In this chapter, we shall:

• Introduce the Mock Object and Mock Service Patterns
• Analyze the characteristics that Mock Objects & Services should have
• Understand why they fit better with applications with good architecture
• Learn how to use them in jQuery applications as a way to drive the

development and accelerate it

Mock Object Pattern

[150]

Introducing the Mock Object Pattern
The key concept of the Mock Object Pattern is in creating and using a dummy object
that simulates the behavior of a more complex object that is (or will be) part of an
implementation. The Mock Object should have the same API as the actual (or real)
object, return similar results using the same data structures, and also operate
in a similar manner with regards to how its methods alter its exposed state
(the properties).

Mock Objects are usually created during the early development phases of an
application. Their primary use case is to enable us to proceed with the development
of a Module, even if it depends on others that have not yet been implemented. Mock
Objects can also be described as prototypes of the data exchanged between the
different parts of the implementation, acting like contracts between the developers
and easing the parallel development of interdependent modules.

In the same way that the principles of the Module Pattern decouple the
implementations of the different parts of an application, creating and
using Mock Objects and Mock Services decouples their development.

Creating Mock Objects for every Module before starting their implementation clearly
defines the data structures and APIs that will be used by the application, removing
any misconceptions and enabling us to detect insufficiencies in the proposed APIs.

Defining the data structures that are required to describe a problem
before starting the actual implementation allows us to focus on the needs
of the application and get an idea of its overall complexity and structure.

You can always test any part of your implementation after any code change by using
the Mock Objects that were created for the original implementation. You can be
sure that the original use case still works by using the Mock Objects on the modified
methods. This is very useful when the modified implementation is a part of a use
case involving several stages.

Chapter 8

[151]

Mock Objects are especially useful for tracing errors if the implementation of a
Module has changed and caused the rest of the application to misbehave. By using
the existing Mock Objects, we can easily identify the Module that diverged from
the original specification. Moreover, the same Mock Objects can be used as the
basis for high quality test cases since they often contain more realistic sample data,
something especially useful if your team is following a Test Driven Development
(TDD) paradigm.

In Test Driven Development (TDD), the developer firstly defines a test
case for a use case or a new feature that needs to be added and then
proceeds with its implementation by trying to satisfy the created test case.
For more information, you can visit: https://www.packtpub.com/
books/content/overview-tdd.

The Mock Object Pattern is commonly used among frontend web developers to
decouple the client-side development from the web services that the backend will
expose. That has led to witty comments such as:

"The web service will always be late & change suddenly, so use a Mock instead."

Summarizing all of this, the main reasons to create Mock Objects and
Services include:

•	 The actual object or service is not yet implemented.
•	 The actual object is difficult to set up for a specific use case.
•	 We need to emulate a rare or non-deterministic behavior.
•	 The actual object behaves in a way that is hard to reproduce, such as

network errors or UI events.

https://www.packtpub.com/books/content/overview-tdd
https://www.packtpub.com/books/content/overview-tdd

Mock Object Pattern

[152]

Using Mock Objects in jQuery
applications
In order to demonstrate how the Mock Object Pattern can be used during the
development of a multi-part application, we will extend the dashboard example, as
we saw in Chapter 4, Divide and Conquer with the Module Pattern, in order to present
thumbnails of YouTube videos from web developing conferences. The video
references are grouped into four predefined categories and the related buttons
will be displayed based on the current category selection, as illustrated below:

The changes that need to be introduced to the HTML and the CSS are minimal. The
only extra CSS that is needed for the above implementation, when compared to the
existing implementation from Chapter 4, Divide and Conquer with the Module Pattern,
is related to the width of the thumbnails:

.box img {
 width: 100%;
}

Chapter 8

[153]

The change in the HTML is intended to organize the <button> elements of each
category. This change will make our implementation more straightforward since
the categories and their items are no longer statically defined in the HTML but are
instead created dynamically, driven by the available data.

 <!-- … -->
 <section class="dashboardCategories">
 <select id="categoriesSelector"></select>
 <div class="dashboardCategoriesList"></div>
 <div class="clear"></div>
 </section>
 <!-- … -->

In the above piece of HTML, the <div> element with the dashboardCategoriesList
CSS class, will be used as a container for the grouped buttons of the different video
categories. After covering the UI elements, let's now move on to the analysis of the
JavaScript implementation.

Defining the actual service requirements
The video references to be displayed in our dashboard could be retrieved from
various sources. For example, you could make a direct call to YouTube's client-
side API or an AJAX call to a backend web service . In all of the above cases, it is
considered a good practice to abstract this data retrieval mechanism into a separate
module, following the code structuring recommendations of the previous chapters.

For this reason, we need to add an extra module to the existing implementation. This
will be a service, responsible for providing the methods that will allow us to retrieve
the most relevant videos from each category and load information for each video
individually. This will be achieved by using the searchVideos() and getVideo()
methods respectively.

As we have already said, one of the most important phases of each implementation,
especially in case of parallel development, is the analysis and definition of the data
structures to be used. Since our dashboard will be using the YouTube API, we need
to create some sample data which follow its data structure rules. After inspecting
the API, we end up with a sub-set of the fields that are required for our dashboard,
and can proceed to create a JSON object with mock data to demonstrate the used
data structure:

{
 "items": [{
 "id": { "videoId": "UdQbBq3APAQ" },
 "snippet": {

Mock Object Pattern

[154]

 "title": "jQuery UI Development Tutorial:
 jQuery UI Tooltip | packtpub.com",
 "thumbnails": {
 "default": { "url":
 "https://i.ytimg.com/vi/UdQbBq3APAQ/default.jpg" },
 "medium": { "url":
 "https://i.ytimg.com/vi/UdQbBq3APAQ/mqdefault.jpg" },
 "high": { "url":
 "https://i.ytimg.com/vi/UdQbBq3APAQ/hqdefault.jpg" }
 }
 }
 }/*,...*/]
}

For more information about the YouTube API, you can visit: https://
developers.google.com/youtube/v3/getting-started.

Our service provides two core methods, one for searching for videos in a specified
category and one for retrieving information about a specific video. The structure of
the sample object is used for the search method to retrieve a set of relevant items,
while the method for retrieving information for a single video uses the data structure
of each individual item. The resulting implementation for the video information
retrieval is in a separate module named videoService, which will be available
on the dashboard.videoService namespace, and our HTML would contain a
<script> reference like the following:

<script type="text/javascript" src="dashboard.videoservice.js">
</script>

Implementing a Mock Service
Changing the <script> references of the service implementation with the Mock
Service and vice versa should leave us with a working application, helping us
progress and test the rest of the implementation before the actual implementation
of the video service is finished. As a result, the Mock Service needs to use the same
dashboard.videoService namespace, but its implementation should be in a
differently named file such as dashboard.videoservicemock.js that simply
adds the "mock" suffix.

https://developers.google.com/youtube/v3/getting-started
https://developers.google.com/youtube/v3/getting-started

Chapter 8

[155]

As we have already mentioned, it is a good practice to place all our mock data under
a single variable. Moreover, if there are a lot of Mocked Objects, it is common to
place them in a different file altogether, with a nested namespace. In our case, the
file with the mock data is named dashboard.videoservicemock.mockdata.js
and its namespace is dashboard.videoService.mockData, while exposing the
searches and videos properties that will be used by the two core methods of
our Mock Service.

Even though the implementations of Mock Services should be simple, they have
their own complexity since they need to provide the same methods as the target
implementations, accept the same arguments, and look as if they are operating in
the exact same way. For example, in our case, the video retrieval service needs to be
asynchronous and its implementation needs to return Promises:

(function() { // dashboard.videoservicemock.js
 'use strict';

 dashboard.videoService = dashboard.videoService || {};

 dashboard.videoService.searchVideos = function(searchKeywords) {
 return $.Deferred(function(deferred) {
 var searches =
 dashboard.videoService.mockData.searches;
 for (var i = 0; i < searches.length; i++) {
 if (searches[i].keywords === searchKeywords) {
 // return the first matching search results
 deferred.resolve(searches[i].data);
 return;
 }
 }
 deferred.reject('Not found!');
 }).promise();
 };

 dashboard.videoService.getVideo = function(videoTitle) {
 return $.Deferred(function(deferred) {
 var videos =
 dashboard.videoService.mockData.allVideos;
 for (var i = 0; i < videos.length; i++) {
 if (videos[i].snippet.title === videoTitle) {
 // return the first matching item
 deferred.resolve(videos[i]);

Mock Object Pattern

[156]

 return;
 }
 }
 deferred.reject('Not found!');
 }).promise();
 };

 var videoBaseUrl = 'https://www.youtube.com/watch?v=';
 dashboard.videoService.getVideoUrl = function(videoId) {
 return videoBaseUrl + videoId;
 };
})();

As shown in the Mock Service implementation above, the searchVideos() and
getVideo() methods, are iterating over the arrays with the mock data and return a
Promise that is either Resolved with an appropriate Mock Object or Rejected when
such an object is not found. Finally, you can see below the code for the sub-module
containing the Mock Objects, following the data structure that we described earlier.
Note that we store the Mock Objects of all categories in the allVideos property in
order to make searching with the mock getVideo() method simpler.

(function() { // dashboard.videoservicemock.mockdata.js
 'use strict';

 dashboard.videoService.mockData =
 dashboard.videoService.mockData || {};

 dashboard.videoService.mockData.searches = [{
 keywords: 'jQuery conference',
 data: {
 "items": [/*...*/]
 }
 }/*,...*/];

 var allVideos = [];
 var searches = dashboard.videoService.mockData.searches;
 for (var i = 0; i < searches.length; i++) {
 allVideos = allVideos.concat(searches[i].data.items);
 }

 dashboard.videoService.mockData.allVideos = allVideos;
})();

Chapter 8

[157]

Experimenting with the implementation of some Mock Services will get you familiar
with their common implementation patterns in a very short period of time. Beyond
that, you will be able to easily create Mock Objects and Services, helping you design
the APIs of your applications, try them out by using the mocks and finally settle on
the best matching methods and data structures for each use case.

Using the jQuery Mockjax library
The Mockjax jQuery Plugin library (available at https://github.com/
jakerella/jquery-mockjax) focuses on providing a simple way of
mocking or simulating AJAX requests and responses. This reduces the
code needed to fully implement your own Mock Services, if all that you
need is to intercept an AJAX request to a web service and return a Mock
Object instead.

Using the Mock Service
In order to add the functionality that we described earlier to the existing
dashboard implementation, we need to introduce some changes to the
categories and the informationBox modules, adding the code that will
consume the methods of our service. As a representative example of using the
newly created Mock Service, let's take a look at the implementation of the
openNew() method, in the informationBox module:

dashboard.informationBox.openNew = function(itemName) {
 var $box = $('<div class="boxsizer"><article class="box">' +
 '<header class="boxHeader">' +
 '<button class="boxCloseButton">✖</button>' +
 itemName +
 '</header>' +
 '<div class="boxContent">Loading...</div>' +
 '</article></div>');
 $boxContainer.append($box);

 dashboard.videoService.getVideo(itemName).then(function(result) {
 var $a = $('<a>').attr('href',
 dashboard.videoService.getVideoUrl(result.id.videoId));
 $a.append($('').attr('src',
 result.snippet.thumbnails.medium.url));
 $box.find('.boxContent').empty().append($a);
 }).fail(function() {
 $buttonContainer.html('An error occurred!');
 });
};

https://github.com/jakerella/jquery-mockjax
https://github.com/jakerella/jquery-mockjax

Mock Object Pattern

[158]

This method initially opens a new information box with a Loading... label as its
content and uses the dashboard.videoService.getVideo() method to retrieve
the details of the requested video asynchronously. Finally, when the returned
Promise gets resolved, it replaces the Loading... label with an anchor containing
the thumbnail of the video.

Summary
In this chapter, we learned how to design, create and use Mock Objects and Mock
Services in our applications. We analyzed the characteristics that Mock Objects
should have and understood how they can be used as representative use cases. We
are now able to use Mock Objects & Services to accelerate the implementation of our
applications and get a better sense of its overall functionality, long before all of its
individual parts are completed.

In the next chapter, we will be introduced to client-side templating and learn how
to generate complex HTML structures in the browser from readable templates
efficiently. We will get an introduction to Underscore.js and Handlebars.js,
analyze their conventions, evaluate their features and find which one better suits
our taste.

[159]

Client-side Templating
This chapter will demonstrate some of the most widely used libraries to create
complex HTML templates faster, while making our implementation easier to read
and understand when compared to traditional string concatenation techniques.
We will learn in more detail how to use the Underscore.js and Handlebars.js
templating libraries, get a taste of their conventions, evaluate their features and find
the one that best suits our taste.

By the end of this chapter, we will be able to generate complex HTML structures
in the browser efficiently by using readable templates and utilizing the unique
characteristics of each templating library.

In this chapter, we will:

• Discuss the benefits of using a specialized templating library
• Introduce the current trends in client-side templating, specifically the top

representative of the families that use <% %> and {{ }} as their placeholders
• Introduce Underscore.js as an example of the family of templating engines

that use <% %> placeholders
• Introduce Handlebars.js as an example of the family of templating engines

that use curly braces {{ }} placeholders

Introducing Underscore.js
Underscore.js is a JavaScript library that provides a collection of utility
methods that help web developers work more efficiently and focus on the actual
implementation of their application rather than bothering with repetitive algorithmic
problems. Underscore.js is, by default, accessible through the "_" identifier of the
global namespace and that's exactly where its name comes from.

Client-side Templating

[160]

As with the $ identifier in jQuery, the underscore "_" identifier
can also be used as a variable name in JavaScript.

One of the utility functions that it provides is the _.template() method, which
provides us with a convenient way of interpolating specific values into existing
template strings that follow a specific format. The _.template() method recognizes
three special placeholder notations inside templates, which are used to add
dynamic characteristics:

• The <%= %> notation is used as the simplest way to interpolate a value of a
variable or an expression in a template.

• The <%- %> notation performs HTML escaping on a variable or expression
and then interpolates it in a template.

• The <% %> notation is used to execute any valid JavaScript statement as part
of the template generation.

The _.template() method accepts a template string that follows these
characteristics and returns a plain JavaScript function, commonly referred to as
the template function, which can be invoked with an object containing the values
that are going to be interpolated in the template. The result of the invocation of the
template function is a string value, which is the result of the interpolation of the
provided values inside the template:

var templateFn = _.template('<h1><%= title %></h1>');
var resultHtml = templateFn({
 title: 'Underscore.js example'
});

As an example, the above code returns <h1>Underscore.js example</h1> and is
equivalent to the following shorthand invocation:

var resultHtml = _.template('<h1><%= title %></h1>')({
 title: 'Underscore.js example'
});

For more information about the _.template method, you can read
the documentation at: http://underscorejs.org/#template.

http://underscorejs.org/#template

Chapter 9

[161]

What makes Underscore.js templates very flexible is the <% %> notation, which
allows us to perform any method invocation and is, for example, used as the
recommended way to create loops in a template. On the other hand, overusing this
feature may add too much logic to your templates, which is a known anti-pattern
found in many other frameworks, violating the principle of Separation of Concerns.

Using Underscore.js templates in our
applications
As an example of using Underscore.js for templating, we will now use it to refactor
the HTML code generation which takes place in some modules of the dashboard
example, as we saw in previous chapters. The modifications required to the existing
implementation are limited to the categories and the informationBox modules,
which manipulate the DOM tree of the page by adding new elements.

The first place that such a refactor can be applied is in the init() method of the
categories module. We can modify the code that creates the available <option>s
of the <select> category to look like this:

var optionTemplate = _.template(
 '<option value="<%= value %>"><%- title %></option>');
var optionsHtmlArray = [];
for (var i = 0; i < dashboard.categories.data.length; i++) {
 var categoryInfo = dashboard.categories.data[i];
 optionsHtmlArray.push(optionTemplate({
 value: i,
 title: categoryInfo.title
 }));
}
$categoriesSelector.append(optionsHtmlArray.join(''));

As you can see, we iterate over the categories of the dashboard in order to create and
append the appropriate <option> elements to the <select> category element. In our
template, we are using the <%= %> notation for the value attribute of the <option>
since we know that it will hold an integer value that does not need escaping.
On the other hand, we are using the <%- %> notation for the content part of each
<option> in order to escape the title of each category for the case its value is not
an HTML-safe string.

Client-side Templating

[162]

We are using the _.template() method outside the for loop in order to create a
single compiled template function that will be reused on each iteration of the for
loop. In this way, the browser not only executes the _.template() method just once,
but also optimizes the generated template function and makes it run faster on each
subsequent execution inside the for loop. Lastly, we are using the join('') method
to combine all the HTML strings of the optionsHtmlArray variable and append()
the result to the DOM with a single operation.

An alternative and possibly simpler way to achieve the same result is by combining
the <% %> notation and the _.each() method that Underscore.js provides,
enabling us to implement a loop inside the template itself. In this way, the template
will be responsible for the iteration over the provided array of categories, moving the
complexity from the implementation of the module into the template.

var templateSource = ''.concat(
 '<% _.each(categoryInfos, function(categoryInfo, i) { %>',
 '<option value="<%= i %>"><%- categoryInfo.title %></option>',
 '<% }); %>');
var optionsHtml = _.template(templateSource)({
 categoryInfos: dashboard.categories.data
});
$categoriesSelector.append(optionsHtml);

As you can see in the above code, our JavaScript implementation no longer contains
a for loop, reducing its complexity and the required nesting. There is only a single
call to the _.template() method, which nicely abstracts the implementation to an
operation that generates the HTML and renders the <option> elements for all the
categories. You can also see how nicely this technique fits in with the Composite
logic that jQuery itself follows, in which the methods are designed to operate over
collections of elements instead of single items.

Separating HTML templates from JavaScript code
Even after introducing all of the above improvements, it soon starts to become
obvious that writing templates in between your application logic might not be the
best approach to follow. As soon as your application becomes complex enough,
or when you need to use templates that are more than a few lines long, the
implementation starts to feel fragmented by the mix of the application's logic
and the HTML templates.

A cleaner approach to this problem is to store your templates alongside the rest
of the HTML code of your page. This is a good step towards better Separation of
Concerns since it properly isolates the presentation from the application logic.

Chapter 9

[163]

In order to include HTML templates as part of web pages in an inactive form, we
need to use a host tag that will prevent them from being rendered, but also allow us
to retrieve its content programmatically when needed. For this purpose, we can use
<script> tags inside the <head> or the <body> of our page and specify any type
other than the common text/javascript that we normally use for our JavaScript
code. The operation principle behind this is that browsers do not try to parse, execute
or render the content of <script> tags, in case their type attribute isn't recognized.
After some experimentation, the community of Underscore.js users has largely
adopted this practice and agreed to specify text/template as the preferred type for
these <script> tags, in an attempt to make these implementations more uniform
among developers.

Even though Underscore.js is neither opinionated nor contains
any implementation specific to the way that the templates become
available, using text/template <script> tags and/or AJAX
requests have been valuable techniques that are widely used and
are considered best practices.

As an example of a complex template that would be beneficial to move into a
<script> tag, we will refactor to the openNew() method of the informationBox
module. As you can see in the code below, the resulting <script> tag is cleanly
formatted and we no longer need to use string concatenation for the definition of
the multi-line template:

<script id="box-template" type="text/template">
 <div class="boxsizer">
 <article class="box">
 <header class="boxHeader">
 <button class="boxCloseButton">✖</button>
 <%- itemName %>
 </header>
 <div class="boxContent">Loading...</div>
 </article>
 </div>
</script>

Client-side Templating

[164]

A good practice when moving HTML templates out of our code is to write an
abstracted mechanism to be responsible for retrieving them and providing the
compiled template function. This approach not only decouples the rest of the
implementation from the template retrieval mechanism but also makes it less
repetitive and creates a centralized method designed to provide templates for the
rest of the application. Moreover, as we can see below, this approach also allows us
to optimize the way that templates are retrieved, propagating the benefits to all the
places that they are used.

var templateCache = {};

function getEmbeddedTemplate(templateName) {
 var compiledTemplate = templateCache[templateName];
 if (!compiledTemplate) {
 var template = $('#' + templateName).html();
 compiledTemplate = _.template(template);
 templateCache[templateName] = compiledTemplate;
 }
 return compiledTemplate;
}

dashboard.informationBox.openNew = function(itemName) {
 var boxCompiledTemplate = getEmbeddedTemplate('box-template');
 var boxHtml = boxCompiledTemplate({
 itemName: itemName
 });
 var $box = $(boxHtml).appendTo($boxContainer);

 /* ... */
};

As shown in the above implementation, the openNew() method of the
informationBox module simply invokes the getEmbeddedTemplate() function
by passing a unique identifier that is associated with the requested template and
uses the returned template function to generate the new box's HTML and finally
append it to the page. The most interesting part of the implementation is the
getEmbeddedTemplate() method, which uses the templateCache variable as a
dictionary to hold all the previously compiled template functions.

The first step is always to check whether the requested template identifier exists
in our template cache. If not, then the DOM tree of the page is searched for the
<script> tag with the related ID and its HTML content is used to create the
template function, which is then stored in the cache and returned to the caller.

Chapter 9

[165]

Keep in mind that it is a good practice to use a specific prefix or suffix for all the
identifiers of your HTML templates in order to avoid conflicts with the IDs of other
page elements. For this purpose, in the above example we used the -template as a
suffix of the identifier of our box template.

Ideally, the implementation of the template provider method should be in a
separate module that will be used by all the parts of an application but, since in our
dashboard this is used in only one place, we met the needs of our demonstration by
simply using a function.

Introducing Handlebars.js
Handlebars.js, or simply Handlebars, is a specialized client-side templating
library that enables web developers to create semantic templates effectively.
Using Handlebars for templating leads to the creation of logic-free templates which
ensures that the view and the code are isolated, helping preserve the Separation of
Concerns principle. It is largely compatible with Mustache templates, which are a
templating language specification that have proven their effectiveness over time
and have many implementations for all the major programming languages.
Additionally, Handlebars provides a set of extensions on top of the Mustache
template specification, such as helper methods and partials, as a means of
extending the templating engine and creating more effective templates.

You can see all the documentation for Handlebars at: http://
handlebarsjs.com/. You can get more information about Mustache
in JavaScript at: https://github.com/janl/mustache.js/.

The main template notation that Handlebars provides is the double curly braces
syntax {{ }}. As Handlebars was designed to be used for HTML templates from
the beginning, this notation also applies HTML escaping by default, lowering the
chances that a non-escaped value could reach the template causing potential security
problems. If a non-escaped interpolation is required for a specific part of a template,
we can use the triple curly braces notation {{{ }}}.

Moreover, since Handlebars prevents us from invoking methods directly from
within a template, it provides us with the ability to define and use helper methods
and block expressions as a way to cover more complex use cases while also helping
to maintain our templates as clean and readable as possible. The set of built-in
helpers includes the {{#if }} and {{#each }} helpers which allow us to perform
iterations over arrays and change the outcomes of a template based on conditions
very easily.

http://handlebarsjs.com/
http://handlebarsjs.com/
https://github.com/janl/mustache.js/

Client-side Templating

[166]

The central method of the Handlebars library is the Handlebars.compile() method,
which accepts a template string as a parameter and returns a function that can be
used to generate string values that follow the form of the provided template. This
function can then be invoked (as in Underscore.js) with an object as a parameter,
the properties of which will be used as a context for the evaluation of all the
Handlebars expressions (the curly braces notations) that were defined in the
original template:

var templateFn = Handlebars.compile('<h1>!!!{{ title }}!!!</h1>');
var resultHtml = templateFn({
 title: '> Handlebars example <'
});

As an example, the above code returns "<h1>!!!> Handlebars example
<!!!</h1>", turning the interpolated title into a safe HTML string, but one
which would otherwise render properly when attached to the DOM tree of a
page. Of course, the same result can be achieved with the following shorthand
invocation, if we don't need to keep a reference to the compiled template function
for future use:

var resultHtml = Handlebars.compile('<h1>!!!{{ title }}!!!</h1>')({
 title: '> Handlebars example <'
});

Using Handlebars.js in our applications
As an example of using Handlebars.js for templating and in order to demonstrate
its differences from Underscore.js templates, we will now use it to refactor our
dashboard example, like we did in the previous section. Like before, the refactoring
is limited to the categories and the informationBox modules, which manipulate
the DOM tree of the page by adding new elements.

The refactored implementation of the init() method of the categories module
should look like this:

var optionTemplate = Handlebars.compile(
 '<option value= "{{ value }}">{{ title }}</option>');
var optionsHtmlArray = [];
for (var i = 0; i < dashboard.categories.data.length; i++) {
 var categoryInfo = dashboard.categories.data[i];
 optionsHtmlArray .push(optionTemplate({
 value: i,

Chapter 9

[167]

 title: categoryInfo.title
 }));
}
$categoriesSelector.append(optionsHtmlArray.join(''));

First of all, we have used the Handlebars.compile() method which generates
and returns a template function based on the provided template string. The main
difference with the Underscore.js implementation we saw in the previous section,
is that we now use the double curly braces notation {{ }} to interpolate values in
our template. Apart from the different appearance, Handlebars.js also does HTML
string escaping by default in an attempt to eliminate HTML injection security holes
by making escaping part of its primary use case.

As we did earlier in this chapter, we will create the template function outside the for
loop and use it to generate the HTML for each <option> element. All the generated
HTML strings are gathered in an array and are finally combined and attached to the
DOM tree with a single operation, using the $.append() method.

The next incremental step to reduce the complexity of our implementation is to
abstract the iterations away from our JavaScript code using the looping capabilities
of the templating engine itself:

var templateSource = ''.concat(
 '{{#each categoryInfos}}',
 '<option value="{{@index}}">{{ title }}</option>',
 '{{/each}}');
var optionsHtml = Handlebars.compile(templateSource)({
 categoryInfos: dashboard.categories.data
});
$categoriesSelector.append(optionsHtml);

The Handlebars.js library allows us to achieve that by using the special {{#each
}} notation. In between the {{#each }} and {{/each}}, the context of the template
is changed to match each individual object of the iteration, allowing to directly
access and interpolate the {{ title }} of each object in the categoryInfos array.
Moreover, in order to access the loop counter, Handlebars provides us with the
special @index variable as part of the context of the loop.

For a full list of all the special notations that Handlebars provides,
you can read the documentation at: http://handlebarsjs.com/
reference.html

http://handlebarsjs.com/reference.html
http://handlebarsjs.com/reference.html

Client-side Templating

[168]

Separating HTML templates from JavaScript code
Like most templating engines, Handlebars also leads us to isolate our templates from
the JavaScript implementation of our application and deliver them to the browser
by including them in <script> tags, inside the HTML of our pages. Moreover,
Handlebars is opinionated and prefers the special text/x-handlebars-template
as the type attribute for all <script> tags that contain Handlebars templates. For
example, here is how the template for the dashboard's boxes should be defined
according to the library recommendations:

<script id="box-template" type="text/x-handlebars-template">
 <div class="boxsizer">
 <article class="box">
 <header class="boxHeader">
 <button class="boxCloseButton">✖</button>
 {{ itemName }}
 </header>
 <div class="boxContent">Loading...</div>
 </article>
 </div>
</script>

Even though our implementation would still work if a different type
was specified for the <script> tag, following the library's guidelines
can obviously make implementations more uniform among developers.

As we did earlier in this chapter, we will follow the best practice of creating a
separate function to be responsible for providing the templates wherever they
are needed in the application:

var templateCache = {};

function getEmbeddedTemplate(templateName) {
 var compiledTemplate = templateCache[templateName];
 if (!compiledTemplate) {
 var template = $('#' + templateName).html();
 compiledTemplate = Handlebars.compile(template);
 templateCache[templateName] = compiledTemplate;
 }
 return compiledTemplate;
}

Chapter 9

[169]

dashboard.informationBox.openNew = function(itemName) {
 var boxCompiledTemplate = getEmbeddedTemplate('box-template');
 var boxHtml = boxCompiledTemplate({
 itemName: itemName
 });
 var $box = $(boxHtml).appendTo($boxContainer);

 /* ... */
};

As you can see, the implementation is mostly the same as the Undescore.js example
that we saw earlier in this chapter. The only difference is that we are now using the
Handlebars.compile() method to generate the compiled template functions from
the retrieved templates.

Pre-compiling templates
An extra feature of the Handlebars library is the support for template pre-
compilation. This allows us to pre-generate all the template functions with a simple
terminal command and then have our server deliver to them to the browser, instead
of the actual templates. In this way, the browser will be able to use the pre-compiled
templates directly, removing the need for the compilation of each individual
template and making the execution of the library and our application faster.

In order to pre-compile our templates, we first need to place them in separate files.
The Handlebars documentation suggests using the .handlebars extension for our
files but we can still use the .html extension if it is preferred. After installing the
compilation tool on our development machine (with npm install handlebars -g),
we can issue the following command in our terminal to compile a template:

handlebars box-template.handlebars -f box-template.js

This will generate the box-template.js file that is actually a mini-module definition
that adds the template to Handlebars.templates. The generated file can then
be combined and minified like regular JavaScript files and, when loaded by a
browser, the template function will become available through the Handlebars.
templates['box-template'] property.

Keep in mind that if the .html extension is being used for the templates,
then the pre-compiled template function will be available through the
Handlebars.templates['box-template.html'] property.

Client-side Templating

[170]

As you can see, using a template provider function assists with the migration of
an existing application to pre-compiled templates since it allows us to encapsulate
the way that the templates are retrieved. Moving to pre-compiled templates only
requires changing the getEmbeddedTemplate() to something like this:

function getEmbeddedTemplate(templateName) {
 return Handlebars.templates[templateName];
}

For more information about template pre-compilation
in Handlebars, read the documentation at: http://
handlebarsjs.com/precompilation.html.

Retrieving HTML templates
asynchronously
The final step to mastering client-side templating is a development practice that
allows us to load templates dynamically and use them in a web page that has
already been loaded. This approach can lead to more scalable implementations than
the approach of embedding all the available templates as <script> tags inside the
HTML source of each page.

The key element of this technique is to load each template only when it is required
for the presentation of a web page, commonly after a user action. The main benefits
of this approach are that:

• The initial page load time is reduced since the HTML of the page is smaller.
The gains from the reduction of the page size become even greater if
our application has a lot of templates that are used only under certain
circumstances, for example, after specific user interactions.

• The user only downloads a template if it is actually going to be used.
In this way, the size of the total downloaded resources for each page
load can be reduced.

• Subsequent requests for an already loaded template will not lead to an extra
download, since the browser's HTTP caching mechanism will return the
cached resource. Additionally, since the browser cache is used for all HTTP
requests regardless of the page from which they originate, users only have to
download the required template once while using our web application.

http://handlebarsjs.com/precompilation.html
http://handlebarsjs.com/precompilation.html

Chapter 9

[171]

Because of its benefits to user experience and its scalability, this technique is widely
used by the most popular webmail and social networking web sites, where various
HTML templates and JavaScript modules are loaded dynamically, based on
user actions.

For more information on how jQuery can be used to load JavaScript
modules on a page dynamically, read the documentation for the
$.getScript() method at: https://api.jquery.com/jQuery.
getScript/.

Adopting it in an existing implementation
To illustrate this technique, we will change the Underscore.js and Handlebars.js
implementations of the informationBox module so that it fetches the box template
for our dashboard using an AJAX request.

Let's proceed by analyzing the necessary changes for our Underscore.js
implementation:

var templateCache = {};

function getAjaxTemplate(templateName) {
 var compiledTemplate = templateCache[templateName];
 if (compiledTemplate) {
 return $.Deferred().resolve(compiledTemplate);
 }
 return $.ajax({
 mimeType: 'text/html',
 url: templateName + '.html'
 }).then(function(template) {
 templateCache[templateName] = _.template(template);
 return templateCache[templateName];
 });
}

As you can see in the above code, we have implemented the getAjaxTemplate()
function as a way of decoupling the mechanism that is responsible for fetching the
template from the implementation that uses it. This implementation has a lot in
common with the getEmbeddedTemplate() function that we used earlier, the main
difference being that the getAjaxTemplate() function is asynchronous and, as a
result, returns a Promise.

https://api.jquery.com/jQuery.getScript/
https://api.jquery.com/jQuery.getScript/

Client-side Templating

[172]

The getAjaxTemplate() function firstly checks whether or not the requested
template already exists in its cache, as an extra attempt to reduce HTTP requests
to the server. If the template is found in the cache, then it is returned as part of
a Resolved Promise, otherwise we initiate an AJAX request using the $.ajax()
method to retrieve it from the server. Like before, we need to have a convention
regarding the naming of the template HTML files and the path used to store them
in the server. In our example, we are looking in the same directory as the web page
itself and just appending the .html file extension. An extra concern in some cases,
depending on the web server used, is the definition of the mimeType of the resource
as text/html.

When the AJAX request completes, the then() method is executed with the
content of the template as a string parameter, which is used to generate the
compiled template function. Our implementation finally returns the compiled
template function as the result of the chained Promise, right after adding it to its
cache. Since the getAjaxTemplate() function is asynchronous, we also had to
change the implementation of the openNew() method and move all the code using
the returned template function inside a then() callback. Apart from this, the
implementation has remained the same and uses the template function in
exactly the same way as before.

dashboard.informationBox.openNew = function(itemName) {
 var templatePromise = getAjaxTemplate('box-template');
 templatePromise.then(function(boxCompiledTemplate) {
 var boxHtml = boxCompiledTemplate({
 itemName: itemName
 });
 var $box = $(boxHtml).appendTo($boxContainer); box);
 /* ... */
 });
};

When re-implementing the getAjaxTemplate() function to use Handlebars.js,
the resulting code is mostly the same as before. The only difference is in the
invocation of the Handlebars.compile() method instead of the Undescore.
js equivalent. This is an added benefit as many client-side templating engines
influenced each other and have converged into a very similar API regarding the
way that their template functions are used, largely because of the positive user
feedback on the existing implementations.

function getAjaxTemplate(templateName) {
 /* …same as before... */
 return $.ajax({ /* …same as before... */
}).then(function(template) {

Chapter 9

[173]

 templateCache[templateName] =
 Handlebars.compile(template);
 return templateCache[templateName];
 });
}

Keep in mind that the $.ajax() method might not work in some
browsers when the page is loaded through the filesystem, but works as
intended when served using a web server like Apache, IIS, or nginx.

Moderation is best in all things
Even though this technique reduces the overall download footprint of each web
page, it also inevitably increases the number of HTTP requests made. Moreover,
the practice of loading every template lazily can sometimes increase the time that
the user will have to wait if the templates are required for the initial rendering of
the page.

Balancing the way that we load our templates between lazy loading and embedding
them in <script> tags usually brings the best of both worlds. This hybrid approach
is considered a best practice by the industry since it allows us to micromanage and
fine tune each implementation based on its needs. According to this practice, the
templates that are required for the presentation of the main content of a page are
embedded in its HTML, while the rest of them are delivered lazily when needed,
taking advantage of browser caching.

The implementation of such a template provider function is left as an exercise for the
reader. As a hint, such methods have to be asynchronous since, when the requested
template is not found embedded in the <script> tag of the page, it will have to
proceed and make an AJAX request to retrieve it from the server.

Keep in mind that it is generally preferable to generate the complete
initial HTML content of the page on the server side instead of using
client-side templating. This not only leads to a smaller loading time of
the initial page content but it also prevents situations in which the user
is presented with an empty page when JavaScript is unavailable or an
error has occurred.

Client-side Templating

[174]

Summary
In this chapter, we learned how to use two of the most common client-side
templating libraries: Underscore.js and Handlebars.js. We also learned
how they allow us to create complex HTML templates faster while making our
implementations easier to read and understand. We then went on to analyze their
conventions and evaluate their features and learned by example how they can be
effectively and efficiently used in our implementations.

After completing this chapter, we are now able to generate complex HTML
structures in a browser efficiently by using readable templates and utilizing the
unique characteristics of the templating libraries.

In the next chapter, we will learn how to create jQuery Plugins as a way to abstract
parts of our applications into reusable and extensible implementations. We will
introduce the most widely used patterns for developing jQuery Plugins and analyze
the implementation problems that each of them helps to solve.

[175]

Plugin and Widget
Development Patterns

This chapter focuses on the design patterns and best practices used when
implementing jQuery Plugins. We will learn here how to abstract parts of an
application into separate jQuery Plugins, promoting the Separation of Concerns
principle and code reusability.

We will firstly analyze the simplest ways that a jQuery Plugin can be implemented,
learn the various conventions of jQuery Plugin development and the basic
characteristics that every plugin should satisfy in order to follow jQuery principles.
We will then proceed with an introduction to the most widely used design
patterns and analyze the characteristics and benefits of each of them. By the end
of this chapter, we will be able to implement extensible jQuery Plugins using the
development pattern that best suits each use case.

In this chapter we will:

• Introduce the jQuery Plugin API and its conventions
• Analyze the characteristics that make an excellent plugin
• Learn how to create a plugin by extending the $.fn object
• Learn how to implement generic plugins that are extensible in order

to make them reusable in more use cases
• Learn how to provide options and methods to your plugins
• Introduce the most common design patterns for jQuery plugin

development and analyze the common implementation problems
that each of them helps to solve

Plugin and Widget Development Patterns

[176]

Introducing jQuery Plugins
The key concept of jQuery plugins lies in extending the jQuery API by making
their functionality accessible as a method on jQuery Composite Collection Objects.
A jQuery plugin is simply a function that is defined as a new method on the
$.fn object, which is the Prototype Object that every jQuery Collection Object
inherits from.

$.fn.simplePlugin101 = function(arg1, arg2/*, ...*/) {
 // Plugin's implementation...
};

By defining a method on the $.fn object, we are actually extending the core jQuery
API itself, since this makes the method available on all created jQuery Collection
Objects from that point onwards. As a result, after a plugin has been loaded in a
web page, its functionality is available as a method on every object returned by
the $() function:

$('h1').simplePlugin101('test', 1);

The main convention of the jQuery plugin API is that the jQuery Collection Object
that the plugin was invoked on is made available to the plugin's method as its
execution context. In other words, we can use the this identifier in the plugin
method, as shown below:

$.fn.simplePlugin101 = function() {
 this.slideToggle();
 // "this" is a jQuery object where all
 // jQuery methods are available
};

Following jQuery principles
One of the goals when creating a plugin is to make it feel like a part of jQuery itself.
After reading the previous chapters, you should be familiar with some of the principles
that all jQuery methods follow and the characteristics that make its approach special.
Implementing a plugin that follows these principles makes users feel more comfortable
with its API, be more productive, and make fewer implementation errors, which leads
to an increase in the plugin's popularity and adoption.

Chapter 10

[177]

Two of the most important characteristics that a great jQuery plugin should have
are as follows:

• It should apply on all the elements of the jQuery Collection Object it is
invoked on whenever applicable

• It should allow further chaining of other jQuery methods

Let's now move on and analyze each of these principles.

Working on Composite Collection Objects
One of the most important features of jQuery methods is that they are applied
on every item of the Composite Collection Object that they are invoked on. As an
example, the $.fn.addClass() method adds one or more CSS classes to every item
of the collection after individually checking whether each class has already been
defined on each individual element.

As a result, our jQuery plugins should also follow this principle by operating on
every element of a collection, when such a thing seems logical. If you are using only
jQuery methods in your plugin's implementation, most of the time, you get this for
free. On the other hand, an important consideration to bear in mind is that not all
jQuery methods operate on every element of a collection object. Methods like $.fn.
html(), $.fn.css() and $.fn.data() apply on all the items of the collection when
used as setter methods, but operate only on the first element when used as getters.

Let's see an example implementation of a plugin that uses $.fn.animate() to create
a shake effect on all items of a jQuery object:

$.fn.vibrate = function() {
 this.each(function(i, element) {
 // specifically handle every element
 var $element = $(element);
 if ($element.css('position') === 'static') {
 $element.css({ position: 'relative' });
 }
 });

 this.animate({ left: '+=3' }, 30)
 .animate({ left: '-=6' }, 60)
 .animate({ left: '+=6' }, 60)
 .animate({ left: '-=3' }, 30);

 return this; // allow further chaining
};

Plugin and Widget Development Patterns

[178]

Invoking this plugin with $('button').vibrate(); applies the shaking animation
on every matched element of the page. To achieve that, the plugin changes the left
CSS property of all matched elements using the $.fn.animate() method, which
conveniently operates on every element. On the other hand, since the $.fn.css()
method applies only on the first element of the collection when used as a getter, we
had to iterate over all the elements using the $.fn.each() method and ensure that
each of them was not statically positioned, in which case the left CSS property
would not affect its appearance.

Obviously, using only jQuery methods is not always sufficient for the
implementation of a plugin. In most cases, a new plugin will have to use at least one
non-jQuery API for its implementation, requiring us to iterate over the items of the
collection and apply the logic of the plugin to each of them individually. The same
approach should be used when each element of the collection has to be handled
slightly differently based on its state.

As a result, it is quite common for plugins to wrap almost all of their
implementations inside a $.fn.each() invocation. By recognizing the common
needs that are covered by explicit iteration, the jQuery team and most jQuery
plugin boilerplates now make it part of their standard practice.

Allowing further chaining
In general, when your plugin's code does not need to return anything, all that
you have to do to enable further chaining is to add a return this; statement
to its last line, as we saw in the previous example. Make sure that all the code
paths return a reference of the invocation context (this) or another relevant jQuery
collection object, in the same way that $.fn.parent() and $.fn.find() do.
Alternatively, when all your code is wrapped inside another jQuery method,
such as $.fn.each(), it is common practice to simply return the result of that
invocation, as demonstrated below:

$.fn.myLogPlugin = function() {
 return this.each(function(i, element) {
 console.log($(element).text());
 });
};

Keep in mind that, if your code manipulates the collection object that it was invoked
on, instead of returning the this reference, you might need to return the new
collection that was the result of your plugin's manipulations.

Chapter 10

[179]

You should avoid basing your plugin's implementation on a return value
in order to allow further chaining. Instead of doing that, it is preferable
to initialize the plugin on its first invocation and then provide some
overloaded ways to invoke it, as a way of returning values.

Working with $.noConflict()
The first step to improve a plugin's implementation is to make it work in
environments that do not have access to the $ identifier. An example of this is when
a web page uses the jQuery.noConflict() method, which prevents jQuery from
assigning itself to the $ global identifier (or window.$) and keeps it available only on
the jQuery namespace (window.jQuery).

The jQuery.noConflict() method allows us to prevent jQuery
from conflicting with other libraries and implementations that also
happen to use the $ variable. For more information, you can visit the
jQuery documentation page at: http://api.jquery.com/jQuery.
noConflict/

In such cases, the plugin definition would throw an $ is not defined error or even
worse; it might try to use the $ variable that the developer has reserved to use in an
implementation, leading to errors that are hard to debug.

Fortunately, the changes required to fix this problem are easy to implement and do
not affect the functionality of the plugin. All that we have to do is rename all of the
occurrences of the $ identifier in our plugin with jQuery, as shown below:

jQuery.fn.simplePlugin101 = function(arg1, arg2/*, ...*/) {
 var $buttons = jQuery('button');
 // ...
};

Wrapping with an IIFE
The next best practice to follow is to wrap the definition and implementation of our
plugin with an IIFE. This not only makes our plugin look like the Module Pattern
but also makes our implementation more robust by adding several other benefits
to it.

http://api.jquery.com/jQuery.noConflict/
http://api.jquery.com/jQuery.noConflict/

Plugin and Widget Development Patterns

[180]

First of all, the IIFE pattern allows us to create and use private variables and
functions in the context of the plugin's definition. These variables are shared across
all the instances of the plugin in a similar way to how static variables work in other
programming languages, enabling us to use them as synchronization points
between the plugin instances:

(function($) {
 var callCounter = 0;

 function utilityLogMethod(message) {
 if (window.console && console.log) {
 console.log(message);
 }
 }

 $.fn.simplePlugin101 = function(arg1, arg2/*, ...*/) {
 callCounter++;
 utilityLogMethod(callCounter);
 return this;
 };
})(jQuery);

Otherwise, we would have to use something like $.simplePlugin101._
callCounter or $.simplePlugin101._utilityLogMethod() to emulate privacy,
which is just a naming convention and does not provide any actual privacy.

The second benefit, as demonstrated in the above example, is that it allows us to
use the $ identifier again to access jQuery with no concerns about conflicts. In order
to achieve this, we are passing the jQuery namespace variable as an invocation
parameter to our IIFE and use the $ identifier to name the respective parameter. In
this way, we effectively alias the jQuery namespace to $ in the context created by the
IIFE, enabling us to use the minimal $ identifier in our implementation to keep our
code slim and readable, even if jQuery.noConflict() is used.

Additionally, adding the use strict; statement on the top of our IIFE helps us
to eliminate any leaking of variables into the global namespace. For example, the
following code would throw a ReferenceError: assignment to undeclared variable x
error during the invocation of the plugin's method, enabling us to catch those errors
during the development phase of the plugin helping produce a more robust
final implementation:

(function($) {
 'use strict';

 $.fn.leakingPlugin = function() {

Chapter 10

[181]

 x = 0;
 // there is no "var x" declaration,
 // so an error is thrown when executed
 };
})(jQuery);

$('div').leakingPlugin();

For more information about JavaScript's strict execution mode, you
can visit: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Strict_mode

Finally, this pattern, as with all the namespace aliasing practices that use IIFEs,
can also help increase the gains when minifying your plugin's source code, when
compared to an implementation that references the jQuery namespace variable
directly. In an attempt to maximize the benefits of this technique, it's also
common to alias all the global namespace variables that our plugin accesses,
as demonstrated below:

(function ($, window, document, undefined) {
 // Plugin's implementation...
})(jQuery, window, document);

Creating reusable plugins
After analyzing the most important aspects of the development of jQuery plugins,
we are now ready to analyze an implementation that is used for something more
than a simple demonstration. In order to create a really useful and reusable plugin,
it must be designed such that its operations are not restricted by the demands of its
original use case.

The most popular plugins, like the most useful jQuery methods, are those that
provide a high degree of configuration of their functionality. Creating a plugin that
is configurable adds a degree of flexibility to its implementation, which enables
us to match the needs of several other use cases that are governed by the same
operation principles.

As we said earlier, a jQuery plugin is just a function attached to the $.fn object and,
as a result, we can make its implementation more abstract and generic in the same
way as with plain functions of our modules. As in simple functions, the easiest way
to differentiate the operation of a jQuery plugin is by using invocation parameters.
A plugin that exposes a lot of configuration parameters has great potential of being
able to be match the requirements of several different use cases.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Plugin and Widget Development Patterns

[182]

Accepting configuration parameters
In contrast to how we implement functions that usually accept up to five arguments
and still have a manageable and relatively clean API, this practice does not work
so well with jQuery plugins. In order to expose a clear API and maintain a high
level of usability, regardless of the various configuration options that are exposed,
most jQuery plugins provide a minimal API that accepts up to three invocation
arguments. This is achieved by using dedicated setting objects with a specific format,
as a way of encapsulating multiple options and passing them as a single argument.
Another approach is to expose an API with two parameters, where the first one is a
regular value that defines the operation of the plugin and the second one is used to
wrap the less important configuration options.

A great example of both of these practices is the $.ajax(settings) method,
which is invoked with a single settings object as a parameter to define how it
should operate, but also exposes another overloaded way to be invoked with two
arguments. The two argument overload is invoked with $.ajax(url, settings)
, where the first is the target URL for the HTTP request and the second is an object
with the rest configuration options. What applies to both of them is that the method
itself contains a set of sensible defaults that are used instead of any configuration
parameter that the user has not defined. Moreover, the second overload also defines
the second parameter as optional and, if that was not provided during its invocation,
it bases its operation on the default settings.

Adopting the settings object practice in our plugins not only brings all the
aforementioned benefits, but also allows us to extend the implementation in a more
scalable way, since the addition of an extra configuration parameter has little effect
on the rest of its API. As an example of this, we will reimplement the $.fn.vibrate
plugin that we saw earlier in this chapter in a more generic way, so that a setting
object with default values is used for its configuration:

(function($) {

 $.fn.vibrate = function(options) {
 var opts = $.extend({}, $.fn.vibrate.defaultOptions, options);

 this.each(function(i, element) {
 var $element = $(element);
 if ($element.css('position') === 'static') {
 $element.css({ position: 'relative' });
 }
 });

 for (var i = 0, len = opts.loops * 4; i < len; i++) {

Chapter 10

[183]

 var animationProperties = {};
 var movement = (i % 2) ? '+=': '-=';

 movement += (i === 0 || i === len - 1) ?
 opts.amplitude / 2:
 opts.amplitude;

 var t = (i === 0 || i === len - 1) ?
 opts.period / 4:
 opts.period / 2;

 animationProperties[opts.direction] = movement;
 this.animate(animationProperties, t);
 }

 return this;
 };

 $.fn.vibrate.defaultOptions = {
 loops: 2,
 amplitude: 8,
 period: 100,
 direction: 'left'
 };
})(jQuery);

In contrast to the original fixed implementation, this one accepts a single object as
an invocation parameter which wraps four different options that can be used to
diversify the operation of the plugin. The options object allows us to diversify the
operation of the plugin by exposing four customization points:

• The number of loops that the shake effect should run
• The amplitude of the animation, as a means of controlling how much an

element should move away from its original position
• The period of each loop, as a means of controlling how fast the

movement will be
• The direction of the animation, which is horizontal when left is used or

vertical when top is used

Plugin and Widget Development Patterns

[184]

By following a widely accepted best practice, we have defined all the default values
for the configuration options as a separate object. This pattern not only allows us
to gather all the related values under a single object, but also enables us to use the
$.extend() method as an effective way of composing all the defined options with
the default values of the undefined ones. We can thus avoid checking explicitly for
the existence of each individual property, reducing the complexity and the size of
our code.

In brief, the $.extend() method returns the object passed as its first argument after
merging the properties of the subsequent objects together into the first object. As a
result, the returned object will contain all the default values except those that were
defined in the options object that was passed as an invocation parameter.

For more information about the $.extend() helper method, you can
visit the documentation page at: http://api.jquery.com/jQuery.
extend/

Moreover, instead of using a simple variable, we are exposing the default options
object as a property of the plugin's function, enabling users to change them to
better suit their needs. As an example, consider a case in which a smooth animation
is required for the needs of a specific application. By setting $.fn.vibrate.
defaultOptions.period = 250, the developer would completely remove the
need to specify the period option in every invocation of the plugin, which would
lead to an implementation with less repetitive code.

The jQuery library itself adopts this practice for defining the default
configuration parameters of the $.ajax() method. Because of the
increased complexity of this method, jQuery provides us with the
jQuery.ajaxSetup() method as a way of setting up the default
parameters for every AJAX request.

Finally, in order to create a generic variant of the original implementation and utilize
the aforementioned configuration options, we replaced the four fixed invocations
of the $.fn.animate() method of the original implementation with a for loop that
utilized the loops option. Inside the for loop itself, we construct the parameters for
each call of the $.fn.animate() method and briefly alternate the direction of the
animated movement on each subsequent execution of the loop, and also ensure that
the first and last movements have half of the time duration and half of the shift of all
of the other steps.

http://api.jquery.com/jQuery.extend/
http://api.jquery.com/jQuery.extend/

Chapter 10

[185]

The final implementation can be configured to produce different animations, based
on the needs of each specific use case, ranging from short horizontal animations that
are ideal for notifying a user about an invalid action, to vertical long animations that
look like a levitation effect. The plugin can be invoked with any combination of the
aforementioned options, use the default values for missing options and even operate
with no invocation argument, as shown below:

// do the default intense animation on a button
// that appears disabled, to designate an invalid action
$('button.disabled').on('click', function() {
 $(this).vibrate();
});

// do a smother shake animation to catch the user's
// attention on an important part of the page
$('.save-button').vibrate({loops: 3, period: 250});

// start a long running levitation effect on the header of the page
$('h1').vibrate({direction: 'top', loops: 1000, period: 5000});

Writing stateful jQuery plugins
The plugin implementations that we have looked at so far were stateless since, after
completing their execution, they revert their manipulations on the DOM's state
and don't leave allocated objects in the browser's memory. As a result, subsequent
invocations of stateless plugins always produce the same results.

As you can probably guess, such plugins have limited applications since they can't
be used to create a series of complex interactions with the user of the web page. In
order to orchestrate complex user interactions, a plugin needs to preserve an internal
state with the actions taken up to that point in order to change its operation mode
appropriately and handle subsequent interactions. Comparing the characteristic of
stateful and stateless plugins could be defined as the equivalent to comparing plain
(static) functions with methods that are part of an object and can operate on its state.

Another popular category of plugins, in which having an internal state is essential,
is the family of plugins that manipulate the DOM tree. These plugins usually create
complex element structures such as a rich text editors, date pickers and calendars,
commonly by building on a user-defined empty <div> element.

Plugin and Widget Development Patterns

[186]

Implementing a stateful jQuery Plugin
As an example of the patterns used for the implementation of plugins of this family,
we will write a generic Element Mutation Observer plugin. This plugin will
provide us with a convenient way of adding event listeners for changes to the DOM
tree that originate from any of the elements that this plugin was invoked on. As a
way of achieving that, the following implementation uses the MutationObserver
API, which, at the time of writing, is implemented by all modern browsers and is
available to more than 86% of web users.

For more information on the Mutation Observer, you can visit:
https://developer.mozilla.org/en-US/docs/Web/API/
MutationObserver

Let's now proceed with the implementation and analyze the practices that were used:

(function($) {
 $.fn.mutationObserver = function(action) {
 return this.each(function(i, element) {
 var $element = $(element);
 var instance = $element.data('plugin_mutationObserver');

 if (!instance) {
 var observer = new MutationObserver(function(mutations) {
 mutations.forEach(function(mutation) {
 instance.callbacks.forEach(function(callbackFn) {
 callbackFn(mutation);
 });
 });
 });

 observer.observe(element, {
 attributes: true,
 childList: true,
 characterData: true
 });

 instance = {
 observer: observer,
 callbacks: []
 };
 $element.data('plugin_mutationObserver', instance);
 }

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

Chapter 10

[187]

 if (typeof action === 'function') {
 instance.callbacks.push(action);
 }
 });

 };
})(jQuery);

Firstly, we define our plugin inside an IIFE, as recommended earlier in this chapter.
Right after the declaration of the plugin on the $.fn object, we use the $.fn.each()
method as a direct approach to ensure that the functionality of our plugin is applied
to every item of the jQuery Collection Object that it was invoked on.

Two of the main issues that stateful plugin implementations have is the lack of a
mechanism to preserve the internal state of each instantiation of the plugin and a
way of avoiding being initialized many times on the same page element. In order
to solve both of these problems, we need to use something like a hash table in
which the key is the element itself and the value is an object with the state of the
plugin's instance.

Fortunately, this is more or less how the $.fn.data() method works by associating
DOM elements and JavaScript object values using specific string keys. By using the
$.fn.data() method and the plugin's name as an association key, we are able to
store and retrieve the state object of our plugin very easily.

Using the $.fn.data() method for this use case is considered a
best practice and is used by most stateful plugin implementations
and boilerplates since it is a robust part of jQuery that enables us to
reduce the size of our plugin's implementation.

If an existing state object is not found then we can assume that the plugin is not
yet initialized on that specific element and start its initialization right away. The
state object of this plugin will contain the instance of the active MutationObserver
responsible for tracking the changes that happen on the observed DOM element,
and an array with all the callbacks that have subscribed to it to get notifications
about changes.

After creating a new MutationObserver instance, we configure it to look for three
specific types of DOM changes and instruct it to invoke all the callbacks of the
plugin's state object whenever such DOM changes occur. Finally, we create the
state object itself to hold the observer and the associated callbacks and use the
$.fn.data() method as a setter and associate it with the page element.

Plugin and Widget Development Patterns

[188]

After ensuring that the plugin is instantiated and initialized on the provided element,
we check whether the plugin is invoked with a function as a parameter and, if so,
we add it to the list of the plugin's callbacks.

Keep in mind that using a single MutationObserver instance per
element and having it notify about DOM changes by iterating over
an array of callbacks greatly reduces the memory requirements of the
implementation, just like when we are using a single delegate observer.

An example of using our newly implemented plugin to observe for changes of a
specific DOM element would look like this:

$('.container').mutationObserver(function(mutation) {
 console.log('Something changed on the DOM tree!');
});

Destroying a plugin instance
An extra consideration that a stateful plugin has to take into account is offering the
developer a way to reverse the changes that it introduced to the state of the page.
The most common and simple API for achieving this is to invoke the plugin with
the destroy literal as its first parameter. Let's proceed with the required
implementation changes:

(function($) {
 $.fn.mutationObserver = function(action) {
 return this.each(function(i, element) {
 var $element = $(element);
 var instance = $element.data('plugin_mutationObserver');

 if (action === 'destroy' && instance) {
 instance.observer.disconnect();
 instance.observer = null;
 $element.removeData('plugin_mutationObserver');
 return;
 }

 if (!instance) {
 /* ... */
 }
 });

 };
})(jQuery);

Chapter 10

[189]

In order to adapt our implementation to the above requirement, all we had to do was
to check whether the plugin was invoked with the destroy string value as its first
parameter, right after retrieving the plugin's state object. If we find that the plugin
has already been instantiated on the specified element and that the destroy string
value has been used, we can proceed to stop the Mutation Observer itself and clear
the association that $.fn.data() created by using the $.fn.removeData() method.
Finally, at the end of the if statement we added a return statement since, after
completing the destruction of the plugin instance, we no longer need to execute any
other code. An example of destroying a plugin instance with this implementation
would look like this:

$('.container').mutationObserver('destroy');

Implementing getter and setter methods
By using the same technique that we demonstrated earlier for the implementation of
the destroy method of our plugin, we can provide several other overloaded ways to
invoke our plugin that work like normal methods. This pattern is not only used by
plain jQuery plugins, but is also adopted by more complex plugin architectures,
as with jQuery-UI.

On the other hand, we might end up with a plugin implementation that results in
a large number of invocation overloads, which is something that would make it
difficult to use and document. A way to work around this is to combine the getter
and setter methods of your API into multi-purpose methods. This not only reduces
the API surface of your plugin so that a developer has to remember fewer method
names but it also increases the productivity since the same pattern is used in
many jQuery methods like $.fn.html(), $.fn.css(), $.fn.prop(), $.fn.val(),
and $.fn.data().

As a demonstration of this, let's see how we can add a new method to our
MutationObserver plugin that works both as a getter and a setter for the
registered callbacks:

(function($) {
 $.fn.mutationObserver = function(action, callbackFn) {
 var result = this;

 this.each(function(i, element) {
 var $element = $(element);
 var instance = $element.data('plugin_mutationObserver');
 /* ... */

Plugin and Widget Development Patterns

[190]

 if (typeof action === 'function') {
 instance.callbacks.push(action);
 } else if (action === 'callbacks') {
 if (callbackFn && callbackFn.length >= 0) {
 // used as a setter
 instance.callbacks = callbackFn;
 } else {
 // used as a getter for the first element
 result = instance.callbacks;
 return false;// break the $.fn.each() iteration
 }
 }
 });

 return result;
 };
})(jQuery);

As shown in the above code, we have created an overloaded invocation method
which uses the callbacks string value as the first argument of the plugin invocation.
This getter and setter method allows us to retrieve or overwrite all of the callbacks
that are registered on the MutationObserver and works in addition to the pre-
existing methods for invoking the plugin, by using a function parameter and the
destroy method.

The getter and setter implementation is based on the assumption that, when trying to
use the callbacks method as a getter, you don't need to pass any extra parameters
and, when trying to use it as a setter, you will pass an extra array as an invocation
parameter. In order to support the getter variant, which prevents further chaining
and only operates on the first element of the composite collection, we had to declare
and use the result variable which is initialized to the value of the this identifier.
If the callbacks getter is used, we assign the callbacks of the first element of the
collection to the result variable and break out of the $.fn.each() iteration by
returning false to finish the execution of the plugin's method.

Here is an example use case for our newly implemented getter and setter method:

// retrieve the callbacks
var oldCallbacks = $('.container').mutationObserver('callbacks');
// clear them
$('.container').mutationObserver('callbacks', []);
// add a new one
$('.container').mutationObserver(function() {
 console.log('Printed only once');
 // restore the old callbacks
 $('.container').mutationObserver('callbacks', oldCallbacks);
});

Chapter 10

[191]

Keep in mind that invocation overloads that prevent further chaining
by returning non-jQuery object results should be well documented
since this technique conflicts with the chaining principle that
everyone expects to work.

Using our plugin in our Dashboard
application
After completing our mutationObserver plugin, lets now see how we can use it for
the implementation of the counter sub-module that we used in our Dashboard's
implementation in previous chapters:

(function() {
 'use strict';
 dashboard.counter = dashboard.counter || {};

 var $counter;

 dashboard.counter.init = function() {
 $counter = $('#dashboardItemCounter');
 var $boxContainer = dashboard.$container
 .find('.boxContainer');

 $boxContainer.mutationObserver(function(mutation) {
 dashboard.counter.setValue(
 $boxContainer.children().length);
 });
 };

 dashboard.counter.setValue = function (value) {
 $counter.text(value);
 };
})();

As you can see in the above implementation, our plugin abstracts nicely and replaces
the old implementation by providing a generic, flexible and reusable API. Instead of
listening for click events on the different buttons of the page, the implementation is
now using the mutationObserver plugin and observes the boxContainer element
for the additions or removals of child elements. Moreover, this implementation
change does not affect the functionality of the counter module which appears to
work in the same way since all the changes are encapsulated in the module.

Plugin and Widget Development Patterns

[192]

Using the jQuery Plugin Boilerplate
The jQuery Boilerplate project, which is available at https://github.com/
jquery-boilerplate/jquery-patterns, offers several templates that can be
used as starting points for the implementation of robust and extensible plugins.
These templates incorporate a lot of best practices and design patterns such as
those analyzed earlier in this chapter. Each of the templates packs a number of best
practices that work well together, in an attempt to provide good starting points that
better match the various use cases.

Perhaps the most widely used template is jquery.basic.plugin-boilerplate
from Adam Sontag and Addy Osmani, which even though it is characterized as
a generic template for beginners and above, successfully covers most aspects of
jQuery plugin development. What makes this template unique is the Object-Oriented
approach that it follows which is presented in such a way that it helps you write
better structured code, without making it harder to introduce customizations on
the implementation. Let's proceed and analyze its source code:

/*!
 * jQuery lightweight plugin boilerplate
 * Original author: @ajpiano
 * Further changes, comments: @addyosmani
 * Licensed under the MIT license
 */
;(function ($, window, document, undefined) {
 var pluginName = "defaultPluginName",
 defaults = {
 propertyName: "value"
 };
 function Plugin(element, options) {
 this.element = element;
 this.options = $.extend({}, defaults, options) ;
 this._defaults = defaults;
 this._name = pluginName;
 this.init();
 }
 Plugin.prototype = {
 init: function() { /* Place initialization logic here */ },
 yourOtherFunction: function(options) { /* some logic */ }
 };
 // A really lightweight plugin wrapper around the constructor,
 // preventing against multiple instantiations
 $.fn[pluginName] = function (options) {
 return this.each(function () {

https://github.com/jquery-boilerplate/jquery-patterns
https://github.com/jquery-boilerplate/jquery-patterns

Chapter 10

[193]

 if (!$.data(this, "plugin_" + pluginName)) {
 $.data(this, "plugin_" + pluginName,
 new Plugin(this, options));
 }
 });
 };

})(jQuery, window, document);

The semi-colon right before the IIFE is there to avoid errors in case of unfortunate
script concatenation (and possibly minification) with a file that might be missing an
ending semi-colon. Right below, the boilerplate uses the pluginName variable as a
DRY way of naming our plugin and using its name for any other case. As an added
benefit, all that we have to do if we need to rename our plugin is change the value of
this variable and rename the .js file of our plugin accordingly.

Following the best practices that we saw earlier, a variable is used to hold the default
options of the plugin and, as we can see a few lines later, it is merged with the user-
provided options using the $.extend() method. Keep in mind that, if we want to
expose the default options, all that we have to do is define it as part of the plugin's
namespace: $.fn[pluginName].defaultOptions = defaults;

The actual plugin definition can be found near the end of this boilerplate code.
Following the already discussed best practices, it iterates over the items of the
collection using $.fn.each() and returns its result, which is equivalent to returning
this. It then ensures that a plugin state instance exists for each item of the collection
by using the $.data() method and the prefixed plugin name as an association key.

The Plugin constructor function is used for the creation of the plugin's state object
which, after storing the DOM element and the final plugin options as properties of
the object, invokes the init() method of its prototype. The init() method is the
suggested place to define our initialization code, for example, it could instantiate a
new MutationObserver as we did earlier in this chapter.

Adding methods to your plugin
By default, every method that is defined as part of the prototype is only available for
internal use. On the other hand, we can easily extend the above implementation to
make a method available to all our users, as shown below:

$.fn[pluginName] = function (options, extraParam) {
 return this.each(function () {
 var instance = $.data(this, "plugin_" + pluginName);
 if (!instance) {

Plugin and Widget Development Patterns

[194]

 instance = new Plugin(this, options);
 $.data(this, "plugin_" + pluginName, instance);
 } else if (options === 'yourOtherFunction') {
 instance.yourOtherFunction(this, extraParam);
 }
 });
};

One guideline to follow when working with this boilerplate is to extend your plugin
by adding extra methods to the Plugin's prototype. Additionally, try to keep any
modifications to the plugin's definition as small as possible, ideally single line
method invocations.

In order to make the implementation more scalable, with regards to how the plugin
methods are invoked and if we want to add an abstract approach for methods
that are intended for internal or private use by the plugin, we can introduce the
following changes:

$.fn[pluginName] = function (options) {
 var restArgs = Array.prototype.slice.call(arguments, 1);
 return this.each(function () {
 var instance = $.data(this, "plugin_" + pluginName);
 if (!instance) {
 instance = new Plugin(this, options);
 $.data(this, "plugin_" + pluginName, instance);
 } else if (typeof options === 'string' && // method name
 options[0] !== '_' && // protect private methods
 typeof instance[options] === 'function') {
 instance[options].apply(instance, restArgs);
 }
 });
};

In the above implementation, we used the first argument to identify the method that
needs to be invoked and then invoked it with the rest arguments. We also added
a check to prevent the invocation of methods that start with an underscore which,
according to common conventions, are intended to be for internal or private use. As
a result, in order to add an extra method to your plugin's public API, we just need to
declare it in the Plugin.prototype that we saw earlier.

Chapter 10

[195]

Another great way to implement your plugin when you are already using
jQuery-UI in your application is to use the $.widget() method which
is also known as jQuery-UI Widget Factory. Its implementation abstracts
several parts of the boilerplate code that we saw in this chapter and helps
create complex and robust plugins. For more information, you can read
the documentation at: http://api.jqueryui.com/jQuery.widget/

Choosing a name
Lastly, after learning the best practices that we need to create a jQuery plugin, let's
say something about the naming conventions and where to publish your new and
shiny plugin.

As you have probably already seen, most jQuery plugins use the following naming
convention: jQuery-myPluginName for their project sites and repositories and store
their implementations in a file named jquery.mypluginname.js. After settling on
some prospective names for your plugin, take a moment and search the web to verify
that there is no one else with the same project name. The jQuery documentation
suggests searching for plugins on NPM and refining your results by using the
jquery-plugin keyword. This is obviously the best way to publish your plugin so
that it can be easily found by others.

For more information about NPM, you can visit:
https://www.npmjs.com/

Another popular place for searching and hosting JavaScript libraries is GitHub. You
can find its repository search page at https://github.com/search?l=JavaScript,
where it filters the search results to include only JavaScript projects and searches for
existing plugins and already used project names. Since in our case we are focusing
on jQuery plugins, you will get better results by searching for project names that
follow the aforementioned naming convention, jQuery-myPluginName.

Until recently, developers could search for existing plugins and register
a new one at the official jQuery Plugin Registry (http://plugins.
jquery.com/). Unfortunately, it has been discontinued and now only
allows searching for older plugins with no new submissions.

http://api.jqueryui.com/jQuery.widget/
https://www.npmjs.com/
https://github.com/search?l=JavaScript
http://plugins.jquery.com/
http://plugins.jquery.com/

Plugin and Widget Development Patterns

[196]

Summary
In this chapter we learned how jQuery can be extended by implementing and using
plugins. We first saw an example of the simplest way that a jQuery plugin can be
implemented and analyzed the characteristics that make a great plugin, and one
which follows the principles of the jQuery library.

We were then introduced to the most common development patterns in the
developer community for creating jQuery Plugins. We analyzed the implementation
problems that each of them solves and the use cases that are a better match for them.

After completing this chapter, we are now able to abstract parts of our applications
into reusable and extensible jQuery plugins that are structured using the
development pattern that best matches each use case.

In the next chapter, we will present several optimization techniques that can be used
to improve the performance of our jQuery applications, especially when they become
large and complex. We will discuss simple practices such as using CDNs to load
third-party libraries and continue with more advanced subjects such as lazy loading
the modules of an implementation.

[197]

Optimization Patterns
This chapter presents several optimization techniques that can be used to
improve the performance of jQuery applications, especially when they become
large and complex.

We will start with simple practices like bundling and minifying our JavaScript files
and discuss the benefits of using CDNs to load third-party libraries. We will then
move on to analyze some simple patterns for writing efficient JavaScript code and
learn how to write efficient CSS selectors in order to improve the page's rendering
speed and DOM traversals using jQuery.

We will then study jQuery-specific practices such as the caching of jQuery Composite
Collection Objects, how to minimize DOM manipulations, and have a reminder
of the Delegate Observer Pattern as a good example of the Flyweight Pattern.
Lastly, we will get an introduction to the advanced technique of Lazy Loading and
have a demonstration of how to load the different modules of an implementation
progressively, based on user actions.

By the end of this chapter, we will be able to apply the most common optimization
patterns to our implementations and use this chapter as a checklist of best practices
and performance tips before moving the application to a production environment.

Optimization Patterns

[198]

In this chapter, we shall:

• Learn the benefits of bundling and minifying our JavaScript files
• Learn how to load third-party libraries through the CDN server
• Learn some simple JavaScript performance tips
• Learn how to optimize our jQuery code
• Introduce the Flyweight pattern and showcase some examples of it
• Learn how to lazyload parts of our application when required by a

user action

Placing scripts near the end of the page
The first tip for making your page's initial rendering faster is to gather all the
required JavaScript files and place their <script> tags near the end of the page,
preferably just before the closing </body> tag. This change will have a great impact
on the time needed for the initial rendering of the page, especially for users with
low speed connections such as mobile users. If you are already using the
$(document).ready() method for all initialization purposes that relate to the
DOM, moving the <script> tags around should not affect the functionality
of your implementation at all.

The main reason for this is that, even though browsers download the page's HTML
and other resources (CSS, images, and so on) in parallel, when a <script> tag
is encountered, the browser pauses everything else until it is downloaded and
executed. In order to work around this limitation of the specification, attributes like
defer and async from HTLM5 have been introduced as parts of the <script> tag
specification but unfortunately have only started to be adopted by some browsers
recently. As a result, this practice is still widely used to obtain good page loading
speeds even on older browsers.

For more information about the <script> tag you can visit:
https://developer.mozilla.org/en-US/docs/Web/HTML/
Element/script

Chapter 11

[199]

Bundling and minifying resources
The first place to look when trying to make a page load faster is for ways to reduce
the number and total size of HTTP requests. The benefits come from the fact that the
browser downloads the content in larger chunks instead of spending time waiting
for a lot of small round-trips to the server to complete. This is especially beneficial for
users with low speed connections such as mobile users.

Resource concatenation is a simple concept that does not need any introduction.
This can be done manually but it is preferable to automate this task with a bundling
script or introduce a build step for your project. Depending on your development
environment, there are different bundling solutions to choose from. If you are
using grunt or gulp as part of your development stack, you can use solutions like
grunt-contrib-concat (https://github.com/gruntjs/grunt-contrib-concat)
and gulp-concat (https://github.com/contra/gulp-concat) respectively.

Minifying JavaScript files is a more complex procedure which includes a series
of code transformations that are applied to the target source code, ranging from
something as simple as white space removal to more complex tasks like variable
renaming. Popular solutions for minifying JavaScript include:

• YUI Compressor available at http://yui.github.io/yuicompressor/
• Google's Closure Compiler available at https://developers.google.com/

closure/compiler/

• UglifyJS available at https://github.com/mishoo/UglifyJS2

Once again, various solutions exist that integrate the above libraries nicely with your
preferred development environment and make minification a simple task. Examples
of integrations for grunt and gulp include grunt-contrib-uglify (https://
github.com/gruntjs/grunt-contrib-uglify) and gulp-uglify (https://
github.com/terinjokes/gulp-uglify) respectively.

As a final word, keep in mind that your code should be as readable and as logically
structured as possible. Bundling and minifying your JavaScript and CSS files is most
effectively done as a build step of your development and deployment procedures.

Optimization Patterns

[200]

Using IIFE parameters
Apart from helping to avoid polluting the global namespace, using IIFEs to wrap
your implementation can also be beneficial for the size of your minified JavaScript
files. Let's take a look at the following code in which the jQuery, the window, and the
document variables are passed as invocation parameters to the module's IIFE.

(function ($, window, document, undefined) {
 if (window.myModule === undefined) {
 window.myModule = {};
 }

 myModule.init = function() { /*...*/ };

 $(document).ready(myModule.init);

})(jQuery, window, document);

We saw a similar pattern in the previous chapter, as part of the suggested template
for creating jQuery plugins. Even though the variable aliasing does not affect the
functionality of the implementation, it allows the code minifiers to apply variable
renaming in more places than before, resulting in code like the following:

(function(b, a, c, d) {
 a.myModule === d && (a.myModule = {});
 myModule.init = function() { /*...*/ };
 b(c).ready(myModule.init);
})(jQuery, window, document);

As you can see in the above code, all the invocation parameters of the IIFE were
renamed by the minifier to single letter identifiers, which increases the gains of the
minification especially if the original identifiers are used in several places.

As an added benefit, aliasing also protects our modules from
the case that the original variables get accidentally assigned a
different value. For example, when IIFE parameters are not used,
an assignment like $ = {} or undefined = 7 from within a
different module would break all the implementation.

Chapter 11

[201]

Using CDNs
Instead of serving all of the JavaScript and CSS files of the third-party libraries from
your web server, you should consider using a Content Delivery Network (CDN).
Using a CDN to serve the static files of the libraries that are used by your website can
make it load faster since:

• CDNs have high speed connections and several caching levels.
• CDNs have many geographically distributed servers that can deliver the

requested files faster since they are closer to the end user.
• CDNs help parallelize resource requests, since most browsers can only

download up to four resources concurrently from any specific domain.

Moreover, if a user has static resources cached from a previous visit to another
website that uses the same CDN, he or she will not have to download them again,
reducing the time that your site needs to load.

Below is a list with the most widely used CDNs for JavaScript libraries which you
can use in your implementations:

• https://code.jquery.com/

• https://developers.google.com/speed/libraries/

• https://cdnjs.com/

• http://www.jsdelivr.com/

Using JSDelivr API
A newcomer to the CDN world is JSDelivr, which is gaining popularity because of
its unique features. Beyond simply serving existing static files, JSDelivr provides an
API (https://github.com/jsdelivr/api) that allows us to create and use custom
bundles with the resources that we need to load, helping us to minimize the HTTP
requests that our site needs. Moreover, its API allows us to target libraries with
different levels of specificity (major, minor, or bug fix releases) and even allows
us to load only specific parts of a library.

As an example, take a look at the following URL, which allows us to load the
most recent bug fix releases of jQuery v1.11.x with a single request as well as
some parts of jQuery-UI v1.10.x and Bootstrap v3.3.x: http://cdn.jsdelivr.
net/g/jquery@1.11,jquery.ui@1.10(jquery.ui.core.min.js+jquery.
ui.widget.min.js+jquery.ui.mouse.min.js+jquery.ui.sortable.min.
js),bootstrap@3.3

Optimization Patterns

[202]

Optimizing common JavaScript code
In this section, we will analyze some performance tips that are not jQuery-specific
and can be applied to most JavaScript implementations.

Writing better for loops
When iterating over the items of an array or an array-like collection with a for loop,
a simple way to improve the performance of the iteration is to avoid accessing the
length property on every loop. This can easily be done by storing the iteration
length to a separate variable, declared just before the loop or even along with it,
as shown below:

for (var i = 0, len = myArray.length; i < len; i++) {
 var item = myArray[i];
 /*...*/
}

Moreover, if we need to iterate over the items of an array that does not contain falsy
values, we can use an even better pattern which is commonly applied for iterating
over arrays that contain objects:

var objects = [{ }, { }, { }];
for (var i = 0, item; item = objects[i]; i++) {
 console.log(item);
}

In this case, instead of relying on the length property of the array, we exploit the
fact that access to an out-of-bounds position of the array returns undefined which
is falsy and stops the iteration. Another sample case that this trick can be used in
is when iterating over Node Lists or jQuery Composite Collection Objects as
shown below:

var anchors = $('a'); // or document.getElementsByTagName('a');
for (var i = 0, anchor; anchor = anchors[i]; i++) {
 console.log(anchor.href);
}

For more information about the truthy and falsy JavaScript values, visit:
https://developer.mozilla.org/en-US/docs/Glossary/
Truthy and https://developer.mozilla.org/en-US/docs/
Glossary/Falsy

Chapter 11

[203]

Writing performant CSS selectors
Even though Sizzle (jQuery's selector engine) hides the complexity of DOM
traversals based on complex CSS selectors, we should have an idea of how our
selectors are performing. Understanding how CSS selectors are matched against the
elements of the DOM helps us write more efficient selectors which perform better
when used with jQuery.

The key characteristic of efficient CSS selectors is specificity. According to this,
ID and Class selectors are always more efficient than selectors with many results
like div and *. When writing complex CSS selectors, keep in mind that they are
evaluated from the right to the left and that a selector gets rejected after recursively
testing it against every parent element until the root of the DOM.

As a result, try to be as specific as possible with the rightmost selector in order
to cut down the matched elements as quickly as possible during the execution
of the selector.

// initially matches all the anchors of the page
// and then removes those that are not children of the container
$('.container a');

// performs better, since it matches fewer elements
// in the first step of the selector's evaluation
$('.container .mySpecialLinks');

The other performance tip is using the Child Selector ("parent > child") wherever
applicable, in an effort to eliminate the recursion over all the hierarchy of the DOM
tree. A great example where this can be applied is in cases where the target elements
can be found at a specific descendant level of a common ancestor element:

// initially matches all the div's of the page, which is bad
$('.container div') ;

// a lot faster than the previous one,
// since it avoids the recursive class checks
// until reaching the root of the DOM tree
$('.container > div');

// best of all, but can't be used always
$('.container > .specialDivs');

Optimization Patterns

[204]

The same tips can also be applied to CSS selectors that are used for styling
pages. Even though browsers have been trying to optimize any given
CSS selector, the tips described above can greatly reduce the time that is
required to render a web page.

For more information on jQuery CSS selector performance, you can
visit: http://learn.jquery.com/performance/optimize-
selectors/

Writing efficient jQuery code
Let's now proceed and analyze the most important jQuery-specific performance tips.
For more information about the most up-to-date performance tips on jQuery, keep
an eye on the relevant page for jQuery's Learning Center: http://learn.jquery.
com/performance

Minimizing DOM traversals
Since jQuery made DOM traversals so simple, many web developers overused
the $() function everywhere, even in subsequent lines of code, making their
implementations slower by executing unnecessary code. One of the main reasons
that the complexity of the operation is so often overlooked is the elegant and
minimalistic syntax that jQuery uses. Despite the fact that JavaScript browser engines
became many times faster in the last few years, with performance comparable to
many compiled languages, the DOM API is still one of their slowest components
and, as a result, developers have to minimize their interactions with it.

Caching jQuery objects
Storing the result of the $() function to a local variable and subsequently using it
to operate on the retrieved elements is the simplest way of eliminating unnecessary
executions of the same DOM traversals.

var $element = $('.boxHeader');
if ($element.css('position') === 'static') {
 $element.css({ position: 'relative' });
}
$element.height('40px');
$element.wrapInner('');

Chapter 11

[205]

In the previous chapters, we even suggested storing Composite Collection Objects of
important page elements as properties of our modules and reusing them everywhere
in our application:

 dashboard.$container = null;
 dashboard.init = function() {
 dashboard.$container = $('.dashboardContainer');
 };

Caching retrieved elements on modules is a very good practice when the
elements are not going to be removed from the page. Keep in mind that,
when dealing with elements with shorter lifespans, in order to avoid
memory leaks, you have to either ensure that you clear all their references
when they are removed from the page or have a fresh reference retrieved
when required and cache it only inside your functions.

Scoping element traversals
Instead of writing complex CSS selectors for your traversals like:

$('.dashboardContainer .dashboardCategories');

You can instead have the same result in a more efficient way by using an already
retried ancestor element to scope the DOM traversal. This way, you are not only
using simpler CSS selectors that are faster to match against page elements, but
you are also reducing the number of elements that have to be checked. Moreover,
the resulting implementations have less code repetitions (are DRYer) and the CSS
selectors used are simple and as a result more readable.

var $container = $('.dashboardContainer');
$container.find('.dashboardCategories');

Additionally, this practice works even better with module-wide cached elements like
those we used in the previous chapters:

$boxContainer = dashboard.$container.find('.boxContainer');

Chaining jQuery methods
One of the characteristics of all jQuery APIs is that they are Fluent interface
implementations that enable us to chain several method invocations on a single
Composite Collection Object.

$('.boxContent').html('')
 .append('')
 .height('40px')
 .wrapInner('');

Optimization Patterns

[206]

As we discussed in previous chapters, chaining allows us to reduce the number
of used variables and leads to more readable implementations with fewer
code repetitions.

Don't overdo it
Keep in mind that jQuery also provides the $.fn.end() method (http://api.
jquery.com/end/) as a way of moving back from a chained traversal.

$('.box')
 .filter(':even')
 .find('.boxHeader')
 .css('background-color', '#0F0')
 .end()
 .end() // undo the filter and find traversals
 .filter(':odd') // applied on the initial .box results
 .find('.boxHeader')
 .css('background-color', '#F00');

Even though this is a handy method in many cases, you should avoid overusing it
since it can damage the readability and performance of your code. In many cases,
using cached element collections instead of $.fn.end() results in faster and more
readable implementations.

Improving DOM manipulations
As we said earlier, the extensive use of the DOM API is one of the most common
things that makes an application slower, especially when used to manipulate the
state of the DOM tree. In this section, we will showcase some tips to improve
performance when manipulating the DOM tree.

Creating DOM elements
The most efficient way to create DOM elements is to construct a HTML string
and append it to the DOM tree using the $.fn.html() method. Additionally,
since this is too limiting in some use cases, you can also use the $.fn.append() and
$.fn.prepend() methods, which are slightly slower but may be a better match for
your implementation. Ideally, if multiple elements need to be created, you should try
to minimize the invocation of these methods by creating a HTML string that defines
all the elements and then inserting it into the DOM tree, as shown below:

var finalHtml = '';
for (var i = 0, len = questions.length; i < len; i++) {
 var question = questions[i];

Chapter 11

[207]

 finalHtml += '<div><label>' + question.title + ':' +
 '<input type="checkbox" name="' + question.name + '" />' +
 '</label></div>';
}
$('form').html(finalHtml);

Another way to achieve the same result, is by using an array to store the HTML
for each intermediate element and then join them right before the insertion to the
DOM tree:

var parts = [];
for (var i = 0, len = questions.length; i < len; i++) {
 var question = questions[i];
 parts.push('<div><label>' + question.title + ':' +
 '<input type="checkbox" name="' + question.name + '" />' +
 '</label></div>');
}
$('form').html(parts.join(''));

This is a commonly used pattern since, until recently, it performed better
than concatenating the intermediate results with "+=".

Styling and animating
Whenever possible, use CSS classes for your styling manipulations by utilizing
the $.fn.addClass() and $.fn.removeClass() methods instead of manually
manipulating the style of the elements with the $.fn.css() method. That's
especially useful when you need to style a large number of elements since this
is the main purpose of CSS classes and browsers have already spent years
optimizing it.

As an extra optimization step to minimize the number of manipulated
elements, you can apply CSS classes on a single common ancestor element
and use a descendant CSS selector to apply your styling, as demonstrated
here: https://developer.mozilla.org/en-US/docs/Web/CSS/
Descendant_selectors

When you still need to use the $.fn.css() method, for example, when your
implementation needs to be imperative, use the invocation overload that accepts
object parameters: http://api.jquery.com/css/#css-properties. In this way,
the required method invocations are minimized when applying multiple styles on
elements and your code is better organized.

Optimization Patterns

[208]

Moreover, avoid mixing methods that manipulate the DOM with methods that
read from the DOM since this will force a reflow of the page so that the browser
can calculate the new positions of the page elements.

Instead of doing something like this:

$('h1').css('padding-left', '2%');
$('h1').css('padding-right', '2%');
$('h1').append('!!');
var h1OuterWidth = $('h1').outerWidth();

$('h1').css('margin-top', '5%');
$('body').prepend('--!!--');
var h1Offset = $('h1').offset();

Prefer grouping the non-conflicting manipulations together like this:

$('h1').css({
 'padding-left': '2%',
 'padding-right': '2%',
 'margin-top': '5%'
}).append('!!');
$('body').prepend('--!!--');

var h1OuterWidth = $('h1').outerWidth();
var h1Offset = $('h1').offset();

The browser can thus skip some re-renderings of the page, resulting in fewer pauses
of the execution of your code.

For more information about reflows, visit the following page:
https://developers.google.com/speed/articles/reflow

Lastly, note that all jQuery-generated animations in v1.x and v2.x are
implemented using the setTimeout() function. This is going to change in v3.x
of jQuery which plans to use the requestAnimationFrame() function, which
is a better match for creating imperative animations. Until then, you can use
the jQuery-requestAnimationFrame plugin (https://github.com/gnarf/
jquery-requestAnimationFrame) which monkey-patches jQuery to use the
requestAnimationFrame() function for its animations when it is available.

Chapter 11

[209]

Manipulating detached elements
Another way to avoid unnecessary repaints of the page while manipulating DOM
elements is to detach the element from the page and re-attach it after completing
your manipulations. Working with a detached in-memory element is much faster
and does not cause reflows on the page.

In order to achieve that, we use the $.fn.detach() method which, in contrast
to $.fn.remove(), preserves all event handlers and jQuery data on the
detached element.

var $h1 = $('#pageHeader');
var $h1Cont = $h1.parent();
$h1.detach();

$h1.css({
 'padding-left': '2%',
 'padding-right': '2%',
 'margin-top': '5%'
}).append('!!');

$h1Cont.append($h1);

Additionally, to be able to place the manipulated element back into its original
position, we can create and insert a hidden placeholder element into the DOM. This
empty and hidden element does not affect the rendering of the page and is removed
after the original item is placed back into its original position.

var $h1PlaceHolder = $('<div style="display: none;"></div>');
var $h1 = $('#pageHeader');
$h1PlaceHolder.insertAfter($h1);

$h1.detach();

$h1.css({
 'padding-left': '2%',
 'padding-right': '2%',
 'margin-top': '5%'
}).append('!!');

$h1.insertAfter($h1PlaceHolder);
$h1PlaceHolder.remove();
$h1PlaceHolder = null;

Optimization Patterns

[210]

For more information about the $.fn.detach() method, you can read
the documentation at: http://api.jquery.com/detach/

Introducing the Flyweight Pattern
According to Computer Science, a Flyweight is an object that is used as a means of
reducing the memory consumption of an implementation by providing functionality
and/or data that are shared with other object instances. The Prototypes of JavaScript
constructor functions can be characterized as Flyweights since every object instance
can use all of the methods and properties that are defined in its prototype until
it overwrites them. On the other hand, classical Flyweights are separate objects
from the object family that they are used with and often hold the shared data and
functionality in special data structures.

Using Delegate Observers
A great example of Flyweights in jQuery applications is Delegate Observers which,
as we saw in the Dashboard example in Chapter 2, The Observer Pattern, can greatly
reduce the memory demands of an implementation by working as a centralized
event handler for a large group of elements. In this way, we can avoid the cost of
setting up separate observers and event handlers for every element and use the
browser's event bubbling mechanism to observe for them on a single common
ancestor element and filter their origin.

$boxContainer.on('click', '.boxCloseButton', function() {
 var $button = $(this);
 dashboard.informationBox.close($button);
});

The actual Flyweight object is the event handler along with the callback
that is attached to the ancestor element.

Chapter 11

[211]

Using $.noop()
The jQuery library offers the $.noop() method which is actually an empty function
that can be shared among implementations. Using empty functions as default
callback values simplifies and improves the readability of an implementation by
reducing the number of if statements. This is handy for jQuery plugins that already
encapsulate complex functionality.

function doLater(callbackFn) {
 setTimeout(function() {
 if (callbackFn) {
 callbackFn();
 }
 }, 500);
}

// with $.noop()
function doLater(callbackFn) {
 callbackFn = callbackFn || $.noop();
 setTimeout(function() {
 callbackFn();
 }, 500);
}

In such situations, where the implementation requirements or the personal taste of
the developer has led to using empty functions, the $.noop() method is useful as
a way to lower memory consumption by sharing a single empty function instance
among all the different parts of an implementation. An added benefit of using the
$.noop() method for every part of an implementation is that we can also check
whether a passed function reference is the empty function by simply checking
callbackFn === $.noop().

For more information, you can find the documentation at:
http://api.jquery.com/jQuery.noop/

Optimization Patterns

[212]

Using the $.single plugin
Another simple example of the Flyweight pattern in jQuery applications is the
jQuery.single plugin as described by James Padolsey in his article, 76 bytes for faster
jQuery, which tries to eliminate the creation of new jQuery objects whenever we
need to apply jQuery methods on a single page element. The implementation is quite
small and creates a single jQuery composite collection object that is returned on
every invocation of the jQuery.single() method, containing the page element
that was used as an argument.

jQuery.single = (function(){
 var collection = jQuery([1]);
 // Fill with 1 item, to make sure length === 1
 return function(element) {
 collection[0] = element; // Give collection the element:
 return collection; // Return the collection:
 };
}());

The jQuery.single plugin is useful when used in observers like $.fn.on() and
iterations with methods like $.each().

$boxContainer.on('click', '.boxCloseButton', function() {
 // var $button = $(this);
 var $button = $.single(this);
 // this is not creating any new object
 dashboard.informationBox.close($button);
});

The benefits of using the jQuery.single plugin come from the fact that we are
creating fewer objects and, as a result, the browser's Garbage Collector will also
have less work to do when freeing up the memory of short lived objects.

As a side note, keep in mind the side effects of having a single jQuery object returned
by every invocation of the $.single() method and the fact that the last invocation
argument will be stored until the next invocation of the method:

var buttons = document.getElementsByTagName('button');
var $btn0 = $.single(buttons[0]);
var $btn1 = $.single(buttons[1]);
$btn0 === $btn1 // this is true

Additionally, in case that you use something like $btn1.remove() then the element
will not be freed until the next invocation of the $.single() method which will
remove it from the plugin's internal collection object.

Chapter 11

[213]

Another similar but more extensive plugin is the jQuery.fly plugin which can be
invoked with arrays and jQuery objects as parameters.

For more information about jQuery.single and jQuery.fly,
you can visit the following URLs: http://james.padolsey.com/
javascript/76-bytes-for-faster-jquery/ and https://
github.com/matjaz/jquery.fly.

On the other hand, the jQuery implementation that handles the invocation of the $()
method with a single page element is not complex at all and only creates a single
simple object.

jQuery = function(selector, context) {
 return new jQuery.fn.init(selector, context);
};
/*...*/ init = jQuery.fn.init = function(selector, context, root) {
 /*... else */
 if (selector.nodeType) {
 this.context = this[0] = selector;
 this.length = 1;
 return this;
 } /* ... */
};

Moreover, the JavaScript engines of modern browsers have already become quite
efficient when dealing with short-lived objects since such objects are commonly
passed around an application as method invocation parameters.

Lazy Loading Modules
Finally, we will get an introduction to the advanced technique of Lazy Loading
Modules. The key concept of this practice is that, during the page load, the browser
will only download and execute those modules that are required for the initial
rendering of the page while the rest of the application modules are requested after
the page is fully loaded and is required to respond to a user action. RequireJS
(http://requirejs.org/) is a popular JavaScript library that is used as a module
loader but, for simple cases, we can achieve the same result with jQuery.

Optimization Patterns

[214]

As an example of this, we will use it to lazy load the informationBox module of
the Dashboard example that we saw in previous chapters, after the first click of
the user on the Dashboard's <button>. We will abstract the implementation that
is responsible for downloading and executing JavaScript files into a generic and
reusable module named moduleUtils:

(function() {
 'use strict';

 dashboard.moduleUtils = dashboard.moduleUtils || {};

 dashboard.moduleUtils.getModule = function(namespaceString) {
 var parts = namespaceString.split('.');
 var result = parts.reduce(function(crnt, next){
 return crnt && crnt[next];
 }, window);
 return result;
 };

 var ongoingModuleRequests = {};

 dashboard.moduleUtils.ensureLoaded = function(namespaceString) {
 var existingNamespace = this.getModule(namespaceString);
 if (existingNamespace) {
 return $.Deferred().resolve(existingNamespace);
 }

 if (ongoingModuleRequests[namespaceString]) {
 return ongoingModuleRequests[namespaceString];
 }

 var modulePromise =
 $.getScript(namespaceString.toLowerCase() + '.js')
 .always(function() {
 ongoingModuleRequests[namespaceString] = null;
 }).then(function() {
 return dashboard.moduleUtils
 .getModule(namespaceString);
 });
 ongoingModuleRequests[namespaceString] = modulePromise;
 return modulePromise;
 };

})();

Chapter 11

[215]

The getModule() method accepts the module's namespace as a string parameter and
returns either the Module's Singleton Object itself or a falsy value if the module is
not already loaded. This is done with the Array.reduce() method which is used to
iterate over the different parts of the namespace string, using the dot (.) as a delimiter
and evaluating each part on the previous object context, starting with window.

For more information about the Array.reduce() method, you can
visit: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Array/Reduce

ensureLoaded() is the primary method of the moduleUtils module and is
responsible for retrieving and executing modules that are not already loaded. It first
uses the getModule() method to check whether the requested module has already
been loaded and, if so, returns its namespace object as a Resolved Promise.

The next step, if a module has not yet been loaded, is to check the
ongoingModuleRequests object to verify whether the requested module is not
already being downloaded. In order to do that, the ongoingModuleRequests object
uses the module's namespace string as a property and stores the Promises of the
AJAX requests that are used to retrieve the .js files from the server. If a Promise
object is available then we can infer that the AJAX request is still ongoing and,
instead of starting a new one, we return the existing Promise.

Finally, when none of the above returns a result, we use the lower case module
file naming convention that we discussed in previous chapters and use jQuery's
$.getScript() method to initiate an AJAX request to retrieve the requested module
file. The Promise created for the AJAX request is assigned as to the appropriate
property of the ongoingModuleRequests object and is then returned to the caller of
the method. When, at a later point in time, the Promise is Fulfilled, we re-evaluate
the module and return it as the final result of the returned Promise. Moreover,
regardless of the result of the AJAX request, the Promise is also removed from the
ongoingModuleRequests object in order to keep the implementation reusable in case
of a network failure and also free up the memory that was allocated for the request.

Keep in mind that the $.getScript() method might not work in some
browsers when the page is loaded through the filesystem, but does work
as intended when served using a web server like Apache, IIS or nginx. For
more information about $.getScript(), you can visit: http://api.
jquery.com/jQuery.getScript/

Optimization Patterns

[216]

The only change that we introduced to the existing implementation of the
informationBox module for this demonstration was to make it self-initializable
in an attempt to reduce the complexity of the ensureLoaded() method.

(function() {
 'use strict';

 dashboard.informationBox = dashboard.informationBox || {};

 var $boxContainer = null;

 dashboard.informationBox.init = function() { /* … */ };

 $(document).ready(dashboard.informationBox.init);

 /*...*/
})();

Finally, we also had to change the implementation of the categories module so
that it would use the ensureLoaded() method before using the informationBox
module. As you can see below, we had to refactor the code handling the click event
on the dashboard's <button> since the ensureLoaded() method returns a Promise
as a result:

// in dashboard.categories.init
dashboard.$container.find('.dashboardCategories').on('click',
'button', function() {
 var $button = $(this);
 var itemName = $button.text();

 var p = dashboard.moduleUtils
 .ensureLoaded('dashboard.informationBox');

 p.then(function(){
 dashboard.informationBox.openNew(itemName);
 });
});

Chapter 11

[217]

Summary
In this chapter, we learned several optimization techniques that can be used to
improve the performance of jQuery applications, especially when they become
large and complex.

We started with simple practices like bundling and minifying our JavaScript files
and discussed the benefits of using CDNs to load third-party libraries. We then went
on to analyze some simple patterns to writing efficient JavaScript code and learned
how to write efficient CSS selectors to improve the page's rendering speed and DOM
traversals using jQuery.

We continued with jQuery-specific practices such as caching of jQuery Composite
Collection Objects, how to minimize DOM manipulations, and had a reminder
of the Delegate Observer pattern, as a good example of the Flyweight Pattern.
Lastly, we got an introduction to the advanced technique of Lazy Loading and
saw a demonstration of how to load the various modules of an implementation
progressively, based on user actions.

After completing this chapter, we are now able to apply the most common
optimization patterns to our implementations and use this chapter as a checklist
of best practices and performance tips before moving an application to a
production environment.

[219]

Index
Symbols
$.ajax() method 184
$.extend() helper method

URL 184
$.fn.addClass() method 177
$.fn.closest() method

URL 39
$.fn.data() method 187
$.fn.end() method

reference 206
$.fn.ready() method 30, 31

URL 30
$.getScript() method

reference 215
URL 171

$.noConflict()
working 179

$.noop()
reference 211
using 211

$.single plugin
using 212

<script> tag 198
_.template method

URL 160

A
addEventListener() methods

URL 26
applications

developing, with Composite Pattern 13
Handlebars.js templates, using 166, 167
Underscore.js templates, using 161, 162

Array.reduce() method
reference 215

attachEvent() method
URL 26

B
Babel transpiler

URL 81
broker 50
Builder Pattern

about 109, 110
adopting, by jQuery 110-113
using, by jQuery internally 114, 115
using, in applications 116-121

C
Callback Hell

URL 130
callbacks

about 124
methods, writing 128, 129
programming with 124
setting, as object properties 125, 126
simple callbacks, using in JavaScript 125
using, in jQuery applications 126, 127

callbacks, orchestrating
about 129
Callback Hell anti-pattern,

avoiding 130, 131
queuing, in order execution 129, 130
running concurrently 131, 132

categories module 83, 84

[220]

closure
about 25
URL 25

common JavaScript code
for loops, writing 202
optimizing 202

Composite Pattern
about 8
alternative implementations 17
Collection Implementation 14-16
comparing, with plain DOM API

benefits 11, 12
example execution 16, 17
pairing, with Iterator Pattern 20
sample use case 14
used, for developing applications 13
using, by jQuery 8, 10

configuration parameters
accepting 182-184

Content Delivery Network (CDN)
about 197, 201
JSDelivr API, using 201
using 201

counter module 86, 87
CSS Selectors 92
custom event namespacing

URL 60
using 59

custom events
in jQuery 52
used, for implementing Publish/Subscribe

Pattern 52, 53

D
Dashboard application

reusable plugins, using 191
dashboard example

Publish/Subscribe Pattern, using 54-56
dashboard module 82, 83
Delegated Event Observer 84, 87
Delegated Event Observer Pattern

about 43, 44
memory usage benefits, comparing 45, 46
used, for simplifying code 44, 45

Delegate Observers
using 210

descendant CSS selector
reference 207

Document Fragment 113
Document Object Mode (DOM)

manipulating, with jQuery 3-6
URL 2

DOM manipulations, improving
about 206
animating 207, 208
detached elements, manipulating 209
DOM elements, creating 206
Flyweight Pattern 210
styling 207, 208

DOM traversals, minimizing
about 204
element traversals, scoping 205
jQuery methods, chaining 205
jQuery objects, caching 204

E
EcmaScript2015/EcmaScript6 (ES6) 1
efficient jQuery code

$.noop(), using 211
$.single plugin, using 212, 213
Delegate Observers, using 210
DOM manipulations, improving 206
DOM traversals, minimizing 204
overuse, avoiding 206
writing 204

ES5 Strict Mode
using 79

ES6 modules
about 79-81
URL 80, 81

event attributes
URL 40

event listeners
removing, URL 42

event object
URL 58

[221]

F
Facade Pattern

about 89, 90
adopting, by jQuery 91
benefits 90
using, in applications 97-99

Factories
using, in applications 104-109

Factory Pattern
about 102
adopting, by jQuery 102-104
key concept 102

Flyweight Pattern 210
function Data()

URL 29

G
generic iterator function 18
getter method

implementing 189, 190
getValues method 16
global namespace 62, 77
grunt-contrib-concat project

URL 82

H
Handlebars.js

about 165, 166
template pre-compilation, URL 170
URL 165
using, in applications 167

HTML templates
adopting, in existing

implementation 171-173
moderation 173
retrieving asynchronously 170
separating, from JavaScript

code 162-168

I
IIFE-contained module variant 75, 76
Immediately Invoked Function

Expression (IIFE)
about 31, 67, 68, 180
parameters, using 200
URL 67
used, for wrapping jQuery Plugin 180, 181

IIFE Module Pattern 69, 70
increment method 16
IndexedDB

URL 132
informationBox module 84, 85
Iterator Pattern

about 17
pairing, with Composite Pattern 20
using 20-22
using, by jQuery 18, 19

J
JavaScript

HTML templates, separating
from code 162-168

Prototype-based programming
model, URL 15

jQuery
and DOM scripting 2, 3
code organization, URL 88
Composite Pattern, using 8-10
custom events 52
Fluent Interfaces 7
GitHub page, URL 10
Iterator Pattern, using 18, 19
Method Chaining 7
Mock Object Pattern, using 152, 153
modules, using 81, 82
Observer Pattern, using 26
Publish/Subscribe Pattern 52
URL 1
used, for manipulating DOM 3-6

jQuery.ajaxSetup() method 184

[222]

jQuery implementation
about 91
jQuery DOM Traversal API 92-95
property access and

manipulation API 95-97
jQuery.fn.on() method 26-29
jQuery Plugin

$.noConflict(), working with 179
about 176
characteristics 177
naming conventions 195
principles, following 176
wrapping, with IIFE 179-181

jQuery Plugin Boilerplate
methods, adding 193-195
URL 192
using 192, 193

jQuery principles
Composite Collection Objects,

working on 177, 178
following 176
further chaining 178

jQuery Promises
transforming to 146

jQuery-requestAnimationFrame plugin
reference 208

JSDelivr API
reference 201
using 201

L
lazy loading 197
Lazy Loading Modules 213-215
Level 2 Selector API 93

M
memory usage benefits

comparing 45, 46
Method Chaining 8
Mockjax jQuery Plugin library

reference 157
using 157

Mock Object Pattern
about 150, 151
actual service requirements,

defining 153, 154
Mock Service, implementing 154-156
Mock Service, using 157, 158
using, in jQuery applications 152, 153

Module Pattern
about 67
benefits 63
IIFE-contained module variant 75, 76
Immediately Invoked Function Expression

(IIFE) building block 67, 68
namespace parameter module

variant 72-74
simple IIFE Module Pattern 69, 70
using, in jQuery 71

modules
about 61, 62
acceptance 64
internal part implementation,

encapsulating 62
using, in jQuery applications 81, 82

modules, jQuery applications
categories module 83, 84
counter module 86, 87
dashboard module 82, 83
implementation, overview 87
informationBox module 84, 85
using 81, 82

Mustache
URL 165

Mutation Observer
URL 186

N
namespaced events

URL 60
namespace parameter module

variant 72-75
namespaces

about 61, 62
acceptance 64

[223]

benefits 63
global variables, avoiding 62
internal part implementation,

encapsulating 62
naming conventions, jQuery Plugin

selecting 195
NPM

URL 195

O
Object Literal 92
Object Literal Pattern 64-66
Observer Pattern

about 23, 24, 25
and Publish/Subscribe Pattern,

differentiating between 51
comparing, with event attributes 39-42
document-ready observer 30, 31
event attributes, comparing with 39-42
jQuery.fn.on() method 26-29
memory leaks, avoiding 42, 43
sample use case, demonstrating 32-39
URL 24
using, in jQuery 26

P
performant CSS selectors

writing 203
Promises

about 132-134
advanced concepts 140
benefits 147
joining 144
jQuery Promise API, using 135, 136
transforming, to other types 145
using 135
using, by jQuery 145

Promises/A+
comparing, with jQuery 138-140
reference 137
transforming, to 146
using 137

Promises, chaining
about 141, 142
thrown errors, handling 143, 144

publishers 50
Publish/Subscribe Pattern

about 50, 51
and Observer Pattern, differentiating

between 51
implementation, extending 57, 58
implementing, with custom events 52
sample use case 53
using, by jQuery 52
using, on dashboard example 54-56

R
RequireJS

URL 213
resources

bundling 199
minifying 199

reusable plugins
configuration parameters,

accepting 182-185
creating 181
getter method, implementing 189-191
instance, destroying 188, 189
setter methods, implementing 189-191
stateful jQuery Plugin,

implementing 186-188
stateful jQuery Plugins, writing 185
using, in Dashboard application 191

Revealing Module Pattern 77

S
sample use case

Observer Pattern, demonstrating 32-39
Publish/Subscribe Pattern,

demonstrating 53-59
scripts

placing, near end of page 198
Separation of Concerns

about 62, 90
URL 62

setter method
implementing 189, 190

simple callback
defining 25

[224]

Single Responsibility principle
URL 18

Sizzle
about 93, 203
reference 93
URL 71

stateful jQuery Plugins
implementing 186, 187
instance, destroying 188, 189
writing 185

subscribers 50

T
Tiny

URL 53

U
UglifyJS

reference 199
Underscore.js

about 159-161

HTML templates, separating from
JavaScript code 162-169

templates, pre-compiling 169
using, in applications 161, 162

V
variable

naming conventions 6

W
Web 2.0 1

Y
YUI Compressor

reference 199

Thank you for buying
jQuery Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

jQuery UI Development [Video]
ISBN: 978-1-78216-296-4 Duration:02:06 hours

Tips and tricks to master the jQuery UI library and set
up your own custom widgets and cool components

1. Utilize jQuery UI to its full potential.

2. Create your own interactions and widgets.

3. Understand how to skin jQuery UI elements
and themes quickly.

Mastering jQuery UI
ISBN: 978-1-78328-665-2 Paperback: 312 pages

Become an expert in creating real-world Rich Internet
Applications using the varied components of
jQuery UI

1. Create useful mashups by plugging together
different components along with APIs.

2. Design your own widgets like captchas, a color
picker, news reader, puzzles, and many others.

3. Take your jQuery UI skills to next level by
exploring the ins and outs and nuances of
jQuery UI components.

Please check www.PacktPub.com for information on our titles

Mastering jQuery Mobile
ISBN: 978-1-78355-908-4 Paperback: 262 pages

Design and develop cutting-edge mobile web
applications using jQuery Mobile to work across
a number of platforms

1. Create spectacular mobile applications using
jQuery Mobile to its fullest potential.

2. Build a complete and customizable professional,
standard theme using advanced effects such as
ChangePage, PageInit, and Swipe.

3. Take your web app to the next level by turning
your native application with Apache Cordova.

Mastering jQuery
ISBN: 978-1-78398-546-3 Paperback: 400 pages

Elevate your development skills by leveraging every
available ounce of jQuery

1. Create and decouple custom event types to
efficiently use them and suit your users' needs.

2. Incorporate custom, optimized versions of the
jQuery library into your pages to maximize the
efficiency of your website.

3. Get the most out of jQuery by gaining exposure
to real-world examples with tricks and tips to
enhance your skills.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Refresher on jQuery and the Composite Pattern
	jQuery and DOM scripting
	Manipulating the DOM using jQuery
	Method Chaining and Fluent Interfaces

	The Composite Pattern
	How the Composite Pattern is used by jQuery
	Comparing the benefits over the plain DOM API
	Using the Composite Pattern to develop applications
	A sample use case
	The Composite Collection Implementation
	An example execution
	Alternative implementations

	The Iterator Pattern
	How the Iterator Pattern is used by jQuery
	How it pairs with the Composite Pattern
	Where can it be used

	Summary

	Chapter 2: The Observer Pattern
	Introducing the Observer Pattern
	How it is used by jQuery
	The jQuery on method
	The document-ready observer

	Demonstrate a sample use case
	How it is compared with event attributes
	Avoid memory leaks

	Introducing the Delegated Event Observer Pattern
	How it simplifies our code
	Compare the memory usage benefits

	Summary

	Chapter 3: The Publish/Subscribe Pattern
	Introducing the Publish/Subscribe Pattern
	How it differs from the Observer Pattern

	How it is adopted by jQuery
	Custom events in jQuery
	Implementing a Pub/Sub scheme using custom events

	Demonstrating a sample use case
	Using Pub/Sub on the dashboard example
	Extending the implementation
	Using any object as a broker

	Using custom event namespacing
	Summary

	Chapter 4: Divide and Conquer with the Module Pattern
	Modules and Namespaces
	Encapsulating internal parts of an implementation
	Avoiding global variables with Namespaces
	The benefits of these patterns
	The wide acceptance

	The Object Literal Pattern
	The Module Pattern
	The IIFE building block
	The simple IIFE Module Pattern
	How it is used by jQuery

	The Namespace Parameter Module variant
	The IIFE-contained Module variant

	The Revealing Module Pattern
	Using ES5 Strict Mode
	Introducing ES6 Modules
	Using Modules in jQuery applications
	The main dashboard module
	The categories module
	The informationBox module
	The counter module
	Overview of the implementation

	Summary

	Chapter 5: The Facade Pattern
	Introducing the Facade Pattern
	The benefits of this pattern
	How it is adopted by jQuery
	The jQuery DOM Traversal API
	The property access and manipulation API

	Using Facades in our applications
	Summary

	Chapter 6: The Builder and Factory Patterns
	Introducing the Factory Pattern
	How it is adopted by jQuery
	Using Factories in our applications

	Introducing the Builder Pattern
	How it is adopted by jQuery's API
	How it is used by jQuery internally
	How to use it in our applications

	Summary

	Chapter 7: Asynchronous Control Flow Patterns
	Programming with callbacks
	Using simple callbacks in JavaScript
	Setting callbacks as object properties
	Using callbacks in jQuery applications
	Writing methods that accept callbacks
	Orchestrating callbacks
	Queuing in order execution
	Running concurrently

	Introducing the concept of Promises
	Using Promises
	Using the jQuery Promise API
	Using Promises/A+
	Comparing jQuery and A+ Promises

	Advanced concepts

	Chaining Promises
	Handling thrown errors
	Joining Promises
	How jQuery uses Promises
	Transforming Promises to other types
	Transforming to Promises/A+
	Transforming to jQuery Promises

	Summarizing the benefits of Promises

	Summary

	Chapter 8: Mock Object Pattern
	Introducing the Mock Object Pattern
	Using Mock Objects in jQuery applications
	Defining the actual service requirements
	Implementing a Mock Service
	Using the Mock Service

	Summary

	Chapter 9: Client-side Templating
	Introducing Underscore.js
	Using Underscore.js templates in our applications
	Separating HTML templates from JavaScript code

	Introducing Handlebars.js
	Using Handlebars.js in our applications
	Separating HTML templates from JavaScript code
	Pre-compiling templates

	Retrieving HTML templates asynchronously
	Adopting it in an existing implementation
	Moderation is best in all things

	Summary

	Chapter 10: Plugin and Widget Development Patterns
	Introducing jQuery Plugins
	Following jQuery principles
	Working on Composite Collection Objects
	Allowing further chaining

	Working with $.noConflict()
	Wrapping with an IIFE

	Creating reusable plugins
	Accepting configuration parameters
	Writing stateful jQuery plugins
	Implementing a stateful jQuery Plugin
	Destroying a plugin instance
	Implementing getter and setter methods
	Using our plugin in our Dashboard application

	Using the jQuery Plugin Boilerplate
	Adding methods to your plugin

	Choosing a name
	Summary

	Chapter 11: Optimization Patterns
	Placing scripts near the end of the page
	Bundling and minifying resources
	Using IIFE parameters

	Using CDNs
	Using JSDelivr API

	Optimizing common JavaScript code
	Writing better for loops

	Writing performant CSS selectors
	Writing efficient jQuery code
	Minimizing DOM traversals
	Caching jQuery objects
	Scoping element traversals
	Chaining jQuery methods

	Don't overdo it
	Improving DOM manipulations
	Creating DOM elements
	Styling and animating
	Manipulating detached elements
	Introducing the Flyweight Pattern

	Using Delegate Observers
	Using $.noop()
	Using the $.single plugin

	Lazy Loading Modules
	Summary

	Index

