

Thinking in CSS

A focused guide designed to help you understand the
basics of CSS, how it works, and how to start creating
modern websites

Aravind Shenoy

BIRMINGHAM - MUMBAI

Thinking in CSS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1030414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

www.packtpub.com

Cover Image by Vivek Sinha (vs@viveksinha.com)

Credits

Author
Aravind Shenoy

Reviewer
Radek Stepan

Lead Technical Editor
Sweny Sukumaran

Technical Editor
Dennis John

Proofreader
Stephen Copestake

Production Coordinator
Aparna Bhagat

Adonia Jones

Cover Work
Prachali Bhiwandkar

About the Author

Aravind Shenoy is an in-house author at Packt Publishing. An engineering graduate from
the Manipal Institute of Technology, his core interests include technical writing, web designing,
and software testing. He is a native of Mumbai, India, and currently resides there. He has
penned down books such as Hadoop: A Big Data Initiative and Thinking in JavaScript. He
has also authored the bestselling book: HTML5 and CSS3 Transition, Transformation, and
Animation, Packt Publishing, (http://www.packtpub.com/html5-and-css3-for-
transition-transformation-animation/book). He is a music buff with The Doors,
Oasis, and R.E.M ruling his playlists.

Overview

You will gain an intermediate knowledge of CSS after reading this book. Instead of wandering
through loads of theory, we will understand CSS more practically so that we can design a
webpage using CSS. We have used Notepad for the examples in this book. Alternatively, you
can also use Notepad++ or any advanced editor. All that you need to do is copy the code and
paste it into Notepad. Upon execution, you will get the output as depicted in the screenshots.
Screenshots are provided for each sample code.

Coding gets better with practice. The examples in this book are compatible with
almost every browser. Instead of using the verbatim code, you can modify the code
and see the change in the output, thereby understanding the subtle nuances of CSS.
By the end of the book, with practice, you can achieve better things and get more acquainted
with CSS.

Thinking in CSS

HTML originated from a prototype of a language created by Tim Berners-Lee in 1992.
Berners-Lee felt that there was a possibility of linking documents together using hypertext,
and the concept of HTML evolved from this. A breakthrough in this field of development was
the introduction of CSS along with HTML 4.0. Prior to the introduction CSS, web designers and
developers were using HTML for formatting purposes. Formatting tags and styling using HTML
defeats the purpose of HTML as HTML elements and attributes must only define the structure
of a webpage. The purpose of CSS was to take styling out from structural markup.

With the introduction of CSS, we could separate presentation from content. As a result,
presentation could be removed from the HTML document and stored in a separate file, which
would be included in the document using a link tag. Thus, all of the presentational HTML
elements and attributes were replaced by CSS to provide versatility and better accessibility.
Now, we can just define or modify the look of a webpage by making changes in the stylesheet
without actually touching the code. In this book, we will take a look at the essentials. We are
going to touch on those topics that every web designer or developer needs to know. Instead
of wandering through loads of theory, we will understand CSS more practically so that we can
design a web page using CSS by the time you are done with the book. We expect you to know
the basics of HTML as we will incorporate CSS in simple HTML code.

Incorporating CSS in HTML
We can incorporate CSS in HTML in the following ways:

ff Using inline styles
ff Using internal styles
ff Using external stylesheets
ff Using the import command

2

Let's take a look at each of these methods in the next sections.

Using inline styles
We can define CSS within the HTML tags. This approach is rarely used; however, we will look
at an example to see how it works. In the following code snippet, we have demonstrated the
style inside the p element by defining the lime color for the p element:

<html>
<p style="color: lime">Packt Publishing</p>
</html>

The output of the code would be as follows:

Inline styles are not frequently used as they defy the concept of semantic markup and make
the code more complicated. They must be used only when there is no other way of applying
CSS. We need to understand that designing a webpage needs a systematic approach.

At times, the output may vary depending on the browser in use.

Using internal styles
Internal styles are used when we want to define styling for the whole page. We embed CSS
into HTML code using the style tag. It is a good practice to include the style tag between
the head tags. We need to include <style type="text/css"> to define the start of CSS
and end it with </style>.

Let's look at an example to understand it better:

<html>
 <head>
 <title> Basic example of CSS </title>
 <style type="text/css">
 p{ color: red;}
 </style>
 </head>
 <body>
 <p> Packt Publishing </p>
 </body>
</html>

3

The output of the code would be as follows:

Using external stylesheets
External stylesheets are the preferred and appropriate way to incorporate CSS in HTML
code. We must always remember that HTML and CSS should be kept separate. It is
good practice to keep the CSS stylesheet as a standalone document. We need to use the
following code snippet in the head section of the HTML code to invoke the CSS stylesheet:

<link rel="stylesheet" href="yourcssfile.css">

The following code is a simple HTML code. We will define the CSS sheet after the HTML code.
In the following example code, our CSS file would be called main.css:

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="main.css">
 </head>
 <div>
 Packt Publishing has an online library called PacktLIB
 </div>
</html>

Now we create a main.css file (an external stylesheet) and define the div element
as follows:

div {
 color: red;
}

The output of the code would be as follows:

Imagine we have a lot of web pages, which is the norm for any website. If we use the inline or
internal way of defining CSS, we would have to search for the styled elements in each HTML
page. However, if we maintain a separate standalone stylesheet for CSS, we just have to
modify the properties in the stylesheet and the modification would be very systematic. It is
good practice to keep the CSS stylesheet separate from the HTML page. Moreover, if we have
lots of common styles defined for several HTML elements, all we need to do is redefine the
styles in the standalone CSS stylesheet, thereby maintaining a more semantic approach.

4

Using the import command
Let's understand how the import command works. Suppose we have defined an external
stylesheet for a website. Say a new requirement comes up where we need the color of the
font to be changed to yellow for the first page when it is actually defined as blue in the main.
css CSS stylesheet. We use the import command for this purpose. Hence, we create a new
stylesheet and give it a name of our choice, say change.css. Then we invoke the change.
css stylesheet using the import command. This way, only the first page is affected, and
the rest stay the same. The following code snippet shows how we incorporate the import
command in our HTML code:

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="main.css" >
 <style type="text/css"> @import url(change.css); </style>
 </head>
</html>

We have to define the import command between the style tags.

We have discussed the various ways in which we can apply CSS to a webpage.

However, we need to remember that the most appropriate way to include CSS is to maintain a
standalone stylesheet. It is more systematic and easily modifiable that way.

In this book, for the sake of convenience, we will use the internal way of implementing CSS.

Defining CSS
Let's look at the basic structure of CSS:

selector {
 property:value;
}

The selector (in this case, div) is to be written first. The property and value have to be
defined within the curly brackets. color, text-decoration, and font-size are examples
of properties used in CSS. A value is given to each property. For example, red is a value given
to the color property. A colon separates the property and the value. The semicolon that
follows the property completes the structure. If you observe the previous code snippet, you
can see that we have defined property twice. It demonstrates that multiple properties can
be defined and are separated by semicolons. Let's have a look at the following code snippet:

div {
 color: red;
 margin: 20px;
}

5

red is the value given to the color property. The margin property is also defined after the
color property. The color and margin properties are separated by a semicolon.

Selectors
Selectors assist us in selecting the element we want to style. There are different kinds of
selectors in CSS. An element, ID, or class can be used as selectors, to mention a few.
We will have a look at the various kinds of selectors in CSS as we go through the book.

Class and ID selectors
The most commonly used selectors in CSS are the class and ID selectors. The class selector
is preceded by a period (.) whereas the ID selector is preceded by a # sign. The difference
between an ID and a class selector is that an ID is unique whereas a class selector can be
used multiple times.

Let's have a look at the following code to see how it works:

<html>
 <head>
 <title> Id and Class Selectors </title>
 <style type="text/css" >
 #pubman {color: red;}
 .packt {color: navy;}
 </style>
 </head>
 <body>
 <p class="packt"> Packt, Always finding a way </p>
 <p id="pubman"> Packt Publishing : Packt Online Library:
 Packtlib </p>
 </body>
</html>

The output of this code would be as follows:

If we have a look at the previous code snippet, we can see that the class selector is packt
whereas the ID selector is pubman. The packt selector is preceded by a period whereas
pubman is preceded by a # sign.

Class and ID are used extensively in CSS. We can also group and nest selectors within
one another.

6

Grouping selectors
In CSS, we can group any number of selectors to define properties that are common. We do
not have to define selectors separately, as that would create a humongous amount of code.
Grouping helps us in writing less and systematic code. Let's have a look at the following code
to see how it works:

<html>
 <head>
 <title> Example of Grouping selectors </title>
 <style type="text/css" >
 p, div {color: navy;}
 </style>
 </head>
 <p> Packt Publishing </p>
 <div> Packt Online Library </div>
</html>

The output of the code would be as follows:

If we observe the output, it is evident that the color property is common for the p and div
elements. Hence, the text defined between the p and div elements has the same navy color.
See how we have separated p and div by a comma. We can also club ID and class selectors
along with the other selectors.

The following code snippet will show you how it is done:

p, #packt, .pubman { color: red; }

As we can see, the p element, the packt ID, and the pubman class have been clubbed
together and have been assigned the same property and value.

Let's now have a look at the concept of nesting selectors within one another.

Nesting selectors
We can apply styles to a selector within a selector. Let's have a look at the following code to
see how it is done:

<html>
<head>
<title> Nesting Selectors </title>
<style type="text/css">
p{color: lime;}
div{background-color: yellow;}

7

#packt p {color: orangered;}
</style>
</head>
<body>
<p> Packt Publishing </p>
<div id="packt">Packt Publishing, Always finding a way
<p> Packt Online Library </p>
</div>
<p> Packt Publishing Article Network</p>
</body>
</html>

The output of the code would be as follows:

In the previous code, we have defined the lime color for all the p elements initially. After that,
we have defined the yellow background for the div element, which is represented by a
unique packt (#packt) ID. Inside the div element, we have defined a p element to which we
have assigned the orangered color. It is evident from the output that the p elements outside
div are lime in color. However, the style for the intrinsic p element in div is orangered in
color. Hence, Packt Publishing and Packt Publishing Article Network are lime in color
whereas Packt Online Library is orangered in color.

Fonts and text
In HTML, the size of a font can be increased using tags such as h1 and h2 to mention a few.
However, as we already know, HTML is to be used for markup, whereas CSS is to be used
for styling. Hence, fonts are imperative in CSS. Let's have a look at the following code to
understand the various font styles in CSS:

<html>
 <head>
 <title> Fonts in CSS </title>
 <style type= "text/css" >
 P {
 font-family: 'Times New Roman', Times, serif;
 font-style: normal;

8

 color: lime;
 font-size: 1.5em;
 }
 div {
 font-family:Arial,Helvetica
 font-weight: bold;
 font-style: oblique;
 color: orangered;
 font-size: 3em;
 }
 </style>
 </head>
 <body>
 <p> Packt Publishing </p>
 <div id= "packt"> Packt Online Library </div>
 </body>
</html>

The output of the code would be as follows:

If you have a look at the previous code, you can see that the font is defined as Arial and
Helvetica for the div element. If the browser doesn't support Arial, it will incorporate the
next option, Helvetica. If the font-family property is not defined, it will take the default
font defined in the browser.

The font-size property is defined in em; however, it can also be defined in percentage as
well as in pixels (em is the current size of the font; here font-size: 3em will be three times
the calculated size of the font.)

The font-weight property is used for defining the text as bold or normal.The font-size
property, as the name suggests, will decide the size of the font. font-style will define
whether the text is normal, italic, or oblique. Text in CSS can be aligned and defined in a
lot of ways. Let's have a look at the following code to understand it better:

<html>
 <head>
 <title> Text in CSS </title>
 <style type="text/css">
 p { color: orangered;}
 #packt { color: lime;

9

 text-decoration: underline;
 text-align: center;
 }
 #pubman {
 color: orangered;
 text-align: left;
 text-indent:50px;
 }
 div {
 text-transform:uppercase; color: navy;
 text-decoration: line-through;
 text-align:justify; }
 </style>
 </head>
 <body>
 <p> Packt Publishing </p>
 <p id= "packt"> Packt Online Library </p>
 <p id= "pubman" > Packt Article Network </p>
 <div> Packt publishes books customized for you on various
 technologies </div>
 </body>
</html>

The output of the code would be as follows:

text-decoration determines whether a line runs over, under, or through the text. text-
align will position the text to the right, left, center, or justify it according to the layout of the
web page. For indentation of the text, we use the text-indent property. text-transform
will change the case of the text. For example, we can change the text to uppercase or
lowercase using the text-transform property.

If you observe the output of the code, you can see that line text-decoration: line-
through inserts a line through the text, whereas text-transform:uppercase changes the
case of the line to uppercase. So you can see how fonts and text can be manipulated in CSS.

10

Anchor pseudo classes
If you check out modern websites nowadays, the hyperlinks are in blue color and the color
changes to purple if that web page has been visited. We achieve this using the anchor pseudo
classes in CSS. Let's have a look at the following code to see how this works:

<html>
 <head>
 <title> Anchor Pseudo Classes in CSS </title>

 <style type="text/css">
 a:link {color: blue;} a:visited {color: lime;} a:hover
{color: orangered;} </style>

 </head>
 <body>
 <p> Packt Publishing </p>

 <p>

 Packt Online Library
 </p>
 </body>
</html>

The output of the code would initially be as follows:

Say we click on the Packt Publishing link; we would see the link turn lime. The output would
be as follows:

11

If we check the previous CSS code, we see that we have used the following styles for the
link tags:

a:link {color: blue;}
a:visited {color: lime;}
a:hover {color: orangered;}

Initially, the links would be blue in color; however, the color changes to lime if we click on the
link at least once. When we hover over the link, we can see that the color of the link changes
to orangered, as shown in the following screenshot:

Border
We use the border property to apply various styles and colors to an element's border.

Let's have a look at the following code to understand it better:

<html>
 <head>
 <title> Border in CSS </title>
 <style type="text/css">
 p {
 border-style: dotted; border-width: 2px;
 border-color: lime;
 border-radius: 25px;
 display:inline;
 margin: 25px;
 padding: 10px 10px;
 }
 </style>
 </head>
 <body>

 <p>Packt Publishing </p>
 </body>
</html>

12

The output of the code would be as follows:

If we observe the previous code and the subsequent output, we can see that the border has
a dotted pattern. We can also use solid or dashed values to define a border-style. The
border-width property can set the width of the border. The border-radius property is
a CSS3 property and defines the curvature of the border. The border-color helps us to
assign a color to the border. In the previous code, we have used a dotted border of lime color
with a border width of 2 pixels and a border radius of 25 pixels. In the previous code, we have
used the margin and padding properties, which will be explained in the next section.

Margin and padding
Margin and padding are used extensively in designing. Margin is the space outside any
defined element, whereas padding is the space inside any defined element.

Let's have a look at the following code to understand it better:

<html>
 <head>
 <title> Margin and Padding in CSS </title>
 <style type="text/css">
 p {
 background-color: lime;
 border-style:solid; display: inline;
 }
 #packt {
 margin-top: 200px;
 margin-right: 50px;
 margin-bottom: 20%;
 margin-left: 150px;
 }
 </style>
 </head>
 <body>
 <p> Packt Publishing </p>

 <p id="packt"> Packt Publishing </p>
 </body>
</html>

13

The output of the code would be as follows:

In the previous code, the element defined in CSS by the ID selector has the margin defined.
Hence, in the output, the position of the element referenced by ID is different from the
previous element that has no margin defined. An element has four sides: top, bottom, left,
and right. Hence, the margin is the distance from each side to the neighboring element or
the borders of the page. If we observe the output of the code, the element referenced by
the packt ID is at a different position from the other one, which has no margin. The margin
cannot be seen as it has no background color and is transparent.

There is a shorthand way in which margin can be defined as shown in the following
code snippet:

p { margin: 50px 30px;}

The top and bottom margin for the element would be 50 pixels whereas the right and left
margin would be 30 pixels.

We will now discuss padding. Padding is different from margin in the sense that the distance
between elements is not taken into consideration. In padding, what matters is the distance
between border and content of an element. We will have a look at the same HTML code, but
we will tweak it a bit in this case and introduce padding for the defined elements. Let's have a
look at the following code to understand it better:

<html>
 <head>
 <title> Margin and Padding in CSS </title>
 <style type="text/css">
 p {
 background-color: lime;
 border-style:solid; display: inline;
 padding:10px 20px;
 }
 #packt {
 margin-top: 300px;
 margin-right: 150px;
 margin-bottom: 20%;
 margin-left: 150px;

 }
 </style>
 </head>
 <body>

 <p> Packt Publishing </p>

14

 <p id="packt"> Packt Publishing </p>
 </body>
</html>

The output of the code would be as follows:

Both the elements have a padding of 10 pixels at the top and bottom, whereas the padding
towards the right and left is around 20 pixels. There is enough space between the word Packt
Publishing and the border surrounding it. Hence, padding decides the space between the
border and the content of the element.

We can define padding as we defined margin in the following way:

padding-top:25px;padding-bottom:25px;padding-right:50px;padding-
left:50px;

But to reduce the lines of code, we can use the shorthand way, which we have used in the
previous code where we used the line padding: 10px 20px; This will introduce a padding
of 10 pixels at the top and bottom as well as a padding of 20 pixels at the right and left sides.

Display
The display property specifies the manner in which an element is displayed in a webpage.
The display property can be used in the following ways:

ff display: none;

ff display: inline;

ff display: block;

When we use display: none, the element will be hidden and will not take up any space in
the window. It will not affect the layout.

In HTML, there are block and inline elements. Block elements are those that take the
complete width along with a line break incorporated in it (div, and p to mention a few).

An inline element consumes space that is necessary (based on its content) and does not
include a line break. (br, a, and span to mention a few). Let's have a look at the following
code to understand it better:

15

<html>
 <head>
 <style type="text/css">
 p { border: solid;
 border-color: red;
 color: lime;
 } </style>
 </head>
 <body>
 <p> Packt Publishing </p>
 </body>
</html>

The output of the code would be as follows:

In the code, we have not included the display property. Hence, p being a block element
takes the full width.

Now we will tweak the code a bit. We will include the display property with the inline value
assigned to it. Let's have a look at the following code to understand it better:

<html>
 <head>
 <style type="text/css ">
 p { border: solid;
 border-color: red;
 color: lime;
 display: inline;	
 } </style>
 </head>
 <body>
 <p> Packt Publishing </p>
 </body>
</html>

The output of the code would be as follows:

It is quite evident from the output that including display: inline in CSS will change the
display of the p element to inline. It will not change the nature of the element. It will just
change the way the element is displayed. Similarly, the display of an inline element such as
span can be changed to block by using the display: block property.

16

Positioning
When it comes to complex websites, the most essential thing is a precise and advanced
layout. With the positioning feature, we can place items anywhere on the page. The commonly
used positioning techniques are relative positioning and absolute positioning. Let's have a
look at the following code. The following code does not include any positioning:

<html>
 <head> </head>
 <body>
 <p id="packt"> Packt Publishing </p>
 <p id="packtpub"> Packt Online Library </p>
 <p> Packt Web Apps </p>
 </body>
</html>

The output of the code would be as follows:

Suppose we want to demonstrate relative positioning. We will include the position property
and assign the relative value to it. Let's have a look at how the output would be if we apply
these styles to the previous code:

<html>
 <head>
 <style type="text/css">
 #packtpub	 {
 position: relative;
 left: 70px;
 top: 100px;
 }
 </style>
 </head>
 <body>
 <p id="packt"> Packt Publishing </p>
 <p id="packtpub"> Packt Online Library </p>
 <p> Packt Web Apps </p>
 </body>
</html>

17

The output of the code would be as follows:

If we observe the output, Packt Online Library has been shifted from its original position
and is positioned 70 pixels to the left and 100 pixels below its original position. Hence, the
position: relative feature positions the element with respect to its original position.
Notice how there is an empty space at the original position of the element. This explains the
concept of relative positioning.

Now, we will have a look at absolute positioning. We will tweak the same code and, instead of
relative, we will assign the absolute value to the position property.

Let's have a look at the following code to see how it works:

<html>
 <head>
 <style type="text/css">
 #packtpub	 {
 position: absolute;
 left: 70px;
 top: 100px;
 }
 </style>
 </head>
 <body>
 <p id="packt"> Packt Publishing </p>
 <p id="packtpub"> Packt Online Library </p>
 <p> Packt Web Apps </p>
 </body>
</html>

The output of the code would be as follows:

18

Observe the output. The original position of Packt Online library is occupied by Packt Web
Apps. There is no empty space after it has been repositioned. The other elements behave as
though the absolutely positioned elements do not exist at all. Hence, it affects the layout by
not leaving any empty space. This is the concept of absolute positioning.

Float
We can move the elements to the left or right using the float property. It is useful if we want
to position images and wrap the text around it. However, the float property is not limited to
images and can even be used for positioning elements in a web page. The float property
is extremely useful as block elements will not line up beside one another. Using float,
content can be wrapped around the floating element. Let's have a look at the following
code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <style type="text/css">
 img { border: dashed;
 float:right;
 }
 </style>
 </head>
 <body>
 <p>
 Packt is one of the most prolific and fast-growing tech book
 publishers in the world. Originally focused on open source
 software, Packt pays a royalty on relevant books directly
 to open source projects. These projects have received over
 $400,000 as part of Packt's Open Source Royalty Scheme
 to date.
 </p>
 <p>

 Our books focus on practicality, recognising that readers
 are ultimately concerned with getting the job done.
 Packt's digitally-focused business model allows us to
 publish up-to-date books in very specific areas. With
 over 1000 books published, Packt now offers a subscription
 service. This app and a PacktLib subscription now makes
 finding the information you need easier than ever before.
 PacktLib is Packt's online digital book library. Launched
 in August 2010, it allows you to access and search almost
 100,000 pages of book content, to find the solutions you
 need. As part of the Open Source community, Packt aims to
 help sustain the projects which it publishes books on.

19

 When we sell a book written on an Open Source project, we
 pay a royalty to that project. Open Source projects have
 received over $400,000 through this scheme to date.
 </p>
 </body>
</html>

The output of the code would be as follows:

From the output, it is quite evident that the image has floated to the right of the web page and
the content in the paragraph tags wraps itself around the left of the image.

Even an inline element will turn into a block-level element if the float
property is assigned to it.

The clear property in CSS is used with float when there is a need to clear floated elements
on the left or right-hand side of an element.

Let's have a look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <style>
 .packt
{
 float:left;
 border: solid;
 margin:10px;
 }
 </style>
 </head>
 <body>
 <h1> Packt Publishing</h1>

 <h2> The next row of pictures </h2>

20

 </body>

</html>

The output of the code would be as follows:

The output shows that the elements after the floating elements will flow around it. Hence, we
see that the The next row of pictures heading is not aligned correctly. To resolve this problem
we use the clear property.

Let's now tweak the same code a bit and include the clear property in the CSS styles.
Let's have a look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <style>
 .packt
{
 float:left;
 border: solid;
 margin:10px;
 }
 #pub
 {
 clear: both;
 margin-top: 2px;
 margin-bottom: 4px; }
 </style>
 </head>
 <body>

21

 <h1> Packt Publishing</h1>

 <h2 id="pub"> The next row of pictures </h2>

 </body>
</html>

The output of the code would be as follows:

After observing the output, it is quite evident that the positioning is done correctly by the use
of the clear element. We have used clear:both in the code as we do not want floating
elements on the right and left-hand side of the The next row of pictures heading statement.

Summary
We have covered the essentials of CSS in this book. However, one needs to understand that
coding gets better with practice and that the learning curve must always show an upward
trend. However, the things you have learned in this book are compatible with almost any
browser. You need to realize that, by reading this book, you have just reached the shore of an
island. The sea of knowledge is far beyond. With practice, you can achieve better things and
get more acquainted with CSS.

Feel free to let us know about the kind of titles that you'd like to see on CSS. You can
get in touch via contact@packtpub.com.

Your input is very important to us; it helps us produce better products that help
the community more. If you have any feedback on the books, or are struggling
with something we haven't covered, then surely let us know; customercare@
packtpub.com.

To know more about our future releases, our full catalogue, and daily deals, please
visit http://www.packtpub.com/.

