

Object-Oriented JavaScript
Second Edition

Learn everything you need to know about OOJS in this
comprehensive guide

Stoyan Stefanov

Kumar Chetan Sharma

BIRMINGHAM - MUMBAI

Object-Oriented JavaScript
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2008

Second edition: July 2013

Production Reference: 1190713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-312-7

www.packtpub.com

Cover Image by Gorkee Bhardwaj (afterglowpictures@gmail.com)

Credits

Authors
Stoyan Stefanov

Kumar Chetan Sharma

Reviewers
Kumar Chetan Sharma

Alex R. Young

Acquisition Editors
Martin Bell

Jonathan Titmus

Lead Technical Editor
Arun Nadar

Technical Editors
Prasad Dalvi

Mausam Kothari

Worrell Lewis

Amit Ramadas

Project Coordinator
Leena Purkait

Proofreaders
Paul Hindle

Linda Morris

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Authors

Stoyan Stefanov is a Facebook engineer, author, and speaker. He talks regularly
about web development topics at conferences and his blog www.phpied.com, and
also runs a number of other sites, including JSPatterns.com—a site dedicated to
exploring JavaScript patterns. Previously at Yahoo!, Stoyan was the architect of
YSlow 2.0 and creator of the image optimization tool Smush.it.

A "citizen of the world", Stoyan was born and raised in Bulgaria, but is also a
Canadian citizen, currently residing in Los Angeles, California. In his offline
moments, he enjoys playing the guitar, taking flying lessons, and spending
time at the Santa Monica beaches with his family.

I'd like to dedicate this book to my wife Eva and my daughters
Zlatina and Nathalie. Thank you for your patience, support, and
encouragement.

To my reviewers who volunteered their time reviewing drafts of this
book and whom I deeply respect and look up to: a big thank you for
your invaluable inputs.

Kumar Chetan Sharma studied to be an electronics engineer and has always
wanted to build an ultimate sound system. He then, by chance, got a part time job
as a trainee HTML guy. From there he picked up CSS and JavaScript and there was
no looking back. It was the time when JavaScript was used to validate forms or
create fancy DHTML effects and IE6 was the only browser the world knew. He has
been developing web applications since then, using LAMP stack. He has worked
on white label social networking applications to web control panels for telecom
and networked electrical charger infrastructures. He currently works as a frontend
engineer for Yahoo! Search.

About the Reviewer

Alex R. Young is an engineering graduate with over 10 years of web and mobile
industry experience.

He's the editor-in-chief of DailyJS, and writes regularly about all things JavaScript.
He has also worked for major multinational corporations, including Thomson
Reuters, and is currently writing a book about Node.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Object-oriented JavaScript	 7

A bit of history	 8
Browser wars and renaissance	 9
The present	 10
The future	 11

ECMAScript 5	 12
Object-oriented programming	 12

Objects	 13
Classes	 13
Encapsulation	 14
Aggregation	 15
Inheritance	 15
Polymorphism	 16

OOP summary	 16
Setting up your training environment 	 17

WebKit's Web Inspector	 17
JavaScriptCore on a Mac	 18
More consoles	 19

Summary	 20
Chapter 2: Primitive Data Types, Arrays, Loops, and Conditions	 21

Variables	 21
Variables are case sensitive	 23

Operators	 24
Primitive data types	 28

Finding out the value type – the typeof operator	 28
Numbers	 29
Octal and hexadecimal numbers	 29

Table of Contents

[ii]

Exponent literals	 30
Infinity	 31

NaN	 32
Strings	 33

String conversions	 34
Special strings	 35

Booleans	 36
Logical operators	 37

Operator precedence	 39
Lazy evaluation	 40

Comparison	 41
Undefined and null	 43

Primitive data types recap	 44
Arrays	 45

Adding/updating array elements	 46
Deleting elements	 47
Arrays of arrays	 47

Conditions and loops	 48
The if condition	 49
The else clause	 49

Code blocks	 50
Checking if a variable exists	 51
Alternative if syntax	 53

Switch	 54
Loops	 56

While loops	 56
Do-while loops	 57

For loops	 57
For-in loops	 60

Comments	 61
Summary	 61
Exercises	 62

Chapter 3: Functions	 63
What is a function?	 64

Calling a function	 64
Parameters	 65
Predefined functions	 66

parseInt()	 67
parseFloat()	 68
isNaN()	 69
isFinite()	 70
eval()	 71

Table of Contents

[iii]

Scope of variables	 72
Variable hoisting	 74

Functions are data	 75
Anonymous functions	 76
Callback functions	 77

Callback examples	 78
Immediate functions	 80
Inner (private) functions	 81
Functions that return functions	 82
Function, rewrite thyself!	 83

Closures	 85
Scope chain	 85
Breaking the chain with a closure	 86

Closure #1	 88
Closure #2	 88
A definition and closure #3	 89

Closures in a loop	 90
Getter/setter	 92
Iterator	 93

Summary	 94
Exercises	 95

Chapter 4: Objects	 97
From arrays to objects	 97

Elements, properties, methods, and members	 99
Hashes and associative arrays	 100
Accessing an object's properties	 100
Calling an object's methods	 102
Altering properties/methods	 102
Using the this value	 104
Constructor functions	 104
The global object	 105
The constructor property	 107
The instanceof operator	 108
Functions that return objects	 108
Passing objects	 109
Comparing objects 	 110
Objects in the WebKit console	 111

console.log	 112
Built-in objects	 112

Object	 113

Table of Contents

[iv]

Array	 114
A few array methods	 117

Function	 118
Properties of function objects	 120
Methods of function objects 	 121
The arguments object revisited	 123
Inferring object types	 124

Boolean	 125
Number	 126
String	 127

A few methods of string objects	 129
Math	 132
Date	 134

Methods to work with date objects	 136
RegExp	 138

Properties of RegExp objects 	 139
Methods of RegExp objects	 140
String methods that accept regular expressions as arguments 	 141
search() and match()	 141
replace()	 142
Replace callbacks	 142
split()	 144
Passing a string when a RegExp is expected	 144
Error objects	 145

Summary	 148
Exercises	 149

Chapter 5: Prototype	 153
The prototype property	 154

Adding methods and properties using the prototype	 154
Using the prototype's methods and properties	 155

Own properties versus prototype properties	 156
Overwriting a prototype's property with an own property	 157

Enumerating properties	 159
isPrototypeOf()	 162
The secret __proto__ link	 163

Augmenting built-in objects	 164
Augmenting built-in objects – discussion	 165
Prototype gotchas	 166

Summary	 169
Exercises	 169

Table of Contents

[v]

Chapter 6: Inheritance	 171
Prototype chaining	 171

Prototype chaining example	 172
Moving shared properties to the prototype	 175

Inheriting the prototype only	 177
A temporary constructor – new F()	 179

Uber – access to the parent from a child object	 181
Isolating the inheritance part into a function	 182
Copying properties	 184
Heads-up when copying by reference	 186
Objects inherit from objects	 188
Deep copy	 190
object()	 192
Using a mix of prototypal inheritance and copying properties	 193
Multiple inheritance	 195

Mixins	 197
Parasitic inheritance	 197
Borrowing a constructor	 198

Borrow a constructor and copy its prototype	 200
Summary	 201
Case study – drawing shapes	 205

Analysis	 205
Implementation	 206
Testing	 210

Exercises	 211
Chapter 7: The Browser Environment	 213

Including JavaScript in an HTML page	 213
BOM and DOM – an overview	 214
BOM	 215

The window object revisited	 215
window.navigator	 216
Your console is a cheat sheet	 217
window.location	 217
window.history	 218
window.frames	 219
window.screen	 221
window.open()/close()	 222
window.moveTo() and window.resizeTo()	 222
window.alert(), window.prompt(), and window.confirm()	 223
window.setTimeout() and window.setInterval()	 225

Table of Contents

[vi]

window.document	 226
DOM	 227

Core DOM and HTML DOM	 229
Accessing DOM nodes	 230

The document node	 231
documentElement	 232
Child nodes	 233
Attributes	 234
Accessing the content inside a tag	 234
DOM access shortcuts	 235
Siblings, body, first, and last child	 237
Walk the DOM	 239

Modifying DOM nodes	 239
Modifying styles	 240
Fun with forms	 240

Creating new nodes	 242
DOM-only method	 243
cloneNode()	 243
insertBefore()	 244

Removing nodes	 245
HTML-only DOM objects	 247

Primitive ways to access the document	 247
document.write()	 248
Cookies, title, referrer, domain	 249

Events	 250
Inline HTML attributes	 251
Element Properties	 251
DOM event listeners	 252
Capturing and bubbling	 253
Stop propagation	 255
Prevent default behavior	 257
Cross-browser event listeners	 258
Types of events	 259

XMLHttpRequest	 260
Sending the request	 261
Processing the response	 262
Creating XMLHttpRequest objects in IE prior to Version 7	 263
A is for Asynchronous	 264
X is for XML	 264
An example	 265

Summary	 267
Exercises	 268

Table of Contents

[vii]

Chapter 8: Coding and Design Patterns	 271
Coding patterns	 272

Separating behavior	 272
Content	 272
Presentation	 273
Behavior	 273
Example of separating behavior	 274
Asynchronous JavaScript loading	 275

Namespaces	 275
An Object as a namespace	 275
Namespaced constructors	 276
A namespace() method	 277

Init-time branching	 278
Lazy definition	 279
Configuration object	 280
Private properties and methods	 282
Privileged methods	 283
Private functions as public methods	 284
Immediate functions	 285
Modules	 286
Chaining	 287
JSON	 288

Design patterns	 289
Singleton	 290
Singleton 2	 290

Global variable	 291
Property of the Constructor	 291
In a private property	 292

Factory	 292
Decorator	 294

Decorating a Christmas tree	 295
Observer	 296

Summary	 299
Appendix A: Reserved Words	 301

Keywords	 301
Future reserved words	 302
Previously reserved words	 303

Appendix B: Built-in Functions	 305

Table of Contents

[viii]

Appendix C: Built-in Objects	 309
Object	 309

Members of the Object constructor	 310
The Object.prototype members	 310
ECMAScript 5 additions to Object	 312

Array	 318
The Array.prototype members	 319
ECMAScript 5 additions to Array	 322

Function	 325
The Function.prototype members	 326
ECMAScript 5 additions to a function	 327

Boolean	 327
Number	 327

Members of the Number constructor	 328
The Number.prototype members	 329

String	 329
Members of the String constructor	 330
The String.prototype members	 331
ECMAScript 5 additions to String	 333

Date	 333
Members of the Date constructor	 334
The Date.prototype members	 335
ECMAScript 5 additions to Date	 338

Math	 339
Members of the Math object	 339

RegExp	 341
The RegExp.prototype members	 341

Error objects	 343
The Error.prototype members	 343

JSON	 343
Members of the JSON object	 344

Appendix D: Regular Expressions	 347
Index	 353

Preface
This is the second edition of the highly rated book Object-Oriented JavaScript by
Stoyan Stefanov, Packt Publishing. After the release of the first edition, in the last
five years, JavaScript has moved from being mostly used in browsers for client-side
technologies to being used even on server side. This edition explores the "language
side" of JavaScript. The stress is on the standards part of the language. The book
talks about ECMA Script, Object-Oriented JS, patterns, prototypal inheritance,
and design patterns.

The book doesn't assume any prior knowledge of JavaScript and works from the
ground up to give you a thorough understanding of the language. People who
know the language will still find it useful and informative. Exercises at the end
of the chapters help you assess your understanding.

What this book covers
Chapter 1, Object-oriented JavaScript, talks briefly about the history, present, and
future of JavaScript, and then moves on to explore the basics of object-oriented
programming (OOP) in general. You then learn how to set up your training
environment (Firebug) in order to dive into the language on your own, using the
book examples as a base.

Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, discusses the language
basics: variables, data types, primitive data types, arrays, loops, and conditionals.

Chapter 3, Functions, covers functions that JavaScript uses, and here you learn
to master them all. You also learn about the scope of variables and JavaScript's
built-in functions. An interesting, but often misunderstood feature of the
language—closures—is demystified at the end of the chapter.

Preface

[2]

Chapter 4, Objects, talks about objects, how to work with properties and methods, and
the various ways to create your objects. This chapter also talks about built-in objects
such as Array, Function, Boolean, Number, and String.

Chapter 5, Prototype, is dedicated to the all-important concept of prototypes in
JavaScript. It also explains how prototype chain works, hasOwnProperty(),
and some gotchas of prototypes.

Chapter 6, Inheritance, discusses how inheritance works. This chapter also talks about
a method to create subclasses like other classic languages.

Chapter 7, The Browser Environment, is dedicated to browsers. This chapter also covers
BOM (Browser Object Model), DOM (W3C's Document Object Model), browser
events, and AJAX.

Chapter 8, Coding and Design Patterns, dives into various unique JavaScript coding
patterns, as well as several language-independent design patterns, translated to
JavaScript from the Book of Four, the most influential work of software design
patterns. The chapter also discusses JSON.

Appendix A, Reserved Words, lists the reserved words in JavaScript.

Appendix B, Built-in Functions, is a reference of built-in JavaScript functions together
with sample uses.

Appendix C, Built-in Objects, is a reference that provides details and examples of the
use of every method and property of every built-in object in JavaScript.

Appendix D, Regular Expressions, is a regular expressions pattern reference.

Appendix E, Answers to Exercise Questions, has solutions for all the exercises
mentioned at the end of the chapters.

You can download this Appendix from http://www.packtpub.com/sites/
default/files/downloads/3127OT_Answers_to_Exercise_Questions.pdf.

Preface

[3]

What you need for this book
You need a modern browser—Google Chrome or Firefox are recommended—and an
optional Node.js setup. The latest version of Firefox comes with web developer tools,
but Firebug is highly recommended. To edit JavaScript you can use any text editor of
your choice.

Who this book is for
This book is for anyone who is starting to learn JavaScript or who knows JavaScript
but isn't very good at the object-oriented part of it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If you want to be sure, you can check the
cancellable property of the event object".

A block of code will be set as follows:

var a;
var thisIsAVariable;
var _and_this_too;
var mix12three;

When we wish to draw your attention to an output of a code block, the relevant lines
or items will be shown in bold:

> var case_matters = 'lower';
> var CASE_MATTERS = 'upper';
> case_matters;
"lower"

> CASE_MATTERS;
"upper"

Any command-line input or output is written as follows:

alias jsc='/System/Library/Frameworks/JavaScriptCore.framework/Versions/
Current/Resources/jsc'

Preface

[4]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"If the user clicks on Cancel, the preventDefault() method is called".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Object-oriented JavaScript
Ever since the early days of the Web, there has been a need for more dynamic and
responsive interfaces. While it's OK to read static HTML pages of text and even
better when they are beautifully presented with the help of CSS, it's much more fun
to engage with applications in our browsers, such as e-mail, calendars, banking,
shopping, drawing, playing games, and text editing. All that is possible thanks to
JavaScript, the programming language of the Web. JavaScript started with simple
one-liners embedded in HTML, but is now used in much more sophisticated ways.
Developers leverage the object-oriented nature of the language to build scalable code
architectures made up of reusable pieces.

If you look at the past and present buzzwords in web development—DHTML,
Ajax, Web 2.0, HTML5—they all essentially mean HTML, CSS, and JavaScript.
HTML for content, CSS for presentation, and JavaScript for behavior. In other words,
JavaScript is the glue that makes everything work together so that we can build
rich web applications.

But that's not all, JavaScript can be used for more than just the Web.

JavaScript programs run inside a host environment. The web browser is the most
common environment, but it's not the only one. Using JavaScript, you can create
all kinds of widgets, application extensions, and other pieces of software, as you'll
see in a bit. Taking the time to learn JavaScript is a smart investment; you learn one
language and can then write all kinds of different applications running on multiple
platforms, including mobile and server-side applications. These days, it's safe to say
that JavaScript is everywhere.

This book starts from zero, and does not assume any prior programming knowledge
other than some basic understanding of HTML. Although there is one chapter
dedicated to the web browser environment, the rest of the book is about JavaScript
in general, so it's applicable to all environments.

Object-oriented JavaScript

[8]

Let's start with the following:

•	 A brief introduction to the story behind JavaScript
•	 The basic concepts you'll encounter in discussions on object-oriented

programming

A bit of history
Initially, the Web was not much more than just a number of scientific publications in
the form of static HTML documents connected together with hyperlinks. Believe it
or not, there was a time when there was no way to put an image in a page. But that
soon changed. As the Web grew in popularity and size, the webmasters who were
creating HTML pages felt they needed something more. They wanted to create richer
user interactions, mainly driven by the desire to save server roundtrips for simple
tasks such as form validation. Two options came up: Java applets and LiveScript, a
language conceived by Brendan Eich at Netscape in 1995 and later included in the
Netscape 2.0 browser under the name of JavaScript.

The applets didn't quite catch on, but JavaScript did. The ability to use short code
snippets embedded in HTML documents and alter otherwise static elements of a web
page was embraced by the webmaster community. Soon, the competing browser
vendor Microsoft shipped Internet Explorer (IE) 3.0 with JScript, which was a reverse
engineered version of JavaScript plus some IE-specific features. Eventually, there was
an effort to standardize the various implementations of the language, and this is how
ECMAScript was born. ECMA (European Computer Manufacturers Association)
created the standard called ECMA-262, which describes the core parts of the JavaScript
programming language without browser and web page-specific features.

You can think of JavaScript as a term that encompasses three pieces:

•	 ECMAScript—the core language—variables, functions, loops, and so on.
This part is independent of the browser and this language can be used in
many other environments.

•	 Document Object Model (DOM), which provides ways to work with
HTML and XML documents. Initially, JavaScript provided limited access
to what's scriptable on the page, mainly forms, links, and images. Later it was
expanded to make all elements scriptable. This lead to the creation of
the DOM standard by the World Wide Web Consortium (W3C) as a
language-independent (no longer tied to JavaScript) way to manipulate
structured documents.

Chapter 1

[9]

•	 Browser Object Model (BOM), which is a set of objects related to the
browser environment and was never part of any standard until HTML5
started standardizing some of the common objects that exist across browsers.

While there is one chapter in the book dedicated to the browser, the DOM, and the
BOM, most of the book describes the core language and teaches you skills you can
use in any environment where JavaScript programs run.

Browser wars and renaissance
For better or for worse, JavaScript's instant popularity happened during the period
of the Browser Wars I (approximately 1996 to 2001). Those were the times during
the initial Internet boom when the two major browser vendors—Netscape and
Microsoft—were competing for market share. Both were constantly adding more
bells and whistles to their browsers and their versions of JavaScript, DOM, and
BOM, which naturally led to many inconsistencies. While adding more features,
the browser vendors were falling behind on providing proper development and
debugging tools and adequate documentation. Often, development was a pain;
you would write a script while testing in one browser, and once you're done with
development, you test in the other browser, only to find that your script simply
fails for no apparent reason and the best you can get is a cryptic error message like
"Operation aborted".

Inconsistent implementations, missing documentation, and no appropriate tools
painted JavaScript in such a light that many programmers simply refused to bother
with it.

On the other hand, developers who did try to experiment with JavaScript got a little
carried away adding too many special effects to their pages without much regard
of how usable the end results were. Developers were eager to make use of every
new possibility the browsers provided and ended up "enhancing" their web pages
with things like animations in the status bar, flashing colors, blinking texts, objects
stalking your mouse cursor, and many other "innovations" that actually hurt the
user experience. These various ways to abuse JavaScript are now mostly gone, but
they were one of the reasons why the language got some bad reputation. Many
"serious" programmers dismissed JavaScript as nothing but a toy for designers to
play around with, and dismissed it as a language unsuitable for serious applications.
The JavaScript backlash caused some web projects to completely ban any client-side
programming and trust only their predictable and tightly controlled server. And
really, why would you double the time to deliver a finished product and then spend
additional time debugging problems with the different browsers?

Object-oriented JavaScript

[10]

Everything changed in the years following the end of the Browser Wars I. A number
of events reshaped the web development landscape in a positive way. Some of them
are given as follows:

•	 Microsoft won the war with the introduction of IE6, the best browser
at the time, and for many years they stopped developing Internet
Explorer. This allowed time for other browsers to catch up and
even surpass IE's capabilities.

•	 The movement for web standards was embraced by developers and browser
vendors alike. Naturally, developers didn't like having to code everything
two (or more) times to account for browsers' differences; therefore, they liked
the idea of having agreed-upon standards that everyone would follow.

•	 Developers and technologies matured and more people started caring about
things like usability, progressive enhancement techniques, and accessibility.
Tools such as Firebug made developers much more productive and the
development less of a pain.

In this healthier environment, developers started finding out new and better
ways to use the instruments that were already available. After the public release
of applications such as Gmail and Google Maps, which were rich on client-side
programming, it became clear that JavaScript is a mature, unique in certain
ways, and powerful prototypal object-oriented language. The best example
of its rediscovery was the wide adoption of the functionality provided by the
XMLHttpRequest object, which was once an IE-only innovation, but was then
implemented by most other browsers. XMLHttpRequest allows JavaScript to make
HTTP requests and get fresh content from the server in order to update some parts
of a page without a full page reload. Due to the wide use of XMLHttpRequest, a new
breed of desktop-like web applications, dubbed Ajax applications, was born.

The present
An interesting thing about JavaScript is that it always runs inside a host environment.
The web browser is just one of the available hosts. JavaScript can also run on the
server, on the desktop, and on mobile devices. Today, you can use JavaScript to do
all of the following:

•	 Create rich and powerful web applications (the kind of applications that run
inside the web browser). Additions to HTML5 such as application cache,
client-side storage, and databases make browser programming more and
more powerful for both online and offline applications.

•	 Write server-side code using .NET or Node.js, as well as code that can run
using Rhino (a JavaScript engine written in Java).

Chapter 1

[11]

•	 Make mobile applications; you can create apps for iPhone, Android, and
other phones and tablets entirely in JavaScript using PhoneGap or Titanium.
Additionally, apps for Firefox OS for mobile phones are entirely in JavaScript,
HTML, and CSS.

•	 Create rich media applications (Flash, Flex) using ActionScript, which is
based on ECMAScript.

•	 Write command-line tools and scripts that automate administrative tasks on
your desktop using Windows Scripting Host or WebKit's JavaScript Core
available on all Macs.

•	 Write extensions and plugins for a plethora of desktop applications, such as
Dreamweaver, Photoshop, and most other browsers.

•	 Create cross operating system desktop applications using Mozilla's
XULRunner or Adobe Air.

•	 Create desktop widgets using Yahoo! widgets or Mac Dashboard widgets.
Interestingly, Yahoo! widgets can also run on your TV.

This is by no means an exhaustive list. JavaScript started inside web pages, but
today it's safe to say it is practically everywhere. In addition, browser vendors now
use speed as a competitive advantage and are racing to create the fastest JavaScript
engines, which is great for both users and developers and opens doors for even more
powerful uses of JavaScript in new areas such as image, audio, and video processing,
and games development.

The future
We can only speculate what the future will be, but it's quite certain that it will
include JavaScript. For quite some time, JavaScript may have been underestimated
and underused (or maybe overused in the wrong ways), but every day we witness
new applications of the language in much more interesting and creative ways. It
all started with simple one liners, often embedded in HTML tag attributes (such as
onclick). Nowadays, developers ship sophisticated, well designed and architected,
and extensible applications and libraries, often supporting multiple platforms with
a single codebase. JavaScript is indeed taken seriously and developers are starting to
rediscover and enjoy its unique features more and more.

Once listed in the "nice-to-have" sections of job postings, today, the knowledge of
JavaScript is often a deciding factor when it comes to hiring web developers. Common
job interview questions you can hear today include: "Is JavaScript an object-oriented
language? Good. Now how do you implement inheritance in JavaScript?" After
reading this book, you'll be prepared to ace your JavaScript job interview and even
impress your interviewers with some bits that, maybe, they didn't know.

Object-oriented JavaScript

[12]

ECMAScript 5
Revision 3 of ECMAScript is the one you can take for granted to be implemented in
all browsers and environments. Revision 4 was skipped and revision 5 (let's call it
ES5 for short) was officially accepted in December 2009.

ES5 introduces some new objects and properties and also the so-called "strict mode".
Strict mode is a subset of the language that excludes deprecated features. The strict
mode is opt-in and not required, meaning that if you want your code to run in the
strict mode, you declare your intention using (once per function, or once for the
whole program) the following string:

"use strict";

This is just a JavaScript string, and it's OK to have strings floating around unassigned
to any variable. As a result, older browsers that don't "speak" ES5 will simply ignore
it, so this strict mode is backwards compatible and won't break older browsers.

In future versions, strict mode is likely to become the default or the only mode.
For the time being, it's optional.

For backwards compatibility, all the examples in this book work in ES3, but at the
same time, all the code in the book is written so that it will run without warnings
in ES5's strict mode. Additionally, any ES5-specific parts will be clearly marked.
Appendix C, Built-in Objects, lists the new additions to ES5 in detail.

Object-oriented programming
Before diving into JavaScript, let's take a moment to review what people mean when
they say "object-oriented", and what the main features of this programming style are.
Here's a list of concepts that are most often used when talking about object-oriented
programming (OOP):

•	 Object, method, and property
•	 Class
•	 Encapsulation
•	 Aggregation
•	 Reusability/inheritance
•	 Polymorphism

Chapter 1

[13]

Let's take a closer look into each one of these concepts. If you're new to the
object-oriented programming lingo, these concepts might sound too theoretical,
and you might have trouble grasping them or remembering them from one
reading. Don't worry, it does take a few tries, and the subject could be a little
dry at a conceptual level. But, we'll look at plenty of code examples further on
in the book, and you'll see that things are much simpler in practice.

Objects
As the name object-oriented suggests, objects are important. An object is a
representation of a "thing" (someone or something), and this representation is
expressed with the help of a programming language. The thing can be anything—a
real-life object, or a more convoluted concept. Taking a common object like a cat
for example, you can see that it has certain characteristics (color, name, weight, and
so on) and can perform some actions (meow, sleep, hide, escape, and so on). The
characteristics of the object are called properties in OOP-speak, and the actions are
called methods.

There is also an analogy with the spoken language:

•	 Objects are most often named using nouns (book, person, and so on)
•	 Methods are verbs (read, run, and so on)
•	 Values of the properties are adjectives

Take the sentence "The black cat sleeps on the mat". "The cat" (a noun) is the object,
"black" (adjective) is the value of the color property, and "sleep" (a verb) is an action,
or a method in OOP. For the sake of the analogy, we can go a step further and say
that "on the mat " specifies something about the action "sleep", so it's acting as a
parameter passed to the sleep method.

Classes
In real life, similar objects can be grouped based on some criteria. A hummingbird
and an eagle are both birds, so they can be classified as belonging to some made up
Birds class. In OOP, a class is a blueprint, or a recipe for an object. Another name for
"object" is "instance", so we say that the eagle is one concrete instance of the general
class Birds. You can create different objects using the same class, because a class is
just a template, while the objects are concrete instances based on the template.

Object-oriented JavaScript

[14]

There's a difference between JavaScript and the "classic" OO languages such as C++
and Java. You should be aware right from the start that in JavaScript, there are no
classes; everything is based on objects. JavaScript has the notion of prototypes, which
are also objects (we'll discuss them later in detail). In a classic OO language, you'd
say something like "create me a new object called Bob, which is of class Person". In
a prototypal OO language, you'd say, "I'm going to take this object called Bob's dad
that I have lying around (on the couch in front of the TV?) and reuse it as a prototype
for a new object that I'll call Bob".

Encapsulation
Encapsulation is another OOP-related concept, which illustrates the fact that an
object contains (encapsulates) both:

•	 Data (stored in properties)
•	 The means to do something with the data (using methods)

One other term that goes together with encapsulation is information hiding. This is
a rather broad term and can mean different things, but let's see what people usually
mean when they use it in the context of OOP.

Imagine an object, say, an MP3 player. You, as the user of the object, are given some
interface to work with, such as buttons, display, and so on. You use the interface in
order to get the object to do something useful for you, like play a song. How exactly
the device is working on the inside, you don't know, and, most often, don't care. In
other words, the implementation of the interface is hidden from you. The same thing
happens in OOP when your code uses an object by calling its methods. It doesn't
matter if you coded the object yourself or it came from some third-party library;
your code doesn't need to know how the methods work internally. In compiled
languages, you can't actually read the code that makes an object work. In JavaScript,
because it's an interpreted language, you can see the source code, but the concept is
still the same—you work with the object's interface, without worrying about
its implementation.

Another aspect of information hiding is the visibility of methods and properties.
In some languages, objects can have public, private, and protected methods
and properties. This categorization defines the level of access the users of the object
have. For example, only the methods of the same object have access to the private
methods, while anyone has access to the public ones. In JavaScript, all methods and
properties are public, but we'll see that there are ways to protect the data inside an
object and achieve privacy.

Chapter 1

[15]

Aggregation
Combining several objects into a new one is known as aggregation or composition.
It's a powerful way to separate a problem into smaller and more manageable parts
(divide and conquer). When a problem scope is so complex that it's impossible to
think about it at a detailed level in its entirety, you can separate the problem into
several smaller areas, and possibly then separate each of these into even smaller
chunks. This allows you to think about the problem on several levels of abstraction.

Take, for example, a personal computer. It's a complex object. You cannot think
about all the things that need to happen when you start your computer. But, you
can abstract the problem saying that you need to initialize all the separate objects
that your Computer object consists of—the Monitor object, the Mouse object, the
Keyboard object, and so on. Then, you can dive deeper into each of the sub-objects.
This way, you're composing complex objects by assembling reusable parts.

To use another analogy, a Book object can contain (aggregate) one or more Author
objects, a Publisher object, several Chapter objects, a TOC (table of contents),
and so on.

Inheritance
Inheritance is an elegant way to reuse existing code. For example, you can have a
generic object, Person, which has properties such as name and date_of_birth, and
which also implements the functionality walk, talk, sleep, and eat. Then, you
figure out that you need another object called Programmer. You could re-implement
all the methods and properties that Person has, but it would be smarter to just say
that Programmer inherits Person, and save yourself some work. The Programmer
object only needs to implement more-specific functionality, such as the writeCode
method, while reusing all of the Person object's functionality.

In classical OOP, classes inherit from other classes, but in JavaScript, since there are
no classes, objects inherit from other objects.

When an object inherits from another object, it usually adds new methods to the
inherited ones, thus extending the old object. Often, the following phrases can be
used interchangeably: "B inherits from A" and "B extends A". Also, the object that
inherits can pick one or more methods and redefine them, customizing them for its
own needs. This way, the interface stays the same, the method name is the same,
but when called on the new object, the method behaves differently. This way of
redefining how an inherited method works is known as overriding.

Object-oriented JavaScript

[16]

Polymorphism
In the preceding example, a Programmer object inherited all of the methods of the
parent Person object. This means that both objects provide a talk method, among
others. Now imagine that somewhere in your code there's a variable called Bob, and
it just so happens that you don't know if Bob is a Person object or a Programmer
object. You can still call the talk method on the Bob object and the code will work.
This ability to call the same method on different objects and have each of them
respond in their own way is called polymorphism.

OOP summary
Here's a quick table summarizing the concepts discussed so far:

Feature Illustrates concept
Bob is a man (an object). Objects
Bob's date of birth is June 1, 1980, gender: male, and hair: black. Properties

Bob can eat, sleep, drink, dream, talk, and calculate his own age. Methods

Bob is an instance of the Programmer class. Class (in classical
OOP)

Bob is based on another object, called Programmer. Prototype
(in prototypal OOP)

Bob holds data (such as birth_date) and methods that work
with the data (such as calculateAge()).

Encapsulation

You don't need to know how the calculation method works
internally. The object might have some private data, such as the
number of days in February in a leap year. You don't know, nor
do you want to know.

Information hiding

Bob is part of a WebDevTeam object, together with Jill, a
Designer object, and Jack, a ProjectManager object.

Aggregation and
composition

Designer, ProjectManager, and Programmer are all based
on and extend a Person object.

Inheritance

You can call the methods Bob.talk(), Jill.talk(), and
Jack.talk() and they'll all work fine, albeit producing
different results (Bob will probably talk more about performance,
Jill about beauty, and Jack about deadlines). Each object inherited
the method talk from Person and customized it.

Polymorphism and
method overriding

Chapter 1

[17]

Setting up your training environment
This book takes a "do-it-yourself" approach when it comes to writing code, because
I firmly believe that the best way to really learn a programming language is by
writing code. There are no cut-and-paste-ready code downloads that you simply
put in your pages. On the contrary, you're expected to type in code, see how
it works, and then tweak it and play around with it. When trying out the code
examples, you're encouraged to enter the code into a JavaScript console. Let's see
how you go about doing this.

As a developer, you most likely already have a number of web browsers installed
on your system such as Firefox, Safari, Chrome, or Internet Explorer. All modern
browsers have a JavaScript console feature, which you'll use throughout the book to
help you learn and experiment with the language. More specifically, this book uses
WebKit's console (available in Safari and Chrome), but the examples should work in
any other console.

WebKit's Web Inspector
This example shows how you can use the console to type in some code that swaps
the logo on the google.com home page with an image of your choice. As you can
see, you can test your JavaScript code live on any page.

Object-oriented JavaScript

[18]

In order to bring up the console in Chrome or Safari, right-click anywhere on a
page and select Inspect Element. The additional window that shows up is the Web
Inspector feature. Select the Console tab and you're ready to go.

You type code directly into the console, and when you press Enter, your code is
executed. The return value of the code is printed in the console. The code is executed
in the context of the currently loaded page, so for example, if you type location.
href, it will return the URL of the current page.

The console also has an autocomplete feature. It works similar to the normal
command line prompt in your operating system. If, for example, you type
docu and hit the Tab key or the right arrow key, docu will be autocompleted
to document. Then, if you type . (the dot operator), you can iterate through
all the available properties and methods you can call on the document object.

By using the up and down arrow keys, you can go through the list of already
executed commands and bring them back in the console.

The console gives you only one line to type in, but you can execute several JavaScript
statements by separating them with semicolons. If you need more lines, you can
press Shift + Enter to go to a new line without executing the result just yet.

JavaScriptCore on a Mac
On a Mac, you don't actually need a browser; you can explore JavaScript directly
from your command line Terminal application.

If you've never used Terminal, you can simply search for it in the Spotlight search.
Once you've launched it, type:

alias jsc='/System/Library/Frameworks/JavaScriptCore.framework/Versions/
Current/Resources/jsc'

This command makes an alias to the little jsc application, which stands for
"JavaScriptCore" and is part of the WebKit engine. JavaScriptCore is shipped
together with Mac operating systems.

You can add the alias line shown previously to your ~/.profile file so that jsc is
always there when you need it.

Now, in order to start the interactive shell, you simply type jsc from any directory.
Then you can type JavaScript expressions, and when you hit Enter, you'll see the
result of the expression.

Chapter 1

[19]

More consoles
All modern browsers have consoles built in. You have seen the Chrome/Safari
console previously. In any Firefox version, you can install the Firebug extension,
which comes with a console. Additionally, in newer Firefox releases, there's a
console built in and accessible via the Tools/Web Developer/Web Console menu.

Object-oriented JavaScript

[20]

Internet Explorer, since Version 8, has an F12 Developer Tools feature, which has a
console in its Script tab.

It's also a good idea to familiarize yourself with Node.js, and you can start by trying
out its console. Install Node.js from http://nodejs.org and try the console in your
command prompt (terminal).

As you can see, you can use the Node.js console to try out quick examples. But, you
can also write longer shell scripts (test.js in the screenshot) and run them with the
scriptname.js node.

Summary
In this chapter, you learned about how JavaScript came to be and where it is today.
You were also introduced to object-oriented programming concepts and have seen
how JavaScript is not a class-based OO language, but a prototype-based one. Finally,
you learned how to use your training environment—the JavaScript console. Now
you're ready to dive into JavaScript and learn how to use its powerful OO features.
But let's start from the beginning.

The next chapter will guide you through the data types in JavaScript (there are just
a few), conditions, loops, and arrays. If you think you know these topics, feel free to
skip the next chapter, but not before you make sure you can complete the few short
exercises at the end of the chapter.

Primitive Data Types, Arrays,
Loops, and Conditions

Before diving into the object-oriented features of JavaScript, let's first take a look at
some of the basics. This chapter walks you through the following:

•	 The primitive data types in JavaScript, such as strings and numbers
•	 Arrays
•	 Common operators, such as +, -, delete, and typeof
•	 Flow control statements, such as loops and if-else conditions

Variables
Variables are used to store data; they are placeholders for concrete values. When
writing programs, it's convenient to use variables instead of the actual data, as it's
much easier to write pi instead of 3.141592653589793, especially when it happens
several times inside your program. The data stored in a variable can be changed
after it was initially assigned, hence the name "variable". You can also use variables
to store data that is unknown to you while you write the code, such as the result of a
later operation.

Using a variable requires two steps. You need to:

•	 Declare the variable
•	 Initialize it, that is, give it a value

Primitive Data Types, Arrays, Loops, and Conditions

[22]

To declare a variable, you use the var statement, like this:

var a;
var thisIsAVariable;
var _and_this_too;
var mix12three;

For the names of the variables, you can use any combination of letters, numbers, the
underscore character, and the dollar sign. However, you can't start with a number,
which means that this is invalid:

var 2three4five;

To initialize a variable means to give it a value for the first (initial) time. You have
two ways to do so:

•	 Declare the variable first, then initialize it
•	 Declare and initialize it with a single statement

An example of the latter is:

var a = 1;

Now the variable named a contains the value 1.

You can declare (and optionally initialize) several variables with a single var
statement; just separate the declarations with a comma:

var v1, v2, v3 = 'hello', v4 = 4, v5;

For readability, this is often written using one variable per line:

var v1,
 v2,
 v3 = 'hello',
 v4 = 4,
 v5;

The $ character in variable names
You may see the dollar sign character ($) used in variable names, as in
$myvar or less commonly my$var. This character is allowed to appear
anywhere in a variable name, although previous versions of the ECMA
standard discouraged its use in handwritten programs and suggested
it should only be used in generated code (programs written by other
programs). This suggestion is not well respected by the JavaScript
community, and $ is in fact commonly used in practice as a function name.

Chapter 2

[23]

Variables are case sensitive
Variable names are case sensitive. You can easily verify this statement using your
JavaScript console. Try typing this, pressing Enter after each line:

var case_matters = 'lower';
var CASE_MATTERS = 'upper';
case_matters;
CASE_MATTER;

To save keystrokes, when you enter the third line, you can type case and press
the Tab key (or right-arrow key). The console autocompletes the variable name to
case_matters. Similarly, for the last line, type CASE and press Tab. The end result is
shown in the following figure:

Throughout the rest of this book, only the code for the examples is given instead of a
screenshot, like so:

> var case_matters = 'lower';
> var CASE_MATTERS = 'upper';
> case_matters;
"lower"

> CASE_MATTERS;
"upper"

Primitive Data Types, Arrays, Loops, and Conditions

[24]

The greater-than signs (>) show the code that you type; the rest is the result as
printed in the console. Again, remember that when you see such code examples,
you're strongly encouraged to type in the code yourself. Then, you can experiment
by tweaking it a little here and there to get a better feeling of how exactly it works.

You can see in the screenshot that sometimes what you type in
the console results in the word undefined. You can simply ignore
this, but if you're curious, here's what happens: when evaluating
(executing) what you type, the console prints the returned value.
Some expressions (such as var a = 1;) don't return anything
explicitly, in which case they implicitly return the special value
undefined (more on it in a bit). When an expression returns some
value (for example case_matters in the previous example or
something such as 1 + 1), the resulting value is printed out. Not all
consoles print the undefined value, for example the Firebug console.

Operators
Operators take one or two values (or variables), perform an operation, and
return a value. Let's check out a simple example of using an operator, just
to clarify the terminology:

> 1 + 2;
3

In this code:

•	 + is the operator
•	 The operation is addition
•	 The input values are 1 and 2 (the input values are also called operands)
•	 The result value is 3
•	 The whole thing is called an expression

Instead of using the values 1 and 2 directly in the expression, you can use variables.
You can also use a variable to store the result of the operation, as the following
example demonstrates:

> var a = 1;
> var b = 2;
> a + 1;
2

Chapter 2

[25]

> b + 2;
4

> a + b;
3

> var c = a + b;
> c;
3

The following table lists the basic arithmetic operators:

Operator symbol Operation Example
+ Addition > 1 + 2;

3
- Subtraction > 99.99 – 11;

88.99
* Multiplication > 2 * 3;

6
/ Division > 6 / 4;

1.5
% Modulo, the remainder

of a division

> 6 % 3;
0
> 5 % 3;
2

It's sometimes useful to test if a number is
even or odd. Using the modulo operator,
it's easy to do just that. All odd numbers
return 1 when divided by 2, while all
even numbers return 0.
> 4 % 2;
0
> 5 % 2;
1

Primitive Data Types, Arrays, Loops, and Conditions

[26]

Operator symbol Operation Example
++ Increment a value

by 1
Post-increment is when the input value is
incremented after it's returned.

> var a = 123;
> var b = a++;
> b;
123
> a;
124

The opposite is pre-increment. The input
value is incremented by 1 first and then
returned.
> var a = 123;
> var b = ++a;
> b;
124
> a;
124

-- Decrement a value
by 1

Post-decrement:
> var a = 123;
> var b = a--;
> b;
123
> a;
122

Pre-decrement:
> var a = 123;
> var b = --a;
> b;
122
> a;
122

var a = 1; is also an operation; it's the simple assignment operation, and = is the
simple assignment operator.

Chapter 2

[27]

There is also a family of operators that are a combination of an assignment and an
arithmetic operator. These are called compound operators. They can make your
code more compact. Let's see some of them with examples:

> var a = 5;
> a += 3;
8

In this example, a += 3; is just a shorter way of doing a = a + 3;:

> a -= 3;
5

Here, a -= 3; is the same as a = a - 3;.

Similarly:

> a *= 2;
10

> a /= 5;
2

> a %= 2;
0

In addition to the arithmetic and assignment operators discussed previously, there
are other types of operators, as you'll see later in this and the following chapters.

Best practice
Always end your expressions with a semicolon. JavaScript has a
semicolon insertion mechanism where it can add the semicolon if you
forget it at the end of a line. However, this can also be a source of errors,
so it's best to make sure you always explicitly state where you want to
terminate your expressions. In other words, both expressions, > 1 + 1
and > 1 + 1;, will work; but, throughout the book you'll always see the
second type, terminated with a semicolon, just to emphasize this habit.

Primitive Data Types, Arrays, Loops, and Conditions

[28]

Primitive data types
Any value that you use is of a certain type. In JavaScript, there are just a few
primitive data types:

1.	 Number: This includes floating point numbers as well as integers.
For example, these values are all numbers: 1, 100, 3.14.

2.	 String: These consist of any number of characters, for example "a", "one",
and "one 2 three".

3.	 Boolean: This can be either true or false.
4.	 Undefined: When you try to access a variable that doesn't exist, you get the

special value undefined. The same happens when you declare a variable
without assigning a value to it yet. JavaScript initializes the variable behind
the scenes with the value undefined. The undefined data type can only have
one value – the special value undefined.

5.	 Null: This is another special data type that can have only one value, namely
the null value. It means no value, an empty value, or nothing. The difference
with undefined is that if a variable has a value null, it's still defined, it just
so happens that its value is nothing. You'll see some examples shortly.

Any value that doesn't belong to one of the five primitive types listed here is an
object. Even null is considered an object, which is a little awkward—having an object
(something) that is actually nothing. We'll learn more on objects in Chapter 4, Objects,
but for the time being, just remember that in JavaScript the data types are either:

•	 Primitive (the five types listed previously)
•	 Non-primitive (objects)

Finding out the value type – the typeof
operator
If you want to know the type of a variable or a value, you use the special typeof
operator. This operator returns a string that represents the data type. The return
values of using typeof are one of the following:

•	 "number"

•	 "string"

•	 "boolean"

Chapter 2

[29]

•	 "undefined"

•	 "object"

•	 "function"

In the next few sections, you'll see typeof in action using examples of each of the
five primitive data types.

Numbers
The simplest number is an integer. If you assign 1 to a variable and then use the
typeof operator, it returns the string "number":

> var n = 1;
> typeof n;
"number"

> n = 1234;
> typeof n;
"number"

In the preceding example, you can see that the second time you set a variable's value,
you don't need the var statement.

Numbers can also be floating point (decimals):

> var n2 = 1.23;
> typeof n;
"number"

You can call typeof directly on the value without assigning it to a variable first:

> typeof 123;
"number"

Octal and hexadecimal numbers
When a number starts with a 0, it's considered an octal number. For example, the
octal 0377 is the decimal 255:

> var n3 = 0377;
> typeof n3;
"number"

> n3;
255

Primitive Data Types, Arrays, Loops, and Conditions

[30]

The last line in the preceding example prints the decimal representation of the
octal value.

While you may not be intimately familiar with octal numbers, you've probably used
hexadecimal values to define colors in CSS stylesheets.

In CSS, you have several options to define a color, two of them being:

•	 Using decimal values to specify the amount of R (red), G (green), and B
(blue) ranging from 0 to 255. For example, rgb(0, 0, 0) is black and
rgb(255, 0, 0) is red (maximum amount of red and no green or blue).

•	 Using hexadecimals and specifying two characters for each R, G, and B value.
For example, #000000 is black and #ff0000 is red. This is because ff is the
hexadecimal value for 255.

In JavaScript, you put 0x before a hexadecimal value (also called hex for short):

> var n4 = 0x00;
> typeof n4;
"number"

> n4;
0

> var n5 = 0xff;
> typeof n5;
"number"

> n5;
255

Exponent literals
1e1 (also written as 1e+1 or 1E1 or 1E+1) represents the number one with one zero
after it, or in other words, 10. Similarly, 2e+3 means the number 2 with 3 zeros after
it, or 2000:

> 1e1;
10

> 1e+1;
10

> 2e+3;
2000

> typeof 2e+3;
"number"

Chapter 2

[31]

2e+3 means moving the decimal point three digits to the right of the number 2.
There's also 2e-3, meaning you move the decimal point three digits to the left
of the number 2:

2e+3

2e-3

2 .0 .0 .0.

1 2 3

0 .0 .0 .2.

3 2 1

2000

0.002

> 2e-3;
0.002

> 123.456E-3;
0.123456

> typeof 2e-3;
"number"

Infinity
There is a special value in JavaScript called Infinity. It represents a number too big
for JavaScript to handle. Infinity is indeed a number, as typing typeof Infinity
in the console will confirm. You can also quickly check that a number with 308 zeros
is ok, but 309 zeros is too much. To be precise, the biggest number JavaScript can
handle is 1.7976931348623157e+308, while the smallest is 5e-324.

> Infinity;
Infinity

> typeof Infinity;
"number"

> 1e309;
Infinity

> 1e308;
1e+308

Dividing by zero gives you infinity:

> var a = 6 / 0;
> a;
Infinity

Primitive Data Types, Arrays, Loops, and Conditions

[32]

Infinity is the biggest number (or rather a little bigger than the biggest), but how
about the smallest? It's infinity with a minus sign in front of it; minus infinity:

> var i = -Infinity;
> i;
-Infinity

> typeof i;
"number"

Does this mean you can have something that's exactly twice as big as Infinity, from
0 up to infinity and then from 0 down to minus infinity? Well, not really. When you
sum infinity and minus infinity, you don't get 0, but something that is called NaN
(Not a Number):

> Infinity – Infinity;
NaN

> -Infinity + Infinity;
NaN

Any other arithmetic operation with Infinity as one of the operands gives
you Infinity:

> Infinity – 20;
Infinity

> -Infinity * 3;
-Infinity

> Infinity / 2;
Infinity

> Infinity – 99999999999999999;
Infinity

NaN
What was this NaN in the previous example? It turns out that despite its name,
"Not a Number", NaN is a special value that is also a number:

> typeof NaN;
"number"

> var a = NaN;
> a;
NaN

Chapter 2

[33]

You get NaN when you try to perform an operation that assumes numbers, but the
operation fails. For example, if you try to multiply 10 by the character "f", the result
is NaN, because "f" is obviously not a valid operand for a multiplication:

> var a = 10 * "f";
> a;
NaN

NaN is contagious, so if you have even one NaN in your arithmetic operation, the
whole result goes down the drain:

> 1 + 2 + NaN;
NaN

Strings
A string is a sequence of characters used to represent text. In JavaScript, any
value placed between single or double quotes is considered a string. This means
that 1 is a number, but "1" is a string. When used with strings, typeof returns the
string "string":

> var s = "some characters";
> typeof s;
"string"

> var s = 'some characters and numbers 123 5.87';
> typeof s;
"string"

Here's an example of a number used in the string context:

> var s = '1';
> typeof s;
"string"

If you put nothing in quotes, it's still a string (an empty string):

> var s = ""; typeof s;
"string"

As you already know, when you use the plus sign with two numbers, this is the
arithmetic addition operation. However, if you use the plus sign with strings,
this is a string concatenation operation, and it returns the two strings glued together:

> var s1 = "web";
> var s2 = "site";
> var s = s1 + s2;

Primitive Data Types, Arrays, Loops, and Conditions

[34]

> s;
"website"

> typeof s;
"string"

The dual purpose of the + operator is a source of errors. Therefore, if you intend to
concatenate strings, it's always best to make sure that all of the operands are strings.
The same applies for addition; if you intend to add numbers, make sure the operands
are numbers. You'll learn various ways to do so further in the chapter and the book.

String conversions
When you use a number-like string (for example "1") as an operand in an arithmetic
operation, the string is converted to a number behind the scenes. This works for all
arithmetic operations except addition, because of its ambiguity:

> var s = '1';
> s = 3 * s;
> typeof s;
"number"

> s;
3

> var s = '1';
> s++;
> typeof s;
"number"

> s;
2

A lazy way to convert any number-like string to a number is to multiply it by 1
(another way is to use a function called parseInt(), as you'll see in the next chapter):

> var s = "100"; typeof s;
"string"

> s = s * 1;
100

> typeof s;
"number"

Chapter 2

[35]

If the conversion fails, you'll get NaN:

> var movie = '101 dalmatians';
> movie * 1;
NaN

You convert a string to a number by multiplying by 1. The opposite—converting
anything to a string—can be done by concatenating it with an empty string:

> var n = 1;
> typeof n;
"number"

> n = "" + n;
"1"

> typeof n;
"string"

Special strings
There are also strings with special meanings, as listed in the following table:

String Meaning Example
\\

\'

\"

\ is the escape character.
When you want to have quotes inside
your string, you escape them so that
JavaScript doesn't think they mean
the end of the string.
If you want to have an actual
backslash in the string, escape it with
another backslash.

> var s = 'I don't know';

This is an error, because JavaScript
thinks the string is I don and the rest
is invalid code. The following
are valid:

•	 > var s = 'I don\'t
know';

•	 > var s = "I don\'t
know";

•	 > var s = "I don't
know";

•	 > var s = '"Hello", he
said.';

•	 > var s = "\"Hello\",
he said.";

Escaping the escape:
> var s = "1\\2"; s;
"1\2"

Primitive Data Types, Arrays, Loops, and Conditions

[36]

String Meaning Example
\n End of line. > var s = '\n1\n2\n3\n';

> s;
"
1
2
3
"

\r Carriage return. Consider the following statements:
•	 > var s = '1\r2';
•	 > var s = '1\n\r2';
•	 > var s = '1\r\n2';

The result of all of these is:
> s;
"1
2"

\t Tab. > var s = "1\t2";
> s;
"1 2"

\u \u followed by a character code
allows you to use Unicode.

Here's my name in Bulgarian written
with Cyrillic characters:
> "\u0421\u0442\u043E\
u044F\u043D";
"Стoян"

There are also additional characters that are rarely used: \b (backspace),
\v (vertical tab), and \f (form feed).

Booleans
There are only two values that belong to the Boolean data type: the values true and
false, used without quotes:

> var b = true;
> typeof b;
"boolean"

> var b = false;
> typeof b;
"boolean"

Chapter 2

[37]

If you quote true or false, they become strings:

> var b = "true";
> typeof b;
"string"

Logical operators
There are three operators, called logical operators, that work with Boolean values.
These are:

•	 ! – logical NOT (negation)
•	 && – logical AND
•	 || – logical OR

You know that when something is not true, it must be false. Here's how this is
expressed using JavaScript and the logical ! operator:

> var b = !true;
> b;
false

If you use the logical NOT twice, you get the original value:

> var b = !!true;
> b;
true

If you use a logical operator on a non-Boolean value, the value is converted to
Boolean behind the scenes:

> var b = "one";
> !b;
false

In the preceding case, the string value "one" is converted to a Boolean, true, and
then negated. The result of negating true is false. In the next example, there's a
double negation, so the result is true:

> var b = "one";
> !!b;
true

Primitive Data Types, Arrays, Loops, and Conditions

[38]

You can convert any value to its Boolean equivalent using a double negation.
Understanding how any value converts to a Boolean is important. Most values
convert to true with the exception of the following, which convert to false:

•	 The empty string ""
•	 null

•	 undefined

•	 The number 0
•	 The number NaN
•	 The Boolean false

These six values are referred to as falsy, while all others are truthy (including, for
example, the strings "0", " ", and "false").

Let's see some examples of the other two operators—the logical AND (&&) and the
logical OR (||). When you use &&, the result is true only if all of the operands are
true. When you use ||, the result is true if at least one of the operands is true:

> var b1 = true, b2 = false;
> b1 || b2;
true

> b1 && b2;
false

Here's a list of the possible operations and their results:

Operation Result
true && true true

true && false false

false && true false

false && false false

true || true true

true || false true

false || true true

false || false false

You can use several logical operations one after the other:

> true && true && false && true;
false

Chapter 2

[39]

> false || true || false;
true

You can also mix && and || in the same expression. In such cases, you should use
parentheses to clarify how you intend the operation to work. Consider these:

> false && false || true && true;
true

> false && (false || true) && true;
false

Operator precedence
You might wonder why the previous expression (false && false || true &&
true) returned true. The answer lies in the operator precedence. As you know
from mathematics:

> 1 + 2 * 3;
7

This is because multiplication has higher precedence over addition, so 2 * 3 is
evaluated first, as if you typed:

> 1 + (2 * 3);
7

Similarly for logical operations, ! has the highest precedence and is executed first,
assuming there are no parentheses that demand otherwise. Then, in the order of
precedence, comes && and finally ||. In other words, the following two code snippets
are the same:

> false && false || true && true;
true

and

> (false && false) || (true && true);
true

Best practice
Use parentheses instead of relying on operator precedence.
This makes your code easier to read and understand.

Primitive Data Types, Arrays, Loops, and Conditions

[40]

The ECMAScript standard defines the precedence of operators. While it may be a
good memorization exercise, this book doesn't offer it. First of all, you'll forget it,
and second, even if you manage to remember it, you shouldn't rely on it. The person
reading and maintaining your code will likely be confused.

Lazy evaluation
If you have several logical operations one after the other, but the result becomes clear
at some point before the end, the final operations will not be performed because they
don't affect the end result. Consider this:

> true || false || true || false || true;
true

Since these are all OR operations and have the same precedence, the result will be
true if at least one of the operands is true. After the first operand is evaluated, it
becomes clear that the result will be true, no matter what values follow. So, the
JavaScript engine decides to be lazy (OK, efficient) and avoids unnecessary work by
evaluating code that doesn't affect the end result. You can verify this short-circuiting
behavior by experimenting in the console:

> var b = 5;
> true || (b = 6);
true

> b;
5

> true && (b = 6);
6

> b;
6

This example also shows another interesting behavior: if JavaScript encounters a
non-Boolean expression as an operand in a logical operation, the non-Boolean is
returned as a result:

> true || "something";
true

> true && "something";
"something"

> true && "something" && true;
true

Chapter 2

[41]

This behavior is not something you should rely on because it makes the code harder
to understand. It's common to use this behavior to define variables when you're
not sure whether they were previously defined. In the next example, if the variable
mynumber is defined, its value is kept; otherwise, it's initialized with the value 10:

> var mynumber = mynumber || 10;
> mynumber;
10

This is simple and looks elegant, but be aware that it's not completely foolproof. If
mynumber is defined and initialized to 0 (or to any of the six falsy values), this code
might not behave as you expect:

> var mynumber = 0;
> var mynumber = mynumber || 10;
> mynumber;
10

Comparison
There's another set of operators that all return a Boolean value as a result of the
operation. These are the comparison operators. The following table lists them
together with example uses:

Operator symbol Description Example
== Equality comparison: Returns true when

both operands are equal. The operands are
converted to the same type before being
compared. Also called loose comparison.

> 1 == 1;
true
> 1 == 2;
false
> 1 == '1';
true

=== Equality and type comparison: Returns true
if both operands are equal and of the same
type. It's better and safer to compare this
way because there's no behind-the-scenes
type conversions. It is also called strict
comparison.

> 1 === '1';
false
> 1 === 1;
true

Primitive Data Types, Arrays, Loops, and Conditions

[42]

Operator symbol Description Example
!= Non-equality comparison: Returns true

if the operands are not equal to each other
(after a type conversion).

> 1 != 1;
false
> 1 != '1';
false
> 1 != '2';
true

!== Non-equality comparison without type
conversion: Returns true if the operands are
not equal or if they are of different types.

> 1 !== 1;
false
> 1 !== '1';
true

> Returns true if the left operand is greater
than the right one.

> 1 > 1;
false
> 33 > 22;
true

>= Returns true if the left operand is greater
than or equal to the right one.

> 1 >= 1;
true

< Returns true if the left operand is less than
the right one.

> 1 < 1;
false
> 1 < 2;

true

<= Returns true if the left operand is less than
or equal to the right one.

> 1 <= 1;
true
> 1 <= 2;

true

Note that NaN is not equal to anything, not even itself:

> NaN == NaN;
false

Chapter 2

[43]

Undefined and null
If you try to use a non-existing variable, you'll get an error:

> foo;
ReferenceError: foo is not defined

Using the typeof operator on a non-existing variable is not an error. You get the
string "undefined" back:

> typeof foo;
"undefined"

If you declare a variable without giving it a value, this is, of course, not an error.
But, the typeof still returns "undefined":

> var somevar;
> somevar;
> typeof somevar;
"undefined"

This is because when you declare a variable without initializing it, JavaScript
automatically initializes it with the value undefined:

> var somevar;
> somevar === undefined;
true

The null value, on the other hand, is not assigned by JavaScript behind the scenes;
it's assigned by your code:

> var somevar = null;
null

> somevar;
null

> typeof somevar;
"object"

Although the difference between null and undefined is small, it could be critical at
times. For example, if you attempt an arithmetic operation, you get different results:

> var i = 1 + undefined;
> i;
NaN

> var i = 1 + null;
> i;
1

Primitive Data Types, Arrays, Loops, and Conditions

[44]

This is because of the different ways null and undefined are converted to the other
primitive types. The following examples show the possible conversions:

•	 Conversion to a number:
> 1 * undefined;
NaN

> 1 * null;
0

•	 Conversion to a Boolean:
> !!undefined;
false

> !!null;
false

•	 Conversion to a string:
> "value: " + null;
"value: null"

> "value: " + undefined;
"value: undefined"

Primitive data types recap
Let's quickly summarize some of the main points discussed so far:

•	 There are five primitive data types in JavaScript:
°° Number
°° String
°° Boolean
°° Undefined
°° Null

•	 Everything that is not a primitive data type is an object
•	 The primitive number data type can store positive and negative integers

or floats, hexadecimal numbers, octal numbers, exponents, and the special
numbers NaN, Infinity, and –Infinity

•	 The string data type contains characters in quotes
•	 The only values of the Boolean data type are true and false
•	 The only value of the null data type is the value null

Chapter 2

[45]

•	 The only value of the undefined data type is the value undefined
•	 All values become true when converted to a Boolean, with the exception of

the six falsy values:
°° ""

°° null

°° undefined

°° 0

°° NaN

°° false

Arrays
Now that you know about the basic primitive data types in JavaScript, it's time to
move to a more powerful data structure—the array.

So, what is an array? It's simply a list (a sequence) of values. Instead of using one
variable to store one value, you can use one array variable to store any number of
values as elements of the array.

To declare a variable that contains an empty array, you use square brackets with
nothing between them:

> var a = [];

To define an array that has three elements, you do this:

> var a = [1, 2, 3];

When you simply type the name of the array in the console, you get the contents of
your array:

> a;
[1, 2, 3]

Now the question is how to access the values stored in these array elements. The
elements contained in an array are indexed with consecutive numbers starting from
zero. The first element has index (or position) 0, the second has index 1, and so on.
Here's the three-element array from the previous example:

Index Value
0 1

1 2

2 3

Primitive Data Types, Arrays, Loops, and Conditions

[46]

To access an array element, you specify the index of that element inside square
brackets. So, a[0] gives you the first element of the array a, a[1] gives you the
second, and so on:

> a[0];
1

> a[1];
2

Adding/updating array elements
Using the index, you can also update the values of the elements of the array.
The next example updates the third element (index 2) and prints the contents
of the new array:

> a[2] = 'three';
"three"

> a;
[1, 2, "three"]

You can add more elements by addressing an index that didn't exist before:

> a[3] = 'four';
"four"

> a;
[1, 2, "three", "four"]

If you add a new element, but leave a gap in the array, those elements in between
don't exist and return the undefined value if accessed. Check out this example:

> var a = [1, 2, 3];
> a[6] = 'new';
"new"

> a;
[1, 2, 3, undefined x 3, "new"]

Chapter 2

[47]

Deleting elements
To delete an element, you use the delete operator. However, after the deletion, the
length of the array does not change. In a sense, you get a hole in the array:

> var a = [1, 2, 3];
> delete a[1];
true

> a;
[1, undefined, 3]

> typeof a[1];
"undefined"

Arrays of arrays
Arrays can contain all types of values, including other arrays:

> var a = [1, "two", false, null, undefined];
> a;
[1, "two", false, null, undefined]

> a[5] = [1, 2, 3];
[1, 2, 3]

> a;
[1, "two", false, null, undefined, Array[3]]

The Array[3] in the result is clickable in the console and it expands the array values.
Let's see an example where you have an array of two elements, both of them being
other arrays:

> var a = [[1, 2, 3], [4, 5, 6]];
> a;
[Array[3], Array[3]]

The first element of the array is a[0], and it's also an array:

> a[0];
[1, 2, 3]

Primitive Data Types, Arrays, Loops, and Conditions

[48]

To access an element in the nested array, you refer to the element index in another
set of square brackets:

> a[0][0];
1

> a[1][2];
6

Note that you can use the array notation to access individual characters inside
a string:

> var s = 'one';
> s[0];
"o"

> s[1];
"n"

> s[2];
"e"

Array access to strings has been supported by many browsers for
a while (not older IEs), but has been officially recognized only as
late as ECMAScript 5.

There are more ways to have fun with arrays (and you'll get to those in Chapter 4,
Objects), but let's stop here for now, remembering that:

•	 An array is a data store
•	 An array contains indexed elements
•	 Indexes start from zero and increment by one for each element in the array
•	 To access an element of an array, you use its index in square brackets
•	 An array can contain any type of data, including other arrays

Conditions and loops
Conditions provide a simple but powerful way to control the flow of code execution.
Loops allow you to perform repetitive operations with less code. Let's take a look at:

•	 if conditions
•	 switch statements
•	 while, do-while, for, and for-in loops

Chapter 2

[49]

The examples in the following sections require you to switch to the
multiline Firebug console. Or, if you use the WebKit console, use
Shift + Enter instead of Enter to add a new line.

The if condition
Here's a simple example of an if condition:

var result = '', a = 3;
if (a > 2) {
 result = 'a is greater than 2';
}

The parts of the if condition are:

•	 The if statement
•	 A condition in parentheses—"is a greater than 2?"
•	 A block of code wrapped in {} that executes if the condition is satisfied

The condition (the part in parentheses) always returns a Boolean value, and may also
contain the following:

•	 A logical operation: !, &&, or ||
•	 A comparison, such as ===, !=, >, and so on
•	 Any value or variable that can be converted to a Boolean
•	 A combination of the above

The else clause
There can also be an optional else part of the if condition. The else statement is
followed by a block of code that runs if the condition evaluates to false:

if (a > 2) {
 result = 'a is greater than 2';
} else {
 result = 'a is NOT greater than 2';
}

Primitive Data Types, Arrays, Loops, and Conditions

[50]

In between the if and the else, there can also be an unlimited number of else if
conditions. Here's an example:

if (a > 2 || a < -2) {
 result = 'a is not between -2 and 2';
} else if (a === 0 && b === 0) {
 result = 'both a and b are zeros';
} else if (a === b) {
 result = 'a and b are equal';
} else {
 result = 'I give up';
}

You can also nest conditions by putting new conditions within any of the blocks:

if (a === 1) {
 if (b === 2) {
 result = 'a is 1 and b is 2';
 } else {
 result = 'a is 1 but b is definitely not 2';
 }
} else {
 result = 'a is not 1, no idea about b';
}

Code blocks
In the preceding examples, you saw the use of code blocks. Let's take a moment to
clarify what a block of code is, because you use blocks extensively when constructing
conditions and loops.

A block of code consists of zero or more expressions enclosed in curly brackets:

{
 var a = 1;
 var b = 3;
}

You can nest blocks within each other indefinitely:

{
 var a = 1;
 var b = 3;
 var c, d;
 {
 c = a + b;

Chapter 2

[51]

 {
 d = a - b;
 }
 }
}

Best practice tips

•	 Use end-of-line semicolons, as discussed previously in the
chapter. Although the semicolon is optional when you have only
one expression per line, it's good to develop the habit of using
them. For best readability, the individual expressions inside a
block should be placed one per line and separated by semicolons.

•	 Indent any code placed within curly brackets. Some programmers
like one tab indentation, some use four spaces, and some use two
spaces. It really doesn't matter, as long as you're consistent. In the
preceding example, the outer block is indented with two spaces,
the code in the first nested block is indented with four spaces, and
the innermost block is indented with six spaces.

•	 Use curly brackets. When a block consists of only one expression,
the curly brackets are optional, but for readability and
maintainability, you should get into the habit of always using
them, even when they're optional.

Checking if a variable exists
Let's apply the new knowledge about conditions for something practical. It's often
necessary to check whether a variable exists. The laziest way to do this is to simply
put the variable in the condition part of the if, for example, if (somevar) {...}.
But, this is not necessarily the best method. Let's take a look at an example that tests
whether a variable called somevar exists, and if so, sets the result variable to yes:

> var result = '';
> if (somevar) {
 result = 'yes';
 }
ReferenceError: somevar is not defined

> result;
""

Primitive Data Types, Arrays, Loops, and Conditions

[52]

This code obviously works because the end result was not "yes". But firstly, the
code generated an error: somevar is not defined, and you don't want your code to
behave like that. Secondly, just because if (somevar) returns false doesn't mean
that somevar is not defined. It could be that somevar is defined and initialized but
contains a falsy value like false or 0.

A better way to check if a variable is defined is to use typeof:

> var result = "";
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

typeof always returns a string, and you can compare this string with the string
"undefined". Note that the variable somevar may have been declared but not
assigned a value yet, and you'll still get the same result. So, when testing with
typeof like this, you're really testing whether the variable has any value other
than the value undefined:

> var somevar;
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

> somevar = undefined;
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

If a variable is defined and initialized with any value other than undefined, its type
returned by typeof is no longer "undefined":

> somevar = 123;
> if (typeof somevar !== "undefined") {
 result = 'yes';
 }
> result;
"yes"

Chapter 2

[53]

Alternative if syntax
When you have a simple condition, you can consider using an alternative if syntax.
Take a look at this:

var a = 1;
var result = '';
if (a === 1) {
 result = "a is one";
} else {
 result = "a is not one";
}

You can also write this as:

> var a = 1;
> var result = (a === 1) ? "a is one" : "a is not one";

You should only use this syntax for simple conditions. Be careful not to abuse it, as it
can easily make your code unreadable. Here's an example.

Let's say you want to make sure a number is within a certain range, say between
50 and 100:

> var a = 123;
> a = a > 100 ? 100 : a < 50 ? 50: a;
> a;
100

It may not be clear how this code works exactly because of the multiple ?. Adding
parentheses makes it a little clearer:

> var a = 123;
> a = (a > 100 ? 100 : a < 50) ? 50 : a;
> a;
50

> var a = 123;
> a = a > 100 ? 100 : (a < 50 ? 50 : a);
> a;
100

?: is called a ternary operator because it takes three operands.

Primitive Data Types, Arrays, Loops, and Conditions

[54]

Switch
If you find yourself using an if condition and having too many else if parts, you
could consider changing the if to a switch:

var a = '1',
 result = '';
switch (a) {
case 1:
 result = 'Number 1';
 break;
case '1':
 result = 'String 1';
 break;
default:
 result = 'I don\'t know';
 break;
}

The result after executing this is "String 1". Let's see what the parts of a switch are:

•	 The switch statement.
•	 An expression in parentheses. The expression most often contains a variable,

but can be anything that returns a value.
•	 A number of case blocks enclosed in curly brackets.
•	 Each case statement is followed by an expression. The result of the

expression is compared to the expression found after the switch statement. If
the result of the comparison is true, the code that follows the colon after the
case is executed.

•	 There is an optional break statement to signal the end of the case block.
If this break statement is reached, the switch is all done. Otherwise, if the
break is missing, the program execution enters the next case block.

•	 There's an optional default case marked with the default statement and
followed by a block of code. The default case is executed if none of the
previous cases evaluated to true.

Chapter 2

[55]

In other words, the step-by-step procedure for executing a switch statement
is as follows:

1.	 Evaluate the switch expression found in parentheses; remember it.
2.	 Move to the first case and compare its value with the one from step 1.
3.	 If the comparison in step 2 returns true, execute the code in the case block.
4.	 After the case block is executed, if there's a break statement at the end of it,

exit the switch.
5.	 If there's no break or step 2 returned false, move on to the next case block.
6.	 Repeat steps 2 to 5.
7.	 If you are still here (no exit in step 4), execute the code following the

default statement.

Best practice tips

•	 Indent the code that follows the case lines. You can also
indent case from the switch, but that doesn't give you
much in terms of readability.

•	 Don't forget to break.
•	 Sometimes, you may want to omit the break intentionally,

but that's rare. It's called a fall-through and should always
be documented because it may look like an accidental
omission. On the other hand, sometimes you may want to
omit the whole code block following a case and have two
cases sharing the same code. This is fine, but doesn't change
the rule that if there's code that follows a case statement,
this code should end with a break. In terms of indentation,
aligning the break with the case or with the code inside
the case is a personal preference; again, being consistent is
what matters.

•	 Use the default case. This helps you make sure you always
have a meaningful result after the switch statement, even if
none of the cases matches the value being switched.

Primitive Data Types, Arrays, Loops, and Conditions

[56]

Loops
The if-else and switch statements allow your code to take different paths, as if
you're at a crossroad and decide which way to go depending on a condition. Loops,
on the other hand, allow your code to take a few roundabouts before merging back
into the main road. How many repetitions? That depends on the result of evaluating
a condition before (or after) each iteration.

Let's say you are (your program execution is) traveling from A to B. At some point,
you reach a place where you evaluate a condition, C. The result of evaluating C tells
you if you should go into a loop, L. You make one iteration and arrive at C again.
Then, you evaluate the condition once again to see if another iteration is needed.
Eventually, you move on your way to B.

A B

L

C

An infinite loop is when the condition is always true and your code gets stuck in
the loop "forever". This is, of course, a logical error, and you should look out for
such scenarios.

In JavaScript, there are four types of loops:

•	 while loops
•	 do-while loops
•	 for loops
•	 for-in loops

While loops
while loops are the simplest type of iteration. They look like this:

var i = 0;
while (i < 10) {
 i++;
}

Chapter 2

[57]

The while statement is followed by a condition in parentheses and a code block in
curly brackets. As long as the condition evaluates to true, the code block is executed
over and over again.

Do-while loops
do-while loops are a slight variation of while loops. An example is shown
as follows:

var i = 0;
do {
 i++;
} while (i < 10);

Here, the do statement is followed by a code block and a condition after the block.
This means that the code block is always executed, at least once, before the condition
is evaluated.

If you initialize i to 11 instead of 0 in the last two examples, the code block in the
first example (the while loop) will not be executed, and i will still be 11 at the end,
while in the second (the do-while loop), the code block will be executed once and i
will become 12.

For loops
for is the most widely used type of loop, and you should make sure you're
comfortable with this one. It requires just a little bit more in terms of syntax.

A B

L

C

++

0

In addition to the condition C and the code block L, you have the following:

•	 Initialization—code that is executed before you even enter the loop
(marked with 0 in the diagram)

•	 Increment—code that is executed after every iteration (marked with ++ in
the diagram)

Primitive Data Types, Arrays, Loops, and Conditions

[58]

The most widely used for loop pattern is:

•	 In the initialization part, you define a variable (or set the initial value of an
existing variable), most often called i

•	 In the condition part, you compare i to a boundary value, like i < 100
•	 In the increment part, you increase i by 1, like i++

Here's an example:

var punishment = '';
for (var i = 0; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

All three parts (initialization, condition, and increment) can contain multiple
expressions separated by commas. Say you want to rewrite the example and
define the variable punishment inside the initialization part of the loop:

for (var i = 0, punishment = ''; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

Can you move the body of the loop inside the increment part? Yes, you can, especially
as it's a one-liner. This gives you a loop that looks a little awkward, as it has no body.
Note that this is just an intellectual exercise; it's not recommended that you write
awkward-looking code:

for (
 var i = 0, punishment = '';
 i < 100;
 i++, punishment += 'I will never do this again, ') {

 // nothing here

}

These three parts are all optional. Here's another way of rewriting the same example:

var i = 0, punishment = '';
for (;;) {
 punishment += 'I will never do this again, ';
 if (++i == 100) {
 break;
 }
}

Chapter 2

[59]

Although the last rewrite works exactly the same way as the original, it's longer and
harder to read. It's also possible to achieve the same result by using a while loop.
But, for loops make the code tighter and more robust because the mere syntax of
the for loop makes you think about the three parts (initialization, condition, and
increment), and thus helps you reconfirm your logic and avoid situations such as
being stuck in an infinite loop.

The for loops can be nested within each other. Here's an example of a loop that
is nested inside another loop and assembles a string containing 10 rows and 10
columns of asterisks. Think of i being the row and j being the column of an "image":

var res = '\n';
for (var i = 0; i < 10; i++) {
 for (var j = 0; j < 10; j++) {
 res += '* ';
 }
 res += '\n';
}

The result is a string like the following:

"
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
"

Here's another example that uses nested loops and a modulo operation to draw a
snowflake-like result:

var res = '\n', i, j;
for (i = 1; i <= 7; i++) {
 for (j = 1; j <= 15; j++) {
 res += (i * j) % 8 ? ' ' : '*';
 }
 res += '\n';
}

Primitive Data Types, Arrays, Loops, and Conditions

[60]

The result is:

"
 *
 * * *
 *
 * * * * * * *
 *
 * * *
 *
"

For-in loops
The for-in loop is used to iterate over the elements of an array (or an object, as
you'll see later). This is its only use; it cannot be used as a general-purpose repetition
mechanism that replaces for or while. Let's see an example of using a for-in to
loop through the elements of an array. But, bear in mind that this is for informational
purposes only, as for-in is mostly suitable for objects, and the regular for loop
should be used for arrays.

In this example, you iterate over all of the elements of an array and print out the
index (the key) and the value of each element:

// example for information only
// for-in loops are used for objects
// regular for is better suited for arrays

var a = ['a', 'b', 'c', 'x', 'y', 'z'];

var result = '\n';

for (var i in a) {
 result += 'index: ' + i + ', value: ' + a[i] + '\n';
}

The result is:

"
index: 0, value: a
index: 1, value: b
index: 2, value: c
index: 3, value: x
index: 4, value: y
index: 5, value: z
"

Chapter 2

[61]

Comments
One last thing for this chapter: comments. Inside your JavaScript program, you can
put comments. These are ignored by the JavaScript engine and don't have any effect
on how the program works. But, they can be invaluable when you revisit your code
after a few months, or transfer the code to someone else for maintenance.

Two types of comments are allowed:

•	 Single line comments start with // and end at the end of the line.
•	 Multiline comments start with /* and end with */ on the same line or any

subsequent line. Note that any code in between the comment start and the
comment end is ignored.

Some examples are as follows:

// beginning of line

var a = 1; // anywhere on the line

/* multi-line comment on a single line */

/*
 comment that spans several lines
*/

There are even utilities, such as JSDoc and YUIDoc, that can parse your code and
extract meaningful documentation based on your comments.

Summary
In this chapter, you learned a lot about the basic building blocks of a JavaScript
program. Now you know the primitive data types:

•	 Number
•	 String
•	 Boolean
•	 Undefined
•	 Null

Primitive Data Types, Arrays, Loops, and Conditions

[62]

You also know quite a few operators:

•	 Arithmetic operators: +, -, *, /, and %
•	 Increment operators: ++ and --
•	 Assignment operators: =, +=, -=, *=, /=, and %=
•	 Special operators: typeof and delete
•	 Logical operators: &&, ||, and !
•	 Comparison operators: ==, ===, !=, !==, <, >, >=, and <=
•	 The ternary operator ?:

Then, you learned how to use arrays to store and access data, and finally you saw
different ways to control the flow of your program—using conditions (if-else or
switch) and loops (while, do-while, for, and for-in).

This is quite a bit of information; now take a moment to go through the exercises
below, then give yourself a well-deserved pat on the back before diving into the
next chapter. More fun is coming up!

Exercises
1.	 What is the result of executing each of these lines in the console? Why?

> var a; typeof a;
> var s = '1s'; s++;
> !!"false";
> !!undefined;
> typeof -Infinity;
> 10 % "0";
> undefined == null;
> false === "";
> typeof "2E+2";
> a = 3e+3; a++;

2.	 What is the value of v after the following?
> var v = v || 10;

Experiment by first setting v to 100, 0, or null.

3.	 Write a small program that prints out the multiplication table. Hint: use a
loop nested inside another loop.

Functions
Mastering functions is an important skill when you learn any programming language,
and even more so when it comes to JavaScript. This is because JavaScript has many
uses for functions, and much of the language's flexibility and expressiveness comes
from them. Where most programming languages have a special syntax for some
object-oriented features, JavaScript just uses functions. This chapter will cover:

•	 How to define and use a function
•	 Passing arguments to a function
•	 Predefined functions that are available to you "for free"
•	 The scope of variables in JavaScript
•	 The concept that functions are just data, albeit a special type of data

Understanding these topics will provide a solid base that will allow you to dive
into the second part of the chapter, which shows some interesting applications
of functions:

•	 Using anonymous functions
•	 Callbacks
•	 Immediate (self-invoking) functions
•	 Inner functions (functions defined inside other functions)
•	 Functions that return functions
•	 Functions that redefine themselves
•	 Closures

Functions

[64]

What is a function?
Functions allow you to group together some code, give this code a name, and reuse it
later, addressing it by the name you gave it. Let's see an example:

function sum(a, b) {
 var c = a + b;
 return c;
}

The parts that make up a function are shown as follows:

•	 The function statement.
•	 The name of the function, in this case sum.
•	 The function parameters, in this case a and b. A function can take any

number of parameters, separated by commas.
•	 A code block, also called the body of the function.
•	 The return statement. A function always returns a value. If it doesn't return

a value explicitly, it implicitly returns the value undefined.

Note that a function can only return a single value. If you need to return more
values, you can simply return an array that contains all of the values you need as
elements of this array.

The preceding syntax is called a function declaration. It's just one of the ways to
create a function in JavaScript, and more ways are coming up.

Calling a function
In order to make use of a function, you need to call it. You call a function simply
by using its name optionally followed by any number of values in parentheses. "To
invoke" a function is another way of saying "to call".

Let's call the function sum(), passing two arguments and assigning the value that the
function returns to the variable result:

> var result = sum(1, 2);
> result;
3

Chapter 3

[65]

Parameters
When defining a function, you can specify what parameters the function expects to
receive when it's called. A function may not require any parameters, but if it does
and you forget to pass them, JavaScript will assign the value undefined to the ones
you skipped. In the next example, the function call returns NaN because it tries to sum
1 and undefined:

> sum(1);
NaN

Technically speaking, there is a difference between parameters and arguments,
although the two are often used interchangeably. Parameters are defined together
with the function, while arguments are passed to the function when it's called.
Consider this:

> function sum(a, b) {
 return a + b;
 }
> sum(1, 2);

Here, a and b are parameters, while 1 and 2 are arguments.

JavaScript is not picky at all when it comes to accepting arguments. If you pass more
than the function expects, the extra ones will be silently ignored:

> sum(1, 2, 3, 4, 5);
3

What's more, you can create functions that are flexible about the number of
parameters they accept. This is possible thanks to the special value arguments that
is created automatically inside each function. Here's a function that simply returns
whatever arguments are passed to it:

> function args() {
 return arguments;
 }
> args();
[]

> args(1, 2, 3, 4, true, 'ninja');
[1, 2, 3, 4, true, "ninja"]

Functions

[66]

By using arguments, you can improve the sum() function to accept any number of
arguments and add them all up:

function sumOnSteroids() {
 var i,
 res = 0,
 number_of_params = arguments.length;
 for (i = 0; i < number_of_params; i++) {
 res += arguments[i];
 }
 return res;
}

If you test this function by calling it with a different number of arguments (or even
none at all), you can verify that it works as expected:

> sumOnSteroids(1, 1, 1);
3

> sumOnSteroids(1, 2, 3, 4);
10

> sumOnSteroids(1, 2, 3, 4, 4, 3, 2, 1);
20

> sumOnSteroids(5);
5

> sumOnSteroids();
0

The expression arguments.length returns the number of arguments passed when
the function was called. Don't worry if the syntax is unfamiliar, we'll examine it in
detail in the next chapter. You'll also see that arguments is not an array (although it
sure looks like one), but an array-like object.

Predefined functions
There are a number of functions that are built into the JavaScript engine and are
available for you to use. Let's take a look at them. While doing so, you'll have a
chance to experiment with functions, their arguments and return values, and become
comfortable working with functions. Following is a list of the built-in functions:

•	 parseInt()

•	 parseFloat()

•	 isNaN()

Chapter 3

[67]

•	 isFinite()

•	 encodeURI()

•	 decodeURI()

•	 encodeURIComponent()

•	 decodeURIComponent()

•	 eval()

The black box function
Often, when you invoke functions, your program doesn't need to
know how these functions work internally. You can think of a function
as a black box: you give it some values (as input arguments) and then
you take the output result it returns. This is true for any function—one
that's built into the JavaScript engine, one that you create, or one that a
co-worker or someone else created.

parseInt()
parseInt() takes any type of input (most often a string) and tries to make an integer
out of it. If it fails, it returns NaN:

> parseInt('123');
123

> parseInt('abc123');
NaN

> parseInt('1abc23');
1

> parseInt('123abc');
123

The function accepts an optional second parameter, which is the radix, telling the
function what type of number to expect—decimal, hexadecimal, binary, and so on.
For example, trying to extract a decimal number out of the string FF makes no sense,
so the result is NaN, but if you try FF as a hexadecimal, then you get 255:

> parseInt('FF', 10);
NaN

> parseInt('FF', 16);
255

Functions

[68]

Another example would be parsing a string with a base 10 (decimal) and
base 8 (octal):

> parseInt('0377', 10);
377

> parseInt('0377', 8);
255

If you omit the second argument when calling parseInt(), the function will
assume 10 (a decimal), with these exceptions:

•	 If you pass a string beginning with 0x, then the radix is assumed to be 16
(a hexadecimal number is assumed).

•	 If the string you pass starts with 0, the function assumes radix 8 (an octal
number is assumed). Consider the following examples:
> parseInt('377');
377

> parseInt('0377');
255

> parseInt('0x377');
887

The safest thing to do is to always specify the radix. If you omit the radix, your
code will probably still work in 99 percent of cases (because most often you parse
decimals), but every once in a while it might cause you a bit of hair loss while
debugging some edge cases. For example, imagine you have a form field that
accepts calendar days or months and the user types 06 or 08.

ECMAScript 5 removes the octal literal values and avoids
the confusion with parseInt() and unspecified radix.

parseFloat()
parseFloat() is similar to parseInt(), but it also looks for decimals when trying to
figure out a number from your input. This function takes only one parameter:

> parseFloat('123');
123

> parseFloat('1.23');
1.23

Chapter 3

[69]

> parseFloat('1.23abc.00');
1.23

> parseFloat('a.bc1.23');
NaN

As with parseInt(), parseFloat() gives up at the first occurrence of an
unexpected character, even though the rest of the string might have usable
numbers in it:

> parseFloat('a123.34');
NaN

> parseFloat('12a3.34');
12

parseFloat() understands exponents in the input (unlike parseInt()):

> parseFloat('123e-2');
1.23

> parseFloat('1e10');
10000000000

> parseInt('1e10');
1

isNaN()
Using isNaN(), you can check if an input value is a valid number that can safely
be used in arithmetic operations. This function is also a convenient way to check
whether parseInt() or parseFloat() (or any arithmetic operation) succeeded:

> isNaN(NaN);
true

> isNaN(123);
false

> isNaN(1.23);
false

> isNaN(parseInt('abc123'));
true

Functions

[70]

The function will also try to convert the input to a number:

> isNaN('1.23');
false

> isNaN('a1.23');
true

The isNaN() function is useful because the special value NaN is not equal to anything
including itself. In other words, NaN === NaN is false. So, NaN cannot be used to
check if a value is a valid number.

isFinite()
isFinite() checks whether the input is a number that is neither Infinity nor NaN:

> isFinite(Infinity);
false

> isFinite(-Infinity);
false

> isFinite(12);
true

> isFinite(1e308);
true

> isFinite(1e309);
false

If you are wondering about the results returned by the last two calls,
remember from the previous chapter that the biggest number in JavaScript
is 1.7976931348623157e+308, so 1e309 is effectively infinity.

Encode/decode URIs
In a Uniform Resource Locator (URL) or a Uniform Resource Identifier (URI), some
characters have special meanings. If you want to "escape" those characters, you can
use the functions encodeURI() or encodeURIComponent(). The first one will return
a usable URL, while the second one assumes you're only passing a part of the URL,
such as a query string for example, and will encode all applicable characters:

> var url = 'http://www.packtpub.com/script.php?q=this and that';
> encodeURI(url);
"http://www.packtpub.com/scr%20ipt.php?q=this%20and%20that"

Chapter 3

[71]

> encodeURIComponent(url);
"http%3A%2F%2Fwww.packtpub.com%2Fscr%20ipt.php%3Fq%3Dthis%20and%20that"

The opposites of encodeURI() and encodeURIComponent() are decodeURI() and
decodeURIComponent() respectively.

Sometimes, in legacy code, you might see the functions escape() and unescape()
used to encode and decode URLs, but these functions have been deprecated; they
encode differently and should not be used.

eval()
eval() takes a string input and executes it as a JavaScript code:

> eval('var ii = 2;');
> ii;
2

So, eval('var ii = 2;') is the same as var ii = 2;.

eval() can be useful sometimes, but should be avoided if there are other options.
Most of the time there are alternatives, and in most cases the alternatives are more
elegant and easier to write and maintain. "Eval is evil" is a mantra you can often hear
from seasoned JavaScript programmers. The drawbacks of using eval() are:

•	 Security – JavaScript is powerful, which also means it can cause damage. If
you don't trust the source of the input you pass to eval(), just don't use it.

•	 Performance – It's slower to evaluate "live" code than to have the code
directly in the script.

A bonus – the alert() function
Let's take a look at another common function—alert(). It's not part of the core
JavaScript (it's nowhere to be found in the ECMA specification), but it's provided
by the host environment—the browser. It shows a string of text in a message box. It
can also be used as a primitive debugging tool, although the debuggers in modern
browsers are much better suited for this purpose.

Here's a screenshot showing the result of executing the code alert("hello!"):

Functions

[72]

Before using this function, bear in mind that it blocks the browser thread, meaning
that no other code will be executed until the user closes the alert. If you have a busy
Ajax-type application, it's generally not a good idea to use alert().

Scope of variables
It's important to note, especially if you have come to JavaScript from another
language, that variables in JavaScript are not defined in a block scope, but in a
function scope. This means that if a variable is defined inside a function, it's not
visible outside of the function. However, if it's defined inside an if or a for code
block, it's visible outside the block. The term "global variables" describes variables
you define outside of any function (in the global program code), as opposed to "local
variables", which are defined inside a function. The code inside a function has access
to all global variables as well as to its own local ones.

In the next example:

•	 The f()function has access to the global variable
•	 Outside the f()function, the local variable doesn't exist

var global = 1;
function f() {
 var local = 2;
 global++;
 return global;
}

Let's test this:

> f();
2

> f();
3

> local;
ReferenceError: local is not defined

Chapter 3

[73]

It's also important to note that if you don't use var to declare a variable, this variable
is automatically assigned a global scope. Let's see an example:

What happened? The function f()contains the variable local. Before calling the
function, the variable doesn't exist. When you call the function for the first time, the
variable local is created with a global scope. Then, if you access local outside the
function, it will be available.

Best practice tips
•	 Minimize the number of global variables in order to avoid

naming collisions. Imagine two people working on two
different functions in the same script, and they both decide to
use the same name for their global variable. This could easily
lead to unexpected results and hard-to-find bugs.

•	 Always declare your variables with the var statement.
•	 Consider a "single var" pattern. Define all variables needed

in your function at the very top of the function so you have
a single place to look for variables and hopefully prevent
accidental globals.

Functions

[74]

Variable hoisting
Here's an interesting example that shows an important aspect of local versus global
scoping:

var a = 123;

function f() {
 alert(a);
 var a = 1;
 alert(a);
}

f();

You might expect that the first alert() will display 123 (the value of the global
variable a) and the second will display 1 (the local variable a). But, this is not the
case. The first alert will show undefined. This is because inside the function the local
scope is more important than the global scope. So, a local variable overwrites any
global variable with the same name. At the time of the first alert(), the variable a
was not yet defined (hence the value undefined), but it still existed in the local space
due to the special behavior called hoisting.

When your JavaScript program execution enters a new function, all the variables
declared anywhere in the function are moved (or elevated, or hoisted) to the top
of the function. This is an important concept to keep in mind. Further, only the
declaration is hoisted, meaning only the presence of the variable is moved to the top.
Any assignments stay where they are. In the preceding example, the declaration of
the local variable a was hoisted to the top. Only the declaration was hoisted, but not
the assignment to 1. It's as if the function was written like this:

var a = 123;

function f() {
 var a; // same as: var a = undefined;
 alert(a); // undefined
 a = 1;
 alert(a); // 1
}

You can also adopt the single var pattern mentioned previously in the best practice
section. In this case, you'll be doing a sort of manual variable hoisting to prevent
confusion with the JavaScript hoisting behavior.

Chapter 3

[75]

Functions are data
Functions in JavaScript are actually data. This is an important concept that we'll need
later on. This means that you can create a function and assign it to a variable:

var f = function () {
 return 1;
};

This way of defining a function is sometimes referred to as function literal notation.

The part function () { return 1; } is a function expression. A function
expression can optionally have a name, in which case it becomes a named function
expression (NFE). So, this is also allowed, although rarely seen in practice (and
causes IE to mistakenly create two variables in the enclosing scope: f and myFunc):

var f = function myFunc() {
 return 1;
};

As you can see, there's no difference between a named function expression and a
function declaration. But they are, in fact, different. The only way to distinguish
between the two is to look at the context in which they are used. Function
declarations may only appear in program code (in a body of another function or in
the main program). You'll see many more examples of functions later on in the book
that will clarify these concepts.

When you use the typeof operator on a variable that holds a function value, it
returns the string "function":

> function define() {
 return 1;
 }

> var express = function () {
 return 1;
 };

> typeof define;
"function"

> typeof express;
"function"

Functions

[76]

So, JavaScript functions are data, but a special kind of data with two
important features:

•	 They contain code
•	 They are executable (they can be invoked)

As you have seen before, the way to execute a function is by adding parentheses
after its name. As the next example demonstrates, this works regardless of how the
function was defined. In the example, you can also see how a function is treated as a
regular value: it can be copied to a different variable:

> var sum = function (a, b) {
 return a + b;
 };

> var add = sum;
> typeof add;
function

> add(1, 2);
3

Because functions are data assigned to variables, the same rules for naming functions
apply as for naming variables—a function name cannot start with a number and it
can contain any combination of letters, numbers, the underscore character, and the
dollar sign.

Anonymous functions
As you now know, there exists a function expression syntax where you can have a
function defined like this:

var f = function (a) {
 return a;
};

This is also often called an anonymous function (as it doesn't have a name),
especially when such a function expression is used even without assigning it to a
variable. In this case, there can be two elegant uses for such anonymous functions:

•	 You can pass an anonymous function as a parameter to another function. The
receiving function can do something useful with the function that you pass.

•	 You can define an anonymous function and execute it right away.

Let's see these two applications of anonymous functions in more detail.

Chapter 3

[77]

Callback functions
Because a function is just like any other data assigned to a variable, it can be defined,
copied, and also passed as an argument to other functions.

Here's an example of a function that accepts two functions as parameters, executes
them, and returns the sum of what each of them returns:

function invokeAdd(a, b) {
 return a() + b();
}

Now let's define two simple additional functions (using a function declaration
pattern) that only return hardcoded values:

function one() {
 return 1;
}

function two() {
 return 2;
}

Now you can pass those functions to the original function, invokeAdd(),
and get the result:

> invokeAdd(one, two);
3

Another example of passing a function as a parameter is to use anonymous functions
(function expressions). Instead of defining one() and two(), you can simply do the
following:

> invokeAdd(function () {return 1; }, function () {return 2; });
3

Or, you can make it more readable as shown in the following code:

> invokeAdd(
 function () { return 1; },
 function () { return 2; }
);
3

Functions

[78]

Or, you can do the following:

> invokeAdd(
 function () {
 return 1;
 },
 function () {
 return 2;
 }
);
3

When you pass a function, A, to another function, B, and then B executes A, it's often
said that A is a callback function. If A doesn't have a name, then you can say that it's
an anonymous callback function.

When are callback functions useful? Let's see some examples that demonstrate the
benefits of callback functions, namely:

•	 They let you pass functions without the need to name them (which means
there are fewer variables floating around)

•	 You can delegate the responsibility of calling a function to another function
(which means there is less code to write)

•	 They can help with performance

Callback examples
Take a look at this common scenario: you have a function that returns a value,
which you then pass to another function. In our example, the first function,
multiplyByTwo(), accepts three parameters, loops through them, multiplies them
by two, and returns an array containing the result. The second function, addOne(),
takes a value, adds one to it, and returns it:

function multiplyByTwo(a, b, c) {
 var i, ar = [];
 for (i = 0; i < 3; i++) {
 ar[i] = arguments[i] * 2;
 }
 return ar;
}

function addOne(a) {
 return a + 1;
}

Chapter 3

[79]

Let's test these functions:

> multiplyByTwo(1, 2, 3);
[2, 4, 6]

> addOne(100);
101

Now let's say you want to have an array, myarr, that contains three elements, and
each of the elements is to be passed through both functions. First, let's start with a
call to multiplyByTwo():

> var myarr = [];
> myarr = multiplyByTwo(10, 20, 30);
[20, 40, 60]

Now loop through each element, passing it to addOne():

> for (var i = 0; i < 3; i++) {
 myarr[i] = addOne(myarr[i]);
 }
> myarr;
[21, 41, 61]

As you can see, everything works fine, but there's room for improvement. For
example: there were two loops. Loops can be expensive if they go through a lot
of repetitions. You can achieve the same result with only one loop. Here's how to
modify multiplyByTwo() so that it accepts a callback function and invokes that
callback on every iteration:

function multiplyByTwo(a, b, c, callback) {
 var i, ar = [];
 for (i = 0; i < 3; i++) {
 ar[i] = callback(arguments[i] * 2);
 }
 return ar;
}

By using the modified function, all the work is done with just one function call,
which passes the start values and the callback function:

> myarr = multiplyByTwo(1, 2, 3, addOne);
[3, 5, 7]

Functions

[80]

Instead of defining addOne(), you can use an anonymous function, therefore saving
an extra global variable:

> multiplyByTwo(1, 2, 3, function (a) {
 return a + 1;
 });
[3, 5, 7]

Anonymous functions are easy to change should the need arise:

> multiplyByTwo(1, 2, 3, function (a) {
 return a + 2;
 });
[4, 6, 8]

Immediate functions
So far, we have discussed using anonymous functions as callbacks. Let's see another
application of an anonymous function: calling a function immediately after it's
defined. Here's an example:

(
 function () {
 alert('boo');
 }
)();

The syntax may look a little scary at first, but all you do is simply place a function
expression inside parentheses followed by another set of parentheses. The second set
says "execute now" and is also the place to put any arguments that your anonymous
function might accept:

(
 function (name) {
 alert('Hello ' + name + '!');
 }
)('dude');

Alternatively, you can move the closing of the first set of parentheses to the end. Both
of these work:

(function () {
 // ...
}());

Chapter 3

[81]

// vs.

(function () {
 // ...
})();

One good application of immediate (self-invoking) anonymous functions is
when you want to have some work done without creating extra global variables.
A drawback, of course, is that you cannot execute the same function twice. This
makes immediate functions best suited for one-off or initialization tasks.

An immediate function can also optionally return a value if you need one. It's not
uncommon to see code that looks like the following:

var result = (function () {
 // something complex with
 // temporary local variables...
 // ...

 // return something;
}());

In this case, you don't need to wrap the function expression in parentheses, you only
need the parentheses that invoke the function. So, the following also works:

var result = function () {
 // something complex with
 // temporary local variables
 // return something;
}();

This syntax works, but may look slightly confusing: without reading the end of
the function, you don't know if result is a function or the return value of the
immediate function.

Inner (private) functions
Bearing in mind that a function is just like any other value, there's nothing that stops
you from defining a function inside another function:

function outer(param) {
 function inner(theinput) {
 return theinput * 2;
 }
 return 'The result is ' + inner(param);
}

Functions

[82]

Using a function expression, this can also be written as:

var outer = function (param) {
 var inner = function (theinput) {
 return theinput * 2;
 };
 return 'The result is ' + inner(param);
};

When you call the global function outer(), it will internally call the local function
inner(). Since inner() is local, it's not accessible outside outer(), so you can say
it's a private function:

> outer(2);
"The result is 4"

> outer(8);
"The result is 16"

> inner(2);
ReferenceError: inner is not defined

The benefits of using private functions are as follows:

•	 You keep the global namespace clean (less likely to cause naming collisions)
•	 Privacy—you expose only the functions you decide to the "outside world",

keeping to yourself functionality that is not meant to be consumed by the rest
of the application

Functions that return functions
As mentioned earlier, a function always returns a value, and if it doesn't do it
explicitly with return, then it does so implicitly by returning undefined. A function
can return only one value, and this value can just as easily be another function:

function a() {
 alert('A!');
 return function () {
 alert('B!');
 };
}

In this example, the function a() does its job (says A!) and returns another function
that does something else (says B!). You can assign the return value to a variable and
then use this variable as a normal function:

> var newFunc = a();
> newFunc();

Chapter 3

[83]

Here, the first line will alert A! and the second will alert B!.

If you want to execute the returned function immediately without assigning it to a
new variable, you can simply use another set of parentheses. The end result will be
the same:

> a()();

Function, rewrite thyself!
Because a function can return a function, you can use the new function to replace the
old one. Continuing with the previous example, you can take the value returned by
the call to a() to overwrite the actual a() function:

> a = a();

The above alerts A!, but the next time you call a() it alerts B!. This is useful when a
function has some initial one-off work to do. The function overwrites itself after the
first call in order to avoid doing unnecessary repetitive work every time it's called.

In the preceding example, the function was redefined from the outside—the returned
value was assigned back to the function. But, the function can actually rewrite itself
from the inside:

function a() {
 alert('A!');
 a = function () {
 alert('B!');
 };
}

If you call this function for the first time, it will:

•	 Alert A! (consider this as being the one-off preparatory work)
•	 Redefine the global variable a, assigning a new function to it

Every subsequent time that the function is called, it will alert B!

Here's another example that combines several of the techniques discussed in the last
few sections of this chapter:

var a = (function () {

 function someSetup() {

Functions

[84]

 var setup = 'done';
 }

 function actualWork() {
 alert('Worky-worky');
 }

 someSetup();
 return actualWork;

}());

In this example:

•	 You have private functions: someSetup() and actualWork().
•	 You have an immediate function: an anonymous function that calls itself

using the parentheses following its definition.
•	 The function executes for the first time, calls someSetup(), and then returns

a reference to the variable actualWork, which is a function. Notice that
there are no parentheses in the return statement, because you're returning a
function reference, not the result of invoking this function.

•	 Because the whole thing starts with var a =, the value returned by the
self-invoked function is assigned to a.

If you want to test your understanding of the topics just discussed, answer the
following questions. What will the preceding code alert when:

•	 It is initially loaded?
•	 You call a() afterwards?

These techniques could be really useful when working in the browser environment.
Different browsers can have different ways of achieving the same result. If you
know that the browser features won't change between function calls, you can have a
function determine the best way to do the work in the current browser, then redefine
itself so that the "browser capability detection" is done only once. You'll see concrete
examples of this scenario later in this book.

Chapter 3

[85]

Closures
The rest of the chapter is about closures (what better way to close a chapter?).
Closures can be a little hard to grasp initially, so don't feel discouraged if you don't
"get it" during the first read. You should go through the rest of the chapter and
experiment with the examples on you own, but if you feel you don't fully understand
the concept, you can come back to it later when the topics discussed previously in
this chapter have had a chance to sink in.

Before moving on to closures, let's first review and expand on the concept of scope
in JavaScript.

Scope chain
As you know, in JavaScript, there is no curly braces scope, but there is function
scope. A variable defined in a function is not visible outside the function, but a
variable defined in a code block (for example an if or a for loop) is visible outside
the block:

> var a = 1;
> function f() {
 var b = 1;
 return a;
 }
> f();
1

> b;
ReferenceError: b is not defined

The variable a is in the global space, while b is in the scope of the function f(). So:

•	 Inside f(), both a and b are visible
•	 Outside f(), a is visible, but b is not

If you define a function inner() nested inside outer(), inner() will have access to
variables in its own scope, plus the scope of its "parents". This is known as a scope
chain, and the chain can be as long (deep) as you need it to be:

var global = 1;
function outer() {
 var outer_local = 2;
 function inner() {
 var inner_local = 3;
 return inner_local + outer_local + global;

Functions

[86]

 }
 return inner();
}

Let's test that inner() has access to all variables:

> outer();
6

Breaking the chain with a closure
Let's introduce closures with an illustration. Let's look at this code and see what's
happening there:

var a = "global variable";
var F = function () {
 var b = "local variable";
 var N = function () {
 var c = "inner local";
 };
};

First, there is the global scope G. Think of it as the universe, as if it contains everything:

G

a1

a4

a2
a3

You are here

Chapter 3

[87]

It can contain global variables such as a1 and a2 and global functions such as F:

G

F

a

Functions have their own private space and can use it to store other variables such as
b and inner functions such as N (for iNNer). At some point, you end up with a picture
like this:

G

F

a
N

b c

If you're at point a, you're inside the global space. If you're at point b, which is inside
the space of the function F, then you have access to the global space and to the F
space. If you're at point c, which is inside the function N, then you can access the
global space, the F space, and the N space. You cannot reach from a to b, because b
is invisible outside F. But, you can get from c to b if you want, or from N to b. The
interesting part—the closure effect—happens when somehow N breaks out of F and
ends up in the global space:

G

F

a

N
b

c

Functions

[88]

What happens then? N is in the same global space as a. And, as functions remember
the environment in which they were defined, N will still have access to the F space,
and hence can access b. This is interesting, because N is where a is and yet N does
have access to b, but a doesn't.

And how does N break the chain? By making itself global (omitting var) or by having
F deliver (or return) it to the global space. Let's see how this is done in practice.

Closure #1
Take a look at this function, which is the same as before, only F returns N and also N
returns b, to which it has access via the scope chain:

var a = "global variable";
var F = function () {
 var b = "local variable";
 var N = function () {
 var c = "inner local";
 return b;
 };
 return N;
};

The function F contains the variable b, which is local, and therefore inaccessible from
the global space:

> b;
ReferenceError: b is not defined

The function N has access to its private space, to the F() function's space, and to the
global space. So, it can see b. Since F() is callable from the global space (it's a global
function), you can call it and assign the returned value to another global variable.
The result: a new global function that has access to the F() function's private space:

> var inner = F();
> inner();
"local variable"

Closure #2
The final result of the next example will be the same as the previous example, but
the way to achieve it is a little different. F() doesn't return a function, but instead it
creates a new global function, inner(), inside its body.

Chapter 3

[89]

Let's start by declaring a placeholder for the global function-to-be. This is optional,
but it's always good to declare your variables. Then, you can define the function F()
as follows:

var inner; // placeholder
var F = function () {
 var b = "local variable";
 var N = function () {
 return b;
 };
 inner = N;
};

Now what happens if you invoke F()?:

> F();

A new function, N(),is defined inside F() and assigned to the global inner. During
definition time, N() was inside F(), so it had access to the F() function's scope.
inner() will keep its access to the F() function's scope, even though it's part of the
global space:

> inner();
"local variable".

A definition and closure #3
Every function can be considered a closure. This is because every function maintains
a secret link to the environment (the scope) in which it was created. But, most of the
time this scope is destroyed unless something interesting happens (as shown above)
that causes this scope to be maintained.

Based on what you've seen so far, you can say that a closure is created when a
function keeps a link to its parent scope even after the parent has returned. And,
every function is a closure because, at the very least, every function maintains
access to the global scope, which is never destroyed.

Let's see one more example of a closure, this time using the function parameters.
Function parameters behave like local variables to this function, but they are
implicitly created (you don't need to use var for them). You can create a function
that returns another function, which in turn returns its parent's parameter:

function F(param) {
 var N = function () {
 return param;
 };

Functions

[90]

 param++;
 return N;
}

You use the function like this:

> var inner = F(123);
> inner();
124

Notice how param++ was incremented after the function was defined and yet, when
called, inner() returned the updated value. This demonstrates that the function
maintains a reference to the scope where it was defined, not to the variables and their
values found in the scope during the function definition.

Closures in a loop
Let's take a look at a canonical rookie mistake when it comes to closures. It can easily
lead to hard-to-spot bugs, because on the surface, everything looks normal.

Let's loop three times, each time creating a new function that returns the loop
sequence number. The new functions will be added to an array and the array is
returned at the end. Here's the function:

function F() {
 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = function () {
 return i;
 };
 }
 return arr;
}

Let's run the function, assigning the result to the array arr:

> var arr = F();

Now you have an array of three functions. Let's invoke them by adding parentheses
after each array element. The expected behavior is to see the loop sequence printed
out: 0, 1, and 2. Let's try:

> arr[0]();
3

> arr[1]();
3

Chapter 3

[91]

> arr[2]();
3

Hmm, not quite as expected. What happened here? All three functions point to the
same local variable i. Why? The functions don't remember values, they only keep a
link (reference) to the environment where they were created. In this case, the variable
i happens to live in the environment where the three functions were defined. So, all
functions, when they need to access the value, reach back to the environment and
find the most current value of i. After the loop, the i variable's value is 3. So, all
three functions point to the same value.

Why three and not two is another good question to think about for better
understanding the for loop.

So, how do you implement the correct behavior? The answer is to use another closure:

function F() {
 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = (function (x) {
 return function () {
 return x;
 };
 }(i));
 }
 return arr;
}

This gives you the expected result:

> var arr = F();
> arr[0]();
0

> arr[1]();
1

> arr[2]();
2

Here, instead of just creating a function that returns i, you pass the i variable's
current value to another immediate function. In this function, i becomes the local
value x, and x has a different value every time.

Functions

[92]

Alternatively, you can use a "normal" (as opposed to an immediate) inner function to
achieve the same result. The key is to use the middle function to "localize" the value
of i at every iteration:

function F() {

 function binder(x) {
 return function () {
 return x;
 };
 }

 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = binder(i);
 }
 return arr;
}

Getter/setter
Let's see two more examples of using closures. The first one involves the creation
of getter and setter functions. Imagine you have a variable that should contain a
specific type of values or a specific range of values. You don't want to expose this
variable because you don't want just any part of the code to be able to alter its value.
You protect this variable inside a function and provide two additional functions:
one to get the value and one to set it. The one that sets it could contain some logic
to validate a value before assigning it to the protected variable. Let's make the
validation part simple (for the sake of keeping the example short) and only accept
number values.

You place both the getter and the setter functions inside the same function that
contains the secret variable so that they share the same scope:

var getValue, setValue;

(function () {

 var secret = 0;

 getValue = function () {

Chapter 3

[93]

 return secret;
 };

 setValue = function (v) {
 if (typeof v === "number") {
 secret = v;
 }
 };

}());

In this case, the function that contains everything is an immediate function. It defines
setValue() and getValue() as global functions, while the secret variable remains
local and inaccessible directly:

> getValue();
0

> setValue(123);
> getValue();
123

> setValue(false);
> getValue();
123

Iterator
The last closure example (also the last example in the chapter) shows the use of a
closure to accomplish an iterator functionality.

You already know how to loop through a simple array, but there might be cases
where you have a more complicated data structure with different rules as to what
the sequence of values has. You can wrap the complicated "who's next" logic into an
easy-to-use next() function. Then, you simply call next() every time you need the
consecutive value.

For this example, let's just use a simple array and not a complex data structure.
Here's an initialization function that takes an input array and also defines a secret
pointer, i, that will always point to the next element in the array:

function setup(x) {
 var i = 0;
 return function () {
 return x[i++];
 };
}

Functions

[94]

Calling the setup() function with a data array will create the next() function
for you:

> var next = setup(['a', 'b', 'c']);

From there it's easy and fun: calling the same function over and over again gives you
the next element:

> next();
"a"

> next();
"b"

> next();
"c"

Summary
You have now completed the introduction to the fundamental concepts related to
functions in JavaScript. You've been laying the groundwork that will allow you to
quickly grasp the concepts of object-oriented JavaScript and the patterns used in
modern JavaScript programming. So far, we've been avoiding the OO features, but as
you have reached this point in the book, it's only going to get more interesting from
here on in. Let's take a moment and review the topics discussed in this chapter:

•	 The basics of how to define and invoke (call) a function using either a
function declaration syntax or a function expression

•	 Function parameters and their flexibility
•	 Built-in functions—parseInt(), parseFloat(), isNaN(), isFinite(), and

eval()—and the four functions to encode/decode a URL
•	 The scope of variables in JavaScript—no curly braces scope, variables have

only function scope and the scope chain
•	 Functions as data—a function is like any other piece of data that you assign

to a variable and a lot of interesting applications follow from this, such as:
°° Private functions and private variables
°° Anonymous functions
°° Callbacks
°° Immediate functions
°° Functions overwriting themselves

•	 Closures

Chapter 3

[95]

Exercises
1.	 Write a function that converts a hexadecimal color, for example blue

(#0000FF), into its RGB representation rgb(0, 0, 255). Name your
function getRGB() and test it with the following code. Hint: treat the
string as an array of characters:
> var a = getRGB("#00FF00");
> a;
"rgb(0, 255, 0)"

2.	 What do each of these lines print in the console?
> parseInt(1e1);
> parseInt('1e1');
> parseFloat('1e1');
> isFinite(0/10);
> isFinite(20/0);
> isNaN(parseInt(NaN));

3.	 What does this following code alert?
var a = 1;

function f() {
 function n() {
 alert(a);
 }
 var a = 2;
 n();
}

f();

4.	 All these examples alert "Boo!". Can you explain why?
°° Example 1:

var f = alert;
eval('f("Boo!")');

°° Example 2:
var e;
var f = alert;
eval('e=f')('Boo!');

°° Example 3:
(function(){
 return alert;}
)()('Boo!');

Objects
Now that you've mastered JavaScript's primitive data types, arrays, and functions,
it's time to make true to the promise of the book title and talk about objects.

In this chapter, you will learn:

•	 How to create and use objects
•	 What are the constructor functions
•	 What types of built-in JavaScript objects exist and what they can do for you

From arrays to objects
As you already know from Chapter 2, Primitive Data Types, Arrays, Loops,
and Conditions, an array is just a list of values. Each value has an index
(a numeric key) that starts from zero and increments by one for each value.

> var myarr = ['red', 'blue', 'yellow', 'purple'];
> myarr;
 ["red", "blue", "yellow", "purple"].

> myarr[0];
"red"

> myarr[3];
"purple"

Objects

[98]

If you put the indexes in one column and the values in another, you'll end up with a
table of key/value pairs shown as follows:

Key Value
0 red
1 blue
2 yellow
3 purple

An object is similar to an array, but with the difference that you define the keys
yourself. You're not limited to using only numeric indexes and you can use friendlier
keys, such as first_name, age, and so on.

Let's take a look at a simple object and examine its parts:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

You can see that:

•	 The name of the variable that refers to the object is hero
•	 Instead of [and], which you use to define an array, you use { and }

for objects
•	 You separate the elements (called properties) contained in the object

with commas
•	 The key/value pairs are divided by colons, as in key: value

The keys (names of the properties) can optionally be placed in quotation marks.
For example, these are all the same:

var hero = {occupation: 1};
var hero = {"occupation": 1};
var hero = {'occupation': 1};

It's recommended that you don't quote the names of the properties (it's less typing),
but there are cases when you must use quotes:

•	 If the property name is one of the reserved words in JavaScript (see Appendix
A, Reserved Words)

Chapter 4

[99]

•	 If it contains spaces or special characters (anything other than letters,
numbers, and the _ and $ characters)

•	 If it starts with a number

In other words, if the name you have chosen for a property is not a valid name for a
variable in JavaScript, then you need to wrap it in quotes.

Have a look at this bizarre-looking object:

var o = {
 $omething: 1,
 'yes or no': 'yes',
 '!@#$%^&*': true
};

This is a valid object. The quotes are required for the second and the third properties,
otherwise you'll get an error.

Later in this chapter, you'll see other ways to define objects and arrays in addition
to [] and {}. But first, let's introduce this bit of terminology: defining an array with
[] is called array literal notation, and defining an object using the curly braces {} is
called object literal notation.

Elements, properties, methods, and members
When talking about arrays, you say that they contain elements. When talking about
objects, you say that they contain properties. There isn't any significant difference
in JavaScript; it's just the terminology that people are used to, likely from other
programming languages.

A property of an object can point to a function, because functions are just data.
Properties that point to functions are also called methods. In the following example,
talk is a method:

var dog = {
 name: 'Benji',
 talk: function () {
 alert('Woof, woof!');
 }
};

Objects

[100]

As you have seen in the previous chapter, it's also possible to store functions as array
elements and invoke them, but you'll not see much code like this in practice:

> var a = [];
> a[0] = function (what) { alert(what); };
> a[0]('Boo!');

You can also see people using the word members to refer to properties of an object,
most often when it doesn't matter if the property is a function or not.

Hashes and associative arrays
In some programming languages, there is a distinction between:

•	 A regular array, also called an indexed or enumerated array
(the keys are numbers)

•	 An associative array, also called a hash or a dictionary (the keys are strings)

JavaScript uses arrays to represent indexed arrays and objects to represent
associative arrays. If you want a hash in JavaScript, you use an object.

Accessing an object's properties
There are two ways to access a property of an object:

•	 Using the square bracket notation, for example hero['occupation']
•	 Using the dot notation, for example hero.occupation

The dot notation is easier to read and write, but it cannot always be used. The same
rules apply as for quoting property names: if the name of the property is not a valid
variable name, you cannot use the dot notation.

Let's take the hero object again:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

Accessing a property with the dot notation:

> hero.breed;
"Turtle"

Chapter 4

[101]

Accessing a property with the bracket notation:

> hero['occupation'];
"Ninja"

Accessing a non-existing property returns undefined:

> 'Hair color is ' + hero.hair_color;
"Hair color is undefined"

Objects can contain any data, including other objects:

var book = {
 name: 'Catch-22',
 published: 1961,
 author: {
 firstname: 'Joseph',
 lastname: 'Heller'
 }
};

To get to the firstname property of the object contained in the author property of
the book object, you use:

> book.author.firstname;
"Joseph"

Using the square brackets notation:

> book['author']['lastname'];
"Heller"

It works even if you mix both:

> book.author['lastname'];
"Heller"

> book['author'].lastname;
"Heller"

Another case where you need square brackets is when the name of the property you
need to access is not known beforehand. During runtime, it's dynamically stored in a
variable:

> var key = 'firstname';
> book.author[key];
"Joseph"

Objects

[102]

Calling an object's methods
You know a method is just a property that happens to be a function, so you access
methods the same way as you would access properties: using the dot notation or using
square brackets. Calling (invoking) a method is the same as calling any other function:
you just add parentheses after the method name, which effectively says "Execute!".

> var hero = {
 breed: 'Turtle',
 occupation: 'Ninja',
 say: function () {
 return 'I am ' + hero.occupation;
 }
 };
> hero.say();
"I am Ninja"

If there are any parameters that you want to pass to a method, you proceed as with
normal functions:

> hero.say('a', 'b', 'c');

Because you can use the array-like square brackets to access a property, this means
you can also use brackets to access and invoke methods:

> hero['say']();

This is not a common practice unless the method name is not known at the time of
writing code, but is instead defined at runtime:

var method = 'say';
hero[method]();

Best practice tip: no quotes (unless you have to)
Use the dot notation to access methods and properties and
don't quote properties in your object literals.

Altering properties/methods
JavaScript allows you to alter the properties and methods of existing objects at any
time. This includes adding new properties or deleting them. You can start with a
"blank" object and add properties later. Let's see how you can go about doing this.

An object without properties is shown as follows:

> var hero = {};

Chapter 4

[103]

A "blank" object
In this section, you started with a "blank" object, var hero = {};.
Blank is in quotes because this object is not really empty and useless.
Although at this stage it has no properties of its own, it has already
inherited some. You'll learn more about own versus inherited properties
later. So, an object in ES3 is never really "blank" or "empty". In ES5
though, there is a way to create a completely blank object that doesn't
inherit anything, but let's not get ahead too much.

Accessing a non-existing property is shown as follows:

> typeof hero.breed;
"undefined"

Adding two properties and a method:

> hero.breed = 'turtle';
> hero.name = 'Leonardo';
> hero.sayName = function () {
 return hero.name;
 };

Calling the method:

> hero.sayName();
"Leonardo"

Deleting a property:

> delete hero.name;
true

Calling the method again will no longer find the deleted name property:

> hero.sayName();
"undefined"

Malleable objects
You can always change any object at any time, such as adding
and removing properties and changing their values. But, there are
exceptions to this rule. A few properties of some built-in objects are
not changeable (for example, Math.PI, as you'll see later). Also, ES5
allows you to prevent changes to objects; you'll learn more about it in
Appendix C, Built-in Objects.

Objects

[104]

Using the this value
In the previous example, the sayName() method used hero.name to access the name
property of the hero object. When you're inside a method though, there is another
way to access the object the method belongs to: by using the special value this.

> var hero = {
 name: 'Rafaelo',
 sayName: function () {
 return this.name;
 }
 };
> hero.sayName();
"Rafaelo"

So, when you say this, you're actually saying "this object" or "the current object".

Constructor functions
There is another way to create objects: by using constructor functions. Let's see
an example:

function Hero() {
 this.occupation = 'Ninja';
}

In order to create an object using this function, you use the new operator, like this:

> var hero = new Hero();
> hero.occupation;
"Ninja"

A benefit of using constructor functions is that they accept parameters, which can
be used when creating new objects. Let's modify the constructor to accept one
parameter and assign it to the name property:

function Hero(name) {
 this.name = name;
 this.occupation = 'Ninja';
 this.whoAreYou = function () {
 return "I'm " +
 this.name +
 " and I'm a " +
 this.occupation;
 };
}

Chapter 4

[105]

Now you can create different objects using the same constructor:

> var h1 = new Hero('Michelangelo');
> var h2 = new Hero('Donatello');
> h1.whoAreYou();
"I'm Michelangelo and I'm a Ninja"

> h2.whoAreYou();
"I'm Donatello and I'm a Ninja"

Best practice
By convention, you should capitalize the first letter of your constructor
functions so that you have a visual clue that this is not intended to be
called as a regular function.

If you call a function that is designed to be a constructor but you omit the new
operator, this is not an error, but it doesn't give you the expected result.

> var h = Hero('Leonardo');
> typeof h;
"undefined"

What happened here? There is no new operator, so a new object was not created. The
function was called like any other function, so h contains the value that the function
returns. The function does not return anything (there's no return), so it actually
returns undefined, which gets assigned to h.

In this case, what does this refer to? It refers to the global object.

The global object
You have already learned a bit about global variables (and how you should avoid
them). You also know that JavaScript programs run inside a host environment
(the browser for example). Now that you know about objects, it's time for the
whole truth: the host environment provides a global object and all global
variables are accessible as properties of the global object.

If your host environment is the web browser, the global object is called window.
Another way to access the global object (and this is also true in most other
environments) is to use this outside a constructor function, for example in the
global program code outside any function.

As an illustration, you can declare a global variable outside any function, such as:

> var a = 1;

Objects

[106]

Then, you can access this global variable in various ways:

•	 As a variable a
•	 As a property of the global object, for example window['a'] or window.a
•	 As a property of the global object referred to as this:

> var a = 1;
> window.a;
1

> this.a;
1

Let's go back to the case where you define a constructor function and call it without
the new operator. In such cases, this refers to the global object and all the properties
set to this become properties of window.

Declaring a constructor function and calling it without new returns "undefined":

> function Hero(name) {
 this.name = name;
 }
> var h = Hero('Leonardo');
> typeof h;
"undefined"

> typeof h.name;
TypeError: Cannot read property 'name' of undefined

Because you had this inside Hero, a global variable (a property of the global object)
called name was created:

> name;
"Leonardo"

> window.name;
"Leonardo"

If you call the same constructor function using new, then a new object is returned and
this refers to it:

> var h2 = new Hero('Michelangelo');
> typeof h2;
"object"

> h2.name;
"Michelangelo"

Chapter 4

[107]

The built-in global functions you have seen in Chapter 3, Functions, can also be invoked
as methods of the window object. So, the following two calls have the same result:

> parseInt('101 dalmatians');
101

> window.parseInt('101 dalmatians');
101

And, when outside a function called as a constructor (with new), also:

> this.parseInt('101 dalmatians');
101

The constructor property
When an object is created, a special property is assigned to it behind the scenes—the
constructor property. It contains a reference to the constructor function used to
create this object.

Continuing from the previous example:

> h2.constructor;
function Hero(name) {
 this.name = name;
}

Because the constructor property contains a reference to a function, you might as
well call this function to produce a new object. The following code is like saying, "I
don't care how object h2 was created, but I want another one just like it":

> var h3 = new h2.constructor('Rafaello');
> h3.name;
"Rafaello"

If an object was created using the object literal notation, its constructor is the built-in
Object() constructor function (there is more about this later in this chapter):

> var o = {};
> o.constructor;
function Object() { [native code] }

> typeof o.constructor;
"function"

Objects

[108]

The instanceof operator
With the instanceof operator, you can test if an object was created with a specific
constructor function:

> function Hero() {}
> var h = new Hero();
> var o = {};
> h instanceof Hero;
true

> h instanceof Object;
true

> o instanceof Object;
true

Note that you don't put parentheses after the function name (you don't use h
instanceof Hero()). This is because you're not invoking this function, but just
referring to it by name, as with any other variable.

Functions that return objects
In addition to using constructor functions and the new operator to create objects, you
can also use a normal function to create objects without new. You can have a function
that does a bit of preparatory work and has an object as a return value.

For example, here's a simple factory() function that produces objects:

function factory(name) {
 return {
 name: name
 };
}

Using the factory() function:

> var o = factory('one');
> o.name;
"one"

> o.constructor;
function Object() { [native code] }

In fact, you can also use constructor functions and return objects different
from this. This means you can modify the default behavior of the constructor
function. Let's see how.

Chapter 4

[109]

Here's the normal constructor scenario:

> function C() {
 this.a = 1;
 }
> var c = new C();
> c.a;
1

But now look at this scenario:

> function C2() {
 this.a = 1;
 return {b: 2};
 }
> var c2 = new C2();
> typeof c2.a;
"undefined"

> c2.b;
2

What happened here? Instead of returning the object this, which contains the
property a, the constructor returned another object that contains the property b.
This is possible only if the return value is an object. Otherwise, if you try to return
anything that is not an object, the constructor will proceed with its usual behavior
and return this.

If you think about how objects are created inside constructor functions, you can
imagine that a variable called this is defined at the top of the function and then
returned at the end. It's as if something like this happens:

function C() {
 // var this = {}; // pseudo code, you can't do this
 this.a = 1;
 // return this;
}

Passing objects
When you assign an object to a different variable or pass it to a function, you only
pass a reference to that object. Consequently, if you make a change to the reference,
you're actually modifying the original object.

Objects

[110]

Here's an example of how you can assign an object to another variable and then
make a change to the copy. As a result, the original object is also changed:

> var original = {howmany: 1};
> var mycopy = original;
> mycopy.howmany;
1

> mycopy.howmany = 100;
100

> original.howmany;
100

The same thing applies when passing objects to functions:

> var original = {howmany: 100};
> var nullify = function (o) { o.howmany = 0; };
> nullify(original);
> original.howmany;
0

Comparing objects
When you compare objects, you'll get true only if you compare two references to
the same object. Comparing two distinct objects that happen to have the exact same
methods and properties returns false.

Let's create two objects that look the same:

> var fido = {breed: 'dog'};
> var benji = {breed: 'dog'};

Comparing them returns false:

> benji === fido;
false

> benji == fido;
false

You can create a new variable, mydog, and assign one of the objects to it. This way,
mydog actually points to the same object:

> var mydog = benji;

Chapter 4

[111]

In this case, benji is mydog because they are the same object (changing the mydog
variable's properties will change the benji variable's properties). The comparison
returns true:

> mydog === benji;
true

And, because fido is a different object, it does not compare to mydog:

> mydog === fido;
false

Objects in the WebKit console
Before diving into the built-in objects in JavaScript, let's quickly say a few words
about working with objects in the WebKit console.

After playing around with the examples in this chapter, you might have already
noticed how objects are displayed in the console. If you create an object and type its
name, you'll get an arrow pointing to the word Object.

The object is clickable and expands to show you a list of all of the properties of
the object. If a property is also an object, there is an arrow next to it too, so you can
expand this as well. This is handy as it gives you an insight into exactly what this
object contains.

You can ignore __proto__ for now; there's more about it in the next chapter.

Objects

[112]

console.log
The console also offers you an object called console and a few methods, such as
console.log() and console.error(), which you can use to display any value you
want in the console.

console.log() is convenient when you want to quickly test something, as well as in
your real scripts when you want to dump some intermediate debugging information.
Here's how you can experiment with loops for example:

> for (var i = 0; i < 5; i++) {
 console.log(i);
 }
0
1
2
3
4

Built-in objects
Earlier in this chapter, you came across the Object() constructor function. It's
returned when you create objects with the object literal notation and access their
constructor property. Object() is one of the built-in constructors; there are a few
others, and in the rest of this chapter you'll see all of them.

Chapter 4

[113]

The built-in objects can be divided into three groups:

•	 Data wrapper objects: These are Object, Array, Function, Boolean,
Number, and String. These objects correspond to the different data types in
JavaScript. There is a data wrapper object for every different value returned
by typeof (discussed in Chapter 2, Primitive Data Types, Arrays, Loops, and
Conditions), with the exception of "undefined" and "null".

•	 Utility objects: These are Math, Date, and RegExp, and can come in handy.
•	 Error objects: These include the generic Error object as well as other more

specific objects that can help your program recover its working state when
something unexpected happens.

Only a handful of methods of the built-in objects will be discussed in this chapter.
For a full reference, see Appendix C, Built-in Objects.

If you're confused about what a built-in object is and what a built-in constructor is,
well, they are the same thing. In a moment, you'll see how functions, and therefore
constructor functions, are also objects.

Object
Object is the parent of all JavaScript objects, which means that every object you
create inherits from it. To create a new "empty" object, you can use the literal notation
or the Object() constructor function. The following two lines are equivalent:

> var o = {};
> var o = new Object();

As mentioned before, an "empty" (or "blank") object is not completely useless
because it already contains several inherited methods and properties. In this book,
"empty" means an object like {} that has no properties of its own other than the
ones it automatically gets. Let's see a few of the properties that even "blank" objects
already have:

•	 The o.constructor property returns a reference to the constructor function
•	 o.toString() is a method that returns a string representation of the object
•	 o.valueOf() returns a single-value representation of the object; often this is

the object itself

Let's see these methods in action. First, create an object:

> var o = new Object();

Objects

[114]

Calling toString() returns a string representation of the object:

> o.toString();
"[object Object]"

toString() will be called internally by JavaScript when an object is used in a string
context. For example, alert() works only with strings, so if you call the alert()
function passing an object, the toString()method will be called behind the scenes.
These two lines produce the same result:

> alert(o);
> alert(o.toString());

Another type of string context is the string concatenation. If you try to concatenate an
object with a string, the object's toString() method is called first:

> "An object: " + o;
"An object: [object Object]"

valueOf() is another method that all objects provide. For the simple objects (whose
constructor is Object()), the valueOf() method returns the object itself:

> o.valueOf() === o;
true

To summarize:

•	 You can create objects either with var o = {}; (object literal notation, the
preferred method) or with var o = new Object();

•	 Any object, no matter how complex, inherits from the Object object,
and therefore offers methods such as toString() and properties
such as constructor

Array
Array() is a built-in function that you can use as a constructor to create arrays:

> var a = new Array();

This is equivalent to the array literal notation:

> var a = [];

Chapter 4

[115]

No matter how the array is created, you can add elements to it as usual:

> a[0] = 1;
> a[1] = 2;
> a;
[1, 2]

When using the Array() constructor, you can also pass values that will be assigned
to the new array's elements:

> var a = new Array(1, 2, 3, 'four');
> a;
 [1, 2, 3, "four"]

An exception to this is when you pass a single number to the constructor. In this
case, the number is considered to be the length of the array:

> var a2 = new Array(5);
> a2;
 [undefined x 5]

Because arrays are created with a constructor, does this mean that arrays are in fact
objects? Yes, and you can verify this by using the typeof operator:

> typeof [1, 2, 3];
"object"

Because arrays are objects, this means that they inherit the properties and methods of
the parent Object:

> var a = [1, 2, 3, 'four'];
> a.toString();
"1,2,3,four"

> a.valueOf();
[1, 2, 3, "four"]

> a.constructor;
function Array() { [native code] }

Arrays are objects, but of a special type because:

•	 The names of their properties are automatically assigned using numbers
starting from 0

•	 They have a length property that contains the number of elements in
the array

•	 They have more built-in methods in addition to those inherited from the
parent Object

Objects

[116]

Let's examine the differences between an array and an object, starting by creating the
empty array a and the empty object o:

> var a = [], o = {};

Array objects have a length property automatically defined for them, while normal
objects do not:

> a.length;
0

> typeof o.length;
"undefined"

It's OK to add both numeric and non-numeric properties to both arrays and objects:

> a[0] = 1;
> o[0] = 1;
> a.prop = 2;
> o.prop = 2;

The length property is always up-to-date with the number of numeric properties,
while it ignores the non-numeric ones:

> a.length;
1

The length property can also be set by you. Setting it to a greater value than the
current number of items in the array makes room for additional elements. If you try
to access these non-existing elements, you'll get the value undefined:

> a.length = 5;
5

> a;
[1, undefined x 4]

Setting the length property to a lower value removes the trailing elements:

> a.length = 2;
2

> a;
[1, undefined x 1]

Chapter 4

[117]

A few array methods
In addition to the methods inherited from the parent Object, array objects also have
specialized methods for working with arrays, such as sort(), join(), and slice(),
among others (see Appendix C, Built-in Objects, for the full list).

Let's take an array and experiment with some of these methods:

> var a = [3, 5, 1, 7, 'test'];

The push() method appends a new element to the end of the array. The pop()
method removes the last element. a.push('new') works like a[a.length] = 'new'
and a.pop() is like a.length--.

push() returns the length of the changed array, whereas pop() returns the
removed element:

> a.push('new');
6

> a;
 [3, 5, 1, 7, "test", "new"]

> a.pop();
"new"

> a;
 [3, 5, 1, 7, "test"]

The sort() method sorts the array and returns it. In the next example, after the sort,
both a and b point to the same array:

> var b = a.sort();
> b;
[1, 3, 5, 7, "test"]

> a === b;
true

The join() method returns a string containing the values of all the elements in the
array glued together using the string parameter passed to join():

> a.join(' is not ');
"1 is not 3 is not 5 is not 7 is not test"

Objects

[118]

The slice() method returns a piece of the array without modifying the source
array. The first parameter to slice() is the start index (zero-based) and the
second is the end index (both indices are zero-based):

> b = a.slice(1, 3);
[3, 5]

> b = a.slice(0, 1);
[1]

> b = a.slice(0, 2);
[1, 3]

After all the slicing, the source array is still the same:

> a;
[1, 3, 5, 7, "test"]

The splice() method modifies the source array. It removes a slice, returns it, and
optionally fills the gap with new elements. The first two parameters define the
start index and length (number of elements) of the slice to be removed; the other
parameters pass the new values:

> b = a.splice(1, 2, 100, 101, 102);
[3, 5]

> a;
[1, 100, 101, 102, 7, "test"]

Filling the gap with new elements is optional and you can skip it:

> a.splice(1, 3);
[100, 101, 102]

> a;
[1, 7, "test"]

Function
You already know that functions are a special data type. But, it turns out that there's
more to it than that: functions are actually objects. There is a built-in constructor
function called Function() that allows for an alternative (but not necessarily
recommended) way to create a function.

The following example shows three ways to define a function:

> function sum(a, b) { // function declaration
 return a + b;
 }

Chapter 4

[119]

> sum(1, 2);
3

> var sum = function (a, b) { // function expression
 return a + b;
 };
> sum(1, 2)
3

> var sum = new Function('a', 'b', 'return a + b;');
> sum(1, 2)
3

When using the Function() constructor, you pass the parameter names first (as
strings) and then the source code for the body of the function (again as a string). The
JavaScript engine needs to evaluate the source code you pass and create the new
function for you. This source code evaluation suffers from the same drawbacks as the
eval() function, so defining functions using the Function() constructor should be
avoided when possible.

If you use the Function() constructor to create functions that have lots of
parameters, bear in mind that the parameters can be passed as a single comma-
delimited list; so, for example, these are the same:

> var first = new Function(
 'a, b, c, d',
 'return arguments;'
);
> first(1, 2, 3, 4);
 [1, 2, 3, 4]

> var second = new Function(
 'a, b, c',
 'd',
 'return arguments;'
);
> second(1, 2, 3, 4);
 [1, 2, 3, 4]

> var third = new Function(
 'a',
 'b',
 'c',
 'd',
 'return arguments;'
);
> third(1, 2, 3, 4);
 [1, 2, 3, 4]

Objects

[120]

Best practice
Do not use the Function() constructor. As with eval() and
setTimeout() (discussed later in the book), always try to stay
away from passing JavaScript code as a string.

Properties of function objects
Like any other object, functions have a constructor property that contains a
reference to the Function() constructor function. This is true no matter which
syntax you used to create the function.

> function myfunc(a) {
 return a;
 }
> myfunc.constructor;
function Function() { [native code] }

Functions also have a length property, which contains the number of formal
parameters the function expects.

> function myfunc(a, b, c) {
 return true;
 }
> myfunc.length;
 3

Prototype
One of the most widely used properties of function objects is the prototype
property. You'll see this property discussed in detail in the next chapter,
but for now, let's just say:

•	 The prototype property of a function object points to another object
•	 Its benefits shine only when you use this function as a constructor
•	 All objects created with this function keep a reference to the prototype

property and can use its properties as their own

Let's see a quick example to demonstrate the prototype property. Take a simple
object that has a property name and a method say().

var ninja = {
 name: 'Ninja',
 say: function () {
 return 'I am a ' + this.name;
 }
};

Chapter 4

[121]

When you create a function (even one without a body), you can verify that it
automatically has a prototype property that points to a new object.

> function F() {}
> typeof F.prototype;
"object"

It gets interesting when you modify the prototype property. You can add properties
to it or you can replace the default object with any other object. Let's assign ninja to
the prototype.

> F.prototype = ninja;

Now, and here's where the magic happens, using the function F() as a constructor
function, you can create a new object, baby_ninja, which will have access to the
properties of F.prototype (which points to ninja) as if it were its own.

> var baby_ninja = new F();
> baby_ninja.name;
"Ninja"

> baby_ninja.say();
"I am a Ninja"

There will be much more on this topic later. In fact, the whole next chapter is about
the prototype property.

Methods of function objects
Function objects, being a descendant of the top parent Object, get the default
methods such as toString(). When invoked on a function, the toString()
method returns the source code of the function.

> function myfunc(a, b, c) {
 return a + b + c;
 }
> myfunc.toString();
"function myfunc(a, b, c) {
 return a + b + c;
}"

If you try to peek into the source code of the built-in functions, you'll get the string
[native code] instead of the body of the function.

> parseInt.toString();
"function parseInt() { [native code] }"

Objects

[122]

As you can see, you can use toString() to differentiate between native methods
and developer-defined ones.

The behavior of the function's toString() is
environment-dependent, and it does differ among
browsers in terms of spacing and new lines.

Call and apply
Function objects have call() and apply() methods. You can use them to invoke a
function and pass any arguments to it.

These methods also allow your objects to "borrow" methods from other objects and
invoke them as their own. This is an easy and powerful way to reuse code.

Let's say you have a some_obj object, which contains the method say().

var some_obj = {
 name: 'Ninja',
 say: function (who) {
 return 'Haya ' + who + ', I am a ' + this.name;
 }
};

You can call the say() method, which internally uses this.name to gain access to its
own name property.

> some_obj.say('Dude');
"Haya Dude, I am a Ninja"

Now let's create a simple object, my_obj, which only has a name property.

> var my_obj = {name: 'Scripting guru'};

my_obj likes the some_obj object's say() method so much that it wants to invoke it
as its own. This is possible using the call() method of the say() function object.

> some_obj.say.call(my_obj, 'Dude');
"Haya Dude, I am a Scripting guru"

It worked! But what happened here? You invoked the call() method of the say()
function object passing two parameters: the object my_obj and the string 'Dude'.
The result is that when say() is invoked, the references to the this value that it
contains point to my_obj. This way, this.name doesn't return Ninja, but
Scripting guru instead.

Chapter 4

[123]

If you have more parameters to pass when invoking the call() method, you just
keep adding them.

some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

If you don't pass an object as a first parameter to call() or you pass null, the global
object is assumed.

The method apply() works the same way as call(), but with the difference that all
parameters you want to pass to the method of the other object are passed as an array.
The following two lines are equivalent:

some_obj.someMethod.apply(my_obj, ['a', 'b', 'c']);
some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

Continuing the previous example, you can use:

> some_obj.say.apply(my_obj, ['Dude']);
"Haya Dude, I am a Scripting guru"

The arguments object revisited
In the previous chapter, you have seen how, from inside a function, you have access
to something called arguments, which contains the values of all the parameters
passed to the function:

> function f() {
 return arguments;
 }
> f(1, 2, 3);
[1, 2, 3]

arguments looks like an array, but it is actually an array-like object. It resembles an
array because it contains indexed elements and a length property. However, the
similarity ends there, as arguments doesn't provide any of the array methods,
such as sort() or slice().

However, you can convert arguments to an array and benefit from all the array
goodies. Here's what you can do, practicing your newly-learned call() method:

> function f() {
 var args = [].slice.call(arguments);
 return args.reverse();
 }

> f(1, 2, 3, 4);
[4, 3, 2, 1]

Objects

[124]

As you can see, you can borrow slice() using [].slice or the more verbose
Array.prototype.slice.

Inferring object types
You can see that you have this array-like arguments object looking so much like an
array object. How can you reliably tell the difference between the two? Additionally,
typeof returns object when used with arrays. Therefore, how can you tell the
difference between an object and an array?

The silver bullet is the Object object's toString() method. It gives you the internal
class name used to create a given object.

> Object.prototype.toString.call({});
"[object Object]"

> Object.prototype.toString.call([]);
"[object Array]"

You have to call the original toString() method as defined in the prototype of the
Object constructor. Otherwise, if you call the Array function's toString(), it will
give you a different result, as it's been overridden for the specific purposes of the
array objects:

> [1, 2, 3].toString();
"1,2,3"

This is the same as:

> Array.prototype.toString.call([1, 2, 3]);
"1,2,3"

Let's have some more fun with toString(). Make a handy reference to save typing:

> var toStr = Object.prototype.toString;

Differentiate between an array and the array-like object arguments:

> (function () {
 return toStr.call(arguments);
 }());
"[object Arguments]"

You can even inspect DOM elements:

> toStr.call(document.body);
"[object HTMLBodyElement]"

Chapter 4

[125]

Boolean
Your journey through the built-in objects in JavaScript continues, and the next three
are fairly straightforward; they merely wrap the primitive data types Boolean,
number, and string.

You already know a lot about Booleans from Chapter 2, Primitive Data Types, Arrays,
Loops, and Conditions. Now, let's meet the Boolean() constructor:

> var b = new Boolean();

It's important to note that this creates a new object, b, and not a primitive Boolean
value. To get the primitive value, you can call the valueOf() method (inherited
from Object and customized):

> var b = new Boolean();
> typeof b;
"object"

> typeof b.valueOf();
"boolean"

> b.valueOf();
false

Overall, objects created with the Boolean() constructor are not too useful, as they
don't provide any methods or properties other than the inherited ones.

The Boolean() function, when called as a normal function without new, converts
non-Booleans to Booleans (which is like using a double negation !!value):

> Boolean("test");
true

> Boolean("");
false

> Boolean({});
true

Apart from the six falsy values, everything else is true in JavaScript, including all
objects. This also means that all Boolean objects created with new Boolean() are also
true, as they are objects:

> Boolean(new Boolean(false));
true

Objects

[126]

This can be confusing, and since Boolean objects don't offer any special methods, it's
best to just stick with regular primitive Boolean values.

Number
Similarly to Boolean(), the Number() function can be used as:

•	 A constructor function (with new) to create objects.
•	 A normal function in order to try to convert any value to a number. This is

similar to the use of parseInt() or parseFloat().
> var n = Number('12.12');
> n;
12.12

> typeof n;
"number"

> var n = new Number('12.12');
> typeof n;
"object"

Because functions are objects, they can also have properties. The Number() function
has constant built-in properties that you cannot modify:

> Number.MAX_VALUE;
1.7976931348623157e+308

> Number.MIN_VALUE;
5e-324

> Number.POSITIVE_INFINITY;
Infinity

> Number.NEGATIVE_INFINITY;
-Infinity

> Number.NaN;
NaN

The number objects provide three methods: toFixed(), toPrecision(), and
toExponential() (see Appendix C, Built-in Objects, for more details):

> var n = new Number(123.456);
> n.toFixed(1);
"123.5"

Chapter 4

[127]

Note that you can use these methods without explicitly creating a number object
first. In such cases, the number object is created (and destroyed) for you behind
the scenes:

> (12345).toExponential();
"1.2345e+4"

Like all objects, number objects also provide the toString() method. When
used with number objects, this method accepts an optional radix parameter
(10 being the default):

> var n = new Number(255);
> n.toString();
"255"

> n.toString(10);
"255"

> n.toString(16);
"ff"

> (3).toString(2);
"11"

> (3).toString(10);
"3"

String
You can use the String() constructor function to create string objects. String objects
provide convenient methods for text manipulation.

Here's an example that shows the difference between a string object and a primitive
string data type:

> var primitive = 'Hello';
> typeof primitive;
"string"

> var obj = new String('world');
> typeof obj;
"object"

Objects

[128]

A string object is similar to an array of characters. String objects have an indexed
property for each character (introduced in ES5, but long supported in many
browsers except old IEs) and they also have a length property.

> obj[0];
"w"

> obj[4];
"d"

> obj.length;
5

To extract the primitive value from the string object, you can use the valueOf()
or toString() methods inherited from Object. You'll probably never need to do
this, as toString() is called behind the scenes if you use an object in a primitive
string context.

> obj.valueOf();
"world"

> obj.toString();
"world"

> obj + "";
"world"

Primitive strings are not objects, so they don't have any methods or properties. But,
JavaScript also offers you the syntax to treat primitive strings as objects (just like you
saw already with primitive numbers).

In the following example, string objects are being created (and then destroyed)
behind the scenes every time you treat a primitive string as if it were an object:

> "potato".length;
6

> "tomato"[0];
"t"

> "potatoes"["potatoes".length - 1];
"s"

Chapter 4

[129]

One final example to illustrate the difference between a string primitive and a string
object: let's convert them to Boolean. The empty string is a falsy value, but any string
object is truthy (because all objects are truthy):

> Boolean("");
false

> Boolean(new String(""));
true

Similarly to Number() and Boolean(), if you use the String() function without new,
it converts the parameter to a primitive:

> String(1);
"1"

If you pass an object to String(), this object's toString() method will be called first:

> String({p: 1});
 "[object Object]"

> String([1, 2, 3]);
 "1,2,3"

> String([1, 2, 3]) === [1, 2, 3].toString();
 true

A few methods of string objects
Let's experiment with a few of the methods you can call on string objects
(see Appendix C, Built-in Objects, for the full list).

Start off by creating a string object:

> var s = new String("Couch potato");

toUpperCase() and toLowerCase() transforms the capitalization of the string:

> s.toUpperCase();
"COUCH POTATO"

> s.toLowerCase();
"couch potato"

Objects

[130]

charAt() tells you the character found at the position you specify, which is the same
as using square brackets (treating a string as an array of characters):

> s.charAt(0);
"C"

> s[0];
"C"

If you pass a non-existing position to charAt(), you get an empty string:

> s.charAt(101);
""

indexOf() allows you to search within a string. If there is a match, the method
returns the position at which the first match is found. The position count starts at 0,
so the second character in "Couch" is "o" at position 1:

> s.indexOf('o');
1

You can optionally specify where (at what position) to start the search. The following
finds the second "o", because indexOf() is instructed to start the search at position 2:

> s.indexOf('o', 2);
7

lastIndexOf() starts the search from the end of the string (but the position of the
match is still counted from the beginning):

> s.lastIndexOf('o');
11

You can also search for strings, not only characters, and the search is case sensitive:

> s.indexOf('Couch');
0

If there is no match, the function returns position -1:

> s.indexOf('couch');
-1

For a case-insensitive search, you can transform the string to lowercase first and
then search:

> s.toLowerCase().indexOf('couch');
0

Chapter 4

[131]

When you get 0, this means that the matching part of the string starts at position 0.
This can cause confusion when you check with if, because if converts the position 0
to a Boolean false. So, while this is syntactically correct, it is logically wrong:

if (s.indexOf('Couch')) {...}

The proper way to check if a string contains another string is to compare the result of
indexOf() to the number -1:

if (s.indexOf('Couch') !== -1) {...}

slice() and substring() return a piece of the string when you specify start and
end positions:

> s.slice(1, 5);
"ouch"

> s.substring(1, 5);
"ouch"

Note that the second parameter you pass is the end position, not the length of
the piece. The difference between these two methods is how they treat negative
arguments. substring() treats them as zeros, while slice() adds them to the
length of the string. So, if you pass parameters (1, -1) to both methods, it's the
same as substring(1, 0) and slice(1, s.length - 1):

> s.slice(1, -1);
"ouch potat"

> s.substring(1, -1);
"C"

There's also the non-standard method substr(), but you should try to avoid it in
favor of substring().

The split() method creates an array from the string using another string that you
pass as a separator:

> s.split(" ");
 ["Couch", "potato"]

split() is the opposite of join(), which creates a string from an array:

> s.split(' ').join(' ');
"Couch potato"

concat() glues strings together, the way the + operator does for primitive strings:

> s.concat("es");
"Couch potatoes"

Objects

[132]

Note that while some of the preceding methods discussed return new primitive
strings, none of them modify the source string. After all the method calls listed
previously, the initial string is still the same:

> s.valueOf();
"Couch potato"

You have seen how to use indexOf() and lastIndexOf() to search within strings,
but there are more powerful methods (search(), match(), and replace()) that
take regular expressions as parameters. You'll see these later in the RegExp()
constructor function.

At this point, you're done with all of the data wrapper objects, so let's move on to the
utility objects Math, Date, and RegExp.

Math
Math is a little different from the other built-in global objects you have seen
previously. It's not a function, and therefore cannot be used with new to create
objects. Math is a built-in global object that provides a number of methods
and properties for mathematical operations.

The Math object's properties are constants, so you can't change their values. Their
names are all in uppercase to emphasize the difference between them and a normal
property (similar to the constant properties of the Number() constructor). Let's see a
few of these constant properties:

•	 The constant π:
> Math.PI;
 3.141592653589793

•	 Square root of 2:
> Math.SQRT2;
 1.4142135623730951

•	 Euler's constant:
> Math.E;
 2.718281828459045

•	 Natural logarithm of 2:
> Math.LN2;
 0.6931471805599453

Chapter 4

[133]

•	 Natural logarithm of 10:
> Math.LN10;
 2.302585092994046

Now you know how to impress your friends the next time they (for whatever reason)
start wondering, "What was the value of e? I can't remember." Just type Math.E in the
console and you have the answer.

Let's take a look at some of the methods the Math object provides (the full list is in
Appendix C, Built-in Objects).

Generating random numbers:

> Math.random();
0.3649461670235814

The random() function returns a number between 0 and 1, so if you want a number
between, let's say, 0 and 100, you can do the following:

> 100 * Math.random();

For numbers between any two values, use the formula ((max - min) * Math.
random()) + min. For example, a random number between 2 and 10 would be:

> 8 * Math.random() + 2;
9.175650496668485

If you only need an integer, you can use one of the following rounding methods:

•	 floor() to round down
•	 ceil() to round up
•	 round() to round to the nearest

For example, to get either 0 or 1:

> Math.round(Math.random());

If you need the lowest or the highest among a set of numbers, you have the min()
and max() methods. So, if you have a form on a page that asks for a valid month,
you can make sure that you always work with sane data (a value between 1 and 12):

> Math.min(Math.max(1, input), 12);

The Math object also provides the ability to perform mathematical operations
for which you don't have a designated operator. This means that you can raise
to a power using pow(), find the square root using sqrt(), and perform all the
trigonometric operations—sin(), cos(), atan(), and so on.

Objects

[134]

For example, to calculate 2 to the power of 8:

> Math.pow(2, 8);
256

And to calculate the square root of 9:

> Math.sqrt(9);
3

Date
Date() is a constructor function that creates date objects. You can create a new object
by passing:

•	 Nothing (defaults to today's date)
•	 A date-like string
•	 Separate values for day, month, time, and so on
•	 A timestamp

Following is an object instantiated with today's date/time:

> new Date();
Wed Feb 27 2013 23:49:28 GMT-0800 (PST)

The console displays the result of the toString() method called on the date
object, so you get this long string Wed Feb 27 2013 23:49:28 GMT-0800 (PST)
as a representation of the date object.

Here are a few examples of using strings to initialize a date object. Note how many
different formats you can use to specify the date:

> new Date('2015 11 12');
Thu Nov 12 2015 00:00:00 GMT-0800 (PST)

> new Date('1 1 2016');
Fri Jan 01 2016 00:00:00 GMT-0800 (PST)

> new Date('1 mar 2016 5:30');
Tue Mar 01 2016 05:30:00 GMT-0800 (PST)

The Date constructor can figure out a date from different strings, but this is not
really a reliable way of defining a precise date, for example when passing user
input to the constructor. The better way is to pass numeric values to the Date()
constructor representing:

•	 Year

Chapter 4

[135]

•	 Month: 0 (January) to 11 (December)
•	 Day: 1 to 31
•	 Hour: 0 to 23
•	 Minutes: 0 to 59
•	 Seconds: 0 to 59
•	 Milliseconds: 0 to 999

Let's see some examples.

Passing all the parameters:

> new Date(2015, 0, 1, 17, 05, 03, 120);
Tue Jan 01 2015 17:05:03 GMT-0800 (PST)

Passing date and hour:

> new Date(2015, 0, 1, 17);
Tue Jan 01 2015 17:00:00 GMT-0800 (PST)

Watch out for the fact that the month starts from 0, so 1 is February:

> new Date(2016, 1, 28);
Sun Feb 28 2016 00:00:00 GMT-0800 (PST)

If you pass a greater than allowed value, your date "overflows" forward. Because
there's no February 30 in 2016, this means it has to be March 1st (2016 is a leap year):

> new Date(2016, 1, 29);
Mon Feb 29 2016 00:00:00 GMT-0800 (PST)

> new Date(2016, 1, 30);
Tue Mar 01 2016 00:00:00 GMT-0800 (PST)

Similarly, December 32nd becomes January 1st of the next year:

> new Date(2012, 11, 31);
Mon Dec 31 2012 00:00:00 GMT-0800 (PST)

> new Date(2012, 11, 32);
Tue Jan 01 2013 00:00:00 GMT-0800 (PST)

Finally, a date object can be initialized with a timestamp (the number of milliseconds
since the UNIX epoch, where 0 milliseconds is January 1, 1970):

> new Date(1357027200000);
Tue Jan 01 2013 00:00:00 GMT-0800 (PST)

Objects

[136]

If you call Date() without new, you get a string representing the current date,
whether or not you pass any parameters. The following example gives the
current time (current when this example was run):

> Date();
Wed Feb 27 2013 23:51:46 GMT-0800 (PST)

> Date(1, 2, 3, "it doesn't matter");
Wed Feb 27 2013 23:51:52 GMT-0800 (PST)

> typeof Date();
"string"

> typeof new Date();
"object"

Methods to work with date objects
Once you've created a date object, there are lots of methods you can call on that
object. Most of the methods can be divided into set*() and get*() methods, for
example, getMonth(), setMonth(), getHours(), setHours(), and so on. Let's see
some examples.

Creating a date object:

> var d = new Date(2015, 1, 1);
> d.toString();
Sun Feb 01 2015 00:00:00 GMT-0800 (PST)

Setting the month to March (months start from 0):

> d.setMonth(2);
1425196800000

> d.toString();
Sun Mar 01 2015 00:00:00 GMT-0800 (PST)

Getting the month:

> d.getMonth();
2

In addition to all the methods of date objects, there are also two methods (plus one
more added in ES5) that are properties of the Date() function/object. These do
not need a date object; they work just like the Math object's methods. In class-based
languages, such methods would be called static because they don't require an instance.

Chapter 4

[137]

Date.parse() takes a string and returns a timestamp:

> Date.parse('Jan 11, 2018');
1515657600000

Date.UTC() takes all the parameters for year, month, day, and so on, and produces a
timestamp in Universal Time:

> Date.UTC(2018, 0, 11);
1515628800000

Because the new Date() constructor can accept timestamps, you can pass the result
of Date.UTC() to it. Using the following example, you can see how UTC() works
with Universal Time, while new Date() works with local time:

> new Date(Date.UTC(2018, 0, 11));
Wed Jan 10 2018 16:00:00 GMT-0800 (PST)

> new Date(2018, 0, 11);
Thu Jan 11 2018 00:00:00 GMT-0800 (PST)

The ES5 addition to the Date constructor is the method now(), which returns the
current timestamp. It provides a more convenient way to get the timestamp instead
of using the getTime() method on a date object as you would in ES3:

> Date.now();
1362038353044

> Date.now() === new Date().getTime();
true

You can think of the internal representation of the date being an integer timestamp
and all other methods being "sugar" on top of it. So, it makes sense that the
valueOf() is a timestamp:

> new Date().valueOf();
1362418306432

Also dates cast to integers with the + operator:

> +new Date();
1362418318311

Objects

[138]

Calculating birthdays
Let's see one final example of working with Date objects. I was curious about which
day my birthday falls on in 2016:

> var d = new Date(2016, 5, 20);
> d.getDay();
1

Starting the count from 0 (Sunday), 1 means Monday. Is that so?

> d.toDateString();
"Mon Jun 20 2016"

OK, good to know, but Monday is not necessarily the best day for a party. So, how
about a loop that shows how many times June 20th is a Friday from year 2016 to year
3016, or better yet, let's see the distribution of all the days of the week. After all, with
all the progress in DNA hacking, we're all going to be alive and kicking in 3016.

First, let's initialize an array with seven elements, one for each day of the week. These
will be used as counters. Then, as a loop goes up to 3016, let's increment the counters:

var stats = [0, 0, 0, 0, 0, 0, 0];

The loop:

for (var i = 2016; i < 3016; i++) {
 stats[new Date(i, 5, 20).getDay()]++;
}

And the result:

> stats;
[140, 146, 140, 145, 142, 142, 145]

142 Fridays and 145 Saturdays. Woo-hoo!

RegExp
Regular expressions provide a powerful way to search and manipulate text. Different
languages have different implementations (think "dialects") of the regular expressions
syntax. JavaScript uses the Perl 5 syntax.

Instead of saying "regular expression", people often shorten it to "regex" or "regexp".

Chapter 4

[139]

A regular expression consists of:

•	 A pattern you use to match text
•	 Zero or more modifiers (also called flags) that provide more instructions on

how the pattern should be used

The pattern can be as simple as literal text to be matched verbatim, but that's rare,
and in such cases you're better off using indexOf(). Most of the time, the pattern is
more complex and could be difficult to understand. Mastering regular expression's
patterns is a large topic, which won't be discussed in full detail here; instead, you'll
see what JavaScript provides in terms of syntax, objects, and methods in order to
support the use of regular expressions. You can also refer to Appendix D, Regular
Expressions, to help you when you're writing patterns.

JavaScript provides the RegExp() constructor, which allows you to create regular
expression objects:

> var re = new RegExp("j.*t");

There is also the more convenient regexp literal notation:

> var re = /j.*t/;

In the preceding example, j.*t is the regular expression pattern. It means "match any
string that starts with j, ends with t, and has zero or more characters in between". The
asterisk (*) means "zero or more of the preceding"; the dot (.) means "any character".
The pattern needs to be quoted when passed to a RegExp() constructor.

Properties of RegExp objects
Regular expression objects have the following properties:

•	 global: If this property is false, which is the default, the search stops when
the first match is found. Set this to true if you want all matches.

•	 ignoreCase: When the match is case insensitive, the defaults to false
(meaning the default is a case sensitive match).

•	 multiline: Search matches that may span over more than one line default
to false.

•	 lastIndex: The position at which to start the search; this defaults to 0.
•	 source: Contains the regexp pattern.

None of these properties, except for lastIndex, can be changed once the object has
been created.

Objects

[140]

The first three items in the preceding list represent the regex modifiers. If you create
a regex object using the constructor, you can pass any combination of the following
characters as a second parameter:

•	 g for global
•	 i for ignoreCase
•	 m for multiline

These letters can be in any order. If a letter is passed, the corresponding modifier
property is set to true. In the following example, all modifiers are set to true:

> var re = new RegExp('j.*t', 'gmi');

Let's verify:

> re.global;
true

Once set, the modifier cannot be changed:

> re.global = false;
> re.global;
true

To set any modifiers using the regex literal, you add them after the closing slash:

> var re = /j.*t/ig;
> re.global;
true

Methods of RegExp objects
Regex objects provide two methods you can use to find matches: test() and
exec(). They both accept a string parameter. test() returns a Boolean (true when
there's a match, false otherwise), while exec() returns an array of matched strings.
Obviously, exec() is doing more work, so use test() unless you really need to do
something with the matches. People often use regular expressions to validate data, in
this case, test() should be enough.

In the following example, there is no match because of the capital J:

> /j.*t/.test("Javascript");
false

A case insensitive test gives a positive result:

> /j.*t/i.test("Javascript");
true

Chapter 4

[141]

The same test using exec() returns an array, and you can access the first element as
shown below:

> /j.*t/i.exec("Javascript")[0];
"Javascript"

String methods that accept regular expressions as
arguments
Previously in this chapter, you learned about string objects and how you can use the
indexOf() and lastIndexOf()methods to search within text. Using these methods,
you can only specify literal string patterns to search. A more powerful solution
would be to use regular expressions to find text. String objects offer you this ability.

String objects provide the following methods that accept regular expression objects
as parameters:

•	 match() returns an array of matches
•	 search() returns the position of the first match
•	 replace() allows you to substitute matched text with another string
•	 split() also accepts a regexp when splitting a string into array elements

search() and match()
Let's see some examples of using the search() and match() methods. First, you
create a string object:

> var s = new String('HelloJavaScriptWorld');

Using match(), you get an array containing only the first match:

> s.match(/a/);
["a"]

Using the g modifier, you perform a global search, so the result array contains
two elements:

> s.match(/a/g);
["a", "a"]

A case insensitive match is as follows:

> s.match(/j.*a/i);
["Java"]

Objects

[142]

The search() method gives you the position of the matching string:

> s.search(/j.*a/i);
5

replace()
replace() allows you to replace the matched text with some other string. The
following example removes all capital letters (it replaces them with blank strings):

> s.replace(/[A-Z]/g, '');
"elloavacriptorld"

If you omit the g modifier, you're only going to replace the first match:

> s.replace(/[A-Z]/, '');
"elloJavaScriptWorld"

When a match is found, if you want to include the matched text in the replacement
string, you can access it using $&. Here's how to add an underscore before the match
while keeping the match:

> s.replace(/[A-Z]/g, "_$&");
"_Hello_Java_Script_World"

When the regular expression contains groups (denoted by parentheses), the matches
of each group are available as $1 for the first group, $2 the second, and so on.

> s.replace(/([A-Z])/g, "_$1");
"_Hello_Java_Script_World"

Imagine you have a registration form on your web page that asks for an e-mail
address, username, and password. The user enters their e-mail, and then your
JavaScript kicks in and suggests the username, taking it from the e-mail address:

> var email = "stoyan@phpied.com";
> var username = email.replace(/(.*)@.*/, "$1");
> username;
"stoyan"

Replace callbacks
When specifying the replacement, you can also pass a function that returns a string.
This gives you the ability to implement any special logic you may need before
specifying the replacements:

> function replaceCallback(match) {
 return "_" + match.toLowerCase();

Chapter 4

[143]

 }

> s.replace(/[A-Z]/g, replaceCallback);
"_hello_java_script_world"

The callback function receives a number of parameters (the previous example
ignores all but the first one):

•	 The first parameter is the match
•	 The last is the string being searched
•	 The one before last is the position of the match
•	 The rest of the parameters contain any strings matched by any groups in

your regex pattern

Let's test this. First, let's create a variable to store the entire arguments array passed
to the callback function:

> var glob;

Next, define a regular expression that has three groups and matches e-mail addresses
in the format something@something.something:

> var re = /(.*)@(.*)\.(.*)/;

Finally, let's define a callback function that stores the arguments in glob and then
returns the replacement:

var callback = function () {
 glob = arguments;
 return arguments[1] + ' at ' +
 arguments[2] + ' dot ' +
 arguments[3];
};

Now perform a test:

> "stoyan@phpied.com".replace(re, callback);
"stoyan at phpied dot com"

Here's what the callback function received as arguments:

> glob;
["stoyan@phpied.com", "stoyan", "phpied", "com", 0,
"stoyan@phpied.com"]

Objects

[144]

split()
You already know about the split() method, which creates an array from an
input string and a delimiter string. Let's take a string of comma-separated values
and split it:

> var csv = 'one, two,three ,four';
> csv.split(',');
["one", " two", "three ", "four"]

Because the input string happens to have random inconsistent spaces before and
after the commas, the array result has spaces too. With a regular expression, you can
fix this using \s*, which means "zero or more spaces":

> csv.split(/\s*,\s*/);
["one", "two", "three", "four"]

Passing a string when a RegExp is expected
One last thing to note is that the four methods that you have just seen (split(),
match(), search(), and replace()) can also take strings as opposed to regular
expressions. In this case, the string argument is used to produce a new regex as if it
was passed to new RegExp().

An example of passing a string to replace is shown as follows:

> "test".replace('t', 'r');
"rest"

The above is the same as:

> "test".replace(new RegExp('t'), 'r');
"rest"

When you pass a string, you cannot set modifiers the way you do with a normal
constructor or regex literal. There's a common source of errors when using a string
instead of a regular expression object for string replacements, and it's due to the fact
that the g modifier is false by default. The outcome is that only the first string is
replaced, which is inconsistent with most other languages and a little confusing.
For example:

> "pool".replace('o', '*');
"p*ol"

Most likely, you want to replace all occurrences:

> "pool".replace(/o/g, '*');
"p**l"

Chapter 4

[145]

Error objects
Errors happen, and it's good to have the mechanisms in place so that your code
can realize that there has been an error condition and can recover from it in a
graceful manner. JavaScript provides the statements try, catch, and finally to
help you deal with errors. If an error occurs, an error object is thrown. Error objects
are created by using one of these built-in constructors: EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError. All of these constructors
inherit from Error.

Let's just cause an error and see what happens. What's a simple way to cause an
error? Just call a function that doesn't exist. Type this into the console:

> iDontExist();

You'll get something like this:

The display of errors can vary greatly between browsers and other host
environments. In fact, most recent browsers tend to hide the errors from the users.
However, you cannot assume that all of your users have disabled the display of
errors, and it is your responsibility to ensure an error-free experience for them. The
previous error propagated to the user because the code didn't try to trap (catch)
this error. The code didn't expect the error and was not prepared to handle it.
Fortunately, it's trivial to trap the error. All you need is the try statement followed
by a catch statement.

This code hides the error from the user:

try {
 iDontExist();
} catch (e) {
 // do nothing
}

Objects

[146]

Here you have:

•	 The try statement followed by a block of code
•	 The catch statement followed by a variable name in parentheses and another

block of code

There can be an optional finally statement (not used in this example) followed by a
block of code, which is executed regardless of whether there was an error or not.

In the previous example, the code block that follows the catch statement didn't do
anything, but this is the place where you put the code that can help recover from the
error, or at least give feedback to the user that your application is aware that there
was a special condition.

The variable e in the parentheses after the catch statement contains an error object.
Like any other object, it contains properties and methods. Unfortunately, different
browsers implement these methods and properties differently, but there are two
properties that are consistently implemented—e.name and e.message.

Let's try this code now:

try {
 iDontExist();
} catch (e) {
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This will present an alert() showing e.name and e.message and then another
alert() saying Finally!.

In Firefox and Chrome, the first alert will say ReferenceError: iDontExist is not
defined. In Internet Explorer, it will be TypeError: Object expected. This tells us
two things:

•	 e.name contains the name of the constructor that was used to create the
error object

•	 Because the error objects are not consistent across host environments
(browsers), it would be somewhat tricky to have your code act differently
depending on the type of error (the value of e.name)

You can also create error objects yourself using new Error() or any of the other
error constructors, and then let the JavaScript engine know that there's an erroneous
condition using the throw statement.

Chapter 4

[147]

For example, imagine a scenario where you call the maybeExists() function
and after that make calculations. You want to trap all errors in a consistent way,
no matter whether the error is that maybeExists() doesn't exist or that your
calculations found a problem. Consider this code:

try {
 var total = maybeExists();
 if (total === 0) {
 throw new Error('Division by zero!');
 } else {
 alert(50 / total);
 }
} catch (e) {
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This code will alert() different messages depending on whether or not
maybeExists() is defined and the values it returns:

•	 If maybeExists() doesn't exist, you get ReferenceError: maybeExists() is
not defined in Firefox and TypeError: Object expected in IE

•	 If maybeExists() returns 0, you'll get Error: Division by zero!
•	 If maybeExists() returns 2, you'll get an alert that says 25

In all cases, there will be a second alert that says Finally!.

Instead of throwing a generic error, throw new Error('Division by zero!'),
you can be more specific if you choose to, for example, throw throw new
RangeError('Division by zero!'). Alternatively, you don't need a constructor,
you can simply throw a normal object:

throw {
 name: "MyError",
 message: "OMG! Something terrible has happened"
}

This gives you cross-browser control over the error name.

Objects

[148]

Summary
In Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, you saw that there are
five primitive data types (number, string, Boolean, null, and undefined) and we also
said that everything that is not a primitive piece of data is an object. Now you also
know that:

•	 Objects are like arrays, but you specify the keys.
•	 Objects contain properties.
•	 Properties can be functions (functions are data; remember var f =

function () {};). Properties that are functions are also called methods.
•	 Arrays are actually objects with predefined numeric properties and an

auto-incrementing length property.
•	 Array objects have a number of convenient methods (such as sort()

or slice()).
•	 Functions are also objects and they have properties (such as length and

prototype) and methods (such as call() and apply()).

Regarding the five primitive data types, apart from undefined and null, the
other three have the corresponding constructor functions: Number(), String(),
and Boolean(). Using these, you can create objects, called wrapper objects, which
contain methods for working with primitive data elements.

Number(), String(), and Boolean() can be invoked:

•	 With the new operator—to create new objects
•	 Without the new operator—to convert any value to the corresponding

primitive data type

Other built-in constructor functions you're now familiar with include: Object(),
Array(), Function(), Date(), RegExp(), and Error(). You're also familiar with
Math: a global object that is not a constructor.

Now you can see how objects have a central role in JavaScript programming, as
pretty much everything is an object or can be wrapped by an object.

Finally, let's wrap up the literal notations you're now familiar with:

Name Literal Constructor Example
Object {} new Object() {prop: 1}

Array [] new Array() [1,2,3,'test']

Regular
expression

/pattern/
modifiers

new RegExp('pattern',
'modifiers')

/java.*/img

Chapter 4

[149]

Exercises
1.	 Look at this code:

function F() {
 function C() {
 return this;
 }
 return C();
}
var o = new F();

Does the value of this refer to the global object or the object o?

2.	 What's the result of executing this piece of code?
function C(){
 this.a = 1;
 return false;
}
console.log(typeof new C());

3.	 What's the result of executing the following piece of code?
> c = [1, 2, [1, 2]];
> c.sort();
> c.join('--');
> console.log(c);

4.	 Imagine the String() constructor didn't exist. Create a constructor function,
MyString(), that acts like String() as closely as possible. You're not
allowed to use any built-in string methods or properties, and remember
that String() doesn't exist. You can use this code to test your constructor:
> var s = new MyString('hello');
> s.length;
 5

> s[0];
 "h"

> s.toString();
 "hello"

> s.valueOf();
 "hello"

> s.charAt(1);
 "e"

Objects

[150]

> s.charAt('2');
 "l"

> s.charAt('e');
 "h"

> s.concat(' world!');
 "hello world!"

> s.slice(1, 3);
 "el"

> s.slice(0, -1);
 "hell"

> s.split('e');
 ["h", "llo"]

> s.split('l');
 ["he", "", "o"]

You can use a for loop to loop through the input
string, treating it as an array.

5.	 Update your MyString() constructor to include a reverse() method.

Try to leverage the fact that arrays have a
reverse() method.

6.	 Imagine Array() doesn't exist and the array literal notation doesn't exist
either. Create a constructor called MyArray() that behaves as close to
Array() as possible. Test it with the following code:
> var a = new MyArray(1, 2, 3, "test");
> a.toString();
 "1,2,3,test"

> a.length;
 4

> a[a.length - 1];
 "test"

> a.push('boo');
 5

> a.toString();
 "1,2,3,test,boo"

Chapter 4

[151]

> a.pop();
 "boo"

> a.toString();
 "1,2,3,test"

> a.join(',');
 "1,2,3,test"

> a.join(' isn\'t ');
 "1 isn't 2 isn't 3 isn't test"

If you found this exercise amusing, don't stop with the join() method; go on
with as many methods as possible.

7.	 Imagine Math didn't exist. Create a MyMath object that also provides
additional methods:

°° MyMath.rand(min, max, inclusive)—generates a random number
between min and max, inclusive if inclusive is true (default)

°° MyMath.min(array)—returns the smallest number in a given array
°° MyMath.max(array)—returns the largest number in a given array

Prototype
In this chapter, you'll learn about the prototype property of the function objects.
Understanding how the prototype works is an important part of learning the
JavaScript language. After all, JavaScript is often classified as having a prototype-
based object model. There's nothing particularly difficult about the prototype, but it's
a new concept, and as such may sometimes take a bit of time to sink in. Like closures
(see Chapter 3, Functions), the prototype is one of those things in JavaScript, which
once you "get", they seem so obvious and make perfect sense. As with the rest of the
book, you're strongly encouraged to type in and play around with the examples—
this makes it much easier to learn and remember the concepts.

The following topics are discussed in this chapter:

•	 Every function has a prototype property and it contains an object
•	 Adding properties to the prototype object
•	 Using the properties added to the prototype
•	 The difference between own properties and properties of the prototype
•	 __proto__, the secret link every object keeps to its prototype
•	 Methods such as isPrototypeOf(), hasOwnProperty(), and

propertyIsEnumerable()

•	 Enhancing built-in objects, such as arrays or strings (and why that can
be a bad idea)

Prototype

[154]

The prototype property
The functions in JavaScript are objects, and they contain methods and properties.
Some of the methods that you're already familiar with are apply() and call(), and
some of the other properties are length and constructor. Another property of the
function objects is prototype.

If you define a simple function, foo(), you can access its properties as you would do
with any other object.

> function foo(a, b) {
 return a * b;
 }
> foo.length;
2

> foo.constructor;
function Function() { [native code] }

The prototype property is a property that is available to you as soon as you define
the function. Its initial value is an "empty" object.

> typeof foo.prototype;
"object"

It's as if you added this property yourself as follows:

> foo.prototype = {};

You can augment this empty object with properties and methods. They won't
have any effect on the foo() function itself; they'll only be used if you call foo()
as a constructor.

Adding methods and properties using the
prototype
In the previous chapter, you learned how to define constructor functions that you
can use to create (construct) new objects. The main idea is that inside a function
invoked with new, you have access to the value this, which refers to the object to be
returned by the constructor. Augmenting (adding methods and properties to) this is
how you add functionality to the object being constructed.

Chapter 5

[155]

Let's take a look at the constructor function Gadget(), which uses this to add two
properties and one method to the objects it creates.

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.whatAreYou = function () {
 return 'I am a ' + this.color + ' ' + this.name;
 };
}

Adding methods and properties to the prototype property of the constructor
function is another way to add functionality to the objects this constructor produces.
Let's add two more properties, price and rating, as well as a getInfo() method.
Since prototype already points to an object, you can just keep adding properties and
methods to it as follows:

Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;
Gadget.prototype.getInfo = function () {
 return 'Rating: ' + this.rating +
 ', price: ' + this.price;
};

Alternatively, instead of adding properties to the prototype object one by one, you
can overwrite the prototype completely, replacing it with an object of your choice.

Gadget.prototype = {
 price: 100,
 rating: ... /* and so on... */
};

Using the prototype's methods and
properties
All the methods and properties you have added to the prototype are available as
soon as you create a new object using the constructor. If you create a newtoy object
using the Gadget() constructor, you can access all the methods and properties
already defined.

> var newtoy = new Gadget('webcam', 'black');
> newtoy.name;
"webcam"

Prototype

[156]

> newtoy.color;
"black"

> newtoy.whatAreYou();
"I am a black webcam"

> newtoy.price;
100

> newtoy.rating;
3

> newtoy.getInfo();
"Rating: 3, price: 100"

It's important to note that the prototype is "live". Objects are passed by reference in
JavaScript, and therefore, the prototype is not copied with every new object instance.
What does this mean in practice? It means that you can modify the prototype at
any time and all the objects (even those created before the modification) will "see"
the changes.

Let's continue the example by adding a new method to the prototype:

Gadget.prototype.get = function (what) {
 return this[what];
};

Even though newtoy was created before the get() method was defined, newtoy still
has access to the new method:

> newtoy.get('price');
100

> newtoy.get('color');
"black"

Own properties versus prototype properties
In the preceding example, getInfo() was used internally to access the properties of
the object. It could've also used Gadget.prototype to achieve the same output.

Gadget.prototype.getInfo = function () {
 return 'Rating: ' + Gadget.prototype.rating +
 ', price: ' + Gadget.prototype.price;
};

What's the difference? To answer this question, let's examine how the prototype
works in more detail.

Chapter 5

[157]

Let's take the newtoy object again.

var newtoy = new Gadget('webcam', 'black');

When you try to access a property of newtoy, say, newtoy.name, the JavaScript
engine looks through all of the properties of the object searching for one called
name, and if it finds it, it returns its value.

> newtoy.name;
"webcam"

What if you try to access the rating property? The JavaScript engine examines all
of the properties of newtoy and doesn't find the one called rating. Then, the script
engine identifies the prototype of the constructor function used to create this object
(the same as if you do newtoy.constructor.prototype). If the property is found in
the prototype object, the following property is used:

> newtoy.rating;
3

You can do the same and access the prototype directly. Every object has a constructor
property, which is a reference to the function that created the object, so in this case:

> newtoy.constructor === Gadget;
true

> newtoy.constructor.prototype.rating;
3

Now, let's take this lookup one step further. Every object has a constructor. The
prototype is an object, so it must have a constructor too, which, in turn, has a
prototype. You can go up the prototype chain and you will eventually end up with the
built-in Object() object, which is the highest-level parent. In practice, this means that
if you try newtoy.toString() and newtoy doesn't have its own toString() method
and its prototype doesn't either, in the end you'll get the object's toString() method:

> newtoy.toString();
"[object Object]"

Overwriting a prototype's property with an
own property
As the above discussion demonstrates, if one of your objects doesn't have a certain
property of its own, it can use one (if it exists) somewhere up the prototype chain.
What if the object does have its own property and the prototype also has one with
the same name? Then, the own property takes precedence over the prototype's.

Prototype

[158]

Consider a scenario where a property name exists as both an own property and a
property of the prototype object.

> function Gadget(name) {
 this.name = name;
 }
> Gadget.prototype.name = 'mirror';

Creating a new object and accessing its name property gives you the object's own
name property.

> var toy = new Gadget('camera');
> toy.name;
"camera"

You can tell where the property was defined by using hasOwnProperty().

> toy.hasOwnProperty('name');
true

If you delete the toy object's own name property, the prototype's property with the
same name "shines through".

> delete toy.name;
true

> toy.name;
"mirror"

> toy.hasOwnProperty('name');
false

Of course, you can always recreate the object's own property.

> toy.name = 'camera';
> toy.name;
"camera"

You can play around with the method hasOwnProperty() to find out the origins of
a particular property you're curious about. The method toString() was mentioned
earlier. Where is it coming from?

> toy.toString();
"[object Object]"

> toy.hasOwnProperty('toString');
false

Chapter 5

[159]

> toy.constructor.hasOwnProperty('toString');
false

> toy.constructor.prototype.hasOwnProperty('toString');
false

> Object.hasOwnProperty('toString');
false

> Object.prototype.hasOwnProperty('toString');
true

Ahaa!

Enumerating properties
If you want to list all the properties of an object, you can use a for-in loop.
In Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, you saw that you can
also loop through all the elements of an array with for-in, but as mentioned there,
for is better suited for arrays and for-in is for objects. Let's take an example of
constructing a query string for a URL from an object:

var params = {
 productid: 666,
 section: 'products'
};

var url = 'http://example.org/page.php?',
 i,
 query = [];

for (i in params) {
 query.push(i + '=' + params[i]);
}

url += query.join('&');

This produces the url string as follows:

"http://example.org/page.php?productid=666§ion=products"

Prototype

[160]

There are a few details to be aware of:

•	 Not all properties show up in a for-in loop. For example, the length (for
arrays) and constructor properties don't show up. The properties that do
show up are called enumerable. You can check which ones are enumerable
with the help of the propertyIsEnumerable() method that every object
provides. In ES5, you can specify which properties are enumerable, while in
ES3 you don't have that control.

•	 Prototypes that come through the prototype chain also show up, provided
they are enumerable. You can check if a property is an object's own property
or a prototype's property using the hasOwnProperty() method.

•	 propertyIsEnumerable() returns false for all of the prototype's properties,
even those that are enumerable and show up in the for-in loop.

Let's see these methods in action. Take this simplified version of Gadget():

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.getName = function () {
 return this.name;
 };
}
Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;

Create a new object as follows:

var newtoy = new Gadget('webcam', 'black');

Now, if you loop using a for-in loop, you see all of the object's properties, including
those that come from the prototype:

for (var prop in newtoy) {
 console.log(prop + ' = ' + newtoy[prop]);
}

The result also contains the object's methods (since methods are just properties that
happen to be functions):

name = webcam
color = black
getName = function () {
 return this.name;
}
price = 100
rating = 3

Chapter 5

[161]

If you want to distinguish between the object's own properties and the prototype's
properties, use hasOwnProperty(). Try the following first:

> newtoy.hasOwnProperty('name');
true

> newtoy.hasOwnProperty('price');
false

Let's loop again, but this time showing only the object's own properties.

for (var prop in newtoy) {
 if (newtoy.hasOwnProperty(prop)) {
 console.log(prop + '=' + newtoy[prop]);
 }
}

The result is as follows:

name=webcam
color=black
getName = function () {
 return this.name;
}

Now let's try propertyIsEnumerable(). This method returns true for the object's
own properties that are not built-in.

> newtoy.propertyIsEnumerable('name');
true

Most built-in properties and methods are not enumerable.

> newtoy.propertyIsEnumerable('constructor');
false

Any properties coming down the prototype chain are not enumerable.

> newtoy.propertyIsEnumerable('price');
false

Note, however, that such properties are enumerable if you reach the object contained
in the prototype and invoke its propertyIsEnumerable() method.

> newtoy.constructor.prototype.propertyIsEnumerable('price');
true

Prototype

[162]

isPrototypeOf()
Objects also have the isPrototypeOf() method. This method tells you whether that
specific object is used as a prototype of another object.

Let's take a simple object named monkey.

var monkey = {
 hair: true,
 feeds: 'bananas',
 breathes: 'air'
};

Now let's create a Human() constructor function and set its prototype property to
point to monkey.

function Human(name) {
 this.name = name;
}
Human.prototype = monkey;

Now if you create a new Human object called george and ask "is monkey the prototype
of george?", you'll get true.

> var george = new Human('George');
> monkey.isPrototypeOf(george);
true

Note that you have to know, or suspect, who the prototype is and then ask "is it true
that your prototype is monkey?" in order to confirm your suspicion. But what if
you don't suspect anything and you have no idea? Can you just ask the object to tell
you its prototype? The answer is you can't in all browsers, but you can in most of
them. Most recent browsers have implemented the addition to ES5 called Object.
getPrototypeOf().

> Object.getPrototypeOf(george).feeds;
"bananas"

> Object.getPrototypeOf(george) === monkey;
true

For some of the pre-ES5 environments that don't have getPrototypeOf(), you can
use the special property __proto__.

Chapter 5

[163]

The secret __proto__ link
As you already know, the prototype property is consulted when you try to access a
property that does not exist in the current object.

Consider another object called monkey and use it as a prototype when creating
objects with the Human() constructor.

> var monkey = {
 feeds: 'bananas',
 breathes: 'air'
 };
> function Human() {}
> Human.prototype = monkey;

Now, let's create a developer object and give it some properties.

> var developer = new Human();
> developer.feeds = 'pizza';
> developer.hacks = 'JavaScript';

Now let's access these properties. For example, hacks is a property of the
developer object.

> developer.hacks;
"JavaScript"

feeds could also be found in the object.

> developer.feeds;
"pizza"

breathes doesn't exist as a property of the developer object, so the prototype
is looked up, as if there is a secret link, or a secret passageway, that leads to the
prototype object.

> developer.breathes;
"air"

The secret link is exposed in most modern JavaScript environments as the __proto__
property (the word "proto" with two underscores before and two after).

> developer.__proto__ === monkey;
true

Prototype

[164]

You can use this secret property for learning purposes, but it's not a good idea to
use it in your real scripts because it does not exist in all browsers (notably Internet
Explorer), so your scripts won't be portable.

Be aware that __proto__ is not the same as prototype, since __proto__ is
a property of the instances (objects), whereas prototype is a property of the
constructor functions used to create those objects.

> typeof developer.__proto__;
"object"

> typeof developer.prototype;
"undefined"

> typeof developer.constructor.prototype;
"object"

Once again, you should use __proto__ only for learning or debugging purposes.
Or, if you're lucky enough and your code only needs to work in ES5-compliant
environments, you can use Object.getPrototypeOf().

Augmenting built-in objects
The objects created by the built-in constructor functions such as Array, String, and
even Object and Function can be augmented (or enhanced) through the use of
prototypes. This means that you can, for example, add new methods to the Array
prototype, and in this way you can make them available to all arrays. Let's see how
to do this.

In PHP, there is a function called in_array(), which tells you if a value exists in
an array. In JavaScript, there is no inArray() method (although in ES5 there's
indexOf(), which you can use for the same purpose). So, let's implement it and add
it to Array.prototype.

Array.prototype.inArray = function (needle) {
 for (var i = 0, len = this.length; i < len; i++) {
 if (this[i] === needle) {
 return true;
 }
 }
 return false;
};

Chapter 5

[165]

Now all arrays have access to the new method. Let's test this.

> var colors = ['red', 'green', 'blue'];
> colors.inArray('red');
true

> colors.inArray('yellow');
false

That was nice and easy! Let's do it again. Imagine your application often needs to
spell words backwards and you feel there should be a built-in reverse() method
for string objects. After all, arrays have reverse(). You can easily add a reverse()
method to the String prototype by borrowing Array.prototype.reverse() (there
was a similar exercise at the end of Chapter 4, Objects).

String.prototype.reverse = function () {
 return Array.prototype.reverse.
 apply(this.split('')).join('');
};

This code uses split() to create an array from a string, then calls the reverse()
method on this array, which produces a reversed array. The resulting array is then
turned back into a string using join(). Let's test the new method.

> "bumblebee".reverse();
"eebelbmub"

That is a nice name for a big and scary (and potentially hairy) mythical creature,
isn't it?

Augmenting built-in objects – discussion
Augmenting built-in objects through the prototype is a powerful technique, and you
can use it to shape JavaScript in any way you like. Because of its power, though, you
should always thoroughly consider your options before using this approach.

The reason is that once you know JavaScript, you're expecting it to work the
same way, no matter which third-party library or widget you're using. Modifying
core objects could confuse the users and maintainers of your code and create
unexpected errors.

Prototype

[166]

JavaScript evolves and browser's vendors continuously support more features.
What you consider a missing method today and decide to add to a core prototype
could be a built-in method tomorrow. In this case, your method is no longer needed.
Additionally, what if you have already written a lot of code that uses the method and
your method is slightly different from the new built-in implementation?

The most common and acceptable use case for augmenting built-in prototypes is to
add support for new features (ones that are already standardized by the ECMAScript
committee and implemented in new browsers) to old browsers. One example would
be adding an ES5 method to old versions of IE. These extensions are known as shims
or polyfills.

When augmenting prototypes, you first check if the method exists before
implementing it yourself. This way, you use the native implementation in the
browser if one exists. For example, let's add the trim() method for strings, which is
a method that exists in ES5 but is missing in older browsers.

if (typeof String.prototype.trim !== 'function') {
 String.prototype.trim = function () {
 return this.replace(/^\s+|\s+$/g,'');
 };
}

> " hello ".trim();
"hello"

Best practice
If you decide to augment a built-in object or its prototype with a
new property, do check for the existence of the new property first.

Prototype gotchas
There are two important behaviors to consider when dealing with prototypes:

•	 The prototype chain is live except when you completely replace the
prototype object

•	 prototype.constructor is not reliable

Let's create a simple constructor function and two objects.

> function Dog() {
 this.tail = true;
 }
> var benji = new Dog();
> var rusty = new Dog();

Chapter 5

[167]

Even after you've created the objects benji and rusty, you can still add properties
to the prototype of Dog() and the existing objects will have access to the new
properties. Let's throw in the method say().

> Dog.prototype.say = function () {
 return 'Woof!';
 };

Both objects have access to the new method.

> benji.say();
"Woof!"

 rusty.say();
"Woof!"

Up to this point, if you consult your objects asking which constructor function was
used to create them, they'll report it correctly.

> benji.constructor === Dog;
true

> rusty.constructor === Dog;
true

Now, let's completely overwrite the prototype object with a brand new object.

> Dog.prototype = {
 paws: 4,
 hair: true
 };

It turns out that the old objects do not get access to the new prototype's properties;
they still keep the secret link pointing to the old prototype object.

> typeof benji.paws;
"undefined"

> benji.say();
"Woof!"

> typeof benji.__proto__.say;
"function"

> typeof benji.__proto__.paws;
"undefined"

Prototype

[168]

Any new objects you create from now on will use the updated prototype.

> var lucy = new Dog();
> lucy.say();
TypeError: lucy.say is not a function

> lucy.paws;
4

The secret __proto__ link points to the new prototype object.

> typeof lucy.__proto__.say;
"undefined"

> typeof lucy.__proto__.paws;
"number"

Now the constructor property of the new object no longer reports correctly. You
would expect it to point to Dog(), but instead it points to Object().

> lucy.constructor;
function Object() { [native code] }

> benji.constructor;
function Dog() {
 this.tail = true;
}

You can easily prevent this confusion by resetting the constructor property after
you overwrite the prototype completely.

> function Dog() {}
> Dog.prototype = {};
> new Dog().constructor === Dog;
false

> Dog.prototype.constructor = Dog;
> new Dog().constructor === Dog;
true

Best practice
When you overwrite the prototype, remember to reset the
constructor property.

Chapter 5

[169]

Summary
Let's summarize the most important topics you have learned in this chapter:

•	 All functions have a property called prototype. Initially it contains an
"empty" object (an object without any own properties).

•	 You can add properties and methods to the prototype object. You can even
replace it completely with an object of your choice.

•	 When you create an object using a function as a constructor (with new), the
object gets a secret link pointing to the prototype of the constructor, and can
access the prototype's properties.

•	 An object's own properties take precedence over a prototype's properties
with the same name.

•	 Use the method hasOwnProperty() to differentiate between an object's own
properties and prototype properties.

•	 There is a prototype chain. When you execute foo.bar, and if your object
foo doesn't have a property called bar, the JavaScript interpreter looks for
a bar property in the prototype. If none is found, it keeps searching in the
prototype's prototype, then the prototype of the prototype's prototype,
and it will keep going all the way up to Object.prototype.

•	 You can augment the prototypes of built-in constructor functions and all
objects will see your additions. Assign a function to Array.prototype.flip
and all arrays will immediately get a flip() method, as in [1,2,3].flip().
But do check if the method/property you want to add already exists, so you
can future-proof your scripts.

Exercises
1.	 Create an object called shape that has the type property and a

getType() method.
2.	 Define a Triangle() constructor function whose prototype is shape. Objects

created with Triangle() should have three own properties—a, b, and c,
representing the lengths of the sides of a triangle.

3.	 Add a new method to the prototype called getPerimeter().

Prototype

[170]

4.	 Test your implementation with the following code:
> var t = new Triangle(1, 2, 3);
> t.constructor === Triangle;
 true

> shape.isPrototypeOf(t);
 true

> t.getPerimeter();
 6

> t.getType();
 "triangle"

5.	 Loop over t showing only own properties and methods (none of
the prototype's).

6.	 Make the following code work:
> [1, 2, 3, 4, 5, 6, 7, 8, 9].shuffle();
 [2, 4, 1, 8, 9, 6, 5, 3, 7]

Inheritance
If you go back to Chapter 1, Object-oriented JavaScript and review the Object-oriented
programming section, you'll see that you already know how to apply most of them
to JavaScript. You know what objects, methods, and properties are. You know
that there are no classes in JavaScript, although you can achieve the same using
constructor functions. Encapsulation? Yes, the objects encapsulate both the data and
the means (methods) to do something with the data. Aggregation? Sure, an object
can contain other objects. In fact, this is almost always the case since methods are
functions, and functions are also objects.

Now, let's focus on the inheritance part. This is one of the most interesting features,
as it allows you to reuse existing code, thus promoting laziness, which is likely to be
what brought human species to computer programming in the first place.

JavaScript is a dynamic language and there is usually more than one way to achieve
any given task. Inheritance is not an exception. In this chapter, you'll see some
common patterns for implementing inheritance. Having a good understanding of
these patterns will help you pick the right one, or the right mix, depending on your
task, project or your style.

Prototype chaining
Let's start with the default way of implementing inheritance—inheritance chaining
through the prototype.

As you already know, every function has a prototype property, which points to an
object. When a function is invoked using the new operator, an object is created and
returned. This new object has a secret link to the prototype object. The secret link
(called __proto__ in some environments) allows methods and properties of the
prototype object to be used as if they belonged to the newly-created object.

Inheritance

[172]

The prototype object is just a regular object and, therefore, it also has the secret link
to its prototype. And so a chain is created, called a prototype chain:

--PROTO--
A

--PROTO--

--PROTO--

B

C ...

In this illustration, an object A contains a number of properties. One of the
properties is the hidden __proto__ property, which points to another object, B.
B's __proto__ property points to C. This chain ends with the Object.prototype
object—the grandparent, and every object inherits from it.

This is all good to know, but how does it help you? The practical side is that when
object A lacks a property but B has it, A can still access this property as its own. The
same applies if B also doesn't have the required property, but C does. This is how
inheritance takes place: an object can access any property found somewhere down
the inheritance chain.

Throughout the rest of this chapter, you'll see different examples that use the
following hierarchy: a generic Shape parent is inherited by a 2D shape, which in turn
is inherited by any number of specific two-dimensional shapes such as a Triangle,
Rectangle, and so on.

Prototype chaining example
Prototype chaining is the default way to implement inheritance. In order to
implement the hierarchy, let's define three constructor functions.

function Shape(){
this.name = 'Shape';
this.toString = function () {
return this.name;
};
}

function TwoDShape(){
this.name = '2D shape';

Chapter 6

[173]

}

function Triangle(side, height){
this.name = 'Triangle';
this.side = side;
this.height = height;
this.getArea = function () {
return this.side * this.height / 2;
};
}

The code that performs the inheritance magic is as follows:

TwoDShape.prototype = new Shape();
Triangle.prototype = new TwoDShape();

What's happening here? You take the object contained in the prototype property of
TwoDShape and instead of augmenting it with individual properties, you completely
overwrite it with another object, created by invoking the Shape() constructor with
new. The same for Triangle: its prototype is replaced with an object created by
new TwoDShape(). It's important to remember that JavaScript works with objects,
not classes. You need to create an instance using the new Shape() constructor and
after that you can inherit its properties; you don't inherit from Shape() directly.
Additionally, after inheriting, you can modify the Shape() constructor, overwrite it,
or even delete it, and this will have no effect on TwoDShape, because all you needed
is one instance to inherit from.

As you know from the previous chapter, overwriting the prototype (as opposed to
just adding properties to it), has side effects on the constructor property. Therefore,
it's a good idea to reset the constructor after inheriting:

TwoDShape.prototype.constructor = TwoDShape;
Triangle.prototype.constructor = Triangle;

Now, let's test what has happened so far. Creating a Triangle object and calling its
own getArea() method works as expected:

>var my = new Triangle(5, 10);
>my.getArea();
25

Although the my object doesn't have its own toString() method, it inherited one
and you can call it. Note, how the inherited method toString() binds the this
object to my.

>my.toString();
"Triangle"

Inheritance

[174]

It's fascinating to consider what the JavaScript engine does when you call
my.toString():

•	 It loops through all of the properties of my and doesn't find a method called
toString().

•	 It looks at the object that my.__proto__ points to; this object is the instance
new TwoDShape() created during the inheritance process.

•	 Now, the JavaScript engine loops through the instance of TwoDShape and
doesn't find a toString() method. It then checks the __proto__ of that
object. This time __proto__ points to the instance created by new Shape().

•	 The instance of new Shape() is examined and toString() is finally found.
•	 This method is invoked in the context of my, meaning that this points to my.

If you ask my, "who's your constructor?" it reports it correctly because of the reset of
the constructor property after the inheritance:

>my.constructor === Triangle;
true

Using the instanceof operator you can validate that my is an instance of all three
constructors.

> my instanceof Shape;
true

> my instanceofTwoDShape;
true

> my instanceof Triangle;
true

> my instanceof Array;
false

The same happens when you call isPropertyOf()on the constructors passing my:

>Shape.prototype.isPrototypeOf(my);
true

>TwoDShape.prototype.isPrototypeOf(my);
true

>Triangle.prototype.isPrototypeOf(my);
true

>String.prototype.isPrototypeOf(my);
false

Chapter 6

[175]

You can also create objects using the other two constructors. Objects created with new
TwoDShape() also get the method toString(), inherited from Shape().

>var td = new TwoDShape();
>td.constructor === TwoDShape;
true

>td.toString();
"2D shape"

>var s = new Shape();
>s.constructor === Shape;
true

Moving shared properties to the prototype
When you create objects using a constructor function, own properties are added
using this. This could be inefficient in cases where properties don't change across
instances. In the previous example, Shape() was defined like so:

function Shape(){
this.name = 'Shape';
}

This means that every time you create a new object using new Shape() a new name
property is created and stored somewhere in the memory. The other option is to
have the name property added to the prototype and shared among all the instances:

function Shape() {}
Shape.prototype.name = 'Shape';

Now, every time you create an object using new Shape(), this object doesn't get its
own property name, but uses the one added to the prototype. This is more efficient,
but you should only use it for properties that don't change from one instance to
another. Methods are ideal for this type of sharing.

Let's improve on the preceding example by adding all methods and suitable
properties to the prototype. In the case of Shape() and TwoDShape() everything is
meant to be shared:

// constructor
function Shape() {}

// augment prototype
Shape.prototype.name = 'Shape';

Inheritance

[176]

Shape.prototype.toString = function () {
return this.name;
};

// another constructor
function TwoDShape() {}

// take care of inheritance
TwoDShape.prototype = new Shape();
TwoDShape.prototype.constructor = TwoDShape;

// augment prototype
TwoDShape.prototype.name = '2D shape';

As you can see, you have to take care of inheritance first before augmenting the
prototype. Otherwise anything you add to TwoDShape.prototype gets wiped out
when you inherit.

The Triangle constructor is a little different, because every object it creates is a new
triangle, which is likely to have different dimensions. So it's good to keep side and
height as own properties and share the rest. The method getArea(), for example,
is the same regardless of the actual dimensions of each triangle. Again, you do the
inheritance bit first and then augment the prototype.

function Triangle(side, height) {
this.side = side;
this.height = height;
}
// take care of inheritance
Triangle.prototype = new TwoDShape();
Triangle.prototype.constructor = Triangle;

// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

All the preceding test code work exactly the same, for example:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

Chapter 6

[177]

There is only a slight behind-the-scenes difference when calling my.toString(). The
difference is that there is one more lookup to be done before the method is found in
the Shape.prototype, as opposed to in the new Shape() instance like it was in the
previous example.

You can also play with hasOwnProperty() to see the difference between the own
property versus a property coming down the prototype chain.

>my.hasOwnProperty('side');
true

>my.hasOwnProperty('name');
false

The calls to isPrototypeOf() and the instanceof operator from the previous
example work exactly the same:

>TwoDShape.prototype.isPrototypeOf(my);
true

> my instanceof Shape;
true

Inheriting the prototype only
As explained previously, for reasons of efficiency you should add the reusable
properties and methods to the prototype. If you do so, then it's a good idea to inherit
only the prototype, because all the reusable code is there. This means that inheriting
the Shape.prototype object is better than inheriting the object created with new
Shape(). After all, new Shape() only gives you own shape properties that are not
meant to be reused (otherwise they would be in the prototype). You gain a little more
efficiency by:

•	 Not creating a new object for the sake of inheritance alone
•	 Having less lookups during runtime (when it comes to searching for

toString() for example)

Here's the updated code; the changes are highlighted:

function Shape() {}
// augment prototype
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {

Inheritance

[178]

return this.name;
};

function TwoDShape() {}
// take care of inheritance
TwoDShape.prototype = Shape.prototype;
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance
Triangle.prototype = TwoDShape.prototype;
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

The test code gives you the same result:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

What's the difference in the lookups when calling my.toString()? First, as usual,
the JavaScript engine looks for a method toString() of the my object itself. The
engine doesn't find such a method, so it inspects the prototype. The prototype turns
out to be pointing to the same object that the prototype of TwoDShape points to and
also the same object that Shape.prototype points to. Remember, that objects are not
copied by value, but only by reference. So the lookup is only a two-step process as
opposed to four (in the previous example) or three (in the first example).

Simply copying the prototype is more efficient but it has a side effect: because all
the prototypes of the children and parents point to the same object, when a child
modifies the prototype, the parents get the changes, and so do the siblings.

Chapter 6

[179]

Look at this line:

Triangle.prototype.name = 'Triangle';

It changes the name property, so it effectively changes Shape.prototype.name too. If
you create an instance using new Shape(), its name property says "Triangle":

>var s = new Shape();
>s.name;
"Triangle"

This method is more efficient but may not suit all your use cases.

A temporary constructor – new F()
A solution to the previously outlined problem, where all prototypes point to the
same object and the parents get children's properties, is to use an intermediary to
break the chain. The intermediary is in the form of a temporary constructor function.
Creating an empty function F() and setting its prototype to the prototype of the
parent constructor, allows you to call new F() and create objects that have no
properties of their own, but inherit everything from the parent's prototype.

Let's take a look at the modified code:

function Shape() {}
// augment prototype
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

function TwoDShape() {}
// take care of inheritance
var F = function () {};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance

Inheritance

[180]

var F = function () {};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

Creating my triangle and testing the methods:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

Using this approach, the prototype chain stays in place:

>my.__proto__ === Triangle.prototype;
true

>my.__proto__.constructor === Triangle;
true

>my.__proto__.__proto__ === TwoDShape.prototype;
true

>my.__proto__.__proto__.__proto__.constructor === Shape;
true

And also the parents' properties are not overwritten by the children:

>var s = new Shape();
>s.name;
"Shape"

>"I am a " + new TwoDShape(); // calling toString()
"I am a 2D shape"

At the same time, this approach supports the idea that only properties and methods
added to the prototype should be inherited, and own properties should not. The
rationale behind this is that own properties are likely to be too specific to be reusable.

Chapter 6

[181]

Uber – access to the parent from a child
object
Classical OO languages usually have a special syntax that gives you access to
the parent class, also referred to as superclass. This could be convenient when a
child wants to have a method that does everything the parent's method does plus
something in addition. In such cases, the child calls the parent's method with the
same name and works with the result.

In JavaScript, there is no such special syntax, but it's trivial to achieve the same
functionality. Let's rewrite the last example and, while taking care of inheritance,
also create an uber property that points to the parent's prototype object.

function Shape() {}
// augment prototype
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
varconst = this.constructor;
returnconst.uber
 ? this.const.uber.toString() + ', ' + this.name
 : this.name;
};

function TwoDShape() {}
// take care of inheritance
var F = function () {};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
TwoDShape.uber = Shape.prototype;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance
var F = function () {};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
Triangle.uber = TwoDShape.prototype;

Inheritance

[182]

// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

The new things here are:

•	 A newuber property points to the parent's prototype
•	 The updated toString()method

Previously, toString() only returned this.name. Now, in addition to that, there
is a check to see whether this.constructor.uber exists and, if it does, call its
toString() first. this.constructor is the function itself, and this.constructor.
uber points to the parent's prototype. The result is that when you call toString()
for a Triangle instance, all toString() methods up the prototype chain are called:

>var my = new Triangle(5, 10);
>my.toString();
"Shape, 2D shape, Triangle"

The name of the property uber could've been "superclass" but this would suggest
that JavaScript has classes. Ideally it could've been "super" (as in Java), but "super"
is a reserved word in JavaScript. The German word "über" suggested by Douglass
Crockford, means more or less the same as "super" and, you have to admit, it
sounds uber-cool.

Isolating the inheritance part into a
function
Let's move the code that takes care of all of the inheritance details from the last
example into a reusable extend() function:

function extend(Child, Parent) {
var F = function () {};
F.prototype = Parent.prototype;
Child.prototype = new F();
Child.prototype.constructor = Child;
Child.uber = Parent.prototype;
}

Chapter 6

[183]

Using this function (or your own custom version of it) helps you keep your code
clean with regard to the repetitive inheritance-related tasks. This way you can inherit
by simply using:

extend(TwoDShape, Shape);

and

extend(Triangle, TwoDShape);

Let's see a complete example:

// inheritance helper
function extend(Child, Parent) {
var F = function () {};
F.prototype = Parent.prototype;
Child.prototype = new F();
Child.prototype.constructor = Child;
Child.uber = Parent.prototype;
}

// define -> augment
function Shape() {}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
 return this.constructor.uber
 ? this.constructor.uber.toString() + ', ' + this.name
 : this.name;
};

// define -> inherit -> augment
function TwoDShape() {}
extend(TwoDShape, Shape);
TwoDShape.prototype.name = '2D shape';

// define
function Triangle(side, height) {
this.side = side;
this.height = height;
}
// inherit
extend(Triangle, TwoDShape);
// augment
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
 return this.side * this.height / 2;
};

Inheritance

[184]

Testing:

> new Triangle().toString();
"Shape, 2D shape, Triangle"

Copying properties
Now, let's try a slightly different approach. Since inheritance is all about reusing
code, can you simply copy the properties you like from one object to another? Or
from a parent to a child? Keeping the same interface as the preceding extend()
function, you can create a function extend2() which takes two constructor functions
and copies all of the properties from the parent's prototype to the child's prototype.
This will, of course, carry over methods too, as methods are just properties that
happen to be functions.

function extend2(Child, Parent) {
var p = Parent.prototype;
var c = Child.prototype;
for (vari in p) {
c[i] = p[i];
}
c.uber = p;
}

As you can see, a simple loop through the properties is all it takes. As with the
previous example, you can set an uber property if you want to have handy access
to parent's methods from the child. Unlike the previous example though, it's not
necessary to reset the Child.prototype.constructor because here the child
prototype is augmented, not overwritten completely, so the constructor property
points to the initial value.

This method is a little inefficient compared to the previous method because
properties of the child prototype are being duplicated instead of simply being looked
up via the prototype chain during execution. Bear in mind that this is only true for
properties containing primitive types. All objects (including functions and arrays)
are not duplicated, because these are passed by reference only.

Let's see an example of using two constructor functions, Shape() and TwoDShape().
The Shape() function's prototype object contains a primitive property, name, and a
non-primitive one—the toString()method:

var Shape = function () {};
varTwoDShape = function () {};
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {

Chapter 6

[185]

 return this.uber
 ? this.uber.toString() + ', ' + this.name
 : this.name;
};

If you inherit with extend(), neither the objects created with TwoDShape() nor its
prototype get an own name property, but they have access to the one they inherit.

> extend(TwoDShape, Shape);
>var td = new TwoDShape();
>td.name;
"Shape"

>TwoDShape.prototype.name;
"Shape"

>td.__proto__.name;
"Shape"

>td.hasOwnProperty('name');
false

> td.__proto__.hasOwnProperty('name');
false

But if you inherit with extend2(), the prototype of TwoDShape()gets its own copy of
the name property. It also gets its own copy of toString(), but it's a reference only,
so the function will not be recreated a second time.

>extend2(TwoDShape, Shape);
>var td = new TwoDShape();
> td.__proto__.hasOwnProperty('name');
true

> td.__proto__.hasOwnProperty('toString');
true

> td.__proto__.toString === Shape.prototype.toString;
true

As you can see, the two toString() methods are the same function object. This is
good because it means that no unnecessary duplicates of the methods are created.

So, you can say that extend2() is less efficient than extend() because it recreates
the properties of the prototype. But, this is not so bad because only the primitive
data types are duplicated. Additionally, this is beneficial during the prototype chain
lookups as there are fewer chain links to follow before finding the property.

Inheritance

[186]

Take a look at the uber property again. This time, for a change, it's set on the Parent
object's prototype p, not on the Parent constructor. This is why toString() uses it as
this.uber, as opposed to this.constructor.uber. This is just an illustration that
you can shape your favorite inheritance pattern in any way you see fit. Let's test it out:

>td.toString();
"Shape, Shape"

TwoDShape didn't redefine the name property, hence the repetition. It can do that at
any time and (the prototype chain being live) all the instances "see" the update:

>TwoDShape.prototype.name = "2D shape";
>td.toString();
"Shape, 2D shape"

Heads-up when copying by reference
The fact that objects (including functions and arrays) are copied by reference could
sometimes lead to results you don't expect.

Let's create two constructor functions and add properties to the prototype of the
first one:

> function Papa() {}
>function Wee() {}
>Papa.prototype.name = 'Bear';
>Papa.prototype.owns = ["porridge", "chair", "bed"];

Now, let's have Wee inherit from Papa (either extend() or extend2() will do):

>extend2(Wee, Papa);

Using extend2(), the Wee function's prototype inherited the properties of Papa.
prototype as its own.

>Wee.prototype.hasOwnProperty('name');
true

>Wee.prototype.hasOwnProperty('owns');
true

The name property is primitive so a new copy of it is created. The property owns is an
array object so it's copied by reference:

>Wee.prototype.owns;
["porridge", "chair", "bed"]

Chapter 6

[187]

>Wee.prototype.owns=== Papa.prototype.owns;
true

Changing the Wee function's copy of name doesn't affect Papa:

>Wee.prototype.name += ', Little Bear';
"Bear, Little Bear"

>Papa.prototype.name;
"Bear"

Changing the Wee function's owns property, however, affects Papa, because both
properties point to the same array in memory.

>Wee.prototype.owns.pop();
"bed"

>Papa.prototype.owns;
["porridge", "chair"]

It's a different story when you completely overwrite the Wee function's copy of
owns with another object (as opposed to modifying the existing one). In this case
Papa.owns keeps pointing to the old object, while Wee.owns points to a new one.

>Wee.prototype.owns= ["empty bowl", "broken chair"];
>Papa.prototype.owns.push('bed');
>Papa.prototype.owns;
["porridge", "chair", "bed"]

Think of an object as something that is created and stored in a physical location in
memory. Variables and properties merely point to this location, so when you assign
a brand new object to Wee.prototype.owns you essentially say, "Hey, forget about
this other old object, move your pointer to this new one instead".

The following diagram illustrates what happens if you imagine the memory being a
heap of objects (like a wall of bricks) and you point to (refer to) some of these objects.

•	 A new object is created and A points to it.
•	 A new variable B is created and made equal to A, meaning it now points to

the same place where A is pointing to.
•	 A property color is changed using the B handle (pointer). The brick is now

white. A check for A.color === "white" would be true.

Inheritance

[188]

•	 A new object is created and the B variable/pointer is recycled to point to
that new object. A and B are now pointing to different parts of the memory
pile, they have nothing in common and changes to one of them don't affect
the other:

A={};A

B=A;

B .code=”white”;

B={};

A

A

A

B

B

B

If you want to address the problem that objects are copied by reference, consider a
deep copy, described further.

Objects inherit from objects
All of the examples so far in this chapter assume that you create your objects with
constructor functions and you want objects created with one constructor to inherit
properties that come from another constructor. However, you can also create objects
without the help of a constructor function, just by using the object literal and this is,
in fact, less typing. So how about inheriting those?

Chapter 6

[189]

In Java or PHP, you define classes and have them inherit from other classes. That's
why you'll see the term classical, because the OO functionality comes from the use of
classes. In JavaScript, there are no classes, so programmers that come from a classical
background resort to constructor functions because constructors are the closest to
what they are used to. In addition, JavaScript provides the new operator, which can
further suggest that JavaScript is like Java. The truth is that, in the end, it all comes
down to objects. The first example in this chapter used this syntax:

Child.prototype = new Parent();

Here, the Child constructor (or class, if you will) inherits from Parent. But this
is done through creating an object using new Parent() and inheriting from it.
That's why this is also referred to as a pseudo-classical inheritance pattern, because it
resembles classical inheritance, although it isn't (no classes are involved).

So why not get rid of the middleman (the constructor/class) and just have objects
inherit from objects? In extend2() the properties of the parent prototype object were
copied as properties of the child prototype object. The two prototypes are in essence
just objects. Forgetting about prototypes and constructor functions, you can simply
take an object and copy all of its properties into another object.

You already know that objects can start as a "blank canvas" without any own
properties by using var o = {}; and then get properties later. But, instead of starting
fresh, you can start by copying all of the properties of an existing object. Here's a
function that does exactly that: it takes an object and returns a new copy of it.

function extendCopy(p) {
var c = {};
for (vari in p) {
c[i] = p[i];
}
c.uber = p;
return c;
}

Simply copying all of the properties is a straightforward pattern, and it's widely
used. Let's see this function in action. You start by having a base object:

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

Inheritance

[190]

In order to create a new object that builds upon the old one, you can call the function
extendCopy() which returns a new object. Then, you can augment the new object
with additional functionality.

vartwoDee = extendCopy(shape);
twoDee.name = '2D shape';
twoDee.toString = function () {
return this.uber.toString() + ', ' + this.name;
};

A triangle object that inherits the 2D shape object:

var triangle = extendCopy(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function () {
return this.side * this.height / 2;
};

Using the triangle:

>triangle.side = 5;
>triangle.height = 10;
>triangle.getArea();
25

>triangle.toString();
"Shape, 2D shape, Triangle"

A possible drawback of this method is the somewhat verbose way of initializing
the new triangle object, where you manually set values for side and height,
as opposed to passing them as values to a constructor. But, this is easily resolved
by having a function, for example, called init() (or __construct() if you come
from PHP) that acts as a constructor and accepts initialization parameters. Or, have
extendCopy() accept two parameters: an object to inherit from and another object
literal of properties to add to the copy before it's returned, in other words just merge
two objects.

Deep copy
The function extendCopy(), discussed previously, creates what is called a shallow
copy of an object, just like extend2() before that. The opposite of a shallow copy
would be, naturally, a deep copy. As discussed previously (in the Heads-up when
copying by reference section), when you copy objects you only copy pointers to the
location in memory where the object is stored. This is what happens in a shallow
copy. If you modify an object in the copy, you also modify the original. The deep
copy avoids this problem.

Chapter 6

[191]

The deep copy is implemented in the same way as the shallow copy: you loop
through the properties and copy them one by one. But, when you encounter a
property that points to an object, you call the deep copy function again:

function deepCopy(p, c) {
 c = c || {};
 for (vari in p) {
 if (p.hasOwnProperty(i)) {
 if (typeof p[i] === 'object') {
 c[i] = Array.isArray(p[i]) ? [] : {};
deepCopy(p[i], c[i]);
 } else {
 c[i] = p[i];
 }
 }
 }
 return c;
}

Let's create an object that has arrays and a sub-object as properties.

var parent = {
numbers: [1, 2, 3],
letters: ['a', 'b', 'c'],
obj: {
prop: 1
},
bool: true
};

Let's test this by creating a deep copy and a shallow copy. Unlike the shallow copy,
when you update the numbers property of a deep copy, the original is not affected.

>varmydeep = deepCopy(parent);
>varmyshallow = extendCopy(parent);
>mydeep.numbers.push(4,5,6);
6

>mydeep.numbers;
[1, 2, 3, 4, 5, 6]

>parent.numbers;
[1, 2, 3]

>myshallow.numbers.push(10);
4

Inheritance

[192]

>myshallow.numbers;
[1, 2, 3, 10]

>parent.numbers;
[1, 2, 3, 10]

>mydeep.numbers;
[1, 2, 3, 4, 5, 6]

Two side notes about the deepCopy() function:

•	 Filtering out non-own properties with hasOwnProperty() is always a good
idea to make sure you don't carry over someone's additions to the core
prototypes.

•	 Array.isArray() exists since ES5 because it's surprisingly hard otherwise to
tell real arrays from objects. The best cross-browser solution (if you need to
define isArray() in ES3 browsers) looks a little hacky, but it works:
if (Array.isArray !== "function") {
Array.isArray = function (candidate) {
 return
Object.prototype.toString.call(candidate) ===
'[object Array]';
};
}

object()
Based on the idea that objects inherit from objects, Douglas Crockford advocates the
use of an object() function that accepts an object and returns a new one that has the
parent as a prototype.

function object(o) {
function F() {}
F.prototype = o;
return new F();
}

If you need access to an uber property, you can modify the object() function
like so:

function object(o) {
var n;
function F() {}
F.prototype = o;
n = new F();

Chapter 6

[193]

n.uber = o;
return n;
}

Using this function is the same as using the extendCopy(): you take an object such as
twoDee, create a new object from it and then proceed to augmenting the new object.

var triangle = object(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function () {
return this.side * this.height / 2;
};

The new triangle still behaves the same way:

>triangle.toString();
"Shape, 2D shape, Triangle"

This pattern is also referred to as prototypal inheritance, because you use a parent
object as the prototype of a child object. It's also adopted and built upon in ES5 and
called Object.create(). For example:

>var square = Object.create(triangle);

Using a mix of prototypal inheritance and
copying properties
When you use inheritance, you will most likely want to take already existing
functionality and then build upon it. This means creating a new object by inheriting from
an existing object and then adding additional methods and properties. You can do this
with one function call, using a combination of the last two approaches just discussed.

You can:

•	 Use prototypal inheritance to use an existing object as a prototype of a new one
•	 Copy all of the properties of another object into the newly created one

function objectPlus(o, stuff) {
var n;
function F() {}
F.prototype = o;
n = new F();
n.uber = o;

for (vari in stuff) {

Inheritance

[194]

n[i] = stuff[i];
}
return n;
}

This function takes an object o to inherit from and another object stuff that has the
additional methods and properties that are to be copied. Let's see this in action.

Start with the base shape object:

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

Create a 2D object by inheriting shape and adding more properties. The additional
properties are simply created with an object literal.

vartwoDee = objectPlus(shape, {
name: '2D shape',
toString: function () {
return this.uber.toString() + ', ' + this.name;
}
});

Now, let's create a triangle object that inherits from 2D and adds more properties.

var triangle = objectPlus(twoDee, {
name: 'Triangle',
getArea: function () {
return this.side * this.height / 2;
},
side: 0,
height: 0
});

Testing how it all works by creating a concrete triangle my with defined side
and height:

var my = objectPlus(triangle, {
side: 4, height: 4
});
>my.getArea();
8

Chapter 6

[195]

>my.toString();
"Shape, 2D shape, Triangle, Triangle"

The difference here, when executing toString(), is that the Triangle name is
repeated twice. That's because the concrete instance was created by inheriting
triangle, so there was one more level of inheritance. You could give the new
instance a name:

>objectPlus(triangle, {
side: 4,
height: 4,
 name: 'My 4x4'
}).toString();
"Shape, 2D shape, Triangle, My 4x4"

This objectPlus() is even closer to ES5's Object.create() only the ES5 one takes
the additional properties (the second argument) using something called property
descriptors (discussed in Appendix C, Built-in Objects).

Multiple inheritance
Multiple inheritance is where a child inherits from more than one parent. Some OO
languages support multiple inheritance out of the box, and some don't. You can
argue both ways: that multiple inheritance is convenient, or that it's unnecessary,
complicates application design, and it's better to use an inheritance chain instead.
Leaving the discussion of multiple inheritance's pros and cons for the long, cold
winter nights, let's see how you can do it in practice in JavaScript.

The implementation can be as simple as taking the idea of inheritance by copying
properties, and expanding it so that it takes an unlimited number of input objects to
inherit from.

Let's create a multi() function that accepts any number of input objects. You can
wrap the loop that copies properties in another loop that goes through all the objects
passed as arguments to the function.

function multi() {
var n = {}, stuff, j = 0, len = arguments.length;
for (j = 0; j <len; j++) {
stuff = arguments[j];
for (vari in stuff) {
 if (stuff.hasOwnProperty(i)) {
n[i] = stuff[i];
 }
}

Inheritance

[196]

}
return n;
}

Let's test this by creating three objects: shape, twoDee, and a third, unnamed object.
Then, creating a triangle object means calling multi() and passing all three objects.

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

vartwoDee = {
name: '2D shape',
dimensions: 2
};

var triangle = multi(shape, twoDee, {
name: 'Triangle',
getArea: function () {
return this.side * this.height / 2;
},
side: 5,
height: 10
});

Does this work? Let's see. The method getArea() should be an own property,
dimensions should come from twoDee and toString() from shape.

>triangle.getArea();
25

>triangle.dimensions;
2

>triangle.toString();
"Triangle"

Bear in mind that multi() loops through the input objects in the order they appear
and if it happens that two of them have the same property, the last one wins.

Chapter 6

[197]

Mixins
You might come across the term mixin. Think of a mixin as an object that
provides some useful functionality but is not meant to be inherited and extended
by sub-objects. The approach to multiple inheritance outlined previously can be
considered an implementation of the mixins idea. When you create a new object
you can pick and choose any other objects to mix into your new object. By passing
them all to multi() you get all their functionality without making them part of the
inheritance tree.

Parasitic inheritance
If you like the fact that you can have all kinds of different ways to implement
inheritance in JavaScript, and you're hungry for more, here's another one. This
pattern, courtesy of Douglas Crockford, is called parasitic inheritance. It's about a
function that creates objects by taking all of the functionality from another object
into a new one, augmenting the new object, and returning it, "pretending that it
has done all the work".

Here's an ordinary object, defined with an object literal, and unaware of the fact that
it's soon going to fall victim to parasitism:

vartwoD = {
name: '2D shape',
dimensions: 2
};

A function that creates triangle objects could:

•	 Use twoD object as a prototype of an object called that (similar to this for
convenience). This can be done in any way you saw previously, for example
using the object() function or copying all the properties.

•	 Augment that with more properties.
•	 Return that.

function triangle(s, h) {
var that = object(twoD);
that.name ='Triangle';
that.getArea = function () {
return this.side * this.height / 2;
};
that.side = s;
that.height = h;
return that;
}

Inheritance

[198]

Because triangle() is a normal function, not a constructor, it doesn't require the new
operator. But because it returns an object, calling it with new by mistake works too.

>var t = triangle(5, 10);
>t.dimensions;
2

>vart2 = new triangle(5,5);
>t2.getArea();
12.5

Note, that that is just a name; it doesn't have a special meaning, the way this does.

Borrowing a constructor
One more way of implementing inheritance (the last one in the chapter, I promise)
has to do again with constructor functions, and not the objects directly. In this
pattern the constructor of the child calls the constructor of the parent using either
call() or apply() methods. This can be called stealing a constructor, or inheritance by
borrowing a constructor if you want to be more subtle about it.

call() and apply() were discussed in Chapter 4, Objects but here's a refresher:
they allow you to call a function and pass an object that the function should bind to
its this value. So for inheritance purposes, the child constructor calls the parent's
constructor and binds the child's newly-created this object as the parent's this.

Let's have this parent constructor Shape():

function Shape(id) {
this.id = id;
}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

Now, let's define Triangle() which uses apply() to call the Shape()
constructor, passing this (an instance created with new Triangle())
and any additional arguments.

function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype.name = 'Triangle';

Note, that both Triangle() and Shape()have added some extra properties to
their prototypes.

Chapter 6

[199]

Now, let's test this by creating a new triangle object:

>var t = new Triangle(101);
>t.name;
"Triangle"

The new triangle object inherits the id property from the parent, but it doesn't inherit
anything added to the parent's prototype:

>t.id;
101

>t.toString();
"[object Object]"

The triangle failed to get the Shape function's prototype properties because there
was never a new Shape() instance created, so the prototype was never used. But,
you saw how to do this at the beginning of this chapter. You can redefine Triangle
like this:

function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype = new Shape();
Triangle.prototype.name = 'Triangle';

In this inheritance pattern, the parent's own properties are recreated as the child's
own properties. If a child inherits an array or other object, it's a completely new
value (not a reference) and modifying it won't affect the parent.

The drawback is that the parent's constructor gets called twice: once with apply()
to inherit own properties and once with new to inherit the prototype. In fact the own
properties of the parent are inherited twice. Let's take this simplified scenario:

function Shape(id) {
this.id = id;
}
function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype = new Shape(101);

Creating a new instance:

>var t = new Triangle(202);
>t.id;
202

Inheritance

[200]

There's an own property id, but there's also one that comes down the prototype
chain, ready to shine through:

>t.__proto__.id;
101

> delete t.id;
true

>t.id;
101

Borrow a constructor and copy its prototype
The problem of the double work performed by calling the constructor twice can
easily be corrected. You can call apply() on the parent constructor to get all own
properties and then copy the prototype's properties using a simple iteration (or
extend2() as discussed previously).

function Shape(id) {
this.id = id;
}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

function Triangle() {
Shape.apply(this, arguments);
}
extend2(Triangle, Shape);
Triangle.prototype.name = 'Triangle';

Testing:

>var t = new Triangle(101);
>t.toString();
"Triangle"
>t.id;
101

No double inheritance:

>typeoft.__proto__.id;
"undefined"

Chapter 6

[201]

extend2() also gives access to uber if needed:

>t.uber.name;
"Shape"

Summary
In this chapter you learned quite a few ways (patterns) for implementing inheritance
and the following table summarizes them. The different types can roughly be
divided into:

•	 Patterns that work with constructors
•	 Patterns that work with objects

You can also classify the patterns based on whether they:

•	 Use the prototype
•	 Copy properties
•	 Do both (copy properties of the prototype)

Name Example Classification Notes
1 Prototype

chaining
(pseudo-
classical)

Child.prototype =
new Parent();

•	 Works with
constructors

•	 Uses the
prototype
chain

•	 The default
mechanism.

•	 Tip: move all
properties/
methods that
are meant to be
reused to the
prototype, add
the non-reusable
as own properties.

Inheritance

[202]

Name Example Classification Notes
2 Inherit only

the prototype
Child.prototype =
Parent.prototype;

•	 Works with
constructors

•	 Copies the
prototype
(no
prototype
chain,
all share
the same
prototype
object)

•	 More efficient,
no new instances
are created just
for the sake of
inheritance.

•	 Prototype chain
lookup during
runtime- is fast,
since there's no
chain.

•	 Drawback:
children can
modify parents'
functionality.

3 Temporary
constructor

function
extend(Child,
Parent) {
 var F =
function(){};
 F.prototype =
Parent.prototype;
 Child.prototype
= new F();
 Child.prototype.
constructor =
Child;
 Child.uber =
Parent.prototype;
}

•	 Works with
constructors

•	 Uses the
prototype
chain

•	 Unlike #1, it only
inherits properties
of the prototype.
Own properties
(created with
this inside the
constructor) are
not inherited.

•	 Provides
convenient access
to the parent
(through uber).

4 Copying the
prototype
properties

function
extend2(Child,
Parent) {
var p = Parent.
prototype;
var c = Child.
prototype;
 for (vari in p) {
 c[i] = p[i];
 }
c.uber = p;
}

•	 Works with
constructors

•	 Copies
properties

•	 Uses the
prototype
chain

•	 All properties
of the parent
prototype become
properties of the
child prototype

•	 No need to create
a new object only
for inheritance
purposes

•	 Shorter prototype
chains

Chapter 6

[203]

Name Example Classification Notes
5 Copy all

properties
(shallow
copy)

function
extendCopy(p) {
var c = {};
 for (vari in p) {
 c[i] = p[i];
 }
c.uber = p;
 return c;
}

•	 Works with
objects

•	 Copies
properties

•	 Simple
•	 Doesn't use

prototypes

6 Deep copy Same as above, but
recurse into objects

•	 Works with
objects

•	 Copies
properties

Same as #5 but clones
objects and arrays

7 Prototypal
inheritance

function object(o)
{
 function F() {}
F.prototype = o;
 return new F();
}

•	 Works with
objects

•	 Uses the
prototype
chain

•	 No pseudo-
classes, objects
inherit from
objects

•	 Leverages the
benefits of the
prototype

8 Extend and
augment

function
objectPlus(o,
stuff) {
var n;
 function F() {}
F.prototype = o;
 n = new F();
n.uber = o;
 for (vari in
stuff) {
 n[i] = stuff[i];
 }
 return n;
}

•	 Works with
objects

•	 Uses the
prototype
chain

•	 Copies
properties

•	 Mix of prototypal
inheritance (#7)
and copying
properties (#5)

•	 One function call
to inherit and
extend at the
same time

Inheritance

[204]

Name Example Classification Notes
9 Multiple

inheritance
function multi() {
var n = {}, stuff,
j = 0,
len = arguments.
length;
 for (j = 0; j
<len; j++) {
 stuff =
arguments[j];
 for (vari in
stuff) {
 n[i] = stuff[i];
 }
 }
 return n;
}

•	 Works with
objects

•	 Copies
properties

•	 A mixin-style
implementation

•	 Copies all the
properties of all
the parent objects
in the order of
appearance

10 Parasitic
inheritance

function
parasite(victim) {
var that =
object(victim);
that.more = 1;
 return that;
}

•	 Works with
objects

•	 Uses the
prototype
chain

•	 Constructor-like
function creates
objects

•	 Copies an object,
augments and
returns the copy

11 Borrowing
constructors

function Child() {
Parent.apply(this,
arguments);
}

Works with
constructors

•	 Inherits only own
properties

•	 Can be combined
with #1 to inherit
the prototype too

•	 Convenient way
to deal with the
issues when a
child inherits a
property that is
an object (and
therefore passed
by reference)

12 Borrow a
constructor
and copy the
prototype

function Child() {
Parent.apply(this,
arguments);
}

extend2(Child,
Parent);

•	 Works with
constructors

•	 Uses the
prototype
chain

•	 Copies
properties

•	 Combination of
#11 and #4

•	 Allows you to
inherit both
own properties
and prototype
properties
without calling
the parent
constructor twice

Chapter 6

[205]

Given so many options, you must be wondering: which is the right one? That
depends on your style and preferences, your project, task, and team. Are you more
comfortable thinking in terms of classes? Then pick one of the methods that work
with constructors. Are you going to need just one or a few instances of your "class"?
Then choose an object-based pattern.

Are these the only ways of implementing inheritance? No. You can chose a pattern
from the preceding table or you can mix them, or you can think of your own. The
important thing is to understand and be comfortable with objects, prototypes, and
constructors; the rest is just pure joy.

Case study – drawing shapes
Let's finish off this chapter with a more practical example of using inheritance. The
task is to be able to calculate the area and the perimeter of different shapes, as well as
to draw them, while reusing as much code as possible.

Analysis
Let's have one Shape constructor that contains all of the common parts. From there,
let's have Triangle, Rectangle, and Square constructors, all inheriting from Shape.
A square is really a rectangle with the same-length sides, so let's reuse Rectangle
when building the Square.

In order to define a shape, you'll need points with x and y coordinates. A generic
shape can have any number of points. A triangle is defined with three points, a
rectangle (to keep it simpler)—with one point and the lengths of the sides. The
perimeter of any shape is the sum of its sides' lengths. Calculating the area is
shape-specific and will be implemented by each shape.

The common functionality in Shape would be:

•	 A draw() method that can draw any shape given the points
•	 A getParameter() method
•	 A property that contains an array of points
•	 Other methods and properties as needed

For the drawing part let's use a <canvas> tag. It's not supported in early IEs, but hey,
this is just an exercise.

Let's have two other helper constructors—Point and Line. Point will help when
defining shapes; Line will make calculations easier, as it can give the length of the
line connecting any two given points.

Inheritance

[206]

You can play with a working example here: http://www.phpied.com/files/canvas/.
Just open your console and start creating new shapes as you'll see in a moment.

Implementation
Let's start by adding a canvas tag to a blank HTML page:

<canvas height="600" width="800" id="canvas" />

Then, put the JavaScript code inside <script> tags:

<script>
// ... code goes here
</script>

Now, let's take a look at what's in the JavaScript part. First, the helper Point
constructor. It just can't get any more trivial than this:

function Point(x, y) {
this.x = x;
this.y = y;
}

Bear in mind that the coordinates of the points on the canvas start from x=0, y=0,
which is the top left. The bottom right will be x = 800, y = 600:

x = 800
y = 600

0

y

x

Next, the Line constructor. It takes two points and calculates the length of the line
between them, using the Pythagorean Theorem a2 + b2 = c2 (imagine a right-angled
triangle where the hypotenuse connects the two given points).

function Line(p1, p2) {
this.p1 = p1;
this.p2 = p2;
this.length = Math.sqrt(
Math.pow(p1.x - p2.x, 2) +
Math.pow(p1.y - p2.y, 2)
);
}

Chapter 6

[207]

Next, comes the Shape constructor. The shapes will have their points (and the lines
that connect them) as own properties. The constructor also invokes an initialization
method, init(), that will be defined in the prototype.

function Shape() {
this.points = [];
this.lines= [];
this.init();
}

Now the big part: the methods of Shape.prototype. Let's define all of these methods
using the object literal notation. Refer to the comments for guidelines as to what each
method does.

Shape.prototype = {
 // reset pointer to constructor
 constructor: Shape,

 // initialization, sets this.context to point
 // to the context if the canvas object
init: function () {
 if (this.context === undefined) {
var canvas = document.getElementById('canvas');
Shape.prototype.context = canvas.getContext('2d');
 }
 },

 // method that draws a shape by looping through this.points
 draw: function () {
vari, ctx = this.context;
ctx.strokeStyle = this.getColor();
ctx.beginPath();
ctx.moveTo(this.points[0].x, this.points[0].y);
 for (i = 1; i<this.points.length; i++) {
ctx.lineTo(this.points[i].x, this.points[i].y);
 }
ctx.closePath();
ctx.stroke();
 },

 // method that generates a random color
getColor: function () {
vari, rgb = [];
 for (i = 0; i< 3; i++) {
rgb[i] = Math.round(255 * Math.random());

Inheritance

[208]

 }
 return 'rgb(' + rgb.join(',') + ')';
 },

 // method that loops through the points array,
 // creates Line instances and adds them to this.lines
getLines: function () {
 if (this.lines.length> 0) {
 return this.lines;
 }
vari, lines = [];
 for (i = 0; i<this.points.length; i++) {
 lines[i] = new Line(this.points[i],
this.points[i + 1] || this.points[0]);
 }
this.lines = lines;
 return lines;
 },

 // shell method, to be implemented by children
getArea: function () {},

 // sums the lengths of all lines
getPerimeter: function () {
vari, perim = 0, lines = this.getLines();
 for (i = 0; i<lines.length; i++) {
perim += lines[i].length;
 }
 return perim;
 }
};

Now, the children constructor functions. Triangle first:

function Triangle(a, b, c) {
this.points = [a, b, c];

this.getArea = function () {
var p = this.getPerimeter(),
 s = p / 2;
 return Math.sqrt(
 s
 * (s - this.lines[0].length)
 * (s - this.lines[1].length)
 * (s - this.lines[2].length));
 };
}

Chapter 6

[209]

The Triangle constructor takes three point objects and assigns them to this.points
(its own collection of points). Then it implements the getArea() method, using
Heron's formula:

Area = s(s-a)(s-b)(s-c)

s is the semi-perimeter (perimeter divided by two).

Next, comes the Rectangle constructor. It receives one point (the upper-left point)
and the lengths of the two sides. Then, it populates its points array starting from
that one point.

function Rectangle(p, side_a, side_b){
this.points = [
p,
new Point(p.x + side_a, p.y),// top right
new Point(p.x + side_a, p.y + side_b), // bottom right
new Point(p.x, p.y + side_b)// bottom left
];
this.getArea = function () {
return side_a * side_b;
};
}

The last child constructor is Square. A square is a special case of a rectangle, so
it makes sense to reuse Rectangle. The easiest thing to do here is to borrow the
constructor.

function Square(p, side){
Rectangle.call(this, p, side, side);
}

Now that all constructors are done, let's take care of inheritance. Any pseudo-
classical pattern (one that works with constructors as opposed to objects) will do.
Let's try using a modified and simplified version of the prototype-chaining pattern
(the first method described in this chapter). This pattern calls for creating a new
instance of the parent and setting it as the child's prototype. In this case, it's not
necessary to have a new instance for each child—they can all share it.

(function () {
var s = new Shape();
Triangle.prototype = s;
Rectangle.prototype = s;
Square.prototype = s;
})();

Inheritance

[210]

Testing
Let's test this by drawing shapes. First, define three points for a triangle:

>varp1 = new Point(100, 100);
>varp2 = new Point(300, 100);
>varp3 = new Point(200, 0);

Now, you can create a triangle by passing the three points to the Triangle constructor:

>var t = new Triangle(p1, p2, p3);

You can call the methods to draw the triangle on the canvas and get its area and
perimeter:

>t.draw();
>t.getPerimeter();
482.842712474619

>t.getArea();
10000.000000000002

Now, let's play with a rectangle instance:

>var r = new Rectangle(new Point(200, 200), 50, 100);
>r.draw();
>r.getArea();
5000

>r.getPerimeter();
300

And finally, a square:

>var s = new Square(new Point(130, 130), 50);
>s.draw();
>s.getArea();
2500

>s.getPerimeter();
200

Chapter 6

[211]

It's fun to draw these shapes. You can also be as lazy as the following example,
which draws another square, reusing a triangle's point:

> new Square(p1, 200).draw();

The result of the tests will be something like this:

Exercises
1.	 Implement multiple inheritance but with a prototypal inheritance pattern,

not property copying. For example:
var my = objectMulti(obj, another_obj, a_third, {
additional: "properties"
});

The property additional should be an own property, all the rest should be
mixed into the prototype.

Inheritance

[212]

2.	 Use the canvas example to practice. Try out different things, for example:

°° Draw a few triangles, squares, and rectangles.
°° Add constructors for more shapes, such as Trapezoid, Rhombus,

Kite, and Pentagon. If you want to learn more about the canvas tag,
create a Circle constructor too. It will need to overwrite the draw()
method of the parent.

°° Can you think of another way to approach the problem and use
another type of inheritance?

°° Pick one of the methods that uses uber as a way for a child to access
its parent. Add functionality where the parents can keep track of
who their children are. Perhaps by using a property that contains a
children array?

The Browser Environment
You know that JavaScript programs need a host environment. Most of what you
learned so far in this book was related to core ECMAScript/JavaScript and can be
used in many different host environments. Now, let's shift the focus to the browser,
since this is the most popular and natural host environment for JavaScript programs.
In this chapter, you will learn about the following elements:

•	 The Browser Object Model (BOM)
•	 The Document Object Model (DOM)
•	 Browser events
•	 The XMLHttpRequest object

Including JavaScript in an HTML page
To include JavaScript in an HTML page, you need to use the <script> tag as follows:

<!DOCTYPE>
<html>
 <head>
 <title>JS test</title>
 <script src="somefile.js"></script>
 </head>
 <body>
 <script>
 var a = 1;
 a++;
 </script>
 </body>
</html>

The Browser Environment

[214]

In this example, the first <script> tag includes an external file, somefile.js, which
contains JavaScript code. The second <script> tag includes the JavaScript code
directly in the HTML code of the page. The browser executes the JavaScript code in
the sequence it finds it on the page and all the code in all tags share the same global
namespace. This means that when you define a variable in somefile.js, it also
exists in the second <script> block.

BOM and DOM – an overview
The JavaScript code in a page has access to a number of objects. These objects can be
divided into the following types:

•	 Core ECMAScript objects: All the objects mentioned in the previous chapters
•	 DOM: Objects that have to do with the currently loaded page (the page is

also called the document)
•	 BOM: Objects that deal with everything outside the page (the browser

window and the desktop screen)

DOM stands for Document Object Model and BOM for Browser Object Model.

The DOM is a standard, governed by the World Wide Web Consortium (W3C) and
has different versions, called levels, such as DOM Level 1, DOM Level 2, and so
on. Browsers in use today have different degrees of compliance with the standard
but in general, they almost all completely implement DOM Level 1. The DOM was
standardized post-factum, after the browser vendors had each implemented their
own ways to access the document. The legacy part (from before the W3C took over)
is still around and is referred to as DOM 0, although no real DOM Level 0 standard
exists. Some parts of DOM 0 have become de-facto standards as all major browsers
support them. Some of these were added to the DOM Level 1 standard. The rest
of DOM 0 that didn't find its way to DOM 1 is too browser-specific and won't be
discussed here.

BOM historically has not been a part of any standard. Similar to DOM 0, it has a
subset of objects that is supported by all major browsers, and another subset that is
browser-specific. The HTML5 standard codifies common behavior among browsers,
and it includes common BOM objects. Additionally, mobile devices come with their
specific objects (and HTML5 aims to standardize those as well) which traditionally
have not been necessary for desktop computers, but make sense in a mobile world,
for example, geolocation, camera access, vibration, touch events, telephony,
and SMS.

Chapter 7

[215]

This chapter discusses only cross-browser subsets of BOM and DOM Level 1
(unless noted otherwise in the text). Even these safe subsets constitute a large topic,
and a full reference is beyond the scope of this book. You can also consult the
following references:

•	 Mozilla DOM reference (http://developer.mozilla.org/en/docs/
Gecko_DOM_Reference)

•	 Mozilla's HTML5 wiki (https://developer.mozilla.org/en-US/docs/
HTML/HTML5)

•	 Microsoft's documentation for Internet Explorer (http://msdn2.microsoft.
com/en-us/library/ms533050(vs.85).aspx)

•	 W3C's DOM specifications (http://www.w3.org/DOM/DOMTR)

BOM
The Browser Object Model (BOM) is a collection of objects that give you access to
the browser and the computer screen. These objects are accessible through the global
object window.

The window object revisited
As you know already, in JavaScript there's a global object provided by the host
environment. In the browser environment, this global object is accessible using window.
All global variables are also accessible as properties of the window object as follows:

> window.somevar = 1;
 1

> somevar;
 1

Also, all of the core JavaScript functions (discussed in Chapter 2, Primitive Data Types,
Arrays, Loops, and Conditions) are methods of the global object. Have a look at the
following code snippet:

> parseInt('123a456');
 123

> window.parseInt('123a456');
 123

In addition to being a reference to the global object, the window object also serves a
second purpose providing information about the browser environment. There's a
window object for every frame, iframe, pop up, or browser tab.

The Browser Environment

[216]

Let's see some of the browser-related properties of the window object. Again, these
can vary from one browser to another, so let's only consider the properties that are
implemented consistently and reliably across all major browsers.

window.navigator
The navigator is an object that has some information about the browser and its
capabilities. One property is navigator.userAgent, which is a long string of
browser identification. In Firefox, you'll get the following output:

> window.navigator.userAgent;
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.28.10 (KHTML, like
Gecko) Version/6.0.3 Safari/536.28.10"

The userAgent string in Microsoft Internet Explorer would be something like
the following:

 "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)"

Because the browsers have different capabilities, developers have been using the
userAgent string to identify the browser and provide different versions of the code.
For example, the following code searches for the presence of the string MSIE to
identify Internet Explorer:

if (navigator.userAgent.indexOf('MSIE') !== -1) {
 // this is IE
} else {
 // not IE
}

It's better not to rely on the user agent string, but to use feature sniffing (also called
capability detection) instead. The reason for this is that it's hard to keep track of all
browsers and their different versions. It's much easier to simply check if the feature
you intend to use is indeed available in the user's browser. For example have a look
at the following code:

if (typeof window.addEventListener === 'function') {
 // feature is supported, let's use it
} else {
 // hmm, this feature is not supported, will have to
 // think of another way
}

Another reason to avoid user agent sniffing is that some browsers allow users to
modify the string and pretend they are using a different browser.

Chapter 7

[217]

Your console is a cheat sheet
The console lets you inspect what's in an object and this includes all the BOM and
DOM properties. Just type the following code:

> navigator;

Then click on the result. The result is a list of properties and their values, as shown in
the following screenshot:

window.location
The location property points to an object that contains information about the URL
of the currently loaded page. For example, location.href is the full URL and
location.hostname is only the domain. With a simple loop, you can see the full list
of properties of the location object.

Imagine you're on a page with a URL http://search.phpied.com:8080/search?q
=java&what=script#results.

for (var i in location) {
 if (typeof location[i] === "string") {
 console.log(i + ' = "' + location[i] + '"');
 }

The Browser Environment

[218]

}
 href = "http://search.phpied.com:8080/search?q=java&what=script#results"
 hash = "#results"
 host = "search.phpied.com:8080"
 hostname = "search.phpied.com"
 pathname = "/search"
 port = «8080»
 protocol = «http:»
 search = "?q=java&what=script"

There are also three methods that location provides, namely reload(), assign(),
and replace().

It's curious how many different ways exist for you to navigate to another page.
Following are a few ways:

> window.location.href = 'http://www.packtpub.com';
> location.href = 'http://www.packtpub.com';
> location = 'http://www.packtpub.com';
> location.assign('http://www.packtpub.com');

replace() is almost the same as assign(). The difference is that it doesn't create an
entry in the browser's history list as follows:

> location.replace('http://www.yahoo.com');

To reload a page you can use the following code:

> location.reload();

Alternatively, you can use location.href to point it to itself as follows:

> window.location.href = window.location.href;

Or, simply use the following code:

> location = location;

window.history
window.history allows limited access to the previously visited pages in the same
browser session. For example, you can see how many pages the user has visited
before coming to your page as follows:

> window.history.length;
 5

Chapter 7

[219]

You cannot see the actual URLs though. For privacy reasons this doesn't work. See
the following code:

> window.history[0];

You can, however, navigate back and forth through the user's session as if the user
had clicked on the Back/Forward browser buttons as follows:

> history.forward();
> history.back();

You can also skip pages back and forth with history.go(). This is the same as
calling history.back(). Code for history go() is as follows:

> history.go(-1);

For going two pages back use the following code:

> history.go(-2);

Reload the current page using the following code:

> history.go(0);

More recent browsers also support HTML5 History API, which lets you change
the URL without reloading the page. This is perfect for dynamic pages because
they can allow users to bookmark a specific URL, which represents the state of the
application, and when they come back (or share with their friends) the page can
restore the application state based on the URL. To get a sense of the history API, go
to any page and write the following code in the console:

> history.pushState({a: 1}, "", "hello");

> history.pushState({b: 2}, "", "hello-you-too");

> history.state;

Notice how the URL changes, but the page is the same. Now, experiment with Back
and Forward buttons in the browser and inspect the history.state again.

window.frames
window.frames is a collection of all of the frames in the current page. It doesn't
distinguish between frames and iframes (inline frames). Regardless of whether
there are frames on the page or not, window.frames always exists and points to
window as follows:

> window.frames === window;
 true

The Browser Environment

[220]

Let's consider an example where you have a page with one iframe as follows:

<iframe name="myframe" src="hello.html" />

In order to tell if there are any frames on the page, you can check the length
property. In case of one iframe, you'll see the following output:

> frames.length
 1

Each frame contains another page, which has its own global window object.

To get access to the iframe's window, you can do any of the following:

> window.frames[0];
> window.frames[0].window;
> window.frames[0].window.frames;
> frames[0].window;
> frames[0];

From the parent page, you can access properties of the child frame also. For example,
you can reload the frame as follows:

> frames[0].window.location.reload();

From inside the child you can access the parent as follows:

> frames[0].parent === window;
 true

Using a property called top, you can access the top-most page (the one that contains
all the other frames) from within any frame as follows:

> window.frames[0].window.top === window;
 true

> window.frames[0].window.top === window.top;
 true

> window.frames[0].window.top === top;
 true

In addition, self is the same as window as follows:

> self === window;
 true

> frames[0].self == frames[0].window;
 true

Chapter 7

[221]

If a frame has a name attribute, you can not only access the frame by name, but also
by index as follows:

> window.frames['myframe'] === window.frames[0];
 true

Or, alternatively you can use the following code:

> frames.myframe === window.frames[0];
 true

window.screen
screen provides information about the environment outside the browser. For
example, the property screen.colorDepth contains the color bit-depth (the color
quality) of the monitor. This is mostly used for statistical purposes. Have a look at
the following code:

> window.screen.colorDepth;
 32

You can also check the available screen real estate (the resolution):

> screen.width;
 1440

> screen.availWidth;
 1440

> screen.height;
 900

> screen.availHeight;
 847

The difference between height and availHeight is that the height is the whole
screen, while availHeight subtracts any operating system menus such as the
Windows task bar. The same is the case for width and availWidth.

Somewhat related is the property mentioned in the following code:

> window.devicePixelRatio;
 1

It tells you the difference (ratio) between physical pixels and device pixels in the
retina displays in mobile devices (for example, value 2 in iPhone).

The Browser Environment

[222]

window.open()/close()
Having explored some of the most common cross-browser properties of the window
object, let's move to some of the methods. One such method is open(), which allows
you to open new browser windows (pop ups). Various browser policies and user
settings may prevent you from opening a pop up (due to abuse of the technique for
marketing purposes), but generally you should be able to open a new window if it
was initiated by the user. Otherwise, if you try to open a pop up as the page loads, it
will most likely be blocked, because the user didn't initiate it explicitly.

window.open() accepts the following parameters:

•	 URL to load in the new window
•	 Name of the new window, which can be used as the value of a form's

target attribute
•	 Comma-separated list of features. They are as follows:

°° resizable: Should the user be able to resize the new window
°° width, height: Width and height of the pop up
°° status: Should the status bar be visible

window.open() returns a reference to the window object of the newly created
browser instance. Following is an example:

var win = window.open('http://www.packtpub.com', 'packt',
 'width=300,height=300,resizable=yes');

win points to the window object of the pop up. You can check if win has a falsy value,
which means that the pop up was blocked.

win.close() closes the new window.

It's best to stay away from opening new windows for accessibility and usability
reasons. If you don't like sites popping up windows to you, why do it to your users?
There are legitimate purposes, such as providing help information while filling out a
form, but often the same can be achieved with alternative solutions, such as using a
floating <div> inside the page.

window.moveTo() and window.resizeTo()
Continuing with the shady practices from the past, following are more methods to
irritate your users, provided their browser and personal settings allow you to.

•	 window.moveTo(100, 100) moves the browser window to screen location x
= 100 and y = 100 (counted from the top-left corner)

Chapter 7

[223]

•	 window.moveBy(10, -10) moves the window 10 pixels to the right and 10
pixels up from its current location

•	 window.resizeTo(x, y) and window.resizeBy(x, y) accept the same
parameters as the move methods but they resize the window as opposed to
moving it

Again, try to solve the problem you're facing without resorting to these methods.

window.alert(), window.prompt(), and
window.confirm()
Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, talked about the
function alert(). Now you know that global functions are accessible as methods of
the global object so alert('Watch out!') and window.alert('Watch out!') are
exactly the same.

alert() is not an ECMAScript function, but a BOM method. In addition to it, two
other BOM methods allow you to interact with the user through system messages.
Following are the methods:

•	 confirm() gives the user two options, OK and Cancel
•	 prompt() collects textual input

See how this works as follows:

> var answer = confirm('Are you cool?');
> answer;

It presents you with a window similar to the following screenshot (the exact look
depends on the browser and the operating system):

The Browser Environment

[224]

You'll notice the following things:

•	 Nothing gets written to the console until you close this message, this means
that any JavaScript code execution freezes, waiting for the user's answer

•	 Clicking on OK returns true, clicking on Cancel or closing the message using
the X icon (or the ESC key) returns false

This is handy for confirming user actions as follows:

if (confirm('Sure you want to delete this?')) {
 // delete
} else {
 // abort
}

Make sure you provide an alternative way to confirm user actions for people who
have disabled JavaScript (or for search engine spiders).

window.prompt() presents the user with a dialog to enter text as follows:

> var answer = prompt('And your name was?');
> answer;

This results in the following dialog box (Chrome, MacOS):

The value of answer is one of the following:

•	 null if you click on Cancel or the X icon, or press ESC
•	 "" (empty string) if you click on OK or press Enter without typing anything
•	 A text string if you type something and then click on OK (or press Enter)

The function also takes a string as a second parameter and displays it as a default
value prefilled into the input field.

Chapter 7

[225]

window.setTimeout() and window.setInterval()
setTimeout() and setInterval() allow for scheduling the execution of a piece
of code. setTimeout() attempts to execute the given code once after a specified
number of milliseconds. setInterval() attempts to execute it repeatedly after a
specified number of milliseconds has passed.

This shows an alert after approximately 2 seconds (2000 milliseconds):

> function boo() { alert('Boo!'); }
> setTimeout(boo, 2000);
 4

As you can see the function returned an integer (in this case 4) representing the ID of
the timeout. You can use this ID to cancel the timeout using clearTimeout(). In the
following example, if you're quick enough, and clear the timeout before 2 seconds
have passed, the alert will never be shown as you can see in the following code:

> var id = setTimeout(boo, 2000);
> clearTimeout(id);

Let's change boo() to something less intrusive as follows:

> function boo() { console.log('boo'); }

Now, using setInterval() you can schedule boo() to execute every 2 seconds,
until you cancel the scheduled execution with clearInterval():

> var id = setInterval(boo, 2000);
 boo
 boo
 boo
 boo
 boo
 boo
> clearInterval(id);

Note, that both functions accept a pointer to a callback function as a first parameter.
They can also accept a string which is evaluated with eval() but as you know,
eval() is evil, so it should be avoided. And what if you want to pass arguments to the
function? In such cases, you can just wrap the function call inside another function.

The following code is valid, but not recommended:

// bad idea
var id = setInterval("alert('boo, boo')", 2000);

The Browser Environment

[226]

This alternative is preferred:

var id = setInterval(
 function () {
 alert('boo, boo');
 },
 2000
);

Be aware that scheduling a function in some amount of milliseconds is not a guarantee
that it will execute exactly at that time. One reason is that most browsers don't have
millisecond resolution time. If you schedule something in 3 milliseconds, it will
execute after a minimum of 15 in older IEs and sooner in more modern browsers, but
most likely not in 1 millisecond. The other reason is that browsers maintain a queue
of what you request them to do. 100 milliseconds timeout means add to the queue
after 100 milliseconds. But if the queue is delayed by something slow happening, your
function will have to wait and execute after, say, 120 milliseconds.

More recent browsers implement the requestAnimationFrame() function. It's
preferable to the timeout functions because you're asking the browser to call
your function whenever it has available resources, not after a predefined time in
milliseconds. Try the following in your console:

function animateMe() {
 webkitRequestAnimationFrame(function(){
 console.log(new Date());
 animateMe();
 });
}

animateMe();

window.document
window.document is a BOM object that refers to the currently loaded document
(page). Its methods and properties fall into the DOM category of objects. Take a deep
breath (and maybe first look at the BOM exercises at the end of the chapter) and let's
dive into the DOM.

Chapter 7

[227]

DOM
The Document Object Model (DOM) represents an XML or an HTML document as
a tree of nodes. Using DOM methods and properties, you can access any element
on the page, modify or remove elements, or add new ones. The DOM is a language-
independent API (Application Programming Interface) and can be implemented not
only in JavaScript, but also in any other language. For example, you can generate
pages on the server-side with PHP's DOM implementation (http://php.net/dom).

Take a look at this example HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>My page</title>
 </head>
 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>
</html>

Consider the second paragraph (<p>second paragraph</p>). You see
that it's a <p> tag and it's contained in the <body> tag. If you think in terms of family
relationships, you can say that <body> is the parent of <p> and <p> is the child. The
first and the third paragraphs would also be children of the <body>, and at the same
time siblings of the second paragraph. The tag is a child of the second <p>, so
<p> is its parent. The parent-child relationships can be represented graphically in an
ancestry tree, called the DOM tree:

The Browser Environment

[228]

The previous screenshot shows what you'll see in the webkit console's Elements tab
after you expand each node.

You can see how all of the tags are shown as expandable nodes on the tree. Although
not shown, there exists the so-called text nodes, for example, the text inside the
 (the word second) is a text node. Whitespace is also considered a text node.
Comments inside the HTML code are also nodes in the tree, the <!-- and that's
about it --> comment in the HTML source is a comment node in the tree.

Every node in the DOM tree is an object and the Properties section on the right lists
all of the properties and methods you can use to work with these objects, following
the inheritance chain of how this object was created:

You can also see the constructor function that was used behind the scenes to
create each of these objects. Although this is not too practical for day-to-day
tasks, it may be interesting to know that, for example, <p> is created by the
HTMLParagraphElement() constructor, the object that represents the head tag is
created by HTMLHeadElement(), and so on. You cannot create objects using these
constructors directly, though.

Chapter 7

[229]

Core DOM and HTML DOM
One last diversion before moving on to more practical examples. As you now know,
the DOM represents both XML documents and HTML documents. In fact, HTML
documents are XML documents, but a little more specific. Therefore, as part of DOM
Level 1, there is a Core DOM specification that is applicable to all XML documents,
and there is also an HTML DOM specification, which extends and builds upon the
core DOM. Of course, the HTML DOM doesn't apply to all XML documents, but
only to HTML documents. Let's see some examples of Core DOM and HTML
DOM constructors:

Constructor Inherits from Core or
HTML

Comment

Node Core Any node on the tree.
Document Node Core The document object, the main

entry point to any XML document.
HTMLDocument Document HTML This is window.document or

simply document, the HTML-
specific version of the previous
object, which you'll use extensively.

Element Node Core Every tag in the source is
represented by an element. That's
why you say "the P element"
meaning "the <p></p> tag".

HTMLElement Element HTML General-purpose constructor, all
constructors for HTML elements
inherit from it.

HTMLBodyElement HTMLElement HTML Element representing the <body>
tag.

HTMLLinkElement HTMLElement HTML An A element (an tag).

and other such
constructors.

HTMLElement HTML All the rest of the HTML elements.

CharacterData Node Core General-purpose constructor for
dealing with texts.

Text CharacterData Core Text node inside a tag. In
second you have the
element node EM and the text node
with value second.

Comment CharacterData Core <!-- any comment -->

The Browser Environment

[230]

Constructor Inherits from Core or
HTML

Comment

Attr Node Core Represents an attribute of a tag,
in <p id="closer"> the id
attribute is a DOM object created
by the Attr() constructor.

NodeList Core A list of nodes, an array-like object
that has a length property.

NamedNodeMap Core Same as NodeList but the nodes
can be accessed by name, not only
by numeric index.

HTMLCollection HTML Similar to NamedNodeMap but
specific for HTML.

These are by no means all of the Core DOM and HTML DOM objects. For the full list
consult http://www.w3.org/TR/DOM-Level-1/.

Now that this bit of DOM theory is behind you, let's focus on the practical side
of working with the DOM. In the following sections, you'll learn how to do the
following things:

•	 Access DOM nodes
•	 Modify nodes
•	 Create new nodes
•	 Remove nodes

Accessing DOM nodes
Before you can validate the user input in a form on a page or swap an image, you
need to get access to the element you want to inspect or modify. Luckily, there are
many ways to get to any element, either by navigating around traversing the DOM
tree or by using a shortcut.

It's best if you start experimenting with all of the new objects and methods. The
examples you'll see use the same simple document that you saw at the beginning of
the DOM section, and which you can access at http://www.phpied.com/files/
jsoop/ch7.html. Open your console, and let's get started.

Chapter 7

[231]

The document node
document gives you access to the current document. To explore this object, you
can use your console as a cheat sheet. Type console.dir(document) and click
on the result:

Alternatively, you can you can browse all of the properties and methods of the
document object DOM properties in the Elements panel:

The Browser Environment

[232]

All nodes (this also includes the document node, text nodes, element nodes, and
attribute nodes) have nodeType, nodeName, and nodeValue properties:

> document.nodeType;
 9

There are 12 node types, represented by integers. As you can see, the document node
type is 9. The most commonly used are 1 (element), 2 (attribute), and 3 (text).

Nodes also have names. For HTML tags the node name is the tag name (tagName
property). For text nodes, it's #text, and for document nodes the name is as follows:

> document.nodeName;
 "#document"

Nodes can also have node values. For example, for text nodes the value is the actual
text. The document node doesn't have a value which can be seen as follows:

> document.nodeValue;
 null

documentElement
Now, let's move around the tree. XML documents always have one root node that
wraps the rest of the document. For HTML documents, the root is the <html> tag. To
access the root, you use the documentElement property of the document object:

> document.documentElement;
 <html>…</html>

nodeType is 1 (an element node) which can be seen as follows:

> document.documentElement.nodeType;
 1

For element nodes, both nodeName and tagName properties contain the name of the
tag, as seen in the following output:

> document.documentElement.nodeName;
 "HTML"

> document.documentElement.tagName;
 "HTML"

Chapter 7

[233]

Child nodes
In order to tell if a node has any children you use hasChildNodes() as follows:

> document.documentElement.hasChildNodes();
 true

The HTML element has three children, the head and the body elements and the
whitespace between them (whitespace is counted in most, but not all browsers). You
can access them using the childNodes array-like collection as follows:

> document.documentElement.childNodes.length;
 3

> document.documentElement.childNodes[0];
 <head>…</head>

> document.documentElement.childNodes[1];
 #text

> document.documentElement.childNodes[2];
 <body>…</body>

Any child has access to its parent through the parentNode property, as seen in the
following code:

> document.documentElement.childNodes[1].parentNode;
 <html>…</html>

Let's assign a reference to body to a variable as follows:

> var bd = document.documentElement.childNodes[2];

How many children does the body element have?

> bd.childNodes.length;
 9

As a refresher, here again is the body of the document:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

The Browser Environment

[234]

How come body has 9 children? Well, three paragraphs plus one comment makes
four nodes. The whitespace between these four nodes makes three more text nodes.
This makes a total of seven so far. The whitespace between <body> and the first <p>
is the eighth node. The whitespace between the comment and the closing </body> is
another text node. This makes a total of nine child nodes. Just type bd.childNodes
in the console to inspect them all.

Attributes
Because the first child of the body is a whitespace, the second child (index 1) is the
first paragraph. Refer to the following piece of code:

> bd.childNodes[1];
 <p class="opener">first paragraph</p>

You can check whether an element has attributes using hasAttributes() as follows:

> bd.childNodes[1].hasAttributes();
 true

How many attributes? In this example, one is the class attribute which can be seen
as follows:

> bd.childNodes[1].attributes.length;
 1

You can access the attributes by index and by name. You can also get the value using
the getAttribute() method as follows:

> bd.childNodes[1].attributes[0].nodeName;
 "class"

> bd.childNodes[1].attributes[0].nodeValue;
 "opener"

> bd.childNodes[1].attributes['class'].nodeValue;
 "opener"

> bd.childNodes[1].getAttribute('class');
 "opener"

Accessing the content inside a tag
Let's take a look at the first paragraph:

> bd.childNodes[1].nodeName;
 "P"

Chapter 7

[235]

You can get the text contained in the paragraph by using the textContent property.
textContent doesn't exist in older IEs, but another property called innerText
returns the same value, as seen in the following output:

> bd.childNodes[1].textContent;
 "first paragraph"

There is also the innerHTML property. It's a relatively new addition to the DOM
standard despite the fact that it previously existed in all major browsers. It returns
(or sets) HTML code contained in a node. You can see how this is a little inconsistent
as DOM treats the document as a tree of nodes, not as a string of tags. But innerHTML
is so convenient to use that you'll see it everywhere. Refer to the following code:

> bd.childNodes[1].innerHTML;
 "first paragraph"

The first paragraph contains only text, so innerHTML is the same as textContent (or
innerText in IE). However, the second paragraph does contain an em node, so you
can see the difference as follows:

> bd.childNodes[3].innerHTML;
 "second paragraph"

> bd.childNodes[3].textContent;
 "second paragraph"

Another way to get the text contained in the first paragraph is by using the
nodeValue of the text node contained inside the p node as follows:

> bd.childNodes[1].childNodes.length;
 1

> bd.childNodes[1].childNodes[0].nodeName;
 "#text"

> bd.childNodes[1].childNodes[0].nodeValue;
 "first paragraph"

DOM access shortcuts
By using childNodes, parentNode, nodeName, nodeValue, and attributes you
can navigate up and down the tree and do anything with the document. But the
fact that whitespace is a text node makes this a fragile way of working with the
DOM. If the page changes, your script may no longer work correctly. Also, if you
want to get to a node deeper in the tree, it could take a bit of code before you get
there. That's why you have shortcut methods, namely, getElementsByTagName(),
getElementsByName(), and getElementById().

The Browser Environment

[236]

getElementsByTagName() takes a tag name (the name of an element node) and
returns an HTML collection (array-like object) of nodes with the matching tag name.
For example, the following example asks "give me a count of all paragraphs" which
is given as follows:

> document.getElementsByTagName('p').length;
 3

You can access an item in the list by using the brackets notation, or the method
item(), and passing the index (0 for the first element). Using item() is discouraged
as array brackets are more consistent and also shorter to type. Refer to the following
piece of code:

> document.getElementsByTagName('p')[0];
 <p class="opener">first paragraph</p>

> document.getElementsByTagName('p').item(0);
 <p class="opener">first paragraph</p>

Getting the contents of the first p can be done as follows:

> document.getElementsByTagName('p')[0].innerHTML;
 "first paragraph"

Accessing the last p can be done as follows:

> document.getElementsByTagName('p')[2];
 <p id="closer">final</p>

To access the attributes of an element, you can use the attributes collection or
getAttribute() as shown previously. But a shorter way is to use the attribute
name as a property of the element you're working with. So to get the value of the id
attribute, you just use id as a property as follows:

> document.getElementsByTagName('p')[2].id;
 "closer"

Getting the class attribute of the first paragraph won't work though. It's an
exception, because it just happens so that class is a reserved word in ECMAScript.
You can use className instead as follows:

> document.getElementsByTagName('p')[0].className;
 "opener"

Chapter 7

[237]

Using getElementsByTagName() you can get all of the elements on the page
as follows:

> document.getElementsByTagName('*').length;
 8

In earlier versions of IE before IE7, * is not acceptable as a tag name. To get all
elements you can use IE's proprietary document.all collection, although selecting
every element is rarely needed.

The other shortcut mentioned is getElementById(). This is probably the most
common way of accessing an element. You just assign IDs to the elements you plan
to play with and they'll be easy to access later on, as seen in the following code:

> document.getElementById('closer');
<p id="closer">final</p>

Additional shortcut methods in more recent browsers include the following:

•	 getElementByClassName(): This method finds elements using their
class attribute

•	 querySelector(): This method finds an element using a CSS selector string
•	 querySelectorAll(): This method is the same as the previous one but

returns all matching elements not just the first

Siblings, body, first, and last child
nextSibling and previousSibling are two other convenient properties to navigate
the DOM tree, once you have a reference to one element:

> var para = document.getElementById('closer');
> para.nextSibling;
 #text

> para.previousSibling;
 #text

> para.previousSibling.previousSibling;
 <p>…</p>

> para.previousSibling.previousSibling.previousSibling;
 #text

> para.previousSibling.previousSibling.nextSibling.nextSibling;
 <p id="closer">final</p>

The Browser Environment

[238]

The body element is used so often that it has its own shortcut:

> document.body;
 <body>…</body>

> document.body.nextSibling;
 null

> document.body.previousSibling.previousSibling;
 <head>…</head>

firstChild and lastChild are also convenient. firstChild is the same as
childNodes[0] and lastChild is the same as childNodes[childNodes.length - 1]:

> document.body.firstChild;
 #text

> document.body.lastChild;
 #text

> document.body.lastChild.previousSibling;
 <!-- and that's about it -->

> document.body.lastChild.previousSibling.nodeValue;
 " and that's about it "

The following screenshot shows the family relationships between the body and
three paragraphs in it. For simplicity, all the whitespace text nodes are removed
from the screenshot:

Chapter 7

[239]

Walk the DOM
To wrap up, here's a function that takes any node and walks through the DOM tree
recursively, starting from the given node:

function walkDOM(n) {
 do {
 console.log(n);
 if (n.hasChildNodes()) {
 walkDOM(n.firstChild);
 }
 } while (n = n.nextSibling);
}

You can test the function as follows:

> walkDOM(document.documentElement);
> walkDOM(document.body);

Modifying DOM nodes
Now that you know a whole lot of methods for accessing any node of the DOM tree
and its properties, let's see how you can modify these nodes.

Let's assign a pointer to the last paragraph to the variable my as follows:

> var my = document.getElementById('closer');

Now, changing the text of the paragraph can be as easy as changing the
innerHTML value:

> my.innerHTML = 'final!!!';
 "final!!!"

Because innerHTML accepts a string of HTML source code, you can also create a new
em node in the DOM tree as follows:

> my.innerHTML = 'my final';
 "my final"

The new em node becomes a part of the tree:

> my.firstChild;
 my

> my.firstChild.firstChild;
 "my"

The Browser Environment

[240]

Another way to change text is to get the actual text node and change its nodeValue
as follows:

> my.firstChild.firstChild.nodeValue = 'your';
 "your"

Modifying styles
Often you don't change the content of a node but its presentation. The elements have
a style property, which in turn has a property mapped to each CSS property. For
example, changing the style of the paragraph to add a red border:

> my.style.border = "1px solid red";
 "1px solid red"

CSS properties often have dashes, but dashes are not acceptable in JavaScript
identifiers. In such cases, you skip the dash and uppercase the next letter. So
padding-top becomes paddingTop, margin-left becomes marginLeft, and so on.
Have a look at the following code:

> my.style.fontWeight = 'bold';
 "bold"

You also have access to cssText property of style, which lets you work with styles
as strings:

> my.style.cssText;
 "border: 1px solid red; font-weight: bold;"

And modifying styles is a string manipulation:

> my.style.cssText += " border-style: dashed;"
"border: 1px dashed red; font-weight: bold; border-style: dashed;"

Fun with forms
As mentioned earlier, JavaScript is great for client-side input validation and can save
a few round-trips to the server. Let's practice form manipulations and play a little bit
with a form located on a popular page www.google.com:

Chapter 7

[241]

Finding the first text input using the querySelector() method and a CSS selector
string is as follows:

> var input = document.querySelector('input[type=text]');

Accessing the search box:

> input.name;
 "q"

Changing the search query by setting the text contained in the value attribute is
done as follows:

> input.value = 'my query';
 "my query"

Now, let's have some fun. Changing the word Lucky with Tricky in the button:

> var feeling = document.querySelectorAll("button")[2];
> feeling.textContent = feelingtextContent.replace(/Lu/, 'Tri');
 "I'm Feeling Tricky"

Now, let's implement the tricky part and make that button show and hide for one
second. You can do this with a simple function. Let's call it toggle(). Every time
you call the function, it checks the value of the CSS property visibility and sets it
to visible if it's hidden and vice versa using following code:

function toggle() {
 var st = document.querySelectorAll('button')[2].style;
 st.visibility = (st.visibility === 'hidden')
 ? 'visible'
 : 'hidden';
}

Instead of calling the function manually, let's set an interval and call it every second:

> var myint = setInterval(toggle, 1000);

The Browser Environment

[242]

The result? The button starts blinking (making it trickier to click). When you're tired
of chasing it, just remove the timeout interval:

> clearInterval(myint);

Creating new nodes
To create new nodes, you can use the methods createElement() and
createTextNode(). Once you have the new nodes, you add them to the DOM
tree using appendChild() (or insertBefore(), or replaceChild()).

Reload http://www.phpied.com/files/jsoop/ch7.html and let's play.

Creating a new p element and set its innerHTML, as shown in the following code:

> var myp = document.createElement('p');
> myp.innerHTML = 'yet another';
 "yet another"

The new element automatically gets all the default properties, such as style, which
you can modify:

> myp.style;
 CSSStyleDeclaration

> myp.style.border = '2px dotted blue';
 "2px dotted blue"

Using appendChild() you can add the new node to the DOM tree. Calling this
method on the document.body node means creating one more child node right after
the last child:

> document.body.appendChild(myp);
 <p style="border: 2px dotted blue;">yet another</p>

Here's an illustration of how the page looks like after the new node is appended:

Chapter 7

[243]

DOM-only method
innerHTML gets things done a little more quickly than using pure DOM. In pure
DOM you need to perform the following steps:

1.	 Create a new text node containing yet another text
2.	 Create a new paragraph node
3.	 Append the text node as a child to the paragraph
4.	 Append the paragraph as a child to the body

This way you can create any number of text nodes and elements and nest them
however you like. Let's say you want to add the following HTML to the end of
the body:

<p>one more paragraphbold</p>

Presenting this as a hierarchy would be something like the following:

P element
 text node with value "one more paragraph"
 STRONG element
 text node with value "bold"

The code that accomplishes this is as follows:

// create P
var myp = document.createElement('p');
// create text node and append to P
var myt = document.createTextNode('one more paragraph');
myp.appendChild(myt);
// create STRONG and append another text node to it
var str = document.createElement('strong');
str.appendChild(document.createTextNode('bold'));
// append STRONG to P
myp.appendChild(str);
// append P to BODY
document.body.appendChild(myp);

cloneNode()
Another way to create nodes is by copying (or cloning) existing ones. The method
cloneNode() does this and accepts a boolean parameter (true = deep copy with all
the children, false = shallow copy, only this node). Let's test the method.

The Browser Environment

[244]

Getting a reference to the element you want to clone can be done as follows:

> var el = document.getElementsByTagName('p')[1];

Now, el refers to the second paragraph on the page that looks like the
following code:

<p>second paragraph</p>

Let's create a shallow clone of el and append it to the body:

> document.body.appendChild(el.cloneNode(false));

You won't see a difference on the page, because the shallow copy only copied the P
node, without any children. This means that the text inside the paragraph (which is a
text node child) was not cloned. The line above would be equivalent to the following:

> document.body.appendChild(document.createElement('p'));

But if you create a deep copy, the whole DOM subtree starting from P is copied,
and this includes text nodes and the EM element. This line copies (visually too) the
second paragraph to the end of the document:

> document.body.appendChild(el.cloneNode(true));

You can also copy only the EM if you want as follows:

> document.body.appendChild(el.firstChild.cloneNode(true));
 second

Or, only the text node with value second:

> document.body.appendChild(
 el.firstChild.firstChild.cloneNode(false));
 "second"

insertBefore()
Using appendChild(), you can only add new children at the end of the selected
element. For more control over the exact location there is insertBefore(). This is
the same as appendChild(), but accepts an extra parameter specifying where (before
which element) to insert the new node. For example, the following code inserts a text
node at the end of the body:

> document.body.appendChild(document.createTextNode('boo!'));

Chapter 7

[245]

And this creates another text node and adds it as the first child of the body:

document.body.insertBefore(
 document.createTextNode('first boo!'),
 document.body.firstChild
);

Removing nodes
To remove nodes from the DOM tree, you can use the method removeChild().
Again, let's start fresh with the same page with the body:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

Here's how you can remove the second paragraph:

> var myp = document.getElementsByTagName('p')[1];
> var removed = document.body.removeChild(myp);

The method returns the removed node if you want to use it later. You can still use all
the DOM methods even though the element is no longer in the tree:

> removed;
 <p>…</p>

> removed.firstChild;
 second

There's also the replaceChild() method that removes a node and puts another one
in its place.

After removing the node, the tree looks like the following:

 <body>
 <p class="opener">first paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

The Browser Environment

[246]

Now, the second paragraph is the one with the ID "closer":

> var p = document.getElementsByTagName('p')[1];
> p;
 <p id="closer">final</p>

Let's replace this paragraph with the one in the removed variable:

> var replaced = document.body.replaceChild(removed, p);

Just like removeChild(), replaceChild() returns a reference to the node that is
now out of the tree:

> replaced;
 <p id="closer">final</p>

Now, the body looks like the following:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <!-- and that's about it -->
 </body>

A quick way to wipe out all of the content of a subtree is to set the innerHTML to a
blank string. This removes all of the children of the BODY:

> document.body.innerHTML = '';
 ""

Testing is done as follows:

> document.body.firstChild;
 null

Removing with innerHTML is fast and easy. The DOM-only way would be to go over
all of the child nodes and remove each one individually. Here's a little function that
removes all nodes from a given start node:

function removeAll(n) {
 while (n.firstChild) {
 n.removeChild(n.firstChild);
 }
}

If you want to delete all BODY children and leave the page with an empty <body></
body> use the following code:

> removeAll(document.body);

Chapter 7

[247]

HTML-only DOM objects
As you know already, the Document Object Model applies to both XML and HTML
documents. What you've learned above about traversing the tree and then adding,
removing, or modifying nodes applies to any XML document. There are, however,
some HTML-only objects and properties.

document.body is one such HTML-only object. It's so common to have a
<body> tag in HTML documents and it's accessed so often, that it makes sense
to have an object that's shorter and friendlier than the equivalent document.
getElementsByTagName('body')[0].

document.body is one example of a legacy object inherited from the prehistoric
DOM Level 0 and moved to the HTML extension of the DOM specification. There
are other objects similar to document.body. For some of them there is no core DOM
equivalent, for others there is an equivalent, but the DOM0 original was ported
anyway for simplicity and legacy purposes. Let's see some of those objects.

Primitive ways to access the document
Unlike the DOM, which gives you access to any element (and even comments and
whitespace), initially JavaScript had only limited access to the elements of an HTML
document. This was done mainly through a number of collections:

•	 document.images: This is a collection of all of the images on the page. The
Core DOM equivalent is document.getElementsByTagName('img')

•	 document.applets: This is the same as document.
getElementsByTagName('applet')

•	 document.links

•	 document.anchors

•	 document.forms

document.links contains a list of all tags on the page,
meaning the <a> tags that have an href attribute. document.anchors contain
all links with a name attribute ().

One of the most widely used collections is document.forms, which contains a list of
<form> elements.

Let's play with a page that contains a form and an input, http://www.phpied.com/
files/jsoop/ch7-form.html. The following gives you access to the first form on
the page:

> document.forms[0];

The Browser Environment

[248]

It's the same as the following:

> document.getElementsByTagName('forms')[0];

The document.forms collection contains collections of input fields and buttons,
accessible through the elements property. Here's how to access the first input of the
first form on the page:

> document.forms[0].elements[0];

Once you have access to an element, you can access its attributes as object properties.
The first field of the first form in the test page is this:

<input name="search" id="search" type="text" size="50"
 maxlength="255" value="Enter email..." />

You can change the text in the field (the value of the value attribute) by using the
following code:

> document.forms[0].elements[0].value = 'me@example.org';
 "me@example.org"

If you want to disable the field dynamically use the following code:

> document.forms[0].elements[0].disabled = true;

When forms or form elements have a name attribute, you can access them by name
too as in the following code:

> document.forms[0].elements['search']; // array notation
> document.forms[0].elements.search; // object property

document.write()
The method document.write() allows you to insert HTML into the page while the
page is being loaded. You can have something like the following code:

<p>It is now
 <script>
 document.write("" + new Date() + "");
 </script>
</p>

This is the same as if you had the date directly in the source of the HTML document
as follows:

<p>It is now
 Fri Apr 26 2013 16:55:16 GMT-0700 (PDT)
</p>

Chapter 7

[249]

Note, that you can only use document.write() while the page is being loaded. If
you try it after page load, it will replace the content of the whole page.

It's rare that you would need document.write(), and if you think you do, try an
alternative approach. The ways to modify the contents of the page provided by DOM
Level 1 are preferred and are much more flexible.

Cookies, title, referrer, domain
The four additional properties of document you'll see in this section are also ported
from DOM Level 0 to the HTML extension of DOM Level 1. Unlike the previous
ones, for these properties there are no core DOM equivalents.

document.cookie is a property that contains a string. This string is the content of the
cookies exchanged between the server and the client. When the server sends a page
to the browser, it may include the Set-Cookie HTTP header. When the client sends
a request to the server, it sends the cookie information back with the Cookie header.
Using document.cookie you can alter the cookies the browser sends to the server.
For example, visiting cnn.com and typing document.cookie in the console gives you
the following output:

> document.cookie;
 "mbox=check#true#1356053765|session#1356053704195-121286#1356055565;...

document.title allows you to change the title of the page displayed in the browser
window. For example, see the following code:

> document.title = 'My title';
 "My title"

Note, that this doesn't change the value of the <title> element, but only
the display in the browser window, so it's not equivalent to document.
querySelector('title').

document.referrer tells you the URL of the previously-visited page. This is the
same value the browser sends in the Referer HTTP header when requesting the
page. (Note, that Referer is misspelled in the HTTP headers, but is correct in
JavaScript's document.referrer). If you've visited the CNN page by searching on
Yahoo first, you can see something like the following:

> document.referrer;
 "http://search.yahoo.com/search?p=cnn&ei=UTF-8&fr=moz2"

The Browser Environment

[250]

document.domain gives you access to the domain name of the currently loaded
page. This is commonly used when you need to perform so-called domain relaxation.
Imagine your page is www.yahoo.com and inside it you have an iframe hosted on
music.yahoo.com subdomain. These are two separate domains so the browser's
security restrictions won't allow the page and the iframe to communicate. To resolve
this you can set document.domain on both pages to yahoo.com and they'll be able to
talk to each other.

Note, that you can only set the domain to a less-specific one, for example, you
can change www.yahoo.com to yahoo.com, but you cannot change yahoo.com
to www.yahoo.com or any other non-yahoo domain.

> document.domain;
 "www.yahoo.com"

> document.domain = 'yahoo.com';
 "yahoo.com"

> document.domain = 'www.yahoo.com';
 Error: SecurityError: DOM Exception 18

> document.domain = 'www.example.org';
 Error: SecurityError: DOM Exception 18

Previously in this chapter, you saw the window.location object. Well, the same
functionality is also available as document.location:

> window.location === document.location;
 true

Events
Imagine you are listening to a radio program and they announce, "Big event! Huge!
Aliens have landed on Earth!" You might think "Yeah, whatever", some other listeners
might think "They come in peace" and some "We're all gonna die!". Similarly, the
browser broadcasts events and your code could be notified should it decide to tune in
and listen to the events as they happen. Some example events include:

•	 The user clicks a button
•	 The user types a character in a form field
•	 The page finishes loading

Chapter 7

[251]

You can attach a JavaScript function (called an event listener or event handler) to a
specific event and the browser will invoke your function as soon the event occurs.
Let's see how this is done.

Inline HTML attributes
Adding specific attributes to a tag is the laziest (but the least maintainable) way,
for example:

<div onclick="alert('Ouch!')">click</div>

In this case when the user clicks on the <div>, the click event fires and the string of
JavaScript code contained in the onclick attribute is executed. There's no explicit
function that listens to the click event, but behind the scenes a function is still created
and it contains the code you specified as a value of the onclick attribute.

Element Properties
Another way to have some code executed when a click event fires is to assign a
function to the onclick property of a DOM node element. For example:

<div id="my-div">click</div>
<script>
 var myelement = document.getElementById('my-div');
 myelement.onclick = function () {
 alert('Ouch!');
 alert('And double ouch!');
 };
</script>

This way is better because it helps you keep your <div> clean of any JavaScript code.
Always keep in mind that HTML is for content, JavaScript for behavior, and CSS for
formatting, and you should keep these three separate as much as possible.

This method has the drawback that you can attach only one function to the event, as
if the radio program has only one listener. It's true that you can have a lot happening
inside the same function, but this is not always convenient, as if all the radio listeners
are in the same room.

The Browser Environment

[252]

DOM event listeners
The best way to work with browser events is to use the event listener approach
outlined in DOM Level 2, where you can have many functions listening to an event.
When the event fires, all functions are executed. All of the listeners don't need to
know about each other and can work independently. They can tune in and out at any
time without affecting the other listeners.

Let's use the same simple markup from the previous section (available for you to
play with at http://www.phpied.com/files/jsoop/ch7.html). It has this piece of
markup as follows:

<p id="closer">final</p>

Your JavaScript code can assign listeners to the click event using the
addEventListener() method. Let's attach two listeners as follows:

var mypara = document.getElementById('closer');
mypara.addEventListener('click', function () {
 alert('Boo!');
}, false);
mypara.addEventListener(
 'click', console.log.bind(console), false);

As you can see, addEventListeners() is a method called on the node object and
accepts the type of event as its first parameter and a function pointer as its second.
You can use anonymous functions such as function () { alert('Boo!'); } or
existing functions such as console.log. The listener functions you specify are called
when the event happens and an argument is passed to them. This argument is an
event object. If you run the preceding code and click on the last paragraph, you can
see event objects being logged to the console. Clicking on an event object allows you
to see its properties:

Chapter 7

[253]

Capturing and bubbling
In the calls to addEventListener(), there was a third parameter, false. Let's see
what is it for.

Say you have a link inside an unordered list as follows:

<body>

 my blog

</body>

The Browser Environment

[254]

When you click on the link, you're actually also clicking on the list item , the
list , the <body>, and eventually the document as a whole. This is called event
propagation. A click on a link can also be seen as click on the document. The process
of propagating an event can be implemented in two ways:

•	 Event capturing: The click happens on the document first, then it propagates
down to the body, the list, the list item, and finally to the link

•	 Event bubbling: The click happens on the link and then bubbles up to
the document

DOM Level 2 events specification suggests that the events propagate in three phases,
namely, capturing, at target, and bubbling. This means that the event propagates
from the document to the link (target) and then bubbles back up to the document.
The event objects have an eventPhase property, which reflects the current phase:

DOCUMENT

HTML

BODY

UL

LI

A

PHASE II :

AT TARGET

P
H

A
S

E
I
:

C
A
P
T
U

R
IN

G B
U

B
B

L
IN

G

P
H

A
S

E
III

:

CLICK !

Historically, IE and Netscape (working on their own and without a standard to
follow) implemented the exact opposites. IE implemented only bubbling, Netscape
only capturing. Today, long after the DOM specification, modern browsers
implement all three phases.

Chapter 7

[255]

The practical implications related to the event propagation are as follows:

•	 The third parameter to addEventListener() specifies whether or
not capturing should be used. In order to have your code more portable
across browsers, it's better to always set this parameter to false and use
bubbling only.

•	 You can stop the propagation of the event in your listeners so that it stops
bubbling up and never reaches the document. To do this you can call the
stopPropagation() method of the event object (there is an example in the
next section).

•	 You can also use event delegation. If you have ten buttons inside a <div>,
you can always attach ten event listeners, one for each button. But a smarter
thing to do is to attach only one listener to the wrapping <div> and once the
event happens, check which button was the target of the click.

As a side note, there is a way to use event capturing in old IEs too (using
setCapture() and releaseCapture() methods) but only for mouse events.
Capturing any other events (keystroke events for example) is not supported.

Stop propagation
Let's see an example of how you can stop the event from bubbling up. Going back to
the test document, there is this piece of code:

<p id="closer">final</p>

Let's define a function that handles clicks on the paragraph:

function paraHandler() {
 alert('clicked paragraph');
}

Now, let's attach this function as a listener to the click event:

var para = document.getElementById('closer');
para.addEventListener('click', paraHandler, false);

Let's also attach listeners to the click event on the body, the document, and the
browser window:

document.body.addEventListener('click', function () {
 alert('clicked body');
}, false);
document.addEventListener('click', function () {
 alert('clicked doc');

The Browser Environment

[256]

}, false);
window.addEventListener('click', function () {
 alert('clicked window');
}, false);

Note, that the DOM specifications don't say anything about events on the window.
And why would they, since DOM deals with the document and not the browser. So
browsers implement window events inconsistently.

Now, if you click on the paragraph, you'll see four alerts saying:

•	 clicked paragraph
•	 clicked body
•	 clicked doc
•	 clicked window

This illustrates how the same single click event propagates (bubbles up) from the
target all the way up to the window.

The opposite of addEventLister() is removeEventListener() and it accepts
exactly the same parameters. Let's remove the listener attached to the paragraph.

> para.removeEventListener('click', paraHandler, false);

If you try now, you'll see alerts only for the click event on the body, document, and
window, but not on the paragraph.

Now, let's stop the propagation of the event. The function you add as a listener
receives the event object as a parameter and you can call the stopPropagation()
method of that event object as follows:

function paraHandler(e) {
 alert('clicked paragraph');
 e.stopPropagation();
}

Adding the modified listener is done as follows:

para.addEventListener('click', paraHandler, false);

Now, when you click on the paragraph you see only one alert because the event
doesn't bubble up to the body, the document, or the window.

Chapter 7

[257]

Note, that when you remove a listener, you have to pass a pointer to the same
function you previously attached. Otherwise doing the following does not work
because the second argument is a new function, not the same you passed when
adding the event listener, even if the body is exactly the same:

document.body.removeEventListener('click',
 function () {
 alert('clicked body');
 },
false); // does NOT remove the handler

Prevent default behavior
Some browser events have a predefined behavior. For example, clicking a link
causes the browser to navigate to another page. You can attach listeners to clicks
on a link and you can also disable the default behavior by calling the method
preventDefault() on the event object.

Let's see how you can annoy your visitors by asking "Are you sure you want to
follow this link?" every time they click a link. If the user clicks on Cancel (causing
confirm() to return false), the preventDefault() method is called as follows:

// all links
var all_links = document.getElementsByTagName('a');
for (var i = 0; i < all_links.length; i++) { // loop all links
 all_links[i].addEventListener(
 'click', // event type
 function (e) { // handler
 if (!confirm('Sure you want to follow this link?')) {
 e.preventDefault();
 }
 },
 false // don't use capturing
);
}

Note, that not all events allow you to prevent the default behavior. Most do, but if
you want to be sure, you can check the cancellable property of the event object.

The Browser Environment

[258]

Cross-browser event listeners
As you already know, most modern browsers almost fully implement the DOM
Level 1 specification. However, the events were not standardized until DOM 2. As a
result, there are quite a few differences in how IE before version 9 implements this
functionality compared to modern browsers.

Check out an example that causes the nodeName of a clicked element (the target
element) to be written to the console:

document.addEventListener('click', function (e) {
 console.log(e.target.nodeName);
}, false);

Now, let's take a look at how IE is different:

•	 In IE there's no addEventListener() method, although since IE Version 5
there is an equivalent attachEvent(). For earlier versions, your only choice
is accessing the property (such as onclick) directly.

•	 click event becomes onclick when using attachEvent().
•	 If you listen to events the old-fashioned way (for example, by setting a function

value to the onclick property), when the callback function is invoked, it
doesn't get an event object passed as a parameter. But, regardless of how you
attach the listener in IE, there is always a global object window.event that
points to the latest event.

•	 In IE the event object doesn't get a target attribute telling you the element
on which the event fired, but it does have an equivalent property called
srcElement.

•	 As mentioned before, event capturing doesn't apply to all events, so only
bubbling should be used.

•	 There's no stopPropagation() method, but you can set the IE-only
cancelBubble property to true.

•	 There's no preventDefault() method, but you can set the IE-only
returnValue property to false.

•	 To stop listening to an event, instead of removeEventListener() in IE you'll
need detachEvent().

So, here's the revised version of the previous code that works across browsers:

function callback(evt) {
 // prep work
 evt = evt || window.event;

Chapter 7

[259]

 var target = evt.target || evt.srcElement;

 // actual callback work
 console.log(target.nodeName);
}

// start listening for click events
if (document.addEventListener) { // Modern browsers
 document.addEventListener('click', callback, false);
} else if (document.attachEvent) { // old IE
 document.attachEvent('onclick', callback);
} else {
 document.onclick = callback; // ancient
}

Types of events
Now you know how to handle cross-browser events. But all of the examples
above used only click events. What other events are happening out there? As
you can probably guess, different browsers provide different events. There is a
subset of cross-browser events and some browser-specific ones. For a full list of
events, you should consult the browser's documentation, but here's a selection of
cross-browser events:

•	 Mouse events
°° mouseup, mousedown, click (the sequence is mousedown-up-click),

dblclick
°° mouseover (mouse is over an element), mouseout (mouse was over

an element but left it), mousemove

•	 Keyboard events
°° keydown, keypress, keyup (occur in this sequence)

•	 Loading/window events
°° load (an image or a page and all of its components are done loading),

unload (user leaves the page), beforeunload (the script can provide
the user with an option to stop the unload)

°° abort (user stops loading the page or an image in IE), error (a
JavaScript error, also when an image cannot be loaded in IE)

°° resize (the browser window is resized), scroll (the page is scrolled),
contextmenu (the right-click menu appears)

The Browser Environment

[260]

•	 Form events
°° focus (enter a form field), blur (leave the form field)
°° change (leave a field after the value has changed), select (select text in

a text field)
°° reset (wipe out all user input), submit (send the form)

Additionally, modern browsers provide drag events (dragstart, dragend, drop, and
others) and touch devices provide touchstart, touchmove, and touchend.

This concludes the discussion of events. Refer to the exercise section at the end
of this chapter for a little challenge of creating your own event utility to handle
cross-browser events.

XMLHttpRequest
XMLHttpRequest() is an object (a constructor function) that allows you to send
HTTP requests from JavaScript. Historically, XMLHttpRequest (or XHR for short)
was introduced in IE and was implemented as an ActiveX object. Starting with IE7
it's a native browser object, the same way as it's in the other browsers. The common
implementation of this object across browsers gave birth to the so-called Ajax
applications, where it's no longer necessary to refresh the whole page every time you
need new content. With JavaScript, you can make an HTTP request to the server, get
the response, and update only a part of the page. This way you can build much more
responsive and desktop-like web pages.

Ajax stands for Asynchronous JavaScript and XML.

•	 Asynchronous because after sending an HTTP request your code doesn't
need to wait for the response, but it can do other stuff and be notified
(through an event) when the response arrives.

•	 JavaScript because it's obvious that XHR objects are created with JavaScript.
•	 XML because initially developers were making HTTP requests for XML

documents and were using the data contained in them to update the page.
This is no longer a common practice, though, as you can request data in plain
text, in the much more convenient JSON format, or simply as HTML ready to
be inserted into the page.

Chapter 7

[261]

There are two steps to using the XMLHttpRequest:

•	 Send the request: This includes creating an XMLHttpRequest object and
attaching an event listener

•	 Process the response: Your event listener gets notified that the response has
arrived and your code gets busy doing something amazing with the response

Sending the request
In order to create an object you simply use the following code (let's deal with
browser inconsistencies in just a bit):

var xhr = new XMLHttpRequest();

The next thing is to attach an event listener to the readystatechange event fired by
the object:

xhr.onreadystatechange = myCallback;

Then, you need to call the open() method, as follows:

xhr.open('GET', 'somefile.txt', true);

The first parameter specifies the type of HTTP request (GET, POST, HEAD, and so on).
GET and POST are the most common. Use GET when you don't need to send much
data with the request and your request doesn't modify (write) data on the server,
otherwise use POST. The second parameter is the URL you are requesting. In this
example, it's the text file somefile.txt located in the same directory as the page.
The last parameter is a boolean specifying whether the request is asynchronous
(true, always prefer this) or not (false, blocks all the JavaScript execution and
waits until the response arrives).

The last step is to fire off the request which is done as follows:

xhr.send('');

The method send() accepts any data you want to send with the request. For GET
requests, this is an empty string, because the data is in the URL. For POST request,
it's a query string in the form key=value&key2=value2.

At this point, the request is sent and your code (and the user) can move on to other
tasks. The callback function myCallback will be invoked when the response comes
back from the server.

The Browser Environment

[262]

Processing the response
A listener is attached to the readystatechange event. So what exactly is the ready
state and how does it change?

There is a property of the XHR object called readyState. Every time it changes, the
readystatechange event fires. The possible values of the readyState property are
as follows:

•	 0-uninitialized
•	 1-loading
•	 2-loaded
•	 3-interactive
•	 4-complete

When readyState gets the value of 4, it means the response is back and ready
to be processed. In myCallback after you make sure readyState is 4, the other
thing to check is the status code of the HTTP request. You might have requested
a non-existing URL for example and get a 404 (File not found) status code. The
interesting code is the 200 (OK) code, so myCallback should check for this value.
The status code is available in the status property of the XHR object.

Once xhr.readyState is 4 and xhr.status is 200, you can access the contents of the
requested URL using the xhr.responseText property. Let's see how myCallback
could be implemented to simply alert() the contents of the requested URL:

function myCallback() {

 if (xhr.readyState < 4) {
 return; // not ready yet
 }

 if (xhr.status !== 200) {
 alert('Error!'); // the HTTP status code is not OK
 return;
 }

 // all is fine, do the work
 alert(xhr.responseText);
}

Once you've received the new content you requested, you can add it to the page, or
use it for some calculations, or for any other purpose you find suitable.

Chapter 7

[263]

Overall, this two-step process (send request and process response) is the core
of the whole XHR/Ajax functionality. Now that you know the basics, you can
move on to building the next Gmail. Oh yes, let's have a look at some minor
browser inconsistencies.

Creating XMLHttpRequest objects in IE prior
to Version 7
In Internet Explorer prior to version 7, the XMLHttpRequest object was an ActiveX
object, so creating an XHR instance is a little different. It goes like the following:

var xhr = new ActiveXObject('MSXML2.XMLHTTP.3.0');

MSXML2.XMLHTTP.3.0 is the identifier of the object you want to create. There are
several versions of the XMLHttpRequest object and if your page visitor doesn't have
the latest one installed, you can try two older ones, before you give up.

For a fully-cross-browser solution, you should first test to see if the user's browser
supports XMLHttpRequest as a native object, and if not, try the IE way. Therefore, the
whole process of creating an XHR instance could be like this:

var ids = ['MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'];

var xhr;
if (XMLHttpRequest) {
 xhr = new XMLHttpRequest();
} else {
 // IE: try to find an ActiveX object to use
 for (var i = 0; i < ids.length; i++) {
 try {
 xhr = new ActiveXObject(ids[i]);
 break;
 } catch (e) {}
 }
}

What is this doing? The array ids contains a list of ActiveX program IDs to
try. The variable xhr points to the new XHR object. The code first checks to
see if XMLHttpRequest exists. If so, this means that the browser supports
XMLHttpRequest() natively (so the browser is relatively modern). If it is not, the code
loops through ids trying to create an object. catch(e) quietly ignores failures and the
loop continues. As soon as an xhr object is created, you break out of the loop.

The Browser Environment

[264]

As you can see, this is quite a bit of code so it's best to abstract it into a function.
Actually, one of the exercises at the end of the chapter prompts you to create your
own Ajax utility.

A is for Asynchronous
Now you know how to create an XHR object, give it a URL and handle the response
to the request. What happens when you send two requests asynchronously? What if
the response to the second request comes before the first?

In the example above, the XHR object was global and myCallback was relying on
the presence of this global object in order to access its readyState, status, and
responseText properties. Another way, which prevents you from relying on global
variables, is to wrap the callback in a closure. Let's see how:

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = (function (myxhr) {
 return function () {
 myCallback(myxhr);
 };
}(xhr));

xhr.open('GET', 'somefile.txt', true);
xhr.send('');

In this case myCallback() receives the XHR object as a parameter and is not going
to look for it in the global space. This also means that at the time the response is
received, the original xhr might have been reused for a second request. The closure
keeps pointing to the original object.

X is for XML
Although these days JSON (discussed in the next chapter) is preferred over XML
as a data transfer format, XML is still an option. In addition to the responseText
property, the XHR objects also have another property called responseXML.
When you send an HTTP request for an XML document, responseXML points
to an XML DOM document object. To work with this document, you can use
all of the core DOM methods discussed previously in this chapter, such as
getElementsByTagName(), getElementById(), and so on.

Chapter 7

[265]

An example
Let's wrap up the different XHR topics with an example. You can visit the page
located at http://www.phpied.com/files/jsoop/xhr.html to work on the
example yourself:

The main page, xhr.html, is a simple static page that contains nothing but three
<div> tags.

<div id="text">Text will be here</div>
<div id="html">HTML will be here</div>
<div id="xml">XML will be here</div>

Using the console, you can write code that requests three files and loads their
respective contents into each <div>.

The three files to load are:

•	 content.txt: a simple text file containing the text "I am a text file"
•	 content.html: a file containing HTML code "I am formatted</

strong> HTML"

•	 content.xml: an XML file, containing the following code:
<?xml version="1.0" ?>
<root>
 I'm XML data.
</root>

All of the files are stored in the same directory as xhr.html.

For security reasons you can only use the original XMLHttpRequest
to request files that are on the same domain. However, modern
browsers support XHR2 which lets you make cross-domain requests,
provided that the appropriate Access-Control-Allow-Origin HTTP
header is in place.

First, let's create a function to abstract the request/response part:

function request(url, callback) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = (function (myxhr) {
 return function () {
 if (myxhr.readyState === 4 && myxhr.status === 200) {
 callback(myxhr);
 }
 };

The Browser Environment

[266]

 }(xhr));
 xhr.open('GET', url, true);
 xhr.send('');
}

This function accepts a URL to request and a callback function to call once the
response arrives. Let's call the function three times, once for each file, as follows:

request(
 'http://www.phpied.com/files/jsoop/content.txt',
 function (o) {
 document.getElementById('text').innerHTML =
 o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.html',
 function (o) {
 document.getElementById('html').innerHTML =
 o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.xml',
 function (o) {
 document.getElementById('xml').innerHTML =
 o.responseXML
 .getElementsByTagName('root')[0]
 .firstChild
 .nodeValue;
 }
);

The callback functions are defined inline. The first two are identical. They just replace
the HTML of the corresponding <div> with the contents of the requested file. The
third one is a little different as it deals with the XML document. First, you access the
XML DOM object as o.responseXML. Then, using getElementsByTagName() you
get a list of all <root> tags (there is only one). The firstChild of <root> is a text
node and nodeValue is the text contained in it ("I'm XML data"). Then just replace
the HTML of <div id="xml"> with the new content. The result is shown on the
following screenshot:

Chapter 7

[267]

When working with the XML document, you can also use o.responseXML.
documentElement to get to the <root> element, instead of o.responseXML.
getElementsByTagName('root')[0]. Remember that documentElement gives
you the root node of an XML document. The root in HTML documents is always
the <html> tag.

Summary
You learned quite a bit in this chapter. You have learned some cross-browser BOM
(Browser Object Model) objects:

•	 Properties of the global window object such as navigator, location,
history, frames, screen

•	 Methods such as setInterval() and setTimeout(); alert(), confirm()
and prompt(); moveTo/By() and resizeTo/By()

Then you learned about the DOM (Document Object Model), an API to represent an
HTML (or XML) document as a tree structure where each tag or text is a node on the
tree. You also learned how to do the following actions:

•	 Access nodes
°° Using parent/child relationship properties parentNode, childNodes,

firstChild, lastChild, nextSibling, and previousSibling
°° Using getElementsById(), getElementsByTagName(),

getElementsByName(), and querySelectorAll()

•	 Modify nodes:
°° Using innerHTML or innerText/textContent
°° Using nodeValue or setAttribute() or just using attributes as

object properties

The Browser Environment

[268]

•	 Remove nodes with removeChild() or replaceChild()
•	 And add new ones with appendChild(), cloneNode(), and

insertBefore()

You also learned some DOM0 (prestandardization) properties, ported to DOM
Level 1:

•	 Collections such as document.forms, images, links, anchors, applets.
Using these are discouraged as DOM1 has the much more flexible method
getElementsByTagName().

•	 document.body which gives you convenient access to <body>.
•	 document.title, cookie, referrer, and domain.

Next, you learned about how the browser broadcasts events that you can listen to.
It's not straightforward to do this in a cross-browser manner, but it's possible. Events
bubble up, so you can use event delegation to listen to events more globally. You can
also stop the propagation of events and interfere with the default browser behavior.

Finally, you learned about the XMLHttpRequest object that allows you to build
responsive web pages that do the following tasks:

•	 Make HTTP requests to the server to get pieces of data
•	 Process the response to update portions of the page

Exercises
In the previous chapters, the solutions to the exercises could be found in the text of
the chapter. This time, some of the exercises require you to do some more reading (or
experimentation) outside this book.

1.	 BOM: As a BOM exercise, try coding something wrong, obtrusive,
user-unfriendly, and all in all, very Web 1.0, the shaking browser
window. Try implementing code that opens a 200 x 200 pop up window
and then resizes it slowly and gradually to 400 x 400. Next, move the
window around as if there's an earthquake. All you'll need is one of the
move*() functions, one or more calls to setInterval(), and maybe one
to setTimeout()/clearInterval() to stop the whole thing. Or here's an
easier one, print the current date/time in the document.title and update
it every second, like a clock.

2.	 DOM:
°° Implement walkDOM() differently. Also make it accept a callback

function instead of hard coding console.log()

Chapter 7

[269]

°° Removing content with innerHTML is easy (document.body.
innerHTML = ''), but not always best. The problem will be when
there are event listeners attached to the removed elements, they
won't be removed in IE causing the browser to leak memory, because
it stores references to something that doesn't exist. Implement a
general-purpose function that deletes DOM nodes, but removes any
event listeners first. You can loop through the attributes of a node
and check if the value is a function. If it is, it's most likely an attribute
like onclick. You need to set it to null before removing the element
from the tree.

°° Create a function called include() that includes external scripts
on demand. This means you need to create a new <script> tag
dynamically, set its src attribute and append to the document's
<head>. Test by using the following code:
 > include('somescript.js');

3.	 Events:
Create an event utility (object) called myevent which has the following
methods working cross-browser:

°° addListener(element, event_name, callback) where element
could also be an array of elements

°° removeListener(element, event_name, callback)

°° getEvent(event) just to check for a window.event for older
versions of IE

°° getTarget(event)

°° stopPropagation(event)

°° preventDefault(event)

Usage example:
function myCallback(e) {
 e = myevent.getEvent(e);
 alert(myevent.getTarget(e).href);
 myevent.stopPropagation(e);
 myevent.preventDefault(e);
}
myevent.addListener(document.links, 'click', myCallback);

The result of the example code should be that all of the links in the document
lead nowhere but only alert the href attribute.

The Browser Environment

[270]

Create an absolutely positioned <div>, say at x = 100px, y = 100px. Write
the code to be able to move the div around the page using the arrow keys or
the keys J (left), K (right), M (down), and I (up). Reuse your own event utility
from 3.1.

4.	 XMLHttpRequest
Create your own XHR utility (object) called ajax. For example, have a look at
the following code:
function myCallback(xhr) {
 alert(xhr.responseText);
}
ajax.request('somefile.txt', 'get', myCallback);
ajax.request('script.php', 'post', myCallback,
 'first=John&last=Smith');

Coding and Design Patterns
Now that you know all about the objects in JavaScript, you've mastered prototypes
and inheritance, and you have seen some practical examples of using browser-
specific objects, let's move forward, or rather move a level up. Let's have a look at
some common JavaScript patterns.

But first, what's pattern? In short, a pattern is a good solution to a common problem.

Sometimes when you're facing a new programming problem, you may recognize
right away that you've previously solved another, suspiciously similar problem. In
such cases, it's worth isolating this class of problems and searching for a common
solution. A pattern is a proven and reusable solution (or an approach to a solution)
to a class of problems.

There are cases where a pattern is nothing more than an idea or a name. Sometimes
just using a name helps you think more clearly about a problem. Also, when working
with other developers in a team, it's much easier to communicate when everybody
uses the same terminology to discuss a problem or a solution.

Other times you may come across a unique problem that doesn't look like anything
you've seen before and doesn't readily fit into a known pattern. Blindly applying a
pattern just for the sake of using a pattern is not a good idea. It's preferable to not use
any known pattern than to try to tweak your problem so that it fits an existing solution.

This chapter talks about two types of patterns:

•	 Coding patterns: These are mostly JavaScript-specific best practices
•	 Design patterns: These are language-independent patterns, popularized by

the famous "Gang of Four" book

Coding and Design Patterns

[272]

Coding patterns
Let's start with some patterns that reflect JavaScript's unique features. Some patterns
aim to help you organize your code (for example, namespacing), others are related to
improving performance (such as lazy definitions and init-time branching), and some
make up for missing features such as private properties. The patterns discussed in
this section include:

•	 Separating behavior
•	 Namespaces
•	 Init-time branching
•	 Lazy definition
•	 Configuration objects
•	 Private variables and methods
•	 Privileged methods
•	 Private functions as public methods
•	 Immediate functions
•	 Chaining
•	 JSON

Separating behavior
As discussed previously, the three building blocks of a web page are as follows:

•	 Content (HTML)
•	 Presentation (CSS)
•	 Behavior (JavaScript)

Content
HTML is the content of the web page, the actual text. Ideally, the content should
be marked up using the least amount of HTML tags that sufficiently describe the
semantic meaning of that content. For example, if you're working on a navigation
menu it's a good idea to use and since a navigation menu is in essence just
a list of links.

Chapter 8

[273]

Your content (HTML) should be free from any formatting elements. Visual
formatting belongs to the presentation layer and should be achieved through
the use of Cascading Style Sheets (CSS). This means the following:

•	 The style attribute of HTML tags should not be used, if possible.
•	 Presentational HTML tags such as should not be used at all.
•	 Tags should be used for their semantic meaning, not because of how

browsers render them by default. For instance, developers sometimes use a
<div> tag where a <p> would be more appropriate. It's also favorable to use
 and instead of and <i> as the latter describe the visual
presentation rather than the meaning.

Presentation
A good approach to keep presentation out of the content is to reset, or nullify all
browser defaults. For example, using reset.css from the Yahoo! UI library. This
way the browser's default rendering won't distract you from consciously thinking
about the proper semantic tags to use.

Behavior
The third component of a web page is the behavior. Behavior should be kept separate
from both the content and the presentation. Behavior is usually added by using
JavaScript that is isolated to <script> tags, and preferably contained in external
files. This means not using any inline attributes such as onclick, onmouseover, and
so on. Instead, you can use the addEventListener/attachEvent methods from the
previous chapter.

The best strategy for separating behavior from content is as follows:

•	 Minimize the number of <script> tags
•	 Avoid inline event handlers
•	 Do not use CSS expressions
•	 Dynamically add markup that has no purpose if JavaScript is disabled

by the user
•	 Towards the end of your content when you are ready to close the <body> tag,

insert a single external.js file

Coding and Design Patterns

[274]

Example of separating behavior
Let's say you have a search form on a page and you want to validate the form with
JavaScript. So, you go ahead and keep the form tags free from any JavaScript, and
then immediately before the closing the </body> tag you insert a <script> tag
which links to an external file as follows:

<body>
 <form id="myform" method="post" action="server.php">
 <fieldset>
 <legend>Search</legend>
 <input
 name="search"
 id="search"
 type="text"
 />
 <input type="submit" />
 </fieldset>
 </form>
 <script src="behaviors.js"></script>
</body>

In behaviors.js you attach an event listener to the submit event. In your listener,
you check to see if the text input field was left blank and if so, stop the form from
being submitted. This way you save a round trip between the server and the client
and make the application immediately responsive.

The content of behaviors.js is given in the following code. It assumes that you've
created your myevent utility from the exercise at the end of the previous chapter:

// init
myevent.addListener('myform', 'submit', function (e) {
 // no need to propagate further
 e = myevent.getEvent(e);
 myevent.stopPropagation(e);
 // validate
 var el = document.getElementById('search');
 if (!el.value) { // too bad, field is empty
 myevent.preventDefault(e); // prevent the form submission
 alert('Please enter a search string');
 }
});

Chapter 8

[275]

Asynchronous JavaScript loading
You noticed how the script was loaded at the end of the HTML right before closing
the body. The reason is that JavaScript blocks the DOM construction of the page
and in some browsers even the downloads of the other components that follow. By
moving the scripts to the bottom of the page you ensure the script is out of the way
and when it arrives, it simply enhances the already usable page.

Another way to prevent external JavaScript files from blocking the page is to load
them asynchronously. This way you can start loading them earlier. HTML5 has the
defer attribute for this purpose:

 <script defer src="behaviors.js"></script>

Unfortunately, the defer attribute is not supported by older browsers, but luckily,
there is a solution that works across browsers, old and new. The solution is to create
a script node dynamically and append it to the DOM. In other words you use a bit of
inline JavaScript to load the external JavaScript file. You can have this script loader
snippet at the top of your document so that the download has an early start:

...
<head>
(function () {
 var s = document.createElement('script');
 s.src = 'behaviors.js';
 document.getElementsByTagName('head')[0].appendChild(s);
}());
</head>
...

Namespaces
Global variables should be avoided in order to reduce the possibility of variable
naming collisions. You can minimize the number of globals by namespacing your
variables and functions. The idea is simple, you create only one global object and all
your other variables and functions become properties of that object.

An Object as a namespace
Let's create a global object called MYAPP:

// global namespace
var MYAPP = MYAPP || {};

Coding and Design Patterns

[276]

Now, instead of having a global myevent utility (from the previous chapter), you can
have it as an event property of the MYAPP object as follows:

// sub-object
MYAPP.event = {};

Adding the methods to the event utility is still the same:

// object together with the method declarations
MYAPP.event = {
 addListener: function (el, type, fn) {
 // .. do the thing
 },
 removeListener: function (el, type, fn) {
 // ...
 },
 getEvent: function (e) {
 // ...
 }
 // ... other methods or properties
};

Namespaced constructors
Using a namespace doesn't prevent you from creating constructor functions. Here is
how you can have a DOM utility that has an Element constructor, which allows you
to create DOM elements easier:

MYAPP.dom = {};
MYAPP.dom.Element = function (type, properties) {
 var tmp = document.createElement(type);
 for (var i in properties) {
 if (properties.hasOwnProperty(i)) {
 tmp.setAttribute(i, properties[i]);
 }
 }
 return tmp;
};

Similarly, you can have a Text constructor to create text nodes:

MYAPP.dom.Text = function (txt) {
 return document.createTextNode(txt);
};

Chapter 8

[277]

Using the constructors to create a link at the bottom of a page can be done as follows:

var link = new MYAPP.dom.Element('a',
 {href: 'http://phpied.com', target: '_blank'});
var text = new MYAPP.dom.Text('click me');
link.appendChild(text);
document.body.appendChild(link);

A namespace() method
You can create a namespace utility that makes your life easier so that you can use
more convenient syntax:

MYAPP.namespace('dom.style');

Instead of the more verbose syntax as follows:

MYAPP.dom = {};
MYAPP.dom.style = {};

Here's how you can create such a namespace() method. First, you create an array by
splitting the input string using the period (.) as a separator. Then, for every element
in the new array, you add a property to your global object, if one doesn't already
exist as follows:

var MYAPP = {};
MYAPP.namespace = function (name) {
 var parts = name.split('.');
 var current = MYAPP;
 for (var i = 0; i < parts.length; i++) {
 if (!current[parts[i]]) {
 current[parts[i]] = {};
 }
 current = current[parts[i]];
 }
};

Testing the new method is done as follows:

MYAPP.namespace('event');
MYAPP.namespace('dom.style');

Coding and Design Patterns

[278]

The result of the preceding code is the same as if you did the following:

var MYAPP = {
 event: {},
 dom: {
 style: {}
 }
};

Init-time branching
In the previous chapter you noticed that sometimes different browsers have different
implementations for the same or similar functionalities. In such cases, you need
to branch your code depending on what's supported by the browser currently
executing your script. Depending on your program this branching can happen far
too often and, as a result, may slow down the script execution.

You can mitigate this problem by branching some parts of the code during
initialization, when the script loads, rather than during runtime. Building upon
the ability to define functions dynamically, you can branch and define the same
function with a different body depending on the browser. Let's see how.

First, let's define a namespace and placeholder method for the event utility:

var MYAPP = {};
MYAPP.event = {
 addListener: null,
 removeListener: null
};

At this point, the methods to add or remove a listener are not implemented. Based on
the results from feature sniffing, these methods can be defined differently as follows:

if (window.addEventListener) {
 MYAPP.event.addListener = function (el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 MYAPP.event.removeListener = function (el, type, fn) {
 el.removeEventListener(type, fn, false);
 };
} else if (document.attachEvent) { // IE
 MYAPP.event.addListener = function (el, type, fn) {
 el.attachEvent('on' + type, fn);
 };
 MYAPP.event.removeListener = function (el, type, fn) {

Chapter 8

[279]

 el.detachEvent('on' + type, fn);
 };
} else { // older browsers
 MYAPP.event.addListener = function (el, type, fn) {
 el['on' + type] = fn;
 };
 MYAPP.event.removeListener = function (el, type) {
 el['on' + type] = null;
 };
}

After this script executes, you have the addListener() and removeListener()
methods defined in a browser-dependent way. Now, every time you invoke one
of these methods there's no more feature-sniffing and it results in less work and
faster execution.

One thing to watch out for when sniffing features is not to assume too much after
checking for one feature. In the previous example this rule is broken because the code
only checks for addEventListener support but then defines both addListener()
and removeListener(). In this case it's probably safe to assume that if a browser
implements addEventListener() it also implements removeEventListener().
But, imagine what happens if a browser implements stopPropagation() but not
preventDefault() and you haven't checked for these individually. You have
assumed that because addEventListener() is not defined, the browser must be an
old IE and write your code using your knowledge and assumptions of how IE works.
Remember that all of your knowledge is based on the way a certain browser works
today, but not necessarily the way it will work tomorrow. So to avoid many rewrites
of your code as new browser versions are shipped, it's best to individually check for
features you intend to use and don't generalize on what a certain browser supports.

Lazy definition
The lazy definition pattern is similar to the previous init-time branching pattern. The
difference is that the branching happens only when the function is called for the first
time. When the function is called, it redefines itself with the best implementation.
Unlike the init-time branching where the if happens once, during loading, here it
may not happen at all in cases when the function is never called. The lazy definition
also makes the initialization process lighter as there's no init-time branching work to
be done.

Coding and Design Patterns

[280]

Let's see an example that illustrates this via the definition of an addListener()
function. The function is first defined with a generic body. It checks which
functionality is supported by the browser when it's called for the first time and then
redefines itself using the most suitable implementation. At the end of the first call,
the function calls itself so that the actual event attaching is performed. The next time
you call the same function it will be defined with its new body and be ready for use,
so no further branching is necessary. Following is the code snippet:

var MYAPP = {};
MYAPP.myevent = {
 addListener: function (el, type, fn) {
 if (el.addEventListener) {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 } else if (el.attachEvent) {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el.attachEvent('on' + type, fn);
 };
 } else {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el['on' + type] = fn;
 };
 }
 MYAPP.myevent.addListener(el, type, fn);
 }
};

Configuration object
This pattern is convenient when you have a function or method that accepts a lot
of optional parameters. It's up to you to decide how many constitutes a lot. But
generally, a function with more than three parameters is not convenient to call
because you have to remember the order of the parameters, and it is even more
inconvenient when some of the parameters are optional.

Instead of having many parameters, you can use one parameter and make it an
object. The properties of the object are the actual parameters. This is suitable for
passing configuration options because these tend to be numerous and optional
(with smart defaults). The beauty of using a single object as opposed to multiple
parameters is described as follows:

•	 The order doesn't matter
•	 You can easily skip parameters that you don't want to set

Chapter 8

[281]

•	 It's easy to add more optional configuration attributes
•	 It makes the code more readable because the configuration object's properties

are present in the calling code along with their names

Imagine you have some sort of UI widget constructor you use to create fancy
buttons. It accepts the text to put inside the button (the value attribute of the
<input> tag) and an optional parameter of the type of button. For simplicity
let's say the fancy button takes the same configuration as a regular button.
Have a look at the following code:

// a constructor that creates buttons
MYAPP.dom.FancyButton = function (text, type) {
 var b = document.createElement('input');
 b.type = type || 'submit';
 b.value = text;
 return b;
};

Using the constructor is simple; you just give it a string. Then you can add the new
button to the body of the document:

document.body.appendChild(
 new MYAPP.dom.FancyButton('puuush')
);

This is all well and works fine, but then you decide you also want to be able to set
some of the style properties of the button such as colors and fonts. You can end up
with a definition like the following:

MYAPP.dom.FancyButton =
 function (text, type, color, border, font) {
 // ...
};

Now, using the constructor can become a little inconvenient, especially when you
want to set the third and fifth parameter, but not the second or the fourth:

new MYAPP.dom.FancyButton(
 'puuush', null, 'white', null, 'Arial');

A better approach is to use one config object parameter for all the settings. The
function definition can become something like the following:

MYAPP.dom.FancyButton = function (text, conf) {
 var type = conf.type || 'submit';
 var font = conf.font || 'Verdana';
 // ...
};

Coding and Design Patterns

[282]

Using the constructor is given as follows:

var config = {
 font: 'Arial, Verdana, sans-serif',
 color: 'white'
};
new MYAPP.dom.FancyButton('puuush', config);

Another usage example is as follows:

document.body.appendChild(
 new MYAPP.dom.FancyButton('dude', {color: 'red'})
);

As you can see, it's easy to set only some of the parameters and to switch around
their order. In addition, the code is friendlier and easier to understand when you see
the names of the parameters at the same place where you call the method.

A drawback of this pattern is the same as its strength. It's trivial to keep adding more
parameters, which means trivial to abuse the technique. Once you have an excuse
to add to this free-for-all bag of properties, you will find it tempting to keep adding
some that are not entirely optional or some that are dependent on other properties.

As a rule of thumb, all these properties should be independent and optional. If you
have to check all possible combinations inside your function ("oh, A is set, but A is only
used if B is also set") this is a recipe for a large function body, which quickly becomes
confusing and difficult, if not impossible, to test, because of all the combinations.

Private properties and methods
JavaScript doesn't have the notion of access modifiers, which set the privileges of the
properties in an object. Other languages often have access modifiers such as:

•	 Public—all users of an object can access these properties (or methods)
•	 Private—only the object itself can access these properties
•	 Protected—only objects inheriting the object in question can access

these properties

JavaScript doesn't have a special syntax to denote private properties or methods, but
as discussed in Chapter 3, Functions, you can use local variables and methods inside a
function and achieve the same level of protection.

Chapter 8

[283]

Continuing with the example of the FancyButton constructor, you can have a local
variable styles which contains all the defaults, and a local setStyle() function.
These are invisible to the code outside of the constructor. Here's how FancyButton
can make use of the local private properties:

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.FancyButton = function (text, conf) {
 var styles = {
 font: 'Verdana',
 border: '1px solid black',
 color: 'black',
 background: 'grey'
 };
 function setStyles(b) {
 var i;
 for (i in styles) {
 if (styles.hasOwnProperty(i)) {
 b.style[i] = conf[i] || styles[i];
 }
 }
 }
 conf = conf || {};
 var b = document.createElement('input');
 b.type = conf.type || 'submit';
 b.value = text;
 setStyles(b);
 return b;
};

In this implementation, styles is a private property and setStyle() is a private
method. The constructor uses them internally (and they can access anything inside
the constructor), but they are not available to code outside of the function.

Privileged methods
Privileged methods (this term was coined by Douglas Crockford) are normal public
methods that can access private methods or properties. They can act like a bridge
in making some of the private functionality accessible but in a controlled manner,
wrapped in a privileged method.

Coding and Design Patterns

[284]

Private functions as public methods
Let us say you've defined a function that you absolutely need to keep intact, so you
make it private. But, you also want to provide access to the same function so that
outside code can also benefit from it. In this case, you can assign the private function
to a publicly available property.

Let's define _setStyle() and _getStyle() as private functions, but then assign
them to the public setStyle() and getStyle():

var MYAPP = {};
MYAPP.dom = (function () {
 var _setStyle = function (el, prop, value) {
 console.log('setStyle');
 };
 var _getStyle = function (el, prop) {
 console.log('getStyle');
 };
 return {
 setStyle: _setStyle,
 getStyle: _getStyle,
 yetAnother: _setStyle
 };
}());

Now, when you call MYAPP.dom.setStyle(), it invokes the private _setStyle()
function. You can also overwrite setStyle() from the outside:

MYAPP.dom.setStyle = function () {alert('b');};

Now, the result is as follows:

•	 MYAPP.dom.setStyle points to the new function
•	 MYAPP.dom.yetAnother still points to _setStyle()
•	 _setStyle() is always available when any other internal code relies on it to

be working as intended, regardless of the outside code

When you expose something private, keep in mind that objects (and functions and
arrays are objects too) are passed by reference and, therefore, can be modified from
the outside.

Chapter 8

[285]

Immediate functions
Another pattern that helps you keep the global namespace clean is to wrap your
code in an anonymous function and execute that function immediately. This way any
variables inside the function are local (as long as you use the var statement) and are
destroyed when the function returns, if they aren't part of a closure. This pattern was
discussed in more detail in Chapter 3, Functions. Have a look at the following code:

(function () {
 // code goes here...
}());

This pattern is especially suitable for on-off initialization tasks performed when the
script loads.

The immediate (self-executing) function pattern can be extended to create and
return objects. If the creation of these objects is more complicated and involves
some initialization work, then you can do this in the first part of the self-executable
function and return a single object, which can access and benefit from any private
properties in the top portion as follows:

var MYAPP = {};
MYAPP.dom = (function () {
 // initialization code...
 function _private() {
 // ...
 }
 return {
 getStyle: function (el, prop) {
 console.log('getStyle');
 _private();
 },
 setStyle: function (el, prop, value) {
 console.log('setStyle');
 }
 };
}());

Coding and Design Patterns

[286]

Modules
Combining several of the previous patterns, gives you a new pattern, commonly
referred to as a module pattern. The concept of modules in programming is
convenient as it allows you to code separate pieces or libraries and combine
them as needed just like pieces of a puzzle.

Two notable facts beyond the scope of this chapter
JavaScript doesn't have a built-in concept of modules, although this
is planned for the future via export and import declarations. There
is also the module specification from http://www.commonjs.org,
which defines a require() function and an exports object.

The module pattern includes:

•	 Namespaces to reduce naming conflicts among modules
•	 An immediate function to provide a private scope and initialization
•	 Private properties and methods
•	 Returning an object that has the public API of the module as follows:

namespace('MYAPP.module.amazing');

MYAPP.module.amazing = (function () {

 // short names for dependencies
 var another = MYAPP.module.another;

 // local/private variables
 var i, j;

 // private functions
 function hidden() {}

 // public API
 return {
 hi: function () {
 return "hello";
 }
 };
}());

And using the following module:
MYAPP.module.amazing.hi(); // "hello"

Chapter 8

[287]

Chaining
Chaining is a pattern that allows you to invoke multiple methods on one line as if
the methods are the links in a chain. This is convenient when calling several related
methods. You invoke the next method on the result of the previous without the use
of an intermediate variable.

Say you've created a constructor that helps you work with DOM elements.
The code to create a new and add it to the <body> could look something
like the following:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello');
obj.setStyle('color', 'red');
obj.setStyle('font', 'Verdana');
document.body.appendChild(obj);

As you know, constructors return the object referred to as this that they create. You
can make your methods such as setText() and setStyle() also return this, which
allows you to call the next method on the instance returned by the previous one. This
way you can chain method calls:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello')
 .setStyle('color', 'red')
 .setStyle('font', 'Verdana');
document.body.appendChild(obj);

You don't even need the obj variable if you don't plan on using it after the new
element has been added to the tree, so the code looks like the following:

document.body.appendChild(
 new MYAPP.dom.Element('span')
 .setText('hello')
 .setStyle('color', 'red')
 .setStyle('font', 'Verdana')
);

A drawback of this pattern is that it makes it a little harder to debug when an error
occurs somewhere in a long chain and you don't know which link is to blame
because they are all on the same line.

Coding and Design Patterns

[288]

JSON
Let's wrap up the coding patterns section of this chapter with a few words about
JSON. JSON is not technically a coding pattern, but you can say that using JSON is a
good pattern.

JSON is a popular lightweight format for exchanging data. It's often preferred over
XML when using XMLHttpRequest() to retrieve data from the server. JSON stands
for JavaScript Object Notation and there's nothing specifically interesting about it
other than the fact that it's extremely convenient. The JSON format consists of data
defined using object, and array literals. Here is an example of a JSON string that your
server could respond with after an XHR request:

{
 'name': 'Stoyan',
 'family': 'Stefanov',
 'books': ['OOJS', 'JSPatterns', 'JS4PHP']
}

An XML equivalent of this would be something like the following:

<?xml version="1.1" encoding="iso-8859-1"?>
<response>
 <name>Stoyan</name>
 <family>Stefanov</family>
 <books>
 <book>OOJS</book>
 <book>JSPatterns</book>
 <book>JS4PHP</book>
 </books>
</response>

First, you can see how JSON is lighter in terms of the number of bytes. But, the main
benefit is not the smaller byte size but the fact that it's trivial to work with JSON in
JavaScript. Let's say you've made an XHR request and have received a JSON string
in the responseText property of the XHR object. You can convert this string of data
into a working JavaScript object by simply using eval():

// warning: counter-example
var response = eval('(' + xhr.responseText + ')');

Chapter 8

[289]

Now, you can access the data in obj as object properties:

console.log(response.name); // "Stoyan"
console.log(response.books[2]); // "JS4PHP"

The problem is that eval() is insecure, so it's best if you use the JSON object to parse
the JSON data (a fallback for older browsers is available from http://json.org/).
Creating an object from a JSON string is still trivial:

var response = JSON.parse(xhr.responseText);

To do the opposite, that is, to convert an object to a JSON string, you use the method
stringify():

var str = JSON.stringify({hello: "you"});

Due to its simplicity, JSON has quickly become popular as a language-independent
format for exchanging data and you can easily produce JSON on the server side
using your preferred language. In PHP, for example, there are the functions
json_encode() and json_decode() that let you serialize a PHP array or
object into a JSON string and vice versa.

Design patterns
The second part of this chapter presents a JavaScript approach to a subset of the
design patterns introduced by the book called Design Patterns: Elements of Reusable
Object-Oriented Software, an influential book most commonly referred to as the Book of
Four or the Gang of Four, or GoF (after its four authors). The patterns discussed in the
GoF book are divided into three groups:

•	 Creational patterns that deal with how objects are created (instantiated)
•	 Structural patterns that describe how different objects can be composed in

order to provide new functionality
•	 Behavioral patterns that describe ways for objects to communicate with

each other

There are 23 patterns in the Book of Four and more patterns have been identified since
the book's publication. It's way beyond the scope of this book to discuss all of them,
so the remainder of the chapter demonstrates only four, along with examples of their
implementation in JavaScript. Remember that the patterns are more about interfaces
and relationships rather than implementation. Once you have an understanding
of a design pattern, it's often not difficult to implement it, especially in a dynamic
language such as JavaScript.

Coding and Design Patterns

[290]

The patterns discussed through the rest of the chapter are:

•	 Singleton
•	 Factory
•	 Decorator
•	 Observer

Singleton
Singleton is a creational design pattern meaning that its focus is on creating objects. It
helps when you want to make sure there is only one object of a given kind (or class).
In a classical language this would mean that an instance of a class is only created
once and any subsequent attempts to create new objects of the same class would
return the original instance.

In JavaScript, because there are no classes, a singleton is the default and most natural
pattern. Every object is a singleton object.

The most basic implementation of the singleton in JavaScript is the object literal:

var single = {};

That was easy, right?

Singleton 2
If you want to use class-like syntax and still implement the singleton pattern, things
become a bit more interesting. Let's say you have a constructor called Logger() and
you want to be able to do something like the following:

var my_log = new Logger();
my_log.log('some event');

// ... 1000 lines of code later in a different scope ...

var other_log = new Logger();
other_log.log('some new event');
console.log(other_log === my_log); // true

The idea is that although you use new, only one instance needs to be created, and this
instance is then returned in consecutive calls.

Chapter 8

[291]

Global variable
One approach would be to use a global variable to store the single instance. Your
constructor could look like this:

function Logger() {
 if (typeof global_log === "undefined") {
 global_log = this;
 }
 return global_log;
}

Using this constructor gives the expected result:

var a = new Logger();
var b = new Logger();
console.log(a === b); // true

The drawback is, obviously, the use of a global variable. It can be overwritten at any
time, even accidentally, and you lose the instance. The opposite, your global variable
overwriting someone else's is also possible.

Property of the Constructor
As you know, functions are objects and they have properties. You can assign the
single instance to a property of the constructor function as follows:

function Logger() {
 if (Logger.single_instance) {
 Logger.single_instance = this;
 }
 return Logger.single_instance;
}

If you write var a = new Logger(), a points to the newly created Logger.single_
instance property. A subsequent call var b = new Logger() results in b pointing
to the same Logger.single_instance property, which is exactly what you want.

This approach certainly solves the global namespace issue because no global
variables are created. The only drawback is that the property of the Logger
constructor is publicly visible, so it can be overwritten at any time. In such cases,
the single instance can be lost or modified. Of course, you can only provide so much
protection against fellow programmers shooting themselves in the foot. After all, if
someone can mess with the single instance property, they can mess up the Logger
constructor directly, as well.

Coding and Design Patterns

[292]

In a private property
The solution to the problem of overwriting the publicly visible property is not to use
a public property but a private one. You already know how to protect variables with
a closure, so as an exercise you can implement this approach to the singleton pattern.

Factory
The factory is another creational design pattern as it deals with creating objects.
The factory can help when you have similar types of objects and you don't know in
advance which one you want to use. Based on user input or other criteria, your code
determines the type of object it needs on the fly.

Let's say you have three different constructors, which implement similar functionality.
All the objects they create take a URL but do different things with it. One creates a text
DOM node, the second creates a link, and the third an image as follows:

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.Text = function (url) {
 this.url = url;
 this.insert = function (where) {
 var txt = document.createTextNode(this.url);
 where.appendChild(txt);
 };
};
MYAPP.dom.Link = function (url) {
 this.url = url;
 this.insert = function (where) {
 var link = document.createElement('a');
 link.href = this.url;
 link.appendChild(document.createTextNode(this.url));
 where.appendChild(link);
 };
};
MYAPP.dom.Image = function (url) {
 this.url = url;
 this.insert = function (where) {
 var im = document.createElement('img');
 im.src = this.url;
 where.appendChild(im);
 };
};

Chapter 8

[293]

Using the three different constructors is exactly the same, pass the url and call the
insert() method:

var url = 'http://www.phpied.com/images/covers/oojs.jpg';

var o = new MYAPP.dom.Image(url);
o.insert(document.body);

var o = new MYAPP.dom.Text(url);
o.insert(document.body);

var o = new MYAPP.dom.Link(url);
o.insert(document.body);

Imagine your program doesn't know in advance which type of object is required. The
user decides, during runtime, by clicking on a button for example. If type contains
the required type of object, you'll need to use an if or a switch, and do something
like this:

var o;
if (type === 'Image') {
 o = new MYAPP.dom.Image(url);
}
if (type === 'Link') {
 o = new MYAPP.dom.Link(url);
}
if (type === 'Text') {
 o = new MYAPP.dom.Text(url);
}
o.url = 'http://...';
o.insert();

This works fine, but if you have a lot of constructors, the code becomes too lengthy
and hard to maintain. Also, if you are creating a library or a framework that allows
extensions or plugins, you don't even know the exact names of all the constructor
functions in advance. In such cases, it's convenient to have a factory function that
takes care of creating an object of the dynamically determined type:

Let's add a factory method to the MYAPP.dom utility:

MYAPP.dom.factory = function (type, url) {
 return new MYAPP.dom[type](url);
};

Coding and Design Patterns

[294]

Now, you can replace the three if functions with the simpler code as follows:

var image = MYAPP.dom.factory("Image", url);
image.insert(document.body);

The example factory() method in the previous code was simple, but in a real life
scenario you'd want to do some validation against the type value (for example,
check if MYAPP.dom[type] exists) and optionally do some setup work common to all
object types (for example, setup the URL all constructors use).

Decorator
The Decorator design pattern is a structural pattern; it doesn't have much to do with
how objects are created but rather how their functionality is extended. Instead of
using inheritance where you extend in a linear way (parent-child-grandchild), you
can have one base object and a pool of different decorator objects that provide extra
functionality. Your program can pick and choose which decorators it wants and in
which order. For a different program or code path, you might have a different set of
requirements and pick different decorators out of the same pool. Take a look at how
the usage part of the decorator pattern could be implemented:

var obj = {
 doSomething: function () {
 console.log('sure, asap');
 }
 // ...
};
obj = obj.getDecorator('deco1');
obj = obj.getDecorator('deco13');
obj = obj.getDecorator('deco5');
obj.doSomething();

You can see how you can start with a simple object that has a doSomething()
method. Then you can pick one of the decorator objects you have lying around
and can be identified by name. All decorators provide a doSomething() method
which first calls the same method of the previous decorator and then proceeds with
its own code. Every time you add a decorator, you overwrite the base obj with an
improved version of it. At the end, when you are finished adding decorators, you call
doSomething(). As a result all of the doSomething() methods of all the decorators
are executed in sequence. Let's see an example.

Chapter 8

[295]

Decorating a Christmas tree
Let's illustrate the decorator pattern with an example of decorating a Christmas tree.
You start with the decorate() method as follows:

var tree = {};
tree.decorate = function () {
 alert('Make sure the tree won\'t fall');
};

Now, let's implement a getDecorator() method which adds extra decorators. The
decorators will be implemented as constructor functions, and they'll all inherit from
the base tree object:

tree.getDecorator = function (deco) {
 tree[deco].prototype = this;
 return new tree[deco];
};

Now, let's create the first decorator, RedBalls(), as a property of tree (in order to
keep the global namespace cleaner). The red ball objects also provide a decorate()
method, but they make sure they call their parent's decorate() first:

tree.RedBalls = function () {
 this.decorate = function () {
 this.RedBalls.prototype.decorate();
 alert('Put on some red balls');
 };
};

Similarly, implementing BlueBalls() and Angel() decorators:

tree.BlueBalls = function () {
 this.decorate = function () {
 this.BlueBalls.prototype.decorate();
 alert('Add blue balls');
 };
};
tree.Angel = function () {
 this.decorate = function () {
 this.Angel.prototype.decorate();
 alert('An angel on the top');
 };
};

Coding and Design Patterns

[296]

Now, let's add all of the decorators to the base object:

tree = tree.getDecorator('BlueBalls');
tree = tree.getDecorator('Angel');
tree = tree.getDecorator('RedBalls');

Finally, running the decorate() method:

tree.decorate();

This single call results in the following alerts (in this order):

•	 Make sure the tree won't fall
•	 Add blue balls
•	 An angel on the top
•	 Add some red balls

As you see, this functionality allows you to have as many decorators as you like, and
to choose and combine them in any way you like.

Observer
The observer pattern (also known as the subscriber-publisher pattern) is a
behavioral pattern, which means that it deals with how different objects interact and
communicate with each other. When implementing the observer pattern you have
the following objects:

•	 One or more publisher objects that announce when they do
something important.

•	 One or more subscribers tuned in to one or more publishers. They listen to
what the publishers announce and then act appropriately.

The observer pattern may look familiar to you. It sounds similar to the browser
events discussed in the previous chapter, and rightly so, because the browser
events are one example application of this pattern. The browser is the publisher, it
announces the fact that an event (such as a click) has happened. Your event listener
functions that are subscribed to (listen to) this type of event will be notified when the
event happens. The browser-publisher sends an event object to all of the subscribers.
In your custom implementations you can send any type of data you find appropriate.

There are two subtypes of the observer pattern, push and pull. Push is where the
publishers are responsible for notifying each subscriber, and pull is where the
subscribers monitor for changes in a publisher's state.

Chapter 8

[297]

Let's take a look at an example implementation of the push model. Let's keep the
observer-related code into a separate object and then use this object as a mix-in,
adding its functionality to any other object that decides to be a publisher. In this way
any object can become a publisher and any function can become a subscriber. The
observer object will have the following properties and methods:

•	 An array of subscribers that are just callback functions
•	 addSubscriber() and removeSubscriber() methods that add to, and

remove from, the subscribers collection
•	 A publish() method that takes data and calls all subscribers, passing the

data to them
•	 A make() method that takes any object and turns it into a publisher by

adding all of the methods mentioned previously to it

Here's the observer mix-in object, which contains all the subscription-related
methods and can be used to turn any object into a publisher:

var observer = {
 addSubscriber: function (callback) {
 if (typeof callback === "function") {
 this.subscribers[this.subscribers.length] = callback;
 }
 },
 removeSubscriber: function (callback) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (this.subscribers[i] === callback) {
 delete this.subscribers[i];
 }
 }
 },
 publish: function (what) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (typeof this.subscribers[i] === 'function') {
 this.subscribers[i](what);
 }
 }
 },
 make: function (o) { // turns an object into a publisher
 for (var i in this) {
 if (this.hasOwnProperty(i)) {
 o[i] = this[i];
 o.subscribers = [];
 }
 }
 }
};

Coding and Design Patterns

[298]

Now, let's create some publishers. A publisher can be any object and its only duty
is to call the publish() method whenever something important occurs. Here's a
blogger object which calls publish() every time a new blog posting is ready:

var blogger = {
 writeBlogPost: function() {
 var content = 'Today is ' + new Date();
 this.publish(content);
 }
};

Another object could be the LA Times newspaper which calls publish() when a
new newspaper issue is out:

var la_times = {
 newIssue: function() {
 var paper = 'Martians have landed on Earth!';
 this.publish(paper);
 }
};

Turning these objects into publishers:

observer.make(blogger);
observer.make(la_times);

Now, let's have two simple objects jack and jill:

var jack = {
 read: function(what) {
 console.log("I just read that " + what)
 }
};
var jill = {
 gossip: function(what) {
 console.log("You didn't hear it from me, but " + what)
 }
};

jack and jill can subscribe to the blogger object by providing the callback
methods they want to be called when something is published:

blogger.addSubscriber(jack.read);
blogger.addSubscriber(jill.gossip);

Chapter 8

[299]

What happens now when the blogger writes a new post? The result is that jack and
jill get notified:

> blogger.writeBlogPost();
 I just read that Today is Fri Jan 04 2013 19:02:12 GMT-0800 (PST)
 You didn't hear it from me, but Today is Fri Jan 04 2013 19:02:12 GMT-0800 (PST)

At any time, jill may decide to cancel her subscription. Then, when writing another
blog post, the unsubscribed object is no longer notified:

> blogger.removeSubscriber(jill.gossip);
> blogger.writeBlogPost();
 I just read that Today is Fri Jan 04 2013 19:03:29 GMT-0800 (PST)

jill may decide to subscribe to LA Times as an object can be a subscriber to
many publishers:

> la_times.addSubscriber(jill.gossip);

Then, when LA Times publishes a new issue, jill gets notified and jill.gossip()
is executed:

> la_times.newIssue();
 You didn't hear it from me, but Martians have landed on Earth!

Summary
In this chapter, you learned about common JavaScript coding patterns and learned
how to make your programs cleaner, faster, and better at working with other
programs and libraries. Then you saw a discussion and sample implementations of
a handful of the design patterns from the Book of Four. You can see how JavaScript
is a fully featured dynamic programming language and that implementing classical
patterns in a dynamic loosely typed language is pretty easy. The patterns are, in
general, a large topic and you can join the author of this book in a further discussion
of the JavaScript patterns at the website JSPatterns.com or take a look at the book
appropriately named "JavaScript Patterns".

Reserved Words
This appendix provides two lists of reserved keywords as defined in ECMAScript
5 (ES5). The first one is the current list of words, and the second is the list of words
reserved for future implementations.

There's also a list of words that are no longer reserved, although they used to
be in ES3.

You cannot use reserved words as variable names:

var break = 1; // syntax error

If you use these words as object properties, you have to quote them:

var o = {break: 1}; // OK in many browsers, error in IE
var o = {"break": 1}; // Always OK
alert(o.break); // error in IE
alert(o["break"]); // OK

Keywords
The list of words currently reserved in ES5 is as follows:

break

case

catch

continue

debugger

default

delete

Reserved Words

[302]

do

else

finally

for

function

if

in

instanceof

new

return

switch

this

throw

try

typeof

var

void

while

with

Future reserved words
These keywords are not currently used, but are reserved for future versions of
the language.

•	 class

•	 const

•	 enum

•	 export

•	 extends

•	 implements

Appendix A

[303]

•	 import

•	 interface

•	 let

•	 package

•	 private

•	 protected

•	 public

•	 static

•	 super

•	 yield

Previously reserved words
These words are no longer reserved starting with ES5, but best to stay away for the
sake of older browsers.

•	 abstract

•	 boolean

•	 byte

•	 char

•	 double

•	 final

•	 float

•	 goto

•	 int

•	 long

•	 native

•	 short

•	 synchronized

•	 throws

•	 transient

•	 volatile

Built-in Functions
This appendix contains a list of the built-in functions (methods of the global object),
discussed in Chapter 3, Functions.

Function Description
parseInt() Takes two parameters: an input object and radix; then tries to

return an integer representation of the input. Doesn't handle
exponents in the input. The default radix is 10 (a decimal
number). Returns NaN on failure. Omitting the radix may lead
to unexpected results (for example for inputs such as 08), so it's
best to always specify it.
> parseInt('10e+3');
10
> parseInt('FF');
NaN
> parseInt('FF', 16);
255

parseFloat() Takes a parameter and tries to return a floating-point
number representation of it. Understands exponents in
the input.

> parseFloat('10e+3');
10000
> parseFloat('123.456test');
123.456

Built-in Functions

[306]

Function Description
isNaN() Abbreviated from "Is Not a Number". Accepts a

parameter and returns true if the parameter is not a valid
number, false otherwise. Attempts to convert the input
to a number first.

> isNaN(NaN);
true
> isNaN(123);
false
> isNaN(parseInt('FF'));
true
> isNaN(parseInt('FF', 16));
false

isFinite() Returns true if the input is a number (or can be
converted to a number), but is not the number Infinity
or -Infinity. Returns false for infinity or non-numeric
values.

> isFinite(1e+1000);
false
> isFinite(-Infinity);
false
> isFinite("123");
true

encodeURIComponent() Converts the input into a URL-encoded string. For
more details on how URL encoding works, refer to the
Wikipedia article at http://en.wikipedia.org/wiki/
Url_encode.

> encodeURIComponent
 ('http://phpied.com/');
"http%3A%2F%2Fphpied.com%2F"
> encodeURIComponent
 ('some script?key=v@lue');
"some%20script%3Fkey%3Dv%40lue"

decodeURIComponent() Takes a URL-encoded string and decodes it.

> decodeURIComponent('%20%40%20');
" @ "

Appendix B

[307]

Function Description
encodeURI() URL-encodes the input, but assumes a full URL is given,

so returns a valid URL by not encoding the protocol (for
example, http://) and hostname (for example, www.
phpied.com).

> encodeURI('http://phpied.com/');
"http://phpied.com/"
> encodeURI('some script?key=v@lue');
"some%20script?key=v@lue"

decodeURI() Opposite of encodeURI().

> decodeURI("some%20script?key=v@lue");
"some script?key=v@lue"

eval() Accepts a string of JavaScript code and executes it.
Returns the result of the last expression in the input
string.

To be avoided where possible.

> eval('1 + 2');
3
> eval('parseInt("123")');
123
> eval('new Array(1, 2, 3)');
[1, 2, 3]
> eval('new Array(1, 2, 3); 1 + 2;');
3

Built-in Objects
This Appendix lists the built-in constructor functions outlined in the ECMAScript
(ES) standard, together with the properties and methods of the objects created by
these constructors. ES5-specific APIs are listed separately.

Object
Object() is a constructor that creates objects, for example:

> var o = new Object();

This is the same as using the object literal:

> var o = {}; // recommended

You can pass anything to the constructor and it will try to guess what it is and use a
more appropriate constructor. For example, passing a string to new Object() will be
the same as using the new String() constructor. This is not a recommended practice
(it's better to be explicit than let guesses creep in), but still possible.

> var o = new Object('something');
> o.constructor;
function String() { [native code] }

> var o = new Object(123);
> o.constructor;
function Number() { [native code] }

All other objects, built-in or custom, inherit from Object. So, the properties and
methods listed in the following sections apply to all types of objects.

Built-in Objects

[310]

Members of the Object constructor
Have a look at the following table:

Property/method Description
Object.prototype The prototype of all objects (also an object itself). Anything

you add to this prototype will be inherited by all other
objects, so be careful.

> var s = new String('noodles');
> Object.prototype.custom = 1;
1
> s.custom;
1

The Object.prototype members
Have a look at the following table:

Property/method Description
constructor Points back to the constructor function used to create

the object, in this case, Object.
> Object.prototype.constructor ===
Object;
true
> var o = new Object();
> o.constructor === Object;
true

toString(radix) Returns a string representation of the object. If the
object happens to be a Number object, the radix
parameter defines the base of the returned number.
The default radix is 10.

> var o = {prop: 1};
> o.toString();
"[object Object]"
> var n = new Number(255);
> n.toString();
"255"
> n.toString(16);
"ff"

Appendix C

[311]

Property/method Description
toLocaleString() The same as toString(), but matching the

current locale. Meant to be customized by objects,
such as Date(), Number(), and Array() and
provide locale-specific values, such as different date
formatting. In the case of Object() instances as
with most other cases, it just calls toString().
In browsers, you can figure out the language using
the property language (or userLanguage in IE) of
the navigator BOM object:

> navigator.language;
"en-US"

valueOf() Returns a primitive representation of this, if
applicable. For example, Number objects return
a primitive number and Date objects return a
timestamp. If no suitable primitive makes sense, it
simply returns this.

> var o = {};
> typeof o.valueOf();
"object"
> o.valueOf() === o;
true
> var n = new Number(101);
> typeof n.valueOf();
"number"
> n.valueOf() === n;
false
> var d = new Date();
> typeof d.valueOf();
"number"
> d.valueOf();
1357840170137

Built-in Objects

[312]

Property/method Description
hasOwnProperty(prop) Returns true if a property is an own property of

the object, or false if it was inherited from the
prototype chain. Also returns false if the property
doesn't exist.

> var o = {prop: 1};
> o.hasOwnProperty('prop');
true
> o.hasOwnProperty('toString');
false
> o.hasOwnProperty('fromString');
false

isPrototypeOf(obj) Returns true if an object is used as a prototype of
another object. Any object from the prototype chain
can be tested, not only the direct creator.

> var s = new String('');
> Object.prototype.isPrototypeOf(s);
true
> String.prototype.isPrototypeOf(s);
true
> Array.prototype.isPrototypeOf(s);
false

propertyIsEnumerable(prop) Returns true if a property shows up in a for-in
loop.

> var a = [1, 2, 3];
> a.propertyIsEnumerable('length');
false
> a.propertyIsEnumerable(0);
true

ECMAScript 5 additions to Object
In ECMAScript 3 all object properties can be changed, added, or deleted at any time,
except for a few built-in properties (for example, Math.PI). In ES5 you have the
ability to define properties that cannot be changed or deleted—a privilege previously
reserved for built-ins. ES5 introduces the concept of property descriptors that give
you tighter control over the properties you define.

Appendix C

[313]

Think of a property descriptor as an object that specifies the features of a property.
The syntax to describe these features is a regular object literal, so property
descriptors have properties and methods of their own, but let's call them
attributes to avoid confusion. The attributes are:

•	 value – what you get when you access the property
•	 writable – can you change this property
•	 enumerable – should it appear in for-in loops
•	 configurable – can you delete it
•	 set() – a function called any time you update the value
•	 get() – called when you access the value of the property

Further, there's a distinction between data descriptors (you define the properties
enumerable, configurable, value, and writable) and accessor descriptors (you
define enumerable, configurable, set(), and get()). If you define set() or get(),
the descriptor is considered an accessor and attempting to define value or writable
will raise an error.

Defining a regular old school ES3-style property:

var person = {};
person.legs = 2;

The same using an ES5 data descriptor:

var person = {};
Object.defineProperty(person, "legs", {
 value: 2,
 writable: true,
 configurable: true,
 enumerable: true
});

The value of value if set to undefined by default, all others are false. So, you need
to set them to true explicitly if you want to be able to change this property later.

Or, the same property using an ES5 accessor descriptor:

var person = {};
Object.defineProperty(person, "legs", {
 set: function (v) {this.value = v;},
 get: function (v) {return this.value;},
 configurable: true,
 enumerable: true
});
person.legs = 2;

Built-in Objects

[314]

As you can see property descriptors are a lot more code, so you only use them if you
really want to prevent someone from mangling your property, and also you forget
about backwards compatibility with ES3 browsers because, unlike additions to
Array.prototype for example, you cannot "shim" this feature in old browsers.

And the power of the descriptors in action (defining a nonmalleable property):

> var person = {};
> Object.defineProperty(person, 'heads', {value: 1});
> person.heads = 0;
0

> person.heads;
1

> delete person.heads;
false

> person.heads;
1

The following is a list of all ES5 additions to Object:

Property/method Description
Object.getPrototypeOf(obj) While in ES3 you have to guess what is the

prototype of a given object using the method
Object.prototype.isPrototypeOf(),
in ES5 you can directly ask "Who is your
prototype?"

> Object.getPrototypeOf([]) ===
 Array.prototype;
true

Appendix C

[315]

Property/method Description
Object.create(obj, descr) Discussed in Chapter 6, Inheritance. Creates

a new object, sets its prototype and defines
properties of that object using property
descriptors (discussed earlier).

> var parent = {hi: 'Hello'};
> var o = Object.create(parent, {
 prop: {
 value: 1
 }
 });
> o.hi;
"Hello"

It even lets you create a completely blank
object, something you cannot do in ES3.

> var o = Object.create(null);
> typeof o.toString;
"undefined"

Object.
getOwnPropertyDescriptor(obj,
property)

Allows you to inspect how a property was
defined. You can even peek into the built-ins
and see all these previously hidden attributes.

> Object.getOwnPropertyDescriptor(
 Object.prototype, 'toString');
Object
configurable: true
enumerable: false
value: function toString() { [native code] }
writable: true

Object.
getOwnPropertyNames(obj)

Returns an array of all own property names
(as strings), enumerable or not. Use Object.
keys() to get only enumerable ones.

> Object.getOwnPropertyNames(
 Object.prototype);
["constructor", "toString", "toLocaleString",
"valueOf",...

Object.defineProperty(obj,
descriptor)

Defines a property of an object using a
property descriptor. See the discussion
preceding this table.

Built-in Objects

[316]

Property/method Description
Object.defineProperties(obj,
descriptors)

The same as defineProperty(), but lets you
define multiple properties at once.

> var glass =
 Object.defineProperties({}, {
 "color": {
 value: "transparent",
 writable: true
 },
 "fullness": {
 value: "half",
 writable: false
 }
 });

> glass.fullness;
"half"

Object.preventExtensions(obj)

Object.isExtensible(obj)

preventExtensions() disallows
adding further properties to an object and
isExtensible() checks whether you can
add properties.

> var deadline = {};
> Object.isExtensible(deadline);
true
> deadline.date = "yesterday";
"yesterday"
> Object.
preventExtensions(deadline);
> Object.isExtensible(deadline);
false
> deadline.date = "today";
"today"
> deadline.date;
"today"

Attempting to add properties to a non-
extensible object is not an error, but simply
doesn't work:

> deadline.report = true;
> deadline.report;
undefined

Appendix C

[317]

Property/method Description
Object.seal(obj)

Object.isSealed(obj)

seal() does the same as
preventExtensions () and additionally
makes all existing properties non-configurable.
This means you can change the value of an
existing property, but you cannot delete it or
reconfigure it (using defineProperty()
won't work). So you cannot, for example, make
an enumerable property non-enumerable.

Object.freeze(obj)

Object.isFrozen(obj)

Everything that seal() does plus prevents
changing the values of properties.

> var deadline = Object.freeze(
 {date: "yesterday"});
> deadline.date = "tomorrow";
> deadline.excuse = "lame";
> deadline.date;
"yesterday"
> deadline.excuse;
undefined
> Object.isSealed(deadline);
true

Object.keys(obj) An alternative to a for-in loop. Returns
only own properties (unlike for-in).
The properties need to be enumerable
in order to show up (unlike Object.
getOwnPropertyNames()). The return value
is an array of strings.

> Object.prototype.customProto =
101;
> Object.getOwnPropertyNames(
 Object.prototype);
["constructor", "toString", ..., "customProto"]
> Object.keys(Object.prototype);
["customProto"]
> var o = {own: 202};
> o.customProto;
101
> Object.keys(o);
["own"]

Built-in Objects

[318]

Array
The Array constructor creates array objects:

> var a = new Array(1, 2, 3);

This is the same as the array literal:

> var a = [1, 2, 3]; //recommended

When you pass only one numeric value to the Array constructor, it's assumed to be
the array length.

> var un = new Array(3);
> un.length;
3

You get an array with the desired length and if you ask for the value of each of the
array elements, you get undefined.

> un;
[undefined, undefined, undefined]

There is a subtle difference between an array full of elements and an array with no
elements, but just length:

> '0' in a;
true

> '0' in un;
false

This difference in the Array() constructor's behavior when you specify one versus
more parameters can lead to unexpected behavior. For example, the following use of
the array literal is valid:

> var a = [3.14];
> a;
[3.14]

However, passing the floating-point number to the Array constructor is an error:

> var a = new Array(3.14);
Range Error: invalid array length

Appendix C

[319]

The Array.prototype members
Property/method Description
length The number of elements in the array.

> [1, 2, 3, 4].length;
4

concat(i1, i2,
i3,...)

Merges arrays together.
> [1, 2].concat([3, 5], [7, 11]);
[1, 2, 3, 5, 7, 11]

join(separator) Turns an array into a string. The separator parameter is a string
with comma as the default value.
> [1, 2, 3].join();
"1,2,3"
> [1, 2, 3].join('|');
"1|2|3"
> [1, 2, 3].join(' is less than ');
"1 is less than 2 is less than 3"

pop() Removes the last element of the array and returns it.
> var a = ['une', 'deux', 'trois'];
> a.pop();
"trois"
> a;
["une", "deux"]

push(i1, i2,
i3,...)

Appends elements to the end of the array and returns the length of
the modified array.
> var a = [];
> a.push('zig', 'zag', 'zebra','zoo');
4

reverse() Reverses the elements of the array and returns the modified array.
> var a = [1, 2, 3];
> a.reverse();
[3, 2, 1]
> a;
[3, 2, 1]

Built-in Objects

[320]

Property/method Description
shift() Like pop() but removes the first element, not the last.

> var a = [1, 2, 3];
> a.shift();
1
> a;
[2, 3]

slice(start_
index, end_
index)

Extracts a piece of the array and returns it as a new array, without
modifying the source array.
> var a = ['apple', 'banana',
 'js', 'css', 'orange'];
> a.slice(2,4);
["js", "css"]
> a;
["apple", "banana", "js", "css", "orange"]

sort(callback) Sorts an array. Optionally accepts a callback function for custom
sorting. The callback function receives two array elements as
arguments and should return 0 if they are equal, a positive
number if the first is greater and a negative number if the second
is greater.
An example of a custom sorting function that does a proper
numeric sort (since the default is character sorting):
function customSort(a, b) {
  if (a > b) return 1;
  if (a < b) return -1;
  return 0;
}
Example use of sort():
> var a = [101, 99, 1, 5];
> a.sort();
 [1, 101, 5, 99]
> a.sort(customSort);
[1, 5, 99, 101]
> [7, 6, 5, 9].sort(customSort);
[5, 6, 7, 9]

Appendix C

[321]

Property/method Description
splice(start,
delete_count,
i1, i2, i3,...)

Removes and adds elements at the same time. The first parameter
is where to start removing, the second is how many items to
remove and the rest of the parameters are new elements to be
inserted in the place of the removed ones.
> var a = ['apple', 'banana',
 'js', 'css', 'orange'];
> a.splice(2, 2, 'pear', 'pineapple');
["js", "css"]
> a;
["apple", "banana", "pear", "pineapple", "orange"]

unshift(i1, i2,
i3,...)

Like push() but adds the elements at the beginning of the array
as opposed to the end. Returns the length of the modified array.
> var a = [1, 2, 3];
> a.unshift('one', 'two');
5
> a;
["one", "two", 1, 2, 3]

Built-in Objects

[322]

ECMAScript 5 additions to Array
Property/method Description
Array.isArray(obj) Tells if an object is an array because typeof is not good

enough:
> var arraylike = {0: 101, length: 1};
> typeof arraylike;
"object"
> typeof [];
"object"

Neither is duck-typing (if it walks like a duck and quacks
like a duck, it must be a duck):

typeof arraylike.length;
"number"

In ES3 you need the verbose:
> Object.prototype.toString.call([]) ===
 "[object Array]";
true
> Object.prototype.toString.call
 (arraylike) === "[object Array]";
false

In ES5 you get the shorter:
Array.isArray([]);
true
Array.isArray(arraylike);

false
Array.prototype.
indexOf(needle, idx)

Searches the array and returns the index of the first match.
Returns -1 if there's no match. Optionally can search
starting from a specified index.
> var ar = ['one', 'two', 'one', 'two'];
> ar.indexOf('two');
1
> ar.indexOf('two', 2);
3
> ar.indexOf('toot');
-1

Appendix C

[323]

Property/method Description
Array.prototype.
lastIndexOf(needle,
idx)

Like indexOf() only searches from the end.
> var ar = ['one', 'two', 'one', 'two'];
> ar.lastIndexOf('two');
3
> ar.lastIndexOf('two', 2);
1
> ar.indexOf('toot');
-1

Array.prototype.
forEach(callback,
this_obj)

An alternative to a for loop. You specify a callback
function that will be called for each element of the array.
The callback function gets the arguments: the element, its
index and the whole array.
> var log = console.log.bind(console);
> var ar = ['itsy', 'bitsy', 'spider'];
> ar.forEach(log);
itsy 0 ["itsy", "bitsy", "spider"]
bitsy 1 ["itsy", "bitsy", "spider"]
spider 2 ["itsy", "bitsy", "spider"]

Optionally, you can specify a second parameter: the object
to be bound to this inside the callback function. So this
works too:

> ar.forEach(console.log, console);

Built-in Objects

[324]

Property/method Description
Array.prototype.
every(callback, this_
obj)

You provide a callback function that tests each element of
the array. Your callback is given the same arguments as
forEach() and it must return true or false depending
on whether the given element satisfies your test.
If all elements satisfy your test, every() returns true. If at
least one doesn't, every() returns false.
> function hasEye(el, idx, ar) {
 return el.indexOf('i') !== -1;
 }

> ['itsy', 'bitsy', 'spider'].
 every(hasEye);
true
> ['eency', 'weency', 'spider'].
 every(hasEye);
false

If at some point during the loop it becomes clear that the
result will be false, the loop stops and returns false.

> [1,2,3].every(function (e) {
 console.log(e);
 return false;
 });
1

false
Array.prototype.
some(callback, this_
obj)

Like every() only it returns true if at least one element
satisfies your test:
> ['itsy', 'bitsy', 'spider'].
 some(hasEye);
true
> ['eency', 'weency', 'spider'].
 some(hasEye);
true

Array.prototype.
filter(callback,
this_obj)

Similar to some() and every() but it returns a new array of
all elements that satisfy your test:
> ['itsy', 'bitsy', 'spider'].
 filter(hasEye);
["itsy", "bitsy", "spider"]
> ['eency', 'weency', 'spider'].
 filter(hasEye);
["spider"]

Appendix C

[325]

Property/method Description
Array.prototype.
map(callback, this_
obj)

Similar to forEach() because it executes a callback for
each element, but additionally it constructs a new array
with the returned values of your callback and returns it.
Let's capitalize all strings in an array:
> function uc(element, index, array) {
 return element.toUpperCase();
 }
> ['eency', 'weency', 'spider'].map(uc);
["EENCY", "WEENCY", "SPIDER"]

Array.prototype.
reduce(callback,
start)

Executes your callback for each element of the array. Your
callback returns a value. This value is passed back to
your callback with the next iteration. The whole array is
eventually reduced to a single value.
> function sum(res, element, idx, arr) {
 return res + element;
 }
> [1, 2, 3].reduce(sum);
6

Optionally, you can pass a start value which will be used
by the first callback call:

> [1, 2, 3].reduce(sum, 100);
106

Array.prototype.
reduceRight(callback,
start)

Like reduce() but loops from the end of the array.
> function concat(result_so_far, el) {
 return "" + result_so_far + el;
 }

> [1, 2, 3].reduce(concat);
"123"
> [1, 2, 3].reduceRight(concat);
"321"

Function
JavaScript functions are objects. They can be defined using the Function constructor,
like so:

var sum = new Function('a', 'b', 'return a + b;');

Built-in Objects

[326]

This is a (generally not recommended) alternative to the function literal (also known
as function expression):

var sum = function (a, b) {
 return a + b;
};

Or, the more common function definition:

function sum(a, b) {
 return a + b;
}

The Function.prototype members
Property/Method Description
apply(this_
obj, params_
array)

Allows you to call another function while overwriting the other
function's this value. The first parameter that apply() accepts is the
object to be bound to this inside the function and the second is an
array of arguments to be send to the function being called.

function whatIsIt(){
 return this.toString();
}
> var myObj = {};
> whatIsIt.apply(myObj);
"[object Object]"
> whatIsIt.apply(window);
"[object Window]"

call(this_obj,
p1, p2, p3,
...)

The same as apply() but accepts arguments one by one, as opposed
to as one array.

length The number of parameters the function expects.
> parseInt.length;
2

If you forget the difference between call() and apply():
> Function.prototype.call.length;
1
> Function.prototype.apply.length;
2

The call() property's length is 1 because all arguments except the first
one are optional.

Appendix C

[327]

ECMAScript 5 additions to a function
Property/method Description
Function.
prototype.
bind()

When you want to call a function that uses this internally and you
want to define what this is. The methods call() and apply()
invoke the function while bind() returns a new function. Useful
when you provide a method as a callback to a method of another
object and and you want this to be an object of your choice.

> whatIsIt.apply(window);
"[object Window]"

Boolean
The Boolean constructor creates Boolean objects (not to be confused with Boolean
primitives). The Boolean objects are not that useful and are listed here for the sake
of completeness.

> var b = new Boolean();
> b.valueOf();
false

> b.toString();
"false"

A Boolean object is not the same as a Boolean primitive value. As you know, all
objects are truthy:

> b === false;
false

> typeof b;
"object"

Boolean objects don't have any properties other than the ones inherited from Object.

Number
This creates number objects:

> var n = new Number(101);
> typeof n;
"object"

> n.valueOf();
101

Built-in Objects

[328]

The Number objects are not primitive objects, but if you use any Number.prototype
method on a primitive number, the primitive will be converted to a Number object
behind the scenes and the code will work.

> var n = 123;
> typeof n;
"number"

> n.toString();
"123"

Used without new, the Number constructor returns a primitive number.

> Number("101");
101

> typeof Number("101");
"number"

> typeof new Number("101");
"object"

Members of the Number constructor
Property/method Description
Number.MAX_VALUE A constant property (cannot be changed) that contains

the maximum allowed number.
> Number.MAX_VALUE;
1.7976931348623157e+308

Number.MIN_VALUE The smallest number you can work with in JavaScript.
> Number.MIN_VALUE;
5e-324

Number.NaN Contains the Not A Number number. The same as the
global NaN.

> Number.NaN;
NaN

NaN is not equal to anything including itself.
> Number.NaN === Number.NaN;
false

Number.POSITIVE_INFINITY The same as the global Infinity number.
Number.NEGATIVE_INFINITY The same as -Infinity.

Appendix C

[329]

The Number.prototype members
Property/method Description
toFixed(fractionDigits) Returns a string with the fixed-point representation of

the number. Rounds the returned value.
> var n = new Number(Math.PI);
> n.valueOf();
3.141592653589793
> n.toFixed(3);
"3.142"

toExponential
(fractionDigits)

Returns a string with exponential notation representation
of the number object. Rounds the returned value.
> var n = new Number(56789);
> n.toExponential(2);
"5.68e+4"

toPrecision(precision) String representation of a number object, either
exponential or fixed-point, depending on the number
object.
> var n = new Number(56789);
> n.toPrecision(2);
"5.7e+4"
> n.toPrecision(5);
"56789"
> n.toPrecision(4);
"5.679e+4"
> var n = new Number(Math.PI);
> n.toPrecision(4);
"3.142"

String
The String() constructor creates string objects. Primitive strings are turned into
objects behind the scenes if you call a method on them as if they were objects.
Omitting new gives you primitive strings.

Creating a string object and a string primitive:

> var s_obj = new String('potatoes');
> var s_prim = 'potatoes';
> typeof s_obj;
"object"

Built-in Objects

[330]

> typeof s_prim;
"string"

The object and the primitive are not equal when compared by type with ===, but
they are when compared with == which does type coercion:

> s_obj === s_prim;
false

> s_obj == s_prim;
true

length is a property of the string objects:

> s_obj.length;
8

If you access length on a primitive string, the primitive is converted to an object
behind the scenes and the operation is successful:

> s_prim.length;
8

String literals work fine too:

> "giraffe".length;
7

Members of the String constructor
Property/method Description
String.fromCharCode
(code1, code2,
code3, ...)

Returns a string created using the Unicode values of the
input:

> String.fromCharCode(115, 99, 114,
 105, 112, 116);
"script"

Appendix C

[331]

The String.prototype members
Property/method Description
length The number of characters in the string.

> new String('four').length;
4

charAt(position) Returns the character at the specified position.
Positions start at 0.
> "script".charAt(0);
"s"

Since ES5, it's also possible to use array notation for the same
purpose. (This feature has been long supported in many
browsers before ES5, but not IE)

> "script"[0];
"s"

charCodeAt(position) Returns the numeric code (Unicode) of the character at the
specified position.
> "script".charCodeAt(0);
115

concat(str1, str2,
....)

Return a new string glued from the input pieces.
> "".concat('zig', '-', 'zag');
"zig-zag"

indexOf(needle,
start)

If the needle matches a part of the string, the position of the
match is returned. The optional second parameter defines
where the search should start from. Returns -1 if no match
is found.
> "javascript".indexOf('scr');
4
> "javascript".indexOf('scr', 5);
-1

lastIndexOf(needle,
start)

Same as indexOf() but starts the search from the end of
the string. The last occurrence of a:
> "javascript".lastIndexOf('a');
3

Built-in Objects

[332]

Property/method Description
localeCompare
(needle)

Compares two strings in the current locale. Returns 0 if the
two strings are equal, 1 if the needle gets sorted before the
string object, -1 otherwise.
> "script".localeCompare('crypt');
1
> "script".localeCompare('sscript');
-1
> "script".localeCompare('script');
0

match(regexp) Accepts a regular expression object and returns an array of
matches.
> "R2-D2 and C-3PO".match(/[0-9]/g);
["2", "2", "3"]

replace(needle,
replacement)

Allows you to replace the matching results of a regexp
pattern. The replacement can also be a callback function.
Capturing groups are available as $1, $2,...$9.
> "R2-D2".replace(/2/g, '-two');
"R-two-D-two"
> "R2-D2".replace(/(2)/g, '$1$1');
"R22-D22"

search(regexp) Returns the position of the first regular expression match.
> "C-3PO".search(/[0-9]/);
2

slice(start, end) Returns the part of a string identified by the start and end
positions. If start is negative, the start position is length
+ start, similarly if the end parameter is negative, the end
position is length + end.
> "R2-D2 and C-3PO".slice(4, 13);
"2 and C-3"
> "R2-D2 and C-3PO".slice(4, -1);
"2 and C-3P"

split(separator,
limit)

Turns a string into an array. The second parameter, limit, is
optional. As with replace(), search(), and match(),
the separator is a regular expression but can also be a string.
> "1,2,3,4".split(/,/);
["1", "2", "3", "4"]
> "1,2,3,4".split(',', 2);
["1", "2"]

Appendix C

[333]

Property/method Description
substring(start,
end)

Similar to slice(). When start or end are negative or
invalid, they are considered 0. If they are greater than the
string length, they are considered to be the length. If end is
greater than start, their values are swapped.
> "R2-D2 and C-3PO".substring(4, 13);

"2 and C-3"
> "R2-D2 and C-3PO".substring(13, 4);

"2 and C-3"
toLowerCase()

toLocaleLowerCase()

Transforms the string to lowercase.
> "Java".toLowerCase();
"java"

toUpperCase()

toLocaleUpperCase()

Transforms the string to uppercase.
> "Script".toUpperCase();
"SCRIPT"

ECMAScript 5 additions to String
Property/method Description
String.prototype.
trim()

Instead of using a regular expression to remove whitespace
before and after a string (as in ES3), you have a trim()
method in ES5.

> " \t beard \n".trim();
"beard"
Or in ES3:
> " \t beard \n".replace(/\s/g, "");
"beard"

Date
The Date constructor can be used with several types of input:

You can pass values for year, month, date of the month, hour, minute, second, and
millisecond, like so:

> new Date(2015, 0, 1, 13, 30, 35, 505);
Thu Jan 01 2015 13:30:35 GMT-0800 (PST)

•	 You can skip any of the input parameters, in which case they are assumed to
be 0. Note that month values are from 0 (January) to 11 (December), hours
are from 0 to 23, minutes and seconds 0 to 59, and milliseconds 0 to 999.

Built-in Objects

[334]

•	 You can pass a timestamp:
> new Date(1420147835505);
Thu Jan 01 2015 13:30:35 GMT-0800 (PST)

•	 If you don't pass anything, the current date/time is assumed:
> new Date();
Fri Jan 11 2013 12:20:45 GMT-0800 (PST)

•	 If you pass a string, it's parsed in an attempt to extract a possible date value:
> new Date('May 4, 2015');
Mon May 04 2015 00:00:00 GMT-0700 (PDT)

Omitting new gives you a string version of the current date:

> Date() === new Date().toString();
true

Members of the Date constructor
Property/method Description
Date.parse(string) Similar to passing a string to new Date()

constructor, this method parses the input string in
an attempt to extract a valid date value. Returns a
timestamp on success, NaN on failure:

> Date.parse('May 5, 2015');
1430809200000
> Date.parse('4th');
NaN

Date.UTC(year, month, date,
hours, minutes, seconds, ms)

Returns a timestamp but in UTC (Coordinated
Universal Time), not in local time.

> Date.UTC
 (2015, 0, 1, 13, 30, 35, 505);
1420119035505

Appendix C

[335]

The Date.prototype members
Property/method Description/example
toUTCString() Same as toString() but in universal time. Here's

how Pacific Standard (PST) local time differs from
UTC:

> var d = new Date(2015, 0, 1);
> d.toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> d.toUTCString();
"Thu, 01 Jan 2015 08:00:00 GMT"

toDateString() Returns only the date portion of toString():
> new Date(2015, 0, 1).toDateString();
"Thu Jan 01 2010"

toTimeString() Returns only the time portion of toString():
> new Date(2015, 0, 1).toTimeString();
"00:00:00 GMT-0800 (PST)"

toLocaleString()

toLocaleDateString()

toLocaleTimeString()

Equivalent to toString(), toDateString(), and
toTimeString() respectively, but in a friendlier
format, according to the current user's locale.

> new Date(2015, 0, 1).toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> new Date(2015, 0, 1).toLocaleString();
"1/1/2015 12:00:00 AM"

getTime()

setTime(time)

Get or set the time (using a timestamp) of a date
object. The following example creates a date and
moves it one day forward:

> var d = new Date(2015, 0, 1);
> d.getTime();
1420099200000
> d.setTime(d.getTime()
 + 1000 * 60 * 60 * 24);
1420185600000
> d.toLocaleString();
"Fri Jan 02 2015 00:00:00 GMT-0800 (PST)"

Built-in Objects

[336]

Property/method Description/example
getFullYear()

getUTCFullYear()

setFullYear(year, month,
date)

setUTCFullYear(year,
month, date)

Get or set a full year using local or UTC time. There
is also getYear() but it is not Y2K compliant, so use
getFullYear() instead.

> var d = new Date(2015, 0, 1);
> d.getYear();
115
> d.getFullYear();
2015
> d.setFullYear(2020);
1577865600000
> d;
Wed Jan 01 2020 00:00:00 GMT-0800 (PST)

getMonth()

getUTCMonth()

setMonth(month, date)

setUTCMonth(month, date)

Get or set the month, starting from 0 (January):
> var d = new Date(2015, 0, 1);
> d.getMonth();
0
> d.setMonth(11);
1448956800000
> d.toLocaleDateString();
"12/1/2015"

getDate()

getUTCDate()

setDate(date)

setUTCDate(date)

Get or set the date of the month.
> var d = new Date(2015, 0, 1);
> d.toLocaleDateString();
"1/1/2015"
> d.getDate();
1
> d.setDate(31);
1422691200000
> d.toLocaleDateString();
"1/31/2015"

Appendix C

[337]

Property/method Description/example
getHours()

getUTCHours()

setHours(hour, min, sec,
ms)

setUTCHours(hour, min,
sec, ms)

getMinutes()

getUTCMinutes()

setMinutes(min, sec, ms)

setUTCMinutes(min, sec,
ms)

getSeconds()

getUTCSeconds()

setSeconds(sec, ms)

setUTCSeconds(sec, ms)

getMilliseconds()

getUTCMilliseconds()

setMilliseconds(ms)

setUTCMilliseconds(ms)

Get or set the hour, minutes, seconds, milliseconds, all
starting from 0.

> var d = new Date(2015, 0, 1);
> d.getHours() + ':' + d.getMinutes();
"0:0"
> d.setMinutes(59);
1420102740000
> d.getHours() + ':' + d.getMinutes();
"0:59"

getTimezoneOffset() Returns the difference between local and universal
(UTC) time, measured in minutes. For example, the
difference between PST (Pacific Standard Time) and
UTC:

> new Date().getTimezoneOffset();
480
> 420 / 60; // hours
8

Built-in Objects

[338]

Property/method Description/example
getDay()

getUTCDay()

Returns the day of the week, starting from 0 (Sunday):
> var d = new Date(2015, 0, 1);
> d.toDateString();
"Thu Jan 01 2015"
> d.getDay();
4
> var d = new Date(2015, 0, 4);
> d.toDateString();
"Sat Jan 04 2015"
> d.getDay();
0

ECMAScript 5 additions to Date
Property/method Description
Date.now() A convenient way to get the current timestamp:

> Date.now() === new Date().getTime();
true

Date.prototype.
toISOString()

Yet another toString().
> var d = new Date(2015, 0, 1);
> d.toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> d.toUTCString();
"Thu, 01 Jan 2015 08:00:00 GMT"
> d.toISOString();
"2015-01-01T00:00:00.000Z"

Date.prototype.
toJSON()

Used by JSON.stringify() (refer to the end of this appendix)
and returns the same as toISOString().

> var d = new Date();
> d.toJSON() === d.toISOString();
true

Appendix C

[339]

Math
Math is different from the other built-in objects because it cannot be used as a
constructor to create objects. It's just a collection of static functions and constants.
Some examples to illustrate the differences are as follows:

> typeof Date.prototype;
"object"

> typeof Math.prototype;
"undefined"

> typeof String;
"function"

> typeof Math;
"object"

Members of the Math object
Property/method Description
Math.E

Math.LN10

Math.LN2

Math.LOG2E

Math.LOG10E

Math.PI

Math.SQRT1_2

Math.SQRT2

These are some useful math constants, all read-only. Here are
their values:

> Math.E;
2.718281828459045
> Math.LN10;
2.302585092994046
> Math.LN2;
0.6931471805599453
> Math.LOG2E;
1.4426950408889634
> Math.LOG10E;
0.4342944819032518
> Math.PI;
3.141592653589793
> Math.SQRT1_2;
0.7071067811865476
> Math.SQRT2;
1.4142135623730951

Built-in Objects

[340]

Property/method Description
Math.acos(x)

Math.asin(x)

Math.atan(x)

Math.atan2(y, x)

Math.cos(x)

Math.sin(x)

Math.tan(x)

Trigonometric functions

Math.round(x)

Math.floor(x)

Math.ceil(x)

round() gives you the nearest integer, ceil() rounds up,
and floor() rounds down:

> Math.round(5.5);
6
> Math.floor(5.5);
5
> Math.ceil(5.1);
6

Math.max(num1,
num2, num3, ...)

Math.min(num1,
num2, num3, ...)

max() returns the largest and min() returns the smallest of
the numbers passed to them as arguments. If at least one of the
input parameters is NaN, the result is also NaN.

> Math.max(4.5, 101, Math.PI);
101
> Math.min(4.5, 101, Math.PI);
3.141592653589793

Math.abs(x) Absolute value.
> Math.abs(-101);
101
> Math.abs(101);
101

Math.exp(x) Exponential function: Math.E to the power of x.
> Math.exp(1) === Math.E;
true

Math.log(x) Natural logarithm of x.
> Math.log(10) === Math.LN10;
true

Appendix C

[341]

Property/method Description
Math.sqrt(x) Square root of x.

> Math.sqrt(9);
3
> Math.sqrt(2) === Math.SQRT2;
true

Math.pow(x, y) x to the power of y.
> Math.pow(3, 2);
9

Math.random() Random number between 0 and 1 (including 0).
> Math.random();
0.8279076443185321
For an random integer in a range, say between
10 and 100:
> Math.round(Math.random() * 90 + 10);
79

RegExp
You can create a regular expression object using the RegExp() constructor. You pass
the expression pattern as the first parameter and the pattern modifiers as the second.

> var re = new RegExp('[dn]o+dle', 'gmi');

This matches "noodle", "doodle", "doooodle", and so on. It's equivalent to using the
regular expression literal:

> var re = ('/[dn]o+dle/gmi'); // recommended

Chapter 4, Objects and Appendix D, Regular Expressions contains more information on
regular expressions and patterns.

The RegExp.prototype members
Property/method Description
global Read-only. true if the g modifier was set when creating the regexp

object.
ignoreCase Read-only. true if the i modifier was set when creating the regexp

object.
multiline Read-only. true if the m modifier was set when creating the regexp

object

Built-in Objects

[342]

Property/method Description
lastIndex Contains the position in the string where the next match should start.

test() and exec() set this position after a successful match. Only
relevant when the g (global) modifier was used.
> var re = /[dn]o+dle/g;
> re.lastIndex;
0
> re.exec("noodle doodle");
["noodle"]
> re.lastIndex;
6
> re.exec("noodle doodle");
["doodle"]
> re.lastIndex;
13
> re.exec("noodle doodle");
null
> re.lastIndex;
0

source Read-only. Returns the regular expression pattern (without the
modifiers).
> var re = /[nd]o+dle/gmi;
> re.source;
"[nd]o+dle"

exec(string) Matches the input string with the regular expression. A successful match
returns an array containing the match and any capturing groups. With
the g modifier, it matches the first occurrence and sets the lastIndex
property. Returns null when there's no match.
> var re = /([dn])(o+)dle/g;
> re.exec("noodle doodle");
["noodle", "n", "oo"]
> re.exec("noodle doodle");
["doodle", "d", "oo"]

The arrays returned by exec() have two additional properties: index (of
the match) and input (the input string being searched).

test(string) Same as exec() but only returns true or false.
> /noo/.test('Noodle');
false
> /noo/i.test('Noodle');
true

Appendix C

[343]

Error objects
Error objects are created either by the environment (the browser) or by your code.

> var e = new Error('jaavcsritp is _not_ how you spell it');
> typeof e;
"object"

Other than the Error constructor, six additional ones exist and they all inherit Error:

•	 EvalError

•	 RangeError

•	 ReferenceError

•	 SyntaxError

•	 TypeError

•	 URIError

The Error.prototype members
Property Description
name The name of the error constructor used to create the object:

> var e = new EvalError('Oops');
> e.name;
"EvalError"

message Additional error information:
> var e = new Error('Oops... again');
> e.message;
"Oops... again"

JSON
The JSON object is new to ES5. It's not a constructor (similarly to Math) and has only
two methods: parse() and stringify(). For ES3 browsers that don't support JSON
natively, you can use the "shim" from http://json.org.

JSON stands for JavaScript Object Notation. It's a lightweight data interchange
format. It's a subset of JavaScript that only supports primitives, object literals, and
array literals.

Built-in Objects

[344]

Members of the JSON object
Method Description
parse(text,
callback)

Takes a JSON-encoded string and returns an object:
> var data = '{"hello": 1, "hi": [1, 2, 3]}';
> var o = JSON.parse(data);
> o.hello;
1
> o.hi;
[1, 2, 3]

The optional callback lets you provide your own function that can
inspect and modify the result. The callback takes key and value
arguments and can modify the value or delete it (by returning
undefined).

> function callback(key, value) {
 console.log(key, value);
 if (key === 'hello') {
 return 'bonjour';
 }
 if (key === 'hi') {
 return undefined;
 }
 return value;
 }

> var o = JSON.parse(data, callback);
hello 1
0 1
1 2
2 3
hi [1, 2, 3]
Object {hello: "bonjour"}
> o.hello;
"bonjour"
> 'hi' in o;
false

Appendix C

[345]

Method Description
stringify
(value,
callback,
white)

Takes any value (most commonly an object or an array) and encodes it
to a JSON string.

> var o = {
 hello: 1,
 hi: 2,
 when: new Date(2015, 0, 1)
 };

> JSON.stringify(o);
"{"hello":1,"hi":2,"when":"2015-01-01T08:00:00.000Z"}"

The second parameter lets you provide a callback (or a whitelist array)
to customize the return value. The whitelist contains the keys you're
interested in:

JSON.stringify(o, ['hello', 'hi']);
"{"hello":1,"hi":2}"

The last parameter helps you get a human-readable version. You
specify the number of spaces as a string or a number.

> JSON.stringify(o, null, 4);
"{
"hello": 1,
"hi": 2,
"when": "2015-01-01T08:00:00.000Z"
}"

Regular Expressions
When you use regular expressions (discussed in Chapter 4, Objects), you can match
literal strings, for example:

> "some text".match(/me/);
["me"]

But, the true power of regular expressions comes from matching patterns, not
literal strings. The following table describes the different syntax you can use in your
patterns, and provides some examples of their use:

Pattern Description
[abc] Matches a class of characters.

> "some text".match(/[otx]/g);
["o", "t", "x", "t"]

[a-z] A class of characters defined as a range. For example, [a-d] is the same as
[abcd], [a-z] matches all lowercase characters, [a-zA-Z0-9_] matches all
characters, numbers, and the underscore character.
> "Some Text".match(/[a-z]/g);
["o", "m", "e", "e", "x", "t"]
> "Some Text".match(/[a-zA-Z]/g);
["S", "o", "m", "e", "T", "e", "x", "t"]

[^abc] Matches everything that is not matched by the class of characters.
> "Some Text".match(/[^a-z]/g);
["S", " ", "T"]

Regular Expressions

[348]

Pattern Description
a|b Matches a or b. The pipe character means OR, and it can be used more

than once.
> "Some Text".match(/t|T/g);
["T", "t"]
> "Some Text".match(/t|T|Some/g);
["Some", "T", "t"]

a(?=b) Matches a only if followed by b.
> "Some Text".match(/Some(?=Tex)/g);
null
> "Some Text".match(/Some(?= Tex)/g);
["Some"]

a(?!b) Matches a only when not followed by b.
> "Some Text".match(/Some(?! Tex)/g);
null
> "Some Text".match(/Some(?!Tex)/g);
["Some"]

\ Escape character used to help you match the special characters used in
patterns as literals.
> "R2-D2".match(/[2-3]/g);

["2", "2"]
> "R2-D2".match(/[2\-3]/g);

["2", "-", "2"]
\n

\r

\f

\t

\v

New line
Carriage return
Form feed
Tab
Vertical tab

\s White space, or any of the previous five escape sequences.
> "R2\n D2".match(/\s/g);
["\n", " "]

\S Opposite of the above; matches everything but white space. Same as [^\s]:
> "R2\n D2".match(/\S/g);
["R", "2", "D", "2"]

\w Any letter, number, or underscore. Same as [A-Za-z0-9_].
> "S0m3 text!".match(/\w/g);
["S", "0", "m", "3", "t", "e", "x", "t"]

Appendix D

[349]

Pattern Description
\W Opposite of \w.

> "S0m3 text!".match(/\W/g);
[" ", "!"]

\d Matches a number, same as [0-9].
> "R2-D2 and C-3PO".match(/\d/g);

["2", "2", "3"]
\D Opposite of \d; matches non-numbers, same as [^0-9] or [^\d].

> "R2-D2 and C-3PO".match(/\D/g);
["R", "-", "D", " ", "a", "n", "d", " ", "C", "-", "P", "O"]

\b Matches a word boundary such as space or punctuation.
Matching R or D followed by 2:
> "R2D2 and C-3PO".match(/[RD]2/g);
["R2", "D2"]

Same as above but only at the end of a word:
> "R2D2 and C-3PO".match(/[RD]2\b/g);
["D2"]

Same pattern but the input has a dash, which is also an end of a word:
> "R2-D2 and C-3PO".match(/[RD]2\b/g);
["R2", "D2"]

\B The opposite of \b.
> "R2-D2 and C-3PO".match(/[RD]2\B/g);
null
> "R2D2 and C-3PO".match(/[RD]2\B/g);
["R2"]

[\b] Matches the backspace character.
\0 The null character.
\u0000 Matches a Unicode character, represented by a four-digit  hexadecimal

number.
> "стоян".match(/\u0441\u0442\u043E/);
["сто"]

\x00 Matches a character code represented by a two-digit hexadecimal number.
> "\x64";
"d"

> "dude".match(/\x64/g);
["d", "d"]

Regular Expressions

[350]

Pattern Description
^ The beginning of the string to be matched. If you set the m modifier

(multi-line), it matches the beginning of each line.
> "regular\nregular\nexpression".match(/r/g);
["r", "r", "r", "r", "r"]
> "regular\nregular\nexpression".match(/^r/g);
["r"]
> "regular\nregular\nexpression".match(/^r/mg);
["r", "r"]

$ Matches the end of the input or, when using the multiline modifier, the
end of each line.
> "regular\nregular\nexpression".match(/r$/g);
null
> "regular\nregular\nexpression".match(/r$/mg);
["r", "r"]

. Matches any single character except for the new line and the line feed.
> "regular".match(/r./g);
["re"]
> "regular".match(/r.../g);
["regu"]

* Matches the preceding pattern if it occurs zero or more times. For
example, /.*/ will match anything including nothing (an empty input).
> "".match(/.*/);
[""]
> "anything".match(/.*/);
["anything"]
> "anything".match(/n.*h/);
["nyth"]

Keep in mind that the pattern is "greedy", meaning it will match as much
as possible:

> "anything within".match(/n.*h/g);
["nything with"]

? Matches the preceding pattern if it occurs zero or one times.
> "anything".match(/ny?/g);
["ny", "n"]

Appendix D

[351]

Pattern Description
+ Matches the preceding pattern if it occurs at least once (or more times).

> "anything".match(/ny+/g);
["ny"]
> "R2-D2 and C-3PO".match(/[a-z]/gi);
["R", "D", "a", "n", "d", "C", "P", "O"]
> "R2-D2 and C-3PO".match(/[a-z]+/gi);
["R", "D", "and", "C", "PO"]

{n} Matches the preceding pattern if it occurs exactly n times.
> "regular expression".match(/s/g);
["s", "s"]
> "regular expression".match(/s{2}/g);
["ss"]
> "regular expression".match(/\b\w{3}/g);
["reg", "exp"]

{min,max} Matches the preceding pattern if it occurs between a min and max number
of times. You can omit max, which will mean no maximum, but only a
minimum. You cannot omit min.
An example where the input is "doodle" with the "o" repeated 10 times:
> "doooooooooodle".match(/o/g);
["o", "o", "o", "o", "o", "o", "o", "o", "o", "o"]
> "doooooooooodle".match(/o/g).length;
10
> "doooooooooodle".match(/o{2}/g);
["oo", "oo", "oo", "oo", "oo"]
> "doooooooooodle".match(/o{2,}/g);
["oooooooooo"]
> "doooooooooodle".match(/o{2,6}/g);
["oooooo", "oooo"]

(pattern) When the pattern is in parentheses, it is remembered so that it can be used
for replacements. These are also known as capturing patterns.
The captured matches are available as $1, $2,... $9
Matching all "r" occurrences and repeating them:
> "regular expression".replace(/(r)/g, '$1$1');
"rregularr exprression"

Matching "re" and turning it to "er":
> "regular expression".replace(/(r)(e)/g, '$2$1');
"ergular experssion"

Regular Expressions

[352]

Pattern Description
(?:pattern) Non-capturing pattern, not remembered and not available in $1, $2...

Here's an example of how "re" is matched, but the "r" is not remembered
and the second pattern becomes $1:
> "regular expression".replace(/(?:r)(e)/g, '$1$1');
"eegular expeession"

Make sure you pay attention when a special character can have two meanings, as is
the case with ^, ?, and \b.

Index
Symbols
^ 350
!= 42
!== 42
? 350
. 350
(?: pattern) 352
* 350
\ 348
\\ 35
+ 351
< 42
<= 42
== 41
=== 41
> 42
>= 42
\0 349
$ 350
$ character 22
[^abc] 347
[abc] 347
[a-z] 347
[\b] 349
\b 349
\B 349
\d 349
\D 349
\f 348
{min,max} 351
{n} 351
\n 36, 348
--, operators 26
-, operators 25
*, operators 25

/, operators 25
%, operators 25
+, operators 25
++, operators 26
(pattern) 351
\r 36, 348
\s 348
\S 348
\u 36
\u0000 349
\v 348
\w 348
\W 349
\x00 349

A
a(?!b) 348
a(?=b) 348
a|b 348
accessor descriptors 313
actualWork() function 84
addEventListener/attachEvent methods 273
addEventListener() method 258
addListener() method 279
addSubscriber() method 297
Ajax 260
anonymous function 76
array

about 97-99, 114-116
methods 117

Array constructor
about 318
Array.prototype members 319
ECMAScript 5 additions to Array 322

array literal notation 99

[354]

array methods
about 117
join() method 117
push() method 117
slice() method 118
sort() method 117
splice() method 118

Array.prototype members
concat(i1, i2, i3,...) 319
join(separator) 319
length 319
pop() 319
push(i1, i2, i3,...) 319
reverse() 319
shift() 320
slice(start_index, end_index) 320
sort(callback) 320
splice(start, de-lete_count, i1, i2, i3,...) 321
unshift(i1, i2, i3,...) 321

arrays
about 45
array content 47, 48
elements, adding 46
elements, deleting 47
elements, updating 46

Asynchronous JavaScript and XML. See
Ajax

Asynchronous JavaScript loading 275
attributes 313
attributes, DOM nodes 234

B
best practice 73
black box function 67
BOM

about 9, 213, 215
cheat sheet console 217
overview 214
window.alert() 223
window.confirm() 223
window.document 226
window.frames 219, 220
window.history 218, 219
window.location 217, 218
window.moveTo() 222
window.navigator 216

window object, revisiting 215
window.open()/close() 222
window.prompt() 223, 224
window.resizeTo() 223
window.screen 221
window.setInterval() 225, 226
window.setTimeout() 225, 226

boolean 125
Boolean constructor 327
Boolean() function 125
Booleans 36
break 301
Browser Object Model. See BOM
built-in Functions

about 305, 306
decodeURI() 307
decodeURIComponent() 307
encodeURI() 307
encodeURIComponent() 306
eval() 307
isFinite() 306
isNaN() 305
parseFloat() 305
parseInt() 305

built-in objects
array 114
Array constructor 318
augmenting 164, 165
boolean 125
Boolean constructor 327
data wrapper objects 113
date 134, 135
Date constructor 333
error objects 113, 343
function 118
Function constructor 325
JSON 343
math 132
Math constructor 339
number 126, 127
Number constructor 328
object 113
object constructor 309
prototype gotchas 166, 168
RegExp 138
RegExp constructor 341
string 127, 128

[355]

String constructor 329
utility objects 113

C
callback function

about 77, 78
examples 78, 79

Cascading Style Sheets (CSS) 273
case 301
catch 301
chaining pattern 287
child nodes 233
child object

parent, accessing 181, 182
classes 13
closures

about 85
closure #1 88
closure #2 88
closure #3 89
getter/setter 92, 93
in loop 90, 92
iterator 93
scope chain 85
used, for chain breaking 86, 87

code blocks
about 50, 51
alternative if syntax 53
variable existence, checking 51, 52

coding patterns
about 272
chaining pattern 287
configuration object 280, 281
immediate functions 285
init-time branching 278, 279
JSON 288, 289
lazy definition pattern 279
modules 286
namespaces 275
private functions, as public methods 284
private properties 282, 283
privileged methods 283
web page, building blocks 272

comments 61
comparison

about 41

null 43, 44
Operator symbols 41, 42
Undefined 43

compound operators 27
conditions

about 48
else clause 49, 50
if condition 49

Console tab 18
constructor

borrowing 198, 199
prototype, copying 200

constructor functions 104, 105
constructor property 107, 168
continue 301
core DOM 229, 230
Core ECMAScript objects 214
createTextNode() method 242

D
data. See functions
data descriptors 313
Date() 134, 135
Date constructor

about 333, 334
Date.prototype members 335
ECMAScript 5 additions 338
members 334

date objects
working with, methods 136-138

date objects methods
getMonth() 136
setHours() 136
setMonth() 136

Date.prototype members
getDate() 336
getDay() 338
getFullYear() 336
getHours() 337
getMilliseconds() 337
getMinutes() 337
getMonth() 336
getSeconds() 337
getTime() 335
getTimezoneOffset() 337
getUTCDate() 336

[356]

getUTCDay() 338
getUTCFullYear() 336
getUTCHours() 337
getUTCMilliseconds() 337
getUTCMinutes() 337
getUTCSeconds() 337
setDate(date) 336
setFullYear(year, month, date) 336
setHours(hour, min, sec, ms) 337
setMilliseconds(ms) 337
setMinutes(min, sec, ms) 337
setMonth(month, date) 336
setSeconds(sec, ms) 337
setTime(time) 335
setUTCDate(date) 336
setUTCFullYear(year, month, date) 336
setUTCHours(hour, min, sec, ms) 337
setUTCMillise-conds(ms) 337
setUTCMinutes(min, sec, ms) 337
setUTCMonth(month, date) 336
setUTCSeconds(sec, ms) 337
toDateString() 335
toLocaleDateString() 335
toLocaleString() 335
toLocaleTimeString() 335
toTimeString() 335
toUTCString() 335

debugger 301
decodeURI() 307
decodeURIComponent() 306
decorate() method 296
decorator

about 294
Christmas tree, decorating 295

deep copy 190-192
default 301
delete 301
design patterns

about 289
decorator 294
factory 292, 293
observer 296-299
singleton 290
singleton 2 290

do 302
documentElement 232
document node 231, 232

Document Object Model. See DOM
DOM

about 8, 213, 227, 228
core DOM 229
HTML DOM 229
overview 214
tree, walking through 239

DOM event listeners 252
DOM nodes

accessing 230
access shortcuts 235, 236
attributes 234
child nodes 233
documentElement 232
document node 231, 232
firstChild 238
forms 240, 241
internal tag content, accessing 234, 235
lastChild 238
modifying 239
new nodes, creating 242
nextSibling 237
previousSibling 237
styles, modifying 240

doSomething() method 294
do-while loops 57

E
ECMA 8
ECMAScript. See ES
ECMAScript 5. See ES
ECMAScript 5 additions to Array

Array.isArray(obj) 322
Ar-ray.prototype.every(callback, this_obj)

324
Ar-ray.prototype.filter(callback, this_obj)

324
Ar-ray.prototype.forEach(callback, this_obj)

323
Ar-ray.prototype.indexOf(needle, idx) 322
Ar-ray.prototype.lastIndexOf(needle, idx)

323
Ar-ray.prototype.map(callback, this_obj)

325
Ar-ray.prototype.reduce(callback, start) 325

[357]

Ar-ray.prototype.reduceRight(callback,
start) 325

Ar-ray.prototype.some(callback, this_obj)
324

elements 99
else clause 49
encapsulation 14
encodeURI() 307
encodeURIComponent() 306
enumerable 160
enumerated array 100
error objects

about 343
Error.prototype members 343

Error.prototype members
message 343
name 343

ES
about 12, 309
OOP 12

European Computer Manufacturers
Association. See ECMA

eval()
about 71, 307
alert() function 71, 72
drawbacks, performance 71
drawbacks, security 71

events
about 250
bubbling 253, 254
capturing 253, 254
cross-browser listeners 258
default behavior, preventing 257
DOM event listeners 252
element properties 251
inline HTML attributes 251
propagation, stopping 255, 256
types 259

events, types
form 260
keyboard events 259
loading/window events 259
mouse events 259

exercises 211, 212, 268, 269
exponent literals 30
extendCopy() function 190
extend() function 182

F
factory() function 108, 109
factory() method 294
finally 302
firstname property 101
foo() function 154
Function() constructor

about 118, 119, 326
arguments 123
Function.prototype members 326
function objects, methods 121
object types, inferring 124
properties 120
prototype property 120, 121

function expression 75
function literal notation 75
function N() 89
function objects, methods

apply() 122, 123
call() 122
say() method 122

Func-tion.prototype.bind() property 327
Function.prototype members

apply(this_obj, params_array) 326
call(this_obj, p1, p2, p3, ...) 326
ECMAScript 5 additions to a function 327
length 326

functions
about 64, 75, 76
anonymous functions 76
callback functions 77
calling 64
components 64
immediate functions 80, 81
inner(private) 81
inner(private), benefits 82
parameters 65, 66
predefined functions 66
replacing 83, 84
returning values 82

future reserved words 302, 303

G
Gadget() constructor 155
getArea() method 196
getAttribute() method 234

[358]

getDecorator() method 295
getElementByClassName() method 237
getInfo() method 155
getter function 92
getValue() 93
global object 105-107
global property 139

H
hash 100
hasOwnProperty() method 158, 160
hexadecimal numbers 29
hoisting 74
HTML DOM 229, 230
HTML-only DOM objects

about 247
accessing, primitive ways 247, 248
cookies 249
document.write() 248, 249
domain 249, 250
referrer 249
title 249

HTML page
JavaScript, including 213, 214

I
if condition 49
ignoreCase property 139
immediate functions 285
inArray() method 164
indexed array 100
indexOf() method 141
infinity

about 31, 32
NaN 32

inheritance 171
inheritance part

isolating, into function 182, 183
init-time branching 278
inline HTML attributes 251
inner (private) function 81, 82
instanceof operator 108, 174
isFinite() function 70, 306
isNaN() function 69, 70, 306
isPrototypeOf() method 162
iterator functionality 93

J
JavaScript

about 7
BOM 9
Browser Wars 10
DOM 8
ECMAScript 8
future 11
history 8
including, in HTML page 213, 214
uses 10, 11

JavaScript Object Notation. See JSON
join() method 117
JSON

about 288, 343
members 344

K
keywords, ES5

break 301
case 301
catch 301
continue 301
debugger 301
default 301
delete 301
do 302
else 302
finally 302
for 302
function 302
if 302
ifn 302
instanceof 302
new 302
return 302
switch 302
this 302
throw 302
try 302
typeof 302
var 302
void 302
while 302
with 302

[359]

L
lastIndexOf() method 141
lastIndex property 139, 342
lazy definition pattern 279
logical operators

about 37
lazy evaluation 40, 41
operator precedence 39
possible operations 38, 39

loops
about 48, 56
for-in loops 60
for loops 57, 59
infinite loop 56
while loops 56

M
make() method 297
match() method 141
Math 132, 133
Math constructor

about 339
members 339

maybeExists() function 147
members, Date constructor

Date.parse(string) 334
Date.UTC(year, month, date, hours,

minutes, seconds, ms) 334
members, JSON

parse(text, call-back) 344
stringi-fy(value, callback, white) 345

members, Math constructor
Math.abs(x) 340
Math.acos(x) 340
Math.E 339
Math.exp(x) 340
Math.LN2 339
Math.LN10 339
Math.LOG2E 339
Math.LOG10E 339
Math.log(x) 340
Math.max(num1, num2, num3, ...) 340
Math.PI 339
Math.pow(x, y) 341
Math.random() 341
Math.round(x) 340

Math.SQRT1_2 339
Math.SQRT2 339
Math.sqrt(x) 341

members, Number constructor
Number.MAX_VALUE 328
Number.MIN_VALUE 328
Number.NaN 328
Number.NEGATIVE_INFINITY 328
Number.POSITIVE_INFINITY 328

members, String() constructor
String.fromCharCode (code1, code2,

code3, ...) 330
methods 99
modules 286
multi() function 195
multiline property 139
multiple inheritance

about 195, 196
mixins 197

N
named function expression. See NFE
namespace() method 277
namespaces

constructors 276
namespace() method 277, 278
object 275

NaN 32
new F() 179, 180
new nodes

cloneNode() 243
creating 242
DOM-only method 243
insertBefore() 244

new operator 108
newtoy.toString() 157
next() function 93
NFE 75
nodes

removing 245, 246
now() method 137
number 126, 127
Number constructor

about 328
members 328
Number.prototype members 329

[360]

Number() function 126
Number.prototype members

toExponential(fractionDigits) 329
toFixed(fractionDigits) 329
toPrecision(precision) 329

O
object constructor

about 309
ECMAScript 5 additions 312-317
memebers 310
Object.prototype 310
Object.prototype members 311, 312

Object.create(obj, descr) property 315
Ob-ject.defineProperties(obj, descriptors)

property 316
Ob-ject.defineProperty(obj, descriptor)

property 315
Object.freeze(obj) property 317
object() function 192, 193, 197
Ob-ject.getOwnPropertyDescriptor(obj,

property) property 315
Ob-ject.getOwnPropertyNames(obj)

property 315
Ob-ject.getPrototypeOf(obj) property 314
Ob-ject.isExtensible(obj) property 316
Object.keys(obj) property 317
object literal notation 99
object-oriented programming. See OOP
Ob-ject.preventExtensions(obj)

property 316
Object.prototype members

constructor 310
hasOwnProper-ty(prop) 312
isPrototypeOf(obj) 312
propertyIsEnumera-ble(prop) 312
toLocaleString() 311
toString(radix) 310
valueOf() 311

objects
about 13
comparing 110
global object 107
inheriting, from objects 188, 190
passing 109, 110

Object.seal(obj) property 317

object's methods
altering 102, 103
calling 102

object's properties
accessing 100
calling 102, 103

objects, WebKit console
about 111
console.log 112

observer pattern 296-299
octal number 29
OOP

about 12
aggregation 15
classes 13
encapsulation 14
features 16
inheritance 15
objects 13
polymorphism 16
summary 16

operation 38
operators

- 25
-- 26
* 25
/ 25
% 25
+ 25
++ 26
about 24

overriding 15

P
parasitic inheritance 197, 198
parseFloat() function 68, 69, 305
parseInt() function 67, 68, 305
polyfills 166
polymorphism 16
predefined functions

about 66
eval() 71
isFinite() 70
isNaN() 69, 70
parseFloat() 68, 69
parseInt() 67, 68

[361]

preventDefault() method 257, 258
previously reserved words 303
primitive data types

about 28, 44
exponent literals 30
hexadecimal numbers 30
infinity 31
in JavaScript 44
numbers 29
octal numbers 29
typeof operator 28

privileged methods 283
properties

about 99
copying 184, 185

property descriptors 312
propertyIsEnumerable() method 160
prototypal inheritance 193
prototypal inheritance and copy property

combination
using 193-195

prototype
inheriting 177, 178
new F() 179, 180

prototype chaining
about 171, 172
example 172-175
shared properties, moving 175-177

prototype's methods
own properties 156, 157
prototype properties 156
using 155, 156

prototype's property
about 154
enumerating 159-161
isPrototypeOf() method 162
overwriting, with own property 157, 158
secret __proto__ link 163
used, for method adding 154, 155
used, for property adding 154, 155

publish() method 298
push() method 117

Q
querySelectorAll() method 237
querySelector() method 237, 241

R
radix 67
random() function 133
rating property 157
readystatechange event 262
readyState property 262
Rectangle constructor 209
RegExp

about 139
accepting, as parameters 141
callbacks, replacing 142, 143
error objects 145-147
match()method 141
methods 140
properties 139
replace() method 142
search() method 141
split() method 144
string, passing 144

RegExp constructor
about 341
RegExp.prototype members 341

RegExp properties
global 139
ignoreCase 139
lastIndex 139
multiline 139
source 139, 140

RegExp.prototype members
exec(string) 342
global 341
ignoreCase 341
lastIndex 342
multiline 341
source 342
test(string) 342

regular expression. See also RegExp
regular expression

^ 350
? 350
. 350
(?: pattern) 352
* 350
\ 348
+ 351
\0 349

[362]

$ 350
a(?!b) 348
a(?=b) 348
a|b 348
[^abc] 347
[abc] 347
about 347
[a-z] 347
[\b] 349
\b 349
\B 349
\d 349
\f 348
{min,max} 351
{n} 351
\n 348
(pattern) 351
\r 348
\S 348
\u0000 349
\w 348
\W 349
\x00 349

removeSubscriber() method 297
replaceChild() method 245
replace() method 142
responseText property 264, 288
return 302
reverse() method 165

S
sayName() method 104
Script tab 20
search() method 141
secret __proto__ link 163
secret variable 92
setter function 92
setup() function 94
setValue() 93
shapes

analyzing 205
drawing 205
implementation 206-209
testing 210

shims 166
simple assignment operator 26

Singleton 290
Singleton 2

about 290
Constructor property 291
global variable 291
in private property 292

slice() method 118
someSetup() function 84
sort() method 117
source property 139
splice() method 118
split() method 131, 144
stopPropagation() method 255, 258
string

about 127-129
methods 129

String() constructor
about 329, 330
ECMAScript 5 additions to String 333
members 330
String.prototype members 331

string methods
about 127, 128, 129
charAt() 130
indexOf() 130
lastIndexOf() 130
slice() 131
split() method 131
substring() 131
toLowerCase() 129

String.prototype members
charAt(position) 331
charCodeAt(position) 331
indexOf(needle, start) 331
length 331
localeCompare(needle) 332
match(regexp) 332
replace(needle, re-placement) 332
search(regexp) 332
slice(start, end) 332
split(separator, limit) 332
substring(start, end) 333
toLocaleLowerCase() 333
toLocaleUpperCase() 333
toLowerCase() 333
toUpperCase() 333

String.prototype.trim() property 333

[363]

strings
about 33
conversions 34
special strings 35, 36

sum() function 66
Switch 54, 55

T
this value

using 104
toString() method 127, 157, 158, 173
training environment setup

about 17
consoles 19, 20
JavaScriptCore 18
WebKit's web inspector 17, 18

Triangle constructor 176
typeof operator 28, 75

U
uber property 181, 182
Uniform Resource Identifier. See URI
Uniform Resource Locator. See URL
URI 70
URL 70

V
valueOf() method 125
variables

$ character 22
about 21, 22
case sensitive 23, 24
hoisting 74
scope 72, 73

W
W3C 8, 214

WebKit console
objects 111

WebKit'sWeb Inspector 17
web page, building blocks

Asynchronous JavaScript loading 275
behavior 273
behavior separation, example 274
content 272
presentation 273

while loops
about 56
do-while loops 57

window.alert() 223
window.confirm() 223
window.document 226
window.frames 219, 220
window.history 218, 219
window.location 217, 218
window.moveTo() 222
window.navigator 216
window.open()/close() 222
window.prompt() 223, 224
window.resizeTo() 222
window.screen 221
window.setInterval() 225, 226
window.setTimeout() 225, 226
World Wide Web Consortium. See W3C

X
XMLHttpRequest

about 260
Asynchronous 264
example 265, 266
request, sending 261
response, processing 262
steps 261
XML 264
XMLHttpRequest objects, creating in IE 263

XMLHttpRequest object 10

Thank you for buying
Object Oriented JavaScript
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning jQuery Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 Revised and updated version of this popular
jQuery book

jQuery UI 1.8: The User Interface
Library for jQuery
ISBN: 9781-8-4951-652-5 Paperback: 424 pages

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface Library

1.	 Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

2.	 A section covering the widget factory including
an in-depth example on how to build a custom
jQuery UI widget

3.	 Updated code with significant changes and
fixes to the previous edition

Please check www.PacktPub.com for information on our titles

Sencha Touch Mobile JavaScript
Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google
Android touchscreen devices with this first HTML5
mobile framework

1.	 Learn to develop web applications that look
and feel native on Apple iOS and Google
Android touchscreen devices using Sencha
Touch through examples

2.	 Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3.	 Add custom events like tap, double tap, swipe,
tap and hold, pinch, and rotate

Instant Ember.js Application
Development How-to
ISBN: 978-1-78216-338-1 Paperback: 48 pages

Your first step in creating amazing web applications

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Create semantic HTML templates using
Handlebars

3.	 Lay the foundation for large web applications
using the latest version of Ember.js in an easy to
follow format

4.	 Follow clear and concise examples to build up a
fully working application

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Object-oriented JavaScript
	A bit of history
	Browser wars and renaissance
	The present
	The future

	ECMAScript 5
	Object-oriented programming
	Objects
	Classes
	Encapsulation
	Aggregation
	Inheritance
	Polymorphism

	OOP summary
	Setting up your training environment
	WebKit's Web Inspector
	JavaScriptCore on a Mac
	More consoles

	Summary

	Chapter 2:
Primitive Data Types, Arrays, Loops, and Conditions
	Variables
	Variables are case sensitive

	Operators
	Primitive data types
	Finding out the value type – the typeof operator
	Numbers
	Octal and hexadecimal numbers
	Exponent literals
	Infinity
	NaN

	Strings
	String conversions
	Special strings

	Booleans
	Logical operators
	Operator precedence
	Lazy evaluation

	Comparison
	Undefined and null

	Primitive data types recap
	Arrays
	Adding/updating array elements
	Deleting elements
	Arrays of arrays

	Conditions and loops
	The if condition
	The else clause

	Code blocks
	Checking if a variable exists
	Alternative if syntax

	Switch
	Loops
	While loops
	Do-while loops

	For loops
	For-in loops

	Comments
	Summary
	Exercises

	Chapter 3:
Functions
	What is a function?
	Calling a function
	Parameters
	Predefined functions
	parseInt()
	parseFloat()
	isNaN()
	isFinite()
	eval()

	Scope of variables
	Variable hoisting

	Functions are data
	Anonymous functions
	Callback functions
	Callback examples

	Immediate functions
	Inner (private) functions
	Functions that return functions
	Function, rewrite thyself!

	Closures
	Scope chain
	Breaking the chain with a closure
	Closure #1
	Closure #2
	A definition and closure #3

	Closures in a loop
	Getter/setter
	Iterator

	Summary
	Exercises

	Chapter 4:
Objects
	From arrays to objects
	Elements, properties, methods, and members
	Hashes and associative arrays
	Accessing an object's properties
	Calling an object's methods
	Altering properties/methods
	Using the this value
	Constructor functions
	The global object
	The constructor property
	The instanceof operator
	Functions that return objects
	Passing objects
	Comparing objects
	Objects in the WebKit console
	console.log

	Built-in objects
	Object
	Array
	A few array methods

	Function
	Properties of function objects
	Methods of function objects
	The arguments object revisited
	Inferring object types

	Boolean
	Number
	String
	A few methods of string objects

	Math
	Date
	Methods to work with date objects

	RegExp
	Properties of RegExp objects
	Methods of RegExp objects
	String methods that accept regular expressions as arguments
	search() and match()
	replace()
	Replace callbacks
	split()
	Passing a string when a regexp is expected
	Error objects

	Summary
	Exercises

	Chapter 5:
Prototype
	The prototype property
	Adding methods and properties using the prototype

	Using the prototype's methods and properties
	Own properties versus prototype properties
	Overwriting a prototype's property with an own property
	Enumerating properties

	isPrototypeOf()
	The secret __proto__ link

	Augmenting built-in objects
	Augmenting built-in objects – discussion
	Prototype gotchas

	Summary
	Exercises

	Chapter 6:
Inheritance
	Prototype chaining
	Prototype chaining example
	Moving shared properties to the prototype

	Inheriting the prototype only
	A temporary constructor – new F()

	Uber – access to the parent from a child object
	Isolating the inheritance part into a function
	Copying properties
	Heads-up when copying by reference
	Objects inherit from objects
	Deep copy
	object()
	Using a mix of prototypal inheritance and copying properties
	Multiple inheritance
	Mixins

	Parasitic inheritance
	Borrowing a constructor
	Borrow a constructor and copy its prototype

	Summary
	Case study – drawing shapes
	Analysis
	Implementation
	Testing

	Exercises

	Chapter 7:
The Browser Environment
	Including JavaScript in an HTML page
	BOM and DOM – an overview
	BOM
	The window object revisited
	window.navigator
	Your console is a cheat sheet
	window.location
	window.history
	window.frames
	window.screen
	window.open()/close()
	window.moveTo() and window.resizeTo()
	window.alert(), window.prompt(), and window.confirm()
	window.setTimeout() and window.setInterval()
	window.document

	DOM
	Core DOM and HTML DOM
	Accessing DOM nodes
	The document node
	documentElement
	Child nodes
	Attributes
	Accessing the content inside a tag
	DOM access shortcuts
	Siblings, body, first, and last child
	Walk the DOM

	Modifying DOM nodes
	Modifying styles
	Fun with forms

	Creating new nodes
	DOM-only method
	cloneNode()
	insertBefore()

	Removing nodes
	HTML-only DOM objects
	Primitive ways to access the document
	document.write()
	Cookies, title, referrer, domain

	Events
	Inline HTML attributes
	Element Properties
	DOM event listeners
	Capturing and bubbling
	Stop propagation
	Prevent default behavior
	Cross-browser event listeners
	Types of events

	XMLHttpRequest
	Sending the request
	Processing the response
	Creating XMLHttpRequest objects in IE prior to Version 7
	A is for Asynchronous
	X is for XML
	An example

	Summary
	Exercises

	Chapter 8:
Coding and Design Patterns
	Coding patterns
	Separating behavior
	Content
	Presentation
	Behavior
	Example of separating behavior
	Asynchronous JavaScript loading

	Namespaces
	An Object as a namespace
	Namespaced constructors
	A namespace() method

	Init-time branching
	Lazy definition
	Configuration object
	Private properties and methods
	Privileged methods
	Private functions as public methods
	Immediate functions
	Modules
	Chaining
	JSON

	Design patterns
	Singleton
	Singleton 2
	Global variable
	Property of the Constructor
	In a private property

	Factory
	Decorator
	Decorating a Christmas tree

	Observer

	Summary

	Appendix A:
Reserved Words
	Keywords
	Future reserved words
	Previously reserved words

	Appendix B:
Built-in Functions
	Appendix C:
Built-in Objects
	Object
	Members of the Object constructor
	The Object.prototype members
	ECMAScript5 additions to Object

	Array
	The Array.prototype members
	ECMAScript5 additions to Array

	Function
	The Function.prototype members
	ECMAScript5 additions to a function

	Boolean
	Number
	Members of the Number constructor
	The Number.prototype members

	String
	Members of the String constructor
	The String.prototype members
	ECMAScript5 additions to String

	Date
	Members of the Date constructor
	The Date.prototype members
	ECMAScript5 additions to Date

	Math
	Members of the Math object

	RegExp
	The RegExp.prototype members

	Error objects
	The Error.prototype members

	JSON
	Members of the JSON object

	Appendix D:
Regular Expressions
	Index

