

The Majesty Of Vue.js

© 2015 - 2016 Alex Kyriakidis, Kostas
Maniatis and Evan You

Contents

Introduction . i

About Vue.js . ii
Vue.js Overview . ii
What people say about Vue.js . ii
Comparison with Other Frameworks . iv

Angular . iv
React . v
Ember . vii
Polymer . viii
Riot . ix

Welcome . x
About the Book . x
Who is this Book for . x
Get In Touch . x
Homework . xi
Errata . xi
Conventions . xi

Vue.js Fundamentals . 1

1. Install Vue.js . 2
1.1 Standalone Version . 2

1.1.1 Download from vuejs.org . 2
1.1.2 Include from CDN . 2

1.2 Download using NPM . 2
1.3 Download using Bower . 3

2. Getting Started . 4
2.1 Hello World . 4
2.2 Two-way Binding . 6
2.3 Comparison with jQuery. 7
2.4 Homework . 9

CONTENTS

3. A Flavor of Directives. 10
3.1 v-show . 10
3.2 v-if . 13

3.2.1 Template v-if . 14
3.3 v-else . 15
3.4 v-if vs. v-show . 18
3.5 Homework . 19

4. List Rendering . 20
4.1 Install & Use Bootstrap . 20
4.2 v-for . 23

4.2.1 Range v-for . 23
4.3 Array Rendering . 25

4.3.1 Loop Through an Array . 25
4.3.2 Loop Through an Array of Objects . 27

4.4 Object v-for . 30
4.5 Filtered Results . 32
4.6 Ordered Results . 38
4.7 Custom Filter . 42
4.8 Homework . 45

5. Interactivity . 46
5.1 Event Handling . 46

5.1.1 Handling Events Inline . 46
5.1.2 Handling Events using Methods . 48
5.1.3 Shorthand for v-on . 49

5.2 Event Modifiers . 50
5.3 Key Modifiers . 54
5.4 Computed Properties . 54

5.4.1 Using Computed Properties to Filter an Array 59
5.5 Homework . 62

6. Components . 63
6.1 What are Components? . 63
6.2 Using Components . 63
6.3 Templates . 65
6.4 Properties . 66
6.5 Reusability . 69
6.6 Altogether now . 72
6.7 Homework . 81

7. Class and Style Bindings . 83
7.1 Class binding . 83

7.1.1 Object Syntax . 83

CONTENTS

7.1.2 Array Syntax . 87
7.2 Style binding . 88

7.2.1 Object Syntax . 88
7.2.2 Array Syntax . 89

7.3 Bindings in Action . 90
7.4 Homework . 92

Consuming an API . 93

8. Preface . 94
8.1 CRUD . 94
8.2 API . 94

8.2.1 Download Book’s Code . 95
8.2.2 API Endpoints . 96

9. Working with real data . 98
9.1 Get Data Asynchronous . 98
9.2 Refactoring . 101
9.3 Update Data . 104
9.4 Delete Data . 106

10. Integrating vue-resource . 109
10.1 Overview . 109
10.2 Migrating . 110
10.3 Enhancing Functionality . 111

10.3.1 Edit Stories . 111
10.3.2 Create New Stories . 114
10.3.3 Store & Update Unit . 120

10.4 JavaScript File . 121
10.5 Source Code . 122
10.6 Homework . 127

10.6.1 Preface . 127
10.6.2 API Endpoints . 127
10.6.3 Your Code . 128

Introduction

i

About Vue.js
Vue.js Overview

Vue.js (pronounced /vju:/, like view) is a library for building interactive web interfaces. The goal of
Vue.js is to provide the benefits of reactive data binding and composable view components with
an API that is as simple as possible.

Vue.js itself is not a full-blown framework - it is focused on the view layer only. It is therefore very
easy to pick up and to integrate with other libraries or existing projects. On the other hand, when
used in combination with proper tooling and supporting libraries, Vue.js is also perfectly capable of
powering sophisticated Single-Page Applications.

If you are an experienced frontend developer and want to know how Vue.js compares to other
libraries/frameworks, check out the Comparison with Other Frameworks chapter.

If you are interested to learn more information about Vue.js’ core take a look at Vue.js official guide¹.

What people say about Vue.js

“Vue.js is what made me love JavaScript. It’s extremely easy and enjoyable to use. It has a great
ecosystem of plugins and tools that extend its basic services. You can quickly include it in any project,
small or big, write a few lines of code and you are set. Vue.js is fast, lightweight and is the future of
Front end development!”

—Alex Kyriakidis

“When I started picking up Javascript I got excited learning a ton of possibilities, but when my friend
suggested to learn Vue.js and I followed his advice, things went wild. While reading and watching
tutorials I kept thinking all the stuff I’ve done so far and how much easier I could have done them if
I had invest time to learn Vue earlier. My opinion is that if you want to do your work fast, nice and
easy Vue is the JS Framework you need. “

—Kostas Maniatis

¹http://vuejs.org/guide/overview.html

ii

http://vuejs.org/guide/overview.html
http://vuejs.org/guide/overview.html

About Vue.js iii

“Mark my words: Vue.js will sky-rocket in popularity in 2016. It’s that good.”

— Jeffrey Way

“Vue is what I always wanted in a JavaScript framework. It’s a framework that scales with you as a
developer. You can sprinkle it onto one page, or build an advanced single page application with Vuex
and Vue Router. It’s truly the most polished JavaScript framework I’ve ever seen.”

— Taylor Otwell

“Vue.js is the first framework I’ve found that feels just as natural to use in a server-rendered app as
it does in a full-blown SPA. Whether I just need a small widget on a single page or I’m building a
complex Javascript client, it never feels like not enough or like overkill.”

— AdamWathan

“Vue.js has been able to make a framework that is both simple to use and easy to understand. It’s
a breath of fresh air in a world where others are fighting to see who can make the most complex
framework.”

— Eric Barnes

“The reason I like Vue.js is because I’m a hybrid designer/developer. I’ve looked at React, Angular
and a few others but the learning curve and terminology has always put me off. Vue.js is the first
JS framework I understand. Also, not only is it easy to pick up for the less confidence JS’ers, such as
myself, but I’ve noticed experienced Angular and React developers take note, and liking, Vue.js. This
is pretty unprecedented in JS world and it’s that reason I started London Vue.js Meetup.”

—Jack Barham

About Vue.js iv

Comparison with Other Frameworks

Angular

There are a few reasons to use Vue over Angular, although they might not apply for everyone:

• Vue.js is much simpler than Angular, both in terms of API and design. You can learn almost
everything about it really fast and get productive.

• Vue.js is a more flexible, less opinionated solution. That allows you to structure your app the
way you want it to be, instead of being forced to do everything the Angular way. It’s only
an interface layer so you can use it as a light feature in pages instead of a full blown SPA. It
gives you bigger room to mix and match with other libraries, but you are also responsible for
making more architectural decisions. For example, Vue.js’ core doesn’t come with routing or
ajax functionalities by default, and usually assumes you are building the application using an
external module bundler. This is probably the most important distinction.

• Angular uses two-way binding between scopes. While Vue also supports explicit two-way
bindings, it defaults to a one-way, parent-to-child data flow between components. Using one-
way binding makes the flow of data easier to reason about in large apps.

• Vue.js has a clearer separation between directives and components. Directives are meant to
encapsulate DOMmanipulations only, while Components stand for a self-contained unit that
has its own view and data logic. In Angular there’s a lot of confusion between the two.

• Vue.js has better performance and is much, much easier to optimize, because it doesn’t use
dirty checking. Angular gets slow when there are a lot of watchers, because every time
anything in the scope changes, all these watchers need to be re-evaluated again. Also, the
digest cycle may have to run multiple times to “stabilize” if some watcher triggers another
update. Angular users often have to resort to esoteric techniques to get around the digest
cycle, and in some situations there’s simply no way to optimize a scope with a large amount
of watchers. Vue.js doesn’t suffer from this at all because it uses a transparent dependency-
tracking observing system with async queueing - all changes trigger independently unless
they have explicit dependency relationships. The only optimization hint you’ll ever need is
the track-by param on v-for lists.

Interestingly, there are quite some similarities in how Angular 2 and Vue are addressing these
Angular 1 issues.

About Vue.js v

React

React and Vue.js do share a similarity in that they both provide reactive & composable View
components. There are, of course, many differences as well.

First, the internal implementation is fundamentally different. React’s rendering leverages the Virtual
DOM - an in-memory representation of what the actual DOM should look like. When the state
changes, React does a full re-render of the Virtual DOM, diffs it, and then patches the real DOM.

The virtual-DOM approach provides a functional way to describe your view at any point of time,
which is really nice. Because it doesn’t use observables and re-renders the entire app on every update,
the view is by definition guaranteed to be in sync with the data. It also opens up possibilities to
isomorphic JavaScript applications.

Instead of a Virtual DOM, Vue.js uses the actual DOM as the template and keeps references to
actual nodes for data bindings. This limits Vue.js to environments where DOM is present. However,
contrary to the common misconception that Virtual-DOM makes React faster than anything else,
Vue.js actually out-performs React when it comes to hot updates, and requires almost no hand-
tuned optimization. With React, you need to implement shouldComponentUpdate everywhere or
use immutable data structures to achieve fully optimized re-renders.

API-wise, one issue with React (or JSX) is that the render function often involves a lot of logic, and
ends up looking more like a piece of program (which in fact it is) rather than a visual representation
of the interface. For some developers this is a bonus, but for designer/developer hybrids like me,
having a template makes it much easier to think visually about the design and CSS. JSX mixed with
JavaScript logic breaks that visual model I need to map the code to the design. In contrast, Vue.js
pays the cost of a lightweight data-binding DSL so that we have a visually scannable template and
with logic encapsulated into directives and filters.

Another issue with React is that because DOMupdates are completely delegated to the Virtual DOM,
it’s a bit tricky when you actually want to control the DOM yourself (although theoretically you
can, you’d be essentially working against the library when you do that). For applications that needs
ad-hoc custom DOM manipulations, especially animations with complex timing requirements, this
can become a pretty annoying restriction. On this front, Vue.js allows for more flexibility and there
are multiple FWA/Awwwards winning sites² built with Vue.js.

Some additional notes:

• The React team has very ambitious goals in making React a platform-agnostic UI development
paradigm, while Vue is focused on providing a pragmatic solution for the web.

• React, due to its functional nature, plays very well with functional programming patterns.
However it also introduces a higher learning barrier for junior developers and beginners. Vue
is much easier to pick up and get productive with in this regard.

²https://github.com/vuejs/vue/wiki/Projects-Using-Vue.js#interactive-experiences

https://github.com/vuejs/vue/wiki/Projects-Using-Vue.js#interactive-experiences
https://github.com/vuejs/vue/wiki/Projects-Using-Vue.js#interactive-experiences

About Vue.js vi

• For large applications, the React community has been doing a lot of innovation in terms of
state management solutions, e.g. Flux/Redux. Vue itself doesn’t really address that problem
(same for React core), but the state management patterns can be easily adopted for a similar
architecture. Vue has its own state management solution called Vuex³, and it’s also possible
to use Redux with Vue⁴.

• The trend in React development is pushing you to put everything in JavaScript, including
your CSS. There has been many CSS-in-JS solutions out there but all more or less have its
own problems. And most importantly, it deviates from the standard CSS authoring experience
and makes it very awkward to leverage existing work in the CSS community. Vue’s single file
components⁵ gives you component-encapsulated CSS while still allowing you to use your
pre-processors of choice.

³https://github.com/vuejs/vuex
⁴https://github.com/egoist/revue
⁵http://vuejs.org/guide/application.html#Single_File_Components

https://github.com/vuejs/vuex
https://github.com/egoist/revue
http://vuejs.org/guide/application.html#Single_File_Components
http://vuejs.org/guide/application.html#Single_File_Components
https://github.com/vuejs/vuex
https://github.com/egoist/revue
http://vuejs.org/guide/application.html#Single_File_Components

About Vue.js vii

Ember

Ember is a full-featured framework that is designed to be highly opinionated. It provides a lot
of established conventions, and once you are familiar enough with them, it can make you very
productive. However, it also means the learning curve is high and the flexibility suffers. It’s a trade-
off when you try to pick between an opinionated framework and a library with a loosely coupled
set of tools that work together. The latter gives you more freedom but also requires you to make
more architectural decisions.

That said, it would probably make a better comparison between Vue.js core and Ember’s templating
and object model layer:

• Vue provides unobtrusive reactivity on plain JavaScript objects, and fully automatic computed
properties. In Ember you need to wrap everything in Ember Objects and manually declare
dependencies for computed properties.

• Vue’s template syntax harnesses the full power of JavaScript expressions, while Handlebars’
expression and helper syntax is quite limited in comparison.

• Performance wise, Vue outperforms Ember by a fair margin, even after the latest Glimmer
engine update in Ember 2.0. Vue automatically batches updates, while in Ember you need to
manually manage run loops in performance-critical situations.

About Vue.js viii

Polymer

Polymer is yet another Google-sponsored project and in fact was a source of inspiration for Vue.js as
well. Vue.js’ components can be loosely compared to Polymer’s custom elements, and both provide
a very similar development style. The biggest difference is that Polymer is built upon the latest
Web Components features, and requires non-trivial polyfills to work (with degraded performance)
in browsers that don’t support those features natively. In contrast, Vue.js works without any
dependencies down to IE9.

Also, in Polymer 1.0 the team has really made its data-binding system very limited in order to
compensate for the performance. For example, the only expressions supported in Polymer templates
are the boolean negation and single method calls. Its computed property implementation is also not
very flexible.

Finally, when deploying to production, Polymer elements need to be bundled via a Polymer-specific
tool called vulcanizer. In comparison, single file Vue components can leverage everything the
Webpack ecosystem has to offer, and thus you can easily use ES6 and any CSS pre-processors you
want in your Vue components.

About Vue.js ix

Riot

Riot 2.0 provides a similar component-based development model (which is called a “tag” in Riot),
with a minimal and beautifully designed API. I think Riot and Vue share a lot in design philosophies.
However, despite being a bit heavier than Riot, Vue does offer some significant advantages over Riot:

• True conditional rendering (Riot renders all if branches and simply show/hide them)
• A far-more powerful router (Riot’s routing API is just way too minimal)
• More mature tooling support (see webpack + vue-loader)
• Transition effect system (Riot has none)
• Better performance. (Riot in fact uses dirty checking rather than a virtual-dom, and thus
suffers from the same performance issues with Angular.)

For updated comparisons feel free to check Vue.js guide.

http://vuejs.org/guide/comparison.html

Welcome
About the Book

This book will guide you through the path of the rapidly spreading Javascript Framework called
Vue.js!

Some time ago, we started a new project based on Laravel and Vue.js. After thoroughly reading
Vue.js guide and a few tutorials, we discovered a lack of resources about Vue.js around the web.
During the development of our project, we gained a lot of experience, so we came up with the idea
to write this book in order to share our acquired knowledge with the world.

This book is written in an informal, intuitive, and easy-to-follow format, wherein all examples are
appropriately detailed enough to provide adequate guidance to whoever.

We’ll start from the very basics and throughmany examples we’ll cover the most significant features
of Vue.js. By the end of this book you will be able to create fast front end applications and increase
the performance of your existing projects with Vue.js integration.

Who is this Book for

Everyone who has spent time to learn modern web development, has seen Bootstrap, Javascript and
many Javascript frameworks. This book is for anyone interested in learning a lightweight and simple
Javascript framework. No excessive knowledge is required, though it would be good to be familiar
with HTML and Javascript. If you dont’t knowwhat the difference is between a string and an object,
maybe you need to do some digging first.

This book is also useful for any reader who already know their way around Vue.js and want to
expand their knowledge.

Get In Touch

In case you would like to contact us about the book, send us feedback, or other matters you would
like to bring our attention to, don’t hesitate to contact us.

Name Email Twitter

The Majesty of Vue.js hello@tmvuejs.com @tmvuejs
Alex Kyriakidis alex@tmvuejs.com @hootlex
Kostas Maniatis kostas@tmvuejs.com @kostaskafcas

x

Welcome xi

Homework

The best way to learn code is to write code, so we have prepared one exercise at the end
of most chapters for you to solve and actually test yourself on what you have learned. We
strongly recommend you to try as much as possible to solve them and though them gain a better
understanding of Vue.js. Don’t be afraid to test your ideas, a little effort goes a long way! Maybe a
few different examples or ways will give you the right idea. Of course we are not merciless, hints
and potential solutions will be provided!

You may begin your journey!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in the book we would be grateful if you could report it to us. By doing so, you
can protect other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please submit an issue on our github reposiroty⁶.

Conventions

The following notational conventions are used throughout the book.

A block of code is set as follows:

JavaScript

1 function(x, y){

2 // this is a comment

3 }

Code words in text, data are shown as follows: “Use .container for a responsive fixed width
container.”

New terms and important words are shown in bold.

Tips, notes, and warnings are shown as follows:

This is a Warning
This element indicates a warning or caution.

⁶https://github.com/hootlex/the-majesty-of-vuejs

https://github.com/hootlex/the-majesty-of-vuejs
https://github.com/hootlex/the-majesty-of-vuejs

Welcome xii

This is a Tip
This element signifies a tip or suggestion.

This is an Information box
Some special information here.

This is a Note
A note about the subject.

This is a Hint
A hint about the subject.

Vue.js Fundamentals

1

1. Install Vue.js
When it comes to download Vue.js you have a few options to choose from.

1.1 Standalone Version

1.1.1 Download from vuejs.org

To install Vue you can simply download and include it with a script tag. Vue will be registered as a
global variable.

You can download two versions of Vue.js:

1. Development Version from http://vuejs.org/js/vue.js¹
2. Production Version from http://vuejs.org/js/vue.min.js².

Tip: Don’t use the minified version during development. You will miss out all the nice
warnings for common mistakes.

1.1.2 Include from CDN

You can find Vue.js also on jsdelivr³ or cdnjs⁴

It takes some time to sync with the latest version so you have to check frequently for
updates.

1.2 Download using NPM

NPM is the recommended installation method when building large scale apps with Vue.js. It pairs
nicely with a CommonJS module bundler such as Webpack⁵ or Browserify⁶.

¹http://vuejs.org/js/vue.js
²http://vuejs.org/js/vue.min.js
³http://cdn.jsdelivr.net/vue/1.0.18/vue.min.js
⁴https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.min.js
⁵http://webpack.github.io/
⁶http://browserify.org/

2

http://vuejs.org/js/vue.js
http://vuejs.org/js/vue.min.js
http://cdn.jsdelivr.net/vue/1.0.18/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.min.js
http://webpack.github.io/
http://browserify.org/
http://vuejs.org/js/vue.js
http://vuejs.org/js/vue.min.js
http://cdn.jsdelivr.net/vue/1.0.18/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.min.js
http://webpack.github.io/
http://browserify.org/

Install Vue.js 3

1 # latest stable

2 $ npm install vue

3 # latest stable + CSP-compliant

4 $ npm install vue@csp

5 # dev build (directly from GitHub):

6 $ npm install vuejs/vue#dev

1.3 Download using Bower

1 # latest stable

2 $ bower install vue

For more installation instructions and updates take a loot at the Vue.js Installation Guide⁷

In most book examples we are including Vue.js from the cdn, although you are free to install it using
any method you like.

⁷http://vuejs.org/guide/installation.html

http://vuejs.org/guide/installation.html
http://vuejs.org/guide/installation.html

2. Getting Started
Let’s start with a quick tour of Vue’s data binding features. We’re going to make a simple application
that will allow us to enter a message and have it displayed on the page in real time. It’s going to
demonstrate the power of Vue’s two-way data binding. In order to create our Vue application, we
need to do a little bit of setting up, which just involves creating an HTML page.

In the process you will get the idea of the amount of time and effort we save using a javascript
Framework like Vue.js instead of a javascript tool (library) like jQuery.

2.1 Hello World

We will create a new file and we will drop some boilerplate code in. You can name it anything you
like, this one is called hello.html.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <h1>Greetings your Majesty!</h1>

7 </body>

8 </html>

This is a simple HTML file with a greeting message.

Now we will carry on and do the same job using Vue.js. First of all we will include Vue.js and create
a new Instance.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>Greetings your majesty!</h1>

8 </div>

9 </body>

4

Getting Started 5

10 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.min.js">

11

12 </script>

13 <script>

14 new Vue({

15 el: '#app',

16 })

17 </script>

18 </html>

For starters, we have included Vue.js from cdnjs¹ and inside a script tag we have our Vue instance.
We use a div with an id of #app which is the element we refer to, so Vue knows where to ‘look’.
Try to think of this as a container that Vue works at. Vue won’t recognize anything outside of the
targeted element. Use the el option to target the element you want.

Now we will assign the message we want to display to a variable inside an object named data. Then
we’ll pass the data object as an option to Vue constructor.

1 var data = {

2 message: 'Greetings your majesty!'

3 };

4 new Vue({

5 el: '#app',

6 data: data

7 })

To display our message on the page, we just need to wrap the message in double curly brackets . So
whatever is inside our message it will appear automatically in the h1 tag.

1 <div id="app">

2 <h1>{{ message }}</h1>

3 </div>

It is as simple as that. Another way to define the message variable is to do it directly inside Vue
constructor in data object.

¹https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.10/vue.min.js

https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.10/vue.min.js
https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.10/vue.min.js

Getting Started 6

1 new Vue({

2 el: '#app',

3 data: {

4 message: 'Greetings your Majesty!'

5 }

6 });

Both ways have the exact same result, so you are again free to pick whatever syntax you like.

Info
The double curly brackets are not HTML but scripting code, anything inside mustache tags
are called binding expressions. Javascript will evaluate these expressions. The {{ message

}} brings up the value of the Javascript variable. This piece of code {{1+2}} will display
the number 3.

2.2 Two-way Binding

What is cool about Vue is that it makes our lives easier. Say we want to change the message on
user input, how this can be easily accomplished? In the example below we use v-model, a directive
of Vue, (we will cover more on directives in the next chapter). Then we use two-way data binding
to dynamically change the message value when the user changes the message text inside an input.
Data is synced on every input event by default.

1 <div id="app">

2 <h1>{{ message }}</h1>

3 <input v-model="message">

4 </div>

1 new Vue({

2 el: '#app',

3 data: {

4 message: 'Greetings your Majesty!'

5 }

6 })

That’s it. Now our heading message and user input are binded! By using v-model inside the input
tag we tell Vue which variable should bind with that input, in this case message .

Getting Started 7

Two-way data binding

Two-way data binding means that if you change the value of a model in your view, everything will
be kept up to date.

2.3 Comparison with jQuery.

Probably all of you have a basic experience with jQuery. If you don’t, it’s okay, the use of jQuery
in this book is minimal. When we use it, its only to demonstrate how things can be done with Vue
instead of jQuery and we will make sure everybody gets it.

Anyway, in order to better understand how data-binding is helping us to build apps, take a moment
and think how you could do the previous example using jQuery. You would probably create an input
element and give it an id or a class so you could target it and modify it accordingly. After this,
you would call a function that changes the desired element to match the input value, whenever the
keyup event happens. It’s a real bother.

More or less, your snippet of code would look like this.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>Greetings your Majesty!</h1>

8 <input id="message">

9 </div>

Getting Started 8

10 </body>

11 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

12 <script type="text/javascript">

13 $('#message').on('keyup', function(){

14 var message = $('#message').val();

15 $('h1').text(message);

16 })

17 </script>

18 </html>

This is a simple example of comparison and as you can see, Vue appears to be much more beautiful,
less time consuming, and easier to grasp. Of course, jQuery is a powerful JavaScript library for
Document Object Model (DOM) manipulation but everything comes with its ups and downs!

Getting Started 9

2.4 Homework

A nice and super simple introductory exercise is to create an HTML file with a Hello, {{name}}
heading. Add an input and bind it to name variable. As you can imagine, the heading must change
instantly whenever the user types or changes his name. Good luck and have fun!

Example Output

You can find a potential solution to this exercise here².

²https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter2.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter2.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter2.html

3. A Flavor of Directives.
In this chapter we are going through some basic examples of Vue’s directives. Well, if you have not
used any Framework like Vue.js or AngularJS before, you probably don’t know what a directive is.
Essentially, a directive is some special token in the markup that tells the library to do something to
a DOM element. In Vue.js, the concept of directive is drastically simpler than that in Angular. Some
of the directives are:

• v-show which is used to conditionally display an element
• v-if which can be used instead of v-show
• v-else which displays an element when v-if or v-show evaluates to false.

Also, there is v-for, which requires a special syntax and its use is for rendering (e.g. render a list of
items based on an array). We will elaborate about the use of each later in this book.

Let us begin and take a look at the directives we mentioned.

3.1 v-show

To demonstrate the first directive we are going to build something simple. We will give you some
tips that will make your understanding and work much easier! Suppose you find yourself in need to
toggle the display of an element, based upon some set of criteria. Maybe a submit button shouldn’t
display unless you’ve first typed in a message. How might we accomplish that with Vue?

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <textarea></textarea>

8 </div>

9 </body>

10 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

11 <script>

12 new Vue({

13 el: '#app',

14 data: {

10

A Flavor of Directives. 11

15 message: 'Our king is dead!'

16 }

17 })

18 </script>

19 </html>

Here we have an HTML file with our known div id="app" and a textarea. Inside the textarea

we are going to display our message. Of course, it is not yet binded and by this point maybe you
have already figured it out. Also you may have noticed that in this example we are no longer using
the minified version of Vue.js. As we have mentioned before, the minified version shouldn’t be used
during development because you will miss out warnings for common mistakes. From now on we
are going to use this version in the book but of course you are free to do as you like.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <textarea v-model="message"></textarea>

8 </div>

9 <pre>

10 {{$data | json}}

11 </pre>

12 </body>

13 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

14 <script>

15 new Vue({

16 el: '#app',

17 data: {

18 message: 'Our king is dead!'

19 }

20 })

21 </script>

22 </html>

It is time to bind the value of textarea with our message variable using v-model so it displays our
message. Anything we type in is going to change in real time just as we saw in the example from
the previous chapter where we were using an input. Additionally here we are using a pre tag to spit
out the data. What this is going to do, is to take the data from our Vue instance, filter it through
json, and finally display the data in our browser. We believe, that this gives a much better way to

A Flavor of Directives. 12

build and manipulate our data since having everything right in front of you is better than looking
constantly at your console.

Info
JSON (JavaScript Object Notation) is a lightweight data-interchange format. You can find
more info on JSON here¹. The output of {{$data | json}} is binded with Vue data and
will get updated on every change.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1>You must send a message for help!</h1>

8 <textarea v-model="message"></textarea>

9 <button v-show="message">

10 Send word to allies for help!

11 </button>

12 <pre>

13 {{$data | json}}

14 </pre>

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

18 <script>

19 new Vue({

20 el: '#app',

21 data: {

22 message: 'Our king is dead! Send help!'

23 }

24 })

25 </script>

26 </html>

Carrying on, we now have a simple warning in the h1 tag that will toggle later based on some
criteria. Next to it, there is the button which is going to display conditionally, it appears only if there
is a message present. If the textarea is empty and therefore our data, the button’s display attribute
is automatically set to ‘none’ and the button disappears.

¹http://www.json.org/

http://www.json.org/
http://www.json.org/

A Flavor of Directives. 13

Info
An element with v-show will always be rendered and remain in the DOM. v-show simply
toggles the display CSS property of the element.

1 <h1 v-show="!message">You must send a message for help!</h1>

2 <textarea v-model="message"></textarea>

3 <button v-show="message">

4 Send word to allies for help!

5 </button>

What we want to accomplish in this example, is to toggle different elements. In this step, we need
to hide the warning inside the h1 tag, if a message is present, otherwise hide the message by setting
its style to **display: none.

3.2 v-if

In this point you might ask ‘What about the v-if directive we mentioned earlier?’, so we will build
the previous example again, only this time we’ll use v-if!

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1 v-if="!message">You must send a message for help!</h1>

8 <textarea v-model="message"></textarea>

9 <button v-show="message">

10 Send word to allies for help!

11 </button>

12 <pre>

13 {{$data | json}}

14 </pre>

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

18 <script>

19 new Vue({

20 el: '#app',

A Flavor of Directives. 14

21 data: {

22 message: 'Our king is dead! Send help!'

23 }

24 })

25 </script>

26 </html>

As shown, the replacement of v-show with v-if works just as good as we thought. Go ahead and
try to make your own experiments to see how this works! The only difference is that an element
with v-if will not remain in the DOM.

3.2.1 Template v-if

If sometime we find ourselves in a position where we want to toggle the existence of multiple
elements at once then we can use v-if on a <template> element. In occasions where the use of
div or span seems appropriate, the <template> element can serve also as an invisible wrapper. Also
the <template> won ‘t be rendered in the final result.

1 <div id="app">

2 <template v-if="!message">

3 <h1>You must send a message for help!</h1>

4 <p>Dispatch a messenger immediately!</p>

5 <p>To nearby kingdom of Hearts!</p>

6 </template>

7 <textarea v-model="message"></textarea>

8 <button v-show="message">

9 Send word to allies for help!

10 </button>

11 <pre>

12 {{$data | json}}

13 </pre>

14 </div>

A Flavor of Directives. 15

Template v-if

Using the setup from the previous example we have attached the v-if directive to the template

element, toggling the existence of all nested elements.

Warning
The v-show directive does not support the <template> syntax.

3.3 v-else

When using v-if or v-show you can use the v-else directive to indicate an “else block” as you
might have already imagined. Be aware that the v-else directive must follow immediately the v-if
or v-show directive - otherwise it will not be recognized.

Using v-else with v-show.

A Flavor of Directives. 16

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1 v-show="!message">You must send a message for help!</h1>

8 <h2 v-else>You have sent a message!</h2>

9 <textarea v-model="message"></textarea>

10 <button v-show="message">

11 Send word to allies for help!

12 </button>

13 <pre>

14 {{$data | json}}

15 </pre>

16 </div>

17 </body>

18 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

19

20 <script>

21 new Vue({

22 el: '#app',

23 data: {

24 message: 'Our king is dead! Send help!'

25 }

26 })

27 </script>

28 </html>

Using v-else with v-if.

1 <html>

2 <head>

3 <title>Hello Vue</title>

4 </head>

5 <body>

6 <div id="app">

7 <h1 v-if="!message">You must send a message for help!</h1>

8 <h2 v-else>You have send a message!</h2>

9 <textarea v-model="message"></textarea>

10 <button v-show="message">

11 Send word to allies for help!

A Flavor of Directives. 17

12 </button>

13 <pre>

14 {{$data | json}}

15 </pre>

16 </div>

17 </body>

18 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

19

20 <script>

21 new Vue({

22 el: '#app',

23 data: {

24 message: 'Our king is dead! Send help!'

25 }

26 })

27 </script>

28 </html>

v-if in action

A Flavor of Directives. 18

v-else in action

Just for the sake of the example we have used an h2 tag with a different warning than before which
is displayed conditionally. If there is no message present, we see the h1 tag. If there is a message, we
see the h2 using this very simple syntax of Vue v-if and v-else. As you can see above we’ve used
v-if as well as v-show. Both give us the same result. Simple as a pimple!

3.4 v-if vs. v-show

Even though we have alreadymentioned a difference between v-if and v-show , we can deepen a bit
more. Some questions may arise out of their use. Is there a big difference between using v-show and
v-if? Is there a situation where performance is affected? Are there problems where you’re better
off using one or the other? You might experience that the use of v-show on a lot of situations causes
bigger time of load during page rendering. In comparison, v-if is truly conditional according to the
guide of Vue.js.

When using v-if, if the condition is false on initial render, it will not do anything
- partial compilation won’t start until the condition becomes true for the first time.
Generally speaking, v-if has higher toggle costs while v-show has higher initial render
costs. So prefer v-show if you need to toggle something very often, and prefer v-if if the
condition\ is unlikely to change at runtime.

So, when to use which really depends on your needs.

A Flavor of Directives. 19

3.5 Homework

Following the previous homework exercise, you should try to expand it a bit. The user now types in
his gender along with his name. If user is a male, then the heading will greet the user with “Hello
Mister {{name}}”. If user is a female, then “Hello Miss {{name}}” should appear instead.

When gender in neither male or female then the user should see the warning heading “Enter a valid
gender, human.”.

Hint
A logical operator would come handy to determine user title.

Example Output

You can find a potential solution to this exercise here².

²https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter3.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter3.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter3.html

4. List Rendering
In the third chapter of this book, we are going to learn about list rendering. Using Vue’s directives
we are going to demonstrate how to:

1. Render a list of items based on an array.
2. Repeat a template.
3. Iterate through the properties of an object.
4. Filter an array of items.
5. Order an array of items.
6. Apply a custom filter to a list.

4.1 Install & Use Bootstrap

To make our work easier on the eye, we are going to import Bootstrap.

Info
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive,
mobile first projects on the web.

Head to http://getbootstrap.com/¹ and click the download button. For the time being, we’ll just use
Bootstrap from the CDN link² but you can install it any way that suits your particular needs. For
our example we need only one file, for now: css/bootstrap.min.css. When we use this .css file
in our app, we have access to all the pretty structures and styles. Just include it within the head tag
of your page and you are good to go.

Bootstrap requires a containing element to wrap site contents and house our grid system. You may
choose one of two containers to use in your projects. Note that, due to padding and more, neither
container is nestable.

• Use .container for a responsive fixed width container.

<div class=”container”> … </div>
• Use .container-fluid for a full width container, spanning the entire width of your viewport.

<div class=”container-fluid”> … </div>

¹http://getbootstrap.com/
²https://www.bootstrapcdn.com/

20

http://getbootstrap.com/
https://www.bootstrapcdn.com/
http://getbootstrap.com/
https://www.bootstrapcdn.com/

List Rendering 21

At this point, we would like to make an example of Vue.js with Bootstrap classes. This is the
introductory example concerning classes and many will follow. Of course, not much study or
experimentation is required in order make use of combined Vue and Bootstrap.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Bootstrap</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Hello Bootstrap, sit next to Vue.</h1>

10 <pre>

11 {{$data | json}}

12 </pre>

13 </div>

14 </body>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20

21 }

22 })

23 </script>

24 </html>

Shown here is the installed Bootstrap and the basic set up for our stories example.

Notice this time, instead of targeting app id, we have targeted the container class within the el

option inside the Vue instance. Going that way, we have gained the styles and structure that comes
along with this class and made our app a bit more delightful.

Note
Most of the times we are going to use the pre tag in our code to display our data in JSON
format.

List Rendering 22

Tip
In the above example we target the element with class of .container. Be careful when
you are targeting an element by class, when the class is present more than 1 time, Vue.js
will mount on the first element only.

Using el: you can target any DOM element on the! Try targeting the body of your HTML
and see how that works!

List Rendering 23

4.2 v-for

In order to loop through each item in an array, we will use v-for Vue’s directive.

The v-for loop works on arrays/objects and is used to loop through each item in an array. This
directive requires a special syntax in the form of item in array where array is the source data
Array and item is an alias for the Array element being iterated on.

Warning
If you are coming from the php world youmay notice that v-for is similar to php’s foreach
function. But be careful if you are used to foreach($array as $value).

Vue’s v-for is exactly the opposite, value in array.

The singular first, the plural next.

4.2.1 Range v-for

Directive v-for can also take an integer. Whenever a number is passed instead of an array/object,
the template will be repeated as many times as the number given.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>The multiplication table of 4.</h1>

10 <ul class="list-group">

11 <li v-for="i in 11" class="list-group-item">

12 {{ i }} times 4 equals {{ i * 4 }}.

13

14

15 </div>

16 </body>

17 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

18 <script type="text/javascript">

19 new Vue({

20 el: '.container'

21 })

List Rendering 24

22 </script>

23 </html>

The above code displays the multiplication table of 4.

Multiplication Table of 4

Note
Because wewant to display all the multiplication table of 4 (until 40) we repeat the template
11 times since the first value i takes is 0.

List Rendering 25

4.3 Array Rendering

4.3.1 Loop Through an Array

In the next example we will set up the following array of Stories inside our data object and we will
display them all, one by one.

1 stories: [

2 "I crashed my car today!",

3 "Yesterday, someone stole my bag!",

4 "Someone ate my chocolate...",

5]

What we need to do here, is to render a list. Specifically, an array of strings.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <ul class="list-group">

12 <li v-for="story in stories" class="list-group-item">

13 Someone said "{{ story }}"

14

15

16 </div>

17 <pre>

18 {{$data | json}}

19 </pre>

20 </div>

21 </body>

22 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

23 <script type="text/javascript">

24 new Vue({

25 el: '.container',

26 data: {

List Rendering 26

27 stories: [

28 "I crashed my car today!",

29 "Yesterday, someone stole my bag!",

30 "Someone ate my chocolate...",

31]

32 }

33 })

34 </script>

35 </html>

Info
Both list-group and list-group-item classes are Bootstrap classes. Here you can find
more information about Bootstrap list styling.³

Rendering an array using v-for.

³http://getbootstrap.com/css/#type-lists

http://getbootstrap.com/css/#type-lists
http://getbootstrap.com/css/#type-lists
http://getbootstrap.com/css/#type-lists

List Rendering 27

This is the output of the above code. Using v-forwe have managed to display our stories in a simple
unordered list. It is really that easy!

4.3.2 Loop Through an Array of Objects

Now, we change the Stories array to contain story objects. A story object has 2 properties: plot and
writer. We will do the same thing we did before but this time instead of echoing story immediately,
we will echo story.plot and story.writer respectively.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <ul class="list-group">

12 <li v-for="story in stories"

13 class="list-group-item"

14 >

15 {{ story.writer }} said "{{ story.plot }}"

16

17

18 </div>

19 <pre>

20 {{$data | json}}

21 </pre>

22 </div>

23 </body>

24 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

25 <script type="text/javascript">

26 new Vue({

27 el: '.container',

28 data: {

29 stories: [

30 {

31 plot: "I crashed my car today!",

32 writer: "Alex"

33 },

List Rendering 28

34 {

35 plot: "Yesterday, someone stole my bag!",

36 writer: "John"

37 },

38 {

39 plot: "Someone ate my chocolate...",

40 writer: "John"

41 },

42 {

43 plot: "I ate someone's chocolate!",

44 writer: "Alex"

45 },

46]

47 }

48 })

49 </script>

50 </html>

Additionally, when you need to display the index of the current item, you can use $index special
variable. Following is an example to show how it works.

1 <ul class="list-group">

2 <li v-for="story in stories" class="list-group-item">

3 {{$index}}. {{ story.writer }} said "{{ story.plot }}"

4

5

List Rendering 29

Rendered array with index

The $index inside the curly braces, clearly represents the index of the iterated item in the given
example.

Another way to access the index of the iterated item, is to specify an alias for the index of the array
as shown below.

1 <ul class="list-group">

2 <li v-for="(index, story) in stories"

3 class="list-group-item"

4 >

5 {{index}} {{ story.writer }} said "{{ story.plot }}"

6

7

The output of the last code is exactly the same with the previous one.

List Rendering 30

4.4 Object v-for

You can use v-for to iterate through the properties of an Object. We mentioned before that you can
bring to display the index of the array, but you can also do the same when iterating an object. In
addition to $index, each scope will have access to another special property, the $key.

Info
When iterating an object, $index is in range of 0 … n-1 where n is the number of object
properties.

We have restructured our data to be a single object with 3 attributes this time: plot, writer and
upvotes. As you can see in the example code above, we use $key and $index to bring inside the list
the key-value pairs, as well as the $index of each pair.

1 <div class="container">

2 <h1>Let's hear some stories!</h1>

3 <ul class="list-group">

4 <li v-for="value in story" class="list-group-item">

5 {{$index}} : {{$key}} : {{ value }}

6

7

8 </div>

1 new Vue({

2 el: '.container',

3 data: {

4 story: {

5 plot: "Someone ate my chocolate...",

6 writer: 'John',

7 upvotes: 47

8 }

9 }

10 })

Alternatively, you can also specify an alias for the key.

List Rendering 31

1 <div class="container">

2 <h1>Let's hear some stories!</h1>

3 <ul class="list-group">

4 <li v-for="(key, value) in story"

5 class="list-group-item"

6 >

7 {{$index}} : {{key}} : {{ value }}

8

9

10 </div>

Either way the result will be:

Iterate though object’s properties.

List Rendering 32

4.5 Filtered Results

Sometimes we need to display a filtered version of an array without actually mutating or resetting
the original data. In our example we want to display a list with the stories written by Alex and one
list with the stories written by John. We can achieve this using the built-in filter, filterBy.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>User Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <div>

11 <h3>Alex's stories</h3>

12 <ul class="list-group">

13 <li v-for="story in stories | filterBy 'Alex' in 'writer'"

14 class="list-group-item"

15 >

16 {{ story.writer }} said "{{ story.plot }}"

17

18

19 <h3>John's stories</h3>

20 <ul class="list-group">

21 <li v-for="story in stories | filterBy 'John' in 'writer'"

22 class="list-group-item"

23 >

24 {{ story.writer }} said "{{ story.plot }}"

25

26

27 </div>

28 <pre>

29 {{$data | json}}

30 </pre>

31 </div>

32 </body>

33 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

34 <script type="text/javascript">

35 new Vue({

36 el: '.container',

List Rendering 33

37 data: {

38 stories: [

39 {

40 plot: "I crashed my car today!",

41 writer: "Alex"

42 },

43 {

44 plot: "Yesterday, someone stole my bag!",

45 writer: "John"

46 },

47 {

48 plot: "Someone ate my chocolate...",

49 writer: "John"

50 },

51 {

52 plot: "I ate someone's chocolate!",

53 writer: "Alex"

54 },

55]

56 }

57 })

58 </script>

59 </html>

List Rendering 34

Stories filtered by writer.

Note
As you may noticed, our li tag is getting really big, so we have splitted it in more lines.

Simple enough, right? Next we will implement a very basic (but awesome) search. When the user
types a part of a story, we can guess which story it is and who wrote it, in real time. We’ll add a text
input binded to an empty variable query so we can dynamically filter our Stories array.

1 <div class="container">

2 <h1>Lets hear some stories!</h1>

3 <div>

4 <h3>Alex's stories</h3>

5 <ul class="list-group">

6 <li v-for="story in stories | filterBy 'Alex' in 'writer'"

7 class="list-group-item"

8 >

9 {{ story.writer }} said "{{ story.plot }}"

10

11

12 <h3>John's stories</h3>

List Rendering 35

13 <ul class="list-group">

14 <li v-for="story in stories | filterBy 'John' in 'writer'"

15 class="list-group-item"

16 >

17 {{ story.writer }} said "{{ story.plot }}"

18

19

20 <div class="form-group">

21 <label for="query">

22 What are you looking for?

23 </label>

24 <input v-model="query" class="form-control">

25 </div>

26 <h3>Search results:</h3>

27 <ul class="list-group">

28 <li v-for="story in stories | filterBy query in 'plot'"

29 class="list-group-item"

30 >

31 {{ story.writer }} said "{{ story.plot }}"

32

33

34 </div>

35 </div>

List Rendering 36

Stories filtered by writer with search.

List Rendering 37

Searching for ‘choco’.

Isn’t that awesome??

List Rendering 38

4.6 Ordered Results

Sometimes we may want to display the items of an Array ordered by some criteria. Luckily there
is an orderBy built in filter to sort our list in no time! First we will enhance our Stories with a new
property called upvotes. Then we’ll go on and display our array ordered by the count of each story’s
upvotes. The more famous a story is, the higher it should appear.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Famous Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some stories!</h1>

10 <ul class="list-group">

11 <li v-for="story in stories | orderBy 'upvotes'"

12 class="list-group-item"

13 >

14 {{ story.writer }} said "{{ story.plot }}"

15 and upvoted {{ story.upvotes }} times.

16

17

18 <pre>

19 {{ $data | json }}

20 </pre>

21 </div>

22 </body>

23 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

24 <script type="text/javascript">

25 new Vue({

26 el: '.container',

27 data: {

28 stories: [

29 {

30 plot: "I crashed my car today!",

31 writer: "Alex",

32 upvotes: 28

33 },

34 {

35 plot: "Yesterday, someone stole my bag!",

List Rendering 39

36 writer: "John",

37 upvotes: 8

38 },

39 {

40 plot: "Someone ate my chocolate...",

41 writer: "John",

42 upvotes: 51

43 },

44 {

45 plot: "I ate someone's chocolate!",

46 writer: "Alex",

47 upvotes: 74

48 },

49]

50 }

51 })

52 </script>

53 </html>

Stories array ordered by upvotes.

Hmmm, the array is ordered but this is not what we expected. We wanted the famous stories first.
Luckily, again, orderBy filter accepts two arguments: the key to sort the array, and the order which
specifies whether the result should be ordered in ascending (order >= 0) or descending (order <

0) order.

List Rendering 40

Eventually, for the sake of ordering the array in descending order, our code will look like this:

1 <ul class="list-group">

2 <li v-for="story in stories | orderBy 'upvotes' -1"

3 class="list-group-item"

4 >

5 {{ story.writer }} said "{{ story.plot }}"

6 and upvoted {{ story.upvotes }} times.

7

8

We can easily change the order we sort the array, by dynamically changing the order parameter. A
button is added, which will toggle the value of a new variable between -1 and 1, and then the new
variable is passed as order parameter to orderBy filter. Watch now.

1 new Vue({

2 el: '.container',

3 data: {

4 order: -1,

5 stories: [

6 {

7 plot: "I crashed my car today!",

8 writer: "Alex",

9 upvotes: 28

10 },

11 {

12 plot: "Yesterday, someone stole my bag!",

13 writer: "John",

14 upvotes: 8

15 },

16 {

17 plot: "Someone ate my chocolate...",

18 writer: "John",

19 upvotes: 51

20 },

21 {

22 plot: "I ate someone's chocolate!",

23 writer: "Alex",

24 upvotes: 74

25 },

26]

27 }

28 })

List Rendering 41

We initialize order variable with the value of -1 and then we pass it to orderBy filter.

1 <ul class="list-group">

2 <li v-for="story in stories | orderBy 'upvotes' order"

3 class="list-group-item"

4 >

5 {{ story.writer }} said "{{ story.plot }}"

6 and upvoted {{ story.upvotes }} times.

7

8

9 <button @click="order = order * -1">Reverse Order</button>

Array in descending order

Impressing huh? If you are not impressed by now, guess who is! ..“We are!”..

List Rendering 42

4.7 Custom Filter

This is the most cumbersome part of this chapter. Assumewewant to display only the famous stories
(the ones with upvotes greater than 20). In order to achieve that we have to create a custom filter and
apply it to filterBy. We are going to create a filter named famous which expects two parameters:

• the array we want to filter
• and the bound which defines the amount of upvotes a story must have in order to be
considered as famous

The famous filter returns an array which contains only the objects that satisfy a condition.

If you can’t keep up with this example don’t worry, you will get it sooner or later, just keep reading..

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Famous Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Let's hear some famous stories!</h1>

10 <ul class="list-group">

11 <li v-for="story in stories | famous"

12 class="list-group-item"

13 >

14 {{ story.writer }} said "{{ story.plot }}"

15 and upvoted {{ story.upvotes }} times.

16

17

18 <pre>

19 {{ $data | json }}

20 </pre>

21 </div>

22 </body>

23 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

24 <script type="text/javascript">

25 Vue.filter('famous', function (stories) {

26 return stories.filter(function(item){

27 return item.upvotes > 20;

28 });

List Rendering 43

29 })

30

31 new Vue({

32 el: '.container',

33 data: {

34 stories: [

35 {

36 plot: "I crashed my car today!",

37 writer: "Alex",

38 upvotes: 28

39 },

40 {

41 plot: "Yesterday, someone stole my bag!",

42 writer: "John",

43 upvotes: 8

44 },

45 {

46 plot: "Someone ate my chocolate...",

47 writer: "John",

48 upvotes: 51

49 },

50 {

51 plot: "I ate someone's chocolate!",

52 writer: "Alex",

53 upvotes: 74

54 },

55]

56 }

57 })

58 </script>

59 </html>

Info
Our famous filter uses javascript’s filter method.⁴ The filter() method creates a new
array with all elements that pass the test implemented by the provided function.

⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

List Rendering 44

Custom filter ‘famous’ in action.

List Rendering 45

4.8 Homework

For this chapter’s exercise you should do the following. Start by creating an array of people. Each
person has a name and an age. Using what you’ve learned so far, try to render the array in a list and
sort it by “age”. After that, create a second list below and apply a custom filter called “old” which
returns all people older than 55 years old.

Feel free to fill the array with your own data. Be careful to add people with age older and younger
than 55 to ensure your filter is working properly. Go ahead!

Hint
Built in filter orderBy and Vue.filter are necessary here.

Example Output

You can find a potential solution to this exercise here⁵.

⁵https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter4.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter4.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter4.html

5. Interactivity
In this chapter, we are going to create and expand previous examples, learn new things concerning
‘methods’, ‘event handling’ and ‘computed properties’. We will develop a few examples using
different approaches. It’s time to see how we can implement Vue’s interactivity to get a small app,
like a Calculator, running nice and easy.

5.1 Event Handling

HTML events are things that happen to HTML elements. When Vue.js is used in HTML pages, it
can react to these events.

In HTML, events can represent everything from basic user interactions to things happening in the
rendering model.

These are some examples of HTML events:

• A web page has finished loading
• An input field was changed
• A button was clicked
• A form was submitted

The point of event handling is that you can do something whenever an event takes place.

In Vue.js, to listen to DOM events you can use the v-on directive.

The v-on directive attaches an event listener to an element. The type of the event is denoted by the
argument, for example v-on:keyup listens to the keyup event.

Info
The keyup event occurs when the user releases a key. You can find a full list of HTML
events here¹.

5.1.1 Handling Events Inline

Enough with the talking, let’s move on and see event handling in action. Below, there is an ‘Upvote’
button which increases the number of upvotes every time it gets clicked.

¹http://www.w3schools.com/tags/ref_eventattributes.asp

46

http://www.w3schools.com/tags/ref_eventattributes.asp
http://www.w3schools.com/tags/ref_eventattributes.asp

Interactivity 47

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvotes++">

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

15 <script type="text/javascript">

16 new Vue({

17 el: '.container',

18 data: {

19 upvotes: 0

20 }

21 })

22 </script>

23 </html>

Interactivity 48

Upvotes counter

As you can see above, we have a basic setup and this time we use the class container in our view
model. There is an upvotes variable within our data. In this case, we bind an event listener for
click, with the statement that is right next to it. Inside the quotes we’re simply increasing the count
of upvotes by one, each time the button is pressed, using the increment operator (upvotes++).

Shown above is a very simple inline JavaScript statement.

5.1.2 Handling Events using Methods

Now we are going to do the exact same thing as before, using a method instead. A method in Vue.js
is a block of code designed to perform a particular task. To execute a method you have to define it
and then invoke it.

Interactivity 49

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Upvote</title>

6 </head>

7 <body>

8 <div class="container">

9 <button v-on:click="upvote">

10 Upvote! {{upvotes}}

11 </button>

12 </div>

13 </body>

14 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

15 <script type="text/javascript">

16 new Vue({

17 el: '.container',

18 data: {

19 upvotes: 0

20 },

21 // define methods under the **`methods`** object

22 methods: {

23 upvote: function(){

24 // **`this`** inside methods points to the Vue instance

25 this.upvotes++;

26 }

27 }

28 })

29 </script>

30 </html>

We are binding a click event listener to a method named ‘upvote’. It works just as before, but cleaner
and easier to understand when reading your code.

Warning
Event handlers are restricted to execute one statement only.

5.1.3 Shorthand for v-on

When you find yourself using v-on all the time in a project, you will find out that your HTML will
quickly becomes dirty. Thankfully, there is a shorthand for v-on, the @ symbol. The @ replaces the

Interactivity 50

entire v-on: and when using it, the code looks a lot cleaner, but everyone has their own practices
and this is totally optional.

Using the shorthand the button of our previous example will be:

Listening to ‘click’ using v-on:

1 <button v-on:click="upvote">

2 Upvote! {{upvotes}}

3 </button>

Listening to ‘click’ using @ shorthand

1 <button @click="upvote">

2 Upvote! {{upvotes}}

3 </button>

5.2 Event Modifiers

Now we will move on and create a Calculator app. To do so, we gonna use a form with two inputs
and one dropdown to select the desired operation.

Even though the following code seems fine, our calculator does not work as expected.

1 <html>

2 <head>

3 <title>Calculator</title>

4 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.\

5 css" rel="stylesheet">

6 </head>

7 <body>

8 <div class="container">

9 <h1>Type 2 numbers and choose operation.</h1>

10 <form class="form-inline">

11 <!-- Notice here the special attribute 'number'

12 is passed in order to parse inputs as numbers.-->

13 <input v-model="a" number class="form-control">

14 <select v-model="operator" class="form-control">

15 <option selected>+</option>

16 <option>-</option>

17 <option>*</option>

18 <option>/</option>

Interactivity 51

19 </select>

20 <!-- Notice here the special attribute 'number'

21 is passed in order to parse inputs as numbers.-->

22 <input v-model="b" number class="form-control">

23 <button type="submit" @click="calculate"

24 class="btn btn-primary">

25 Calculate

26 </button>

27 </form>

28 <h2>Result: {{a}} {{operator}} {{b}} = {{c}}</h2>

29 <pre>

30 {{$data | json}}

31 </pre>

32 </div>

33 </body>

34 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

35 <script type="text/javascript">

36 new Vue({

37 el: '.container',

38 data: {

39 a: 1,

40 b: 2,

41 c: null,

42 operator: " ",

43 },

44 methods:{

45 calculate: function(){

46 switch (this.operator) {

47 case "+":

48 this.c = this.a + this.b

49 break;

50 case "-":

51 this.c = this.a - this.b

52 break;

53 case "*":

54 this.c = this.a * this.b

55 break;

56 case "/":

57 this.c = this.a / this.b

58 break;

59 }

60 }

Interactivity 52

61 },

62 });

63 </script>

64 </html>

If you try and run this code yourself, you will find out that when the “calculate” button is clicked,
instead of calculating, it reloads the page.

This makes sense because when you click “calculate”, in the background, you are submitting the
form and thus the page reloads.

To prevent the submission of the form, we have to cancel the default action of the onsubmit event. It
is a very common need to call event.preventDefault() inside our event handling method. In our
case the event handling method is called calculate.

So, our method will become:

1 calculate: function(){

2 event.preventDefault();

3 switch (this.operator) {

4 case "+":

5 this.c = this.a + this.b

6 break;

7 case "-":

8 this.c = this.a - this.b

9 break;

10 case "*":

11 this.c = this.a * this.b

12 break;

13 case "/":

14 this.c = this.a / this.b

15 break;

16 }

17 }

Interactivity 53

Using Event Modifiers to build a calculator.

Although we can do this easily inside methods, it would be better if the methods can be purely
ignorant about data logic rather than having to deal with DOM event details.

Vue.js provides two event modifiers for v-on to prevent the event default behavior:

1. .prevent
2. .stop

So, using one of them, our submit button will change from:

1 <button type="submit" @click="calculate">Calculate</button>

to:

1 <button type="submit" @click.prevent="calculate">Calculate</button>

2 <!-- or -->

3 <button type="submit" @click.stop="calculate">Calculate</button>

And we can now safely remove event.preventDefault() from our calculate method.

Interactivity 54

5.3 Key Modifiers

If you hit enter when you are focused in one of the inputs, you will notice that the page reloads
again instead of calculating. This happens because we have prevented the behavior of the submit
button but not of the inputs.

To fix this, we have to use ‘Key Modifiers’.

1 <input v-model="a" @keyup.enter="calculate">

2 <input v-model="b" @keyup.enter="calculate">

Tip
When you have a form with a lot of inputs/buttons/etc and you need to prevent their
default submit behavior you can modify the submit event of the form. Example: <form
@submit.prevent=”calculate”>

Finally, the calculator is up and running.

5.4 Computed Properties

Vue.js inline expressions are very convenient, but for more complicated logic, you should use
computed properties. Practically, computed properties are variables which their value depends on
other factors.

Computed properties work like functions that you can use as properties. But there is a significant
difference, every time a dependency of a computed property changes, the value of the computed
property re-evaluates.

In Vue.js, you define computed properties within the computed object inside your Vue instance.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <pre>

Interactivity 55

11 {{$data | json}}

12 </pre>

13 </div>

14 </body>

15 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

16 <script type="text/javascript">

17 new Vue({

18 el: '.container',

19 data: {

20 a: 1,

21 },

22 computed: {

23 // a computed getter

24 b: function () {

25 // **`this`** points to the Vue instance

26 return this.a + 1

27 }

28 }

29 });

30 </script>

31 </html>

This is a basic example demonstrating the use of computed properties. We’ve set two variables, the
first, a, is set to 1 and the second, b, will be set by the returned result of the function inside the
computed object. In this example the value of b will be set to 2.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 a={{ a }}, b={{ b }}

10 <input v-model="a">

11 <pre>

12 {{$data | json}}

13 </pre>

14 </div>

15 </body>

16 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

Interactivity 56

17 <script type="text/javascript">

18 new Vue({

19 el: '.container',

20 data: {

21 a: 1,

22 },

23 computed: {

24 // a computed getter

25 b: function () {

26 // **`this`** points to the vm instance

27 return this.a + 1

28 }

29 }

30 });

31 </script>

32 </html>

Above there is the same example as before with one difference, there is an input binded to the a

variable. The desired outcome is to change the value of the binded attribute and update instantly
the result of b. But what you will notice here, is that it does not work as we would expect.

If you run this code and enter an input for variable a the number 5, you expect that b will be set to
6. Sure, but it doesn’t, b is set to 51.

Why is this happening? Well, as you might have already thought of, b takes the given value from
the input (“a”) as a string, and appends the number 1 at the end of it.

One solution to solve this problem is to use the parseFloat() function that parses a string and
returns a floating point number.

1 new Vue({

2 el: '.container',

3 data: {

4 a: 1,

5 },

6 computed: {

7 b: function () {

8 return parseFloat(this.a) + 1

9 }

10 }

11 });

Another option that comes to mind, is to use the <input type="number"> that is used for input fields
that should contain a numeric value.

Interactivity 57

But there is a more neat way. With Vue.js, whenever you want your user inputs to be automatically
persisted as numbers, you can add the special attribute number to these inputs.

1 <body>

2 <div class="container">

3 a={{ a }}, b={{ b }}

4 <input v-model="a" number>

5 <pre>

6 {{$data | json}}

7 </pre>

8 </div>

9 </body>

The number attribute is going to give us the desired result without any further effort.

To demonstrate a wider picture of computed properties, we are going to make use of them and build
the calculator we have showed before again, but this time using computed properties instead of
methods.

Lets start with a simple example, where a computed property c contains the sum of a plus b.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <h1>Enter 2 numbers to calculate their sum.</h1>

10 <form class="form-inline">

11 <input v-model="a" number class="form-control">

12 +

13 <input v-model="b" number class="form-control">

14 </form>

15 <h2>Result: {{a}} + {{b}} = {{c}}</h2>

16 <pre> {{$data | json}} </pre>

17 </div>

18 </body>

19 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

20 <script type="text/javascript">

21 new Vue({

22 el: '.container',

Interactivity 58

23 data: {

24 a: 1,

25 b: 2

26 },

27 computed: {

28 c: function () {

29 return this.a + this.b

30 }

31 }

32 });

33 </script>

34 </html>

The initial code is ready, and at this point the user can type in 2 numbers and get the sum of these
two. A calculator that can do the four basic operations is the goal, so let’s continue building!

Since the HTML code will be the same with the calculator we build in the previous section of
this chapter (except now we don’t need a button), I am gonna show you here only the Javascript
codeblock.

1 new Vue({

2 el: '.container',

3 data: {

4 a: 1,

5 b: 2,

6 operator: " ",

7 },

8 computed: {

9 c: function () {

10 switch (this.operator) {

11 case "+":

12 return this.a + this.b

13 break;

14 case "-":

15 return this.a - this.b

16 break;

17 case "*":

18 return this.a * this.b

19 break;

20 case "/":

21 return this.a / this.b

22 break;

23 }

Interactivity 59

24 }

25 },

26 });

The calculator is ready to be put to use. We just had to move whatever was inside calculatemethod
to the computed property c and we are done! Whenever you change the value of a or b the result
updates in real time! We don’t need no buttons, no events, nor anything. How awesome is that??

Info
Note here that a normal approach would be to have an if statement to avoid error for the
division. The best part about this is that there is already a prediction for this kind of flaws.
If the user types 1/0 the result automatically becomes infinity! If the user types a text the
displayed result is “not a number”.

Calculator built with computed properties.

5.4.1 Using Computed Properties to Filter an Array

A computed property can also be used to filter an array. Using a computed property to perform array
filtering gives you in-depth control and more flexibility, since it’s full JavaScript, and allows you to

Interactivity 60

access the filtered result elsewhere. For example you can get the length of a filtered array elsewhere
in your code.

To see how it’s done, we will filter the famous stories as we did in the Custom Filter example. This
time we will create a computed property that returns the filtered Array.

1 new Vue({

2 el: '.container',

3 data: {

4 stories: [

5 {

6 plot: "I crashed my car today!",

7 writer: "Alex",

8 upvotes: 28

9 },

10 {

11 plot: "Yesterday, someone stole my bag!",

12 writer: "John",

13 upvotes: 8

14 },

15 {

16 plot: "Someone ate my chocolate...",

17 writer: "John",

18 upvotes: 51

19 },

20 {

21 plot: "I ate someone's chocolate!",

22 writer: "Alex",

23 upvotes: 74

24 },

25]

26 },

27 computed: {

28 famous: function() {

29 return this.stories.filter(function(item){

30 return item.upvotes > 25;

31 });

32 }

33 }

34 })

In our HTML code, instead of stories array, we will render the famous computed property.

Interactivity 61

1 <body>

2 <div class="container">

3 <h1>Let's hear some famous stories! ({{famous.length}})</h1>

4 <ul class="list-group">

5 <li v-for="story in famous"

6 class="list-group-item"

7 >

8 {{ story.writer }} said "{{ story.plot }}"

9 and upvoted {{ story.upvotes }} times.

10

11

12 </div>

13 </body>

Filter array using a computed property

That’s it.We have filtered our array using a computed property. Did you notice how easily we man-
aged to display the number of famous stories next to our headingmessage using {{famous.length}}?

Info
Although using a computed property to perform array filtering gives you more flexibility,
array filters can be more convenient for common use cases.

Interactivity 62

5.5 Homework

Now that you have a basic understanding of Vue’s event handling, methods, computed properties etc,
you should try something a bit more challenging. Start by creating an array of “Mayor” candidates.
Each candidate has a “name” and a number of “votes”. Use a button to increase the count of votes
for each candidate. Use a computed property to determine who is the current “Mayor”, and display
his name.

Finally when key ‘c’ is pressed the elections start from the beginning, and all votes become 0.

Hint
Javascript’s sort() and map()methods could prove very useful and Key modifiers will get
you there.

Hint 2
To listen globally for events you should target the body element.

Example Output

You can find a potential solution to this exercise here².

²https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter5.html

6. Components
6.1 What are Components?

Components are one of the most powerful features of Vue.js. They help you extend basic HTML
elements to encapsulate reusable code. At a high level, Components are custom elements that Vue.js’
compiler would attach specified behavior to. In some cases, they may also appear as a native HTML
element extended with the special is attribute.

It is a really clever and powerful way to extend HTML to do new things. In this chapter we are going
to start out with an extremely simple example and next we are going to see how Components can
help us improve the code we have created, in some of the previous chapters.

6.2 Using Components

We are going to start with a simple Component. In order to use a component we have to register it
first.

One way to register a component is to use the Vue.component method and pass in the tag and the
constructor. Think of the tag as the name of the Component and the constructor as the options.
In our occasion, we’ll name the Component story and we’ll define the property story (again). The
option template (how we would like our story to be displayed), is inside the constructor where
other options will be added as well.

Our story component will be registered like this

1 Vue.component('story', {

2 template: '<h1>My horse is amazing!</h1>'

3 });

Now that we have registered the component we will make use of it. We will add the custom element
<story> inside the HTML to display the story.

63

Components 64

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div class="container">

9 <story></story>

10 </div>

11 </body>

12 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

13 <script type="text/javascript">

14 Vue.component('story', {

15 template: '<h1>My horse is amazing!</h1>'

16 });

17

18 new Vue({

19 el: '.container'

20 })

21 </script>

22 </html>

Note
Note here that you can give your custom component any name you want, but it is generally
recommended that you should use a unique name to avoid having collisions with actual
tags that might get introduced at some point in the future, and saving you time from having
to change large amounts of code.

As we mentioned at the beginning of the chapter, components are reusable which means you can
append as many <story> elements as you want. The following HTML snippet will display our story
3 times.

Components 65

1 <body>

2 <div class="container">

3 <story></story>

4 <story></story>

5 <story></story>

6 </div>

7 </body>

Displaying story component

6.3 Templates

There is more than one way of using a template for our component. The inline template we’ve used
before can get “dirty” very fast.

Another way to declare a template is to create a script tag with type set to text/template and
set an id of story-template. To use this template we need to reference a selector in the template
option of our component to this script.

Components 66

1 <script type="text/template" id="story-template">

2 <h1>My horse is amazing!</h1>

3 </script>

4 <script type="text/javascript">

5 Vue.component('story', {

6 template: "#story-template"

7 });

8 </script>

Info
"text/template" is not a script that the browser can understand and so the browser will
simply ignore it. This allows you to put anything in there, which can then be extracted and
generate HTML snippets.

My favorite way to define a template (and the one I am gonna use in this book examples) is to create
a template HTML tag and give it an id. Then we can reference a selector as we did before. Using
this technique the above component will look like this:

1 <template id="story-template">

2 <h1>My horse is amazing!</h1>

3 </template>

4 <script type="text/javascript">

5 Vue.component('story', {

6 template: "#story-template"

7 });

8 </script>

6.4 Properties

Lets see now how we can use multiple instances of our story component to display a list of stories.
We have to update the template to not display always the same story, but the plot of any story we
want.

1 <template id="story-template">

2 <h1>{{ plot }}</h1>

3 </template>

We also have to update our component to use this property. To do so we will add the new property,
‘plot’, to props attribute of the component.

Components 67

1 Vue.component('story', {

2 props: ['plot'],

3 template: "#story-template"

4 });

Now we can pass a plot and a plain string to it, every time we use the <story> element.

1 <body>

2 <div class="container">

3 <story plot="My horse is amazing."></story>

4 <story plot="Narwhals invented Shish Kebab."></story>

5 <story plot="The dark side of the Force is stronger."></story>

6 </div>

7 </body>

Display different ‘stories’.

Warning
HTML attributes are case-insensitive. When using camelCased prop names as attributes,
you need to use their kebab-case equivalents.

As you may have imagined, a component can have more than one property. For example, if we want
to display the writer along with the plot for every story, we have to pass the writer too.

Components 68

1 <story plot="My horse is amazing." writer="Mr. Weebl"></story>

If you have a lot of properties and your elements are becoming dirty you can pass an object and
display its properties.

We will refactor our example one more time to wrap it up.

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.mi\

4 n.css" rel="stylesheet">

5 <title>Awesome Stories</title>

6 </head>

7 <body>

8 <div class="container">

9 <story v-bind:story="{plot: 'My horse is amazing.', writer: 'Mr. Weebl'}\

10 ">

11 </story>

12 <story v-bind:story="{plot: 'Narwhals invented Shish Kebab.', writer: 'M\

13 r. Weebl'}"

14 >

15 </story>

16 <story v-bind:story="{plot: 'The dark side of the Force is stronger.', w\

17 riter: 'Darth Vader'}"

18 >

19 </story>

20 <template id="story-template">

21 <h1>{{ story.writer }} said "{{ story.plot }}"</h1>

22 </template>

23 </div>

24 </body>

25 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

26 <script type="text/javascript">

27 Vue.component('story', {

28 props: ['story'],

29 template: "#story-template"

30 });

31

32 new Vue({

33 el: '.container'

34 })

35 </script>

36 </html>

Components 69

Info
v-bind is used to dynamically bind one or more attributes, or a component prop to an
expression.

Since story property is not a string but a javascript object instead of story="..." we use
v-bind:story="..." to bind story property with the passed object.

The shorthand for v-bind is :, so from now on we are gonna use it like this: :story="...".

6.5 Reusability

Let’s take a look again at our Filtered Results example. Assume this time we take the stories

variable data from an external API through an http call. The API developers decide to rename plot
story property to body. So now, we have to go through our code and make the necessary changes.

Info
Later in this book we will cover how we can use Vue to make web requests.

1 <div class="container">

2 <h1>Lets hear some stories!</h1>

3 <div>

4 <h3>Alex's stories</h3>

5 <ul class="list-group">

6 <li v-for="story in stories | filterBy 'Alex' in 'writer'"

7 class="list-group-item"

8 >

9 {{ story.writer }} said "{{ story.plot }}"

10 {{ story.writer }} said "{{ story.body }}"

11

12

13 <h3>John's stories</h3>

14 <ul class="list-group">

15 <li v-for="story in stories | filterBy 'John' in 'writer'"

16 class="list-group-item"

17 >

18 {{ story.writer }} said "{{ story.plot }}"

19 {{ story.writer }} said "{{ story.body }}"

20

21

Components 70

22 <div class="form-group">

23 <label for="query">

24 What are you looking for?

25 </label>

26 <input v-model="query" class="form-control">

27 </div>

28 <h3>Search results:</h3>

29 <ul class="list-group">

30 <li v-for="story in stories | filterBy query in 'body'"

31 class="list-group-item"

32 >

33 {{ story.writer }} said "{{ story.plot }}"

34 {{ story.writer }} said "{{ story.body }}"

35

36

37 </div>

38 </div>

Note
In this particular example syntax highlighting is turned off.

As you may have noticed, we had to do the exact same change 3 times and I don’t know about you,
but I hate repeating myself. If it doesn’t seem like a big deal for you, imagine that you may use the
above code block in 100 places, what would you do then? Fortunately, ‘Vue’ has a solution for that
kind of situations, and this solution has a name, Component.

Tip
Whenever you find yourself repeating a piece of functionality, the most efficient way to
deal with it is to create a dedicated Component.

Luckily we have created a story Component in the previous example, which displays the writer
and the body for a specified story. We can use the custom element <story> inside our HTML and pass
each story as we did before with :story tag but this time we will do it inside v-for directive.

So our code will be:

Components 71

1 <div class="container">

2 <h1>Lets hear some stories!</h1>

3 <div>

4 <h3>Alex's stories</h3>

5 <ul class="list-group">

6 <story v-for="story in stories | filterBy 'Alex' in 'writer'"

7 :story="story"></story>

8

9 <h3>John's stories</h3>

10 <ul class="list-group">

11 <story v-for="story in stories | filterBy 'John' in 'writer'"

12 :story="story"></story>

13

14 <div class="form-group">

15 <label for="query">What are you looking for?</label>

16 <input v-model="query" class="form-control">

17 </div>

18 <h3>Search results:</h3>

19 <ul class="list-group">

20 <story v-for="story in stories | filterBy query in 'body'"

21 :story="story"></story>

22

23 </div>

24 </div>

If you try to run this code you will get the following warning.

Vue warning

Components 72

Vue warn: Unknown custom element: <story> - did you register the component correctly?
For recursive components, make sure to provide the “name” option.

To fix this we need to register the Component again. This time we have to make some changes to
the component’s template. We will change plot attribute to body and <h1> tag to to suit our
needs.

So, the story’s template will be:

1 <template id="story-template">

2 <li class="list-group-item">

3 {{ story.writer }} said "{{ story.plot }}"

4

5 </template>

But the component will be the same.

1 Vue.component('story', {

2 props: ['story'],

3 template: '#story-template'

4 });

If you run the above code you will see for yourself that everything works same as before but this
time with the use of a custom component.

Pretty neat huh?

6.6 Altogether now

Using our newly acquired knowledge we should be able to build something a bit more complex.
Taking the structure example from before, we are going to create a voting system for our stories,
and add a favorite feature. The way to accomplish these is through methods, directives, and of
course, components.

Lets start with the stories setup.

Components 73

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body>

8 <div id="app">

9 <div class="container">

10 <h1>Let's hear some stories!</h1>

11 <ul class="list-group">

12 <story v-for="story in stories" :story="story"></story>

13

14 <pre>{{ $data | json }}</pre>

15 </div>

16 </div>

17 <template id="story-template">

18 <li class="list-group-item">

19 {{ story.writer }} said "{{ story.plot }}"

20

21 </template>

22 </body>

23 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

24 <script type="text/javascript">

25 Vue.component('story', {

26 template: "#story-template",

27 props: ['story'],

28 });

29

30 new Vue({

31 el: '#app',

32 data: {

33 stories: [

34 {

35 plot: 'My horse is amazing.',

36 writer: 'Mr. Weebl',

37 },

38 {

39 plot: 'Narwhals invented Shish Kebab.',

40 writer: 'Mr. Weebl',

41 },

42 {

Components 74

43 plot: 'The dark side of the Force is stronger.',

44 writer: 'Darth Vader',

45 },

46 {

47 plot: 'One does not simply walk into Mordor',

48 writer: 'Boromir',

49 },

50]

51 }

52 })

53 </script>

54 </html>

The next step is to give the user a way to vote once, the story he desires to. To apply this limit (1
vote per story) we will display the ‘Upvote’ button only if user has not already voted. So, every story
must have a voted property that becomes true when upvote function executes.

1 <template id="story-template">

2 <li class="list-group-item">

3 {{ story.writer }} said "{{ story.plot }}".

4 Story upvotes {{ story.upvotes }}.

5 <button v-show="!story.voted" @click="upvote"

6 class="btn btn-default"

7 >

8 Upvote

9 </button>

10

11 </template>

1 Vue.component('story', {

2 template: "#story-template",

3 props: ['story'],

4 methods:{

5 upvote: function(){

6 this.story.upvotes += 1;

7 this.story.voted = true;

8 },

9 }

10 });

11

12 new Vue({

Components 75

13 el: '#app',

14 data: {

15 stories: [

16 {

17 plot: 'My horse is amazing.',

18 writer: 'Mr. Weebl',

19 upvotes: 28,

20 voted: false,

21 },

22 {

23 plot: 'Narwhals invented Shish Kebab.',

24 writer: 'Mr. Weebl',

25 upvotes: 8,

26 voted: false,

27 },

28 {

29 plot: 'The dark side of the Force is stronger.',

30 writer: 'Darth Vader',

31 upvotes: 49,

32 voted: false,

33 },

34 {

35 plot: 'One does not simply walk into Mordor',

36 writer: 'Boromir',

37 upvotes: 74,

38 voted: false,

39 },

40]

41 }

42 })

Components 76

Ready to vote!

We have implemented, with the use of methods, the voting system. I think it looks good, so we can
continue with the ‘favorite story’ part. We want the user to be able to choose only one story to be
his favorite. The first thing that comes to my mind is to add one new empty object (favorite) and
whenever the user chooses one story to be his favorite, update favorite variable. This way we will
be able to check if a story is equal to the user’s favorite story. Let’s do this.

1 <template id="story-template">

2 <li class="list-group-item">

3 {{ story.writer }} said "{{ story.plot }}".

4 Story upvotes {{ story.upvotes }}.

5 <button v-show="!story.voted" @click="upvote"

6 class="btn btn-default">

7 Upvote

8 </button>

9 <button v-show="!isFavorite" @click="setFavorite"

10 class="btn btn-primary">

11 Favorite

12 </button>

13 <span v-show="isFavorite"

14 class="glyphicon glyphicon-star pull-right" aria-hidden="true">

15

Components 77

16

17 </template>

1 Vue.component('story', {

2 template: "#story-template",

3 props: ['story'],

4 methods:{

5 upvote: function(){

6 this.story.upvotes += 1;

7 this.story.voted = true;

8 },

9 setFavorite: function(){

10 this.favorite = this.story;

11 },

12 },

13 computed:{

14 isFavorite: function(){

15 return this.story == this.favorite;

16 },

17 }

18 });

19

20 new Vue({

21 el: '#app',

22 data: {

23 stories: [

24 ...

25],

26 favorite: {}

27 }

28 })

If you try to run the above code, you will notice that it does not work as it should be. Whenever you
try to favorite a story, the variable favorite inside $data remains null and we get none response.

It seems that our story component is unable to update favorite object, so we are going to pass it
on each story and add favorite to component’s properties.

Components 78

1 <ul class="list-group">

2 <story v-for="story in stories"

3 :story="story"

4 :favorite="favorite">

5 </story>

6

1 Vue.component('story', {

2 ...

3 props: ['story', 'favorite'],

4 ...

5 });

setFavorite method malfunctioning

Hmmm, favorite still doesn’t get updated when setFavorite is executed. The button disappears
as expected and a star icon appears but variable favorite is still null. This results in the user being
able to favorite all stories.

The problem with this approach is that we don’t keep things synced. By default, all props form a
one-way-down binding between the child property and the parent one. When the parent property
updates, it will flow down to the child, but not the other way around.
This may be confusing but stick with me. In Vue, you can enforce a two-way binding with
.sync binding type modifier. So, we will pass the variable favorite to each story like this
:favorite.sync="favorite".

Components 79

1 <div id="app">

2 <div class="container">

3 <h1>Let's hear some stories!</h1>

4 <ul class="list-group">

5 <story v-for="story in stories"

6 :story="story"

7 :favorite.sync="favorite">

8 </story>

9

10 <pre>

11 {{ $data | json }}

12 </pre>

13 </div>

14 </div>

Favorite only one story

Now, the desired result is achieved and the user is able to choose only one story to be his favorite
while he can vote as many stories as he wants. With the use of .sync we have synced the property
‘favorite’ and made the binding two-way with the favorite object.

Before the .sync is a one-way down binding, after is a two-way binding, keeping them

Components 80

synchronized.

Components 81

6.7 Homework

This is the most difficult exercise so far, so make sure to put in use everything you have learned in
this book. Create an array of 4 horse-drawn chariots. Each chariot has a “name” and a number of
“horses” (from 1 to 4). Create a component named “chariot”. The “chariot” component should display
the name of the chariot and the number of the horses it has. It also must have an action button. The
button’s text depends on the currently selected chariot.

More specifically button’s text should be:

• ‘Pick Chariot’, before the user has chosen any chariot
• ‘Dismiss Horses’, when the chariot has less horses than the selected chariot
• ‘Hire Horses’, when the chariot has more horses than the selected chariot
• ‘Riding!’, when the chariot is the selected chariot (this button has to be disabled)

The user should be able to pick a chariot and then choose between any chariot he wants to.

Example Scenario: User has chosen a chariot with 2 horses and its button says ‘Riding!’. A chariot
with 3 horses has one more horse, so its button says ‘Hire Horses’. A chariot with 1 horse has one
less horse than user’s chariot, so it’s button says ‘Dismiss Horses’. I think you got the idea..

Hint
You need to use two-way binding between child’s selectedChariot property and parent’s
one.

Hint
To disable a button use disabled="true attribute. You have to figure out how to apply it
conditionally.

Components 82

Example Output

You can find a potential solution to this exercise here¹.

¹https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter6.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter6.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter6.html

7. Class and Style Bindings
7.1 Class binding

7.1.1 Object Syntax

A common need for data binding is manipulating an element’s class and its styles. For such cases,
you can use v-bind:class. This can be used to apply classes conditionally, toggle them and/or apply
many of them using one binded object et al.

The v-bind:class directive takes an object with the following format as an argument

1 {

2 'classA': true,

3 'classB': false,

4 'classC': true

5 }

and applies all classes with true value to the element. For example, the following element will have
classA and classC classes.

1 <div v-bind:class="elClasses"></div>

1 data: {

2 elClasses:

3 {

4 'classA': true,

5 'classB': false,

6 'classC': true

7 }

8 }

To demonstrate how v-bind is used with class attributes, we are going to make an example of
class toggling. Using v-bind:class directive, we are going to dynamically toggle the class of body
element.

83

Class and Style Bindings 84

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body class="text-center"

8 v-bind:class="{ 'body-red' : color, 'body-blue' : !color }"

9 >

10 <button v-on:click="flipColor" class="btn">

11 Flip color!

12 </button>

13 </body>

14 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

15 <script type="text/javascript">

16 new Vue({

17 el: 'body',

18 data: {

19 color: true

20 },

21 methods: {

22 flipColor: function() {

23 this.color = !this.color;

24 }

25 }

26 });

27 </script>

28 <style type="text/css">

29 .body-red {

30 background-color: #ff0000;

31 }

32 .body-blue {

33 background-color: #0000ff;

34 }

35 </style>

36 </html>

Class and Style Bindings 85

Changed backround color

Class and Style Bindings 86

Changed backround color

We have applied a class to the body for our convenience and now body is referenced within our el
property. What this code actually does, is “flipping” the background color with a hit of the button.
Pressing it invokes the flipColor function that reverses the value of “color” originally set to true.
Then the v-bind:class is going to toggle the class name to ‘body-red’ or ‘body-blue’ conditionally
depending on the truthfulness of “color” value. That given, the style is going to apply on each class
and give us the desired result according to which class is active.

Info
The v-bind:class directive can co-exist with the plain class attribute.

So in our example, body always has the text-center class and conditionally one of
body-red or body-blue.

Warning
Although you can use mustache interpolations such as class=”{{ className }}” to bind the
class, it is not recommended to mix that style with v-bind:class. Use one or the other!

Class and Style Bindings 87

7.1.2 Array Syntax

We can also apply a list of classes to an element using an array of classnames.

1 <div v-bind:class="['classA', 'classsB', anotherClass]"></div>

Applying conditionally a class, can also be achieved with the use of inline if inside the array.

1 <div v-bind:class="['classA', condition ? 'classsB' : '']"></div>

Info
Inline if is commonly referred to as the ternary operator, conditional operator, or
ternary if.

The conditional (ternary) operator is the only JavaScript operator that takes three operands.

The syntax of ternary operator is condition ? expression1 : expression2. If condi-
tion is true, the operator returns the value of expression1, otherwise, it returns the value of
expression2.

Using inline if, the flipping colors example will look like:

1 <body class="text-center body"

2 v-bind:class="[color ? 'body-red' : 'body-blue']">

3 <button v-on:click="flipColor"

4 class="btn">

5 Flip color!

6 </button>

7 </body>

1 new Vue({

2 el: 'body',

3 data: {

4 color: true

5 },

6 methods: {

7 flipColor: function() {

8 this.color = !this.color;

9 }

10 }

11 });

Class and Style Bindings 88

Tip
To actually use a class name instead of a variable inside classes array, use single quotes.
v-bind:class="[variable, 'classname']"

7.2 Style binding

7.2.1 Object Syntax

The Object syntax for v-bind:style is pretty straightforward; it looks almost like CSS, except it’s a
JavaScript object.We are going to use the shorthand Vue.js provides for the previously used directive,
v-bind(:).

1 <!-- shorthand -->

2 <div :style="niceStyle"></div>

1 data: {

2 niceStyle:

3 {

4 color: 'blue',

5 fontSize: '20px'

6 }

7 }

We can also declare the style properties inside an object :style=”…“ inline.

1 <div :style="{'color': 'blue', fontSize: '20px'}"></div>

We can even reference variables inside style object:

1 <!-- Variable 'niceStyle' is the same we used in the previous example -->

2 <div :style="{'color': niceStyle.color, fontSize: niceStyle.fontSize}">

3 </div>

Class and Style Bindings 89

Style object binding

It is often a good idea to use a style object and bind it, so the template is cleaner.

7.2.2 Array Syntax

Using inline array syntax for v-bind:style, we are able to apply multiple style objects to the same
element, meaning here that every list item is going to have the color and fontsize of niceStyle
and the font weight of badStyle.

1 <!-- shorthand -->

2 <div :style="[niceStyle, badStyle]"></div>

1 data: {

2 niceStyle:

3 {

4 color: 'blue',

5 fontSize: '20px'

6 }

7 badStyle:

8 {

9 fontweight: 'bold'

10 }

11 }

Class and Style Bindings 90

Info for Intermediates
When you use a CSS property that requires vendor prefixes in v-bind:style, for example
transform, Vue.js will automatically detect and add appropriate prefixes to the applied
styles.

You can find more information about vendor prefixes here¹.

7.3 Bindings in Action

1 <html>

2 <head>

3 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs\

4 s" rel="stylesheet">

5 <title>Hello Vue</title>

6 </head>

7 <body class="container-fluid">

8

9 <li :class="{'completed' : task.done}"

10 :style="styleObject"

11 v-for="task in tasks">

12 {{task.body}}

13 <button @click="completeTask(task)" class="btn">

14 Just do it!

15 </button>

16

17

18 </body>

19 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.js"></script>

20 <script type="text/javascript">

21 new Vue({

22 el: 'body',

23 data: {

24 tasks: [

25 {body: "Feed the horses", done: true},

26 {body: "Wash armor", done: true},

27 {body: "Sharp sword", done: false},

28],

29 styleObject: {

30 fontSize: '25px'

31 }

¹https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix

https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix

Class and Style Bindings 91

32 },

33 methods: {

34 completeTask: function(task) {

35 task.done = !task.done;

36 }

37 },

38 });

39 </script>

40 <style type="text/css">

41 .completed {

42 text-decoration: line-through;

43 }

44 </style>

45 </html>

The above example has an array of objects called “tasks” and a styleObject which contains only one
property. With the use of v-for, a list of tasks is rendered and each task has a “done” property with a
boolean value. Depending on the value of “done”, a class is applied conditionally as before. If a task
has been completed, then css style applies and then task has a text-decoration of line-through. Each
task is accompanied by a button listening for the “click” event which triggers a method, altering the
completion status of the task. The style attribute is binded to styleObject resulting in the change
of ‘fontsize’ of all tasks. As you can see, the completedTasks method takes in the parameter task.

Styling completed tasks

Class and Style Bindings 92

7.4 Homework

A more fun but maybe tricky exercise for this chapter. Create an input where the user can choose a
color. When a color is chosen, apply it to the body. Thats it, let’s paint!! :)

Hint
You can use input type="color" for your ease.

Example Output

You can find a potential solution to this exercise here².

²https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter7.html

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter7.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter7.html

Consuming an API

93

8. Preface
In this chapter, we are going to go a little deeper and demonstrate how we can use Vue.js to consume
an API.

Following the story examples of previous chapters, we will now use some real data, coming from an
external source.

In order to use real data, we need to make use of a database. Assuming that you already know how
to create a database, it won’t be covered in this book. To work along with the book’s examples, we
got you covered, we have already created one to be put to use.

8.1 CRUD

Presume we have a database, we need to perform CRUD operations (Create, Read, Update, Delete).
More particularly, we want to

• Create new stories in the database
• Read existing stories
• Update existing story’s details (such as ‘upvotes’)
• Delete stories that we don’t like

Since Vue.js is a Front-end JavaScript framework, it cannot connect to a database directly. To access a
database we need a layer between Vue.js and the database, this layer is the API (Application Program
Interface).

8.2 API

Because this book is about Vue.js and not about designing APIs, we will provide you a demo API
built with Laravel¹. Laravel is one of most powerful PHP frameworks along with Symfony2, Nette,
CodeIgniter, and Yii2. You are free to create your API using any language or framework you like. I
use Laravel because it is simple, it has a great community, and it is awesome! :)

Therefore, we strongly recommend to use the demo API that we have built exclusively for the book’s
examples.

¹https://laravel.com/

94

https://laravel.com/
https://laravel.com/

Preface 95

8.2.1 Download Book’s Code

To use our API you have to download the book’s code and start a server. To do so, follow the
instructions below.

1. Open your terminal and create a directory (we will create ‘∼/themajestyofvuejs’)

$ mkdir ~/themajestyofvuejs

2. Download the source code from github

$ cd ~/themajestyofvuejs

$ git clone https://github.com/hootlex/the-majesty-of-vuejs .

Alternatively, you can visit the repository on github² and download the zip file. Then, extract
its contents under the created directory.

3. Navigate to the current chapter under ‘apis’ of the newly created directory.

$ cd ~/themajestyofvuejs/apis/stories

4. Run the installation script

$ sh setup.sh

5. You now have a database filled with dummy data as well as a fully functional server running
on ‘http://localhost:3000’!

If you want to customize the server(host, port, etc), you can make the setup manually. Below
is the source code of our script.

Installation Script: setup.sh

navigate to chapter directory

$ cd ~/themajestyofvuejs/apis/stories

install dependencies

$ composer install

Create the database

$ touch database/database.sqlite;

Migrate & Seed

$ php artisan migrate;

²https://github.com/hootlex/the-majesty-of-vuejs

https://github.com/hootlex/the-majesty-of-vuejs
https://github.com/hootlex/the-majesty-of-vuejs

Preface 96

$ php artisan db:seed;

Start server

$ php artisan serve --port=3000 --host localhost;

Great! You now have a fully functional API and a database filled with nice stories.

Note
I you are using Vagrant you have to run the server on host ‘0.0.0.0’. Then, you will be able
to access your server on Vagrant’s box ip.

If, for example, Vagrant’s box ip is 192.168.10.10 and you run

$ php artisan serve --port=3000 --host 0.0.0.0;

you can browse your website on 192.168.10.10:3000.

If you have downloaded our demo API, you can continue to the next section.

If you chose to create you own API, you have to create a database table to store the stories. The
following columns must be present.

Column Name Type

id Integer, Auto Increment
plot String
writer String
upvotes Integer, Unsigned

Don’t forget to seed some fake data to follow up with the next examples.

8.2.2 API Endpoints

An endpoint is simply a URL. When you go to http://example.com/foo/bar then that is an endpoint
and you simply need to call it /foo/bar because the domain will be the same for all the endpoints.

To manage the Story resource we need 5 endpoints. Each endpoint corresponds to a specific action.

HTTP Method URI Action

GET/HEAD api/stories Fetches all stories
GET/HEAD api/stories/{id} Fetches specified story
POST api/stories Creates a new story
PUT/PATCH api/stories/{id} Updates an existing story
DELETE api/stories/{id} Deletes specified story

Preface 97

As indicated in the above table, to get a listing with all the ‘stories’ we have to make an HTTP GET
or HEAD request to api/stories. To update an existing story we have to make an HTTP PUT or
PATCH request to api/stories/{storyID} providing the data we want to override, and replacing
{storyID} with the id of the story we want to update. The same logic applies to all endpoints, I
think you get the idea.

Assuming your server is running on http://localhost:3000, you can view a listing of all stories
in JSON format by visiting http://localhost:3000/api/stories on your web browser.

JSON response

Tip
Reading raw JSON data on browser can be a pain . It is always easier to read a well
formatted JSON. Chrome has some great extensions that could format raw JSON data
into tree view format that can be easily read.

I use JSONFormatter³ because it supports syntax highlighting and displays JSON in tree
view where the nodes on the tree can be collapsed or expanded by clicking the triangle
icon on the left of each node. It also provides a button for switching to original (raw) data.

You can choose whichever extension you like but you should definitely use one!

³https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa

9. Working with real data
It is time to actually put to use our database and perform the operations we have mentioned (CRUD).
Wewill utilize the last example from the Components chapter, but this time of course our data will be
coming from an external source. To exchange data with the server we need to perform asynchronous
HTTP (Ajax) requests.

Info
AJAX is a technique that allows web pages to be updated asynchronously by exchanging
small amounts of data with the server behind the scenes.

9.1 Get Data Asynchronous

Take a moment to have a look at the last example from the Components chapter. As you can see we
hardcode stories array inside the data object of Vue instance.

Stories array hardcoded

1 new Vue({

2 data: {

3 stories: [

4 {

5 plot: 'My horse is amazing.',

6 writer: 'Mr. Weebl',

7 },

8 {

9 plot: 'Narwhals invented Shish Kebab.',

10 writer: 'Mr. Weebl',

11 },

12 ...

13]

14 }

15 })

This time, we want to fetch the existing stories from the server.

98

Working with real data 99

To do so , we’ll perform a HTTP GET request using jQuery at first. Later on this chapter, we will
migrate to vue-resource¹ to see the differences between the two of them.

To make the AJAX call we are going to use $.get(), a jQuery function that loads data from the
server using a HTTP GET request. Full documentation for $.get() can be found here².

Info
vue-resource is a plugin for Vue.js that provides services for making web requests and
handle responses.

The $.get() method’s syntax is

1 $.get(

2 url,

3 success

4);

which is actually a shorthand for

1 $.ajax({

2 url: url,

3 success: success

4 });

So what we do now? We want to get the stories from the server using $.get('/api/stories')

passing the appropriate URL and put the response data we get, inside the stories array.

There is a common catch here, we have to make the call after the documented has finished
rendering. Fortunately, there is a helper function called ready in Vue.js (similar to $(document

).ready()) which triggers once the page Document Object Model (DOM) is ready.

Lets see this in action.

¹https://github.com/vuejs/vue-resource
²https://api.jquery.com/jquery.get/

https://github.com/vuejs/vue-resource
https://api.jquery.com/jquery.get/
https://github.com/vuejs/vue-resource
https://api.jquery.com/jquery.get/

Working with real data 100

1 <div id="app">

2 <div class="container">

3 <h1>Let's hear some stories!</h1>

4 <ul class="list-group">

5 <story v-for="story in stories" :story="story">

6 </story>

7

8 <pre>{{ $data | json }}</pre>

9 </div>

10 </div>

11 <template id="template-story-raw">

12 <li class="list-group-item">

13 {{ story.writer }} said "{{ story.plot }}"

14 {{story.upvotes}}

15

16 </template>

1 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.16/vue.js"></script>

2 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

3 <script type="text/javascript">

4 Vue.component('story', {

5 template: "#template-story-raw",

6 props: ['story'],

7 });

8

9 var vm = new Vue({

10 el: '#app',

11 data: {

12 stories: []

13 },

14 ready : function(){

15 $.get('/api/stories', function(data){

16 vm.stories = data;

17 })

18 }

19 })

20 </script>

We start by pulling in the jQuery from the cdnjs³. Then use the ready function and inside it,
perform the GET request. After the request is successfully finished we set the response data (inside
the callback) to stories array.

³https://cdnjs.com/libraries/jquery/

https://cdnjs.com/libraries/jquery/
https://cdnjs.com/libraries/jquery/

Working with real data 101

Get stories

Notice here, that inside the callback we are referring to stories variable using vm.stories
instead of this.stories. We do so because variable this does not represent the Vue

instance inside the callback. So, we set the whole Vue instance to a variable called vm,
in order to have access to it from anywhere within our code. To learn more about this,
have a look at the MDN documentation⁴.

9.2 Refactoring

Having large amounts of code can be confusing, in our text editor, as well as in the browser, if not
displayed properly. For that reason, we are going to refactor our example code, to render the list of
stories using a <table> element instead of the .

⁴https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Working with real data 102

1 <div id="app">

2 <table class="table table-striped">

3 <tr>

4 <th>#</th>

5 <th>Plot</th>

6 <th>Writer</th>

7 <th>Upvotes</th>

8 <th>Actions</th>

9 </tr>

10 <story v-for="story in stories" :story="story">

11 </story>

12 </table>

13 <template id="template-story-raw">

14 <tr>

15 <td>

16 {{story.id}}

17 </td>

18 <td>

19

20 {{story.plot}}

21

22 </td>

23 <td>

24

25 {{story.writer}}

26

27 </td>

28 <td>

29 {{story.upvotes}}

30 </td>

31 </tr>

32 </template>

33 <p class="lead">Here's a list of all your stories.

34 </p>

35 <pre>{{ $data | json }}</pre>

36 </div>

But there is an issue.

Working with real data 103

Rendering issues

Our table does not render properly, but why?⁵. The reason behind this is that:

Some HTML elements, for example <table>, have restrictions on what elements can
appear inside them. Custom elements that are not in the whitelist will be hoisted out
and thus not render properly. In such cases you should use the is special attribute to
indicate a custom element.

Therefore, to solve this issue we have to use Vue’s special attribute is.

1 <table>

2 <tr is="my-component"></tr>

3 </table>

So our example will become

1 <tr v-for="story in stories" is="story" :story="story"></tr>

⁵http://goo.gl/Xr9RoQ

http://goo.gl/Xr9RoQ
http://goo.gl/Xr9RoQ

Working with real data 104

Table renders properly

Well this looks better!

9.3 Update Data

We used to have a function that allowed the user to vote any story he wanted to. This time we want
each time a story is voted to inform the server, ensuring that story votes are updated in the database
as well.

To update an existing story we have to make an HTTP PATCH or PUT request to api/sto-

ries/{storyID}.

Inside the upvoteStory function which is to be created, we are going to make a HTTP call after
we have increased story upvotes. We will pass the newly updated story variable in the Request
Payload in order to update the data in our server.

Working with real data 105

1 <td>

2 <div class="btn-group">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 </div>

7 </td>

1 Vue.component('story',{

2 template: '#template-story-raw',

3 props: ['story'],

4 methods: {

5 upvoteStory: function(story){

6 story.upvotes++;

7 $.ajax({

8 url: '/api/stories/'+story.id,

9 type: 'PATCH',

10 data: story,

11 });

12 }

13 },

14 })

We brought back the upvote method and placed it inside our story component. Making a PATCH
request now, providing the new data, the server updates the upvotes count.

Working with real data 106

Upvote stories

9.4 Delete Data

Now let us proceed to another piece of functionality our stories list should have, deleting a story
we don’t like. To remove a story from the array and the DOM, we are going to use Vue’s $remove()
method, which searches for an item and removes it from target Array.

Info
$remove() method works as follows. When you want to remove an item from an array
called items you can do:

vm.items.$remove(item)

Working with real data 107

1 <td>

2 <div class="btn-group">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 <button @click="deleteStory(story)" class="btn btn-danger">

7 Delete

8 </button>

9 </div>

10 </td>

We append a ‘Delete’ button to the ‘actions’ column, binded to a method to delete the story. The
deleteStory method will be:

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 deleteStory: function(story){

6 vm.stories.$remove(story)

7 }

8 }

9 ...

10 })

But of course, this way, we will only remove the story temporary. In order to delete the story from
the database, we have to perform an AJAX DELETE request.

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 deleteStory: function(story){

6 vm.stories.$remove(story)

7 $.ajax({

8 url: '/api/stories/'+story.id,

9 type: 'DELETE'

10 });

11 },

12 }

13 ...

14 })

Working with real data 108

We are passing in the URL, as we did before. The type here should be equal to DELETE. Our method
is now ready and we can delete the story from our database as well as the DOM.

Upvote and Delete stories

That’s it for now.Wewill continue our example in the next chapter, by enhancing the functionality
with Creating new stories, Editing current stories and more. But first of all, we will replace
jQuery with vue-resource.

10. Integrating vue-resource
10.1 Overview

Vue-recourse is a resource plugin for Vue.js. This plugin provides services for making web requests
and handles responses using an XMLHttpRequest or JSONP.

We are going to make again all the web requests we made above, using this plugin instead. This way
you can see the differences and decide for yourself which suits you best. jQuery is nice, but if you
are using it only to perform AJAX calls, you may consider removing it.

Here you can find installation instructions and documentation about vue-recourse¹ As usual, we are
going to to “pull it in” from the cdnjs² page.

To fetch data from a server and bring them up to display in the browser, we can use vue-resource
$http method with the following syntax:

1 ready: function() {

2 // GET request

3 this.$http({url: '/someUrl', method: 'GET'})

4 .then(function (response) {

5 // success callback

6 }, function (response) {

7 // error callback

8 });

9 }

Info
A Vue instance provides the this.$http(options) function which takes an options object
for generating an HTTP request and returns a promise. Also the Vue instance will be
automatically bound to this in all function callbacks.

Instead of passing the method option, there are shortcut methods available for all request types.

¹https://github.com/vuejs/vue-resource
²https://cdnjs.com/libraries/vue-resource

109

https://github.com/vuejs/vue-resource
https://cdnjs.com/libraries/vue-resource
https://github.com/vuejs/vue-resource
https://cdnjs.com/libraries/vue-resource

Integrating vue-resource 110

Request shortcuts

1 this.$http.get(url, [data], [options]).then(successCallback, errorCallback);

2 this.$http.post(url, [data], [options]).then(successCallback, errorCallback);

3 this.$http.put(url, [data], [options]).then(successCallback, errorCallback);

4 this.$http.patch(url, [data], [options]).then(successCallback, errorCallback);

5 this.$http.delete(url, [data], [options]).then(successCallback, errorCallback);

10.2 Migrating

It is time to use vue-resource in our example. First of all, we have to include it. We will add this
line to our HTML file.

1 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue-resource/0.7.0/vue-resou\

2 rce.js"></script>

To fetch the stories we will make a GET request in the corresponding form.

1 ready: function() {

2 // GET request

3 this.$http({url: '/api/stories', method: 'GET'}).then(function (response) {

4 this.$set('stories', response.data)

5 //Or we as we did before

6 //vm.stories = response.data

7 })

8 }

Our list of stories comes without any problems using the syntax above.

Lets move on now with the DELETE and PATCH requests using the shortcut methods.

PATCH request

1 upvoteStory: function(story){

2 story.upvotes++;

3 this.$http.patch('/api/stories/'+story.id , story)

4 },

We have replaced the AJAX method with this one, in no time!

Integrating vue-resource 111

DELETE request

1 deleteStory: function(story){

2 this.$parent.stories.$remove(story)

3 this.$http.delete('/api/stories/'+story.id)

4 },

We observe that the delete function works as expected and the story is deleted from the database.

10.3 Enhancing Functionality

We should add a couple more features to make our list of stories neat. We can give the user the
ability to change the plot and the writer of a story and create new stories.

10.3.1 Edit Stories

Let’s start with the first task and give the user some inputs to manipulate the story’s attributes. Two
binded inputs should do the job, but we should display them only when the user is editing a story.
It seems like the kind of work we did in previous chapters.

To define if a story is in edit state we will use a property, editing which will become true when
the user hits the ‘Edit’ button.

1 <td>

2 <!--if editing story display the input for plot-->

3 <input v-if="story.editing" v-model="story.plot" class="form-control">

4 </input>

5 <!--in other occasions show the story plot-->

6

7 {{story.plot}}

8

9 </td>

10 <td>

11 <!-- if editing story display the input for writer -->

12 <input v-if="story.editing" v-model="story.writer" class="form-control">

13 </input>

14 <!--in other occasions show the story writer-->

15

16 {{story.writer}}

17

18 </td>

Integrating vue-resource 112

19 <td>

20 {{story.upvotes}}

21 </td>

22 <td>

23 <div v-if="!story.editing" class="btn-group">

24 <button @click="upvoteStory(story)" class="btn btn-primary">

25 Upvote

26 </button>

27 <button @click="editStory(story)" class="btn btn-default">

28 Edit

29 </button>

30 <button @click="deleteStory(story)" class="btn btn-danger">

31 Delete

32 </button>

33 </div>

34 </td>

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 editStory: function(story){

6 story.editing=true;

7 },

8 }

9 ...

10 })

This is our updated table with two new inputs and a button. We use the editStory function to set
story.editing to true , so v-if will bring up the inputs to edit the story and hide the ‘Upvote’ and
‘Delete’ buttons. But this approach won’t work. It seems that the DOM isn’t updating after setting
story.editing to true. Why this may be happening?

It turns out, according to this post from Vue.js blog³ that when you are adding a new property
that wasn’t present when the data was observed the DOM won’t update. The best practice is to
always declare properties that need to be reactive upfront. In cases where you absolutely need to
add or delete properties at runtime, use the global Vue.set or Vue.delete methods.

For this reason, we have to initialize the story.editing attribute to false on each story, right after
receiving the stories from the server.

To do this, we are going to use javascript’s .map() method within the success callback of the GET
request.

³http://vuejs.org/2016/02/06/common-gotchas/

http://vuejs.org/2016/02/06/common-gotchas/
http://vuejs.org/2016/02/06/common-gotchas/

Integrating vue-resource 113

1 ready: function() {

2 // GET request

3 this.$http({url: '/api/stories', method: 'GET'}).then(function (response) {

4 var storiesReady = response.data.map(function(story){

5 story.editing = false;

6 return story

7 })

8

9 this.$set('stories', storiesReady)

10 })

11 }

Info
The .map() method calls a defined callback function on each element of an array and
returns an array that contains the results. You can find more information about the .map()
method and its syntax Here⁴

The function passes the new attribute inside each story object and then returns the updated story.
The new variable storiesReady is an array that contains our updated array with the new attribute
on.

When the story is under edit, we will give the user two options, to update the story with new values,
and to cancel the edit.

Form inputs for story editing

So, lets move on and add two new buttons that should be displayed only when the user is editing
a story. Additionally a new method called updateStory will be created, which updates the current
editing story, after the ‘Update Story’ button is pressed.

⁴https://msdn.microsoft.com/en-us/library/ff679976(v=vs.94).aspx

https://msdn.microsoft.com/en-us/library/ff679976(v=vs.94).aspx
https://msdn.microsoft.com/en-us/library/ff679976(v=vs.94).aspx

Integrating vue-resource 114

1 <!-- If story is under edit, display this group of buttons -->

2 <div class="btn-group" v-else>

3 <button @click="updateStory(story)" class="btn btn-primary">

4 Update Story

5 </button>

6 <button @click="story.editing=false" class="btn btn-default">

7 Cancel

8 </button>

9 </div>

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 updateStory: function(story){

6 this.$http.patch('/api/stories/'+story.id , story)

7 //Set editing to false to show actions again and hide the inputs

8 story.editing = false;

9 },

10 }

11 ...

12 })

Updating story actions

Here it is up and running. After the PATCH request is finished successfully, we have to set
story.editing to false in order to hide the inputs and bring back the action buttons.

10.3.2 Create New Stories

Now for a bit trickier task, we are going to give the user the ability to create a new story and save it to
our server. First, we must provide inputs so the new story can be typed in. To make this happen, we
will create an empty story and we’ll add it to the stories array using the push() javascript method.
We will initialize all the story’s attributes to null, except from editing. We want to immediately
manipulate the story, so the editing will be set to true.

Integrating vue-resource 115

1 var vm = new Vue({

2 ...

3 methods: {

4 createStory: function(){

5 var newStory={

6 "plot": "",

7 "upvotes": 0,

8 "editing": true

9 };

10 this.stories.push(newStory);

11 },

12 }

13 })

1 <p class="lead">Here's a list of all your stories.

2 <button @click="createStory()" class="btn btn-primary">

3 Add a new one?

4 </button>

5 </p>

Info
The push() method adds new items to the end of an array, and returns the new length. You
can find more information about the push() method and its syntax Here⁵

As soon as the new variable is set, we push it to our stories array. We named the new function
createStory and we placed it in our Vue instance.

Right bellow our list, we have added a button. When the button is clicked, createStorymethod gets
invoked. Since the newStory.editing is set to true, the binded inputs for “plot” and “writer” along
with the ‘Edit action buttons’ are being rendered instantly.

Also, the new story object must be sent to the server in order to be stored in the database. We are
going to perform a POST request inside a method called storeStory.

⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

Integrating vue-resource 116

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 this.$http.post('/api/stories/', story).then(function() {

7 story.editing = false;

8 });

9 },

10 }

11 ...

12 })

We ‘ve used the shortcut method for the request type POST and in the success callback function
we set editing to false, to show the ‘actions buttons’ again and hide the form’s inputs and ‘editing’
buttons. Below we update the button groups in accordance to the new method.

1 <td>

2 <div class="btn-group" v-if="!story.editing">

3 <button @click="upvoteStory(story)" class="btn btn-primary">

4 Upvote

5 </button>

6 <button @click="editStory(story)" class="btn btn-default">

7 Edit

8 </button>

9 <button @click="deleteStory(story)" class="btn btn-danger">

10 Delete

11 </button>

12 </div>

13 <div class="btn-group" v-else>

14 <button class="btn btn-primary" @click="updateStory(story)">

15 Update Story

16 </button>

17 <button class="btn btn-success" @click="storeStory(story)">

18 Save New Story

19 </button>

20 <button @click="story.editing=false" class="btn btn-default">

21 Cancel

22 </button>

23 </div>

24 </td>

Integrating vue-resource 117

We observe a small mistake in this block of code. When we are in “editing” mode (v-else block) the
buttons for update and store are being shown together, but we only need one for each story since
each story will be Stored or Updated, it can’t do both. So, if the story is an old one and the user is
about to edit it, we need the update button. Else, if the story is new, we need the store button.

A small mistake

To bypass this issue, we are going to restructure our buttons. The Update button will only be
displayed when the story is old. Accordingly the Save new button will be displayed when the story
is a new one.

You may have noticed that all stories fetched from the server have an id attribute. We are going to
use this observation to define if a story is new or not.

1 <div class="btn-group" v-else>

2 <!--If the story is an old one then we want to update it

3 TIP: if the story is taken from the db then it will have an id-->

4 <button v-if="story.id" class="btn btn-primary" @click="updateStory(story)">

5 Update Story

6 </button>

7 <!--If the story is new we want to store it-->

8 <button v-else class="btn btn-success" @click="storeStory(story)">

9 Save New Story

10 </button>

Integrating vue-resource 118

11 <!--always show cancel-->

12 <button @click="story.editing=false" class="btn btn-default">

13 Cancel

14 </button>

15 </div>

Tip
If the story is taken from the database then it will have an id.

Adding new story

So there we have it. It wasn’t that hard, right?

After finishing this part, testing our app shows another error. After creating, saving, and trying to
edit a new story, we see that the button says “Save new Story” instead of “Update Story”! Thats
because we are not fetching the newly created story from the server, after we send it, and it does
not have an id yet. To solve this problem we can fetch the stories from server again, after finishing
creating a story.

Since I don’t like to repeat my code, I will extract the fetching procedure to a method called
fetchStories(). After that, I can use this method to fetch the stories anytime.

Integrating vue-resource 119

The fetchStories method

1 var vm = new Vue({

2 el: '#v-app',

3 data : {

4 stories: [],

5 },

6

7 ready : function(){

8 this.fetchStories()

9 },

10 methods: {

11 createStory: function(){

12 var newStory={

13 "plot": "",

14 "upvotes": 0,

15 "editing": true

16

17 };

18 this.stories.push(newStory);

19 },

20 fetchStories: function () {

21 this.$http.get('/api/stories')

22 .then(function (response) {

23 var storiesReady = response.data.map(function(story){

24 story.editing = false;

25 return story

26 })

27 this.$set('stories', storiesReady)

28 });

29 },

30 }

31 });

In our situation, we’ll call fetchStories() inside the success callback of the POST request.

Integrating vue-resource 120

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 this.$http.post('/api/stories/', story).then(function() {

7 story.editing = false;

8 vm.fetchStories();

9 });

10 },

11 }

12 ...

13 })

That’s it!We can now create and edit any story we want.

10.3.3 Store & Update Unit

A better way to fix the previous issue, is to update only the newly created story from the database,
instead of fetching and overwriting all the stories. If you see the server response for the POST request
you will see that it returns the created story along with its id.

Server response after creating new story

The only thing we have to do, is to update our story to match the server’s one. So, we will set the
id of the response data, to story’s id attribute. We will do this inside the POST’s success callback.

Integrating vue-resource 121

1 Vue.component('story',{

2 ...

3 methods: {

4 ...

5 storeStory: function(story){

6 this.$http.post('/api/stories/', story).then(function(response) {

7 Vue.set(story, 'id', response.data.id);

8 story.editing = false;

9 });

10 },

11 }

12 ...

13 })

I use Vue.set(story, 'id', response.data.id) instead of story.id = response.data.id be-
cause inside our table we display the id of each story. Since the new story had no id when pushed
to the stories array the DOM won’t be updated when the id changes, so we will not be able to see
the new id.

Tip
When you are adding a new property that wasn’t present when the data was observed,
Vue.js cannot detect the property’s addition. So, if you need to add or remove properties at
runtime, use the global Vue.set or Vue.delete methods.

10.4 JavaScript File

As you may have noticed, our code is becoming big, and as our project grows, it will be hard to
maintain. For starters, we’ll separate the JavaScript code from the HTML. I’ll create a file called
app.js and I’ll save it under js directory.

All the JavaScript code should live inside that file from now on. To include the newly created script
to any HTML page you simply have to add this tag

1 <script src='/js/app.js' type="text/javascript"></script>

and you are ready to go!

Integrating vue-resource 122

10.5 Source Code

Below is the whole source code of the previous Managing Stories example. Because the code is big
enough I suggest you to open your local files with your favorite text editor, if you have downloaded
our repo. The file is located at ∼/themajestyofvuejs/apis/stories/.

If you haven’t downloaded the repository you can still view the stories.html⁶ and app.js⁷ files on
github.

stories.html

1 <!doctype html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1">

6 <title>Stories</title>

7 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2\

8 /css/bootstrap.min.css">

9 </head>

10 <body>

11 <main>

12 <div class="container">

13 <h1>Stories</h1>

14 <div id="v-app">

15 <table class="table table-striped">

16 <tr>

17 <th>#</th>

18 <th>Plot</th>

19 <th>Writer</th>

20 <th>Upvotes</th>

21 <th>Actions</th>

22 </tr>

23 <tr v-for="story in stories" is="story" :story="story"></tr>

24 </table>

25 <template id="template-story-raw">

26 <tr>

27 <td>

28 {{story.id}}

29 </td>

30 <td class="col-md-6">

⁶https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/stories.html
⁷https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/js/app.js

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/stories.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/js/app.js
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/stories.html
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/apis/stories/public/js/app.js

Integrating vue-resource 123

31 <input v-if="story.editing" v-model="story.plot"

32 class="form-control">

33 </input>

34 <!--in other occasions show the story plot-->

35

36 {{story.plot}}

37

38 </td>

39 <td>

40 <input v-if="story.editing" v-model="story.writer"

41 class="form-control">

42 </input>

43 <!--in other occasions show the story writer-->

44

45 {{story.writer}}

46

47 </td>

48 <td>

49 {{story.upvotes}}

50 </td>

51 <td>

52 <div class="btn-group" v-if="!story.editing">

53 <button @click="upvoteStory(story)"

54 class="btn btn-primary"

55 >

56 Upvote

57 </button>

58 <button @click="editStory(story)"

59 class="btn btn-default"

60 >

61 Edit

62 </button>

63 <button @click="deleteStory(story)"

64 class="btn btn-danger"

65 >

66 Delete

67 </button>

68 </div>

69 <div class="btn-group" v-else>

70 <!--If the story is taken from the db then it will h\

71 ave an id-->

72 <button v-if="story.id"

Integrating vue-resource 124

73 @click="updateStory(story)"

74 class="btn btn-primary"

75 >

76 Update Story

77 </button>

78 <!--If the story is new we want to store it-->

79 <button v-else

80 @click="storeStory(story)"

81 class="btn btn-success"

82 >

83 Save New Story

84 </button>

85 <!--Always show cancel-->

86 <button @click="story.editing=false"

87 class="btn btn-default"

88 >

89 Cancel

90 </button>

91 </div>

92 </td>

93 </tr>

94 </template>

95 <p class="lead">Here's a list of all your stories.

96 <button @click="createStory()"

97 class="btn btn-primary"

98 >

99 Add a new one?

100 </button>

101 </p>

102 <pre>{{ $data | json }}</pre>

103 </div>

104 </div>

105 </main>

106 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue/1.0.18/vue.min.js"></scr\

107 ipt>

108 <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

109 <script src="https://cdnjs.cloudflare.com/ajax/libs/vue-resource/0.7.0/vue-resou\

110 rce.js"></script>

111 <script src='/js/app.js' type="text/javascript"></script>

112 </body>

113 </html>

Integrating vue-resource 125

1 Vue.component('story', {

2 template: '#template-story-raw',

3 props: ['story'],

4 methods: {

5 deleteStory: function (story) {

6 this.$parent.stories.$remove(story)

7 this.$http.delete('/api/stories/' + story.id)

8 },

9 upvoteStory: function (story) {

10 story.upvotes++;

11 this.$http.patch('/api/stories/' + story.id, story)

12 },

13 editStory: function (story) {

14 story.editing = true;

15 },

16 updateStory: function (story) {

17 this.$http.patch('/api/stories/' + story.id, story)

18 // Set editing to false to show actions again and hide the inputs

19 story.editing = false;

20 },

21 storeStory: function (story) {

22 this.$http.post('/api/stories/', story)

23 .then(function (response) {

24 // After the the new story is stored in the database

25 // we fetch again all stories

26 // vm.fetchStories();

27 // OR Better, update the id of the created story

28 Vue.set(story, 'id', response.data.id);

29 // Set editing to false to show actions again and hide the inputs

30 story.editing = false;

31 });

32 },

33 }

34 })

35 new Vue({

36 el: '#v-app',

37 data: {

38 stories: [],

39 },

40 ready: function () {

41 this.fetchStories()

42 },

Integrating vue-resource 126

43 methods: {

44 createStory: function () {

45 var newStory = {

46 plot: "",

47 upvotes: 0,

48 editing: true

49 };

50 this.stories.push(newStory);

51 },

52 fetchStories: function () {

53 var vm = this;

54 this.$http.get('/api/stories')

55 .then(function(response){

56 // set data on vm

57 var storiesReady = response.data.map(function (story) {

58 story.editing = false;

59 return story

60 })

61 vm.$set('stories', storiesReady)

62 });

63 },

64 }

65 });

Integrating vue-resource 127

10.6 Homework

To get comfortable with making web requests and handling responses you should replicate what we
did in this chapter.

What you have to do is to consume an API in order to:

• create a table and display existing movies
• modify existing movies
• store new movies in the database
• delete movies from the database

I have prepared the database and the API for you. You only have to write HTML and JavaScript.

10.6.1 Preface

If you have followed the instructions from Chapter 8 open your terminal and run:

cd ~/themajestyofvuejs/apis/movies

sh setup.sh

If you haven’t, you should run this:

mkdir ~/themajestyofvuejs

cd ~/themajestyofvuejs

git clone https://github.com/hootlex/the-majesty-of-vuejs .

cd ~/themajestyofvuejs/apis/movies

sh setup.sh

You now have a database filled with great movies along with a fully functional server running
on ‘http://localhost:3000’!

To ensure that everything is working fine browse to ‘http://localhost:3000/api/movies’ and you
should see an array of movies in JSON format.

10.6.2 API Endpoints

The API Endpoints you are going to need are:

Integrating vue-resource 128

HTTP Method URI Action

GET/HEAD api/movies Fetches all movies
GET/HEAD api/movies/{id} Fetches specified movie
POST api/movies Creates a new movie
PUT/PATCH api/movies/{id} Updates an existing movie
DELETE api/movies/{id} Deletes specified movie

10.6.3 Your Code

Put your HTML code inside ∼/themajestyofvuejs/apis/movies/public/movies.html file we have
created. You can place your JavaScript code there too, or inside js/app.js.

To check your work visit ‘http://localhost:3000/movies.html’ with your browser.

I hope you will enjoy this one, Good luck!

Example Output

You can find a potential solution to this exercise here⁸.

⁸https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter10

https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter10
https://github.com/hootlex/the-majesty-of-vuejs/blob/master/homework/chapter10

	Table of Contents
	Introduction
	About Vue.js
	Vue.js Overview
	What people say about Vue.js
	Comparison with Other Frameworks
	Angular
	React
	Ember
	Polymer
	Riot

	Welcome
	About the Book
	Who is this Book for
	Get In Touch
	Homework
	Errata
	Conventions

	Vue.js Fundamentals
	Install Vue.js
	Standalone Version
	Download from vuejs.org
	Include from CDN

	Download using NPM
	Download using Bower

	Getting Started
	Hello World
	Two-way Binding
	Comparison with jQuery.
	Homework

	A Flavor of Directives.
	v-show
	v-if
	Template v-if

	v-else
	v-if vs. v-show
	Homework

	List Rendering
	Install & Use Bootstrap
	v-for
	Range v-for

	Array Rendering
	Loop Through an Array
	Loop Through an Array of Objects

	Object v-for
	Filtered Results
	Ordered Results
	Custom Filter
	Homework

	Interactivity
	Event Handling
	Handling Events Inline
	Handling Events using Methods
	Shorthand for v-on

	Event Modifiers
	Key Modifiers
	Computed Properties
	Using Computed Properties to Filter an Array

	Homework

	Components
	What are Components?
	Using Components
	Templates
	Properties
	Reusability
	Altogether now
	Homework

	Class and Style Bindings
	Class binding
	Object Syntax
	Array Syntax

	Style binding
	Object Syntax
	Array Syntax

	Bindings in Action
	Homework

	Consuming an API
	Preface
	CRUD
	API
	Download Book's Code
	API Endpoints

	Working with real data
	Get Data Asynchronous
	Refactoring
	Update Data
	Delete Data

	Integrating vue-resource
	Overview
	Migrating
	Enhancing Functionality
	Edit Stories
	Create New Stories
	Store & Update Unit

	JavaScript File
	Source Code
	Homework
	Preface
	API Endpoints
	Your Code

