

Socket.IO Real-time Web
Application Development

Build modern real-time web applications powered
by Socket.IO

Rohit Rai

 BIRMINGHAM - MUMBAI

Socket.IO Real-time Web Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1120213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-078-6

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Rohit Rai

Reviewers
Arnout Kazemier

Andrew Keig

Acquisition Editor
Wilson D'souza

Commisioning Editor
Harsha Bharwani

Technical Editors
Ishita Malhi

Dominic Pereira

Copy Editors
Aditya Nair

Alfida Paiva

Ruta Waghmare

Project Coordinator
Esha Thakker

Proofreader
Elinor Perry Smith

Indexer
Rekha Nair

Graphics
Valentina D'Silva

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Rohit Rai is an accomplished software engineering professional and entrepreneur
with several years of experience in developing products and consulting with clients
on a variety of technologies, from enterprise applications on .NET and Java EE,
consumer web applications focusing on JavaScript, data engineering and analytics
platforms such as Pentaho and Hadoop, to modern platforms such as Groovy, Scala,
and Node.js.

He is a founder of TupleJump, a startup building a new-generation data engineering
platform for unifying and optimizing the workflows of data scientists, engineers, and
analysts, bringing in innovative data process development approaches and modern
visualization frameworks, all built on cutting-edge technologies designed to scale
transparently from a single machine to large, distributed big data clusters.

He has previously worked with Cordys R&D, Pramati technologies, and various
startups. He has consulted with clients like Intel and Sun, helping them develop
products like Mash Maker and Zembly, powered by JavaScript. He was a member
of one of the first teams on SocialTwist and developed one of the first widgets as a
service platform and framework, which continues to power this widely-successful
social media marketing and referral platform used by many Fortune 500 companies.

In open source, Rohit is a core committer and the administrator of Matisse
(http://www.matisse.org/), the collaborative design platform. He is also the
creator of socket.io.play, the Socket.IO module for the Play framework, and various
open source projects hosted at GitHub (https://github.com/rohit-tingendab).

http://www.matisse.org/
https://github.com/rohit-tingendab

Acknowledgement

Writing a book, especially your first one, is an uphill and demanding task that cannot
be accomplished by a single person without support from several others, and this
book is no different. I would like to thank everyone who has played a role in helping
me write this book or helping me reach the point where I could think of writing my
own book. Though I cannot mention all the people by name, I am heartily grateful
and indebted to everyone. However, I would like to mention the people who have
played a directly important role in this book.

First of all, I have to thank my father and his elder brother, my uncle, who together,
played the most important role in my personal and academic development. They
inscribed on my mind, the importance of learning and knowledge above all else
in life.

I would like to thank my wife, Paridhi, and my brother, Rajat, for bearing with my
tantrums and idiosyncrasies, and still understanding and supporting me during my
long hours of work and writing. I couldn't have pulled it off without them. The other
very important person that I need to mention is my cousin, Shiti, who was always
reviewing the book, giving exceptional feedback, running, debugging, and correcting
the code for me, and also taking over quite a bit of my workload and my projects
whenever she could. I have to thanks all my friends and cousins who played an
important role in my upbringing, and who understood my missing all their parties
and celebrations all the time.

I have to thank my friends, partners, and founders at my two ventures, Satyaprakash
at TupleJump and Guillermo at Happymer, who have unconditionally supported me
through the writing of this book and coped with me missing meetings and running
slow at work from time to time.

I thank Pramati Technologies, the place where I learned most of what I know today
and spent most of my career. I thank Jay and Vijay Pullur for starting this wonderful
company; it is one of the very best places to work at.

I have to thank my managers, mentors, and guides at Pramati, specially Ramesh
Loganathan, Chandrasekhar Sivaram, and KVP who have taught me a lot. All of
them helped develop particular skill sets within me, without which I could never
have written a book or started my own company. Chandru and KVP gave me the
freedom to choose my projects, run my teams my way, and also the support to
build Matisse and socket.io.play. Ramesh, who was the first published author I got
to know in person, is my inspiration to write. Talking about mentors, I owe my
professional success to Vivek Lakshman, my manager at Cordys and SocialTwist,
my mentor, protector, guide, and above all, a friend I probably didn't do much
to deserve. He has always challenged me to set higher goals for myself and then
supported and pushed me to achieve these targets. The positive energy that he
brings to any conversation helps boost the morale of everyone around.

My thanks go to everyone at Pramati for helping me, assisting me, and guiding me
from time to time. I must thank my friends and colleagues, Apurba and Sunny (now
at Sprinklr), who have always challenged me to learn more, explore more, and keep
improving from time to time. Sunny was the one who forced me to dig deeper in
JavaScript and functional programming during our SocialTwist days. And Apurba is
someone from whom I have learned a lot; I still feel like a student in his presence.

The acknowledgements for a book on any technology would be incomplete without
thanking the creators. I am thankful to Ryan Dahl, the creator of Node.js and
Guillermo Rauch, the creator of socket.io, and the countless open source contributors
to these and other enabling technologies, without whom these projects, and in turn
this book, would have been impossible.

Last but not the least, I have to thank the team of editors and reviewers for this
book. I thank the editors at Packt, Manali, Harsha, and Esha, who have been very
good to me, understood the challenges for a first-time writer, and been considerate
with delays and shuffling of deadlines. I also thank the reviewers who have done an
excellent job of pointing out what is missing in the book, correcting the mistakes, and
reviewing the code. Thank you guys, you have been great!

About the Reviewers

Arnout Kazemier is a Software Engineer from the Netherlands. He was originally
schooled as a multimedia designer, but quickly rolled in to the world of frontend
development and started to appreciate the beauty of JavaScript. After finding out that
it was also possible to write JavaScript on the server side, he started using Aptana
Jaxer and Narwal in his spare time. It wasn't until much later that Arnout heard about
Node.js and its possibilities, and decided to take it for a spin when version 0.1.3 was
released. Since then, he has never looked back. When Arnout joined the first Node.js
hackatron (Node Knockout 2010), he built a real-time heat mapping engine on Node.
js using Socket.IO. During the programming contest he learned a lot about Socket.
IO and solved tons of issues that he encountered during the development of his
entry. When the contest ended, he didn't stop contributing to Socket.IO, eventually
becoming the first core team member of Socket.IO. He has been talking at different
tech conferences since. Fast forwarding to 2013, he now spends time working on
his own startup website http://observe.it (it won Node Knockout 2011) which
allows you to observe and learn from your user's behavior in real time. He's still
actively involved with the development of Socket.IO and conducts research on the
connectivity of the real-time web and the impact of firewalls & virus scanners.

Andrew Keig has been building cutting-edge web applications for over 12
years. Andrew is a director at airasoul.net, which he runs with his artist
wife Rima. Airasoul specializes in the design and build of scalable, RESTful,
specification-driven, real-time web and mobile-based applications on both the
Node.js and .NET stacks.

Andrew has a degree in Computing, and blogs at blog.airasoul.net on topics
he is passionate about, such as Node.js, REST, Web APIs and Behavior-Driven
Development. Andrew contributes to various open source projects for Node.js
and .NET.

Andrew lives in London with his family: wife Rima and his son and inspiration, Indie.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Going Real Time on the Web 7

What is real-time web? 7
A bit of history 8
Applications of real-time web 13

Gaming 13
Social stream updates 13
Business applications 14
Web-based monitors 14

Summary 14
Chapter 2: Getting Started with Node.js 15

The origin of Node.js 16
Why Node.js 16

JavaScript everywhere 16
Event-driven design 17
Corporate backing 18

How to get Node.js 19
Node.js package manager (npm) 19
Hello World with Node.js 20
Hello Web 20
Routing the requests 23
HTTP Methods 27
Creating our own Modules 29
Serving files 32
Third party modules and Express JS 34
Summary 42

Table of Contents

[ii]

Chapter 3: Let's Chat 43
Creating the application 43
Designing the chat room 44
Bringing in jQuery 48
Socket.IO 48
Handling events 49
The server 50
The client 53
Summary 56

Chapter 4: Making It More Fun! 57
Giving names to users 57
More on events 64
Working with namespaces 66
Rooms 70
Listing the rooms 77
Sharing the session 81
Summary 86

Chapter 5: The Socket.IO Protocol 87
Why do we need another protocol? 87

The WebSocket API 88
The Socket.IO API 89

The Socket.IO socket 90
The Socket.IO connection 91
Socket.IO messages 93

Disconnect (0) 93
Connect (1) 94
Heartbeat (2) 94
Message (3) 94
JSON message (4) 95
Event (5) 95
ACK (6) 96
Error (7) 96
NOOP (8) 96

Summary 96
Chapter 6: Deploying and Scaling 97

The production environment 97
Running the application 98
Keeping it running 99
Scaling 101
The node cluster 103

Table of Contents

[iii]

Scaling up the application 105
Tips for node in production 107
Summary 108

Appendix A: Socket.IO Quick Reference 109
The server 109

Instantiating socket 109
Starting Socket.IO 109
Listening to events 110
Emitting an event 110
Sending a message 110
Sending a JSON message 110
Broadcasting a message/event 111
Sending a volatile message 111
Storing socket data 111
Getting the socket data 112
Restricting to a namespace 112
Joining a room 112
Broadcasting messages/events in a room 112
Leaving a room 113
Changing the configuration 113

Server events 113
connection 113
message 113
disconnect 114

The client 114
Connecting to a socket 114
Listening to events 114
Emitting an event 114
Sending a message 115

Client events 115
connect 115
connecting 115
disconnect 115
connect_failed 115
error 116
message 116
reconnect 116
reconnecting 116
reconnect_failed 116

Table of Contents

[iv]

Appendix B: Socket.IO Backends 117
Erlang 117
Google Go 118
Java 118
Perl 119
Python 119
Summary 120

Index 121

Preface
Real-time web applications have traditionally been a challenging thing to achieve,
relying on hacks and illusions. Many people avoid going real-time under the
assumption of the complexity involved. This book will show you how to build
modern, real-time web applications powered by Socket.IO, introducing you to
various features of Socket.IO and walking you through the development, hosting,
and scaling of a chat server.

What this book covers
Chapter1, Going Real Time on the Web, introduces us to the world of real-time web
applications and their history.

Chapter 2, Getting Started with Node.js, introduces Node.js and its friends. Node.js is
the platform that empowers many modern web applications, which are all written
in JavaScript.

Chapter3, Let's Chat, gets us up and running with our first single-page chat system,
introducing us to the Socket.IO API for real-time communication.

Chapter4, Making It More Fun!, adds more features to our chat application, such as
giving our users a name, having multiple chat rooms, and integrating express with
Socket.IO sessions.

Chapter5, The Socket.IO Protocol, explains the Socket.IO protocol, its mechanism
and working.

Chapter6, Deploying and Scaling, explains the intricacies involved in taking our chat
system to production and scaling it out.

Preface

[2]

Appendix A, Socket.IO Quick Reference, is a reference for the Socket.IO API.

Appendix B, Socket.IO Backends, lists a few alternative backend implementations for
different languages and platforms.

What you need for this book
To use this book, we don't presume any special requirements in software. You will
need a PC with Linux or Windows OS or a Mac. You can use any text editor for
coding, but having a programmer's editor such as Vi, Emacs, Notepad++, Sublime
Text, or any IDE of your choice will help. We will be installing the remaining
software, such as Node.js and npm, as we go through the book and when they
are required.

Who this book is for
This book is aimed at developers who want to start developing highly interactive
and real-time web applications such as chat systems, online multiplayer games, or
want to introduce real-time updates or server push mechanisms in their existing
applications. Knowledge of developing in JavaScript and web applications in general
is expected. Though there is a chapter on introducing Node.js, prior knowledge of
Node.js will be a plus. Readers will need access to a computer system capable of
running Node.js, a test or code editor, and access to the Internet to download the
required software and components.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To set the environment our node server
runs in, we set an environment variable NODE_ENV to the environment we want to
run node in."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
<title>{TITLE}</title>
<link rel="stylesheet" href="/stylesheets/style.css" />
</head>

Preface

[3]

<body>
<header id="banner">
<h1>Awesome Chat</h1>
</header>
 {CONTENT}
<footer>
 Hope you enjoy your stay here
</footer>
</body>
</html>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

doctype 5
html
 block head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
header#banner
h1 Awesome Chat
 block content
 footer Hope you enjoy your stay here

Any command-line input or output is written as follows:

$ express awesome-chat

$ cd awesome-chat

$ npm install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Now you
can enter your message in the message box in one of the browsers and click Send.
You will see it appear on the message area of both the browsers."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Going Real Time on the Web
The Arab Spring revolution was sparked and fuelled through social media sites like
Facebook and Twitter. Over the next few days, social media went from being just
a means of interacting with family and friends to a weapon that empowered the
people and brought about a significant change in the world. Everyone noticed the
power of the people and people noticed what social networks were capable of. At
the heart of it all was the technology that made all this possible, the technology that
removed all the barriers to communication and spread the word faster than wildfire.
This is the power of real-time web!

What is real-time web?
On the Web, we have been habituated to sites and applications where we click on a
link or a button, or change some input and perform some action, and it causes some
change in the page. But if we leave our twitter page open for a while, we get alerts
when we receive new tweets, even without performing any action (shown in the next
screenshot). This is what we mean in general when we say "real-time web".

Real-time updates on Twitter

Going Real Time on the Web

[8]

Wikipedia introduces real-time web in these words:

The real-time web is a set of technologies and practices that enable users to receive
information as soon as it is published by its authors, rather than requiring that they
or their software check a source periodically for updates.

This "set of technologies" is one of the hottest trends on the Web. Over the
next few pages, we will get familiar with these technologies and see their use
in various applications.

A bit of history
To understand and fully appreciate any concept, it is important to know where it
came from and how it evolved.

Real-time web is not a new thing; one of the first attempts at making web real-time
was the usage of Java applets. Many will remember chatting in Yahoo! chat rooms or
playing chess, way back in the late '90s. Then came Flash and ActiveX plugins. This
was not only for "fun" (for the consumer section), but also for use in the enterprise
market. I worked for a BPM (Business Process Management) company in the early
stages of my career, where they had built an ActiveX plugin for powering their
dashboards and updating process information in real time. So why is it important
now? Because the way in which real-time functionality is implemented and the cost
involved in doing so has changed. From being a fancy feature in an application,
it has become a necessity—a user demand. From being a hacked-in or technically
challenging piece of the application, it is on its way to becoming a ratified standard
in the form of WebSockets and Server-Sent Events (SSE). How did we get from static
web to here?

Chapter 1

[9]

The Web (and web applications), as we all know, is built over the HTTP protocol.
HTTP is a request-response system, where the client sends a request for information
to the server and the server responds with the requested information. In most
cases, this information is the HTML or related information, like XML or JSON, to
be rendered by the browser. This HTTP browser-server interaction is shown in the
following figure:

Browser

Browser
renders
the form

Render
new page
from result

Server

open/form.html

submit request to /proc.php

HTML result of processing

HTTP browser-server interaction

In 1995, Sun and Netscape announced a partnership that saw Netscape bundle
Sun's brand new Java runtime with its browser. This was the beginning of highly
interactive web. Although they have since earned themselves a very bad reputation,
applets were the pioneers in the field of real-time web. In the early days of real-time
web, we saw applets being used everywhere, for chat, games, and even for banners.

In the same year, Netscape came up with a scripting language called JavaScript
(originally LiveScript), and another small company called FutureWave Software
started working on an animation software called FutureSplash Animator. Later,
both of them became the cause of Java applets almost disappearing from the Web.

Going Real Time on the Web

[10]

FutureWave was acquired by Macromedia in 1996 and they renamed FutureSplash
Animator to Flash. Flash, as we all know, went on to rule the Web as the most widely
available platform for creating animations, games, video players, and everything
interactive, for the major part of the next decade.

In 1999, Microsoft used its iframe technology and JavaScript to update news and
stock quotes on Internet Explorer's default home page (http://home.microsoft.
com). In the same year, they released a proprietary ActiveX extension for IE, called
XMLHTTP. This was the era when XML was the "in" thing and everyone wanted to
use XML for anything they were doing. This XMLHTTP component was originally
meant to load XML data in the page asynchronously, using JavaScript. It was soon
adopted by Mozilla, Safari, and Opera, as XMLHttpRequest (or XHR, for short).
But it was with the launch of Gmail (by Google) that the term AJAX (Asynchronous
JavaScript and XML)—coined by Jesse James Garrett in an article titled Ajax: A
New Approach to Web Applications—became the buzzword in web development. The
following figure shows an AJAX Request:

Browser

Render
form.html

Update
view

Partial HTML/XML/JSON result

XHR request to /proc.php

Server

open/form.html

AJAX Request

Gmail also shed light on the advantages of live updates to web pages and opened the
floodgates to various hacks built over AJAX to push data from a server (or at least,
giving the illusion of doing so).

Chapter 1

[11]

Collectively, these technologies were referred to as Comet-a term introduced by Alex
Russell on his blog in 2006. Comet was a play on the word Ajax, both being popular
household cleaners in the US. Comet was not one single approach. It introduced
multiple mechanisms to give the feeling of data being pushed from the server to the
client. These included Hidden iframe, XHR polling, XHR long polling, and Script tag
long polling (or, JSONP long polling).

Let us understand how these work, as they continue to remain the most commonly
available mechanisms across all modern browsers.

The first and the easiest to implement is XHR polling, in which the browser keeps
polling for data periodically, and the server keeps responding with an empty
response unless it has data to send back to the browser. Following an event, such
as receiving a mail, or creating/updating a record in the database, the server
responds to the next polling request with new data. The following figure depicts
this mechanism:

Browser

Response(no data)

Ajax request #2

Response with data

Ajax request #3

Server

Ajax request #1

Response(no data)

Event 1

Event 2

XHR polling

As you can see, there is a problem with this. The browser has to keep making
requests to the server even when there is no data. This causes the server to get and
process data even when there is nothing to deliver.

Going Real Time on the Web

[12]

One of the solutions to this is to modify the server to piggyback the actual client
requests by not only sending the data requested by the client, but also appending
additional data that the server has, to send to the browser. The client needs to be
modified to understand and act upon the additional incoming data. The HTTP
piggybacking process is shown in the following figure:

Browser Server

client request #1

client request #3

Response

Response Along with Data

Event 1

HTTP piggybacking

As the new data is only sent when there is a client action, it causes delays in the
data reaching the browser. The solution to receiving events quickly while avoiding
frequent server queries is long polling.

In long polling, when the browser sends a request to the server, the server won't
respond immediately if it doesn't have data to respond with, and will suspend the
request. Once the event occurs, the server closes the suspended request by sending
over a response to the client. As soon as the client receives the response, it sends a
new request:

Browser Server

XHR Request

Response with event data

XHR Request

Event 1

Wait till
another
event

No immediate
response

Long Polling

Chapter 1

[13]

There are various ways in which long polling is implemented, such as forever iframe,
multipart XHR, script tags with JSONP, and long-living XHR.

Though all these techniques work, these are hacks, bending HTTP and XHR to be
able to do duplex communication, which is not what they are meant for.

With the rapid evolution of the web browsers lead by Firefox and then Chrome, the
long-due upgrade to HTML, called HTML5, is being widely adopted. In HTML5,
there are two new methods for pushing data from the server to the client. One is
Server-Sent Events (SSE) and the other is the full duplex WebSockets.

Server-Sent Events attempts to standardize Comet-like communication across
browsers. In this approach, there is a JavaScript API to create an event source, that is,
a stream over which the server can send events. This is a unidirectional protocol. We
will still be using the good old XHR. This is a good approach when you don't need
full duplex communication; just push updates from the server to client.

The other specification which goes on to implement a full duplex communication
protocol for the web applications is WebSockets. In WebSockets, the client initiates
a socket connection with the server, which supports this protocol as well. The server
and client will send and receive data on this socket connection.

Applications of real-time web
Let us take a quick look at how real-time web is changing the applications we come
across on the Web daily.

Gaming
With the success of Zynga and other social gaming companies, online gaming
has become a hot trend. WordSquared is a massively parallel online multiplayer
crossword, while BrowserQuest is an attempt (by Mozilla) at building an in-browser
real-time role-playing game. One of the more popular and publicized games built
on socket.io is Rawkets. There are many open source game engines built over canvas
and around real-time communication systems.

Social stream updates
Twitter is the best example of getting real-time data (the tweets) to the browser
without user action. Google+ and Facebook have it too. The important thing on
social networks is, being updated about happenings in real time.

Going Real Time on the Web

[14]

Business applications
CRMs are some of the most important components in business acquisitions. The
days of issue tracking systems being sold as CRMs are over. CRMs are continuously
improving and re-inventing themselves. Most of the CRMs are adding social
capabilities; they are adding more functionality everyday. Salesforce, one of the most
popular hosted CRM solutions, introduced Chatter. Chatter adds social capabilities
to CRM and brings in a lot of advantages powered by realtime updates. It allows the
customers to add comments or post updates on issues, which appear in real time to
the support associates on their system. BPM solutions are also integrating real-time
components to keep a track on process status and updates.

Web-based monitors
The latest updates to Google Analytics include a functionality to see the real-time
updates of users visiting your website. Splunk—an event-tracking system, which
is widely used to monitor events on infrastructure and machine data—allows you
monitor and track event updates on the charts, updated in real time.

Summary
In the chapter, we saw what real-time web looks like, what its applications are, and
how the technologies around real-time web evolved over a decade of development.
In the next chapter we will get acquainted with Node.js, the JavaScript web
application development platform which is the primary target of socket.io.

Getting Started with Node.js
The definition of Node.js that is given on the Node.js website
(http://nodejs.org/), is as follows:

Node.js is a platform built on Chrome's JavaScript runtime for easily building
fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O
model that makes it lightweight and efficient, perfect for data-intensive real-time
applications that run across distributed devices.

What matters to us is, Node.js as a part of the platform, provides a scalable and
high-performance web application development framework, which allows
programming in JavaScript.

Many of us got introduced to JavaScript while building websites or web applications
for DOM manipulation, AJAX, and related stuff. But JavaScript is much more
than that. Just like C, Java, Python, and so on, JavaScript is also a full-fledged
programming language. In all browsers, JavaScript is executed in a virtual
machine (VM), in the context of the browser. But it can also be executed in
another context—as in the case of a Node.js backend—without the browser.

Node.js uses Google Chrome's JavaScript VM to execute JavaScript applications
outside the browser, on the server. Along with this runtime environment,
Node.js also provides a library of modules, which provides a framework for
building network applications. Node.js is not a web server like the Apache HTTP
server, or an application server like Tomcat; but as part of its modules library,
Node.js does provide an HTTP Server, which can be used to build web applications.

Apart from having JavaScript as the programming language for the applications,
one thing that sets Node.js (and most of the Node.js modules and applications)
apart from the traditional servers and applications is the asynchronous event-driven
development model, which we will see in later sections.

Getting Started with Node.js

[16]

The origin of Node.js
This is not the first time that JavaScript has been used for server-side programming.
Netscape launched Netscape Enterprise Server in 1996, which allowed server-side
programming in JavaScript. Since then, many servers, such as RingoJS
(http://ringojs.org/), Persevere (http://www.persvr.org/), Mozilla's
Rhino-based servers, and others have tried to follow suit.

A major reason for these servers not being taken seriously was the pitiful performance
of the JavaScript VMs used by them. JavaScript performance in browsers was also not
very good. That was until Google launched its Chrome web browser.

At the time of its launch, Chrome's JavaScript VM, called V8, was almost 10-20 times
faster than any other JavaScript VM, and has since then been the fastest.

It was based on this VM that Ryan Dahl developed Node.js in 2008. He wanted to
build a server that would enable and empower real-time interactive web applications
like Gmail. But Node.js was not the first server he built. Ryan built Ebb, a web server
based on Ruby and C, but realized that it wasn't working as fast as he wanted it to.
This was followed by several experiments in building a number of small web servers.

Armed with the knowledge gained from his experiments and the study of various
platforms, he decided to develop an event-driven or asynchronous server. In the
January of 2008, he came up with the idea of building a small web server based on
JavaScript. He was inclined towards JavaScript because it was independent of the
OS and came without any I/O APIs. He quit his job and worked on Node.js for 6
months. In November 2009, he presented Node.js in JSConf, and has been working
for Joyent since then. Initially, Node.js worked only on Unix-based systems; later, it
came with support for Windows OS too.

Why Node.js
Node.js is a new platform and is still evolving (not even a version 1.0 has been
released yet), but even in its infancy, it is probably one of the most popular platforms
on the Web. It is already powering a large number of popular services. Let us take a
look at what makes Node.js such a tempting and popular proposition.

JavaScript everywhere
The first and foremost advantage of Node.js is JavaScript. If you know and code in
JavaScript regularly, you already know most of Node.js; all that's left to learn can be
thought of as APIs and best practices.

Chapter 2

[17]

Node.js—built over Google Chrome's V8 JavaScript engine—allows entire
applications to be written using JavaScript. We have already been writing frontends
in JavaScript; with Node.js, we write the backend as well, in the same language that
we have honed our skills on and grown to love. It saves every frontend developer
from learning one more language or relying on some other developer to expose the
RESTful APIs required by their application.

Event-driven design
Node.js was designed around events and callbacks. As a JavaScript developer, you
would already be familiar with the concept of listening to events and using callbacks.
Node.js incorporates this philosophy in each and every aspect of the platform. Be it
in server request handling, I/O, or database interactions, everything in Node.js will
ideally be handled by a callback attached to an event by a listener.

This brings us to one of the most important concepts behind Node.js, that is, the event
loop. I like the fast food restaurant analogy by Dan York (http://code.danyork.com)
for explaining event loop-based systems.

Consider a restaurant where you go to the cashier, place your order, and wait till
your food is ready. In this case, the cashier cannot serve the other customers till you
have your order, and the queue is blocked. If the restaurant has a large inflow of
customers and needs to scale up, they will have to invest in hiring more number of
cashiers, creating more cash counters, and so on. This is similar to the traditional
multithreading model.

In contrast, let us see the model many other restaurants use. In this case, you go
to the cashier and place your order (which he/she hands over to the kitchen);
he/she then accepts your payment and gives you a token. You then step aside, and
the cashier moves on to the next customer. When your order is ready, the kitchen
server announces this by calling your name or flashing your token number, and you
walk up and fetch your order. This event-oriented approach optimizes the work of
the cashier and lets you wait on the side, freeing up the relevant resources to service
others until your work is done.

In Node.js, the server is the cashier, and all the handlers are the kitchen crew. The
server accepts a request and spins it off to a handler. It then moves on to accept other
requests. When the request is processed and the results are in place, the response is
queued on the server and sent back to the client when it reaches the front of the queue.

As opposed to the traditional approach of launching the threads or processes of the
server (which is similar to adding more cashiers), this method is more efficient, as the
workers launched have dedicated responsibilities. This is much lighter and cheaper
than replicating the entire server.

Getting Started with Node.js

[18]

In the sections ahead, we will see that we register the handlers or the workers with
the server to handle certain requests, and all the server does is delegate the requests
to these workers.

The advantage of the event-driven design is that everything we design is
non-blocking. "You don't wait on me, I call you" is the mantra that relieves us from
the pain involved in waiting on a request to be fulfilled. It frees up the system
resources that would have otherwise been spent in waiting on the request, so that
they can be used for the other tasks in the queue. This allows the Node.js applications
to give a very high performance and capability of handling a very high load.

Node.js is a modular framework with a modern module system from the ground
up. Everything in Node.js is built as modules running in the V8 JavaScript engine.
Every functionality in the platform is provided by means of modules. This keeps
the platform lean and brings in only that what is required. Having a native module
system also helps in keeping our applications modular.

JavaScript has become one of the most widely-used languages in the past few years
and has a vibrant community. Node.js provides developers with a good platform
that assists them in developing end-to-end applications in JavaScript. Node.js has
also brought in many revolutionary concepts, namely, always asynchronous,
non-blocking I/O, event-oriented servers, and so on. This has resulted in a very
vibrant, large, and active community. New modules are coming up continuously,
and the community provides active support and is very helpful. Most of the popular
modules and frameworks built for Node.js generally come from the community and
are mostly open source.

Corporate backing
Many companies have invested heavily in Node.js in the past couple of years. From
Ryan Dahl's employer, Joyent, to the creators of the Mojito framework (Internet giant
Yahoo!), many companies have built products, platforms, frameworks, and services
around Node.js. This kind of corporate commitment assures a stable future.

How to get Node.js
Due to the popularity of Node.js, it is very easy to get it working on any operating
system. You can go to http://nodejs.org/ and download the appropriate
distribution for your operating system.

Though Node.js works on any OS, as it comes from the *nix
background, many modules might only work on Linux or other Unix
systems; so it is best to use such a system if you have one at hand.

Chapter 2

[19]

If you are using Linux, in most cases, you should be able to install Node.js using
your distribution's package manager. As this information keeps changing, I'll just
point out the location instead. You'll find the instructions for installing Node.js using
package manager here:

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-
manager

If you are using Mac OS or Windows, you should know that Node.js now provides
an installer for these platforms, which is the recommended installation approach.
You can also install using the source. Instead of repeating that process here, which
is again subject to change, I'll suggest that you follow the official installation
instructions on the Node.js wiki, on GitHub (https://github.com/joyent/node/
wiki/Installation).

Node.js package manager (npm)
If you installed Node.js using the installer from the Node.js website, you will already
have npm installed.

Also, if you followed the instructions to build from the source, you will probably
have installed npm. If that is a yes, very good! If no, please do so now. For this,
I recommend that you follow the instructions mentioned in the npm installation
documentation (https://github.com/isaacs/npm/).

You can check if you have npm installed by typing the following command:

$ npm -v

This should display the version of npm installed.

For those who are wondering what npm is and why you would need a package
manager for Node.js, npm is just what its name says; it provides an infrastructure
in Node.js to distribute and manage packages. As I said earlier, Node.js is very
modular. Node.js apps are built using many modules and third-party packages
because npm provides an easy way of adding and managing third-party
dependencies for our applications. We will see more on its use in a while.

Getting Started with Node.js

[20]

Hello World with Node.js
Here, the obligatory Hello World example uses Node.js. Write the following line in a
file called helloworld.js and save it:

console.log("Hello World");

And now to run it, execute the following command:

node helloworld.js

This should print Hello World on the console. All the JavaScript developers will
immediately recognize that these are the steps we follow to print anything on the
console while developing a web application.

What happens is that Node.js loads the JavaScript file in the JavaScript VM, provides
an environment for its execution, and the VM interprets the script. When it gets
console.log, it checks the environment for the console, which in this case is STDOUT,
and writes Hello World to it.

But we are here to develop web applications, correct? So let's say hello to the Web!

Hello Web
Let us make a very simple web application that greets the user with a hello. Write the
following code in a file, and name it helloweb.js:

var http = require("http");

http.createServer(function(request, response) {
 response.writeHead(200, {"Content-Type": "text/html"});
 response.write("<html>");
 response.write("<head><title>Node.js</title></head>");
 response.write("<body>Hello Web</body>");
 response.write("</html>");
 response.end();
}).listen(9999);

To run the previous piece of code, execute helloweb.js in Node.js:

node helloweb.js

And then open http://localhost:9999/ in your browser. You should see a page
saying Hello Web. There is a lot going on here! So let us walk through the code and
understand what is going on.

Chapter 2

[21]

The very first line of code introduces us to one of the fundamental building blocks
of Node.js, the module system. Node.js has a very simple module system built
on CommonJS. Those familiar with frontend development using RequireJS with
Asynchronous Module Definition (AMD) will immediately relate to this. All the
functionality in Node.js is built as modules and you need to import it in your code
using require. Node.js has several modules compiled in a binary form, called core
modules, HTTP being one of them. We can also create and include our own custom
or third-party modules using require. In case of file modules, there is one-to-one
mapping between a file and a module; so we write every module in its own file. We
will see more on writing our own modules later.

var http = require("http");

With this statement, Node.js will load the core HTTP module, and it will be available
in a variable called http. The next task is to create a server using the HTTP module.
This is done using the createServer method from the module. The createServer
method accepts requestListener.

http.createServer([requestListener]);

The requestListener is a function that handles the incoming requests. In our case,
this function is passed inline. Just like JavaScript in a browser, Node.js also runs a
single process and a single thread. This is different from the traditional application
servers, which create a new thread or process to handle new requests. So to scale
and handle multiple requests, Node.js uses asynchronous event handling. So every
request that comes in triggers an event, which is then handled by the event handler
asynchronously. This is the mechanism of the event loop explained in earlier sections.

http.createServer(function(request, response) {
 response.writeHead(200, {"Content-Type": "text/html"});
 response.write("<html>");
 response.write("<head><title>Node.js JS</title></head>");
 response.write("<body>Hello Web</body>");
 response.write("</html>");
 response.end();
});

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Getting Started with Node.js

[22]

The way createServer works is similar to any event handler in JavaScript. The
event in this case is receiving a request to serve. As we can see, requestListener
takes two arguments, request and response. The request object is an instance of
http.ServerRequest, and will have all the information about the request, such as
URL, method, headers, and data.

The response object is an instance of ServerResponse, which implements a
WritableStream. It exposes various methods to write the response to the client;
the ones we are most interested in, for now, are writeHead, write and end. Let
us first see writeHead:

response.writeHead(statusCode, [reasonPhrase], [headers]);

Here, statusCode is the HTTP response code, reasonPhrase is the optional
human-readable response phrase, and headers is the object that has the headers,
which are to be sent in the response. This function should be called only once,
before calling response.end. If we call response.write or response.end before
this, the implicit/mutable headers will be calculated and the following function will
be called automatically:

response.writeHead(200, {"Content-Type": "text/html"});

In this call, we are setting the status code to 200, that is, HTTP OK, and we are only
setting the Content-Type header to text/html. The next method here is response.
write, it's used to write the response content to the client. The call to this method is
done as follows:

response.write(chunk, [encoding]);

In this call, chunk is the content to write and encoding is the content encoding to
use. If the chunk is a string and the encoding is not specified, UTF-8 will be used
by default.

response.write("<html>");
response.write("<head><title>Node.js JS</title></head>");
response.write("<body>Hello Web</body>");
response.write("</html>");

In the above code, the first time write is called, Node.js sends the response headers
and the chunk of the body. But the write method can then be called multiple times.
Node.js will assume that we are streaming data, and will keep sending the chunk
whenever the calls are made. And the last call on the response is made to tell Node.js
that we are done. This is just what response.end does.

response.end([data], [encoding]);

Chapter 2

[23]

response.end signals to the server that all the response headers and body content
have been sent and that the server should consider this message complete. We must
call this method for every message.

response.end();

In our case, we call response.end without any of the optional arguments. If we
do pass in the parameters, it is equivalent to calling response.write with the
parameters, followed by response.end. I prefer keeping them separate, and
hence, explicit.

Finally, we need to tell the HTTP server which port it should listen on. In this case,
we tell it to listen on port 9999.

listen(9999);

Routing the requests
Almost any web application serves more than a single resource. So now we know
how to serve content using an HTTP server; but how do we handle multiple
resources? Routing is the name of the game. We need to understand the incoming
request and map it to the appropriate request handler. This is a bit more complicated
than the previous example, so we will build it step by step, improving it with
every step.

To demonstrate the routing of requests, let us build a simple application that serves
two resources at /start and /finish, displaying Hello and Goodbye respectively.
To simplify the code, we will serve plain text. So before anything else, let's take a
look at the code:

var http = require("http");
var url = require("url");

function onRequest(request, response) {
 var pathname = url.parse(request.url).pathname;
 console.log("Request for " + pathname + " received.");
 if(pathname === "/start"){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
 }else if(pathname === "/finish"){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
 }else{

Getting Started with Node.js

[24]

 response.writeHead(404, {"Content-Type": "text/plain"});
 response.end("404 Not Found");
 }
}

http.createServer(onRequest).listen(9999);
console.log("Server has started.");

Save the previous code snippet in a file called routing.js and execute it as follows:

node routing.js

Now, when we access http://localhost:9999/start, we will see Hello in the
browser. Similarly, when we access http://localhost:9999/finish, we will see
a message saying Goodbye. If we try to access any other path, we will get an HTTP
404 or Not Found error. Let us now try and understand the new things we are
introducing in this example.

The first thing that we need in order to route a request, is to parse the URL; for
this we will introduce another inbuilt module called url. When a URL string is
parsed using the url module, it returns an instance of the URL. In this case, we are
interested in the pathname.

var pathname = url.parse(request.url).pathname;

In the previous line of code, we are passing the url string from the request, and
parsing it using the url module, to get the pathname. The next step is to send an
appropriate response, based on the path being accessed:

 if(pathname === "/start"){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
 }else if(pathname === "/finish"){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
 }

Here we are comparing the pathname with the one we are expected to handle, and
accordingly an appropriate response is sent out. And what happens to the requests
we don't handle? That is what the last part of the if-else-if ladder does. It sends an
HTTP 404 error.

 response.writeHead(404, {"Content-Type": "text/plain"});
 response.end("404 Not Found");

Chapter 2

[25]

Now let us think about extending this application. To handle more paths, we will
have to add more if-else conditions. But that doesn't look clean, is difficult to read,
and is very inefficient in execution. Think about the route handled in the last step of
the if-else ladder; the process still has to go through the entire ladder, checking for
every condition. Also, adding new routes to this will require us to go through and
edit this if-else ladder, which will be at the very least, confusing, and can also easily
result in errors, typos, and a high chance of unintentional modification to the existing
routes. So let us make it a bit cleaner by putting the handlers in an object mapped by
their paths, and also provide an API to extend it. So let us change our code to look
like this:

var http = require("http");
var url = require("url");

var route = {
 routes : {},
 for: function(path, handler){
 this.routes[path] = handler;
 }
};

 route.for("/start", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
 });

 route.for("/finish", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
 });

function onRequest(request, response) {
 var pathname = url.parse(request.url).pathname;
 console.log("Request for " + pathname + " received.");
 if(typeof route.routes[pathname] ==='function'){
 route.routes[pathname](request, response);
 }else{
 response.writeHead(404, {"Content-Type": "text/plain"});
 response.end("404 Not Found");
 }
}

http.createServer(onRequest).listen(9999);
console.log("Server has started.");

Getting Started with Node.js

[26]

To run this code snippet, execute the file with Node.js, using the following command:

node resources.js

The functionality of the application will be the same as the result of the previous
example. When we access either /start or /finish, it will respond with Hello for
the former, and Goodbye for the latter. On trying to access any other path, we will
get an HTTP 404 message.

The change we have made here is that we have thrown out the if-else-if ladder in
favor of a clean and efficient design approach. In this approach, we don't need to
play around with existing routes and can add new routes by calling the route.for
method from any module. The route has a map of the path to the handler function
and also has a on method to add new routes.

var route = {
 routes : {},
 for: function(path, handler){
 this.routes[path] = handler;
 }
}

route.on("/start", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
});

route.on("/finish", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
});

Here we are adding two new handlers for the paths /start and /finish. The
signature for the handlers is similar to the main request handler. We expect the
handlers to get the request and response, so that the handler has everything it needs
to process the request and send the response.

if(typeof(route.routes[pathname])==='function')

In the if condition, we check whether the route for the pathname is present, and
whether it is a function. If we find a handler for the requested path, we execute the
handler function, passing the request and response to it.

route.routes[pathname](request, response);

Chapter 2

[27]

If it is not found, we respond with an HTTP 404 error. Now, to add a new path, we
can call the route.on method with the path and its handler to register it.

route.on("/newpath", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("new response");
 response.end();
});

HTTP Methods
HTTP is not only about the path, we also have to think about the HTTP methods.
In this section, we will enhance our app to handle the different HTTP methods:
GET, POST, PUT, and DELETE.

As the first step towards this, we will add the ability to add different handlers for
different methods. We will add the methods in the mapping in resources.js, which is
a minor change. This is shown in the following code snippet:

var http = require("http");
var url = require("url");
var route = {
 routes : {},
 for: function(method, path, handler){
 this.routes[method + path] = handler;
 }
}

 route.for("GET", "/start", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
 });

 route.for("GET", "/finish", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
 });

function onRequest(request, response) {
 var pathname = url.parse(request.url).pathname;
 console.log("Request for " + request.method + pathname +
 " received.");

Getting Started with Node.js

[28]

 if(typeof(route.routes[request.method +
 pathname])==='function'){
 route.routes[request.method + pathname](request, response);
 }else{
 response.writeHead(404, {"Content-Type": "text/plain"});
 response.end("404 Not Found");
 }
}

http.createServer(onRequest).listen(9999);
console.log("Server has started.");

Save the file and execute with Node.js. The functionality still remains the same, but
we will be able to handle different methods using different handlers. Let us create a
new handler to echo the incoming data on POST.

 route.on("POST", "/echo", function(request, response){
 var incoming = "";
 request.on('data', function(chunk) {
 incoming += chunk.toString();
 });

 request.on('end', function(){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write(incoming);
 response.end();
 });
 });

Here we are adding a new handler for the POST request on the /echo path. We
again see the use of the event-driven approach of Node.js, this time in handling the
data that comes in with POST. Since request is an event emitter, we attach an event
handler to it for each task: for handling chunks of incoming data and for completing
the request processing once all the data is received.

 request.on('data', function(chunk) {
 incoming += chunk.toString();
 });

In the previous piece of code, we add a listener on the request to handle chunks of
incoming data. In this case, all we do is accumulate the incoming data.

 request.on('end', function(){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write(incoming);
 response.end();
 });

Chapter 2

[29]

The event handler on end will be invoked once all the data sent in POST has been
received. This is the time at which we finish receiving all the data. To build an echo
service, we will send back all the accumulated data. We will now create a form to
post the request to this handler.

 route.on("GET", "/echo", function(request, response){
 var body = '<html>' +
 '<head><title>Node.js Echo</title></head>' +
 '<body>' +
 '<form method="POST">' +

 '<input type="text" name="msg"/>' +
 '<input type="submit" value="echo"/>' +
 '</form>' +
 '</body></html>';

 response.writeHead(200, {"Content-Type": "text/html"});
 response.write(body);
 response.end();
 });

We will add an event handler to the same path (/echo), but this time, to handle a
GET request. In the handler, we will return an HTML page with a form to post to the
same path.

Add these two handlers to our route-handlers.js and execute it with Node.js. To
open our form, go to http://localhost:9999/echo; then, to trigger our handler,
type in a message in the form's textbox and click on the echo button. This will post the
content of the form, and in response we will see msg=<your text> in the browser.

Creating our own Modules
Modules are the basic building blocks of Node.js applications. With all our changes,
our file is becoming a bit clumsy; moreover, we are putting our infrastructure (server
and router) with the application logic (the handlers) in the same place. As mentioned
earlier, Node.js builds on the CommonJS module system. In Node.js, a module and
a file have a one-to-one relation. Let us move the server and router to their own
modules. Save the following in a file called server.js:

var http = require("http");
var url = require("url");

function onRequest(request, response) {
 var pathname = url.parse(request.url).pathname;

Getting Started with Node.js

[30]

 console.log("Request for " + request.method + pathname +
 " received.");
 if(typeof(routes[request.method + pathname])==='function'){
 routes[request.method + pathname](request, response);
 }
 else{
 response.writeHead(404, {"Content-Type": "text/plain"});
 response.end("404 Not Found");
 }
}

var routes = {};

exports.forRoute = function(method, path, handler){
 routes[method + path] = handler;
};

exports.start = function(){
 http.createServer(onRequest).listen(9999);
 console.log("Server has started.");
};

Most of the logical aspects of the code remain the same, but we have made some
very subtle structural changes. The first one is that we have taken the routes out of
the route object. Any variables declared in the file are available within the module
and are not accessible from outside the module.

 if(typeof(routes[request.method + pathname])==='function'){
 routes[request.method + pathname](request, response);
 }

As the route object is gone, we can now directly access the routes within the module
and not through the route object.

The other and more obvious change is exports. Since nothing from within the
module is available outside the module, we have to add the methods/objects that we
want to expose to the implicit exports object. Ideally, you should expose only those
methods relevant to the end user of your module.

exports.forRoute = function(method, path, handler){
 routes[method + path] = handler;
};

exports.start = function(){
 http.createServer(onRequest).listen(9999);
 console.log("Server has started.");
}

Chapter 2

[31]

We are exposing two methods from our module: the forRoute method (originally,
the on method in the route object), and the start method that wraps the code to
start the HTTP server. We also move the application logic to its own module called
app.js, which is shown in the following code snippet:

var server = require("./server.js");
server.forRoute("GET", "/start", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Hello");
 response.end();
});

server.forRoute("GET", "/finish", function(request, response){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Goodbye");
 response.end();
});

server.forRoute("POST", "/echo", function(request, response){

 var incoming = "";

 request.on('data', function(chunk) {
 incoming += chunk.toString();
 });

 request.on('end', function(){
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write(incoming);
 response.end();
 });
});

server.forRoute("GET", "/echo", function(request, response){
 var body = '<html>' +
 '<head><title>Node.js Echo</title></head>' +
 '<body>' +
 '<form method="POST">' +
 '<input type="text" name="msg"/>' +
 '<input type="submit" value="echo"/>' +
 '</form>' +
 '</body></html>';

Getting Started with Node.js

[32]

 response.writeHead(200, {"Content-Type": "text/html"});
 response.write(body);
 response.end();
});

server.start();

Again, the logical aspects remain unchanged; the changes are only in the structure.

var server = require("./server.js");

The previous line, which is also the first line in the previous code snippet, shows us
how our server module is loaded. This is similar to loading core modules like HTTP
or URL, but here we are loading the module and passing its filename. The object
created by this require method, the server object, will have two methods that will
be exposed: forRoute and start.

Next, we replace all the calls to route.on with the server.forRoute method. .
And finally, we call the server.start method to start the HTTP server.

server.start();

Serving files
We can see that it's not very intuitive or easy to write HTML pages with our current
infrastructure. Writing the HTML in the JS code as strings is not fun. We would like
to serve the HTML content from the HTML files. We will begin with taking in two
modules, which we will need to read from a file (on the disk) in our app module:

var path = require('path');
var fs = require('fs');

The first one, path, is the module we use to work with paths, and fs is the
module used to interact with the filesystem. The next step is to get the path to the
application's root.

var root = __dirname;

__dirname is a variable managed by Node.js and has the absolute path to the
directory of the Node.js application script. Now, we add the method that will be
doing the heavy work of reading the file and sending it to the browser. Add this
method to app.js:

var serveStatic = function(response, file){
 var fileToServe = path.join(root, file);
 var stream = fs.createReadStream(fileToServe);

Chapter 2

[33]

 stream.on('data', function(chunk){
 response.write(chunk);
 });

 stream.on('end', function(){
 response.end();
 });
}

The serveStatic method that we have created accepts two arguments, the HTTP
response object and the file path to serve.

 var fileToServe = path.join(root, file);

We append the file path to our root path to build the absolute path of the file to
serve. Here we are implicitly assuming that all the files to be served are relative to
the Node.js application root; this will prevent a file outside the application from
being served by mistake. Node.js handles I/O as streams. We can see that this is
similar to the way it handles the incoming POST data.

 var stream = fs.createReadStream(fileToServe);

We use createReadStream from the fs module to create a stream that reads from
the file. This stream again demonstrates the non-blocking, asynchronous, and event-
driven approach of Node.js.

 stream.on('data', function(chunk){
 response.write(chunk);
 });

The stream works as an event emitter, triggering the 'data' event when there is new
data on the stream. This allows the application to continue with the other processing
activities, without having to wait for the data to be read. What we are doing here is,
we are writing the data we receive on every read to the response stream.

 stream.on('end', function(){
 response.end();
 });

Once all the data from the file is read and the stream gets an EOF, it will trigger the
'end' event. We will call end on our response as well. Finally, we will modify the
GET handler "/echo" to serve from a file called echo.html, and write the content of
the HTML to be served to that file.

server.forRoute("GET", "/echo", function(request, response){
 serveStatic(response, "echo.html");
});

Getting Started with Node.js

[34]

We have removed all the code to build the response string, replacing it with a call to
serveStatic to serve echo.html.

<html>
 <head>
 <title>Node.js Echo</title>
 </head>
 <body>
 <form method="POST">
 <input type="text" name="msg"/>
 <input type="submit" value="echo"/>
 </form>
 </body>
</html>

The content that we were previously building as a string is now written to this file.
Once we make these changes and run app.js with Node.js, you should be able to see
the form on http://localhost:9999/echo retaining its original functionality.

Those familiar with Unix-like operating systems will realize that the functionality
we just implemented to read from one stream and write to another can also
implemented by using pipes (|). It shouldn't come as a surprise that Node.js
provides a high-level function to do exactly the same.

Using the pipe method provided on stream in Node, we can modify the
serveStatic method as follows:

var serveStatic = function(response, file){
 var fileToServe = path.join(root, file);
 var stream = fs.createReadStream(fileToServe);
 stream.pipe(response);
}

Here we are replacing the data and end event handlers using
stream.pipe(response).

Third party modules and Express JS
Now that we have built a router of our own and understand the basics of Node.js, it is
time to get introduced to one of the most widely-used frameworks for Node.js, Express
(http://expressjs.com). Node.js provides the infrastructural components to build
a web application, but there is too much stuff to handle. Therein lies the role of the
web frameworks. There are quite a few web frameworks that provide a higher level of
abstraction for building applications on Node. You can see a list of most of them here:

https://github.com/joyent/node/wiki/Modules#wiki-web-frameworks-full

Chapter 2

[35]

Express is a web application framework for Node, built over the Connect middleware,
that provides many more helpers and structural aspects to build our web applications.

To get started with the Express framework, we need to install it using npm, the
Node.js package manager.

sudo npm install -g express

The previous command will install Express as a global (-g) module and make
express available as a command. Let us create an Express app:

express hello-express

This will create a folder called hello-express with certain files and folders in it.
Let us see and understand these files.

The first file to understand is package.json. This is the file that defines a Node.js
application package. It has the application metadata such as the name, description,
and version. More importantly, it has the module dependencies listed. The
dependency list is used by npm to download the required modules.

{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.1.0",
 "jade": "*"
 }
}

The most important things in your package.json are the name and version fields.
These fields are required, and together, they form a unique identifier for a particular
release of the package. To begin with, let us change the name of our package to
hello-express. The version field consists of the following (in the same order):

• A number (major version)
• A period
• A number (minor version)
• A period
• A number (patch version)
• Optional: a hyphen, followed by a number (build)
• Optional: a collection of pretty much any non-whitespace characters (tag)

Getting Started with Node.js

[36]

If we set private to true, npm will not publish it to a repository. This ensures that
you don't end up publishing your code to a public repository by mistake.

The scripts object has a mapping of commands to those points in the application
lifecycle at which they should be run. In this package, we are telling Node.js that it
should run the node app command when the application is started with npm. There
are some predefined lifecycle commands, such as start, stop, restart, and test,
which can be run using npm <command> like npm start.

You can also run arbitrary commands using run-script. For this, you add the
command to the scripts object and then run it as npm run-script <command>.

And finally—the most interesting part of the package that brings in the
magic—dependencies. This object is a mapping of the name and version
of your dependency packages and will be used by npm to pull in all the
required dependencies.

In our package, express has already defined the dependency on Express and Jade.
To pull in these dependencies, run the following command:

npm install

The output will list all the dependencies it downloaded.

jade@0.27.2 node_modules/jade

├── commander@0.6.1

└── mkdirp@0.3.0

express@3.0.0rc2 node_modules/express

├── methods@0.0.1

├── fresh@0.1.0

├── range-parser@0.0.4

├── cookie@0.0.4

├── crc@0.2.0

├── commander@0.6.1

├── debug@0.7.0

Chapter 2

[37]

├── mkdirp@0.3.3

├── send@0.0.3 (mime@1.2.6)

└── connect@2.4.2 (pause@0.0.1, bytes@0.1.0, qs@0.4.2, formidable@1.0.11)

The dependencies will be placed in a folder called node_modules.

Next, we will take a look at the application file app.js:

var express = require('express')
 , routes = require('./routes')
 , http = require('http')
 , path = require('path');

var app = express();

app.configure(function(){
 app.set('port', process.env.PORT || 3000);
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.static(path.join(__dirname, 'public')));
});

app.configure('development', function(){
 app.use(express.errorHandler());
});

app.get('/', routes.index);

http.createServer(app).listen(app.get('port'), function(){
 console.log("Express server listening on port " +
app.get('port'));
});

Getting Started with Node.js

[38]

In the first few lines, Node.js loads the modules required for us to work with. We
are already familiar with http and path. The express module brings in the Express
framework. And one more module that we are loading in is ./routes, which will
load the module defined in the local routes folder, defined by ./routes/index.js.
The following code snippet focuses on the first few lines of the previous code snippet:

var express = require('express')
 , routes = require('./routes')
 , http = require('http')
 , path = require('path');

In the next line, it instantiates the Express framework as an app:

var app = express();

Then comes the application configuration:

app.configure(function(){

});

In the previous few lines, we are defining a function that will configure the app.
The signature for app.configure is app.configure([env], callback), where
env is the runtime environment variable or the production environment variable, as
is defined by process.env.NODE_ENV. When we don't specify env, it will be set for
all environments.

The following settings have been provided to alter how Express behaves:

• env: Environment mode, defaults to process.env.NODE_ENV
or "development"

• trust proxy: Enables reverse proxy support, disabled by default
• jsonp callback: Enables JSONP callback support, enabled by default
• jsonp callback name: Changes the default callback name of ?callback=
• json replacer: JSON replacer callback, null by default
• json spaces: JSON response spaces for formatting; defaults to 2 in

development, 0 in production
• case sensitive routing: Enables case sensitivity, disabled by default,

treating /Foo and /foo as the same
• strict routing: Enables strict routing, by default /foo and /foo/ are

treated the same by the router

Chapter 2

[39]

• view cache: Enables view template compilation caching, enabled in
production by default

• view engine: The default engine extension to use when omitted
• views: The view directory path

The following code snippet demonstrates how to assign settings to an application:

 app.set('port', process.env.PORT || 3000);
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');

The settings used by the application here are port, views, and view engine,
specifying that the application should run on port 3000, the views will be placed in
the views folder, and the engine to be used is Jade. We will see more about views
later. Certain features can also be specified, as shown in the following snippet:

 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.static(path.join(__dirname, 'public')));

As Express builds over Connect middleware, it brings in a lot of existing
functionality from Connect. Connect's use method configures the app to utilize
the given middleware handle for the given route, where the route defaults to /. You
can see the list of middleware provided by Connect at http://www.senchalabs.
org/connect/.

Let us walk through the middleware components being used here. The Favicon
middleware will serve the favicon for the application. The Logger middleware logs
requests in a custom format.

The Body parser parses the request bodies supporting different formats; this
includes application/json, application/x-www-form-urlencoded, and
multipart/form-data.

Method Override enables the faux HTTP method support. This means that if we
would like to stimulate the DELETE and PUT method calls to our application, we can
do it by adding a _method parameter to the request.

app.router provides an enhanced version of Connect's router module. Basically,
this is the component that determines what to do when we use routing methods like
app.get. The last middleware, Static, provides a static file server and configures it,
serving files from the public directory.

Getting Started with Node.js

[40]

For the development environment, the following two lines of code show how to set
up the Error handler middleware so as to provide stack traces and error messages in
the responses.

app.configure('development', function(){
 app.use(express.errorHandler());
});

The next line configures the router to route / to be handled by the index method in
the routes module:

app.get('/', routes.index);

At the end, we start the HTTP server configured to use the app instance that we
just configured.

http.createServer(app).listen(app.get('port'), function(){
 console.log("Express server listening on port " + app.get('port'));
});

In the configuration of the app, we saw some folders coming into play, namely,
routes, views, and public.

routes is a module that we will be writing all our handlers to. In the case of /, we
have mapped it to serve from the index method, using the routes.index method.
If you open routes/index.js, you will see that index is a method exposed from
this module.

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

This function signature is similar to the handlers we wrote. It is a function that
takes a request and response as parameters. Here we are using the Express method
response.render, which will render the mentioned view using the second
parameter as the model or data.

The views are present in the views folder and use the Jade (http://jade-lang.
com/) view engine. Jade is a high-performance template engine, heavily influenced
by Haml (http://haml.info/), and implemented with JavaScript for Node.js.
Like many modern HTML generation engines, Jade tries to make the UI code easier,
cleaner, and simpler, getting rid of the inline code and the HTML tags noise.

We will now see the views defined in our Express app. There are two files to see
here: layout.jade and index.jade.

Chapter 2

[41]

layout.jade, as the name suggests, is the template for the layout that will be
used by the different pages in our application. It may be used to place the common
code of the skeleton for the pages in our application, which is shown in the
following snippet:

doctype 5
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

In Jade, we don't need the start and end tags because it identifies the start and end
of the tags by the indented blocks. So when we render this Jade file, it will generate
the following HTML code:

<!DOCTYPE html>
<html>
 <head>
 <title>{TITLE}</title>
 <link rel="stylesheet" href="/stylesheets/style.css" />
 </head>
 <body>{CONTENT}</body>
</html>

In the previous piece of code, two things are left undefined, {TITLE} and {CONTENT}.
In the Jade template, we define the title as follows:

 title= title

We tell Jade to use the title from the data passed to render as title. The second
thing, {CONTENT}, is defined as block in Jade.

 block content

block content is a plugin point provided in the layout template, which can be
described by any template extending from it.

index.jade inherits from layout.jade. In our index handler, we render the index
view using the data {title: 'Express'}. Take a look at the following code snippet:

extends layout
block content
 h1= title
 p Welcome to #{title}

Getting Started with Node.js

[42]

In the previous file, we define the content block to have a h1 and p tags. So, with
the given input and because it extends the layout, the Jade engine will generate the
following HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Express</title>
 <link rel="stylesheet" href="/stylesheets/style.css" />
 </head>
 <body>
 <h1>Express</h1>
 <p>Welcome to Express</p>
 </body>
</html>

We will see more functionality and syntax in Jade as we work on our chat application
in the next chapter.

In the HTML code generated, we can see that /stylesheets/style.css is being
referred to; this file is served by the static file server we configured in the app.
We can find this and the other files in the public folder.

To run this application, we will use npm. Run the following command on
the console:

npm start

Then go to http://localhost:3000/.

Summary
In this chapter we were introduced to the Node.js and Express web frameworks.
As mentioned earlier, this is in no way a complete introduction to Node.js or
Express. To learn more, please refer to the vast documentation available online
or any of the books written on Node.js web development.

Let's Chat
Beginning with Yahoo! Chat in the early 2000 and up to today's popular Google
Talk or Facebook Chat, chatting has been the most popular form of real-time
communication on the Internet. In this chapter, we will build a chat room using
node and express, which we learned in the previous chapter, and the socket.io
library that we will learn in this chapter.

Creating the application
Similar to the way we created our application in the previous chapter, we will create
a new awesome-chat application by executing the following commands in the
command line:

$ express awesome-chat

$ cd awesome-chat

$ npm install

This will create our application and install the express application dependencies.
Open the package.json file and change the name to awesome-chat, as shown in
the following code snippet:

{
 "name": "awesome-chat",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.0.0rc2express": "3.x",
 "jade": "*"
 }
}

Let's Chat

[44]

Designing the chat room
Let's modify the view to make it look like a chat room. We will need an area to
display the messages, a text input for the user to enter the message, and a button to
send the message. We will add some aesthetic elements, such as a header, banner,
and footer. When we are done, our chat room user interface should look like the one
shown in the following screenshot:

Awesome chat UI

Let's start editing layout.jade by adding a header and footer to it:

doctype 5
html
 block head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 header#banner
 h1 Awesome Chat
 block content
 footer Hope you enjoy your stay here

The first change we make is to add the block keyword before head. This makes head
a block, to which we can append content from the extending pages.

Chapter 3

[45]

The other change is the addition of a new header and footer. Note that we are using
the header and footer tags from HTML5. This code also introduces us to a new jade
syntax. When we write header#banner, it will generate headers with banner as the
id value. The generated HTML code will be as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>{TITLE}</title>
 <link rel="stylesheet" href="/stylesheets/style.css" />
 </head>
 <body>
 <header id="banner">
 <h1>Awesome Chat</h1>
 </header>
 {CONTENT}
 <footer>
 Hope you enjoy your stay here
 </footer>
 </body>
</html>

Next, we will edit index.jade to add the message area, message input, and the
Send button:

extends layout
block content
 section#chatroom
 div#messages
 input#message(type='text', placeholder='Enter your message here')
 input#send(type='button', value='Send')

Let's run and see what our awesome-chat application looks like. Execute the
application using npm and open http://localhost:3000/ in the browser:

npm start

Hey, all the elements are there, but it doesn't look right! That's correct; to improve
the look and feel of the application, we need to edit the stylesheet, which is located
at public/stylesheets/style.css.

We can edit it according to our taste. Here is one that works just fine for me:

html {
 height: 100%;
}

body {

http://localhost:3000/

Let's Chat

[46]

 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
 margin: 0px;
 padding: 0px;
 height: -moz-calc(100% - 20px);
 height: -webkit-calc(100% - 20px);
 height: calc(100% - 20px);
}

section#chatroom {
 height: -moz-calc(100% - 80px);
 height: -webkit-calc(100% - 80px);
 height: calc(100% - 80px);
 background-color: #EFFFEC;
}

div#messages {
 height: -moz-calc(100% - 35px);
 height: -webkit-calc(100% - 35px);
 height: calc(100% - 35px);
 padding: 10px;
 -moz-box-sizing:border-box;
 -webkit-box-sizing:border-box;
 box-sizing:border-box;
}

input#message {
 width: -moz-calc(100% - 80px);
 width: -webkit-calc(100% - 80px);
 width: calc(100% - 80px);
}

input#send {
 width: 74px;
}

header{
 background-color:#4192C1;
 text-align: right;
 margin-top: 15px;
}

header h1{
 padding: 5px;
 padding-right: 15px;
 color: #FFFFFF;
 margin: 0px;
}

Chapter 3

[47]

footer{
 padding: 6px;
 background-color:#4192C1;
 color: #FFFFFF;
 bottom: 0;
 position: absolute;
 width: 100%;
 margin: 0px;
 margin-bottom: 10px;
 -moz-box-sizing:border-box;
 -webkit-box-sizing:border-box;
 box-sizing:border-box;
}

a {
 color: #00B7FF;
}

After saving this CSS and refreshing the page, here is what the chat room looks like:

The awesome chat room

Let's Chat

[48]

Bringing in jQuery
jQuery is almost ubiquitous when it comes to JavaScript libraries, and we will
use it in our application too. To add jQuery to our application, let's download the
latest release from http://www.jquery.com/ and save it to public/javascript/
jquery.min.js. Then, we add the script in layout.jade to pull in jQuery to our
application's pages:

 script(type='text/javascript', src='/javascripts/jquery.min.js')

Socket.IO
Ever since the onset of web applications, developers have worked towards different
ways of getting duplex communication between the server and the browser. Be it
using Java, Flash, Comet, or many other workarounds, all aim to do the same. But
for the first time, there is a specification to build a full-duplex communication system
by using HTML5 WebSockets. WebSocket is a revolutionary, new communication
feature in the HTML5 specification that defines a full-duplex communication channel
operating over the Web through a single socket.

Although the WebSockets RFC is published, it is not, and will never be, available on
older browsers that are still in use. Socket.io is an abstraction layer for WebSockets,
with Flash, XHR, JSONP, and HTMLFile fallbacks. Socket.io provides an easy server
and client library for making real-time, streaming updates between a web server and
a browser client.

Socket.io is a node module available through the npm, and we will add it to our
package dependencies. The current release of socket.io is 0.9.10. To add this to our
dependencies, add the following line to the dependencies object in package.json:

 "socket.io": "0.9.10"

And install it using the npm:

$ npm install

This will bring socket.io in the node_modules folder. Now let's see how we will
use it.

http://www.jquery.com/

Chapter 3

[49]

Handling events
Since the socket.io framework has components for both the server and the client,
we will use these components to code our communication on both the sides. Events
emitted on a socket on one side will be handled by the corresponding event handler
on the other side. Socket.io is built so that both the sides can send messages or attach
handlers to process the incoming messages.

Let's begin by understanding how the messages will flow. It is important to
remember that "messages" here are not the actual messages sent and received by
users of the chat system, but the messages used for communication by the client and
the server. There will be two types of messages, as follows:

• The system messages: These messages will be sent by our chat system to the
client, like when the user is connected, when others connect, or when users
disconnect. Let's identify it with serverMessage.

• The user messages: These messages will be sent by the client to the
server and will actually carry the user's message content in the payload.
We will probably want to differentiate between the messages we send
and the messages other users send. So let's call them myMessage and
userMessage respectively.

When a user connects for the first time, the server will send a welcome message to
the user as a serverMessage message.

When a user types in a message and presses the Send button, we will send a
userMessage message from the browser to the server.

On receiving the user message, the server will broadcast this message to all the
other users. It will also send back the same message as myMessage to the user who
originally sent the message.

On receiving any message from the server, the browser will display the contents of
the message in the message area.

Let's Chat

[50]

The server
Now we will implement the server, which will perform the task of relaying the
messages, as already mentioned. Create a file in the routes folder called sockets.js
and insert the following code into it:

var io = require('socket.io');

exports.initialize = function(server) {
 io = io.listen(server);
 io.sockets.on("connection", function(socket){
 socket.send(JSON.stringify(
 {type:'serverMessage',
 message: 'Welcome to the most interesting chat room on
earth!'}));
 socket.on('message', function(message){
 message= JSON.parse(message);
 if(message.type == "userMessage"){
 socket.broadcast.send(JSON.stringify(message));
 message.type = "myMessage";
 socket.send(JSON.stringify(message));
 }
 });
 });
};

In the first line of code (you must be familiar with this by now), we import the
socket.io module; we will identify this module by the io variable.

Since socket.io works with the communication layer, we need to set it up to listen to
the HTTP server. The HTTP server can only be accessed from the main application
module, so we have to pass server to our module before our module can do
anything. Hence, we export a method called initialize from our module, which
will set up the socket.io server and also bind all the message handlers:

exports.initialize = function(server) {
 //work to do
}

The initialize method will accept the HTTP server object as a parameter. This is
required by socket.io:

 io = io.listen(server);

Chapter 3

[51]

On the first line of the method, we will pass the server to the socket.io module's
listen method. The server is an instance of the node HTTP server module; socket.
io will configure various handlers on this server. This is the only boilerplate code
required to set up socket.io. Next, we need to set up our message handler for socket.
io messages.

The first event that our server will receive is a new connection from a new client.
This is identified by the connection event on the io.sockets object and notifies
our application that a new client has opened a new connection and all the protocol
negotiation (transparent to us) has been completed and now we have a socket to
communicate with this client:

 io.sockets.on("connection", function(socket){
 //Add other event handlers to the socket
 });

The connection event handler will be triggered, passing along the socket that was
just established. The socket is an event emitter that can trigger different events
based on the messages it gets, and we will use this socket also to communicate
with the client for which it was created. There are several events exposed, such
as the connection event to handle events on the server. Let's take a quick look at
these events:

• io.sockets.on('connection', function(socket) {}): Initial
connection from a client. The socket argument should be used in further
communication with the client.

• socket.on('message', function(message, callback) {}): The
message handler is triggered when a message sent with socket.send is
received. The message parameter is the message sent, and callback is an
optional acknowledgment function.

• socket.on('anything', function(data) {}): The anything event can be
any event except the reserved events.

• socket.on('disconnect', function() {}): This event is fired when the
socket disconnects.

Now that we have seen how to handle the socket events, let's see how we can send
messages from the server to the client:

 socket.send(JSON.stringify(
 {type:'serverMessage',
 message: 'Welcome to the most interesting chat room on
earth!'}));

Let's Chat

[52]

The socket.send method will send the message on the socket, which will be
triggering the message event on the client. The message sent has to be a string,
so we will use JSON.stringify to send the data for the message as a string.
Here our message has two parts, a type and a message.

One part of our task is over, we are now able to welcome the user. The next task is
to handle the user messages when they come in. For this, we set a message event
handler on the socket:

 socket.on('message', function(message){
 message= JSON.parse(message);

 if(message.type == "userMessage"){
 socket.broadcast.send(JSON.stringify(message));
 message.type = "myMessage";
 socket.send(JSON.stringify(message));
 }
 });

Just like any other event connector, socket.on will take two parameters, namely the
event to handle and the event handler for it. In this case, unlike the io.sockets.on
event, this event handler will receive the message as the parameter and not the socket.

Since the message is a string, we will parse the message's JSON string to create a
message object. If this is a message sent by the user, this message will be of the
type userMessage, and that is what we check.

Now, we have to send out this message to all the connected users. For this, socket.
io provides us with a broadcast object. When we send the message using the
broadcast object, it will be sent to all the clients that are connected, except to the
one for which this socket was created. The syntax for sending the message here is
the same; the difference is that it is called on the broadcast object, referred to as
message flags in socket.io, instead of the socket itself.

Also, we want to send back the same content to the client that sent this message,
but just change the type to myMessage. For this, we send the message directly on
the socket.

That's it. We have written the code for the server; but now we have to actually
initialize this server. To do this, modify the server creation in app.js to set the
server variable, as shown in the following code snippet:

var server = http.createServer(app).listen(app.get('port'),
 function(){
 console.log("Express server listening on port " + app.
get('port'));
});

Chapter 3

[53]

Now that we have modified the HTTP server, we can call the socket module's
initialize method, passing this server as a parameter to it. Add the following
line to the end of app.js:

require('./routes/sockets.js').initialize(server);

The client
Now that we have seen how the server works, let's see what the client does.
The best part of socket.io is that it provides us the same API on the server and
the client. For our chat logic on the client, let's create a file called chat.js in the
public/javascripts folder and add the following code to it:

var socket = io.connect('/');

socket.on('message', function (data) {
 data = JSON.parse(data);
 $('#messages').append('<div class="'+data.type+'">' + data.message +
'</div>');
});

$(function(){
 $('#send').click(function(){
 var data = {
 message: $('#message').val(),
 type:'userMessage'
 };
 socket.send(JSON.stringify(data));
 $('#message').val('');
 });
});

The first step in starting the chat is to connect to the server:

var socket = io.connect('/');

This will send a connection request to the server from which the page was loaded.
This will also negotiate the actual transport protocol and will finally result in the
connection event being triggered on the server app.

The following code snippet connects the event handler for the message event:

socket.on('message', function (data) {
 data = JSON.parse(data);
 $('#messages').append('<div class="'+data.type+'">' + data.message +
'</div>');
});

Let's Chat

[54]

All we have to do with the incoming message is to append it to the messages area.
We are adding one additional detail here by setting the class property for the newly
appended div tag to be of the same type as that of the message. We can later use this
to give a different look to the different types of messages.

The last thing to do on the client side is to send the messages from the user. This will
be done when the user writes his/her message in the message box and clicks the
Send button. So, let's add an event handler to the Send button. The important thing
about UI elements' event handlers is that they should be attached once the element
is added to the document, that is, after it is created and ready. jQuery provides
a convenient method to detect when the document is ready and adds a handler
function to execute. There are two ways to do this; one is the following:

$(document).ready(function(){
 //Execute once the document is ready
});

The shortcut for the same is as follows:

$(function(){
 //Execute once the document is ready
});

Once the document is ready, we attach the event handler to the click event of the
Send button:

$(function(){
 $('#send').click(function(){
 var data = {
 message: $('#message').val(),
 type:'userMessage'
 };
 socket.send(JSON.stringify(data));
 $('#message').val('');
 });
});

On clicking the Send button, we create our data object, setting the content of the
message box as message, and type as userMessage. We can then use the socket.
send method to send this data to the server. As you can see from the preceding code
snippet, the syntax for sending messages from the client is the same as that of the
server, and here too the message will be sent as a sting, which we create using
JSON.stringify(data).

Chapter 3

[55]

Like the connection event and other predefined events on the server, we have some
predefined events on the client too. These are as follows:

• socket.on('connect', function () {}): The connect event is emitted
when the socket is connected successfully.

• socket.on('connecting', function () {}):The connecting event is
emitted when the socket is attempting to connect with the server.

• socket.on('disconnect', function () {}): The disconnect event is
emitted when the socket is disconnected.

• socket.on('connect_failed', function () {}): The connect_failed
event is emitted when socket.io fails to establish a connection to the server
and has no more transports to fall back to.

• socket.on('error', function () {}): The error event is emitted when
an error occurs and it cannot be handled by the other event types.

• socket.on('message', function (message, callback) {}): The
message event is emitted when a message sent by using socket.send is
received. The message parameter is the sent message, and callback is an
optional acknowledgment function.

• socket.on('anything', function(data, callback) {}): The anything
event can be any event except the reserved events. The data parameter
represents the data, and callback can be used to send a reply.

• socket.on('reconnect_failed', function () {}): The reconnect_
failed event is emitted when socket.io fails to reestablish a working
connection after the connection was dropped.

• socket.on('reconnect', function () {}): The reconnect event is
emitted when socket.io is successfully reconnected to the server.

• socket.on('reconnecting', function () {}): The reconnecting event
is emitted when the socket is attempting to reconnect with the server.

The last task to be done on the client side is to add socket.io and the chat scripts to
our chat room page. Since these will not be used on every page, instead of adding
them to layout.jade, we will add these to index.jade.

Remember the change we had made to layout.jade, changing the code from
head to block head? It will allow us to append the content from index.jade to
the head tag:

block append head
 script(type='text/javascript', src='/socket.io/socket.io.js')
 script(type='text/javascript', src='/javascripts/chat.js')

Let's Chat

[56]

In the following line of code, we are using Jade's functionality to append content to a
block in an inherited template from the child element. This is done using the append
keyword. The syntax is as follows:

block append <blockname>

The shorter form is as follows:

append <blockname>

The next two lines of code add the script tags by adding socket.io.js and chat.
js to our page. You might be wondering where the /socket.io/socket.io.js file
comes from, since we neither add it and nor does it exist on the filesystem. This is
part of the magic done by io.listen on the server. It creates a handler on the server
to serve the socket.io.js script file.

And we are ready. Restart the node server and browse to http://localhost:3000/
to open the chat room. You will see the welcome message, Welcome to the most
interesting chat room on earth!, being displayed in the message area.

To see how our chat application works, open it in two separate browser instances.
Now you can enter your message in the message box in one of the browsers and
click Send. You will see it appear on the message area of both the browsers.

Congratulations! We now have a chat room. If you deploy it to a server or allow
access to port 3000 on your system, you can invite your friends to chat.

Summary
In this chapter, we learned about socket.io and worked through some very basic
concepts and APIs provided by socket.io. We also saw how to set up socket.io on
the server and the client, and how to send and receive messages. While doing so,
we also built a chat room application using all that we have learned up to this point.

In the next chapter we will build upon the application that we have created to
add other features such as session data, multiple chat rooms, namespacing, and
authentication while getting acquainted with the related features of socket.io.

http://localhost:3000/

Making It More Fun!
In the previous chapter, we created a chat room. In this chapter, we are going to
improve on that chat room by giving our users a name, having multiple chat rooms,
and integrating the express and socket.io sessions.

Giving names to users
Without a name for our users, chatting becomes difficult. It is impossible to identify
who sent the message. So let us provide our users with a method by which they can
set a nickname for themselves, so that a message from them can be identified with
their name.

We have already worked with the message event in socket.io to send and receive
messages. We also saw the socket.io module's predefined events. In this section,
we will learn more about those events and also see how we can work with our own
events. We will also see how we can save some information for the session.

Let us start by creating the user interface required for accepting a name from the user
when they come to our chat room. To do this, we will modify the index.jade file by
adding the following code to it:

//EXISTING LAYOUT
 section#nameform.modal
 div.backdrop
 div.popup
 div.pophead Please enter a nickname
 div.popbody
 input#nickname(type='text')
 input#setname(type='button', value='Set Name')

Making It More Fun!

[58]

What we are doing here is adding a new section for the modal overlay. This section
has a backdrop div tag and then a div tag for the actual form. The look and feel of
this will again be defined in the style.css file, so let's update that too. Refer to the
following code block while modifying the stylesheet:

//EXISTING CSS
.modal{
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 height: -moz-calc(100% - 102px);
 height: -webkit-calc(100% - 102px);
 height: calc(100% - 102px);
 left: 0;
 position: absolute;
 top: 62px;
 width: 100%;
 z-index: 1000;
}

.backdrop{
 width: 100%;
 height:100%;
 background-color: #777777;
}

.popup {
 position: absolute;
 height: 100px;
 width: 300px;
 left: -moz-calc(50% - 150px);
 left: -webkit-calc(50% - 150px);
 left: calc(50% - 150px);
 top: -moz-calc(50% - 50px);
 top: -webkit-calc(50% - 50px);
 top: calc(50% - 50px);
 background: #FFFFFF;
}

.pophead {
 background-color: #4192C1;
 color: #FFFFFF;
 font-weight: bold;
 padding: 8px 3px;
 vertical-align: middle;
}

.popbody {
 padding: 10px 5px;
}

Chapter 4

[59]

Now when we refresh the UI, it will look like this:

The username form

Next, what we will want to do is when the user enters a name and clicks on
the Set Name button, send the name to the server, store it there, and prefix it
to every message sent by that user. First, we will change the document ready
handler to attach an event handler to the Set Name button. For this, edit
public/javascripts/chat.js:

$(function(){
 $('#setname').click(function(){
 socket.emit("set_name", {name: $('#nickname').val()});
 });
});

In the previous code, we see a new socket.io API and concept, namely socket.emit.
This is used to trigger custom events. The call for emit is as follows:

socket.emit(<event_name>, <event_data>);

We trigger a set_name event and pass on the value entered in the username box by
the user. We also remove the send message event handler from the socket.emit
declaration. We will come back to this later.

Making It More Fun!

[60]

The events emitted on a socket on one side (server) will be handled on the other side
of the socket (client). In our case, that is, in the previous code snippet, we trigger the
set_name event on the client, so we will handle it on the server. To do this, we will
edit routes/sockets.js as follows:

var io = require('socket.io');

exports.initialize = function(server) {

 io = io.listen(server);

 io.sockets.on("connection", function(socket){

 socket.on('message', function(message){

 message= JSON.parse(message);

 if(message.type == "userMessage"){

 socket.get('nickname', function(err, nickname){

 message.username=nickname;

 socket.broadcast.send(JSON.stringify(message));

 message.type = "myMessage";

 socket.send(JSON.stringify(message));

 });

 }

 });

 socket.on("set_name", function(data){

 socket.set('nickname', data.name, function(){

 socket.emit('name_set', data);

 socket.send(JSON.stringify({type:'serverMessage',
 message: 'Welcome to the most interesting chat room on earth!'}));

 });

 });

 });

}

Chapter 4

[61]

In the practice of keeping it simple, socket.io uses the same socket.on API, which
we used earlier to handle the connection or message events, to handle custom
events. The data passed to the handler function will contain the data we had sent
when we triggered the event.

This brings us to a new feature of socket.io, that is, attaching additional information
to the socket for the session. This is achieved using the socket.set function. The call
for this function is as follows:

socket.set(<name>, <value>, <optional_callback>);

In the preceding line of code, <name> is the name of the key we want to set and
<value> is the value we want to set. The call to set is asynchronous; it won't be
blocked till the value has been set. To perform an action where you want to ensure
that the value has been set, we can pass a callback to the set method. In the previous
code, we are passing the callback function that will emit another name_set custom
event, and will also send the welcome message. Like the set_name event, the
name_set event will be handled on the other side of the socket, which in this case
is the client.

This is great. Now that the name is set, let us put it to some real use by showing it
with every message so that people in our chat room know who sent the message.

To get a value set on the socket, socket.io provides a get method. We will use
this get method to get the username from the socket and append it to the
previous message.

Let us rework public/javscripts/chat.js to handle the name_set event and then
start the actual communication:

var socket = io.connect('/');

socket.on('name_set', function(data){
 $('#nameform').hide();
 $('#messages').append('<div class="systemMessage">' +
 'Hello '+data.name+'</
div>');
 $('#send').click(function(){
 var data = {
 message: $('#message').val(),
 type:'userMessage'
 };
 socket.send(JSON.stringify(data));
 $('#message').val('');
 });

Making It More Fun!

[62]

 socket.on('message', function (data) {
 data = JSON.parse(data);
 if(data.username){
 $('#messages').append('<div class="'+data.type+
 '">' +
 data.username + ": " +
 data.message + '</div>');
 }else{
 $('#messages').append('<div class="'+data.type+'">' +
 data.message +
'</div>');
 }
 });
});

$(function(){

 $('#setname').click(function(){

 socket.emit("set_name", {name: $('#nickname').val()});

 });

});

In the previous code snippet, we add two new lines of code to hide the overlay and
to append the greeting to the messages area. Apart from this, we have also moved
the code to handle the sending and receiving of messages to this handler, so that it
is set up only after the user has set the name and avoids people from just hiding the
overlay using Firebug or other similar tools. There is one last change in the message
received handler; we need to check for the presence of a username in the incoming
data and prefix it to the displayed message if it is.

Chapter 4

[63]

To see the code in action, let's restart our node server and refresh the browser. Once
you enter the name, it will bring up the chat room and show the greeting with the
name you just entered along with the welcome message:

Greeting with name

Open our chat room in another browser window and sign in as Friend this time.
Enter a message in the new message box and click Send. The message appears in the
message area in both the browsers. Try it from the first chat room you have opened:

Chat with names

Making It More Fun!

[64]

More on events
In the previous section, we saw how we can use custom events over a socket. The
interesting thing is that just like your messages, events can also be broadcast. Let
us see how we can use an event broadcast to announce the entry of a participant in
our chat room.

For this, the first thing we will do is start emitting a new user_entered event from
the server, with the name of the user in the data once the user has joined the chat. Let
us change our routes/socket.js file to do this. We will add our code to broadcast
the user_entered event once the username is set.

 socket.on("set_name", function(data){
 socket.set('nickname', data.name, function(){
 socket.emit('name_set', data);
 socket.send(JSON.stringify({type:'serverMessage',
 message: 'Welcome to the most interesting" +
 "chat room on
earth!'}));
 socket.broadcast.emit('user_entered', data);
 });
 });

To send a broadcast to all the clients connected on this socket, we use the emit
method, but on socket.broadcast rather than on socket itself. The signature
of the method is the same.

Now, the user_entered event will be sent to all the connected clients, so we will
need to add an event handler in the client chat.js file.

socket.on('name_set', function(data){

 // EXISTING CODE

 socket.on("user_entered", function(user){
 $('#messages').append('<div class="systemMessage">' +
 user.name + ' has joined the room.' + '</
div>');
 });
});

Chapter 4

[65]

Here, we are adding an event handler for the user_entered event and then displaying
the message to the user. Let us start our server once again and log in to our chat room:

The first user's chat room

Now open another browser window and log in with a different name:

The second user's chat room

Making It More Fun!

[66]

As you will notice, in the first user's window, we will see the entrance message
for both Friend001 and Friend002, and for Friend002 in the second user's
(Friend001) window.

Working with namespaces
In this section, we won't be adding any new functionality to our chat room, but
instead we will just use a feature of socket.io to make our application design better
and our code easier to maintain.

We are sending different messages between the client and the server and
differentiating them by type. Wouldn't it be better that we send different messages
on different messaging channels? Our current approach also doesn't play well and
may cause conflicts when our application or module is part of a larger system. But
then there are questions, what will be the cost of opening multiple connections?
What will be the effect on performance?

This is where namespaces come to the rescue. A namespace provides a way to
multiply a socket.io connection, so that we get different channels for different types
of messages without adding a big overhead to the system and its performance.
Let us see how we can use namespaces in our chat system.

In our chat application, we have two different types of messages or events being
sent. These are infrastructural, such as setting the name and welcome messages,
and communication between the users.

So let us go ahead and create two namespaces, namely chat_com and chat_infra.
We will send the communication messages (user messages) on chat_com and the
infrastructural messages (welcome, user entry, and so on) on chat_infra. For this,
let us first edit the socket.js file, which is on the server:

var io = require('socket.io');

exports.initialize = function (server) {
 io = io.listen(server);

 var chatInfra = io.of("/chat_infra")
 .on("connection", function(socket){
 socket.on("set_name", function (data) {
 socket.set('nickname', data.name, function () {
 socket.emit('name_set', data);
 socket.send(JSON.stringify({type:'serverMessage',
 message:'Welcome to the most interesting ' +
 'chat room on earth!'}));
 socket.broadcast.emit('user_entered', data);

Chapter 4

[67]

 });
 });
 });

 var chatCom = io.of("/chat_com")
 .on("connection", function (socket) {
 socket.on('message', function (message) {
 message = JSON.parse(message);
 if (message.type == "userMessage") {
 socket.get('nickname', function (err, nickname) {
 message.username = nickname;
 socket.broadcast.send(JSON.stringify(message));
 message.type = "myMessage";
 socket.send(JSON.stringify(message));
 });
 }
 });
 });
}

As we can see from the preceding code, most of the code remains the same, apart
from the highlighted snippets and some code reorganization.

What we are doing here is separating the messages and events into two code blocks
corresponding to their namespaces. We use the io.of method to create a new
namespace. Upon creation of the namespace, it can be used as any socket's object.

In our case, we are creating two namespaces and adding a connection event handler
to both of them. One for chat_infra, as shown in the following code snippet:

 var chatInfra = io.of("/chat_infra")
 .on("connection", function(socket){

And another for chat_com:

 var chatCom = io.of("/chat_com")
 .on("connection", function (socket) {

Once the connection is established, we will get a socket object in the connection
event handler, which we will use just as we did earlier. In case of chat_infra, we
add all the messaging and events that are not part of the user-to-user communication:

 socket.on("set_name", function (data) {
 socket.set('nickname', data.name, function () {
 socket.emit('name_set', data);
 socket.send(JSON.stringify({type:'serverMessage',
 message:'Welcome to the most interesting ' +
 'chat room on earth!'}));

Making It More Fun!

[68]

 socket.broadcast.emit('user_entered', data);
 });
 });

So, we are moving the set_name handler, the event emitter for name_set,
messaging for serverMessage, and the event broadcaster for user_entered to
the chat_infra namespace.

 socket.on('message', function (message) {
 message = JSON.parse(message);
 if (message.type == "userMessage") {
 socket.get('nickname', function (err, nickname) {
 message.username = nickname;
 socket.broadcast.send(JSON.stringify(message));
 message.type = "myMessage";
 socket.send(JSON.stringify(message));
 });
 }
 });

This leaves only the standard User messaging components on the chat_com
namespace.

Let us now see how this affects our client code:

var chatInfra = io.connect('/chat_infra'),
 chatCom = io.connect('/chat_com');

chatInfra.on('name_set', function (data) {
 chatInfra.on("user_entered", function (user) {
 $('#messages').append('<div class="systemMessage">' + user.name
 + ' has joined the room.' + '</div>');
 });

 chatInfra.on('message', function (message) {
 var message = JSON.parse(message);
 $('#messages').append('<div class="' + message.type + '">'
 + message.message + '</div>');
 });

 chatCom.on('message', function (message) {
 var message = JSON.parse(message);
 $('#messages').append('<div class="' +
 message.type + '">' +
 message.username + ': ' +
 message.message + '</div>');
 });

 $('#nameform').hide();
 $('#messages').append('<div class="systemMessage">Hello ' +

Chapter 4

[69]

 data.name + '</div>');

 $('#send').click(function () {
 var data = {
 message:$('#message').val(),
 type:'userMessage'
 };
 chatCom.send(JSON.stringify(data));
 $('#message').val('');
 });
});

$(function () {
 $('#setname').click(function () {
 chatInfra.emit("set_name", {name:$('#nickname').val()});
 });
});

The first and the most important thing we see in the previous code is that we are
connecting two sockets:

var chatInfra = io.connect('/chat_infra'),
 chatCom = io.connect('/chat_com');

In fact, socket.io will establish a single socket connection and multiplex the two
namespaces over it. But establishing these two connections will give us the ability
to handle the chat_infra and chat_com namespaces' messages or events separately.

In the following code snippet, we are adding the handlers that correspond to the
emitters for chat_infra that we added on the server. The name_set handler will
be on the chat_infra namespace:

chatInfra.on('name_set', function (data) {

We will also do the same for the user_entered handler:

 chatInfra.on("user_entered", function (user) {
 $('#messages').append('<div class="systemMessage">' + user.name
 + ' has joined the room.' + '</div>');
 });

Next, we add the on handler to listen for the messages on chat_infra; this will
receive all the server messages:

 chatInfra.on('message', function (message) {
 var message = JSON.parse(message);
 $('#messages').append('<div class="' + message.type + '">'
 + message.message + '</div>');
 });

Making It More Fun!

[70]

We also emit the set_name event on chat_infra:

 chatInfra.emit("set_name", {name:$('#nickname').val()});

On the chat_com namespace, we send the user message, as shown in the
following code:

$('#send').click(function () {
 var data = {
 message:$('#message').val(),
 type:'userMessage'
 };
 chatCom.send(JSON.stringify(data));

Also, we will attach the handler to receive the user messages relayed from the server
by using the following code snippet:

 chatCom.on('message', function (message) {
 var message = JSON.parse(message);
 $('#messages').append('<div class="' +
 message.type + '">' +
 message.username + ': ' +
 message.message + '</div>');
 });

Now that we understand namespaces and have made use of them to clean up our
design and code, let us go ahead and add some new features.

Rooms
In this section we will use another multiplexing feature of socket.io, called rooms.
And we will use it to do just what the name says, create rooms. A chat room will
be very noisy and confusing if everyone in the network is chatting in the same room.
So as the first step, let's move our chat away from the landing page of our website to
/chatroom. For this, we should move our code from index.jade to chatroom.jade
and put the following code in index.jade:

extends layout

block content
 section#welcome
 div Welcome
 a#startchat(type="button", class="btn", href="/chatroom") Start
now

Chapter 4

[71]

Basically, we will create a landing page with a welcome message and a link to go to
the chat room. Let's also add the following styles for the landing page in style.css:

#welcome div{
 font-family: fantasy;
 font-size: 100px;
 margin-left: 20px;
 margin-top: 100px;
}

.btn {
 background-color: #5BB75B;
 background-image: linear-gradient(to bottom, #62C462, #51A351);
 background-repeat: repeat-x;
 border-color: rgba(0, 0, 0, 0.1) rgba(0, 0, 0, 0.1) rgba(0, 0, 0,
0.25);
 color: #FFFFFF;
 text-shadow: 0 -1px 0 rgba(0, 0, 0, 0.25);
 border-image: none;
 border-radius: 4px 4px 4px 4px;
 border-style: solid;
 border-width: 1px;
 box-shadow: 0 1px 0 rgba(255, 255, 255, 0.2) inset,
 0 1px 2px rgba(0, 0, 0, 0.05);
 cursor: pointer;
 display: inline-block;
 font-size: 14px;
 line-height: 20px;
 margin-bottom: 0;
 padding: 4px 12px;
 text-align: center;
 vertical-align: middle;
 position: absolute;
 right: 40px;
 bottom: 80px;
 text-decoration: none;
}

Making It More Fun!

[72]

Now our landing page will look like this:

The landing page

The Start now link will send you to the chat room, but there is nothing there yet.
So let us modify our routes/index.js file to serve chatroom. Add the following
snippet to the end of the file:

exports.chatroom = function(req, res){
 res.render('chatroom', { title: 'Express Chat' });
}

We will also have to add the mapping to app.js:

app.get('/chatroom', routes.chatroom);

Now that we have a landing page, we are ready to add multiple rooms. We will now
add support for the chat room page so that it can accept a room parameter and will
connect to that room when requested. So the call to connect to enter the chat room
will look like this:

http://localhost:3000/chatroom?room=jsconf

For this we need to edit our chat.js client script file:

var chatInfra = io.connect('/chat_infra'),
 chatCom = io.connect('/chat_com');

var roomName = decodeURI(
 (RegExp("room" + '=' + '(.+?)(&|$)').exec(location.search)

Chapter 4

[73]

 || [, null])[1]);

if (roomName) {
 chatInfra.on('name_set', function (data) {
 chatInfra.emit('join_room', {'name':roomName});

 //EXISTING CODE
 });
}

$(function () {
 $('#setname').click(function () {
 chatInfra.emit("set_name", {name:$('#nickname').val()});
 });
});

The first thing is to parse the URL query to get the room name, here is how this
is done:

var roomName = decodeURI(
 (RegExp("room" + '=' + '(.+?)(&|$)').exec(location.search)
 || [, null])[1]);

Here, in the preceding code, we are creating a regex to parse out the value between
room= and & or to the end of the content. In the next line, we check if a room name
was provided and once the user has entered the name, we will join the room.

To join the room, we emit the join_room event with roomName as a parameter. This
event will be handled on the server:

if (roomName) {
 chatInfra.on('name_set', function (data) {
 chatInfra.emit('join_room', {'name':roomName});

Since we will use the room only to restrict the broadcast messages (others are
anyhow sent only to the recipient's socket), this is all we need to do on the client.

Now we will edit the sockets.js file on our server to handle the join_room event
on chat_infra and to change the broadcasts to send messages in the room they are
meant for. Let us take a look at the changes in sockets.js:

var io = require('socket.io');

exports.initialize = function (server) {
 io = io.listen(server);
 var self = this;

Making It More Fun!

[74]

 this.chatInfra = io.of("/chat_infra");
 this.chatInfra.on("connection", function (socket) {
 //EXISTING CODE
 });
 socket.on("join_room", function (room) {
 socket.get('nickname', function (err, nickname) {
 socket.join(room.name);
 var comSocket = self.chatCom.sockets[socket.id];
 comSocket.join(room.name);
 comSocket.room = room.name;
 socket.in(room.name).broadcast
 .emit('user_entered', {'name':nickname});
 });
 });
 });

 this.chatCom = io.of("/chat_com");
 this.chatCom.on("connection", function (socket) {
 socket.on('message', function (message) {
 message = JSON.parse(message);
 if (message.type == "userMessage") {
 socket.get('nickname', function (err, nickname) {
 message.username = nickname;
 socket.in(socket.room).broadcast.send(JSON.
stringify(message));
 message.type = "myMessage";
 socket.send(JSON.stringify(message));
 });
 }
 });
 });
}

So this brings in some minor structural changes. Since we will need to refer chatCom
in chatInfra, we add them both to the current object, which is also stored as itself,
so that they are accessible in the closures. In the chat_infra connection handler, we
register a new event handler for join_room:

 socket.on("join_room", function (room) {
 socket.get('nickname', function (err, nickname) {
 socket.join(room.name);
 var comSocket = self.chatCom.sockets[socket.id];
 comSocket.join(room.name);
 comSocket.room = room.name;
 socket.in(room.name).broadcast
 .emit('user_entered', {'name':nickname});
 });
 });

Chapter 4

[75]

In the handler, we are receiving the room object, which will in turn have the name of
the room to join. Next we connect the chat_infra socket to the room. This is done
using the join method of the socket object:

 socket.join(room.name);

The join method takes a name string for the room. The room will be created if not
present, else the socket will be connected to an existing room.

Now, once our client joins the room, it will get all the messages intended for the
specific room in the chat_infra namespace. But, this will not be useful until we also
join the room in the chat_com namespace. For this, we will need to obtain the socket
object, corresponding to the current socket object in the chat_com namespace and
then call the same join method on it:

 var comSocket = self.chatCom.sockets[socket.id];
 comSocket.join(room.name);

To get the corresponding socket object on chat_com, we fetch it using the current
socket object's ID (as it will be similar) from the sockets array in the chatCom
namespace object. The next line simply calls the join method on it. Now both have
joined the room in both the namespaces. But when we receive the messages in the
chat_com namespace, we will need the name of the room this socket is connected
to. For this, we will set the room property on the comSocket object to the room it is
connected to:

 comSocket.room = room.name;

Now that all is set up, we will announce in the room that the user has joined:

 socket.in(room.name).broadcast
 .emit('user_entered', {'name':nickname});
 });

As we did earlier, we still use broadcast.emit, but instead of calling it on the
socket, we restrict it to be sent only in the room, using in(room.name). Another
change we make will be that of broadcasting the user messages again by restricting
them to the room:

 socket.in(socket.room).broadcast.send(JSON.stringify(message));

Now you can open the chat room by going to the following URL:

http://localhost:3000/chatroom?room=test001

Open this in two browser windows and log in with different names. Open another
chat room in another browser window using the following URL:

http://localhost:3000/chatroom?room=test002

Making It More Fun!

[76]

The messages and alerts sent only in the room test001 will be visible in the first
two browsers, while the one connected to test002 will not be able to see them:

User one connected to the room test001

Here is the second user connected to the room test001:

User two connected to the room test001

Chapter 4

[77]

Here, in the following screenshot, the third user is shown connected to the
room test002:

User three connected to the room test002

Listing the rooms
Now that we have support for creating multiple rooms, let us go ahead and add a
page to list, join, and create new rooms. We will begin by adding a Jade view named
rooms.jade with the following code:

extends layout

block append head
 script(type='text/javascript', src='/socket.io/socket.io.js')
 script(type='text/javascript', src='/javascripts/rooms.js')

block content
 section#chatrooms
 div#new_room
 span Start a new Room
 input#new_room_name(type="text")
 input#new_room_btn(type="button", value="Start")
 div#allrooms
 div#header Or join a room
 div#rooms_list

Making It More Fun!

[78]

This view has an input box to accept a new room name and a div tag to add the list
of existing rooms. We are also adding scripts for socket.io.js and a new script file
for our client-side code for listing rooms, namely rooms.js. Next, create the rooms.
js script file with the following code:

var chatInfra = io.connect('/chat_infra');

chatInfra.on("connect", function(){
 chatInfra.emit("get_rooms", {});
 chatInfra.on("rooms_list", function(rooms){
 for(var room in rooms){
 var roomDiv = '<div class="room_div">'
+ room + '['
 + rooms[room] + ' Users] '
 + '<a class="room" href="/chatroom?room=' + room
 + '">Join</div>';

 $('#rooms_list').append(roomDiv);
 }
 });
});

$(function(){
 $('#new_room_btn').click(function(){
 window.location = '/chatroom?room=' +
 $('#new_room_name').val();
 });
});

In the preceding code, we are connecting based on the chat_infra namespace,
requesting the chat rooms on it, and rendering them in the view. Let us take a quick
look at an important step happening here:

 chatInfra.emit("get_rooms", {});

As shown in the preceding code, the first thing we do after connecting is emit an
event to get_rooms. This will request the list of rooms from the server. Next, we set a
listener to receive the list of rooms and render them:

 chatInfra.on("rooms_list", function(rooms){

In the handler, as shown in the following code block, we are looping over the map of
rooms and number of users in them and appending it to the room list:

for(var room in rooms){
 var roomDiv = '<div class="room_div">'
+ room + '['
 + rooms[room] + ' Users] '

Chapter 4

[79]

 + '<a class="room" href="/chatroom?room=' + room
 + '">Join</div>';

 $('#rooms_list').append(roomDiv);
 }

Finally, we have the code to create a new room. To create a new room, all we need to
do is redirect to the chat room, with the name for the new room in the URL parameters:

 $('#new_room_btn').click(function(){
 window.location = '/chatroom?room=' +
 $('#new_room_name').val();
 });

Next, we need to add a get_rooms handler on the server to return the list of
the rooms. For this, we will add the handler on the chat_infra namespace
in sockets.js:

this.chatInfra.on("connection", function (socket) {
 //EXISTING CODE

 socket.on("get_rooms", function(){
 var rooms = {};
 for(var room in io.sockets.manager.rooms){
 if(room.indexOf("/chat_infra/") == 0){
 var roomName = room.replace("/chat_infra/", "");
 rooms[roomName] = io.sockets.manager
 rooms[room].length;
 }
 }
 socket.emit("rooms_list", rooms);
 });
 });

We can get the list of all the rooms using io.sockets.manager and then we can
build the map expected by our client by looping over the list. In our case, we filter
to get rooms only from chat_infra as they will also be created in chat_com, and
we don't want duplicates. Once we have the map, we will emit it as rooms_list.
Following this we will need to add the entry to our routes/index.js file, as
shown here:

exports.rooms = function(req, res){
 res.render('rooms', { title: 'Express Chat' });
}

Making It More Fun!

[80]

We also need to add the mapping in app.js to server rooms at /rooms:

app.get('/rooms', routes.rooms);

Finally, let us add some CSS styling for our new room's page in style.css:

#chatrooms{
 margin: 20px;
}

#new_room {
 font-size: 17px;
}

#new_room span{
 padding-right: 15px;
}

#allrooms #header{
 border-bottom: 1px solid;
 border-top: 1px solid;
 font-size: 17px;
 margin-bottom: 10px;
 margin-top: 16px;
 padding: 5px 0;
}

.room_div {
 border-bottom: 1px solid #CCCCCC;
 padding-bottom: 5px;
 padding-top: 12px;
}

.room_name {
 display: inline-block;
 font-weight: bold;
 width: 165px;
}

.room_div a{
 position: absolute;
 right: 40px;
}

Chapter 4

[81]

Go to /rooms and create a few rooms, and then when you open the room's page in a
new browser, you'll see something similar to this:

List of rooms on our chat server

Sharing the session
Now we have support for multiple rooms, but it is very clumsy to enter a nickname
every time we enter a room. Let us modify our system to accept the nickname once
when entering the system and use it in all the rooms.

For this, let us start by modifying the landing page to add an input box to accept a
nickname and add a JavaScript file to add the logic:

extends layout

block append head
 script(type='text/javascript', src='/javascripts/landing.js')

block content
 section#welcome
 div Welcome
 span
 input#nickname(type="text",
 placeholder="Enter a nickname")
 a#startchat(class="btn") Login

Making It More Fun!

[82]

Here, in the preceding code, we are adding a script entry to add landing.js and
replacing the Start now button with the field to enter a name and a Login button.
Next, let us take a look at landing.js:

$(function(){
 $('#startchat').click(function(){
 document.cookie = "nickname=" + $('#nickname').val()
 + ";; path=/";
 window.location = "/rooms";
 });
});

In the previous code, we are attaching a click handler to the startchat button.
In the handler, we are adding the nickname entered by the user to the cookie and
redirecting the user to /rooms. We will be reading this cookie information while
connecting the socket and then setting it on the socket. Before this cookie information
can be accessed in the socket connection, we need to lay down some ground work
to enable cookies in the Express.js application. For this, edit the app.js code by
referring to the following code block:

var express = require('express')
 , routes = require('./routes')
 , http = require('http')
 , path = require('path')
 , connect = require('connect');

var app = express();

var sessionStore = new connect.session.MemoryStore();

app.configure(function(){
 //EXISTING CODE
 app.use(express.bodyParser());
 app.use(express.cookieParser('somesuperspecialsecrethere'));
 app.use(express.session({ key: 'express.sid',
 store: sessionStore}));
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.static(path.join(__dirname, 'public')));
});

//EXISTING CODE

Chapter 4

[83]

The first step is to add connect as a dependency in the package.json file and the
require keyword in app.js. The connect keyword is used to create a session store;
in this case, an in-memory session store:

var sessionStore = new connect.session.MemoryStore();

We also enable the cookieParser middleware and the session module in the
express application. Express' cookieParser middleware will take a secret
parameter, which will be used to encrypt the cookies. The express' session module
is initialized along with passing it the key (express.sid is the key for a session)
and a store where the session should be maintained. In the following code, we are
passing it an in-memory store, which we created in the previous step:

 app.use(express.bodyParser());
 app.use(express.cookieParser('somesuperspecialsecrethere'));
 app.use(express.session({ key: 'express.sid',
 store: sessionStore}));
 app.use(express.methodOverride());
 app.use(app.router);

One important point to note about the previous code is the order of adding these
two middleware components. These should be added after adding the bodyParser
middleware and before adding the router middleware. If you open the browser and
browse to the landing page now, you can see the cookie with the express.sid key in
the browser's debugging tools under the Cookies tab. If you enter a name and click the
Enter button, you will again see a new cookie, named after your nickname, being set:

var io = require('socket.io');

exports.initialize = function (server) {
 io = io.listen(server);

 io.set('authorization', function (data, accept) {
 if (data.headers.cookie) {
 data.cookie = require('cookie').parse(data.headers.cookie);
 data.sessionID = data.cookie['express.sid'].split('.')[0];
 data.nickname = data.cookie['nickname'];
 } else {
 return accept('No cookie transmitted.', false);
 }
 accept(null, true);
 });

 var self = this;

Making It More Fun!

[84]

 this.chatInfra = io.of("/chat_infra");
 this.chatInfra.on("connection", function (socket) {
 socket.on("join_room", function (room) {
 var nickname = socket.handshake.nickname;
 socket.set('nickname', nickname, function () {
 socket.emit('name_set', {'name':
 socket.handshake.nickname});
 socket.send(JSON.stringify({type:'serverMessage',
 message:'Welcome to the most interesting ' +
 'chat room on earth!'}));
 socket.join(room.name);
 var comSocket = self.chatCom.sockets[socket.id];
 comSocket.join(room.name);
 comSocket.room = room.name;
 socket.in(room.name).broadcast.emit('user_entered',
 {'name':nickname});
 });
 });

 //EXISTING CODE
}

The first change in the preceding code block introduces us to a new feature in socket.
io; this change is shown in the following highlighted code block:

 io.set('authorization', function (data, accept) {
 if (data.headers.cookie) {
 data.cookie = require('cookie').parse(data.headers.cookie);
 data.sessionID = data.cookie['express.sid'].split('.')[0];
 data.nickname = data.cookie['nickname'];
 } else {
 return accept('No cookie transmitted.', false);
 }
 accept(null, true);
 });

In this code snippet, we are setting an authorization method for the socket.
This method will get two parameters, the data that contains all the HTTP request
information and the accept method callback. The authorization method is called
when a socket.io connection is requested but before it is established.

We can use this method for actually performing an authorization, but in our case
we will just use it to get the nickname from the cookies, as this is the only socket.io
method that will have the HTTP data available with it.

Chapter 4

[85]

We are reading the cookie headers from the HTTP data and are parsing it using the
cookie module's parse method. From the cookie, we are extracting the sessionID
value and the nickname and setting it to the data object. This object is available
on the socket as the handshake property. Finally, we will call the accept callback,
which accepts two parameters, first a message and another a Boolean variable,
indicating whether the authorization was successful or not.

We will remove the set_name handler, as this handler need not be called because we
already have the name with us. We will move the logic from the set_name handler to
the join_room handler:

 socket.on("join_room", function (room) {
 var nickname = socket.handshake.nickname;
 socket.set('nickname', nickname, function () {
 socket.emit('name_set', {'name': nickname});
 socket.send(JSON.stringify({type:'serverMessage',
 message:'Welcome to the most interesting ' +
 'chat room on earth!'}));
 socket.join(room.name);
 var comSocket = self.chatCom.sockets[socket.id];
 comSocket.join(room.name);
 comSocket.room = room.name;
 socket.in(room.name).broadcast.emit('user_entered',
 {'name':nickname});
 });
 });

In the join_room handler, we will fetch the nickname from the socket.handshake
map and set it as a property on the socket. On setting the nickname property, we will
still trigger the name_set event so as to keep the changes on the client to a minimum:

var chatInfra = io.connect('/chat_infra'),
 chatCom = io.connect('/chat_com');

var roomName = decodeURI((RegExp("room" + '=' + '(.+?)(&|$)').
exec(location.search) || [, null])[1]);

if (roomName) {
 chatInfra.emit('join_room', {'name':roomName});

 chatInfra.on('name_set', function (data) {
 //EXISTING CODE
 });
}

Making It More Fun!

[86]

As the join_room handler is the initializer for the room on the server, we will take it
out of the name_set handler and directly call it during the page load. The rest of the
code remains as is.

To try this code, you will have to open two different browsers or browsers in different
incognito sessions as the cookies/sessions will be shared for the same browser.

Summary
In this chapter, we saw how to set data for a session, how to work with namespaces
and rooms, and how to integrate with the express sessions. Here we have completed
a good and working chat system. It will be a nice exercise for you to build more
functionality in this, based on the concepts we learned here. Some interesting
features to build can be user exist alert, user list for the rooms, private chats, and so
on. In the next chapter, we will take a look at the socket.io protocol and understand
its workings.

The Socket.IO Protocol
Socket.io provides a very simple API that is easy to use but exposes a lot of
functionality. Moreover, this functionality works uniformly across browsers
and the various transport mechanisms provided by socket.io. To achieve this, a
socket.io client and server do a lot of work in the background. In this chapter, we
will examine and try to understand the communication in socket.io as well as some
socket.io internals.

Why do we need another protocol?
The first question to people familiar with WebSocket is, why do we need another
protocol when we already have WebSocket? The answer is twofold; socket.io works
in a uniform manner across browsers (dating back to Internet Explorer 6), and
socket.io provides a much richer API.

The WebSocket specification is still under development and is not supported on
many of the browsers that are in use. In fact, any version of Internet Explorer prior
to IE10 doesn't have support for WebSocket. There are still many people out there
using old browsers that don't support WebSocket.

Another problem for WebSocket is firewalls and proxies. Most of the firewalls block
any communication (apart from standard HTTP 1.0/1.1), and may not allow a
WebSocket connection to be established. The same applies to most proxy servers.

So, if we decide to use just the WebSocket protocol, we have to understand that there
will be many people who may not be able to use our application.

The Socket.IO Protocol

[88]

Contrary to this, when we build our application using socket.io, the people who can
use WebSocket will continue using it, but those who can't will fall back on the next
best available transport mechanism and then the next and so on, until they find one
that works in the browser, even through the firewalls and proxies, all the way down
to iframes (which is rarely used). The default order is as follows:

• WebSocket
• FlashSocket
• XHR long polling
• XHR multipart streaming
• XHR polling
• JSONP polling
• iframe

It's also worth noting that using JSONP polling, socket.io provides support for cross-
domain communication without the need for any special configuration on the server
or any special code on the client.

Now, let us take a look at the differences in the API. For this, we will see only the
JavaScript client-side API, as any server will have its own implementation and API
depending on the programming language used.

The WebSocket API
Let us begin by taking a quick look at a code snippet showing the skeleton of a
WebSocket client:

<script>
 var socket = new WebSocket('ws://localhost:8080');

 socket.onopen = function(event) {
 socket.send('Client socket connected');
 };

 socket.onmessage = function(event) {
 console.log('Client received a message', event);
 };

 socket.onclose = function(event) {
 console.log('Client socket disconnected', event);
 };

 //socket.close()
</script>

Chapter 5

[89]

The first step, as can be seen in the previous code snippet, is to create a new instance
of WebSocket; in this, we have to pass the URI for the WebSocket server. This URI,
like any other, has a part that specifies the protocol, which in this case can be either
ws (unsecured) or wss (secured); the server address (the server's IP address or valid
domain name); and finally, the port.

Ideally, we also need to check if WebSocket is supported on the browser that the user
has, but I have skipped that part to focus on the API.

Following the creation of the WebSocket object, we can attach event handlers
to it. There are three events exposed by WebSocket, with their corresponding
event handlers:

• open: The onopen event handler
• message: The onmessage event handler
• close: The onclose event handler

As is evident by their names, these handlers will be called on the opening of a socket
connection, when there is a new message on the socket, and on closing the socket
connection, respectively.

For every event, the client receives the event data. In case the event is a message,
it contains that message along with other data. The WebSocket client doesn't try to
interpret the message or its type, that is to say, it treats all messages as plain text and
it is left to the application to interpret and understand it. Also, there is no mention of
the namespacing of messages or the multiplexing of socket connections.

If you see the onopen handler, you will notice the send method, which is used by the
client to send messages. Again, it can send only plain text, so you have to take care of
serialization and deserialization.

Finally, we have the close method, which, as the name suggests, can be used to
close the socket connection from the client.

The Socket.IO API
Let us see the same code using socket.io:

<script>
 var socket = io.connect('http://localhost:8080');

 socket.on('connect', function() {
 socket.send('Client socket connected');
 });

The Socket.IO Protocol

[90]

 socket.on('message', function(data) {
 console.log('Received a message from the server!',data);
 });

 socket.on('disconnect', function() {
 console.log('The client socket disconnected!');
 });

</script>

The above code snippet looks similar to the one with WebSockets and, not
surprisingly, does the same work as the previous code. However, there are some
minor changes: instead of using onopen, onmessage, and onclose, we use socket.
io's on method to attach the handlers. The advantage is that when we use socket.io's
custom events functionality, the API to handle the event remains the same.

As we have already seen, you can emit a new event using the following line of code:

socket.emit("myevent", {"eventData": "..."});

And then receive it using the following:

socket.on("myevent", function(event){...});

As you can see, in this case, we are passing a JSON object for the data; socket.io will
take care of serializing and deserializing it for us.

Moreover, socket.io provides support for namespacing of messages, multiplexing
of connections, disconnection detection, reconnection, and an API to broadcast
messages to all clients.

Considering everything covered in this section, it is not difficult to conclude that
socket.io will need its own protocol and mechanism to work.

The Socket.IO socket
The socket.io socket emulates a network socket over different transport mechanisms.
Just as any other socket, it has various stages in its lifecycle, depending on the status
of the connection. These are as follows:

• connecting
• connected
• disconnecting
• disconnected

Chapter 5

[91]

The socket is established when the client sends a connection request to the server and
a handshake is initiated.

Once the handshake is complete, a connection is opened using the transport
negotiated during the handshake, and the state of the socket is set to connected.

To check the liveliness of the socket depending on the server configuration, the
server may require heartbeat messages to be sent from the client to the server in
regular intervals. In the absence of such a message, or the failure of the underlying
transport, the socket will be disconnected.

In this case, the client will initiate a reconnect. If the connection is restored within the
connection termination time or the timeout agreed at the time of the handshake, the
buffered messages are sent across. In case the connection is not restored, the client
will start a new connection request, beginning with a new handshake.

Also, optionally, to ensure message delivery over the socket, we can make it
compulsory for the socket to acknowledge the message delivery.

The socket is terminated when the close method is called on either the client or
the server.

The Socket.IO connection
The socket.io connection begins with the handshake. This makes the handshake
a special part of the protocol. Apart from the handshake, all the other events and
messages in the protocol are transferred over the socket.

Socket.io is intended for use with web applications, and therefore it is assumed that
these applications will always be able to use HTTP. It is because of this reasoning
that the socket.io handshake takes place over HTTP.

To initiate the connection and hence perform the handshake, the client performs
a POST request on the handshake URI (built from the URI passed to the connect
method). Let us take the same socket.io connection URI and try to understand its
various parts. Let us say that the URI is as follows:

http://myhost.com:8080/socket.io/1/

Let us break down and understand this URI.

http is the protocol being used. We can set it to use https, using https in the client's
connect method.

myhost.com again comes from the connect method and is the name or IP address of
the host you want to connect to. The default is localhost.

The Socket.IO Protocol

[92]

8080 is the port over which your server is listening. This is also passed to the
connect method when we are invoking it. The default is 80.

socket.io is the namespace that handles all the connect requests.

1 is the socket.io protocol version number.

The server can respond to this in one of these three ways:

• 200 OK – This will be the server's response when the handshake is
successful. In addition to the status, the body of the response should be a
colon-separated list of the session ID given to this connection, the heartbeat
timeout, the connection closing timeout, and the list of supported transports
separated by commas. A sample response body looks like this:
8749dke9387:20:10:websocket,flashsocket,xhr-polling

• 401 Unauthorized – This will be the response from the server in case the
authorization handler fails to authorize the client. As we saw in the previous
chapter, this is the handler we attach to the authorize event on the server,
and it uses the connection and cookie information to authorize the user.

• 503 Service Unavailable – When the server has any other reason,
including errors, to deny service to the client.

If the handshake is successful, based on the transports provided by the server
and the one supported by the client the socket.io client will start communicating
with the server on a particular URI. This URI has the form [scheme]://[host]/
[namespace]/[version]/[transportId]/[sessionId].

• [scheme] is the protocol the client will be using to communicate. In the case
of WebSockets, this is either ws or wss, while in the case of XHR, it is either
http or https.

• [host] is the server name or IP Address.
• [namespace] is the socket.io namespace we want to send the message to.
• [version] is the version of the socket.io protocol that we are using,

currently 1.
• [transportId] is the the name of the transport mechanism chosen for

the communication.
• [sessionId] is the session ID given to the client by the server during

the handshake.

In the case of bidirectional transport, such as WebSocket, the connection opened at
this URI will be used to send and receive messages.

Chapter 5

[93]

For unidirectional transports such as XHR long polling, the client will perform a GET
request on this URI, which the server will keep on hold till it has some data to send,
while the client will perform a POST request on this URI whenever it has to send a
message or an event to the server.

Socket.IO messages
Once the transport's connection is established, all the communication between the
client and server happens using messaging over the socket. The messages need to
be encoded in the format specified by socket.io.

This format enables socket.io to determine the type of the message and the data
sent in the message, and some metadata useful for operation. The message format
is [type] : [id ('+')] : [endpoint] (: [data]).

• type is a single digit integer, specifying what type of message it is.
• id is the message ID, which is an incremental integer; it is used for ACKs. It

is optional.
• The + sign, if present, tells socket.io not to handle the ACKs, as the

application intends to handle it.
• endpoint is the socket endpoint that the message is intended to be

delivered to. This is optional and is used when multiplexing the socket for
namespacing. If omitted, the message will be sent to the default socket.

• data is the associated data to be delivered to the socket. In the case of
messages, it is treated as plain text, while in the case of events, it will be
parsed as JSON.

In the coming section, we will see what the types of messages are.

Disconnect (0)
When the type is zero (0), the message is a disconnect signal. This will tell socket.io
to close the connection and the mentioned socket. If the endpoint is not specified, the
message will be sent to the default socket, which will cause the whole socket to be
closed and all the endpoints on that socket will be terminated. For example:

• Message: 0 – The result is that the socket is closed and all the
connections/endpoints are terminated.

• Message: 0::/endpoint – The socket connection to /endpoint will be closed
and no messages can be sent to or from that endpoint. Other endpoints will
continue to operate.

The Socket.IO Protocol

[94]

Connect (1)
This message is only used for multiplexing, and is sent from the client to the server
to open a new connection. Thus, this message must always have an endpoint. The
first (default) socket connection is established by the handshake explained earlier.
The endpoint may be followed by query parameters in a URL query format. If the
connection is successful, the server will echo the same message, else the server can
send an error message. For example:

• Message: 1::/endpoint – Requests the server to open a multiplexed socket
to the endpoint.

• Message: 0::/endpoint?param=one – Requests the server to open a
multiplexed socket to the endpoint, passing a parameter called param with
the value one.

Heartbeat (2)
This is the heartbeat message. It must be sent from the client to the server within
the timeout negotiated during the handshake. The server will reply with a
heartbeat message too. In this case, we don't have an endpoint and nor is any other
information required. This is because it serves the whole socket. For example:

• Message: 2 – Sends a heartbeat message to the other end.

Message (3)
This is the message sent over the socket. In the API, this message will be sent when
you are using socket.send, and will result in a message event on the receiving end.
This message will carry data, treating it as plain text. For example:

• Message: 3:1::Some message – This will send a message to the other end,
where the message event handler will be triggered with the Some message
message in the event data.

• Message: 3:1:/endpoint:Some message – Again, the message will be sent
to other end of the socket, but on the multiplexed endpoint.

Chapter 5

[95]

JSON message (4)
This is similar to sending the message, but in this case the message has to be
serialized using JSON, and it will be parsed at the other end before being sent
to the handler. In version 0.6, this was done using the same API as send() for
message, just passing a JSON message instead of a string message. But since
this introduces a performance penalty over sending plain text from version 0.7
onwards, we have to use the json flag to send a JSON message; for example,
socket.json.send. For example:

• Message: 4:1::{"some":"content"} – Sends the JSON message to the other
end of the socket.

Event (5)
The Event message is a special kind of JSON message that is used to send events
over the socket. In events, the data payload is of the form {"name":"eventName",
"args":{"some":"content"}}.

Here, name is the name of the event and args are the parameters to be sent to the
handler. The socket.emit call is used to send events in the applications.

The following event names are reserved and cannot be used in applications:

• message

• connect

• disconnect

• open

• close

• error

• retry

• reconnect

For example:

• Message: 5:1::{"name": "myEvent", "args":{"some": "data"} – The
result is that the event will be sent to the other end and the appropriate event
handler will be invoked, passing the args to it.

The Socket.IO Protocol

[96]

ACK (6)
The acknowledgment (ACK) message will be sent when the message is received,
with ACK request enabled; or, it can be sent out by the application. The data
section in the ACK message can be the message ID for the message that is being
acknowledged. If the message ID is followed by + and additional data, it is treated as
an event packet. For example:

• Message: 6:::1 – Sends an acknowledgment for the receipt of a message
with ID 1.

• Message: 6:::1+["A", "B"] – This will send an acknowledgment for the
message along with the data.

Error (7)
This is sent by the server in case there's an error, such as failure during the
processing of a connect request to an endpoint. The data section of this message
will contain the error message and, optionally, advice, separated by the + sign.
For example:

• Message: 7:::Unauthorized – The result is that the error will be sent to
the client.

NOOP (8)
This message implies no operation, and is used to close a poll after the polling
times out.

Summary
In this chapter, we saw the communication mechanism for the socket.io server and
client. Understanding the working and the message formats, helps us in debugging
the issues we face during the development of socket.io applications.

In the next chapter we will learn to deploy and scale socket.io applications in
production. Also, we will get a few tips on how to minimize our troubles on the
production server.

Deploying and Scaling
Running our application on the local server is fine, but making a web application
really useful requires deploying it to a public server and making it accessible to
others. To run our chat server application on Node.js, along with using protocols
such as WebSocket, requires some special considerations. In this chapter, we will
take a look at the following:

• Things to consider while deploying our application
• Recommendations for a production-ready deployment
• Reason why scaling of socket.io applications is different than other

web applications
• How we can scale our chat application

The production environment
The first thing we should do before running an application on a production server
is to set the environment to production. Every modern server or framework has
separate development and production modes and so does node. In fact, in node
you can set the environment to any name and then have different configurations for
that name in your code. To set the environment our node server runs in, we set an
environment variable NODE_ENV to the environment we want to run node in. So, to
run node in the production environment, we use the following line:
$ export NODE_ENV=production

Deploying and Scaling

[98]

And then run your node application. In Chapter 2, Getting Started with Node.js, we saw
how the first argument in app.configure is the environment variable we need to
configure for:

app.configure('development', function(){
 app.use(express.errorHandler());
});

In this snippet we are setting the application to activate express.errorHandler
in the development environment, which is the default environment. If we have set
NODE_ENV to production, express.errorHandler will not be used.

Running the application
Running the application on the command line using node, like we have been doing
until now, works during development; but on a production server where we connect
remotely, it is generally not feasible or advisable to keep the console running. There
are two ways to handle this, either we run node as a background process redirecting
all console output to a file or we run it in a persistent console, to which we can
reconnect, using screen or byobu.

To run node as a background process, like any other process on Linux, we will use
the & operator and to make sure that it keeps running even after we log out, we will
use nohup:

$ nohup npm start 2>&1 >> npmout.log &

The preceding command will redirect the stdout and stderr commands to npmout.
log and will put the npm process in the background.

Another option is to run node on a long-lasting console, using utilities such as
screen or byobu. To use this, start screen and then run your application, as
shown here:

$ screen

$ npm start

Now we can detach from this screen by using Ctrl +a and then hitting d. This will
drop us to the default shell. We can then disconnect. When we connect back to
the server, to see the server output, we can attach back to the screen by using the
following command:

$ screen -r

Chapter 6

[99]

Keeping it running
Not only do we want the application to run when we log out, we want our
application to keep running reliably. The production servers are not frequently
restarted, and in general we will like to ensure that they come back up as soon as
possible when there is a crash, a failure, or an error. For node, generally it means
restarting the process as soon as it fails. There are many ways to keep the node
server running. In this section we will see two of them:

• Monit
• Forever

Here is how Monit is described on its website (http://mmonit.com/monit/):

Monit is a free open source utility for managing and monitoring processes,
programs, files, directories, and filesystems on a UNIX system. Monit conducts
automatic maintenance and repair and can execute meaningful causal actions in
error situations.

Let us begin with installing Monit. On RPM-based or Yum-based systems such as
RHEL, Fedora, or CentOS, you can install it using the yum command, as shown here:

$ sudo yum install monit

Or on a Debian- or apt-get-based system, you can install Monit using apt-get:

$ apt-get install monit

For other systems, you can check the installation instructions at the Monit website.

Once Monit is installed, we can configure it to manage our node application. For this,
we will create a configuration file (in our case we will call it awesome-chat) in /etc/
monit.d/ or /etc/monit/conf.d/, depending on your Monit installation:

check host objdump with address 127.0.0.1
 start program = "/bin/sh -c \
 'NODE_ENV=production \
 node /opt/node_apps/awesome-chat/app.js 2>&1 \
 >> /var/log/awesome-chat.log'"
 as uid nobody and gid nobody
 stop program = "/usr/bin/pkill -f \
 'node /opt/node_apps/awesome-chat/app.js'"
 if failed port 3000 protocol HTTP
 request /
 with timeout 10 seconds
 then restart

http://mmonit.com/monit/

Deploying and Scaling

[100]

In this file, you should notice the highlighted section. We are emphasizing the
program or more importantly, the commands to start/stop our application and
then finally configuring Monit to restart the application in case of a failure. This is
detected by sending an HTTP request to fetch the page at port 3000.

That is it; we can start our application with the following command:

$ monit start awesome-chat

And stop it with the following code:

$ monit stop awesome-chat

In case of a crash, Monit will take care of restarting the application.

Monit can be used to run and watch any daemon service. It also has a web interface
in case you want to check the status, which by default runs on port 2812. You can
learn more about Monit on its website and in its manual online.

Another, more node-specific way to keep our server up and running is Forever
(https://github.com/nodejitsu/forever). Forever describes itself as:

A simple CLI tool for ensuring that a given script runs continuously.

And that's what is does. Given your node application script, Forever will start it and
make sure it keeps running continuously. Since Forever itself is a node application,
we will use npm to install it:

 $ sudo npm install forever -g

Now, to start the application with Forever, it is just a matter of executing the app.js
file with forever. Just run the following command:

$ forever start app.js

We can see the list of applications running forever with the following command:

$ forever list

 0 app.js [24597, 24596]

To stop the application, use the forever stop command:

$ forever stop 0

Visit Forever's github page for understanding more about Forever and its workings.

https://github.com/nodejitsu/forever
https://github.com/nodejitsu/forever

Chapter 6

[101]

There are several other tools on *nix systems to make node run as a daemon. Few of
them are as follows:

• Upstart (http://upstart.ubuntu.com/)
• Supervisord (http://supervisord.org/)
• Daemontools (http://cr.yp.to/daemontools.html)

Scaling
Now that we have made sure that our application will keep running and also will
restart from failures, it's time we start looking at ways to handle millions of users
flocking to our chat room. To begin with this, the first step is to put up a load-
balancer proxy in front of our server. There are lots of options in this, we can use
the Apache HTTP server, Nginx, and so on. All these servers work very well with
balancing traditional HTTP traffic, but still have some time to catch up to work with
WebSockets. So we will use a server that works on load-balancing TCP/IP itself. This
is HAProxy (http://haproxy.1wt.eu/). This is how HAProxy is described in its
official website:

HAProxy is a free, very fast and reliable solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. It is particularly
suited for web sites crawling under very high loads while needing persistence or
Layer7 processing. Supporting tens of thousands of connections is clearly realistic
with today's hardware.

HAProxy works with frontends and backends. These are configured using the
HAProxy configuration file present at /etc/haproxy/haproxy.cfg. The following
file creates a frontend listener at port 80 and forwards it to a single server at 3000:

global
 maxconn 4096

defaults
 environment http

frontend all 0.0.0.0:80
 default_backend www_Node.js

backend www_Node.js
 environment http
 option forwardfor
 server Node.js 127.0.0.1:3000 weight 1 maxconn 10000 check

http://upstart.ubuntu.org/
http://upstart.ubuntu.org/
http://supervisord.org/
http://cr.yp.to/daemontools.html
http://haproxy.1wt.eu/
http://haproxy.1wt.eu/

Deploying and Scaling

[102]

In this file, we are defining a frontend listener at 0.0.0.0:80 with the default
www_Node.js backend listening at 3000 on the same 127.0.0.1 server.

But this configuration is not ready to handle WebSockets. To support and handle
WebSockets, refer to the following code block:

global
 maxconn 4096

defaults
 environment http

frontend all 0.0.0.0:80
 timeout client 86400000
 default_backend www_Node.js
 acl is_websocket hdr(upgrade) -i websocket
 acl is_websocket hdr_beg(host) -i ws

 use_backend www_Node.js if is_websocket

backend www_Node.js
 environment http
 option forwardfor
 timeout server 86400000
 timeout connect 4000
 server Node.js 127.0.0.1:3000 weight 1 maxconn 10000 check

The first thing we did was to increase the client timeout value, so the client connection
doesn't drop off if there is a long inactivity from the client. The acl lines of code
instruct HAProxy to understand and check when we get a websocket request.

By using the use_backend instruction, we configure HAProxy to use the www_Node.
js backend to handle the websocket request. This is useful when you want to serve
your static pages from any server, such as Apache HTTP, and want to use node
exclusively to handle socket.io.

Now we come to the part where we would like the request to be handled by more
than one node server/process. To do this, first we will tell the proxy to round robin
the requests by adding the following instruction to the backend:

 balance roundrobin

Then we will add more server entries to the backend:

 server Node.js 127.0.0.1:4000 weight 1 maxconn 10000 check
 server Node.js 192.168.1.101:3000 weight 1 maxconn 10000 check

Chapter 6

[103]

Here we are adding two new node instances: one is a new process listening on port
4000 on the same server, while the other one is running on another server, which is
accessible to the load-balancer at 192.168.1.101 on port 3000.

We are done configuring the servers and the incoming requests will now be routed
between the three node instances that we have configured.

The node cluster
Node now comes with its own completely rewritten cluster module. Cluster allows
node to start multiple processes behind the cluster frontend and monitors and
manages them. We will take a quick look at how to make an application cluster with
this module, but note that this is only for creating multiple processes and we must
still set up a tool to monitor the cluster master and also a proxy to forward requests
to the node server.

Let us see how we can use the cluster module. The best part about the cluster module
is you don't need to actually change your application. Cluster will run a master
instance, and we can start multiple instances of our application and they will all
listen to a shared port.

Here is the script that we can use for clustering the app.js file:

var cluster = require('cluster');

if (cluster.isMaster) {
 var noOfWorkers =
 process.env.NODE_WORKERS || require('os').cpus().length;
 while(workers.length < noOfWorkers) {
 cluster.fork();
 }
} else {
 require('./app.js');
}

So, what's happening here? The first thing we do is use require on the cluster
module. In the next line, we are checking whether the instance that is started is the
master process or the worker.

If it is the master process, we check if the NODE_WORKERS environment variable is set,
else we get the number of processors available on the system our server is running
on. To set the NODE_WORKERS environment variable, you can run the following:

$ export NODE_WORKERS=2

The previous command will tell the cluster to start two nodes.

Deploying and Scaling

[104]

Now, in the loop, we call fork on the cluster. This calls child_process.fork so that
the master and the started workers can communicate via IPC.

When the cluster process is run from fork, cluster.isMaster is false and so our
app.js script is in the current worker process.

In our application, when we call server.listen(3000), the worker serializes this
and sends over the request to the server, the server checks if it already is listening on
that port, and returns the handle for the listener, if it is present. Else, the server starts
listening on the port and passes on the handle to the newly created listener.

Since all our workers request to listen on port 3000, the server will start listening
on the port when the first worker starts and will pass on the same handler to all the
workers. When a request comes in, it will be handled by any worker that can take it
up and process it.

Since our monitoring tool (Monit or Forever, or others) will now be monitoring only
the master process, it becomes the master's responsibility to monitor the workers.
This means that the cluster should restart any worker that happens to die. We will do
this, by adding the following event handler in the master process:

cluster.on('exit', function (worker, code, signal){
 var exitCode = worker.process.exitCode;
 console.log('worker ' + worker.process.pid +
 ' died ('+exitCode+'). restarting...');
 cluster.workers[worker.id].delete();
 cluster.fork();
});

Monitoring of the process is done by listening to the exit event on the socket. This
is the event that will be triggered when any worker dies. The event handler will get
the worker, its exit code, and the signal that caused the process to be killed. In the
handler, we log the death and we start a new worker process using cluster.fork().

Now we can start the new clustered application; we'll run cluster.js instead of
app.js. So change the start script in package.json to run cluster.js:

 "scripts": {
 "start": "node cluster",
 }

And then run the application with npm.

npm start

Chapter 6

[105]

This will start the application and everything will look just as it was. But when you
start using it, you'll notice that there are errors while trying to connect to a room,
or while sending messages. These errors are because we are using an in-memory
store for our Express.js sessions and socket.io uses an in-memory store to store and
transfer all the messages.

Scaling up the application
In the previous section we saw how we can cluster a Node.js app and how it remains
restricted due to our application mechanisms. In its current state, the application
uses an in-memory store to keep the session data. This store is local to the Node.
js instance and so won't be accessible in any another clustered instance. Also, the
data will be lost in a Node.js instance restart. So, what we need is a way to store
the session in a persistent store. Also, we want to configure socket.io such that all
its instances use a shared pub-sub and data store. The Connect framework has an
extension mechanism so a new store can be plugged in, and there is one store that is
persistent as well as excels at pub-sub. It is the Redis Session Store.

Redis (http://redis.io/) is a high performance, distributed, open source key-
value store that can also be used as a queue. We will use Redis and corresponding
Redis stores to provide a reliable, distributed, and shared store and pub-sub queue.
Please check out the instructions to install the Redis server on your operating system
and start it up.

Let's make a few changes to our chat application, beginning with package.json:

 "connect-redis":"*",
 "redis":"*"

This will add support for the Connect/Express.js Redis store and the Redis
connection client. Let's first get Express.js to use Redis; to do so, edit app.js by
referring to the following code snippet:

var express = require('express')
 , routes = require('./routes')
 , http = require('http')
 , path = require('path')
 , connect = require('connect')
 , RedisStore = require('connect-redis')(express);

var app = express();

var sessionStore = new RedisStore();

//Existing Code

http://redis.io/

Deploying and Scaling

[106]

So the two changes we make here are pulling in the Redis session store and then
we can replace the session store to be an instance of RedisStore. That's all that is
needed to get Express running using the Redis store.

The next thing we need to do is get socket.io using Redis. So, let us edit socket.js:

var io = require('socket.io')
 , redis = require('redis')
 , RedisStore = require('socket.io/lib/stores/redis')
 , pub = redis.createClient()
 , sub = redis.createClient()
 , client = redis.createClient();

exports.initialize = function (server) {
 io = io.listen(server);

 io.set('store', new RedisStore({
 redisPub : pub
 , redisSub : sub
 , redisClient : client
 }));

 //Existing Code
}

The first thing in the preceding code snippet that we are doing is require
('redis'), which provides the client and redisStore from socket.io, which
provides redis backed for socket.io. Then we create three different Redis clients to
use for pub-sub and the data store:

 io.set('store', new RedisStore({
 redisPub : pub
 , redisSub : sub
 , redisClient : client
 }));

In the previous code snippet, we configure socket.io to use Redis for the queue
and data store. And we are ready to go! Now run the application again using the
following command:

npm start

Chapter 6

[107]

Tips for node in production
Here are some tips to help us execute node in production:

1. Run the server in the production environment.

2. Never expose the node application directly on the Internet; always use
a proxy. Servers such as Apache HTTP, Nginx, and HAProxy have been
hardened and made robust over the years in production to make them secure
against various kinds of attacks, especially DOS and DDOS. Node is new;
it may become stable over time but today it is not recommended to be put
directly on the front.

3. Never run node as root. Well, that is the advice for any application server,
and it applies to node too. If we run node as root, there are chances of
hackers gaining root access or running some harmful code as root. So, never
ever run it as root!

4. Always run more than one node process. Node is a single-threaded, single-
process application server. An error in the application can bring the server
down. So, always have more than one process for reliability. Also, thinking
in terms of 1+ processes keeps us ready for scaling out when the need comes.

5. Always use a monitor. Monit, Forever, Upstart pick one you like, but always
use it. Better safe than sorry.

6. Never use MemoryStore in production; MemoryStore is for the development
environment; I recommend using RedisStore even in development.

7. Log all errors. Everything runs fine until it doesn't! And when something
goes wrong, logs are your best friend. Try to catch exceptions as close to the
cause as possible and log all the relevant information in the context. Don't
just log some error message, log all the relevant objects.

8. Never block unless there is no alternative. Node runs on an event loop,
and blocking for one request will cause unwanted overheads and degrade
performance for all requests.

9. Always keep your server, node, and all dependency modules up-to-date.

Deploying and Scaling

[108]

Summary
In this section, we saw the work involved in putting our application to production.
We must remember that these are not the only ways to do it. For every task we did,
there are many other ways of doing them, and there is no one solution that fits all
scenarios. But now that we know what is expected out of a production environment,
we can research the options and choose one according to our requirements.

Socket.IO Quick Reference
In this appendix we will take a look at the APIs provided by socket.io. The intention
is to have a cursory glance through all the APIs so we know if there is a function
that can help us while we are working. Socket.io is under active development and
the APIs themselves are subject to change. Although the documented methods may
not change, there are always new functions and features being added to socket.io.
So always check with the socket.io website and wiki for the availability of a function
that does what you want.

The server
As we already know by now, socket.io provides libraries to be used both in the
server and the client. Let's first see the APIs provided for the server.

Instantiating socket
The socket.io module is instantiated, just like any other node module, by using
require to import the module:

var io = require('socket.io');

Starting Socket.IO
The socket.io server component is started by using the listen method, which
attaches the socket.io to the node HTTP server:

var sio = io.listen(<server>)

Here, server is the instance of the node HTTP server.

Socket.IO Quick Reference

[110]

Listening to events
The event handlers are attached to socket using the on method. The on method takes
the event name and the callback/handler function as parameters:

sio.on(<event>, function(eventData){
 //DO SOMETHING
});

Here, event is the name of the event and eventData represents the event-specific
data passed to the handler when it is invoked.

Emitting an event
We use the emit method to trigger an event. This event will be handled on the client:

socket.emit(<event>, <event_data>, ack_callback);

Here, event is the name of the event to trigger, event_data is the event data as a
JSON object, and ack_callback is the optional callback function that is invoked on
the successful receipt of the event on the client.

Sending a message
The send method is used to send a message to the client:

socket.send(<message>, ack_callback);

Where message is the message that will be sent to the client and ack_callback is
the optional callback function that is invoked on the successful receipt of the message
on the client.

Sending a JSON message
A JSON message can be sent by using the json flag before the send method:

socket.json.send(<message>, ack_callback);

Here, message is the message that will be sent to the client and ack_callback is the
optional callback function that is invoked on the successful receipt of the message on
the client.

Appendix A

[111]

Broadcasting a message/event
A message or an event can be broadcasted to all the connected sockets using the
broadcast flag:

socket.broadcast.emit(<event>, <event_data>);

Here, event is the name of event to emit and event_data is the JSON data that will
be sent with the event. The following line of code shows how to broadcast a message:

socket.broadcast.send(<message>);

Here, message is the message that will be sent to the client and ack_callback is the
optional callback function that is invoked on the successful receipt of the message on
the client.

Sending a volatile message
Sometimes the message being sent is not important and can be ignored if not
delivered. So these methods need not be queued or attempted to be redelivered. This
is done with the volatile flag:

socket.volatile.send(<message>);

Here, message is the message that will be sent to the client and ack_callback is the
optional callback function that is invoked on the successful receipt of the message on
the client.

Storing socket data
We can call the set method on the socket to store some data on the socket. This is an
asynchronous method call and takes a key, value, and a callback function:

socket.set(<key>, <value>, function(){
 //DO SOMETHING
});

Here, key is the key name for this data and value is the value to store.

Socket.IO Quick Reference

[112]

Getting the socket data
We use the get method to fetch the value stored on a socket. This is an asynchronous
method and takes a key and a callback function, which will get the value:

socket.get(<key>, function(value){
 //DO SOMETHING
});

Here, key is the key of the data to fetch and value is the value if stored with the
socket. This will be null if the value is not stored.

Restricting to a namespace
We can multiplex the socket and restrict messages/events to a namespace by using
the of method. This method returns a socket, which can be used as any other socket,
but the messages will be restricted to only the clients connected to this namespace:

var namespace_socket = socket.of(<namespace>);

Here, namespace is the namespace we want to restrict the socket to.

Joining a room
We use the join method of socket to join a room. It will create a new room if one
doesn't already exist:

socket.join(<room>);

Here, room is the name of the room to join.

Broadcasting messages/events in a room
We can send messages to all the connected clients in the room by using the in flag
with broadcast:

socket.broadcast.in(<room>).send(<message>);
socket.broadcast.in(<room>).emit(<event>, <event_data>);

Here, room is the room to send the message in, message is the message to send,
event is the event to emit, and event_data is the data to be sent with the event.

Appendix A

[113]

Leaving a room
The leave method is used to leave a room. We don't need to do this explicitly if the
socket is exiting. Also, an empty room will automatically be destroyed:

socket.leave(<room>);

Here, room is the room to exit from.

Changing the configuration
Socket.io is configured using the set method in the configure method's
callback handler:

io.configure('environment', function () {
 io.set(<property>, <value>);
});

Here, environment is the optional environment in which this configuration will be
used, property is the property to be set, and value is the value for the property.

Server events
We will discuss some server-related events in this section.

connection
This event is fired when an initial connection with a client is established:

io.sockets.on('connection', function(socket) {})

Here, socket is used in further communication with the client.

message
The message event is emitted when a message sent with socket.send is received:

socket.on('message', function(<message>, <ack_callback>) {})

Here, message is the message sent and ack_callback is an optional
acknowledgment function.

Socket.IO Quick Reference

[114]

disconnect
This event is fired when the socket disconnects:

socket.on('disconnect', function() {})

The client
In this section we will get to know the client APIs.

Connecting to a socket
We connect to a socket using the connect method on the io object in the client:

var socket = io.connect(<uri>);

Here, uri is the server URI to connect to. It can be absolute or relative. If it is other
than /, or an absolute equivalent of that, it will connect to the namespace.

Listening to events
We can attach event handlers to a socket using the on method:

socket.on(<event>, function(event_data, ack_callback){});

Here, event is the event to listen for, event_data is the data for the event, and
ack_callback is the optional callback method to call to acknowledge the receipt
of the event.

Emitting an event
We use the emit method to trigger an event. This event will be handled on
the server:

socket.on(<event>, <event_data>, ack_callback);

Here, event is the name of the event to trigger, event_data is the event data as a
JSON object, and ack_callback is the optional callback function that is invoked on
the successful receipt of the message on the server.

Appendix A

[115]

Sending a message
The send method is used to send a message to the server:

socket.send(<message>, ack_callback);

Here, message is the message that will be sent to the server and ack_callback is the
optional callback function that is invoked on the successful receipt of the message on
the server.

Client events
In this section we will get to know some client-side events.

connect
The connect event is emitted when the socket is connected successfully:

socket.on('connect', function () {})

connecting
The connecting event is emitted when the socket is attempting to connect with
the server:

socket.on('connecting', function () {})

disconnect
The disconnect event is emitted when the socket is disconnected:

socket.on('disconnect', function () {})

connect_failed
The connect_failed event is emitted when socket.io fails to establish a
connection to the server for reasons such as when none of the transports
work or authorization failed:

socket.on('connect_failed', function () {})

Socket.IO Quick Reference

[116]

error
The error event is emitted when an error occurs and it cannot be handled by the
other event types:

socket.on('error', function () {})

message
The message event is emitted when a message sent with socket.send is received:

socket.on('message', function (<message>, <ack_callback>) {})

Here, message is the sent message and ack_callback is an optional
acknowledgment function.

reconnect
The reconnect event is emitted when socket.io successfully reconnects to the server:

socket.on('reconnect', function () {})

reconnecting
The reconnecting event is emitted when the socket is attempting to reconnect with
the server:

socket.on('reconnecting', function () {})

reconnect_failed
The reconnect_failed event is emitted when socket.io fails to reestablish a working
connection after the connection was dropped:

socket.on('reconnect_failed', function () {})

Socket.IO Backends
Socket.io started in Node.js and the primary backend continues to be Node.js. This
book focuses on building a chat system with socket.io, Node.js, and Express.js. But
what if your primary platform of choice is not Node.js or you are working on a
project where you want the same capabilities as provided by socket.io but cannot as
you have an existing standardized platform and cannot bring a new system in the
equation. Many before you have faced the same dilemma and in the spirit of open
source, socket.io servers exist for various platforms. In this appendix let's take a look
at the various implementations available for socket.io backends.

Every platform will require you to apply the learning and logic from this book to
rewrite the server-side code targeting that platform. The client code can continue
to be the same.

The following is an alphabetic list of the implementations by their
languages/platforms:

Erlang
There are two different backends for socket.io on erlang, Yurii Rashkovskii's socket.
io-erlang (https://github.com/yrashk/socket.io-erlang) and Yongboy's
erlang-socketio(https://code.google.com/p/erlang-scoketio/).

Yurii seems to have a disagreement with the path taken by socket.io's post-0.6.x
releases, and so the library supports only up to Version 0.6 of the spec. Naturally,
most of the examples in this book and many other examples on the Internet, won't
work over it.

Yongboy's erlang-socketio seems to be keeping itself up to date with the latest
happenings in socket.io and is compatible with the latest spec for socket.io-1.0
at the time of writing. Thus we will focus the rest of this section on this library.

https://github.com/yrashk/socket.io-erlang
https://code.google.com/p/erlang-scoketio/

Socket.IO Backends

[118]

This library is available for Cowboy and Mochiweb, two popular server-side
frameworks in erlang. Both these versions support socket.io spec 1.0. The Cowboy
version supports all the transports, while the Mochiweb version is limited to
xhr-polling, htmlfile, and json-polling.

Google Go
Go is a language in its early years, but is gaining popularity, mainly due to the
corporate backing from Google and being one of the three languages supported on
the Google App Engine, beside Python and Java.

The go-socket.io implementation provides socket.io support on Go. This project
supports almost all the transports and also supports socket.io on Google's App
Engine. The original codebase for this project is at https://github.com/madari/
go-socket.io, but the development there has stagnated for a while; but others seem
to have taken up the torch. The socket.io wiki points to this fork:

https://github.com/davies/go-socket.io.

One thing to notice here is that this codebase still doesn't support versions higher
than 0.6.x.

Check out the forks created in github and you will find interesting developments
being done to the code. Like this fork, which was updated much more recently:

https://github.com/justinfx/go-socket.io.

If you want to use a newer version of socket.io, the fork at https://github.com/
murz/go-socket.io should support versions up to 0.8.x (this was at the time
of writing).

Java
There are multiple implementations available for socket.io on a Java server. Let's take
a look at them.

The first is Socket.IO-Java, maintained most actively at https://github.com/Ovea/
Socket.IO-Java. It has been forked and modified to work with various servers
and platforms.

https://github.com/madari/go-socket.io
https://github.com/madari/go-socket.io
https://github.com/davies/go-socket.io
https://github.com/davies/go-socket.io
https://github.com/justinfx/go-socket.io
https://github.com/justinfx/go-socket.io
https://github.com/murz/go-socket.io
https://github.com/murz/go-socket.io
https://github.com/Ovea/Socket.IO-Java
https://github.com/Ovea/Socket.IO-Java

Appendix B

[119]

Then there is Atmosphere. Atmosphere began as a project to bring server push to
glassfish servers, but was spun off as a project of its own and works with almost any
Java server. Atmosphere server comes with atmosphere.js, which is its own JS client,
but any Atmosphere application will work with a socket.io client out of the box,
without any modification; use https://github.com/Atmosphere/atmosphere/
wiki/Getting-Started-with-Socket.IO to get started with Atmosphere,. If you
are starting a new java project or are introducing push in your existing java one,
don't make a decision until you have taken a look at Atmosphere.

Netty brings an asynchronous server to Java; and very important to mention is
Yongboy's socketio-netty (http://code.google.com/p/socketio-netty/). It
is highly recommended due to the async nature of netty, which is more suited for
these applications.

Gisio (https://bitbucket.org/c58/gnisio/wiki/Home) brings socket.io to
the GWT framework, the Google's write-in-Java-and-compile-to-JS library. So if
your application is built in GWT and you want to introduce server-push in your
application, you can use this library.

And for the new and upcoming completely asynchronous server Vert.x, there is
mod-socket-io (https://github.com/keesun/mod-socket-io) Again, if you are
looking at an application of a highly asynchronous nature, I would suggest you to
take a look at this server and this module.

Perl
Perl may be a very old language, but is still used in many places, and it has an
actively maintained socket.io server module called pocketio (https://github.com/
vti/pocketio).

Python
Python is another language that is gaining wide acceptance and popularity. And
there are multiple socket.io server implementations for Python.

The first we look at is gevent-socket.io (https://github.com/abourget/gevent-
socketio), which works with any WSGI-based web frameworks. So if you are using
any framework such as Pyramid, Pylons, Flask, and Django, this will work for you.
The only dependencies are gevent and gevent-websocket.

https://github.com/Atmosphere/atmosphere/wiki/Getting-Started-with-Socket.IO
https://github.com/Atmosphere/atmosphere/wiki/Getting-Started-with-Socket.IO
http://code.google.com/p/socketio-netty/
https://bitbucket.org/c58/gnisio/wiki/Home
https://bitbucket.org/c58/gnisio/wiki/Home
https://github.com/keesun/mod-socket-io
https://github.com/vti/pocketio
https://github.com/abourget/gevent-socketio

Socket.IO Backends

[120]

If Tornado is your framework of choice, take a look at Tornadio 2
(https://github.com/MrJoes/tornadio2), which provides support for
socket.io Versions 0.7 and higher. Again, Tornado is an asynchronous framework
and good for such applications.

And dedicated to bringing socket.io to Django is django-socketio (https://github.
com/stephenmcd/django-socketio).

Summary
In this chapter we saw the socket.io backend implementations for some popular
platforms. If you are using some other platform, just search for a socket.io server
implementation on the Internet and I am sure you will find one. It may not be the
best or in an ideal state, but you definitely will find a solution to get started.

https://github.com/MrJoes/tornadio2
https://github.com/MrJoes/tornadio2
https://github.com/stephenmcd/django-socketio
https://github.com/stephenmcd/django-socketio

Index
A
AJAX 10
AMID 21
application

running 98
running, ways 99, 100
scaling up 105, 106

applications, real-time web
business applications 14
gaming 13
social stream updates 13
web-based monitors 14

Asynchronous JavaScript and
XML. See AJAX

Asynchronous Module Definition.
See AMID

Atmosphere 119
authorization method 84

B
BPM 8
business applications 14
Business Process Management. See BPM

C
chat 43
chat application

creating 43
chat room

designing 44-47
click event 54
client

about 53-56
event, emitting 114

events, listening to 114
message, sending 115
socket, connecting to 114

client events
connect 115
connect_failed 115
connecting 115
disconnect 115
error 116
message 116
reconnect 116
reconnect_failed 116
reconnecting 116

close method 89
Comet 11
connect event 115
connect_failed event 115
connecting event 115
connection event 55
connect method 114
Cowboy 118
createServer method 21

D
Daemontools 101
disconnect event 115
django-socketio 120

E
emit method 114
erlang-socketio 117
error event 116
events

handling 49
user_entered event 64

[122]

exit event 104
Express JS 34-42

F
files

serving 32-34
Forever 100
forever stop command 100

G
gaming 13
get method 112
gevent 119
gevent-socket.io 119
gevent-websocket 119
Gisio 119
Go 118

H
Haml 40
handshake property 85
HAProxy

defining 101
working 101, 102

Hello Web 20-22
Hello World with Node.js 20
HTTP methods 27, 28

I
initialize method 53
io.of method 67
io.sockets.on event 52

J
Jade 40
JavaScript 9
join method 112
join_room event 73
jQuery

adding 48

K
ket.io-Java 118

L
listen method 51

M
message event 116
Mochiweb 118
mod-socket-io 119
modules

creating 29-32
Monit

defining 99
using 100

N
name_set event 85
namespaces

working with 66-70
Netty 119
node

executing, tips 107
node cluster 103, 104
Node.js

about 15
features 16-18
obtaining 19
origin 16

Node.js, features
corporate backing 18
event-driven design 17, 18
JavaScript 16, 17

Node.js package manager (npm) 19

P
Perl 119
Persevere 16
pocketio 119
production environment 97, 98
Python 119

R
real-time web

about 7, 8
AJAX Request 10

[123]

applications 13
defining 8
history 8-13
HTTP browser-server interaction 9

reconnect event 116
reconnect_failed event 116
reconnecting event 116
Redis Session Store 105
request routing 23-26
RingoJS 16
rooms

about 70, 72
connecting to 76, 77
listing 77-81

route.on method 27

S
scaling 101
send method 115
server

about 50, 51
configuration, leaving 113
emitting 110
event, broadcasting 111
event, broadcasting in room 112
events 51-53
instantiating 109
join method, using 112
JSON message, sending 110
leave method, using 113
listening to 110
message, broadcasting 111
message, broadcasting in room 112
message, sending 110
namespace, restricting to 112
socket data, getting 112
socket data, storing 111
socket.io server, starting 109
volatile message, sending 111

server events
connection 113
disconnect 114
message 113

server.forRoute method 32

Server-Sent Events. See SSE
serveStatic method 33
set method 111
set_name event 59
social stream updates 13
Socket.IO

about 48, 87, 109
client 114
client events 115
server 109
server events 113

Socket.IO API 89, 90
Socket.IO backend

about 117
erlang 117

Socket.IO connection
8080 92
about 91
http 91
myhost.com 91
responding ways 92

socket.io-erlang 117
Socket.io messages

about 93
ACK 96
Connect 94
Disconnect 93
Error 96
Event 95
Heartbeat 94
JSON message 95
Message 94
NOOP 96

socketio-netty 119
socket.io socket 90, 91
socket.send method 52
SSE 13
start method 31
Supervisord 101
system messages 49

T
third party modules 34-42
Tornadio 2 120

[124]

W
web-based monitors 14
WebSocket API 88, 89
WebSocket protocol

limitations 87, 88
write method 22

Y
yum command 99

U
Upstart 101
user_entered event 64
user messages 49
user name

sharing 81-85
users

in chat room 63
name, assigning 57-63

V
V8 16
Vert.x 119

Thank you for buying
Socket.IO Real-time Web Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node Web Development
ISBN: 978-1-849515-14-6 Paperback: 172 pages

A practical introduction to Node, the exciting new
server-side JavaScript web development stack

1. Go from nothing to a database-backed web
application in no time at all

2. Get started quickly with Node and discover
that JavaScript is not just for browsers anymore

3. An introduction to server-side JavaScript with
Node, the Connect and Express frameworks,
and using SQL or MongoDB database back-end

Node Cookbook
ISBN: 978-1-849517-18-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1. Packed with practical recipes taking you
from the basics to extending Node with your
own modules

2. Create your own web server to see Node’s
features in action

3. Work with JSON, XML, web sockets, and make
the most of asynchronous programming

Please check www.PacktPub.com for information on our titles

Getting Started with Meteor.js
JavaScript Framework
ISBN: 978-1-782160-82-3 Paperback: 130 pages

Develop modern web applications in Meteor, one of
the hottest new JavaScript platforms

1. Create dynamic, multi-user web applications
completely in JavaScript

2. Use best practice design patterns including
MVC, templates, and data synchronization

3. Create simple, effective user authentication
including Facebook and Twitter integration

4. Learn the time-saving techniques of Meteor
to code powerful, lightning-fast web apps
in minutes

Learning Modernizr
ISBN: 978-1-782160-22-9 Paperback: 118 pages

Create forward-compatible websites using feature
detection features of Modernizr

1. Build a progressive experience using a vast
array of detected CSS3 features

2. Replace images with CSS based counterparts

3. Learn the benefits of detecting features instead
of checking the name and version of the
browser and serving accordingly

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Going Real Time on the Web
	What is real-time web?
	A bit of history
	Applications of real-time web
	Gaming
	Social stream updates
	Business applications
	Web-based monitors

	Summary

	Chapter 2: Getting Started with Node.js
	The origin of Node.js
	Why Node.js
	JavaScript everywhere
	Event-driven design
	Corporate backing

	How to get Node.js
	Node.js package manager (npm)
	Hello World with Node.js
	Hello Web
	Routing the requests
	HTTP mMethods
	Creating our own mModules
	Serving files
	Third party modules and Express JS
	Summary

	Chapter 3: Let's Chat
	Creating the application
	Designing the chat room
	Bringing in jQuery
	Socket.io
	Handling events
	The server
	The client
	Summary

	Chapter 4: Making It More Fun!
	Giving names to users
	More on events
	Working with namespaces
	Rooms
	Listing the rooms
	Sharing the session
	Summary

	Chapter 5: The Socket.io Protocol
	Why do we need another protocol?
	The WebSocket API
	The socket.io API

	The socket.io socket
	The socket.io connection
	Socket.io messages
	Disconnect (0)
	Connect (1)
	Heartbeat (2)
	Message (3)
	JSON message (4)
	Event (5)
	ACK (6)
	Error (7)
	NOOP(8)

	Summary

	Chapter 6: Deploying and Scaling
	The production environment
	Running the application
	Keeping it running
	Scaling
	The node cluster
	Scaling up the application
	Tips for node in production
	Summary

	Appendix A: Socket.io Quick Reference
	The server
	Instantiating socket
	Starting socket.io
	Listening to events
	Emitting an event
	Sending a message
	Sending a JSON message
	Broadcasting a message/event
	Sending a volatile message
	Storing socket data
	Getting the socket data
	Restricting to a namespace
	Joining a room
	Broadcasting messages/events in a room
	Leaving a room
	Changing the configuration

	Server events
	connection
	message
	disconnect

	The client
	Connecting to a socket
	Listening to events
	Emiting an event
	Sending a message

	Client events
	connect
	connecting
	disconnect
	connect_failed
	error
	message
	reconnect
	reconnecting
	reconnect_failed

	Appendix B: Socket.io Backends
	Erlang
	Google Go
	Java
	Perl
	Python
	Summary

	Index

