

WebRTC Cookbook

Get to grips with advanced real-time communication
applications and services on WebRTC with practical,
hands-on recipes

Andrii Sergiienko

BIRMINGHAM - MUMBAI

WebRTC Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-445-0

www.packtpub.com

www.packtpub.com

Credits

Author
Andrii Sergiienko

Reviewers
Pasquale Boemio

Jose López

Marcos de Vera Piquero

Commissioning Editor
Usha Iyer

Acquisition Editor
Sam Wood

Content Development Editor
Rahul Nair

Technical Editor
Siddhi Rane

Copy Editor
Neha Vyas

Project Coordinator
Judie Jose

Proofreaders
Ting Baker

Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=ba270ddc-d789-85bf-b4cb-53832332da99
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e083bb57-ad99-b1cf-e1b7-53db7e365a24
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=71cd86ce-ac0f-971d-187f-53db866c5adf
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=71cd86ce-ac0f-971d-187f-53db866c5adf

About the Author

Andrii Sergiienko is a computer software developer from Ukraine and is passionate
about information technologies. From his early childhood, he was interested in computer
programming and hardware. He took his first step into these fields more than 20 years
ago. He has experience of a wide set of languages and technologies including C, C++,
Java, assembly language, Erlang, JavaScript, PHP, Riak, shell scripting, computer networks,
and security.

During his career he worked for both small, local companies such as domestic ISP and large,
worldwide corporations such as Hewlett Packard. He also started his own projects—some of
them were relatively successful.

Today, he is the owner and inspirer of OSLIKAS OÜ, a computer software company with
headquarters in Estonia. The company (http://www.oslikas.com) focuses on modern
IT technologies and solutions.

Working on this book was a really great and interesting experience for me.
All this would be impossible without the help of certain people. And now is
the time for me to say thank you to them.

First of all, I would like to thank my parents Olga and Alexander for my
happy childhood that established the foundation for my life and career.

I would like to say thank you to my wife Inna for her patience,
encouragement, and support during this process.

I would like to thank the Packt Publishing team as well. These guys are
doing really great work and making the world a better place. We contacted
some of them directly during the work, and others stayed behind the
scenes. However, I know that a lot of people spent part of their lives to
make this book possible. Thank you all.

http://www.oslikas.com

About the Reviewers

Pasquale Boemio fell in love with Linux and the open source philosophy at the age of 12.
Following this passion, he studied computer engineering at University of Naples Federico II
from where he graduated with a master's degree.

Currently, he is working as a researcher in the Department of Electrical Engineering and
Information Technology (DIETI) in the University of Naples Federico II, contributing to the
development of real-time communication technologies. His efforts in this field are concretized
by supporting the Meetecho project (www.meetecho.com).

Meetecho is a university spin-off and a tool for the collaborative work currently used by the
Internet Engineering Task Force (IETF) to provide remote participation to the working groups.
Meetecho leverages some state-of-the-art technologies (such as WebRTC and Docker) to
implement a comprehensive architecture that can be lightweight and portable. Meetecho's
best project is the Janus WebRTC Gateway (http://janus.conf.meetecho.com/),
mentioned later in this book, which allows a user the ability to integrate different, real-time
technologies without any pains.

In his spare time, Pasquale works on some personal open source projects (https://github.
com/helloIAmPau) and helps the community by giving his contributions to cool projects found
on the GitHub platform.

He has already worked with Packt Publishing by reviewing WebRTC Integrator's Guide,
a useful guide for anyone who needs to integrate WebRTC with a retro technology such as SIP.

Jose López was born in Galicia, Spain. He is a telecommunications engineer with a large
amount of experience in software development, and is also focused on real-time audio/video
communications. He started working for Quobis Networks in 2013, a leading company in
WebRTC solutions.

Marcos de Vera Piquero is a software engineer who has mainly worked with Python
and CoffeeScript. His area of development is now focused on the server side of real-time
multimedia applications at Quobis, his current employer. He's also a free software enthusiast
and is trying to make it a real alternative.

www.meetecho.com
http://janus.conf.meetecho.com/
https://github.com/helloIAmPau
https://github.com/helloIAmPau

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Peer Connections 7

Introduction 7
Building a signaling server in Erlang 9
Building a signaling server in Java 14
Detecting WebRTC functions supported by a browser 18
Making and answering calls 21
Implementing a chat using data channels 26
Implementing a chat using a signaling server 34
Configuring and using STUN 36
Configuring and using TURN 39

Chapter 2: Supporting Security 45
Introduction 45
Generating a self-signed certificate 46
Configuring a TURN server with authentication 50
Configuring a web server to work over HTTPS 55
Configuring a WebSockets proxy on the web server 59
Configuring a firewall 65

Chapter 3: Integrating WebRTC 71
Introduction 71
Integrating WebRTC with Asterisk 72
Integrating WebRTC with FreeSWITCH 76
Making calls from a web page 79
Integration of WebRTC with web cameras 83

Chapter 4: Debugging a WebRTC Application 89
Introduction 89
Working with a WebRTC statistics API 90
Debugging with Chrome 98

ii

Table of Contents

Debugging TURN 108
Debugging using Wireshark 111

Chapter 5: Working with Filters 117
Introduction 117
Working with colors and grayscale 118
Working with brightness 120
Working with contrast 122
Working with saturation 124
Working with hue 126
Using the sepia filter 128
Using the opacity filter 130
Inverting colors 132
Implementing the blur effect 134
Implementing the dropped shadow effect 136
Combining filters 139
Custom video processing 141

Chapter 6: Native Applications 143
Introduction 143
Building a customized WebRTC demo for iOS 144
Compiling and running an original demo for iOS 150
Compiling and running a demo for Android 152
Building an OpenWebRTC library 161

Chapter 7: Third-party Libraries 165
Introduction 165
Building a video conference using SimpleWebRTC 166
Creating an application using RTCMultiConnection 170
Developing a simple WebRTC chat using PeerJS 176
Making a simple video chat with rtc.io 180
Using OpenTok to create a WebRTC application 182
Creating a multiuser conference using WebRTCO 189

Chapter 8: Advanced Functions 195
Introduction 195
Visualizing a microphone's sound level 195
Muting a microphone 199
Pausing a video 201
Taking a screenshot 203
Streaming media 204

Index 215

Preface
WebRTC is a relatively new and revolutionary technology that opens new horizons in the area
of interactive applications and services. Most of the popular web browsers support it natively
(such as Chrome and Firefox) or via extensions (such as Safari). Mobile platforms such as
Android and iOS allow you to develop native WebRTC applications.

This book covers a wide set of topics on how to develop software using a WebRTC stack.
Using practical recipes, it considers basic concepts, security, debugging, integration with other
technologies, and other important themes of the development process in a friendly manner.

You will not only learn about WebRTC-specific features, but also attendant technologies (CSS3,
HTML5, and WebSockets), and how to use them along with WebRTC.

What this book covers
Chapter 1, Peer Connections, introduces you to the very basic concepts of WebRTC. This
includes practical recipes on peer connections. You will also find simple demo applications
in this chapter.

Chapter 2, Supporting Security, leads you through various security-related topics and covers
how to secure a typical WebRTC application's infrastructure components: SSL/TLS certificates,
WebSockets, web servers, STUN/TURN, data channels, and more.

Chapter 3, Integrating WebRTC, considers integrating a WebRTC application with other
technologies and third-party software. This chapter describes practical cases and solutions
on integration.

Chapter 4, Debugging a WebRTC Application, is dedicated to application debugging—an
important topic of the software development process. In this chapter, you will learn about
the topics relating to debugging in the scope of WebRTC.

Chapter 5, Working with Filters, teaches you how to use CSS3 filters with WebRTC
applications. This chapter also covers custom image processing.

Preface

2

Chapter 6, Native Applications, contains practical, step-by-step recipes dedicated to
developing native WebRTC applications on mobile platforms.

Chapter 7, Third-party Libraries, describes general use cases and practical solutions based
on third-party WebRTC frameworks and services.

Chapter 8, Advanced Functions, covers how to use advanced WebRTC features. It contains
practical recipes on file transferring, streaming, audio/video controlling, and more.

What you need for this book
To use the recipes and codes provided and considered in this book, you will need a few pieces
of software installed:

 f Java SE 7: Note that for Android-related recipes from Chapter 6, Native Applications,
you need Java SE 6 as well—the installation and configuration process is described in
detail in this chapter.

 f Erlang OTP 17: If you're familiar with this programming language, you can use this.
If not, you can skip it—all Erlang examples are also provided in Java.

 f Mac OS X and Xcode: Use this for recipes dedicated to developing WebRTC
applications on iOS.

 f Android and iOS: Use this for Chapter 6, Native Applications, which covers how
to develop WebRTC applications for mobile platforms.

 f Linux: Ubuntu is recommended.

 f Chrome and Firefox: These are still the most WebRTC-friendly web browsers.

Specific requirements and configurations along with suggested solutions are considered
in particular chapters.

Who this book is for
This book is written as a set of ready-to-use, practical recipes that cover a variety of topics
related to developing WebRTC applications and services. It is assumed that you are familiar,
in general, with WebRTC and its basic concepts.

Most of the provided recipes are written in JavaScript. However, server-side parts of applications
are implemented in Erlang and Java. So, you are assumed to have at least basic experience with
one of these technologies.

Preface

3

Working on some cases described in this book, you will have to deal with a Linux-based OS. All
recipes are provided as a step-by-step guide. Although, if you have experience of working with
and configuring Linux-based boxes, it would be useful.

So, this book is for someone who is familiar, in general, with the WebRTC stack, and who has
at least basic skills in software development.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include our custom JavaScript library located in the mylib.js file."

A block of code is set as follows:

-module(sigserver_app).
-behaviour(application).
-export([start/2, stop/1, start/0]).
start() ->
 ok = application:start(ranch),
 ok = application:start(crypto),
 ok = application:start(cowlib),
 ok = application:start(cowboy),

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

private static Map<Integer,Set<WebSocket>> Rooms = new HashMap<>();
 private int myroom;
 public Main() {
 super(new InetSocketAddress(30001));
 }

Any command-line input or output is written as follows:
rebar create-app appid=sigserver

Preface

4

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "When the customer enters
a message and clicks on the Submit query button, we will wrap the message into a JSON
object and send it via the data channel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

5

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/4450OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/4450OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4450OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Peer Connections

In this chapter, we will cover the following topics:

 f Building a signaling server in Erlang

 f Building a signaling server in Java

 f Detecting WebRTC functions supported by a browser

 f Making and answering calls

 f Implementing a chat using data channels

 f Implementing a chat using a signaling server

 f Configuring and using STUN

 f Configuring and using TURN

Introduction
This chapter covers the basic concepts of how to use WebRTC when developing rich media
web applications and services.

With simple and short recipes, you will learn how to create your own signaling server. The key
data that needs to be exchanged by peers before they establish a direct connection is called
the session description—it specifies the peers' configuration. Signaling server is a component
in an application's infrastructure that is accessible by all peers and serves to exchange
multimedia's session description. The way peers should exchange data is not described by
WebRTC standards, so you should make the decision on your own regarding the protocol and
mechanism you will use for this task.

1

Peer Connections

8

You can build a signaling server using any programming language and technology you like.
In general, the signaling protocol can be non-technical and is possible to implement in away
where the peers would use just a sheet of paper to exchange necessary data between each
other. In this chapter, we use WebSocket to implement signaling, although you can use any
other protocol.

The signaling stage is represented in the schema that is shown in the following diagram:

In this chapter, you will find two recipes that are dedicated to signaling server development:
Building a signaling server in Erlang and Building a signaling server in Java. Java is probably
the most popular and known technology, and it would be easy to get into this topic using
Java, even if you don't have programming experience with this technology. Erlang is not widely
known yet. Nonetheless, this is a very mature technology, very suitable for writing lightweight
and extremely fast server applications with perfect scalability. So, by learning signaling server,
you will find simple solutions in Erlang as well.

This chapter also covers the basic use case of how to use WebRTC data channels: file
transferring and peer-to-peer chat.

You will also learn how to configure and use Session Traversal Utilities for NAT (STUN) and
Traversal Using Relays around NAT (TURN) services, and of course, this chapter covers
making peer-to-peer calls using WebRTC.

Note that in this chapter, we will cover the process of making computer-to-computer calls.
If you want to know more about how to use WebRTC with VoIP and SIP, and how to make
phone calls from a web page, refer to the Chapter 3, Integrating WebRTC.

Chapter 1

9

Building a signaling server in Erlang
The following recipe shows how to build signaling server using Erlang programming language
and WebSockets for transport protocol. We will not introduce Erlang programming in this
recipe, so you should have at least basic knowledge of this programming language and its
relevant technologies.

Getting ready
To use this solution, you should have Erlang installed on your system to start with. You can
download the Erlang distribution relevant to your system from its home page http://www.
erlang.org/download.html. The installation process might need specific actions relevant
to specific platforms/OSes, so follow the official installation instructions at http://www.
erlang.org/doc/installation_guide/INSTALL.html.

For this example, I've used Erlang 17. You might need to add some minor
changes to the code to make it work under future versions of Erlang.

We will also use the Git versioning system to download additional packets and components
necessary for our solution, so you should download and install Git distribution relevant to
your system. You can download this from http://www.git-scm.com. As a build tool for the
project, we will use Rebar; you should also download and install it from https://github.
com/basho/rebar.

How to do it…
The following steps will lead you through the process of building a signaling server
using Erlang:

1. Create a new folder for the signaling server application and navigate to it.

2. Using the Rebar tool, create a basic Erlang application:
rebar create-app appid=sigserver

This command will create an src folder and relevant application files in it.

3. Create the rebar.config file, and put the following Rebar configuration in it:
{erl_opts, [warnings_as_errors]}.
{deps,
[
{'gproc', ".*", {
git, "git://github.com/esl/gproc.git", {tag, "0.2.16"}
}},

http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/doc/installation_guide/INSTALL.html
http://www.erlang.org/doc/installation_guide/INSTALL.html
http://www.git-scm.com
https://github.com/basho/rebar
https://github.com/basho/rebar

Peer Connections

10

{'jsonerl', ".*", {
git, "git://github.com/fycth/jsonerl.git", "master"
}},
{'cowboy', ".*", {
git,"https://github.com/extend/cowboy.git","0.9.0"
}}
]}.

4. Open the src/sigserver.app.src file and add the following components to the
application's section list: cowlib, cowboy, compiler, and gproc.

5. Open the src/sigserver_app.erl file and add the following code:
-module(sigserver_app).
-behaviour(application).
-export([start/2, stop/1, start/0]).
start() ->
 ok = application:start(ranch),
 ok = application:start(crypto),
 ok = application:start(cowlib),
 ok = application:start(cowboy),
 ok = application:start(gproc),
 ok = application:start(compiler),
 ok = application:start(sigserver).

start(_StartType, _StartArgs) ->
 Dispatch = cowboy_router:compile([
 {'_',[
 {"/ ", handler_websocket,[]}
]}
]),
 {ok, _} = cowboy:start_http(websocket, 100, [{ip,
 {127,0,0,1}},{port, 30001}], [
 {env, [{dispatch, Dispatch}]},
 {max_keepalive, 50},
 {timeout, 500}]),
 sigserver_sup:start_link().

stop(_State) -> ok.

6. Create the src/handler_websocket.erl file and put the following code in it:
-module(handler_websocket).
-behaviour(cowboy_websocket_handler).
-export([init/3]).
-export([websocket_init/3, websocket_handle/3,
 websocket_info/3, websocket_terminate/3]).

Chapter 1

11

-record(state, {
 client = undefined :: undefined | binary(),
 state = undefined :: undefined | connected |
 running,
 room = undefined :: undefined | integer()
}).

init(_Any, _Req, _Opt) ->
 {upgrade, protocol, cowboy_websocket}.

websocket_init(_TransportName, Req, _Opt) ->
 {Client, Req1} = cowboy_req:header(<<"x-forwarded-
 for">>, Req),
 State = #state{client = Client, state = connected},
 {ok, Req1, State, hibernate}.

websocket_handle({text,Data}, Req, State) ->
 StateNew = case (State#state.state) of
 started ->
 State#state{state = running};
 _ ->
 State
 end,
 JSON = jsonerl:decode(Data),
 {M,Type} = element(1,JSON),
 case M of
 <<"type">> ->
 case Type of
 <<"GETROOM">> ->
 Room = generate_room(),
 R =
 iolist_to_binary(jsonerl:encode({
 {type, <<"GETROOM">>},
 {value, Room}})),
 gproc:reg({p,l, Room}),
 S = (StateNew#state{room = Room}),
 {reply, {text, <<R/binary>>}, Req, S,
 hibernate};
 <<"ENTERROOM">> ->
 {<<"value">>,Room} = element(2,JSON),
 Participants =
 gproc:lookup_pids({p,l,Room}),
 case length(Participants) of
 1 ->

Peer Connections

12

 gproc:reg({p,l, Room}),
 S = (StateNew#state{room =
 Room}),
 {ok, Req, S, hibernate};
 _ ->
 R =
 iolist_to_binary(jsonerl:
 encode({{type,
 <<"WRONGROOM">>}})),
 {reply, {text, <<R/binary>>},
 Req, StateNew, hibernate}
 end;
 _ ->
 reply2peer(Data, StateNew#state.room),
 {ok, Req, StateNew, hibernate}
 end;
 _ ->
 reply2peer(Data, State#state.room),
 {ok, Req, StateNew, hibernate}
 end;

websocket_handle(_Any, Req, State) -> {ok, Req, State, hibernate}.

websocket_info(_Info, Req, State) -> {reply, {text,_Info}, Req,
State, hibernate}.

websocket_terminate(_Reason, _Req, _State) -> ok.

reply2peer(R, Room) ->
 [P ! <<R/binary>> || P <- gproc:lookup_pids({p,l,Room})
 -- [self()]].

generate_room() ->
 random:seed(now()),
 random:uniform(999999).

7. Now we can compile the solution using the Rebar tool:
rebar get-deps

rebar compile

If everything was successful, you should not see any errors (warnings are not critical).

8. After we build our signaling server, we can start it using the following command:
erl -pa deps/*/ebin ebin -sasl errlog_type error -s sigserver_app

Chapter 1

13

Windows-based systems can't use a star symbol in such constructions, so if
you're working under Windows, you should use the full path name as shown
in the following command:
erl -pa deps/cowboy/ebin deps/cowlib/ebin deps/gproc/
ebin deps/jsonerl/ebin deps/ranch/ebin ebin -sasl
errlog_type error -s sigserver_app

Now your signaling server should be running, and you need to listen for incoming WebSocket
connections on port 30001.

Note that full source codes are supplied with this book.

Downloading the example code
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed
directly to you.

How it works…
In this recipe, we implemented the WebRTC signaling server in Erlang. The application listens
on port 30001 for incoming WebSocket connections from the browser clients.

The first peer will be registered by the server in a virtual room and will get the room number.
The second peer after that can use the room number in order to connect to the first peer.
The signaling server will check whether the virtual room exists and if so, it will route call/
answer requests and answers between the peers in order to make them establish a direct
peer-to-peer WebRTC connection.

There's more…
Basically, this is a very simple signaling server. It doesn't have any advanced features, and the
main goal of it is to help peers establish direct connection between each other. Nevertheless,
a signaling server can serve additional tasks. For example, it can serve for web chats, file
transfers, service data exchanges, and other features specific for certain situations. There
are no certain requirements for a signaling server; you can implement it using your favorite
programming language and technology.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Peer Connections

14

See also
 f For tips on implementing a signaling server in Java, refer to the Building a signaling

server in Java recipe

 f You can also refer to the Making and answering calls recipe on how to use a signaling
server from a browser application using JavaScript

Building a signaling server in Java
In this recipe, we will cover the implementation of a signaling server in Java.

Getting ready
This recipe uses Java, so you should have Java Developer Kit (JDK) installed on your machine.
You can download the appropriate version of JDK for your platform from its web page at
http://www.java.com.

Java 7 has its own API to implement a WebSocket application. Previous versions of Java don't
have the native support of WebSockets. In this recipe, we will cover the universal solution that
works in different Java versions and is based on the third-party component, which you can find
on its home page at http://java-websocket.org. This project is also present on GitHub
at https://github.com/TooTallNate/Java-WebSocket.

You need to download and install the Java-WebSocket library; it should then be linked to
your project.

In this recipe, we pack signaling messages into the JSON format before sending, so we need
a Java library to work with JSON structures. For this purpose, we will use Java classes from
JSON's home page, http://www.json.org/java/.

Download these classes and link them to your project, or you can just put these classes into
your project's folder structure and compile it all together.

It is assumed that you have experience of programming in Java, so we will not cover the basic
questions like how to start a Java application and so on.

How to do it…
Create a new project in your Java IDE and link the JSON libraries along with the Java-
WebSocket library.

http://www.java.com
http://java-websocket.org
https://github.com/TooTallNate/Java-WebSocket
http://www.json.org/java/

Chapter 1

15

The following code represents a simple signaling server. Compile it and start a Java console
application as usual:

package com.webrtcexample.signaler;

import org.java_websocket.WebSocket;
import org.java_websocket.handshake.ClientHandshake;
import org.java_websocket.server.WebSocketServer;
import org.json.JSONException;
import org.json.JSONObject;

import java.net.InetSocketAddress;
import java.util.*;

public class Main extends WebSocketServer {

 private static Map<Integer,Set<WebSocket>> Rooms = new
HashMap<>();
 private int myroom;

 public Main() {
 super(new InetSocketAddress(30001));
 }

 @Override
 public void onOpen(WebSocket conn, ClientHandshake handshake)
 {
 System.out.println("New client connected: " +
 conn.getRemoteSocketAddress() + " hash " +
 conn.getRemoteSocketAddress().hashCode());
 }

 @Override
 public void onMessage(WebSocket conn, String message) {

 Set<WebSocket> s;
 try {
 JSONObject obj = new JSONObject(message);
 String msgtype = obj.getString("type");
 switch (msgtype) {
 case "GETROOM":
 myroom = generateRoomNumber();
 s = new HashSet<>();
 s.add(conn);
 Rooms.put(myroom, s);

Peer Connections

16

 System.out.println("Generated new room: " +
 myroom);
 conn.send("{\"type\":\"GETROOM\",\"value\":" +
 myroom + "}");
 break;
 case "ENTERROOM":
 myroom = obj.getInt("value");
 System.out.println("New client entered room "
 + myroom);
 s = Rooms.get(myroom);
 s.add(conn);
 Rooms.put(myroom, s);
 break;
 default:
 sendToAll(conn, message);
 break;
 }
 } catch (JSONException e) {
 sendToAll(conn, message);
 }
 System.out.println();
 }

 @Override
 public void onClose(WebSocket conn, int code, String reason,
 boolean remote) {
 System.out.println("Client disconnected: " + reason);
 }

 @Override
 public void onError(WebSocket conn, Exception exc) {
 System.out.println("Error happened: " + exc);
 }

 private int generateRoomNumber() {
 return new Random(System.currentTimeMillis()).nextInt();
 }

 private void sendToAll(WebSocket conn, String message) {
 Iterator it = Rooms.get(myroom).iterator();
 while (it.hasNext()) {
 WebSocket c = (WebSocket)it.next();
 if (c != conn) c.send(message);
 }
 }

Chapter 1

17

 public static void main(String[] args) {
 Main server = new Main();
 server.start();
 }
}

Once the application starts, it will listen on the TCP port 30001 for WebSocket messages
from clients. You can write simple client applications to test the signaling server—refer to the
Making and answering calls recipe.

Note that you can find a Maven-based project for this example supplied with this book.

How it works…
First of all, the client sends a GETROOM message to the signaling server that is listening on
TCP port 30001. The server generates a new virtual room number, stores it, and sends it back
to the client.

The client constructs a new access URL using the virtual room number received from the
server. Then, the second client uses this URL to enter the virtual room and establish a call
to the first client.

The second client sends the room number it got from the URL to the signaling server. The
server associates the client with the virtual room number. Then, the client makes a call, using
signaling server, which forwards its messages to the first client that is present in the room
already. The first client answers the call, also using the signaling server as the middle point.

So both clients exchange the necessary data (including network details) and then establish
direct peer-to-peer connection. After the connection is established, peers don't use the
server anymore.

There's more…
The WebSocket signaling server in Java can be implemented using a Java EE stack. For
more details, take a look at the home page of JSR 356 at http://www.oracle.com/
technetwork/articles/java/jsr356-1937161.html.

You can also find an example at https://github.com/hsilomedus/web-sockets-
samples/tree/master/eesockets.

Another solution is to use Spring 4. It has WebSocket support out of the box. For details
on this solution, take a look at the example on GitHub at https://github.com/
hsilomedus/web-sockets-samples/tree/master/springsockets.

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
https://github.com/hsilomedus/web-sockets-samples/tree/master/eesockets
https://github.com/hsilomedus/web-sockets-samples/tree/master/eesockets
https://github.com/hsilomedus/web-sockets-samples/tree/master/springsockets
https://github.com/hsilomedus/web-sockets-samples/tree/master/springsockets

Peer Connections

18

See also
 f For an alternative solution, you can refer to the Building a signaling server in

Erlang recipe

Detecting WebRTC functions supported
by a browser

WebRTC is not fully supported by all available web browsers at this time. Moreover, there
is a chance that your application will be running under some kind of exotic environment or
web browser that does not support WebRTC. So you need to have some mechanism that
would enable you to detect whether the environment in which your web application is running
supports the necessary WebRTC features the application is going to use. In this recipe, we will
cover the basic method of doing that.

Getting ready
This task is relevant for the client side only, so all the code will be written in JavaScript.
Thus, no specific preparation is needed.

How to do it…
You can write a JavaScript library that can be used to detect which WebRTC methods are
available under the environment and by what names they are known for your application.

The following code represents a basic but productive example of such a kind of library:

var webrtcDetectedVersion = null;
var webrtcDetectedBrowser = null;
window.requestFileSystem = window.requestFileSystem || window.
webkitRequestFileSystem;

function initWebRTCAdapter() {
 if (navigator.mozGetUserMedia) {
 webrtcDetectedBrowser = "firefox";
 webrtcDetectedVersion =
 parseInt(navigator.userAgent.match(/Firefox\/
 ([0-9]+)\./)[1], 10);

 RTCPeerConnection = mozRTCPeerConnection;
 RTCSessionDescription = mozRTCSessionDescription;
 RTCIceCandidate = mozRTCIceCandidate;
 getUserMedia = navigator.mozGetUserMedia.bind(navigator);

Chapter 1

19

 attachMediaStream =
 function(element, stream) {
 element.mozSrcObject = stream;
 element.play();
 };

 reattachMediaStream =
 function(to, from) {
 to.mozSrcObject = from.mozSrcObject;
 to.play();
 };

 MediaStream.prototype.getVideoTracks =
 function() {
 return [];
 };

 MediaStream.prototype.getAudioTracks =
 function() {
 return [];
 };
 return true;
 } else if (navigator.webkitGetUserMedia) {
 webrtcDetectedBrowser = "chrome";
 webrtcDetectedVersion =
 parseInt(navigator.userAgent.match(/Chrom(e|ium)\/
 ([0-9]+)\./)[2], 10);

 RTCPeerConnection = webkitRTCPeerConnection;
 getUserMedia =
 navigator.webkitGetUserMedia.bind(navigator);
 attachMediaStream =
 function(element, stream) {
 element.src = webkitURL.createObjectURL(stream);
 };

 reattachMediaStream =
 function(to, from) {
 to.src = from.src;
 };

 if (!webkitMediaStream.prototype.getVideoTracks) {
 webkitMediaStream.prototype.getVideoTracks =
 function() {

Peer Connections

20

 return this.videoTracks;
 };
 webkitMediaStream.prototype.getAudioTracks =
 function() {
 return this.audioTracks;
 };
 }

 if (!webkitRTCPeerConnection.prototype.getLocalStreams) {
 webkitRTCPeerConnection.prototype.getLocalStreams =
 function() {
 return this.localStreams;
 };
 webkitRTCPeerConnection.prototype.getRemoteStreams =
 function() {
 return this.remoteStreams;
 };
 }
 return true;
 } else return false;
};

How it works…
This solution tests which WebRTC API methods are available in the environment and how they
are named. So your application can use certain API function names that will be relevant for
any web browser, without using browser-specific function names.

There's more…
There is another way to solve this task. You don't necessary have to write your own adapter.
You can take the adapter prepared by Google. It can be found at http://apprtc.webrtc.
org/js/adapter.js. You just need to include it in your JavaScript code.

You can also consider using a browser's plugin that enables the use of WebRTC in Safari
and Internet Explorer. You can get these at https://temasys.atlassian.net/wiki/
display/TWPP/How+to+integrate+the+plugin+with+your+website.

See also
You can find more information on the adapter at the web page http://www.webrtc.org/
web-apis/interop.

http://apprtc.webrtc.org/js/adapter.js
http://apprtc.webrtc.org/js/adapter.js
https://temasys.atlassian.net/wiki/display/TWPP/How+to+integrate+the+plugin+with+your+website
https://temasys.atlassian.net/wiki/display/TWPP/How+to+integrate+the+plugin+with+your+website
http://www.webrtc.org/web-apis/interop
http://www.webrtc.org/web-apis/interop

Chapter 1

21

Making and answering calls
The very basic action of any WebRTC application is making and receiving a call. This recipe
shows how to make calls to a remote peer.

Getting ready
At the beginning, peers don't know each other, and they don't know the necessary network
information to make direct connection possible. Before establishing a direct connection, peers
should exchange necessary data using some middle point—usually, a signaling server. This is
a middle point that is known to each peer. So each peer can connect to the signaling server,
and then one peer can call another one—by asking the signaling server to exchange specific
data with another peer and make peers know each other.

So, you need a signaling server to run.

How to do it…
Before two peers can establish a direct connection, they should exchange specific data (ICE
candidates and session descriptions) using a middle point—the signaling server. After that,
one peer can call another one, and the direct peer-to-peer connection can be established.

Interactive Connectivity Establishment (ICE) is a technique used in Network Address
Translator (NAT), which bypasses the process of establishing peer-to-peer direct communication.
Usually, ICE candidates provide information about the IP address and port of the peer. Typically,
an ICE candidate message might look like the following:

a=candidate:1 1 UDP 4257021352 192.168.0.10 1211 typ host

Session Description Protocol (SDP) is used by peers in WebRTC to configure exchanging
(network configuration, audio/video codecs available, and so on). Every peer sends details
regarding its configuration to another peer and gets the same details from it back. The following
print depicts a part of an SDP packet representing the audio configuration options of a peer:

m=audio 53275 RTP/SAVPF 121 918 100 1 2 102 90 131 16

c=IN IP4 16.0.0.1

a=rtcp:53275 IN IP4 16.0.0.1

Peer Connections

22

In the schema represented in the following diagram, you can see the generic flow of a call
establishing process:

Note that TURN is not showed in the schema. If you used TURN, it would be depicted just after
the STUN stage (before the first and second stage).

Making a call
To make a call, we need to take some steps to prepare (such as getting access to the
browser's media):

1. Get access to the user's media:
function doGetUserMedia() {
 var constraints = {"audio": true, "video":
 {"mandatory": {}, "optional": []}};
 try {
 getUserMedia(constraints, onUserMediaSuccess,
 function(e) {
 console.log("getUserMedia error "+
 e.toString());
 });
 } catch (e) {
 console.log(e.toString());
 }
 };

Chapter 1

23

2. If you succeed, create a peer connection object and make a call:
function onUserMediaSuccess(stream) {
 attachMediaStream(localVideo, stream);
 localStream = stream;
 createPeerConnection();
 pc.addStream(localStream);
 if (initiator) doCall();
};
function createPeerConnection() {
 var pc_constraints = {"optional":
 [{"DtlsSrtpKeyAgreement": true}]};
 try {
 pc = new RTCPeerConnection(pc_config,
 pc_constraints);
 pc.onicecandidate = onIceCandidate;
 } catch (e) {
 console.log(e.toString());
 pc = null;
 return;
 }
 pc.onaddstream = onRemoteStreamAdded;
};

function onIceCandidate(event) {
 if (event.candidate)
 sendMessage({type: 'candidate', label:
 event.candidate.sdpMLineIndex, id:
 event.candidate.sdpMid,
 candidate: event.candidate.candidate});
};

function onRemoteStreamAdded(event) {
 attachMediaStream(remoteVideo, event.stream);
 remoteStream = event.stream;
};

function doCall() {
 var constraints = {"optional": [], "mandatory":
 {"MozDontOfferDataChannel": true}};
 if (webrtcDetectedBrowser === "chrome")
 for (var prop in constraints.mandatory) if
 (prop.indexOf("Moz") != -1) delete
 constraints.mandatory[prop];

Peer Connections

24

 constraints = mergeConstraints(constraints,
 sdpConstraints);
 pc.createOffer(setLocalAndSendMessage,
 errorCallBack, constraints);
};

Answering a call
Assuming that we will use WebSockets as a transport protocol for exchanging data with
signaling server, every client application should have a function to process messages coming
from the server. In general, it looks as follows:

function processSignalingMessage(message) {
 var msg = JSON.parse(message);
 if (msg.type === 'offer') {
 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 doAnswer();
 } else if (msg.type === 'answer') {
 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 } else if (msg.type === 'candidate') {
 var candidate = new
 RTCIceCandidate({sdpMLineIndex:msg.label,
 candidate:msg.candidate});
 pc.addIceCandidate(candidate);
 } else if (msg.type === 'GETROOM') {
 room = msg.value;
 onRoomReceived(room);
 } else if (msg.type === 'WRONGROOM') {
 window.location.href = "/";
 }
};

This function receives messages from the signaling server using the WebSockets layer and
acts appropriately. For this recipe, we are interested in the offer type of message and
doAnswer function.

The doAnswer function is presented in the following listing:

function doAnswer() {
 pc.createAnswer(setLocalAndSendMessage, errorCallBack,
 sdpConstraints);
};

Chapter 1

25

The sdpConstraints object describes the WebRTC connection options to be used.
In general, it looks as follows:

var sdpConstraints = {'mandatory': {'OfferToReceiveAudio':true,
'OfferToReceiveVideo':true }};

Here we can say that we would like to use both audio and video while establishing WebRTC
peer-to-peer connection.

The errorCallback method is a callback function that is called in case of an error during
the calling of the createAnswer function. In this callback function, you can print a message
to the console that might help to debug the application.

The setLocalAndSendMessage function sets the local session description and sends it
back to the signaling server. This data will be sent as an answer type of message, and then
the signaling server will route this message to the caller:

function setLocalAndSendMessage(sessionDescription) {
 pc.setLocalDescription(sessionDescription);
 sendMessage(sessionDescription);
};

Note that you can find the full source code for this example supplied with this book.

How it works…
Firstly, we will ask the web browser to gain access to the user media (audio and video).
The web browser will ask the user for these access rights. If we get the access, we can
create a connection peer entity and send the call message to the signaling server, which
will route this message to the remote peer.

The workflow of the code is very simple. The processSignalingMessage function should
be called every time we get a message from the signaling server. Usually, you should set it as
an onmessage event handler of the WebSocket JavaScript object.

After the message is received, this function detects the message type and acts appropriately.
To answer an incoming call, it calls the doAnswer function that will do the rest of the
magic—prepare the session description and send it back to the server.

The signaling server will get this reply as an answer message and will route it to the remote
peer. After that, peers will have all the necessary data on each other to start establishing a
direct connection.

Peer Connections

26

There's more…
This is the basic functionality of WebRTC. Most of your applications will probably have the
same code for this task. The only big difference might be communication with the signaling
server—you can use any protocol you like.

See also
 f Refer to the Implementing a chat using data channels recipe regarding the process

of building a simple web chat application using WebRTC

 f You can find more details on ICE on the RFC 5245 website at https://tools.
ietf.org/html/rfc5245

 f More information regarding SDP can be found on RFC 4566 at https://tools.
ietf.org/html/rfc4566

Implementing a chat using data channels
In this recipe, we will implement a peer-to-peer private messaging service using WebRTC data
channels. This method allows us to send messages directly from peer to peer, using secure
and safe data channels provided by the WebRTC stack.

The schema represented in the following diagram depicts the generic feature flow:

https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc4566
https://tools.ietf.org/html/rfc4566

Chapter 1

27

Getting ready
We will develop a simple application, so you don't need any specific preparations for this
recipe. A signaling server is necessary for this application, and it can be taken from the
Building a signaling server in Erlang or Building a signaling server in Java recipe.

How to do it…
For simplicity, we will make two parts of the application: an index web page and
a JavaScript library.

Creating the main HTML page of the application
1. First, create an HTML index.html page. In the following code, you can find its

content. Note that the less important and obvious parts might be skipped here.
<!DOCTYPE html>
<html>
<head>

2. Include our JavaScript library that is in a separate file:
<script type="text/javascript" src="myrtclib.js"></script>

3. Include Google's WebRTC JavaScript adapter:
<script src="https://rawgit.com/GoogleChrome/webrtc/master/
samples/web/js/adapter.js"></script>
</head>
<body>

4. Create a div tag where we will put information regarding the connection:
<div id="status"></div>

5. Create a div tag where the received messages from a remote peer will be placed:
<div id="chat"></div>

6. Create a form with an input element and a button to send messages to the
remote peer:
<form name="chat_form" onsubmit="onChatSubmit(document.chat_form.
msg.value);
return false;">
 <input type="text" class="search-query"
 placeholder="chat here" name="msg" id="chat_input">
 <input type="submit" class="btn" id="chat_submit_btn"/>
</form>
<script>

Peer Connections

28

7. Create a connection to the signaling server and initialize the WebRTC stack.
The following function is declared in the JavaScript library, which we will consider
further in the recipe:

myrtclibinit("ws://localhost:30001");

Note that the domain name and port might be different in your case; they should be the same
as declared in the source codes of the signaling sever. By default, the signaling server is
listening on local host and on port 30001.

The following function sends a message to the remote peer using the sendDataMessage
function—we will write it as part of the JavaScript library:

function onChatSubmit(txt) {
 var msg = JSON.stringify({"type" : "chatmessage", "txt" :
 txt});
 sendDataMessage(msg);
};

We will also declare a callback function for a catching event when a new virtual room
is created:

function onRoomReceived(room) {
 var st = document.getElementById("status");

Create a link to share with the remote peer, put the link in the div status.

 st.innerHTML = "Now, if somebody wants to join you, should use
 this link: <a href=\""+window.location.href+"?
 room="+room+"\">"+window.location.href+"?room="+room+"";
};

To show the messages received from the remote peer, we will declare an appropriate
callback function. This function gets the message and puts it in the appropriate place
on the HTML page:

function onPrivateMessageReceived(txt) {
 var t = document.getElementById('chat').innerHTML;
 t += "
" + txt;
 document.getElementById('chat').innerHTML = t;
}
</script>
</body>
</html>

Save the HTML file. This will be the main page of the applications.

Chapter 1

29

Creating the JavaScript helper library
Now, create an empty myrtclib.js file and put the following content into it. Note that many
parts of the following code might be used in the next chapters, so they should be well-known
to you already. Such obvious parts of the code might be skipped in further.

 var RTCPeerConnection = null;
 var room = null;
 var initiator;
 var pc = null;
 var signalingURL;

The following variable will be used for handling the data channel object:

 var data_channel = null;
 var channelReady;
 var channel;
 var pc_config = {"iceServers":
 [{url:'stun:23.21.150.121'},
 {url:'stun:stun.l.google.com:19302'}]};

 function myrtclibinit(sURL) {
 signalingURL = sURL;
 openChannel();
 };

 function openChannel() {
 channelReady = false;
 channel = new WebSocket(signalingURL);
 channel.onopen = onChannelOpened;
 channel.onmessage = onChannelMessage;
 channel.onclose = onChannelClosed;
 };

 function onChannelOpened() {
 channelReady = true;
 createPeerConnection();

 if(location.search.substring(1,5) == "room") {
 room = location.search.substring(6);
 sendMessage({"type" : "ENTERROOM", "value" : room *
 1});
 initiator = true;
 doCall();
 } else {
 sendMessage({"type" : "GETROOM", "value" : ""});

Peer Connections

30

 initiator = false;
 }
 };

 function onChannelMessage(message) {
 processSignalingMessage(message.data);
 };

 function onChannelClosed() {
 channelReady = false;
 };

 function sendMessage(message) {
 var msgString = JSON.stringify(message);
 channel.send(msgString);
 };

 function processSignalingMessage(message) {
 var msg = JSON.parse(message);

 if (msg.type === 'offer') {
 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 doAnswer();
 } else if (msg.type === 'answer') {
 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 } else if (msg.type === 'candidate') {
 var candidate = new
 RTCIceCandidate({sdpMLineIndex:msg.label,
 candidate:msg.candidate});
 pc.addIceCandidate(candidate);
 } else if (msg.type === 'GETROOM') {
 room = msg.value;
 onRoomReceived(room);
 } else if (msg.type === 'WRONGROOM') {
 window.location.href = "/";
 }
 };

 function createPeerConnection() {
 try {
 pc = new RTCPeerConnection(pc_config, null);
 pc.onicecandidate = onIceCandidate;

Chapter 1

31

Until now, the code is very similar to what we used in a typical WebRTC example application.
Although, now we will add something new. We will set up a handler for the ondatachannel
event of the PeerConnection object. This callback function will be called when the peer
asks us to create a data channel and establish a data connection:

 pc.ondatachannel = onDataChannel;
 } catch (e) {
 console.log(e);
 pc = null;
 return;
 }
 };

The handler function is pretty simple. We will store the reference in the data channel
and initialize it:

 function onDataChannel(evt) {
 console.log('Received data channel creating request');
 data_channel = evt.channel;
 initDataChannel();
 }

By initializing the data channel, I mean setting up a channel's event handlers:

 function initDataChannel() {
 data_channel.onopen = onChannelStateChange;
 data_channel.onclose = onChannelStateChange;
 data_channel.onmessage = onReceiveMessageCallback;
 }

In the following function, we need to create a new data channel—not when the remote peer
is asking us, but when we're the initiator of the peer connection and want to create a new
data channel. After we have created a new data channel, we should ask the remote peer
to do the same:

 function createDataChannel(role) {
 try {

When we create a new data channel, we can set up a name of the channel. In the following
piece of code, we will use the number of the virtual room to name the channel:

 data_channel =
 pc.createDataChannel("datachannel_"+room+role, null);
 } catch (e) {
 console.log('error creating data channel ' + e);
 return;
 }
 initDataChannel();

Peer Connections

32

 }

 function onIceCandidate(event) {
 if (event.candidate)
 sendMessage({type: 'candidate', label:
 event.candidate.sdpMLineIndex, id:
 event.candidate.sdpMid,
 candidate: event.candidate.candidate});
 };

 function failureCallback(e) {
 console.log("failure callback "+ e.message);
 }

 function doCall() {

When we are playing the role of the connection initiator (caller), we create a new data
channel. Then, during the connection establishment, the remote peer will be asked to
do the same and the data channel connection will be established:

 createDataChannel("caller");
 pc.createOffer(setLocalAndSendMessage, failureCallback,
 null);
 };

 function doAnswer() {
 pc.createAnswer(setLocalAndSendMessage, failureCallback,
 null);
 };

 function setLocalAndSendMessage(sessionDescription) {
 pc.setLocalDescription(sessionDescription);
 sendMessage(sessionDescription);
 };

To send text messages via the data channel, we need to implement the appropriate function.
As you can see in the following code, sending data to the data channel is pretty easy:

 function sendDataMessage(data) {
 data_channel.send(data);
 };

The following handler is necessary to print the state of the data channel when it is changed:

 function onChannelStateChange() {
 console.log('Data channel state is: ' +
 data_channel.readyState);
 }

Chapter 1

33

When the remote peer sends us a message via the data channel, we will parse it and call the
appropriate function to show the message on the web page:

 function onReceiveMessageCallback(event) {
 console.log(event);
 try {
 var msg = JSON.parse(event.data);
 if (msg.type === 'chatmessage')
 onPrivateMessageReceived(msg.txt);
 }
 catch (e) {}
 };

Save the JavaScript file.

Now, start the signaling server and open the HTML file in a web browser—you should see
an input field and a button on the page. At the top of the page, you should see a URL to be
shared with the remote peer.

On another browser's window, open the sharing link. In the web browser's console, you should
see the Data channel state is open message. Now, enter something in the input box and click
on the Submit query button. You should see the message printed on another browser's window.

How it works…
When the application starts, it establishes a connection with the signaling server and gets a
virtual room number. Then, another peer starts the application and enters the virtual room.
The second peer is the caller. When the peer connection is established, the caller creates a
new data channel and another peer receives this event notification. So, both peers get a data
channel reference and can use it for data exchanging.

In our example, when the customer enters a message and clicks on the Submit query button,
we will wrap the message into a JSON object and send it via the data channel. The remote
peer gets the JSON object, parses it to the message, and displays it on the page.

There's more…
Using data channels, peers can exchange any kind of data. It can be plain text, for example,
or binary data. Moreover, the same data channel can be used to exchange different sorts of
data between peers. In this recipe, we used JSON to format messages, and every packet has
a type field. To send text messages, we used the chatmessage type, but you can use your
own custom type system to distinguish messages. You can also use something other than
JSON. So, data channels are a good tool to exchange data between peers, using a secure
and safe direct connection.

Peer Connections

34

See also
 f Please refer to the Implementing a chat using a signaling server recipe to learn the

other way this feature can be implemented

Implementing a chat using a signaling server
In this recipe, we will cover the process of implementing private, peer-to-peer web chat using
signaling server as the middle point. Peers will send chat messages via the signaling server.
In the schema represented in the following diagram, you can see the flow:

How to do it…
To implement the chat feature via the signaling server, we need to add some methods to the
client code with the following steps:

1. We need to add appropriate code to the function that processes the messages from
the signaling server:
function processSignalingMessage(message) {
 var msg = JSON.parse(message);
 if (msg.type === 'CHATMSG') {
 onChatMsgReceived(msg.value);
 } else if (msg.type === 'offer') {
 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 doAnswer();
 } else if (msg.type === 'answer') {

Chapter 1

35

 pc.setRemoteDescription(new
 RTCSessionDescription(msg));
 } else if (msg.type === 'candidate') {
 var candidate = new
 RTCIceCandidate({sdpMLineIndex:msg.label,
 candidate:msg.candidate});
 pc.addIceCandidate(candidate);
 } else if (msg.type === 'GETROOM') {
 room = msg.value;
 onRoomReceived(room);
 } else if (msg.type === 'WRONGROOM') {
 window.location.href = "/";
 }
};

2. We will check whether the received message is of the CHATMSG type and if so, we will
call the onChatMsgReceived method to process it:
function onChatMsgReceived(txt) {
 var chatArea = document.getElementById("chat_div");
 chatArea.innerHTML = chatArea.innerHTML + txt;
 chatArea.scrollTop = chatArea.scrollHeight;
};

Here, we will get the chat_div element by its ID and alter its content by adding the
chat message received from the remote peer via the signaling server.

3. To send a chat message, we should implement a method like the following:
function chatSendMessage(msg) {
 if (!channelReady) return;
 sendMessage({"type" : "CHATMSG", "value" : msg});
};

This function checks whether the WebSocket channel is up and sends a chat message
to the signaling server using the channel. To use this function, we can use the HTML
input tag with the submit button and call it on the submit event.

How it works…
The basic principle of this solution is pretty simple:

 f One peer sends a text message to the signaling server, marking it as the
CHATMSG type

 f The signaling server retransmits the message to another peer

 f Another peer gets the message from the signaling server, checks whether it is
of the CHATMSG type and if so, shows it to the user

Peer Connections

36

To distinguish chat messages from WebRTC messages, you can use
any word to mark the message type. It can be CHATMSG or whatever
you prefer.

There's more…
This way of implementing web chat is usually not secure because the data will go via the
signaling server and not directly through the peers. Nevertheless, it is suitable for public
chat rooms where there can be several people at a time. For private peer-to-peer chats,
it is usually better to use WebRTC data channels, and that way it is more secure.

See also
 f To implement the chat feature using data channels, follow the Implementing a chat

using data channels recipe

Configuring and using STUN
Your WebRTC application can work without STUN or TURN servers if all the peers are located
in the same plain network. If your application is supposed to work for peers that might be
located in different networks, it will definitely need to use at least the STUN server to work.

Getting ready
In this recipe, we will install a STUN server on a Linux box. STUN server can be installed under
the other platform as well, but for simplicity, we will consider only the Linux case. So, please
prepare a Linux machine.

In this recipe, we will use a very basic and simple STUN server implementation, so you
probably will not need to install additional libraries or do some difficult configuration.

STUN needs two IP addresses to work correctly. Thus, when experimenting with your Linux
box, take care that the Linux box should have at least two IP addresses that are available for
all possible peers (WebRTC clients).

How to do it…
The following set of steps will lead you through the process of configuring and building
a STUN service:

1. Download the STUN server from its home page at http://sourceforge.net/
projects/stun/.

http://sourceforge.net/projects/stun/
http://sourceforge.net/projects/stun/

Chapter 1

37

2. Unpack the archive and go into the STUN server folder:
tar –xzf stund-0.97.tgz

cd stund

3. Build it with the following command:
make

The last command will build the server. After that, you can start the STUN server by using the
following command:

./server -h primary_ip -a secondary_ip

Note that instead of primary_ip and secondary_ip, you should use actual IP addresses
that are available on the machine. This software can't detect such network parameters
automatically, so you need to set it up explicitly.

If you want to start the server in the background, add the
-b option to the preceding command.

Now, when the STUN server is configured and running, we can utilize it in the WebRTC
application. When your application wants to create a peer connection object, it uses
something like the following code:

var pc;
pc = new RTCPeerConnection(configuration);

Here, configuration is an entity that contains different options for creating peer
connection object. To utilize your freshly installed STUN server, you should use something
like the following code:

var configuration = {
 'iceServers': [
 {
 'url': 'stun:stun.myserver.com:19302'
 }] }

Here we inform the web browser that it can use the STUN server if necessary. Note that
you should use the real domain name or IP address of the STUN server. You can also explicitly
set the port number as shown in the preceding code, in case it is distinguished from the
default value.

Peer Connections

38

How it works…
STUN server can help peers determine their network parameters and thus establish a direct
communication channel. If your clients are located behind NAT or firewall, your application
should use at least the STUN service to make the direct connection possible. Nevertheless,
in many cases that might not be enough, and using TURN might be necessary.

The following diagram might be helpful to you to imagine how the STUN server is located in
the whole infrastructure, and how all the components interoperate with each other:

There's more…
As an alternative to this, you can use rfc5766-server—it is a free and open source
implementation of both STUN and TURN servers. It also supports many additional features
that might be quite useful. You can find it at https://code.google.com/p/rfc5766-
turn-server/.

See also
 f For details on how STUN works, you can refer to RFC #3489 http://www.ietf.

org/rfc/rfc3489.txt.

 f In the Configuring and using TURN recipe, we will use a TURN server based on the
rfc5766-server software. That application can serve as a STUN server as well.

https://code.google.com/p/rfc5766-turn-server/
https://code.google.com/p/rfc5766-turn-server/
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3489.txt

Chapter 1

39

Configuring and using TURN
In most cases, it is enough to use a STUN server to establish a peer-to-peer direct connection.
Nevertheless, you will often need to utilize TURN servers—mostly for clients located in big
companies (because of firewall policy and tricky NAT) and some specific countries (because
of firewalls and access limits).

Getting ready
In this section, we will download, install, and do the basic configuration of a TURN service.
Then, we will utilize it in our WebRTC application. A TURN server can be installed under
different platforms, although we will cover a Linux box use case only. Thus, for this recipe,
you will need a Linux box installed.

For this recipe, we will use rfc5766-turn-server—a free and open source implementation of the
TURN and STUN servers. Download its source code from its home page at https://code.
google.com/p/rfc5766-turn-server/.

How to do it…
First, we will shortly cover the installation and basic configuration of the TURN server.
After that, we will learn how to use it in the application.

If you have TURN server already installed, you can skip this section and go directly to the
next one.

Installing the TURN server
I assume that you have downloaded rfc5766-server already and unpacked it. So, let's install
and configure your own TURN server:

1. Go to the rfc5766-server folder with the following command:
cd ~/turnserver-4.1.2.1

2. Build the server:
./configure

make

sudo make install

https://code.google.com/p/rfc5766-turn-server/
https://code.google.com/p/rfc5766-turn-server/

Peer Connections

40

Note that rfc5766-server needs some libraries that might be not
installed on your system—in particular, libssl-dev, libevent-
dev, and openssl. You should install the absent libraries to
compile the software successfully.

3. After that, you can start the server—it will detect all the network options
automatically:
turnserver

You will see diagnostic messages in the console:

0: ===========Discovering relay addresses: =============

0: Relay address to use: x.x.x.x

0: Relay address to use: y.y.y.y

0: Relay address to use: ::1

0: ===

0: Total: 3 relay addresses discovered

0

0: ===

To stop the server, just press Ctrl + C; you will get back to
console.

Now it is time to perform some configuration steps and tune your fresh TURN server for
your requirements.

By default, the TURN server doesn't have any configuration file. We need to create this
configuration file from the default configuration file supplied with the server:

sudo cp /usr/local/etc/turnserver.conf.default /usr/local/etc/turnserver.
conf

Open the turnserver.conf file and edit it according to your requirements. We will not cover
all the TURN options here, but just basic configuration items that might be important:

 f Listening IP: This option determines the IP addresses that will be used by the TURN
server while operating. By default, this option will do it automatically. Nevertheless,
it is a good idea to set the obvious IP addresses you would like the server to use:
listening-ip=

Chapter 1

41

Note that the TURN server needs at least two public IP
addresses to operate correctly.

 f Relay IP: In this option, you can explicitly set up IP address that should be used for
relay. In other words, if you have two IP addresses, one of them can be listening-
ip and the second one relay-ip.
relay-ip=

 f Verbosity: In this option, you can set a level of verbosity. By default, the TURN server
will not print extra details on its work, but for debugging and diagnostic purposes,
it might be very useful to set the verbose level to normal. For that, you should place
the word verbose in the configuration file. If you would like to refer to more details,
you should write the word with capital V—Verbose—so the server will print as much
debugging details as possible.

 f Anonymous access: You can enable anonymous access during the development
process, if you're sure that your TURN server is protected by network firewall and
nobody can use it. Otherwise, you should not enable this option especially on
production systems:
no-auth

In this recipe, we haven't covered TURN authentication—this topic
is covered in Chapter 2, Supporting Security.

At this stage, you have your own TURN server with basic configuration, which can be used in
WebRTC applications.

Using TURN in WebRTC application
When you create a peer connection object, you usually use some construction like the
following one:

var pc;
pc = new RTCPeerConnection(configuration);

Here, configuration is an entity that contains different options to create a peer connection
object. To utilize your TURN server, you should use something like the following:

var configuration = {
 'iceServers': [
 {
 'url': 'stun:stun.l.google.com:19302'
 },
 {

Peer Connections

42

 'url': 'turn:turn1.myserver.com:3478?transport=udp',
 },
 {
 'url': 'turn:turn2.myserver.com:3478?transport=tcp',
 'credential': 'superuser',
 'username': 'secretpassword'
 }
]
}

Here, we will ask the WebRTC API (actually, we will ask the web browser) to use one of three
ways when establishing a peer connection:

 f Public STUN server provided by Google.

 f TURN server with anonymous access. You will use this notation to utilize the TURN
server installed and configured in this recipe.

 f TURN server with authentication. In Chapter 2, Supporting Security, we will cover the
topic of security and authentication within the scope of a TURN server. To utilize a
server that uses authentication, you should use this notation.

Note that you can ask the web browser to use a UDP or TCP protocol while
establishing a peer connection through the TURN server. To do that, set up
the transport parameter as shown in the preceding bullet points.

How it works…
In some cases, when clients use NAT and firewalls, it is impossible to establish a peer
connection using STUN. This situation often appears when a client is located in a corporative
network with a strict policy. In such a case, the only way to establish the connection is to use
the TURN server.

The TURN server works as a proxy—all the data between peers (including audio, video,
and service data) goes through the TURN server.

Chapter 1

43

The following diagram shows how all the components operate with each other:

There's more…
In this recipe, we covered only one TURN solution, open source and popular, but there are
other solutions in the world that could also be suitable for you:

 f TurnServer: This is also free and open source. For more information, refer to
http://turnserver.sourceforge.net.

 f Numb: This is not software that you can download and install, but a service where
you can create an account and get access to a configured TURN server. For more
details, refer to http://numb.viagenie.ca.

Of course, there are even more different solutions and services available.

See also
 f For details on TURN servers, refer to RFC 5766 at http://tools.ietf.org/

html/rfc5766

 f For details regarding STUN (another useful technology with the scope of developing
WebRTC-based services), you can also take a look at the Configuring and using
STUN recipe

http://turnserver.sourceforge.net
http://numb.viagenie.ca
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5766

Supporting Security

In this chapter, we will cover the following topics:

 f Generating a self-signed certificate

 f Configuring a TURN server with authentication

 f Configuring a web server to work over HTTPS

 f Configuring a WebSockets proxy on the web server

 f Configuring a firewall

Introduction
At the time of writing this book, the WebRTC standard was not complete and the technology
and its standard were both under active development. Nevertheless, security and safety are
very important and mandatory functional requirements that lie at the basis of the WebRTC
standard. Basically, your WebRTC application should use only encrypted channels.

In this chapter, we will cover security-related questions. We will talk about security, third-party
components, and software you will probably use when developing your WebRTC service. We
will talk about configuring secured channels (HTTPS) on web browsers. We will cover the
process of creating secure certificates and using them in web servers as well as the TURN
service. We will also learn how to implement authentication on a TURN server using the TURN
REST API.

We will talk about how WebRTC can work through firewalls and NAT, and learn how to
configure a firewall on our server that is serving auxiliary services such as TURN or STUN.

2

Supporting Security

46

Generating a self-signed certificate
Using encryption is highly recommended (I'd say even mandatory) for WebRTC applications. The
technology has good support for security and encryption, so there is no reason to ignore them.
In this recipe, we will cover the process of creating self-signed certificates. Such a certificate can
be used with a TURN server or with a web server when operating with HTTPS channels.

Typically, a public key infrastructure (PKI) is a digital signature from a certificate authority
(CA), which attests that a particular PKI is valid and contains correct information. Users or
their software then check that the private key used to sign a certificate matches the public key
in the CA's certificate. Since CA certificates are often signed by other, high-ranking CAs, there
must necessarily be a highest-ranking CA, which provides the ultimate attestation authority in
that particular PKI scheme.

The highest-ranking CA's certificates are termed as root certificates. Clearly, the lack of
mistakes or corruption in the issuance of such certificates is critical to the operation of its
associated PKI; they should be, and generally are, issued with great care.

A self-signed security certificate is a certificate that is signed by the same entity whose
identity it certifies. Such a certificate can be used for developing purposes and can be
generated by anybody.

You can find more details on PKI at http://en.wikipedia.org/wiki/Public_key_
infrastructure.

Self-signed certificates can be used for development, but you
should issue trusted certificates for production systems.

All communication channels in a WebRTC application should be using encryption:
client-to-client, client-to-server, or any other kind of channels you might be using. Some
WebRTC features (such as screen sharing) will not work without encryption, even in a
development environment.

Getting ready
In this recipe, we will use the OpenSSL toolset.

OpenSSL is an open source multiplatform toolkit that implements Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols and provides a general purpose full-strength
cryptography library. Many computer software use OpenSSL for supporting encryption
and security.

http://en.wikipedia.org/wiki/Public_key_infrastructure
http://en.wikipedia.org/wiki/Public_key_infrastructure

Chapter 2

47

You can find more details on this product at its home page, https://www.openssl.org.

Often, it is installed by default on Unix-like systems, but it is not supplied with Windows
installations. To check whether your system has OpenSSL installed, you can use the following
console command:

openssl version -a

On my Mac, it produces the following message:

If you see something similar, then you have OpenSSL installed on your system. If not, you need
to install the tool.

For more information on how to install OpenSSL, please refer to its
official home page at http://www.openssl.org.

How to do it…
In this section, we will generate public and private security certificate keys with the
following steps:

1. First, generate a temporary server password key:
openssl genrsa -des3 -passout pass:x -out server.pass.key 2048

You will see something like the following screenshot:

https://www.openssl.org
http://www.openssl.org

Supporting Security

48

2. Using the server password key, generate a server private key:
openssl rsa -passin pass:x -in server.pass.key -out server.key

You will see the following output:

writing RSA key

3. We don't need the server password key, so we can remove it:
rm -rf server.pass.key

4. Generate a certificate signing request:
openssl req -new -key server.key -out server.csr

5. This will ask you additional questions about the company the certificate is being
created for—you can use fictional data. It will also prompt you for a password as
shown in the following screenshot—for simplicity, you can just press return:

6. Generate the certificate:

openssl x509 -req -days 365 -in server.csr -signkey server.key
-out server.crt

Chapter 2

49

You will see the following output:

Now you have two files, server.crt (the certificate) and server.key (the certificate's
private key), which can be used with your web server (operating over HTTPS) or TURN server.

How it works…
By using an OpenSSL tool, we generated a new self-signed security certificate that can be
used with a web server or a TURN server that is serving our WebRTC application.

Kindly note that we generated the certificate in PEM format. For some
software, it might be necessary to convert it to other formats.

Though the certificate implements full encryption, your website visitors will see a browser
warning indicating that The certificate should not be trusted!.

If a self-signed certificate has been used to create a WebSocket server, then your web browser
will fail when trying to establish a connection to the server and will not show any warning. To
solve such a case, you can configure a web server to be secured, but leave the WebSocket
server unsecured; then, you should configure a WebSocket proxy on the web server. Thus, the
client will communicate with the WebSocket server not directly, but through the web server
using a secured channel. Please refer to the Configuring a WebSockets proxy on the web
server recipe.

So, use self-signed certificates for developing only.

There's more…
For production systems, you should use trusted certificates emitted by such trusted centers
such as Verisign, Thawte, or others.

You can also start with a free-of-charge but trusted certificate from StartSSL. For more details,
refer to http://www.startssl.com.

If you have a Windows box, you can use the SelfSSL.exe tool to create a self-signed certificate.
This tool is part of Internet Information Services (IIS) Resource Kit Tools that can be found
at http://www.microsoft.com/en-gb/download/details.aspx?id=17275.

http://www.startssl.com
http://www.microsoft.com/en-gb/download/details.aspx?id=17275

Supporting Security

50

You can also use online tools to create a self-signed certificate, for example, this one at
http://www.selfsignedcertificate.com.

See also
 f You can find more details on how to use certificates in the Configuring a TURN server

with authentication and Configuring a web server to work over HTTPS recipes.

Configuring a TURN server with
authentication

STUN servers don't support authentication, but on the other hand, TURN servers do. Moreover,
if you maintain a TURN server, it has to support authentication and prohibit anonymous access.
When using a TURN service, all the traffic from one peer to another goes through the TURN
server. If anyone had anonymous access to such a server, they could very quickly utilize the
server's resources and traffic limits.

In this recipe, we are going to go through a TURN authentication task.

Getting ready
First of all, we need to download and install a TURN server. There are several
implementations, and in this recipe, we will consider using rfc5766-turn-server.

This software is multiplatform and can be used on Unix-like systems and on Windows systems
as well. Nevertheless, to keep it simple, in this recipe, we will cover a Linux-based case only.

Download the source code from the TURN server home page at https://code.google.
com/p/rfc5766-turn-server/.

To install the software, you might need other additional packages to be installed first:

 f mysqlclient-dev

 f libevent

 f libmysqlclient-dev

 f libevent-dev

 f libssl-dev

Please use your package installation tool to install necessary packets.

http://www.selfsignedcertificate.com
https://code.google.com/p/rfc5766-turn-server/
https://code.google.com/p/rfc5766-turn-server/

Chapter 2

51

The package list might vary for different Linux distributions.

Unpack the downloaded TURN server package into a new folder, go to it, and then compile
and install the software using the following commands:

./configure

make

sudo make install

If you didn't change the installation prefix, the configuration file will be placed at /usr/
local/etc/turnserver.conf.

Now, we need to edit this file, changing the necessary options. We will not cover all the
configuration options, but just the ones that are necessary to achieve our goal:

1. First, ensure the support for encrypted transport:
tls-listening-port=5349

2. Switch the verbose mode on:
verbose

You don't want verbose enabled on a production system, but it is very
useful for debug purposes. I'd recommend you keep it enabled during the
developing/debugging process, and then disable it when you deploy your
application to the production system.

3. Enable a long-term credential mechanism—a REST API can be used with long-term
credentials only:
lt-cred-mech

4. Comment out the short-term credential mechanism option:
#st-cred-mech

5. Enable the REST API:
use-auth-secret

6. Determine the static authentication secret—the client will use this value when
calculating the temporary password for accessing the TURN server:
static-auth-secret=<SuperSecretKey>

Supporting Security

52

7. Set up the realm (usually, the company's website domain name):
realm=mycompany.org

8. Set up the generated security certificate:
cert=/usr/local/etc/turn_server_cert.pem

9. Set up the certificate private key:
pkey=/usr/local/etc/turn_server_pkey.pem

10. Set up the security certificate key password. This option is important if you use a
certificate protected by a password. If the key is password-less, then leave this option
commented out:
#pkey-pwd=

11. Using the enable console feature, you can connect to the TURN server console
and control the server, or just get some statistics. It is very useful for debugging:
cli-ip=127.0.0.1

cli-port=5766

12. Set up the console password:
cli-password=<you-cli-password>

How to do it…
Now we have a TURN server installed and configured. Next, we need to make appropriate
changes on the client-side code (that will be executed by the web browser) and on the
server-side code.

What is important for this feature is that your web application should have a user
authentication mechanism implemented. The application should have a private area where
only authorized users can get access.

The certain implementation depends on the platform/framework you use for developing
the application.

Implementing the client-side code
The general flow to implement the client-side code is as follows:

1. The application has some kind of authorization form with a login and password.
The web page with the WebRTC feature should be hidden behind the login page
and access should be restricted to authorized users only.

2. After the user enters correct credentials and has been authorized, he/she can have
access to a private area.

Chapter 2

53

3. When a user is authorized, he/she should be forwarded to the private area where the
WebRTC interactive page is placed.

4. The interactive page that a user gets from the web server should contain correct
credentials for accessing the TURN server. These credentials are calculated by the
web server and are then sent to the authorized client.

The following fragment is an example of what an authorized client should get from the
web server:

var iceServers = [
 {
 'url' : 'turn:turn1.website.com',
 'credential' : 'dejwjhkuyui4BUHiebdiejbi',
 'username' : 'secretuser'
 }
];

Here, the credential field is the temporary password calculated on the web server that can
be used to access the TURN server. Only authorized users can get it—username is also used
while calculating the password (refer to the Implementing the server-side code section of
this recipe).

The client should use this data when accessing the TURN server (pseudo code):

pc_config = {"iceServers": iceServers};
var pc = RTCPeerConnection(pc_config, pc_constraints);

Implementing the server-side code
Server-side code can be implemented using any language and technology you like. If you are
a Java programmer, the easiest way would be to use Java Spring or Play Framework.

The web server should provide the following flow for implementing server-side code:

1. Authenticated users should access the WebRTC interactive web page only.

2. When a user is authenticated using the login page, they should be forwarded to the
private area (the WebRTC interactive page).

3. During the authentication process, the web server should store the user login.

4. The web server should calculate the TURN temporary access password using the
following formula:
base64(hmac(secret key, username))

Supporting Security

54

Here you can see the following:

 � secret key: This is the static-auth-key option from the TURN server
configuration (refer to the Getting ready section of this recipe)

 � username: This is the username the web server gets from the user during
the authentication

 � hmac: This is the hash function of secret key and username

 � base64: This function implements the base64 encoding algorithm,
and we apply it to the result of the hmac function

5. After the temporary password is calculated, it should be sent to the client.

How it works…
In this recipe, we will utilize the TURN REST API. The main goal of this API is to provide a
mechanism that will enable dynamic temporary passwords, which can be used with TURN
servers when authenticating.

The general TURN authentication flow is as follows:

 f The client (a web browser) sends a request to the application (that is working on the
server side) asking for TURN credentials. Optionally, the request can also include
the username.

 f The application responds with a TURN URL, username, and password.

The client then uses these credentials for further authentication on the TURN server.
The application then replies with the following data:

 f Username: This is the TURN username that the client has to use when
authenticating. This name is a colon-delimited combination of the expiration
timestamp and username parameter from the client's original request. If the
username is not specified, the server can use any other value here.

 f Password: This is the TURN password that the client has to use when
authenticating. This value is calculated by the server using the following algorithm:
base64(hmac(secret key, username)). The TURN server and the server
application both share the same secret key. So, the TURN server will do the same
calculations and will compare them to the credentials received from the client.

Kindly note that credentials are temporary (time limited).

Chapter 2

55

 f TTL: This value represents the time-to-live parameter. It is optional and we won't use
this field on our application.

 f URIs: This field represents an array of URLs of the TURN server(s) available. In our
case, we will send just one URL to our own TURN server.

There's more…
This feature is not a part of the final standard yet, so in the future, some aspects of this recipe
might need to be improved.

See also
 f Refer to the Generating a self-signed certificate recipe on how to create self-signed

certificates.

 f Take a look at the TURN server's REST API standard draft at http://tools.ietf.
org/html/draft-uberti-rtcweb-turn-rest.

 f The PDF from the rfc5766-trun-server documentation can be useful. For more details,
refer to https://rfc5766-turn-server.googlecode.com/svn/docs/
TURNServerRESTAPI.pdf.

Configuring a web server to work over
HTTPS

In this recipe, we will cover how to configure a secured layer (HTTPS) on a web server. As far as
encryption and security are mandatory for WebRTC, HTTPS is an important part of the whole
application's security and safety.

Getting ready
We will cover the three most popular web servers: Nginx, Apache HTTP Server, and IIS from
Microsoft. We will not cover the installation procedure, so you should have the web server you
wish to use installed and properly configured.

How to do it…
What we need to do is to edit the web server's configuration to switch on using HTTPS. Before we
make the configuration changes, you need to have the generated security certificate. Usually, it
is two files: a certificate and certificate key. But it is possible to join these two files into just one.
In this recipe, we will consider the first option, with two files.

http://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest
http://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest
https://rfc5766-turn-server.googlecode.com/svn/docs/TURNServerRESTAPI.pdf
https://rfc5766-turn-server.googlecode.com/svn/docs/TURNServerRESTAPI.pdf

Supporting Security

56

These certificate files (server.crt and server.key) can be trusted SSL certificates or they
can be self-signed certificates.

Configuring Nginx
You should edit the website's configuration file—usually, it is located under /etc/nginx/
sites-enabled/website.com:

1. The following configuration fragment shows important changes that you should make:
server {

2. We will ask the web server to listen on port 443 (default port for HTTPS) and use SSL:
listen 443 ssl;

3. You should also set up the website's name—as you would do for a non-secured
website:
server_name www.example.com;

4. For a secured website, we need to set up the SSL certificate and SSL certificate key.
Technically, they're just two files generated in a specific way:
ssl_certificate /etc/nginx/ssl/certs/server.crt;
ssl_certificate_key /etc/nginx/ssl/private/server.key;
}

A good practice is to keep .crt and .key files in different folders, as
you can see in the preceding code. So don't forget to copy both files of
your security certificate to proper places. Create appropriate folders if
necessary.

5. You will need to reload the web server after these changes. For Ubuntu, this can be
done using the following command:
sudo service nginx reload

6. Alternatively, you can restart the whole web server using the following command:
sudo service nginx restart

Configuring Apache
You should edit the website's configuration file—usually, it can be found under /etc/
apache2/sites-available/website.conf.

Chapter 2

57

We will not cover all the configuration files but will consider relevant changes:

1. Add the option to make the Apache web server listen on the HTTPS default port
NameVirtualHost *:443.

2. Make necessary changes in the appropriate VirtualHost section:
<VirtualHost *:443>
ServerAdmin webmaster@website.com
DocumentRoot /var/www/website.com
ServerName www.website.com
DirectoryIndex index.php
ErrorLog /var/log/apache2/vhost1-error.log
CustomLog /var/log/apache2/vhost1-access.log combined
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key
<Location />
SSLRequireSSL On
SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +StdEnvVars +StrictRequire
</Location>
</VirtualHost>

3. After you've made these changes, you need to restart the Apache HTTP Server.

Configuring IIS
In this section, we will cover how to configure IIS to use the SSL certificate:

1. Log on to the web server computer as an administrator.

2. Click on Start, point to settings, and then click on Control Panel.

3. Double-click on Administrative Tools, and then double-click on Internet
Services Manager.

4. Select the website from the list of different served sites in the left pane.

5. Right-click on the website on which you want to configure SSL, and then click
on Properties.

6. Click on the Directory Security tab.

7. Click on Edit and then on Require secure-channel (SSL).

8. Click on Require 128-bit encryption to configure 128-bit (instead of 40-bit)
encryption support.

Supporting Security

58

9. To allow users to connect without supplying their own certificate, click on Ignore
client certificates:

There's more…
The configuration process might vary depending on the certain web server version you use.
Please refer to the appropriate vendor's documentation provided with the web server you use
for specific details.

See also
Refer to the Generating a self-signed certificate recipe for details on how to create self-signed
certificates. There you can also find additional information on where to start if you would like
to get a trusted certificate to use in production.

Chapter 2

59

Configuring a WebSockets proxy on the
web server

WebSockets is a new protocol that enables active messaging from server to client. It is
supported by all modern web browsers. This protocol is implemented on top of HTTP and can
be easily served by most popular web servers. It can also be served over secured channels,
such as HTTPS. Because of WebSockets' advantages, people often choose this protocol for
their client-server projects. In WebRTC-based applications, WebSockets usually serves as a
transport protocol for signaling server implementation.

Configuring a WebSockets proxy on a web server can be very useful if you have used
WebSockets as a transport layer for communicating with the signaling server. For some
cases, it might even be mandatory.

Getting ready
Configuring this feature requires making changes in the configuration files of the web server.
We will not cover the entire web server's installation and configuration process, so you need to
have the web server up and running.

How to do it…
We will make necessary configuration changes to the web server to achieve the goal.

Configuring Nginx
The website's configuration files are usually located under the /etc/nginx/sites-
enabled folder:

1. The following piece of the website configuration file shows the WebSockets
proxy settings:
location /websocket {

2. Here we will set the local service that will be serving WebSocket requests for the
web server:
proxy_pass http://localhost:16384;

3. Indicate that we will work with HTTP protocol version 1.1—WebSockets is not
supported on lower HTTP versions:
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_redirect off;

Supporting Security

60

4. Here we can set additional options asking the web server to send useful details about
connected clients in the HTTP headers:
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;
}

5. You will need to restart Nginx or reload its configuration after you've made
these changes.

You need a separate location section for every WebSocket URL that you
need to proxy via the web server.

Configuring Apache
Apache doesn't support this feature from scratch (at least, for versions >= 2.4). Nevertheless,
there are some third-party modules that can help us with this. In this recipe, we will use the
apache-websocket module, available at https://github.com/disconnect/apache-
websocket:

1. The following configuration fragment shows how to use the module:
<IfModule mod_websocket.c>
 <Location /websocket>
 SetHandler websocket-handler
 WebSocketHandler
 /usr/lib/apache2/modules/mod_websocket_tcp_proxy.so
 tcp_proxy_init
 WebSocketTcpProxyBase64 on
 WebSocketTcpProxyHost localhost
 WebSocketTcpProxyPort 16384
 WebSocketTcpProxyProtocol base64
 </Location>
</IfModule>

2. On a default Apache installation, you might want to change your request read
timeout option:
<IfModule reqtimeout_module>
 RequestReadTimeout body=300,minrate=1
</IfModule>

3. You can track native support of this feature in Apache using https://issues.
apache.org/bugzilla/show_bug.cgi?id=47485.

https://github.com/disconnect/apache-websocket
https://github.com/disconnect/apache-websocket
https://issues.apache.org/bugzilla/show_bug.cgi?id=47485
https://issues.apache.org/bugzilla/show_bug.cgi?id=47485

Chapter 2

61

Configuring IIS
The WebSocket proxy feature is available in IIS version 8 and is not supported in older
IIS versions.

You should install Application Request Routing (ARR) 3.0 or a newer version. This is a
proxy-based routing module that serves to forward HTTP requests to content servers.

According to Microsoft's recommendations, ARR should be installed using the Web Platform
Installer (WebPI) module.

Supporting Security

62

Choose Application Request Routing 3.0 as depicted in the preceding screenshot, and click
on the Add button and then click on Install. During the installation process, you will see the
screen shown in the following screenshot:

After ARR is installed, you will see an appropriate message as shown in the
following screenshot:

Chapter 2

63

Now, when ARR is installed successfully, you should install the WebSockets features on IIS
using the Server Manager component and its Manage and Add Roles and Features menus,
as shown in the following screenshot:

Once the installation is complete, ARR will handle WebSockets requests appropriately.

How it works…
Using secure channels is mandatory for a WebRTC application. In our recipes, we have used
WebSockets as a transport protocol to communicate with the signaling server. The main goal
of using a WebSockets proxy is to hide the WebSockets service (signaling server) behind the
web server, which is serving over HTTPS (secured layer). In such a case, we don't need to
configure HTTPS on the signaling server itself.

Supporting Security

64

The following diagram depicts the way this works. When the client (web browser) makes a
request to the signaling server using WebSockets, it doesn't make the request to the signaling
server directly, but to the web server (using a secured channel, HTTPS). Then, the web server
forwards this request to the signaling server (using the usual, non-secured layer), and then it
forwards the response back to the client (the web browser).

The benefits of using such a solution are as follows:

 f You don't need to open a listening port of the signaling server to the external world

 f You need to configure a secured layer for the web server only, and no need to
configure it for the signaling server

 f On the client side, you can use the same domain and port

These benefits are relevant if you have a web server and signaling
server both installed on the same machine.

There's more…
The configuration process might vary depending on the certain web server version you use.
WebSockets is a young technology and is not supported by old web servers. The web server
should support HTTP 1.1 to be able to support WebSockets and the WebSockets proxy.
So, you should use the newest web server version.

Chapter 2

65

You're not limited to using WebSockets for the signaling server transport protocol. This is just
a particular case. You can use any transport you like for this purpose. So, if you prefer to use
something different rather than WebSockets, this proxy feature might not be relevant for you,
or you might have to use other solutions to make your protocol of choice secure and safe.

See also
 f In this recipe, we built the signaling server behind the web server to utilize its HTTPS

(secured layer). For more details on how to configure HTTPS for web servers, please
refer to the Configuring a web server to work over HTTPS recipe.

Configuring a firewall
If you develop a WebRTC application and maintain your own infrastructure (STUN/TURN
servers, web servers), then a properly configured firewall is very important for you. Usually,
every server has a network firewall configured and running. Misconfigured firewalls can
block services and cause side effects. With WebRTC, a misconfigured firewall can lead the
application to DoS (denial of service) or make some parts of it unworkable; for example,
you can hear audio but can't see video.

In this recipe, we will cover basic information that might help you to configure a network
firewall properly.

Getting ready
There are many firewall implementations, and it is impossible to cover all of them. So here,
we will mostly talk about recommendations rather than practical commands and codes.

Find which firewall is used on your system. On Windows, it is a built-in firewall. On Linux systems,
you often have iptables. On BSD systems, it can be pf or ipfw. Mac systems usually use tools
from the BSD family. Your system might even be using some kind of third-party tool, so you
should refer to the relevant documentation of the firewall tool that is used on your system.

How to do it…
It is worth considering how to configure a firewall in the scope of server side and client
side separately.

Supporting Security

66

Configuring a firewall on a server
If you have your own server(s) for all your WebRTC application components (STUN, TURN,
web server, any other kind of network services), it is worth knowing which ports and protocols
can be used by these components to create an appropriate networking policy. Otherwise, your
application might fail to access these services.

Default port numbers for known services relevant for WebRTC applications are as follows:

 f STUN/TURN: Ports 3478 and 5349, UDP and TCP. The second port is used for TLS.

 f Web: TCP port 80 for HTTP and TCP port 443 for HTTPS.

 f Signaling server: This depends on the technology and protocol you use. Using this
is a good idea if you can hide the signaling server behind the web server so that the
signaling server can listen on localhost only, and not listen to the external world.

 f If you're using TURN, your server should have two IP addresses—keep this fact in
mind when configuring a firewall.

 f All the preceding ports should be opened and accessible to the external world.

Configuring a firewall on a client
Of course, you can't control a firewall on the user's side. Nevertheless, the following details
could help you while debugging or problem solving.

WebRTC has great built-in mechanisms and features to handle firewalls and Network Address
Translation (NAT). It can utilize Interactive Connectivity Establishment (ICE), which it
supports via TURN and using STUN services.

The following screenshot shows two cases:

 f The communication process between clients and the signaling server

 f Direct communication between peers after signalization

Chapter 2

67

Signalization is necessary when peers are located on different networks. The signaling server
should be known and accessible to all peers, and then they can exchange data with each
other via network data using the signaling server, and then establish direct connection.

However, if a peer is located behind a NAT/firewall, then this will not work—peers have no
way to know their own external network addresses, so establishing the direct connection
is problematic.

Supporting Security

68

The following screenshot shows such a case:

In this case, before peers can establish a direct connection, a STUN service should be used by
peers to detect their network parameters. STUN allows peers to know about their external IP
addresses. Nevertheless, in many cases it will not work—many users are located behind a NAT
and firewall.

If STUN didn't help, the only solution that might solve the issue is a TURN server. In this case,
all the data between peers will go through the TURN server—it will proxy all media and other
data that peers will transfer to each other. In other words, there will not be a direct peer-to-peer
connection established, and all communication will be done via the TURN server in the middle.

This is why you will probably want to have your own TURN server—many business clients have
very strong network policies and very complex firewall/NAT configurations, so simple solutions
will just not work in their cases.

If you develop your web application or service using WebRTC, consider
installing your own STUN and TURN servers at the very beginning.

Chapter 2

69

The schema in the following diagram depicts the data flow while using a TURN server:

See also
 f Take a look at the Configuring a WebSockets proxy on the web server recipe for

details on how to hide the signaling server (the case using WebSockets as the
transport layer) behind the web server

Integrating WebRTC

In this chapter, we will cover the following topics:

 f Integrating WebRTC with Asterisk

 f Integrating WebRTC with FreeSWITCH

 f Making calls from a web page

 f Integration of WebRTC with web cameras

Introduction
This chapter is fully dedicated to the topic of integrating WebRTC with the rest of the world—
other components, technologies, and services.

You will find recipes on integration of WebRTC with VoIP platforms (Asterisk and FreeSWITCH),
and will learn how to implement a simple solution in the Making calls from a web page recipe
using WebRTC and SIP. We will also cover the integration of WebRTC with web cameras.

In this chapter, we will not write code, but will install and configure third-party applications and
libraries, connecting them with each other in order to achieve the goal. Most of software that we
have covered is cross-platform, but to simplify the task, we will cover Linux-based installations
only. So, for most of recipes, you will need to have a prepared Linux machine. Since we will
consider simple cases, it will not need many resources, so if you don't have a ready-to-use
Linux box, you can use some special software for creating virtual Linux machine to work on
the recipes. It can be VMware, VirtualBox, or any other solution you like. You can use any Linux
distribution for these purposes; I personally used Ubuntu while working on this book.

3

Integrating WebRTC

72

Some commands or system paths might be different for different Linux
distributions.

The recipes of this chapter don't cover all the completed solutions from scratch, and cover
specific questions only. So, it is assumed that you have basic knowledge of using the Linux
command line and have basic experience of installing and configuring Linux software.

Integrating WebRTC with Asterisk
In this recipe, we will cover the integration of WebRTC with Asterisk—an open source platform
used to build communications applications. Asterisk turns an ordinary computer into a
communications server. Asterisk powers IP PBX systems, VoIP gateways, conference servers,
and other custom solutions. It is used worldwide by small and large businesses, call centers,
carriers, and government agencies.

Asterisk-based telephony solutions offer a rich and flexible feature set. Asterisk offers
both classic PBX functionality and advanced features, and interoperates with traditional
standards-based telephony systems and Voice over IP systems. Asterisk offers the advanced
features that are often associated with large, high-end (and high cost) proprietary PBXs.

Getting ready
In this recipe, we will work under Linux. So, prepare a Linux box. We also will use tools such
as Git and SVN—install them if they're not installed yet on your machine.

You might wish to install FreePBX to make your life easier when configuring Asterisk.
This software can be found on its home page at http://www.freepbx.org.

I assume that you have some experience with installing and configuring Linux software.
If not, you can refer to a help page on Linux basics, for example, http://manuals.
bioinformatics.ucr.edu/home/linux-basics.

How to do it…
During this recipe, we will install and configure a set of applications and build a service
by integrating these applications with each other. We will not cover all the installation and
configuration steps from scratch, but will cover specific steps only that might be relevant
in to this recipe.

http://www.freepbx.org
http://manuals.bioinformatics.ucr.edu/home/linux-basics
http://manuals.bioinformatics.ucr.edu/home/linux-basics

Chapter 3

73

Installing libSRTP
Before we compile and install Asterisk, we need to install libSRTP—a software library that
provides an SRTP (Secure Real-time Transport Protocol) implementation. Asterisk should
support SRTP for integrating with a WebRTC application. The support of this protocol is
necessary because WebRTC uses secured channels to build communication between peers.
We install libSRTP with the following steps:

1. Create a directory ~/src/libsrtp and go to it.

2. Download libsrtp to the folder from the library's home page,
http://sourceforge.net/projects/srtp/files/.

3. Unpack the downloaded archive and go into the srtp folder.

4. Compile the library:
./configure CFLAGS=-fPIC

make

sudo make install

At this point, we have compiled and installed the libSRTP library that will be used when
building and installing Asterisk.

Installing Asterisk
In this recipe, we will install Asterisk 11.5; perform the following steps to do so:

1. Download Asterisk from the home page, http://www.asterisk.org.

2. Unpack the archive and go into the Asterisk source code folder.

3. Configure Asterisk as follows:
./configure --with-crypto --with-ssl --with-srtp=/usr/local/lib

contrib/scripts/get_mp3_source.sh

make menuselect.makeopts

menuselect/menuselect --enable format_mp3 --enable res_config_
mysql --enable app_mysql --enable app_saycountpl --enable cdr_
mysql --enable EXTRA-SOUNDS-EN-GSM

Particular configuration options given in the preceding code can vary
depending on your specific case. For example, you might be not using
MySQL but some other database. In newest versions of Asterisk,
app_saycountpl is replaced with app_saycounted.

4. Build Asterisk as follows:
make

make install

http://sourceforge.net/projects/srtp/files/
http://www.asterisk.org

Integrating WebRTC

74

Now we have compiled and installed Asterisk, we can configure the software with the
following steps:

1. Edit /etc/asterisk/sip.conf and change the General section:
udpbindaddr=0.0.0.0:5060
realm=<your_server_IP >
transport=udp,ws

2. Edit /etc/asterisk/rtp.conf to enable STUN and ICE:
icesupport=yes
stunaddr=<IP_of_your_STUN_server>

If you didn't install your own STUN server yet, you can use the public
STUN service from Google at stun.l.google.com:19302.

3. Edit /etc/asterisk/http.conf and enable an HTTP service:
[general]
enabled=yes
bindaddr=0.0.0.0
bindport=8088

4. Edit /etc/asterisk/sip.conf and create a SIP account:
[8000]
secret=SuperS3cret
context=from-internal
host=dynamic
trustrpid=yes
sendrpid=no
type=friend
qualify=yes
qualifyfreq=600
transport=udp,ws
encryption=yes
dial=SIP/8000
callerid=John Dow <8001>
callcounter=yes
avpf=yes
icesupport=yes
directmedia=no

You can find additional details on Asterisk configuration options at
http://www.voip-info.org/wiki/.

5. Now that the configuration is finished, restart Asterisk.

http://www.voip-info.org/wiki/

Chapter 3

75

How it works…
The whole schema of interoperation between all the components can be found in the following
diagram (taken from the sipML5 library's home page):

As you can see, HTML5 client can interact with a VoIP platform using WebRTC and a SIP
module (JavaScript SIP in the diagram).

There's more…
There is an opinion that Asterisk is not the best choice. It is perhaps the oldest and most
mature solution in the field. Nevertheless, many people found it buggy and unstable in some
cases. In particular, WebRTC was not supported by many until the previous versions.

So, if you are looking for alternatives, it might be a good idea to try other solutions such
as FreeSWITCH. Its home page can be found at http://www.freeswitch.org.

See also
 f For an alternative solution, using other VoIP software, refer to the Integrating WebRTC

with FreeSWITCH recipe

 f In the Making calls from a web page recipe, we will cover how to make calls from web
pages using WebRTC and a VoIP platform integration

http://www.freeswitch.org

Integrating WebRTC

76

Integrating WebRTC with FreeSWITCH
In this recipe, we will cover the integration of WebRTC with FreeSWITCH—an open source
platform used to make VoIP communication services.

FreeSWITCH is a scalable open source cross-platform telephony platform designed to route
and interconnect popular communication protocols using audio, video, text, or any other
form of media. It was created in 2006 to fill the void left by proprietary commercial solutions.
FreeSWITCH also provides a stable telephony platform on which many telephony applications
can be developed using a wide range of free tools.

Getting ready
In this recipe, we will work under Linux as well. So, you need a Linux box to be prepared.

It is possible to install FreeSWITCH under Windows, but we don't cover this use case in the
recipe. If you need a Windows installation, please refer to the official documentation at
http://wiki.freeswitch.org/wiki/Installation_for_Windows.

During the work, we will also use tools such as Git and SVN—install them if they're not
installed yet on your machine. I assume that you have some experience with installing
and configuring Linux software.

How to do it…
During this recipe, we will install and configure a set of applications and build a service
by integrating these applications with each other. We will not cover all the installation and
configuration steps from scratch, but will only cover the specific steps that might be relevant
to this recipe.

Installing FreeSWITCH
FreeSWITCH can be installed from precompiled binary packages or from source code. The first
way is easer, but the vendor recommends the second one. We install FreeSWITCH with the
following steps:

1. Install the necessary packages for your system:
apt-get install autoconf automake devscripts gawk g++ git-core
libjpeg-dev libncurses5-dev libtool make python-dev gawk pkg-
config libtiff5-dev libperl-dev libgdbm-dev libdb-dev gettext
libssl-dev libcurl4-openssl-dev libpcre3-dev libspeex-dev
libspeexdsp-dev libsqlite3-dev libedit-dev libldns-dev libpq-dev

http://wiki.freeswitch.org/wiki/Installation_for_Windows

Chapter 3

77

2. Go to the /usr/src folder and compile source code:
cd /usr/src

git clone https://stash.freeswitch.org/scm/fs/freeswitch.git

cd /usr/src/freeswitch

./bootstrap.sh –j

./configure --enable-core-pgsql-support

make && make install

In this case, we will use the master version. Note that master versions
are usually unstable, and for production systems, you should use
stable versions only. For this information, refer to the home page and
clone the relevant stable version at https://www.freeswitch.
org.

3. Install sounds:
make cd-sounds-install cd-moh-install

4. Set permissions and the file owner:
cd /usr/local

adduser --disabled-password --quiet --system --home /usr/local/
freeswitch --gecos "FreeSWITCH Voice Platform" --ingroup daemon
freeswitch

chown -R freeswitch:daemon /usr/local/freeswitch/

chmod -R ug=rwX,o= /usr/local/freeswitch/

chmod -R u=rwx,g=rx /usr/local/freeswitch/bin/*

For more details, refer to https://www.freeswitch.org.

Enabling WebRTC
FreeSWITCH supports WebRTC from version 1.4. WebRTC can be enabled or disabled by
changing appropriate options in the configuration of FreeSWITCH. By default, configuration
options that enable WebRTC are commented out, so WebRTC is disabled. To enable WebRTC
in FreeSWITCH, you should open sip_profiles/internal.xml configuration file and edit
appropriate configuration options as shown:

<!-- uncomment for sip over websocket support -->
<param name="ws-binding" value=":5066"/>

<!-- uncomment for sip over secure websocket support -->
<!-- You need wss.pem in /usr/local/freeswitch/certs for wss -->
<!--<param name="wss-binding" value=":7443"/>-->

https://www.freeswitch.org
https://www.freeswitch.org
https://www.freeswitch.org

Integrating WebRTC

78

You will need to restart FreeSWITCH after this change.

You need to use SSL/TLS certificates if you want to
utilize the WebSockets secured layer (WSS).

Starting FreeSWITCH
You need to add a new user into FreeSWITCH. Please refer to the appropriate page on this
topic at https://wiki.freeswitch.org/wiki/XML_User_Directory_Guide.

After you've made all the configuration steps, start the FreeSWITCH by using the
following command:

cd /usr/local/freeswitch/bin

./freeswitch

Now we have FreeSWITCH installed with enabled with the support of WebRTC.

How it works…
It's better to use a diagram to describe the workflow, so have a look at the following diagram:

There's more…
FreeSWITCH is not the only VoIP platform solution existing in the world. One of the best-known
alternatives is Asterisk.

https://wiki.freeswitch.org/wiki/XML_User_Directory_Guide

Chapter 3

79

Deciding which particular solution might fit your requirements is all up to you. They both have
support for WebRTC since the last versions (middle of 2014). So they both might contain
some bugs or features related to the technology.

Asterisk seems to be older and more mature than FreeSWITCH. There are more hacks
and there's more documentation related to Asterisk than FreeSWITCH.

So if you are looking for alternatives to FreeSWITCH, it might be worth trying Asterisk.
Its home page is http://www.asterisk.org.

See also
 f For an alternative solution, using other VoIP software, refer to the Integrating WebRTC

with Asterisk recipe

 f In the Making calls from a web page recipe, we will cover how to make calls from web
pages using WebRTC and a VoIP platform integration

Making calls from a web page
In this recipe, we will cover the process of making calls from web pages. For this task, you will
need to run a VoIP service. It can be your own Asterisk or FreeSWITCH installation, or it can be
some external, cloud, or SaaS VoIP solution.

To achieve our goal, we will use an HTML5 SIP library to make calls from a web page to a
phone number and vice versa.

Getting ready
In this recipe, we will work under Linux, so prepare a Linux box. We will also use tools such
as Git and SVN—install them if they're not installed yet on your machine.

You will need a web server installed. It might be Nginx, Apache HTTP Server, or any other web
server you like the most. I assume that you have some experience of installing and configuring
Linux software.

How to do it…
During this recipe we will install and configure a set of applications and build a service by
integrating these applications with each other. We will not cover all the installation and
configuration steps from scratch, but will only cover specific steps that might be relevant
to this recipe.

http://www.asterisk.org

Integrating WebRTC

80

Installing sipML5
The first HTML5 SIP client is sipML5. We will use this library in this recipe to achieve our goal.

1. Go into your default www folder of the web server. It might vary on different systems.
For Ubuntu it can be /usr/local/www.

2. Download the sipML5 source code:
svn checkout http://sipml5.googlecode.com/svn/trunk/

3. Give Asterisk access rights to downloaded the project:
chown -R asterisk:asterisk /usr/local/www/trunk/

4. Open the Chrome web browser and navigate to http://<your_IP>/trunk/call.
htm.

Here, your_IP is the IP address of your machine where sipML5 has been installed.

5. Go to Expert Mode and set the options as depicted in the following screenshot:

Put your actual machine's IP address instead of your_IP.

If you have your own STUN server installed, you can
specify its IP or name at the ICE Servers option.

Chapter 3

81

6. Save the changes.

7. Now get back to the first tab and fill in the fields as depicted in the
following screenshot:

Note that you should out your machine's actual IP address (where Asterisk and sipML5
are installed) instead of the your_IP word.

Use the same password you configured for Asterisk
(SuperS3cret in this recipe).

Now click on Login—you should see a Connected status line at the top of the Registration
box.

Now you can try to make an outgoing call using the Call control—call on any number that
is served by the VoIP platform (Asterisk or FreeSWITCH) and is registered in the system.
Incoming calls should work as well; you can check them using any SIP softphone client.
Here are a few of them:

Bria: For more information, go to http://www.counterpath.com/bria

Telephone: To know more about Telephone, refer to https://github.com/eofster/
Telephone

Zoiper: For more details, refer to http://www.zoiper.com/en

http://www.counterpath.com/bria
https://github.com/eofster/Telephone
https://github.com/eofster/Telephone
http://www.zoiper.com/en

Integrating WebRTC

82

Express Talk: Refer to http://www.nch.com.au/talk/ for more information

3CXPhone: For more information, go to http://www.3cx.com/voip/softphone/

X-Lite: To know more about X-Lite, refer to http://www.counterpath.com/x-lite

How it works…
The working flow of this constructed software system might be looking relatively complex
for someone who is not building such systems every day. Although, the working flow of the
integrated system is not that complex:

 f HTML5 SIP client (sipML5 in our case) is just a VoIP softphone implemented to run in
the browser.

 f The in-browser softphone uses WebRTC technology to get access to the computer's
multimedia (camera and microphone).

 f Then using WebRTC, SIP protocol, and WebSockets, the in-browser softphone
establishes communication with the VoIP platform (Asterisk or FreeSWITCH for
example). Then, the softphone registers in the system. After that, the softphone
becomes available to the user to make calls.

 f Thus, the in-browser softphone becomes able to make phone calls to other endpoints
of the VoIP platform. If the VoIP platform has a gate to an external phone network, you
can even make external phone calls using just the in-browser softphone.

There's more…
The sipML5 library is not the only solution that can be used for this task. There are several
alternative software pieces that can be used in this scope as well. Here are two examples
of them:

SIP.js: For more information, refer to http://sipjs.com/

JsSIP: Refer to http://jssip.net/ for more information

Each library has its own pros and cons and can be suitable for your particular expectations
and requirements. The common integration schema remains the same, so you can try
different software and decide which one is best for you.

http://www.nch.com.au/talk/
http://www.3cx.com/voip/softphone/
http://www.counterpath.com/x-lite
http://sipjs.com/
http://jssip.net/

Chapter 3

83

See also
You will need a VoIP platform (SIP server) installed to make calls from a web page. You can
use an existing external server or you can install your own. To install your own VoIP platform,
please refer to the following recipes:

 f Refer to the Integrating WebRTC with Asterisk recipe to learn how to integrate
WebRTC with Asterisk

 f Refer to the Integrating WebRTC with FreeSWITCH recipe to learn how to integrate
WebRTC with different VoIP solutions such as FreeSWITCH

It would probably be good idea to use an external or cloud VoIP
platform for such purposes in production. Maintaining a good, working,
and scalable VoIP platform cannot be easy.

Integration of WebRTC with web cameras
In this recipe, we will discuss how to integrate WebRTC with web cameras. Why might
someone want to integrate a web camera with WebRTC technology? Here are some reasons
why they might do this:

 f A web camera needs a Java or ActiveX enabled on the client for it to be able see the
image from the camera. Many computers have Java installed; nevertheless in some
cases, it might be impossible to install/use Java or ActiveX. Regarding ActiveX, this
technology is supported even on fewer devices than Java. WebRTC can become a
universal and lightweight way to show multimedia from a webcam and that doesn't
need you to install any additional software.

 f As of now, WebRTC is fully supported on Android devices (mostly the ones that use
Chrome mobile), but in the near future, it is supposed to be supported on other
mobile platforms as well (such as iOS and Windows Mobile). At this time, you usually
have to install JVM or FlashPlayer in your mobile if you want to see a video from a
webcam. Often, it is barely possible at all.

 f Webcams usually are very resource limited devices. When several clients access the
camera at one time, it can show time delays and can even get stuck. Such an issue
can be solved very effectively by using of a WebRTC application that is integrated into
the connection between the user and the camera.

Here we cover possible solution for such a task: capturing a video from a webcam,
transcoding it into WebRTC flow, and displaying it in the web browser.

Integrating WebRTC

84

Getting ready
There are many ways in which webcams give out videos. Usually, it can be a set of JPEG
images or RTSP flow. In our experiments, we will cover the second case and will use a D-Link
DCS-5220 web camera.

So for this recipe, you need a webcam that can do RTSP. In my case, it is D-Link but you can
use any other webcam— the recipe will still be relevant, but some minor changes might be
necessary. Install and configure the webcam and connect it to the network.

In this recipe, we will also install and configure the WebRTC media server—this software is
written in Java, so you need JVM installed in your box. One more thing that you will need to
do is install a web server. You can use Nginx, Apache HTTP Server, or any other web server of
your choice.

How to do it…
We will configure the webcam. Then we will install and configure the WebRTC media server,
and then we will connect all the components in the whole system.

Configuring the webcam
First of all, we will do some minor configurations with the web camera. To do so, perform the
following steps:

1. Navigate to the webcam's admin page and open the NETWORK SETUP menu.
We need to go to the RTSP section:

In this section, we need to look for the RTSP port parameter—it should be 554 by
default. It is also worth to set the RTSP Authentication field to the Disable state—for
the time being we're working on the task.

Chapter 3

85

Check whether the webcam works as expected. For this, you can use VLC media player—just
open rtsp://cam_IP/live1.sdp in the player.

Note that you need to insert the relevant IP address of the web
camera instead of cam_IP. If the camera is configured the correct
way, you will see a video captured from it.

Installing WebRTC media server
As we know already, our web camera streams media over RTSP, but we want to watch that
stream in a web browser using WebRTC. So you have to convert the media from RTSP to the
WebRTC form. For this purpose, we will use the WebRTC media server from Flashphoner.

This software can capture media from RTSP streamer, re-encode it, and stream it in WebRTC:

1. Download the media server from its home page at http://flashphoner.com/
download_webrtcserver/.

2. Unpack the archive:
tar -xvzf FlashphonerMediaServerWebRTC.tar.gz

3. Install the server:
cd FlashphonerMediaServerWebRTC

./install.sh

During the installation, you will be asked on the public and private
servers' IPs. If you're experimenting on your local machine, both
the IPs might be identical.

4. Start the media server:
service webcallserver start

5. Check whether that server is running:
ps -ax | grep Flashphoner

You also can look into your media server's log files to check whether
everything is all right: /usr/local/FlashphonerWebCallServer/
logs/server_logs/flashphoner.log.

6. Go to your web server's www folder—in my case it is /usr/local/www:
cd /usr/local/www

http://flashphoner.com/download_webrtcserver/
http://flashphoner.com/download_webrtcserver/

Integrating WebRTC

86

7. Download the web UI files into the folder:
wget https://github.com/flashphoner/flashphoner_client/archive/
wcs_media_client.zip

Clients will access this UI via the web server in order to see the captured media
streams from the web camera. In other words, this is the UI for the media server.

8. Unpack the archive:
unzip wcs_media_client.zip

9. There are several nested empty folders in the archive, so it is worthwhile moving
the necessary files to the upper level and making life a bit easier with the following
commands:
mv flashphoner_client-wcs_media_client/client/wcs_media_client ./

rm -rf flashphoner_client-wcs_media_client/

10. Edit this wcs_media_client/flashphoner.xml configuration file and set the
proper IP address of the WebRTC media server:
<flashphoner>
 <wcs_server>188.226.144.63</wcs_server>
 <ws_port>8080</ws_port>
 <video_width>1280</video_width>
 <video_height>720</video_height>
</flashphoner>

The media server is now installed and properly configured!

Time for magic
Now when everything is configured and running, it is time to do the magic. From your web
browser, go to http://<server_IP>/wcs_media_client/?id=rtsp://<cam_IP>/
live1.sdp.

The following parameters are mentioned in the preceding URL:

 f <server_IP>: This is the IP address of the machine where the WebRTC media
server with its UI is installed

 f <cam_IP>: This is the IP address of the web camera

Chapter 3

87

While navigating to the URL, you will first see an image from the media server, as shown in the
following screenshot:

At this stage, the WebRTC media server will try to connect to the camera and negotiate with
it regarding the stream capturing. It can take several seconds. When the communication
process is done, the server begins capturing the media stream from the camera and
encoding it into the WebRTC format. After that, you will see the image from the camera.

How it works…
The following diagram depicts the general schema of what we built in this solution:

Integrating WebRTC

88

As you can see, the WebRTC media server captures the stream from the web camera and
then the clients can see the captured stream in their web browsers using WebRTC. What is
important here, is that clients are not connected to the webcam and they don't get media
streamed from the webcam directly; instead, clients are connected to the WebRTC media
server, and they get all media streams from the media server.

In the following diagram, you can see the workflow of how it works, step by step:

There's more…
You might want to take a look at another solution—janus-gateway. For more information refer
to https://github.com/meetecho/janus-gateway.

This solution is open source (while the server from Flashphoner is not). At the time of writing
this, it works under Linux only, but its authors claim cross-platform support in the future.

Another popular media server, Wowza, can also capture the RTSP stream from cameras, but
its main purpose to re-encode media data into Flash, so for WebRTC, this solution is hardly
suitable. Nevertheless, Wowza can be an interesting solution as well, for example, if you need
your application to support Flash technology along with WebRTC. This software can be found
at http://www.wowza.com.

Many cameras stream to Motion JPEG, and this recipe is irrelevant for such devices.
Nevertheless, it is possible to build a similar solution for them as well, using similar schema.

https://github.com/meetecho/janus-gateway
http://www.wowza.com

Debugging a WebRTC
Application

In this chapter, we will cover the following topics:

 f Working with a WebRTC statistics API

 f Debugging with Chrome

 f Debugging TURN

 f Debugging using Wireshark

Introduction
Debugging is a very important aspect in developing a computer software. Even if you are
an experienced developer and write very clean and professional code, you might face some
situations when the only good way to understand what's going wrong is debugging and profiling.

In this chapter, we will cover debugging within the scope of developing WebRTC applications.
We will talk about specific useful tools built in Chrome web browser, which can be helpful.
Also, we will cover basic questions of debugging JavaScript applications in the scope of the
main topic. Of course, we will cover the server side as well.

WebRTC has a very useful API known as statistics API; it can be used for monitoring and
debugging WebRTC applications. We will cover this topic in the appropriate recipe, considering
real-world use cases and practical possible solutions.

4

Debugging a WebRTC Application

90

A WebRTC application usually works very intensively with network. Therefore, we will learn
how to use Wireshark (a network sniffer) for debugging purposes in the scope of developing
WebRTC applications and services.

Working with a WebRTC statistics API
WebRTC's standard describes statistics API—a mechanism that an application can use for
getting many kinds of statistical data. Using this mechanism can be helpful when debugging
applications, because you can get access to some hidden data that is not visible to the
application or to a customer in any other way.

Using this part of API you can better understand what is going on under the hood of the web
browser and your application. It is very useful if you are a beginner and would like to know
more on how all this works. It is also helpful if you're an experienced developer and are
creating some advanced feature in the application.

Getting ready
For this recipe, we will not do much configuration work. We will not install any libraries or
compile Linux software like we do in some other recipes. This recipe is dedicated to debugging
and most of the topic is dedicated to client side. Therefore, most of the material is about
JavaScript, the web browser and browser's console.

I would recommend you use Chrome for this recipe, because this browser still seems to be
more stable in the scope of supporting WebRTC. Moreover, usually Chrome has better and
more advanced support for this technology.

How to do it…
For accessing the statistics data, you should use the getStats API function (a method of
PeerConnection instances). While calling this function, you have to pass the selector. In
reply, the browser will return relevant statistical data.

Since WebRTC is still under development, the API functions might still have different names in
the supported web browsers. To solve this issue, it is worthwhile to write additional code that
could serve as a wrapper and universal API to the function. The following code can be used as
a simple example of such behavior:

function myGetStats(peer, callback) {
 if (!!navigator.mozGetUserMedia) {
 peer.getStats(
 function (res) {
 var items = [];
 res.forEach(function (result) {

Chapter 4

91

 items.push(result);
 });
 callback(items);
 },
 callback
);
 } else {
 peer.getStats(function (res) {
 var items = [];
 res.result().forEach(function (result) {
 var item = {};
 result.names().forEach(function (name) {
 item[name] = result.stat(name);
 });
 item.id = result.id;
 item.type = result.type;
 item.timestamp = result.timestamp;
 items.push(item);
 items.push(item);
 });
 callback(items);
 });
 }
};

Now let's write a function that we will call from the application to get the statistics.
This function will print statistical data to the browser's console every 5 seconds:

function printStats(peer) {
 myGetStats(peer, function (results) {
 for (var i = 0; i < results.length; ++i) {
 console.log(results[i]);
 }
 setTimeout(function () {
 printStats(peer);
 }, 5000);
 });
}

Next, we should put the function call in the proper place in the application. Somewhere
in your application, you should create a peer connection object using a construction similar
to the following:

pc = new RTCPeerConnection(pc_config, pc_constraints);

Debugging a WebRTC Application

92

After that, you should set up the onaddstream callback of the created object:

pc.onaddstream = onRemoteStreamAdded;

Here, onRemoteStreamAdded is a callback function that is called once when peer connection
is established. In the following callback function, you should add some code that calls the
printStats function, which we have just written in the preceding code:

var onRemoteStreamAdded = function(event) {
 clog("Remote stream added.");
 attachMediaStream(remoteVideo, event.stream);
 remoteStream = event.stream;
 printStats(pc);
};

I have provided the full list of the functions here to show the big picture and make it clear.
You can see in the following screenshot that after the media stream is attached to the proper
video HTML tag, we call printStats so that it prints the statistical data to the console every
5 seconds:

Chapter 4

93

Here you can see a screenshot of an example web page that uses the described printStats
function. The web browser console is opened, and you can see the statistical data printed
there. The statistical data looks incomprehensible, but the following screenshots will give you
more details, making it clearer.

The following screenshot depicts a part of the browser's console with one of the expanded
statistic data objects. In the screenshot, you can see the Object structure, and according to
its options it is an audio track: its input level is 131, its used codec is Opus, and there were
around 300 kilobytes sent through this channel. You can also see other useful information
regarding this object, such as echo cancellation feature details.

Another screenshot presents one more expanded statistic object. In the following screenshot,
you can see that we deal with video data, we have a delay of 33 milliseconds, and the frame
size is 640 x 480. More service information is present in the following screenshot:

Debugging a WebRTC Application

94

Let's see one more example screenshot. In the following screenshot, we can see that the used
video codec is VP8, the video frame size is 640 x 480, and around 13 megabytes of video
data have been sent through this media channel:

The getStats WebRTC API function can be very useful not only for debugging purposes.
This function can be helpful for many use cases, for example:

 f Monitoring: In this use case, if you have your web service running, you probably want
to monitor its state dynamically, to know how well the resources are utilized and so on

 f Tests: For this use case, if you're working on some feature or just implementing some
new functionality in your application, statistics API can be helpful with A/B testing

 f Troubleshooting: In this use case, if your application doesn't work by some reason for
a customer, you can use this mechanism to track the issue and find the root cause

Checking estimated bandwidth
We just considered a common case of using WebRTC statistics API. Now we will consider a
practical example of using this mechanism. In particular, we will try to know our estimated
bandwidth for the video channel used in our application.

Chapter 4

95

The following function collects statistical data related to the bandwidth utilization and prints
a simple report on the console:

function printStats(peer) {

The myGetStats function is described as follows and can be found in the How to do it…
section of this recipe:

 myGetStats(peer, function (results) {
 for (var i = 0; i < results.length; ++i) {
 var res = results[i];

Check if we have a video object:

 if (res.googCodecName == 'VP8') {
 if (!window.prevBytesSent) window.prevBytesSent =
 res.bytesSent;

Get the bytesSent value as follows:

 var bytes = res.bytesSent - window.prevBytesSent;
 window.prevBytesSent = res.bytesSent;

Now convert the value into kilobytes:

 var kilobytes = bytes / 1024;
 console.log(kilobytes.toFixed(1) + ' kilobytes per
 second');
 }
 }
 setTimeout(function () {
 printStats(peer);
 }, 1000);
 });
}

Debugging a WebRTC Application

96

We have set the timeout value to 1,000 milliseconds. Thus every second this function
gets statistics using WebRTC API, extracts the sent bytes value from the appropriate object,
and calculates the bitrate. The following screenshot depicts what you should see in the
browser's console:

The following section represents one more use case that you might face while developing
an application or a service using WebRTC features.

Checking packet loss
In this section, we will consider another use case: checking packet loss. This is an example
taken from the WebRTC standard draft, a bit adapted to our code base. In the scenario, the
user is experiencing bad sound, and the application wants to determine whether packet loss
causes this issue with the following steps:

1. First of all, let's declare the variables where we will store baseline values and
current value:
var baselineReport, currentReport;

2. Next, write initialization function—it will make first call to statistics API and store the
first value as baseline:
function initStats (peer) {
 myGetStats(peer, function (report) {
 baselineReport = report;
 });

3. Now, using timer, we will get statistics every one second and process it:
 setTimeout(function () {
 myGetStats(peer, function (report) {

Chapter 4

97

 currentReport = report;
 processStats();
 });
}, 1000); }

4. The following function does all the processing work:
function processStats() {
 // compare the elements from the current report with
 the baseline
 for each (var now in currentReport) {
 if (now.type != "outbund-rtp") continue;
 // get the corresponding stats from the baseline
 report
 base = baselineReport[now.id];
 if (base) {
 remoteNow = currentReport[now.remoteId];
 remoteBase = baselineReport[base.remoteId];
 var packetsSent = now.packetsSent -
 base.packetsSent;
 var packetsReceived = remoteNow.packetsReceived
 - remoteBase.packetsReceived;
 // if fractionLost is > 0.3, we have probably
 found the culprit
 var fractionLost = (packetsSent -
 packetsReceived) / packetsSent;
 if (fractionLost > 0.3) {
 console.log("fractionLost is too big: " +
 fractionLost); }
 }
 }
}

5. Now, the following code represents how all that we just have written can be used in
the application:
var onRemoteStreamAdded = function(event) {
 clog("Remote stream added.");
 attachMediaStream(remoteVideo, event.stream);
 remoteStream = event.stream;
 initStats(pc);
};

Here, we will call the iniStats function. This function will get the first data from the
statistics API; store it in the memory, and set up a time for one second. Then, every second
another function will be called—it will get the next statistics sample and do calculations trying
to determine if something is wrong with the packet loss value.

Debugging a WebRTC Application

98

How it works…
The web browser collects and maintains a set of statistic data that can be accessed via
WebRTC API. When accessing this data, you should use a selector—something that determines
the kind of data you want to retrieve.

The selector might, for example, be a MediaStreamTrack object. In this case, the valid
selector must be a member of a MediaStream object that is sent or received by the
PeerConnection object, for which statistics is requested.

Using the selector and calling the getStats function, you will get
statistics data packed in a JavaScript object. Then you need to parse it
and get the necessary value. Most WebRTC API functions allow you to set
up an error function callback. This function will be called if something
goes wrong; usually such callback functions serve to print error messages
in a console. Using these error callbacks is mandatory. Even if you don't
pass the error callback and everything works well, the situation might
change with the next browser update, and your application will throw an
exception. Therefore don't miss the error callbacks!

There's more…
For more details, refer to WebRTC standard draft at http://dev.w3.org/2011/webrtc/
editor/webrtc.html, where you can find more information regarding this part of API. The
standard is in the draft stage yet, so some (or many) concepts might be changed.

See also
 f Take a look at the Debugging with Chrome recipe. Chrome has a set of built-in

WebRTC-related tools that might be helpful when developing and debugging
WebRTC applications.

Debugging with Chrome
Chrome is a web browser developed by Google—the company that invests in WebRTC
development very intensively. Chrome usually has the most advanced support of WebRTC
features than other browsers, and new and experimental features usually appear first
in Chrome.

Thus, it is not surprising that Chrome has good tools for debugging the WebRTC stack. Some
of the relevant details will be covered in this recipe.

http://dev.w3.org/2011/webrtc/editor/webrtc.html
http://dev.w3.org/2011/webrtc/editor/webrtc.html

Chapter 4

99

Getting ready
For this recipe, you will need Chrome installed. It is a multiplatform, so you can download the
relevant installation pack from its home page at https://www.google.com/chrome/
browser/.

How to do it…
There are two known Chrome mechanisms that can be useful for debugging
WebRTC applications:

 f WebRTC-internals

 f Logging

In most cases, you probably will use the first one.

Using webrtc-internals
WebRTC-internals is a built-in mechanism in Chrome with the use of which you can get access
to a variety of WebRTC stack-related information and statistics data.

Open a Chrome web browser and go to the URL chrome://webrtc-internals/.

If you haven't opened any WebRTC application yet, you will not see anything interesting. Now
in the new tab, open a web page of a web application where a WebRTC API is utilized, and
refresh the page that has opened web-internals. You will see something similar to what is
depicted in the following screenshot:

https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
chrome://webrtc-internals/

Debugging a WebRTC Application

100

Here you can see the screenshot of a real application; its URL is present at the top of the
window. In the brackets, you can see the list of STUN/TURN servers that the web browser uses
for establishing peer-to-peer connection. There, also shown are the optional parameters that are
specified while creating that peer connection, for example, the DtlsSrtpKeyAgreement option.

Below the list there are several lines with horizontal arrows that can be expanded, and there
you will find additional details regarding the application and WebRTC stack. There is not much
information that can be displayed because at this stage the direct peer-to-peer connection is
not established yet.

The following screenshot depicts the next stage right after establishing the peer-to-peer
connection:

Chapter 4

101

Here you can see more lines; each of them represents data related to some object or event.
The following screenshot shows an example of what kind of data you can find while expanding
these lines:

You can see that I've expanded the setRemoteDescription list item, and there are details
that have appeared for this object: this is an SDP message of the type offer. You can also
see relevant information about the candidates, codecs, and IP addresses of this item.

Debugging a WebRTC Application

102

In the next screenshot, you can find even more examples of different kinds of items that can
be accessible via this page:

Chapter 4

103

Now here are the audio and video connection objects available and many other service
items that are not obvious. Let's see what is under the audio connection item in the
following screenshot:

Here we expanded the Conn-audio object that represents the audio connection. You can see
the bytes that were sent and received, IP addresses of peers (I was running this example on my
notebook locally, so both IP addresses are identical), transport protocol type, and other options.

You will see the same kind of information while expanding the video connection item, so I will
skip the screenshot for this one. Instead of that, let's see what is on bweforvideo:

Debugging a WebRTC Application

104

This item represents the bandwidth-related details. Here you can find the bitrate and
bandwidth utilized by the web browser during the communication.

In the following screenshot, you can find another example related to video data:

What is good with this tool is that it gives not only numbers and raw data, but it also presents
great-looking graphics, where you can visually see what is happening. In the following
screenshot, you can see the graphs related to audio and video channels utilization:

Chapter 4

105

Now let's take a look at another graphic representation—bweforvideo. It represents various
network connection parameters related to the video channel. On the left-hand side, you can
find options through which you can enable or disable the parameters that you want or don't
want to see in the graphic representation.

Debugging a WebRTC Application

106

There are more graphic representations available—every graphic represents a dynamical
change in some parameter.

Using Chrome logging mechanism
This is not something specific to WebRTC, but can be helpful while developing and debugging
WebRTC applications. Chrome can be started with enabling the logging for certain modules.
In this case, Chrome during its work will print a variety of useful details into log files.

The following command starts Chrome with enabled logging:

chrome --enable-logging --v=4 --vmodule=*libjingle/source/talk/*=4
--vmodule=*media/audio/*=4

Now, Chrome will put additional details into the chrome_debug.log file that can be found
in Chrome's user data folder. The log file is a plain text file, so you can read it without using
special tools.

Chapter 4

107

On some systems, this log file might be directly written into the terminal.

Although we are working on the log file under Windows, you can use convenient tools such
as Sawbuck. You can find its home page at https://code.google.com/p/sawbuck/.

Sawbuck is a log files viewer that can be used not only for Chrome logs, but also for working
with logs of other applications (using plugins). You can see what this tool looks like in the
following screenshot (taken from the tool's home page):

How it works…
We learned the built-in mechanism available in Chrome that can help debugging and profiling
while developing WebRTC applications. Chrome collects useful data, and using logging and
the webrtc-internals tool, you can access these data. Moreover, by accessing graphs, you can
analyze the process in a dynamic manner.

To use this tool, you don't need to install any additional software. This makes it irreplaceable
in the application development process.

https://code.google.com/p/sawbuck/

Debugging a WebRTC Application

108

There's more…
You can find more details specific to Chrome by logging on the appropriate web page of the
Chromium project at http://www.chromium.org/for-testers/enable-logging.

See also
 f For server-side debugging advices, please refer to the Debugging TURN recipe

Debugging TURN
As you probably know, your application will definitely use STUN if you want it to work in the real
world. Using STUN will be enough for most cases, although you will have to use TURN in many
situations—especially when working with enterprise customers, because they usually have
very strict network firewall policies and complex network configurations. Using TURN can be
the only available solution for customers located in some places, for example, some countries
might have specific network access limitations that cause issues for network applications that
are WebRTC-based.

So in this recipe, we will cover how to debug TURN.

Getting ready
For this recipe, you need to have your own TURN server installed and running. When you use a
TURN server as a third-party service, you can debug only client side. However, if you use your
own TURN server, you have access to it and can do more in the scope of debugging. So in this
recipe, we will consider debugging a TURN server that you have direct access to.

How to do it…
In Chapter 3, Integrating WebRTC, we considered the installation and configuration of our own
TURN server. To debug TURN, set the verbosity level to maximum and run the TURN server in
console. Then start your WebRTC application using the TURN server—when the application will
contact the server, you will see debug messages on the console display where the server is
running. The following represents the kinds of messages you might see in the console:

129: session 128000000000000001: new, username=<user1:alpha>,
lifetime=3600

129: session 128000000000000001: user <user1:alpha>: incoming packet
ALLOCATE processed, success

129: handle_udp_packet: New UDP endpoint: local addr 176.58.121.75:3478,
remote addr 89.209.127.164:50186

http://www.chromium.org/for-testers/enable-logging

Chapter 4

109

130: session 128000000000000007: user <>: incoming packet BINDING
processed, success

130: session 128000000000000009: user <>: incoming packet message
processed, error 401

131: session 128000000000000009: new, username=<user2:beta>, lifetime=600

131: session 128000000000000009: user <user2:beta>: incoming packet
ALLOCATE processed, success

131: handle_udp_packet: New UDP endpoint: local addr 176.58.121.75:3478,
remote addr 89.209.127.164:52914

131: session 128000000000000010: user <>: incoming packet message
processed, error 401

In this dump, you will see a fragment of TURN authentication stage where two clients are trying
to get authenticated. Session 129 represents the client user1 with the alpha password, and
session 131 represents the customer user2 with the beta password. You can also see session
130, which represents a STUN client—it doesn't use TURN functionality, so you don't see any
usernames or passwords from this client.

Now if you've configured the TURN server with default console options, you can connect
to the TURN console and get more specific details on the certain session. Connect to the
TURN console:

telnet localhost 5766

After you've connected, it will show you something like the following:

Connected to localhost.

Escape character is '^]'.

TURN Server

rfc5766-turn-server

Citrix-3.2.2.910 'Marshal West'

Type '?' for help

In the console you have a set of commands—using ? or help you can ask the system to show
the whole list of available commands and options. The command we're interested in is ps—it
shows detailed information about the available TURN/STUN sessions.

> ps

 7) id=128000000000000004, user <user1:alpha>:

 started 78 secs ago

 expiring in 3522 secs

 client protocol UDP, relay protocol UDP

 client addr x.x.x.x:58454, server addr y.y.y.y:3478

Debugging a WebRTC Application

110

 relay addr x.x.x.x:63599

 fingerprints enforced: ON

 mobile: OFF

 SHA256: OFF

 SHA type: SHA1

 usage: rp=2, rb=172, sp=1, sb=120

 rate: r=0, s=0, total=0 (bytes per sec)

 8) id=128000000000000010, user <user2:beta>:

 started 76 secs ago

 expiring in 524 secs

 client protocol UDP, relay protocol UDP

 client addr x.x.x.x:52914, server addr y.y.y.y:3478

 relay addr x.x.x.x:50796

 fingerprints enforced: OFF

 mobile: OFF

 SHA256: OFF

 SHA type: SHA1

 usage: rp=2, rb=140, sp=1, sb=120

 rate: r=0, s=0, total=0 (bytes per sec)

 Total sessions: 8

From this listing we can see that in total there are eight sessions on the server. In this
preceding fragment, we see details on certain two sessions. We know the usernames (user1
and user2), passwords, IP addresses, time of expiration, time of living, and some more
details of each session.

Using the TURN console, you can check whether some problematic client has connected to
the server successfully or has any issues. You can check which usernames or passwords
have been used for each session. You can also know about the used protocols and encryption
details. Analyzing such kinds of information can help in troubleshooting the TURN/STUN
communication process.

How it works…
Having direct access to the TURN server, you can use its console to get more certain data
and analyze what's going on. Using such a method, you can debug your application that is
using TURN.

Chapter 4

111

There's more…
In this recipe, we considered a certain way to implement a TURN server, using rfc5766-turn-
server software. If you use some other software, it might be supplied with some other specific
tools for debugging and diagnostic.

See also
 f When you have no direct access to the TURN server, you can use a network sniffer

to capture network packets and analyze the situation from that side. To learn this
technique, please refer to the Debugging using Wireshark recipe.

 f To configure and install a TURN server, refer to Chapter 3, Integrating WebRTC.

Debugging using Wireshark
WebRTC applications use networks very intensively. Thus sometimes you might need to
debug not just the application, but also its communication with other components of the
whole system.

In this section, we will cover the process of debugging WebRTC applications using
network sniffer.

Network sniffer is a tool for capturing network packets. Usually, such tools can help you
to analyze captured data. Using sniffer, you can see and understand how your application
communicates with other points.

Getting ready
For our recipe, we will use Wireshark—which is a free and multiplatform network sniffer
software. Download it from the home page at http://www.wireshark.org.

This tool is very user-friendly and works on most popular platforms, so you don't need any
specific preparations.

You will also need some WebRTC application; you can use any simple hello world application
for this purpose.

http://www.wireshark.org

Debugging a WebRTC Application

112

How to do it…
Start Wireshark. You will see a UI that might look confusing at the first time. This tool is very
powerful and has many features, but for this task, we will use basic functionality. Perform the
following steps to use Wireshark:

1. Click on the Capture button—Wireshark will begin capturing data network frames.

2. Start your WebRTC application and navigate Chrome browser to the application's
main web page.

3. Navigate to the application's web page using another browser and make a call to the
first peer.

4. Wait until the WebRTC session begins and click on the Stop button in the
Wireshark's UI.

Now let's see what we can get from the collected data. In the following screenshots, you can
see the examples from my machine.

In the first screenshot, you can see a set of network packets that are sent between peers (my
notebook and another work machine). The selected line points to a STUN binding success
response with following decoded fields:

Chapter 4

113

After that, peers try to establish secure direct connection, and you can see this stage in the
following screenshot:

Another example of communication through secured channel is depicted in the following
screenshot. Here you can see the application's data exchanging stage.

Debugging a WebRTC Application

114

The following screenshot depicts the TURN authentication stage. You can see that the server
replied with 401 unauthorized request; this is normal step at this stage and it just means that
the server will not serve for anonymous client. After getting this server's response, the client
will continue the communication process and will send credentials to the server.

Using a network sniffer, such as Wireshark, can be very useful and helpful in the debugging
process. You need to capture network packets during a certain stage of the application's
communication, and after that, you can analyze the communication process to understand
what's wrong.

How it works…
A network sniffer allows you to capture necessary network packets that are being sent
between peers and servers. By analyzing these packets, we can understand what's going
on in the communication channels and fix the issues.

There's more…
There are other network-related tools that might be helpful for such kind of task:

 f tcpdump: This is a console network sniffer standard for UNIX-like systems

 f mtr: This is a network tool that can be useful when you need to analyze a network
path of the data that is sent between peers

Chapter 4

115

See also
 f When debugging network-related issues, using the webrtc-internals mechanism might

also be useful. Refer to the Debugging with Chrome recipe for the details.

 f Regarding the process of debugging TURN servers, you can refer to the Debugging
TURN recipe.

Working with Filters

In this chapter, we will cover the following topics:

 f Working with colors and grayscale

 f Working with brightness

 f Working with contrast

 f Working with saturation

 f Working with hue

 f Using the sepia filter

 f Using the opacity filter

 f Inverting colors

 f Implementing the blur effect

 f Implementing the dropped shadow effect

 f Combining filters

 f Custom video processing

Introduction
With the introduction of the HTML5 standard, we have got new powerful features. One of
the interesting ones is a CSS filter. Using this feature, you can control a variety of an image's
properties. You can process a static image or video image on the fly.

In the scope of WebRTC, usage of filters enables you to implement new features in your
application; it can control video images, make it brighter or less contrast, and apply some
specific kinds of filters.

5

Working with Filters

118

In this section, we will cover using of image processing, implementing several practical
solutions and utilizing video filters. You will see before and after cases presented in
the screenshots.

This feature is not supported by all web browsers—use
Chrome browser while testing the provided examples.

The work on HTML5 and WebRTC standards is not finished yet, so there is a chance that
certain places in the code might need to be changed in future. Note that these filters can only
be applied locally. This means that during a video conference, if you apply a filter to the video
from your web camera, you will see the changes locally in your browser—but your peer won't
see these changes. It will see the original video translated from your web camera. On the
other side, you can apply these filters to the remote video of your peer that is shown in your
web browser.

You can find the source codes of the demo application supplied with this book.

Working with colors and grayscale
This recipe shows how to work with a filter that deals with the colors of the processed video.
We will make a video less colorized and then make it black and white. This recipe can be used
as a kind of simple special effect for a video.

How to do it…
Perform the following steps:

1. Add the control button to the main web page of your application:
<button onclick="doGrayScale()">do grayscale</button>

2. Add an appropriate JavaScript function:
function doGrayScale() {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="grayscale(50%)";
};

Here, localVideo is the ID property of the HTML video tag for the local
video playback.

Chapter 5

119

3. Navigate your browser to the web page. You will first see an unprocessed video from
the web camera. The following screenshot depicts such a situation:

4. Now click on the do grayscale button—you will see that the image has become less
colorized, as shown in the following screenshot:

Working with Filters

120

This happened because we applied the grayscale filter with a value of 50%. In other
words, we removed 50 percent of colors from the video.

5. Now edit the code and put 100% into the filter's value, reload the web page, and click
on the do grayscale button again—you will see that video becomes black and white.

How it works…
When you click on the do grayscale button, the JavaScript function from the second step of the
How to do it... section is called. This function applies the grayscale filter with the appropriate
value to the video object—using its style HTML property. From now on, the web browser will show
this video applying the filter on the fly.

Working with brightness
This recipe shows how to change the brightness of a video using the HTML5 filter. If you develop
a video application, it's usually a good idea to give some control on the video to customers,
allowing them to change the contrast, brightness, and other parameters of the video.

How to do it…
Follow the given steps:

1. Add the following control element to the main web page of your application—using
this object we will change the brightness:
Brightness
<input type="range"
oninput="changeBrightness(this.valueAsNumber);
" value="0" step="0.1" min="0" max="10">

2. Add the appropriate JavaScript function:
function changeBrightness(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="brightness(" + val + ")";
};

3. Here, localVideo is the ID property of the HTML video tag for the local video
playback.Navigate your web browser to the web page. You will first see an unprocessed
video from the web camera. The following screenshot depicts such a situation:

Chapter 5

121

4. On the left-hand side of the page, you can see a control described as Brightness.
Try to move it a little to the right—you will see that the video is becoming brighter.
In the following screenshot I moved the control too much to the right and the image
became too bright:

5. If you move it too much to the left, you will just see a black box.

Working with Filters

122

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the brightness filter with the control's value to the video object—using its
style HTML property. From now on, the web browser will show this video applying the filter on
the fly.

Working with contrast
This recipe shows how to control the contrast feature of a video using the HTML5 filter feature.
This is the second most important control that customers usually want to have when using
video applications.

How to do it…
Follow the given steps:

1. Add a control element to the main web page of your application—using this object we
will change the contrast:
Contrast
<input type="range"
oninput="changeContrast(this.valueAsNumber);"
value="0" step="0.1" min="0" max="10">

2. Add an appropriate JavaScript function:
function changeContrast(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="contrast(" + val + ")";
};

Here, localVideo is the ID property of the HTML video tag for the local
video playback.

3. Navigate your web browser to the web page. You will first see an unprocessed
video from the web camera. The following screenshot depicts such a situation:

Chapter 5

123

4. On the left-hand side of the page, you can see a control described as Contrast.
Try to move it to the right or left—you will see that the video has more and less
contrast respectively. In the following screenshot I moved the control to the right
and increased the contrast:

Working with Filters

124

If you move it too much to the left, you will see just a light-gray box. If you move the
control to the right, you will make the image almost black (depends on the amount
of light at your place).

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the contrast filter with the control's value to the video object—using its style
HTML property. From now on, the web browser will show this video applying the filter on the fly.

Working with saturation
In this recipe, we will cover the process of controlling the saturation of a video being captured
from the web camera using WebRTC. Saturation is rarely used as a control available to users.
Although for some kinds of applications it might be very useful.

How to do it…
Perform the following steps:

1. Add a control element to you application's main web page—using this object we will
change the saturation's level:
Saturation
<input type="range"
oninput="changeSaturation(this.valueAsNumber);"
value="0" step="0.1" min="0" max="10">

2. Add an appropriate JavaScript function:
function changeSaturation(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="saturate(" + val + ")";
};

Here localVideo is the ID property of the HTML video tag for the local
video playback.

3. Navigate your web browser to the web page. You will first see an unprocessed video
from the web camera with normal saturation. The following screenshot depicts such
a situation:

Chapter 5

125

4. On the left-hand side of the page, you can see a control described as Saturation.
Try to move it to the extreme left—you will see that the video became black and white.
By smoothly moving the control to the right, you will add saturation, and the video will
look more normal. In the following screenshot, I moved the control too much to the
right, making the video too saturated:

Working with Filters

126

Moving the control to the right bound will make the video oversaturated, and it will be barely
possible for us to see what's happening in the scene.

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the saturate filter using the control's value as the filter's parameter. The
function uses the object's style HTML property. From now on, the web browser will show the
video applying the chosen filter to it on the fly.

Working with hue
In this recipe, we will learn how to control the video's hue. Usually, you will not use this filter
in your applications, although, sometimes it might be helpful; for example when you're using
some kind of specific video equipment that might need this way of processing video.

How to do it…
Follow the given steps:

1. Add a control element to the application's main web page—using this object we will
change the video's hue:
Hue
<input type="range"
oninput="changeHue(this.valueAsNumber);"
value="0" step="20" min="0" max="360">

Here, you can see that we have set the max value as 360—this is because the hue's
value is tied to degrees. In this universe, we have 360 degrees, so the maximum
value for this filter is set to 360.

2. Add an appropriate JavaScript function:
function changeHue(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="hue-rotate(" + val + "deg)";
};

We have also added the deg postfix to the filter's value—it means degree. Here,
localVideo is the ID property of the HTML video tag for the local video playback.

3. Navigate your web browser to the web page. You will first see an unprocessed
video from the web camera, with no filter applied. The following screenshot
depicts this stage:

Chapter 5

127

4. On the left-hand side of the page, you can see a control described as Hue. Try
to move it to the left and right—you will see that the video's colors change. This
is because by moving the control, you change the image's hue. In the following
screenshot I moved the control to the right, making the person's face dark pink,
and the yellow-blue flag became white-green:

Working with Filters

128

You probably will use this filter rarely. It can be useful if in case for some reason you have a
broken video (from your web camera or from the peer) with abnormal hues. Otherwise, it can
be applied just for fun.

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the hue-rotate filter using the control's value as the filter's degree. The
function uses the object's style HTML property. From now on, the web browser will show the
video applying the chosen filter to it on the fly.

Using the sepia filter
This recipe covers the usage of the sepia filter to process a video captured from a remote peer
or local web camera using WebRTC. This is a popular filter often used as a special effect for
making video applications more friendly and warm.

How to do it…
The following steps will show you how to use the sepia filter:

1. Add a control element to the main web page of the application you're
developing—using this object we will control the value of the applied Sepia filter:
Sepia
<input type="range"
oninput="changeSepia(this.valueAsNumber);"
value="0" step="0.1" min="0" max="1">

2. Add an appropriate JavaScript function:
function changeSepia(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="sepia(" + val + ")";
};

Here, localVideo is the ID property of the HTML video tag for the local
video playback.

3. Navigate your web browser to the web page. You will first see a raw video in the web
camera, with no filter applied. In the following screenshot, you can see an image
without any applied filter:

Chapter 5

129

4. On the left-hand side of the page, you can see a control described as Sepia. Try to move
it to the left and right—you will see that the video's colors change. The leftmost position
makes the image look normal (no filter is applied). The rightmost position applies the
filter to the most available value. In the following screenshot, I moved the control to the
rightmost end and made the video look as if it was taken from an old movie:

Working with Filters

130

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the sepia filter to the video image. The function uses the object's style HTML
property. From now on, the web browser will show the video applying the chosen filter to it on
the fly.

Using the opacity filter
In this recipe, we will cover how to use the opacity filter. You will probably rarely use it, but it
can be used for implementing interesting features, such as picture in picture.

How to do it…
Follow these steps:

1. Add a control element to the main web page of your application—using this object we
will control the video's opacity:
Opacity
<input type="range"
oninput="changeOpacity(this.valueAsNumber);"
value="1" step="0.1" min="0" max="1">

2. Add an appropriate JavaScript function:
function changeOpacity(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="opacity(" + val + ")";
};

Here localVideo is the ID property of the HTML video tag for the local
video playback.

3. Navigate your web browser to the web page. You will first see an unprocessed video
from the web camera, with no filter applied. The following screenshot depicts this stage:

Chapter 5

131

4. On the left-hand side of the page, you can see a control described as Opacity. Try
to move it to the left and right—you will see that the video becomes less and more
transparent, respectively. The top-right position is the normal state, and the top-left
position is the transparent state. In the following screenshot I moved the control
a little to the left, and you can see that the person in the image is barely visible
because of the image's transparency:

Working with Filters

132

This filter can also be useful when you overlap several videos. Another utility of this filter is
that, in case you're developing a multiuser conference, by using this filter and changing a
users' video transparency, you can mark the participants as currently speaking or on hold
accordingly.

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the opacity filter to the video using the control's value. The function uses
the object's style HTML property. From now on, the web browser will show the video applying
the chosen filter to it on the fly.

Inverting colors
This recipe covers the process of using a pretty simple filter: inversion of colors. It will
hardly be useful for you in most normal cases, but it might be helpful if for some reason your
peer sends you a broken video with inverted colors, or you get one from your web camera.
Some cameras might work that way due to hardware incompatibility or due to the incorrect
installation of software drivers.

How to do it…
Perform the following steps:

1. Add a control button to your application's main web page:
Inversion
<input type="range"
oninput="invertColors(this.valueAsNumber);"
value="0" step="0.1" min="0" max="1">

2. Add an appropriate JavaScript function:
function invertColors(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="invert(" + val + ")";
};

Here localVideo is the ID property of the HTML video tag for the local
video playback.

3. Navigate your browser to the web page. You will first see an unprocessed video
from the web camera. The following screenshot depicts this stage:

Chapter 5

133

4. On the top left of the web page you can see the Inversion control. Try to move it to
the left and right—you will see that the video image's colors change as and when you
move the control to the left and right. In the following screenshot I moved the control
almost to the rightmost position, and the image transformed to color negative of the
original image:

Working with Filters

134

How it works…
When you click on the Inversion button, the JavaScript function from the second step is
called. This function applies the invert filter with the appropriate value to the video
object—using its style HTML property. From now on, the web browser will show this video
applying the filter online.

Implementing the blur effect
This recipe dives into the implementation of the blur effect. If you have worked on graphic
editing computer software, then you are likely familiar with this effect.

How to do it…
The following steps will help you understand how to implement the blur effect:

1. Add a control element to the index web page of your application—using this object we
will control the blur effect:
Blur
<input type="range"
oninput="doBlur(this.valueAsNumber);"
value="0" step="1" min="0" max="15">

2. Add an appropriate JavaScript function:
function doBlur(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="blur(" + val + "px)";
};

We have added a px postfix for the filter's value—this is because of the blur's intensity
that is setting in pixels. Here, localVideo is the ID property of the HTML video tag
for the local video playback.

3. Navigate your web browser to the web page. You will first see the raw, unprocessed
video from the web camera, with no filter applied. The following screenshot depicts
this stage:

Chapter 5

135

4. In the preceding screenshot, on the left-hand side of the page, you can see a Blur
control. By moving this control to the left and right, you can set the intensity of the
blurriness in an image. The leftmost position means that there is no blur and you
should see a normal image. In the following screenshot I moved the control a little to
the right from the middle, and you can see that the image became very blurry—it is
barely possible to recognize the person in the video:

Working with Filters

136

This filter can be used for indicating that you have muted someone on the videoconference,
or for indicating that the conference has not started.

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the blur filter to the video using the control's value. The function uses the
object's style HTML property. From now on, the web browser will show the video applying the
chosen filter on the fly.

Implementing the dropped shadow effect
In this recipe, we will cover the process of implementing the dropped shadow effect. This filter
can be used for decoration purposes. Although it utilizes CPU resources very actively, don't put
it on every page.

How to do it…
Follow these steps:

1. Add a control element to the appropriate web page of the application—using this
object we will control intensity of the effect:
Shadow
<input type="range"
oninput="doShadow(this.valueAsNumber);"
value="0" step="5" min="0" max="50">

2. Add the onLoad handler to HTML's body tag of the web page. By using this method,
we will initialize the dropped shadow effect.
<body onload="doShadow(0);">

3. Add an appropriate JavaScript function:
function doShadow(val) {
 var v = document.getElementById("localVideo");
 v.style.webkitFilter="drop-shadow(" + val + "px " + val +
 "px 10px green)";
};

Chapter 5

137

We have added the px postfix for the filter's value—this is because of the effect's
intensity is setting in pixels. Also, you can see that we have set the shadow's width to
10 pixels, and we want the shadow to be green.

Here, localVideo is the ID property of the HTML video tag for the local
video playback.

4. Navigate your web browser to the web page. You should see a normal image
 from your web camera, but there should be a green shadow around the image.
The following screenshot depicts this stage:

Working with Filters

138

5. On the left-hand side of the page you can see the Shadow control. By moving this
control to the left and right, you can control the shadow's position. The leftmost
position of the control is the initial position of the shadow—just around the image with
a width of 10 pixels, as we have set it. In the following screenshot I moved the control
a little to the right from the middle, and you can see that the green shadow has also
moved to the bottom and right:

This filter can be used for additional UI decoration while developing WebRTC applications.
You can easily control the shadow's size, position, and color.

How it works…
When you move the control, the JavaScript function from the second step is called. This
function applies the drop-shadow filter to the video using the control's value. The function
uses the object's style HTML property. From now on, the web browser will show the video
applying the chosen filter on the fly.

Chapter 5

139

Combining filters
All the filters described in this chapter can be combined and work together. In this recipe,
we will cover this topic using a simple practical example—combining two filters: brightness
and contrast.

How to do it…
Follow the given steps:

1. Add two control objects to the page for each of the filters we plan to use:
Brightness

<input type="range" oninput="doFilter('brightness',
this.valueAsNumber);" value="0" step="0.1" min="0"
max="10">

Contrast

<input type="range" oninput="doFilter('contrast',
this.valueAsNumber);" value="0" step="0.1" min="0"
max="10">

2. Add a global variable where we will store the values for each filter:
var filters = {};

3. Add an appropriate JavaScript function that will be called when value of the controls
(introduced in the step 1) is changing:
function doFilter(filtername, val) {
 filters[filtername] = val;
 var v = document.getElementById("localVideo");
 var f = "";
 for (var fname in filters) {
 f = " " + fname + "(" + filters[fname] + ")" + f; }
 v.style.webkitFilter=f;
};

Working with Filters

140

4. Navigate your web browser to the web page. You should see the usual image from
your web camera and two controls: for brightness and contrast. By moving these
controls, you can change the value of the image's contrast and brightness. Changing
the value of one filter doesn't reset the value of another. In the following screenshot,
you can see such a web page with the described feature:

How it works…
In the doFilter function, we get the name of a certain filter as the filtername parameter.
Certain filter names we get there from the appropriate filter's control (refer to the first step). As
the second parameter of the function, we also get certain filter values we have to use applying
the filter.

After getting the filter name and filter value in the function, we will store these parameters
(refer to the second step) in the filters array variable (we will use it as an associative
array). Then we will go through all the array keys and values (filter names and their values)
and will construct the string f, combining necessary filter names and its values. We will
delimit filters by the space symbol.

After that, we will get the f string as something like the following:

brightness(3) contrast(5)

We will use the constructed string to change the style of the appropriate video tag. As a result,
we will apply two filters in parallel.

Chapter 5

141

You can combine as many filters as you like, but you should know that some of them could
be resource hungry. If your application sets too many filters at one time, it might cause issues
(the web browser might stack, for example).

Custom video processing
Until now, we considered standard filters only. In this recipe, we will cover the basic case
of custom video processing. Using that approach, you can implement your own filters and
processing algorithms.

How to do it…
As an example, we will implement the pixelization effect.

1. Put a canvas object somewhere on the application's web page. This canvas will be
used for getting frames from the video. The visibility option is set to hidden—we
don't want to show this canvas to the user, we will use it for our internal, technical
purposes only.
<canvas id="canva" width="384px" height="288px"
style="visibility:hidden;"></canvas>

2. Put another canvas object on the web page. This canvas will be used to show the
result of the video processing:
<canvas id="fcanva" width="384px" height="288px"></canvas>

3. Add a button, which will enable the processing:
<button onclick="pixelize(10)">Pixelize</button>

4. Implement the pixelize function. This function actually performs all the
video processing:
 var pixelsize = 10;
 var w = 384;
 var h = 288;

function pixelize(pixelsize) {
 cnv.drawImage(lv, 0, 0, w, h);
 for(var x = 1; x < w; x += pixelsize)
 {
 for(var y = 1; y < h; y += pixelsize)
 {
 var pxl = cnv.getImageData(x, y, 1, 1);
 fcnv.fillStyle =
 "rgb("+pxl.data[0]+","+pxl.data[1]+",
 "+pxl.data[2]+")";

Working with Filters

142

 fcnv.fillRect(x, y, x + pixelsize - 1, y +
 pixelsize - 1);
 }
 }

 setTimeout(function () {
 pixelize(pixelsize);
 }, 0);
}

5. In the following screenshot, you can see how the filter works. On the left-hand side,
the original video is shown, on the right-hand side, you can see the same video after
applying the custom filter:

How it works…
We used two canvases: one (which is hidden) was used to copy frames from the video stream
and get pixels; the second canvas was used to show processed video frames.

When the pixelize function is called the first time, it completes processing of the first video
frame and then sets up a timer to be called the next time. Thus, the browser calls this function
again and again. With every call, it gets a new video frame, processes it, and gets displayed
using the second canvas object.

That way, you can implement any video frame processing algorithm and use it as your custom
video filter.

Native Applications

In this chapter, we will cover the following topics:

 f Building a customized WebRTC demo for iOS

 f Compiling and running an original demo for iOS

 f Compiling and running a demo for Android

 f Building an OpenWebRTC library

Introduction
This chapter is fully dedicated to using WebRTC technology while developing native
applications for mobile platforms. Here, the term native application refers to the kind of
software that is being developed using native tools and SDK of a certain mobile platform.

First of all, you will learn how to get and compile WebRTC libraries that can be used for
developing native applications. There is no separate code for every certain platform.
Basically, the code base is the same for all available mobile platforms.

In other recipes, we will build and run WebRTC demo applications for Android and iOS,
to demonstrate the use of WebRTC on mobile devices.

The Building a customized WebRTC demo for iOS recipe covers customized demo
applications. The problem is that the WebRTC code base is under active development, and
original example applications might not demonstrate all available features of the technology.
For example, the original iOS example didn't support video calls for a long time and supported
audio calls only. Nevertheless, it is possible to build a native iOS application that supports
WebRTC video calls, and the custom demo application demonstrates that.

6

Native Applications

144

Software development for mobile platforms is a very specific field. It is barely possible to
cover development of an application in just one chapter. So I assume that you have enough
experience of developing software for certain mobile platforms, because this is something
that is out of this book's topic. Here, we will only cover WebRTC specific details and skip
the rest.

The flow of building a native application using WebRTC might seem tricky and non-trivial.
The following diagram represents the general case with the basic steps of the flow:

In this chapter, we will cover this flow with all its steps. We will also learn how we can make
this process easier and simpler.

Building a customized WebRTC demo for iOS
In this recipe, we will download a simple, prepared WebRTC native demo application for iOS,
compile it, and run it on a real device. This application can be used for video conference calls
via Google's demo website, https://apprtc.webrtc.org.

This demo software is customized, meaning that WebRTC libraries are precompiled and
should be just linked during compilation of the demo application. It also contains some
changes compared to the original demo from Google.

Getting ready
The demo application is supposed to run on a device, not in a simulator. So you should be
prepared with a physical Apple device (iPhone, iPad) to work on this recipe.

You should be registered on the iOS Developer Program by Apple to be able to install the
application on your device. If you're not participating in this program, it is worth considering
joining. For details, please refer to the program's official web page at http://developer.
apple.com.

https://apprtc.webrtc.org
http://developer.apple.com
http://developer.apple.com

Chapter 6

145

In my case, I used the following tools:

 f iPhone 5s with iOS 8.0.2.

 f A notebook with Windows 7 installed as the second device to build the WebRTC
communication channel.

 f In the notebook, I used a Chrome browser to run a WebRTC application.

 f Xcode 6 to compile the iOS demo. For Xcode, you also need to have an OS X machine
that runs.

How to do it…
Perform the following steps to build a customized WebRTC demo:

1. Create a new project directory and go to it as follows:
mkdir ~/dev

cd ~/dev

2. Get the source code using the following command:
git clone https://github.com/fycth/webrtc-ios

3. Open the demo project in Xcode: ~/dev/webrtc-ios/ios-example/
AppRTCDemo.xcodeproj.

4. Choose the build target using the Xcode menu by navigating to Product | Destination
| iPhone.

5. Build the demo application by navigating to Product | Build.

6. Connect your iPhone to the machine and run the demo by navigating to
Product | Run.

After the last command is executed, the demo application will be installed on the device
and will start automatically; it can take a couple of seconds, so don't rush to run the
application manually.

Native Applications

146

In the following screenshot, you can see an icon of the installed AppRTCDemo application:

After the application starts, you will see a short message and a prompt to enter a room
number. Navigate your browser on another machine to http://apprtc.webrtc.org; you
will see an image from your camera. Copy the room number from the URL string and enter it in
the demo application. The following screenshot represents this stage:

http://apprtc.webrtc.org

Chapter 6

147

After you enter the code and click on the Apply button, the application will try to connect
to the virtual room. It can take a couple of seconds (even up to one minute in my case),
so be patient.

When the connection is established, you should see the image from the iPhone in the web
browser, and vice versa. The following screenshot depicts a screenshot from my iPhone after
I established a WebRTC connection with a notebook:

Native Applications

148

In the screenshot, you can see a man with an iPhone, from which this screenshot was
taken. The video on the iPhone is translated from the notebook's camera. And the following
screenshot represents what was visible on the notebook's display:

Here, in the small image box you can see the video taken from the notebook's web camera.
In the big image, you can see the video translated from the iPhone.

There's more…
For this recipe I forked the code from another project on GitHub. To learn more, refer to
https://github.com/gandg/webrtc-ios.

I introduced some changes in the forked project, fixing some minor issues. You can fork any
of these projects and take its code as the base of your own project.

You can also check this project at https://github.com/pristineio/webrtc-build-
scripts. It is a set of scripts developed specially to facilitate the compilation of WebRTC
libraries' code for iOS. If you develop WebRTC-based software for Apple mobile OS, this tool
might be very useful for you.

https://github.com/gandg/webrtc-ios
https://github.com/pristineio/webrtc-build-scripts
https://github.com/pristineio/webrtc-build-scripts

Chapter 6

149

Building a demo project for a iOS simulator
This demo project uses precompiled WebRTC libraries that are built to use on physical
devices. You should rebuild these libraries in case you want to run the application under
an iOS simulator.

1. Download and install Google Developer Tools:
mkdir ~/dev

cd ~/dev

git clone https://chromium.googlesource.com/chromium/tools/depot_
tools.git

export PATH=`pwd`/depot_tools:"$PATH"

2. Configure the developer tools:
gclient config http://webrtc.googlecode.com/svn/trunk

3. Inform the tools that we want to build libraries for iOS:
echo "target_os = ['ios']" >> .gclient

4. Download the WebRTC source code. It can take a couple of minutes; it will download
several gigabytes of code.
gclient sync

5. Configure the build tool as follows:
export GYP_DEFINES="build_with_libjingle=1 build_with_chromium=0
libjingle_objc=1"

export GYP_GENERATORS="ninja"

export GYP_DEFINES="$GYP_DEFINES OS=ios target_arch=ia32"

export GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS output_dir=out_
sim"

export GYP_CROSSCOMPILE=1

gclient runhooks

6. Build the libraries as shown in the following command lines:
cd ~/dev/trunk

ninja -C out_sim/Debug iossim AppRTCDemo

The building process can take some time. After that you will find compiled WebRTC
libraries by navigating to ~/dev/trunk/out-sim/Debug/.

7. Now you should copy these libraries into the project's ios-example/libs folder,
and then you will be able to build the project for iOS simulator.

Native Applications

150

See also
 f Another recipe, Building an OpenWebRTC library, also might be useful for you in the

scope of developing WebRTC native applications for iOS

 f Refer to the Compiling and running an original demo for iOS recipe for details on how
to work with the original demo from Google

Compiling and running an original demo for
iOS

This recipe covers how to build an original Google WebRTC native demo application for iOS.
The original demo from Google doesn't have any Xcode project files using which you could
open the IDE and do the job with comfort. Unfortunately, you would have to use a set of
console tools and scripts to compile this application.

Getting ready
In this recipe, we will cover the process of building an application for both an iOS simulator
and for a physical device. So you should have a Mac OS X machine to run the demo in a
simulator, and you should have an Apple gadget if you would like to run it on a physical device.

You should also be registered on the Apple iOS Developer Program to be able to install
your application on your device. If you're not participating in this program, it is
worth considering joining. For details, refer to the program's official web page at
http://developer.apple.com.

In my case, I used a MacBook Pro with Mac OS X 10.9.5 installed on it.

How to do it…
First of all, we need to download and build the WebRTC source code. The demo application
is a part of this code, so we will build it with the rest by performing the following steps:

1. Download and install Google Developer Tools:
mkdir –p ~/dev && cd ~/dev

git clone https://chromium.googlesource.com/chromium/tools/depot_
tools.git

export PATH=`pwd`/depot_tools:"$PATH"

2. Configure the developer tools:
gclient config http://webrtc.googlecode.com/svn/trunk

http://developer.apple.com

Chapter 6

151

3. Inform the tools that we want to build libraries for iOS:
echo "target_os = ['ios','mac']" >> .gclient

4. Download the WebRTC source code. It can take a couple of minutes; it will download
several gigabytes of code:
gclient sync

Building a demo project for an iOS device
The following steps should be taken if you're building a demo to run on a physical Apple
device. If you want to run the demo on an iOS simulator, skip this section and continue to the
next one:

1. Configure the build tool as follows:
export GYP_DEFINES="build_with_libjingle=1 build_with_chromium=0
libjingle_objc=1"

export GYP_GENERATORS="ninja"

export GYP_DEFINES="$GYP_DEFINES OS=ios target_arch=armv7"

export GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS output_dir=out_
ios"

export GYP_CROSSCOMPILE=1

2. Prepare the build scripts:
gclient runhooks

3. Build the demo application:
cd ~/dev/trunk

ninja -C out_ios/Debug-iphoneos AppRTCDemo

Building a demo project for an iOS simulator
This section describes the steps that should be taken if you want to compile the application
for an iOS simulator. If you want to run the application on a physical device, find the relevant
steps provided in the previous section:

1. Configure the build tool as follows:
export GYP_DEFINES="build_with_libjingle=1 build_with_chromium=0
libjingle_objc=1"

export GYP_GENERATORS="ninja"

export GYP_DEFINES="$GYP_DEFINES OS=ios target_arch=ia32"

export GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS output_dir=out_
sim"

export GYP_CROSSCOMPILE=1

Native Applications

152

2. Prepare build scripts:
gclient runhooks

3. Build a demo application:
cd ~/dev/trunk

ninja -C out_sim/Debug iossim AppRTCDemo

4. Start the application in an iOS simulator:
~/dev/trunk/out_sim/Debug/AppRTCDemo.app

There's more…
The original code from Google doesn't have any IDE project files so you have to deal with
console scripts through all the development process. This can be easier if you use some
third-party tools that simplify the building process. Such kinds of tools can be found at
http://tech.pristine.io/build-ios-apprtc/.

See also
 f It is also worth taking a look at the Building a customized WebRTC demo for iOS

recipe. In this recipe we cover the process of using a ready-to-use Xcode simple
project with precompiled WebRTC binaries.

Compiling and running a demo for Android
Here, you will learn how to build a native demo WebRTC application for Android. Unfortunately,
the supplied demo application from Google doesn't contain any IDE-specific project files, so
you will have to deal with console scripts and commands during all the building process.

Getting ready
We will need to check whether we have all the necessary libraries and packages installed
on the work machine. For this recipe, I used a Linux box—Ubuntu 14.04.1 x64. So all the
commands that might be specific for OS will be relevant to Ubuntu. Nevertheless, using Linux
is not mandatory and you can take Windows or Mac OS X.

If you're using Linux, it should be 64-bit based. Otherwise, you most likely
won't be able to compile Android code.

http://tech.pristine.io/build-ios-apprtc/

Chapter 6

153

Preparing the system
First of all, you need to install the necessary system packages:

sudo apt-get install git git-svn subversion g++ pkg-config gtk+-2.0
libnss3-dev libudev-dev ant gcc-multilib lib32z1 lib32stdc++6

Installing Oracle JDK
By default, Ubuntu is supplied with OpenJDK, but it is highly recommended that you install an
Oracle JDK. Otherwise, you can face issues while building WebRTC applications for Android.
One another thing that you should keep in mind is that you should probably use Oracle JDK
version 1.6—other versions (in particular, 1.7 and 1.8) might not be compatible with the
WebRTC code base. This will probably be fixed in the future, but in my case, only Oracle JDK
1.6 was able to build the demo successfully.

1. Download the Oracle JDK from its home page at http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

In case there is no download link on such an old JDK, you can try another URL:
http://www.oracle.com/technetwork/java/javasebusiness/
downloads/java-archive-downloads-javase6-419409.html.

Oracle will probably ask you to sign in or register first. You will be
able to download anything from their archive.

2. Install the downloaded JDK:
sudo mkdir –p /usr/lib/jvm

cd /usr/lib/jvm && sudo /bin/sh ~/jdk-6u45-linux-x64.bin
--noregister

Here, I assume that you downloaded the JDK package into the home directory.

3. Register the JDK in the system:
sudo update-alternatives --install /usr/bin/javac javac /usr/lib/
jvm/jdk1.6.0_45/bin/javac 50000

sudo update-alternatives --install /usr/bin/java java /usr/lib/
jvm/jdk1.6.0_45/bin/java 50000

sudo update-alternatives --config javac

sudo update-alternatives --config java

cd /usr/lib

sudo ln -s /usr/lib/jvm/jdk1.6.0_45 java-6-sun

export JAVA_HOME=/usr/lib/jvm/jdk1.6.0_45/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html

Native Applications

154

4. Test the Java version:
java -version

You should see something like Java HotSpot on the screen—it means that the correct
JVM is installed.

Getting the WebRTC source code
Perform the following steps to get the WebRTC source code:

1. Download and prepare Google Developer Tools:
mkdir –p ~/dev && cd ~/dev

git clone https://chromium.googlesource.com/chromium/tools/depot_
tools.git

export PATH=`pwd`/depot_tools:"$PATH"

2. Download the WebRTC source code:
gclient config http://webrtc.googlecode.com/svn/trunk

echo "target_os = ['android', 'unix']" >> .gclient

gclient sync

The last command can take a couple of minutes (actually, it depends on your Internet
connection speed), as you will be downloading several gigabytes of source code.

Installing Android Developer Tools
To develop Android applications, you should have Android Developer Tools (ADT) installed.
This SDK contains Android-specific libraries and tools that are necessary to build and develop
native software for Android. Perform the following steps to install ADT:

1. Download ADT from its home page http://developer.android.com/sdk/
index.html#download.

2. Unpack ADT to a folder:
cd ~/dev

unzip ~/adt-bundle-linux-x86_64-20140702.zip

3. Set up the ANDROID_HOME environment variable:
export ANDROID_HOME=`pwd`/adt-bundle-linux-x86_64-20140702/sdk

http://developer.android.com/sdk/index.html#download
http://developer.android.com/sdk/index.html#download

Chapter 6

155

How to do it…
After you've prepared the environment and installed the necessary system components and
packages, you can continue to build the demo application:

1. Prepare Android-specific build dependencies:
cd ~/dev/trunk

source ./build/android/envsetup.sh

2. Configure the build scripts:
export GYP_DEFINES="$GYP_DEFINES build_with_libjingle=1 build_
with_chromium=0 libjingle_java=1 OS=android"

gclient runhooks

3. Build the WebRTC code with the demo application:
ninja -C out/Debug -j 5 AppRTCDemo

After the last command, you can find the compiled Android packet with the demo application
at ~/dev/trunk/out/Debug/AppRTCDemo-debug.apk.

Running on the Android simulator
Follow these steps to run an application on the Android simulator:

1. Run Android SDK manager and install the necessary Android components:
$ANDROID_HOME/tools/android sdk

Choose at least Android 4.x—lower versions don't have WebRTC support. In the
following screenshot, I've chosen Android SDK 4.4 and 4.2:

Native Applications

156

2. Create an Android virtual device:
cd $ANDROID_HOME/tools

./android avd &

The last command executes the Android SDK tool to create and maintain virtual
devices. Create a new virtual device using this tool. You can see an example in the
following screenshot:

3. Start the emulator using just the created virtual device:
./emulator –avd emu1 &

Chapter 6

157

This can take a couple of seconds (or even minutes), after that you should see a
typical Android device home screen, like in the following screenshot:

4. Check whether the virtual device is simulated and running:
cd $ANDROID_HOME/platform-tools

./adb devices

You should see something like the following:

List of devices attached

emulator-5554 device

This means that your just created virtual device is OK and running; so we can use it to
test our demo application.

5. Install the demo application on the virtual device:
./adb install ~/dev/trunk/out/Debug/AppRTCDemo-debug.apk

You should see something like the following:

636 KB/s (2507985 bytes in 3.848s)

pkg: /data/local/tmp/AppRTCDemo-debug.apk

Success

This means that the application is transferred to the virtual device and is ready to
be started.

Native Applications

158

6. Switch to the simulator window; you should see the demo application's icon. Execute
it like it is a real Android device. In the following screenshot, you can see the installed
demo application AppRTC:

While trying to launch the application, you might see an error message
with a Java runtime exception referring to GLSurfaceView. In this case,
you probably need to switch to the Use Host GPU option while creating
the virtual device with Android Virtual Device (AVD) tool.

Fixing a bug with GLSurfaceView
Sometimes if you're using an Android simulator with a virtual device on the ARM architecture,
you can be faced with an issue when the application says No config chosen, throws an
exception, and exits.

This is a known defect in the Android WebRTC code and its status can be tracked at
https://code.google.com/p/android/issues/detail?id=43209.

https://code.google.com/p/android/issues/detail?id=43209

Chapter 6

159

The following steps can help you fix this bug in the original demo application:

1. Go to the ~/dev/trunk/talk/examples/android/src/org/appspot/apprtc
folder and edit the AppRTCDemoActivity.java file. Look for the following line
of code:
vsv = new AppRTCGLView(this, displaySize);

2. Right after this line, add the following line of code:
vsv.setEGLConfigChooser(8,8,8,8,16,16);

You will need to recompile the application:

cd ~/dev/trunk

ninja -C out/Debug AppRTCDemo

3. Now you can deploy your application and the issue will not appear anymore.

Running on a physical Android device
For deploying applications on an Android device, you don't need to have any developer
certificates (like in the case of iOS devices). So if you have an Android physical device, it
probably would be easier to debug and run the demo application on the device rather than
on the simulator.

1. Connect the Android device to the machine using a USB cable.

2. On the Android device, switch the USB debug mode on.

3. Check whether your machine sees your device:
cd $ANDROID_HOME/platform-tools

./adb devices

If device is connected and the machine sees it, you should see the device's name
in the result print of the preceding command:

List of devices attached

QO4721C35410 device

4. Deploy the application onto the device:

cd $ANDROID_HOME/platform-tools

./adb -d install ~/dev/trunk/out/Debug/AppRTCDemo-debug.apk

You will get the following output:

3016 KB/s (2508031 bytes in 0.812s)

pkg: /data/local/tmp/AppRTCDemo-debug.apk

Success

Native Applications

160

After that you should see the AppRTC demo application's icon on the device.

After you have started the application, you should see a prompt to enter a room number.
At this stage, go to http://apprtc.webrtc.org in your web browser on another machine;
you will see an image from your camera. Copy the room number from the URL string and
enter it in the demo application on the Android device. Your Android device and another
machine will try to establish a peer-to-peer connection, and might take some time. In the
following screenshot, you can see the image on the desktop after the connection with
Android smartphone has been established:

http://apprtc.webrtc.org

Chapter 6

161

Here, the big image represents what is translated from the frontal camera of the Android
smartphone; the small image depicts the image from the notebook's web camera. So both
the devices have established direct connection and translate audio and video to each other.

The following screenshot represents what was seen on the Android device:

There's more…
The original demo doesn't contain any ready-to-use IDE project files; so you have to deal with
console commands and scripts during all the development process. You can make your life a
bit easier if you use some third-party tools that simplify the building process. Such tools can
be found at http://tech.pristine.io/build-android-apprtc.

See also
 f If you consider developing WebRTC applications for iOS, the Building a customized

WebRTC demo for iOS recipe might also be useful for you

Building an OpenWebRTC library
At the beginning of 2014, Ericsson presented its own open source implementation of WebRTC
stack—OpenWebRTC. Ericsson states that this product supports iOS, Android, Windows, Linux,
and Mac OS X platforms from the box. In this recipe, we will build this new WebRTC stack. This
implementation came out just a couple of days ago and there isn't a ready-to-use example
supplied with it, so we will build just the library.

http://tech.pristine.io/build-android-apprtc

Native Applications

162

Getting ready
At this time, OpenWebRTC build scripts support Linux and Mac OS X platforms only, and there
is no ready solution to build OpenWebRTC under Windows. So you need Linux or OS X installed
to work on this recipe.

In my case, I used a Mac Book Pro with Mac OS X 10.9 installed.

How to do it…
Perform the following steps to build OpenWebRTC:

1. Get the source codes:
mkdir ~/dev && cd ~/dev

git clone git@github.com:EricssonResearch/openwebrtc.git
--recursive

cd openwebrtc

2. Configure the environment (this step will take some time). If you're working under
Linux, put linux instead of osx in the command:
cd scripts/bootstrap

./bootstrap.sh -r osx

cd -

3. Build the dependencies. You can also use linux and android words if you're
building for the appropriate platforms. Note that you need Android NDK installed
and configured to build dependencies for this platform:
cd scripts/dependencies

./build-all.sh -r osx ios

./deploy_deps.sh

cd –

4. Build OpenWebRTC using the following command:
./build.sh -r osx ios

After all these commands are executed, you will have OpenWebRTC libraries built and ready to
use. To further learn this library, it might be worth taking a look at Bowser—an open sourced
web browser completely built on the OpenWebRTC stack.

Chapter 6

163

There's more…
This new library is under active development and even its documentation actively
changes. So, for more details, please refer to the home page of the project at
http://www.openwebrtc.io.

Also take a look at Bowser—an open source WebRTC-oriented web browser from
Ericsson. This browser can run under both Android and iOS. Its home page is at
http://www.openwebrtc.io/bowser/.

http://www.openwebrtc.io
http://www.openwebrtc.io/bowser/

Third-party Libraries

In this chapter, we will cover the following topics:

 f Building a video conference using SimpleWebRTC

 f Creating an application using RTCMultiConnection

 f Developing a simple WebRTC chat using PeerJS

 f Making a simple video chat with rtc.io

 f Using OpenTok to create a WebRTC application

 f Creating a multiuser conference using WebRTCO

Introduction
When a new technology or an instrument appears on the market, it might not be reasonable
to create your own framework or a library by utilizing this new tool to develop a product.
Sometimes it is worth looking around and using a Software Development Kit (SDK) or a
ready-to-use framework that implements all the technology's necessary features.

WebRTC is a very young technology that is under active development. We don't have a
completed standard yet, only a draft. There are many third-party frameworks and libraries
available that utilize WebRTC features and provide a nice API for a developer. To use such
tools, it is not necessary to get deep into WebRTC and standards, but you can concentrate
just on your product.

Most of the frameworks provide you with a complete set of tools.
Therefore, you might need to use Google's adapter.js in addition
to keep compatibility between multiple web browsers or their
(browsers') versions.

7

Third-party Libraries

166

Usually, such an SDK can make a developer's life easier—they often provide additional
services such as signaling and STUN/TURN servers. When using a good third-party
framework, you often don't need to take care of the server infrastructure and installation and
maintenance of your own signaling server; you can work only on the client code—the rest will
be served by the chosen solution.

In this chapter, we will consider a few such tools. You will find recipes that utilize a tool's API
to implement basic examples of WebRTC applications. All examples are based on the official
tool's documentation and demo applications from their home pages.

WebRTC stack is developed with great attention to security, and the web
browser might not even run the application in case it is accessed from the
local system. So while testing the provided examples, place them on a web
server. As an alternative, you can use cloud services such as Dropbox for
accessing the application over public folder—in this case, you should change
all HTTP links in the application to HTTPS.

Building a video conference using
SimpleWebRTC

SimpleWebRTC is a very easy-to-use framework written in JavaScript. Using this product,
you can start your first video conference in just one minute. In this recipe, we will cover the
process of creating of a basic WebRTC application using the SimpleWebRTC software.

Getting ready
In this recipe, we will create a simple HTML page by utilizing a SimpleWebRTC framework.
So, you will need a text editor and a WebRTC compliant web browser. If you're using Firefox,
the demo might be executed from the local filesystem; if you're using Chrome, you should use
a web server—otherwise, the browser will prohibit the running of the application.

How to do it…
To build a basic videoconference using this tool, you need to create just one HTML web page.
You don't even need to register an account in the vendor's system.

1. Create an empty HTML file and add the following code:
<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">

Chapter 7

167

2. Include a SimpleWebRTC JavaScript framework:
<script src="http://simplewebrtc.com/latest.js"></script>
</head>
<body>

3. Create a video object for a local video:
<video height="300" id="localVideo"></video>

4. Create a video object for the video translated from a remote peer:
<div id="remotesVideos"></div>

5. Create a button and tie a handler function to it. When you click the button,
videoconference will be created:
<button id="btn1" onclick="startconf()">Start
conference</button>
<script language="JavaScript">

6. Set up a variable to handle the SimpleWebRTC object:
 var webrtc = null;

The following function is called when a customer clicks the button:

 function startconf() {

7. Create a SimpleWebRTC object with initial parameters. We will send the IDs of both
the video objects (for local and remote video); also, we will ask the framework to get
media access immediately:
 webrtc = new SimpleWebRTC({
 localVideoEl: 'localVideo',
 remoteVideosEl: 'remotesVideos',
 autoRequestMedia: true
 });

The following code actually starts the videoconference. Here, we will also set up a
virtual room name, Room86#—you are free to use any name you would like to use:

 webrtc.on('readyToCall', function () {
 webrtc.joinRoom('Room86#');
 });
 };
</script>
</body>
</html>

Third-party Libraries

168

8. Now, save this file in a folder and open it in your web browser (in my case, I've used
Firefox for Mac OS X).

How it works…
When you open the HTML file in your web browser, you will see a blank page with a button.
Click on the Start conference button—the web browser will capture a video from your web
camera and show it on the page (it may ask you for access permission).

In the following screenshot, you can see this stage:

Now, it is time to connect another peer. Open the same HTML file in another browser.
You can even copy it to another machine and open it there. Then click on the Start
conference button—after a couple of seconds, the peer connection should be established
and you should see both the local and remote images on every browser window, as shown in
the following screenshot:

Chapter 7

169

Note you don't need to install a signaling server—SimpleWebRTC takes care of it. When you
call SimpleWebRTC's JavaScript API methods, it communicates to the signaler server installed
on the SimpleWebRTC's servers.

Third-party Libraries

170

There's more…
Although we considered a very simple example of using a SimpleWebRTC framework, this tool
can be used to build more complex applications. For more details, please refer to the official
documentation for the framework at http://simplewebrtc.com.

Creating an application using
RTCMultiConnection

This recipe covers the process of creating a simple WebRTC application using an open source
RTCMultiConnection framework. This is a JavaScript-based framework that allows you to build
applications and services using many WebRTC features, including experimental features.

Getting ready
To work with this framework, we will build a basic WebRTC service that supports private virtual
rooms for videoconferencing. You will need to write some HTML and JavaScript code, which
does not need to develop any server-side parts. So, having just a text editor and a WebRTC
compliant web browser should be enough to work on this recipe.

How to do it…
The RTCMultiConnection tool takes all of the work regarding the signaling on its own.
Thus, you can concentrate on the client side and UI.

1. Create an empty HTML file and add the following code inside it:
<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">

2. Include the HTML style supplied with the tool. This is not necessary, and you can
use your own CSS:
<link rel="stylesheet"
href="http://cdn.webrtc-experiment.com/style.css">

3. Include the framework's JavaScript libraries:
 <script src="http://cdn.webrtc-
 experiment.com/firebase.js"> </script>
 <script src="http://cdn.webrtc-
 experiment.com/RTCMultiConnection.js">
</script></head>

http://simplewebrtc.com

Chapter 7

171

<body>
<section>

4. The following anchor is used for creating virtual rooms:
<code>
<strong id="unique-token"></code>

5. Add an input object to handle the virtual room name:
 <input type="text" id="conference-name">

6. Create a new button element on the page. When it is clicked, a new conference
will start:
 <button id="setup-new-conference" class="setup">Setup
 New Conference</button>
</section>
<table style="width: 100%;" id="rooms-list"></table>

7. Create a separate div layer for the video objects:
<div id="videos-container"></div>
</section>
<script>

8. Create a new connection object. Using this object, we can control the connection itself:
 var connection = new RTCMultiConnection();
 connection.session = {
 audio: true,
 video: true
 };

9. Declare a callback handler that will be called when a new media stream is ready.
This handler will create a new video object for every media stream and place it in the
video container layer:
 connection.onstream = function(e) {
 e.mediaElement.width = 300;
 videosContainer.insertBefore(e.mediaElement,
 videosContainer.firstChild);
 };

10. Create a handler for the stream ended event. It will be called when a stream is
stopped (peer connection is interrupted, for example). This function will remove the
irrelevant video object:
 connection.onstreamended = function(e) {
 e.mediaElement.style.opacity = 0;
 setTimeout(function() {

Third-party Libraries

172

 if (e.mediaElement.parentNode) {
 e.mediaElement.parentNode.
 removeChild(e.mediaElement);
 }
 }, 1000);
 };
 var sessions = { };

11. Make a function that will be called when a new virtual room is created, and someone
is waiting for the remote peer to join:
 connection.onNewSession = function(session) {
 if (sessions[session.sessionid]) return;
 sessions[session.sessionid] = session;
 var tr = document.createElement('tr');

12. We need to notify the customer when the virtual room is created. The following code
shows such a notification and creates a Join button:
 tr.innerHTML = '<td>' +
 session.extra['session-name'] + ' is
 running a conference!</td>' + '<td><button
 class="join">Join</button></td>';
 roomsList.insertBefore(tr, roomsList.firstChild);
 var joinRoomButton = tr.querySelector('.join');
 joinRoomButton.setAttribute('data-sessionid',
 session.sessionid);

13. Create an appropriate code for the Join button:
 joinRoomButton.onclick = function() {
 this.disabled = true;
 var sessionid = this.getAttribute('data-
 sessionid');
 session = sessions[sessionid];
 if (!session) throw 'No such session exists.';
 connection.join(session);
 };
 };
var videosContainer = document.getElementById('videos-
container') || document.body;
 var roomsList = document.getElementById('rooms-list');
 document.getElementById('setup-new-conference').onclick
 = function() {
 this.disabled = true;
 connection.extra = {
 'session-name': document.getElementById
 ('conference-name').value || 'Anonymous'

Chapter 7

173

 };
 connection.open();
 };
 connection.connect();

14. The unique URL to share the virtual room with others is created on the client side as
well. The following code represents how this task is solved in the example:

 (function() {
 var uniqueToken = document.getElementById('unique-
 token');
 if (uniqueToken)
 if (location.hash.length > 2)
 uniqueToken.parentNode.parentNode.parentNode.
 innerHTML = '<h2 style="text-align:center;">
 <a href="' + location.href + '"
 target="_blank">Share this link</h2>';
 else uniqueToken.innerHTML =
 uniqueToken.parentNode.parentNode.href = '#'
 + (Math.random() * new
 Date().getTime()).toString(36).toUpperCase().
 replace(/\./g , '-');
 })();
</script>
</body>
</html>

That is all. Save this file on a disk, and navigate your web browser to it.

How it works…
When you open the HTML file, you will see a web page similar to the following:

Third-party Libraries

174

Now, create a new private virtual room by clicking on the URL to the left (it will open a new tab
in the browser as shown in the following screenshot).

In this page, you should enter your name or a room's name in the input textbox, and then
click on the Setup New Conference button. After that, you should see the image from your
web camera:

Now, copy the Share this link URL and open it on another machine, or you can open it in
another browser's tab, like I did. You will see a big Join button like the one shown in the
following screenshot:

Chapter 7

175

So, to connect to the conference, just click on the Join button. Right after that, the conference
will try to establish peer-to-peer connection. If everything goes well, every peer should see
both local and remote images.

In my case, I used the same machine (just separate
browser windows), so the images are identical.

Third-party Libraries

176

This library uses Firebase (https://www.firebase.com) for signaling, so you don't need to
install and maintain your own signaling server—RTCMultiConnection will take care of that.

There's more…
RTCMultiConnection allows you to create more complex applications, and utilize advanced
WebRTC features. Here, we touched just the basic concepts.

For details on how to use this framework, refer to its official home page https://www.
webrtc-experiment.com/RTCMultiConnection/.

Developing a simple WebRTC chat using
PeerJS

In this recipe, we will use the PeerJS WebRTC framework to create a simple web chat concept
by utilizing data channels.

Getting ready
PeerJS requires developers to register before they can use its API. During the registration
process (it is free), a developer gets a unique ID that can be used to work with the API.
If you would like to use this framework and don't mind registering, then visit its home page
at http://peerjs.com.

How to do it…
Using PeerJS is really simple, and a basic example can be performed using just one
HTML file. In the following steps, you will find such an index file with comments in all the
important places:

1. Place the standard HTML headers:
<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">

2. Include the PeerJS library:
 <script
 src="http://cdn.peerjs.com/0.3/peer.js"></script>
</head>
<body>

https://www.firebase.com
https://www.webrtc-experiment.com/RTCMultiConnection/
https://www.webrtc-experiment.com/RTCMultiConnection/
http://peerjs.com

Chapter 7

177

3. Add an input textbox. Here, a customer can enter his/her name while connecting to
the system. For simplicity, the same box will be used to enter further chat messages:

<input type="text" id="inputbox"/>

4. Create three buttons to connect to the system, to call the remote peer, and to send
messages to the remote peer:
<button id="btn_connect"
onclick="Connect()">Connect!</button>
<button id="btn_call" onclick="CallTo()"
disabled="true">Call To</button>
<button id="btn_send" onclick="SendMessage()">Send
message</button>
<script language="JavaScript">

5. In the following variable, you should add your developer API ID you got from the
PeerJS system during the registration process:
var MY_API_ID = YOUR_API_ID;
 var peer = null;
 var conn = null;

6. The following function takes the customer's name and registers it in the PeerJS
system. After that, another peer can connect to this customer using its name
for connection:
 function Connect() {
 var myname =
 document.getElementById("inputbox").value;
 peer = new Peer(myname, {key: MY_API_ID});

7. Set up a callback function on the connection event. This function will be called
when a remote peer establishes a connection with us. Here, we will also set a
helper function that will print the received messages from the remote peer to the
browser's console:
 peer.on('connection', function(connection) {
 connection.on('data', function(data){
 console.log("Remote peer said: " + data);
 });
 conn = connection;
 });
 document.getElementById("btn_connect").
 setAttribute("disabled", "true");
 document.getElementById("btn_call").
 removeAttribute("disabled");
 };

Third-party Libraries

178

8. We also need a function that will call the remote peer. The following code represents
such a function. It takes a remote peer's name from the input textbox and calls
PeerJS to establish the connection:
 function CallTo() {
 var remotename =
 document.getElementById("inputbox").value;
 conn = peer.connect(remotename);
 document.getElementById("btn_call").
 setAttribute("disabled","true");
 };

9. To send messages, we need an appropriate function responsible for that.
Such a function, you can find in the following:
 function SendMessage() {
 var msg =
 document.getElementById("inputbox").value;
 conn.send(msg);
 };
</script>
</body>
</html>

That is all. Save this file on a disk, and navigate your web browser to the demo.

How it works…
Open a prepared HTML file, in that, you will see an input box and three buttons. Enter a peer's
name in the textbox and click on the Connect! button. It will connect to a PeerJS system. Now,
open the file in another browser (we can also open the file on another machine). Enter another
peer's name, and click on Connect!. In the following screenshot, I used peer1 and peer2 as
names for the peers:

Chapter 7

179

Now, for the second peer, enter the first peer's name (peer1 in my case) in the textbox, and
click on the Call To button. This will start to establish the peer connection—peer2 will try to
make a call to peer1.

After the connection is established, we can test message exchanging. For peer2, enter any
input in the textbox and click on Send message. The entered text will be sent to peer1, and
will be printed in its browser console. In the following screenshot, I have sent a Hello,
peer1!!! message:

Third-party Libraries

180

PeerJS uses its own infrastructure such as signaling mechanisms. Thus, if you use PeerJS,
you don't need to be worried of developing signaling protocols, and you can concentrate on
developing your application.

There's more…
You can find out more about PeerJS from its home page http://peerjs.com.

This is a free and open source tool, so it can be used as an SDK or can be taken as a code
base for developing another WebRTC framework for custom application.

Making a simple video chat with rtc.io
rtc.io is a free and open source project for developing WebRTC applications. It provides simple
and clean APIs. In this recipe, we will use rtc.io to create a basic video chat service.

Getting ready
Like most of the other considered frameworks, rtc.io serves its own signaling server, so you
can create a basic application using just a few lines of JavaScript code and HTML. For this
recipe, you will need a text editor and web browser.

How to do it…
Create an empty file in the text editor and add the following code. This is a plain HTML with a
JavaScript section. Relevant places are commented inline.

1. First of all, let's add the standard HTML heads and bit of styles:
<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <style>
 #messages {
 border: 1px solid black;
 min-height: 20px;
 }
 </style>

2. Include the rtc.io framework in this project:
<script src="https://rawgit.com/rtc-
io/rtc/master/dist/rtc.js">
</script></head>
<body>

http://peerjs.com

Chapter 7

181

3. Create separate div layers for chat messages and both local and remote video:
 <div id="messages" contenteditable></div>
 <div id="l-video"></div>
 <div id="r-video"></div>
 <script language="JavaScript">

4. Set the framework's options—for a basic case, we just need a room's name and
signaler server URL. Here, we used a native signaler sever hosted on the rtc.io
infrastructure. It's an open source code, so you can download and install it on your
own server:
 var rtcOpts = {
 room: 'my-cool-test-room',
 signaller: '//switchboard.rtc.io'
 };

5. Initialize the framework and create an RTC object:
 var rtc = RTC(rtcOpts);
 var localVideo = document.getElementById('l-
 video');
 var remoteVideo = document.getElementById('r-
 video');
 var messageWindow =
 document.getElementById('messages');

6. Bind handler functions to appropriate events that might be generated on the
data channel:
function bindDataChannelEvents(id, channel, attributes,
connection) {
 channel.onmessage = function (evt) {
 messageWindow.innerHTML = evt.data;
 };
 messageWindow.onkeyup = function () {
 channel.send(this.innerHTML);
 };
}

7. Initialize the session:
 function init(session) {
 session.createDataChannel('chat');
 session.on('channel:opened:chat',
 bindDataChannelEvents);
 }

Third-party Libraries

182

8. Display the local and remote video:
 localVideo.appendChild(rtc.local);
 remoteVideo.appendChild(rtc.remote);

9. Handle the session establishing event:
 rtc.on('ready', init);
 </script>
</body>
</html>

The example can be saved on the disk and uploaded to the web server.

How it works…
We created a new RTC object using the framework's API. Additionally, we set a couple of
functions to handle events. Then, we initialized the framework by calling the appropriate API
method. After all this, it will handle signaling and peer connections.

There's more…
For additional details and advanced examples of how to use this framework, refer to its
homepage at http://rtc.io.

Using OpenTok to create a WebRTC
application

OpenTok is a proprietary framework that allows you to build WebRTC-based applications using
the provided SDK. In this recipe, we will build a simple demo application by utilizing the basic
features of the tool.

Getting ready
To use this framework, you should register with the OpenTok system, and get a unique
developer API ID. To use this system, you should have three keys: the API key, session ID,
and token. The following instructions cover the process of creating these keys:

1. Navigate to https://tokbox.com/opentok/ and click on Sign Up.

2. Fill the form and click on the Sign Up button:

http://rtc.io
https://tokbox.com/opentok/

Chapter 7

183

3. Check for an e-mail from OpenTok (TokBox), they will send a confirmation e-mail with
the API key. Write down the API key—this is the first key. Confirm your registration with
their system by clicking on the appropriate link in the e-mail:

Third-party Libraries

184

4. Navigate to https://dashboard.tokbox.com—find the Projects section and click
on the View Details button:

5. In the next page, you will see Project Tools, where you can create a new session.
Do it by using the Create button:

6. Right after that, you will see the generated session ID below the button. Write down
this value—this is the second key.

7. After you've created the new session, you should create a new token based on this
session. At the Generate Token section, click on the Generate button:

https://dashboard.tokbox.com

Chapter 7

185

8. After you've clicked on the Generate button, you will see a generated token below the
button, as shown in the following screenshot:

9. Write down this value (generated token)—this is the third key.

Now, you have all the three keys to work with the OpenTok system.

This framework requires you to use a web server, so for this recipe,
you should have a web server installed and configured.

Third-party Libraries

186

How to do it…
Now, when you have your API ID, a session ID, and two tokens, you can continue with the
process of building an application using OpenTok:

1. Create an empty HTML file (let's name it index.html) and add the following code:
<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title></title>

2. Include the OpenTok code in your project:
<script src =
'http://static.opentok.com/webrtc/v2.2/js/opentok.min.js'>
</script>
 <script type="text/javascript">

3. In the following lines, you should insert the actual API ID (API key) and session ID,
which you have generated while preparing for this recipe:
 var apiKey = <YOUR_API_ADI>;
 var sessionId = <GENERATED_SESSION_ID>;

4. As you remember, we generated two tokens—one per client. Add the first token in the
following variable:
 var token = <TOKEN_1>;

5. Initialize the session by calling the OpenTok method:
 var session = OT.initSession(apiKey, sessionId);

6. Subscribe to events:
 session.on("streamCreated", function(event) {
 session.subscribe(event.stream);
 });

Chapter 7

187

7. Open a new connection:
 session.connect(token, function(error) {
 var publisher = OT.initPublisher();
 session.publish(publisher);
 });
 </script>
</head>
<body>

8. We also need an HTML object to publish a video there:
 <h1>Awesome video feed!</h1>
 <div id="myPublisherDiv"></div>
</body>
</html>

9. Now, save the file and create another one (let's name it index2.html). Make the
second file identical to the first one. Then, edit the second file and change the token
value in the following line:
 var token = <TOKEN_2>;

10. In the second file, you should add the second token, which you have generated while
preparing for this recipe. Save the second file.

Now, we have two files: index.html and index2.html. They are both identical, except for
their token value—every file contains its own token ID. Put both the files in the web server.

How it works…
It's time to test what we've developed.

Open a web browser and navigate to the place where the first file (index.html) is located.
Note that you should not use a filesystem, and both the files should be accessible on the web
server. After the page is opened, you will see an image from the web camera.

Third-party Libraries

188

Now, on another machine, open a web browser and navigate to the second file (index2.
html). You will see the similar picture. In a couple of seconds, the connection will be
established and you will see local and remote images on both the machines. The following
screenshot represents this case:

In my case, I have used the same machine, but opened the files in two different web browsers.

OpenTok takes care of signaling and other technical processes. As you can see, the
application is very compact, and the code is very short and clean. You don't need to
spend time on installation and maintenance of server components, they are provided
and transparently served by the framework.

There's more…
We considered just a simple example of using OpenTok, but this tool allows you to create
more complex applications with advanced features. For details, refer to OpenTok's home page
at https://tokbox.com/opentok/.

https://tokbox.com/opentok/

Chapter 7

189

Creating a multiuser conference using
WebRTCO

In this recipe, we will create a simple application that supports a multiuser videoconference.
We will do it using WebRTCO—an open source JavaScript framework for developing WebRTC
applications.

Getting ready
For this recipe, you should have a web server installed and configured. The application we will
create can work while running on the local filesystem, but it is more convenient to use it via
the web server.

To create the application, we will use the signaling server located on the framework's
homepage. The framework is open source, so you can download the signaling server from
GitHub and install it locally on your machine. GitHub's page for the project can be found at
https://github.com/Oslikas/WebRTCO.

How to do it…
The following recipe is built on the framework's infrastructure. We will use the framework's
signaling server. What we need to do is include the framework's code and do some
initialization procedure:

1. Create an HTML file and add common HTML heads:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">

2. Add some style definitions to make the web page looking nicer:
 <style type="text/css">
 video {
 width: 384px;
 height: 288px;
 border: 1px solid black;
 text-align: center;
 }
 .container {
 width: 780px;
 margin: 0 auto;
 }
 </style>

https://github.com/Oslikas/WebRTCO

Third-party Libraries

190

3. Include the framework in your project:
<script type="text/javascript" src =
"https://cdn.oslikas.com/js/WebRTCO-1.0.0-beta-min.js"
charset="utf-8"></script>
</head>

4. Define the onLoad function—it will be called after the web page is loaded. In this
function, we will make some preliminary initializing work:
<body onload="onLoad();">

5. Define HTML containers where the local video will be placed:
<div class="container">
 <video id="localVideo"></video>
</div>

6. Define a place where the remote video will be added. Note that we don't create HTML
video objects, and we just define a separate div. Further, video objects will be created
and added to the page by the framework automatically:
<div class="container" id="remoteVideos"></div>
<div class="container">

7. Create the controls for the chat area:
<div id="chat_area" style="width:100%; height:250px;
overflow: auto; margin:0 auto 0 auto; border:1px solid
rgb(200,200,200); background: rgb(250,250,250);"></div>
</div>
<div class="container" id="div_chat_input">
 <input type="text" class="search-query"
 placeholder="chat here" name="msgline" id="chat_input">
 <input type="submit" class="btn" id="chat_submit_btn"
 onclick="sendChatTxt();"/>
</div>

8. Initialize a few variables:
<script type="text/javascript">
 var videoCount = 0;
 var webrtco = null;
 var parent = document.getElementById('remoteVideos');
 var chatArea = document.getElementById("chat_area");
 var chatColorLocal = "#468847";
 var chatColorRemote = "#3a87ad";

Chapter 7

191

9. Define a function that will be called by the framework when a new remote peer is
connected. This function creates a new video object and puts it on the page:
 function getRemoteVideo(remPid) {
 var video = document.createElement('video');
 var id = 'remoteVideo_' + remPid;
 video.setAttribute('id',id);
 parent.appendChild(video);
 return video;
 }

10. Create the onLoad function. It initializes some variables and resizes the controls on
the web page. Note that this is not mandatory, and we do it just to make the demo
page look nicer:
 function onLoad() {
 var divChatInput =
 document.getElementById("div_chat_input");
 var divChatInputWidth = divChatInput.offsetWidth;
 var chatSubmitButton =
 document.getElementById("chat_submit_btn");
 var chatSubmitButtonWidth =
 chatSubmitButton.offsetWidth;
 var chatInput =
 document.getElementById("chat_input");
 var chatInputWidth = divChatInputWidth -
 chatSubmitButtonWidth - 40;
 chatInput.setAttribute("style","width:" +
 chatInputWidth + "px");
 chatInput.style.width = chatInputWidth + 'px';
 var lv = document.getElementById("localVideo");

11. Create a new WebRTCO object and start the application. After this point, the framework
will start signaling connection, get access to the user's media, and will be ready for
income connections from remote peers:
webrtco = new WebRTCO('wss://www.webrtcexample.com/signalling',
lv, OnRoomReceived, onChatMsgReceived, getRemoteVideo, OnBye);
};

Here, the first parameter of the function is the URL of the signaling server. In this
example, we used the signaling server provided by the framework. However, you can
install your own signaling server and use an appropriate URL. The second parameter
is the local video object ID. Then, we will supply functions to process messages
of received room, received message, and received remote video stream. The last
parameter is the function that will be called when some of the remote peers have
been disconnected.

Third-party Libraries

192

12. The following function will be called when the remote peer has closed the connection.
It will remove video objects that became outdated:
 function OnBye(pid) {
 var video = document.getElementById("remoteVideo_"
 + pid);
 if (null !== video) video.remove();
 };

13. We also need a function that will create a URL to share with other peers in order
to make them able to connect to the virtual room. The following piece of code
represents such a function:
 function OnRoomReceived(room) {
 addChatTxt("Now, if somebody wants to join you,
 should use this link: <a
 href=\""+window.location.href+"?
 room="+room+"\">"+window.location.href+"?
 room="+room+"",chatColorRemote);
 };

14. The following function prints some text in the chat area. We will also use it to print the
URL to share with remote peers:
 function addChatTxt(msg, msgColor) {
 var txt = "" +
 getTime() + msg + "
";
 chatArea.innerHTML = chatArea.innerHTML + txt;
 chatArea.scrollTop = chatArea.scrollHeight;
 };

15. The next function is a callback that is called by the framework when a peer has sent
us a message. This function will print the message in the chat area:
 function onChatMsgReceived(msg) {
 addChatTxt(msg, chatColorRemote);
 };

16. To send messages to remote peers, we will create another function, which is
represented in the following code:
 function sendChatTxt() {
 var msgline =
 document.getElementById("chat_input");
 var msg = msgline.value;
 addChatTxt(msg, chatColorLocal);
 msgline.value = '';
 webrtco.API_sendPutChatMsg(msg);
 };

Chapter 7

193

17. We also want to print the time while printing messages; so we have a special function
that formats time data appropriately:
 function getTime() {
 var d = new Date();
 var c_h = d.getHours();
 var c_m = d.getMinutes();
 var c_s = d.getSeconds();

 if (c_h < 10) { c_h = "0" + c_h; }
 if (c_m < 10) { c_m = "0" + c_m; }
 if (c_s < 10) { c_s = "0" + c_s; }
 return c_h + ":" + c_m + ":" + c_s + ": ";
 };

18. We have some helper code to make our life easier. We will use it while removing
obsolete video objects after remote peers are disconnected:
 Element.prototype.remove = function() {
 this.parentElement.removeChild(this);
 }
 NodeList.prototype.remove =
 HTMLCollection.prototype.remove = function() {
 for(var i = 0, len = this.length; i < len; i++) {
 if(this[i] && this[i].parentElement) {
 this[i].parentElement.removeChild(this[i]);
 }
 }
 }
</script>
</body>
</html>

Now, save the file and put it on the web server, where it could be accessible from web browser.

How it works…
Open a web browser and navigate to the place where the file is located on the web server.
You will see an image from the web camera and a chat area beneath it. At this stage, the
application has created the WebRTCO object and initiated the signaling connection. If
everything is good, you will see an URL in the chat area. Open this URL in a new browser
window or on another machine—the framework will create a new video object for every new
peer and will add it to the web page.

Third-party Libraries

194

The number of peers is not limited by the application. In the following screenshot, I have
used three peers: two web browser windows on the same machine and a notebook as the
third peer:

Using this framework, you can attain your own signaling server or you can use the one that is
provided by the tool.

There's more…
For now, the tool supports basic WebRTC features and it is in the beta stage. WebRTCO is
under development and it might be improved in the future.

For details on this framework, refer to its home page at https://www.oslikas.com/.

Source codes and examples can be found on the GitHub page at https://github.com/
Oslikas/WebRTCO.

More examples can be found on the demo page, http://www.webrtcexample.com.

https://github.com/Oslikas/WebRTCO
https://github.com/Oslikas/WebRTCO
http://www.webrtcexample.com
https://www.oslikas.com/

Advanced Functions

In this chapter, we will cover the following topics:

 f Visualizing a microphone's sound level

 f Muting a microphone

 f Pausing a video

 f Taking a screenshot

 f Streaming media

Introduction
This chapter covers advanced examples of using WebRTC features. The following recipes allow
you to improve your application's usability and make it friendlier by adding advanced features
and functionality.

All the recipes in this chapter are oriented on the client side and implemented in JavaScript.
Some of them appear to be pretty simple and others might be more complex, but the main
purpose of these recipes is to make the application more adaptable to real life and friendly
for customers.

Visualizing a microphone's sound level
If your application works with audio and video (for example, you're developing a video
conferencing service), it would be probably a good idea to add a live indication of the
microphone sound level. Using this feature, peers can estimate and control their microphone's
audio levels. So, in this recipe, we're implementing microphone activity indication.

8

Advanced Functions

196

Getting ready
This recipe is simple, and you will just need a text editor to create and edit HTML. To test this
recipe, you should have a web server installed and configured—it is highly recommended to
test the example via a web server rather than just on a local filesystem; otherwise, the web
browser might block calls to the WebRTC API.

How to do it…
Perform the following steps:

1. Create an HTML file and insert the following codes. Note that the important places
are commented inline:
<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">

2. Include the WebRTC adapter from Google. This file allows you to use universal
function names in all supported web browsers:
<script src = "https://rawgit.com/GoogleChrome/webrtc/
master/samples/web/js/adapter.js"> </script>
</head>
<body>

3. Create a simple HTML element to display a local video from a web camera:
<div><video width="384" id="lVideo" muted="true"
autoplay="true"></video></div>

4. Create a canvas element—here, we will represent the microphone's sound level:
<canvas width="384" height="20" id="micecanvas"
style="background-color: white;"></canvas>
<script type="text/javascript">

The following function gets access to user media:

 function init() {
 var constraints = {"audio": true, "video":
 {"mandatory": {}, "optional": []}};
 getUserMedia(constraints, onUserMediaSuccess,
 onUserMediaError);
 }

Chapter 8

197

5. We need to handle errors, so a simple error handler function can be found in the
following code:
 function onUserMediaError(error) {
 console.log("Error: " + error);
 }

The following callback function will be called after the application has access to the
user media:

 function onUserMediaSuccess(stream) {

6. To attach a media stream to the video control, use the following code:
 var localVideo =
 document.getElementById("lVideo");
 attachMediaStream(localVideo, stream);

7. Set up a function alias to make this work under different supported browsers:
 window.AudioContext = window.AudioContext ||
 window.webkitAudioContext ||
 window.mozAudioContext;

8. Initialize the local variables and get access to the microphone:
 var audioContext = new AudioContext();
 var analyser = audioContext.createAnalyser();
 var microphone =
 audioContext.createMediaStreamSource(stream);

9. Assign a script processor to the audio context. By using the script processor, we will
be able to process audio data and calculate microphone activity level:
 var javascriptNode =
 audioContext.createScriptProcessor(2048, 1, 1);
 analyser.smoothingTimeConstant = 0.3;
 analyser.fftSize = 1024;
 microphone.connect(analyser);
 analyser.connect(javascriptNode);
 javascriptNode.connect
 (audioContext.destination);
 var canvasContext =
 document.getElementById("micecanvas").
 getContext("2d");

10. Set up an audio data processing function—here, we will do all the calculations:
 javascriptNode.onaudioprocess = function() {
 var array = new
 Uint8Array(analyser.frequencyBinCount);
 analyser.getByteFrequencyData(array);

Advanced Functions

198

 var values = 0;
 var length = array.length;
 for (var i = 0; i < length; i++) {
 values += array[i];
 }

11. Calculate the average sound level value and draw it on the canvas:
 var average = values / length;
 canvasContext.clearRect(0, 0, 384, 20);
 canvasContext.fillStyle = 'red';
 canvasContext.fillRect(0, 0, average, 20);
 }
 }

12. The following function starts the application:
 init();
</script>
</body>
</html>

13. Now, save the file and put it on the web server, making it accessible through
a certain URL.

14. Navigate to the URL. You will see the image from your web camera, and a short
horizontal red bar beneath it. You will just see the local video because we haven't
implemented an interconnection with remote peers.

15. Now, talk through the microphone and make some noise—the bar will respond to the
sound by changing its length and trembling. This bar represents the microphone's
sound activity level and you can estimate it visually.

How it works…
Using WebRTC API, we will create the audio context and audio analyzer objects. Then, we will
get access to the microphone. We will also create ScriptProcessor with a buffer of 2048
bytes, and one input and one output channel. Using the fftSize attribute of the analyzer,
we will set the size of the Fast Fourier Transform (FFT) buffer to 1024. We will connect the
analyzer and the script processor, and then, we will set up the onaudioprocess handler
function. Now, approximately every 0.3 seconds, we will get a signal from the browser to our
handler function where we use received data to calculate the sound volume and to draw it on
the bar.

See also
 f Regarding detailed explanations of the possible usage of the audio API, you can refer to

its official documentation at webaudio.github.io/web-audio-api/

webaudio.github.io/web-audio-api/

Chapter 8

199

Muting a microphone
Usually, voice calling software has a microphone muting feature. So, you can enable or disable
your microphone during the call, deciding whether the remote peer should hear your voice or
not. In this recipe, we will implement such a feature for a WebRTC application.

Getting ready
For this example, you don't need any preliminary specific steps. Use your development
environment as you usually do.

How to do it…
Follow these steps:

1. For this feature, you need to add a button element to your HTML page. This button
will enable or disable the microphone:
<button id="mute_btn" onclick="muteBtnClick()">Mute
Mic</button>

2. You also need to set up a handler for the onclick event of the element—it will do the
actual work. The following code is an example of such a handler:
function muteBtnClick() {

3. We will update our button with the microphone state, so we need to get the button ID:
 var btn = document.getElementById("mute_btn");

4. Before we can decide whether we want to mute or unmute the microphone,
we should be able to know its actual state—for this purpose, we will use the
isMicMuted function:
 if (isMicMuted()) {

5. Our microphone is muted, so we want to unmute it and update the button with the
appropriate state:
 muteMic(false);
 btn.innerHTML = "Mute Mic";
 } else {

6. The microphone is unmuted, so we will mute it and update the button as well:
 muteMic(true);
 btn.innerHTML = "Unmute Mic";
 }
}

Advanced Functions

200

7. In the handler, we will use the isMicMuted function to detect whether the
microphone is muted. Let's implement this function as well:
function isMicMuted() {
 return !(localStream.getAudioTracks()[0].enabled); }

8. Note that the WebRTC API can let us know whether the audio track is enabled, but
our function returns the microphone's muted value. So, we will invert the enabled
value received from WebRTC stack.

9. Finally, we need to implement the actual mute/unmute function:
function muteMic (mute) {
 localStream.getAudioTracks()[0].enabled = !mute;
};

10. Here, localStream is a variable that contains a local stream object received after
a successful call of the getUserMedia WebRTC API function.

In this function, we will set up the enabled value, but the function gets the
should I mute the microphone parameter. If this function gets true as an
argument, it should set false to the enabled property of the audio track.
This is why we will invert the value again, as we do it in the isMicMuted
function.

How it works…
The main idea is to get an appropriate audio track of the local media stream, and to change
its state to disabled or enabled. In the first case, the track will be muted and the remote peer
will not hear your voice. Changing the state can be done in real time.

There's more…
If you have more than one audio device, the getAudioTracks function might return several
audio tracks and it might be necessary to go over all of them:

var audiotracks = localStream.getAudioTracks();
for (var i = 0, l = audiotracks.length; i < l; i++)
{
 audiotracks[i].enabled = false;
}

Chapter 8

201

See also
 f Refer to the Pausing a video recipe to see a similar technique applied

to video streams

Pausing a video
If you're participating in a video conference call, you might want to temporarily switch your
video camera off and take a pause. During this time, your remote peer shouldn't see an
image from your camera. In most videoconferencing software, you can enable or disable your
camera during the call. In this recipe, we will implement this feature for a WebRTC application.

Getting ready
For this recipe, you don't need any specific preparations. Just create a basic conferencing
WebRTC application.

How to do it…
Perform the following steps:

1. We need to add a Pause Video button to the application's web page:
<button id="pause_video_btn"
onclick="pauseVideoBtnClick()">Pause Video</button>

2. You also should set up a handler for the onclick event of the button:
function pauseVideoBtnClick() {

3. We will update our button with the video stream state (whether it is paused or not),
so we need to get the button ID:
 var btn = document.getElementById("pause_video_btn");

4. Before we decide whether we should pause the stream or start playing it back
again, we should be able to know its current state—for this purpose, we will use the
isVideoPaused function:
 if (isVideoPaused()) {

5. If the video stream is paused, we want to start playing it back and update the button
with the new state, then use the following code:
 pauseVideo(false);
 btn.innerHTML = "Pause Video";
 } else {

Advanced Functions

202

6. In case the video is streaming, we will pause it and update the button as well:
 pauseVideo(true);
 btn.innerHTML = "Stream Video";
 }
}

7. In the handler, we will use the isVideoPaused function to detect whether the video
stream is paused. Let's implement this function as well:
function isVideoPaused() {
 return !(localStream.getVideoTracks()[0].enabled);
}

8. Note that the WebRTC API can let us know if a certain video track is enabled or not,
but our function returns the is the video paused state. So, we will invert the enabled
value received from the WebRTC stack.

9. Finally, we need to implement the function that actually puts the video on pause and
vice versa:
function pauseVideo (pause) {
 localStream.getVideoTracks()[0].enabled = !pause;
};

10. Here, localStream is a variable that contains a local stream object received after
a successful call of the getUserMedia WebRTC API function.

In this function, we will set up the enabled value, but the function
gets the should I put the video on pause parameter. So, if it gets true
as an argument, it should set the enabled property of the video
track to false.

How it works…
The root idea of the described solution is to get an appropriate video track of the local media
stream and to change its state to disabled or enabled. In the first case, the video track will be
paused, streaming will be stopped, and the remote peer will not see you. Changing the state
can be done in real time.

See also
 f Refer to the Muting a microphone recipe for additional details regarding the usage

of this solution to work with audio tracks

Chapter 8

203

Taking a screenshot
Sometimes, it can be useful to be able to take screenshots from a video during
videoconferencing. In this recipe, we will implement such a feature.

Getting ready
No specific preparation is necessary for this recipe. You can take any basic WebRTC
videoconferencing application. We will add some code to the HTML and JavaScript parts
of the application.

How to do it…
Follow these steps:

1. First of all, add image and canvas objects to the web page of the application.
We will use these objects to take screenshots and display them on the page:

<canvas style="display:none;" id="localCanvas"></canvas>

2. Next, you have to add a button to the web page. After clicking on this button, the
appropriate function will be called to take the screenshot from the local stream video:
<button onclick="btn_screenshot()" id="btn_screenshot">Make
a screenshot</button>

3. Finally, we need to implement the screenshot taking function:
function btn_screenshot() {
var v = document.getElementById("localVideo");
var s = document.getElementById("localScreenshot");
var c = document.getElementById("localCanvas");
var ctx = c.getContext("2d");

4. Draw an image on the canvas object—the image will be taken from the video object:
ctx.drawImage(v,0,0);

5. Now, take reference of the canvas, convert it to the DataURL object, and insert the
value into the src option of the image object. As a result, the image object will show
us the taken screenshot:
s.src = c.toDataURL('image/png');
}

Advanced Functions

204

6. That is it. Save the file and open the application in a web browser. Now, when you
click on the Make a screenshot button, you will see the screenshot in the appropriate
image object on the web page. You can save the screenshot to the disk using
right-click and the pop-up menu.

How it works…
We use the canvas object to take a frame of the video object. Then, we will convert the
canvas' data to DataURL and assign this value to the src parameter of the image object.
After that, an image object is referred to the video frame, which is stored in the canvas.

See also
 f Refer to the Visualizing a microphone's sound level and Muting a microphone recipes

for examples regarding how to work with audio data

Streaming media
This recipe covers another interesting feature that can be implemented using the WebRTC
stack: streaming prerecorded media from one peer to another one.

Getting ready
We will stream a prerecorded WebM file, so you need to have one. You can download demo
WebM files from the Internet. For example, from http://www.webmfiles.org/demo-
files/.

In this recipe, we will create two files: an HTML page and a JavaScript library.

This feature doesn't work on the local filesystem. To implement this
feature, you need to have a web server where you can place all
the application files, and where the application is accessible to the
customer.

A signaling server is also necessary for this recipe. You can use the server from Chapter 1,
Peer Connections.

http://www.webmfiles.org/demo-files/
http://www.webmfiles.org/demo-files/

Chapter 8

205

How to do it…
Open your text editor, and let's create the HTML page by following the given steps:

1. Make a simple HTML header:
<!DOCTYPE html>
<html>
<head>
 <title>My WebRTC file media streaming demo</title>

2. Add some style for the video component:
<style type="text/css">
 video {
 width: 384px;
 height: 288px;
 border: 1px solid black;
 text-align: center;
 }
</style>

3. Include a JavaScript library that we will write at the next stage:
 <script type="text/javascript"
 src="myrtclib.js"></script>

4. Include Google's adapter to keep cross-browser compatibility:
 <script
 src="https://rawgit.com/GoogleChrome/webrtc/master
 /samples/web/js/adapter.js"></script>
</head>
<body>

5. Create div, where a connection link will be published for peers:
<div id="status"></div>

6. Create a video element. This element will show the media streamed from the
remote peer:
<div><video id="remotevideo" autoplay="true"
controls="true"></video></div>

Advanced Functions

206

7. Create a file choosing component and a button that will start the streaming process:
<div>
 file you want to stream <input type="file" id="files"
 name="files[]"/> then press <button
 onclick="onSendBtnClick()">Start streaming !</button>
</div>
<script>
 var filelist;

8. Check whether the web browser supports components and technologies that we use
for this feature:
 if (window.File && window.FileReader && window.FileList
 && window.Blob) {
 document.getElementById('files').
 addEventListener('change', handleFileSelect,
 false);

9. Connect to the signaling server and initialize our WebRTC library. Note that you should
use an actual IP and port of the signaling server where it is running on your machine.
By default, they are 127.0.0.1 and 30001, as implemented in the appropriate recipes
of Chapter 1, Peer Connections, where we considered signaling servers:
 myrtclibinit("ws://127.0.0.1:30001",
 document.getElementById("remotevideo"));
 } else {

10. Create an alert for instances when the web browser doesn't support necessary
technologies:
 alert('The File APIs are not fully supported in
 this browser.');
 }

11. Implement a function that handles the file choosing component:
 function handleFileSelect(evt) {
 filelist = evt.target.files;
 };

12. Implement a function that starts the streaming process. Note that the
doStreamMedia function is implemented in the JavaScript library that will be
considered in the next stage:
 function onSendBtnClick() {
 doStreamMedia(filelist[0]);
 };

Chapter 8

207

13. Implement a callback function that constructs a connection link and publishes it on
the web page:

 function onRoomReceived(room) {
 var st = document.getElementById("status");
 st.innerHTML = "Now, if somebody wants to join you,
 should use this link: <a href=\""
 +window.location.href+"?room="+room+"\">"
 +window.location.href+"?room="+room+"";
 };
</script> </body> </html>

Next, you need to create a JavaScript library that is used in the HTML page we just created.
Most of the code is simple and identical to the appropriate parts of the recipes from other
chapters. Here, we will cover only specific moments that are important in the scope of the
feature; known pieces of code will be skipped. Note that the full source code for this recipe is
supplied along with this book.

This example actively uses WebRTC data channels, so you can refer to the Implementing a
chat using data channels recipe from Chapter 1, Peer Connections, for more details on this
topic. Perform the following steps for using data channels:

1. Declare a chunk size. While streaming the prerecorded media, the application reads
the media file chunk by chunk and sends it to the remote peer. So, we have to declare
the chunk size value—1024, in this particular case. You can play with other values
and see how they affect the demo. Don't use too low or too high values:
var chunkSize = 1024;

2. Declare variables that will handle buffer and media source. The buffer is a structure
that handles raw media data on the client side (where the media will be streamed).
The media source represents a WebRTC object that will be tied with a video HTML
object:
var receiverBuffer = null;
var recvMediaSource = null;

3. Declare a variable that will handle the HTML video object where the streamed media
will be shown:
var remoteVideo = null;

4. Declare an array. This will be used as a cache to temporarily store the received chunks
in case the remote peer sends them faster than we can draw them on the video:
var queue = [];

Advanced Functions

208

5. The following code is used for compatibility between Firefox and Chrome:
 window.MediaSource = window.MediaSource ||
 window.WebKitMediaSource;

6. Establish a new peer-to-peer data channel:
 function createDataChannel(role) {
 try {
 data_channel =
 pc.createDataChannel("datachannel_"+room+role,
 null);
 } catch (e) {
 console.log('error creating data channel ' +
 e);
 return;
 }
 initDataChannel();
 }

7. While setting a session description, remove bandwidth limitations. Some web
browsers (for example, some versions of Chrome) limit bandwidth, so connection
performance might degrade. To avoid that, we will call our custom setBandwidth
function, which removes such limitations:
function setLocalAndSendMessage(sessionDescription) {
 sessionDescription.sdp =
 setBandwidth(sessionDescription.sdp);
 pc.setLocalDescription(sessionDescription,
 function() {}, failureCallback);
 sendMessage(sessionDescription);
};

8. Implement the setBandwidth function. It sets the bandwidth limit to a higher value
instead of the default one, which might be set by the browser:
function setBandwidth(sdp) {
 sdp = sdp.replace(/a=mid:data\r\n/g ,
 'a=mid:data\r\nb=AS:1638400\r\n');
 return sdp;
}

9. Change the onReceiveMessageCallback function, adopting it for the new feature.
You should be familiar with this function from Chapter 1, Peer Connections.
 function onReceiveMessageCallback(event) {
 try {
 var msg = JSON.parse(event.data);
 if (msg.type === 'chunk') {
 onChunk(msg.data);

Chapter 8

209

 }
 }
 catch (e) {}
 };

10. Declare the auxiliary variables for slicing the media file:
 var streamBlob = null;
 var streamIndex = 0;
 var streamSize = 0;

11. Implement a function that is called from the HTML page. This function reads the
media file, slices it into chunks, and sends them to the remote peer:
 function doStreamMedia(fileName) {
 var fileReader = new window.FileReader();
 fileReader.onload = function (e) {
 streamBlob = new window.Blob([new
 window.Uint8Array(e.target.result)]);
 streamSize = streamBlob.size;
 streamIndex = 0;
 streamChunk();
 };
 fileReader.readAsArrayBuffer(fileName);
 }
 function streamChunk() {
 if (streamIndex >= streamSize)
 sendDataMessage({end: true});
 var fileReader = new window.FileReader();
 fileReader.onload = function (e) {
 var chunk = new
 window.Uint8Array(e.target.result);
 streamIndex += chunkSize;
 pushChunk(chunk);
 window.requestAnimationFrame(streamChunk);
 };
 fileReader.readAsArrayBuffer
 (streamBlob.slice(streamIndex,
 streamIndex + chunkSize));
 }

12. Implement a function to receive media data. This function initializes the media
source and buffer objects, and prepares to receive media chunks that are sent
by the remote peer:
 function doReceiveStreaming() {
 recvMediaSource = new MediaSource();

Advanced Functions

210

 remoteVideo.src =
 window.URL.createObjectURL(recvMediaSource);
 recvMediaSource.addEventListener('sourceopen',
 function (e) {
 remoteVideo.play();

13. We will use the WebM media file, so we should set an appropriate media type for the
media buffer:
 receiverBuffer =
 recvMediaSource.addSourceBuffer
 ('video/webm; codecs="vorbis,vp8"');
 receiverBuffer.addEventListener('error',
 function(e) { console.log('error: ' +
 receiverBuffer.readyState); });
 receiverBuffer.addEventListener('abort',
 function(e) { console.log('abort: ' +
 receiverBuffer.readyState); });
 receiverBuffer.addEventListener('update',
 function(e) {
 if (queue.length > 0 &&
 !receiverBuffer.updating)
 doAppendStreamingData(queue.shift());
 });
 console.log('media source state: ',
 this.readyState);
 doAppendStreamingData(queue.shift());
 }, false);
 recvMediaSource.addEventListener('sourceended',
 function(e) { console.log('sourceended: ' +
 this.readyState); });
 recvMediaSource.addEventListener('sourceclose',
 function(e) { console.log('sourceclose: ' +
 this.readyState); });
 recvMediaSource.addEventListener('error',
 function(e) { console.log('error: ' +
 this.readyState); });
 };

14. The following function actually puts the media data into the media buffer:
 function doAppendStreamingData(data) {
 var uint8array = new window.Uint8Array(data);
 receiverBuffer.appendBuffer(uint8array);
 };

Chapter 8

211

15. Implement a function that will stop playing back the media when the media data
is over:
 function doEndStreamingData() {
 recvMediaSource.endOfStream();
 };

16. Create a function to send media data chunks to the remote peer. We will use the
JSON format for such messages to declare type and data fields:
 function pushChunk(data) {
 var msg = JSON.stringify({"type" : "chunk",
 "data" : Array.apply(null, data)});
 sendDataMessage(msg);
 };

17. Implement a function that takes the received chunks and processes them:
 function onChunk(data) {

18. We will put the first chunk into a cache and call the doReceiveStreaming function
to prepare media components:
 chunks++;
 if (chunks == 1) {
 console.log("first frame");
 queue.push(data);
 doReceiveStreaming();
 return;
 }
 if (data.end) {
 console.log("last frame");
 doEndStreamingData();
 return;
 }

19. In case the cache (queue) is not empty already, we will put the newly received chunk
in the queue. That's because a non-empty queue means that we're receiving new
chunks faster than we can process and show them:
 if (receiverBuffer.updating || queue.length > 0)
 queue.push(data);

20. In case the queue is empty, we can call the doAppendStreamingData function that
will put the chunk in the media buffer, and the media data will be shown on the page:
 else doAppendStreamingData(data);
 };

Advanced Functions

212

So, you have the index page and the JavaScript library now. Put them both in the web server
folder, and start the signaling server. Navigate your web browser to where the demo is
accessible. Then navigate another web browser (or web browser tab) to the link at the
top of the page; after this, peers will establish a direct connection.

At the bottom part of the page, you should see something similar to the following:

Note the buttons Choose File and Start streaming!. Click on the Choose File button and
select the preloaded WebM media file. Then, click on the Start streaming! button. The web
browser where you clicked the buttons will start reading the media file and streaming it to the
second browser. So, on another browser window, you should see your media file playing.

In the following screenshot, you can see two browser windows: Chrome at the top and Firefox
at the back. Here, I'm streaming the media file from Chrome to Firefox.

Chapter 8

213

Note that this feature is in the beta stage, and you might need to make appropriate changes
to make the demo work on other browser versions.

Another important note is that Firefox has disabled the mediasource component by default,
so you should check that and enable it before using this recipe with Firefox. To do that, you
should navigate to about:config, look for the media.mediasource.enabled option and set
it to true. You can see this solution in the following screenshot:

Note that Firefox starts playing immediately after it gets the first bytes of the media data.
Chrome will wait until it gets all the media data and only then will start playing them. This
behavior might be changed in other browser versions.

Advanced Functions

214

How it works…
The logic of this feature is simple. First of all, peers establish a direct connection and create
data channel. Then, the sender (streaming peer) acts as shown in the following steps:

1. Reads the whole media file in the memory and creates a BLOB object.

2. Reads the BLOB object chunk by chunk, slices them into smaller blocks.

3. Sends the BLOB object chunk by chunk to the remote peer.

4. Repeats step 3 until the end of the media file.

On the other hand, another peer performs the following steps:

1. Creates a media source object. Prepares media buffer. Ties the objects with the video
HTML object on the page.

2. Gets chunks from the remote peer and puts binary data in the media buffer, which is
tied to the video object.

3. In case the streamer sends data faster than the receiver can process it, the receiver
uses a queue to temporarily store the received media data.

4. Repeats steps 2 and 3 until there is some media data received from the remote peer.

Thus, the receiver plays back the video that is streamed by the remote peer.

See also
 f This recipe actively uses WebRTC data channels. In the code, we considered only

streaming-related important parts of code. For codes specific to data channels, refer
to Chapter 1, Peer Connections, where this topic is explained in a more detailed way.

Index
Symbol
3CXPhone

URL 82

A
Android Developer Tools (ADT)

about 154
installing 154

Android Virtual Device (AVD) tool 158
Apache

configuring 56, 57
application

creating, RTCMultiConnection used 170-176
Application Request Routing (ARR) 61
Asterisk

URL 79

B
basic configuration items, TURN

anonymous access 41
listening IP 40
relay IP 41
verbosity 41

blur effect
implementing 134-136

Bria
URL 81

brightness
working with 120-122

bweforvideo 105

C
calls

answering 21-26
making 21-23

making, from web page 79
certificate authority (CA) 46
Chrome

about 98
URL 99
WebRTC application, debugging with 98, 99

Chrome mechanisms, for debugging WebRTC
applications

logging mechanism, using 106-108
webrtc-internals, using 99-106

client-side code, TURN server
implementing 52, 53

colors
inverting 132-134
working with 118-120

Conn-audio object 103
contrast

working with 122-124
customized WebRTC demo

building, for iOS 144-148
custom video processing 141, 142

D
debugging 89
demo project

building, for iOS simulator 149, 150
demo WebM files

URL 204
DoS (denial of service) 65
dropped shadow effect

implementing 136-138
DtlsSrtpKeyAgreement option 100

E
Erlang

signaling server, building 9-13
URL 9

216

Express Talk
URL 82

F
Fast Fourier Transform (FFT) buffer 198
filters

about 117
combining 139-141

Firebase
URL 176

firewall
configuring 65
configuring, on client 66-69
configuring, on server 66

FreeSWITCH
starting 78

G
getStats WebRTC API function

about 94
use cases 94

GLSurfaceView
bug, fixing with 158

grayscale
working with 118-120

H
hue

working with 126-128

I
IIS

configuring 57, 58
Interactive Connectivity

Establishment (ICE) 21, 66
Internet Information Services (IIS) Resource

Kit Tools 49
inversion of colors 132

J
Java

signaling server, building 14-17
URL 14

Java 7 14
Java Developer Kit (JDK) 14
JSON

URL 14
JsSIP

URL 82

M
media

streaming 204-214
microphone

muting 199, 200
microphone level

visualizing 195-198
mtr 114
multiuser conference

creating, WebRTCO used 189-194

N
native application

about 143
building 144

native demo WebRTC application, for Android
Android Developer Tools, installing 154, 155
bug, fixing with GLSurfaceView 158, 159
compiling 152
Oracle JDK, installing 153, 154
running, on Android simulator 155-158
running, on physical Android device 159-161
system, preparing 153
WebRTC source code, obtaining 154

Network Address Translation (NAT) 66
Nginx

configuring 56
Numb

about 43
URL 43

O
opacity filter

using 130-132
OpenTok

about 182
used, for creating WebRTC

application 182-188

217

OpenWebRTC library
building 161-163

original Google WebRTC native demo
application

compiling 150
demo project, building for iOS device 151
demo project, building for iOS

simulator 151, 152

P
peer connections

calls, answering 21
calls, making 21
signaling server, building in Erlang 9-13
signaling server, building in Java 14-17

PeerJS
used, for developing simple WebRTC

chat 176-180
peer-to-peer private messaging service

implementing, data channels used 26, 27
implementing, signaling server used 34-36
JavaScript helper library, creating 29-33
main HTML page, creating 27, 28
working 33

public key infrastructure (PKI)
about 46
URL 46

R
rfc5766-turn-server 50
root certificates 46
rtc.io

used, for creating simple video chat 180-182
RTCMultiConnection

used, for creating application 170-176

S
saturation

working with 124-126
Sawbuck

about 107
URL 107

screenshot
capturing 203, 204

Secure Sockets Layer (SSL) 46
security 45
self-signed certificate

generating 46-49
sepia filter

using 128-130
server-side code, TURN server

implementing 53, 54
session description 7
Session Description Protocol (SDP) 21
signaling server

about 7
building 8
building, in Erlang 9-13
building, in Java 14-17

signaling stage 8
simple video chat

creating, with rtc.io 180-182
SimpleWebRTC

about 166
used, for building video conference 166-169

simple WebRTC chat
developing, PeerJS used 176-180

SIP.js
URL 82

sipML5
about 80, 82
installing 80, 81

Software Development Kit (SDK) 165
Spring 4 17
statistics API 89
STUN (Session Traversal Utilities for NAT)

about 8
configuring 36, 37
using 38

T
tcpdump 114
Telephone

URL 81
Transport Layer Security (TLS) protocol 46
TURN (Traversal Using Relays around NAT)

about 8
basic configuration items 40
configuring 39
debugging 108-110

218

installing 39, 40
using, in WebRTC application 41, 42

TURN REST API 54
TurnServer

about 43
URL 43

TURN server, with authentication
client-side code, implementing 52, 53
configuring 50-52
password 54
server-side code, implementing 53-55
TTL 55
URIs 55
username 54

U
Use Host GPU option 158

V
video

pausing 201, 202
video conference

building, SimpleWebRTC used 166-169

W
Web Platform Installer (WebPI) module 61
WebRTC application

creating, OpenTok used 182-188
debugging, with Chrome 98, 99
debugging, with Wireshark 111-114

WebRTC functions, supported by browser
detecting 18-20

WebRTC integration, with Asterisk
about 75
Asterisk, installing 73, 74
libSRTP, installing 73
performing 72
working 75

WebRTC integration, with FreeSWITCH
FreeSWITCH, installing 76, 77
FreeSWITCH, starting 78
performing 76
WebRTC, enabling 78

WebRTC integration, with web cameras
performing 83, 84
webcam, configuring 84, 85
WebRTC media server 85, 86

webrtc-internals
using 99

WebRTC media server
implementing 85-88

WebRTCO
about 189
used, for creating multiuser

conference 189-194
WebRTC standard draft

URL 98
WebRTC statistics API

estimated bandwidth, checking 94-96
packet loss, checking 96, 97
working with 90-98

web server
configuring 55, 56

WebSockets 59
WebSockets proxy configuration

Apache, configuring 60
IIS, configuring 61-63
Nginx, configuring 59, 60
performing, on web server 59-64

Wireshark
about 111
URL 111
WebRTC application, debugging with 111-114

X
X-Lite

URL 82

Z
Zoiper

URL 81

Thank you for buying

WebRTC Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

WebRTC Blueprints
ISBN: 978-1-78398-310-0 Paperback: 176 pages

Develop your very own media applications and services
using WebRTC

1. Create interactive web applications using WebRTC.

2. Get introduced to advanced technologies such
as WebSocket and Erlang.

3. Develop your own secure web applications
and services with practical projects.

WebRTC Integrator's Guide
ISBN: 978-1-78398-126-7 Paperback: 382 pages

Successfully build your very own scalable WebRTC
infrastructure quickly and efficiently

1. Build a feature-rich WebRTC client application
and set up an Intelligent Network.

2. Use simple JavaScript APIs to enable web
browsers with real-time communication (RTC)
capabilities.

3. Make a real-time communication architecture
through various modules, illustrations, and
explanations with example code snippets.

Please check www.PacktPub.com for information on our titles

Getting Started with WebRTC
ISBN: 978-1-78216-630-6 Paperback: 114 pages

Explore WebRTC for real-time peer-to-peer
communication

1. Set up video calls easily with a low bandwidth
audio only option using WebRTC.

2. Extend your application using real-time text-based
chat, and collaborate easily by adding real-time
drag-and-drop file sharing.

3. Create your own fully working WebRTC application
in minutes.

Learning WebRTC Application
Development [Video]
ISBN: 978-1-78398-990-4 Duration: 02:33 hours

Create fast and easy video chat applications the
WebRTC way

1. Harness some of WebRTC's awesome features
including the connection mechanisms and the
resources' acquisition.

2. Set up the optimal backend to get your application
up and running.

3. Discover PeerJS, the WebRTC wrapper library,
for quick integration of WebRTC technology in
your application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Peer Connections
	Introduction
	Building a signaling server in Erlang
	Building a signaling server in Java
	Detecting WebRTC functions supported by a browser
	Making and answering calls
	Implementing chat using data channels
	Implementing chat using a signaling server
	Configuring and using STUN
	Configuring and using TURN

	Chapter 2: Supporting Security
	Introduction
	Generating a self-signed certificate
	Configuring a TURN server with authentication
	Configuring a web server to work over HTTPS
	Configuring a WebSockets proxy on the web server
	Configuring a firewall

	Chapter 3: Integrating WebRTC
	Introduction
	Integrating WebRTC with Asterisk
	Integrating WebRTC with FreeSWITCH
	Making calls from a web page
	Integration WebRTC with web cameras

	Chapter 4: Debugging a WebRTC Application
	Introduction
	Working with WebRTC statistics API
	Debugging with Chrome
	Debugging TURN
	Debugging using Wireshark

	Chapter 5: Working with Filters
	Introduction
	Working with colors and grayscale
	Working with brightness
	Working with contrast
	Working with saturation
	Working with hue
	Using the sepia filter
	Using the opacity filter
	Inverting colors
	Implementing the blur effect
	Implementing the dropped shadow effect
	Combining filters
	Custom video processing

	Chapter 6: Native Applications
	Introduction
	Building a customized WebRTC demo for iOS
	Compiling and running an original demo for iOS
	Compiling and running a demo for Android
	Building an OpenWebRTC library

	Chapter 7: Third-party Libraries
	Introduction
	Building a video conference using SimpleWebRTC
	Creating an application using RTCMultiConnection
	Developing a simple WebRTC chat using PeerJS
	Making a simple video chat with rtc.io
	Using OpenTok to create a WebRTC application
	Creating a multiuser conference using WebRTCO

	Chapter 8: Advanced Functions
	Introduction
	Visualizing a microphone level
	Muting a microphone
	Pausing a video
	Taking a screenshot
	Streaming media

	Index

