

Bootstrap Site Blueprints

Design mobile-first responsive websites with
Bootstrap 3

David Cochran

Ian Whitley

BIRMINGHAM - MUMBAI

Bootstrap Site Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1140214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-452-4

www.packtpub.com

Cover Image by Javier Rincon Borobia (javirbh@gmail.com)

Credits

Authors
David Cochran

Ian Whitley

Reviewers
Sampath Lokuge

Sohel Rana

Acquisition Editor
Sam Wood

Content Development Editor
Sweny M. Sukumaran

Technical Editors
Shweta S. Pant

Humera Shaikh

Nachiket Vartak

Copy Editors
Roshni Banerjee

Sarang Chari

Brandt D'Mello

Mradula Hegde

Project Coordinator
Amey Sawant

Proofreaders
Maria Gould

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Authors

David Cochran serves as an Associate Professor of Communication at Oklahoma
Wesleyan University. He has been teaching Interactive Design since 2005. A passion
for best practices induced him to avoid shortcuts and hew towards web standards.
When Twitter Bootstrap was first released in August 2011, he recognized it as a tool
that would speed up development while supporting best practices. Thus, he began
folding Bootstrap into his university courses, much to the benefit of his students.

In 2012, David produced a Bootstrap 2.0 tutorial series for webdesign.tutsplus.
com. He also published a first short book about Bootstrap, Twitter Bootstrap Web
Development How-To, Packt Publishing.

In his spare time, David blogs about web design at alittlecode.com. He also leads
a media, design, and strategy company named BitBrilliant.

I would like to thank Oklahoma Wesleyan University for supporting
this project and for providing a context for teaching and learning
steeped in the Spirit of Christ. To my students, thank you for your
excitement as we've learned new skills together. To Ian and my
colleagues at BitBrilliant, thank you for joining me in the good work
of building better web interfaces for great clients and good causes.
To my wife, Julie, and our children, thank you for your patience
through this process—and for your good humor, encouragement,
and fun. I'm grateful.

Ian Whitley developed a passion for writing and literature at a young age. In
2010, he developed a deep interest in web development and decided to get involved
in it. When the opportunity to help write a book on web development came up, it
seemed like too good of an offer to pass up. He was one of the early adopters of
Twitter Bootstrap when it was first released in 2011. With the help of David Cochran,
he quickly conquered the system and has used it for many different web projects.
Currently, he uses Bootstrap in relation to WordPress, using both in conjunction to
create custom and creative solutions for his client.

Living in the Bartlesville, OK, Ian is the lead developer for BitBrilliant, the company
that David Cochran founded. He is always looking to further his skills—both for
the web and in the many hobbies he pursues, which include leather working
and writing.

I would like to thank everyone I work with at BitBrilliant for being
so helpful during this entire writing process and for being such great
co-workers and friends. I would also like to thank my parents, Colin
and Jackie Whitley, for providing me with a wonderful education,
guiding me in my faith in Jesus Christ, and teaching me the skills I
needed to make it in this life. I would not be who I am without your
guidance.

About the Reviewers

Sampath Lokuge is currently working as a Technical Lead at a well known
software consulting company in Sri Lanka. He holds a Bachelor of Science degree in
Mathematics and Computer Science from the University of Colombo, Sri Lanka.

Sampath possesses over six years of experience in constructing web applications
using Microsoft technologies such as ASP.net MVC, C#, SQL Server, Web API, Entity
Framework, and also other web technologies such as HTML5, CSS3, and jQuery. He
has earned Microsoft certifications such as MCP, MCAD, MCSD, and MCTS. Very
recently, he has completed an MS (Microsoft Specialist) in MVC 4, HTML5, and CSS3
with JavaScript.

Besides that, he is an active blogger and he writes about web and mobile
development issues and promoting best practices. You can visit his technical
blog at http://sampathloku.blogspot.com/.

He also actively participates in online communities such as Code Project and
StackOverflow. He handles two communities, which are ASP.net MVC 5 With
C# on Linkedin and EntityFramework 6 on G+. He is a Buddhist and a vegetarian.

I would like to thank my mother who supported me in completing
my reviews on time and with good quality.

Sohel Rana has been working in the IT industry for almost eight years, with working
experience in Asia, Europe, and Australia. He's involved in architecting, designing,
and developing large Enterprise Solutions using different types of Microsoft-based
technologies such as ASP.net, Dot Net Nuke, Ektrone, and SharePoint.

Currently, Sohel is working as a Senior SharePoint Consultant at NEC IT in Perth,
Australia. He has achieved Microsoft Most Valuable Professional (MVP) twice for
his contribution to the SharePoint community. He's a regular blogger on SharePoint,
and you can find his blog just by googling Sohel SharePoint. He loves to explore
new technologies.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started with Bootstrap 7

Quantity and quality 7
Improving with age 8
The power of leaner CSS 8

Downloading Bootstrap 8
The files you'll have 9

Preparing a project template folder 10
Getting H5BP 10
Deleting unnecessary Boilerplate files 11
Evaluating the Boilerplate .htaccess file 11
Updating required Boilerplate files 11
Updating the favicon and touch icons 12

Pulling in the Bootstrap files 12
Fonts 12
JavaScript 13
Holding off on the CSS 16
Bringing the LESS files over 16

Taking inventory 16
Setting up the HTML template file 18
Giving your site a title 20

Adjusting the outdated browser message 20
Setting up major structural elements 22

Providing a navbar markup 23
Compiling and linking default Bootstrap CSS 24

Compiling Bootstrap CSS 24
Completing the responsive navbar 26

Table of Contents

[ii]

Troubleshooting 29
Adding support for Internet Explorer 8 29

Summary 32
Chapter 2: Bootstrappin' Your Portfolio 33

What we'll build 33
Surveying the exercise files 36
Marking up the carousel 38
Creating responsive columns 40
Turning links into buttons 42
Understanding the power of LESS 43

Nested rules 44
Variables 44
Mixins 45
Operations 46
Importing files 46
The modular file organization 47

Customizing Bootstrap's LESS according to our needs 47
Customizing variables 49

Importing our new variables 50
Editing navbar variables 51

Adding the logo image 52
Adjusting nav item padding 54
Adding icons 55
Adding Font Awesome icons 57
Adjusting the navbar icon color 60
Adjusting the responsive navbar breakpoint 62
Styling the carousel 62

Setting Font Awesome icons for the controls 63
Adding top and bottom padding 65
Forcing images to their full width 65
Constraining the carousel height 66
Repositioning the carousel indicators 68
Styling the indicators 70

Tweaking the columns and their content 72
Styling the footer 77
Recommended next steps 80
Summary 81

Chapter 3: Bootstrappin' a WordPress Theme 83
Downloading and renaming the Roots theme 84
Installing the theme 86

Table of Contents

[iii]

Configuring the navbar 90
Bringing in our home page content 91

Adding images 93
Customizing a page template 96
Understanding the Roots base template 98
Creating a custom base template 101
Using custom fields for a custom structure 103
Creating a custom content template 105

Building our carousel from custom fields 107
Adding our content columns from custom fields 110

Putting the footer content in place 112
Surveying the Roots assets folder 113
Swapping design assets 114
Connecting our stylesheet 116
Connecting our JavaScript files 117
Adding logo images to the navbar and footer 120
Adding icon links 122
Adding back WordPress-specific styles 123
Summary 125

Chapter 4: Bootstrappin' Business 127
Sizing up our beginning files 130
Creating a complex banner area 133

Placing a logo above the navbar 133
Reviewing and checking navbar dropdown items 136

Adding utility navigation 138
Making responsive adjustments 142
Implementing the color scheme 145
Styling the collapsed navbar 145
Designing a complex responsive layout 152

Adjusting the medium and wide layout 155
Adjusting headings, font sizes, and buttons 156
Enhancing the primary column 159
Adjusting the tertiary column 162
Fine touches for multiple viewports 165

Laying out a complex footer 165
Adjusting for tablet-width viewports 167
Adding a targeted responsive clearfix 168
Refining the details 169

Summary 174

Table of Contents

[iv]

Chapter 5: Bootstrappin' E-commerce 175
Surveying the markup for our products page 177
Styling the breadcrumbs, page title, and pagination 179
Adjusting the products grid 182
Styling the options sidebar 187

Setting up basic styles 189
Styling the Clearance Sale link 189
Styling the options list 191
Adding Font Awesome checkboxes to our option links 194
Using LESS mixins to arrange option links in columns 197
Adjusting the options list layout for tablets and phones 198
Collapsing the options panel for phone users 200

Summary 204
Chapter 6: Bootstrappin' a One-page Marketing Website 207

Overview 207
Surveying the starter files 210
Viewing the page content 211
Adjusting the navbar 212
Customizing the jumbotron 214

Refining the jumbotron message design 217
Beautifying the features list 222
Tackling customer reviews 226

Positioning and styling the captions 228
Refining the caption position 230
Adding Bootstrap grid classes 232
Downloading and linking up the Masonry JavaScript plugin 234
Initializing Masonry JavaScript on our reviews layout 234
Cutting and trimming our bricks 237

Adjusting for tiny screens 240
Creating attention-grabbing pricing tables 241

Setting up the variables, files, and markup 241
Beautifying the table head 244
Styling the table body and foot 246
Differentiating the packages 247
Adjusting for small viewports 249
Providing visual hierarchy to our tables 252

Adding the final touches 256
Adding ScrollSpy to the navbar 259

Animating the scroll 260
Summary 260

Table of Contents

[v]

Appendix A: Optimizing Site Assets 263
Optimizing images 263
Optimizing CSS 264
Optimizing JavaScript 265
Our optimized results 267

Appendix B: Implementing Responsive Images 269
Considering our portfolio carousel 269
Choosing a solution from the available solutions 270

Preparing our responsive images 271
Plugging in the JavaScript 273
Implementing the markup structure 273
Testing and adjusting 274

Our end results 275
Appendix C: Adding Swipe to the Carousel 277

Considering our options 277
Getting and including the TouchSwipe plugin 278
Initializing TouchSwipe 278

Index 281

Preface
Since its debut in August 2011, Twitter Bootstrap, now simply Bootstrap, has become
by far the most popular framework for empowering and enhancing frontend web
design. With Version 3, Bootstrap reaches an exciting new milestone, introducing a
mobile-first responsive grid, new and powerful LESS mixins, and a lean code base
optimized for modern browsers.

This book is a hands-on guide to the inner workings of Bootstrap. In an easy-
to-follow, step-by-step format, you'll experience the power of customizing and
recompiling Bootstrap's LESS files and adapting Bootstrap's JavaScript plugins to
design professional user interfaces.

At the end of the day, this book is about something bigger than Bootstrap. Bootstrap
is but a tool—a means to an end. By the end of this book, you will become a more
adept and efficient web designer.

What this book covers
Chapter 1, Getting Started with Bootstrap, teaches us how to download Bootstrap,
set up a site template based on the HTML5 Boilerplate, and practice compiling
Bootstrap's LESS files to CSS.

Chapter 2, Bootstrappin' Your Portfolio, helps us to build a basic portfolio site with
a full-width carousel, three columns of text, and social icons provided by Font
Awesome—customizing Bootstrap's LESS files and adding your own in the process.

Chapter 3, Bootstrappin' a WordPress Theme, enables us to take the portfolio design
from Chapter 2, Bootstrappin' Your Portfolio, and turn it into a WordPress theme. We'll
start with the excellent Roots Theme and customize template files, LESS, CSS, and
JavaScript to suit our needs.

Preface

[2]

Chapter 4, Bootstrappin' Business, shows us how to create a complex banner area,
add dropdown menus and utility navigation, build a complex three-column page
layout, and add a four-column footer, and ensures that all these things remain
fully responsive!

Chapter 5, Bootstrappin' E-commerce, guides us through the design of a products page
capable of managing multiple rows of products in a complex responsive grid. While at
it, we will provide a fully responsive design for options to filter products by category,
brand, and so on.

Chapter 6, Bootstrappin' a One-page Marketing Website, gives a detailed outline of how
to design a beautiful one-page scrolling website with a large welcome message, a
grid of product features with large icons, customer testimony in a masonry layout,
and a set of three thoughtfully designed pricing tables.

Appendix A, Optimizing Site Assets, walks us through the essential process for
optimizing Bootstrap LESS/CSS and JavaScript for production, using the portfolio
results from Chapter 2, Bootstrappin' Your Portfolio as an example. This will help you
in all Bootstrap projects.

Appendix B, Implementing Responsive Images, includes the process of implementing
the leading responsive images solution, Picturefill, in the home page carousel for the
portfolio site in Chapter 2, Bootstrappin' Your Portfolio, which you can use in all your
future projects.

Appendix C, Adding Swipe to the Carousel, describes the process of implementing a
leading plugin for adding swipe functionality, Hammer.js, to the Bootstrap carousel.

What you need for this book
To complete the exercises in this book, you will need the following software:

• A modern web browser (Internet Explorer 8 or newer)
• A code editor
• A LESS compiler with less.js updated to at least Version 1.3.3

Preface

[3]

Who this book is for
This book is assumed to be good for readers who are comfortable with hand-coding
HTML and CSS and are familiar with the fundamentals of valid HTML5 markup and
well-structured stylesheets. Basic familiarity with JavaScript is a bonus, as we will
be making use of Bootstrap's jQuery plugins. We will work a great deal with LESS to
customize, compose, and compile stylesheets. Those who are familiar with LESS will
gain significant experience working with the details of Bootstrap's LESS files. Those
who are new to LESS will find this book a reasonably thorough primer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"less/bootstrap/navbar.less".

A block of code is set as follows:

<FilesMatch "\.(ttf|otf|eot|woff)$">
 <IfModule mod_headers.c>
 Header set Access-Control-Allow-Origin "*"
 </IfModule>
</FilesMatch>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
there, the large Download source button is your friend."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
Bootstrap

Bootstrap's popularity as a frontend web development framework is easy to
understand. It provides a palette of user-friendly, cross-browser tested solutions
for most standard UI conventions. Its ready-made, community-tested combination
of HTML markup, CSS styles, and JavaScript behaviors greatly speeds up the task
of developing a frontend web interface, and it yields a pleasing result out of the gate.
With the fundamental elements quickly in place, we can customize the design on top
of a solid foundation.

But not all that is popular, efficient, and effective is good. Too often, a handy tool
can generate and reinforce bad habits; not so with Bootstrap, at least not necessarily
so. Those who have watched it from the beginning know that its first release and
early updates have occasionally favored pragmatic efficiency over best practices.
The fact is that some best practices, right from semantic markup to mobile-first
design to performance-optimized assets, require extra time and effort to implement.

Quantity and quality
If handled well, I will suggest that Bootstrap is a boon for the web development
community in terms of quality as well as efficiency. Since developers are attracted
to the web development framework, they become part of a coding community that
draws them increasingly into current best practices. From the start, Bootstrap has
encouraged implementation of tried, tested, and future-friendly CSS solutions, from
Nicholas Galagher's CSS normalize to CSS3's displacement of image-heavy design
elements. It has also supported (if not always modeled) HTML5 semantic markup.

Getting Started with Bootstrap

[8]

Improving with age
With the release of v2.0, Bootstrap helped take responsive design into the
mainstream, ensuring that its interface elements could travel well across devices,
from desktops to tablets to handhelds.

Now, with its v3.0 release, Bootstrap has stepped up its game again by providing the
following features:

• The responsive grid is now mobile-first friendly
• Icons now utilize web fonts and are thus mobile- and retina-friendly
• With the drop of support for IE7, markup and CSS conventions are now

leaner and more efficient

The power of leaner CSS
In addition, there is the power of Leaner CSS (LESS) to consider. When we move
beyond merely applying classes to markup and take the next step to dig in and
customize Bootstrap's LESS files, we gain tremendous power and efficiency.
Starting with a solid basis using Bootstrap's default styles, we can move on to
innovate and customize to our heart's content.

In other words, Bootstrap is a powerful resource. I intend to help you leverage
it in exciting and serious ways, working with efficiency, adhering to best practices,
and producing beautiful, user-friendly interfaces.

Downloading Bootstrap
There are many ways to download Bootstrap, but not all ways of downloading
Bootstrap are equal. For what follows, we must be sure to get the LESS files as these
files give us the power to customize and innovate upon Bootstrap's underlying style
rules. For this exercise, we'll go straight to the source, that is, GetBootstrap.com.

Chapter 1

[9]

Once there, the large Download source button is your friend. At least as of Version
3.0.2, this is the second large button on the homepage of GetBootstrap.com.

In case something should change, you can always follow the GitHub project link,
and once at the GitHub repository, click on the Download ZIP button.

The files you'll have
Once you've downloaded the Bootstrap source files, you should see a file structure
that is similar to the following screenshot:

Admittedly, that's a lot of files, and we don't need them all. On the plus side, we
have everything we want from Bootstrap.

Getting Started with Bootstrap

[10]

While the exact contents of the repository will change over time, the main contents
will remain relatively consistent. Most notably, in the less folder, you will find all
the important LESS files, which are key to every project in this book. Another benefit
is that the js folder contains Bootstrap's individual JavaScript plugins so that these
may be selectively included as needed.

On the other hand, if you want Bootstrap's default precompiled CSS or JavaScript
files (such as bootstrap.css or bootstrap.min.js), those are still available within
the dist folder. As a bonus, you'll find the example HTML templates in the examples
folder. In fact, we'll use one of these examples to set up our first project template folder.

Preparing a project template folder
Let's create a folder with the essential files we'll need to launch a project. We'll use
the excellent HTML5 Boilerplate (H5BP) for our starting point, folding Bootstrap's
files in their appropriate places.

Getting H5BP
Navigate to h5bp.com in your browser, a short link that will redirect you to H5BP's
main documentation page. You may download the H5BP files directly from this page
or from the linked GitHub project by clicking on the SOURCE CODE tab available
at h5bp.com.

Extract the ZIP file and rename the folder to Project Template 1.

Inside this folder, you'll find the file and folder structure as shown in the following
screenshot:

Chapter 1

[11]

If your file system does not show hidden files, you will not see
the .htaccess file. In my case, I have used my FTP browser to
navigate to my local folder to make the .htaccess file visible.

Deleting unnecessary Boilerplate files
Delete the following folders and files, which are specific only to H5BP:

• The css folder because we'll soon create our own CSS files using LESS
• CHANGELOG.md

• CONTRIBUTING.md

• The doc folder and its contents

Evaluating the Boilerplate .htaccess file
If you have not read about the H5BP's .htaccess file before, you should take a
look at the H5BP documentation, which is featured prominently at http://h5bp.
com. In addition, the file itself is very well commented. Open it in your editor and
read through it. Depending on your hosting setup and the needs of your site, you
may or may not need all or a part of what this file does. Part of the purpose of what's
in this file is to maximum site performance. Take it seriously, consult wise advice,
and decide accordingly. In my case, my hosting provider handles these things, and
so I don't need the .htaccess file.

Updating required Boilerplate files
The following files provide standard information about your project. They may
be updated and used, if desired, or you may leave them out. It's up to you.

• humans.txt: This file assigns appropriate credits to you, H5BP, Bootstrap,
and any other contributors.

• LICENSE.md: Prior to the H5BP license, add your own desired licensing
information for the website you'll build with this license. After H5BP's
license, add the licensing information for Bootstrap and other libraries
that play a significant role in your end product.

• README.md: Update this file to provide a basic orientation to the entire project.

Getting Started with Bootstrap

[12]

Updating the favicon and touch icons
Remember to replace the Boilerplate's default icon images with your desired images
for your project. These include the following icon images:

• apple-touch-icon-precomposed.png

 ° For best results across all mobile devices, including high-pixel-
density screens, this should be 144px square (or 152px as in the
Boilerplate version).

• favicon.ico

 ° A 32px square icon image.

Previous versions of the Boilerplate once included as many as
six sizes of touch icons. Recently, this strategy was re-evaluated.
Because the large icon will be used by all relevant devices, and
the performance hit is very very small, it has been decided to
reduce development overhead and have only one touch icon.
For the discussion, see https://github.com/h5bp/html5-
boilerplate/issues/1367#ref-pullrequest-18787780.

Pulling in the Bootstrap files
We are ready to pull Bootstrap's files into our Project Template 1 folder and
file structure. We'll move down through the big Bootstrap repository, selecting out
only the parts we need. To speed up this process, I highly recommend having your
Bootstrap 3 files open in one file browser window and your project template files
open in another to facilitate comparing, dragging, and dropping.

Fonts
From the main Bootstrap folder, copy the fonts folder, and paste it into the
main directory of your Project Template 1 folder. This contains the important
Glyphicon fonts that come with Bootstrap. (If you've not used font icons before,
you're in for a treat.)

For good measures, I'm going to suggest that you add a cross-domain-friendly
.htaccess file to this folder. Why? As more hosting services provide Content
Delivery Network (CDN) for your site's static assets, you may discover, as I have,
that some browsers refuse to recognize your web fonts without this access file.
(Note that the H5BP .htaccess file contains lines to take care of this. The step we
are taking now is aimed at ensuring that we do not run into problems even if the
H5BP .htaccess file is not in the root directory of the site.)

Chapter 1

[13]

Create a new file in your code editor, and add the following lines:

<FilesMatch "\.(ttf|otf|eot|woff)$">
 <IfModule mod_headers.c>
 Header set Access-Control-Allow-Origin "*"
 </IfModule>
</FilesMatch>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Save the newly created file directly inside the fonts folder naming it .htaccess.
(Note that if you're working locally, your OS may make the file invisible. If you have
trouble getting your OS to make hidden files visible, you can often view it again by
using your FTP client, setting its preferences to view hidden files, and using it to
navigate to this folder.)

Once in place, the .htaccess file travels with your fonts folder, ensuring that
your web fonts work in all browsers across whichever hosting and CDN services
your websites may use.

JavaScript
Now let's try to bring in Bootstrap's JavaScript. Thanks to the HTML5 Boilerplate,
we already have a JavaScript folder (named js) in place. Inside this, you'll find
four files, two of them inside a subfolder named vendor, as shown in the following
screenshot:

Getting Started with Bootstrap

[14]

Bootstrap's plugins make use of jQuery, and the Boilerplate has it ready for us.
Alongside jQuery, you'll see the Modernizr script. If you're unfamiliar with Modernizr,
it includes an HTML5 shiv, which enables HTML5 sectioning elements in Internet
Explorer 8. We're supporting IE8 in these projects, and so we need this here. In
addition, Modernizr enables us to test for specific browser capabilities easily, such
as CSS 3D transforms (to read more, see http://modernizr.com/docs/). We'll use
Modernizr's feature-detection powers in the last chapter of the book.

Now, we need to add Bootstrap's plugins to the mix. First, let's bring them over as
a group of individual plugins. Inside the main js folder of your Project Template
1 folder, create a subfolder named bootstrap. Now copy into this the files you'll
find in Bootstrap's js folder. The following are the Bootstrap's plugins, each as an
individual file:

By copying and pasting these plugins into your new js/bootstrap folder, when
you're ready to optimize your site for performance, you can select just the plugins
you need, thereby eliminating the others and reducing file size.

Meanwhile, it may be helpful to have all of Bootstrap's plugins available during
the development phase. That way, if you need to add an accordion, a tooltip,
or a carousel, you can do it at your whim. Let's do this for ourselves now.

The H5BP method of doing this is to paste the code for all plugins into the provided
plugins.js template file. This is a best practice when we're finished and ready
to optimize the site because fewer HTTP requests means faster site loading times.
(Loading one file of, say, 80 KB is more efficient than loading four files of 20 KB each.)

While developing, it's fairly convenient to use this same structure. It simply requires
that we copy and paste the code for our required plugins into the plugins.js file.
Let's find Bootstrap's big file of plugins and do this here.

Chapter 1

[15]

You may prefer to work otherwise during the development
stage, adding links to individual plugins to your markup during
development, and then rolling the plugins into one minified file
at the end. If you prefer that method, you can ignore this set of
instructions and replace them with your own steps.

From Bootstrap's main folder, navigate to the dist folder to find the distribution
files. Here, in the js folder, are bootstrap.js and bootstrap.min.js, containing
all of Bootstrap's plugins rolled into one fat file. We will not be editing the plugins in
these exercises, so let's use the minified version.

Once you've found it, perform the following steps:

1. Open bootstrap.min.js in your editor.
2. Copy the code, including the comment at the top. (Select all, then copy.)
3. Now, open plugins.js from your new project files.
4. Paste Bootstrap's plugin code inside the file, below the // Place any

jQuery/helper plugins in here. comment. So, you'll now see something
like the following:
// Place any jQuery/helper plugins in here.

/**
* bootstrap.js v3.0.0 by @fat and @mdo
* Copyright 2013 Twitter Inc.
* http://www.apache.org/licenses/LICENSE-2.0
*/
if(!jQuery)throw new Error("Bootstrap requires
jQuery");+function(a){"use strict";
...

And of course the rest of the lengthy block of code will follow.
5. Save and exit.

You now have Bootstrap's plugins loaded and ready!

Getting Started with Bootstrap

[16]

By keeping the comments from the top of Bootstrap's plugins, as well
as from any other plugins we may include down the line, we are giving
credit where credit is due and including essential licensing information.
We're also making it easier for ourselves to search and sort through
our plugins later. For instance, while optimizing the following projects
for production, you'll want to substitute minified versions of only the
specific Bootstrap plugins you'll be using in the project. Keeping these
comments in place will help greatly at that point.

Holding off on the CSS
In the later projects, we are going to create a custom version of the Bootstrap CSS
using LESS. We'll be doing this early in the next chapter, so hold on.

Bringing the LESS files over
Let's bring over all the important Bootstrap LESS files. Copy the bootstrap/less
folder to the main directory of your Project Template 1 folder.

Taking inventory
The main folder of your Project Template 1 folder should now look like the
following screenshot:

Chapter 1

[17]

Your fonts folder, with the new .htaccess file within it, should contain the
following files:

I've used my FTP client to view these files, and set it to show
hidden files. You may not be able to see your .htaccess
file without taking similar steps.

The img folder should be empty, as was the H5BP folder from which it came.

The js folder should contain the following subfolders and files:

Because of its modular approach, Bootstrap's less folder contains a long list of files.
We'll double-check these as we prepare to compile them in the forthcoming sections.

First, let's set up an HTML file.

Getting Started with Bootstrap

[18]

Setting up the HTML template file
From your new project folder, open index.html in your editor. This sample markup
file came with H5BP and contains several best practices and recommendations
within it. We'll build on this basis and integrate it with our Bootstrap workflow.
First, let's take a moment to note what's in it.

Scanning down through the file, you'll notice several interesting features. These
are clearly explained in the H5BP documentation. You may easily get there from
http://h5bp.com, but let me briefly run through a few of the features here. You'll
see them in the following order:

• The HTML5 doctype:
<!DOCTYPE html>

• Conditional comments for Internet Explorer, which enable developers to
compose fixes for older IE browsers using appropriate nested selectors:
<!--[if lt IE 7]><html class="no-js lt-ie9 lt-ie8 lt-ie7">
 <![endif]-->
<!--[if IE 7]><html class="no-js lt-ie9 lt-ie8"><![endif]--
 >
<!--[if IE 8]><html class="no-js lt-ie9"><![endif]-->
<!--[if gt IE 8]><!--><html class="no-js"><!--<![endif]-->

• The html tag also has a class of no-js. If a browser's JavaScript is enabled,
this class will be removed by the Modernizr script (referenced in the
preceding part of this chapter) and replaced with the class js. If it is not
removed, it signals that JavaScript is not enabled, and we may craft CSS
rules for such cases using nested selectors.

• You'll see meta tags for the following things:
 ° Specifying the character set as follows:

<meta charset="utf-8">

 ° Instructing an IE browser to use the most updated version of its
rendering engine, or to use Google's Chrome Frame if it is installed
as follows:
<meta http-equiv="X-UA-Compatible"
 content="IE=edge,chrome=1">

 ° The description tag for providing a description of the site is
as follows:
<meta name="description" content="">

Chapter 1

[19]

 ° A mobile-friendly viewport meta tag will be as follows:
<meta name="viewport" content="width=device-width">

• In place of links to a favicon or touch icon, you'll find a comment
recommending that we simply place the icons in the site's root directory,
where they will automatically be found by the users' browsers and devices.

• You'll see two stylesheet links—one to normalize.css and another to
main.css—as follows:
<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/main.css">

• Then, you will see a script tag loading the Modernizr script. This needs to be
loaded here in order for the HTML5 shiv it contains to equip IE8 so that it
recognizes the HTML5 sectioning elements.
<script src="js/vendor/modernizr-2.6.2.min.js"></script>

• Then there is an IE conditional comment, with a message recommending the
users of older IE browsers to upgrade to a more modern browser.
<!--[if lt IE 7]>
 <p class="chromeframe">You are using an
 outdated browser. ...
<![endif]-->

• A single paragraph of content text.
• A link to Google's hosted version of jQuery, followed by a link to a local

fallback copy of jQuery:
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/
 jquery.min.js"></script>
<script>window.jQuery || document.write('<script
 src="js/vendor/jquery-1.10.2.min.js">
 <\/script>')</script>

• Links to plugins.js and main.js, which are intended to hold the code for
JavaScript plugins (in plugins.js) and your custom code (in main.js):
<script src="js/plugins.js"></script>
<script src="js/main.js"></script>

• The Google Analytics script:
<script>
 var _gaq=[['_setAccount','UA-XXXXX-
 X'],['_trackPageview']];
 (function(d,t){var g=d.createElement(t),

Getting Started with Bootstrap

[20]

 s=d.getElementsByTagName(t)[0];
 g.src=('https:'==location.protocol?'//ssl':'//www')+'
 .google-analytics.com/ga.js';
 s.parentNode.insertBefore(g,s)}(document,'script'));
</script>

If you wish to know more about the reason and purpose for any of these elements,
I would encourage you to take some time to read through the H5BP HTML
documentation (see https://github.com/h5bp/html5-boilerplate/blob/
v4.3.0/doc/html.md), where these lines are clearly explained with references.

For our purposes, we will perform the following operations on the elements of
this template:

1. We'll give our site a title. We'll update the legacy IE conditional comment for
users of old browsers.

2. We'll compile Bootstrap's CSS from the LESS files. We'll add some basic
page content.

3. We'll integrate Bootstrap's JavaScript plugins and ensure that the responsive
navbar works as it should.

Once we've done the these things, we'll have everything in place to begin building
our designs.

Giving your site a title
Take a moment to update index.html by giving it a title that fits this project. You
can call your portfolio whatever you'd like to. I'll call mine as Bootstrappin'
Portfolio. For the sake of precision, I'll use the HTML entity ' for the
apostrophe, as shown in the following line of code:

<title>Bootstrappin' Portfolio</title>

Adjusting the outdated browser message
The file carries a message for users of ancient browsers. You'll find this right around
line 20. It reads as follows:

You are using an outdated browser. Please upgrade your browser
or activate Google Chrome Frame to improve your experience.

Chapter 1

[21]

Note that it includes links to http://browsehappy.com, which features
recommended browser upgrades, and to the Google Chrome Frame, a free plugin
to retrofit Internet Explorer with modern browser capabilities. (Note that the
Google Chrome Frame reference may go away after Google stops supporting it
in January 2014.)

At the time of writing this book, this message came wrapped in a conditional comment
that targets only Internet Explorer browsers older than IE7 (thus, IE6, IE5, and so on).
No one else will see this message unless, of course, they view the source code.

Meanwhile, the world is pressing on. Many organizations are upgrading browsers,
and many designers are dropping or reducing support for IE7. Typically, the
goal is to ensure that IE7 users can navigate through the site and gain access to its
information, though they will not have the full experience.

The reason for this is pretty pragmatic. Fully supporting IE7 requires writing a
number of workarounds, both in CSS and in JavaScript, at the cost of more code,
more bandwidth, more time, and more money.

Thus, Bootstrap 3 has dropped support for IE7. When we're done developing,
we should test to ensure nothing restricts IE7 users from reading and navigating
through our site. However, they won't see its full beauty.

So, let's update the message to include IE7 users. We need to change the opening tag
of the conditional comment by adding an e for = , so that it reads the following:

<!--[if lte IE 7]>

Note that it now says lte where originally it was only lt.

A few notes seem in order.

For IE7 and older browsers, you might consider providing basic styles
in a legacy stylesheet to ensure these users can utilize your site.
If you have a large base of users who rely on IE7 and who are unlikely
to be able to upgrade, you probably need to consider reverting back to
Bootstrap 2.2.3, which supports IE7.

Note that if you would like to see what this message looks like, and perhaps
customize its style, you can view it in any browser by temporarily deleting or
commenting out the IE comment at the beginning (<!--[if lte IE 7]>) and at
the end (<![endif]-->).

Getting Started with Bootstrap

[22]

Setting up major structural elements
We're almost ready for page content. Right now, there's only a paragraph. Let's go
ahead and get a bit more content rolling. Specifically, we'll create the following:

• A banner space with our logo and navigation
• A main content space for page content
• A footer area for copyright information and social links

We'll set this up using current HTML5 best practices with the support of major
Accessible Rich Internet Applications (ARIA) role attributes (with roles such as
banner, navigation, main, and contentinfo). If you've been following HTML5
but not closely in the past few months, note the recently added element, <main
role="main"></main>, whose purpose is to provide a sectioning element dedicated
to the main content of a page or section. For more information, see this sitepoint
article at http://www.sitepoint.com/html5-main-element/.

So, consider the following comment and paragraph:

<!-- Add your site or application content here -->
<p>Hello world! This is HTML5 Boilerplate.</p>

And replace the preceding code with the following:

<header role="banner">
 <nav role="navigation">
 </nav>
</header>

<main role="main">
 <h1>Main Heading</h1>
 <p>Content specific to this page goes here.</p>
</main>

<footer role="contentinfo">
 <p><small>Copyright © Company Name</small></p>
</footer>

This gives us some basic page structure and content. Let's keep rolling.

Chapter 1

[23]

Providing a navbar markup
You'll remember that we have not brought over the precompiled CSS files from
Bootstrap, nor have we yet compiled CSS from our LESS files. We'll do the latter
shortly. But first, let's put at least one Bootstrap-specific element in place, that is,
the navbar.

Initially, we want only Bootstrap's basic navbar (we'll add other details later).
I've used the markup taken from Bootstrap's documentation and adjusted it in
the following ways:

• I've added the class navbar-static-top since we want the navbar to
be positioned at the very top, and yet scroll with the page

• I've linked the brand link to index.html
• I've changed the parent div tags to semantic HTML5 nav tags

The preceding adjustments lead to the following result, nested with our
header element:

<header role="banner">
 <nav role="navigation" class="navbar navbar-static-top navbar-
 default">
 <div class="container">
 <div class="navbar-header">
 Project name
 </div>
 <ul class="nav navbar-nav">
 <li class="active">Home
 Link
 Link

 </div>
 </nav>
</header>

Save your results, and open or refresh index.html in your browser. You'll note that
we don't have much yet, as shown in the following screenshot:

Getting Started with Bootstrap

[24]

We have content. Now, we desperately need our stylesheet to come to the rescue.
Let's compile and link up Bootstrap's default styles.

Compiling and linking default Bootstrap
CSS
We could have just brought over Bootstrap's default bootstrap.css file, but let's use
this opportunity to take a trial run at compiling the LESS files. This will ensure we've
got the fundamentals ready for doing more serious work to come.

Compiling Bootstrap CSS
If you've worked with LESS before, this will be a familiar territory. If you have
not worked with LESS before, I'll help you along. However, I highly recommend
that you stop and refer to the documentation at http://lesscss.org. Additionally,
you may want to find a good basic LESS tutorial and work through it. As you'll
soon see, working with LESS is powerful and fun, and the time spent learning will
reward well.

For this first step, we won't be writing any LESS files, only compiling.

Navigate to less/bootstrap.less and open it in your editor. You'll see that this file
imports all the other files from the less folder. When compiled, this file generates
the complete bootstrap.css stylesheet. This is what we want for our first step.

If you've not compiled LESS files before, you'll need to download and install one of
the following compilers:

• For Windows users, download and install the following compiler:
 ° WinLess (a free desktop application), which can be found at

http://winless.org

• For Mac users, download and install the following compilers:

 ° The LESS app (free), which can be found at http://incident57.
com/less/

 ° CodeKit (not free), which can be found at http://incident57.com/
codekit/

Chapter 1

[25]

Once your chosen LESS compiler is downloaded, installed, and ready for action, the
following are your steps to be performed:

1. Create a new folder named css in the main directory at the same level as the
fonts, img, js, and less folders.

2. Use one of the following two methods to add your project's main folder (the
parent folder of css, fonts, img, less, and so on) to your compiler:

 ° Drag-and-drop the folder into the application window
 ° Alternatively, navigate to the application's File | New Project menu

to add the parent folder

3. You should see that the application loads the LESS files (and perhaps other
files) into its window. Search or scan for the less/bootstrap.less file.

4. Right-click on bootstrap.less. Select Set output path (or your application's
similar option). Navigate to the css folder you created earlier. The file should
automatically be named bootstrap.css. Click on Select.

5. With the output path set, now click on Compile.
6. Check to see that bootstrap.css was created in the css folder.

If you run into problems, check your compiler's log to ensure it
was successful, then double-check your output path. In addition,
you may run into a situation where your chosen compiler runs
into an error because it has not been updated to stay in sync with
the development of LESS. I have recently found this with another
free compiler. If your compiler refuses to compile the default
Bootstrap LESS files, it's an indication that the compiler needs
updating.

Getting Started with Bootstrap

[26]

7. Once the file is in place in the css folder, we only need to coordinate our
file's name with the stylesheet link in our index.html file.

8. In index.html, remove the stylesheet link to css/normalize.css, as
normalize is included in Bootstrap (normalize.less is the first file imported
by bootstrap.less).

9. The remaining stylesheet link looks for the css/main.css file. Because we'll
be customizing Bootstrap to generate our own custom stylesheet, let's leave
this link as it is. In the forthcoming steps, we'll use main.css for the custom
styles we generate.

10. For now, let's cheat by making a copy of bootstrap.css. In the css folder,
create a copy of boostrap.css. Name the copy as main.css (in the future
steps, we'll overwrite this file with our customizations) as shown in the
following screenshot:

11. Refresh your browser. You should now see Bootstrap 3's default navigation
styles, and you'll see some typographic enhancements as shown in the
following screenshot. This is Bootstrap CSS at work. Congratulations!

We now have the default Bootstrap styles in place. Now, let's complete our navbar
by making it responsive. As a bonus, this will test to ensure that Bootstrap's
JavaScript plugins are working as they should.

Completing the responsive navbar
To complete our navbar to take advantage of Bootstrap's responsive navbar solution,
we need to add two new elements, with appropriate classes and data attributes.
You'll find this documented under Bootstrap's Components page, under the Navbar
tab at http://getbootstrap.com/components/#navbar.

Chapter 1

[27]

We'll begin by adding the necessary additional markup as follows:

1. Search for <div class="navbar-header">. Inside this element, we'll add
the navbar-toggle button, which will be used to slide the responsive navbar
open and closed. The following is what you'll need (and I will include the
navbar-header as the parent element):
<div class="navbar-header">
 <button type="button" class="navbar-toggle" data-
 toggle="collapse" data-target=".navbar-collapse">

 </button>
 Project
 name
</div>

A few notes about the preceding code are as follows:

 ° The button includes a class of navbar-toggle for CSS styles.
 ° The data attributes are used by Bootstrap's collapse JavaScript plugin

to indicate its desired behavior and its desired target, namely an
element with the navbar-collapse class. This element is coming
in the next step.

 ° The spans of the icon-bar class are used by the CSS to create the
small horizontal bars in the toggle button.

2. Now to wrap the navigation items within a collapsing div, wrap <ul
class="nav navbar-nav"> with a div with the appropriate Bootstrap
classes as follows:
<div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active">Home
 Link
 Link

</div><!--/.nav-collapse -->

In the preceding two steps, I've divided the resulting code into two halves and all
within <div class="container">. To double-check your work, see the full code
in the sample code for this chapter.

Getting Started with Bootstrap

[28]

The tag structure, class names, or data attributes may change with
future versions of Bootstrap. If yours does not work as it should, be sure
to check Bootstrap's own documentation. As a fallback option, you can
start with the starting files provided with the sample code for this book.

Now save the file and refresh your browser. Using a modern browser (such as IE9 or
a recent version of Firefox, Google Chrome, or Safari), click on and drag the edge of
the browser window to make the window narrower than 980px.

If all works as it should, you should see a collapsed version of the navbar, as shown
in the following screenshot, with the site name or logo and a toggle button.

This is a good sign! Now click on the toggle button, and it should slide open, as
shown in the following screenshot:

Success! Congratulations!

Chapter 1

[29]

Troubleshooting
If things are running smoothly at this point, it means that you've successfully
compiled Bootstrap's CSS from LESS, and you've also successfully included
Bootstrap's JavaScript plugins.

If things are not running smoothly, you should double-check the following things:

• Is your markup properly structured? Any unclosed, incomplete, or
malformed tags, classes, and so on present?

• Did you successfully compile Bootstrap's LESS to CSS? And did the resulting
CSS file wind up in the correct folder under the proper name?

• Is the CSS link in the head of index.html updated as it should be?
• Have you successfully included Bootstrap's JavaScript plugins?

You might find it helpful to do the following:

1. Work back through the preceding steps, double-checking things along
the way.

2. Validate your HTML to ensure it's well formed.
3. Compare the completed version of the exercise files with your own.
4. Refer to the Bootstrap documentation for new updates to the relevant tag

structures and attributes.
5. Place your code in a snippet at http://jsfiddle.net/ or http://www.

codepen.com/, and share it with the good folks at http://stackoverflow.
com/ for help.

When we have so many moving parts to work with, things do happen. And these
are some of our best survival methods!

Now, assuming things are working, let's move on to take care of one more potential
problem. We intend to support Internet Explorer 8 in our designs. To do this, we
need to help this older browser out a little.

Adding support for Internet Explorer 8
To support Internet Explorer 8, we need to add a bit of JavaScript that equips the
browser to respond to media queries. This is the respond.js polyfill by Scott Jehl.

Bootstrap's own documentation recommends this step for IE8 compatibility.
You'll find it referenced briefly in the Bootstrap 3 documentation at
http://getbootstrap.com/getting-started/#browsers.

Getting Started with Bootstrap

[30]

You'll also find respond.js linked in the example HTML templates found in the
bootstrap-master download under the examples folder, which is found in the docs
folder. There you'll see respond.js linked in the head of the document within an IE
conditional comment that limits its use to IE browsers lower than IE9. The HTML5
shiv is also included as follows:

<!--[if lt IE 9]>
 <script src="../../assets/js/html5shiv.js"></script>
 <script src="../../assets/js/respond.min.js"></script>
<![endif]-->

Because we have already included the HTML5 shiv with Modernizr, we can leave
that out here. In addition, Andy Clarke has recommended an improved conditional
comment that excludes IE mobile browsers to ensure that we do not unnecessarily
feed the script to Windows mobile devices that don't need it. See his repository,
320andup, at https://github.com/malarkey/320andup/.

Clarke's recommended code works as follows:

<!--[if (lt IE 9) & (!IEMobile)]>
...
<![endif]-->

Armed with these starting points, we're ready to implement it in our site template
files as follows:

1. Navigate to https://github.com/scottjehl/Respond (you may also
search respond.js and find the GitHub link). If you'd like, take a few
minutes to scroll down the page and read the documentation to learn
more about how it works.

Chapter 1

[31]

2. Now to get the file and download the ZIP repository.

3. Extract the directory, and find the minified version of the file named as
respond.min.js.

4. Copy the file to your project files in the js/vendor directory, right alongside
the scripts for jQuery and Modernizr.

5. Then, add the following lines of code to load the respond.js file, which is
wrapped in the targeted IE conditional comment. We'll do this is in the head
of index.html, directly beneath the line loading Modernizr.
<!-- Modernizr -->
<script src="js/vendor/modernizr-2.6.2.min.js"></script>
<!-- Respond.js for IE 8 or less only -->
<!--[if (lt IE 9) & (!IEMobile)]>
 <script src="js/vendor/respond.min.js"></script>
<![endif]-->

6. That's it! We've successfully provided IE8 with what it needs so that it
responds, as it should, to our mobile-first responsive websites.

If you want to test this and do not have IE8 available, you might use
an online service such as Browsershots that is available at http://
browsershots.org (free) or BrowserStack that is available at
http://www.browserstack.com (premium with free trial).

Our site template is almost complete. Let's pause to take stock before moving on.

Getting Started with Bootstrap

[32]

Summary
If you've made it this far, you have everything you need ready to do some serious
work. Taking stock of our progress, we have the following:

• A solid HTML5 markup structure with many current best practices baked in
• A standard Bootstrap stylesheet linked up
• JavaScript linked up and working
• A responsive navbar
• Perhaps the most important, we have our LESS compiler ready and working

This may be a good point to save a copy of these files so
that they're ready for other future projects.

Now it's time to have some fun. In the next chapter, we'll take Bootstrap for a spin,
creating a beautiful portfolio site.

Bootstrappin' Your Portfolio
Let's imagine we're ready for a fresh design of our online portfolio. As always, time
is scarce. We need to be efficient, but the portfolio has to look great. And of course,
it has to be responsive. It should work across devices of various form factors, since
this is a key selling point for our prospective clients. This project will enable us to
leverage a number of Bootstrap's built-in features, even as we customize Bootstrap
to suit our needs.

What we'll build
We've thrown together a couple of home page mock-ups. Though we have in mind
what we want for large screens, we've begun with a handheld screen size to force
ourselves to focus on the essentials.

You'll notice the following features:

• A collapsed responsive navbar with logo
• A sliding carousel with four images of featured portfolio items
• A single-column layout with three blocks of content, each with a heading,

short paragraph, and a nice big button with an invitation to read further
• A footer with social media links

Bootstrappin' Your Portfolio

[34]

Here is the design mockup as shown in the following screenshot:

Altogether, this should provide a good introduction to our work. The carousel is
tall enough to give a good amount of visual space to our portfolio images. It is not
difficult to navigate quickly to the content below, where a user can efficiently scan
key options for taking a next step inside. By presenting key links as nice big buttons,
we will establish helpful visual hierarchy for the key action items, and we will ensure
that visitors do not have problems because of fat fingers.

Chapter 2

[35]

For ease of maintenance, we've elected to have only two major breakpoints in this
design. We'll use the single-column layout for screen sizes narrower than 768px.
Then, we'll shift to a three-column layout:

You'll note the following features in the mock-up for tablets and higher versions:

• A navigation bar at the top, which is enhanced with icons
• A widescreen version of the home page carousel, with images stretching

to fill the full width of the browser
• A three-column layout for our textual content blocks
• A footer with content at the center

Bootstrappin' Your Portfolio

[36]

The color scheme is fairly simple: shades of gray, plus a golden-green color for links
and highlights.

With these design goals in mind, we'll proceed to get our content in place.

Surveying the exercise files
Let's survey the beginning files for this exercise, which you will find in the folder
02_Code_BEGIN. You'll see files similar to the template we set up in Chapter 1, Getting
Started with Bootstrap.

There are a few new additions:

• The less folder has a slightly modified organization scheme. We'll return to
this later in the project. First, let's attend to the content elements.

• The img folder now contains five images:
 ° One logo image, named logo.png
 ° Four portfolio item images

• The index.html file has the following new touches:
 ° Navbar items have been updated to reflect our new site architecture
 ° We also have the essential markup in place for the images, content

blocks, a logo in the footer, and social links

Other than the navbar, which we set up in Chapter 1, Getting Started with Bootstrap,
no Bootstrap classes have been added to style the carousel, columns, or icons yet.
You can view the results in your browser.

Chapter 2

[37]

You'll see the navbar, followed by the portfolio images:

The blocks of text and the footer with a list of social links follows after the images.

Bootstrappin' Your Portfolio

[38]

It's not much to speak of yet. Let the transformation begin.

We'll begin by applying the Bootstrap classes, allowing us to quickly and efficiently
establish the fundamentals for our interface elements using Bootstrap's default CSS
styles and JavaScript behaviors.

Marking up the carousel
Let's get started with our carousel, which will rotate between four featured images
from our portfolio.

Bootstrap's carousel markup structure can be found in its documentation pages at
the following URL:

http://getbootstrap.com/javascript/#carousel

Following the pattern used in the example, we'll begin with this structure to set up
the fundamental element. This will contain all parts of the carousel, followed by the
progress indicators:

<div id="homepage-feature" class="carousel slide">
 <ol class="carousel-indicators">
 <li data-target="#homepage-feature" data-slide-to="0"
 class="active">
 <li data-target="#homepage-feature" data-slide-to="1">
 <li data-target="#homepage-feature" data-slide-to="2">
 <li data-target="#homepage-feature" data-slide-to="3">

Note that I've used a div tag with an ID (id="homepage-feature") to establish
the fundamental context of carousel. The carousel class applies the Bootstrap's
carousel CSS to the carousel elements, adding appropriate styles to the carousel
indicators, the carousel items, and the next and previous controls.

The homepage-feature ID must be used in the data-target attributes of the
progress indicators. This signals the JavaScript plugin to update the indicator for
the active carousel item with the active class. We've provided that class for the first
indicator to get things started. From there, the JavaScript takes over. It removes the
class, and adds it to the appropriate indicator as the carousel cycles.

Also, note that the data-slide-to values begin counting from 0. This is the
standard behavior for JavaScript and other programming languages. Just remember:
start counting at zero, not one.

Chapter 2

[39]

After the indicators, the element of the class carousel-inner follows. This serves as
the wrapper to contain all of the carousel items—in this case, our images.

The carousel items come within carousel-inner. They are a group of div tags, each
with class="item". Modify the first item to have both the classes item and active, to
make it visible from the outset.

Thus, the markup structure works as follows:

<!-- Wrapper for slides -->
<div class="carousel-inner">
 <div class="item active">

 </div>
 <div class="item">

 </div>
 <div class="item">

 </div>
 <div class="item">

 </div>
</div><!-- /.carousel-inner -->

After the carousel items, we need to add the carousel-controls. These will provide
the next and previous buttons at the left and right edges of the carousel. You'll see
that these have classes that correspond to icons from the included Glyphicon font
icons. After the controls, we'll close up our entire markup structure with the closing
div tag.

<!-- Controls -->
 <a class="left carousel-control" href="#homepage-feature" data-
slide="prev">

 <a class="right carousel-control" href="#homepage-feature"
 data-slide="next">

</div><!-- /#homepage-feature.carousel -->

Bootstrappin' Your Portfolio

[40]

The carousel-controls need to have the ID of the fundamental carousel
element (#homepage-feature) for their href value.

Once this code is in place, save your work and refresh your browser. Bootstrap's
styles and JavaScript should start working. Your images should now work as a
sliding carousel!

By default, the carousel will slide every 5 seconds. Let's set the interval to 8 seconds,
to give our users time to appreciate the full beauty of our work:

1. Open js/main.js.
2. Add the following lines. We'll begin with the jQuery method of checking

to ensure page elements are ready, and then initialize the carousel with an
interval of 8000 milliseconds.
$(document).ready(function() {
 $('.carousel').carousel({
 interval: 8000
 });
});

3. Save and refresh. You will see that the interval has increased to 8 seconds.

For this and other options, see the Bootstrap carousel documentation at
http://getbootstrap.com/javascript/#carousel.

We'll return to customize the styling of the carousel, its indicators, and its icons later
in the chapter. First, let's continue leveraging the power of Bootstrap's default styles
and set up a responsive grid for the content below the carousel.

Creating responsive columns
We have three blocks of text, each with a heading, a short paragraph, and a link. In
screen sizes of approximately tablet width or more, we would like this content to be
laid out in three columns. In narrower screen widths, the content will organize itself
in one full-width column.

Take a moment to visit and read the documentation for Bootstrap's mobile-first
responsive grid. You can find it at http://getbootstrap.com/css/#grid.

In short, the grid is based on a twelve-column system. The basic class structure
allows us to use a class of col-12 for full-width, col-6 for half-width, col-4 for
one-third width, and so on.

Chapter 2

[41]

With Bootstrap 3, thanks to the creative use of media queries, Bootstrap's grid
can be very adept. Recall that we want our welcome message to have a single-
column layout up to tablet-sized screens, and then adapt a three-column layout at
approximately 768px. Conveniently, Bootstrap has a built-in breakpoint at 768px,
which is the default value of its @screen-sm-min variable. Above 768px is the
medium range beginning at 992px, corresponding to a @screen-md-min variable,
then the large screen, beginning at 1200px and up. I'll refer to these as Bootstrap's
small, medium, and large breakpoints.

With the small breakpoint there is a special column class that uses the formulation
col-sm-. Because we want three columns after the small breakpoint, we'll use
class="col-sm-4". Below the small breakpoint, the elements will remain full-width.
Above it, they will shift to 1/3 width and line up side by side. The full structure is
given here, with paragraph contents abbreviated for clarity:

<div class="container">
 <div class="row">
 <div class="col-sm-4">
 <h2>Welcome!</h2>
 <p>Suspendisse et arcu felis ...</p>
 <p>See our portfolio</p>
 </div>
 <div class="col-sm-4">
 <h2>Recent Updates</h2>
 <p>Suspendisse et arcu felis ...</p>
 <p>See what's new!</p>
 </div>
 <div class="col-sm-4">
 <h2>Our Team</h2>
 <p>Suspendisse et arcu felis ...</p>
 <p>Meet the team!</p>
 </div>
 </div><!-- /.row -->
</div><!-- /.container -->

If you're unfamiliar with the container and row classes, here is what they do:

• The container class constrains the width of the content and keeps it
centered within the page

• The row class provides the wrapper for our columns, allowing extra left and
right margin for the column gutters

• Both the container class and the row class are clearfixed, so that they
contain floating elements and clear any previous floating elements

Bootstrappin' Your Portfolio

[42]

Now, save and refresh. With your browser width above 768px, you should see the
following three-column layout take shape:

Resize your browser window below 768px, and you'll see it revert to a single column.

With our responsive grid in place, let's turn those links into clearly visible calls to
action by utilizing Bootstrap's button styles.

Turning links into buttons
Turning our key content links into visually effective buttons is straightforward. The
key classes we'll employ are as follows:

• The btn class will style a link as a button
• The btn-primary class will assign a button the color of our primary

brand color

Chapter 2

[43]

• The pull-right class will float the link to the right, moving it into wider
space to make it a more appealing target

Add these classes to the link at the end of each of our three content blocks:

<p>See our portfolio</
a></p>

Save and refresh. You should see the following result:

We've made great progress. Our key elements are taking shape.

With our fundamental markup structure in place, we can start working on the finer
details. Getting there will require some custom CSS. We're going to approach this by
leveraging the power of Bootstrap's LESS files. If you're new to LESS, no worries! I'll
walk you through it step by step.

Understanding the power of LESS
In the following sections, we will be organizing, editing, customizing, and creating
LESS files in order to generate the desired CSS for our designs.

If you are unfamiliar with LESS and would like to learn more about it, I
would recommend the following resources:

• LESS documentation at http://lesscss.org/#docs.
• A Comprehensive Introduction to LESS from the Sitepoint website,

http://www.sitepoint.com/a-comprehensive-
introduction-to-less/

Bootstrappin' Your Portfolio

[44]

In a nutshell, we may say that generating CSS using the LESS preprocessor is
an exciting and freeing experience. The key benefits of working with LESS are
discussed in the following sections.

Nested rules
Nested rules greatly enhance the efficiency of composing styles. For example, writing
selectors in CSS can be highly repetitive:

.navbar-nav { ... }

.navbar-nav > li { ... }

.navbar-nav > li > a { ... }

.navbar-nav > li > a:hover,

.navbar-nav > li > a:focus { ... }

This same set of selectors and their styles can be written much more easily in LESS,
by means of a simple nesting pattern:

.navbar-nav { ...
 > li { ...
 > a { ...
 &:hover,
 &:focus { ... }
 }
 }
}

Once compiled, these rules come out as standard CSS. But, the nesting pattern makes
the LESS styles much easier to write and maintain.

Variables
Variables make it possible to specify a value once (or revise it), and then use it
automatically (or updated) throughout your entire stylesheet. For example, we
may use color variables, such as the following:

@off-white: #e5e5e5;
@brand-primary: #890000;

When we update the value of these variables, we can automatically update colors
throughout the site. This is because we have used the variables throughout our
LESS files in rules, such as the following:

a {
 color: @brand-primary;

Chapter 2

[45]

}
.navbar {
 background-color: @brand-primary;
 > li > a {
 color: @off-white;
 }
}

Mixins
Mixins make it possible to generate an entire set of rules using concise and easy-to-
manage formulations. For example, we can simplify the task of applying the desired
border-box properties to elements. In CSS, we would have to add three lines to each
element to cover all the browsers and their vendor prefixes, requiring considerable
mental load to remember which prefixes are needed:

.box {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 box-sizing: border-box;
}

In LESS, we can write one rule as a mixin, with an @boxmodel parameter for
specifying our desired box model:

.box-sizing(@boxmodel) {
 -webkit-box-sizing: @boxmodel;
 -moz-box-sizing: @boxmodel;
 box-sizing: @boxmodel;
}

Then, we can use this mixin wherever needed:

.box {
 .box-sizing(border-box);
}
.another-element {
 .box-sizing(border-box);
}

When compiled, each element will get its essential three lines of CSS.

Bootstrappin' Your Portfolio

[46]

Operations
Operations make it possible to do math, including math with variables. We can start
with one color, and then lighten or darken it to get variations as follows:

a:hover { darken(@link-color, 15%); }

We can also calculate padding values to fit our available navbar height. Thus, the
following lines from Bootstrap's navbar.less file set the nav item padding values to
the amount of vertical space we have left after subtracting the line height. Then, we
take that remaining value and divide by two, to share it evenly between the top and
bottom padding:

.navbar > li > a {
 padding-top: ((@navbar-height - @line-height-computed) / 2);
 padding-bottom: ((@navbar-height - @line-height-computed) / 2);
}

Importing files
The LESS compiling process makes it possible to import and combine multiple files
into a single, unified CSS file. We can specify the order of import, organizing the
resulting stylesheet precisely as needed for our desired cascade.

Thus, Bootstrap's import file, bootstrap.css, begins with imports for essential
variables and mixins. Then, it imports a LESS version of normalize.css (in place of
a CSS reset), followed by basic styles for print media. Then, it moves to basic global
styles (scaffolding.less), typographic fundamentals, and more specific details.
Thus, the first several lines of the current bootstrap.less file are given as follows:

// Core variables and mixins
@import "variables.less";
@import "mixins.less";

// Reset
@import "normalize.less";
@import "print.less";

// Core CSS
@import "scaffolding.less";
@import "type.less";

The resulting CSS file will be a single, unified whole, with styles cascading down
from the general to the specific, just as they should.

Chapter 2

[47]

The modular file organization
Because of the ability to import distinct files into a unified whole, we may easily
organize our styles in coherent groupings and maintain them in distinct files.
This is why Bootstrap comes with so many LESS files—one dedicated to navbar
styles, another to buttons, another for alerts, one for carousel styles, and so on—all
imported using the bootstrap.less file.

For these reasons and others, LESS and its cousin preprocessors are more than a fad.
They have become part of the standard practice for professional web development.
Most developers agree that they point to the future of CSS.

Customizing Bootstrap's LESS according
to our needs
As we work with Bootstrap's LESS files, we'll exert considerable control over them,
including the following:

• Organizing our less folder to give us flexibility and freedom to accomplish
what we need, while making future maintenance easier

• Customizing several LESS files provided by Bootstrap
• Creating a few custom LESS files of our own
• Incorporating a larger set of font-based icons in our site assets, doubling

the number of available icons, and providing the icons that we need for
our social media links

In other words, we'll be doing more than merely learning and applying Bootstrap's
conventions. We'll be bending them to our will.

In this chapter's exercise files, open the less directory. Inside, you should see the
following structure:

Bootstrappin' Your Portfolio

[48]

To prepare for what's ahead, I've given you a head start by adding a new layer of
organization. All of Bootstrap's less files are now organized under the bootstrap
subdirectory.

The file __main.less is a modified copy of bootstrap.less. This file imports all
other files, and it is used in the compiling process to create one unified stylesheet
from all of our imported LESS files. If you open __main.less, you'll see that at
present it is very much like bootstrap.less, except that the import paths are
updated to reach into the Bootstrap folder.

// Core variables and mixins
@import "bootstrap/variables.less";
@import "bootstrap/mixins.less";

Why go through this trouble? Because we'll soon be creating custom files of our own.
When we do that, we can leave the Bootstrap folder and its files intact as they are,
while making adjustments in the custom files that we will create.

You may wonder if there is a good reason for the two underscores at the beginning
of this file name. In fact there are four good reasons:

• When files are sorted alphabetically in the file browser, the underscore helps
this file filter to the top.

• This will not be our only custom file. If we place a single underscore at the
front of our other custom files, the double underscore will ensure that this
key file finds its way to the top of the heap.

• By employing this pattern, we gain advantages when scanning or searching
for our custom files. Visually the underscores stand out. When typing
a search, the opening underscore will immediately bring up all of our
custom files.

• When we have multiple files open for editing, the underscored version of a
file name will again provide a useful visual indicator for our custom files.

Armed with this strategy, let us begin the customization! We'll begin by customizing
Bootstrap's variables and adding a few new variables of our own.

Chapter 2

[49]

Customizing variables
Let's move forward in the way we've begun. We'll create a copy of Bootstrap's
variables file and customize it to our needs.

1. Find Bootstrap's variables.less file in the less/bootstrap folder, and
open it in your editor.

2. Scanning through the lines of this file, you'll see variables used to set the
CSS values for everything from basic colors to the body background, font-
families, navbar height and background, and so on. It's beautiful to behold.
It's even more fun to meddle with. Before we meddle, let's create our own
copy of this file, allowing us to leave Bootstrap's default variables intact in
case we ever want to revert back to them.

3. Save a copy of this file outside of the bootstrap folder in the main less
directory, right beside __main.less. To mark this file as our own, add an
underscore at the beginning, so that its name becomes _variables.less.

You should now have the following file scheme:

Next, let's implement our new color scheme.

1. In the topmost section of our new _variables.less file, you'll see the
default Bootstrap variables for grays and brand colors. Note that the default
set of grays is calculated in percentages of black, using the LESS lighten
function:
@gray-darker: lighten(#000, 13.5%); // #222
@gray-dark

2. We have the specific values that we're after. So, let's simply substitute our
desired values. (Feel free to do the math if you prefer!) Then, we'll add an
additional two variables to encompass the full range that we need.

3. The result is as follows:
@gray-darker: #222;
@gray-dark: #454545;
@gray: #777;
@gray-light: #aeaeae;
@gray-lighter: #ccc;
@gray-lightest: #ededed;
@off-white: #fafafa;

Bootstrappin' Your Portfolio

[50]

Next, we'll update the @brand-primary variable under Brand colors. We'll adjust
this to our gold hue:

// Brand colors
// -------------------------
@brand-primary: #c1ba62;

To see the results, we'll need to import our new variables and compile the
updated CSS.

Importing our new variables
We need to update __main.less to import our new _variables.less file.

1. In __main.less, find the line that imports the file bootstrap/variables.
less. This is the first import, on line 12 of the file.

2. Update this line, so that it grabs our new _variables.less file instead.
Remove bootstrap/ from the path, and adjust the file name with the
leading underscore.
@import "_variables.less";

3. Now, to compile to CSS—if you've not yet done it, add this new project to
your compiler of choice.

Your compiler may need you to refresh its view of the files, so
that it finds the new _variables.less file and adds it to the
project. (CodeKit requires this.)

4. Select the file __main.less to compile. (If given the option, go ahead and
minify and/or compress it while you're at it.)

5. Set the output path to css/main.css. (Recall that this is the file linked to
index.html as its stylesheet.)

If your compiler makes it difficult to strip out the underscores
for the compiled filename, simply add the underscores to the
stylesheet link in the head of index.html.

6. Compile! Then refresh index.html in your browser.

If this is successful, the most noticeable change will be in the link color and buttons
with the btn-primary class, which will both take the new @brand-primary color.

Chapter 2

[51]

Editing navbar variables
Now, let's edit the variables that set the navbar height, colors, and hover effects.

1. In _variables.less, search for these variables and update them with the
following values. These will expand the navbar height, employ our brand
color for links, and make use of our other color variables where relevant.
@navbar-height: 64px;
@navbar-margin-bottom: 0;
...
navbar-default-color: @gray;
@navbar-default-bg: #fff;
@@navbar-default-border: @gray-light;
...
// Navbar links
@navbar-default-link-color: @navbar-default-color;
@navbar-default-link-hover-color: @link-hover-color;
@navbar-default-link-hover-bg: @off-white;
@navbar-default-link-active-color: @link-hover-color;
@navbar-default-link-active-bg: @gray-lightest;
@navbar-default-link-disabled-color @gray-lighter;
@navbar-default-link-disabled-bg: transparent;

2. Save your changes, compile, and refresh.

You should see the following new features in your navbar:

• It should grow 14px taller
• Its background color should turn white
• It should have a slightly darker bottom border
• Nav item backgrounds should darken slightly on hover
• The active nav item background should be a tad darker
• Link text should turn our brand-primary color on hover and when active,

as shown in the following screenshot:

Now, let's put our logo image in place.

Bootstrappin' Your Portfolio

[52]

Adding the logo image
Find the logo.png file in the img folder. You may notice that its dimensions are
large, 900px wide. In our final design, it will be only 120px wide. Because the pixels
will be compressed into a smaller space, this is a relatively easy way to ensure that
the image will look good in all devices, including retina displays. Meanwhile, the
file size of the image, which has already been optimized for the Web, is only 19 KB.

So, let's put it in place and constrain its width.

1. Open index.html in your editor.
2. Search for this line within the navbar markup:

Bootstrappin'

3. Replace Bootstrappin' with this image tag, including its alt and width
attributes.

Be sure to include the width attribute, setting its width to
120px. Otherwise, it will appear very large on the page.

4. Save index.html and refresh your browser. You should see the logo in place.

You may notice that the navbar height has expanded, and that its bottom edge no
longer lines up with the bottom edge of the active nav item. This is due to the default
padding placed around navbar-brand. We need to adjust the appropriate padding
values. We can do that in a few quick steps.

1. Open the file bootstrap/navbar.less in your editor.
2. Search for the selector and its curly brace: .navbar-brand {.
3. At around line 150, you should find the following lines:

.navbar-brand {
 float: left;
 padding: @navbar-padding-vertical @navbar-padding-
 horizontal;

The padding values are what we're after.

Chapter 2

[53]

4. As we're now in the mode of customizing this file, let's save it as our own
custom file and name it _navbar.less.

5. Save it in your less folder, alongside __main.less and _variables.less.

6. We're going to comment out the original values, and then add our own
custom padding values. To do this in LESS, simply add two slashes in front
of the line, as follows:
// padding: @navbar-padding-vertical @navbar-padding-
 horizontal;
padding: 22px 30px 0 15px;

When compiled, the line that's commented out in this manner will not be
compiled to CSS.

7. To try this, make the previous change in your _navbar.less file and save it.
8. Then, in __main.less, find and comment out the import line for Bootstrap's

navbar.less file. Then, add an import for the new _navbar.less file just
after it.
// @import "bootstrap/navbar.less";
@import "_navbar.less";

9. Save the file. Make sure that _navbar.less is added to your project in your
compiler, and then compile __main.less to css/main.css.
Refresh the browser. You should see the bottom edge of your navbar line
back up with the bottom edge of the active link. (You should also see some
additional padding between the logo and the Home link.)

10. Now, open main.css in your editor and search for the selector .navbar {.
Since I've minified my CSS output, mine looks like this: .navbar-
brand{float:left;padding:22px 30px 0 15px;.

There is no trace of the line we commented out, as it was not
compiled from LESS to CSS!

Bootstrappin' Your Portfolio

[54]

The powers of LESS continue to impress. Observe what we've done here:

• We've left the original bootstrap/navbar.less file just as it was in its
original state, so that we can revert back to it if needed

• We've entirely replaced it for now with our own custom version of the file,
and we've indicated where this happens by leaving a comment trail in
__main.less

• We've also left a comment trail for ourselves in _navbar.less, so that we can
see where we've been modifying rules

• But because we've used JavaScript-style single-line comments, we've done all
of this without adding these comments to the final compiled CSS

In other words, we can leave ourselves a rich trail of fallback files and helpful
comments—all with no code bloat. Nice bonus.

Adjusting nav item padding
Now, let's adjust our nav items so that the text of our links shares the same baseline
as our logo.

In _navbar.less, find the selector .navbar-nav. It is the parent ul of our
navbar items. Within this set of rules, you'll find nested media queries. (See the
documentation on nested media queries at http://lesscss.org.) The relevant
lines are given as follows:

// Uncollapse the nav
 @media (min-width: @grid-float-breakpoint) {
 float: left;
 margin: 0;
 > li {
 float: left;
 > a {
 padding-top: ((@navbar-height - @line-height-computed)
 / 2);
 padding-bottom: ((@navbar-height - @line-height-computed)
 / 2);
 }
 }
 }

The variable @grid-float-breakpoint specifies the point at which the navbar
expands to its full width or collapses to create the mobile-app-style responsive
navigation. (You'll find this variable defined in _variables.less.)

Chapter 2

[55]

At present, the padding-top and padding-bottom values are calculated to keep the
text in the vertical center of the navbar. We want to increase the top padding and
decrease the bottom padding. While we're at it, let's increase the horizontal padding
on these nav items, and nudge the font size up a bit. I'll leave a trail by commenting
out the original lines with single-line comments, and then adding my own new lines:

> a {
 // padding-top: ((@navbar-height - @line-height-computed) / 2);
 // padding-bottom: ((@navbar-height - @line-height-computed) / 2);
 padding: 30px 30px 14px;
 font-size: 18px;

Save, compile, and refresh to obtain the following result:

Feeling the power yet?

Now, let's add icon powers.

Adding icons
It's time to add icons to our navigation. We'll begin by employing the Glyphicons
that come with Bootstrap. Then, we'll shift to the larger library of icons offered by
Font Awesome.

Take a moment to review the relevant Bootstrap documentation at:
http://getbootstrap.com/components/#glyphicons.

You'll see the set of icons available and the markup convention for using these in
your HTML using span tags and glyphicon classes. We'll start by adding a home
icon to our Home nav item:

1. Add the Glyphicon Home icon to the Home nav item by placing a span tag
with appropriate classes within the nav item link and before the text:
<li class="active">

 Home

Bootstrappin' Your Portfolio

[56]

I've added a space after the span tag to provide a bit of
space between the icon and the text Home.

2. Save this and refresh your browser. If all goes well, you should see your
icon appear!

3. If your icon does not appear, check the following things:
 ° Are the Glyphicon fonts in the fonts folder?
 ° Is the @icon-font-path variable set properly in your _variables.

less file? The @icon-font-path:"../fonts/"; path is working
for me.

4. Assuming that all is working, let's press on and add icons to each of the other
nav items. Here are the remaining span elements and classes I'll use, in this
order, for Portfolio, Team, and Contact.

5. Save and refresh. You should get the following result for all computer
screen sizes:

6. And, in the collapsed responsive navigation:

Chapter 2

[57]

Not too bad.

Of course, our icons don't exactly match the icons from the mock-up. Here is what
the mock-up called for:

The free version of Glyphicons provided with Bootstrap does not include icons
for a computer monitor or a group of people. As we look through the available
Glyphicons, we'll also find there are no icons for our social media links in the footer.

Fortunately, we have other icon options available. Let's consider one of them.

Adding Font Awesome icons
Font Awesome is a font icon set that offers 361 icons at the time of writing this
book—twice as many as available in the current Bootstrap version of Glyphicons.
Font Awesome icons are free, open source, and built to play nice with Bootstrap.
You can see the Font Awesome home page at:

http://fortawesome.github.io/Font-Awesome/

Let's fold Font Awesome into our workflow.

1. Navigate to the Font Awesome home page, at http://fortawesome.
github.io/Font-Awesome/, and click on the large Download button.

2. Extract the downloaded archive and look inside. You'll find the following
folder structure:

Bootstrappin' Your Portfolio

[58]

3. Inside the font folder, you'll find the Font Awesome icon font files.

4. Copy all of these files and paste them into your project's fonts folder,
alongside the Glyphicons font files.

5. Now, we want to copy the Font Awesome less files to our project's less
directory. Create a new subdirectory named font-awesome, and copy the
Font Awesome less files into it.

6. Next, we will import the font-awesome.less file into our __main.less
file, so that it will be compiled into our stylesheet. I'll add the import line
to __main.less just under the Glyphicon import:
@import "bootstrap/glyphicons.less";
@import "font-awesome/font-awesome.less";

7. The Font Awesome less files include a variable specifying the path to
the Font Awesome web fonts. We need to check to make sure that this
variable matches our folder structure. Open the Font Awesome variables
file font-awesome/variables.less. Ensure that the @fa-font-path
variable is set to ../fonts as follows:
@fa-font-path: "../fonts";

This path is relative to the compiled CSS file, which is in
our css directory.

Chapter 2

[59]

8. Save and compile to CSS.
9. Now, in index.html, let's update the icon for the Team navbar item to use

the Font Awesome icon named fa-group. We also need the standalone fa
class. In addition, let's add our own generic icon class:
 Team

10. Save this change to index.html, and refresh your browser.

If all works as it should, you should see the following result:

If you see a strange symbol—or nothing—that's a sign that the
web fonts are not coming through. Double-check that your icon
classes are correct (including the fa class), your Font Awesome
web font files are in your fonts directory, and the path is set
correctly in font-awesome/variables.less.

Congratulations—you've more than doubled your available icons!

At this point, we can choose to keep Glyphicons in the mix, or we can unhook them.
In order to reduce code bloat, I'll remove Glyphicons and shift entirely to Font
Awesome. This requires only two quick steps:

1. Comment out the Glyphicons import line from __main.less.
// @import "bootstrap/glyphicons.less";
@import "font-awesome/font-awesome.less";

2. Update your icon markup in index.html to make use of the desired Font
Awesome icons.

The Font Awesome icon page http://fortawesome.github.io/Font-Awesome/
icons/ allows you to scan your options. Our mock-up calls for these icons in
the navbar:

 Home
 Portfolio
 Team
 Contact

Bootstrappin' Your Portfolio

[60]

With this result:

Adjusting the navbar icon color
You might note that the icons appear visually heavier than their adjacent text. The
color is the same, but the icons carry greater visual weight. Let's adjust the icons
to a lighter and less overpowering shade.

1. Open _navbar.less in your editor.
2. Search to find the selector .navbar-default. We have used this class in

our navbar markup to apply default styles. You should find it under the
commented section for // Alternate navbars.

3. Within this nested set of rules, find the selector .navbar-nav and the > li >
selector nested beneath it. This is where we want to adjust our icon colors.

4. Under the statement defining nav item link colors, we'll nest a rule to make
our icons a lighter shade, using our variable @gray-light, as follows:
.navbar-nav {
 > li > a {
 color: @navbar-default-link-color;

 .icon { // added rule set
 color: @gray-light;
 }

The generic class icon proves to be a handy way to select all
of our icons.

I've begun adding a comment // added to help me easily
search or scan to identify code that I've added into the mix.

Chapter 2

[61]

5. Now, we need to specify that these icons should still share the same hover
and active color—the @brand-primary color. This requires adding our icons
to the selector groups just below the lines we've added. Under the &:hover,
&:focus pseudo-selectors, I've added two selectors to specifically target
the icons:
&:hover,
&:focus,
&:hover .icon, // added selector
&:focus .icon { // added selector
 color: @navbar-default-link-hover-color;
 background-color: @navbar-default-link-hover-bg;
}

I've targeted the icons for active links in the following code snippet:

> .active > a {
 &,
 &:hover,
 &:focus,
 .icon, // added selector
 &:hover .icon, // added selector
 &:focus .icon { // added selector
 color: @navbar-default-link-active-color;
 background-color: @navbar-default-link-active-bg;
 }
}

6. Once you've worked these in, save the file, compile to CSS, and refresh your
browser. You should see the icons take a lighter shade of gray by default, and
yet retain the default link color for active and hovered states.

This completes our nav—or almost completes it. We've inadvertently created a small
problem that we need to fix before moving on.

Bootstrappin' Your Portfolio

[62]

Adjusting the responsive navbar
breakpoint
Our navbar, with the logo image, larger nav items, and icons, has grown in width.
And a problem for our responsive design has arisen. Try resizing your browser
window from wide to narrow (approx 480px) and back again, and chances are
you'll see the navbar bump down under the logo at some point in the mid-range.

What's happened? The navbar has grown too wide for the container when our
viewport is between 768px to 991px. This falls between the Bootstrap variables
@screen-sm-min and @screen-md-min.

The @grid-float-breakpoint sets the point at which the navbar collapses. You'll
find this variable in _variables.less, under the // Grid system section.

// Point at which the navbar stops collapsing
@grid-float-breakpoint: @screen-sm-min;

We need to adjust this breakpoint so that the navbar stays collapsed until the next
breakpoint: @screen-md-min. Update the variable accordingly:

@grid-float-breakpoint: @screen-md-min; // edited

Save, compile, and refresh. You'll see that the navbar does in fact stay collapsed until
the next breakpoint.

Problem solved! It's time to move on to the carousel.

Styling the carousel
We're going to take Bootstrap's default carousel styles and apply some significant
customization. Let's create a copy of Bootstrap's carousel.less file and make
it our own.

1. Copy bootstrap/carousel.less and save it in the less directory
as _carousel.less.

.

Chapter 2

[63]

2. Update the relevant import line in __main.less to import our custom file in
place of Bootstrap's:
@import "_carousel.less";

3. Customize the opening comment in _feature-carousel.less:
//
// Customized Carousel
// --

Now to begin customizing!

Setting Font Awesome icons for the controls
If you unhooked Glyphicons as I did in the preceding section, you'll find that the
next and previous carousel controls have disappeared. This is because they relied
on Glyphicons. We can fix this using Font Awesome icons instead.

1. First, update the icons markup in index.html. Look for the links with the
classes left or right and carousel-control:
<a class="left carousel-control" ...

2. Update the span tags with a generic icon class, plus the Font Awesome icon
classes as follows:

...

3. Next, we need to add new class selectors in _carousel.less. You'll
find it under the selector .carousel-control, beneath the comment for
// Toggles. I'll paste the block of code with the necessary updates and
comments:
// Toggles
 .icon-prev,
 .icon-next,
 .glyphicon-chevron-left,
 .glyphicon-chevron-right,
 .icon { // added
 position: absolute;
 top: 50%;
 z-index: 5;
 display: inline-block;
 }

Bootstrappin' Your Portfolio

[64]

 .icon-prev,
 .glyphicon-chevron-left,
 &.left .icon { // added
 left: 20%; // edited was 50%
 }
 .icon-next,
 .glyphicon-chevron-right,
 &.right .icon { // added
 right: 20%; // edited was 50%
 }

Three notes about these edits:

• By using a basic icon class both in the markup and here, we
may use any icon of our choice and our styles will still work

• The &.left and &.right constructions reach back in the
nesting hierarchy and compile to .carousel-control.
left and .carousel-control.right

• By altering the value for the left: and right: positions,
I've nudged the icons closer to the edges of the carousel

Save, compile, and refresh. Our new Font Awesome icons should take their
appropriate places.

Now, we can move on to aesthetic enhancements.

Chapter 2

[65]

Adding top and bottom padding
Let's add some top and bottom padding to the .carousel element itself and add our
@gray-lighter color for a background color. To help keep track of my work, I'm
going to tack on a small comment at the end of each added or edited line. (Again,
these will never make it to CSS!)

.carousel {
 position: relative;
 padding-top: 4px; // added
 padding-bottom: 28px; // added
 background-color: @gray-lighter; // added
}

After saving and compiling, you'll see the light gray background appears in our
newly created space above and below the carousel images. This provides a bit of
framing to set them off from the other elements above and below. In a bit, we'll take
advantage of the extra bottom padding to position our carousel indicators in a way
that allows them to stand out much more clearly.

First, let's ensure that our images will stretch to fill their space in all circumstances.

Forcing images to their full width
We need to force our images to stretch the full width of the carousel, even in wide
screens. Our images are 1600px wide to fill most screens. But beyond this width,
they will leave a gap at the right edge.

Bootstrappin' Your Portfolio

[66]

Forcing the images to their full width on windows wider than 1600px may pixelate
them slightly; but for images that are large enough, distortions won't be huge.

When time allows, we can add a responsive image solution to load
smaller images on smaller screens; and if we desire, we can add larger
images for these wider sizes. I'll get you rolling with a responsive
image solution in Appendix B, Implementing Responsive Images.

For now, we need to add only two lines to our file. Just below the rules for
the .carousel selector are the nested set of rules we need for this. Under the
.carousel-inner selector are rules for carousel images, including a mixin which
ensures they behave responsively and adjust to smaller screens. We can also force
them to stretch wider for wider screens by setting min-width:.

.carousel-inner {
 ...
 > .item {
 ...
 > img,
 > a > img {
 .img-responsive();
 line-height: 1;
 min-width: 100%; // added
 }
 }
 ...
}

After implementing this adjustment, we can stretch our browser window as wide
as we like, and the image will stretch along with it.

Next, we need to limit the maximum height of our carousel.

Constraining the carousel height
As you may have noticed, the carousel grows entirely too tall in the medium and
large screen view. Our mock-ups call for a constrained height of approximately
440px. We can accomplish this easily by setting a constraint on the parent of our
images, the .carousel-inner > .item, as follows:

.carousel-inner {
 ...
 > .item {
 ...
 max-height: 640px; // added

Chapter 2

[67]

Because the .carousel-inner element has a rule of overflow: hidden, which
constrains the height of the .item element, it serves as a convenient way to hide
the lower portions of the image when it grows beyond the desired height.

Having done this, we can use nested media queries (another nice feature of LESS),
along with Bootstrap's medium and large breakpoint variables to adjust the vertical
positioning of our images at the widest widths, to keep our designs in the focal area.
I'll do it by using the following code:

> img,
> a > img {
 ...
 @media (min-width: @screen-md-min) {
 margin-top: -40px;
 }
 @media (min-width: @screen-lg-min) {
 margin-top: -60px;
 }
}

Save, compile, and refresh. You should see that our carousel is taking shape nicely
and works well from narrow to wide viewport widths.

At a narrow width, it appears like the following:

Bootstrappin' Your Portfolio

[68]

And in a wide viewport, it looks like the following:

Now, to style the carousel indicators.

Repositioning the carousel indicators
The carousel indicators serve to inform the user how many slides are in our carousel,
and highlight the current spot in the rotation. At present, these indicators are barely
visible—languishing near the bottom center edge of our portfolio images.

Let's move these indicators into their own space, just below the image:

1. In _carousel.less, search for the selector .carousel-indicator. We want
the first of its two occurrences, approximately 2/3 of the way down the file.
This section opens with a comment.
// Optional indicator pips

Notice how the element is vertically positioned.
.carousel-indicators {
 position: absolute;
 bottom: 10px;

Chapter 2

[69]

2. We want to move these down even closer to the bottom edge, into our light
gray area created by the padding we added above. So, let's adjust the bottom
positioning. In addition, we need to remove the default bottom margin by
zeroing it out.
.carousel-indicators {
 position: absolute;
 bottom: 0; // edited
 margin-bottom: 0; // added

3. Save, compile, and test. You may notice that on small screen sizes, this
positions our indicators where we want them. On larger screen sizes,
however, they return to their previous position. As it turns out, this is the
result of a rule under media query where we were just working—down
near very bottom of the file.

4. Find these lines near the bottom of the file, within the media query for
@screen-tablet and up.
// Move up the indicators
 .carousel-indicators {
 bottom: 20px;
 }

Since we no longer need this adjustment, let's simply comment out these
lines, thereby removing them from the CSS altogether.

// .carousel-indicators {
// bottom: 20px;
// }

This brings our desired result. The indicators now stay positioned in the desired
space across all screen dimensions.

Now, let's update their appearance to make them larger and easier to see.

Bootstrappin' Your Portfolio

[70]

Styling the indicators
We'll make our carousel indicators more visible by using our gray variables. We'll
also increase their size a bit. We can get a start in our _variables.less file.

1. In _variables.less, just after the @carousel-control variables, you'll find
two variables beginning with @carousel-indicator:
@carousel-indicator-active-bg: #fff;
@carousel-indicator-border-color: #fff;

These are used to provide a white border around the default indicators, and
then fill the active indicator with the background color.

2. Let's add a default background color variable here, so that we may fill the
default indicators with our @gray-light value.
@carousel-indicator-bg: @gray-light;

3. Then, we'll update the active background color.
@carousel-indicator-active-bg: @gray-lightest;

4. Finally, we'll make the border-color transparent.
@carousel-indicator-border-color: transparent;

5. Save, compile, and refresh.

At present, this has the effect of making all but the active item invisible.

Now, for some work in _carousel.less.

1. In the file _carousel.less, move to the first set of rules for .carousel-
indicator where we were previously working.
.carousel-indicators {
 position: absolute;
 ...

2. Look for the li selector nested under it. Here, let's edit several values.
Specifically, we'll perform the following actions:

 ° Increase the width and height to 16px
 ° Remove the margin

Chapter 2

[71]

 ° Add background-color using our newly created variable @
carousel-indicator-bg

 ° Remove the border line altogether (the transparent value we set for
the border variable is now merely a failsafe)

 ° I've commented these changes in the following code snippet

li {
 display: inline-block;
 width: 18px; // edited
 height: 18px; // edited
 // margin: 1px; // edited
 text-indent: -999px;
 background-color: @carousel-indicator-bg; // added
 // border: 1px solid @carousel-indicator-border-color;
 border-radius: 10px;
 ...

3. Notice the following hack for IE 8-9 to supply the indicators with a
background-color for these browsers. Because we have just provided a
background color for all of our indicators, this hack is no longer needed.
Comment out these lines under the comment. Otherwise, these will interfere
with our background color declaration in the preceding snippet.
 // background-color: #000 \9; // IE8
 // background-color: rgba(0,0,0,0); // IE9

4. Next, we need to remove the margin, width, and height values under the
.active selector as we no longer want our active indicator to grow larger
(nor do we want it to shrink back to 12px).
.active {
 // margin: 0; // edited
 // width: 12px; // edited
 // height: 12px; // edited
 background-color: @carousel-indicator-active-bg;
}

5. Finally, let's add a hover effect by adding a :hover selector along with the
.active selector.
li:hover, // added
.active { ...

Bootstrappin' Your Portfolio

[72]

6. Save, compile, and refresh. And check out the result!

Carousel adjustments accomplished! We've learned a lot in the process—a lot about
Bootstrap and perhaps a little about LESS as well.

Let's move on to the next section. What's remaining is considerably simpler.

Tweaking the columns and their content
Let's fine-tune the blocks of content under the three headings Welcome!, Recent
Updates, and Our Team.

First, let's add the arrow-circle icon to the button in each of these three blocks. Recall
that we're using Font Awesome for our icon selection.

1. Visit the Font Awesome documentation at http://fortawesome.github.
io/Font-Awesome/icons/.

2. You'll find the icon that we're after.

Chapter 2

[73]

3. In index.html, add a span tag with the appropriate classes inside each link.
Here is the first one, which I've spaced out by adding an extra carriage return
between elements.
<p>

 See our portfolio <span class="icon fa fa-arrow-circle-
 right">

</p>

4. Repeat for each link.

You should now have the desired icon in each of the three buttons.

While we're at it, let's add a bit of vertical padding between the carousel and this
section of text. Right now, it's pretty tight.

Bootstrappin' Your Portfolio

[74]

The question that comes up at this point is where best to compose the styles that
we'll need for this. Adding extra padding around page content sections will likely be
a pretty normal practice for us now and in the future. Let's create a LESS file to hold
these and other tweaks to the ordinary contents of pages. (As it happens, we'll need
this file for an additional and more important responsive adjustment, so it seems
well justified.)

1. Create a file named _page-contents.less.
2. Save it in your less folder alongside your other custom less files.

3. Comment the file.
//
// Page Contents
// --------------------------

4. Then, let's create a sensible class for this purpose and add our desired
padding—including some padding for the bottom.
.page-contents {
 padding-top: 20px;
 padding-bottom: 40px;
}

5. Save the file.
6. Add _page-contents.less to the imports in __main.less. I'll add mine in

a new section near the bottom of the file, just before the Utility classes, and
I'll include a helpful comment for orientation purposes.
// Other custom files
@import "_page-contents.less";

7. Save and compile.

Chapter 2

[75]

8. Now, let's add the necessary class to our markup. Open index.html and add
the class page-contents to the div with the class container, which follows
just after the closing div of our homepage-feature carousel.
</div><!-- /#homepage-feature.carousel -->
<div class="page-contents container">
<div class="row">

9. Save and refresh your browser. You should see the padding added.

Next, we need to tidy up the narrow-screen view of these blocks. Notice that when
viewed in single-column layout, the headings do not clear the floated buttons.

Fixing this is just a little tricky. We might want to add a clearfix to the div containing
each of these three blocks. However, that won't work because we need these blocks
to float side by side once the viewport width is 768px or up.

This calls for a media query. Recalling that our three-column view begins at the
@screen-sm breakpoint, or 768px, let's set a rule to clear floats when the window is
one pixel below this breakpoint—which is the purpose of the special breakpoint
@screen-xs-max. You'll find these special –max breakpoints just below the other
@screen variables in _variables.less.

// So media queries don't overlap when required, provide a maximum
@screen-xs-max: (@screen-sm - 1);
@screen-sm-max: (@screen-md - 1);
@screen-md-max: (@screen-lg - 1);

Bootstrappin' Your Portfolio

[76]

The @screen-xs-max breakpoint is what we need in this case, as it provides a value
one pixel narrower than the @screen-sm breakpoint.

Using the @screen-sm-min variable would leave a 1px zone in
which the columns would stay approximately a third of width, but
would be too wide for the columns to float side by side. This causes
the columns to stack on top of each other. Not the result we want. In
my testing, this 1px overlap broke the layout on the iPad. So, the @
screen-xs-max variable is important!

While we're at it, let's also add some bottom padding to our columns so that they
have a bit of extra vertical breathing room when stacked.

Inside our media query, we'll add a CSS2 attribute selector to select all elements with
a class that contains col-, so that the same rules will apply to a column of any size:

.page-contents {

...
@media (max-width: @screen-xs-max) {
 [class*="col-"] {
 clear: both;
 padding-bottom: 40px;
 }
}
}

Save, compile, and refresh. The result is much improved!

Chapter 2

[77]

Much better!

Now, let's move on to the footer!

Styling the footer
The biggest feature of the footer is our social icons. Font Awesome to the rescue!

Consulting the Font Awesome documentation, we find a slew of available icons
under the category of Brand Icons. Here is the direct link:

http://fortawesome.github.io/Font-Awesome/icons/#brand

Now, we only need to replace the text for each social link in our footer with span
elements, using the appropriate classes.

<ul class="social">
 <span class="icon fa
 fa-twitter">
 <span class="icon fa
 fa-facebook">
 <span class="icon fa
 fa-linkedin">
 <span class="icon fa fa-
 google-plus">
 <span class="icon fa fa-
 github-alt">

This updated markup puts our icons in place:

Now, perform the following steps to lay them out horizontally and align them
to the center.

1. Create a new file _footer.less to manage these styles.

Bootstrappin' Your Portfolio

[78]

2. Save the file to the less directory.

3. Add an import variable for this file in __main.less.
// Other custom files
@import "_page-contents.less";
@import "_footer.less";

Now, we'll write the styles we need. Let me simply lay them out, and then list what
they do.

The lines that we'll need are given as follows:

ul.social {
 margin: 0;
 padding: 0;
 width: 100%;
 text-align: center;
 > li {
 display: inline-block;
 > a {
 display: inline-block;
 font-size: 18px;
 line-height: 30px;
 .square(30px); // see bootstrap/mixins.less
 border-radius: 36px;
 background-color: @gray-light;
 color: #fff;
 margin: 0 3px 3px 0;
 &:hover {
 text-decoration: none;
 background-color: @link-hover-color;
 }
 }
 }
}

Chapter 2

[79]

Here's what's happening:

• The normal margin and padding is stripped away from the ul
• It is stretched to a 100 percent width
• Its content is center aligned
• The list items are displayed inline block, thereby centering them
• The links are displayed inline block, so that they fill up their available space
• The font size and line height are increased
• The width and height are set to 30px square, using a Bootstrap provided mixin
• To see this mixin, open bootstrap/mixins.less, search for .square, and

you'll find the following relevant lines:
// Sizing shortcuts
.size(@width; @height) {
 width: @width;
 height: @height;
}
.square(@size) {
 .size(@size; @size);
}

• The border-radius property is set large enough to make the icons and their
backgrounds appear circular

• The background color, color, and margin properties are set
• The underline is removed from the hover state, and the background color is

altered to a lighter gray

With these steps accomplished, let's polish off the footer by adding a healthy bit of
top and bottom padding, and then center aligning the content in order to move our
logo to the center above the social icons.

footer[role="contentinfo"] {
 padding-top: 24px`;
 padding-bottom: 36px;
 text-align: center;
}

Bootstrappin' Your Portfolio

[80]

The result is as follows:

Not bad—if I don't say so myself!

Recommended next steps
Let me strongly recommend at least one additional next step you'll need to take
before taking a project like this to production. It's imperative that you take time to
optimize your images, CSS, and JavaScript. These steps are not difficult.

• Compressing images takes just a bit of time, and it addresses the single
largest cause for large page footprints. I've already used the save to web
process option of Photoshop, but chances are you can squeeze a few more
bytes out.

• In addition, we badly need to remove unneeded Bootstrap LESS files from
the import sequence in __main.less, and then compress the resulting
main.css file.

• Finally, we need to slim down our plugins.js file by replacing Bootstrap's
all-inclusive bootstrap.min.js file with compressed versions of only the
three plugins that we're actually using: carousel.js, collapse.js, and
transitions.js. We then compress the final plugins.js file.

Combined, these steps can cut the footprint of this website by roughly half. In an age
where speed matters—both for user retention and for SEO ranking—that's a big deal.
To help you in this task, I've included steps for optimizing this project in Appendix A,
Optimizing Site Assets.

In addition, there are two other very sensible steps you may want to take.

Chapter 2

[81]

First, we can implement a responsive images technique to further optimize our
carousel images. Those images, as you'll recall, are too large (unnecessarily large)
to send to small-screen devices. Conversely, if we want the images to look crisp on
large retina screens, we might opt to provide higher-resolution versions for those
displays. In Appendix B, Implementing Responsive Images, I'll walk you through the
implementation of Scott Jehl's excellent Picturefill solution.

Second, we know that users of touch-enabled devices appreciate the ability to swipe
their way forward and back through a carousel. In Appendix C, Adding Swipe to the
Carousel, I'll show you how to use the excellent Hammer.js plugin to enable swipe
interaction with our carousel in just a few steps.

But, for the present moment, let's stop and celebrate.

Summary
Let's take stock of what we've accomplished in this chapter.

• We've begun with a rock-solid markup structure provided by the
HTML5 Boilerplate

• We've leveraged Bootstrap's responsive navbar, carousel, and grid system
• We've customized several of Bootstrap's LESS files
• We've created our own LESS files and folded them seamlessly into the project
• We've doubled our available icons by folding Font Awesome into

our workflow
• We've improved future maintenance of the site by implementing

a thoughtful file organization scheme and leaving a trail of helpful
comments—all without creating code bloat

With this experience under your belt, you're equipped to bend Bootstrap to your
will—using its power to speed website development, and then customizing the
design to your heart's content. In future chapters, we'll expand your experience
further. First, however, let's take this design and turn it into a WordPress theme.

Bootstrappin' a WordPress
Theme

Now let's turn our design from Chapter 2, Bootstrappin' Your Portfolio, into a
WordPress theme. There are many Bootstrap-based themes that we could choose.
We've taken care to integrate Bootstrap's powerful LESS styles and JavaScript
plugins with the best practices found in the HTML5 Boilerplate. It will be to our
advantage to use a theme that does the same.

The Roots theme has established itself as a starter theme that leverages the power
of Bootstrap while hewing to the implementation of best practices at every turn,
including the HTML5 Boilerplate among other excellent touches. We'll use this
theme for this exercise.

In this chapter, we will perform the following:

• Integrate our customized LESS and JavaScript files with the Roots theme
• Customize the theme template files to deliver the markup we need for our

home page carousel and column content
• Utilize the powerful and advanced custom fields plugin to provide custom

fields for our carousel items and home page columns
• Create a home page template file that publishes our custom fields into our

desired home page layout

Bootstrappin' a WordPress Theme

[84]

Downloading and renaming the Roots
theme
Let's get started by downloading the Roots theme:

1. Navigate to the Roots theme home page at http://roots.io/.
You might take some time to familiarize yourself with the resources here.
(It's a great and growing development community.)

2. Proceed on to the GitHub project by clicking on the GitHub link. The direct
URL is https://github.com/roots/roots.

3. Download the ZIP file.
4. Extract it.

5. Rename the extracted folder to your desired theme name as shown in the
following screenshot:

Chapter 3

[85]

6. Navigate inside the main theme folder to the style.css file as shown in the
following screenshot, and open it in your editor:

7. Once you've opened the file, you'll notice that it contains no actual styles.
Site styles are provided by a stylesheet css folder located inside the assets
folder, which is compiled by Bootstrap. We'll follow this approach as
well. The style.css file then serves primarily to name our theme, give
appropriate credits, declare the license, and so on. So, let's do that.

8. Change the comments to reflect your new theme information. Here's what
I've done with some hints for you:
/*
Theme Name: Bootstrappin' Theme
Theme URI: [your site URI]
Description: A custom theme based on <a href="http://www.
roots.io">the Roots Theme
Version: 1.0
Author: [Your Name Here]
Author URI: [Your URL]

License: [Supply your chosen license]
License URI: [Supply license URI]
*/

Bootstrappin' a WordPress Theme

[86]

9. Save the file.
10. Now let's add a custom screenshot so that we can recognize the theme in the

WordPress Dashboard.
11. Grab a screenshot from our results in Chapter 2, Bootstrappin' Your Portfolio.

(I've provided one in the 03_Code_BEGIN exercise files folder.)
12. Replace the default Roots screenshot with our new custom screenshot.

We now have our own copy of the Roots theme set up.

Let's install it!

Installing the theme
Be prepared. The changes that we made earlier have temporarily severed
connections to Bootstrap styles, JavaScript, and so on. We're going to update these
connections in the following steps. We're simply going to make the process more
enjoyable by having the theme installed and running so that we can test our progress
along the way!

1. Upload your new theme to your WordPress site's themes folder. (If you're
working locally, simply make a copy of it or move it there.)

2. Then, from your WordPress Dashboard, navigate to Appearance | Themes
and activate the theme. If you've renamed it and provided the new
screenshot (or used the provided theme-starter files), you'll see something
like the following screenshot:

Chapter 3

[87]

3. You'll be taken to the activation page, which presents you with the following
options. Here's how to consider answering them:

 ° Create static front page?
 Yes

We'll use this for our home page.
 ° Change permalink structure?

 Yes

This is one of the first settings we typically change so that URLs in our site
use post and page names.

In my own recent local MAMP installation process, I found
that Roots theme paths did not work until I updated the
permalink structure.

 ° Change uploads folder?
 No

You can choose whether to change the folder where your uploads go or leave
it as it is by default.

 ° Create navigation menu?
 Yes

This sets up our top navigation
 ° Add pages to menu?

 Yes

Bootstrappin' a WordPress Theme

[88]

That'd be great. Thank you!

If you notice the alert to make sure your .htaccess file is
writable, this can be resolved by creating an .htaccess file in
the root folder of your WordPress site (not the themes folder
but the main folder containing wp-content, wp-admin, and
so on) and ensuring that permissions are set to 664.

4. Save changes.
5. You'll be taken back to the Appearance | Themes management page.

Chapter 3

[89]

6. Click on the Customize link.
7. You'll be taken to a page where you can set up several basic options quickly

as follows:
 ° Site Title & Tagline: Update your tagline
 ° Navigation: Update if needed
 ° Static Front Page: Update if needed

8. In the right-hand side pane, you should see the default Bootstrap navbar, a
heading, and a long paragraph of filler text.

Congratulations! You've got the Roots theme installed.

If you do not see the default Bootstrap styles applied to the
navbar or text, this is a sign that the Roots theme has gotten its
file paths confused. Often, this can be cleared up by resetting your
permalinks settings by navigating to Settings | Permalinks.

Let's set up our navbar items.

Bootstrappin' a WordPress Theme

[90]

Configuring the navbar
In this section, we'll set up the navbar items for our site pages, and we'll also go
ahead and add the markup for our icons:

1. In your WordPress Dashboard, navigate to Appearance | Menus.

2. Remove the Sample Page menu item from the menu.
3. Edit the Home menu item by adding the markup for our Font Awesome icon

to the label area using the same markup from our Chapter 2, Bootstrappin'
Your Portfolio, index.html file shown as follows:
 Home

Chapter 3

[91]

4. Now create the remainder of your pages—for now, you could do so by
creating simple custom links—using the appropriate markup as the label
for each page.

5. The Link Text fields for each menu item are as follows:
 Portfolio
 Team
 Contact

6. After adding each one to its menu, save the menu.

Recall that our Font Awesome icons are not yet available. Bootstrap
does not provide them by default, and neither does the Roots
theme. So, our icons will not appear until we supply our new site
assets in a later step ahead.

7. Now go ahead and refresh the home page and you will see the link
text appear.

It's now time to put our home page content in place.

Bringing in our home page content
As we contemplate how to bring our home page content into WordPress, two
possible methods leap to mind:

• WYSIWYG dump: Copying and pasting the entire markup structure for our
carousel and columns into the visual editor and then uploading our images
and placing them within the context of that markup structure.

Bootstrappin' a WordPress Theme

[92]

• Custom fields: Using WordPress custom fields to enter our key
elements—the carousel images and the column content—and then
customizing a template file to provide our desired markup structure.

The first approach is not a good long-term solution as the visual or WYSIWYG editor
is not adept at handling complex markup structure. Nevertheless, this approach is
the quickest, and in this case, it will help us with our first steps. So, let's begin quick
and dirty, if you will, and we'll clean things up with the custom fields method nearer
the end.

In the exercise files for this chapter, you will find the files from our Chapter 2,
Bootstrappin' Your Portfolio, Portfolio results. We'll use the index.html file to get
the markup we need for our carousel and columns:

1. In the index.html file from Chapter 2, Bootstrappin' Your Portfolio, copy
the entire block of code inside the opening and closing main tags, but not
including the main tags themselves:

 ° We'll begin with the beginning of the carousel:
<div id="homepage-feature" class="carousel slide">

 ° And we'll select everything, including the three columns and the
div tags of class row and container that surround them, which
takes us down through the last closing div tag just before the
closing </main> tag.

2. Copy the block we just selected in the last step, but do not paste it into
WordPress yet. We need to clean it up a bit. Recall that WordPress wants to
add paragraph tags around any content that seems to need it. So, we need
to remove elements that might trigger this behavior.

3. Paste this block of code into a new window of your code editor.
4. Remove indentation as indentation will make it very difficult for us to

manage the code once we paste it into the WordPress visual editor. Select the
entire block of code and shift everything as far left as it can go so that each
line starts at the far left with no indentation.

5. Then, remove any comments that take a line of their own. I had the following
two comments:
<!-- Wrapper for slides -->
<!-- Controls -->

6. Also, remove any blank line. I had a blank line above each of the preceding
comments.

Chapter 3

[93]

7. Copy your cleaned-up block of code.
8. In your WordPress Dashboard, go to Edit Pages and edit the page

named Home.
9. Before pasting, shift from the visual editor to the text editor by clicking on

the Text tab in the upper-right corner of the editor window as shown in the
following screenshot:

10. Now paste the markup into the editor.

That's a start. Now we need to upload our images.

Adding images
Let's upload our images into WordPress and insert them into the appropriate place
in our markup:

1. You'll find the portfolio images plus the logo image in the img folder from
the files in Chapter 2, Bootstrappin' Your Portfolio, Portfolio project as shown
in the following screenshot:

2. In your WordPress page editor for the Home page, click on the Add Media
button to upload your images into WordPress.

Bootstrappin' a WordPress Theme

[94]

3. Select and upload the four portfolio images as shown in the following
screenshot:

4. Set appropriate settings for each image as follows:
 ° Provide a suitable Alt Text attribute
 ° Set Alignment to None
 ° For now, we can remove the hyperlink entirely (although, of course,

your portfolio items will likely link to a page about that project)
 ° Select the full-size version of the image

Chapter 3

[95]

5. Insert the full-size (1600 pixel) version of each image in its appropriate place
in the markup, replacing the former image tag with the new one.
Consider the following line of code:

It will now become something like the following code snippet (with the src
attribute varying according to the location of your WordPress installation):
<img src="http://localhost:8888/bootstrappin-portfolio/wp-content/
uploads/2013/10/okwu.jpg" alt="OKWU.edu Homepage" width="1600"
height="800" class="alignnone size-full wp-image-29" />

Repeat this process for each of the four images.

6. Now, with your markup and images in place, update the page!
7. Go to your site Home page and refresh it. If all went well, you should see the

carousel and columns appear as shown in the following screenshot:

Bootstrappin' a WordPress Theme

[96]

We've got the majority of our home page content in place. You'll notice default
Bootstrap styles in the colors, carousel dimensions, and other details. We'll soon
swap our updated design assets into place to fix this. First, let's address a couple
of template matters.

We have a page title that we don't need—a feature of the standard Roots page
template. And our carousel is being constrained to the same width as the columns
after it. If we inspect the page elements, we'll see that the page template has wrapped
our entire page content within an element that uses the Bootstrap class container to
constrain its width.

We need to adjust our templates to remove the page title and set the carousel free
from its container.

Customizing a page template
On an average page, we may want to display the page title. The home page is
a special page of course. Let's prepare a custom template for it.

In the following steps, we'll set up a custom page template that will remove the page
heading and bring in a custom template for our page contents. We'll equip the custom
content template with the markup structure we need for the carousel and columns:

1. In the main themes folder, find the template-custom.php file. This is a
sample page template that's easy for us to adapt.

2. Make a copy of it and rename it page-home.php as shown in the following
screenshot:

3. Open the new page-home.php file in your editor and edit the opening
comment, changing the template name to Homepage Template:
/*
Template Name: Homepage Template
*/

4. Save the file.

Chapter 3

[97]

5. Now, back in your WordPress Dashboard, edit the page named Home.
Change its page template to the newly created Homepage Template.

6. Update the page.
7. There is no need to view the page in your browser yet as nothing will be

different. Let's first make a change to the template.
8. In your code editor, with page-home.php open, find the following line of code:

<?php get_template_part('templates/page', 'header'); ?>

9. This is the first of two lines of PHP. This first line pulls in the page title. (The
template for this is found in the page-header.php file inside the templates
folder.) Thus, we can remove the page title by simply removing the first line
or commenting it out. Here I've used a single-line comment to comment out
the call for the page header as follows:
<?php // get_template_part('templates/page', 'header'); ?>
<?php get_template_part('templates/content', 'page'); ?>

10. Save the file. View and refresh the Home page in your browser. You should
see the page title disappear as shown in the following screenshot:

That's a start! Now to free our carousel from its bounding container element.

Bootstrappin' a WordPress Theme

[98]

Understanding the Roots base template
One of the impressive things about the Roots theme is that it has pulled the
fundamental layout elements out of individual template files and placed them
into a file named base.php. We'll look at this in just a moment.

First, let's notice that the base.php file receives instructions on fundamental layout
matters from the config.php file inside the lib folder. Take a moment to open this
latter file and scan through it. I will not touch upon everything here. You can read
more about the details in the following two pages in the Roots documentation:

• The Roots 101 page at http://roots.io/roots-101
• The An Introduction to the Roots Theme Wrapper page at http://roots.io/

an-introduction-to-the-roots-theme-wrapper/

For present purposes, note that we have the ability to specify what class should
be put on the main column and the sidebar as well as to determine the pages that
should not have a standard sidebar.

If you search for the phrase main class, you'll find lines that set the main and
sidebar classes. If the page has a sidebar, the main element will receive the
col-sm-8 class, limiting its width to two-thirds the width of the container, while
the sidebar receives the col-sm-4 class. If there is no sidebar, the main columns
will receive the col-sm-12 class and will be made full width.

/**
 * .main classes
 */
function roots_main_class() {
 if (roots_display_sidebar()) {
 // Classes on pages with the sidebar
 $class = 'col-sm-8';
 } else {
 // Classes on full width pages
 $class = 'col-sm-12';
 }
 return $class;
}
/**
 * .sidebar classes
 */
function roots_sidebar_class() {
 return 'col-sm-4';
}

Chapter 3

[99]

The classes mentioned in the previous code snippet assume that we want the
transition from a single-column to a multi-column layout to occur at the @screen-sm
breakpoint. We can easily change that here. We can also easily change the widths of
our main column and sidebar by updating these classes, which is to say that we can
update the layout for all pages and posts from this single location, making the results
effective throughout our site without having to combine multiple template files.
While at first this arrangement may seem confusing, it is a huge efficiency gain.

Next, notice how the config.php file determines which pages receive a sidebar or
actually, which pages should not, as shown in the following code snippet:

/**
 * Define which pages shouldn't have the sidebar
 * ...
 */
function roots_display_sidebar() {
 $sidebar_config = new Roots_Sidebar(

 array(
 'is_404',
 'is_front_page'
),
 ...
 array(
 'template-custom.php'
)
);
 return apply_filters('roots_display_sidebar', $sidebar_config-
>display);
}

Thus, by default, the front page, 404 page, and any page that uses the custom
page template will not receive a sidebar. We can easily add or remove pages and
templates to this list, making it possible to customize the layout in entire sections
of our site or individually as needed.

With this in mind, we're ready to look at base.php. Find this file in the main themes
folder and open it in your editor.

Scan down through it and you will notice that this file does the following things:

• It pulls in the head of the page—see the head.php file in the templates
folder.
<?php get_template_part('templates/head'); ?>

Bootstrappin' a WordPress Theme

[100]

• It supplies the body tag and body classes.
<body <?php body_class(); ?>>

• It pulls in either the top navbar or a header with normal navigation—see the
header-top-navbar.php and header.php templates.
<?php
 do_action('get_header');
 // Use Bootstrap's navbar if enabled in config.php
 if (current_theme_supports('bootstrap-top-navbar')) {
 get_template_part('templates/header-top-navbar');
 } else {
 get_template_part('templates/header');
 }
?>

• If you jump down to the bottom, you'll see that it pulls in the footer—see the
footer.php file in the templates folder.
<?php get_template_part('templates/footer'); ?>

• And in the middle of all this, we see the block of code that defines the
structure for the page content:

 ° Begins with a container and a row:
<div class="wrap container" role="document">
 <div class="content row">

 ° Defines div class as main with a roots_main_class method that
sets the column width:
 <div class="main <?php echo roots_main_class(); ?>"
role="main">

The roots_main_class method is defined in the
config.php file in the lib folder.

 ° Uses the appropriate template for the content of the present page:
 <?php include roots_template_path(); ?>

 ° Closes the div tag for .main:
 </div><!-- /.main -->

Chapter 3

[101]

 ° Displays the sidebar, if called for, with its appropriate Bootstrap
column class:
 <?php if (roots_display_sidebar()) : ?>
 <aside class="sidebar <?php echo
 roots_sidebar_class(); ?>" role="complementary">
 <?php include roots_sidebar_path(); ?>
 </aside><!-- /.sidebar -->
 <?php endif; ?>

The config.php file establishes the pages that will have
sidebars and the class that will be assigned to the sidebar.

 ° And then closes up the row and container classes that have been
applied respectively to the div tag of the content and wrap classes:

 </div><!-- /.content -->
</div><!-- /.wrap -->

That's a lot to take in. Let's boil it down to this:

• The Roots base template lays out everything between the navbar and
the footer within an element with the Bootstrap container class, thus
constraining its width and keeping it from stretching full-width

• We need to set our carousel free to range the full width and then supply the
container class when and where we want it

To fix this situation, we could simply remove the container class from the base
template and adjust other elements accordingly. This would work except that our
home page is the only one where we need the full-width carousel. So, we may
inadvertently create more work for ourselves later by messing with the standard
template file.

Instead, to accomplish our goal in a more targeted way, let's create a custom base
template specifically for the home page. Roots makes it easy to do this.

Creating a custom base template
As a further testament to the power of the Roots theme, while the base.php file
dictates fundamental layout for the entire site, we have the freedom to set up a
custom base template to customize the fundamental layout structure when and
where needed. We'll do that for our home page as shown in the following steps:

1. Duplicate the base.php file.

Bootstrappin' a WordPress Theme

[102]

2. Name the new copy base-page-home.php. Because our page uses the page-
home.php template file, Roots will check for a base template file by this name,
and if it is found, Roots uses this file as the template for our home page.

For more information on this base-template-choosing function, see the
Roots documentation at http://roots.io/an-introduction-
to-the-roots-theme-wrapper/.

3. Open the new base-page-home.php file in your editor.
4. Find the div tag of the wrap class and remove the container class from it so

that it now reads as follows:
<div class="wrap" role="document">

5. We'll provide the container class where we need it, specifically for our
columns below the carousel. The same goes for the row and column classes.
So, we'll remove those from this template as well.

6. Just after this is the div tag of the content class; remove the row class so that
this line now reads simply as follows:
<div class="content">

7. Finally, we need to remove the php tag from div class as main as we don't
need the Bootstrap column class provided by roots_main_class. This line
should now simply read as follows:
<div class="main" role="main">

8. Save your results.
9. Refresh the Home page in your browser.

You should see the carousel expand to full width.

Chapter 3

[103]

That's the magic!

Recall that we have provided the container, row, and column classes we need
for the columns in what we've pasted into the WYSIWYG editor. Thus, these are
constrained as they should be.

We are almost ready to bring in our custom styles. First, before finishing with our
markup, let's clean things up and make them easier to maintain.

Using custom fields for a custom structure
As noted previously, the WYSIWYG dump is not the best long-term strategy for
our home page content. We have some significant custom markup structure in here.
The WordPress editor was built to manage text and images—not containers, rows,
columns, and carousel items. So, let's use WordPress custom fields to manage
this content.

Bootstrappin' a WordPress Theme

[104]

The steps are easy and straightforward. We'll create a custom field for the content of
each carousel item (that is, our four images) and then a custom field for each column
of content below it as shown in the following steps:

1. In your WordPress editor for the Home page, copy the markup for each
image as shown in the following screenshot:

Then, create a custom field for each, naming them item1, item2, item3, and
item4. After repeating for each one, you should have a result that looks like
the following screenshot:

Chapter 3

[105]

2. Now for our columns content. Let's call these column1, column2, and
column3, and include the heading, paragraphs, and button markup
together in one custom field for each column's content.

Note that the contents for each column include more than what is shown
in the field. Drag one to open it wider, and it includes the entire content as
shown in the following screenshot:

3. Update the page to save our work.

Now to pull the content from these fields and place them in our desired markup
structure, which is to say, it's time for a bit more template work.

Creating a custom content template
We've established a custom base structure for our home page and set up a custom
page template to remove the normal page title. Now it's time to create a custom
template for our home page content.

Bootstrappin' a WordPress Theme

[106]

Roots manages content loops in files named content-page.php, content-single.php,
and content.php in the templates folder as shown in the following screenshot:

If you look at the contents of these files, you'll see the loops for standard posts
and pages.

We want to make our own custom version of content-page.php:

1. Duplicate content-page.php.
2. Rename it content-home.php.
3. Open content-home.php in your editor and you'll see the following lines

of code:
<?php while (have_posts()) : the_post(); ?>
 <?php the_content(); ?>
 <?php wp_link_pages(array('before' => '<nav
 class="pagination">', 'after' => '</nav>')); ?>
<?php endwhile; ?>

4. Observe that this page content loop does two things:
 ° Pulls in the content from the WYSIWYG editor
 ° Creates links for paginated pages (if needed)

5. We want to update this loop to pull in our custom fields in place of the
WYSIWYG editor. So, remove the following line:
<?php the_content(); ?>

6. We will not be paginating the home page, so remove the following line
as well:
<?php wp_link_pages(array('before' => '<nav
 class="pagination">', 'after' => '</nav>')); ?>

In their place, let's put a bit of alternative content so that we can test things.

Chapter 3

[107]

7. Type something like Hello this is a test!.
8. Now we need to instruct our page-home.php template to use this new

content loop.
9. Open page-home.php in your editor.
10. Edit the following line:

<?php get_template_part('templates/content', 'page'); ?>

Replace 'page' with 'home' so that it now reads like the following line:
<?php get_template_part('templates/content', 'home'); ?>

This instructs the template to pull our new content file, content-home.php,
in the templates folder.

11. Save the changes.
12. Refresh the Home page.

You should now see nothing but a line of text and the default footer.

Congratulations! Your new content template is connected. Now, to flesh it out, we
will build a carousel from our new fields.

Building our carousel from custom fields
We want to pull the markup for our carousel items from their respective custom
fields. If you've not worked with custom fields before, see the WordPress
documentation at http://codex.wordpress.org/Custom_Fields.

We'll start by requesting the items themselves as follows:

1. With the content-home.php file in your editor, remove the test message.
You should now have nothing except the following lines of code:
<?php while (have_posts()) : the_post(); ?>

<?php endwhile; ?>

2. What we write next needs to be placed between these lines, and thus within
the page loop.

Bootstrappin' a WordPress Theme

[108]

3. To get our first carousel item, we need to ask for the content of the custom
field called item1. The following line will do it:
<?php $item="item1"; echo get_post_meta($post->ID, $item, true);
?>

This line first creates a PHP variable for item1 and then uses that variable in
the get_post_meta() template tag. The parameters $post->ID, $item, and
true specify that we're working with the current post (or page) and asking
for the field named item1 to be returned as a string. (The false parameter
would return it as an array.)

4. Save this file. Refresh your Home page and you should see the first image
appear as shown in the following screenshot:

5. Now we need only to repeat the same line, updating each one to pull the next
item. We need only to update the variable definition at the front of each line.
<?php $item="item1"; echo get_post_meta($post->ID, $item,
 true); ?>
<?php $item="item2"; echo get_post_meta($post->ID, $item,
 true); ?>
<?php $item="item3"; echo get_post_meta($post->ID, $item,
 true); ?>
<?php $item="item4"; echo get_post_meta($post->ID, $item,
 true); ?>

If you save and refresh, you should see the images all appear, stretching
down the page one after the other.

Chapter 3

[109]

It's time now to wrap these items with our carousel markup. (Remember,
you'll find this back in our original index.html file as well as in the
WYSIWYG editor.)

6. We'll start with the fundamental parent div followed by the carousel
indicators as shown in the following code snippet:
<?php while (have_posts()) : the_post(); ?>
 <div id="homepage-feature" class="carousel slide">
 <ol class="carousel-indicators">
 <li data-target="#homepage-feature" data-slide-to="0"
 class="active">
 <li data-target="#homepage-feature" data-slide-
 to="1">
 <li data-target="#homepage-feature" data-slide-
 to="2">
 <li data-target="#homepage-feature" data-slide-
 to="3">

7. Then, we'll begin the carousel-inner element and wrap each of our custom
field tags in div class as item, the first one with the active class as shown
in the following code snippet:
<div class="carousel-inner">
 <div class="item active">
 <?php $item="item1"; echo get_post_meta($post->ID,
 $item, true); ?>
 </div>
 <div class="item">
 <?php $item="item2"; echo get_post_meta($post->ID,
 $item, true); ?>
 </div>
 <div class="item">
 <?php $item="item3"; echo get_post_meta($post->ID,
 $item, true); ?>
 </div>
 <div class="item">
 <?php $item="item4"; echo get_post_meta($post->ID,
 $item, true); ?>
 </div>
</div><!-- /.carousel-inner -->

8. And we'll finish with the carousel controls.
<!-- Controls -->
 <a class="left carousel-control" href="#homepage-feature"
 data-slide="prev">

Bootstrappin' a WordPress Theme

[110]

 <a class="right carousel-control" href="#homepage-
 feature" data-slide="next">

</div><!-- /#homepage-feature.carousel -->

9. With the carousel markup in place, save the file.
Refresh your browser and you should see the functioning carousel again!

Now we just need to pull in our columns.

Adding our content columns from custom
fields
To pull in the content for our three columns, we'll repeat a process very similar to the
previous steps.

The following template tags will pull in the custom field for each column:

<?php $column="column1"; echo get_post_meta($post->ID, $column,
 true); ?>
<?php $column="column2"; echo get_post_meta($post->ID, $column,
 true); ?>
<?php $column="column3"; echo get_post_meta($post->ID, $column,
 true); ?>

Chapter 3

[111]

Then, we need only to nest these within our markup structure—including the
container, row, and column classes.

<div class="page-contents container">
 <div class="row">
 <div class="col-sm-4">
 <?php $column="column1"; echo get_post_meta($post->ID, $column,
true); ?>
 </div>
 <div class="col-sm-4">
 <?php $column="column2"; echo get_post_meta($post->ID, $column,
true); ?>
 </div>
 <div class="col-sm-4">
 <?php $column="column3"; echo get_post_meta($post->ID, $column,
true); ?>
 </div>
 </div><!-- /.row -->
</div><!-- /.container -->

Save your results, and you should see the three columns appear in their
designated layout.

Next let's put our footer content in place.

Bootstrappin' a WordPress Theme

[112]

Putting the footer content in place
Roots comes with a built-in footer widget area, which we can use to place the
markup for our social icons:

1. In your WordPress Dashboard, go to Appearance | Widgets.
2. On the far right, beneath the Primary widget area, you'll see a widget area for

the Footer.
3. Click on it to expand it.
4. Drag a Text widget into it.
5. Now, copy the markup for our social icons from the original index.html file

as shown in the following code snippet:
<ul class="social">
 <span class="icon fa fa-
twitter">
 <span class="icon fa fa-
facebook">
 <span class="icon fa
fa-linkedin">
 <span class="icon fa fa-
google-plus">
 <span class="icon fa fa-
github-alt">

6. Paste this block of markup into the large text area.

7. Do not give it a title.

Chapter 3

[113]

8. Do not check the Automatically add paragraphs checkbox.
9. Click on the Save button.
10. Refresh the Home page.

Recall that we've structured the icons in an unordered list. We've not yet
added our custom styles nor our icon font, so you will likely see only the
bullets of our unordered list appear.

Now, at last, it's time to put our custom site assets in place!

Before we swap out the Roots assets, let's pause to observe what's there. It will help
the next steps make more sense.

Surveying the Roots assets folder
The Roots theme keeps its css, less, js, and img folders organized in its assets
folder. Inside the assets folder, the structure is very similar to our structure from
the Chapter 2, Bootstrappin' Your Portfolio, Portfolio site, as it is based, like ours, on
the HTML5 Boilerplate.

We will soon replace Roots' assets with our own. But it's worth knowing how Roots
works before we do so. Let's size up the contents of the Roots assets folder. The
contents are shown in the following screenshot:

Bootstrappin' a WordPress Theme

[114]

The Roots documentation (http://roots.io/roots-101/#theme-assets) explains
how the files work together:

• In the less folder, the app.less file manages all style rules. It begins
by importing all Bootstrap styles from the bootstrap.less file in the
bootstrap folder and then provides commented sections with recommended
selectors to write custom lines of LESS.

• The app.less file is intended to be compiled to the main.min.css file in the
css folder.

• Also in the css folder is editor-style.css, which is used to supply custom
styles to the WordPress visual editor.

• The js folder contains _main.js, which is intended to manage custom lines
of JavaScript. (The file is equipped with a method to specify and limit the
scope of lines of JavaScript to just the context(s) where needed.)

• The plugins folder inside the js folder holds all Bootstrap plugins, and is
also intended to help manage any additional plugins.

• Like the HTML5 Boilerplate, the vendor folder contains essential standalone
files and libraries, initially jQuery and Modernizr.

• Rather than combining plugins into a plugins.js file, the Roots strategy
is to combine all plugins together with _main.js into a single file
scripts.min.js.

In the Roots main folder is a Gruntfile, which can be used (dependent on the
installation of Grunt on your system) to do the work of compiling LESS to CSS
as well as combining, minifying, and concatenating the JavaScript files.

Of course, we're not dependent on Grunt to accomplish this. The LESS compiler
we've used in the previous chapters will continue to do its job just fine. And we can
manage the combining, minifying, and concatenating of JavaScript by other means
as well. (See Appendix A, Optimizing Site Assets.)

At present, we simply want to bring in the styles, scripts, and fonts we've already
built in Chapter 2, Bootstrappin' Your Portfolio. The simplest, most straightforward
way to do this is to swap the Roots assets folder for our own folder of assets.

Swapping design assets
In the exercise files, I've provided a folder named __BOOTSTRAPPIN_PORTFOLIO_
ASSETS, which includes a version of our assets files from Chapter 2, Bootstrappin'
Your Portfolio with a few modifications.

Chapter 3

[115]

If you care to look inside this folder, there are a few new touches. I've moved the
favicon.ico and apple-touch-icon-precomposed.png files from the main folder
to their own ico folder. Most importantly, I've optimized and compressed the CSS
and JavaScript files main.css, main.js, and plugins.js in the steps outlined in
Appendix A, Optimizing Site Assets.

Inside the __BOOTSTRAPPIN_PORTFOLIO_ASSETS folder, you'll now see this
structure. I've highlighted the files that will be directly linked to our theme
as shown in the following screenshot:

The easiest way to move forward is to move boldly. Let's swap folders:

1. Rename Roots's assets folder to __ROOTS-ASSETS-ORIGINAL.
2. Rename __BOOTSTRAPPIN_PORTFOLIO_ASSETS to assets.
3. Now, bear in mind, we will need to update the links to our CSS and JavaScript

files, as the Roots' file-naming scheme is slightly different from ours.
4. So, refresh your site, and you should see everything broken, that is, the

results of our markup with no stylesheet.

Let's connect our stylesheet!

Bootstrappin' a WordPress Theme

[116]

Connecting our stylesheet
We want to update Roots to use our main.css stylesheet. For this, perform the
following steps:

1. If you view source on your WordPress site and look for the stylesheet link,
you'll see that our path is correct, but that the Roots stylesheet was named
main.min.css with a version number added. Thus, the path in my locally
installed version of WordPress looks like the following path:
<link rel="stylesheet" href="http://localhost:8888/bootstrappin-
portfolio/assets/css/main.min.css?ver=9a2dd99b82ca338b034e8730b
94139d2">

The Roots Gruntfile generates the version number using an MD5
hash. (See the documentation on this at http://roots.io/
using-grunt-for-wordpress-theme-development/.)
This workflow, while a great one, is beyond the scope of this
book. We won't be generating a version number for our file.

2. We simply need to update this link to point to our main.css file.
3. Roots manages links to stylesheets and scripts using a file in its lib

folder called scripts.php.
4. Open scripts.php in your editor.
5. Edit the enqueue script lines early in the file. Initially, it reads as the

following line of code:
wp_enqueue_style('roots_main', get_template_directory_uri()
 . '/assets/css/main.min.css', false,
 '9a2dd99b82ca338b034e8730b94139d2');

When done, our updated line should read as the following line of code:

wp_enqueue_style('roots_main', get_template_directory_uri()
 . '/assets/css/main.css', false, null);

Chapter 3

[117]

6. Save the changes. Refresh to see if the changes took effect. You should see
our custom styles back in place as well as our Font Awesome icons as shown
in the following screenshot:

Pause. Enjoy!

But, you may notice that the carousel isn't running. Nor does the responsive
navigation button work. We need to connect our JavaScript files.

Connecting our JavaScript files
Roots manages JavaScript links in the same file as the stylesheet link.

So, with scripts.php open in your editor, first, we'll check to make sure that our
jQuery local fallback is connecting as it should be:

1. Look for the following lines, which are midway down the scripts.php file
in the lib folder:
if ($add_jquery_fallback) {
 echo '<script>window.jQuery || document.write(\'<script

Bootstrappin' a WordPress Theme

[118]

 src="' . get_template_directory_uri() .
 '/assets/js/vendor/jquery-
 1.10.2.min.js"><\/script>\')</script>' . "\n";
 $add_jquery_fallback = false;
}

2. We need to check and make sure that this path and filename matches our
path and filename:
/assets/js/vendor/jquery-1.10.2.min.js

As of this writing, and in the exercise files folder 03_Code_BEGIN, the version
of the HTML5 Boilerplate used in Chapter 2, Bootstrappin' Your Portfolio, is in
sync with the Roots theme, so the files match.
If you need to reconcile different versions of jQuery, you'll want to update
the filename here and also update the Google CDN link, which is there earlier
in the file in the following lines of code:

if (!is_admin() && current_theme_supports('jquery-cdn')) {
 wp_deregister_script('jquery');
 wp_register_script('jquery',
 '//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js',
 false, null, false);

3. Next, we need to double-check our link to the Modernizr script.

Recall from Chapter 1, Getting Started with Bootstrap, that this
script adds HTML5 support for the Internet Explorer 8, among
other good and useful things, such as updating our HTML tag
classes, so we really do want it to work.

You'll find the link to Modernizr in the top section of the file within the
roots_scripts() function:
wp_register_script('modernizr', get_template_directory_uri() .
 '/assets/js/vendor/modernizr-2.6.2.min.js', false, null,
 false);

You simply need to check to ensure that the path and the filename/version
match. Again, the files I've used and have provided in the exercise files
match. In your case, update as needed.

Chapter 3

[119]

4. Finally, we need to create links to our plugins.js and main.js files and
unhook the Roots equivalent. We'll do this in reverse order shown as follows:

 ° Start editing the scripts.php file in the lib folder.
 ° Roots combines plugins and custom scripts together in one file and

registers that script using the following line of code:
wp_register_script('roots_scripts',
 get_template_directory_uri() .
 '/assets/js/scripts.min.js', false,
 '2a3e700c4c6e3d70a95b00241a845695', true);

We need to comment out or remove that line, so do that now.

 ° Then, also remove the corresponding line, just a few lines after the
previous line of code:
wp_enqueue_script('roots_scripts');

 ° Now, we'll register our two script files as shown in the following
lines of code:
wp_register_script('plugins_script',
 get_template_directory_uri() . '/assets/js/plugins.js',
 false, null, true);
wp_register_script('main_script',
 get_template_directory_uri() . '/assets/js/main.js',
 false, null, true);

 ° Then, we'll enqueue them with the following lines of code:
wp_enqueue_script('plugins_script');
wp_enqueue_script('main_script');

 ° Save it and then refresh the page in your browser.

View source and you should see the following lines of code appear (replacing
the original) just after the footer tag and before the closing body tag (with the
full URL varying depending on the location of your installation):
</footer>
<script type='text/javascript'
 src='http://localhost:8888/bootstrappin-
 portfolio/assets/js/plugins.js'></script>
<script type='text/javascript'
 src='http://localhost:8888/bootstrappin-
 portfolio/assets/js/main.js'></script>
</body>
</html>

Bootstrappin' a WordPress Theme

[120]

Test the carousel, and it should work.
Test the responsive navbar. It should collapse and gain its drop-down button
at narrow window width. The button should expand and then collapse the
navbar as designed!

Now let's add our logo image both to the navbar and to the footer.

Adding logo images to the navbar and
footer
Let's start by placing the markup for our logo image within the navbar-brand
link. We'll find the markup for this in the header-top-navbar.php file in the
templates folder:

1. Open the header-top-navbar.php file inside the templates folder in
your editor.

2. Find the following element:
<a class="navbar-brand" ...

3. Delete the following tag, which places our site name within the
navbar brand link:
<?php bloginfo('name'); ?>

4. Replace the previous line of code with the appropriate tag for our
logo image:
<img src="<?php echo get_template_directory_uri(); ?>/assets/img/
logo.png" width="120" alt="Bootstrappin'">

Remember that the logo image is built large so that it appears
crisp in a retina display. So, be sure to include the width
attribute. Otherwise, it will appear much too large.

5. Save your results.
6. If you refresh your page, you should see the logo image appear as shown in

the following screenshot:

Chapter 3

[121]

Now for the footer.

Our social icons should be working. The default Roots copyright line will be below
them. Let's remove that—at least for the purposes of these exercise files—and place
our site logo above the icons.

We'll do this in the footer template file as shown in the following steps:

1. Open the footer.php file in the template folder in your editor.
2. I'll remove the following line of code as these exercise files aren't

copyrighted:
<p>© <?php echo date('Y'); ?> <?php bloginfo('name');
 ?></p>

3. Then, create a new line above the dynamic sidebar as follows:
[NEW LINE HERE ...]
<?php dynamic_sidebar('sidebar-footer'); ?>

4. And add a link for our site logo as follows:
<p><a href="<?php echo home_url(); ?>/"><img src="<?php
 echo get_template_directory_uri();
 ?>/assets/img/logo.png" width="80"
 alt="Bootstrappin'"></p>

As in the navbar, be sure here to include the width attribute;
otherwise, the image will be much too large.

We've employed the WordPress template tags for the home_url link and for
the templates folder. I've wrapped it in a paragraph, but you could choose
another element if desired.

5. Save the file. Refresh your browser and you should see the following
screenshot:

Our design is nearly complete. But let's not forget our favicon and touch icon.

Bootstrappin' a WordPress Theme

[122]

Adding icon links
To make our theme more easily portable, we need to add links for the favicon.ico
and apple-touch-icon-precomposed.png files in the head.php template file:

1. Open the head.php file in the templates folder.

2. Add links to our favicon.ico and apple-touch-icon-precomposed.png
files using the WordPress PHP function get_template_directory_uri() to
begin the file path. Then, reach into our ico folder inside the assets folder
for the files shown as follows:
<!-- Icons -->
<link rel="shortcut icon" href="<?php echo
 get_template_directory_uri(); ?>/assets/ico/favicon.ico">
<link rel="apple-touch-icon-precomposed" href="<?php
 echo get_template_directory_uri(); ?>/assets/ico/apple-
 touch-icon-precomposed.png">

3. Save and refresh the file, and depending on your browser's behavior, you
should see your favicon appear.
Here is the screenshot of my resulting favicon in the Google Chrome
browser:

Now we just need to attend to a couple of last details to address the specific needs
of a WordPress theme.

Chapter 3

[123]

Adding back WordPress-specific styles
There is a reason we saved the original Roots assets in the __ROOTS_ASSETS_ORIGINAL
folder. Though we have everything we need for our design, Roots included two key
sets of WordPress-specific styles that we lack and may want to bring back in.

First, in the original Roots CSS folder, you'll find the editor-style.css file. As
this file enables us to improve the WYSIWYG editing experience, we may want to
copy this file to our own CSS folder. (You could also opt to create your own custom
version of this file to more closely match your custom styles.)

Second, if we intend to have a blog in our site or to distribute our theme, we'll
want to recover a few key styles specific to WordPress, which Roots has provided
us in the app.less file in the less folder. It is only a small matter to add these to
our own custom LESS file and then recompile into our main.css file. To add
WordPress-specific styles, perform the following steps:

1. Open the Roots app.less file inside the less folder in your editor.
2. In another editor window, create a new file named _wp.less and save it

within our own custom assets in the less folder as shown in the following
screenshot:

3. Copy the following lines of code from app.less to _wp.less as they ensure
we address WordPress-generated classes for images:
/* ========================
 WordPress Generated Classes
 ...
 ======================== */

aligncenter { display: block; margin: 0 auto; }
alignleft { float: left; }
alignright { float: right; }
figure.alignnone { margin-left: 0; margin-right: 0; }

Bootstrappin' a WordPress Theme

[124]

4. If you anticipate running a blog in your WordPress site, you'll also want
to speed up your blog design process by adding the section of selectors for
posts. The selectors found here cover the elements and class names used in
the Roots template for blog posts.
/* ========================
 Posts
 ======================== */

hentry header { }
hentry time { }
hentry .byline { }
hentry .entry-content { }
hentry footer { }

5. If you anticipate using a sidebar in a section of your site, grab the
.sidebar selector.

6. You may want to pull over other selectors as reminders of the classes
that Roots uses by default: .content, .main, .sidebar, and so on.

7. Also note the styles used for gallery shortcode:
/* Gallery Shortcode */
.gallery-row { padding: 15px 0; }

8. After bringing over the lines you'd like to keep, take a few moments
to convert comments from block comments to single-line comments
so that they will not compile to CSS.
// Posts
// ------------------------
...

// WordPress Generated Classes
// ------------------------

9. Save _wp.less.
10. Close app.less.
11. Now open __main.less and add a line to import _wp.less as shown in the

following lines of code:
// Other custom files
@import "_page-contents.less";
@import "_footer.less";
@import "_wp.less";

Chapter 3

[125]

12. Recompile __main.less to css/main.css—being sure to minify the CSS
output to ensure best performance.

That's it! Not only have we integrated our custom design, but we've prepared our
theme for whatever we may need to do next with WordPress.

Summary
Let's review what we've done:

• We began with the excellent Roots theme as our starter theme for WordPress
• We've asserted control over the markup structure by customizing the

following template files:
 ° head.php: This is used to add favicon and touch icon links
 ° header-top-navbar.php: This is used to add our logo image
 ° footer.php: This is used to add our logo image

• We've created the following custom template files:
 ° page-home.php—from template-custom.php
 ° base-page-home.php—from base.php
 ° content-home.php—from content-page.php

• We've utilized custom fields to manage the content of our complex
home page

• We've leveraged a footer widget to put our social media icons in place
• We've integrated our own custom-compiled assets—our LESS, CSS,

and JavaScript
• To integrate our custom design assets, we've edited Roots' scripts.php file

to update links to our CSS and JavaScript files
• And we've brought back in from Roots a set of styles helpful for addressing

details of a WordPress website

Congratulations! That's quite an accomplishment.

The process we've used in this chapter can be used to transform any Bootstrap
design into a WordPress theme.

So, let's turn back to designing with Bootstrap. Next, we are going to design a
business site.

Bootstrappin' Business
We've built our portfolio site and converted it to a WordPress theme. Now, it's
time to flesh out our portfolio with some projects that demonstrate the range of
our powers. Let's now turn to designing a complex business home page.

Take a moment to survey the home pages of successful businesses, such as these:

• Zappos (http://zappos.com)
• Amazon (http://amazon.com)
• Adobe (http://adobe.com)
• HP (http://hp.com)

While each has its own approach, what these sites have in common is that they
manage considerable complexity.

We can get a grasp of some common features by breaking the website down into
three categories, as follows, based on regions of the page:

• Banner/Masthead: This part contains the logo, main navigation with
dropdowns, a secondary or utility navigation, and a login or register option

• Main content area: This features a complex layout with at least three
columns, if not more

• Footer: This is filled with multiple columns of links and information

Let's demonstrate our ability to manage this degree of complexity. To do so, we will
take full advantage of Bootstrap's responsive 12-column grid system.

Bootstrappin' Business

[128]

Here is the design we'll create, when viewed in medium and wide viewports:

Chapter 4

[129]

In narrow viewports, it will adapt considerably, as shown in the following screenshot:

After that, we will perform the following steps:

1. Begin with a set of starter files based on the Portfolio project from Chapter 2,
Bootstrappin' Your Portfolio.

2. Create a complex banner with the logo above the navbar and a utility
navigation in the far top-right corner—in desktop viewports.

3. For smaller viewports, we'll enable our utility options to appear only as icons
atop the collapsed responsive navbar.

4. Implement a business-style color scheme.
5. Make adjustments to both the responsive and desktop versions of the navbar.
6. Set up complex multicolumn grids for the main content and footer areas.

First things first. Let's size up our project starter files.

Bootstrappin' Business

[130]

Sizing up our beginning files
As with all the projects in this book, the beginning files for this project be
downloaded from the Packt Publishing website at http://www.packtpub.com/
support. You'll find the files for this project in the folder 04_Code_BEGIN.

These files are based largely on our results from Chapter 2, Bootstrappin' Your Portfolio.
Thus, we have the benefit of these key components:

• Bootstrap LESS and JavaScript files, which have been organized in the
following directories:

 ° less/bootstrap: This contains Bootstrap's LESS files
 ° js/bootstrap: This contains Bootstrap's individual plugins
 ° js/plugins.js: This contains all Bootstrap plugins in minified form

• The HTML5 Boilerplate along with the following files:
 ° The basic markup structure of index.html
 ° js/vendor/modernizr-2.6.2.min.js

 ° js/vendor/query-1.10.2.min.js

• The respond.js file for Internet Explorer 8 compatibility:
 ° js/vendor/respond.js

• Font Awesome font icons, including the following:
 ° Icon fonts in the fonts directory
 ° LESS files in the less/font-awesome directory

In addition to these key assets, we have some of the custom LESS touches we created
during the project in Chapter 2, Bootstrappin' Your Portfolio. They can be found in the
following files that are present in the less directory:

• __main.less: This is based on bootstrap.less, customized to import
Bootstrap's LESS files from the less/bootstrap directory as well as Font
Awesome font icons and our custom LESS files

• _carousel.less: This is based on Bootstrap's carousel.less file and has
custom touches on the carousel padding, background, and indicators

• _footer.less: This contains styles for the layout and design of the logo and
social icons

Chapter 4

[131]

• _navbar.less: It is based on Bootstrap's navbar.less file and has adjusted
padding in the .navbar-brand class to enable the navbar logo to fit

• _page-contents.less: It contains styles to ensure that columns with floated
buttons clear one another in narrow single-column layouts

• _variables.less: It is based on Bootstrap's variables.less file and has
custom versions of gray and some adjustments to variables for the navbar
and carousel

If desired, you could choose to follow the steps for this exercise with a
fresh download of Bootstrap's assets. You'll simply need to use Glyphicons
rather than Font Awesome icons. You'll lack the custom styles from these
files, but you can adjust and adapt your own approach.

I've sought to indicate the customizations I've made to files copied from
Bootstrap with single-line comments—commenting out a line or adding
comments such as // edited or // added.

Next, let's examine the content provided in the index.html file, as I've set it up to give
us a running start. Open it in your browser, and you should see this in desktop width:

Bootstrappin' Business

[132]

Note the following features:

• A complex navbar that has seven main nav items, each with a dropdown
• The first of the three columns is equipped with a carousel, followed by a

heading, paragraph, and button
• The second and third columns that have headings, paragraphs, and Read

more -> buttons
• A footer that has the logo and social icons

You'll recognize elements we've already worked with in Chapter 2, Bootstrappin'
Your Portfolio. The carousel is now smaller—constrained by its containing column.
Otherwise, the markup is the same.

One wrinkle is that I've used the excellent holder.js JavaScript plugin to
dynamically generate placeholder images for our carousel. If you examine the
markup, you'll see near the bottom of the page that I've included the holder.js
script right before plugins.js, as follows:

<!-- Holder.js for project development only -->
<script src="js/vendor/holder.js"></script>

We won't be using placeholder images in our final production site, so it makes sense
to link it separately with a prominent comment.

With holder.js in place, we can conveniently build image tags that reference
holder.js as their source. The remainder of the pseudo-URL specifies dimensions,
color, and filler text, as follows:

<img src="holder.js/600x480/auto/vine/textmode:literal"
 alt="Holder Image">

For more information about holder.js, consult the documentation at
https://github.com/imsky/holder.

With these elements in place—and thanks in particular to Bootstrap's ready repertoire
of styles and behaviors—we're starting out in good shape. Let's get to the details.

First, we'll reposition our navbar within a more complex banner design.

Chapter 4

[133]

Creating a complex banner area
Let's start from the top and create our complex banner area with the following
features:

• A site logo positioned above the navbar for desktops and larger viewports
• A navbar with many menu items, including dropdowns
• A utility navigation area
• A login form with username and password
• An option to register

Here is the mockup of our desired end goal on a desktop-width viewport:

On a narrow viewport, it will adjust to this:

We'll start by working on a new arrangement for our top logo.

Placing a logo above the navbar
In this new design, we need a logo in two spots, for two contexts:

• For desktop and widescreen viewports, we want the logo to display above
the navbar

• For tablet and phone viewports, we want the logo to display within the
responsive navbar

Thanks to Bootstrap's responsive utility classes, we can do both! Here's how:

1. Open index.html in your editor.
2. From the navbar, copy the navbar-brand link and image. It looks like this:

<img src=
 "img/logo.png" alt="Bootstrappin'" width="120">

Bootstrappin' Business

[134]

3. Paste a copy of it up above, just after the <header role="banner"> tag and
before <nav role="navigation" class="navbar navbar-default">.

4. Wrap the logo with <div class="container">...</div> to constrain it
within Bootstrap's centered grid space.

5. Edit the class on your new logo link, so that it reads banner-brand rather
than navbar-brand. And let's change the image width attribute to 180.

Recall that our original logo image is large, about 900px wide.
We've resized it to 120px wide via the width attribute (we could
alternatively use CSS rules) in order to pack its pixels tighter for
retina screens.

The resulting code should look like this:

<header role="banner">
 <div class="container">
 <img src="img/logo.png"
alt="Bootstrappin'" width="180">
 </div><!-- /.container -->
 <nav role="navigation" class="navbar navbar-default">

Save the changes and refresh the page in your browser. You should see the new copy
of the logo above the navbar.

Now let's adjust our logos so that they are displayed only when needed.

In _variables.less, we need to double-check the value of the @grid-float-
breakpoint variable. You'll find it by searching for the variable name. This value is
set as follows in the default less/bootstrap/variables.less file:

// Point at which the navbar stops collapsing
@grid-float-breakpoint: @screen-sm-min;

Chapter 4

[135]

This variable determines the point at which the navbar collapses for narrower
viewports and expands for wider viewports. In our case, given the complexity
of our navigation, we need to ensure that the navbar collapses at the next, larger
breakpoint. Therefore, we need to ensure our variable is set at the @screen-md-min
breakpoint. If you began with the 04_Code_BEGIN files, you should see this already
set as follows. (If not, you'll need to update it.)

// Point at which the navbar stops collapsing
@grid-float-breakpoint: @screen-md-min;

With this variable set appropriately, we now want the banner-brand class to display
for medium and large viewports only and navbar-brand to display only for small
and extra-small viewports. Bootstrap provides a set of helpful responsive utility
classes to address just this need. You can see the documentation on these classes at
http://getbootstrap.com/css/#responsive-utilities.

Let's put them to use for our purposes:

1. Add the class visible-md visible-lg to the banner-brand class:
<a class="banner-brand visible-md visible-lg"
 href="index.html"><img src="img/logo.png"
 alt="Bootstrappin'" width="180">

2. Add the class visible-xs visible-sm to the navbar-brand class:
<a class="navbar-brand visible-xs visible-sm"
 href="index.html"><img src="img/logo.png"
 alt="Bootstrappin'" width="120">

Save the changes and refresh the page, and you should see these results! In medium
and large viewports, only the banner-brand class will appear:

In small and extra-small viewports, only the navbar-brand will appear:

Bootstrappin' Business

[136]

Ah, the beauty of Bootstrap!

If you are concerned about having both sets of tags for these
alternately hidden logo images cluttering up your markup, it is
possible to get the same result with a bit of JavaScript work to swap
out the elements as needed.
An advantage of the current approach, however, is that it does not
rely upon JavaScript. It doesn't slow page loading times either,
since we are using the same image in both places and require no
new HTTP requests. All in all, our current approach is a credible,
defensible solution; in addition to being easy to implement.

Now, let's make some adjustments to our navbar.

Reviewing and checking navbar dropdown
items
The navbar, with its seven items and submenus, reflects the needs of a large
complex website.

The markup for the dropdown menus is taken directly from the Bootstrap navbar
documentation at http://getbootstrap.com/components/#navbar.

If you look at our resulting markup, you'll notice these special classes and attributes:

• class="dropdown" on the parent li
• class="dropdown-toggle" on the link
• attribute="data-toggle" also on the link
• class="dropdown-menu" on the submenu ul element

Here is the resulting markup:

<li class="dropdown">
 Shoes
 <b class="caret">
 <ul class="dropdown-menu">
 Action
 Another action
 Something else here
 ...

Chapter 4

[137]

Also note the special tag and class used to display a small dropdown indicator:
<b class="caret">. (You'll see the CSS used to create this indicator in less/
bootstrap/dropdowns.less.)

If you happen to be making use of files from a previous project
rather than this chapter's starter files (04_Code_BEGIN), you may
need to double-check your import lines in _main.less to ensure
that it imports bootstrap/dropdowns.less. Also double-check
plugins.js to ensure that it includes the plugin bootstrap-
dropdown.js.

With the LESS, JavaScript, and markup in place, our navbar and its dropdowns
should presently look and work as shown in the following screenshot. (Note that
Bootstrap dropdowns respond on click.)

Now that we're familiar with the markup structure and have ensured everything's
working as it should, let's move the All Departments menu to the right-hand end of
the navbar, setting it apart from the others.

To do this, we need to nest this list item within its own unordered list as follows:

1. Before the All Departments list item, close the ul tag for ul class="nav",
which surrounds all previous menu items.

2. Start a new ul tag with the classes nav and navbar-nav before the All
Departments menu item. Once this opening tag is added, it will nest
this list item in the standard structure for navigation menus.

3. In addition to the classes nav and navbar-nav, add a third class,
pull-right, which is a convenient Bootstrap utility class, to float an
element to the right.

Bootstrappin' Business

[138]

The newly added lines are highlighted in the following snippet—after which I'll
include the original list item and link in context:

<ul class="nav navbar-nav pull-right">
 <li class="dropdown">
 All
Departments <b class="caret">

Save the changes and refresh the page, and you should see the All Departments
drop-down menu item float to the right-hand end of the navbar as follows:

So far so good! Now, let's add our utility navigation.

Adding utility navigation
This project requires utility navigation to allow users to log in or register and to view
their carts.

On medium and large viewports, we'll place this utility navigation in the very top-
right corner of our banner area as follows:

On smaller screens, we'll display icons at the far right of the collapsed navbar:

Let's set this up.

Chapter 4

[139]

Still working in index.html, we need to add the markup for our utility navigation
within the banner, just after the banner-brand attribute. Here is the full markup,
beginning with the opening header tag for our banner area. I've highlighted the new
utility-nav markup in the following code snippet:

<header role="banner">
 <div class="container">
 <a class="banner-brand visible-md visible-lg" href=
 "index.html"><img src="img/logo.png" alt="Bootstrappin'"
 width="180">
 <div class="utility-nav">

 <i class="icon
 fa fa-user fa-lg"></i> Log In or Register
 <i class="icon fa fa-
 shopping-cart fa-lg"></i> View Cart

 </div><!-- /.utility-nav -->
 </div><!-- /.container -->

Note a few things about this markup:

• The class utility-nav is simply created for our use. It is not a Bootstrap
specific class and has no specific styles attached.

• I've included Font Awesome's user and shopping cart icons and added
the class of fa-lg to increase their size by 33 percent. See Font Awesome's
documentation on this at http://fontawesome.io/examples/#larger.

Save the changes and refresh the page, and you should see our new utility-nav
class appear just below the banner-brand logo as follows:

Bootstrappin' Business

[140]

Now, to complete the layout and related adjustments, we need to apply some
custom styles. We need a new file to manage styles for our banner area. This can be
accomplished as follows:

1. Create a new file, _banner.less, and save it directly within the less folder,
alongside our other custom LESS files.

2. Add _banner.less to the import sequence in __main.less.
// Other custom files
@import "_banner.less"; // added

3. In _banner.less, provide a helpful comment at the top. We need to set
the position of .utility-nav to absolute, at the top right. We'll specify
header[role="banner"] as the context for these styles.
//// Banner Area Styles
//
header[role="banner"] {
 .utility-nav {
 position: absolute;
 top: 0;
 right: 0;
 }
}

4. Now, let's refine the details as follows:
1. Increase the height of our banner area by adding top padding to the

.banner-brand class.
2. Set the positioning of the banner container to relative so that it

will contain our absolute-positioned utility-nav class.
3. Remove bullets from the unordered list.
4. Float the list items on the left.
5. Display the inline-block links and add padding.
6. Remove underlines from the hover effect.

Chapter 4

[141]

The following lines will accomplish these goals:
header[role="banner"] {
 .banner-brand {
 padding-top: 40px;
 }
 > .container {
 position: relative;
 }
 .utility-nav {
 position: absolute;
 top: 0;
 right: 0;
 > ul {
 list-style: none;
 > li {
 float: left;
 > a {
 display: inline-block;
 padding: 8px 12px;
 &:hover {
 text-decoration: none;
 }
 }
 }
 }
 }
}

Save the changes and ensure that it compiles. Make sure your browser window is at
desktop width. Refresh it. You should see your utility-nav class take its place at
the top right of the banner:

That takes care of medium viewports and larger. Now, let's address the needs of the
collapsed responsive navbar.

Bootstrappin' Business

[142]

Making responsive adjustments
Our utility-nav class runs into problems when the navbar collapses for small
screens. The most immediate problem is that it disappears:

We can make our utility-nav class visible again by assigning it a z-index value
greater than that of the navbar's, which is set to 1000 by a variable in _variables.
less. In _banner.less, set the z-index property of .utility-nav to 1999.

.utility-nav {
 ...
 z-index: 1999;

This will bring our utility navigation back to the foreground as seen in the
following screenshot:

Now the problem is that it overlaps our navbar-toggle button. We need to move
the toggle to the left side of our navbar. This can be done as follows:

1. Open less/_navbar.less in your editor.
2. Search for the comment // Navbar toggle. We'll edit the lines within the

.navbar-toggle selector immediately beneath this comment, changing the
float value from right to left and margin-right to margin-left:

.navbar-toggle {
 position: relative;
 float: left; // edited
 margin-left: @navbar-padding-horizontal; // edited

Chapter 4

[143]

Save and compile these changes, and you'll see the navbar toggle shift to the left end
of the collapsed navbar, as shown in the following screenshot:

So far so good.

Now to address the problem of crowding by hiding the text for all devices except for
screen readers on the collapsed navbar. In an uncluttered collapsed navbar, the icons
will be enough to communicate the point, especially if we make the icons larger. Let's
do that:

1. In index.html, place span tags around the text within each link of our
utility-nav class as follows:
<i class="icon fa
 fa-user fa-lg"></i> Log In or
 Register
<i class="icon fa
 fa-shopping-cart fa-lg"></i>
 View Cart

This will give us a handle for our upcoming style adjustment.

2. Now, in _banner.less, we'll add a media query to target these span tags.
Thanks to the power of LESS, we can nest the media query precisely where
we want it to do its work. We'll use the @grid-float-breakpoint variable,
setting a max-width query to the @grid-float-breakpoint value minus
one, since this variable determines the point at which our navbar makes the
transition from collapsed to expanded. Within this media query, we'll use
the utility class sr-only as a mixin to hide text from all devices except screen
readers. (See the documentation on this class at http://getbootstrap.com/
css/#helper-classes-screen-readers.) Here is the code snippet:
.utility-nav {
 ...
 ...
 > a {
 ...

Bootstrappin' Business

[144]

 @media (max-width: (@grid-float-breakpoint - 1)) {
 span {
 .sr-only();
 }
 }
 }
}

This will hide the text between our span tags, leaving us only with the icons!

3. Now, we will increase the size of the icons and add some line height to
position them vertically. We'll do this within the same media query:
@media (max-width: @grid-float-breakpoint) {
 span {
 .sr-only();
 }
 .icon {
 font-size: 2em;
 line-height: 1.2;
 }
}

Save, compile, and refresh; you should see the following result:

Take a minute to resize your browser window back and forth across the breakpoint.
You should see the entire banner and navbar adjust seamlessly across the breakpoint.

If you're like me, it's hard not to be pleased with a framework that enables us to be
this efficient at building such an adept and responsive interface.

Next up, we need to begin implementing the color scheme.

Chapter 4

[145]

Implementing the color scheme
We've been provided with a business-friendly palette of blue, red, and gray. Let's
work these colors into our color variables:

1. Open _variables.less in your editor. We'll be working at the beginning of
the file, in the color variables.

2. Let's review the range of grays we have available. If you've begun with
the 04_Code_BEGIN files, you'll see we've carried these variables over from
Chapter 2, Bootstrappin' Your Portfolio. They served us well there, and we'll
make use of them again here.
// Grays
// -------------------------

@gray-darker: #222; // edited
@gray-dark: #454545; // edited
@gray: #777; // edited
@gray-light: #aeaeae; // edited
@gray-lighter: #ccc; // edited
@gray-lightest: #ededed; // edited
@off-white: #fafafa; // edited

3. Now, below the grays, let's fold in our new brand colors. We'll modify the
value for @brand-primary and create an @brand-feature variable for red:
@brand-primary: #3e7dbd; // edited blue
@brand-feature: #c60004; // added new red

4. Now, let's adjust our link hover color so that it will lighten (rather than
darken) the @brand-primary color, which is already dark:
// Links
// -------------------------
@link-color: @brand-primary;

@link-color-hover: lighten(@link-color, 15%);

Having set up these fundamental color variables, we're ready to work on our navbar.

Styling the collapsed navbar
While still in _navbar.less, search for // Navbar, which will take you to the
navbar variables. Note that most of the standard values specified here will affect
both the collapsed responsive navbar for small viewports and the expanded navbar
for wider viewports.

Bootstrappin' Business

[146]

We want the background, text, and link colors for the collapsed responsive navbar
to remain largely consistent with the default values but then change to our blue
background and a light text color for medium and larger viewports.

Let's check and adjust a few values for the default variables and then create a new set
of variables to apply only to the expanded navbar, as follows:

1. Reduce the value of @navbar-height to 44px, and then apply the variables
we set earlier where they fit here. Change @navbar-default-color to @
text-color and @navbar-default-bg to @white.
// Basics of a navbar
@navbar-height: 44px;
...
@navbar-default-color: @text-color;
@navbar-default-bg: #fff;

2. Moving on down to the navbar links section, make these adjustments, which
will make links consistent with navbar text and give active links a slight
background color adjustment:
// Navbar links
@navbar-default-link-color: @navbar-default-color;
@navbar-default-link-hover-color: @navbar-default-color;
@navbar-default-link-hover-bg: darken
 (@navbar-default-bg, 5%);
@navbar-default-link-active-color: @navbar-default-color;
@navbar-default-link-active-bg: @navbar-default-link-
 hover-bg;

3. Next, let's adjust the styling of navbar-toggle, removing the border and
background and darkening the bars:
// Navbar toggle
@navbar-default-toggle-hover-bg: transparent;
@navbar-default-toggle-icon-bar-bg: @gray;
@navbar-default-toggle-border-color: transparent;

Save, compile, and refresh the browser, and you should see the following result for
the collapsed navbar in narrow viewports:

Chapter 4

[147]

We have just two features of our collapsed navbar to refine. If you toggle the
collapsed navbar's dropdown behavior, you'll notice that the All Departments link
floats to the right.

Recall that we placed a pull-right class on the All Departments menu item, to
float it to the right on the expanded navbar. In this context, however, we'd like it
to remain to the left. Bootstrap has a class for this! Let's make the switch.

In index.html, find the lines for the All Departments markup and exchange the
class pull-right for navbar-right, as follows:

<ul class="nav navbar-nav navbar-right">
 <li class="dropdown">
 All
Departments <b class="caret">

If you'd like to see how this works, open _navbar.less and search for .navbar-
right. You'll find these lines with an explanatory comment above them:

@media (min-width: @grid-float-breakpoint) {
 .navbar-left { .pull-left(); }
 .navbar-right { .pull-right(); }
}

Bootstrappin' Business

[148]

Nested within a media query which applies only to the expanded navbar, these
classes were created exactly for cases such as ours. After applying the new navbar-
right class, save index.html, refresh it, and you'll see All Departments float to the
left in the collapsed navbar while still floating to the right on the expanded navbar.

Outstanding! Now, let's adjust the behavior of the drop-down menus within the
navbar. As of Bootstrap 3.0.2, the drop-down menu items are configured as full-
width within the collapsed navbar—but only when the navbar collapses at the
original @grid-float-breakpoint value of @screen-sm-min. Because we've
adjusted this value to @screen-md-min, our dropdowns no longer fill the full width.
You can test this by setting your browser window to the @screen-sm range (768-
991px) and trying the drop-down menu behavior.

You'll see this happen:

Chapter 4

[149]

We can fix this to behave as it should by adjusting one media query:

1. Open _navbar.less and search for .open.dropdown-menu. You will notice
that it's nested within a media query, like so:
@media (max-width: @screen-xs-max) {
 // Dropdowns get custom display when collapsed
 .open.dropdown-menu {

2. We need to adjust this media query so that its max-width value is the same as
the value of @grid-float-breakpoint. In fact, let's simply use that variable
itself, so that they will always correspond:
@media (max-width: @grid-float-breakpoint) {

Save the changes, compile the file, and refresh the page, and you should see that the
drop-down menus now expand to their full width:

Fantastic. Now we can address the horizontal navbar.

Bootstrappin' Business

[150]

Styling the horizontal navbar
For medium and large viewports—where our navbar stretches out horizontally
below the logo—we want our navbar to take on the blue color we've set up as our
@brand-primary variable. This will require us to invert the colors of links and text
from dark to light. We'll use Bootstrap's inverted-navbar variables and styles to
accomplish this as follows:

1. In _variables.less, search for the comment // Inverted navbar. There,
you'll find variables much like those for the default navbar. We'll use these
to apply the desired colors for our expanded navbar.

2. Adjust these variables as follows:
// Inverted navbar
//
// Reset inverted navbar basics
@navbar-inverse-color: @gray-lightest;
@navbar-inverse-bg: @brand-primary;
@navbar-inverse-border: darken
 (@navbar-inverse-bg, 10%);

// Inverted navbar links
@navbar-inverse-link-color: @navbar-inverse-color;
@navbar-inverse-link-hover-color: #fff;
@navbar-inverse-link-hover-bg: darken(@navbar-inverse-bg, 5%);
@navbar-inverse-link-active-color:@navbar-inverse-link-
 hover-color;
@navbar-inverse-link-active-bg: darken
 (@navbar-inverse-bg, 10%);

With these variables in place, we only need to apply these styles to the
expanded version of the navbar. This requires writing just a few lines of
custom LESS. Since this color shift is part of our overall strategy for the
banner area, let's add these to our _banner.less file.

3. Open _banner.less and add a new commented section with these lines:
// Apply .navbar-inverse styles to the expanded navbar
@media (min-width: @grid-float-breakpoint) {
 .navbar-default {
 .navbar-inverse();
 }
}

Chapter 4

[151]

This media query uses the @grid-float-breakpoint variable to establish
the minimum viewport width at which this new rule applies. Recalling that
we've already placed the class navbar-default on our navbar, we can use
that class as the selector. The .navbar-inverse() mixin applies the entire
battery of .navbar-inverse styles from _navbar.less to our navbar within
the context of this media query.

Save these changes, compile the file, and refresh your browser. In medium and large
viewport widths, you should see the navbar take on the new blue color and the text
turn light!

At this point, you may notice the rounded corners at the ends of our navbar. We
want to remove these. This can be done in _variables.less. Search for the variable
@navbar-border-radius and set its value to 0:

@navbar-border-radius: 0;

Finally, let's transform the text to uppercase, reduce its size a bit, and make it bold.

In _banner.less, add these highlighted lines just after the .navbar-inverse() mixin:

@media (min-width: @grid-float-breakpoint) {
 .navbar-default {
 .navbar-inverse();
 .navbar-nav > li > a {
 text-transform: uppercase;
 font-size: 82%;
 font-weight: bold;
 }
 }
}

This will yield the following result:

Bootstrappin' Business

[152]

Here is a closeup with one item hovered over:

Our banner and navbar are complete! Now it's time to move on to the main content
of our page.

Designing a complex responsive layout
Let's imagine we've emerged from client meetings with a plan to organize the home
page content in three tiers, ranked by importance.

In medium and wide viewports, this content will be laid out in three columns as seen
in the following screenshot:

Chapter 4

[153]

In a narrow viewport, these will be laid out one after another, in a single
vertical column:

Bootstrappin' Business

[154]

And in a small, tablet-width viewport, we'll arrange the content in two
side-by-side columns, with the third tier of content laid out beneath it as a
horizontal row as seen in the following screenshot:

To get us started, I've provided the basic markup for three equal columns. Let's
review what we have and then adapt it to the needs of this design. We'll begin with
the three-column layout for medium and wide viewports.

Chapter 4

[155]

Adjusting the medium and wide layout
Currently, in medium and wide viewports, our three columns are equal in width,
font size, and button size and color. As a result, the presentation lacks visual
hierarchy, as seen in the following screenshot:

We can take significant strides by adjusting column width, font size, and button size
and color to establish a clearer hierarchy between these tiers of content. Let's do that.
We'll start by adjusting column widths:

1. In index.html, search for the section tag for the primary content:
<section class="content-primary col-sm-4">

Note that the class col-sm-4 sets the width of this column to one-third of the
width of the parent element, beginning at the small viewport width (764px
and up).
We want to save the three-column layout for the medium and large viewports
(992px and up), and we want this first column to be wider than the others.

2. Edit the class col-sm-4 to read col-md-5, as follows:
<section class="content-primary col-md-5">

This will set this column to 5/12 width beginning at the medium viewport
and up.

Bootstrappin' Business

[156]

3. Now search and find the opening section tags for the next two columns and
adjust the column classes to col-md-4 and col-md-3 respectively:
<section class="content-secondary col-md-4">
...
<section class="content-tertiary col-md-3">

Save, refresh, and you'll see the desired visual hierarchy in the width of our columns:

You might have noticed that the headings in the middle of the secondary and tertiary
columns are not clearing the buttons above them. Let's adjust these, as well as our
buttons and font sizes.

Adjusting headings, font sizes, and buttons
Let's begin by adjusting our headings so that they consistently clear the buttons above
them, which have been floated to the right. For this purpose, we'll use the file we
previously created to manage the details of the page contents: _page-contents.less.

Chapter 4

[157]

Here's how to do it:

1. In _page-contents.less, let's write a selector to select headings h1 through
h4 when they're nested inside a Bootstrap column class. We'll use the CSS2
attribute selector and cover our bases by targeting any element whose classes
include the string col-.

Later in this chapter, we will equip our footer with its own set of
responsive columns. Thus, we need to make sure we nest these
rules within the selector for the main element.

Within this context, we'll select all heading tags we might potentially use and
set them to clear floated elements, with some added padding for separation.
main {
...
 [class*="col-"] {
 h1, h2, h3, h4 {
 clear: both;
 padding-top: 20px;
 }
 }
}

This gives the necessary separation between our headings and floated
buttons. But it also creates unneeded padding at the top of the secondary
and tertiary columns.
In the following image, the lower arrows highlight the improvement
accomplished now that our headings clear the floated buttons. The top
arrows highlight the ragged top edge of our columns, where padding
causes a problem.

Bootstrappin' Business

[158]

2. Let's remove the margin and padding from the uppermost heading in each
column. We'll use the :first-child selector for this, nesting these lines
within our heading selectors. We'll use the & combinator, which in this
formulation, allows us to select any first-child instance of these headings:
h1, h2, h3, h4 {
 ...
 &:first-child {
 margin-top: 0;
 padding-top: 0;
 }
}

3. This removes the extra margin and padding and evens up the top edge of our
columns as follows:

4. However, we only want to remove this top margin and padding in small or
larger viewports, which accommodate multiple columns. Thus, we need to
nest this rule within a media query corresponding with the breakpoint at
which our layout expands from a narrow single-column layout to a wider
multicolumn layout.

Thus, we need to nest what we've just done within a media query for small
viewports and up:

@media (min-width: @screen-sm-min) {
 &:first-child {
 margin-top: 0;
 padding-top: 0;
 }
}

Chapter 4

[159]

With the preceding media query, we've retained the padding we need between
elements in the single-column layout for narrow viewports, as seen in the
following screenshot:

With this accomplished, we can move on to adjust buttons and font sizes to reflect
the informational hierarchy of our content. Let's begin by enlarging the font size and
button size and color in our primary content area.

Enhancing the primary column
First, let's increase the font size of our primary column content:

1. In _variables.less, search for the @font-size-large variable and update
its value to the following:
ceil(@font-size-base * 1.15);

2. Now, in _page-contents.less, add these lines to use this font size for the
content of our primary content:

.content-primary {
 font-size: @font-size-large;
}

Save these changes, compile the file, and refresh your browser. You should see the
font size increase accordingly!

Now, let's adjust the color of our button to utilize the red @brand-feature color.
We'll utilize the @brand-feature variable we set up in _variables.less.

@brand-feature: #c60004;

Bootstrappin' Business

[160]

We'll also utilize an excellent mixin provided in the Bootstrap mixins.less file. You
may want to take a moment to check it out. Open bootstrap/mixins.less and
search for // Button variants. You'll find a mixin that begins as follows:

.button-variant(@color; @background; @border) {

The mixin does the following:

• Specifies the button font, background, and border colors (in other words, the
three parameters that the mixin accepts)

• Generates hover, focus, active, and disabled states for the button, adjusting
font color, background color, and border

If you'd like to, you can see how Bootstrap uses this mixin in bootstrap/buttons.
less under the comment // Alternate buttons. Here are the lines generating
styles for the default and primary buttons:

// Alternate buttons
// --
.btn-default {
 .button-variant(@btn-default-color; @btn-default-bg; @btn-default-
border);
}
.btn-primary {
 .button-variant(@btn-primary-color; @btn-primary-bg; @btn-primary-
border);
}

You will find the variables beginning with @btn-default- and
@btn-primary- in variables.less.

Following this pattern, we can generate our custom feature button in four simple steps:

1. First, we'll set up a new set of button variables. In _variables.less,
under // Buttons, make a copy of the three @btn-primary- variables, and
customize them, replacing -primary- with -feature- and using @brand-
feature as the background color:
@btn-feature-color: #fff;
@btn-feature-bg: @brand-feature;
@btn-feature-border: darken
 (@btn-feature-bg, 5%);

Chapter 4

[161]

2. Next, we can make a file to keep our custom buttons. Create _buttons-
custom.less and write a mixin based on the .btn-primary mixin from
bootstrap/buttons.less as follows:
.btn-feature {
 .button-variant(@btn-feature-color; @btn-feature-bg; @btn-
feature-border);
}

3. Save this file and add it to the import sequence in __main.less as follows:
@import "bootstrap/buttons.less";
@import "_buttons-custom.less"; // added

4. Now, in index.html, change the button class from btn-primary to
btn-feature. While we're at it, we want to make the button large, so
add the class btn-lg:

 Learn more

Save. Refresh the browser, and you should see the following result. The primary
column to the left now has a larger font size and a large button with our
brand-feature color.

Bootstrappin' Business

[162]

Meanwhile, the font size and button colors of the secondary (center) column are
exactly what we want. What needs to happen next is this: we need to de-emphasize
the tertiary column content so that it takes its appropriate place in the informational
hierarchy.

Adjusting the tertiary column
Our task for the tertiary content is fairly straightforward. We have to reduce the font
size and de-emphasize the buttons. This can be accomplished as follows:

1. First, we'll adjust the font-size. In _variables.less, adjust the @font-size-
small variable:
@font-size-small: ceil(@font-size-base * 0.90);

2. Now we need only add these lines to _page-contents.less:
.content-tertiary {
 font-size: @font-size-small;
}

3. Save, compile, refresh, and you should see the font size reduce.
4. Next, in index.html, we need to edit our button classes. We'll change them

from btn-primary to btn-default, and we'll reduce their size using the
class btn-xs:
Read more
...

This will reduce the button size and turn the button background white.

5. Let's adjust the background to a light gray and adjust the font color and
border as well. In _variables.less, adjust the values for the three
@btn-default- variables as follows:
@btn-default-color: @gray;
@btn-default-bg: @gray-lightest;
@btn-default-border: darken
 (@btn-default-bg, 5%);

Chapter 4

[163]

Save the changes, compile the file, and refresh your browser.

We now have a clear visual hierarchy, from the primary content (on the left), to the
secondary (center) and tertiary (right).

Bootstrappin' Business

[164]

Now, take a moment to notice that our adjustments work reasonably well in the
narrow single-column layout as well:

Chapter 4

[165]

In narrow viewports, our three columns stretch out vertically, one after the other,
with primary content first, followed by secondary and tertiary.

All that remains is some fine-tuning to make our content even more user friendly
across devices and viewports.

Fine touches for multiple viewports
It's always good to give our content—and our viewers' eyes—some room to breathe.
Visual indicators of section boundaries are good as well. Let's fold these in:

1. First, we'll add padding above and below our content. Add a bit of top
padding to the main element itself. This padding will serve us well in all
viewports, so we won't need a media query.
main {
 padding-top: 20px;
 padding-bottom: 40px;
}

2. Next, we need to set our columns to clear floated items above them when
in single-column layout on narrow devices. Otherwise, the secondary and
tertiary columns will overlap the button immediately above them. We'll write
this within the appropriate media query to limit it to narrow viewports only:

// Make columns clear floats in narrow viewport single-
 column layout
@media (max-width: @screen-sm-min) {
 [class*="col-"] {
 clear: both;
 }
}

That's it. Our main content layout is ready. Now for the complex footer area.

Laying out a complex footer
In the following steps, we'll create a complex footer built to manage multiple goals,
including these: three lists of links to key sections of our website, a bit of About Us
text, social icons, and our logo.

Bootstrappin' Business

[166]

Setting up the markup
We will start by creating the footer markup. We want this footer to be as functional
and useful for the user as possible. We'll build the markup as follows:

1. Find the file footer-content.html in the project folder 04_Code_BEGIN.
Open it in your editor, and copy the entire content to the clipboard.

2. Now, back in index.html, find the place where we want to paste
this content. It's within footer role="contentinfo", just after div
class="container" and before ul class="social". (I've placed a
comment there to help you find the spot.)

3. Before pasting the content, let's prepare to utilize the Bootstrap grid system.
To do this, we'll wrap the area within div class="row", as follows:
<footer role="contentinfo">
 <div class="container">
 <div class="row">
 <!-- INSERT ADDITIONAL FOOTER CONTENT HERE -->
 </div><!-- /.row -->
 <ul class="social">

4. Now, paste the new content in place.
5. Next, we'll wrap each of the three lists of links along with their headings

within div of class col-md-2. This way, each list will take one-sixth of the
available width in medium and larger viewports. Together, these three lists
will take half the available viewport width.
<div class="col-md-2">
 <h3>Categories</h3>

6. Now to complete our row, wrap the About Us heading and its paragraph in
div of class col-md-6 so that it takes up the remaining half of the available
width:
<div class="about col-md-6">
 <h3>About Us</h3>

Be sure to add the necessary closing tags for each new
div element.

7. Save, refresh, and check your results.

Chapter 4

[167]

In a viewport of 980px and larger, our columns should organize themselves as follows:

This is the layout we want in medium and larger viewports. Extra-small screen sizes
are served just fine by the single-column layout. However, for tablet-width screen
sizes that fall within the range of 768 to 980 pixels, our layout can benefit from some
adjustments. Let's address that.

Adjusting for tablet-width viewports
Test the layout in a viewport that falls between 768 and 980 pixels. Bootstrap refers to
this as the small breakpoint, with the @screen-sm variable and col-sm- grid classes.
At this width, the single-column layout leaves unnecessary white space. Here is what
you'll see:

Bootstrappin' Business

[168]

We can improve this layout by allowing our three lists of links to float next to each
other. Using the Bootstrap col-sm- column classes, let's set the three lists of links
to be one-third width, or col-sm-4, and the About Us column to be full width, or
col-sm-12.

<div class="col-sm-4 col-md-2">
...
<div class="col-sm-4 col-md-2">
...
<div class="col-sm-4 col-md-2">
...
<div class="about col-sm-12 col-md-6">

Save this and try it out in the small viewport range. You will see the following result:

Much improved! But we're not quite finished. Try clicking on the links in the upper
three columns. Chances are that you won't be able to. Inspect the element and you'll
find that the fourth div element contains the code for the About Us column. This
code does not clear the floated columns above it. Though the About Us heading and
its paragraph will appear below the three floating columns, the div element itself
will overlap them.

Adding a targeted responsive clearfix
In a standard Bootstrap layout situation, we would use a div element with the row
class to clear the floating columns above. Here, we need a different solution, as we
want this block of content to clear floats only within this specific breakpoint.

Chapter 4

[169]

To accomplish this, we could write custom styles in our LESS files. But we can also
use a Bootstrap responsive utility class to provide a targeted clearfix directly in
the markup. Since we've already specified grid classes in our markup, let's use the
second option in this context.

You can find the approach we'll use mentioned in Bootstrap's documentation at
http://getbootstrap.com/css/#grid-responsive-resets. Following that
method, we'll create a div element with the class clearfix, and add a Bootstrap
responsive utility class to make it visible only on small screens. We'll place this
new div element immediately prior to the About Us column:

<div class="clearfix visible-sm"></div>
<div class="about col-sm-12 col-md-6">

The clearfix class will force this element to clear the floats above it. The visible-
sm class will allow this div to display only within our targeted breakpoint. At other
breakpoints, it will be as if this div does not exist.

Save this, refresh your browser, and you should find that the About Us column now
clears the floats above it and that the links are clickable.

Task complete. Now for a few finishing touches.

Refining the details
We have a few last touches we want to implement as we finish our footer. These
include the following:

• Refining the presentation of our three lists of links
• Adjusting margins and padding
• Reversing the color scheme to match our navbar colors

To accomplish these refinements, we'll write some custom styles. Let's tackle this
in cascading fashion, starting with general rules for the footer and moving to the
specific rules:

1. Open _footer.less, the file for custom footer styles, in your editor.
Here you'll find some initial rules that I've carried over with slight
modifications from Chapter 2, Bootstrappin' Your Portfolio. These include some
initial padding for the footer as well as styles for the social icons and the
footer version of the logo.

Bootstrappin' Business

[170]

2. Now to add the refinements we need for our new complex footer. Let's start
by reducing the footer font size and inverting the color scheme to correspond
with the inverted navbar—a blue background with light text. I'll begin
with those colors and then darken them slightly. To do this, I'll make use of
appropriate variables from _variables.less, including @font-size-small,
@navbar-inverse-bg, and @navbar-inverse-color:
footer[role="contentinfo"] {
 padding-top: 24px;
 padding-bottom: 24px;
 font-size: @font-size-small;
 background-color: darken(@navbar-inverse-bg, 18%);
 color: darken(@navbar-inverse-color, 18%);

In this and all that follows, we need to nest our new rules
within footer[role="contentinfo"].

3. Next, we need to adjust our links and buttons to fit the new color scheme.
Still nesting rules within footer[role="contentinfo"], I've done this
as follows:
a {
 color: @navbar-inverse-color;
 &:focus,
 &:hover,
 &:active {
 color: @navbar-inverse-link-hover-color;
 }
}
.btn-default {
 color: darken(@navbar-inverse-bg, 18%) !important;
}

4. Now to address the four h3 headings. I'll adjust font size, trim the bottom
margin, and convert the text to uppercase:
h3 {
 font-size: 120%;
 margin-bottom: 4px;
 text-transform: uppercase;
}

Chapter 4

[171]

5. Having done this, we can next remove bullets from our list of links, and
adjust their padding and margin.
ul {
 list-style: none;
 padding: 0;
 margin: 0;
}

For the purposes of this exercise, I've applied these rules to all
unordered lists within the site footer. Depending on the needs
of your footer, you may want to use a special class for these
lists of links, such as, footer-nav.

6. Lastly, let's adjust our social icons. We'll add a bit of top padding and then
adjust their colors to work better with the new color scheme. Since these
are Font Awesome icons, we can do this simply by adjusting the color and
background-color values, as follows:
ul.social {
 ...
 padding: 24px 0 0;
 ...
 > li {
 ...
 > a {
 ...
 background-color: darken(@navbar-inverse-bg, 27%);
 color: darken(@navbar-inverse-color, 18%);
 ...
 &:hover {
 ...
 background-color: darken(@navbar-inverse-bg, 32%);
 color: @navbar-inverse-link-hover-color;
 }
 }
 }
}

Bootstrappin' Business

[172]

That's it. Save, compile, refresh, and enjoy! Here is our result in medium and
wide viewports:

And here is the result for small viewports:

Chapter 4

[173]

And this is for extra-small viewports:

Not bad! We have built a footer capable of managing a complex array of content
across the full spectrum of extra-small, small, medium, and large viewports.

Bootstrappin' Business

[174]

Summary
This project has enabled us to beef up our Bootstrappin' skills in a number of ways.
We have covered the following:

• Styling a complex responsive navbar, so that it appears below the logo and
banner area in medium and large viewports and yet collapses into a mobile-
friendly navbar on smaller screens

• Building a custom responsive utility navbar, with text and icons that adapt
creatively to suit the needs of larger and smaller screens

• Designing a responsive layout for the main content of our page, providing an
appropriate visual hierarchy for three tiers of information

• Building a footer that effectively manages multiple blocks of links and text
across viewports

• Enhancing our footer with a modified version of the inverted color scheme
we used for the navbar

Congratulations! In the next chapter, we'll build on these skills by designing a
products page suitable for an e-commerce section for this website.

Bootstrappin' E-commerce
Having built our business home page, it's time to design our online store.

We'll build on the design from the previous chapter, adding a new page with the
following elements:

• A grid of product thumbnails, titles, and descriptions
• A left-hand sidebar with options to filter our products by category, brand,

and so on
• Breadcrumbs and pagination to ease navigation through our inventory

Take a few moments to visit websites like Zappos (http://www.zappos.com) and
Amazon (http://www.amazon.com). Search or browse for products and you will see
product grids with features similar to what we will be creating in this chapter.

Bootstrappin' E-commerce

[176]

When complete, we want our products page to look like the following screenshot on
small, medium, and large screens:

Chapter 5

[177]

On extra-small screens, we want our products page to adjust to the following layout:

Bootstrap gives us a big head start in accomplishing this design—after which we can
use the power of LESS to refine things to completion.

Surveying the markup for our products
page
You'll find this chapter's files prepared and ready in the folder 05_Code_BEGIN.
This project builds directly on the completed design from Chapter 4, Bootstrappin'
Business. If anything in these files seems strange, you may want to review Chapter 4,
Bootstrappin' Business, before proceeding.

If you've not already downloaded the exercise files, you can find them
at http://packtpub.com/support.

Bootstrappin' E-commerce

[178]

For this chapter, there is one new file in the main folder, products.html.

Open products.html in your editor to view the markup. Let's survey its contents.

The head, header, and navbar elements are consistent with what we've already seen
in Chapter 4, Bootstrappin' Business. Inside the main role="main" element is where
we'll find what's new. Here, you'll find the following elements in the same order as
they appear:

• Breadcrumb links marked up as an unordered list
• A page title within an h1 heading
• A series of options for filtering products
• Nine products with thumbnails, titles, descriptions, and a button
• An unordered list of pagination links just below the products and before

the site footer

If you view the file in your browser, you'll see that much remains to be done.
Breadcrumbs do not yet look like breadcrumbs, the filtering options look like a
long series of bulleted lists, the layout of our product items is uneven (and in places
broken), and so on.

Don't let these current imperfections worry you. These are the things that we'll be
addressing in the following steps. Here is what's coming:

• We will apply Bootstrap's built-in styles to the breadcrumbs, page title, and
pagination, and then customize them further

Chapter 5

[179]

• We will improve the layout of the nine product items, innovating the
Bootstrap grid system to maintain a visually well-organized grid across
breakpoints

• We will style the filtering options by enhancing the layout and then using the
Font Awesome icons to provide checkboxes

Now that we have a plan, let's get started!

Styling the breadcrumbs, page title, and
pagination
In the following steps, we'll apply Bootstrap styles to our breadcrumbs, page title,
and pagination, and then customize them to fit our design:

1. Open products.html in your editor.
2. Find the unordered list just above the h1 page title, add the class

"breadcrumb" to the ul tag, and then add the class "active" to the last list
item, as follows:
<ul class="breadcrumb">
 Home
 Parent Category
 <li class="active">Current Category

These classes correspond with Bootstrap breadcrumb styles,
which you will find documented at http://getbootstrap.com/
components/#breadcrumbs.
Save and refresh your browser. You should see the result as shown in the
following screenshot:

3. To customize the breadcrumbs for this design, let's remove the light gray
background and the extra padding. For such a quick adjustment, we'll work
directly in breadcrumbs.less in the bootstrap folder, leaving a trail by
commenting out the unneeded lines.

Bootstrappin' E-commerce

[180]

Let's set the padding to 0 and remove the background-color entirely,
commenting out the former values so that we can clearly see what
we've done:
.breadcrumb {
 padding: 0; // 8px 15px; // edited
 margin-bottom: @line-height-computed;
 list-style: none;
 // background-color: @breadcrumb-bg; // edited

4. Now for the page title. Bootstrap's page title works by nesting the top-level
page heading within a div tag of the page-header class. You can see the
documentation at http://getbootstrap.com/components/#page-header.
Let's adjust our markup accordingly. Let's also add some text within a small
tag to take advantage of the Bootstrap style for adding the explanatory notes
to our headings:
<div class="page-header">
 <h1>Product Category Name <small>with explanatory
 text</small></h1>
</div>

That will produce the following result:

5. Let's keep the margin and padding that comes with the page header, but
remove the bottom border. Open the type.less file placed in the bootstrap
folder. Search for .page-header and comment out the border-bottom rule:
.page-header {

 // border-bottom: 1px solid @page-header-border-color;
}

Save, refresh, and you should see a result that is cleaner—with ample white
space that fits our overall design—as shown in the following screenshot:

Chapter 5

[181]

6. Finally, the pagination. Our markup for this is found just a few lines above
the closing main tag (</main>). Above that closing tag, you'll see commented
closing div tags for the .container, .row, and .products-grid:
 </div><!-- /.products-grid -->
 </div><!-- /.row -->
 </div><!-- /.container -->
 </main>

Bootstrap's documentation for pagination styles is found at
http://getbootstrap.com/components/#pagination.
To apply these styles here, we only need to add class="pagination" to the
ul tag that you will find a few lines above the closing .products-grid tag:
<ul class="pagination">

 Prev
 1
 2
 3
 4
 Next <span class="fa fa-chevron-
 right">

For the Next and Prev items, I've already provided the
span tags for the Font Awesome icons fa-chevron-
left and -right.

This gives us the result as shown in the following screenshot:

7. Let's center align the pagination below our grid. First, wrap it in a parent div
tag. We'll place the row class on this to ensure it clears the content above it,
and then we'll add an appropriately named custom class pagination-wrap:
<div class="row pagination-wrap">
 <ul class="pagination">
 ...

</div>

Bootstrappin' E-commerce

[182]

8. Now, we need some custom styling to center align this component within
its space. In Chapter 4, Bootstrappin' Business, we used the custom LESS file
_page-contents.less to write our custom styles. Here, let's create a more
specific file to manage the special features for our products grid. Create a
new file called _products-grid.less, save it in the less folder alongside
our other custom LESS files, and add the following lines to it:
.pagination-wrap {
 text-align: center;
}

Save the file.

9. Now we'll add the new file to our LESS import sequence. Open the _main.
less file inside the less folder, and add the import line under the comment
// Other custom files, as shown here:

@import "_products-grid.less"; // added

Save the file and compile to CSS.
Refresh your browser. You should now see our pagination snap to the center.

Adjusting the products grid
Let's make our products grid look as it should. If you inspect the markup for our
product items, you'll see that each has been given a class of col-sm-4:

<div class="product-item col-sm-4">

While this constrains the width of each of our product items, it has failed to produce
an effective grid.

Chapter 5

[183]

The primary problem here is that our items have varying heights. Thus, when trying
to float left, as Bootstrap grid components do, these items bump into one another.
This results in a broken, uneven layout as shown in the following screenshot:

Currently, in a medium and large viewport, product items 4 to 7 refuse to float
neatly due to their uneven heights.

Let's adjust the styles of our grid items to enhance their visual presentation. Having
done that, we can fix this layout problem.

1. As we'll be writing custom styles, have _products-grid.less open in
your editor.

2. Let's write styles to adjust image width, font size, padding, and margins as
shown in the following lines of code:
.product-item {
 padding-bottom: 32px;
 img {
 width: 100%;
 }

Bootstrappin' E-commerce

[184]

 h2 {
 font-size: @font-size-large;
 line-height: 1.2;
 padding: 0 !important;
 margin-top: 6px;
 margin-bottom: 2px;
 }
 p {
 font-size: @font-size-small;
 line-height: 1.3;
 color: @gray;
 }
}

3. These styles will accomplish the following:
 ° Add bottom padding to each product item
 ° Constrain the thumbnail image to the width of the product item
 ° Reduce the h2 heading font size to the size of our @font-size-large
 ° Reduce the p font size to our @font-size-small value
 ° Reduce h2 padding by adding !important to override any

conflicting rules that we've written to apply in the standard pages
 ° Set the p font color to @gray

Save these new styles, compile to CSS, and refresh your browser. Though the
layout will still be broken in places, you should see significant improvement
in the styling of the product items as shown in the following screenshot:

Chapter 5

[185]

4. Now, let's fix our layout problem. We'll do this simply by finding the
maximum height that we need to manage the content of our test items. We are
going to assume that we are working in a context where there are established
guidelines for the images and text, so all product items will have standard
thumbnail sizes and use no more text than the wordiest of the examples
used here. If that is the case, then we can set a height value either in pixels
or perhaps in more dynamic units, such as em or ex. For the purpose of this
exercise, let's use the value of 360px. While we're at it, let's hide content
that overflows this value in order to avoid the potential problem of content
messily overlapping the boundaries between items. Because these rules are
focused on layout, I'll write them as a separate set of rules, albeit still in
_products-grid.less, as follows:
.product-item {
 height: 360px;
 overflow: hidden;
}

Save the file, compile to CSS, and refresh your browser. You should see our
layout problems go away! The result is shown in the following screenshot:

Bootstrappin' E-commerce

[186]

5. From this point, we can simply use responsive Bootstrap column classes in
our markup to adjust as necessary across viewport widths. In this case, we
want our grid to reduce to two products per row for small and extra-small
screens, while medium and large viewports will have three items per row.
To accomplish this, we need to find and replace the classes in each of our
product items so that they are as follows:

<div class="product-item col-xs-6 col-md-4">

These classes will set each product item to half width within extra-small and
small viewports, and then transition to one-third width for medium and
large viewports.
Save the file and refresh your browser. You should now be able to drag
to make your window width smaller or larger and watch the adjustment
happen dynamically.
Product items will now be laid out in two columns on small and extra-small
viewports.

Chapter 5

[187]

Then, our grid will transition to a three-column layout in medium and large
viewports.

It's a beautiful thing to behold.

Next, we'll style the filtering options sidebar.

Styling the options sidebar
Now, let's style our filtering options. These appear just before the markup for
our product items. In small, medium, and large viewports, they appear as a
left-hand sidebar.

Bootstrappin' E-commerce

[188]

At the moment, they appear like the following screenshot:

For our final design, we want to transform the Clearance Sale link into an attractive
extra-large button and arrange the filtering options into two columns with
checkboxes rather than bullets, as shown in the following screenshot:

Let's begin by setting up some basic styles to lay a basic groundwork.

Chapter 5

[189]

Setting up basic styles
We'll start by adjusting fonts, colors, margins, and padding.

Let's add these rules to _products-grid.less:

.grid-options {
 .panel;
 .panel-default;
 padding-top: 12px;
 padding-bottom: 24px;
 > h2 {
 margin-top: 0;
 font-size: 1.5 * (@font-size-large);
 line-height: 1.2;
 color: @gray-dark;
 }
}

The preceding code does the following:

• Adds Bootstrap default panel styles to our sidebar (see the relevant Bootstrap
documentation at http://getbootstrap.com/components/#panels)

• Adds top and bottom padding to the sidebar so that our new background
extends past the sidebar content

• Adjusts font size, line-height, and color for the h2 heading

Next, we will style the Clearance Sale link.

Styling the Clearance Sale link
We want to transform our Clearance Sale link into an extra-large attractive button.

Let's adjust the markup to do the following:

• Turn the linked heading and paragraph into a button.
• Add the custom button btn-feature class, which we created in Chapter 4,

Bootstrappin' Business, to give the button our special featured color—red.
• Add a Font Awesome icon for a sale tag. We'll make it three times the normal

size by using Font Awesome's built-in icon-3x class.

For more information about Font Awesome's special sizing classes, see
the documentation at http://fontawesome.io/examples/#larger.

Bootstrappin' E-commerce

[190]

The resulting markup is as follows:

 <h3>Clearance Sale</h3>
 <p>View clearance items</p>

This immediately gives us a good start towards our desired result as shown in the
following screenshot:

Now to polish it up, perform the following steps:

1. Display the Clearance Sale button as a block-level element and center it
using the .center-block() Bootstrap mixin.

2. Force its width to fill 92.5 percent of its containing column.
3. Add top and bottom padding.
4. Override Bootstrap's white-space: nowrap rule for buttons, so that our text

can wrap as it should (See Bootstrap's white-space rule in less/bootstrap/
buttons.less. You can learn more about the white-space property at
http://css-tricks.com/almanac/properties/w/whitespace/).

5. Position it relative so that we can apply absolute positioning to the tag icon.
6. Adjust font, color, and margins on our heading and paragraph.
7. Position the tag icon at the top right.

We can accomplish these goals by adding the following style rules:

.choose-clearance {
 .center-block();
 width: 92.5%;
 padding-top: 20px;
 padding-bottom: 12px;
 white-space: normal;
 position: relative;
 h3 {

Chapter 5

[191]

 font-weight: normal;
 color: #fff;
 padding-top: 4px;
 margin: 6px;
 }
 p {
 margin: 6px 20px;
 line-height: 1.2;
 }
 .icon {
 position: absolute;
 top: 0;
 right: 2px;
 }
}

This gives us a pleasing result as is evident from the following screenshot:

As a bonus, these styles work well across viewport sizes. Take a few moments to
test it. Then of course, as always, feel free to take what we've begun and beautify
it further.

Meanwhile, let's move down to the options for filtering our products.

Styling the options list
In this section, we will transform our lists of product filtering options.

If you take a moment to examine the markup of product filtering options in a store
such as Amazon (http://www.amazon.com) or Zappos (http://www.zappos.com),
you'll find that they are composed lists of links that have been specially styled to
appear like checkboxes. We will style our links to look like checkboxes, which will
appear as checked once selected, and we'll adjust them to work nicely across devices,
such as tablet and phone devices.

Bootstrappin' E-commerce

[192]

On e-commerce websites such as Amazon and Zappos.com, the
filter options are connected to a content management system, which
dynamically updates the grid of shown products in response to the
options selected. Bootstrap is a frontend design framework, and not
a content management system. Thus, we will not be dynamically
filtering our products as a part of this project. Instead, we will
prepare a design that is ready to be used in the context of a complete
content management system.

We'll start with the h3 headings for the lists, adjusting their size, line-height, margin,
and color:

.grid-options {
 > h3 {
 font-size: @font-size-large;
 line-height: 1.2;
 margin-top: 12px;
 color: @gray-dark;
 }
}

We need to use the >h3 child selector since we don't want these rules
to apply to other h3 tags, especially the one within our Clearance
Sale button.

Now, let's turn our attention to the unordered lists. These have a special class
of options-list, which we'll use as our selector to ensure we're targeting only
these special lists.

First, let's remove bullets and padding:

.grid-options {
 ..
 .options-list {
 list-style-type: none;
 padding-left: 0;
 }

Now we'll style the links. Shortly, we'll also style the list items, so we'll include them
in the sequence of nested selectors.

...
 li {
 a {
 .btn;

Chapter 5

[193]

 .btn-sm;
 padding-left: 0;
 padding-right: 0;
 color: @gray;
 }
 &:hover,
 &:focus,
 &:active,
 .active & {
 color: @link-color;
 }
 }

The rules we just set accomplish the following:

• We'll use the power of LESS to pull in the fundamental button styles
associated with the .btn class that includes displaying the inline-block
link and the addition of padding:

 ° Since we added no other button class, there is no background color
 ° What we gain from these basic button styles is a convenient way

to make our links user-friendly click targets—including fingers on
touch devices

• We then pull in the styles associated with the .btn-sm class to reduce
padding and for the font-size to be a bit smaller than the standard button (for
a refresher on Bootstrap button classes, go to http://getbootstrap.com/
css/#buttons)

• We then remove unneeded left and right padding
• We change the color of our link text to @gray
• Finally, we set the color of hovered, focused, and active links to our @link-

color value

You may want to save, compile, and test the results. The following screenshot
depicts the result we get:

Bootstrappin' E-commerce

[194]

Our option links have gained improved padding and font size and taken our
desired colors.

You may be wondering why I've chosen to pull in button styles by using
the .btn and .btn-sm classes in our LESS files rather than adding the
classes directly in the markup. We could do the latter, but given the
number of option links, I think you will agree that it is far more efficient
to apply the styles via CSS as we've done. In the section that follows, I
will continue this pattern and extend it by bringing in Font Awesome
icons via LESS rather than by adding markup.

Now we'll add checkboxes to our option links.

Adding Font Awesome checkboxes to our
option links
In this section, we'll use Font Awesome icons to add an empty checkbox to the left of
each option link. Rather than adding icons in the markup, we will do it here via LESS
as it will be far more efficient. Then we'll push a step further, adding styles to pull in
an alternate Font Awesome icon—for a checked checkbox — to the hovered, focused,
and active option links.

Adding icons via LESS requires drawing Font Awesome styles from three files. First,
we will take these fundamental styles from the core.less file in the font-awesome
folder. In this file, you'll find the following key styles:

.@{fa-css-prefix} {
 display: inline-block;
 font-family: FontAwesome;
 font-style: normal;
 font-weight: normal;
 line-height: 1;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
}

These styles establish the fundamental rules for all Font Awesome icons, including the
Font Awesome icon for the font family and then refine the details of its presentation.

Chapter 5

[195]

For our present purposes, we do not need the selector or the braces but only the
rules. We will take these and apply them to our links. Primarily, we'll use the
:before pseudo-element as it ensures the best results.

For more information about the CSS2.1 :before pseudo-element,
go to http://coding.smashingmagazine.com/2011/07/13/
learning-to-use-the-before-and-after-pseudo-
elements-in-css/.

Copy the rules (but not the selector) from core.less. Then paste these rules in
the _products-grid.less file, nested as follows:

.grid-options {
 ...
 li {
 ...
 a {
 ...
 &:before {
 // from font-awesome/core.less
 display: inline-block;
 font-family: FontAwesome;
 font-style: normal;
 font-weight: normal;
 line-height: 1;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;

These rules establish the fundamentals. Next, we need to specify which Font
Awesome icon to use. Browsing the options at http://fontawesome.io/icons/,
we find the following open checkbox icon:

The LESS rules for this icon are found in the icons.less file inside the font-
awesome folder. By opening that file and searching for the string }-square-o
(including the closing curly brace before -square-o to narrow the results), we can
find the following relevant line:

.@{fa-css-prefix}-square-o:before { content: @fa-var-square-o; }

Bootstrappin' E-commerce

[196]

From the previous line, we need only content: @fa-var-square-o, which we need
to copy and paste in the _products-grid.less file directly after the preceding rules
are applied to our a:before selector:

a {
 ...
 &:before {
 ...
 content: @fa-var-square-o;

Finally, we want to grab Font Awesome styles to give our icons a fixed width and
to avoid any shifting when the icon changes to the checked version. These styles are
found in the fixed-width.less file inside the font-awesome folder. Copy and paste
just these two lines while also applying them to our &:before selector:

 width: (18em / 14);
 text-align: center;

After adding these rules, compile them to CSS and refresh your browser. You should
see the checkboxes appear as shown in the following screenshot:

Now, following the same approach, we'll add the following selectors and rules to
apply the checked version of the Font Awesome icon to the hovered, focused, and
active states of our links:

li {
 ...
 a {
 &:before {
 ...
 content: @fa-var-square-o;

 &:hover:before,
 &:focus:before,
 &:active:before,
 .active &:before {
 content: @fa-var-check-square-o;
 }

Chapter 5

[197]

Save the file, compile to CSS, and refresh your browser. You'll find that the checked
version of the square icon appears when you hover on one of the links as shown in
the following screenshot:

As a reminder, it is not currently possible to force one of these links
to stay in the active state as we have no content management system
in place. What we do have is a set of styles ready and waiting to go to
work in the context of such a content management system.

That's it! We've successfully given our links the appearance of checkboxes to provide
desired user feedback.

Next, let's make more efficient use of our space by floating our options side by side.

Using LESS mixins to arrange option links in
columns
In the previous section, we've used custom LESS rules to accomplish steps that might
have been accomplished by adding markup. Given the number of option links we
need to manage, this has proven significantly more efficient. The same dynamic
applies when we want to arrange our option links into columns.

We might accomplish our desired result by using Bootstrap row and column classes,
adjusting our markup with the following pattern:

<ul class="options-list options-categories row">
 <li class="col-xs-6">Option 1
 <li class="col-xs-6">Option 2
 ...

Thanks to the power of Bootstrap's mixins, we can accomplish the same result with a
few lines of LESS as shown in the following steps:

1. First, we'll apply the .make-row() mixin to the .options-list selector,
as follows:
 .options-list {
 .make-row();
 ...

Bootstrappin' E-commerce

[198]

This mixin applies the same styles to our options list that we would have
gained by applying the row class in the markup. In this case, it's simply
more efficient to do it here.

2. Next, we can use a .make-xs-col() mixin to apply column rules to our list
items as follows:
 li {
 .make-xs-column(6);

This will apply the same styles to our list items as would be applied if we
had added the col-xs-6 class to each of the relevant li tags.

3. After adding the preceding lines, save the file, compile to CSS, and refresh
your browser. You should see the option links line up in two columns.

Not bad!

We will now make some adjustments for smaller viewports.

Adjusting the options list layout for tablets
and phones
We need to constrain the width of our options panel so that it does not range too
widely in tablet-width devices.

Right now, our Clearance Sale button stretches too wide, and our options list items
spread too far apart on viewports between 480 pixels and 768 pixels wide. Thus, they
can end up appearing like the following screenshot:

Chapter 5

[199]

This can be easily fixed by setting a max-width property with a value of 480 pixels
for the entire options panel:

.grid-options {
 ...
 max-width: 480px;

Now let's adjust our option list items so that they organize themselves in three
columns in small viewports. Using LESS, we can nest a media query within the
appropriate selector and add an adjusted .make-xs-column(4) mixin as shown in
the following code snippet:

 li {
 .make-xs-column(6);
 @media screen and (max-width: @screen-xs-max) {
 .make-xs-column(4);
 }

After making these adjustments, save the file, compile to CSS, and test in a narrow
viewport. You should see the result as shown in the following screenshot:

Bootstrappin' E-commerce

[200]

Now let's address the next problem facing our single-column layout: we need to hide
our options away until they're needed.

Collapsing the options panel for phone users
At present, our options take up a considerable amount of vertical space. This creates
a problem in narrow viewports. The single-column layout winds up pushing our
grid of products far down the page.

Chapter 5

[201]

This is a great deal of vertical space for options that are not needed. The products
themselves are priority items. We need to allow users of phones to find the products
more quickly while still allowing them to access the filtering options when desired.

We'll use Bootstrap's collapse plugin for this. In the following steps, we'll apply the
collapse plugin to the options panel, add a button to expand the panel when desired,
and restrict the behavior to narrow viewports only:

1. Open your editor with products.html.
2. Add a new div tag to wrap our Clearance Sale button and three options

lists. We need to give this new div a special class of collapse as well as a
distinctive ID so that we can target it with our JavaScript plugin. For good
measure, we'll give it a matching special class as well:
<div id="options-panel" class="options-panel collapse">

 ...
 <h3>Categories</h3>
 <ul class="options-list options-categories">
 Option 10
 ...

</div><!-- /#options-panel.collapse -->

Bootstrap's collapse JavaScript plugin is what powers the
collapsible responsive navbar. It may also be put to other uses,
such as the one shown in the Bootstrap's documentation at
http://getbootstrap.com/javascript/#collapse.

3. Save the file and refresh it in your browser. You should see that the
Clearance Sale button and options lists will now be hidden from view. All
that remains of the options panel content will be the h2 heading Narrow your
selection as shown in the following screenshot:

Now we need a toggle button to expand our filter options when clicked.

Bootstrappin' E-commerce

[202]

4. Within the still visible h2 heading that reads, Narrow your selection, add a
button element with the following attribute structure:
<h2 class="clearfix">Narrow your selection
 <button type="button"
 class="options-panel-toggle btn btn-primary pull-right"
 data-toggle="collapse" data-target="#options-panel">

 </button>
</h2>

The following points explain what the preceding markup will do:
 ° The clearfix class will ensure that the h2 heading will contain the

toggle button, which will float to the right (you'll find the clearfix
class in the utilities.less file inside the bootstrap folder, the
mixin of which it's made is in mixins.less in the bootstrap folder)

 ° The btn and btn-primary classes will style our new button element
with the Bootstrap's btn styles, which includes our background color
of @brand-primary

 ° The pull-right class will float the button to the right
 ° Within the button element, we've placed a Font Awesome cog icon

using the fa-2x class to double its size

Save this and refresh to view the following result:

5. Now, we need to set rules to hide the toggle button and expand the options
panel form medium to large screens. We can do this by adding the following
lines to _products-grid.less:
// Responsive adjustments
@media (min-width: @screen-sm-min) {
 .options-panel {
 display: block;
 }
 .options-panel-toggle {
 display: none;
 }
}

Chapter 5

[203]

6. This accomplishes the following goals:
 ° The media query will apply these rules only to small viewports

and larger
 ° The first rule counteracts the collapse class, which hides its element

by default
 ° The second rule hides the toggle button

Save and refresh, and you should see our desired results.
In narrow viewports, the options list is collapsed and the toggle button
is visible:

Bootstrappin' E-commerce

[204]

In small, medium, and large viewports, the toggle button is hidden, and the
options list is visible:

Congratulations! With this, we have accomplished our design.

Summary
In this chapter, we have done the following:

• Employed Bootstrap styles to quickly set up breadcrumbs, a page title, and
pagination customized according to our needs

• Adjusted Bootstrap grid styles to create a visually pleasing grid of product
items, all of the same height so as to ensure a regular grid

• Styled a complex Clearance Sale button with @brand-feature red
background color

• Used the styles from the btn class to make our filter options more easily
clickable, while customizing the styles to suit our needs

• Used Bootstrap column classes with responsive adjustments to arrange our
options list items optimally for multiple viewport widths

Chapter 5

[205]

• Used Font Awesome styles in the context of our own custom stylesheet in
order to add checkboxes beside our filter options

• Set our options panel to collapse for viewers with narrow viewports, while
remaining visible for small viewports and larger ones

Congratulations! We now have an attractive business website with a well-crafted
e-commerce section.

Next, let's take our skills another step forward by creating a single page marketing
website in the next chapter.

Bootstrappin' a One-page
Marketing Website

We've developed some significant skills with Bootstrap. Now it's time to bring an
extra touch of beauty and creativity to help our clients achieve their full online
marketing potential. So, let's create a beautiful one-page upscale marketing site.

We'll cover the following things in this chapter:
• A large introductory carousel with a customized responsive

welcome message
• A section for customer reviews with images and captions laid out in the

masonry format
• A features list with large Font Awesome icons
• A signup section with custom-designed pricing tables
• A ScrollSpy navbar with animated scrolling behavior

Overview
We've been approached by a new prospective client. She is stricken by the beauty
of one-pagers—websites that scroll vertically, providing a visually stimulating
presentation of a product or message with a clear call to action at the end. She wants
one of these.

This client is knowledgeable and discerning. She frequents http://onepagelove.
com and has a list of her current favorites in hand. Her desired features include:

• A clean, modern aesthetic website.
• An introductory welcome message with a visually intriguing

background image.

Bootstrappin' a One-page Marketing Website

[208]

• An efficient presentation of the main features of her product, accentuated
with visually appealing icons.

• Customer testimony presented in a visually stimulating way.
• An easy-to-understand overview of three basic packages that a customer can

choose from. These need to be presented clearly in a way that makes it easy
to choose the right fit and then sign up!

• Conversions! Everything should draw the user down the page, making it
nearly impossible to avoid clicking on the sign up button at the end.

To protect the secrecy of her upcoming product launch, our client has chosen not
to reveal the exact nature of her product or service to us. Rather, she has provided
mockups of the design she would like us to create by using a dummy copy for
placeholders.

The first section will open with an interesting full-width image, a large welcome
message, and an invitation to scroll down the page to learn more, as shown in the
following screenshot:

The second section will list six key features of the product, which are laid out in
a three-column grid, and illustrate appropriate icons as shown in the following
screenshot:

Chapter 6

[209]

The third section will feature client testimonies with photos and quotations laid out
in the masonry style:

Bootstrappin' a One-page Marketing Website

[210]

The fourth and final section will feature three available plans, each with a pricing
table, and will have a visual emphasis on the center of the three tables, as shown in
the following screenshot:

The savvy client that she is, she further demands that the design adapt beautifully
to tablets and phones.

A great plan. No problem. Let's get to work.

Surveying the starter files
The files for this project are found in the 06_Code_Begin exercise files. As in all
previous projects, Bootstrap 3 LESS, JavaScript, and markup patterns provide the
core of our code base, rounded out by the HTML5 Boilerplate and Font Awesome
icon font.

The folder and file structure is very similar to what we've used in the previous
projects in this book. Let me briefly recap some of the features of our LESS files:

• Default Bootstrap files are in the /less/bootstrap/ folder.
• The LESS files of the Font Awesome icon font are found in /less/font-

awesome/.

Chapter 6

[211]

• Our custom LESS files are found directly inside the less folder and begin
with an underscore, making it easy to spot them. Custom LESS files
here include:

 ° __main.less: This is the main file that imports all the others and is
the file that you should compile to css/main.css

 ° _variables.less: This is based on Bootstrap's variables with a few
customizations

 ° _navbar.less: This provides navbar customization
 ° _page-contents.less: This provides styles for the content area of

our pages
 ° _footer.less: This provides styles for the footer area of our pages

You will have seen the preceding features in previous projects.

Here is what's distinctive about this set of files:

• I've applied a few custom LESS touches that are specific to this project:
 ° _variables.less: I have adjusted a number of variables, especially

for the navbar. I've sought to indicate these with comments.
 ° _navbar.less: This constrains the size of the site logo image and

lays it at the beginning of a visual aesthetic that fits our assignment.

• The index.html file has much of the markup we need already in place.
• Images are provided in the img folder. They've been scaled, cropped, and

optimized for the Web and are already plugged into their appropriate places
in the markup.

Before we begin, let's see how this currently appears in a web browser.

Viewing the page content
Open index.html in your browser. You'll see the following major components in
place. Of course, at present, they will be displayed with default Bootstrap styles,
awaiting the customization that needs to be done.

• A fixed top navbar
• A jumbotron with a big welcome message
• A features section with icons, headings, and text organized in three columns
• The Impact section with photos of six happy customers and placeholder

content for their bits of positive testimony

Bootstrappin' a One-page Marketing Website

[212]

• A Sign up Now! section with three tables laying out the Basic Plan,
Premium Plan, and Pro Plan packages, with a Sign up Now! button
under each

• A footer logo
• Photo credits (images are attribution licensed)

To view the markup, open index.html in your editor. We will get very familiar
with the markup in the steps that follow!

Adjusting the navbar
This design calls for a fixed top navbar with a significant color shift for hovered
and active links. I've already applied some of these styles by setting appropriate
variables. Let me point those out, and then we'll move on to make some necessary
adjustments to the markup.

The less/_variables.less file is based on Bootstrap's variables.less file.
I've customized the shades of gray as per previous projects. You'll see these in
the topmost section of the file.

I've further adjusted the following navbar variables, adjusting its height, margin,
colors, and hover colors specifically for this design:

// Basics of a navbar
@navbar-height: 56px;
@navbar-margin-bottom: 0;
...
// Navbar links
@navbar-default-link-color: @navbar-default-color;
@navbar-default-link-hover-color: #fff;
@navbar-default-link-hover-bg: @gray;
@navbar-default-link-active-color: #fff;
@navbar-default-link-active-bg: @gray-dark;

In addition, I've adjusted the variables for the navbar toggle:

// Navbar toggle
@navbar-default-toggle-hover-bg: transparent;
@navbar-default-toggle-icon-bar-bg: @gray-lighter;
@navbar-default-toggle-border-color: transparent;

Chapter 6

[213]

Finally, I've eliminated rounded corners from the navbar toggle as well as from any
other elements in this design. This was easily accomplished by adjusting the three
@border-radius- variables:

@border-radius-base: 0; // was 4px
@border-radius-large: 0; // was 6px
@border-radius-small: 0; // was 3px

Along with the custom variables, I've made a few adjustments to _navbar.less. I've
adjusted the padding around .navbar-brand to allow the necessary space for our
logo image:

I've commented out the original line and then added a comment
after the new line.

.navbar-brand {
 float: left;
 // padding: @navbar-padding-vertical @navbar-padding-horizontal;
 padding: 12px 30px 0 15px; // to allow for logo image

I've also customized the list items in the expanded navbar, adding left and right
padding and transforming the text to uppercase:

// Uncollapse the nav
 @media (min-width: @grid-float-breakpoint) {
 ...
 > li {
 float: left;
 > a {
 padding-top: ((@navbar-height - @line-height-computed) / 2);
 padding-bottom: ((@navbar-height - @line-height-computed)
 / 2);
 padding-left: 24px; // added
 padding-right: 24px; // added
 text-transform: uppercase; // added
 }
 }

When combined, the adjusted variables and navbar customizations yield these
visual results:

Let's proceed on to the jumbotron with its big welcome message.

Bootstrappin' a One-page Marketing Website

[214]

Customizing the jumbotron
In this section, we'll customize the jumbotron to display our client's big welcome
message with stylistic touches inline with her mockup. This will include adding a
large background image, enlarging the welcome message text, and then adjusting
its presentation for multiple viewports.

In index.html, find the following markup:

<!-- INTRO SECTION -->
<section id="welcome" class="jumbotron">
 <div class="container">
 <h1>Big Welcome Message</h1>
 <p>Ingenious marketing copy. And some more ingenious
 marketing copy.<a href="#features" class="btn btn-lg btn-
 primary pull-right">Learn more <span class="icon fa fa-
 arrow-circle-
 down"></p>
 </div>
</section>

At present, with only default Bootstrap styles in place, the result looks like the
following screenshot:

After completing the following steps, our jumbotron should look like the
following screenshot:

Chapter 6

[215]

Let's start by expanding the height of our jumbotron and putting our desired
background image in place:

1. Open our custom LESS file, less/_page-content.less, in your editor.
This is the file we'll use for customizing many of the details of our page.

2. Now, let's set the height, background color, and font color for the #welcome
section. While at it, we'll add some top margin to the button:
#welcome {
 height: 300px;
 background-color: #191919;
 color: #fff;
 .btn {
 margin-top: 16px;
 }
}

3. Save these changes and compile the file to CSS. You should see this result:

Next, let's use a media query to place our background image for medium screens and
up (991px, according to the current default Bootstrap media query breakpoint values):

If you would like, take a few minutes to open _variables.less,
then search for and revisit Bootstrap's media query variables such
as @screen-xs, @screen-sm, @screen-md, and @screen-lg.

1. We can use the power of LESS to nest a media query within the context of
the #welcome selector. Within this media query, we'll specify the subway-
906x600.jpg image for the background. This image is scaled to be large
enough for this breakpoint while still loading relatively quickly:
#welcome {
 ...
 @media (max-width: @screen-sm-max) {

Bootstrappin' a One-page Marketing Website

[216]

 background: #191919 url('../img/subway-906x600.jpg')
 center center no-repeat;
 }
}

2. Save the file, compile it to CSS, and refresh your browser. You should see the
new background image appear—but only within a window width of 991px
or less:

3. Next, let's expand the height of the jumbotron for tablet-sized viewports.
We'll write a media query that uses @screen-sm-min as its breakpoint, which
increases the #welcome element's height to 480px within this breakpoint:
@media (min-width: @screen-sm-min) {
 height: 480px;
}

4. Save the file, compile it to CSS, and refresh your browser. You should see the
jumbotron grow to 480px in height for viewports between 768 to 991px in
width, as shown in the following screenshot:

Chapter 6

[217]

5. Now for medium and larger (greater than 992px in width) viewports, we'll
increase the height of the jumbotron to 540px. At this width, we'll use the
larger version of the subway-1600x1060.jpg background image. While at it,
we'll set the background size to cover:
@media (min-width: @screen-md-min) {
 height: 540px;
 background: #191919 url('../img/subway-1600x1060.jpg')
 center center no-repeat;
 -webkit-background-size: cover;
 -moz-background-size: cover;
 -o-background-size: cover;
 background-size: cover;
 }

6. With these style rules in place, large viewports will have a 1600px-wide
background image. Modern browsers, including Internet Explorer 9 and
above, will stretch the background image to fill the #welcome element.

7. Save the file, compile it to CSS, and test. You should find that we have our
major breakpoints nicely covered.

Be aware that Internet Explorer 8, when stretched beyond 1600px
in width, will reveal the #191919 background color at the left
and right edges. This should not affect many users; however,
when it does happen, it will not be greatly distracting.

Next, we can style our big marketing message for maximum impact.

Refining the jumbotron message design
Our client wants the welcome message in the jumbotron to be extra big. Bootstrap's
jumbotron styles increase the font size by 150 percent. We want to enhance the
results further. We also want to constrain the width of the message on wide screens
and put a dark translucent box behind it.

Bootstrappin' a One-page Marketing Website

[218]

Our current results work well for extra-small screens:

We can, however, improve the contrast of our text by placing a translucent dark
overlay behind the text. Let's do that here by performing the following steps:

1. In index.html, add a new div tag inside the jumbotron container class
and above the h1 heading and paragraph. Give this new div tag a class
of welcome-message:
<section id="welcome" class="jumbotron">
 <div class="container">

 <div class="welcome-message">
 <h1>Big Welcome Message</h1>
 <p>Ingenious marketing copy. And some more
 ingenious marketing copy.<a href="#features"
 class="btn btn-lg btn-primary pull-right">Learn
 more <span class="icon fa fa-arrow-circle-
 down"></p>

 </div><!-- /.welcome-message -->
 </div>
</section>

2. Now to create some styles for this new div, we will perform the
following steps:

 ° Give it a translucent dark background using HSLA.
 ° Stretch it to fill the full width and height of our jumbotron by

positioning it as absolute and setting its top, bottom, left, and right
values to 0.

Chapter 6

[219]

 ° Position the jumbotron itself as relative using the welcome ID so
that it will anchor our absolute-positioned welcome message.

 ° Add internal padding to the welcome message.
 ° Use the provided strong tag to transform the word Big to uppercase

and increase its font size.

#welcome {
 ...
 position: relative;
 .welcome-message {
 background-color: hsla(0,0,1%,0.4);
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 padding: 30px 40px;
 strong {
 font-size: 1.5em;
 text-transform: uppercase
 }
 }
 ...
}

3. Save the file, compile it to CSS, and refresh your browser. You should
see the background darken and the text stand out more clearly against it,
as shown in the following screenshot:

Bootstrappin' a One-page Marketing Website

[220]

4. Next, we can address the @screen-sm breakpoint. We've already written a
media query for this breakpoint in order to increase the jumbotron height to
480px. Within this same breakpoint, we can add rules to do the following:

 ° Position the container as relative to make it our new anchor point,
which will push our welcome message away from the top and
left edges

 ° Push the right edge 20 percent from the right
 ° Set the bottom edge to auto so that it can stretch to fit our content
 ° Set the word Big to display block and fill its own line

@media (min-width: @screen-sm-min) {
 height: 480px;
 .container {
 position: relative;
 }
 .welcome-message {
 right: 20%;
 bottom: auto;
 strong {
 display: block;
 }
 }
}

5. Save the file, compile it to CSS, and refresh your browser. You should see the
following result:

Chapter 6

[221]

6. Finally, let's address the medium and large viewports. We'll constrain
the width a bit more. This can all be done under the previously created
@screen-md-min media query:
@media (min-width: @screen-md-min) {
 ...
 .welcome-message {
 right: 50%;
 }
}

7. Save the file, compile it to CSS, and refresh your browser. You should see the
following result in a medium viewport:

Mission accomplished!

Our customized jumbotron is finished, providing the large welcome message
our client has asked for including the ability to adapt to tablet- and phone-sized
viewports, which we've accomplished efficiently with a mobile-first approach.

Now we're ready to move on to the features list.

Bootstrappin' a One-page Marketing Website

[222]

Beautifying the features list
With icons, titles, and short descriptions, our features section currently looks like the
following screenshot in a wide viewport:

We need to enlarge the icons, align the text at the center, and iron out the grid layout.

Let's review the markup structure for the features list:

<section id="features">
 <div class="container">
 <h1>Features</h1>
 <div class="row">
 <div class="features-item col-md-4">

 <h2>Feature 1</h2>
 <p>Donec id elit non mi porta gravida at eget metus. Fusce
 dapibus, tellus ac cursus commodo. </p>
 </div>
 ...

Each feature with its icon, heading, and paragraph is wrapped in a
div tag with two classes: features-item and col-md-4.

Chapter 6

[223]

With this in mind, let's write the styles we need:

1. With _page-contents.less opened in your editor, add a new section with
a comment for our #features section.
// Features Section
#features {

}

2. Now let's focus on the .features-item section by aligning the text at the
center, adding padding, providing a set height to keep the floating items
from interfering with each other, and increasing the .icon font size to 90px:
#features {
 .features-item {
 text-align: center;
 padding: 20px;
 height: 270px;
 .icon {
 font-size: 90px;
 }
 }
}

3. Save the file, compile it to CSS, and refresh the browser. You should see the
following result in a medium viewport:

That's a great start!

Bootstrappin' a One-page Marketing Website

[224]

4. Now let's adapt our features section for small screens. Currently, our
.features-item section includes a class of col-md-4. We can shift our
small-screen layout to two columns as shown in the following screenshot
by adding a class of col-sm-6:

5. And then, of course, they'll arrange themselves in a single column for
extra-small screens.

6. Unfortunately, at the upper range of extra-small screens, 500px to 767px,
the full-width layout allows the descriptive text to range too wide.

Chapter 6

[225]

7. We can fix this by adding a media query within which we set a
maximum width on the .features-item section and apply Bootstrap's
.center-block() mixin:
#features {
 .features-item {
 ...
 @media (max-width: @screen-xs-max) {
 max-width: 320px;
 .center-block();
 }
 }
}

The .center-block() mixin is found in the mixins.less
file in the bootstrap folder. It applies auto left and right
margin to the element.

8. With these lines in place, our .features-item elements retain their desired
dimensions across all viewports!

Bootstrappin' a One-page Marketing Website

[226]

At this point, we have satisfied our client's demands for this section of her website!
We're ready to move on to the customer reviews.

Tackling customer reviews
Our next section, named Impact, presents reviews from happy customers. In this
section, we see smiling faces of happy customers with excerpts of their commentary
about our client's product. The initial markup starts as follows:

<!-- IMPACT SECTION -->
<section id="impact">
 <div class="container">
 <h1>Impact</h1>
 <div class="reviews">

Each review is marked up as follows using the hreview microformat:

<div class="hreview review-item-1 thumbnail">
 <img src="img/smiling1-by-RomainGuy-600x900.jpg" alt="Customer
Photo1">
 <div class="caption">
 <blockquote class="description"><p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Proin euismod, nulla pretium commodo
ultricies</p></blockquote>
 <p class="reviewer">Smiling Customer1</p>
 </div><!-- /.caption -->
</div><!-- /.hreview -->

You may read about the hreview microformat at
http://microformats.org/wiki/hreview-examples.

For purposes of layout and style, we've employed Bootstrap's thumbnail class
structure. This structure offers us the following benefits:

• For the parent element of each review, we've added the thumbnail class
alongside the hreview class

• The review content, including both the quoted text and the reviewer's name,
is wrapped in div class="caption"

This thumbnail and caption structure provides an overall wrapper for each review.
Bootstrap's thumbnail styles are designed to constrain the proportions of images
and captions within our desired layout.

Chapter 6

[227]

Both in terms of semantics and presentational starting points, we're off to a
good start.

Because we want to arrive at a masonry layout, our images are a mixture of portrait
and landscape aspect ratios. We've made them all of equal width in order to provide
enough room for bright faces and textual overlays with short laudatory statements.

Without Bootstrap layout classes, the images simply flow vertically, one after
another. If you constrain your window width to a value approximately in the range
of 320 to 400px, you can see how they will look as one narrow vertical column, as
shown in the following screenshot:

Before addressing the layout for larger viewports, let's start by tackling the captions.

Bootstrappin' a One-page Marketing Website

[228]

Positioning and styling the captions
Let's begin by positioning our captions as overlays atop their respective
customer photos:

1. While editing the _page-contents.less file, add a new comment and
selector for the #impact section:
// Impact Section
#impact {

}

2. Now let's add styles to set the necessary context for each .hreview class
element. We'll apply relative positioning, add padding, and remove the
default Bootstrap thumbnail border:
#impact {
 .hreview {
 position: relative;
 padding: 0 10px;
 border: none;
 }
}

3. Now, we can work on the captions. We'll add a translucent background
and position them as absolute at the bottom of each image:
.hreview {
 ...
 .caption {
 position: absolute;
 top: auto;
 left: 10px;
 right: 10px;
 bottom: 0;
 line-height: 1.1;
 background: hsla(0,0,10%,0.55);
 }

4. Next, we'll strip away the unnecessary margin and padding from the
blockquote and .reviewer elements, specifying just what we need:
#impact .hreview {
 ...
 .caption {
 ...
 blockquote,
 .reviewer {

Chapter 6

[229]

 margin: 0 6px;
 padding: 0;
 }

5. Now, we can focus on the review text and specify the margin, border, font
family, font size, and color:
 blockquote {
 margin-top: 4px;
 border: none;
 font-family: @font-family-serif;
 font-size: @font-size-large;
 color: #fff;
 }

6. Next, specify styles for the reviewer's name, which appears below the
review text:
 ...
 .reviewer {
 margin-top: 2px;
 margin-bottom: 4px;
 text-align: right;
 color: @gray-lighter;
 }

Be sure to close each set of curly braces.

7. Save the file, compile it to CSS, refresh the browser, and check your progress.

Bootstrappin' a One-page Marketing Website

[230]

Scroll down and see how the results look in the other review items.

Not bad! However, we can do it one step better.

Refining the caption position
Looking carefully at the available open space in the preceding images and examining
the overlap variations at various viewport widths in your responsive grid, you may
want to position each caption in a way that works best for each customer's photo.

This is where the review-item-1, review-item-2, and so on classes become
relevant and helpful, as we may use these specific classes to position each caption
in a way that fits best with its image. I've added the following lines in the
_page-contents.less file:

#impact {
 .review-item-4 .caption {
 top: 0;
 left: 62%;
 right: 10px;
 bottom: auto;

Chapter 6

[231]

 .reviewer {
 margin-top: 6px;
 text-align: left;
 }
 }
 .review-item-5 .caption {
 top: 0;
 left: 17%;
 right: 10px;
 bottom: auto;
 }
}

The preceding markup adjusts the absolute positioning of each specific caption,
which yields results as shown in the following screenshot:

You'll see that I've applied specific positioning values from lines 132 and onwards
in the less/_page-contents.less file in the 06_Code_END folder in this chapter's
exercise files. As you survey the results, you may disagree with my judgment calls—
about positioning, styling, or both. That's fine. Take over and fine-tune from here!

Meanwhile, let's move on toward our masonry layout. The first step will be to
specify the widths of our elements. Let's utilize Bootstrap's grid classes for this.

Bootstrappin' a One-page Marketing Website

[232]

Adding Bootstrap grid classes
By utilizing Bootstrap's responsive grid classes, we can prepare a two-column layout
for small screens using the col-sm-6 class. For medium screens and up, we can shift
to a three-column layout using the col-md-4 class.

The resulting class structure for each hreview element will look like the following line:

<div class="hreview review-item-1 thumbnail col-sm-6 col-md-4">

Add these two column classes to each review item.

Save the file, refresh your browser, and expand your window across the small
and medium breakpoints. You'll see a result similar to the following screenshot
for small viewports:

Chapter 6

[233]

For medium viewports and higher, you'll see a result similar to the following
screenshot:

In the features section discussed earlier, we discovered that when we have grid items
of varying heights, they bump into one another and do not automatically create a
cohesive grid. We fixed this by giving each element a set height value. But in this
section, we want our items to have varying heights. We want a masonry layout, and
this requires a bit of JavaScript.

Bootstrappin' a One-page Marketing Website

[234]

Downloading and linking up the Masonry
JavaScript plugin
A masonry layout utilizes JavaScript to assess available spaces and fill those spaces
with the elements that fit them best, with the goal of producing nicely tiled columns
from building blocks of varying heights.

To implement masonry in this design, we'll utilize the excellent JavaScript plugin
named Masonry, which has been developed and maintained by David DeSandro:

1. In your browser, navigate to http://masonry.desandro.com.
2. Download the minified, production-ready file masonry.pkgd.min.js.
3. Open masonry.pkgd.min.js in your editor and copy its entire contents.
4. Now, in your project files, open js/plugins.js. Paste the masonry code

with its opening comments just after the end of Bootstrap's JavaScript lines.
5. Save and close the file.

Recall that the plugins.js file is already linked to your index.html file. Similarly,
we've added masonry to our page's available scripts! (While we've added some file
size, we have not added any new HTTP requests.)

Initializing Masonry JavaScript on our reviews
layout
We'll now initialize masonry in our page using HTML attributes.

For Masonry documentation, check http://masonry.desandro.
com/#getting-started.

In the index.html file, perform the following steps:

1. Add the js-masonry class to div class="reviews", which is the parent of
all of our review items. This lets masonry know where to do its work.

2. Then, on the same element, add a data attribute to specify the masonry items.
The resulting tag should look like the following line:
<div class="reviews js-masonry" data-masonry-
 options='{"itemSelector": ".hreview" }'>

Chapter 6

[235]

It's important that the data-masonry-options attribute
uses single and double quotes in exactly the following pattern:
data-masonry-options='{ "itemSelector": ".hreview" }'.

This tells masonry which elements to arrange in the masonry layout. We've
specified the hreview class (though we could have used thumbnail).

3. Save index.html and refresh your browser. You can see that the gaps that
existed earlier disappeared as soon as the masonry filled them in.
The result for a small viewport (for which we've specified a two-column
layout using col-sm-6) is shown in the following screenshot:

Bootstrappin' a One-page Marketing Website

[236]

And the following is the result in a medium or large viewport:

Take a geek break by resizing your browser window back and forth across the small
and medium breakpoints. Watch the review items reorganize themselves into two or
three columns with the animation provided by Masonry.js!

Chapter 6

[237]

Cutting and trimming our bricks
We're very close to accomplishing our client's desired result. However, one of our
remaining problems is that we've possibly mismeasured the size of our images. In a
small two-column layout, the image that says Smiling Customer5 sticks out just a
bit. In the medium and large three-column layout, the image sticks out even more.
We could take the image out, but the review of the customer in that image is one of
our client's favorites, and she loves this image. So, we're going to make this image fit
properly in the viewport.

Thankfully, we have been given permission to do some trimming. And if push comes
to shove, other customers are expendable. This gives us something to work with.
Let's begin by fixing the three-column layout:

1. With _page-contents.less open in your editor, begin a new section with a
comment at the top:
// Cutting and trimming for masonry layout

2. Next, we'll make multiple adjustments at multiple breakpoints. Instead of
starting with a media query, let's take advantage of the power of LESS and
nest our media queries within the context of our #impact section. Within the
first query, we'll remove the image that says Smiling Customer4 from the
layout, as shown in the following lines of code:
#impact {
 @media (min-width: @screen-md-min) {
 .review-item-4 {
 display: none;
 }
 }
}

Bootstrappin' a One-page Marketing Website

[238]

3. Save the file, compile it to CSS, and refresh your browser. Your three-column
layout should now be nicely lined up! The following screenshot shows
the result:

Now let's adjust the image in the two-column layout.

The image that says Smiling Customer5 sticks out perhaps 20px
below the others. What's needed here is to trim the photo a little
by slicing some pixels from the bottom edge.

We need to slice these pixels only for the small layout—not extra-small and not
medium or large. Thus, we'll need both minimum and maximum values in our
media query. Adding this media query below the first query, we can accomplish
our goals as shown in the following lines of code:

@media (min-width: @screen-sm-min) and (max-width: @screen-sm-max) {
 .review-item-5 {
 height: 474px;
 overflow: hidden;
 img {
 width: 100%;
 }
 }
 }

Chapter 6

[239]

By adding these lines, we have performed the following:

• Set the height of the review-item-5 div to precisely 474 pixels so that it will
share the same bottom edge with its neighboring item

• Hidden the overflow, cutting off the bottom portion of the image from
the view

• Forced the image to fill the width of its available space so that it keeps its
needed width

The result works nicely! The following screenshot shows the desired result:

We're looking great!

Bootstrappin' a One-page Marketing Website

[240]

Adjusting for tiny screens
It seems that Bootstrap's responsive grid and masonry's layout magic has combined
to form a nasty concoction for tiny viewports—at least in some browsers. In my
browser, images grow huge and no longer stay constrained.

This is because Bootstrap's col-sm- and col-lg- classes no longer apply at this
tiny dimension. As a result, our hreview thumbnails and their images have gone
completely unconstrained by any specification of width.

At this point, we could do one of the following two things:

• Go back and add col-12 to each review item
• Set our own constraints with a little custom LESS

The choice is up to you. As for me, at this point in the flow of things, I'd rather take
the second option.

To do so, I'll simply add one more media query in the _page-contents.less file:

@media (max-width: @screen-xs-max) {

Within this media query, let's limit the max-width property of div
class="reviews" to 400px—a width that leaves our images large enough without
allowing them to expand too large. Then, let's use the .center-block() mixin to
center align the reviews using auto left and right margins as shown in the following
lines of code:

#impact {
 @media (max-width: @screen-xs-max) {
 .reviews {
 max-width: 400px;
 .center-block();
 }
 }
}

Save the file and then refresh your browser.

Voila! The customer reviews are now performing exactly according to our
client's desires.

Now to take care of the last major item in our client's desired home page design: the
pricing tables.

Chapter 6

[241]

Creating attention-grabbing pricing
tables
Let's revisit the mockup of how our client would like the pricing tables to look on
desktop-sized screens:

Let's see how close we can get to the desired result, and what we can work out for
other viewport sizes.

Setting up the variables, files, and markup
As shown in the preceding screenshot, there are a few tables in this design. We
can begin by adjusting a few fundamental variables for all tables. These are found
in _variables.less. Search for the tables section and adjust the variables for
background, accented rows, and borders as desired. I've made these adjustments as
shown in the following lines of code:

// Tables
// -------------------------
...
@table-bg: transparent; // overall background-color
@table-bg-accent: hsla(0,0,1%,.1); // for striping
@table-bg-hover: hsla(0,0,1%,.2);
@table-bg-active: @table-bg-hover;
@table-border-color: #ccc; // table and cell border

Bootstrappin' a One-page Marketing Website

[242]

Save the file, compile it to CSS, and refresh to see the result as shown in the following
screenshot:

That's a start. Now we need to write the more specific styles.

The _page-contents.less file is now growing long, and the task before us is
extensive and highly focused on table styles. To carry the custom styles, let's
create a new LESS file for these pricing tables:

1. Create _pricing-tables.less in the main less folder.
2. Import it into __main.less just after _page-contents.less as shown in the

following line:
@import "_pricing-tables.less";

3. Open _pricing-tables.less in your editor and begin writing your
new styles.

But before we begin writing styles, let's review the markup that we'll be
working with.

We have the following special classes already provided in the
markup on the parent element of each respective table:

• package package-basic
• package package-premium
• package package-pro

Chapter 6

[243]

Thus, for the first table, you'll see the following markup on its parent div:

<div class="package package-basic col-lg-4">
 <table class="table table-striped">
...

Similarly, we'll use package package-premium and package package-pro for the
second and third table, respectively.

These parent containers obviously also provide basic layout instructions using the
col-md-4 class to set up a three-column layout in medium viewports.

Next, we will observe the markup for each table. We see that the basic table and
table-striped classes have been applied:

<table class="table table-striped">

The table uses the <thead> element for its top-most block. Within this, there is
<th> spanning two columns, with an <h2> heading for the package name and
<div class="price"> to markup the dollar amount:

 <thead>
 <tr>
 <th colspan="2">
 <h2>Basic Plan</h2>
 <div class="price">$19</div>
 </th>
 </tr>
 </thead>

Next is the tfoot tag with the Sign up Now! button:

 <tfoot>
 <tr><td colspan="2">Sign up
 now!</td></tr>
 </tfoot>

Then is the tbody tag with the list of features laid out in a straightforward manner in
rows with two columns:

 <tbody>
 <tr><td>Feature</td><td>Name</td></tr>
 <tr><td>Feature</td><td>Name</td></tr>
 <tr><td>Feature</td><td>Name</td></tr>
 <tr><td>Feature</td><td>Name</td></tr>
 <tr><td>Feature</td><td>Name</td></tr>
 </tbody>

Bootstrappin' a One-page Marketing Website

[244]

And finally, of course, the closing tags for the table and parent div tags:

 </table>
</div><!-- /.package .package-basic -->

Each table repeats this basic structure.

This gives us what we need to start work!

Beautifying the table head
To beautify the thead element of all of our tables, we'll do the following:

• Align the text at the center
• Add a background color—for now, add a gray color that is approximately

a midtone similar to the colors we'll apply to the final version
• Turn the font color white
• Convert the h2 heading to uppercase
• Increase the size of the price table
• Add the necessary padding all around the tables

We can apply many of these touches with the following lines of code. We'll specify
the #signup section as the context for these special table styles:

#signup {
 table {
 border: 1px solid @table-border-color;
 thead th {
 text-align: center;
 background-color: @gray-light;
 color: #fff;
 padding-top: 12px;
 padding-bottom: 32px;
 h2 {
 text-transform: uppercase;
 }
 }
 }
}

Chapter 6

[245]

In short, we've accomplished everything except increasing the size of the price tables.
We can get started on this by adding the following lines of code, which are still
nested within our #signup table selector:

.price {
 font-size: 7em;
 line-height: 1;
}

This yields the following result:

This is close to our desired result, but we need to decrease the size of the dollar sign.
To give ourselves control over that character, let's go to the markup and wrap a span
tag around it:

<em class="price">$19

Remember to do the same for the other two tables.

With this new bit of markup in place, we can nest this within our styles for .price:

.price {
 ...
 span {
 font-size: .5em;
 vertical-align: super;
 }

These lines reduce the dollar sign to half its size and align it at the top.

Now to recenter the result, we need to add a bit of negative margin to the parent
.price selector:

.price {
 margin-left: -0.25em;
 ...

Bootstrappin' a One-page Marketing Website

[246]

The following screenshot shows the result:

Styling the table body and foot
By continuing to focus on the styles that apply to all three pricing tables, let's make
the following adjustments:

• Add left and right padding to the list of features
• Stretch the button to full width
• Increase the button size

We can accomplish this by adding the following rules:

#signup {
 table {
 ...
 tbody {
 td {
 padding-left: 16px;
 padding-right: 16px;
 }
 }
 a.btn {
 .btn-lg;
 display: block;
 width: 100%;
 background-color: @gray-light;
 color: #fff;
 }
 }
}

Chapter 6

[247]

Save the file, compile it to CSS, and refresh the browser. You should see the
following result:

We're now ready to add styles to differentiate our three packages.

Differentiating the packages
Let's begin by giving each package the desired color for the table head and the
Sign up now! button. Our provided mockup uses blue for the Basic, green for the
Premium, and red for the Pro packages. Let's prepare our color scheme by using
the chosen color values in new variables for primary, secondary, and tertiary brand
colors, as shown in the following lines of code:

@brand-primary: #428bca;
@brand-secondary: #5cb85c;
@brand-tertiary: #d9534f;

Having set up these colors, we can efficiently apply them to the appropriate thead
and button elements. We'll use the distinctive class that we applied earlier to each
table's parent element, that is, package-basic, package-premium, and package-pro:

1. In the less/_pricing-tables.less file, begin a new section with
a comment:
// Pricing Table Colors

2. We'll apply the primary brand color to the .package-basic table using
the @brand-primary variable; we'll try it first on the thead th element:
#signup .package-basic table {
 thead th {
 background-color: @brand-primary;
 }

Bootstrappin' a One-page Marketing Website

[248]

3. Then, apply the primary brand color to the thead th element's button. Here,
we'll use the .button-variant() mixin from the bootstrap/mixins.less
file to efficiently apply styles to :hover and :active states. The mixin takes
three parameters: color, background color, and border color. We'll define
them as follows:
 ...
 .btn {
 .button-variant(#fff; @brand-primary; darken(@brand-primary,
5%));
 }
}

4. When compiled, this concise mixin will generate styles for the button and its
hover and active states!

For a reminder of how the .button-variant() mixin
works, consult bootstrap/mixins.less, where the mixin
is defined, and then bootstrap/buttons.less, where it is
used to define the default Bootstrap button classes.

5. Now, we need to repeat the same for our .package-premium table, this time,
however, using the @brand-secondary variable:
#signup .package-premium table {
 thead th {
 background-color: @brand-secondary;
 }
 .btn {
 .button-variant(#fff; @brand-secondary; darken(@brand-
secondary, 5%));
 }
}

6. Finally, we'll apply the tertiary brand color to the .package-pro table using
the @brand-tertiary variable:
#signup .package-pro table {
 thead th {
 background-color: @brand-tertiary;
 }
 .btn {
 .button-variant(#fff; @brand-tertiary; darken(@brand-tertiary,
5%));
 }
}

Chapter 6

[249]

7. Save the file, compile it to CSS, and refresh your browser. You should see the
new colors we applied to our tables.

Nice!

Now, let's check how our tables respond to various viewport widths.

Adjusting for small viewports
Thanks to the attention Bootstrap 3 gives to responsive design, our tables perform
quite well across viewport breakpoints. We've already seen the way our tables fair in
the medium breakpoint range. In large screens, the tables expand wider, as shown in
the following screenshot:

Bootstrappin' a One-page Marketing Website

[250]

In narrow viewports, the tables stack up vertically, as shown in the following
screenshot, quite nicely:

Chapter 6

[251]

However, there is an awkward range of width approximately between 480px and
992px where the tables expand to fill the full width of the screen. Clearly, they
become too wide, as shown in the following screenshot:

Because we have three tables, there is no benefit involved in having a two-column
layout at this dimension. Instead, let's constrain the width of our tables and align
them at the center with auto left and right margins. We'll use a media query with
max-width of @screen-sm-max set to 400px as our maximum width, and use the
.center-block() mixin to keep our tables at the center in the window:

//
// Constrain width for small screens and under
// --

Bootstrappin' a One-page Marketing Website

[252]

@media (max-width: @screen-sm-max) {
 #signup .package {
 max-width: 400px;
 .center-block();
 }
}

Save the file, compile it to CSS, and refresh your browser. You should see nicely
constrained tables aligned at the center within the window! The following
screenshot shows our result:

At this point, our tables are differentiated by color and are responsive. However, one
last step remains. In the medium and large viewport widths, we want the premium
plan to stand out.

Providing visual hierarchy to our tables
If we look back at the mockup, we see that the design—at least for desktop-sized
viewports—calls for visual emphasis upon the central premium plan by increasing its
size and bringing it visually into the foreground, as shown in the following screenshot:

Chapter 6

[253]

This can be accomplished with some adjustments to padding, margins, and
font sizes.

We'll do this within a media query for medium viewports and up:

//
// Visually enhance the premium plan
// --
@media (min-width: @screen-md-min) {

}

Nested within this media query, we can first reduce the widths of our basic and pro
tables (the first and third) and add a little margin to the top to push them down a bit:

 // Size down the basic and pro
 #signup .package-basic table,
 #signup .package-pro table {
 width: 90%;
 margin-top: 36px;
 }

Bootstrappin' a One-page Marketing Website

[254]

Next, let's enhance the font size of our premium table and add padding to its button:

// Size up the premium
#signup .package-premium table {
 thead th {
 font-size: 1.5em;
 h2 {
 font-size: 1.5em;
 }
 }
 a.btn {
 font-size: 2em;
 padding-top: 24px;
 padding-bottom: 24px;
 }
}

This already brings us very close to our desired result, as shown in the following
screenshot:

Our next aim is to bring the tables closer in proximity to one another. This can be
done with some margin adjustment and a bit of z-index work:

 // Squeeze tables together
 #signup .package-basic {
 margin-right: -58px;
 margin-left: 58px;
 z-index: 1;

Chapter 6

[255]

 }
 #signup .package-premium {
 z-index: 1000;
 }
 #signup .package-pro {
 margin-left: -30px;
 z-index: 1;
 }

Here, we have performed the following steps:

• Nudged the BASIC PLAN (leftmost) table to the right using a negative value
for margin-right and compensating this by nudging the equivalent margin
to the left to keep everything positioned as it was originally (else all three
tables will start sliding to the left)

• Nudged the PRO PLAN (rightmost) table to the left with the negative
left margin

• Adjusted the z-index values for all tables so that the basic and pro tables
appear to line up behind our premium table

For a refresher on how z-index works, see http://css-
tricks.com/almanac/properties/z/z-index/.

The following screenshot is the result in a medium viewport:

Bootstrappin' a One-page Marketing Website

[256]

Our work is almost done. We only need to adjust the margins for the basic table
when we cross the next larger breakpoint. After closing the previous media query,
begin a new one and add these margin adjustments:

@media (min-width: @screen-lg-min) {
 #signup .package-basic {
 margin-right: -65px;
 margin-left: 65px;
 }
}

Save the file, compile it to CSS, and refresh the browser. You should see the
following result in large viewports of 1200px and above:

That's it! We've accomplished the last major challenge in our client's design.

Now, tidy things up by applying the touches that hold it all together.

Adding the final touches
In this section, we will enhance the details that hold our design together. First, we'll
enhance the h1 headings for each of our major sections and add some needed top
and bottom padding to each section. Then, we'll enhance the navigation experience
by adding ScrollSpy to the navbar and using jQuery to animate the scrolling action
when triggered by a click on the navbar item.

Chapter 6

[257]

Let's begin by enhancing the size and contrast of our major h1 headings for each
section and increasing the top and bottom padding. If you pause to look at these h1
headings, you may note that they are rather lackluster. Consider, for example, the
heading for the Features section:

Enlarging these headings, bringing the contrast down a little, and providing extra
padding will make a big difference. We only want these rules to apply to the
FEATURES, IMPACT, and SIGN UP sections. We will select these by ID.

1. Open _page-contents.less in your editor.
2. At the top of the file, after the rule applying top padding to the body, add the

following lines:
#features, #impact, #signup {
 padding-top: 36px;
 padding-bottom: 48px;
 h1 {
 font-size: 5em;
 color: @gray;
 line-height: 1.3;
 padding-bottom: 24px;
 }
}

3. Here, we've done the following:
 ° Added the top and bottom padding to these sections
 ° Significantly increased the size of the h1 heading
 ° Reduced the heavy contrast of that heading
 ° Ensured that the heading has room to breathe by setting the line

height and bottom padding

Bootstrappin' a One-page Marketing Website

[258]

4. Save, compile, refresh, and notice the difference.

This yields a nice result across almost all viewport sizes. For small viewports, the
h1 font size is now a bit large. We also need to add some left and right margins; so,
let's adjust these. As we do not want these styles to flow up to larger viewports, we'll
wrap them in a query by limiting them to small viewports:

// Adjust section headings for extra-small viewports only
@media (max-width: @screen-xs-max) {
 #features, #impact, #signup {
 margin-left: 30px;
 margin-right: 30px;
 h1 {
 font-size: 3em;
 }
 }
}

The following screenshot shows our result:

Chapter 6

[259]

This is a much improved result!

Now, we'll enhance the navigation experience.

Adding ScrollSpy to the navbar
Let's configure our top navbar to indicate our location on the page. We'll add
Bootstrap's ScrollSpy behavior to the navbar:

Refer to Bootstrap's ScrollSpy plugin documentation at
http://getbootstrap.com/javascript/#scrollspy.

1. Open index.html in your editor.
2. Add these ScrollSpy attributes to the body tag:

<body data-spy="scroll" data-target=".navbar">

If you include more than one navbar in a page, you will need
to be more specific with the data-target attribute—probably
giving your ScrollSpy navbar an ID such as id="navbar-
primary" and using that for the data-target value instead.

3. With these new attributes in place, save the file, refresh your browser,
and scroll up and down the page. You should see your main navigation
respond as it should, indicating your position on the page as shown in
the following screenshot:

Bootstrappin' a One-page Marketing Website

[260]

Animating the scroll
Now, let's animate the page scrolls that will be triggered by clicking on the navbar
page anchors. This requires adding a few lines to our main.js file:

1. Open js/main.js.
2. Add the following lines within $(document).ready(function() {:

$('#nav-main [href^=#]').click(function (e) {
 e.preventDefault();
 var div = $(this).attr('href');
 $("html, body").animate({
 scrollTop: $(div).position().top
 }, "slow");
});

3. Save the file and refresh your browser.

What have we done here? We have done the following using the power of jQuery:

• Selected the links in our .navbar element that use page anchors as
their targets

• Prevented the default click behavior
• Animated the scrolling behavior, setting its duration to slow

Click on one of the nav items and you should see it animate the scroll!

Summary
Take a moment to scroll back and forth through our page, appreciating its details
and resizing it to see how it adjusts to viewport dimensions.

When we consider the variety of features packed into this page—and that they all
work responsively across desktop-, tablet-, and phone-sized viewports—it's not a
bad accomplishment!

To review, we have given our client a beautiful one-page marketing site with
the following:

• A large welcome section using Bootstrap's jumbotron styles, a bold
background image, and responsive customizations

• A features list making use of large-sized Font Awesome icons

Chapter 6

[261]

• A section of customer reviews with images and captions laid out in the
masonry format that adapts beautifully across viewports

• A signup section with custom-designed pricing tables built on Bootstrap
styles and enhanced further to provide visual hierarchy for medium and
large viewports

• A ScrollSpy-equipped navbar with animated scrolling behavior provided by
a bit of extra jQuery

With the accomplishment of this design, we have reached a point where there is
nothing we can't do with Bootstrap.

Across this and the previous projects, we have accomplished a great deal. We have:

• Learned the ins and outs of Bootstrap
• Folded Bootstrap LESS and JavaScript into our own custom set of project files
• Swapped out Bootstrap's glyphicons for the more robust Font

Awesome icons
• Tweaked, customized, and otherwise innovated on Bootstrap styles to arrive

precisely at the results we were seeking

Don't forget, in the appendices of this book, I have provided guidance relevant
to all projects such as optimizing your Bootstrap assets for production (Appendix
A, Optimizing Site Assets), implementing one of the current best responsive image
techniques (Appendix B, Implementing Responsive Images), and adding swipe behavior
to the carousel (Appendix C, Adding Swipe to the Carousel).

Beyond this, there are a plethora of resources available for pushing further with
Bootstrap. The Bootstrap community is an active and exciting one. This is truly an
exciting point in the history of frontend web development. Bootstrap has made a
mark in history, and for a good reason.

Optimizing Site Assets
Speed matters. It matters to users. Your site has to load fast or users will leave. It
matters for SEO. Your site has to load fast or search engines downgrade your ranking.

With that in mind, let's take a moment to take stock of the portfolio site in Chapter 2,
Bootstrappin' Your Portfolio. Specifically, let's look at a key page speed factor that we
can easily control, the size of our asset files—images, CSS, and JavaScript. With just a
few steps, we can drastically reduce our site's footprint and improve load times.

Optimizing images
Our images have already been optimized to a degree using Photoshop's "save to
web" process. But, together, they still weigh in at 856 KB.

The images are important. (It's a portfolio site after all.) However, this is a
considerable payload. In Appendix B, Implementing Responsive Images, I recommend a
responsive image technique that will reduce the file size for smaller devices. But even
without that technique, if we can reduce the file size by compressing these files more
effectively, we should do it.

Optimizing Site Assets

[264]

We can usually squeeze out a few more pixels without damaging our images by
using tools such as Yahoo!'s Smushit (http://www.smushit.com/).

For Mac users, the free ImageOptim app at http://imageoptim.com/ is a similarly
helpful tool. By using it in this case, I've been able to shave a total of 29 KB off my
combined image weight.

That's not a gigantic gain, but every bit helps a little. Let's keep going.

Optimizing CSS
Check out the size of our unoptimized stylesheet, main.css:

It's 137 KB! No conscientious developer should ship such a gigantic stylesheet for so
small a website.

Thankfully, we can easily cut the size of this file by nearly half. We'll use the power
of Bootstrap's modular LESS organization to quickly cut it down to size. Here's how:

1. Open less/__main.less.
2. Comment out all unnecessary LESS files, such as these:

// @import "bootstrap/glyphicons.less";
...
// @import "bootstrap/dropdowns.less";
// @import "bootstrap/button-groups.less";
// @import "bootstrap/input-groups.less";

Appendix A

[265]

...
// @import "bootstrap/breadcrumbs.less";
// @import "bootstrap/pagination.less";
// @import "bootstrap/pager.less";
// @import "bootstrap/labels.less";
// @import "bootstrap/badges.less";
// @import "bootstrap/jumbotron.less";
// @import "bootstrap/thumbnails.less";
// @import "bootstrap/alerts.less";
// @import "bootstrap/progress-bars.less";
// @import "bootstrap/media.less";
// @import "bootstrap/list-group.less";
// @import "bootstrap/panels.less";
// @import "bootstrap/wells.less";
// @import "bootstrap/close.less";
...
// @import "bootstrap/modals.less";
// @import "bootstrap/tooltip.less";
// @import "bootstrap/popovers.less";

3. You'll need to be careful, of course. You may inadvertently eliminate a
necessary file. Take time to recompile and test thoroughly.

4. Once done, set your compiler to minify and/or to compress its output, and
then recompile one last time to css/main.css.

5. Check out the new file size. My resulting file weighs in at only 74 KB, which
is 62 percent of its original size.

Of course, you can press further. You could, for example, take a bit more time, open
each of your remaining .less files, and comment out the lines within each one. I'll
leave that step to you.

Finally, let's get to the JavaScript.

Optimizing JavaScript
Here, we will replace the Bootstrap plugins in our plugins.js file with only the
specific Bootstrap plugins we need. Then, we'll compress the file.

1. Open js/plugins.js.
2. Remove the block of code belonging to bootstrap.min.js.

Optimizing Site Assets

[266]

3. In our js/bootstrap folder, recall that we've kept the Bootstrap plugins as
distinct files. Open each of the following three plugins and copy and paste
the code from each into our plugins.js file. These are the only Bootstrap
plugins we're using for this design:

 ° carousel.js

 ° collapse.js

 ° transition.js

4. Save your new, slimmer plugins.js file. Refresh your browser and test it:
 ° Make sure that your responsive navbar collapses for narrow

viewports and drops down when the button is clicked.
 ° Make sure your carousel runs as it should.

If these things are working, we've got the JavaScript we need.

5. We're now ready to minify and/or uglify the plugins.js file. A few free and
convenient online tools include the following:

 ° UglifyJS JavaScript minification (http://marijnhaverbeke.nl/
uglifyjs)

 ° The YUI Compressor (http://refresh-sf.com/yui/)
 ° Google's Closure Compiler (http://closure-compiler.appspot.

com/)

With these tools, you can copy the contents of plugins.js, paste it
into the online interface, run the compressor, and copy the code back
into plugins.js.
For this exercise, I used CodeKit, a premium app for Mac
(http://incident57.com/codekit/).

6. Save the file.
7. Compare the file size.

I've kept copies of my files as follows:

• plugins-all.js contains the entire bootstrap.min.js
• plugins-uncompressed.js contains just the three needed plugins,

uncompressed
• plugins.js is the final file, minified and concatenated

Appendix A

[267]

You can see the results in this screenshot:

The final file is less than one-third the size of the original!

Our optimized results
Cumulatively, our efforts have made a difference. Between the images, CSS, and
JavaScript, our original site payload was 1021 KB.

After our optimization efforts, we've cut it down to 909 KB—a saving of 112 KB or
over 10 percent reduction in our total site footprint.

If we focus on the CSS and JavaScript file sizes, it's over a 50 percent saving. That's a
huge difference. Chances are that it will be noticed.

We can improve things further, especially for small devices, by implementing
a solid responsive images technique. For that, let me point you to Appendix B,
Implementing Responsive Images.

Implementing Responsive
Images

If our workflow is to be truly mobile friendly, we need a good responsive image
technique. In this exercise, we'll implement one of the current leading techniques
to improve both the performance and the design of the portfolio carousel
implemented in Chapter 2, Bootstrappin' Your Portfolio.

Considering our portfolio carousel
If you recall from Chapter 2, Bootstrappin' Your Portfolio, the carousel images are
crafted to fill a full-width layout. The images are 1,600 pixels wide and weigh in
between 135 to 189 KB. To send these same images to phones and small non-retina
tablets is overkill. In an age of mobile-first responsive design, it's irresponsible.

Furthermore, if you stop and look at the design on a narrow viewport, you may
realize that your carousel would look better if the images were a bit taller and
narrower, allowing them to fill more of the vertical space we have available
on a narrow screen.

Implementing Responsive Images

[270]

At a phone-width viewport, our images—which are crafted for wide screens—may
work, but they would work better if they made use of more of our available
vertical space. This can be seen in the following screenshot:

A good responsive images technique will allow us to provide exactly the images we
need for narrow viewports, answering the need for smaller file sizes and quicker
load times as well as improved design.

Choosing a solution from the available
solutions
The quest for a standards-based approach to responsive images is underway.
However, no solution has yet been adopted, nor has any consistent approach been
implemented by browser vendors. For that reason, the best current techniques rely
on server-side or client-side solutions.

Appendix B

[271]

Smashing Magazine has recently published a good article named Choosing a
Responsive Image Solution, by Sherri Alexander, summarizing some leading current
options. You can review the article at http://mobile.smashingmagazine.
com/2013/07/08/choosing-a-responsive-image-solution/.

In this and other reviews, Scott Jehl's Picturefill technique consistently emerges as
a leading contender. This is because the Picturefill solution admirably addresses
problems of both performance and design. And it does so rather elegantly.

The approach requires just a few steps, as follows:

1. Prepare optimal images for your targeted viewports.
2. Download and include the Picturefill JavaScript.
3. Employ the Picturefill markup pattern for your images.

As always, there are two additional steps to any development process, as follows:

• Test
• Adjust as required

Let's walk through the steps together.

Preparing our responsive images
If you look in the exercise files for this appendix, I've provided a set of specially sized
and optimized images in the img folder. You'll see these named with a –sm.jpg suffix.

Implementing Responsive Images

[272]

If you view these images, you'll see that they are cropped narrower and have a
somewhat taller aspect ratio, filling more vertical space on a narrow viewport as
shown in the following image:

The images are also smaller. They measure 900 x 600px, still enough to provide
decent pixel density to a retina screen, but much less than the original 1600 x 800px
images. And the smaller images average approximately 50 percent of the file size.

Note the comparatively smaller file sizes of the images ending with –sm.jpg in the
following screenshot:

With our images ready and in place, it's time to grab the JavaScript.

Appendix B

[273]

Plugging in the JavaScript
The Picturefill files and documentation are hosted at GitHub at https://github.
com/scottjehl/picturefill.

Take a few minutes to read the documentation. We'll soon be using elements
recommended there. For now, we need to grab the JavaScript and include it in our
project files. So, perform the following steps:

1. At the Picturefill GitHub repository, download the files or click through
them and find the picturefill.js file.

2. Copy the code, including the opening comment. We need to copy it to our
plugins.js file.

3. In our project files, open js/plugins.js and paste the Picturefill code either
before or after the code for our other plugins.

4. Save. (And of course, remember to minify and compress plugins.js before
going to production.)

Now, let's implement the Picturefill markup structure.

Implementing the markup structure
In index.html, we'll update the markup for each image using Picturefill's pattern
of nested span elements. We'll structure it to provide the smaller images by default,
except for browsers with viewports 640px wide or larger and Internet Explorer 8.

The following is the markup pattern for the structure, as implemented for the
first image:

 <span data-src="img/okwu.jpg" data-media="(min-width:
 640px)">
 <!--[if (lt IE 9) & (!IEMobile)]>

 <![endif]-->
 <noscript>

 </noscript>

Implementing Responsive Images

[274]

Let me give you a quick overview of how the preceding code works:

• The top-level span tag identifies the entire element as a responsive image
using the data-picture attribute.

• The data-alt attribute provides the alt text for the image.
• The initial tag specifies the default image to be used

for smaller devices.
• The data-media attribute allows us to specify under what conditions

the larger version of the image is to be used. In our case, we've specified
min-width: 640px so that window screens wider than 640px will load
the larger image.

As explained in the documentation, you may use compound
media queries as well as queries for pixel ratio to target
high-density or retina screens.

• The conditional comment ensures that Internet Explorer 8, which does not
support media queries, receives the larger image size, as it should.

• The no-script element provides a standard image tag that will be used only
in cases where a browser is not running JavaScript.

For further insight, review the documentation found at https://github.com/
scottjehl/picturefill.

Now, be sure to update the markup for the other three images using the same pattern.

Testing and adjusting
If you save and test, you may notice that the carousel images no longer adjust to fit
the width of the carousel. This is because the Picturefill markup pattern throws off
the selectors used in Bootstrap's carousel styles.

We need to update one selector group in the _carousel.less file to ensure our
images adapt to their available space, as follows:

1. Open _carousel.less.
2. Search for the following section of code. Replace the > img and > a > img

child selectors with a simple descendant img selector so that it will successfully
select the images that are now nested deeper in our Picturefill markup:
// Account for jankitude on images
// > img, // commented out
// > a > img // commented out

Appendix B

[275]

img { // added to apply to PictureFill responsive image
 solution
 .img-responsive();
 line-height: 1;
 min-width: 100%; // added
 height: auto; // added
}

That should take care of it!

Our end results
On viewports below 640px, your new carousel should now use the smaller, taller,
more narrowly cropped version of the images.

From here, you may consult the documentation and adjust and adapt your own
version of this approach as required.

Adding Swipe to the Carousel
On touch-enabled devices, the ability to swipe through a carousel offers a
significant usability benefit. In this exercise, we will add swipe interaction
to the Bootstrap carousel.

Considering our options
Currently, there is no foolproof way to test for touch across devices. A best practice
under present circumstances is to add touch events when there is a usability gain
and when we can do it without conflicting with our standard mouse events. In our
case, we can easily enable swipe events on our home page carousel with a JavaScript
plugin and a few lines of code.

Justin Lazanowski has posted a nice write-up of three easy options for implementing
swipe interaction for the Bootstrap 3 carousel. Read his post at http://
lazcreative.com/blog/adding-swipe-support-to-bootstrap-carousel-3-0/.

We'll go with the TouchSwipe jQuery plugin hosted on GitHub at https://github.
com/mattbryson/TouchSwipe-Jquery-Plugin.

By this route, we can add swipe interaction to our carousel with the following
two steps:

1. Fold the TouchSwipe plugin into our plugins file.
2. Add a few lines to our main.js file.

It's that simple. Let's do it.

Adding Swipe to the Carousel

[278]

Getting and including the TouchSwipe
plugin
Let's add TouchSwipe.js to our plugins file:

1. Go to the TouchSwipe GitHub repository at https://github.com/
mattbryson/TouchSwipe-Jquery-Plugin.

2. Download the repository.
3. Find the jquery.touchSwipe.min.js file and copy the code.
4. Paste the plugin code into your plugins.js file in the js folder after the

Bootstrap plugins.
5. Save the file.

Plugin added. Now let's initialize it.

Initializing TouchSwipe
With just a few lines, we can direct TouchSwipe to detect swipe events on the
carousel and translate them into the Bootstrap methods: .carousel('prev') and
.carousel('next'). See these methods referenced in the Bootstrap documentation
at http://getbootstrap.com/javascript/#carousel.

If you'd like to, you may also consult the TouchSwipe documentation at
http://labs.rampinteractive.co.uk/touchSwipe.

Our present task is very straightforward, as shown in the following steps:

1. In your project files, open main.js in the js folder
2. Add the following lines of code in the opened file:

//Enable swiping...
$(".carousel-inner").swipe({
 //Generic swipe handler for all directions
 swipeRight:function(event, direction, distance, duration,
 fingerCount) {
 $(this).parent().carousel('prev');
 },
 swipeLeft: function() {
 $(this).parent().carousel('next');
 },
 //Default is 75px, set to 0 so any distance triggers swipe
 threshold:0
});

Appendix C

[279]

3. Save the file.

Now, if you test these files on a touch device, you should be able to swipe left to go
to the next slide and right to go to the previous one.

That's it. It's a small cost with a clear usability gain.

Congratulations! Your Bootstrap carousel is now swipe enabled.

Index
A
Accessible Rich Internet Applications

(ARIA) 22
attention-grabbing pricing tables, one-page

marketing site
creating 241
files, setting up 241
markup, setting up 242-244
packages, differentiating 247-249
table body, styling 246
table foot, styling 247
table head, beautifying 244, 245
variables, setting up 241, 242
viewports, adjusting 249-252
visual hierarchy, providing 252-256

B
beginning files, Bootstrappin'

sizing up 130-132
Boilerplate files

deleting 11
pulling in 12
updating 11

Boilerplate .htaccess file
evaluating 11

Bootstrap
about 8
CSS 16
downloading 8, 9
features 8
files list 17
online portfolio, designing 33
project template folder, preparing 10
quality 7

source files 9
support, adding for Internet Explorer 8

29-31
troubleshooting 29

Bootstrap CSS
compiling 24-26

Bootstrap files
fonts 12
JavaScript 13-15
LESS files, using 16
pulling in 12

Bootstrappin'
beginning files, sizing up 130-132
collapsed navbar, styling 145-149
color scheme, implementing 145
complex banner area, creating 133
complex footer, laying out 165
complex responsive layout, designing 152-

154
degree of complexity, managing 127-129
horizontal navbar, styling 150, 151
one-page marketing site, creating 207
responsive adjustments, making 142-144
utility navigation, adding 138-141

breadcrumbs, e-commerce
styling 179

C
carousel, online portfolio

carousel height, constraining 66-68
carousel indicators, re-positioning 68, 69
Font Awesome icons, setting for controls

63, 64
images, forcing to full width 65, 66
indicators, styling 70-72

[282]

marking up 38
styling 62, 63
top and bottom padding, adding 65

collapsed navbar, Bootstrappin'
styling 145-149

color scheme, Bootstrappin'
implementing 145

complex banner area, Bootstrappin'
creating 133
logo, placing above navbar 133-135
navbar dropdown items, checking 137, 138
navbar dropdown items, reviewing 136-138

complex footer, Bootstrappin'
details, refining 169-173
laying out 165
markup, setting up 166, 167
tablet-width viewports, adjusting 167, 168
targeted responsive clearfix, adding 168,

169
complex responsive layout, Bootstrappin'

designing 152-154
font sizes, adjusting 156-159
headings, adjusting 156-159
medium and wide layout, adjusting 155,

156
multiple viewports 165
primary column, enhancing 159-162
tertiary column, adjusting 162-165

Content Delivery Network (CDN) 12
CSS

optimizing 264, 265
custom base template, Roots theme

creating 101, 102
custom content template, Roots theme

carousel, building from custom fields 107-
109

content columns, adding from custom fields
110, 111

creating 105-107
customer reviews tackling, one-page mar-

keting site
about 226
Bootstrap grid classes, adding 232, 233
caption position, refining 230, 231
captions, positioning 228-230
captions, styling 228, 229
image, trimming 237-239

Masonry JavaScript plugin, downloading
234

Masonry JavaScript plugin, initializing on
reviews layout 234-236

Masonry JavaScript plugin, linking up 234
tiny screens, adjusting 240

D
design assets, Roots theme

swapping 114, 115

E
e-commerce, bootstrappin'

breadcrumbs, styling 179
building 175-177
options sidebar, styling 187
page title, styling 180
pagination, styling 181, 182
products grid, adjusting 182-187
products page markup, surveying 177, 178

exercise files, online portfolio
surveying 36, 38

F
Features list, one-page marketing site

beautifying 222, 223
Font Awesome icons, online portfolio

adding 57-59
footer content, Roots theme

putting in place 112, 113
footer, online portfolio

styling 77-79

G
Glyphicon font icons 39
Glyphicon fonts 12

H
headings, one-page marketing site

enhancing 256-258
Home page content, Roots theme

adding back 91
adding, custom fields used 92
adding, WYSIWYG dump used 91

[283]

horizontal navbar, Bootstrappin'
styling 150-152

HTML5 Boilerplate (H5BP)
about 10
downloading 10

HTML template file
setting up 18-20

I
icon links, Roots theme

adding 122
icons, online portfolio

adding 55-57
ImageOptim app

URL 264
images

optimizing 263, 264
images, Roots theme

adding 93-96

J
JavaScript

optimizing 265, 266
JavaScript files, Roots theme

connecting 117-120
jumbotron, one-page marketing site

customizing 214-217
message design, refining 217-221

L
LESS

about 43
files, importing 46
mixins 45
modular file organization 47
nested rules 44
operations 46
variables 44

LESS customization
navbar variables, editing 51
performing 47, 48
variables, customizing 49, 50
variables, importing 50

logo images, online portfolio
adding 52-54

logo images, Roots theme
adding, to navbar and footer 120, 121

M
major structural elements

setting up 22
mixins, LESS 45
Modernizr 14
modular file organization, LESS 47

N
navbar icon color, online portfolio

adding 60, 61
navbar items, Roots theme

configuring 90, 91
navbar markup

providing 23
navbar, one-page marketing site

adding 212, 213
nav item padding, online portfolio

adjusting 54, 55
nested rules, LESS 44

O
one-page marketing site

attention-grabbing pricing tables, creating
241

beginning files, surveying 210, 211
creating 207
customer reviews, tackling 226, 227
Features list, beautifying 222-226
headings, enhancing 256-258
jumbotron, customizing 214-217
jumbotron message design, refining 217-

221
navbar, adjusting 212, 213
overview 207, 208
page content, viewing 211
scroll, animating 260
ScrollSpy, adding to navbar 259

online portfolio, Bootstrap
blocks of content, tweaking 72-76
building 33
carousel, marking up 38-40
carousel, styling 62

[284]

exercise files, surveying 36-38
features 33-35
Font Awesome icons, adding 57-59
footer, styling 77-79
icons, adding 55-57
links, turning into buttons 42, 43
logo image, adding 52-54
navbar icon color, adjusting 60, 61
nav item padding, adjusting 54, 55
recommended steps 80
responsive columns, creating 40-42
responsive navbar breakpoint, adjusting 62

operations, LESS 46
options sidebar, e-commerce

basic styles, setting up 189
Clearance Sale link, styling 189-191
Font Awesome icons, adding to option links

194-197
LESS mixins, used for arranging option

links 197, 198
options list layout, adjusting for tablets and

phones 198, 199
options list, styling 191-194
options panel, collapsing for phone users

200-204
styling 188

outdated browser message
adjusting 20, 21

P
page content, one-page marketing site

viewing 211
page scroll, one-page marketing site

animating 260
page template, Roots theme

customizing 96, 97
page title, e-commerce

styling 180
pagination, e-commerce

styling 181
Picturefill solution 81
portfolio carousel

adjusting 274
considering 269, 270
end results 275
JavaScript, plugging in 273

markup Structure, implementing 273, 274
responsive images, preparing 271, 272
solutions, selecting from available solutions

270, 271
testing 274

products grid, e-commerce
adjusting 182-187

products page markup, e-commerce
surveying 177, 178

project template folder
Boilerplate files, deleting 11
Boilerplate files, updating 11
Boilerplate .htaccess file, evaluating 11
favicon and touch icons, using 12
H5BP, downloading 10
preparing 10

R
responsive adjustments, Bootstrappin'

making 142
responsive columns, online portfolio

creating 40-42
responsive images technique 270
responsive navbar

compiling 26, 28
responsive navbar breakpoint, online port-

folio
adjusting 62

results
optimizing 267

Roots assets folder
surveying 113, 114

Roots base template 98-101
Roots theme

about 83
assets folder, surveying 113, 114
custom base template, creating 101-103
custom content template, creating 105-107
custom fields, using for custom structure

103-105
design assets, swapping 114, 115
downloading 84-86
footer content, putting in place 112, 113
Home page content, bringing into

WordPress 91, 92
icon links, adding 122

[285]

images, uploading into WordPress 93-96
installing 86-89
JavaScript files, connecting 117-120
logo images, adding to navbar and footer

120, 121
navbar items, configuring 90, 91
page template, customizing 96, 97
Roots base template 98-101
stylesheet, connecting 116, 117
URL 84
WordPress-specific styles, adding back 123,

124

S
ScrollSpy, one-page marketing site

adding 259
site

major structural elements, setting up 22
outdated browser message, adjusting 20, 21
title, providing 20

site assets
optimizing 263

stylesheet, Roots theme
connecting 116, 117

T
TouchSwipe jQuery plugin

adding, to carousel 277
documentation 278
downloading 278
initializing 278, 279
reference link 277

U
utility navigation, Bootstrappin'

adding 138-141

V
variables, LESS 44

W
WordPress custom fields

using, for custom structure 103-105
WordPress-specific styles

adding 123-125

Thank you for buying
Bootstrap Site Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Responsive Web Design by
Example Beginner's Guide
ISBN: 978-1-84969-542-8 Paperback: 338 pages

Discover how you can easily create engaging,
responsive websites with minimum hassle!

1. Rapidly develop and prototype responsive
websites by utilizing powerful open source
frameworks.

2. Focus less on the theory and more on results,
with clear step-by-step instructions, previews,
and examples to help you along the way.

3. Learn how you can utilize three of the most
powerful responsive frameworks available
today: Bootstrap, Skeleton, and Zurb
Foundation.

HTML5 and CSS3 Responsive
Web Design Cookbook
ISBN: 978-1-84969-544-2 Paperback: 204 pages

Learn the secrets of developing responsive websites
capable of interfacing with today's mobile Internet
devices

1. Learn the fundamental elements of writing
responsive website code for all stages of the
development lifecycle.

2. Create the ultimate code writer’s resource using
logical workflow layers.

3. Full of usable code for immediate use in your
website projects.

4. Written in an easy-to-understand language
giving knowledge without preaching.

Please check www.PacktPub.com for information on our titles

Opa Application Development
ISBN: 978-1-78216-374-9 Paperback: 116 pages

A rapid and secure web development framework to
develop web applications quickly and easily in Opa

1. Discover the Opa framework in a progressive
and structured way.

2. Build secure, powerful web applications with
Opa.

3. Create three complete web application demos
with Opa.

HTML5 Boilerplate Web
Development
ISBN: 978-1-84951-850-5 Paperback: 174 pages

Master Web Development with a robust set of
templates to get your projects done quickly and
effectively

1. Master HTML5 Boilerplate as starting templates
for future projects.

2. Learn how to optimize your workflow with
HTML5 Boilerplate templates and set up
servers optimized for performance.

3. Learn to feature-detect and serve appropriate
styles and scripts across browser types.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Bootstrap
	Quantity and quality
	Improving with age
	The power of leaner CSS

	Downloading Bootstrap
	The files you'll have

	Preparing a project template folder
	Getting H5BP
	Deleting unnecessary Boilerplate files
	Evaluating the Boilerplate .htaccess file
	Updating required Boilerplate files
	Updating the favicon and touch icons

	Pulling in the Bootstrap files
	Fonts
	JavaScript
	Holding off on the CSS
	Bringing the LESS files over

	Taking inventory
	Setting up the HTML template file
	Giving your site a title
	Adjusting the outdated browser message
	Setting up major structural elements

	Providing a navbar markup
	Compiling and linking default Bootstrap CSS
	Compiling Bootstrap CSS
	Completing the responsive navbar
	Troubleshooting
	Adding support for Internet Explorer 8

	Summary

	Chapter 2: Bootstrappin' Your Portfolio
	What we'll build
	Surveying the exercise files
	Marking up the carousel
	Creating responsive columns
	Turning links into buttons
	Understanding the power of LESS
	Nested rules
	Variables
	Mixins
	Operations
	Importing files
	The modular file organization

	Customizing Bootstrap's LESS according to our needs
	Customizing variables
	Importing our new variables
	Editing navbar variables

	Adding the logo image
	Adjusting nav item padding
	Adding icons
	Adding Font Awesome icons
	Adjusting the navbar icon color
	Adjusting the responsive navbar breakpoint
	Styling the carousel
	Setting Font Awesome icons for the controls
	Adding top and bottom padding
	Forcing images to their full width
	Constraining the carousel height
	Repositioning the carousel indicators
	Styling the indicators

	Tweaking the columns and their content
	Styling the footer
	Recommended next steps
	Summary

	Chapter 3: Bootstrappin' a WordPress Theme
	Downloading and renaming the Roots theme
	Installing the theme
	Configuring the navbar
	Bringing in our home page content
	Adding images

	Customizing a page template
	Understanding the Roots base template
	Creating a custom base template
	Using custom fields for a custom structure
	Creating a custom content template
	Building our carousel from custom fields
	Adding our content columns from custom fields

	Putting the footer content in place
	Surveying the Roots assets folder
	Swapping design assets
	Connecting our stylesheet
	Connecting our JavaScript files
	Adding logo images to the navbar and footer
	Adding icon links
	Adding back WordPress-specific styles
	Summary

	Chapter 4: Bootstrappin' Business
	Sizing up our beginning files
	Creating a complex banner area
	Placing a logo above the navbar
	Reviewing and checking navbar dropdown items

	Adding utility navigation
	Making responsive adjustments
	Implementing the color scheme
	Styling the collapsed navbar
	Designing a complex responsive layout
	Adjusting the medium and wide layout
	Adjusting headings, font sizes, and buttons
	Enhancing the primary column
	Adjusting the tertiary column
	Fine touches for multiple viewports

	Laying out a complex footer
	Adjusting for tablet-width viewports
	Adding a targeted responsive clearfix
	Refining the details

	Summary

	Chapter 5: Bootstrappin' E-commerce
	Surveying the markup for our products page
	Styling the breadcrumbs, page title, and pagination
	Adjusting the products grid
	Styling the options sidebar
	Setting up basic styles
	Styling the Clearance Sale link
	Styling the options list
	Adding Font Awesome checkboxes to our option links
	Using LESS mixins to arrange option links in columns
	Adjusting the options list layout for tablets and phones
	Collapsing the options panel for phone users

	Summary

	Chapter 6: Bootstrappin' a One-page Marketing Website
	Overview
	Surveying the starter files
	Viewing the page content
	Adjusting the navbar
	Customizing the jumbotron
	Refining the jumbotron message design

	Beautifying the features list
	Tackling customer reviews
	Positioning and styling the captions
	Refining the caption position
	Adding Bootstrap grid classes
	Downloading and linking up the Masonry JavaScript plugin
	Initializing Masonry JavaScript on our reviews layout
	Cutting and trimming our bricks
	Adjusting for tiny screens

	Creating attention-grabbing pricing tables
	Setting up the variables, files, and markup
	Beautifying the table head
	Styling the table body and foot
	Differentiating the packages
	Adjusting for small viewports
	Providing visual hierarchy to our tables

	Adding the final touches
	Adding ScrollSpy to the navbar
	Animating the scroll

	Summary

	Appendix A: Optimizing Site Assets
	Optimizing images
	Optimizing CSS
	Optimizing JavaScript
	Our optimized results

	Appendix B: Implementing Responsive Images
	Considering our portfolio carousel
	Choosing a solution from the available solutions
	Preparing our responsive images
	Plugging in the JavaScript
	Implementing the markup structure
	Testing and adjusting

	Our end results

	Appendix C: Adding Swipe to the Carousel
	Considering our options
	Getting and including the TouchSwipe plugin
	Initializing TouchSwipe

	Index

