

Web Development with Jade

Utilize the advanced features of Jade to create
dynamic web pages and significantly decrease
development time

Sean Lang

BIRMINGHAM - MUMBAI

Web Development with Jade

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-635-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author

Sean Lang

Reviewers
Fco. Javier Velasco Arjona

Dan Williams

Acquisition Editor
Sam Birch

Content Development Editor
Shaon Basu

Technical Editor
Dennis John

Copy Editors
Gladson Monteiro

Sayanee Mukherjee

Janbal Dharmaraj

Mradula Hegde

Kirti Pai

Adithi Shetty

Project Coordinator
Akash Poojary

Proofreader
Simran Bhogal

Indexer
Tejal R. Soni

Graphics
Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Sean Lang attends the Milwaukee School of Engineering; he is currently majoring
in software engineering. Even though he is a freshman there, he is by no means new
to the field. He has been teaching himself software development for the last four
years, and during this time, he has done extensive volunteer work for open source
software projects. These include roots (a toolkit for building web apps), the Jade
template engine, nib (a set of utilities for advanced web page styling), and a myriad
of smaller projects. In addition to this, he has been doing freelance web designing
and consulting, which is especially convenient because it gives him an opportunity
to use the open source tools that he has been developing in production. He started
writing this book about Jade to supplement the existing documentation and help
teach people the language. Also, he had never written a full book before, so he was
really interested and excited to know what being an author is like.

About the Reviewers

Fco. Javier Velasco Arjona is a passionate full stack engineer and aspiring
web craftsman from Córdoba, Spain. He's currently working as a developer at
imixme.com and mindster.org. Previously he was working with floqq.com. As he
has a restless mind, he constantly finds himself switching between JavaScript, Ruby,
and Python, always trying to build great products with the trendiest technologies.
When Javier is not coding, he enjoys watching films and TV series, reading comic
books, listening to music, and of course, spending time with his family and friends.

I wish to thank my family, especially my parents, for all the support
that I have received from them my whole life. Without their help,
I do not know where I would be now, but I'm pretty sure that I
would be in a very different place.

Thanks to the folks at Packt Publishing for allowing me to
collaborate by being a technical reviewer on this book. And finally,
many thanks to my girlfriend, Laura. She has made me a better
person, and truly happy, day by day, these three years.

Dan Williams has been programming since high school. Having worked from the
microcontroller level to large-scale enterprise applications, he has now found a home
as lead developer at Igniter.

Developing with Node.js in the backend and with AngularJS in the browser, he enjoys
being fully immersed in JavaScript. He can often be found giving talks and facilitating
workshops on emerging technologies around Toronto. When he is not working with
his team to help social entrepreneurs change our world, he enjoys traveling to far off
places with his wife. The highlight of their adventures was a two-week driving trip
around Iceland.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: What is Jade? 5

Markup like poetry 5
Why should I preprocess? 6
How Jade preprocesses 6
Comparison with other preprocessors 7

HAML 8
PHP 8
Jinja2 8
Mustache 9

Installation instructions 9
Compiling Jade 9
Summary 11

Chapter 2: Basic Syntax 13
Significance of whitespace 13
Tags 14

Text and blocks of text 15
Text on the same line 15
Text blocks 15
Shorthand text blocks 16

Inline HTML 16
Attributes 16

Passing objects as attributes 17
Shorthands 18

IDs and classes 18
Automatic div 18

Comments 19
Single line 19
Block comments 19

Table of Contents

[ii]

Block expansion 20
Doctypes 21
Summary 22

Chapter 3: Feeding Data into Templates 23
Syntax 23
Defining variables 23
Interpolation everywhere! 23
Using variables without interpolation 25
Escaping 26
Sending the variables to the compiler 26

Compiler arg 27
Programmatically 27

Summary 28
Chapter 4: Logic in Templates 29

Adding logic with JavaScript 29
If/else 29
For loops 30
Complex operations 30

Built-in logical operators 31
If / else / else if 31
Unless 31
Cases 31
Each loops 32
While loops 33

A warning about interpolation 33
Summary 33

Chapter 5: Filters 35
The full list 35

Template engines 35
Stylesheet languages 36
Minifiers 37
Others 37

Examples 38
Markdown 38
CoffeeScript 38
Stylus 39

Passing arguments 40
Summary 40

Table of Contents

[iii]

Chapter 6: Mixins 41
Syntax and mechanics 41

Defining mixins 41
Calling mixins 42
Passing blocks 42

Another warning about interpolation 43
The arguments object 44
Summary 44

Chapter 7: Template Inheritance 45
Blocks 45

Blocks don't provide encapsulation 46
Extends 47

Replace 47
Append 48
Prepend 48
Incompatibility 49
Extra things in extenders 49

Includes 49
Static 50
Filtered 51
Jade 52

Summary 52
Chapter 8: Organizing Jade Projects 53

General best practices 53
Keeping logic out of templates 54
Inlining 55
Minification 55
Removing style-induced redundancy 56
Semantic divisions 57
Server-side versus client-side rendering 57

Client-side rendering 57
Server-side rendering 58

Build systems 58
Summary 59

Appendix: A Closing Note – Contributing Back to Jade 61
Index 63

Preface
Jade is a templating engine for Node.js. It is a new, simplified language that compiles
into HTML and is extremely useful for web developers. Jade is designed primarily
for server-side templating in Node.js, but it can also be used in a variety of other
environments to produce XML-like documents, such as HTML and RSS. This book is
an introduction to Jade, and it will provide readers a with faster and cleaner way to
write HTML that is more maintainable and automates redundant markup.

What this book covers
Chapter 1, What is Jade?, gives you the idea behind preprocessors and why Jade is
awesome. Also, you will learn the process Jade uses to compile templates, and how
to install/use Jade.

Chapter 2, Basic Syntax, covers the very basics of the syntax. This includes how
indentation-based syntaxes work, how to write tags, text, attributes, comments,
and some nifty shorthands for classes, IDs, and doctypes.

Chapter 3, Feeding Data into Templates, covers both the syntax used to output variables
(such as interpolation) and how to actually send the data to the renderer.

Chapter 4, Logic in Templates, introduces flow control structures such as if,
else, case, for, and while. Also, we discuss adding more advanced logic using
raw JavaScript.

Chapter 5, Filters, introduces you the first "feature" of the Jade language—filters—a
way to automatically compile other preprocessed languages (such as Stylus,
Markdown, or CoffeeScript) directly in templates.

Chapter 6, Mixins, offers a way to write reusable functions inside templates in order
to reduce redundancy.

Preface

[2]

Chapter 7, Template Inheritance, helps you learn about the last major part of the
language, template inheritance, which is done through a block system. In addition,
you learn about the include keyword, which lets us include non-Jade files such as
scripts and styles.

Chapter 8, Organizing Jade Projects, shows us some of the best practices to follow
while organizing Jade projects. Also, we look at the use of third-party tools to
automate tasks.

Appendix, A Closing Note – Contributing Back to Jade, gives an introduction to the
Jade community.

What you need for this book
• Some type of computer that is able to run Node.js
• A text editor that you don't hate, such as Sublime Text, vim, emacs, or nano
• The patience and determination required to learn

Who this book is for
This book is for web developers with at least a basic understanding of HTML
and JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "By default, jade compiles and renders the
file, but if we only want it to compile into JS, we can use the --client argument."

A block of code is set as follows:

doctype html
html
 head
 body
 h1 Meet Jade
 p.
 A simple Jade example.
 You'll learn to write
 all of this in ch 2.
 p Jade FTW!

Preface

[3]

Any command-line input or output is written as follows:

$ npm install jade -g

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

What is Jade?
Jade is a templating language and a shorter, more elegant way to write HTML. If you
are just looking for a good way to create templates, or you want to ditch HTML's
ugly syntax, Jade can help you.

Markup like poetry
Let's start with the following simple example. First, we have the HTML code and then
the same thing rewritten in Jade:

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <h1>Meet Jade</h1>
 <p>
 A simple Jade example.
 You'll learn to write
 all of this in ch 2.
 </p>
 <p>Jade FTW!</p>
 </body>
</html>

doctype html
html
 head
 body
 h1 Meet Jade
 p.
 A simple Jade example.
 You'll learn to write
 all of this in ch 2.
 p Jade FTW!

What is Jade?

[6]

Both of the preceding code examples mean the exact same thing, except one is
much shorter. This is Jade, a powerful, terse templating language that is compiled
into HTML. In addition to the syntactical improvements, Jade lets you simplify
redundant markup with programmed logic. Also, it allows you to create templates
that can take in and display data.

Why should I preprocess?
Jade really is just one option in a whole class of preprocessors. To have a complete
understanding of Jade, we should understand why this class of languages was created.

Preprocessors are high-level languages that offer syntactical and functional
improvements over their "vanilla" (non-preprocessed) counterparts. These high-level
languages allow you to write the markup in a better language that is compiled down
to normal (vanilla) HTML. Thus, they are there purely to improve your productivity,
without affecting their compatibility with existing technologies.

Preprocessing, in general, offers many benefits over writing vanilla HTML. Standard
Generalized Markup Language (SGML), the predecessor of HTML, was created to
be robust and easy to parse at the expense of being clean and easy to write. Because
of this, a variety of preprocessors have emerged that offer a more terse syntax.

Occasionally, people will avoid preprocessing because it adds another step, that is,
another layer of abstraction to the end result. However, improvements in code
readability and ease of writing far outweigh the inconvenience of this additional
step. Furthermore, anything more complex than a static site will require a "build"
step anyway, to inject whatever dynamic content the site has.

How Jade preprocesses
In the case of Jade, this preprocessing is done by compiling templates into JS and
then rendering them to HTML, as shown in the following diagram:

Chapter 1

[7]

Because Jade's compiled templates really are just JavaScript functions that output
HTML, they can be rendered on both the server and in the browser.

Comparison with other preprocessors
As I mentioned earlier, there are many preprocessors and templating solutions, so it
is worth discussing why those may be inadequate.

What is Jade?

[8]

HAML
HAML is a very popular, beautiful templating language that was made to replace
ERB (Ruby's default templating system) with a more beautiful abstracted markup
language. In fact, HAML was one of the major influences on the creation of Jade and
can be thanked for many of its features.

However, HAML does have a few problems. It lacks useful features such as mixins
and block operations such as extend, and it has a slightly more verbose syntax.

The original implementation of HAML also had the disadvantage of not compiling
into JS, so it couldn't be used to write templates that are evaluated on the client side.
However, now there are several JS implementations of HAML, the most popular
being haml-js (https://github.com/creationix/haml-js).

PHP
PHP does not offer any syntactical improvements and must be rendered on the
server side, so it may not be the first thing that comes to mind when discussing these
types of languages. However, it is currently the most popular HTML preprocessor;
sadly, it is also the worst.

It can hardly be considered a templating language because it has overgrown the
scope of a typical templating language and has gained the features of a complete
object-oriented programming language. This is a major issue because it encourages
the mixing of business logic with templating logic. Combining this with PHP's
already awful design, it makes for some pretty horrific code.

Jinja2
Jinja2 is a templating language for Python. Like PHP, it doesn't have any syntactical
improvements and must be rendered on the server side. Unlike PHP, it has a
sensible language design, supports block-based operations, and it encourages you to
keep most of the logic outside of templates. This makes it a good, general-purpose
templating language, but it lacks the HTML-specific syntax optimizations that Jade
and HAML have.

Chapter 1

[9]

Mustache
Mustache is another JS-based templating language, and like Jade, it compiles into
JavaScript, meaning it can be rendered on the client side. However, it too lacks
HTML-specific syntactical improvements.

There are many other templating languages, but they all suffer from pretty much the
same issues, or they just haven't gained a large enough supporting community to be
recognized as a major language yet.

Installation instructions
To install the Jade compiler, you first need to have Node.js installed. This is a
JavaScript interpreter based on V8 that lets you run JS outside of the browser. The
installation instructions are available at http://nodejs.org/. Once you have Node.
js installed, you can use npm (Node.js Package Manager) to install Jade from the
terminal as follows:

$ npm install jade -g

(The -g command installs Jade globally—without it, you wouldn't be able to use the
jade command)

Compiling Jade
Now that you have Jade installed, you can use the jade command to compile Jade
files. For example, if we put some Jade in a file:

$ echo "h1 Some Jade" > file.jade

Then we can use the jade command to render that file.

$ jade file.jade

 rendered file.html

This will create file.html, as shown:

$ cat file.html
<h1>Some Jade</h1>

What is Jade?

[10]

By default, jade compiles and renders the file, but if we only want it to compile into
JS, we can use the --client argument, as shown:

$ jade --client file.jade

 rendered file.js

$ cat file.js
function anonymous(locals) {
jade.debug = [{ lineno: 1, filename: "file.jade" }];
try {
var buf = [];
jade.debug.unshift({ lineno: 1, filename: jade.debug[0].filename });
jade.debug.unshift({ lineno: 1, filename: jade.debug[0].filename });
buf.push("<h1>");
jade.debug.unshift({ lineno: undefined, filename: jade.debug[0].
filename });
jade.debug.unshift({ lineno: 1, filename: jade.debug[0].filename });
buf.push("Some Jade");
jade.debug.shift();
jade.debug.shift();
buf.push("</h1>");
jade.debug.shift();
jade.debug.shift();;return buf.join("");
} catch (err) {
 jade.rethrow(err, jade.debug[0].filename, jade.debug[0].lineno,"h1
Some Jade\n");
}
}

This results in some very ugly JS, mostly due to the debugging information. We can
remove that debugging information with the --no-debug argument.

$ jade --client --no-debug file.jade

 rendered file.js

$ cat file.js
function anonymous(locals) {
var buf = [];
buf.push("<h1>Some Jade</h1>");;return buf.join("");
}

The JS resulting from that could still be optimized a little bit more (and likely will
be in future versions of the compiler), but because it's just machine-generated JS,
it's not a huge issue. The important part is that this JS can be executed on the client
side to render templates dynamically. This will be covered more in Chapter 4,
Logic in Templates.

Chapter 1

[11]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Summary
In this chapter, we learned the idea behind preprocessors, and why Jade is
awesome. Also, we learned the process that Jade uses to compile templates and
how to install/use Jade.

Basic Syntax
Now that you know what Jade actually is, let's enter that part of the book where you
start to learn how to write Jade.

Significance of whitespace
Rather than using opening/closing tags to delimit the start/end of blocks, Jade uses
indentation. This can be a little strange if you're used to languages where whitespace
doesn't matter (such as JS, CSS, and of course HTML). However, it does have the
benefit of forcing you to have good indentation, preventing horrible formatting as
illustrated in the following code (which is a perfectly valid HTML):

<!DOCTYPE html>

<html><head><title>An Example</title></head>
<body><h1>Horrible Formatting</h1>
<p>Never write HTML like this, it is <i>really</i> hard to read</p>
</body></html>

Also, whitespace significance prevents stupid errors like the following:

<i>notice the order of the closing tags</i>

Basic Syntax

[14]

Now onto how it actually works:

Each level of indentation (the rectangles outlined with dashed lines) creates a
new block (the pastel-colored sections) out of each following line that is indented
to that level. Each of those blocks becomes a child of the tag on the line that appears
immediately before the block (notice the tags with colors that correspond to
their blocks).

Most editors let you manipulate entire blocks of code by selecting
several lines and then pressing the Tab key to indent the block or
pressing Shift + Tab to "de-dent" it. This is very useful when working
in a whitespace-significant language like Jade.

Tags
Since Jade is indentation-based, there are no end tags, and there are no angle brackets
(<, >) to surround tags, because those are lame and ugly. The name of the tag is all
that you need, and it is the first text on the line. Consider the following example:

p <p></p>

If we add another tag within the <p> block (as explained earlier), we can create a
nested tag as follows:

p
 span

<p>

</p>

Chapter 2

[15]

Alternatively, without putting it in the <p> block, we can just create it in a way that it
acts as a sibling, as follows:

p
span

<p></p>

Text and blocks of text
Tags are pretty boring if they don't have any content, so Jade gives us three ways of
putting text in tags.

Text on the same line
You can put the text directly after the tag name (separated by a space) as follows:

p Hello Word! <p>Hello Word!</p>

Text blocks
For large bodies of text, putting it on the same line isn't very practical, so we have
text blocks. These are indicated by a leading | (pipe) character, as follows:

p
 | This is a demonstration
 | of Jade's text blocks

<p>
 This is a demonstration
 of Jade's text blocks
</p>

These text blocks can be mixed with regular tags as follows:

p
 | This is a demonstration
 br
 | of Jade's text blocks

<p>
 This is a demonstration

 of Jade's text blocks
</p>

Basic Syntax

[16]

Shorthand text blocks
If all you have is a big block of text or code, adding all those pipe characters can be a
pain. So Jade provides a shorthand method for indicating that all of the nested code
in an element are text blocks. This is represented by a . after the tag as follows:

p.
 This is a demonstration
 of Jade's text blocks,
 using the "." shorthand

<p>
 This is a demonstration
 of Jade's text blocks,
 using the "." shorthand
</p>

Inline HTML
It's also perfectly fine to put inline HTML in any of those text blocks, as shown in the
following example:

p.
 This is a <i>
 demonstration</i>
 of Jade's text
 blocks

<p>
 This is a <i>
 demonstration</i>
 of Jade's text
 blocks
</p>

Attributes
Attributes are also pretty important, so here's how to write those:

p(id="hello") Hello Word! <p id="hello">Hello Word!</p>

Chapter 2

[17]

That's right! They're pretty similar to the way you write attributes in HTML, except
they're surrounded by a pair of parentheses. Also, if you have multiple attributes,
they're delimited by commas, rather than just spaces. An example of this is as follows:

p(id="hello", class="world") <p id="hello" class="world">
</p>

Jade 0.35.0 (released on August 21, 2013) added support for space-
separated attributes. Soon, this will be supported by syntax highlighters,
syntax checkers, and related tools like html2jade; but until then, you may
wish to stick with the comma-delimited syntax. For this reason, the rest of
this book will use comma-delimited attributes.

Passing objects as attributes
In Jade, you can easily pass strings as attributes, but if you pass objects, they will be
turned into the most useful representation for that particular attribute. For example,
passing an array to the class attribute will be interpreted as a list of classes:

p(class=['first-class',
'another-class', 'last-class'])

<p class="first-class another-
class last-class"></p>

As you can see, it results in a valid, space-delimited list of classes. Another example
is when you pass any type of object to a data-* attribute, it will be encoded as JSON,
as shown:

p(data-myattr={numbers: [2,
4, 8], string: 'this is a
string'})

<p data-myattr='{"numbers":[2,4,8],
"string":"this is a string"}'></p>

However, for most attributes, it just outputs the standard string representation of the
object, as shown:

p(value=['one', 'two', 'three']) <p value="one,two,three"></p>

This isn't incredibly useful unless the object that you're passing has a
custom .toString().

Basic Syntax

[18]

Shorthands

IDs and classes
IDs and classes are both pretty common attributes, so Jade gives us a shorthand
method for writing them. This is similar to the way CSS selectors are written. An
example of this is as follows:

p#hello Hello Word! <p id="hello">Hello Word!</p>

p#hello.world <p id="hello" class="world"></p>

Pretty familiar, eh? IDs are just prefixed with a # (pound symbol) and classes are
prefixed with . (a period). These may be put in any order after the tag name with
any number of classes.

Automatic div
Because the div tags are used so frequently, Jade offers a shorthand way for writing
them; by omitting the tag, Jade assumes you want to use a div tag; therefore, the
following code:

div#hello Hello Word! <div id="hello">
Hello Word!
</div>

It can also be rewritten as:

#hello Hello Word! <div id="hello">
Hello Word!
</div>

However, this is possible only as long as there is an ID and/or class where the tag
name would normally be.

Chapter 2

[19]

Comments

Single line
Normal HTML comments are pretty verbose, so Jade offers us a much shorter way to
write them that looks similar to JavaScript comments.

//a single line comment <!-- a single line comment-->

Also, if you don't want your comments to show up in the compiled HTML, you can
use silent comments by adding a - (hyphen) after //.

//- a silent single line comment

Block comments
But of course, we need to be able to comment out multiple lines too; for that, we use
block comments. If you indent a block after a comment, that block will be added to
the comment too. An example of this is as follows:

// a block comment
 h1 Now I'm Commented Out.
 p And me too.

<!-- a block comment
h1 Now I'm Commented Out.
p And me too.-->

As you can see, the first line of the comment becomes a text block, and the indented
block is not parsed. However, the first line is entirely optional and is generally just
used to note what was commented out. We can omit it if we want to:

//
 h1 Now I'm Commented Out.
 p And me too.

<!--
h1 Now I'm Commented Out.
p And me too.-->

And of course, silent comments work here too:

//-
 h1 Now I'm Commented Out.
 p And me too.

Basic Syntax

[20]

Block expansion
When each tag only has one tag nested under it, it can be a little annoying to have a
new line for each one of them:

ul
 li.first
 a(href='#') foo
 li
 a(href='#') bar
 li.last
 a(href='#') baz

So, Jade has a feature called block expansion that lets us put those tags on the same
line, meaning we can rewrite the preceding example as the following:

ul
 li.first: a(href='#') foo
 li: a(href='#') bar
 li.last: a(href='#') baz

The : (colon) after the tag name and attributes indicates that there is another tag
following that one. We can even make really long chains of tags:

ul: li.first: b: a(href='#') foo
 <li class="first">

 foo

But that is really hard to read, so please, never do that unless you have a very
good reason.

Chapter 2

[21]

Doctypes
Doctypes can be really long, so naturally, Jade gives us a much shorter way to write
them, as shown:

doctype
<!DOCTYPE html>

doctype default
<!DOCTYPE html>

doctype html
<!DOCTYPE html>

doctype xml
<?xml version="1.0" encoding="utf-8" ?>

doctype transitional
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

doctype strict
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

doctype frameset
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

doctype 1.1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.org/TR/xhtml11/DTD/xhtml11.dtd">

doctype basic
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" "http://
www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

doctype mobile
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN"
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

You can also write your own doctype as follows:

doctype html PUBLIC "-//W3C//DTD
XHTML Basic 1.1//EN"

<!DOCTYPE html public "-//w3c//
dtd xhtml basic 1.1//en">

You may notice !!! used instead of doctype in the old Jade code. This used
to be a standard shorthand for doctypes, but !!! is now deprecated because it
isn't expressive enough.

Basic Syntax

[22]

Summary
In this chapter, we dived into the language itself, covering the very basics of the
syntax. This included how indentation-based syntaxes work and how to write tags,
text, attributes, comments, and some nifty shorthands for classes, IDs, and doctypes.

Feeding Data into Templates
So far, we've largely ignored one of the most important parts of templating
languages—the ability to feed data into them. But don't worry, for now we will learn
interpolation and passing data to templates!

Syntax
There are several syntactical elements made specifically for displaying content that is
passed to the template. Here we will go over what those are.

Defining variables
First, we're going to start with learning how to define variables inside a template.
This is common practice when you are looking to make redundant aspects of a
template easy to change. So, the following is the syntax for defining a variable:

- var some_text = "Hello World";

If you've worked with JavaScript, this should look very familiar because it is JS. In fact,
any JS can be executed in a template, it just needs a dash and a space in front of it.

Interpolation everywhere!
Now, how about actually putting the data into something? For this, we can
use interpolation:

p Jade says #{some_text}! <p>Jade says Hello World!</p>

Feeding Data into Templates

[24]

You just wrap the variable that you want to use in between #{ and }, and everything
in the curly braces is evaluated as code, rather than text. This can be used pretty
much anywhere that text can. But what if we don't just want to insert a variable, but
want to do something more?

p 2 times 3 is #{2 * 3} <p>2 times 3 is 6</p>

Yep, interpolation can contain full expressions too—pretty much any code you
would want to put directly inline. But wait, there's more!

It works in attributes:

- base_url = "http://slang.cx"
a(href="#{base_url}/about")

<a href="http://slang.cx/
about">

It even works in text blocks:

- i = ['proident',
'dreamcatcher', 'ennui', 'Tonx']

pre
 | #{i[0]} #{i[1]}
 | #{i[2]} #{i[3]}

<pre>proident dreamcatcher
ennui Tonx</pre>

It even works in tag names:

- mytag = "section"
#{mytag} Got some content in here

<section>Got some content in
here</section>

Storing your tag names in variables is usually a bad idea because it isn't
very natural or expected to be read that way. You may find some use
cases, but avoid it.

Chapter 3

[25]

Using variables without interpolation
Writing out the full interpolation syntax when you don't need to actually put a
variable inside of a body of text (and have all of the text for that attribute or tag
directly in the variable) can be a bit annoying. So naturally, Jade gives us a shorter
way. Take the following code, for example:

- i = {"type": "text", "name":
"Bob"}
input(type="#{i.type}",
value="#{i.name}")

<input type="text" value="Bob">

This can be rewritten as follows:

- i = {"type": "text", "name":
"Bob"}
input(type=i.type, value=i.name)

<input type="text" value="Bob">

Or, consider the following example:

- content = "Richardson leggings
Cosby sweater, pariatur locavore
Pinterest Schlitz"
p #{content}

<p>Richardson leggings Cosby
sweater, pariatur locavore
Pinterest Schlitz</p>

This can be rewritten as follows:

- content = "Richardson leggings
Cosby sweater, pariatur locavore
Pinterest Schlitz"
p= content

<p>Richardson leggings Cosby
sweater, pariatur locavore
Pinterest Schlitz</p>

In each of these instances, we just use an = (equal to sign) to indicate that the
attribute or block should be the full contents of the variable.

Feeding Data into Templates

[26]

Escaping
By default, Jade encodes HTML characters for security, so:

- html_content = "Hello
World"
p= html_content

<p>Hello World</
em></p>

And, of course:

- html_content = "Hello
World"
p #{html_content}

<p>Hello World</
em></p>

This is great for preventing cross-site scripting (XSS) attacks, and even just
displaying innocent code examples without needing to encode them yourself.
However, it will mess up content that is supposed to be HTML, such as the text
provided by most content management systems. So, we need a way of telling Jade
(as illustrated in the following code) when it shouldn't escape our text:

- html_content = "Hello
World"
p!= html_content

<p>Hello World</p>

And:

- html_content = "Hello
World"
p !{html_content}

<p>Hello World</p>

All that's needed to change is = to != and #{} to !{}. But let the exclamation point
serve as a reminder—letting the content go through the template without escaping
can compromise the security of your entire site if that content comes from an
untrusted/insecure source.

Sending the variables to the compiler
Defining all of your variables inside your templates would be pretty limiting, so
there are a few ways in which we can send data from external sources to templates.

Chapter 3

[27]

Compiler arg
The easiest way to send data to the Jade compiler is by just providing it in a
JSON object that gets passed to the compiler as an argument, as shown in the
following steps:

1. In file.jade, enter the following:
 p= my_content

2. Run the following command in the terminal:
 jade file.jade --obj '{"my_content":"this text is coming through
the terminal"}'

3. We can see the result in file.html:

 <p>this text is coming through the terminal</p>

Programmatically
Sending variables to Jade programmatically is a bit harder, but offers more flexibility,
such as being able to render within the browser. So, using the same initial file
(file.jade) perform the following steps:

1. Run the following command in the terminal:
 jade file.jade --no-debug --client

2. And we can see the following result in file.js:

 function anonymous(locals) {
 var buf = [];
 var locals_ = (locals || {}),my_content = locals_.my_content;
 buf.push(
 "<p>" +
 (jade.escape(null == (jade.interp = my_content) ? "" : jade.
interp)) +
 "</p>"
);
 return buf.join("");
 }

Feeding Data into Templates

[28]

To render this function into HTML, we need to include a set of client-side Jade
utilities that are used for escaping and other basic function calls, as well as the code
that was outputted into file.js. The client-side utilities are available in runtime.js
from the main Jade repo at https://raw.github.com/visionmedia/jade/master/
runtime.js. After all of this is included, you can call the function we created
(named anonymous) in the following manner:

anonymous(
 {'my_content':'this text is coming through a function call'}
)

The preceding code returns the following string of HTML:

<p>this text is coming through a function call</p>

This will error out if the client-side Jade utilities are not included.

Summary
In this chapter, we moved on from the basics of writing Jade, to feeding data into
templates. After all, we could hardly call Jade a templating language if we couldn't
put anything in our templates. So, we covered both the syntax used to output
variables (such as interpolation), and how to actually send the data to the renderer.

Logic in Templates
Ok, now that we know how to send data to templates and display them in the
resulting HTML, we can actually make useful templates. However, sometimes
we need a little more power. For that, we turn to logical operations.

Adding logic with JavaScript
As I've already mentioned, Jade compiles into JS and allows you to use JS directly in
your template. So, we can use any of the logical operators that JS provides to build
our markup.

If/else
The most basic logical operator is the if statement, as shown in the following
code snippet:

- name = "Bob"

- if (name == "Bob") {
 h1 Hello Bob
- } else {
 h1 My name is #{name}
- }

<h1>Hello Bob</h1>

Logic in Templates

[30]

And the shorthand form (the ternary operator) also works:

- name = 'Bob'
- greeting = (name == 'Bob' ?
'Hello' : 'My name is')
h1 #{greeting} #{name}

<h1>Hello Bob</h1>

Switches don't work. Use the case statement that is explained in the
next section.

For loops
Loops can be used to iterate over lists or repeat elements a certain number of times,
an example is given in the following code snippet:

- list = ['one', 'two', 'three'];

ul
 - for (var i = 0; i < list.
length; i++){
 li=list[i]
 - }

 one
 two
 three

Complex operations
Generally, you should keep complex operations outside of your templates, but it's
worth noting that you can do pretty extensive data manipulation, as shown in the
following code snippet:

- String.prototype.title_case =
function() {
- return this.replace(/\w\S*/g,
function(txt){
- return txt.charAt(0).toUpperCase()
+ txt.substr(1).toLowerCase();
- });
- };

p="this is a title".title_case()

<p>This Is A Title</p>

Chapter 4

[31]

Built-in logical operators
Writing JS can start to look ugly and doesn't really match with the indentation-based
syntax that Jade uses, so we have several built-in logical operators that do the same
thing, but are easier to write.

Here are a few examples:

If / else / else if
- name = "Bob"
if name == "Bob"
 h1 Hello Bob
else if name == "Joe"
 h1 Hello Joe
else
 h1 My name is #{name}

<h1>Hello Bob</h1>

Unless
Jade also provides unless which is equivalent to if (!(expr)), as illustrated in the
following code snippet:

- name = "Bob"
unless name == "Bob"
 h1 My name is #{name}
else
 h1 Hello Bob

<h1>Hello Bob</h1>

Cases
- name = "Bob"
case name
 when "Bob"
 p Hi Bob!
 when "Alice"
 p Howdy Alice!
 default
 p Hello #{name}!

<p>Hi Bob!</p>

Logic in Templates

[32]

Each loops
Each is used for iterating over arrays and objects and is written in the following syntax:

each VAL[, KEY] in OBJ

An example is given in the following code snippet:

- list = ["one", "two", 'three']

ul
 each item in list
 li=item

 one
 two
 three

- books = ["A", "B", "C"]

select
 each book, i in books
 option(value=i) Book #{book}

<select>
 <option value="0">Book A</
option>
 <option value="1">Book B</
option>
 <option value="2">Book C</
option>
</select>

- books = {"000":"A", "001":"B",
"010":"C"}

select
 each book, i in books
 option(value=i) Book #{book}

<select>
 <option value="000">Book A</
option>
 <option value="001">Book B</
option>
 <option value="010">Book C</
option>
</select>

You can also use for in place of each—they mean the same thing.

Chapter 4

[33]

While loops
- list = ["one","two", 'three']
- i = 0

ul
 while i < list.length
 li=list[i]
 - i++;

 one
 two
 three

A warning about interpolation
Interpolation cannot be used in code blocks, including vanilla JS and the built-in
variants. For example, consider the following code snippet:

- var there = "foo"
- title = "Hello #{there}"
p #{title}

<p>Hello #{there}</p>

If interpolation worked in code, it would print out Hello foo. The reason why
interpolation can't be used in code blocks is because vanilla JS has no interpolation,
and very little processing is done to the code before it is executed (even the
built-in shorthands). So, allowing interpolation in these places would require
extensive rewriting of the code blocks during compilation. However, once Template
Strings are implemented in ES6 (the next version of JavaScript) this won't be an issue.

Summary
Often, we need a bit more power than just outputting the text that's passed to our
templates. For that, we have logical operations that we can use in templates. In this
chapter, we covered flow control structures such as if, else, case, for, and while. Also,
we discussed adding more advanced logic with raw JavaScript.

Filters
Much like how Jade is better than writing HTML, there are preprocessed languages
for writing other languages. These include languages that compile into CSS, JS, and
even specialized subsets of HTML for basic formatting. This book will not attempt
to teach any of these to you because honestly, there are already great resources out
there for learning all of them. However, it is worth mentioning these languages
because Jade has a feature called filters that allows you to use several of them right
inside your templates.

The full list
Thanks to a library called transformers by Forbes Lindesay, Jade supports a huge
number of these preprocessed languages. You need to install the individual language
compilers for most of the transformers, but they're usually pretty easy to install
because they're almost all contained in npm modules like the Jade compiler that you
installed in Chapter 1, What is Jade?.

Template engines
It is a little strange to use another template engine inside of Jade code, but it is
nevertheless allowed because the underlying transformers library supports it.
The following is a list of templating engines:

• atpl: Compatible with twig templates
• coffeecup: Pure CoffeeScript templates (fork of coffeekup)
• dot: Focused on speed
• dust: Asynchronous templates
• eco: Embedded CoffeeScript templates
• ect: Embedded CoffeeScript templates

Filters

[36]

• ejs: Embedded JavaScript templates
• haml: Dry indented markup
• haml-coffee: This is haml with embedded CoffeeScript
• handlebars: Extension of mustache templates
• hogan: mustache templates
• jade: Robust, elegant, feature-rich template engine
• jazz

• jqtpl: Extensible logic-less templates
• JUST: EJS style template with some special syntax for layouts/partials

among others
• liquor: Extended EJS with significant whitespace
• mustache: Logic-less templates
• QEJS: Promises and EJS for async templating
• swig: Django-like templating engine
• templayed: mustache focused on performance
• toffee: Templating language based on CoffeeScript
• underscore

• walrus: A bolder kind of mustache
• whiskers: Logic-less focused on readability

Stylesheet languages
These languages can be extremely useful for writing and generating CSS, but
normally are difficult to compile when they are inside of other files. Jade solves
this problem by allowing you to use them through filters. The following are some
stylesheet languages:

• less: This extends CSS with dynamic behaviors such as variables, mixins,
operations, and functions

• stylus: Revolutionary CSS generator making braces optional
• sass: Sassy CSS

Chapter 5

[37]

Minifiers
The minifiers are not incredibly useful, but like other template engines, they are
supported by the underlying library and are therefore worth mentioning. They are
as follows:

• uglify-js: No need to install anything, just minifies/beautifies JavaScript
• uglify-css: No need to install anything, just minifies/beautifies CSS
• uglify-json: No need to install anything, just minifies/beautifies JSON

Others
This section includes the following:

• cdata: With cdata we don't need to install anything, it just wraps input
as <![CDATA[${INPUT_STRING]]> with the standard escape for]]>
(]]]]><![CDATA[>)

• cdata-js: This is the same as cdata, but with surrounding comments
suitable for inclusion into a HTML/JavaScript <script> block:
//<![CDATA[\n${INPUT_STRING\n//]]>

• cdata-css: This is the same as cdata, but with surrounding comments
suitable for inclusion into a HTML/CSS <style> block: /*<![CDATA[*/\
n${INPUT_STRING\n/*]]>*/

• verbatim: With verbatim, there's no need to install anything, it acts as a
verbatim pass-through ${INPUT_STRING}

• coffee-script: A little language that compiles into JavaScript
• cson: This is a coffee-script-based JSON format
• markdown: You can use marked, supermarked, markdown-js, or markdown
• component-js: npm install component-builder options:

{development: false}

• component-css: npm install component-builder options:
{development: false}

• html2jade: Converts HTML back into Jade: npm install html2jade

Filters

[38]

Examples
Because of the vast number of languages that can be used in filters, I'm not going
to give examples for all of them (that would get really redundant). But the most
popular ones are explained in the next sections.

Markdown

:markdown
 Markdown is **much**
easier to write than that
ugly [HTML](http://www.
w3.org/html/?).

<p>Markdown is much
easier to write than that ugly</
em> <a href="http://www.w3.org/
html/?">HTML.</p>

CoffeeScript
:coffeescript
 square = (x) -> x * x
 cube = (x) ->
 square(x) * x

 (function() {
 var cube, square;

 square = function(x) {
 return x * x;
 };

 cube = function(x) {
 return square(x) * x;
 };
 }).call(this);

Chapter 5

[39]

Stylus
:stylus
 border-radius()
 -webkit-border-radius arguments
 -moz-border-radius arguments
 border-radius arguments

 body
 font 12px Helvetica, Arial, sans-serif

 a
 color purple

 .button
 border-radius 5px

 body {
 font: 12px Helvetica, Arial, sans-serif;
 }

 a {
 color: #800080;
 }

 a .button {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 }

Filters

[40]

Passing arguments
Since compilers often take options, Jade has a syntax for passing options to filters.
The syntax is the same as specifying attributes for tags, but with an exception.

For example, if we pass the minify option to the Stylus filter, the output is minified,
rather than pretty-printed, as it was in the previous example:

:stylus(minify=true)
 p
 color red
 b
 font-weight bold
 color blue

 p{color:#f00}b{font-weight:bold;color:#00f}

For a full list of arguments that can be passed, see the transformers repository at
https://github.com/ForbesLindesay/transformers.

Summary
In this chapter, we covered our first feature of the Jade language, filters—a way to
automatically compile other preprocessed languages (such as Stylus, Markdown,
or CoffeeScript) directly in templates.

Mixins
Mixins are small, encapsulated pieces of code that are reusable throughout the
template. They allow you to reduce redundancy (repeating chunks of code) and can
make code easier to understand by providing good names for your mixins (more
about this in Chapter 8, Organizing Jade Projects). Because they are encapsulated, they
have their own variable scope, meaning they can prevent naming collisions that
would likely happen in large templates that only use Jade's global namespace.

They are very similar to functions in JS; in fact, they compile into slightly modified
functions and corresponding function calls. This means that almost everything that
you already know about functions in JS carries over to mixins in Jade.

Syntax and mechanics
First off, we're going to talk about how to write mixins: the syntax that they use, and
what it does. Also, since we've already covered logical operations in templates, we
can use those in mixins throughout the examples.

Defining mixins
Mixin definitions don't output any HTML and are defined using the following syntax:

mixin book(name, price)
 li #{name} for #{price} €

In the preceding code snippet, book is the name of the mixin, and name and price
are both named arguments. The indented block of Jade gets executed in its own
scope, where the variables name and price are both defined with the arguments that
are passed. So basically, it works just like you would expect a function to work.

Mixins

[42]

Calling mixins
The syntax for calling mixins is also similar to that of function calls, except we prefix
the function name with a + symbol to say that it isn't a tag (which can look quite
similar). So using our book mixin, we can call it with the following:

ul#books
 +book("Book A", 12.99)
 +book("Book B", 5.99)

<ul id="books">
 Book A for 12.99 €
 Book B for 5.99 €

Simpler mixins don't even need to accept arguments and can even be called
without args:

mixin copyleft
 | (ɔ)

p
 +copyleft
 | - Sean Lang - 2013

<p>(ɔ) - Sean Lang - 2013</
p>

Passing blocks
Besides just being able to pass arguments, you can also pass entire blocks to a mixin,
as shown in the following code snippet:

mixin input(name)
 li(id=name.replace(/\s/g,
'-'))
 label= name + ':'
 block

form: ul
 +input('favorite color')
 input('type'='text')
 +input('comments')
 textarea Type your comment
here.

<form>

 <li id="favorite-color">
 <label>favorite color:</
label>
 <input type="text">

 <li id="comments">
 <label>comments:</label>
 <textarea>Type your
comment here.</textarea>

</form>

Chapter 6

[43]

The block that will be passed to the mixin is whatever indented block comes after
the mixin call. It is just like the way in which whatever indented block comes after
a tag is nested in that tag, except here they are passed to the mixin. In this case,
input('type'='text') and textarea Type your comment here. are the passed
blocks. Inside the mixin, the block keyword tells Jade where to put the contents of
the block that is passed to it.

At the same time, the mixin also takes the name argument which is used to make the
ID and label.

Another warning about interpolation
Back in Chapter 3, Feeding Data into Templates, I mentioned that interpolation doesn't
work in the arguments used to call a mixin. Now that we know how to write mixins,
we need to be careful not to use interpolation when we're calling them. For example:

mixin hello(p)
 | #{p}

- title = "This is my Title"
p
 mixin hello('#{title}')

<p>#{title}</p>

If interpolation did work in mixin arguments, this would output This is my Title
rather than #{title}.

This gotcha has existed since Jade's creation, and has been discussed on multiple
occasions (refer to https://github.com/visionmedia/jade/issues/693) but
probably won't be changed any time soon.

Mixins

[44]

The arguments object
Just as the arguments object is a local variable available in JavaScript objects, it is
available in Jade mixins. In fact, it is used frequently in Jade to make mixins that
accept a variable number of args, as shown in the following code snippet:

mixin list()
 ul
 - var args = Array.prototype.
slice.call(arguments);
 for item in args
 li= item

+list('one', 'two', 'three')

 one
 two
 three

In the preceding example, we define a mixin (list) that appears to take no
arguments, but in fact iterates over an array created from the arguments object. It
is worth noting that we cannot iterate over arguments itself, because it is not a real
array. Instead, we use - var args = Array.prototype.slice.call(arguments);
to make an array called args from the arguments object.

Summary
We just finished learning about mixins—a way to write reusable functions on the
inside of the templates in order to reduce redundancy

Template Inheritance
Sites generally have a basic layout which is the same across all pages, and then small
blocks of HTML that make each page unique. To prevent you from needing to repeat
this base layout in every single file, Jade uses a block system that lets you insert
interchangeable blocks into templates.

Blocks
Blocks function like small containers for Jade. Their content can be appended to,
prepended to, or replaced entirely. To define a block, simply use the block keyword,
and then the name of the block, as shown:

block scripts
 script(src='jquery.js')

<script src="jquery.js"></
script>

Template Inheritance

[46]

By default, a block will just output the nested content, but blocks really become
useful when you start to extend them. Blocks can also be nested inside other tags,
making them useful as placeholders. For example, in the following file (which we
will use for examples throughout the rest of the chapter), we will define three blocks;
scripts, styles, and content, as shown:

layout.jade:

doctype
html
 head
 block scripts
 script(src='jquery.js')
 block styles
 body
 block content
 p there's no content here

<!DOCTYPE html>
<html>
 <head>
 <script src="jquery.js"></
script>
 </head>
 <body>
 <p>there's no content
here</p>
 </body>
</html>

By default, the only script that's on the page is jQuery; there are no styles, and in the
body there is a short message explaining that there's no content on the page. That's
pretty boring, so next we're going to learn how to extend this page to make it better.

Blocks don't provide encapsulation
Variables defined in blocks can be accessed outside of blocks. Consider the
following example:

block example
 - variable_from_a_block = 'I
was defined inside a block'

p=variable_from_a_block

<p>I was defined inside a
block</p>

I would not recommend accessing variables defined in blocks outside of blocks,
because replacing the content of the block defining that variable would remove the
variable and break whatever it was used in. Also, it makes more sense logically to
group the variables with the place they are used, when possible.

But even if you follow this recommendation, it is still important to note that they are
in the same namespace, so reusing a variable name redefines it.

Chapter 7

[47]

Extends
The extends keyword allows us to specify that a particular template extends another
template. This means the template in which the keyword is used gets to modify the
blocks of the other template.

The syntax is simple; using extends layout means that the template in which it is
used gets to extend layout.jade (the .jade part of the filename is implied). Also,
full paths can be used; like if layout.jade was one directory above the location of
the current template, we could use ../layout to access it.

Replace
To replace the content of a block, we use the same syntax as defining a block, but it
must be put in a template that extends the file in which the block was defined. For
example, if we have a page in which we need both jQuery and underscore.js, we
could redefine the scripts block as follows:

page1.jade (in the same directory as layout.jade):

extends layout

block scripts
 script(src='jquery.js')
 script(src='underscore.js')

block content

<!DOCTYPE html>
<html>
 <head>
 <script src="jquery.js"></
script>
 <script src="underscore.
js"></script>
 </head>
 <body>
 </body>
</html>

I also redefined the content block to be blank because you don't necessarily need to
pass new content.

Template Inheritance

[48]

Append
In the previous section, we completely redefined the script block, even though
we were really just adding to it. We could simplify this example by using the
append keyword.

page2.jade (in the same directory as layout.jade):

extends layout

append scripts
 script(src='underscore.js')

block content

<!DOCTYPE html>
<html>
 <head>
 <script src="jquery.js"></
script>
 <script src="underscore.
js"></script>
 </head>
 <body></body>
</html>

page2.jade results in the same HTML as page1.jade, but depending on your
preference, you could decide to write block append rather than just append. They
mean the same thing, but append is shorter, so that will be used in all examples
throughout this book.

Prepend
The prepend keyword does the exact opposite of the append keyword, and also has
a longer variant: block prepend. It is useful when you want to add something to the
beginning of a block. For example, if you want underscore.js to load before jQuery,
you could do the following:

page3.jade (in the same directory as layout.jade):

extends layout

prepend scripts
 script(src='underscore.js')

block content

<!DOCTYPE html>
<html>
 <head>
 <script src="underscore.
js"></script>
 <script src="jquery.js"></
script>
 </head>
 <body></body>
</html>

And, as you can see, the order is switched.

Chapter 7

[49]

Incompatibility
It is worth noting that blocks are evaluated during compilation, so they will not
work with render-time logic such as if/else statements. For example, the following
will break:

if true
 extends layout1
else
 extends layout2

This is a rather "edge" case because there is usually no reason to structure your
templates in such a way that render-time logic influences compile-time statements.
Thus, this incompatibility will probably not be fixed.

Extra things in extenders
If you have things, other than blocks, in a template that extends another template,
they will be ignored. For example:

minimal_layout.jade

p=a_variable

ignored_things.jade (in the same directory as minimal_layout.jade):

extends minimal_layout
- a_variable = 'I won\'t show up'
p I won't show up either

<p></p>

As you can see, a_variable cannot be accessed in minimal_layout.jade because it
was defined in a template extending it. Similarly, the p tag from ignored_things.
jade doesn't show up because markup is ignored in extending templates.

Includes
The last way to insert content from another file is with an include statement. This
is the simplest way, but also the least dynamic because you cannot change/generate
the name of the file you want to include. This is because includes are one of the
first things that are evaluated when compiling a template; before any loops, logical
operations, or variables.

Still, they are quite useful for moving pieces of templates that are reused many times
into their own files, or for including static assets such as HTML, CSS, or JS directly
in templates.

Template Inheritance

[50]

Static
If you just want to include a static asset, the operation is very basic.

style.css:

p {
 color: blue;
 text-decoration: underline;
}

content.html (in the same directory as style.css):

<h1>includes</h1>
<p>this is a file for demonstrating the use of includes in Jade</p>

example.jade (in the same directory as style.css):

doctype
html
 head
 style(type="text/css")
 include style.css
 body
 include content.html

<!DOCTYPE html>
<html>
 <head>
<style type="text/css">
p {
 color: blue;
 text-decoration: underline;
}
</style>
 </head>
 <body>
<h1>includes</h1>
<p>this is a file for
demonstrating the use of
includes in Jade</p>
 </body>
</html>

Chapter 7

[51]

Filtered
If you try to include a Markdown, Stylus, CoffeeScript, or any of the other types
of files mentioned in Chapter 3, Feeding Data into Templates, you have to use filters.
For example, if you use include:md file.md then file.md will be compiled as
Markdown and the resulting HTML will be injected into the template.

Consider the following example:

style.styl:

p
 color blue
 text-decoration underline

content.md (in the same directory as style.styl):

#includes
this is a file for demonstrating the use of includes in Jade

filters.jade (in the same directory as style.styl):

doctype
html
 head
 style(type="text/css")
 include:styl style.styl
 body
 include:md content.md

<!DOCTYPE html>
<html>
 <head>
<style type="text/css">
p {
 color: #00f;
 text-decoration: underline;
}
</style>
 </head>
 <body>
<h1>includes</h1>
<p>this is a file for
demonstrating the use of
includes in Jade</p>
 </body>
</html>

And you can see that both of the included files are compiled and inserted into the file.

Template Inheritance

[52]

Jade
If you are including a Jade file, rather than compiling it into HTML, it will be parsed
and the Abstract Syntax Tree (AST) will be injected into the spot where the include
was. This means that even variables behave as if they were written in the same file.
Also, if you're including a Jade file, you don't need to use the .jade file extension.

book-format.jade

p #{book.title} by #{book.author}

example2.jade (in the same directory as book-format.jade):

- books = [{title: "Godel Escher
Bach: An Eternal Golden Braid",
author: "Douglas Hofstadter"},
{title: "Slaughter-House Five",
author: "Kurt Vonnegut"}];

for book in books
 include book-format

<p>Godel Escher Bach: An
Eternal Golden Braid by Douglas
Hofstadter</p>
<p>Slaughter-House Five by Kurt
Vonnegut</p>

And, as you can see, book.title is available even though it is accessed in code that
was written in book-format.jade.

Summary
In this chapter we learned about the last major part of the language, that is,
template inheritance, which is done through a block system. In addition,
we learned about include—a related keyword that lets us include non-Jade
files, such as scripts and styles

Organizing Jade Projects
Now that you know how to use all the things that Jade can do, here's when you
should use them.

Jade is pretty flexible when it comes to organizing projects; the language itself
doesn't impose much structure on your project. However, there are some
conventions you should follow, as they will typically make your code easier to
manage. This chapter will cover those conventions and best practices.

General best practices
Most of the good practices that are used when writing HTML carry over to Jade.
Some of these include the following:

• Using a consistent naming convention for ID's, class names, and (in this case)
mixin names and variables

• Adding alt text to images
• Choosing appropriate tags to describe content and page structure

The list goes on, but these are all things you should already be familiar with. So now
we're going to discuss some practices that are more Jade-specific.

Organizing Jade Projects

[54]

Keeping logic out of templates
When working with a templating language, like Jade, that allows you to use
advanced logical operations, separation of concerns (SoC) becomes an important
practice. In this context, SoC is the separation of business and presentational logic,
allowing each part to be developed and updated independently.

An easy point to draw the border between business and presentation is where data
is passed to the template. Business logic is kept in the main code of your application
and passes the data to be presented (as well-formed JSON objects) to your template
engine. From there, the presentation layer takes the data and performs whatever
logic is needed to make that data into a readable web page.

An additional advantage of this separation is that the JSON data can be passed to
a template over stdio (to the server-side Jade compiler), or it can be passed over
TCP/IP (to be evaluated client side). Since the template only formats the given data,
it doesn't matter where it is rendered, and can be used on both server and client.

For documenting the format of the JSON data, try JSON Schema (http://json-
schema.org/). In addition to describing the interface between that your presentation
layer uses, it can be used in tests to validate the structure of the JSON that your
business layer produces.

Chapter 8

[55]

Inlining
When writing HTML, it is commonly advised that you don't use inline styles or
scripts because it is harder to maintain. This advice still applies to the way you write
your Jade.

For everything but the smallest one-page projects, tests, and mockups, you should
separate your styles and scripts into different files. These files may then be compiled
separately and linked to your HTML with style or link tags. Or, you could include
them directly into the Jade. But either way, the important part is that you keep it
separated from your markup in your source code.

However, in your compiled HTML you don't need to worry about keeping inlined
styles out. The advice about avoiding inline styles applies only to your source
code and is purely for making your codebase easier to manage. In fact, according
to Best Practices for Speeding Up Your Web Site (http://developer.yahoo.com/
performance/rules.html) it is much better to combine your files to minimize HTTP
requests, so inlining at compile time is a really good idea.

It's also worth noting that, even though Jade can help you inline scripts and
styles during compilation, there are better ways to perform these compile-time
optimizations. For example, build-tools like AssetGraph (https://github.com/
assetgraph/assetgraph) can do all the inlining, minifying, and combining you
need, without you needing to put code to do so in your templates.

Minification
Looking back to Chapter 5, Filters, you'll remember that we can pass arguments
through filters to compilers for things like minifying. This feature is useful for small
projects for which you might not want to set up a full build-tool. Also, minification
does reduce the size of your assets making it a very easy way to speed up your site.
However, your markup shouldn't really concern itself with details like how the site is
minified, so filter arguments aren't the best solution for minifying. Just like inlining,
it is much better to do this with a tool like AssetGraph. That way your markup is free
of "build instructions".

Organizing Jade Projects

[56]

Removing style-induced redundancy
A lot of redundant markup is added just to make styling easier: we have wrappers
for every conceivable part of the page, empty divs and spans, and plenty of other
forms of useless markup. The best way to deal with this stuff is to improve your CSS
so it isn't reliant on wrappers and the like. Failing that, we can still use mixins to take
that redundancy out of the main part of our code and hide it away until we have
better CSS to deal with it. For example, consider the following example that uses a
repetitive navigation bar:

input#home_nav(type='radio', name='nav', value='home', checked)
label(for='home_nav')
 a(href='#home') home

input#blog_nav(type='radio', name='nav', value='blog')
label(for='blog_nav')
 a(href='#blog') blog

input#portfolio_nav(type='radio', name='nav', value='portfolio')
label(for='portfolio_nav')
 a(href='#portfolio') portfolio

//- ...and so on

Instead of using the preceding code, it can be refactored into a reusable mixin as
shown in the following code snippet:

mixin navbar(pages)
 - checked = true
 for page in pages
 input(
 type='radio', name='nav', value=page, id="#{page}_nav",
checked=checked)
 label(for="#{page}_nav")
 a(href="##{page}") #{page}
 - checked = false

The preceding mixin can be then called later in your markup using the
following code:

+navbar(['home', 'blog', 'portfolio'])

Chapter 8

[57]

Semantic divisions
Sometimes, even though there is no redundancy present, dividing templates
into separated mixins and blocks can be a good idea. Not only does it provide
encapsulation (which makes debugging easier), but the division represents a logical
separation of the different parts of a page.

A common example of this would be dividing a page between the header, footer,
sidebar, and main content. These could be combined into one monolithic file, but
putting each in a separate block represents their separation, can make the project
easier to navigate, and allows each to be extended individually.

Server-side versus client-side rendering
Since Jade can be used on both the client-side and server-side, we can choose to
do the rendering of the templates off the server. However, there are costs and
benefits associated with each approach, so the decision must be made depending
on the project.

Client-side rendering
Using the Single Page Application (SPA) design, we can do everything but the
compilation of the basic HTML structure on the client-side. This allows for a static page
that loads content from a dynamic backend and passes that content to Jade templates
compiled for client-side usage. For example, we could have simple webapp that, once
loaded, fires off a AJAX request to a server running WordPress with a simple JSON
API, and displays the posts it gets by passing the the JSON to templates.

The benefits of this design is that the page itself is static (and therefore easily
cacheable), with the SPA design, navigation is much faster (especially if content is
preloaded), and significantly less data is transferred because of the terse JSON format
that the content is formatted in (rather than it being already wrapped in HTML).
Also, we get a very clean separation of content and presentation by actually forcing
content to be moved into a CMS and out of the codebase. Finally, we avoid the risk of
coupling the rendering too tightly with the CMS by forcing all content to be passed
over HTTP in JSON—in fact, they are so separated that they don't even need to be on
the same server.

But, there are some issues too—the reliance on JavaScript for loading content means
that users who don't have JS enabled will not be able to load content normally and
search engines will not be able to see your content without implementing _escaped_
fragment_ URLs. Thus, some fallback is needed, whether it is a full site that is able
to function without JS or just simple HTML snapshots rendered using a headless
browser, it is a source of additional work.

Organizing Jade Projects

[58]

Server-side rendering
We can, of course, render everything on the server-side and just send regular HTML
to the browser. This is the most backwards compatible, since the site will behave
just as any static HTML site would, but we don't get any of the benefits of client-side
rendering either.

We could still use some client-side Jade for enhancements, but the idea is the same:
the majority gets rendered on the server-side and full HTML pages need to be sent
when the user navigates to a new page.

Build systems
Although the Jade compiler is fully capable of compiling projects on its own, in
practice, it is often better to use a build system because they can make interfacing
with the compiler easier. In addition, build systems often help automate other
tasks such as minification, compiling other languages, and even deployment. Some
examples of these build systems are Roots (http://roots.cx/), Grunt (http://
gruntjs.com/), and even GNU's Make (http://www.gnu.org/software/make/).

Chapter 8

[59]

For example, Roots can recompile Jade automatically each time you save it and even
refresh an in-browser preview of that page. Continuous recompilation helps you
notice errors sooner and Roots helps you avoid the hassle of manually running a
command to recompile.

Summary
In this chapter, we just finished taking a look at some of the best practices to follow
when organizing Jade projects. Also, we looked at the use of third-party tools to
automate tasks.

A Closing Note – Contributing
Back to Jade

Jade is made possible by a wonderful group of volunteers who are passionate about
making web development easier. The language was created by TJ Holowaychuk
(who also made Express, mocha, and over 300 other open source projects) in 2010.
Since then, more than 100 volunteers (https://github.com/visionmedia/jade/
graphs/contributors) have joined him in improving Jade. The project is now
maintained by primarily by Forbes Lindesay.

All of these contributors deserve a huge thank-you for making Jade happen. Without
them, Jade wouldn't be the superpower that it is today.

Because Jade is purely community-built, I ask that you consider helping to improve
Jade. This can be through offering support to other Jade users, submitting pull
requests to the GitHub repository (https://github.com/visionmedia/jade),
writing about why Jade is awesome, discussing ways to make Jade better on the
issue tracker (https://github.com/visionmedia/jade/issues), improving
the documentation, or even by donating to someone else who has helped. These
contributions help make Jade better for everyone and are a great way to improve
your own programming skills while giving back to the community.

Index
A
Abstract Syntax Tree (AST) 52
append keyword 48
arguments

passing 40
arguments object 44
AssetGraph

URL 55
atpl templating engine 35
attributes

about 16
objects, passing as 17

B
best practices, Jade

about 53
build systems 58
inlining 55
minification 55
semantic divisions 57
separation of concerns (SoC) 54
server-side versus client-side rendering 57
style-induced redundancy, removing 56

block comments 19
block expansion 20
blocks

about 45
content, replacing of 47
defining 46
passing, to mixin 42, 43

build systems 58
built-in logical operators

about 31

each loops 32
if / else if / else statement 31
unless operator 31
while loop 33

C
cdata 37
cdata-css 37
cdata-js 37
client-side rendering 57
coffeecup templating engine 35
coffee-script 37
comments

block comments 19
single-line comment 19

compiler
variables, sending to 26

complex operations 30
component-css 37
component-js 37
content

replacing, of block 47
contributions help, Jade 61
cross-site scripting (XSS) attacks 26
cson 37

D
div tag 18
doctypes

about 21
writing 21

dot templating engine 35
dust templating engine 35

[64]

E
each loops 32
eco templating engine 35
ect templating engine 35
ejs templating engine 36
escaping 26
examples

CoffeeScript 38
Markdown 38
Stylus 39

extenders 49
extends keyword 47

F
filters

about 35
using 51

for loop 30

G
global namespace 41
Grunt

URL 58

H
HAML 8
haml-coffee templating engine 36
haml-js

about 8
URL 8

haml templating engine 36
handlebars templating engine 36
hogan templating engine 36
HTML

example 5
html2jade 37

I
if / else if / else statement 31
if else statement 29
include statement

about 49
filtered 51

Jade file, including 52
static asset 50

inline HTML 16
inlining 55
installation instructions, Jade 9
interpolation

about 23, 24
warnings 43, 33

J
Jade

about 5, 61
best practices 53
compiling 9, 10
contributions help 61
example 5
installation instructions 9
preprocessing 6
preprocessing, need for 6

jade command 9
Jade file

including 52
jade templating engine 36
JavaScript

logic, adding 29
jazz templating engine 36
Jinja2 8
jqtpl templating engine 36
JSON object

passing, to compiler as argument 27
JSON Schema

URL 54
JUST templating engine 36

L
less stylesheet language 36
liquor templating engine 36
logic

adding, with JavaScript 29
logical operators

for loop 30
if else statement 29

[65]

M
Make

URL 58
markdown 37
minification 55
minifiers

about 37
uglify-css 37
uglify-js 37
uglify-json 37

mixins
about 41
blocks, passing to 42, 43
calling 42
defining 41
mechanics 41
syntax 41

Mustache 9
mustache templating engine 36

N
nested tag

creating 14
Node.js

URL 9

O
objects

passing, as attributes 17

P
PHP 8
prepend keyword 48
preprocessors

about 6
comparing 7

Q
QEJS templating engine 36

R
replace keyword 47

Roots
URL 58

S
sass stylesheet language 36
semantic divisions 57
separation of concerns (SoC)

about 54
advantages 54

server-side rendering 58
SGML (Standard Generalized Markup

Language) 6
shorthands

automatic div 18
classes 18
ID 18

shorthand text blocks 16
single-line comments 19
single-page application (SPA) 57
static asset

including 50
style-induced redundancy

removing 56
stylesheet languages

about 36
less 36
sass 36
stylus 36

stylus stylesheet language 36
swig templating engine 36
syntactical elements 23

T
tags

about 14
inline HTML 16
text 15
text blocks 15

template engines 35
templating engines

atpl 35
coffeecup 35
dot 35
dust 35
eco 35
ect 35

[66]

ejs 36
haml 36
haml-coffee 36
handlebars 36
hogan 36
jade 36
jazz 36
jqtpl 36
JUST 36
liquor 36
mustache 36
QEJS 36
swig 36
templayed 36
toffee 36
underscore 36
walrus 36
whiskers 36

templayed templating engine 36
text

about 15
on same line 15

text blocks 15
toffee templating engine 36
transformers 35
transformers library 35
transformers repository

URL, for argument list 40

U
uglify-css minifier 37
uglify-js minifier 37
uglify-json minifier 37
underscore templating engine 36
unless operator 31

V
variables

defining 23
sending, to compiler 26
sending, to Jade programmatically 27, 28
using, without interpolation 25

verbatim 37

W
walrus templating engine 36
while loops 33
whiskers templating engine 36
whitespace

significance 13

Thank you for buying
Web Development with Jade

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Express Web Application
Development
ISBN: 978-1-84969-654-8 Paperback: 236 pages

Learn how to develop web applications with the
Express framework from scratch

1. Exploring all aspects of web development
using the Express framework.

2. Starts with the essentials.

3. Expert tips and advice covering all
Express topics.

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1. Learn about server-side JavaScript with
Node.js and Node modules.

2. Website development both with and
without the Connect/Express web
application framework.

3. Developing both HTTP server and
client applications.

Please check www.PacktPub.com for information on our titles

Learning Kendo UI Web
Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add exciting
features to your web pages without being a
JavaScript expert

1. Learn from clear and specific examples on how
to utilize the full range of the Kendo UI toolset
for the Web.

2. Add powerful tools to your website supported
by a familiar and trusted name in innovative
technology.

3. Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert.

Easy Web Development with
Wavemaker
ISBN: 978-1-78216-178-3 Paperback: 306 pages

A practical, hands-on guide for amateur developers
to design, develop, and deploy web and mobile
applications using Wavemaker

1. Develop and deploy custom, data-driven,
and rich AJAX web and mobile applications
with minimal coding using the drag-and-drop
Wavemaker Studio.

2. Use the graphical Wavemaker Studio IDE to
quickly assemble web applications and learn
to understand the project's artefacts.

3. Customize the generated application and
enhance it further with custom services
 and classes using Java and JavaScript.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Jade?
	Markup like poetry
	Why should I preprocess?
	How Jade preprocesses
	Comparison with other preprocessors
	HAML
	PHP
	Jinja2
	Mustache

	Installation instructions

	Compiling Jade
	Summary

	Chapter 2: Basic Syntax
	Significance of white space
	Tags
	Text and blocks of text
	Text on the same line
	Text blocks
	Shorthand text blocks

	Inline HTML
	Attributes
	Passing objects as attributes

	Shorthands
	IDs and classes
	Automatic div

	Comments
	Single line
	Block comments

	Block expansion
	Doctypes
	Summary

	Chapter 3: Feeding Data into Templates
	Syntax
	Defining variables
	Interpolation everywhere!
	Using variables without interpolation
	Escaping
	Sending the variables to the compiler
	Compiler arg
	Programmatically

	Summary

	Chapter 4: Logic in Templates
	Adding logic with JavaScript
	If/else
	For loops
	Complex operations

	Built-in logical operators
	If / else / else if
	Unless
	Cases
	Each loops
	While loops

	A warning about interpolation
	Summary

	Chapter 5: Filters
	The full list
	Template engines
	Stylesheet languages
	Minifiers
	Other

	Examples
	Markdown
	CoffeeScript
	Stylus

	Passing arguments
	Summary

	Chapter 6: Mixins
	Syntax and mechanics
	Defining mixins
	Calling mixins
	Passing blocks

	Another warning about interpolation
	The arguments object
	Summary

	Chapter 7: Template Inheritance
	Blocks
	Blocks don't provide encapsulation

	Extends
	Replace
	Append
	Prepend
	Incompatibility
	Extra things in extenders

	Includes
	Static
	Filtered
	Jade

	Summary

	Chapter 8: Organizing Jade Projects
	General best practices
	Keeping logic out of templates
	Inlining
	Minification
	Removing style-induced redundancy
	Semantic divisions
	Server-side versus client-side rendering
	Client-side
	Server-side

	Build systems

	Summary

	Appendix: A Closing Note – Contributing Back to Jade
	Index

