

CoffeeScript Application
Development Cookbook

Over 90 hands-on recipes to help you develop engaging
applications using CoffeeScript

Mike Hatfield

BIRMINGHAM - MUMBAI

CoffeeScript Application Development
Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1260315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-969-1

www.packtpub.com

Cover image by Jason Hatfield (theproductions@hotmail.com)

Credits

Author
Mike Hatfield

Reviewers
Becker

Paul Jensen

Alexey Smirnov

Commissioning Editor
Martin Bell

Acquisition Editor
Rebecca Youé

Content Development Editor
Ajinkya Paranjape

Technical Editors
Mrunal M. Chavan

Dennis John

Tanmayee Patil

Shiny Poojary

Copy Editors
Karuna Narayanan

Adithi Shetty

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Mike Hatfield has over 25 years of experience in developing custom business solutions for
a variety of clients and industries. With a focus on the ever-expanding Web, Mike has crafted
hundreds of web-based applications while spending the last couple of years developing
business solutions for the mobile web.

He is the chief technology officer at Nicom IT Solutions Inc., a large independent IT consulting
firm based in Halifax, Canada. As the CTO, Mike remains on the lookout for emerging trends in
the development industry to identify new opportunities for his clients.

With his wife, Tracy, and their three children, Chris, Jason, and Jennifer, he lives a quiet suburban
life while continually learning new technologies and satisfying his love of horror movies.

As a first-time author, my wife's support has played an integral part in
helping me see this book through to the end. Thank you Tracy, I could not
have done it without you.

About the Reviewers

Becker is a software engineer with expertise in the Ruby ecosystem. Passionate about
building products people love from the ground up, he can usually be found working with a
small team at a local start-up doing what he does best: writing code and making espresso!
Always open to learning new tools and technologies, Becker has become particularly
enamored with CoffeeScript based on its intuitive and clean structure and ease of use.
In his mind, CoffeeScript and Ruby are a perfect pairing for happy development! Becker
lives with his family in Seattle, Washington.

He has also a worked on CoffeeScript Application Development, Packt Publishing
(https://www.packtpub.com/web-development/coffeescript-application-
development).

Paul Jensen is the founder of Anephenix. He is also the lead developer of the SocketStream
web framework and the creator of Dashku, a real-time dashboard application.

Alexey Smirnov works as a software engineer in a cloud computing start-up company,
iRONYUN. He is broadly interested in web frameworks as well as iOS application development.
In his spare time, he builds websites for nonprofit organizations. Alexey got his master's
degree in computer science from Stony Brook University, USA.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

i

Table of Contents
Preface v
Chapter 1: Getting Ready 1

Introduction 1
Configuring your environment and tools 3
Configuring Sublime Text 4
Configuring Visual Studio 7
A quick dive into CoffeeScript 10
Debugging CoffeeScript using source maps 16
Debugging CoffeeScript using Node Inspector 18

Chapter 2: Starting with the Basics 21
Introduction 21
Working with strings 21
Working with numbers 32
Working with dates and times 39
Working with arrays 46
Working with classes 55
Dealing with the this keyword 61

Chapter 3: Creating Client Applications 65
Introduction 65
Working with jQuery 66
Working with Backbone 84
Working with AngularJS 96
Communicating in real time with Socket.io 115

Chapter 4: Using Kendo UI for Desktop and Mobile Applications 121
Introduction 121
Using the Kendo UI Core widgets 122
Using the Kendo UI Core mobile widgets 134

ii

Table of Contents

Chapter 5: Going Native with Cordova 145
Introduction 145
Creating a basic Cordova application 146
Using the camera 147
Using geolocation 151
Using contacts 155
Getting device information 159

Chapter 6: Working with Databases 161
Introduction 161
Working with SQLite 161
Working with Redis 171
Working with MongoDB 181
Working with CouchDB 191

Chapter 7: Building Application Services 201
Introduction 201
Working with base64 encoding 201
Working with domain name services 204
Parsing a URL into its various components 208
Creating RESTful web services 210

Chapter 8: Using External Services 225
Introduction 225
Working with web services 225
Sending e-mail 231
Sending SMS and MMS messages 234
Working with Amazon's S3 storage 237
Transferring files via FTP 248

Chapter 9: Testing Our Applications 257
Introduction 257
Unit testing with QUnit 258
End-to-end testing with Mocha and Zombie.js 268
Stubbing and mocking with Sinon 274

Chapter 10: Hosting Our Web Applications 283
Introduction 283
Compiling our source with Grunt 283
Preparing deployments for staging and production 289
Deploying our application to Heroku 295
Deploying our application to Microsoft Azure 300

iii

Table of Contents

Chapter 11: Scripting for DevOps 309
Introduction 309
Executing shell commands with exec 310
Executing shell commands with spawn 312
Copying, moving, and deleting files and directories 315
Archiving files and directories 318
Parsing CSV files 320
Parsing fixed-width files 325
Padding and aligning output 330
Formatting dates with moment.js 333
Formatting numbers with accounting.js 335

Index 341

Preface
In my nearly 20 years of developing custom software solutions, nothing has had as great an
impact on our industry or society as the Internet. Today, it would be difficult to imagine a world
without HTML, CSS, and JavaScript. When I developed my first web-based application using
JavaScript with Netscape Navigator in the mid 1990s, little did I know that we were in the
early days of a software revolution.

Skip ahead nearly two decades and JavaScript has become one of the most widely supported
programming languages in the world. Unfortunately, little has changed with JavaScript in
this time and it is plagued with gotchas that can make developing a pure JavaScript system
challenging. Enter CoffeeScript.

CoffeeScript provides us with a better approach to develop our applications that not only helps
us to avoid these pitfalls, but also allows us to be more productive while still being able to take
advantage of the large JavaScript ecosystem.

This book is a practical guide, filled with many step-by-step examples of using CoffeeScript
for all aspects of building our software.

We will begin by looking at the fundamentals and getting our tools ready to be productive
CoffeeScript developers. Next, we will use CoffeeScript to create our application layers,
including the user interface, database, and backend services layer. After that, we will
investigate various options to test and host our applications. Finally, we will look at ways
CoffeeScript can be used by the DevOps to help automate their day-to-day tasks.

Preface

vi

What this book covers
Chapter 1, Getting Ready, introduces CoffeeScript and lays the foundation to use CoffeeScript
to develop all aspects of modern cloud-based applications.

Chapter 2, Starting with the Basics, covers using CoffeeScript with strings, numbers, dates,
arrays, and classes.

Chapter 3, Creating Client Applications, demonstrates using CoffeeScript with various UI
libraries and frameworks, including jQuery, Backbone, Angular, and Socket.IO.

Chapter 4, Using Kendo UI for Desktop and Mobile Applications, demonstrates how to use
CoffeeScript with Telerik's open source Kendo UI Core framework to create both desktop and
mobile applications.

Chapter 5, Going Native with Cordova, demonstrates how to use Apache Cordova with
CoffeeScript to create native applications that can access native device features such
as camera, geolocation, and contacts and be deployed to physical hardware.

Chapter 6, Working with Databases, covers various database technologies, including SQLite,
Redis, MongoDB, and CouchDB, and how CoffeeScript can be used with each technology
to perform create, read, update, and delete operations.

Chapter 7, Building Application Services, dives into the aspects of building the backend
services needed by our application with a look at building RESTful services, working with
Base64 encoding, and using domain name services to do DNS and reverse DNS lookups.

Chapter 8, Using External Services, examines ways to use existing services to send text
messages and e-mails, use the Amazon cloud storage, and transfer files via FTP.

Chapter 9, Testing Our Applications, is dedicated to using CoffeeScript to test our applications
using test frameworks such as Jasmine, Mocha, and Zombie as well as creating mocks using
Persona.

Chapter 10, Hosting Our Web Applications, explains how to prepare your application for
deployment using Grunt, and how to deploy to popular cloud hosting solutions such as
Heroku and Windows Azure.

Chapter 11, Scripting for DevOps, examines ways that CoffeeScript can be used to help
with day-to-day operation tasks such as working with files and directories, CSV and fixed-width
data files, generating PDF files, and formatting data for output.

What you need for this book
To use the code in this book, you will need a code editor of your choice, a web browser,
and an Internet connection to download Node packages and other libraries or frameworks.

Preface

vii

Who this book is for
If you enjoy developing applications that can be run on desktop, tablet, and mobile devices
without needing to learn platform-specific languages, this is the book for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In this
example we will demonstrate the use of spawn() to execute a CoffeeScript statement."

A block of code is set as follows:

var multiply = function(a, b) {
 return a * b;
};

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if value % 2 is 0 then console.log 'Value is even'

Any command-line input or output is written as follows:

coffee -c -m counting.coffee

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Tools menu and
select the Extensions and Updates menu option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

ix

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1

1
Getting Ready

In this chapter, we will cover the following topics:

 f Configuring your environment and tools

 f Configuring Sublime Text

 f Configuring Visual Studio

 f A quick dive into CoffeeScript

 f Debugging CoffeeScript using source maps

 f Debugging CoffeeScript with Node Inspector

Introduction
We are living in a time where JavaScript is becoming the most widely-used programming
language in the world, even though it is not a language without its faults.

With its rise in popularity, JavaScript has become a legitimate option to develop all aspects
of modern applications, applications that comprise a rich HTML/CSS/JavaScript client that
communicates with backend services via AJAX. These applications can be run on desktops
and mobile platforms as websites, mobile web, or hybrid applications using a native wrapper
such as Apache Cordova / Adobe PhoneGap.

Node.js has helped JavaScript reach well beyond the boundaries of the web browser and into
our operating systems themselves.

You might be surprised to know that Microsoft Windows has shipped
with a JavaScript execution engine called Windows Script Host since
Windows 98.

Getting Ready

2

JavaScript, though very successful, can be a difficult language to work with. JavaScript was
designed by Brendan Eich in a mere 10 days in 1995 while working at Netscape. As a result,
some might claim that JavaScript is not as well rounded as some other languages, a point well
illustrated by Douglas Crockford in his book titled JavaScript: The Good Parts, O'Reilly Media.

These pitfalls found in the JavaScript language led Jeremy Ashkenas to create CoffeeScript, a
language that attempts to expose the good parts of JavaScript in a simple way. CoffeeScript
compiles into JavaScript and helps us avoid the bad parts of JavaScript.

There are many reasons to use CoffeeScript as your development language of choice. Some
of these reasons include:

 f CoffeeScript helps protect us from the bad parts of JavaScript by creating function
closures that isolate our code from the global namespace by reducing the curly
braces and semicolon clutter and by helping tame JavaScript's notorious this
keyword

 f CoffeeScript helps us be more productive by providing features such as list
comprehensions, classes with inheritance, and many others

 f Properly written CoffeeScript also helps us write code that is more readable and can
be more easily maintained

As Jeremy Ashkenas says:

"CoffeeScript is just JavaScript."

We can use CoffeeScript when working with the large ecosystem of JavaScript libraries and
frameworks on all aspects of our applications, including those listed in the following table:

Part Some options

User interfaces UI frameworks including jQuery, Backbone.js, AngularJS, and
Kendo UI

Databases Node.js drivers to access SQLite, Redis, MongoDB, and CouchDB

Internal/external services Node.js with Node Package Manager (NPM) packages to create
internal services and interfacing with external services

Testing Unit and end-to-end testing with Jasmine, Qunit, integration testing
with Zombie, and mocking with Persona

Hosting Easy API and application hosting with Heroku and Windows Azure

Tooling Create scripts to automate routine tasks and using Grunt

We will look at each of these in depth throughout this book.

Chapter 1

3

Configuring your environment and tools
One significant aspect to being a productive CoffeeScript developer is having a proper
development environment. This environment typically consists of the following:

 f Node.js and the NPM

 f CoffeeScript

 f Code editor

 f Debugger

In this recipe, we will look at installing and configuring the base components and tools
necessary to develop CoffeeScript applications.

Getting ready
In this section, we will install the software necessary to develop applications with CoffeeScript.

One of the appealing aspects of developing applications using CoffeeScript is that it is well
supported on Mac, Windows, and Linux machines. To get started, you need only a PC and an
Internet connection.

How to do it...
CoffeeScript runs on top of Node.js—the event-driven, non-blocking I/O platform built on
Chrome's JavaScript runtime. If you do not have Node.js installed, you can download an
installation package for your Mac OS X, Linux, and Windows machines from the start page of
the Node.js website (http://nodejs.org/).

To begin, install Node.js using an official prebuilt installer; it will also install the NPM.

Next, we will use NPM to install CoffeeScript. Open a terminal or command window and enter
the following command:

npm install -g coffee-script

This will install the necessary files needed to work with CoffeeScript, including the coffee
command that provides an interactive Read Evaluate Print Loop (REPL)—a command to
execute CoffeeScript files and a compiler to generate JavaScript.

It is important to use the -g option when installing CoffeeScript, as this installs the
CoffeeScript package as a global NPM module. This will add the necessary commands
to our path.

Getting Ready

4

On some Windows machines, you might need to add the NPM binary
directory to your path. You can do this by editing the environment
variables and appending ;%APPDATA%\npm to the end of the system's
PATH variable.

Configuring Sublime Text
What you use to edit code can be a very personal choice, as you, like countless others, might
use the tools dictated by your team or manager. Fortunately, most popular editing tools either
support CoffeeScript out of the box or can be easily extended by installing add-ons, packages,
or extensions.

In this recipe, we will look at adding CoffeeScript support to Sublime Text and Visual Studio.

Getting ready
This section assumes that you have Sublime Text or Visual Studio installed.

Sublime Text is a very popular text editor that is geared to working with code and projects.
You can download a fully functional evaluation version from http://www.sublimetext.
com. If you find it useful and decide to continue to use it, you will be encouraged to purchase a
license, but there is currently no enforced time limit.

How to do it...
Sublime Text does not support CoffeeScript out of the box. Thankfully, a package manager
exists for Sublime Text; this package manager provides access to hundreds of extension
packages, including ones that provide helpful and productive tools to work with CoffeeScript.

Sublime Text does not come with this package manager, but it can be
easily added by following the instructions on the Package Control website
at https://sublime.wbond.net/installation.

With Package Control installed, you can easily install the CoffeeScript packages that are
available using the Package Control option under the Preferences menu. Select the Install
Package option.

Chapter 1

5

You can also access this command by pressing Ctrl + Shift + P, and in
the command list that appears, start typing install. This will help
you find the Install Package command quickly.

To install the CoffeeScript package, open the Install Package window and enter
CoffeeScript. This will display the CoffeeScript-related packages. We will use the Better
CoffeeScript package:

As you can see, the CoffeeScript package includes syntax highlighting, commands, shortcuts,
snippets, and compilation.

How it works...
In this section, we will explain the different keyboard shortcuts and code snippets available
with the Better CoffeeScript package for Sublime.

Commands
You can run the desired command by entering the command into the Sublime command pallet
or by pressing the related keyboard shortcut. Remember to press Ctrl + Shift + P to display the
command pallet window. Some useful CoffeeScript commands include the following:

Getting Ready

6

Command Keyboard shortcut Description
Coffee: Check
Syntax

Alt + Shift + S This checks the syntax of the file you
are editing or the currently selected
code. The result will display in the
status bar at the bottom.

Coffee: Compile
File

Alt + Shift + C This compiles the file being edited into
JavaScript.

Coffee: Run
Script

Alt + Shift + R This executes the selected code and
displays a buffer of the output.

The keyboard shortcuts are associated with the file type. If you are editing
a new CoffeeScript file that has not been saved yet, you can specify the
file type by choosing CoffeeScript in the list of file types in the bottom-left
corner of the screen.

Snippets
Snippets allow you to use short tokens that are recognized by Sublime Text. When you enter
the code and press the Tab key, Sublime Text will automatically expand the snippet into the
full form. Some useful CoffeeScript code snippets include the following:

Token Expands to
log[Tab] console.log

cla class Name

 constructor: (arguments) ->

 # ...

forin for i in array

 # ...

if if condition

 # ...

ifel if condition

 # ...

else

 # ...

swi switch object

 when value

 # ...

Chapter 1

7

Token Expands to
try try

 # ...

catch e

 # ...

The snippets are associated with the file type. If you are editing a new
CoffeeScript file that has not been saved yet, you can specify the file type
by selecting CoffeeScript in the list of file types in the bottom-left corner
of the screen.

Configuring Visual Studio
In this recipe, we will demonstrate how to add CoffeeScript support to Visual Studio.

Getting ready
If you are on the Windows platform, you can use Microsoft's Visual Studio software.
You can download Microsoft's free Express edition (Express 2013 for Web) from
http://www.microsoft.com/express.

How to do it...
If you are a Visual Studio user, Version 2010 and above can work quite effectively with
CoffeeScript through the use of Visual Studio extensions.

If you are doing any form of web development with Visual Studio, the Web Essentials
extension is a must-have.

To install Web Essentials, perform the following steps:

1. Launch Visual Studio.

2. Click on the Tools menu and select the Extensions and Updates menu option. This
will display the Extensions and Updates window (shown in the next screenshot).

3. Select Online in the tree on the left-hand side to display the most popular downloads.

4. Select Web Essentials 2012 from the list of available packages and then click on
the Download button. This will download the package and install it automatically.

5. Once the installation is finished, restart Visual Studio by clicking on the Restart Now
button.

Getting Ready

8

You will likely find Web Essentials 2012 ranked highly in the list of Most
Popular packages. If you do not see it, you can search for Web Essentials
using the Search box in the top-right corner of the window.

Once installed, the Web Essentials package provides many web development productivity
features, including CSS helpers, tools to work with Less CSS, enhancements to work with
JavaScript, and, of course, a set of CoffeeScript helpers.

To add a new CoffeeScript file to your project, you can navigate to File | New Item or press
Ctrl + Shift + A. This will display the Add New Item dialog, as seen in the following screenshot.
Under the Web templates, you will see a new CoffeeScript File option. Select this option and
give it a filename, as shown here:

Chapter 1

9

When we have our CoffeeScript file open, Web Essentials will display the file in a split-screen
editor. We can edit our code in the left-hand pane, while Web Essentials displays a live
preview of the JavaScript code that will be generated for us.

The Web Essentials CoffeeScript compiler will create two JavaScript files each time we save
our CoffeeScript file: a basic JavaScript file and a minified version. For example, if we save
a CoffeeScript file named employee.coffee, the compiler will create employee.js and
employee.min.js files.

Though I have only described two editors to work with CoffeeScript
files, there are CoffeeScript packages and plugins for most popular text
editors, including Emacs, Vim, TextMate, and WebMatrix.

Getting Ready

10

A quick dive into CoffeeScript
In this recipe, we will take a quick look at the CoffeeScript language and command line.

How to do it...
CoffeeScript is a highly expressive programming language that does away with much of the
ceremony required by JavaScript. It uses whitespace to define blocks of code and provides
shortcuts for many of the programming constructs found in JavaScript.

For example, we can declare variables and functions without the var keyword:

firstName = 'Mike'

We can define functions using the following syntax:

multiply = (a, b) ->
 a * b

Here, we defined a function named multiply. It takes two arguments, a and b. Inside the
function, we multiplied the two values. Note that there is no return statement. CoffeeScript
will always return the value of the last expression that is evaluated inside a function.

The preceding function is equivalent to the following JavaScript snippet:

var multiply = function(a, b) {
 return a * b;
};

It's worth noting that the CoffeeScript code is only 28 characters long, whereas the JavaScript
code is 50 characters long; that's 44 percent less code.

We can call our multiply function in the following way:

result = multiply 4, 7

In CoffeeScript, using parenthesis is optional when calling a function with parameters, as you
can see in our function call. However, note that parenthesis are required when executing a
function without parameters, as shown in the following example:

displayGreeting = ->
 console.log 'Hello, world!'

displayGreeting()

In this example, we must call the displayGreeting() function with parenthesis.

Chapter 1

11

You might also wish to use parenthesis to make your code more readable.
Just because they are optional, it doesn't mean you should sacrifice the
readability of your code to save a couple of keystrokes. For example, in the
following code, we used parenthesis even though they are not required:

$('div.menu-item').removeClass 'selected'

Like functions, we can define JavaScript literal objects without the need for curly braces,
as seen in the following employee object:

employee =
 firstName: 'Mike'
 lastName: 'Hatfield'
 salesYtd: 13204.65

Notice that in our object definition, we also did not need to use a comma to separate our
properties.

CoffeeScript supports the common if conditional as well as an unless conditional inspired
by the Ruby language. Like Ruby, CoffeeScript also provides English keywords for logical
operations such as is, isnt, or, and and. The following example demonstrates the use
of these keywords:

isEven = (value) ->
 if value % 2 is 0
 'is'
 else
 'is not'

console.log '3 ' + isEven(3) + ' even'

In the preceding code, we have an if statement to determine whether a value is even or not.
If the value is even, the remainder of value % 2 will be 0. We used the is keyword to make
this determination.

JavaScript has a nasty behavior when determining equality between two
values. In other languages, the double equal sign is used, such as value
== 0. In JavaScript, the double equal operator will use type coercion when
making this determination. This means that 0 == '0'; in fact, 0 == ''
is also true.
CoffeeScript avoids this using JavaScript's triple equals (===) operator. This
evaluation compares value and type such that 0 === '0' will be false.

Getting Ready

12

We can use if and unless as expression modifiers as well. They allow us to tack if and
unless at the end of a statement to make simple one-liners.

For example, we can so something like the following:

console.log 'Value is even' if value % 2 is 0

Alternatively, we can have something like this:

console.log 'Value is odd' unless value % 2 is 0

We can also use the if...then combination for a one-liner if statement, as shown in the
following code:

if value % 2 is 0 then console.log 'Value is even'

CoffeeScript has a switch control statement that performs certain actions based on a list
of possible values. The following lines of code show a simple switch statement with four
branching conditions:

switch task
 when 1
 console.log 'Case 1'
 when 2
 console.log 'Case 2'
 when 3, 4, 5
 console.log 'Case 3, 4, 5'
 else
 console.log 'Default case'

In this sample, if the value of a task is 1, case 1 will be displayed. If the value of a task is 3,
4, or 5, then case 3, 4, or 5 is displayed, respectively. If there are no matching values, we can
use an optional else condition to handle any exceptions.

If your switch statements have short operations, you can turn them into one-liners, as shown
in the following code:

switch value
 when 1 then console.log 'Case 1'
 when 2 then console.log 'Case 2'
 when 3, 4, 5 then console.log 'Case 3, 4, 5'
 else console.log 'Default case'

CoffeeScript has a number of other productive shortcuts that we will cover in depth in
Chapter 2, Starting with the Basics.

Chapter 1

13

CoffeeScript provides a number of syntactic shortcuts to help us be more
productive while writing more expressive code. Some people have claimed
that this can sometimes make our applications more difficult to read, which
will, in turn, make our code less maintainable. The key to highly readable and
maintainable code is to use a consistent style when coding. I recommend that
you follow the guidance provided by Polar in their CoffeeScript style guide at
http://github.com/polarmobile/coffeescript-style-guide.

There's more...
With CoffeeScript installed, you can use the coffee command-line utility to execute
CoffeeScript files, compile CoffeeScript files into JavaScript, or run an interactive CoffeeScript
command shell.

In this section, we will look at the various options available when using the CoffeeScript
command-line utility.

We can see a list of available commands by executing the following command in a command
or terminal window:

coffee --help

This will produce the following output:

Getting Ready

14

As you can see, the coffee command-line utility provides a number of options. Of these, the
most common ones include the following:

Option Argument Example Description
None None coffee This launches the REPL-

interactive shell.
None Filename coffee sample.

coffee
This command will execute
the CoffeeScript file.

-c, --compile Filename coffee -c sample.
coffee

This command will compile
the CoffeeScript file into a
JavaScript file with the same
base name,; sample.js,
as in our example.

-i,
--interactive

coffee -i This command will also
launch the REPL-interactive
shell.

-m, --map Filename coffee--m sample.
coffee

This command generates a
source map with the same
base name, sample.
js.map, as in our example.

-p, --print Filename coffee -p sample.
coffee

This command will display the
compiled output or compile
errors to the terminal window.

-v, --version None coffee -v This command will display
the correct version of
CoffeeScript.

-w, --watch Filename coffee -w -c
sample.coffee

This command will watch
for file changes, and with
each change, the requested
action will be performed. In
our example, our sample.
coffee file will be compiled
each time we save it.

The CoffeeScript REPL
As we have been, CoffeeScript has an interactive shell that allows us to execute CoffeeScript
commands. In this section, we will learn how to use the REPL shell. The REPL shell can be an
excellent way to get familiar with CoffeeScript.

To launch the CoffeeScript REPL, open a command window and execute the coffee
command.

Chapter 1

15

This will start the interactive shell and display the following prompt:

In the coffee> prompt, we can assign values to variables, create functions, and evaluate
results.

When we enter an expression and press the return key, it is immediately evaluated and the
value is displayed.

For example, if we enter the expression x = 4 and press return, we would see what is shown
in the following screenshot:

This did two things. First, it created a new variable named x and assigned the value of 4 to it.
Second, it displayed the result of the command.

Next, enter timesSeven = (value) -> value * 7 and press return:

You can see that the result of this line was the creation of a new function named
timesSeven().

We can call our new function now:

Getting Ready

16

By default, the REPL shell will evaluate each expression when you press the return key.
What if we want to create a function or expression that spans multiple lines? We can
enter the REPL multiline mode by pressing Ctrl + V. This will change our coffee> prompt
to a ------> prompt. This allows us to enter an expression that spans multiple lines,
such as the following function:

When we are finished with our multiline expression, press Ctrl + V again to have the
expression evaluated. We can then call our new function:

The CoffeeScript REPL offers some handy helpers such as expression history and tab
completion.

Pressing the up arrow key on your keyboard will circulate through the expressions we
previously entered.

Using the Tab key will autocomplete our function or variable name. For example, with the
isEvenOrOdd() function, we can enter isEven and press Tab to have the REPL complete
the function name for us.

Debugging CoffeeScript using source maps
If you have spent any time in the JavaScript community, you would have, no doubt, seen some
discussions or rants regarding the weak debugging story for CoffeeScript. In fact, this is often
a top argument some give for not using CoffeeScript at all. In this recipe, we will examine how
to debug our CoffeeScript application using source maps.

Chapter 1

17

Getting ready
The problem in debugging CoffeeScript stems from the fact that CoffeeScript compiles into
JavaScript which is what the browser executes. If an error arises, the line that has caused the
error sometimes cannot be traced back to the CoffeeScript source file very easily. Also, the
error message is sometimes confusing, making troubleshooting that much more difficult.

Recent developments in the web development community have helped improve the
debugging experience for CoffeeScript by making use of a concept known as a source map.
In this section, we will demonstrate how to generate and use source maps to help make our
CoffeeScript debugging easier.

To use source maps, you need only a base installation of CoffeeScript.

How to do it...
You can generate a source map for your CoffeeScript code using the -m option on the
CoffeeScript command:

coffee -m -c employee.coffee

How it works...
Source maps provide information used by browsers such as Google Chrome that tell the
browser how to map a line from the compiled JavaScript code back to its origin in the
CoffeeScript file.

Source maps allow you to place breakpoints in your CoffeeScript file and analyze variables
and execute functions in your CoffeeScript module. This creates a JavaScript file called
employee.js and a source map called employee.js.map.

If you look at the last line of the generated employee.js file, you will see the reference
to the source map:

//# sourceMappingURL=employee.js.map

Google Chrome uses this JavaScript comment to load the source map.

Getting Ready

18

The following screenshot demonstrates an active breakpoint and console in Goggle Chrome:

Debugging CoffeeScript using Node
Inspector

Source maps and Chrome's developer tools can help troubleshoot our CoffeeScript that is
destined for the Web. In this recipe, we will demonstrate how to debug CoffeeScript that is
designed to run on the server.

Getting ready
Begin by installing the Node Inspector NPM module with the following command:

npm install -g node-inspector

How to do it...
To use Node Inspector, we will use the coffee command to compile the CoffeeScript code
we wish to debug and generate the source map.

In our example, we will use the following simple source code in a file named counting.
coffee:

for i in [1..10]
 if i % 2 is 0
 console.log "#{i} is even!"
 else
 console.log "#{i} is odd!"

Chapter 1

19

To use Node Inspector, we will compile our file and use the source map parameter with the
following command:

coffee -c -m counting.coffee

Next, we will launch Node Inspector with the following command:

node-debug counting.js

How it works...
When we run Node Inspector, it does two things.

First, it launches the Node debugger. This is a debugging service that allows us to step through
code, hit line breaks, and evaluate variables. This is a built-in service that comes with Node.
Second, it launches an HTTP handler and opens a browser that allows us to use Chrome's
built-in debugging tools to use break points, step over and into code, and evaluate variables.

Node Inspector works well using source maps. This allows us to see our native CoffeeScript
code and is an effective tool to debug server-side code.

The following screenshot displays our Chrome window with an active break point. In the local
variables tool window on the right-hand side, you can see that the current value of i is 2:

The highlighted line in the preceding screenshot depicts the log message.

2
Starting with

the Basics

In this chapter, we will cover the following recipes:

 f Working with strings

 f Working with numbers

 f Working with dates and times

 f Working with arrays

 f Working with classes

 f Dealing with the this keyword

Introduction
In this chapter, you will learn how to use CoffeeScript when performing common programming
tasks with primitive types, collections, and classes.

We will wrap up the chapter by looking at how to deal with this in the context of classes and
functions binding with instantiated objects.

Working with strings
In this section, we will look at the various aspects of working with strings or text-based data.

Starting with the Basics

22

String interpolation
In this section, we will demonstrate the CoffeeScript feature of string interpolation.

Getting ready
In JavaScript, creating strings that include variable values involves concatenating the various
pieces together. Consider the following example:

var lineCount = countLinesInFile('application.log');
var message = "The file has a total of " + lineCount + " lines";
console.log(message);

This can get pretty messy and CoffeeScript provides an elegant solution to avoid this called
string interpolation.

How to do it...
CoffeeScript provides the ability to perform string interpolation by using double quoted strings
containing one or more #{} delimiters.

The preceding example can be written as follows:

lineCount = countLinesInFile 'application.log'
message = "The file has a total of #{lineCount} lines"
console.log message

This not only requires less typing, but it can also be easier to read.

How it works...
String interpolation will evaluate the expression inside the delimiter and its placeholder is
replaced by the expression's result.

Consider the following simple expression:

console.log "Simple expressions are evaluated: 5 x 6 = #{ 5 * 6 }"

The output of the preceding expression will be as follows:

Simple expressions are evaluated: 5 x 6 = 30

String interpolation can also evaluate complex expressions as follows:

num = 23
console.log "num is #{ if num % 2 is 0 then 'even' else 'odd' }."

The output of the preceding expression will be as follows:

num is odd.

Chapter 2

23

In the two previous examples, we evaluated expressions inside the
string for demonstration only. It is generally discouraged and it is almost
always better to separate that logic into its own method. When in doubt,
pull it out.

There's more...
String interpolation works by evaluating the expression inside the #{} delimiter and having
JavaScript coerce the value into a string. We can control this on our own objects by creating a
toString() function that will be used by the coercion mechanism. By default, coercion for
an Object will display [object Object].

In the following example, we create an Employee class with a toString() function to
override the default coercion value:

class Employee
 constructor: (@firstName, @lastName, @empNum) ->
 toString: ->
 return "#{@firstName} #{@lastName} (No: #{@empNum})"

We can now use an Employee instance with string interpolation and receive a more
valuable result:

employee = new Employee('Tracy', 'Ouellette', 876)
console.log "Employee Info: #{employee}"

Its output will be:

Employee Info: Tracy Ouellette (No: 876)

Wrapping text
When working with text, you may need to wrap a long piece of text over a number of lines
in order to not exceed the maximum width.

In this section, we will see how to accomplish this using a regular expression.

Regular expressions are patterns to be matched against strings and can
be used to perform pattern matching, string manipulations, or testing.
Regular expressions have been highly optimized and perform better than
other string manipulations.

Starting with the Basics

24

How to do it...
In the following steps, we create a wrapText() function that uses a regular expression
to split a piece of text at a specified maximum length:

1. Define the function as follows:
wrapText = (text, maxLineWidth = 80, lineEnding = '\n') ->

2. Create a regular expression instance:
 regex = RegExp \
 ".{1,#{maxLineWidth}}(\\s|$)|\\S+?(\\s|$)", 'g'

3. Extract matching segments in text, join them with lineEnding, and return
the result:

 text.match(regex).join lineEnding

How it works...
The wrapText() function takes a text parameter that represents the text data to be
processed and a second optional maxLineWidth parameter representing the desired
maximum width. The maximum width parameter will default to 80 characters if no value is
passed. There is another optional parameter allowing you to specify the line ending, which
defaults to a new line character.

We create a regular expression instance using the RegExp() constructor function passing
a string interpolated value representing our expression and a modifier.

If we break the regular expression down into its basic blocks, we are requesting segments
containing 1 to maxLineWidth characters {1, maxLineWidth}, separating each by a
whitespace character or the end of the line (\s|$). We also provide an additional rule to
handle scenarios where there are no whitespace characters within 1 to maxLineWidth,
which will break at the next available whitespace character \S+?(\\s|$).

We use the String.match() function, which takes a regular expression and returns the
segment or segments that match the expression. By default, only the first match is returned,
which is not what we want in this case. We use the g (global) modifier when we create our
RegExp instance, which will return all matching segments as an array.

Our function ends by calling the Array.join() function, which will join all of the array
elements and separate each one with lineEnding.

Chapter 2

25

To demonstrate the method in action, we call the wrapText() method with some sample
text from Homer's Odyssey:

homersOdyssey = "He counted his goodly coppers and cauldrons, his
 gold and all his clothes, but there was nothing missing; still
 he kept grieving about not being in his own country, and
 wandered up and down by the shore of the sounding sea bewailing
 his hard fate. Then Minerva came up to him disguised as a young
 shepherd of delicate and princely mien, with a good cloak folded
 double about her shoulders; she had sandals on her comely feet
 and held a javelin in her hand. Ulysses was glad when he saw
 her, and went straight up to her."

console.log wrapText(homersOdyssey, 40, '
\n')

Notice that we used CoffeeScript's ability to declare a text variable that
spans multiple lines. If we use single double quotes, strings that span
multiple lines are joined by a space. If we wish to preserve formatting,
including line breaks and indentation, we can use triple double quotes
""". Consider the following example:

title = """
<title>
 CoffeeScript Strings
</title>

"""

This code will produce a string such as <title>\n CoffeeScript
Strings\n</title>.

For the preceding example, the output is as follows:

He counted his goodly coppers and

cauldrons, his gold and all his clothes,

but there was nothing missing; still he

kept grieving about not being in his own

country, and wandered up and down by the

shore of the sounding sea bewailing his

hard fate. Then Minerva came up to him

disguised as a young shepherd of

delicate and princely mien, with a good

cloak folded double about her shoulders;

she had sandals on her comely feet and

held a javelin in her hand. Ulysses was

glad when he saw her, and went straight

up to her.

Starting with the Basics

26

See also
Our wrapText() method made use of a simple regular expression to split text into individual
words. See the Using regular expressions recipe for more information on using this powerful
JavaScript feature.

Truncating text
In this section, we will see how we can truncate text into the desired size without truncating
the middle of words.

How to do it...
Truncating text can be handled in much the same way as we handled word wrapping:

1. Define your function:
truncateText = (text, maxLineWidth = 80, ellipsis = '...') ->

2. Reduce the maximum line width by the length of the ellipsis:
 maxLineWidth -= ellipsis.length

3. Create your regular expression:
 regex = RegExp \
 ".{1,#{maxLineWidth}}(\\s|$)|\\S+?(\\s|$)"

4. Return the first element of the match() result after it has been trimmed with the
desired ellipsis:

 "#{text.match(regex)[0].trim()}#{ellipsis}"

How it works...
Our truncateText() function takes a text parameter representing the text data to be
truncated and two optional parameters: maxLineWidth representing the maximum width
of the text desired, and ellipsis representing a string to end our resultant line.

We use the same regular expression as we did in the previous Wrapping text recipe. In this
case, however, we reduce the maximum line length by the length of the ellipsis. This will
ensure that our result will not exceed the maximum line length.

Because we are not using a regular expression modifier, only the first match is returned.

Chapter 2

27

Consider this example:

homersOdessy = 'He counted his goodly coppers and cauldrons, his gold
and all his clothes, but there was nothing missing;'

console.log truncateText homersOdessy, 30

The output for this code will be:

He counted his goodly...

Converting character casing
In this recipe, we will demonstrate how to convert text from one casing scheme to another:

 f Sentence case, for example, This is an example of sentence case

 f Title case, for example, This Is an Example of Title Case

 f Pascal case, for example, PascalCase

 f Camel case, for example, camelCase

 f Snake case, for example, snake_case

How to do it...
We will define our case conversion methods as a utility module that we can use for any
application:

1. Create a constant array with the list of those words that are not capitalized within
titles:
WORD_EXCEPTIONS_FOR_TITLECASE = \
 ['a','an','and','but','for','nor','or','the']

2. Create some helper methods to split words on whitespace or capitalization and
another to capitalize the first letter of the word:
capitalizeWord = (word) ->
 word[0].toUpperCase() + word[1..].toLowerCase()

upperSplit = (item) ->
 words = []
 word = ''

Starting with the Basics

28

 for char in item.split ''
 if /[A-Z]/.test char
 words.push word if word.length
 word = char
 else
 word += char

 words.push word if word.length

 return words

splitStringIntoTokens = (text) ->
 results = []

 for token in text.split /[_]+/
 token = token.trim()
 words = upperSplit token
 for word in words
 results.push word.toLowerCase()

 results

3. Create a function to return a string in title case:
toTitleCase = (text, wordsToIgnore = WORD_EXCEPTIONS_FOR_
TITLECASE) ->
 words = splitStringIntoTokens text
 words[0] = capitalizeWord words[0]
 for word, index in words[1..]
 unless word in wordsToIgnore
 words[index+1] = capitalizeWord word

 words.join ' '

4. Create a function to return a string in sentence case:
toSentenceCase = (text) ->
 words = splitStringIntoTokens text
 words[0] = capitalizeWord words[0]
 words.join ' '

5. Create a function to return a string in snake case:
toSnakeCase = (text) ->
 splitStringIntoTokens(text).join '_'

Chapter 2

29

6. Create a function to return a string in Pascal case:
toPascalCase = (text) ->
 (capitalizeWord word for word in splitStringIntoTokens(text)).
join ''

7. Create a function to return a string in camel case:
toCamelCase = (text) ->
 text = toPascalCase text
 text[0].toLowerCase() + text[1..]

8. Assign your functions to the module.exports object so they are made available to
your applications:

module.exports =
 toSentenceCase: toSentenceCase
 toTitleCase: toTitleCase
 toPascalCase: toPascalCase
 toCamelCase: toCamelCase
 toSnakeCase: toSnakeCase

How it works...
The module starts with a capitalizeWord() method that takes a single word as a
parameter and returns the word capitalized. For example, capitalizeWord 'hello'
returns Hello.

The splitStringIntoTokens() method is the workhorse of our module and is
responsible for breaking up a string of text into various words. For sentences, this is easily
accomplished by splitting the string by spaces. We also want to be able to parse text that
contains Pascal and camel case words. This will allow us to convert from Pascal case to snake
case, camel case, and so on. We accomplish this by passing each token (word) to the inner
upperSplit() method, which reviews the letters of each word, looking for an uppercase
value representing the start of a new word.

The splitStringIntoTokens 'Hello world' annotation will return an array containing
two words ['hello', 'world']. splitStringIntoTokens 'HelloWorld'. Notice
that the words are all lowercase. This helps to normalize the tokens for later processing.

The following methods are responsible for using the individual words that have been split
from the text provided and returning the text in the various casing formats. Each takes a
single parameter representing the text to be parsed. The toTitleCase() function takes an
optional array of words to ignore when performing title case conversion. If no array is provided,
the default WORD_EXCEPTIONS_FOR_TITLECASE array is used.

We finish by exporting toTitleCase(), toSentenceCase(), toPascalCase(),
toCamelCase(), and toSnakeCase()as the public API for our casing utility module.

Starting with the Basics

30

The following code is a small application to demonstrate our casing module:

caseUtils = require './casing_utils'

console.log 'Title:', caseUtils.toTitleCase 'an author and his book'
console.log 'Sentence:', caseUtils.toSentenceCase 'this should be in
sentence case'
console.log 'Pascal:', caseUtils.toPascalCase 'this should be in
pascal case'
console.log 'Camel:', caseUtils.toCamelCase 'this should be in camel
case'
console.log 'Snake:', caseUtils.toSnakeCase 'this should be in snake
case'

The output for this code is as follows:

Title: An Author and His Book
Sentence: This should be in sentence case
Pascal: ThisShouldBeInPascalCase
Camel: thisShouldBeInCamelCase
Snake: this_should_be_in_snake_case

Using regular expressions
Regular expressions can be used when working with text data and provide a powerful tool
to process text. This is accomplished by passing or using processing instructions to the
various methods that accept regular expressions as parameters or by executing the regular
expression directly.

We have already seen regular expressions used to split strings and test a value. These
can be used as parameters to the split() and replace() methods. In these cases,
the regular expression is used as a matcher.

How to do it...
Let's look at how we can utilize regular expressions using split(), replace(),
and test():

SPLIT() USING A REGULAR EXPRESSION
whiteSpaceRegex = /[\s]/

words = "A happy\tday\nis here"
console.log "Value:", words
console.log (words.split whiteSpaceRegex)

Chapter 2

31

REPLACE() USING A REGULAR EXPRESSION
phrase = 'The blue balloon is bright'
console.log "Red balloon:", (phrase.replace /blue/, 'red')

TEST() USING A REGULAR EXPRESSING
validIpAddress = '192.168.10.24'
invalidIpAddress = '192.168-10.24'
testRegex = /\d+\.\d+\.\d+\.\d+/
console.log "#{validIpAddress} valid?", (testRegex.test
validIpAddress)
console.log "#{invalidIpAddress} valid?", (testRegex.test
invalidIpAddress)

How it works...
The following example uses a regular expression to split a string on whitespaces \s including
spaces, tabs, newlines, and others. Note that the regular expression is enclosed in two
forward slashes /.

The output for the preceding example is:

Value: A happy day
is here
['A', 'happy', 'day', 'is', 'here']

Note that regular expressions can also be created using the RegExp
constructor. In our example, the whiteSpaceRegex expression could
have also been written as follows:

whiteSpaceRegex = new RegExp '\s'

In the replace() example, we replace all instances of blue with red. This updates our
phrase to The red balloon is bright.

By default, regular expressions are case sensitive. You can make the matching pattern case
insensitive by adding the \i modifier. For example, "It's a Wonderful Life".replace
/life/i, "Book" will return It's a Wonderful Book.

You can use the RegExp test() method to see whether a string matches the regular
expression pattern. In our example, we have two IP addresses, one that is valid and one that
is not. We have a pattern that represents a sequence of four numbers separated by periods.
Our invalid IP address uses a hyphen.

Starting with the Basics

32

Running the example, we have:

192.168.10.24 valid? true

192.168-10.24 valid? False

Note that our test for IP address that the IP address consists of four positive
integers separated by periods. To validate that each segment is between 0
and 255, we can use the following regular expression:

/(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-
5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[09]
[0-9]?)/

There's more...
There are many great online resources to learn more about regular expressions including the
following:

 f A full overview of regular expressions from the Mozilla Developer Network at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Regular_Expressions

 f An interactive regular expression tester at http://regex101.com

 f A regular expression visualization tool at http://www.regexper.com

Working with numbers
This section looks at various aspects of working with numbers in CoffeeScript. All of this
functionality comes from JavaScript but is made better by using CoffeeScript.

Converting between bases
JavaScript provides a parseInt() function that is most commonly used to convert strings
to numeric values but it can also be used to convert numbers between bases in the range of
base 2 to base 32. This section demonstrates converting numbers to and from base 10.

How to do it...
Let's define several base conversion methods in a utility module that we can use in our
applications:

convertBase = (number, fromBase, toBase) ->
 value = parseInt number, fromBase
 value.toString toBase

Chapter 2

33

convertToBase2 = (number, fromBase = 10) ->
 convertBase number, fromBase, 2

convertToBase10 = (number, fromBase = 2) ->
 convertBase number, fromBase, 10

convertToBase16 = (number, fromBase = 10) ->
 convertBase number, fromBase, 16

module.exports =
 convertBase: convertBase
 convertToBase2: convertToBase2
 convertToBase10: convertToBase10
 convertToBase16: convertToBase16

How it works...
The basic process to convert from one numeric base to another involves using parseInt()
to get a numeric value for the base we are converting from, and then using that number's
toString() method to return the value at the desired base.

We also created some helper methods to make our API more convenient for our users. The
convertToBase2(), convertToBase10(), and convertToBase16() functions use
CoffeeScript's default parameter feature to provide sensible defaults for the fromBase
parameter. Helper methods like these should be all about convenience.

We can use our convenient helper methods to convert to base 2, 10, and 16. If we need to
convert to any other bases, we have the general purpose convertBase() method.

Consider the following example:

bcu = require './base_conversion_utils'

console.log '153 base 10 to base 2:',
 (bcu.convertToBase2 153)
console.log '10011001 base 2 to base 10:',
 (bcu.convertToBase10 10011001)
console.log '153 base 10 to base 16:',
 (bcu.convertToBase16 153)
console.log '10011001 base 2 to base 16 from base 2:',
 (bcu.convertToBase16 10011001, 2)
console.log '153 base 13 to base 17:',
 (bcu.convertBase 153, 13, 17)

Starting with the Basics

34

Its output will be:

153 base 10 to base 2: 10011001
10011001 base 2 to base 10: 153
153 base 10 to base 16: 99
10011001 base 2 to base 16 from base 2: 99
153 base 13 to base 17: dg

Generating random numbers
We can generate random numbers by using the JavaScript Math object. Of course, we can
make some great utility functions using CoffeeScript that will make using random numbers
more convenient to work with.

How to do it...
Let's define our randomization methods in a utility module that we can use with our
applications:

getRandomNumberInRange = (minimum, maximum) ->
 length = maximum - minimum + 1
 randomValue = Math.floor (Math.random() * length)
 minimum + randomValue

getRandomNumber = (maximum) ->
 getRandomNumberInRange 1, maximum

getRandomElementFromCollection = (collection) ->
 randomIndex = getRandomNumberInRange 0, collection.length - 1
 collection[randomIndex]

module.exports =
 getRandomNumber: getRandomNumber
 getRandomNumberInRange: getRandomNumberInRange
 getRandomElementFromCollection: getRandomElementFromCollection

How it works...
We have three useful methods to provide randomness to our applications. We begin with a
method that calculates a random number between a minimum and maximum value.

The Math.random() method is at the heart of our method. Math.random() returns a
decimal number greater than or equal to zero and less than 1. The result of Math.random()
is a decimal value with 16 digits of precision.

Chapter 2

35

We normally want a whole number as our random number, so we use the Math.floor()
method to reduce our fractional value to a whole number.

We then created two other methods that make working with our module more convenient.

The getRandomNumber() method is a specialized form of our more general
getRandomNumberInRange() method for when the user wants to get a random value
between 1 and some number.

The getRandomElementFromCollection() method takes an array and returns a random
element from that array.

Consider the following example:

random = require './random_utils'

console.log 'Random number between 1 and 1,000:',
 (random.getRandomNumber 1000)
console.log 'Random number between 10 and 50:',
 (random.getRandomNumberInRange 10, 50)
console.log "Random element from ['Cat', 'Dog', 'Hamster']:",
 (random.getRandomElementFromCollection ['Cat', 'Dog', 'Hamster'])

Its output will be:

Random number between 1 and 1,000: 93
Random number between 10 and 50: 26
Random element from ['Cat', 'Dog', 'Hamster']: Hamster

Converting between degrees and radians
We commonly need to convert numeric values from one unit of measure to another. This is a
great candidate for a utility module. In this section, we will look at creating utility methods to
convert angles between degrees, radians, and gradians.

How to do it...
Let's define our conversion routines in a utility module we can use with our applications:

PI = Math.PI
DEGREES_IN_RADIAN = 180 / PI
RADIANS_IN_GRADIAN = 200 / PI

radiansToDegrees = (radians) ->
 radians * DEGREES_IN_RADIAN

Starting with the Basics

36

radiansToGradians = (radians) ->
 radians * RADIANS_IN_GRADIAN

degreesToRadians = (degrees) ->
 degrees / DEGREES_IN_RADIAN

degreesToGradian = (degrees) ->
 radians = degreesToRadians degrees
 radiansToGradians radians

gradiansToRadians = (gradians) ->
 gradians / RADIANS_IN_GRADIAN

gradiansToDegrees = (gradians) ->
 radians = gradiansToRadians gradians
 radiansToDegrees radians

module.exports.angles =
 degreesToRadians: degreesToRadians
 degreesToGradian: degreesToGradian
 radiansToDegrees: radiansToDegrees
 radiansToGradians: radiansToGradians
 gradiansToDegrees: gradiansToDegrees
 gradiansToRadians: gradiansToRadians

How it works...
Our module begins by defining three constants: PI, DegreesInRadians, and
RadiansInGradian. PI is used to calculate the ratios required to convert between degrees,
radians, and gradians. The methods that follow will show you how to perform the conversions.

Notice that at the end of this module, we export our conversion methods to an object named
angles. This allows us to namespace our methods to convert angles. We may want to add
additional conversion methods converting temperatures, lengths, weights, speeds, and so on.

The following is a demonstration of our conversion utilities in action:

convUtils = require './conversion_utils'

console.log '360 deg:',
 "#{convUtils.angles.degreesToRadians 360} rad"
console.log '360 deg:',
 "#{convUtils.angles.degreesToGradian 360} grad"
console.log '6.28 rad:',
 "#{convUtils.angles.radiansToDegrees 6.28} deg"

Chapter 2

37

console.log '6.28 rad:',
 "#{convUtils.angles.radiansToGradians 6.28} grad"
console.log '400 grad:',
 "#{convUtils.angles.gradiansToDegrees 400} deg"
console.log '400 grad:',
 "#{convUtils.angles.gradiansToRadians 400} rad"

Its output will be:

360 deg: 6.283185307179586 rad
360 deg: 400 grad
6.28 rad: 359.817495342157 deg
6.28 rad: 399.79721704684107 grad
400 grad: 360 deg
400 grad: 6.283185307179586 rad

Checking a credit card checksum
Validating credit cards might require an expensive call to a payment authorization gateway.
Before we make the call for authorization, we should verify that the number is at least a valid
credit card number.

We can match formats using regular expressions, but this does not give us the full picture.

Credit card numbers (Visa, MasterCard, American Express, and many others) use a formula
to calculate a credit card number's check digit. If the check digit is evenly divisible by 10,
the number is at least a possible number. If, on the other hand, the check digit is not evenly
divisible by 10, the number is not valid, and we won't have to make our call to the payment
authorization service.

How to do it...
Let's implement this process as follows:

reduceNumber = (number) ->
 value = 0
 digits = (Number x for x in number.toString().split '')
 value += digit for digit in digits

 if value > 9
 return reduceNumber value
 else
 return value

Starting with the Basics

38

calculateCheckDigit = (creditCardNumber) ->
 value = 0
 index = 0
 digits = (Number x for x in creditCardNumber.split '')
 for digit in digits.reverse()
 if index % 2 is 1
 value += reduceNumber digit * 2
 else
 value += digit
 index += 1

 return value

isValidCreditCardNumber = (cardNumber) ->
 calculateCheckDigit(cardNumber) % 10 is 0
module.exports =
 isValidCreditCardNumber: isValidCreditCardNumber

How it works...
We calculate the credit card number's check digit by adding every even number digit to every
odd digit and then multiplying it by 2. If the odd digit is greater than 10, you add the tens and
ones place values together (that is, if the odd number is 8, then 2 x 8 = 16 and 1 + 6 = 7).

If the check digit is evenly divisible by 10 with no remainder, the credit card number may
actually be a valid credit card and we can proceed with the payment authorization.

For example, the number 4,012,888,888,881,881 would be:

(4 x 2) + 0 + (1 x 2) + 2 + (8 x 2) + 8 + (8 x 2) + 8 + (8 x 2) + 8 +
(8 x 2) + 8 + (1 x 2) + 8 + (8 x 2) + 1

This becomes:

8 + 0 + 2 + 2 + 16 + 8 + 16 + 8 + 16 + 8 + 16 + 8 + 2 + 8 + 16 + 1

Now, all of the 16s become 1 + 6 = 7 and our calculation becomes the following:

8 + 0 + 2 + 2 + 7 + 8 + 7 + 8 + 7 + 8 + 7 + 8 + 2 + 8 + 7 + 1

Finally, our check digit is 90, so 4,012,888,888,881,881 could be a valid card number.

Chapter 2

39

We demonstrate this by using the check digit validator as follows:

ccv = require './credit_card_validator'

VALID CARD NUMBERS
visa1Sample = '4012888888881881'
mc1Sample = '5105105105105100'

INVALID CARD NUMBERS
visa2Sample = '4012788888881881'
mc2Sample = '5555655555554444'

console.log "#{visa1Sample} valid? ",
 (ccv.isValidCreditCardNumber visa1Sample)
console.log "#{mc1Sample} valid? ",
 (ccv.isValidCreditCardNumber mc1Sample)
console.log "#{visa2Sample} valid? ",
 (ccv.isValidCreditCardNumber visa2Sample)
console.log "#{mc2Sample} valid? ",
 (ccv.isValidCreditCardNumber mc2Sample)

Its output will be:

4012888888881881 valid? true
5105105105105100 valid? true
4012788888881881 valid? false
5555655555554444 valid? False

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

There's more...
For more information regarding credit card check digits, see the Wikipedia article on the Luhn
or modulus 10 algorithm at http://en.wikipedia.org/wiki/Luhn_algorithm.

Working with dates and times
Working with dates is a very common task in our software. This section describes how we can
perform date calculations in our CoffeeScript applications and provides some useful utility
methods that you can use in your own applications.

Starting with the Basics

40

Performing date calculations
Performing date calculations is not as intuitive as one would like in JavaScript. For example,
subtracting two dates returns the number of milliseconds between the two dates. JavaScript
does not provide methods to add hours, days, months, and so on for a date. In the next
section, we will create methods to address each of these complications.

How to do it...
Let's define methods to calculate the difference between two dates and add a timespan to a
date as follows:

MILLISECONDS_PER_SECOND = 1000
MILLISECONDS_PER_MINUTE = MILLISECONDS_PER_SECOND * 60
MILLISECONDS_PER_HOUR = MILLISECONDS_PER_MINUTE * 60
MILLISECONDS_PER_DAY = MILLISECONDS_PER_HOUR * 24
MILLISECONDS_PER_WEEK = MILLISECONDS_PER_DAY * 7
MILLISECONDS_PER_YEAR = MILLISECONDS_PER_WEEK * 52

dateDifference = (startDate, endDate, units = 'days') ->
 elapsed = endDate - startDate
 switch units
 when 'days'
 return elapsed / MILLISECONDS_PER_DAY
 when 'weeks'
 return elapsed / MILLISECONDS_PER_WEEK
 when 'months'
 return elapsed / MILLISECONDS_PER_YEAR * 12
 when 'years'
 return elapsed / MILLISECONDS_PER_YEAR
 when 'hours'
 return elapsed / MILLISECONDS_PER_HOUR
 when 'minutes'
 return elapsed / MILLISECONDS_PER_MINUTE
 when 'seconds'
 return elapsed / MILLISECONDS_PER_SECOND

 return elapsed

dateAdd = (date, amount, units = 'days') ->
 workingDate = new Date(date.valueOf())
 switch units
 when 'days'
 workingDate.setDate date.getDate() + amount

Chapter 2

41

 when 'weeks'
 workingDate.setDate date.getDate() + amount * 7
 when 'months'
 workingDate.setMonth date.getMonth() + amount
 when 'years'
 workingDate.setFullYear date.getFullYear() + amount
 when 'hours'
 workingDate.setHours date.getHours() + amount
 when 'minutes'
 workingDate.setMinutes date.getMinutes() + amount
 when 'seconds'
 workingDate.setSeconds date.getSeconds() + amount
 return workingDate

module.exports =
 dateAdd: dateAdd
 dateDifference: dateDifference

How it works...
First, define some useful constants to help convert milliseconds to days or years.

Next, we define a method to calculate the difference between two dates. The
dateDifference() method takes a startDate and endDate parameter as well as an
optional units parameter (which defaults to days) that represents the units to be returned.

The dateDifference() method essentially subtracts the two dates and converts the
resultant milliseconds to the desired units.

We then define the dateAdd() method. This method accepts date, amount, and an optional
units parameter representing the units of the amount being added (which defaults to days).

To add time to a date, you must use a little trick to set the proper date unit to its value and
the amount to be added. For example, to add 5 days to the current date, you would use the
following code:

currentDate = new Date()
currentDate.setDays currentDate.getDays() + 5
console.log currentDate

You can subtract amounts from the given date by using negative values. For example, 7 days
ago would be as follows:

currentDate = new Date()
console.log dateAdd currentDate, -7

Starting with the Basics

42

An example of using these date math functions is shown as follows:

dm = require './date_math'

zeroPad = (value, length = 2) ->
 return "00000000000000#{value}".split('')[-length..].join('')

formatDate = (date) ->
 year = date.getFullYear()
 month = date.getMonth() + 1
 day = date.getDate()
 hour = date.getHours()
 minute = date.getMinutes()

 return "#{year}-#{zeroPad month}-#{zeroPad day} #{zeroPad
hour}:#{zeroPad minute}"

currentDate = new Date()
newCentury = new Date(2000, 0)

console.log 'Current date: ', formatDate currentDate

console.log 'Days since Jan. 1, 2000: ',
 dm.dateDifference newCentury, currentDate
console.log 'Years since Jan. 1, 2000: ',
 dm.dateDifference newCentury, currentDate, 'years'

console.log '3 days from now: ',
 formatDate dm.dateAdd currentDate, 3
console.log '3 days ago: ',
 formatDate dm.dateAdd currentDate, -3
console.log '3 months from now: ',
 formatDate dm.dateAdd currentDate, 3, 'months'
console.log '3 years from now: ',
 formatDate dm.dateAdd currentDate, 3, 'years'
console.log '3 hours from now: ',
 formatDate dm.dateAdd currentDate, 3, 'hours'

Chapter 2

43

Its output will be:

Current date: 2013-10-21 18:54
Days since Jan. 1, 2000: 5042.746363993056
Years since Jan. 1, 2000: 13.806287101965928
3 days from now: 2013-10-24 18:54
3 days ago: 2013-10-18 18:54
3 months from now: 2014-01-21 18:54
3 years from now: 2016-10-21 18:54
3 hours from now: 2013-10-21 21:54

Measuring elapsed time
Using what we covered about working with dates and times, we can easily take it one step
further and create a performance measurement tool that can clock the start and end times to
execute a function and display execution statistics once complete.

How to do it...
In this section, we define helper methods to format and display results, and a timer()
method that performs the timing function:

dm = require './date_math'

padRight = (value, zeroPadding) ->
 "00000000000000#{value}".split('')[-zeroPadding..].join('')

padLeft = (value, zeroPadding) ->
 "#{value}00000000000000"[0...zeroPadding]

formatNumber = (value, decimalPlaces = 0, zeroPadding = 0) ->
 valueParts = (value + '').split '.'
 resultParts = []
 resultParts.push padRight valueParts[0], zeroPadding
 if decimalPlaces
 resultParts.push padLeft valueParts[1], decimalPlaces

 return resultParts.join '.'

formatTime = (value) ->
 hours = 0
 minutes = 0
 seconds = value / 1000

Starting with the Basics

44

 if seconds > 60
 minutes = Math.floor seconds / 60
 seconds -= minutes * 60

 if minutes > 60
 hours = Math.floor minutes / 60
 minutes -= hours * 60

 return "#{formatNumber hours, 0, 2}:" + \
 "#{formatNumber minutes, 0, 2}:" + \
 "#{formatNumber seconds, 4, 2}"

displayResults = (results) ->
 totalTime = 0
 minimumTime = Number.POSITIVE_INFINITY
 maximumTime = 0

 for result in results
 minimumTime = result if result < minimumTime
 maximumTime = result if result > maximumTime
 totalTime += result

 console.log "Statistics"
 console.log "Times run: #{results.length}"
 console.log "Total: #{formatTime totalTime}"
 console.log "Minimum: #{formatTime minimumTime}"
 console.log "Maximum: #{formatTime maximumTime}"
 console.log "Average: #{formatTime totalTime / results.length}"

timer = (func, numberOfTimesToExecute = 1) ->
 timerResults = []
 console.log 'Running...'

 for lap in [1..numberOfTimesToExecute]
 start = new Date()
 func()
 end = new Date()
 timerResults.push \
 dm.dateDifference(start, end, 'milliseconds')

 displayResults timerResults

Chapter 2

45

module.exports =
 timer: timer

How it works...
This little performance utility module begins by requiring our date_utils library as we will
be using the dateDifference() method to calculate how long a method takes to execute.

Then, we have some formatting helper methods. The formatNumber() method will format
a number for display and includes optional parameters for the number of decimal places and
zero padding. For example, formatNumber(5.4, 3, 2) will produce 05.400.

The formatTime() method will take a value in milliseconds and display it as hours, minutes,
and seconds. For example, formatTime(5680) will be displayed as 00:00:05.680.

You may have noticed we need to define our helper methods before they
are used. This is a requirement of JavaScript due to its dynamic nature.

After our formatting helper methods, we have a method that displays the performance
measurement results, but let's look at the timer() method first.

The timer() method is really the heart of our module. It is responsible for executing the
function being measured and gathering timing statistics with each run. The method takes
a function (func) as a parameter and a numberOfTimesToExecute optional parameter
representing the number of times to execute the function, which defaults to 1.

The timer() method then declares a timerResults array to store our execution times.

We then loop between 1 and numberOfTimesToExecute. With each iteration, we perform
the following tasks:

 f Store the current date and time in a variable called start

 f Execute the function that is being measured

 f Store the current date and time after the execution of a variable called end

 f Push the results into our timerResults array

Once the function execution has been measured, the timer() method calls
displayResults() to pass the timerResults array. The displayResults() method
displays the number of executions, the total time, minimum time, maximum time, and the
average time.

It is worth noting that the act of measuring performance negatively impacts the performance,
however minimally. When working to improve performance in your code, it is better to compare
results between tests with the understanding that each test executes with roughly the same
overhead.

Starting with the Basics

46

Let's try running our timer as follows:

tu = require './timer_utils'

test = () ->
 for i in [1..1000000]
 d = new Date()

tu.timer test, 5

Our little timer demo declares a test method that simply iterates from one to a million, and
with each iteration, the current date/time is stored in the d variable.

Why a million? Turns out d = new Date() happens very quickly. If
we do it a million times, it takes about 0.5 seconds.

We then pass our test() method to timer() and have it execute five times.

The output for the preceding code is:

Running...
Statistics
Times run: 5
Total: 00:00:02.2810
Minimum: 00:00:00.4220
Maximum: 00:00:00.4920
Average: 00:00:00.4562

Working with arrays
Our applications will almost always make use of data and in some cases a lot of data. In
this section, we will investigate some useful ways to work with collections of data using
CoffeeScript and its list comprehension feature and various JavaScript methods made
available on the array object.

Iterating over arrays
CoffeeScript provides convenient operators to iterate through collections of data by using
loops and comprehensions.

Chapter 2

47

Getting ready
For our example, we will be working with the following array of employee objects:

employees = [
 { id: 10, firstName: 'Tracy', lastName: 'Ouellette', salesYtd: 22246
}
 { id: 2, firstName: 'Chris', lastName: 'Daniel', salesYtd: 3876 }
 { id: 3, firstName: 'Jason', lastName: 'Alexander', salesYtd: 4095 }
 { id: 4, firstName: 'Jennifer', lastName: 'Hannah', salesYtd: 8070 }
 { id: 5, firstName: 'Maxx', lastName: 'Slayde', salesYtd: 2032 }
]

How to do it…
We can iterate through an array using the for item in array format as follows:

Listing Employees
for employee in employees
 console.log "Employee No. #{employee.id}: #{employee.firstName}"

We can also use the doSomethingWith item for item in array format:

displayEmployee = (emp) ->
 console.log "Employee No. #{emp.id}: #{emp.firstName}"

displayEmployee employee for employee in employees

How it works...
Both of these looping expressions iterate though the array one element at a time, and each
of the previous examples produces the same result as can be seen in the following output:

Employee No. 1: Tracy
Employee No. 2: Chris
Employee No. 3: Jason
Employee No. 4: Jennifer
Employee No. 5: Maxx

These can be used to return augmented arrays through the use of CoffeeScript
comprehensions. For example, if we had an array of integers, we could return an array
of these integers squared in the following manner:

array = [1, 2, 3, 4, 5]
result = (i * i for i in array)

The value of result is [1, 4, 16, 9, 25].

Starting with the Basics

48

It is important to wrap your comprehension inside parentheses, otherwise
the value being assigned will be the last item processed. For example, we
can omit the parentheses in the previous example as follows:

result = i * i for i in array

Now, the value of result will be 5.

There's more...
There are a number of useful variations when working with loops and comprehensions.
For example, we can use an optional indexing value as shown in the following code:

fruit = ['apples', 'bananas', 'oranges']
console.log "#{index}: #{item}" for item, index in fruit

This will produce the following output:

0: apples
1: bananas
2: oranges

We can also omit some items from being processed by adding a when clause to our loop
operation:

names = ['Chris', 'Tracy', 'Jason', 'Jennifer', 'Maxx']
console.log name for name in names when name[0] is 'J'

This will only operate on names that begin with J, as can be seen in the following output:

Jason
Jennifer

Lastly, we can also skip items and process every nth (second, third, and so on) value by
including a by clause as shown in the following code:

names = ['Chris', 'Tracy', 'Jason', 'Jennifer', 'Maxx']
console.log name for name in names by 2

This loop will display every second name as seen in the following code:

Chris
Jason
Maxx

Chapter 2

49

Sorting arrays
Sorting a collection is a very common task. Some collections, such as an array of numbers
or strings, are simply sorted by value. Complex objects can be sorted by a property or method
value. Sorting may not just be alphabetical or by numeric value; the logic may be more
complicated than that. We will look at each of these scenarios.

How to do it…
When sorting a simple array of values, we can take advantage of JavaScript's Array.
prototype.sort() function. By default, arrays are sorted in alphabetical order by
string value.

For an array of strings, we can do the following.

names = ['Chris', 'Tracy', 'Jason', 'Jennifer', 'Maxx']
console.log "Sorted: #{names.sort()}"

Executing this code produces Sorted: Chris,Jason,Jennifer,Maxx,Tracy.

For numbers, we need to use a version of sort that accepts a function as an argument that
returns a negative, 0, or positive value based on two values being compared:

 f Negative: A is less than B

 f 0: A is equal to B

 f Positive: A is greater than B

We can see the simple a - b comparer in the following code:

values = [3,63,56,4,65,3,555,9]
console.log "Sorted: #{values.sort (a,b) -> a - b}"

In this example, we compare A and B through simple subtraction, which produces Sorted:
3,3,4,9,56,63,65,555.

How it works...
In our example, we use the sort() function to sort both strings and numeric values. Because
sort() operates on strings by default, we had to provide a comparer function for sort() to
compare numeric values.

We can sort numeric arrays in descending order by subtracting A from B, as shown in the
following code:

values = [3,63,56,4,65,3,555,9]
console.log "Sorted descending: #{values.sort (a,b) -> b - a}"

Starting with the Basics

50

This will produce Sorted descending: 555,65,63,56,9,4,3,3.

We can use a comparer to sort objects as well. For example, if we want to sort an array
of employees in descending order by year-to-date sales, we can accomplish this with the
following code:

displayEmployee = (emp) ->
 console.log "#{emp.firstName}: $#{emp.salesYtd}"

employeeSortBySalesYtd = (a, b) ->
 b.salesYtd - a.salesYtd

console.log '\nEmployees Sorted by YTD Sales'
displayEmployee emp \

 for emp in employees.sort(employeeSortBySalesYtd)

This will display the following output:

Employees Sorted by YTD Sales
Tracy: $22246
Jennifer: $8070
Jason: $4095
Chris: $3876
Maxx: $2032

Note that the easiest way to sort an array of strings in descending order is to
combine the sort() function with the Array.prototype.reverse()
function, which will reverse the order of an array. For example, consider the
following array:

names = ['Chris', 'Tracy', 'Jason', 'Jennifer', 'Maxx']

We can sort this in descending order with names.sort().reverse(),
which will produce ['Tracy','Maxx','Jennifer','Jason','Chr
is'].

Shuffling an array
There are times when we may want to randomize a collection of data. For example, if we
were developing a game involving a deck of cards, we would want to shuffle the cards before
dealing them.

In this section, we will look at ways to accomplish this using CoffeeScript.

Chapter 2

51

Getting ready
We will be shuffling an array representing a deck of cards. We will define our card suits and
values as string arrays and assemble an array of card objects representing a deck by iterating
through each.

suits = ['Diamonds', 'Hearts', 'Clubs', 'Spades']
values = ['Ace', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven',
 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King']

assembleDeck = (deck) ->
 for suit in suits
 for value in values
 card = { suit: suit, value: value }
 deck.push card

We will also create two helper functions; one that is able to display the first five cards of the
deck and another that returns a random number, as follows:

displayDeck = (deck) ->
 for card in deck[0..4]
 console.log "#{card.value} of #{card.suit}"

getRandomNumber = (maximumValue) ->
 Math.floor (Math.random() * maximumValue)

How to do it…
We can shuffle the array of cards using the following code:

shuffle = (array) ->
 for i in [1..(array.length * 100)]
 indexOne = getRandomNumber array.length
 indexTwo = getRandomNumber array.length
 tempItem = array[indexOne]
 array[indexOne] = array[indexTwo]
 array[indexTwo] = tempItem

How it works...
The shuffle() function takes an array of values of any length and type. It proceeds to
loop 100 times for any number of items in the deck. This is an arbitrary number and can be
modified as needed. For a small array such as ours, it gives us a good shuffle while taking very
little time.

Starting with the Basics

52

During each iteration, we retrieve two random index values based on the length of the array
and swap the values in each index.

We can create a new deck of cards by issuing the following commands:

deck = []
assembleDeck deck

After the deck is assembled, we can display the first five cards with the following command:

displayDeck deck

As you can see from the following output, the cards have not been shuffled:

Ace of Diamonds
Two of Diamonds
Three of Diamonds
Four of Diamonds
Five of Diamonds

We can shuffle the deck using out shuffle() function in the following way:

shuffle deck

Once it has been shuffled, we can again display the first five cards in the deck and see they
are indeed shuffled in following output:

Eight of Diamonds
Two of Spades
Ace of Clubs
Five of Hearts
Ten of Spades

Mapping and reducing arrays
Mapping involves iterating through a collection and transforming each element in some way
and returning these transformed values as a collection.

Reducing an array is the act of deriving a single value from the array. This involves processing
each element of the collection and performing some calculation on it and returning a value to
be used while processing the next element.

In this section, we will look at some mapping and reducing examples.

Chapter 2

53

Getting ready
In our examples, we will be using an array of strings and an array of numeric values as follows:

names = ['Chris', 'Tracy', 'Jason', 'Jennifer', 'Maxx']
values = [3, 63, 56, 4, 65, 3, 555, 9]

How to do it...
We can map our arrays using CoffeeScript list comprehensions.

We can convert our array of names to an array of integers representing the length of each
name in the following manner:

nameLengths = (name.length for name in names)

After executing this statement, the nameLengths array will contain [5, 5, 5, 8, 4].

To reduce an array, we will use the Array.prototype.reduce() function:

sum = values.reduce (runningTotal, value) -> runningTotal + value

Once the reduce() statement is executed, sum is assigned the value of 758.

Of course, we can reduce other types of arrays besides numeric arrays. For example, if we
want to find the longest word in a string array, we can do the following:

words = ['Once', 'upon', 'a', 'time', 'there', 'was', 'a', \
 'beautiful', 'mountain']
reduceWords = (value, word) ->
 if word.length > value.length then word else value

longestWord = words.reduce reduceWords, ''

In this example, we seed our reduce() function with an empty string. When this is executed,
the value of longestWord is beautiful.

Filtering and testing arrays
Before we leave arrays, we will look at ways to filter elements that match specific criteria and
testing collections to determine whether elements meet specific criteria.

Getting ready
In our example, we will reference the following array:

testScores = [27, 44, 39, 37, 41, 48, 37, 34, 40, 43, 30, 43, \
 29, 27, 37]

Starting with the Basics

54

How to do it...
In our example, we will use list comprehensions to filter our arrays and test elements using
the CoffeeScript when construct.

If we wanted to filter only the even test scores, we can do the following:

evenScores = (i for i in testScores when i % 2 is 0)

We can reverse our when expression to filter only odd test scores:

oddScores = (i for i in testScores when i % 2 isnt 0)

Note that we use CoffeeScript's is and isnt filters to check for equality.
This makes the code read more like English. CoffeeScript offers a
number of English keywords like this.

We can build tests around list comprehensions that will test that any or all elements match
specific criteria:

any = (array, testFunc) ->
 matches = (m for m in array when testFunc m)
 matches.length isnt 0

all = (array, testFunc) ->
 matches = (m for m in array when testFunc m)
 matches.length is array.length

How it works...
Using list comprehensions makes filtering and testing arrays a breeze.

For example, we can call our any() function with our array of test scores to see whether
any test scores were greater than 40:

anyGreaterThan40 = any testScores, (n) -> n > 40

The any() function executes the testFunc() function with each element in the provided
array and collects the elements where this returns a truthy value. Given our testScores
array, this is will return true because one or more matches exist.

The all() function also executes testFunc() for each element. In this case, however,
we will only return true if every element returns truthy.

Chapter 2

55

Working with classes
Traditional classes do not exist in JavaScript. They can be very useful in decomposing your
code into reusable component-like blocks. This is especially true if you are used to working
with classes in other languages.

CoffeeScript classes are compiled into constructor functions that allow us to instantiate
JavaScript objects. Using CoffeeScript classes makes use of best practices to define objects
by keeping private variables private and making proper use of function prototypes.

In this section, we will look at defining classes with properties and methods, using class
inheritance, and some of the hurdles we can run into when using CoffeeScript classes.

Defining classes
Creating a class involves using the class CoffeeScript keyword to define our class name,
prototype properties and methods, as well as class variables and methods.

In this section, we will define a number of CoffeeScript class examples and see how they
are used.

How to do it...
We can create a simple CoffeeScript class by giving it a name. For example class Employee
is all it takes to define an Employee class.

This will create the following JavaScript code when compiled:

var Employee;
Employee = (function() {
 function Employee() {}

 return Employee;
})();

We can create an instance of our Employee class in the following way:

emp = new Employee()

A slightly more complex example of our Employee class defines three functions that allow
you to set the employee's ID, and first and last names as follows:

class Employee
 setId: (value) ->
 @id = value

Starting with the Basics

56

 setFirstName: (value) ->
 @firstName = value

 setLastName: (value) ->
 @lastName = value

In the previous example, we used the @ character. This is shorthand for this.

CoffeeScript classes provide a special constructor function that can be used to initialize
member properties. Let's modify our Employee class to make use of constructor:

class Employee
 constructor: () ->
 @id = 0
 @firstName = ''
 @lastName = ''

Constructors can also take parameters such as other methods:

class Employee
 constructor: (id, firstName, lastName) ->
 @id = id
 @firstName = firstName
 @lastName = lastName

This is such a common task that CoffeeScript provides an initialization shorthand that will
allow us to construct new objects and assign property values with very little code:

class Employee
 constructor: (@id, @firstName, @lastName) ->

How it works...
When classes are compiled, they become constructor functions that are wrapped within a
closure. This provides the mechanism to keep private members private.

We can easily define instance methods in our class definitions:

class Employee
 constructor: (@id, @firstName, @lastName) ->
 @salesByMonth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 totalSales: ->
 @salesByMonth.reduce (t, n) -> t + n

Chapter 2

57

When we define methods in our class definition, they are compiled into functions on the
object's prototype. In the previous example, totalSales() will exist as Employee.
prototype.totalSales(). Functions defined on the object's prototype are used by all
instances of the Employee objects. In other words, regardless of the number of Employee
instances, there will only ever be one copy of totalSales() in memory.

We can create a new Employee instance and retrieve the employee's year-to-date sales in the
following manner:

emp = new Employee(13, 'Tracy', 'Ouellette')
emp.salesByMonth[0] = 504.43
emp.salesByMonth[1] = 389.56
emp.salesByMonth[2] = 493.23
console.log "YTD sales: ", emp.totalSales()

When we execute this, we see the following output:

YTD sales: 1387.22

Dealing with inheritance
CoffeeScript classes support inheritance by making use of JavaScript's native prototype
inheritance. This allows you to create generalized classes and then derive more specific
classes when needed.

For example, if we continue with our Employee example we created in the previous section,
we can extract the first and last names into a Person class, and then create an employee
class that extends the Person class.

How to do it...
Let's look at an example of how to use class inheritance:

class Person
 constructor: (@firstName, @lastName) ->

 fullName: ->
 "#{@firstName} #{@lastName}"

Create a more specific type of person (Employee)
class Employee extends Person
 constructor: (@id, @firstName, @lastName) ->
 @salesByMonth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 totalSales: ->
 @salesByMonth.reduce ((t, n) -> t + n), 0

Starting with the Basics

58

First, we define a simple Person class. A person has a first name and last name. We also
define a simple instance method to return the person's full name.

We then create a specific kind of Person by defining the Employee class as an extension
of the Person class as class Employee extends Person.

How it works...
We can create an instance of an Employee class in the same manner as we did previously,
but because Employee extends Person, we get the added features provided by the
Person class:

emp = new Employee(13, 'Tracy', 'Ouellette')
emp.salesByMonth[0] = 504.43
emp.salesByMonth[1] = 389.56
emp.salesByMonth[2] = 493.23

displayEmployee emp

Its output will be:

Employee
 Id: 13
 Name: Tracy Ouellette
 YTD sales: 1387.22

In this example, Employee inherited the fullName() method from Person.

What if we needed to override a method found in the parent class? This can be easily
accomplished by simply creating a method with the same name as the parent class method:

Create general person class with a toString() method
class Person
 constructor: (@firstName, @lastName) ->

 fullName: ->
 "#{@firstName} #{@lastName}"

 toString: ->
 @fullName()

Create an employee class from person, overriding toString()
class Employee extends Person
 constructor: (@id, @firstName, @lastName) ->
 @salesByMonth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Chapter 2

59

 totalSales: ->
 @salesByMonth.reduce ((t, n) -> t + n), 0

 toString: ->
 "#{@fullName()} (#{@id})"

Create employee instance and display
console.log "#{ new Employee(13, 'Tracy', 'Ouellette') }"

Its output will be:

Tracy Ouellette (13)

Notice that our Employee.prototype.toString() function still has access to its base
Person.prototype.toStirng() function.

CoffeeScript also provides a super() method to access instance methods from the parent
class from within the overriding child method.

For example, if we wanted Employee.prototype.toString() to be an extension of
the Person.prototype.toString() method, we can define Employee.prototype.
toString() in this way:

class Employee extends Person
 constructor: (@id, @firstName, @lastName) ->
 @salesByMonth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 totalSales: ->
 @salesByMonth.reduce ((t, n) -> t + n), 0

 toString: ->
 "#{super()} (#{@id})"

In this example, Employee.toString() calls super(), which in this case is Person.
toString(), and then uses the output from Person.toString() as a part of the output
from Employee.toString().

Class properties and methods
In this section, we will look at how to define class-level variables and methods. These are
available only on the class object itself and not on instances of a class.

Starting with the Basics

60

How to do it...
Let's look at how to define class-level variables and methods:

class Employee extends Person
 constructor: (@id, @firstName, @lastName) ->
 @salesByMonth = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 totalSales: ->
 @salesByMonth.reduce ((t, n) -> t + n), 0

 toString: ->
 "#{super()} (#{@id})"

 @departments: [
 'Sales'
 'Customer Service'
 'I.T.', 'Finance'
 'Marketing'
 'Human Resources'
 'Research and Development'
]

How it works...
In our class definition, we define a class-level variable for Employee named departments.

When we use Employee, we can access Departments without using an Employee instance
as Employee.departments, as follows:

console.log "Employee class has #{Employee.departments.length}
departments."

Its output will be:

Employee class has 7 departments.

If we try to access Departments from an employee instance, you'll see that it is
undefined.

emp = new Employee(13, 'Tracy', 'Ouellette')
console.log "#{emp} instance departments? #{emp.departments}"

Its output will be:

Tracy Ouellette (13) instance departments? Undefined

Chapter 2

61

If we derive a class from Employee (such as a Manager class), Manager also has access to
Departments on its parent Employee class, as follows:

class Manager extends Employee
 constructor: (@id, @firstName, @lastName) ->

console.log "Manager class has #{Manager.departments.length}
departments."

Its output will be:

Manager class has 7 departments.

We can create class-level methods as well. Here is a Numbers class, which defines an avg()
method that returns the average from a numeric collection:

class Numbers
 @avg: (collection) ->
 sum = collection.reduce ((t, n) -> t + n), 0
 sum / collection.length

We can then call this method using Numbers.avg():

data = require '../working_with_collections/sample_data'
roundWithDecimals = (value, decimalPlaces = 0) ->
 multiplier = Math.pow(10, decimalPlaces)
 Math.round(value * multiplier) / multiplier

avgTestScore = Numbers.avg testScores

Its output will be:

Average test score: 37.07

Dealing with the this keyword
In JavaScript, this can sometimes trip us up. This is because the value of this depends on
the context in which it is being used.

Getting ready
When defining classes in CoffeeScript, instance methods will execute on the current this
context. For normally instantiated objects, this refers to the object itself.

If the instance method is instead passed as a function callback, this represents the object
that is executing the callback.

Starting with the Basics

62

For example, consider the following code:

class Person
 constructor: (@firstName, @lastName) ->

 displayFullName: ->
 console.log "#{@firstName} #{@lastName}"

person = new Person('Tracy', 'Ouellette')
person.displayFullName()

If you run this code, person.displayFullName() will give the following output:

Tracy Ouellette

However, consider what would happen if you used person.deplayFullName() as a
callback:

func = (callback) ->
 callback()

func(person.displayFullName)

Its output would be:

undefined undefined

What's going on here? The problem is that displayFullName() was executed under
the context of func() (that is, this is func) and func() does not have firstName or
lastName associated with it; they are bound to person.

To address this, we must use CoffeeScript's fat-arrow operator =>.

How to do it...
Let's look at how to use CoffeeScript's @ helper as shown in the following code:

class Person
 constructor: (@firstName, @lastName) ->

 displayFullName: =>
 console.log "#{@firstName} #{@lastName}"

Chapter 2

63

How it works...
There is a very subtle change to our Person class. We defined the displayFullName()
method using the fat-arrow operator.

This will bind displayFullName() to the instance of Person instead of the default context
of this.

Let's see if using the fat-arrow addresses our binding problem, as follows:

person = new Person('Tracy', 'Ouellette')
func(person.displayFullName)

Its output will be:

Tracy Ouellette

Using the fat-arrow to bind the method to its instance did indeed address our binding problem.

You may be asking yourself, "why not just use the fat-arrow operator to define all instance
methods on classes?"

If you look at the JavaScript code that gets generated, you will see that using the fat-arrow
generates more JavaScript code. This is code that is needed to bind the instance method to
the object's instance itself.

It is recommended to only use the fat-arrow operator when the method may be used as an
event callback and needs access to instance variables and methods.

Consider the following example where Person is compiled to JavaScript using a thin-arrow
operator:

var Person;
Person = (function() {
 function Person(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 Person.prototype.displayFullName = function() {
 return console.log("" + this.firstName + " " + this.lastName);
 };

 return Person;

})();

Consider the following example where Person is compiled to JavaScript using the fat-arrow
operator:

var Person,
 __bind = function(fn, me){ return function(){ return fn.apply(me,
arguments); }; };

Person = (function() {
 function Person(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.displayFullName = __bind(this.displayFullName, this);
 }

 Person.prototype.displayFullName = function() {
 return console.log("" + this.firstName + " " + this.lastName);
 };

 return Person;

})();

3
Creating Client

Applications

In this chapter, we will cover the following recipes:

 f Working with jQuery

 f Working with Backbone

 f Working with AngularJS

 f Communicating in real time with Socket.io

Introduction
One of the most important aspects of developing an application is the user interface. In
this chapter, we will look at many popular frameworks and libraries that can be used with
CoffeeScript when developing the user interfaces and client-side application code for our
applications.

We will look at several options for creating views, handling UI events, and routing using
Backbone and AngularJS specifically.

We will also see how we can implement real-time communications between our client
application and server using the Socket.io library.

Creating Client Applications

66

Working with jQuery
jQuery is undoubtedly one of the most widely used JavaScript libraries in use today. It alone is
used by nearly 57 percent of all websites in the world and has a whopping 92 percent market
share in the JavaScript library space.

For more information on jQuery, you can visit the project home page
at http://jquery.com/.

In this section, we will look at writing jQuery code to use with jQuery and some of jQuery's
most popular plugins.

Executing on load
When a web page first loads, jQuery will trigger a document.ready event allowing you to
execute code before the page begins rendering. This is the opportune time to execute any
initialization code.

Getting ready
Our jQuery examples will be based on a basic HTML file with the following structure:

<!doctype html>

<html lang="en">

<head>
 <meta charset="utf-8">
 <title>jQuery Examples</title>
</head>

<body>

 <!-- Your CoffeeScript code goes here -->
 <script type="text/coffeescript">

 </script>

 <!-- Reference jQuery and CoffeeScript -->
 <script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.2/
jquery.min.js"></script>
 <script src="http://coffeescript.org/extras/coffee-script.js"></
script>
</body>

</html>

Chapter 3

67

Using this template you can add your CoffeeScript code inside the <SCRIPT TYPE="text/
coffeescript"> tag.

How to do it...
There are two basic methods to handle the document ready event:

1. You can assign a ready event handler to a jQuery-wrapped document object:
$(document).ready ->

 console.log 'Document ready...'

2. You can use the shortcut provided by jQuery:

$ ->

 console.log 'Document ready (shortcut)...'

How it works...
In the previous code, we saw two ways to listen to the document.ready event.

The first method listens for the ready event triggered by the document object. In this example,
our code displays Document ready... in the browser's console.

The second method accomplishes the exact same task using jQuery's shortcut to handle the
document.ready event as can be seen in the following screenshot:

Handling DOM events
Much in the same way that we listened for the document.ready event, we can also add
various event listeners to DOM elements. This section describes a number of common ways
that jQuery allows us to do this.

Creating Client Applications

68

How to do it...
DOM event handlers can be added to a specific element, a set of existing elements, or to
elements that have yet to be created.

Let's look at an example of how to add a jQuery click() listener to a DOM element:

 f Adding a click handler to a specific element:
$('#first-button').click (e) ->
 e.preventDefault()
 alert 'You have clicked first-button'

 f Adding a click handler to a set of similar elements:
$('ul#color-list a').click (e) ->
 e.preventDefault()
 color = $(e.target).data('color')
 alert "Thank you for selecting #{color}."

 f Adding a click handler to an element that does not yet exist

$(document).on 'click', 'button.new-button', (e) ->
 e.preventDefault()
 buttonValue = $(e.target).data 'counter'
 alert "You clicked button ##{buttonValue}"

How it works...
Our example demonstrates three common ways to use jQuery to add event listeners
to DOM elements.

In the first example, we simply attach a handler to a specific instance of a DOM element
identified by using a #id selector. In this example, we assign an event handler to the
first-button element's click event.

Our event handlers receive an event object (e, in our example) that provides additional
information our handler may need. It also provides a method to prevent the default behavior.
For example, we can capture the click of a form submission button to perform validation of
the data provided and, if there is a validation error, prevent the default action of the form
being submitted by executing e.preventDefault(). This is very handy when assigning
a click handler to anchor elements and buttons.

Chapter 3

69

Our second example applies an event handler to all DOM elements that match the query
selector; ul#color-list a, in this case. Any anchor element found inside the unordered
list with the ID of color-list will listen for a click event and execute our event handler. This
handler uses the e.target property and jQuery's data() method to retrieve the data-
color value and displays an alert to the user informing them of the color that was clicked.

When working with CoffeeScript, it can be difficult to know when to
use parenthesis. If you are calling a method with no parameters, then
parenthesis are required. We have also seen cases in some of our
examples where parentheses were used to clarify our intensions to the
CoffeeScript compiler. There are other cases where they may make
code intent clear to you, the developer. If using parenthesis makes
the code intent clear, by all means, use them. One aspect you might
have noticed was the way that I make use of the jQuery function. For
example, $('button#add-button').doSomething() is the
same as $('button#add-button').doSomething(), but I
personally find the former pattern a little more readable; however, you
may find the latter more suitable.

Our third example uses a feature of jQuery that allows you to register an event handler to
DOM elements that do not yet exist. This is very handy in Single Page Applications (SPA),
where we load DOM elements into our application at runtime. jQuery's on() method takes
advantage of the browsers behavior of bubbling events. You use on() to attach an event
listener to a container element (document, in our example). We then tell the listener what
type of event we are interested in and the scope we are interested in (click and button.
new-button, respectively).

Clicking on the add-button button will add a new button with the CSS class of .new-
button to the DOM. Using on(), we set an event handler that will listen for click events on
any button contained in the document with the .new-button class. When detected, we grab
the target's data-counter value and display a message to the user.

Using this approach allows us to create listeners for elements that our application will
create dynamically. This provides an enormous amount of flexibility when using jQuery
for our applications.

Creating Client Applications

70

We can see our demo page loaded in the following screenshot:

Modifying the DOM
jQuery is an excellent library to add, change, and remove DOM elements. Using jQuery
methods such as append(), prepend(), after(), and before() allows us to add
new elements to the DOM.

We can use jQuery's remove(), empty(), and detach() methods to remove elements
from the DOM.

jQuery also provides many methods to change element attributes and has addClass(),
removeClass() and toggleClass() to deal with CSS classes, data(), css(), and
attr() to use the data-dash values, CSS properties, and general element attributes.

You can view all of jQuery's documentation on their jQuery API
site at http://api.jquery.com.

Chapter 3

71

How to do it...
Let's look at how we can use jQuery to modify our document object model by adding,
modifying, and removing DOM elements:

 f Adding a DOM element:
itemHtml = "<li class='list-group-item'>
 <label>
 <input type='checkbox' class='complete-checkbox'>
 #{description}
 </label>
 <button class='delete-button btn btn-danger btn-xs'>Delete</
button>
"
$('#todo-list').append itemHtml

 f Deleting a DOM element:
$('#todo-list').on 'click', '.delete-button', (e) ->
 if (confirm 'Delete this item?')
 $(e.target).parent('li').remove()

 f Modifying a DOM element:

$('#todo-list').on 'click', '.complete-checkbox', (e) ->
 $(e.target).parent('label').toggleClass 'completed'

How it works...
In the preceding example, we work with a sample to-do list. The functionality is pretty simple.
You can add a new item by entering a description and clicking on the add button. You can
mark items as complete by clicking on the checkbox next to the item in the list. You can also
delete an item by clicking on its delete button.

We wire up three event handlers. One to handle the add action, one to handle the delete
action, and the third to handle the toggle of clicking on the checkbox.

Creating Client Applications

72

When adding a to-do item, the following thing happens:

1. The event handler grabs the task description using jQuery's val() method.

2. We then call the addTodoItem() method to pass our description.

3. The addTodoItem() method prepares the HTML to be added to the DOM as a
simple string.

4. We finish by using jQuery's append() method, which adds a new DOM element
to todo-list.

Our delete handler confirms the user's action, which is always recommended when the user
performs a destructive action. If confirmed, we remove the LI element that contains the
delete button that was clicked. We accomplish this using jQuery's remove() method. The
delete button that was clicked is e.target. We really want to remove LI that contains the
delete button so we use jQuery's parent() method to find that element and remove it.

We can see the page loaded in our browser in the following screenshot:

There's more...
You may have noticed that we used inline HTML strings. Having inline HTML in this simple
example is not much of a problem, but imagine how messy a larger application could
become. A better solution is to use a template engine. There are a number of very good
libraries that can help with this. Some of the most popular libraries include Handlebars
(http://handlebarsjs.com/), Underscore (http://documentcloud.github.
io/underscore/#template), and the jQuery tmpl plugin (https://github.com/
BorisMoore/jquery-tmpl).

Chapter 3

73

If you are using a JavaScript framework, it may have a built-in template engine or its
community may have a preferred engine.

Note that Underscore is an amazing utility library created by CoffeeScript
creator Jeremy Ashkenas. At 5 KB, this library packs some fantastic
methods to manipulate collections, arrays, functions, objects, and has a
built-in template engine as well.

In our previous example, we created DOM elements by creating HTML. In the following
example, we use the Underscore template engine:

1. Initialize a new template variable:
itemTemplate = null

2. Get the HTML to be used by our template:
$ ->
 # Grab item template
 itemTemplate = _.template $('#item-template').html()

3. Register an event handler to add an item:

 # Add new todo
 $('#add-button').click (e) ->
 description = $('#todo-description').val()
 addTodoItem description

4. Register an event handler to remove an item:
 # Delete an item
 $('#todo-list').on 'click', '.delete-button', (e) ->
 if (confirm 'Delete this item?')
 $(e.target).parent('li').remove()

5. Register an event handler to mark an item as complete:
 # Mark an item complete
 $('#todo-list').on 'click', '.complete-checkbox', (e) ->
 $(e.target).parent('label').toggleClass 'completed'

6. Create some sample items:
 # Pre-populate our list with some tasks
 todos = [
 'Pick up milk',
 'Take the car in for an oil change',
 'Pick up tickets for Jenn\'s show'
]

Creating Client Applications

74

7. Add our sample items using the item template:
 (addTodoItem description) for description in todos

addTodoItem = (description) ->
 $('#todo-list').append itemTemplate(description: description)

8. Add a reference to the Underscore library:

<script src="http://cdnjs.cloudflare.com/ajax/libs/underscore.
js/1.8.2/underscore-min.js"></script>

In this version, we begin by grabbing a copy of the template from our HTML file by the #item-
template ID. Underscore's template() method takes HTML and returns a function
that can be called, which will generate an HTML representation of the template with the
appropriate values substituted.

For example, you can see in the following HTML template, we use a code nugget, <%=
description %>, representing an expression that will be evaluated and injected into the
template's output. These expressions are evaluated using an object passed as an argument
to the template's function. In this case, we execute our template function passing an object
with a description property:

<script type="text/x-template" id="item-template">
<li class="list-group-item">
 <label>
 <input type="checkbox" class="complete-checkbox">
 <%= description %>
 </label>
 <button class="delete-button btn btn-danger btn-xs">
 Delete
 </button>

</script>

Note that our HTML template was contained in a script tag. By providing
a type that is not recognized by the browser, we can include the HTML
template with an ID and the browser will simply ignore its contents.

Communicating with the server using AJAX
jQuery offers several AJAX methods that can be used to send requests to a backend service
and handle the server's response asynchronously. jQuery provides several methods to perform
AJAX requests, including the very flexible ajax() method and various specialized methods
such as get(), post(), and getJSON().

Chapter 3

75

How to do it...
In this example, we will demonstrate several methods to retrieve data from the server
via AJAX calls:

1. Get the template HTML and compile it to be reusable:
departmentsTemplate = null

$ ->
 templateHtml = $('#departments-template').html()
 departmentsTemplate = _.template templateHtml

2. Make a call using ajax():
 # Using ajax() the old way
 $('#first-button').click (e) ->
 method = 'ajax() the old way'
 $.ajax 'data/departments.json',
 dataType: 'json',
 complete: (res) ->
 displayDepartments method, res.responseJSON
 error: (res) ->
 displayError method, res.statusCode, res.statusText

3. Make a call using ajax() with promises:
 # Using ajax() with promises
 $('#second-button').click (e) ->
 method = 'ajax() with deferred'
 xhr = ($.ajax 'data/departments.json', {dataType: 'json'})
 xhr.done (data) ->
 displayDepartments method, data
 xhr.fail (res) ->
 displayError method, res.statusCode, res.statusText

4. Make a call using get():
 # Using get()
 $('#third-button').click (e) ->
 method = 'get()'
 xhr = ($.get 'data/departments.json', dataType: 'json')
 xhr.done (data) ->
 displayDepartments method, data
 xhr.fail (res) ->
 displayError method, res.statusCode, res.statusText

Creating Client Applications

76

5. Make a call using getJSON():
 # Using getJSON()
 $('#fourth-button').click (e) ->
 method = 'getJSON()'
 xhr = ($.getJSON 'data/departments.json')
 xhr.done (data) ->
 displayDepartments method, data
 xhr.fail (res) ->
 displayError method, res.statusCode, res.statusText

6. Create helper functions to display results and/or errors:

 displayDepartments = (method, departments) ->
 $('#output').html departmentsTemplate
 method: method
 departments: departments

 displayError = (method, code, text) ->
 alert "#{method} failed: #{code} - #{text}"

How it works...
In our example, we have four examples to load data from our server via AJAX.

The first example uses the classic approach to use the flexible ajax(url, settings)
method. Our settings contain a few common properties, including dataType (we want to
load json as opposed to the text data), a complete() event handler, and an error()
event handler.

The event handlers are the same for each of our examples. Upon success, the departments
are displayed using an Underscore template and upon failure, we display an alert to provide
some useful feedback to the user.

Our second example also uses the ajax() method. In this example, however, we use the new
XHR object that is returned by ajax(). The XHR object provides three deferred methods:

 f done(): This is fired when the action completes successfully.

 f failed(): This is fired if the action fails (that is, it returns a non-success status code).

 f always(): This is fired regardless of success or failure. This is a great place to clean
up any necessary objects, and so on.

Chapter 3

77

Our third example uses the specialized get() method that is used when making GET
requests to our server. This is similar to using ajax() with the settings type property set to
GET, which happens to be the default type value.

There is also a similar post() method to submit data to the server.

Our last example uses getJSON(), an even more specialized form of get(), that is used to
retrieve JSON-formatted data from the server:

Using jQuery UI widgets
jQuery UI is a popular user interface framework built on top of jQuery. The jQuery UI library
provides a number of widget-style controls and UI paradigms that can be used when building
your user interfaces.

For more information on jQueryUI, you can visit the project home
page at http://jqueryui.com/.

In this section, we will examine how we can use jQuery UI to spice up our applications.

Creating Client Applications

78

How to do it...
Let's look at how we can use jQuery UI to display useful widgets within our HTML page:

1. Add a reference to the jQuery UI and theme CSS files:
<link rel="stylesheet" href="css/theme/jquery-ui.min.css">
<link rel="stylesheet" href="css/theme/jquery.ui.theme.css">

2. Define a slider:
<h2>Slider</h2>
<div id="slider-container">
 <div id="slider"></div>
 <p>
 Change the slider and the progressbar below will
 update.</p>
</div>

3. Define a progress bar:
<h2>Progressbar</h2>
<div id="progressbar-container">
 <div id="progressbar"></div>
</div>

4. Define a date picker:
<h2>Datepicker</h2>
<div id="datepicker-container">
 <p>
 Date:
 <input type="text" id="datepicker">
 </p>
</div>

5. Define an autocomplete textbox:
<h2>Autocomplete</h2>
<div id="autocomplete-container">
 <label>
 Department:
 <input type="text" id="autocomplete">
 </label>
</div>

6. Lastly, include a reference to the jQuery UI JavaScript:

<script src="js/vendor/jquery-ui.min.js"></script>

Chapter 3

79

In the preceding HTML, we reference the jQuery UI stylesheets. We then define the DOM
elements that will become our widget instances. We end by referencing the jQuery UI
JavaScipt file. Once defined, we can execute jQuery UI methods to transform our DOM
elements into actual widgets as can be seen in the following CoffeeScript code:

1. Create a handler for the DOM ready event:
$ ->

2. Initialize the progress bar widget:
 # Create a progress bar
 $('#progressbar').progressbar { value: 50 }

3. Initialize the slider widget with a value and a change event handler:
 # Create a slider
 $('#slider').slider
 value: 50
 change: (e, ui) ->
 $('#progressbar').progressbar 'option', \
 'value', ui.value

4. Initialize the date picker widget:
 # Create a date picker
 $('#datepicker').datepicker()

5. Initialize the autocomplete textbox widget with departments loaded from the server:

 # Load departments from server and create auto-complete
 ($.getJSON 'data/departments.json')
 .done (data) ->
 ($ '#autocomplete').autocomplete { source: data }
 .fail (res) ->
 alert 'Cannot load departments. ' + res.statusText

How it works...
In order to use the jQuery UI widgets, you must link the desired jQuery UI theme CSS and the
jquery-ui.js JavaScript library.

Once the necessary jQuery UI files are included, you can use the related methods to create
the desired widgets.

jQuery UI widgets are created by selecting the DOM element that acts as the widget
placeholder using a jQuery selector, and then call the function that converts the placeholder
into the widget itself.

Creating Client Applications

80

In the example, we first create a progress bar by selecting #progressbar and executing
jQuery UI's progressbar() method. The progressbar() method accepts an optional
object that defines properties and methods used to customize the behavior and settings of
the progress bar. In our case, we set its initial value to 50. By default, the minimum value is 0
and the maximum value is 100.

We then create a slider control. Again, we set its initial value to 50. This time, however, we
also provide a handler for the slider's change event. The event handler takes two parameters.
The first parameter is a generic jQuery event object. The second parameter is an instance of
the widget itself, which is very helpful to retrieve selected values, and so on. In our example,
we set the progress bar's value to the user-selected value of the slider.

In the next example, we create a simple date picker. This is a very representative example of
the power of jQuery UI. With a single $('#datepicker').datepicker() statement, we
have a fully functioning date picker. It really is that easy.

Last, we create an autocomplete INPUT box. This is an excellent widget to offer suggestions to
a user as they are typing. In this example, we ask the user for the name of a department.

We first load our sample department data using getJSON() and then pass the array as the
source option for the autocomplete widget.

We can see these jQuery UI widgets loaded in our browser in the following screenshot:

Chapter 3

81

There's more...
jQuery UI allows you to create custom themes using their ThemeRoller tool at http://
jqueryui.com/themeroller.

You might have noticed that the jquery-ui.min.js file is still very large at almost 290
KB. This might be acceptable for our example but a large file such as this is likely too large
for a real application. The jQuery UI team has created a tool that allows you to select only
the components you are interested in using and downloading only the code required for the
components you are using. You can find this tool at http://jqueryui.com/download.

Displaying an image gallery using Lightbox
Lightbox is a popular jQuery plugin to display images in a user-friendly yet still visually
pleasing way.

For more information on the Lightbox plugin, you can visit the project home
page at http://lokeshdhakar.com/projects/lightbox2/.

How to do it...
Let's look at how we can use Lightbox to display a gallery of photos in our HTML page.

1. Add a reference to the Lightbox CSS file:
<link rel="stylesheet" href="css/lightbox.css">

2. Define a DIV element to hold the image gallery:
<div id="gallery" class="well">
</div>

3. Define a template to be used for the album:
<script type="text/x-template" id="album-template">
 <h2><%= album.title %></h2>
 <div>
 <% _.each(album.images, function(img){ %>
 <a href="<%=
 album.imageRootPath + img.filename %>"
 data-lightbox="<%= album.title %>"
 title="<%= img.description %>">
 <img src="<%=
 album.imageRootPath + 'tn_' + img.filename %>"
 alt="<%= img.description %>"
 class="img-thumbnail">

Creating Client Applications

82

 <% }); %>
 </div>
</script>

4. Add references to the necessary JavaScript libraries:

<script src="js/vendor/jquery.min.js"></script>
<script src="js/vendor/lightbox-2.6.min.js"></script>
<script src="js/vendor/underscore-min.js"></script>
<script src="js/lightbox_demo.js"></script>

In the preceding HTML, we reference the Lightbox style sheet and then define DIV to contain
our gallery. We then define a template that will iterate through a collection of images. We then
reference the necessary JavaScript libraries, including jQuery, Lightbox, and UnderscoreJS to
process our template.

In the following CoffeeScript code, we initialize the template, load our images via jQuery's
getJSON() method, and finally append our gallery to the gallery DIV:

$ ->
 # Grab gallery template
 galleryTemplate = _.template $('#album-template').html()

 # Load images
 ($.getJSON 'data/images.json').done (data) ->
 # Render gallery template and append the HTML
 galleryHtml = galleryTemplate {album: data}
 $('#gallery').append galleryHtml

How it works...
To use the Lightbox library, you simply add a link to the lightbox.css and lightbox-
2.6.min.js files.

Once these files are included, you simple add the appropriate attributes to our HTML file. In
our case, we use an Underscore template that defines a gallery with HTML that will display
an album title and then iterate over a collection of images and create the basic Lightbox
image structure:

<a href="path-to-fullsize-image"
 data-lightbox="gallery-name"
 title="image-description">
 <img src="path-to-thumbnail-image"
 alt="image-description" class="img-thumbnail" />

Chapter 3

83

We then load the album data from data/images.json using $.getJSON(). We then
execute the template and append the resultant HTML to the #gallery DOM element.

Note our use of the img-thumbnail class on our image tag. This is a Bootstrap class that
will add a border and some padding around the image, which is perfect for our needs here.

We can see our gallery displayed in the following screenshot:

Creating Client Applications

84

When we click on a thumbnail, Lightbox will expand it. This can be seen in the following
screenshot:

Working with Backbone
Backbone was created by CoffeeScript creator Jeremy Ashkenas in 2010. The project itself
was extracted from Jeremy's work for DocumentCloud as a client-side application framework.
It was originally a lightweight client-side Model-View-Control (MVC) framework. It has evolved
from it's original 0.1.0 release to remain lightweight, but is no longer an MVC framework
strictly speaking. It is instead an MV-Star framework having replaced the notion of a controller
with a router instead.

For more information on Backbone, you can visit the project home
page at http://backbonejs.org/.

Chapter 3

85

In this section, we will demonstrate how CoffeeScript can be used to create the various
building blocks of an Angular application including the following:

 f Creating models

 f Creating collections

 f Creating views

 f Handling UI events

 f Creating routers

Creating models
In Backbone, the models represent the heart of our application. Models contain our
application's interactive data as well as much of the logic surrounding it, such as static
properties and methods to provide computed properties, validation, and security access.

Getting ready
Our models are created completely in CoffeeScript code. To begin, create an empty
CoffeeScript file or open an existing CoffeeScript file.

How to do it...
We can create Backbone models in two ways:

 f Extending the Backbone model:
Employee = Backbone.Model.extend
 # define your class structure

 f Extending using the CoffeeScript syntax sugar:

class Employee extends Backbone.Model
 # define your class structure

We will follow the second approach to defining Backbone models as this is a more idiomatic
way to write our CoffeeScript objects.

In both approaches, we define our structure as an object literal.

Creating Client Applications

86

For example, we can define our Employee model as follows:

class Employee extends Backbone.Model
 defaults:
 id: 0
 firstName: ''
 lastName: ''
 salesYtd: 0.0000

 fullName: ->
 "#{@get 'firstName'} #{@get 'lastName'}"

 validate: ->
 return 'First name required' if (@get 'firstName').length is 0
 return 'Last name required' if (@get 'lastName').length is 0

window.app =
 models:
 Employee: Employee

How it works...
Here we create a Backbone model to represent our sample Employee object. By extending
the Backbone.Model object, we gain a number of methods that we can use to manage our
object and state.

We then define a class with some default attributes. Defaults are applied to new objects
when they are created. For example, emp = new Employee() will create a new employee
instance that has id, firstName, lastName, and salesYtd with their default values.

We can override these defaults or add any number of properties to our object's initialization by
providing an object literal to our object's construction. For example, emp = new Employee
{ id: 99, salary: 50000 } will create an employee instance with an ID of 99, empty
firstName and lastName values, salesYTd of 0, and a salary of 50,000.

Next, we created a method that returns the employee's full name. In this method, we use
Backbone's get() method to get the model's firstName and lastName property values.
Conversely, if we wanted to set a model's values, we would use set(). For example, setting
the employee's salesYtd can be accomplished as emp.set 'salesYtd', 40000.

Lastly, we add a validate method. Backbone will use this method to determine whether a model
contains valid data or not. If the model's values are invalid, we simply return a non-undefined
value. In our example, the firstName and lastName values are required. If either are empty,
the model state is invalid.

Chapter 3

87

Creating collections
A Backbone collection represents a collection of model instances. This section looks at
defining Backbone collections and some of the benefits of using one.

Getting ready
Our collections are created completely in CoffeeScript code. To begin, create an empty
CoffeeScript file or open an existing CoffeeScript file.

How to do it...
Collections represent collections of model instances. Like models, these can be defined using
the class approach:

class EmployeeList extends Backbone.Collection
 model: Employee

When defining a collection, the only requirement is to specify the type of models the collection
will contain.

Once a collection has been defined, it can be easily instantiated using the new operator.
For example, to instantiate a collection of Employee objects, we can do the following:

empList = new EmployeeList [
 { "id": 1, "firstName": "Tracy" }
 { "id": 2, "firstName": "Chris", }
 { "id": 3, "firstName": "Jason", salesYtd: 2000 }
 { "id": 4, "firstName": "Jennifer" }
]

How it works...
Like Backbone models, when we extend Backbone.collection, we gain a number of
methods and properties that allow us to manage and extract information from our collection
of objects.

Some of the common methods and properties include:

 f add(), push(): Adds an item or items to the collection

 f set(): Adds or updates the collection with the item or items passed to the method

 f remove(), pop(): Removes an item from the collection

 f pluck(): Returns an array of values from the property being plucked

 f length: Provides the count of items in the collection

 f toJSON(): Returns the collection as a JSON array

Creating Client Applications

88

Using EmployeeList we defined previously, we can get the number of items in the collection
using the length property:

empList.length # 4

We can add and remove items from our collection using the add() and remove() methods,
respectively:

empList.add { id: 5, firstName: "Maxx" }
empList.length # 5

empList.remove { id: 4, firstName: "Jennifer" }
empList.length # 4

We can use the at() method to retrieve a model at a specified location:

firstEmp = empList.at 0
firstEmp.get 'firstName' # "Tracy"

We can use the where() method to find items by matching attributes:

findResults = empList.where { salesYtd: 0 }
findResults.length # 3

We can use the handy pluck() method to extract values from our collection. For example, we
can use pluck() to retrieve the firstName values from each of the items in our collection
as follows:

firstNames = empList.pluck 'firstName'
(firstNames.join ', ') # "Tracy, Chris, Jason, Maxx"

There's more...
There are dozens more methods and properties available. You can view them all on the
Backbone website at http://backbonejs.org/#Collection.

Once a collection is instantiated, we can perform actions against it.

Creating views
In Backbone, views represent logical pieces of code that can render HTML that is based on a
model. It is common to use a template engine to render the HTML for our views. We will use
the engine that is built into Underscore.

Chapter 3

89

Getting ready
A view is typically defined in code and associated with an HTML template. For our example,
we will have a collection of employees and display them in an HTML table.

Create an HTML file with the following HTML that defines our table container and table
row template:

<table id="employee-table"
 class="table table-compact table-bordered table-striped">
 <thead>
 <tr>
 <th>Id</th>
 <th>First name</th>
 <th>Last name</th>
 <th>Sales YTD</th>
 </tr>
 </thead>
 <tbody></tbody>
</table>

<script id="employee-template" type="text/x-template">
 <td><%= id %></td>
 <td><%= firstName %></td>
 <td><%= lastName %></td>
 <td><%= salesYtd %></td>
</script>

Next, create a CoffeeScript script file to contain our Backbone view.

How to do it...
As the other Backbone components, views are defined by extending a base Backbone object.
For a view, this is the Backbone.View object:

1. In our web page, define a table to serve as the container for our rendered views:
<table id="employee-table"
 class="table table-compact table-bordered table-striped" >
 <thead>
 <tr>
 <th>Id</th>
 <th>First name</th>
 <th>Last name</th>
 <th>Sales YTD</th>
 </tr>
 </thead>
 <tbody></tbody>
</table>

Creating Client Applications

90

2. Define a template to be used by our view:
<script id="employee-template" type="text/x-template">
 <td><%= id %></td>
 <td><%= firstName %></td>
 <td><%= lastName %></td>
 <td><%= salesYtd %></td>
</script>

3. Open a SCRIPT tag for our CoffeeScript code:
<script type="text/coffeescript">

4. Create a view class that extends Backbone.View:
class EmployeeView extends Backbone.View

5. Use a tr tag as the HTML container for our view:
 tagName: 'tr'

6. Define the template our view will use:
 template: _.template $('#employee-template').html()

7. Define a render() function responsible for rendering our view:
 render: ->
 @$el.html ($ (@template @model))
 return this

8. Add an array of employee objects as sample data:
employees = [
 { id: 1, firstName: "Tracy", lastName: "Ouellette", \
 salesYtd: 22246 }
 { id: 2, firstName: "Chris", lastName: "Daniel", \
 salesYtd: 3876 }
 { id: 3, firstName: "Jason", lastName: "Alexander", \
 salesYtd: 4095 }
 { id: 4, firstName: "Jennifer", lastName: "Hannah", \
 salesYtd: 8070 }
 { id: 5, firstName: "Maxx", lastName: "Slayde", \
 salesYtd: 2032 }
]

9. Iterate through the employee items and append each rendered view to the
employee table:
for emp in employees
 employeeView = new EmployeeView model: emp
 $('#employee-table tbody').append \
 employeeView.render().el

Chapter 3

91

10. Close our CoffeeScript SCRIPT tag and add references for our library JavaScript files:
</script>
<script src="js/vendor/jquery.min.js"></script>
<script src="js/vendor/underscore-min.js"></script>
<script src="js/vendor/backbone-min.js"></script>
<script src="js/vendor/coffee-script.min.js"></script>

How it works...
In Backbone, a view is responsible for generating HTML by combining a model or collection
with a template and appending this to the DOM. In this example, we will iterate through a
collection of employees and add each item as a table row to the employees table.

When a Backbone view is rendered, it will be wrapped by a DIV tag by default. For our
example, we want each table row to be wrapped by a TR tag. We specify this in our view by
using the tagName property:

 tagName: 'tr'

We then define a template property to be used when rendering an employee:

 template: _.template $('#employee-template').html()

We finally define a render() method that will be responsible for adding HTML to the root
element (the tr tag in this case):

 render: ->
 @$el.html ($ (@template @model))
 return this

All Backbone views have a root element named el. No changes are made to the DOM
on our page. Instead, all changes are applied to this root element. Backbone provides a
jQuery-wrapped version of this root element named $el. This is simply a shorthand of
performing $(el). This allows us to call jQuery's html(), append(), and other DOM
manipulation methods when preparing our HTML.

Once render() is called, we can then use the view's el property to append, insert,
or otherwise modify our page's DOM.

Note that it is best practice to return this at the end of the render()
method as this allows the render processes to be chained.

Creating Client Applications

92

With our HTML table and template defined inside the web page, we iterate through each
employee object and create an instance of EmployeeView passing the employee as
the view's model. This is the model that will be used by our view's render() method.

We finish by calling the view instance's render() method and appending the view's el
DOM to our table's TBODY element.

When loaded in our browser, the employee views are appended to our table as shown
in the following screenshot:

Handling UI events
Even the most basic of applications built upon Backbone will have some form of user
interaction. In this section, we will demonstrate how to listen for client-side UI events and
take action on them.

Getting ready
Create an empty CoffeeScript file and add the following view code:

class EditView extends Backbone.View
 template: _.template $('#employee-edit-template').html()

 render: ->
 @$el.html(@template @model)
 return this

This view is nearly identical to EmployeeView we defined in our previous section on views.

Chapter 3

93

How to do it...
Backbone allows us to define an events property in our view. The value of this property is a
collection of an event signature and handling method named pairs.

Let's add an event that will listen for a click event on an update button:

1. Begin by defining a view as we saw previously:
class EditView extends Backbone.View
 template: _.template $('#employee-edit-template').html()

2. Add an events property to listen for a click event on the update button:
 events:
 'click #update-button': 'updateEmployee'

3. Add the updateEmployee() function:

 updateEmployee: ->
 alert 'Update button has been clicked'

How it works...
Backbone allows us to define our event handlers in our Backbone views using the view's
events property. Each event is defined using an event selector: call back format.

Event selectors are based on jQuery delegates. A selector includes an event type and a
DOM selector that indicates which element(s) should trigger the event.

Other event selector examples include:

events:
 'click #emp-edit button' : 'updateEmployee'
 'mouseover #emp-edit label' : 'highlight'
 'mouseout #emp-edit label' : 'unhighlight'

Event callbacks receive a jQuery event object. If your callback requires additional information
about the item that triggered the event, you can use jQuery's data() method to retrieve
values from event.target:

events:
 'click #employee-edit button': 'updateEmployee'

updateEmployee: (e) ->
 id = $(e.target).data 'id'
 alert "Update button has been clicked for ID: #{id}"

Creating Client Applications

94

Creating routers
Backbone provides a routing mechanism that allows us to watch for routing changes and then
take the necessary actions. For even moderately complex applications, it is common to use
routing to switch between various application states.

For example, if the user is looking at a list of employees, they can click on an Add button,
which will navigate the user to the #/add-employee state, at which time we can render a
form to allow the user to add the information for a new employee.

In this section, we will see how Backbone allows us to register routes and handle the
navigation event they raise.

How to do it...
We create a router by extending the Backbone.Router object. We then define a routes
property that contains a route table:

1. Define a class that extends the Backbone Router object:
class AppRouter extends Backbone.Router

2. Add a routes property to define our routes:
 routes:
 '' : 'displayList'
 'employees/:id' : 'displayEmployee'
 'employees/:id/departments/:id': 'displayEmployeeDepartment'
 'payroll/giveRaise/*ids' : 'giveEmployeesRaise'

3. Add our route handlers as functions:
 displayList: ->
 $('#output-list').append 'Displaying employee list.'

 displayEmployee: (id) ->
 $('#output-list').append \
 "Displaying employee with id of #{id}"

 displayEmployeeDepartment: (empId, deptId) ->
 $('#output-list').append \
 "Displaying employee #{empId}, department #{deptId}</
li>"

 giveEmployeesRaise: (ids) ->
 $('#output-list').append \
 "Employees #{ids} thank you"

Chapter 3

95

4. Finish by adding an instance of the router to the application object and start
Backbone's history service:

router = new AppRouter()
Backbone.history.start()

How it works...
Our router defines a route property representing the routes our application will recognize.
Routes are added as path:value pairs where the path represents the URL to be matched
and the value represents the method to be called.

Paths can include URL parameters using the /:param format. Backbone will automatically
parse these parameters and pass them to the method to be called. For paths that contain
more than one parameter such as employees/:id/departments/:id, the parameters
will be passed in the order they are provided in the path.

Paths can also include splats. A splat represents an unknown number of parameters and
is essentially everything that occurs after the splat in the path. For example, the path
payroll/giveRaise/*ids will call the method passing everything after giveRaise/
as a single argument. This allows us to define very flexible routes, but the parsing of splats
is our responsibility.

Once the routes are defined, we create the methods to be called when the browser navigation
matches the various defined routes.

In the example, our routes simply append a LI element to our #output-list UL element
for the sake of demonstration. In a real application, our routes would instantiate the various
views used in our system and append them to the DOM.

To kick start our application routing, we create an instance of our AppRouter, saving it as
app.router if we need access to it later in our application and then we start Backbone's
history service. The history is responsible for listening for URL changes and dispatching them
accordingly.

There's more...
Once instantiated, a Backbone router provides a navigate() method that allows us to
navigate to a URL from within our application code. For example, app.router.navigate
'#/employees/45' will update our application URL and trigger the route handling.

You can also register event listeners for route changes using the router's on() method.
We simply pass a string that represents the name of the routing event and an event
handler function.

Creating Client Applications

96

The name of the routing event follows a simple pattern of route:methodName. For example,
we can create an event listener for our 'employees/:id' : 'displayEmployee' route
in the following manner:

router.on 'route:displayEmployee', (id) ->
 alert 'Displaying employee ' + id

Working with AngularJS
AngularJS is a fully featured client-side MVC framework from Google. Its popularity has
exploded in recent months.

For more information on AngularJS, you can visit the project home page
at http://angularjs.org/.

In this section, we will demonstrate how CoffeeScript can be used to create the various
building blocks of an Angular application including the following:

 f Creating an Angular application module

 f Creating Angular controllers

 f Creating Angular providers

 f Creating Angular directives

 f Creating Angular routers

 f Handling inter-controller events

Creating an Angular application module
In Angular, the application module contains all of our applications controllers, services,
directives, and routing. This allows us to limit the scope of our application to a specific
application instance and consequently allows us to have multiple applications within the
same page.

Getting ready
Angular is an extensive framework and contains almost everything you would ever need to
create your applications. On top of that, there are a number of official plugins developed by
the Angular team that can be brought in as needed.

Chapter 3

97

For our example, we will use a basic HTML5 template with the following code:

<!doctype html>
<html>
<head>
 <title>AngularJS Demo</title>
 <link rel="stylesheet" href="css/bootstrap.min.css">
 <link rel="stylesheet" href="css/lightbox.css">
</head>
<body>
 <div class="container">
 <h1>AngularJS demo...</h1>
 <p>
 This page demonstrates using AngularJS.
 </p>
 </div>
</body>
<script src="js/vendor/angular.min.js"></script>
<script type="text/coffeescript" src="coffee/app.coffee"></script>
<script src="js/vendor/coffee-script.min.js"></script>
</html>

How to do it...
To create an Angular application, we execute the angular.module() method providing a
name and list of the external dependencies needed by Angular:

1. Create a file named coffee/app.coffee with the following code:
window.app = angular.module('demoApp', [])

2. Add a SCRIPT block to bootstrap Angular:

<script type="text/coffeescript">
 angular.bootstrap document, ['demoApp']
</script>

How it works...
As you can see, the process of creating an Angular application is quite easy.

After loading, Angular will scan the DOM for an element with an ng-app attribute. It will
then begin the application Bootstrap process.

Creating Client Applications

98

Note that it is possible to have more than one Angular application on the
same page. For example, an application such as Gmail could have an
Angular application to handle the inbox, and another Angular application
to handle Google Hangouts in the sidebar. In this case, we could have two
DIV tags, each with their own ng-app attribute.

We use the Angular.module() function to define a new Angular application called
demoApp. The empty array tells Angular that we have no dependencies (yet).

Angular provides an impressive dependency injection mechanism that
is also used quite extensively. We will see this in the next section when
we discuss controllers. Remember that if you do not have dependencies,
you still need to pass along an empty array, or else Angular's dependency
injection mechanism will fail in odd ways.

We then add our application module to the global window namespace so it will be available to
our other modules as demoApp.

We call the angular.bootstrap() method, the element to which the application should be
scoped (the entire document in this case), and the array of our dependencies (demoApp).

There's more...
The application module can be used for much more than our simple example. For example, it is
common to use the application module to perform any initialization or application configuration.
We will see an example of these in our upcoming section on creating Angular routes.

Even though the application module's source file can contain controllers, services, and all
manner of Angular components, it is recommended to keep our applications modular and
define the controllers, services, and so on in their own files.

Creating Angular controllers
Angular controllers represent a logical application component responsible for exposing
models and functions to your views and for monitoring your models for changes so that
they can take appropriate actions.

Getting ready
In this recipe, we have an app.coffee file that defines the application object with the
following code:

window.app = angular.module('demoApp', [])

Chapter 3

99

How to do it...
To create a controller, we create a CoffeeScript class that provides a constructor that
includes the controller's dependencies. Angular will resolves those dependencies for you and
inject them into your controller's constructor. One such dependency you will use with most
controllers is the $scope provider:

1. Create a file named controller.coffee and add a class to represent
our controller:
class window.MyController

2. Add a constructor function that receives a scope object:
 constructor: ($scope) ->

3. Set a title property and event handler for the scope:
 $scope.title = 'Controllers are Fun'
 $scope.onClick = (e) ->
 alert 'Thanks!'

4. Add the controller to the application object:
app.controller 'myController', MyController

5. Add the following HTML to a basic web page:
<div ng-controller="myController">
 <h2>{{title}}</h2>

 Click me!

</div>

6. Add references to Angular, CoffeeScript, and the app.coffee and controller.
coffee files:
<script src="js/vendor/angular.min.js"></script>
<script src="js/vendor/coffee-script.min.js"></script>
<script type="text/coffeescript" src="coffee/app.coffee"></script>
<script type="text/coffeescript"
 src="coffee/controller.coffee"></script>

7. Finish by bootstrapping Angular:

<script type="text/coffeescript">
 angular.bootstrap document, ['demoApp']
</script>

Creating Client Applications

100

How it works...
In this example, we create a controller called MyController. Our controller's constructor
receives a copy of $scope to which we add a title value and an event handler named onClick.

$scope is a powerful object as it is the glue between the controller and any views that
reference it.

Angular provides several methods of hooking into our HTML. We can do this by element,
attribute, class, or comment. In our example, we use the attribute method to wire our Angular
application to our HTML.

For example, we use the ng-controller directive to assign our controller named
myController to the DIV. Inside of this DIV, we use Angular's built-in data-binding template
syntax (double curly braces) to display the title value of $scope:

<h2>{{title}}</h2>

We use another directive named ng-click to automatically bind our anchor's click event to
the onClick() event handler inside $scope.

We can see an example of our rendered template in the following screenshot:

There's more...
Angular provides a number of directives to make our lives easier. For example, the ng-repeat
directive will iterate over a collection of items and render each using the provided template.

Chapter 3

101

Let's create an example that uses ng-repeat to display our familiar employee data. For this
slightly more advanced example, we will create an Employee model:

window.demo = window.demo || {}

class Employee
 constructor: (emp) ->
 @id = emp.id
 @firstName = emp.firstName
 @lastName = emp.lastName
 @salesYtd = emp.salesYtd

 fullName: ->
 "#{@firstName} #{@lastName}"

window.demo.models =
 Employee: Employee

This is a simple object that has the id, firstName, lastName, and salesYtd properties
and defines a method that returns an employee's full name.

Our controller can then add a collection of Employee instances to our controller's
$scope object:

window.demo = window.demo || {}

Employee = demo.models.Employee

class EmployeeCtrl
 constructor: ($scope) ->
 $scope.title = 'Employee List'
 $scope.employees = [
 new Employee { 'id': 1, 'firstName': 'Tracy', \
 'lastName': 'Ouellette', 'salesYtd': 22246 }
 new Employee { 'id': 2, 'firstName': 'Chris', \
 'lastName': 'Daniel', 'salesYtd': 3876 }
 new Employee { 'id': 3, 'firstName': 'Jason', \
 'lastName': 'Alexander', 'salesYtd': 4095 }
 new Employee { 'id': 4, 'firstName': 'Jennifer', \
 'lastName': 'Hannah', 'salesYtd': 8070 }
 new Employee { 'id': 5, 'firstName': 'Maxx', \
 'lastName': 'Slayde', 'salesYtd': 2032 }
]

window.demo.app.controller 'employeeCtrl', EmployeeCtrl

Creating Client Applications

102

Our controller adds a title value and employees collection to our $scope object:

We can then iterate over our employee collection using ng-repeat:

<body>
 <div class="container">
 <h1>AngularJS demo...</h1>
 <p>
 This page demonstrates using AngularJS.
 </p>
 <hr>
 <div ng-controller="employeeCtrl" ng-cloak>
 <h2>{{title}}</h2>
 <div class="row">
 <div class="col-md-6">
 <table class="table table-condensed
 table-bordered table-hover">
 <thead>
 <tr>
 <th>Employee</th>
 <th class="numeric">Sales YTD</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="emp in employees">
 <td>{{emp.fullName()}}</td>
 <td class="numeric">
 {{emp.salesYtd | currency}}</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
</body>
<script src="js/vendor/angular.min.js"></script>
<script src="js/vendor/coffee-script.min.js"></script>
<script type="text/coffeescript" src="coffee/app.coffee"></script>
<script type="text/coffeescript" src="coffee/models.coffee"></script>
<script type="text/coffeescript" src="coffee/controllers.coffee"></
script>
<script type="text/coffeescript">
angular.bootstrap document, ['demoApp']
</script>

Our HTML sets up a Bootstrap table and in TBODY, we add the ng-repeat attribute with the
expression of emp in employees.

Chapter 3

103

Then, inside our TR elements, we define the template to be rendered for each employee.
In this case, we display the employee's full name and their YTD sales:

<td>{{emp.fullName()}}</td>
<td class="numeric">{{emp.salesYtd | currency}}</td>

You might have noticed that we're doing something strange with the way we display the
employee's sales figures. More specifically, you might have noticed the | (pipe) and currency.

This is called a filter in Angular. Filters are used to convert one value to another. For example,
the currency filter will turn a numeric value of 125 into the string $125.00, which is more
suitable for display.

Angular comes with a number of scalar value filters including:

Filter Purpose Example
Number Formats a number as text 10000 | number:2 =>

"10,000.00"

Date Formats a date as text 1288323623006 | date:'MM/dd/
yyyy' => 10/29/2010

Lowercase Converts a string to lowercase 'ABCD' | lowercase => 'abcd'

Uppercase Converts a string to uppercase 'abcd' | uppercase => 'ABCD'

We can see Angular's currency filter in the following screenshot:

Creating Client Applications

104

Lastly, you may have noticed a new attribute on our ng-controller="employeeCtrl"
div called ng-cloak.

Occasionally, while Angular loads, we may see flashes of the HTML template before it has
been populated by Angular. The ng-cloak directive will hide the HTML until the template has
been fully populated and it is ready to be displayed.

Creating Angular providers
We can add additional functionality to our Angular application through the use of providers.

Angular providers allow us to create injectable components that return objects and values
to our application. Angular has four provider methods: constant(), value(), service(),
and factory().

Angular's constant() and value() methods are used to register values or objects that can
be used by Angular's services. Note that values declared with constant() are also available
to other providers.

Angular's service() and factory() methods are used to register constructor functions
or factory functions, respectively.

How to do it…
We can register a constant provider using the constant() function by following these steps:

1. Create a module:
app = angular.module 'demoApp', []

2. Create a constant to store an array of departments:
app.constant 'DEPARTMENTS', [
 'Sales', 'Customer Service', 'I.T.'
 'Finance', 'Marketing', 'Human Resources'
 'Research and Development'
]

3. Create a controller and inject our constant as a dependency:
class DepartmentCtrl
 constructor: ($scope, DEPARTMENTS) ->
 $scope.title = 'Constant() Demo'
 $scope.departments = DEPARTMENTS.sort()

4. Add the controller to the application object:

app.controller 'departmentCtrl', DepartmentCtrl

Chapter 3

105

We can register a value provider in the same manner using the value() function by following
these steps:

1. Create a module:
app = angular.module 'demoApp', []

2. Create a value to contain an array:
app.value 'famousCats', [
 'Garfield', 'Felix', 'Butch'
 'Duchess', 'Meowth', 'Scratchy'
]

3. Create a controller and inject our constant as a dependency:
class DepartmentCtrl
 constructor: ($scope, DEPARTMENTS, superHeroes) ->
 $scope.title = 'Value() Demo'
 $scope.superHeroes = superHeroes.sort()

4. Add the controller to the application object:

app.controller 'departmentCtrl', DepartmentCtrl

We can create a service provider by using the service() function by following these steps:

1. Create a module:
app = angular.module 'demoApp', []

2. Create an object to be returned by our service:
class MathUtils
 areaOfRectangle: (height, width) ->
 height * width
 areaOfSquare: (width) ->
 @areaOfRectangle width, width
 areaOfTriangle: (base, height) ->
 (@areaOfRectangle base, height) / 2.0
 areaOfCircle: (radius) ->
 Math.PI * radius * radius

3. Register our object as a service provider:

app.service 'mathUtils', MathUtils

Creating Client Applications

106

We can create a factory provider by using the factory() function; perform the
following steps:

1. Create a module:
app = angular.module 'demoApp', []

2. Create an object to be returned by the factory provider:
class StringUtils
 toUpper: (value) ->
 value.toUpperCase()
 toLower: (value) ->
 value.toLowerCase()
 length: (value) ->
 value.length

3. Register our object as a service provider:

app.factory 'stringUtils', -> new StringUtils

How it works…
In the first example, we declared a constant named DEPARTMENTS. We then injected our
DEPARTMENTS constant into our DepartmentCtrl controller. Constants are great to deal
with configuration settings.

"What happens if you try to replace a constant?" you might ask. Well, no error is raised,
but any attempts to reassign a constant value will be ignored. So, in the following scenario,
LETTERS will continue to be A through E:

app.constant 'LETTERS', ["A", "B", "C", "D", "E"]
app.constant 'LETTERS', [1, 2, 3, 4, 5]

LETTERS will continue to be A thru E.

We then defined a system value using the value() provider. Values are similar to constants
in that they can be easily injected into our controllers. Unlike constants, however, values
can be reassigned during the application's life cycle. Lastly, we defined a service and a
factory provider.

There is a lot of confusion with regards to Angular services and factories. This confusion
stems from the fact that both service() and factory() can be used to accomplish the
same goals.

Services and factories are a means to encapsulate a related set of functionality in the same
module that can then be used by our controllers or other services and factories.

Chapter 3

107

Both service() and factory() return a singleton object. That's an object that gets
instantiated only and exactly once. All requests to the service or factory will receive the
same object.

We can use our factory and service in our controllers and use Angular's dependency
injection. For example, we can use our mathUtils service and stringUtils factory in
the following way:

class ServiceFactoryCtrl
 constructor: ($scope, mathUtils, stringUtils) ->
 $scope.title = 'Service and Factory Demo'

 $scope.areaOfRectangle = (mathUtils.areaOfRectangle 4, 5)
 $scope.areaOfTriangle = (mathUtils.areaOfTriangle 4, 5)
 $scope.areaOfCircle = (mathUtils.areaOfCircle 5)

 $scope.toUpper = (stringUtils.toUpper 'abcde')
 $scope.toLower = (stringUtils.toLower 'ABCDE')
 $scope.length = (stringUtils.length 'ABCDE')

app.controller 'serviceFactoryCtrl', ServiceFactoryCtrl

A good rule of thumb is to use a service if the object does not require any
configuration once the object is initialized, and use a factory if you need to
perform some post initialization work.

In the preceding code, our ServiceFactoryCtrl controller uses both mathUtils
and stringUtils.

There's more...
Angular provides a number of powerful built-in providers for our use. These include the
following:

Service Description
$http A service that wraps the browser's AJAX mechanisms to facilitate

communication with the HTTP server
$location A service that provides access to window.location, including

methods to get or set parts of the URL
$log A simple logging service
$resource A factory that provides access to RESTful data services
$timeout A wrapper for the window.setTimeout function that provides

a promise that allows you to cancel the timeout

Creating Client Applications

108

Creating Angular directives
Angular directives are primarily responsible for manipulating our DOM elements. In other
applications, we may have used jQuery to perform these actions, but Angular directives can
wire event handlers, hide/show elements, include/exclude content, and so on, all based on
the state of our application's scope.

We saw several built-in directives, including ngController to associate a DOM element
with a controller and ngRepeat to iterate over collections. There are dozens of other built-in
directives including the following:

Directive Description
ngHide Hides a DOM element if the expression evaluates to true.
ngShow Displays a DOM element if the expression evaluates to true.
ngClass Evaluated expression sets a DOM element's class attribute.
ngInclude Includes DOM elements when the evaluated expression is true.
ngStyle Evaluated expression sets a DOM element's style attribute.
ngSwitch Include DOM elements when the evaluated expression matches an ng-switch-

when value. If no matching values are found, ng-switch-default will be used.
ngBlur Attaches an onBlur event listener to a DOM element and will call the

expression when an element loses focus.
ngClick Attaches an onClick event listener to a DOM element and will call the

expression when clicked.
ngFocus Attaches an onFocus event listener to a DOM element and will call the

expression when an element receives focus.

There are many others as well. Please refer to the Angular documentation for more information.

In this section, we look at creating our own Angular directives.

How to do it...
To define a directive, we call Angular's directive() method with a name and function that
returns a configuration object.

1. Create an application:
app = angular.module 'demoApp', []

2. Use the directive() function to register our new directive:

app.directive 'greeting', ->
 restrict: 'EA'
 template: '<div>Welcome from {{from}}</div>'
 scope:
 from: '@grFrom'
 replace: true

Chapter 3

109

How it works...
In this simple example, we declare a new directive called greeting. Our configuration object
has three properties, including restrict, template, and replace.

Directives can exist in four forms: element (E), attribute (A), class (C), and comment (M).

Form Usage example
Element (E) <greeting gr-from="Hello"></greeting>

Attribute (A) <div greeting gr-from="Hello"></greeting>

Class (C) <div class="greeting"></div>

Comment (M) <!-- directive: greeting -->

In the example, we restrict our greeting directive to only elements and attributes. This is
actually recommended by the Angular team as it offers the most flexibility.

Note that there is one complication to using directives in the element (E)
form. Older versions of Internet Explorer do not support custom elements
by default. In practice, I recommend that you use the attribute (A) form to
define directives.

Our example also defines a template. Angular will use this template to create the necessary
DOM elements. In our example, this is a simple string. Templates can be placed into
external HTML files on their own and then references in the directive configuration using the
templateUrl property instead:

templateUrl: 'templates/employee.html'

Next, we define a scope. Directives, by default, have access to the scope of their parent DOM
element. We can, however, create an isolated scope as we have in our example:

scope:
 from: '@grFrom'

In our example, our scope contains a from property that is assigned its value from the
grfrom attribute value using the following mapping:

from: '@grFrom'

The @ symbol causes Angular to pass the item by value, which makes it available for
data binding.

Creating Client Applications

110

When we want to use our directive, we can simply include the following in our HTML:

 f In element form it is as follows:
<greeting gr-from="element"></greeting>

 f In attribute form it is as follows:

<div greeting gr-from="attribute"></div>

Creating Angular routers
Angular provides a built-in routing mechanism that allows us to wire URLs to application views
and controllers. This is an excellent way to trigger state changes in our applications.

In this section, we will learn how to configure Angular routing.

How to do it...
Let's look at how we can create a router and use route parameters:

1. Create an application:
app = angular.module 'demoApp', ['ngRoute']

2. Create a controller for page A:
app.controller 'pageAController', \
 ($scope, $routeParams) ->
 $scope.id = $routeParams.id

3. Create a controller for page B:
app.controller 'pageBController', \
 ($scope, $routeParams) ->
 $scope.id = $routeParams.id

4. Configure the application's routes using the $routeProvider service:

app.config ($routeProvider) ->
 $routeProvider
 .when '/page-a/:id',
 templateUrl: 'partials/page-a.html'
 controller: 'pageAController'
 .when '/page-b/:id',
 templateUrl: 'partials/page-b.html'
 controller: 'pageBController'

Chapter 3

111

How it works...
Angular provides a config() method that allows us to perform any necessary application
configuration as the application starts. This is the perfect time to configure our routing.

Angular has a $routeProvider service that allows us to register our application routes.

First, we must indicate our application's dependency on ngRoute. This module contains
$routeProvider. Note that the ngRoute module is not in the standard Angular JavaScript
file. You must also add a reference to the angular-route.js file in order to load
$routeProvider.

We then call config() on our application object. We pass a function into config()
that takes $routeProvider as a dependency. Within our function, we use the
$routeProvider's when() method to assign a route configuration object to a specific
path in the form of the following:

$routeProvider.when('/path/to/resource/:params', configuration)

For each route, we defined an object with both templateUrl and controller properties.
The templateUrl property points to the template to be loaded as the application's view.
The controller property specifies the name of the controller the view should use.

Notice that we defined both of our routes with a route parameter named :id. Angular's
$routeProvider service will automatically extract route parameters and make them
available through the $routeParams provider. We register $routeParams as a dependency
in our two sample controllers and assign the value of :id to our $scope object.

We will create two partial templates.

In the first template, named partials/page-a.html, we have the following HTML:

<h2>Welcome to Page A</h2>
<p>Product Id is {{id}}</p>

In the second template, named partials/page-b.html, we have the following HTML:

<h2>Welcome to Page B</h2>
<p>Product Id is {{id}}</p>

In our main HTML page, we have the following HTML:

<h1>AngularJS demo...</h1>
<p>
 This page demonstrates using AngularJS routing.
</p>
Load page A

Load page B
<hr>
<div ng-view></div>
...
<script src="js/vendor/angular-route.min.js"></script>

Creating Client Applications

112

Our HTML has a new directive, ng-view. This directive acts as a placeholder where our views
will be displayed.

When loaded, we can click on the Load page A link, which will navigate to the /page-a
route passing the value of 23 for the ID. The page-a.html file will be displayed in the
ng-view element. Clicking on the Load page B link, on the other hand, will display
page-b.html instead.

We can see an example in the following screenshot:

Handling inter-controller events
Angular allows us to build very sophisticated applications. It is not uncommon to have more
than one controller on a page at any given time. There are times when some action in one
controller will need to affect another controller.

In this section, we will look at how to accomplish inter-controller communication.

How to do it...
The recommended way to pass events through our Angular applications is to use the
$emit() and $on() methods of the $rootScope provider.

Chapter 3

113

The root scope represents the initial scope of the application and acts as a wrapper scope for
the entire application. The root scope is made available through the $rootScope provider.

The $rootScope provider has two event methods that can act as an event bus. The
$emit() method allows you to trigger an event from any controller, or provider:

something interesting happened
$rootProvider.$emit 'watch-me', { interesting: true }

something uninteresting happened
$rootProvider.$emit 'watch-me', { interesting: false }

How it works…
The $emit() method takes a name and an optional argument representing the event details.

In the preceding example, we emit two notifications. Both will trigger the watch-me
event. One passes event arguments with interesting = true, while the other with
interesting = false.

Then, we can subscribe to these events in our application using the $rootScope $on()
method:

subscribe to watch-me event
$rootProvider.$on 'watch-me', (event, args) ->
 console.log "Was it interesting? #{args.interesting}"

There's more...
Using the $emit() and $on() methods of $rootScope is convenient and they also excel
in performance.

Let's now look at how to use $emit() and $on() inside a controller:

class FirstCtrl
 constructor: ($scope, $rootScope) ->
 $scope.message = 'This is the message of FirstCtrl'
 $scope.onClick = ->
 $rootScope.$emit 'firstCtrlClick',
 message: '[nudged by FirstCtrl]'

 unbind = $rootScope.$on 'secondCtrlClick', (event, args) ->
 $scope.message += '
' + args.message
 $scope.$on '$destroy', unbind

Creating Client Applications

114

class SecondCtrl
 constructor: ($scope, $rootScope) ->
 $scope.message = 'This is the message of SecondCtrl'
 $scope.onClick = ->
 $rootScope.$emit 'secondCtrlClick',
 message: '[nudged by SecondCtrl]'

 unbind = $rootScope.$on 'firstCtrlClick', (event, args) ->
 $scope.message += '
' + args.message
 $scope.$on '$destroy', unbind

Here, we have two controllers, FirstCtrl and SecondCtrl. Each one has $scope and the
application's $rootScope passed through Angular's dependency injection.

Inside each controller, we define a message property and an onClick event handler on the
controller's $scope object. In the onClick event handler, we use the $emit() method of
$rootScope to emit a message with a name and an event argument:

FirstCtrl
$rootScope.$emit 'firstCtrlClick',
 message: '[nudged by FirstCtrl]'
SecondCtrl
$rootScope.$emit 'secondCtrlClick',
 message: '[nudged by SecondCtrl]'

We then register a listener on $rootScope for a message posted by the other controller
using the $on() method of $rootScope. We will need to dispose of this event listener when
the controller is destroyed. So we keep a handle to our registered $on() listener that can be
used when the controller is disposed. We capture this event using $scope.$on to listen for
the controller's destroy event.

Note that we do not need to dispose of our $on() event listeners inside
providers such as services or factories. This is because providers create
only one instance of the object unlike controllers.
It is also worth noting that $emit() and $on() are not particular to
$rootScope. They are available on all scope objects including our
controller's $scope object.

Chapter 3

115

Communicating in real time with Socket.io
Socket.io is a node library that facilitates real-time two-way communication between
the HTTP server and the web client. It has support for platforms, browsers, and devices.

In this section, we will see how to configure Socket.io with the express server and process
messages between the client and server.

You can get more information on Socket.io from the project's home page at
http://socket.io/.

Getting ready
We will be using an express server as our HTTP server configured to use the Jade view engine.

We begin by defining our application's node dependencies in a file named package.json:

{
 "name": "socket-demo",
 "description": "Socket.io Demo",
 "dependencies": {
 "express": "~3.4",
 "jade": "~0",
 "socket.io": "~0.9"
 }
}

Besides our express and Jade dependencies, we also take a dependency on the Socket.io
node library.

Install the necessary packages by running the following command:

npm install

Now, let's create our app.coffee file to create our HTTP server:

express = require 'express'
app = express()
port = 8080

configure Jade view engine
app.set 'views', __dirname + '/tpl'
app.set 'view engine', 'jade'
app.engine 'jade', (require 'jade').__express

Creating Client Applications

116

expose static assets from /public folder
app.use (express.static __dirname + '/public')

routes
app.get '/', (req, res) ->
 res.render 'index'

listen for requests
console.log "Listening on port #{port}"
app.listen port

This is a fairly straightforward express server. We require express and create an instance for our
application. Next, we configure the Jade view engine. It is worth noting that we assign our view
template folder to be /tpl. This is where we will store our Jade templates. Then, we configure
express to serve static assets from inside the /public folder. We will use this for our client
scripts, CSS, images, and so on. Lastly, we start our application listening on the specified port.

We define one route. It renders index.jade:

!!!
html
 head
 title= "Socket.io Example"
 link(rel="stylesheet", href="css/bootstrap.min.css")
 body
 .container
 h1= "Socket.io Example"
 p
 | This page demonstrates the use of Socket.io
 hr

Launch the HTTP server by running the following command:

app.coffee

Navigate to http://localhost:8080/ and you should see the index page shown in the
following screenshot:

Chapter 3

117

How to do it...
We will update our express server's app.coffee file in the following ways:

1. Load the Socket.io library:
socket = require 'socket.io'

2. Add a new route to load a page to be used as our client:
app.get '/count', (req, res) ->
 res.render 'counter'

3. Replace the app.listen port line with the following:
server = app.listen port
io = socket.listen server

4. At the end of app.coffee, add the following:
io.sockets.on 'connection', (socket) ->
 value = 0
 setInterval ->
 value += 1
 socket.emit 'update', value: value
 , 1000

 socket.on 'add', (data) ->
 value += data.amount
 socket.emit 'update', value: value

5. Create a new Jade template called counter.jade with the following contents:
!!!
html
 head
 title= "Socket.io Example"
 link(rel="stylesheet", href="css/bootstrap.min.css")
 body
 .container
 h1= "Socket.io Example"
 p
 | This page demonstrates the use of Socket.io
 hr
 .well
 #output= "Waiting..."

Creating Client Applications

118

 .btn-toolbar
 button#add-1000.btn.btn-primary= "Add 1000"
 button#add-500.btn.btn-primary= "Add 500"
 button#disconnect.btn.btn-warning= "Disconnect"

 script(src="js/vendor/jquery.min.js")
 script(src="js/vendor/coffee-script.min.js")
 script(src="/socket.io/socket.io.js")
 script(src="/coffee/count-client.coffee", type="text/
coffeescript")

6. Create a CoffeeScript file named public/coffee/count-client.coffee with
the following contents:
$ ->
 socket = io.connect 'http://localhost:8080'
 socket.on 'update', (data) ->
 $('#output').html "From the server: #{data.value}"

7. Add a click event handler for the add-1000 button:
 $('button#add-1000').click ->
 socket.emit 'add', amount: 1000

8. Add a click event handler for the add-500 button:
 $('button#add-500').click ->
 socket.emit 'add', amount: 500

9. Add a click event handler for the disconnect button:

 $('button#disconnect').click ->
 socket.disconnect()

How it works…
We updated app.coffee to reference the Socket.io library and created a new route to handle
requests for /count. Lastly, we instructed Socket.io to listen to the HTTP server and save this
to a variable named io. We will use this to hook into the sending and receiving process.

We then defined a simple view template that references the jQuery and CoffeeScript
JavaScript libraries. We then added a reference to the Socket.io client library and to our
count-client.coffee file.

Chapter 3

119

You might be wondering where the Socket.io.js file comes from. Socket.io
actually handles this request for us at /socket.io/socket.io.js.
This is very convenient as it ensures that the version of the client library
always matches the version of Socket.io running on the server.

Inside our count-client.coffee file, we call the io.connect() function to establish a
connection to Socket.io running on the sever.

In the app.coffee file, we registered an event handler to watch for connection events using
io.sockets.on 'connection'. When this is triggered, it calls our event handler passing
an instance of socket as an argument.

Inside our connection event handler, we use setInterval() to register a method to run
every 1,000 milliseconds.

When setInterval() triggers, we increment a value variable by 1 and then execute
Socket's emit() function to send a message to all the connected clients. The emit()
function takes a message name and an object representing the message payload.

In our example, we emit an update message. The message's payload is an object with a
value property assigned to our counter's value.

Inside count-client.coffee, we register a listener for update messages using socket.
on 'update'. This event handler listens specifically for update messages. When an update
message is received, our handler is called with the message payload from the server.

In this example, we simply display the counter value that was received from the server as
shown in the following screenshot:

Creating Client Applications

120

In count-client.coffee, we also registered DOM event listeners to handle click events for
our Add 1000, Add 500 and Disconnect buttons.

When we click on Add 1000 or Add 500, we use Socket.io's client emit() function to send
a message back to the server in exactly the same way we sent our update message to the
client. In this case, we emit an add message with an object representing amount to increase
value on the server. Once value has been updated, we then emit an update message with
the updated value, immediately displaying the new value on the client.

In app.coffee, we registered a Socket.io listener for add messages. When received, we
simply increment the value by the amount specified in the message object.

Our last client event handler for click events on our Disconnect button executes the
disconnect() function of the Socket.io client. This closes the socket and we no longer
receive update messages on the client.

4
Using Kendo UI for

Desktop and Mobile
Applications

In this chapter, we will cover the following recipes:

 f Using the Kendo UI Core widgets

 f Using the Kendo UI Core mobile widgets

Introduction
Kendo UI Core is an exciting open source framework from Telerik to implement user interfaces
in pure HTML5, JavaScript, and CSS3.

Kendo UI Core provides many out-of-the-box features including:

 f More than 20 jQuery-based widgets

 f A powerful data source object

 f An MVVM framework

 f A template engine

 f Drag-and-drop

 f Globalization

 f A complete mobile framework

In this chapter, we will demonstrate how to use the Kendo UI framework to create compelling
UIs for both the desktop and mobile applications.

Using Kendo UI for Desktop and Mobile Applications

122

Using the Kendo UI Core widgets
In this recipe, we will look at some of the common widgets that come with Kendo UI Core,
a free library provided by Telerik to the open web.

Getting ready
Begin by downloading a copy of the Kendo UI Core library from the Telerik website at
http://www.telerik.com/download/kendo-ui-core.

Once downloaded, extract the contents of the ZIP file into a directory called kendo.

Our demo will use the Bootstrap and Lightbox libraries but these will be linked from a CDN.

Create a file named index.html with the following contents:

<!DOCTYPE html>
<html>
<head>
 <title>KendoUI Widget Demo</title>
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
twitter-bootstrap/3.0.1/css/bootstrap.min.css">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
lightbox2/2.7.1/css/lightbox.css">
 <!-- Add Kendu CSS here -->
 <style>
 .value {
 color: red;
 }
 </style>
</head>
<body>
 <div class="container">
 <h1>KendoUI widgets...</h1>
 <p>
 This page demonstrates various KendoUI widgets.
 </p>
 <!-- Add controls here -->
 </div>
</body>
<script src="https://cdnjs.cloudflare.com/ajax/libs/lightbox2/2.7.1/
js/lightbox.min.js"></script>
<!-- Add Kendo JavaScript libs here -->
<script type="text/coffeescript" src="coffee/app.coffee"></script>
<script src="http://coffeescript.org/extras/coffee-script.js"></
script>
</html>

Chapter 4

123

Create a file named data/gallery.json with the following contents:

{
 "title": "Berry Picking 2012",
 "imageRootPath": "img/albums/berries-2012/",
 "images": [
 {
 "filename": "WP_001740.jpg",
 "description": "Path to tranquility."
 },
 {
 "filename": "WP_001745.jpg",
 "description": "Vines on rocks."
 },
 {
 "filename": "WP_001749.jpg",
 "description": "Weathered tree stump."
 }
]
}

How to do it...
We will add the Kendo assets to index.html:

1. Add a link to the Kendo common CSS file:
<link rel="stylesheet" href="kendo/styles/kendo.common.min.css">

2. Add a link to a Kendo theme CSS file:
<link rel="stylesheet" href="kendo/styles/kendo.default.min.css">

3. Add the jQuery library:
<script src="kendo/js/jquery.min.js"></script>

4. Add the Kendo Core library:

<script src="kendo/js/kendo.ui.core.min.js"></script>

Using Kendo UI for Desktop and Mobile Applications

124

5. Create a new CoffeeScript file named coffee/app.coffee with the following
contents:
DEPARTMENTS = [
 'Sales', 'Customer Service', 'I.T.'
 'Finance', 'Marketing', 'Human Resources'
 'Research and Development'
]

$ ->
 # our initialization code goes here

6. We will define our Kendo components in our HTML page and then initialize them
in app.coffee:

7. Create a HTML placeholder for a Kendo progress bar control in index.html:
<h2>Progress bar</h2>
<div class="well">
 <div id="progressbar" style="width: 100%"></div>
</div>

8. Add the initialization code to app.coffee for the progress bar by calling the
kendoProgressBar() function on the jQuery #progressbar element:
progressBar = $('#progressbar')
 .kendoProgressBar value: 50
 .data 'kendoProgressBar'

9. Create a Kendo slider control and SPAN to display the selected value in index.html:
<h2>Slider</h2>
<div class="well">
 <input id="slider" style="width: 100%" />
 <div style="margin-top: 2em;">
 Selected value:
 None
 </div>
</div>

10. Add the initialization code to app.coffee for the progress bar by calling the
kendoSlider() function on the jQuery #slider element. Set max and initial
value properties and add a change event handler:
$('#slider').kendoSlider
 max: 100, value: 50
 change: ->
 $('#slider-value').text @value()
 progressBar.value @value()

Chapter 4

125

11. Create a Kendo date picker control and SPAN to display the selected value
in index.html:
<h2>Date picker</h2>
<div class="well">
 <label>
 Date:
 <input type="text" id="datepicker">
 </label>

Selected value:
 None
</div>

12. Add the initialization code to app.coffee for the progress bar by calling the
kendoDatePicker() function on the jQuery #datepicker element. Add a
change event handler:
$('#datepicker').kendoDatePicker
 change: ->
 $('#datepicker-value').text @value()

13. Create a Kendo drop-down list control and SPAN to display the selected value
in index.html:
<h2>Drop down list</h2>
<div class="well">
 <label>Department:
 <input id="dropdownlist" style="width: 300px;" />
 </label>

Selected value:
 None
</div>

14. Add the initialization code to app.coffee for the progress bar by calling the
kendoDropDownList() function on the jQuery #dropdownlist element. Set the
dataSource and optionLabel properties and add a change event handler:
$('#dropdownlist').kendoDropDownList
 dataSource:
 data: DEPARTMENTS
 sort:
 dir: 'asc'
 optionLabel: 'Select...'
 change: ->
 $('#dropdownlist-value').text @value()

Using Kendo UI for Desktop and Mobile Applications

126

15. Create a Kendo autocomplete textbox control and SPAN to display the selected value
in index.html:
<h2>Auto-complete</h2>
<div class="well">
 <label>
 Department:
 <input type="text" id="autocomplete" style="width: 300px;">
 </label>

Selected value:
 None
</div>

16. Add the initialization code to app.coffee for the progress bar by calling the
kendoAutoComplete() function on the jQuery #autocomplete element. Set the
dataSource and filter properties and add a change event handler:
$('#autocomplete').kendoAutoComplete
 dataSource:
 data: DEPARTMENTS
 sort:
 dir: 'asc'
 filter: 'contains'
 change: ->
 $('#autocomplete-value').text @value()

17. Create a Kendo list view control and SPAN to display the selected value in
index.html:
<h2>ListView</h2>
<div class="well">
 <h3>Berry Picking 2012</h3>
 <div id="listview"></div>
 <div style="margin-top: 1em;">
 Selected item:
 None
 </div>
</div>

18. Add a template to define the markup for each item of the list view in index.html:
<script type="text/x-template" id="album-template">
 <a href="img/albums/berries-2012/#= filename #"
 data-lightbox="Berry Picking 2012"
 title="#= description #">
 <img src="img/albums/berries-2012/tn_#= filename #"
 alt="#= description #" class="img-thumbnail">

</script>

Chapter 4

127

19. Define a Kendo data source object to load data from the server by defining a read
transport pointing to a JSON file of gallery data:
imageDataSource = new kendo.data.DataSource
 transport:
 read:
 url: 'data/gallery.json'
 dataType: 'json'
 schema:
 data: (data) ->
 return data.images

20. Add the initialization code to app.coffee for the progress bar by calling the
kendoListView() function on the jQuery #listview element. Set the
dataSource, template, and selectable properties, and add a change
event handler:

$('#listview').kendoListView
 dataSource: imageDataSource
 template: kendo.template $('#album-template').html()
 selectable: true
 change: ->
 selectedIndex = @select().index()
 image = @dataSource.view()[selectedIndex]
 $('#listview-value').text image.description

How it works...
Kendo, like jQueryUI, can be defined within our HTML. We then use Kendo methods, defined
as jQuery plugins.

We start by adding references to the Kendo CSS files; a common CSS file and a theme
CSS file.

The Kendo UI Core ships with 13 themes. In the previous code, we used
Kendo's default theme by adding the kendo.common.min.css style
sheet. You can use a different theme by referencing a different theme file
(kendo.flat.min.css for example).

We then added references to the Kendo JavaScript library and jQuery.

When creating our widgets, we first defined a DOM element with an ID in our index.html file
to act as a placeholder and then created the code in app.coffee to instantiate and initialize
the Kendo widget, which then replaces the DOM element with the desired widget.

Using Kendo UI for Desktop and Mobile Applications

128

We followed this pattern to define a progress bar, slider, date picker, drop-down list,
autocomplete text box, and even a list view.

For the progress bar, we defined a DIV element with the ID of #progressbar. Then,
in our code, we use jQuery to select the DOM element by ID and called Kendo's
kendoProgressBar() function as seen in the following code:

progressBar = $('#progressbar')
 .kendoProgressBar value: 50
 .data 'kendoProgressBar'

This follows a very basic pattern for the Kendo UI that allows us to construct a widget and also
save this new widget object by calling jQuery's data() function passing a string representing
the type of widget as the argument.

We can also get the widget object after it has been instantiated using jQuery,
as seen in the following code:

progressBar = $('#progressbar').data 'kendoProgressBar'

When creating a Kendo widget in code, we can pass a configuration object to the
kendoWidget() function that can set default values, property settings, and event handlers.

When creating the progress bar, we set the initial value to 50. By default, the progress bar has
a min value of 0 and a max value of 100.

Once executed, the kendoProgressBar() function replaces the #progressbar DIV
element with the necessary DOM elements to display the progress bar as seen in the
following figure:

We then created a slider in much the same way with the exception that we provided a max
setting and a change event handler that will be called when the slider's value changes.

Inside this change event handler, we update the SPAN element to display the new value
(@value()) and we pass the new value to the progress bar's value() function, which will
get or set the progress bar's value. This ties the slider and the progress bar together. As the
slider value changes, the progress bar's progress value will also change accordingly.

Chapter 4

129

Once rendered, the slider is displayed as seen in the following figure:

We created a date picker with a change event handler. When the user selects a different date
from the date picker, the event handler will display the selected date in the #datepicker-
value SPAN we provided.

Once created, the date picker will display an INPUT textbox and a little calendar icon, which,
when clicked, displays a calendar view as can be seen in the following figure:

The next control we created was a drop-down list. This control takes a dataSource property
that defines the data for the drop-down list items as well as an optional optionLabel
property that defines the default string to be displayed to the user, prompting them to choose.

We set dataSource to an object with a data property and a sort property. The data
property is simply our static DEPARTMENTS array, an array of strings representing the various
departments found in a company. The sort property ensures that the items are sorted
alphabetically in the ascending order.

Using Kendo UI for Desktop and Mobile Applications

130

We also provide a change event handler so if the user selects a department from the
dropdown, the #dropdownlist-value span is updated with the selected item.

Once created, the drop-down list is displayed as follows:

The autocomplete textbox allows a user to start typing into a text box and the system will try to
narrow down a possible list of choices based on what they typed in.

The autocomplete textbox is similar to the drop-down list in that we use our DEPARTMENTS
array as dataSource, and we define a change event handler that will display our selected
values in the #autocomplete-value span.

We also pass a filter option that determines how the text entered by the user is compared
to the values defined by dataSource. By default, the filter is startswith, meaning
only values that begin with the text entered by the user will be displayed to the user. The
contains filter will display values that contain the text entered by the user. The filter can also
be set to endswith and I am sure you can guess what this option will do.

When rendered, the autocomplete textbox looks like the following:

The last widget we create is a list view. The list view widget is a great choice to display a list of
complex items. In our example, we display a list of thumbnails images as a Lightbox gallery.

There are two new concepts we used with this widget. First, we used an actual Kendo
DataSource object. We define imageDataSource as a new instance of kendo.data.
DataSource. We pass a configuration object that defines the transport and schema
options.

Chapter 4

131

The transport configuration object defines the parameters of our read operation. In this
case, we define the read object by giving it the URL of our backend endpoint and the type of
data to be expected; dataType: 'json' in this case.

The schema configuration option is used to override the data to be returned. In this case,
when our list view requests its data, the data source will return the array of images loaded
from the data/gallery.json file.

The Kendo DataSource is a comprehensive data provider that supports a
variety of data formats, including JSON (default), JSONP, XML, script and
HTML, and a variety of HTTP actions, including POST, GET (default), PUT,
and DELETE. See the Kendo UI official documentation at http://docs.
kendoui.com/api/ for more information.

Second, we used a template to define the HTML related to displaying a single item in the list
view (a thumbnail image in this demo). We then used Kendo's template engine to compile this
template and assign the result to the list view's initialization function as the template property.

The template itself is fairly simple, as follows:

<script type="text/x-template" id="album-template">
 <a href="img/albums/berries-2012/#= filename #"
 data-lightbox="Berry Picking 2012"
 title="#= description #">
 <img src="img/albums/berries-2012/tn_#= filename #"
 alt="#= description #" class="img-thumbnail">

</script>

Kendo templates use a #= # notation to indicate the placeholders that will be replaced
with actual values as the template is rendered. In our template, we will be injecting the
image's filename and description.

We use the built-in kendo.template() method to compile our template.

By default, list view items are for display only and are not selectable. You can easily override
this by setting the selectable property to true as we did.

Lastly, we created a change event handler that will be triggered whenever a user selects
(clicks) an item in the list view. In the change handler, we use the @select() method
to get the selected item, and call index() to get the selected item's index. Lastly, we get
the selected image from the @dataSource.view() object by index. The @dataSource.
view() object returns an array containing our source data for the given view.

Using Kendo UI for Desktop and Mobile Applications

132

We can see our rendered list view in the following figure:

There's more...
It's worth noting that the kendo.all.min.js file, though minified, is still a pretty heavy file.
For our purposes, it is perfect. Kendo does, however, provide individual files for each of the
components allowing you to only reference the specific files you need for your application. For
an application that specifically needs to be tuned for performance (running on a mobile device
for example), using only the control libraries you need can greatly reduce the download size.

There are two ways of instantiating Kendo widgets: declaratively and explicitly.

In our example, we created our widgets explicitly by writing code to create our widgets and
passing configuration objects to our Kendo initialization functions to set options for max,
value, filter, dataSource, and so on.

Kendo also allows us to define our widgets declaratively by decorating our HTML tags with
data attributes that define the type of widget and its configuration options.

For example, we could define our slider declaratively in the following manner:

<input id="slider" data-role="slider"
 data-max="100" data-value="50"
 style="width: 100%" />

Chapter 4

133

When defining your widgets declaratively, you add a data-role attribute to your HTML
element with a value representing the type of widget you wish to create. This defines #slider
as a Kendo slider widget with a max value of 100 and an initial value of 50.

To render our Kendo widgets, we only need to call the kendo.init() function as shown in
the following:

$ ->
 kendo.init(document.body)

You can also pass a root element to the kendo.init() method to limit the DOM tree
scanning to a particular subset of the DOM:

$ ->
 kendo.init $('payment-window')

You can also specify event handlers as a data-dash attribute as well. For example, to define
a change handler, you can add a data-change="methodToCall" attribute to our
DOM element:

<input id="slider" data-role="slider"
 data-max="100" data-value="50"
 data-change="app.slider.change"
 style="width: 100%" />

Note that because CoffeeScript wraps each file in a closure, we need to expose the event
handler on a globally accessible object. In this case, we defined an app object/namespace on
the global window object as seen here:

change = ->
 $('#slider-value').text @value()

window.app =
 slider:
 change: change

We have only touched the surface of what we can do with Kendo UI Core. You can find out more
from Telerik's website at http://www.telerik.com/kendo-ui/open-source-core.

You may also want to download a trial copy of Telerik's Kendo UI Professional, which includes
all of the components found in the core package as well as a fantastic grid component, a
powerful WYSIWYG HTML editor, impressive data visualizations, including charts and gauges,
a fully functional scheduling component, and much more.

Using Kendo UI for Desktop and Mobile Applications

134

Using the Kendo UI Core mobile widgets
Along with the widgets we saw in the previous recipe, the Kendo UI Core library includes
an entire framework targeting mobile platforms known as Kendo UI Mobile. This library
provides the basic building blocks to build cross-platform applications that can mimic the
native platform's look and feel. For example, when running the application on an iOS device,
the application looks like a native iOS application. However, if this same application runs on
Android, Blackberry, or Windows Phone, the application looks like a native application for the
supported platform.

In this recipe, we will look at various aspects of using Kendo to create mobile applications in
HTML, CSS, and CoffeeScript.

Getting ready
Kendo mobile applications are created using HTML, CSS, and JavaScript or CoffeeScript.

For simplicity, we will develop our code with CoffeeScript to be run locally,
but you should compile your CoffeeScript code to JavaScript before
deploying your Kendo application to production. See Chapter 10, Hosting
Our Web Applications, for more information.

As we saw in the previous recipe on Kendo widgets, components can be created declaratively or
explicitly in code. For Kendo mobile, it is advised to create your mobile widgets declaratively.

Creating our application declaratively is accomplished by using various data-dash attributes.

For example, we can create a simple button by defining anchor data with the data-role
attribute with the value of the button:

Click Me!

This will render the anchor as a button that is styled to the native platform upon which it is
being displayed.

Chapter 4

135

In this recipe, we will use a standard HTML file with the following content:

<!DOCTYPE html>
<html>
<head>
 <title></title>
 <meta charset="UTF-8" />
 <link
 rel="stylesheet"
 href="kendo/styles/kendo.mobile.all.min.css">
</head>
<body>
 <!-- interesting things go here -->

 <script src="kendo/js/jquery.min.js"></script>
 <script src="kendo/js/kendo.ui.core.min.js"></script>
 <script
 type="text/coffeescript"
 src="coffee/app.coffee"></script>
 <script type="text/coffeescript">
 app.init document.body
 </script>
 <script src="http://coffeescript.org/extras/coffee-script.js"></
script>
</body>
</html>

In this basic HTML5 template, we add a CSS reference to kendo.mobile.all.min.css
and script references to jQuery and kendo.ui.core.min.js. We also include a script
reference to coffee/app.coffee, the file we will use for our application code.

The coffee/app.coffee file has the following code:

application = null
init = (element) ->
 application = new kendo.mobile.Application(element)

window.app =
 application: application
 init: init

Using Kendo UI for Desktop and Mobile Applications

136

In our HTML file, we call the app.init() function passing the document body as an
argument. This will initialize all declarative widgets defined in the DOM of the document body.

In our samples, we will place HTML contents immediately following the <!-- interesting
things go here --> comment and occasionally the code in the coffee/app.coffee file.

How to do it...
The main building blocks of a Kendo mobile application include the View, Layout, NavBar, and
TabStrip. Also included are more than a dozen other components.

Kendo views represent a page or screen of information displayed to the user. They are the
fundamental container for text, images, forms, and widgets.

Views have three basic regions: a header, content area, and a footer.

To create a view, follow these steps, inserting the HTML into index.html:

1. Add a DIV with a data-role attribute of view:
<div id="foo" data-role="view" data-title="My First View">

2. Define a header with a data-role value of header:
 <!-- view header -->
 <header data-role="header">
 <div data-role="navbar">
 </div>
 </header>

3. Add some content:
 <h1>This is my view content</h1>

4. Define a footer with a data-role value of footer:

 <!-- view footer -->
 <footer>
 <div data-role="navbar">
 Footer
 </div>
 </footer>
</div>

Chapter 4

137

When this is rendered on the mobile device, it will look similar to the following figure:

In the previous figure, our view on the left is rendered on a Samsung Galaxy S4 and on an
Apple iPhone 5 on the right. Kendo mobile will detect the type of device being used and will
apply styles (color, layout, icons, and so on) that are suitable for the native platform. You can
optionally choose from other mobile styles to maintain a consistent brand across all devices.

Note that for testing purposes, you can use Google Chrome's built-in
developer tools. Chrome provides an emulation mode to simulate
rendering on a number of devices.

Kendo provides a layout component that allows us to create general views that can be used
essentially as a default template for a view:

1. Create a DIV tag with a data-role attribute of layout:
<div data-id="standard-layout" data-role="layout">

2. Add a default header:
 <header data-role="header">
 <div data-role="navbar">

 </div>
 </header>

Using Kendo UI for Desktop and Mobile Applications

138

3. Add a footer and include a tab strip widget:
 <div data-role="footer">
 <div data-role="tabstrip">
 First
 Second
 Third
 </div>
 </div>
</div>

4. Add three views that use the standard layout:

<div id="first" data-role="view" data-title="First View"
 data-layout="standard-layout">
 <h1>First view content</h1>
</div>

<div id="second" data-role="view" data-title="Second View"
 data-layout="standard-layout">
 <h1>Second view content</h1>
</div>

<div id="third" data-role="view" data-title="Third View"
 data-layout="standard-layout">
 <h1>Third view content</h1>
</div>

If we load this on our device, we will see something similar to the following figure:

Chapter 4

139

How it works...
Our view contains a header and footer element as well as the view content.

When the application is initialized, the initial view is rendered for the mobile platform.

Views provide a number of properties and events that you can hook into in order to tailor them
to your needs.

For example, a view can provide a title using the data-title attribute:

<div id="foo" data-role="view" data-title="My First View">

We can display the view's title in a navbar component by adding SPAN with a data-role
value of view-title:

<header data-role="header">
 <div data-role="navbar">
 </div>
</header>

Layouts use a data-id attribute to provide a name to the layout. An application
can have many layouts.

When using layouts, we can create a view that references the view by setting its
data-layout attribute to the name given to the view.

In our layout example, we also used a tab strip control. This is a great way to provide
navigation between views in your mobile application. Tapping a button in the tab strip will
navigate to the desired view. By using a layout, all of our views can secure the tab strip. This
can save considerable time coding our mobile applications.

Kendo mobile is very good at rendering its components to match the native platform. This
is especially true for the tab strip widget. On iOS, Blackberry, and Windows Phone, our tab
strip displays at the bottom of our view. If we load this on the Android platform however, it will
display across the top of the view. This may seem odd given we defined our tab strip in our
layout footer but this is the extent that Kendo goes to make our application blend in with the
native platform.

As you can see in the following figure, Android has rendered our tab strip at the top of
the screen:

Using Kendo UI for Desktop and Mobile Applications

140

Notice the data-icon attribute. Kendo provides more than 300 icons
for use in our applications for Button or ListView components. You can
see these icons on the Kendo site at http://docs.kendoui.com/
getting-started/mobile/icons.

Navigation is provided through simple anchor tags. We can navigate to a view on the current
page using the #view-id notation as we saw in our tab strip. We can also navigate to pages
that are remote using a URL such as http://mysite.com/views/contact-us.html.
Taking this approach, Kendo will load the contents of contact-us.html via AJAX and inject
its view DOM into the current page. Kendo manages all these DOM manipulations for us.

There's more...
Views provide two events that we can hook into in our code to handle view initialization and
display. These are the data-init and data-show events, respectively:

<div id="foo" data-role="view" data-title="View Event Demo"
 data-init="app.view.viewInit"
 data-show="app.view.viewShow">
 <!-- view header -->
 <header data-role="header">
 <div data-role="navbar">
 </div>
 </header>

 <h1>This is my view content</h1>
 <div id="output"></div>

 <!-- view footer -->
 <footer>
 <div data-role="navbar">
 Footer
 </div>
 </footer>
</div>

When a view is initialized, the method defined in the view's data-init attribute is called.
This allows us to prepare everything needed for the view.

When a view is about to be displayed, the method defined in the view's data-show attribute
is called.

Chapter 4

141

The following code snippet defines our view's init() and show() methods:

window.app = window.app || {}

viewInit = (e) ->
 view = e.view
 (view.element.find '#output').append(
 '<pre>viewInit() called</pre>'
)

viewShow = (e) ->
 view = e.view
 (view.element.find '#output').append(
 '<pre>viewShow() called</pre>'
)

window.app.view =
 viewInit: viewInit
 viewShow: viewShow

Notice that our events are provided a parameter that represents the event object. This object
provides a view property that represents the view that is calling the event. We used the view's
element property, which is a jQuery object wrapping the view's root element.

When using layouts, we can use a layout for a view and still override the header or footer if
needed. For example, the following code defines a view based on our standard layout that
we created, but overrides the header to include a back button:

<div id="second" data-role="view" data-title="Second View"
 data-layout="standard-layout">
 <header data-role="header">
 <div data-role="navbar">
 <a data-role="backbutton"
 data-align="left">Back

 </div>
 </header>
 <h1>Second view content</h1>
</div>

In this case, our second view defines its own header element. This header will override the
default header defined in the layout. In this customized header, we added a back button
using the data-role of backbutton.

Using Kendo UI for Desktop and Mobile Applications

142

In the following figure, we can see the back button rendered as a part of the second
view's header:

The tab strip control provides several properties and methods allowing us to configure the
behavior of our tab strip.

One especially useful function is the badge() function. This function allows us to display
useful information to the user. For example, we might have a button to view our calls. We can
use badge() to display the number of missed calls:

<div data-role="footer">
 <div data-role="tabstrip">
 Home
 Calls
 Settings
 </div>
</div>

Our tab strip definition has different HREFs and icons, but it's identical to the previous tab
strip example.

Our #home view defines a data-init value of a function to add the badge to our tab strip:

<div id="home" data-role="view" data-title="First View"
 data-layout="standard-layout"
 data-init="app.view.all.viewInit">
 <h1>Home view content</h1>
</div>

Chapter 4

143

Our event handler can then call badge():

window.app = window.app || {}

viewInit = (e) ->
 footer = e.view.footer
 tabstrip = (footer.find '.km-tabstrip') \
 .data('kendoMobileTabStrip')
 tabstrip.badge 1, 5

window.app.view =
 all:
 viewInit: viewInit

In this example, we call the badge() method passing two parameters. The first parameter
is the numerical index of the anchor to be decorated. The second parameter represents the
number to be displayed on the badge (five unread emails in our case).

You can call badge with a single argument representing the index of the anchor. This will
return the current badge value for that anchor:

console.log (tabstrip.badge 1)

We can see our badge count displayed in the following figure:

Kendo mobile contains many other very useful widgets and mobile application services that
make Kendo a strong competitor when choosing a framework to deliver a mobile application
via the mobile web.

You can find more information on Telerik's Getting Started page for Kendo Mobile at http://
docs.telerik.com/kendo-ui/mobile. You can also see dozens of polished demos on
Telerik's demo page for Kendo UI at http://demos.telerik.com/kendo-ui.
You can find out more about Apache Cordova from the official project website at http://
cordova.apache.org.

5
Going Native with

Cordova

In this chapter, we will cover the following recipe:

 f Creating a basic Cordova application

 f Using the camera

 f Using geolocation

 f Using contacts

 f Getting device information

Introduction
Cordova is a framework from the Apache foundation that allows you to wrap your web
applications inside a native wrapper that can be packaged and made available via the
various app marketplaces.

Cordova currently supports iOS, Android, Blackberry, Windows Phone, and FireFoxOS.

Cordova is not only a native wrapper, but it also provides a JavaScript interface, allowing
it to provide access to native hardware and services such as:

 f Access to a camera to take photos and/or videos
 f Access to geolocation information
 f Access to contacts
 f Access to device information

You can find out more about Apache Cordova from the official project website at
http://cordova.apache.org.

Going Native with Cordova

146

Creating a basic Cordova application
In this recipe, we will run through the steps to create a basic Cordova application.

Getting ready
Before getting started with Cordova, we must install the Cordova library. Cordova can be
installed as a Node package.

Open a terminal window and install the Node package with the following code:

npm install -g cordova

This will install the Cordova package into Node's global space and allows us to use the
Cordova command-line utilities to create and manage our mobile application.

How to do it...
Once Cordova has been installed, we can use the cordova command-line tool to create
a mobile application.

At a terminal window, perform the following steps:

1. Execute the cordova create command:
cordova create HelloWorld com.csbook.helloworld

2. Switch to the HelloWorld directory:
cd HelloWorld

3. Add a target platform using the cordova platform add command:

cordova platform add android

How it works...
Issuing the cordova create command will create a simple folder structure and
Cordova libraries, most notably a folder called www. This is where we build our web-based
mobile applications.

Adding a platform will create a folder for each platform added. For example, adding the
Android platform created a /platforms/android directory that has all of the necessary
files needed to provide support for the Android platform.

You will see a www folder inside the /platforms/android folder. This is automatically built
based on the contents of the /www folder. Do not make changes to the platform's www files as
your changes will be overwritten when the application is rebuilt.

Chapter 5

147

Using the camera
Cordova provides access to the hardware camera via the org.apache.cordova.camera
plugin.

Getting ready
Plugins are added to our application via the cordova plugin add command.

To add the camera plugin, enter the following command in a terminal window at the root
directory of our application:

cordova plugin add org.apache.cordova.camera

Once installed, the camera methods are made available via the navigator.camera object.

Our example will use the Kendo UI mobile framework. To get set up, follow these steps:

1. Copy the Kendo UI kendo directory into the www directory of our Cordova application.

2. Replace the contents of index.html with the following code:
<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="msapplication-tap-highlight" content="no" />
 <link rel="stylesheet"
 href="kendo/styles/kendo.mobile.all.min.css">
 <title>CoffeeScript - Cordova</title>
</head>

<body>
 <!-- add your html here -->

 <script src="cordova.js"></script>
 <script src="kendo/js/jquery.min.js"></script>
 <script src="kendo/js/kendo.ui.core.min.js"></script>
 <script src="coffee/app.coffee"
 type="text/coffeescript"></script>

 <!-- add your CoffeeScript files here -->

Going Native with Cordova

148

 <script type="text/coffeescript">
 app.init()
 </script>

 <script src="js/vendor/coffee-script.js"></script>
</body>

</html>

3. Create a directory named coffee for our CoffeeScript files.

4. Create a file named coffee/app.coffee with the following code:

init = (element) ->
 application = new kendo.mobile.Application(element)

window.app =
 init: init
 demos: {}

How to do it...
The camera plugin provides a getPicture() method that takes success and failure
callbacks as well as optional configuration objects:

1. Add the following HTML to index.html:
<div data-role="view" id="app-camera" data-title="Camera"
 data-layout="layout">
 <h3>Camera</h3>
 <p>
 <a data-role="button"
 data-click="app.demos.camera.onTakePhoto">
 Take Photo
 </p>
 <ul data-role="listview" data-style="inset">
 <div id="photo-view" data-role="scroller">
 <div data-role="page">

 </div>
 </div>
</div>

Chapter 5

149

2. Create a file named coffee/camera.coffee with the following code:
displayPhoto = (img) ->
 photo = (document.getElementById 'photo')
 photo.src = 'data:image/jpeg;base64,' + img

onTakePhoto = ->
 success = (img) ->
 displayPhoto img

 fail = (msg) ->
 alert 'Camera failed: ' + msg

 options =
 quality: 50
 destinationType: Camera.DestinationType.DATA_URL

 navigator.camera.getPicture success, fail, options

3. Add a reference to our coffee/camera.coffee file:

<script type="text/coffeescript"
 src="coffee/camera.coffee"></script>

How it works...
Our index.html file sets up a Kendo mobile view with a button with a data-click attribute
set to call app.demos.camera.onTakePhoto.

Our onTakePhoto() method defines a success() and a fail() callback function. It then
prepares a configuration option object that sets the image quality to be 50 percent and
desintationType to be a data URL.

When navigator.camera.getPicture() is called, the camera is displayed and the user
can use the device's native camera options to adjust the camera settings and take a photo.
If successful, the success() callback is called with the image's data URL as a parameter.

Going Native with Cordova

150

If the device does not have a camera or if the user cancels the camera function, the fail()
callback will be called:

There's more...
You can load a photo from the device's photo library. To accomplish this, you can set the
sourceType option value to Camera.PictureSourceType.PHOTOLIBRARY or Camera.
PictureSourceType.SAVEDPHOTOALBUM:

onSelectPhoto = ->
 success = (img) ->
 displayPhoto img

 fail = (msg) ->
 alert 'Load failed: ' + msg

 options =

Chapter 5

151

 destinationType: Camera.DestinationType.DATA_URL
 sourceType: Camera.PictureSourceType.PHOTOLIBRARY

 navigator.camera.getPicture success, fail, options

When getPicture() is called with sourceType set to PHOTOLIBRARY or
SAVEDPHOTOALBUM, the device's photo library is displayed, allowing the user to select a
photo from the library.

Using geolocation
We can use Cordova's org.apache.cordova.geolocation plugin to access the
hardware's geolocation services.

Getting ready
Begin by installing the geolocation plugin using the following command:

cordova plugin add org.apache.cordova.geolocation

Once installed, we can use Cordova's navigator.geolocation object to access the
hardware's geolocation services.

How to do it...
To access the device's geolocation information, we use the getCurrentPosition() method:

1. Add the following HTML to index.html:
<div data-role="view" id="app-location"
 data-title="Location"
 data-layout="layout">
 <h3>Location</h3>
 <p>
 <a data-role="button"
 data-click="app.demos.location.onFetchLocation">
 Fetch Location
 </p>
 <p id="location-status" style="display: none;">
 <i>Fetching position...</i>
 </p>
 <p id="location-error" style="display: none;"></p>
 <ul id="location-info" data-role="listview"
 data-style="inset" style="display: none;">

</div>

Going Native with Cordova

152

2. Create a file named coffee/location.coffee with the following code:
$locationStatus = $ '#location-status'
$locationError = $ '#location-error'
$locationInfo = $ '#location-info'

onFetchLocation = ->
 onSuccess = (pos) ->
 $locationInfo.empty()
 $locationStatus.hide()

 $locationInfo.append \
 "Latitude: #{pos.coords.latitude}"
 $locationInfo.append \
 "Longitude: #{pos.coords.longitude}"
 $locationInfo.append \
 "Altitude: #{pos.coords.altitude}"
 $locationInfo.append \
 "Accuracy: #{pos.coords.accuracy}"
 $locationInfo.append \
 "Heading: #{pos.coords.heading}"
 $locationInfo.append \
 "Speed: #{pos.coords.speed}"
 $locationInfo.append \
 "Timestamp: #{pos.timestamp}"

 $locationInfo.show()

 onError = (err) ->
 $locationStatus.hide()

 errorMessage =
 "<h4>Error: #{err.code}</h4><p>#{err.message}</p>"
 $locationError.html errorMessage
 $locationError.show()

 $locationStatus.show()

 navigator.geolocation.getCurrentPosition \
 onSuccess, \
 onError, \
 { timeout: 30000, enableHighAccuracy: true }

app.demos.location =
 onFetchLocation: onFetchLocation

3. Add a reference to coffee/location.coffee to our index.html file.

Chapter 5

153

How it works...
In our HTML page, we create a Kendo mobile view with a button to fetch the user's current
position via the button's data-click attribute. Clicking on the button will call the app.
demos.locaiton.onFetchLocation() method.

In our code file, we create an event handler for the location fetch event.

The heart of this module is the call to navigator.geolocation.
getCurrentPosition(). To this method, we pass a success and fail callback function.

If successful, the success callback is passed a position object. The position has a coords
object and a timestamp property. In our example, we display the latitude, longitude,
altitude, accuracy, heading, and speed properties of coords. We also display the
position's timestamp. This can be seen in the following figure:

Going Native with Cordova

154

There's more...
The geolocation object provides geolocation.watchPosition() and geolocation.
clearWatch() to set up an event listener that will be called if the position changes and
clears/cancels the listener:

onWatch = ->
 positionChanged = (pos) ->
 $locationInfo.empty()
 $locationInfo.append \
 "Latitude: #{pos.coords.latitude}"
 $locationInfo.append \
 "Longitude: #{pos.coords.longitude}"
 $locationInfo.append \
 "Timestamp: #{pos.timestamp}"

 onError = (err) ->
 $locationStatus.hide()

 errorMessage =
 "<h4>Error: #{err.code}</h4><p>#{err.message}</p>"
 $locationError.html errorMessage
 $locationError.show()

 watchHandle = navigator.geolocation.watchPosition \
 positionChanged, onError

onWatchCancelled = ->
 if watchHandle
 navigator.geolocation.clearWatch watchHandle
 watchHandle = null

In our code, we call navigator.geolocation.watchPosition() and save the
handle so we can cancel it at a later time. Each time a position change is detected, our
positionChanged() function will be called with the position object.

When we want to cancel our watchPosition handler, we can call the navigator.
geolocation.clearWatch() method by passing our handle to it.

Chapter 5

155

Using contacts
Cordova provides access to the contacts on the user's device through the org.apache.
cordova.contacts plugin.

Getting ready
Install the contacts plugin using the following command:

cordova plugin add org.apache.cordova.contacts

Once installed, a contacts object will be added to the navigator, which provides the
contacts.create() and contacts.find() methods.

How to do it...
To create a contact, we use the navigator.contacts.create() method. It returns a
contact object that can be used by your application. You can pass an object literal to this
create() method, which will initialize the various contact properties:

1. Add the following HTML to index.html:
<div data-role="view" id="app-contact"
 data-title="Contacts"
 data-layout="layout">
 <h3>Contacts</h3>
 <p>
 <a data-role="button"
 data-click="app.demos.contacts.onAddContact">
 Add Contact
 <a data-role="button"
 data-click="app.demos.contacts.onFetchContacts">
 Fetch Contacts
 </p>
 <p id="contact-status" style="display: none;">
 <i>Fetching contacts...</i>
 </p>
 <p id="contact-error" style="display: none;"></p>
 <ul id="contact-info" data-role="listview"
 data-style="inset"
 style="display: none;">

</div>

Going Native with Cordova

156

2. Create a file named coffee/contact.coffee with the following code:
$contactStatus = ($ '#contact-status')
$contactError = ($ '#contact-error')
$contactInfo = ($ '#contact-info')

onFetchContacts = ->
 addContact = (contact) ->
 if contact.displayName
 $contactInfo.append "#{contact.displayName}"

 onSuccess = (contacts) ->
 $contactStatus.hide()
 $contactInfo.empty()
 (addContact item) for item in contacts
 $contactInfo.show()

 onError = (err) ->
 $contactStatus.hide()

 errorMessage = "<h4>Error: #{err.code}</h4>
 <p>#{err.message}</p>"
 $contactError.html errorMessage
 $contactError.show()

 $contactStatus.show()
 fields = ['displayName']
 findOptions =
 filter: ''
 multiple: true

 navigator.contacts.find fields, \
 onSuccess, \
 onError, \
 findOptions

3. Add a reference to coffee/contact.coffee to our index.html file:

<script type="text/coffeescript"
 src="coffee/contact.coffee"></script>

How it works...
Our Kendo mobile view has two buttons. The first button defines a data-click attribute that
will call our app.demos.contacts.onAddContact() method. The second button defines
a data-click attribute that will call our app.demos.contacts.onFetchContacts()
method.

Chapter 5

157

In our contacts code, we define our onAddContact() method. This method calls the
navigator.contacts.create() method, passing an object literal that provides
displayName, nickname, and name, which is itself an object literal with the givenName
and familyName properties.

When we create a contact, it does not save the contact to the contact list on the device. This
allows you to add or modify additional properties before persisting the contact. To persist the
contact, we call the object's save() method.

There's more...
Along with creating contacts, we can also find an existing contact or all contacts in the user's
contact list; we can use Cordova's navigator.contacts.find() method for this:

onFetchContacts = ->
 addContact = (contact) ->
 if contact.displayName
 $contactInfo.append "#{contact.displayName}"

 onSuccess = (contacts) ->
 $contactStatus.hide()
 $contactInfo.empty()
 (addContact item) for item in contacts
 $contactInfo.show()

 onError = (err) ->
 $contactStatus.hide()

 errorMessage = "<h4>Error: #{err.code}</h4><p>#{err.message}</p>"
 $contactError.html errorMessage
 $contactError.show()

 $contactStatus.show()
 fields = ['displayName']
 findOptions =
 filter: ''
 multiple: true

 navigator.contacts.find \
 fields, onSuccess, onError, findOptions

Our onFetchContacts() method first defines an array of contact fields we are interested in.
This must have at least one element. In our example, we are only interested in accessing the
contact's displayName value.

Going Native with Cordova

158

We then define a searchOptions object literal that has two properties: filter
and multiple.

The filter property defines an object literal representing our search criteria. For example,
findOptions.filter = 'Mike' will find all contacts where the contact's displayName
contains Mike. The filter property is '' (an empty string) by default. This will match
all records.

By default, our search option's multiple property is false. We set it to true so we get
more than one result.

Lastly, we call Cordova's navigator.contacts.find() method, passing our search fields
(required), our success and fail callbacks (both required), and our find options (optional).

If successful, our success callback is passed an array of matching contact objects. Our
onSuccess() method iterates through the results and adds them to the contact-info
list-view control seen in the following figure:

Chapter 5

159

Getting device information
It is sometimes helpful to have specific information about the user's device. Cordova provides
a device object that provides such information.

Getting ready
To retrieve device information, we must install the device plugin with the following command:

cordova plugin add org.apache.cordova.device

How to do it...
To get device information, follow these steps:

1. Add the following HTML to index.html:
<div data-role="view" id="app-device"
 data-title="Contacts"
 data-layout="layout">
 <h3>Device Information</h3>
 <p>
 <a data-role="button"
 data-click="app.demos.device.onFetchInfo">
 Fetch Device Info
 </p>
 <ul id="device-info" data-role="listview"
 data-style="inset" style="display: none;">

</div>

2. Create a file named coffee/device.coffee with the following code:
$deviceInfo = $('#device-info')

onFetchInfo = ->
 $deviceInfo.empty()
 $deviceInfo.append "Name: #{device.name}"
 $deviceInfo.append "Cordova: #{device.cordova}"
 $deviceInfo.append "Model: #{device.model}"
 $deviceInfo.append "Platform:
 #{device.platform}"
 $deviceInfo.append "UUID: #{device.uuid}"
 $deviceInfo.append "Version: #{device.version}"
 $deviceInfo.show()

app.demos.device =
 onFetchInfo: onFetchInfo

Going Native with Cordova

160

3. Add a reference to coffee/device.coffee to our index.html file:

<script type="text/coffeescript"
 src="coffee/device.coffee"></script>

How it works...
We begin by including the HTML defining a Kendo mobile view containing a button with
a data-click attribute that will call our app.demos.device.onFetchInfo() method.

Our CoffeeScript code displays the device's name, Cordova version, model, platform,
UUID (universally unique device ID), and OS version.

We can use these values if we need to adjust our application for specific device conditions.
Our sample can be seen in the following figure:

6
Working with

Databases

In this chapter, we will cover the following recipes:

 f Working with SQLite

 f Working with Redis

 f Working with MongoDB

 f Working with CouchDB

Introduction
In this chapter, we will cover how to use CoffeeScript to perform common create, read,
update, and delete (CRUD) operations against a variety of data storage options.

We will use Node modules to facilitate our database connections and CRUD operations. As
with most open source software, there are often times a number of modules that we can use
for any given database platform. We will use a single module for each platform, selecting the
particular module based on its popularity and ease of use. You may want to investigate other
available options for the database platform you are using to see if there is a module that
works better for you.

Working with SQLite
SQLite is a lightweight, schema-based relational database engine that executes within the
memory context of our application. This proves to be very convenient when developing your
application, as SQLite does not require a database server.

Working with Databases

162

Getting started
We will be using the sqlite3 Node module. You can install this module using NPM as follows:

$ npm install sqlite3

Once installed, you can require it in your application using the following:

sqlite = require 'sqlite3'

Once required, you can create a connection to an existing database by filename:

db = new sqlite3.Database('sample.db')

If the database does not exist, an empty database will be created for you.

We will be using a sample database for our examples, which contains a simple Employees
and Departments table. We can see these tables in the following diagram:

Inserting and updating records, and executing
commands

Now that we have an empty database, we will create our tables and insert some records.

We will use the Node sqlite3 provider's exec() and run() functions to insert, update,
and delete records as well as to execute database commands such as the CREATE TABLE
statements.

How to do it...
The exec() method takes a SQL statement as a parameter and an optional callback.
When the query is completed or if an error occurs, the callback will be called with a
single error parameter.

Chapter 6

163

We will use the exec() function to create our sample Departments and Employees tables
and again to populate both with data:

1. Require the sqlite3 package:
sqlite = require 'sqlite3'

2. Instantiate a database instance for our sample database:
db = new sqlite.Database 'sample.db'

3. Define a function to create our tables:
createTables = (callback) ->
 sql = "CREATE TABLE [Departments] (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 description VARCHAR (100)
);

 CREATE TABLE [Employees] (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 first_name VARCHAR (50),
 last_name VARCHAR (50),
 department_id INTEGER REFERENCES Departments (id)
);"

 db.exec sql, (err) ->
 console.log "Error creating tables: #{err}" if err?
 callback err

4. Define a function to populate our tables with sample data:
populateTables = (callback) ->
 departments = [
 { id: 1, desc: 'Sales' }
 { id: 2, desc: 'Customer Service' }
 { id: 3, desc: 'I.T.' }
 { id: 4, desc: 'Finance' }
 { id: 5, desc: 'Marketing' }
 { id: 6, desc: 'Human Resources' }
 { id: 7, desc: 'Research and Development' }
]

 employees = [
 { id: 1, first: 'Tracy', last: 'Ouellette', dept: 1 }
 { id: 2, first: 'Chris', last: 'Daniel', dept: 1 }

Working with Databases

164

 { id: 3, first: 'Jason', last: 'Alexander', dept: 3 }
 { id: 4, first: 'Jennifer', last: 'Hannah', dept: 7 }
 { id: 5, first: 'Maxx', last: 'Slayde', dept: 4 }
]

 for item in departments
 sql = "INSERT INTO [Departments] VALUES(?, ?)"
 db.run sql, item.id, item.desc, (err) ->
 callback err if err?

 for item in employees
 sql = "INSERT INTO [Employees] VALUES(?, ?, ?, ?)"
 db.run sql, item.id, item.first, item.last, item.dept, (err)
->
 callback err if err?

 callback()

5. Execute our createTables and populateTables functions:

createTables (err) ->
 unless err?
 populateTables (err) ->
 unless err?
 console.log 'Database prepped...'
 else
 console.log err

How it works...
In our sample, we use the exec() function to execute our SQL statement to create the
Customers table.

Note that our callback is completely optional. If we do not define a callback and an error
occurs, an error is called through the database object.

When we populate the Departments and Employees tables, we use the run() function,
which is similar to exec() but also allows us to pass parameters to our SQL statements.

We use question marks (?) to represent our parameter placeholders inside the SQL string
and then pass our parameter values to the run() function.

Parameter values can also be passed as an array:

sql = "INSERT INTO [Employees] VALUES(?, ?, ?, ?)"
db.run sql, [6, 'Hannah', 'Belle', 7], (err) ->

Chapter 6

165

There's more...
When using the run() function to pass parameters using the question mark approach, the
order of the parameters is important as the values are used in the order they are provided.

This can be problematic as mistakes can be easily made and difficult to find. The run()
function also accepts named parameters that can help avoid these issues.

We can rewrite our SQL insert statement to use named parameters as seen in the following:

sql = "INSERT INTO [Employees] VALUES($id, $first, $last, $deptId)"

Then, we can use run() in the following way:

sql = "INSERT INTO [Employees] VALUES($id, $first, $last, $deptId)"
record = $id: 13, $first: 'Hannah', $last: 'Belle', $deptId: 7
db.run sql, record, (err) ->

Reading records
The sqlite3 provider has three functions to read data from an existing database: get(),
all(), and each().

The get() function executes the given query and returns the first row of results.

The all() function executes the query and returns a collection containing all rows.

The each() function executes the query and returns a collection that can be iterated.

Each of these functions takes a SQL statement and a callback method to handle the
returned query results. We will look at each of these in turn.

How to do it...
Since get() retrieves a single row, it is the method to use for queries where we only care
about the first record. This could include statements that return a row by ID, aggregate
functions, or the first record when sorted in ascending or descending order.

In the following example, we count the rows in the Employees table:

1. Require the sqlite3 package:
sqlite = require 'sqlite3'

2. Create a database instance opening our database:
db = new sqlite.Database 'sample.db'

Working with Databases

166

3. Use get() to execute a select statement:
sql = "select count(*) as 'count' from Employees"
db.get sql, (err, row) ->

4. Use the return object to fetch our query results:

 unless err?
 console.log "There are #{row.count} employees."
 else
 console.log err

Executing this query via the get() function produces the following output:

There are 5 employees.

The all() function will return all records from a query result. This is a great option if you are
dealing with a limited or reasonable number of rows or if you need to know how many rows
have been returned before you begin processing the result set.

The following sample uses all() to retrieve all departments from our database:

1. Require the sqlite3 package:
sqlite = require 'sqlite3'

2. Create a database instance opening our database:
db = new sqlite.Database 'sample.db'

3. Use all() to execute a select statement with multiple records:
sql = 'select * from Departments order by description'
db.all sql, (err, rows) ->

4. We can use the array of rows to process each row of our result:

 unless err?
 console.log "There are #{rows.length} departments."
 for row in rows
 console.log "#{row.id}: #{row.description}"
 else
 console.log err

Executing the query via the all() function produces the following output:

There are 7 departments.

2: Customer Service

4: Finance

6: Human Resources

Chapter 6

167

3: I.T.

5: Marketing

7: Research and Development

1: Sales

The each() function is a great choice when you want to process a number of records but do
not want to keep all rows in memory at once.

For example, we can retrieve all records, and process them as they are read.

1. Require the sqlite3 package:
sqlite = require 'sqlite3'

2. Create a database instance to open our database:
db = new sqlite.Database 'sample.db'

3. Use each() to execute a select statement with multiple records:
sql = 'select * from Departments order by description'
db.each sql, (err, row) ->

4. Use the return object to fetch our query results:

 unless err?
 console.log "#{row.id}: #{row.description}"
 else
 console.log err

Executing the query via the each() function produces the following output:

There are 7 departments.

2: Customer Service

4: Finance

6: Human Resources

3: I.T.

5: Marketing

7: Research and Development

1: Sales

How it works...
In the previous examples, we demonstrated the get(), all(), and each() methods in use.

The main difference between all() and each() is that with all(), our callback is called
only once we receive the entire result set as an array of rows, while each() will execute our
callback for each row that is returned from our query.

Working with Databases

168

The callbacks for each of these functions follow the typical Node style and take an error object
as the first parameter, while the second parameter represents our query result.

It is always a good idea to check to see whether an error was returned. If we tried to count
the records from a non-existent Employees2 table, we would get the following error:

Error: SQLITE_ERROR: no such table: Employees2

There's more...
The each() function also allows us to pass an optional second callback that will be executed
once the query is completed. This optional callback receives an error object and a count of
rows returned:

sql = 'select * from Departments order by description'

displayRow = (err, row) ->
 unless err?
 console.log "#{row.id}: #{row.description}"
 else
 console.log err}

displayRowCount = (err, rowCount) ->
 unless err?
 console.log "Processed #{rowCount} rows."
 else
 console.log err}

db.each sql, displayRow, displayRowCount

Running this each() example produces the following output:

2: Customer Service

4: Finance

6: Human Resources

3: I.T.

5: Marketing

7: Research and Development

1: Sales

Processed 7 rows.

Chapter 6

169

Executing queries in parallel versus serial
By default, queries execute asynchronously (in a parallel manner). This allows the queries to
execute without blocking other actions, but this also means there's no guarantee that one query
will execute or complete before another runs. This can cause problems. For example, say you
had one query to create table X and another to insert into X. We obviously need to make sure
the CREATE TABLE command completes before we perform our INSERT command.

We could also execute statements serially by using nested callbacks. Take the following
example:

1. Create a function to create a table:
createTable = (callback) ->
 sql = "CREATE TABLE Cities (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name VARCHAR(100) NOT NULL
)"

 db.exec sql, (err) ->
 callback err

2. Create a function to insert a record into the table:
insertIntoTable = (callback) ->
 sql = "INSERT INTO Cities (name) VALUES ('Halifax')"
 db.exec sql, (err) ->
 callback err

3. Create a function to read data from the table:
selectFromTable = (callback) ->
 db.get 'SELECT * FROM Cities', (err, row) ->
 console.log "City: #{row.name}" unless err?
 callback err

4. Create a function to drop the table:
dropTable = (callback) ->
 db.exec 'DROP TABLE Cities', (err) ->
 callback err

5. Call each function in order through nested callbacks:

createTable (err) ->
 unless err?
 insertIntoTable (err) ->
 unless err?

Working with Databases

170

 selectFromTable (err) ->
 unless err?
 dropTable (err) ->
 unless err?
 console.log 'SUCCESS!'
 else
 console.log 'FAILED'

As you can see, this is hardly ideal. The SQLite3 module provides a sequential mode for those
times when the order of query execution is indeed important.

To control the query execution flow, you can use the serialize() and parallelize()
methods.

How to do it...
Each of these methods takes a function object. Any queries inside this function will be
executed in series or parallel as indicated.

sqlite = require 'sqlite3'

db = new sqlite.Database('sample.db')

db.serialize ->
 db.run "CREATE TABLE Cities (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name VARCHAR(100) NOT NULL
)"

 db.run "INSERT INTO Cities (name) VALUES ('Halifax')"

 db.get 'SELECT * FROM Cities', (err, row) ->
 unless err?
 console.log "City: #{row.name}"
 else
 console.log "#{err}"

 db.run 'DROP TABLE Cities'

How it works...
In our example, we use serialize() to make sure we can create a table, insert a record,
read that record, and drop our table, all in the correct order.

If we did not use serialize(), it is possible our insert may have attempted to use a table
that did not yet exist.

Chapter 6

171

Working with Redis
Redis is an open source key-value database that provides a high-performance cross-platform
server to store your application's data.

Unlike Sqlite, Redis does not have a fixed schema and is therefore a schemaless data store.
It allows us to store objects that can be referenced by a key value.

In this section, we will see how to use CoffeeScript to store, retrieve, and delete data
with Redis.

You can find more information, including documentation and installation
instructions at the official Redis website at http://redis.io/.

Once you have installed Redis, install the Redis NPM package. It will allow us to connect,
store, and retrieve values. It can be installed using the following command:

npm install redis --save

Connecting to the Redis server
Redis runs as a service and the Redis NPM client connects to a running server.

How to do it...
To connect to a Redis service running on the local machine, perform the following steps:

1. Require the Redit package:
redis = require 'redis'

2. Create an instance of the Redit client:
client = redis.createClient()

3. Add an event listener for error events:
client.on 'error', (err) ->
 console.log "Error: #{err}"

4. Add an event listener for a connect event:

client.on 'connect', ->
 console.log 'Connected to Redis successfully.'
 client.quit()

Working with Databases

172

How it works...
In this example, we require the Redis module and then create a client connection using the
createClient() method. If called with no parameters, the connection will be established
using the default port of 6379 running on the localhost. We can also specify host and port
numbers using the createClient(portAsInteger, hostAsString) syntax.

We then create two event listeners: one for error events and the other for the connect event.

If an error occurs and an error event is raised, we simple display it on the console.

If a connection event is raised, we simply print a notification to the console and then call the
quit() method, which closes the Redis connection.

Redis is capable of storing several different types of data structures, including strings, hashes,
lists, sets, and sorted sets.

The Redis Node client provides methods to store these structures. In the following examples,
we will demonstrate how to do this.

If we execute the sample, we see the following output:

Connected to Redis successfully.

If the service is not running or the connection fails for some other reason, the following error
is displayed:

Error: Error: Redis connection to 127.0.0.1:6379 failed - connect
ECONNREFUSED

Storing and retrieving single values
We can use the set() function to store scalar values, such as strings, numbers, Boolean
values, or any value that can be represented as a string.

We can conversely use the get() function to retrieve these scalar values.

How to do it...
Use the set() function by passing the object's key and value.

1. Require the Redis package:
redis = require 'redis'

2. Create an instance of the Redis client:
client = redis.createClient()

Chapter 6

173

3. Add an event listener for error events:
client.on 'error', (err) ->
 console.log "Error: #{err}"

4. Store a simple key-value pair:
client.set 'sales-001', 4503.40

5. Store a simple key-value pair with a callback:
client.set 'sales-002', 3406.98, (err, res) ->
 console.log res

6. Store an object:
employee =
 id: '001'
 firstName: 'Tracy'
 lastName: 'Ouellette'
 salesYtd: 4503.40

client.set employee.id, (JSON.stringify employee)

7. Retrieve the sales-001 value:
client.get 'sales-001', (err, value) ->
 unless err?
 console.log "Value: #{value}"

8. Retrieve an employee object and close the connection:

client.get employee.id, (err, objString) ->
 unless err?
 emp = (JSON.parse objString)
 console.dir emp

 client.quit()

How it works...
In our preceding examples, we use the set() method in several different ways.

First, we save the value 4503.40 with the key sales-001.

Our second call to set() includes a callback method. If provided, the callback is called once
the operation is completed. If the set was successful, the value of res will be OK.

Our third call to set() includes a convenient helper callback provided by the Redis module
called redis.print. This simply displays the result of Reply: <result> if the call was
successful and Error: <error> if unsuccessful.

Working with Databases

174

You might have noticed that our numeric value is saved as a string. All values saved using the
set() method are saved as string values including objects. We can save a complex object by
using JSON.stringify() to convert our object to a string value.

To retrieve our object, we used the get() function with a callback to retrieve the JSON string
we stored previously. The callback, when successful, receives the JSON string, which is then
parsed using the native JSON.parse() function provided by Node.js.

There's more...
Redis also provides other useful functions that can help when working with single values,
including:

 f exists key, callback: This function checks to see whether the given key exists.
If it does, it returns 1, otherwise it returns 0.

 f setnx key, value: This function will only set a key's value if the key does not
already exist.

 f getset key, value, callback: This function sets a value for a key and returns
the key's previous value before it was set.

Using counters
All set operations are atomic, meaning only one connection can set a value at a time. This
avoids concurrency issues and allows the server to maintain consistent lists or sets while
allowing multiple clients.

Redis allows us to easily increment and decrement integer values by using the incr()
and decr() methods, respectively.

Getting ready
Create an integer key called visits:

initialize vistis to 0
client.set 'visits', 0

How to do it...
We can increment and decrement a visits counter in the following way:

1. Create a key called visits and set it to the value 0:
client.set 'visits', 0

2. Increment the value of visits twice using incr():
client.incr 'visits'
client.incr 'visits'

Chapter 6

175

3. Display the current value of visits:
client.get 'visits', redis.print

4. Decrement the value of visits using decr():
client.decr 'visits'

5. Display the current value of visits:

client.get 'visits', redis.print

How it works...
Our example first sets a key called visits to an initial value of 0. It then executes incr()
twice to increment the visits key.

When we check the value of visits, we see that the value is 2.

We then call decr() to decrease the value of visits. When we check the value again,
it's now 1.

There's more...
There are also incrby() and decrby() methods to increase and decrease the values
by a specified value. For example, in the following code, we increase visits by 5:

initialize visits to 13
client.set 'visits', 13

increment visits by 5
client.incrby 'visits', 5

display visit count
client.get 'visits', redis.print

By running this, we confirm that value of visits is now 18:

Reply: 18

Storing and retrieving hashes
Redis can store sets of data, including hashes, lists, sets, and sorted sets. In this section,
we will see some examples of this.

Working with Databases

176

How to do it…
The Redis client provides the hset() method to save a single hash key-value pair for an
object, or the hmset() method to save multiple hash key-value pairs for an object:

1. Use hset()with our collection key, hash keys, and values:
client.hset 'settings', 'debug-level', 'info'
client.hset 'settings', 'smtp-use-ssl', 1

2. Use hget() to retrieve a single value from the hash:
client.hget 'settings', 'debug-level', redis.print

3. Use hmset() to set multiple hash values:
client.hmset 'settings',
 'email-host', '10.1.1.250',
 'email-use-ssl', 'true',
 'email-from', 'no-reply@domain.com', redis.print

4. Use hgetall() to retrieve all values from a hash set:

client.hgetall 'settings', (err, res) ->
 console.dir res

How it works...
In our example, we use hset() to create a new hash container called settings. Inside
settings, we add a property called debug-level with the value of info.

We then used hget() to retrieve the email-use-ssl value from the settings hash.

Next, we used hmset() to save email-host, email-use-ssl, and email-from to the
settings hash we created previously.

Using the hgetall() method, we retrieve all keys for the settings hash. We provide a
callback that displays the result as seen in the following output:

{ 'debug-level': 'info',

 'email-host': '10.1.1.250',

 'email-use-ssl': 'true',

 'email-from': 'no-reply@domain.com' }

Chapter 6

177

There's more...
There is another form of hmset() that the Redis NPM module provides that allows us to use
an object to define the key-value pairs. For example, if we wanted to save an employee object,
we could do the following.

employee =
 id: '001'
 firstName: 'Tracy'
 lastName: 'Ouellette'
 salesYtd: 4503.40

client.hmset "emp-#{employee.id}", employee, redis.print

In this example, we define an object literal named employee, which we then add to a hash
whose key is based on the employee ID.

Storing and retrieving lists
Besides hashes, Redis also natively supports lists of data by providing a number of list-related
functions including the following:

 f lpush: This function pushes a new item to the top of the list

 f rpush: This function pushes a new item to the bottom of the list

 f lpop: This function pops the item off the top of the list (removes it from the list and
returns its value)

 f rpop: This function pops the item off the bottom of the list

 f linsert: This function inserts a new item either before or after an element

 f llen: This function returns the length of the list for a given key

 f lrem: This function removes an item from the list

 f lrange: This function returns the elements within the specified range

 f ltrim: This function trims the list to a specified number of elements

Working with Databases

178

How to do it...
We will create a list by iterating over an array of 2014 car models from the Ford Motor
Company and calling lpush() with each element in the array:

1. Define our array of vehicle models:
fordModels = ['C-Max Hybrid', 'E-Series Wagon', 'Edge',
 'Escape', 'Expedition', 'Fiesta', 'Flex', 'Focus',
 'Fusion', 'Mustang', 'Shelby GT500', 'Taurus',
 'Transit Connect Wagon']

2. Use lpush() to add each item to a list named ford:

for model in fordModels
 client.lpush 'ford', model

How it works...
Once we have our list populated, we can use some of the other list operators.

For example, if we want to get the length of our ford list, we can use the llen() method
in the following way:

client.llen 'ford', redis.print

This produces the following result:

Reply: 13

We can use the lrange() method to retrieve items from the array. For example, if we
want the first five items, we can do the following:

client.lrange 'ford', 0, 4, (err, items) ->
 console.dir items

Here, we ask for items 0 to 4 (five items in total). This produces the following output:

['Transit Connect Wagon',

 'Taurus',

 'Shelby GT500',

 'Mustang',

 'Fusion']

You might notice our list is in the reverse order. This is because lists are
in the last-in-first-out order, like a stack.

Chapter 6

179

There's more...
We forgot the Ford Explorer. We can insert the explorer using the linsert() method.

When we call this method, we need to indicate the position of the item being inserted by
stating that our new element should be before or after an existing element.

For example, we can insert our explorer in the following way:

client.linsert 'ford', 'AFTER', 'Expedition',
 'Explorer', redis.print

Once we have inserted Explorer into the list, we can use lrange() to view it in its inserted
position:

client.lrange 'ford', 8, 10, (err, items) ->
 console.dir items

This produces the following array:

['Expedition', 'Explorer', 'Escape']

Deleting keys
Keys can be deleted from Redis in two basic fashions. The data can be removed automatically
through a cache expiry or by being removed manually using the del() method.

How to do it...
Redis can be used very effectively as an application cache. At the heart of this is the idea that
some of our data will expire and be invalid.

The Redis client provides the expire() and expireat() methods that allow us to specify
a key and the amount of time in seconds or a Unix timestamp, respectively.

For example, we can cache a configuration object for 5 seconds by doing the following:

client.hmset 'config', config, redis.print
client.expire 'config', 5

How it works...
We can test this expiry by setting up an interval and testing for the existence of the
configuration object as seen in the following code:

counter = 0
timerHandle = null

Working with Databases

180

checkForExpiry = ->
 counter++
 client.hgetall 'config', (err, obj) ->
 unless err?
 if obj?
 console.log "Config is still alive: #{counter} sec"
 else
 console.log "Config is expired: #{counter} sec"
 clearTimeout timerHandle
 client.quit()

timerHandle = setInterval checkForExpiry, 1000

In our sample code, we create a method that increments our counter and then checks for the
existence of the configuration object and displays the result. If it does not exist, we stop our
timer and close our client connection.

We then use setInterval() to call our checkForExpiry() method every 1,000
milliseconds.

The result can be seen in the following output:

Config is still alive: 1 sec

Config is still alive: 2 sec

Config is still alive: 3 sec

Config is still alive: 4 sec

Config is still alive: 5 sec

Config is expired: 6 sec

There's more...
We can also remove keys immediately by calling the del() method. For example, we can
manually delete our configuration object by calling del() in the following way:

client.del 'config', redis.print

Chapter 6

181

Working with MongoDB
MongoDB is a no-SQL document database. Instead of saving data as rows within tables with
a fixed column structure, a document database offers much more flexibility allowing you to
simply store objects, retrieve, update, and delete complex objects.

For example, you might have customer orders, invoices, and payments. In a relational SQL-
based database, this data would likely be spread across four or more tables: Customers,
Orders, Invoices, Payments, and several other master tables (Addresses, Cities, Order Details,
Products, and so on). To determine whether a customer's account has been paid in full, we
need to query the data across a number of tables.

In MongoDB, we can store a customer as a document. This document could contain a
collection of orders; each order in turn could contain a collection of payment details.

Document databases, in general, greatly facilitate the retrieval of comprehensive information
for a given entity.

In this section, we will use CoffeeScript to communicate with a MongoDB database to perform
create, read, update, and delete operations.

You can find more information about MongoDB, including information on downloading,
installing, and using MongoDB from the project's home page located at http://www.
mongodb.org/.

Opening a connection
In this section, we will demonstrate how to connect to a Mongo database.

Getting ready...
Once Mongo has been installed, install the Mongo driver for Node. This is available as
an NPM module and can be installed using the following command:

npm install mongodb --save

How to do it...
Once the driver is installed, we can create a client connection:

1. Require the mongodb package and grab MongoClient:
MongoClient = require('mongodb').MongoClient

Working with Databases

182

2. Define the connection URL specifying the host, port, and database name:
url = 'mongodb://localhost:27017/test'

3. Use the MongoClient.connect() function to establish a connection to the test
database:

MongoClient.connect url, (err, db) ->
 unless err?
 console.log 'Connection established'
 else
 console.log err

 db.close()

How it works...
In this example, we grab the MongoClient object, which provides access to the Mongo
database.

We then define a connection URL. The format of this URL is as follows:

mongodb://[username:password@]host:port/database

In our example, we connect to Mongo's default port of 27017 on localhost with no
username or password.

We finish by executing the client's connect() function with the URL and a callback.
Our callback will be called with an error object and an instance of the database object.

If our connection is successful, the error object will be null.

Inserting documents
Mongo stores documents in collections. In this section, we will see how to insert a document
object into a collection.

How to do it...
When we save documents to our database, we do so through a collection object as seen in
the following example:

1. Open a connection:
MongoClient = require('mongodb').MongoClient
url = 'mongodb://localhost:27017/test'
MongoClient.connect url, (err, db) ->

Chapter 6

183

2. Grab an instance of the employees collection:
collection = db.collection 'employees'

3. Define an array of employee objects:
 employees =[
 { id: 1, first: 'Tracy', last: 'Ouellette', salesYtd: 22246 }
 { id: 2, first: 'Chris', last: 'Daniel', salesYtd: 3876 }
 { id: 3, first: 'Jason', last: 'Alexander', salesYtd: 4095 }
 { id: 4, first: 'Jennifer', last: 'Hannah', salesYtd: 8070 }
 { id: 5, first: 'Maxx', last: 'Slayde', salesYtd: 2032 }
]

4. Insert the employee object into the employees collection:

 collection.insert employees, (err, result) ->
 unless err?
 console.dir result
 else
 console.log err

 db.close()

How it works...
In our example, we open a connection and grab the employees collection using the database
instance's collection() function. Next, we define an employee document and use the
collection's insert() function.

The insert() function takes the document to be added and a callback as arguments. The
callback receives the error and result values.

In our example, we display the value of result as follows.

We then open a connection to the database, and once opened, we use the collection()
method to retrieve the employee collection. We then insert our employee object into the
employee collection. If successful, the inserted documents are displayed; a portion of this
can be seen in the following output:

{ result: [Getter],

 connection: [Getter],

 toJSON: [Function],

 toString: [Function],

 ops:

 [{ id: '001',

Working with Databases

184

 firstName: 'Tracy',

 lastName: 'Ouellette',

 salesYtd: 4503.4,

 _id: 54442757e1fc6d743f84dac7 },

 ...

]}

Finding documents
Once our documents have been added to the collection, we can use a number of methods
provided by the Mongo driver to find them. These include the following:

 f find(): This method finds all documents that match the query

 f findOne(): This method finds the first document that matches the query

How to do it...
The find() method has a tremendous amount of flexibility that allows us to specify query
parameters, provide sorting instructions, and apply limits perfect to page operations.
With no options specified, the find() method returns a cursor that includes all records
in the collection.

In this example, we return all employees and display each one:

1. Open a connection:
MongoClient = require('mongodb').MongoClient
url = 'mongodb://localhost:27017/test'
MongoClient.connect url, (err, db) ->

2. Create a helper function to display an employee document:
displayEmployee = (emp) ->
 console.log "#{emp.id}\t" +
 "#{emp.first} #{emp.last}\t" +
 "#{emp.salesYtd}"

3. Get a handle to the employees collection:
 collection = db.collection 'employees'

4. Use find() to fetch all employee documents:
 collection.find().toArray (err, docs) ->
 console.log "ALL"
 (displayEmployee doc) for doc in docs

Chapter 6

185

5. Use findOne() to fetch a single employee document:

 collection.findOne {id: 3}, (err, doc) ->
 console.log "\nONE"
 displayEmployee doc if doc?

How it works...
In this sample, we created a helper method that will display an employee item. We then open
a connection and attach it to the employees collection.

The find() function takes a number of arguments but when called with none, all records are
returned. The return value is a MongoDB cursor instance. We call the toArray() method
on this cursor and provide a callback that can then operate on the returned records once
the find() operation is completed. In the preceding sample, we simply display each of the
employee items as seen in the following output:

ALL

1 Tracy Ouellette 22246

2 Chris Daniel 3876

3 Jason Alexander 4095

4 Jennifer Hannah 8070

5 Maxx Slayde 2032

We then retrieved a single document by using the findOne() function. This function takes
a query object and a callback as arguments. The callback will receive the document that
is returned. For example, we can find an employee document that has an ID of 3 using the
following code:

collection.findOne {id: 3}, (err, doc) ->
 console.log "\nONE"
 displayEmployee doc if doc?

In our example, we provide the object literal {id: 3} as our query parameter.

There's more...
By default, Mongo assumes we want a document where the document has a matching
property to query a parameter's value. We can specify other types of comparisons as well.

For example, we can call the find() method to retrieve all employees whose sales are
greater than $5,000.00 as seen in the following code:

collection.find({salesYtd: {$gt: 5000}}).toArray (err, docs) ->
 console.log "\nGREATER THAN $5,000"
 (displayEmployee doc) for doc in docs

Working with Databases

186

In this sample, we use the $gt compare operator and specify 5,000 as its value.

Mongo supports the following comparison operators:

 f $lt: Less than

 f $lte: Less than or equal to

 f $gt: Greater than

 f $gte: Greater than or equal to

 f $in: Value is contained in the provided query

 f $nin: Value if not contained in the provided query

 f $ne: Is not equal to

We can pass an options object to our find() method. There are a number of options that
can be used, including skip and limit (for paging operations), and sort.

We can specify a sort order, including a sort: {} property to our options object:

collection.find({}, {sort: {firstName: 1}}).toArray \
 (err, docs) ->
 console.log "\nALL SORTED BY FIRST NAME"
 (displayEmployee doc) for doc in docs

In the preceding code, we pass an empty query object {}, which will return all records. Then,
we specify the sort order by providing an options object with a sort property. In this case, our
sort value is {firstName: 1}. This tells Mongo to sort the results by the firstName field in
ascending order. The result can be seen in the following output:

ALL SORTED BY FIRST NAME

2 Chris Daniel 3876

3 Jason Alexander 4095

4 Jennifer Hannah 8070

5 Maxx Slayde 2032

1 Tracy Ouellette 22246

We can change the direction of the sort by using a negative one as follows:

collection.find({}, {sort: {firstName: -1}}).toArray \
 (err, docs) ->
 console.log "\nALL SORTED BY FIRST NAME DESCENDING"
 (displayEmployee doc) for doc in docs

Chapter 6

187

This produces the following output:

ALL SORTED BY FIRST NAME DESCENDING

1 Tracy Ouellette 22246

5 Maxx Slayde 2032

4 Jennifer Hannah 8070

3 Jason Alexander 4095

2 Chris Daniel 3876

If we wanted to sort by more than one property, we can do this by including other sorting
properties with their sort order. For example, to sort first by firstName in ascending
order and then by salesYtd in descending order, our option object would be {sort:
{firstName: 1, salesYtd: -2}}.

Updating documents
The Mongo driver provides two functions, save() and update() to save documents to a
collection.

The save() function will replace an entire document with the object being persisted, while
the update() function will update only parts of the selected document.

How to do it...
We will use the save() function to update an existing employee document:

1. Open a connection:
MongoClient = require('mongodb').MongoClient
url = 'mongodb://localhost:27017/test'
MongoClient.connect url, (err, db) ->

2. Grab an instance of the employees collection:
 collection = db.collection 'employees'

3. Find an employee document:
 collection.findOne {id: 3}, (err, employee) ->

4. If we find the employee, update its year-to-date sales figure and add the employee's
department:
 if employee?
 employee.salesYtd = 6550
 employee.department = 'Sales'

Working with Databases

188

5. Use the save() function to save the updated employee document and display the
results:

 collection.save employee, (err, res) ->
 collection.findOne {id: 3}, (err, employee) ->
 console.dir employee if employee
 db.close()

How it works...
In our sample, we open our database and get the employees collection. We then get the
employee whose id is equal to 3.

If we get a matching document, we update its salesYtd value and add a new department
property.

We then save the changed document using save().

If we were to then query the employee object again, we will see that salesYtd has been
updated and it now has a department property, as seen in the following results:

{ id: 3,

 first: 'Jason',

 last: 'Alexander',

 salesYtd: 6550,

 _id: 52e56d3df4b8e76c5770ed4a,

 department: 'Sales' }

You may be wondering what happens if we save a document that
does not have an _id property. Mongo will add it to the collection
as a new document, effectively making treating the call to save()
as an insert.

Using save() can be useful in situations where a document has undergone significant
changes but it can be slower for a larger document than using the update() function.

There's more...
The update() function allows us to save incremental changes to a document. It can be used
to change the values of existing properties or add new properties all together.

Chapter 6

189

We could have written our previous example to use an update instead:

collection.update {id: 3}, \
 {$set: {salesYtd: 6550, department: 'Sales'}}, \
 (err, result) ->
 collection.findOne {id: 3}, (err, employee) ->
 console.dir employee if employee
 db.close()

In this example, we pass a query to the update method to restrict the update to the record with
an ID of 3. We also pass an options object that specifies a $set object. Properties associated
with the $set object will be updated or added to the documents matching the query.

Be sure to specify the properties you want to update on $set; otherwise,
the entire document will be overwritten effectively deleting all of its
content.

By default, updates are limited to a single document. This prevents unintentional updates
to an entire collection. We can override this by specifying the {multi: true} option.
For example, if we wanted to set the department of all employees to be "sales", we can
accomplish this in the following manner:

collection.update {}, \
 {$set: {department: 'Sales'}}, \
 {multi: true}, \
 (err, res) ->
 console.log err if err?
 console.dir res if res?

In the preceding code, we added the multi flag to inform Mongo we wish to apply this change
to all documents matching our query. In this particular case, our query is {}, which matches
all documents in the collection.

Deleting documents
Mongo provides a remove() method to delete documents from a collection. We can pass
a query object to remove() that specifies the document or documents to be removed.

Working with Databases

190

How to do it...
We will remove the employee document, where the employee's id is 3.

1. Open a connection:
MongoClient = require('mongodb').MongoClient
url = 'mongodb://localhost:27017/test'
MongoClient.connect url, (err, db) ->

2. Grab an instance of the employees collection:
 collection = db.collection 'employees'

3. Use the remove() function to remove a document:
 collection.remove {id: 3}, (err, res) ->
 console.dir res

How it works...
In the preceding code, once the database has been opened and the employees collection is
selected, we call the remove() function with a query object of {id: 3} and a callback so
that we can view the response.

The result of the callback will contain the number of documents affected. In our case, it is
one document. If our query had been something like {salesYtd: {$lt: 5000}}, then
all documents having a salesYtd value less than $5,000.00 would have been deleted.

Using remove() is fine if we want to remove entire documents, but what if we want to only
remove parts of a document or documents?

We can use the update() method for this. Instead of using the $set option property,
we can specify a $unset option property, as seen in the following code:

collection.update {}, \
 {$unset: {salesYtd: ''}}, \
 (err, res) ->
 console.log err if err?
 console.dir res if res?
 db.close()

In our example, we attempt to update all documents by removing their salesYtd property.
If we run this, we see that the number of records affected, returned by the update() method,
is one. We need to specify the {multi: true} option to update all documents matching our
query as seen in the following revision:

collection.update {}, \
 {$unset: {salesYtd: ''}}, \
 {multi: true}, \
 (err, res) ->
 console.log err if err?
 console.dir res if res?

Chapter 6

191

Working with CouchDB
CouchDB is an open source Apache project and, like MongoDB, is a no-SQL, document
database.

In this section, we will see how to use CoffeeScript to perform create, read, update,
and delete actions with a CouchDB database.

You can find more information on CouchDB, including information on downloading,
installing, and using CouchDB from the project's home page located at http://couchdb.
apache.org/.

Opening a connection
We will use the cradle NPM package to connect to our CouchDB server. In this example, we
will open a connection and verify the existence of a database and, if it does not exist, we will
create it.

Getting ready...
Once CouchDB has been installed, install cradle with the following command:

npm install cradle --save

How to do it...
1. Require cradle and create a connection to a database named test:

cradle = require 'cradle'
db = (new(cradle.Connection)).database 'test'

2. Use the exists() function to see whether the test database exists:
db.exists (err, exists) ->

3. If it does not, execute the create() function to create it:

 if exists
 console.log 'test database exists'
 else
 console.log 'test database does not exist'
 db.create()
 console.log 'test database has been created'

Working with Databases

192

How it works...
Once cradle is installed, you can require it, create a connection, and connect to a database.

Once we have a database object, we can use it to communicate with the database. First,
let's verify that the database exists.

The database object has an exists() function that takes a callback. Our callback will
receive a value of true if the database exists or false if it does not.

This allows us to create the database if one does not exist. We can do this by calling the
create() method.

There's more...
In our example, we connect to the default host and port. For CouchDB, this is
127.0.0.1:5984. We can specify a different host and port using the following syntax:

db = (new(cradle.Connection)(hostAsString, portAsInteger).database
'test'

We can also pass connection parameters as an object literal. This also allows us to specify
SSL and authentication settings:

db = (new(cradle.Connection)(host, 443, {
 auth: { username: 'user', password: 'password' }
).database 'test'

Creating documents
CouchDB is a document-type database, so our data is in the form of JSON objects. These
objects can be as simple or as complex as needed.

In our examples, we will work with our employee database with employees and departments.

Cradle provides a save() method to allow us to create new records in our CouchDB database.

How to do it...
We will use the save() function:

1. Require cradle and create a connection to a database named test:
cradle = require 'cradle'
db = (new(cradle.Connection)).database 'test'

Chapter 6

193

2. Define an array of employees to be added to the test database:
employees =[
 { id: 1, first: 'Tracy', last: 'Ouellette', salesYtd: 22246 }
 { id: 2, first: 'Chris', last: 'Daniel', salesYtd: 3876 }
 { id: 3, first: 'Jason', last: 'Alexander', salesYtd: 4095 }
 { id: 4, first: 'Jennifer', last: 'Hannah', salesYtd: 8070 }
 { id: 5, first: 'Maxx', last: 'Slayde', salesYtd: 2032 }
]

3. Execute save() for each employee in our array:

for employee in employees
 db.save "EMP:#{employee.id}", employee

How it works...
The save() function takes an optional document key, the object being saved, and an optional
callback that provides access to the save's result. Note that if a key is not provided, CouchDB
will provide one for you.

If a key is provided, it must be a string value.

We save an employee object by calling save() passing the employee's ID formatted as
EMP:{id} as the document key, the employee object, and a callback.

When the save operation is completed, the callback is called with an error object and a result
object. If the operation is completed without an error, the error object will be null. The result
object contains ok, id, and rev properties as seen in the following result:

{ ok: true,
 id: 'EMP:1',
 rev: '1-90c3c64a6f2c9d2692fd622f89e06ae7' }

Note that if we did not pass a document key to save, CouchDB would
have created one for us. If you need the document's autogenerated
key, use the result's ID.

When using the save() method, the entire object is replaced. This means in order to update
an object using the save() method, you must first get the document, make your changes,
and save it again.

Working with Databases

194

Updating documents
You can use the merge() method to add or update specific attributes.

How to do it...
In this example, we will add department and update the year-to-date sales for EMP:3:

1. Require cradle and create a connection to a database named test:
cradle = require 'cradle'
db = (new(cradle.Connection)).database 'test'

2. Define an update object with the properties we want to change:
update =
 salesYtd: 3405.98
 department:
 id: 1
 description: 'Sales'

3. Execute the merge() function to update employee EMP:3:

db.merge 'EMP:3', update, (err, result) ->
 unless err?
 console.dir result
 else
 console.log err

How it works...
In this example, we create an object literal called update. We then call the merge() method
passing our document key and update object.

After executing our merge() method, the EMP:3 document is updated and we are provided
with a results object that looks like the following:

{ ok: true,

 id: 'EMP:3',

 rev: '2-89664469ad471a902ef769811c61dbe3' }

Reading documents
The cradle module provides a get() method to retrieve documents from CouchDB using a
key or an array of keys.

Chapter 6

195

How to do it...
We will use get() with a single key and then with an array containing two keys to retrieve
employee documents.

1. Require cradle and create a connection to a database named test:
cradle = require 'cradle'
db = (new(cradle.Connection)).database 'test'

2. Create a helper function to display an employee:
displayEmployee = (emp) ->
 console.log "Employee: #{emp.first} #{emp.last}"

3. Get a single employee with get():
db.get 'EMP:3', (err, doc) ->
 console.log 'Single Document:'
 unless err?
 displayEmployee doc
 else
 console.dir err

4. Get multiple employees with get():

db.get ['EMP:1', 'EMP:5'], (err, docs) ->
 console.log '\nMultiple Documents:'
 unless err?
 (displayEmployee item.doc) for item in docs

How it works...
When using get(), we pass a callback, which will be called once the document(s) have been
retrieved. This callback is called with an error object and an object representing the query
results.

When reading a single document, the result is the document itself (if the key is found). When
reading multiple keys, the result is a collection of objects. Each object has a doc property
representing the matching document itself.

When we execute this sample, we get the following output:

Single Document:

Employee: Jason Alexander

Multiple Documents:

Employee: Tracy Ouellette

Employee: Maxx Slayde

Working with Databases

196

When retrieving a single document, if the key is not found, callback is called with an error
object with a not_found error value. When retrieving multiple documents using an array
of keys, any key that is not found is simply omitted from the results.

Deleting documents
To delete documents from CouchDB, cradle provides a remove() function, which takes a
document key that identifies the document to be removed, an optional revision number,
and a callback function.

How to do it...
We will use the remove() function to remove documents:

1. Require cradle and create a connection to a database named test.
cradle = require 'cradle'
db = (new(cradle.Connection)).database 'test'

2. Remove EMP:3 using remove():
db.remove 'EMP:3', (err, res) ->
 unless err?
 console.dir res
 else
 console.dir err

3. Let's try getting EMP:3, which should be not found:

 db.get 'EMP:3', (err, res) ->
 console.log err if err?
displayEmployee = (emp) ->
 console.log "Employee: #{emp.first} #{emp.last}"

How it works...
In this example, we execute the remove() function by passing the document key of
EMP:3 and a callback. Upon the successful deletion, our callback is called with the successful
result, as seen in the following result:

{ ok: true,

 id: 'EMP:3',

 rev: '4-4d896f03b66e8b88e15ab2c5b852aaff' }

When we try to get the document, we receive the following message:

{ error: 'not_found', reason: 'deleted' }

Chapter 6

197

In CouchDB, documents that are removed are not really deleted, at least
not right away. Documents that are removed have a _deleted: true
value added to them. Documents with this attribute are not returned when
performing queries. Documents are not actually deleted until the database
has been purged. See the project page for the _purge command at
http://wiki.apache.org/couchdb/Purge_Documents.

Querying documents using views
CouchDB provides highly indexed and optimized views as a way of searching for documents
matching specified criteria.

We can use cradle to create, update, remove, and query views in our database.

Views in CouchDB are simply a wrapper for a function. This function is executed for every
document in the database. If the document meets the specific criteria, the function emits a
result by passing a result key and result value. This result may be the document itself, but it
can be anything you want it to be.

For example, if we had a database of vehicles, we could create a view that provides us with
only two-wheeled vehicles using the following function:

(doc) ->
 if doc.wheelCount? and doc.wheelCount is 2
 emit doc._id, doc

In this example, our method will receive a document. We then verify that the document has
a wheelCount property and, if wheelCount is equal to two. If it is, we simply return the
document itself.

How to do it...
To create a view that returns only two-wheeled vehicles in cradle, we will save a document to
CouchDB's internal _design collection. This document is the view itself.

1. Require cradle and create a connection to a database named test:
cradle = require 'cradle'
db = (new(cradle.Connection)).database 'vehicles'

2. Create an object literal defining our view:
view =
 twoWheels:
 map: (doc) ->
 if doc.wheelCount? and doc.wheelCount is 2
 emit doc._id, doc

Working with Databases

198

3. Save the view:
db.save '_design/query', view

4. Use the view() function to execute the new view:

db.view 'query/twoWheels', (err, results) ->
 unless err?
 console.dir results
 for doc in results
 console.log doc.value.type

How it works...
In this example, we create an object that has a property named twoWheels. This property
is an object that has a single map() method.

We then save our view document with a _design/query key.

Next, we use the view() method to execute the query/twoWheels view. We pass a
callback to handle the return value. In this case, the following object is returned:

[{ id: 'bicycle',

 key: 'bicycle',

 value:

 { _id: 'bicycle',

 _rev: '1-13ef40d4b48d59d42a9735d3c8ea1e06',

 type: 'Bicycle',

 wheelCount: 2 } },

 { id: 'moped',

 key: 'moped',

 value:

 { _id: 'moped',

 _rev: '1-692f3dd62fc6c7a608157866313e7f03',

 type: 'Moped',

 wheelCount: 2 } },

 { id: 'motorcycle',

 key: 'motorcycle',

 value:

 { _id: 'motorcycle',

 _rev: '1-14b6da9ee717d5f24fb03b91b87a9e9c',

 type: 'Motorcycle',

 wheelCount: 2 } }]

Chapter 6

199

You can see in the object passed to our callback that we have an array of objects. Each object
in the array contains a value property that contains the object we emitted from our view's
map() function.

There's more...
You can use views to perform mapping and reduction of our data. This allows our views to
return aggregate results. For example, we could return the vehicle count by wheelCount
using CouchDB's map-reduce functionality for views.

For this, we will create a view that has the map() and reduce() methods:

cradle = require 'cradle'
db = (new(cradle.Connection)).database 'vehicles'

view =
 byWheelCount:
 map: (doc) ->
 emit doc.wheelCount, 1
 reduce: (key, values, rereduce) ->
 return (sum values)

db.save '_design/aggregate', view

This view is similar to our first view, except we also define a reduce() method as well. Our
map() method returns a result with a key of the wheel count and a value of 1.

We then define our reduce function as simply returning the sum of the values for the given
key. To visualize what is happening, consider the following result of our mapping function:

[{ id: 'unicycle', key: 1, value: 1 },

 { id: 'bicycle', key: 2, value: 1 },

 { id: 'moped', key: 2, value: 1 },

 { id: 'motorcycle', key: 2, value: 1 },

 { id: 'tricycle', key: 3, value: 1 },

 { id: 'car', key: 4, value: 1 },

 { id: 'truck', key: 4, value: 1 },

 { id: 'van', key: 4, value: 1 }]

The result of our mapping call is then passed to our reduce() function as an array of elements
grouped by key and an array of values for that key. To help visualize this, consider the following.

[{ key: 1, values: [1] },

 { key: 2, values: [1, 1, 1] },

 { key: 3, values: [1] },

 { key: 4, values: [1, 1, 1] }]

Working with Databases

200

Once our view is created, we can call the view.

cradle = require 'cradle'
db = (new(cradle.Connection)).database 'vehicles'

options =
 group: true

db.view 'aggregate/byWheelCount', options, (err, results) ->
 unless err?
 console.log "Wheels\tRecords"
 for result in results
 console.log "#{result.key}\t#{result.value}"

We then call the view() method as we did previously, but in this example, we include an
options object that tells cradle to execute the query to return a grouped result.

Note that there are other options that can be passed to our view function
that allow us to specify a start and end key range, sorting direction, grouping
level, limit the number of results, and skip a specified number of results
(great for paging). You can see these options in the CouchDB documentation
at http://wiki.apache.org/couchdb/HTTP_view_API.

Running our aggregate query displays the following results:

Wheels Records

1 1

2 3

3 1

4 3

You can see that we have one record that has three wheels, three records that have four
wheels, and so on.

201

7
Building Application

Services

In this chapter, we will cover the following recipes:

 f Working with base64 encoding

 f Working with domain name services

 f Parsing a URL into its various components

 f Creating RESTful web services

Introduction
Building rich Internet-based applications involves creating client-side application code
responsible for rendering views for the user as well as handling user interactions. Requests
will be made to the server to load or persist data, and to perform authentication and
authorization or other resource-intensive tasks.

In this chapter, we will see how we can use CoffeeScript to perform common Internet-related
tasks and create RESTful services to be used by our applications.

Working with base64 encoding
Base64 encoding allows us to transform binary data into text data. The reasons for this are
rooted in the history of network protocols, but it is still a widely used form of encoding when
shipping binary data.

Building Application Services

202

For example, binary e-mail attachments are first converted to base64 before being sent. It
happens to be a handy way to include images within the context of an e-mail body.

In these recipes, we will see how to encode and decode binary and base64-encoded files.

Encoding a string as base64
Node provides a string Buffer class that can represent text data in a variety of encodings,
including ASCII, UTF-8, and Base-64. This Buffer class will be the core of our conversion
operations.

Getting ready
Node supports base64 encoding without the need of an external module. We will be using
Node's built-in capabilities.

How to do it...
We will create a Node module that exposes a method to convert ASCII toBase64() and
another Node to convert to ASCII fromBase64():

1. Create a function named toBase64:
toBase64 = (text) ->
 return (new Buffer text).toString('base64')

2. Create a function named fromBase6:

fromBase64 = (base64Text) ->
 return (new Buffer base64Text, 'base64').toString 'ascii'

How it works...
Both the toBase64() and fromBase64() functions create a new instance of Node's
Buffer class by providing a text value to the Buffer constructor. This text value represents
the value the new Buffer object will contain.

Node's Buffer class can be initialized by providing a buffer size (creates an empty buffer
of the specified size), an array of octet (character) values, or a string value with an optional
encoding. Buffer will default to UTF-8 for its encoding

Once we have a buffer of values, we use the Buffer object's toString() method to convert
the buffer to a specified encoding and return its result.

We specify the encoding type by passing a string value. These values include ascii, utf8,
utf16le, ucs2, base64, binary, and hex.

Chapter 7

203

We can use these functions in the following way:

original = 'CoffeeScript rocks!'
encoded = toBase64 original
conole.log "#{original} becomes #{encoded}"
decoded = fromBase64 encoded
console.log "#{encoded} becomes #{decoded}"

Executing this example we receive the following output:

CoffeeScript rocks! becomes Q29mZmVlU2NyaXB0IHJvY2tzIQ==

Q29mZmVlU2NyaXB0IHJvY2tzIQ== becomes CoffeeScript rocks!

Encoding a binary file as base64
Sometimes, we have a need to store or use binary files with systems that were not designed to
properly handle binary data. In this section, we will see how to convert binary files to base64
text and vice versa.

Getting ready
We will use the atob and btoa NPM modules to convert from ASCII to binary and binary to
ASCII, respectively.

These can be added to our project by performing the following installation commands:

npm install atob

npm install btoa

How to do it...
We will create a method to encode a binary file into base64 text file and another to decode a
base64 text file back to its binary format:

1. Require the filesystem (fs), btoa, and atob packages:
fs = require 'fs'
btoa = require 'btoa'
atob = require 'atob'

2. Create a function to encode a file:
encode = (source, destination, callback) ->
 fs.readFile source, (err, data) ->
 base64 = btoa data
 fs.writeFile destination, base64, 'ascii', (err) ->
 callback() if callback?

Building Application Services

204

3. Create a function to decode a file:

decode = (source, destination, callback) ->
 fs.readFile source, 'ascii', (err, data) ->
 binary = atob data
 fs.writeFile destination, binary, 'binary', (err) ->
 callback() if callback?

How it works...
The sample code references Node's fs library and the atob and btoa modules.

Both the previous methods accept source and destination parameters.

The encode() method reads the contents of a binary data file and uses the btoa() method
to convert the binary contents to base64. We then write the base64 text to the file specified by
the destination parameter.

The decode() method performs the opposite operation. It reads the contents of the base64
text file and uses atob() to convert this back to binary data. It then writes the binary data to
the file specified by the destination parameter.

With these methods, we can easily convert binary files to base64 text using the following
command in our application:

encode 'logo.png', 'logo.encoded', ->
 console.log 'Finished encoding file.'

We can also convert a base64 file to binary using the following command in our application:

decode 'logo.encoded', 'logo.decoded.png', ->
 console.log 'Finished decoding file'

Working with domain name services
Domain names provide convenient and easy-to-remember aliases for IP addresses so that
we can navigate to websites and backend servers. Domain name services are responsible
for converting domain names such as http://www.coffeescript.org or http://www.
google.com to actual IP addresses.

In the following recipe, we will see how to look up the IP address for a domain name and how
to perform a reverse lookup for an IP address.

Chapter 7

205

Retrieving the IP address for a domain name
In this section, we will demonstrate how to look up an IP address for a given domain name.

Getting ready
We will be using Node's built-in DNS module to perform our domain lookups. There is nothing
additional to install to perform this task.

How to do it...
We can perform a lookup in the following manner:

1. Import Node's dns module:
dns = require 'dns'

2. Create a function to execute the lookup() function:

lookupIpAddress = (domainName, callback) ->
 dns.lookup domainName, (err, ipAddress) ->
 if err?
 console.log err
 else
 callback ipAddress

How it works...
In the previous code, we created a reference to Node's DNS module. We then created
a method that wraps the dns.lookup() method, which returns an error or an object
representing the lookup results.

We can use our method in the following way:

lookupIpAddress 'coffeescript.org', (result) ->
 console.log "CoffeeScript: #{JSON.stringify result}"

lookupIpAddress 'google.com', (result) ->
 console.log "Google: #{JSON.stringify result}"

This will produce the following output:

CoffeeScript: "207.97.227.245"

Google: "74.125.226.73"

Building Application Services

206

There's more...
The dns.loopup() method will return the first IPv4 or IPv6 address that is found. A third,
optional parameter will receive either a 4 or 6 to indicate whether the address was indeed an
IPv4 or an IPv6, accordingly.

For example, we can modify our code to display this as follows:

dns = require 'dns'

lookupIpAddress = (domainName, callback) ->
 dns.lookup domainName, (err, ipAddress, family) ->
 if err?
 console.log err
 else
 callback ipAddress, family

lookupIpAddress 'coffeescript.org', (result, family) ->
 console.log "CoffeeScript: #{JSON.stringify result} IPv#{family}"

lookupIpAddress 'google.com', (result, family) ->
 console.log "Google: #{JSON.stringify result} IPv#{family}"

We added the optional family parameter to our lookup callback method. We then return it
and use it on our output. With this minor change, we can see that both the results are IPv4:

CoffeeScript: "207.97.227.245" IPv4

Google: "74.125.226.6" IPv4

It is possible that a domain lookup may return no data if the domain address is invalid or if
there is a network failure of some sort. In this case, the lookup() function will pass an error
code to the callback method of the lookup.

Common values for a DNS error are as follows:

 f dns.NOTFOUND: This error is generated when the lookup() function returns no
data. Normally, this is because the domain name is invalid.

 f dns.NODATA: This error is generated when the server returns an empty response to
our lookup() call.

 f dns.SERVFAIL: This error is generated when the server returns a general error to
our lookup() call.

Chapter 7

207

Retrieving a hostname for an IP address
Node's DNS module also allows us to perform a reverse domain lookup by providing an IP
address and retrieving the domain name, if one is registered.

Getting ready
We will be using Node's built-in DNS module to perform our reverse domain lookups. There
is nothing additional to install to perform this task.

How to do it...
We will use the dns.reverse() method to perform the reverse lookup. We provide an IP
address as a string, and a callback. Once completed, our callback will be called with an array
of resulting domain names:

1. Import Node's dns module:
dns = require 'dns'

2. Create a function to use the reverse() function:

reverseLookup = (ipAddress, callback) ->
 dns.reverse ipAddress, (err, result) ->
 if err?
 console.log err
 else
 callback result

How it works...
In the reverseLookup() method, we pass an IP address and a callback method. Once the
lookup is completed, our callback method will be called with the lookup result.

We can then call this method in the following way:

reverseLookup '74.125.226.73', (domains) ->
 console.log "74.125.226.73: #{JSON.stringify domains}"

reverseLookup '207.97.227.245', (domains) ->
 console.log "207.97.227.245: #{JSON.stringify domains}"

The results might not be exactly what you expect. For example, you can see in the following
output that the IP address does not return to the domain we originally performed an IP
lookup for:

74.125.226.73: ["lga15s44-in-f9.1e100.net"]

207.97.227.245: ["pages.github.com"]

Building Application Services

208

We can test our results by opening our browser and typing the odd domain name for Google.
You will find that it works.

Parsing a URL into its various components
Our modern applications often need to communicate with a backend server. In the
server-side code or service code, we may need to analyze the requesting URLs.

In this section, we will investigate ways to parse URLs into their constituent components.

Getting ready
We will be using Node's built-in URL parsing functionality to perform our URL manipulations.
There is nothing additional to install to perform this task.

How to do it...
To demonstrate this process, we create a collection of parsed URL properties, execute the
parse() function, and then iterate over the results:

1. Import Node's url module:
url = require 'url'

2. Execute the parse() function with a sample URL:
address = 'http://coffeescript.org:80/?r=home/#loops'
urlInfo = url.parse address, true

3. Display each of the urlInfo object's properties:
for property of urlInfo
 if urlInfo[property]?
 value = JSON.stringify urlInfo[property]
 if value?
 console.log "#{property.toUpperCase()}: #{value}"

How it works...
In the preceding code, we used Node's built-in url.parse() method to break a sample URL
into its constituent parts.

The parse() method takes two parameters. The first parameter is the URL to be parsed
and is required. The second parameter is an optional Boolean value that tells the parse()
method to convert any URL query parameters into an actual object literal. By default, this will
be false and the query parameters will be returned as a single string.

Chapter 7

209

The parse() method will return an object literal with properties representing the various URL
pieces. We use CoffeeScript's for...of loop to traverse urlInfo object's properties and
display each to demonstrate the result of parse().

Executing this will produce the following output:

Notice that our query property displays {"r":"home/"}. This is because we passed the
value of true to our parse() method. If we omitted this Boolean value, we would have the
following output for query:

QUERY: "r=home/"

There's more...
Along with parsing URLs, the Node URL module also allows us to reassemble URLs based
on the various properties we looked at.

For example, if we modified the urlInfo object by providing a new object literal for the query
parameter, we can use the url.format() method as follows:

urlInfo.query = { q: 'CoffeeScript Books', p: 4}
urlInfo.search = ''
newAddress = url.format urlInfo
console.log newAddress

This produces the following output:

http://coffeescript.org:80/?q=CoffeeScript%20Books&p=4#loops

Node also provides the querystring module to specifically deal with query string data. For
example, we can pass an object to the querystring.stringify() function to create a
string representing the URL query string version of the object. Conversely, we can use the
querystring.parse() function by passing it in a string and an object will be returned:

Building Application Services

210

querystring = require 'querystring'

employee =
 firstName: 'Tracy'
 lastName: 'Ouellette'
 salesYtd: [2324.23, 432.34]

params = querystring.stringify employee
console.log params

parsed = querystring.parse params
console.log parsed

This displays the following output:

Creating RESTful web services
In this collection of recipes, we will create a simple HTTP server using Node and a popular web
application called express. Express is a Node package used to create small web applications.
It provides support to map HTTP verbs to URL paths, which makes it ideal to set up a quick
HTTP server to host an API.

In this section, we will look at managing our application's dependencies as well as building
a simple HTTP server and a web API using express.

Managing dependencies with package.json
Nearly all but the extremely simple applications will require one or more external
dependencies. Typically, these are NPM modules. In this section, we will look at using a
package configuration file. This allows us to configure or project and manage dependencies.

Getting ready
We can create a package.json file by using NPM. Enter the following command in your
terminal or command window:

npm init

Chapter 7

211

How to do it...
The npm init command will present you with a series of questions and some with default
values. The following table lists the prompts and their default values:

Prompt Default Description
name Name of the parent

directory
The name of your project

version 1.0.0 Your project's version number
description blank A description of your project
entry point Blank The main JavaScript file for your project
test command Blank The command to be executed to run your

project's test via the npm test command
git repository Blank The Git repository for your project, if any
keywords Blank For an NPM package project, the keywords

help people find your package
author Blank Your name <email address>
license ISC Your project's license (ISC is a permissive-free

software license functionally equivalent to the
simplified BSD and MIT licenses)

When we come to the end, the package.json contents are displayed and we are asked
whether they are okay. Pressing Enter will accept the changes and write them to the file.

Note that if a package file already exists, running npm init will display the
prompts with default values. When it writes the package file, it will maintain
your custom values.

Once completed, your package.json file will look similar to the following:

{
 "name": "Sample",
 "version": "1.0.0",
 "description": "A sample package.json file",
 "main": "test.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Mike Hatfield <mwhatfield@outlook.com>",
 "license": "ISC",
 "keywords": []
}

Building Application Services

212

How it works...
A package file also allows us to manage our applications dependencies. For example, because
our application requires Express, we can use the following command line to install Express
and add it to our package file as a dependency:

npm install express@4.9.5 --save

The --save option will create or add a dependencies section to our package file that looks
like the following:

"dependencies": {
 "express": "^4.9.5"
}

Here, we see that express has been added as a dependency to our project, specifically version
4.9.5. The caret (^) tells NPM that our project depends on any version of express matching
the major version of 4. This will include 4.0.0, 4.2.3, and so on. We can also use a tilde (~)
character to match the minor version. For example, ~4.9.5 would match 4.9.0, 4.9.1, and
so on.

Next, we will add CoffeeScript as a development dependency using the following command:

npm install coffee-script --save-dev

This will add a development dependencies section. This is perfect for NPM modules needed
specifically during development such as testing libraries. In the following snippet, we can see
the devDependencies section that was added to our package file:

"devDependencies": {
 "coffee-script": "^1.8.0"
}

There's more...
One big advantage of having our dependencies defined in a package file for our project is that
when we are configuring a new environment to work on the project, we can simply check out
or clone our code repository and install our dependencies with the following command:

npm install

If you look inside the node_modules folder, you will see a folder for each
package that was installed.

Chapter 7

213

Creating a basic express application
In this section, we will create a simple application using CoffeeScript and express.

Getting ready
To begin, we will install express and save it as a dependency for our application with the
following command:

npm install express --save

Next, install CoffeeScript as a development dependency:

npm install coffee-script --save-dev

How to do it...
In this sample, we will create a simple express application:

1. Create a file named simple.coffee.

2. Import the express module and assign it to a variable named express:
express = require 'express'

3. Create an express instance and assign it to a variable named app:
app = express()

4. Use the app.get() function to register a route mapping:
app.get '/', (req, res) ->

5. Inside the route callback, and send back a familiar message:
 res.send '<h1>Hello World!</h1>'

6. Use the app.listen() function to listen on port 3000:

console.log 'Ready on port 3000. Press [Ctrl+C] to stop.'
app.listen 3000

How it works...
This is a very simple example, but clearly demonstrates the basic structure of an express
application.

First, you require the necessary libraries. In this example, we only need to require express
itself. We assign it to a variable called express.

Next, we create an express application and assign it to the app variable.

Building Application Services

214

Using our app variable, we then define our routes. Routes are defined by calling a supported
HTTP verb and passing a path and callback function. In our example, we create a handler that
will listen for GET requests on the application's root path:

app.get '/', (req, res) ->

Express recognizes all of the HTTP verbs, including GET, POST, PUT, and DELETE, and these
are used in express as app.get(), app.post(), app.put(), and app.delete(),
respectively.

The path can be defined as a string as it is in our example or as a regular expression, where
the URL of the request is matched against the regular expression. The callback is a function
that takes a request and a response argument.

From the request argument, we can access the request's form data, query string parameters,
route parameters, request headers, and request cookies. The response argument allows us
to set response headers and response cookies, and provides methods to return a response
in various forms to the client.

In our example, we use the res.send() function to send plain text back to the browser.

The last piece of an Express application involves creating a listener to watch for incoming
requests. We accomplish this by executing the application's listen() function by passing
a specific port number.

To execute our little Express sample, use the coffee command:

coffee simple.coffee

With the application is running, open your web browser and navigate to http://
localhost:3000/:

Chapter 7

215

Creating a web API
In this section, we will use express to create a web service that will watch for and respond
to requests for data.

Getting ready
We will build our web service API using the Representational State Transfer (REST)
architectural style. This is an abstraction that uses a combination of HTTP verbs
and a clearly defined URL structure to create an API that will provide access to
our resource data.

We will use the widely accepted resource path naming / HTTP verb combinations when we
define our API. The following table lists these conventions:

HTTP verb Path Description
GET /api/[items] Get all items
GET /api/[items]/:id Get a single item by ID
GET /api/[items]/:id/[child-

items]
Get all child items for an item

POST /api/[items] Create an item
POST /api/[items]/:id Update an item
POST /api/[items]/:id/delete Delete an item

Note that REST does not care about the URL structure itself, but this is,
instead, a convention that has been popularized by Ruby on Rails. It is a
convention that has been adopted by many in the open source community
and one that we will follow while defining our API.

We use GET requests to make read-only requests such as requesting all resources or
a specific resource, and we use POST for actions that change the state of the resource
(creating, updating, or deleting, for example). Adherence to this rule when creating your API
will help avoid unintended side effects. For example, users should be able to make GET
requests and feel assured that they are not changing or destroying data.

Building Application Services

216

Please note there is nothing that guarantees that a GET request does not
change or destroy data, only that the convention recommends against it.
It's completely up to the developer to properly implement their GET request
handlers.

Our API will be return objects as JSON. Express provides a json() function on the response
object, which makes this very easy.

For our example, we will use two helper Node modules, one by CoffeeScript's own Jeremy
Ashkenas called underscore that provides a large number of useful functions, and the
other is an express helper module that makes working with HTML form data much easier:

npm install underscore --save

npm install body-parser --save

How to do it...
Our sample comprises three files:

 f server.coffee: This is the main application file that initializes and configures
express

 f data.coffee: This is the data module that provides data-related functionality

 f routes.coffee: This is the module that creates the API routes to be used by our
application

Follow these steps to create a web API:

1. Create a CoffeeScript file called server.coffee.

2. Import the express, body parser, and our data and route modules, and assign an
instance to a variable named app:
express = require 'express'
bodyParser = require 'body-parser'
data = require './data'
routes = require './routes'
app = express()

3. Configure express to use the body parser:
app.use bodyParser.urlencoded({ extended: true })

4. Register our routes:
routes.registerRoutes app, data

5. Start listening for requests:

console.log 'Ready on port 3000. Press [Ctrl+C] to stop.'
app.listen 3000

Chapter 7

217

Next, we will create our data file as follows:

1. Create a file named data.coffee.

2. Import the underscore module:
_ = require 'underscore'

3. Create some sample employee and sales data:
employeesData = [
 { id: 1, firstName: 'Tracy', lastName: 'Ouellette', \
 sales: [210340.084, 76251.825, 2967.55, 237934.707, \
 333020.396, 222597.24, 322963.891, 38847.682] }
 { id: 2, firstName: 'Chris', lastName: 'Daniel', \
 sales: [104362.4195, 70957.9675, 5490.714, \
 242605.2755, 232524.4215, 100582.983, 320185.112, \
 103374.8915] }
 { id: 3, firstName: 'Jason', lastName: 'Alexander', \
 sales: [226930.102, 72591.8695, 14076.254, \
 229126.6455, 304316.3145, 120713.766, 232629.537, \
 73296.443] }
 { id: 4, firstName: 'Jennifer', lastName: 'Hannah', \
 sales: [133347.813, 27043.249, 3434.7945, \
 324250.3755, 235481.5525, 94006.9505, 343566.8035, \
 55351.8995] }
 { id: 5, firstName: 'Maxx', lastName: 'Slayde', \
 sales: [142030.3425, 52111.8295, 5687.95, 244571.772, \
 242079.538, 103000.685, 271688.082, 99726.1815] }
]

4. Create functions to fetch, add, update, and remove employees from the collection.
Also, create a helper function that returns the next ID to be assigned to new
employees:
employeesFetchAll = ->
 employeesData

employeesFetchById = (id) ->
 _.findWhere employeesData, { id: id }

employeesAddToCollection = (employee) ->
 employee =
 id: employeesNextId()
 firstName: employee.firstName || ''
 lastName: employee.lastName || ''
 sales: employee.sales || []
 employeesData.push employee

Building Application Services

218

 return employee

employeesRemoveFromCollection = (employee) ->
 employeesData = _.reject employeesData, (item) ->
 item.id is employee.id

employeesUpdateExisting = (employee) ->
 employeesRemoveFromCollection employee
 employeesData.push employee

employeesNextId = ->
 _.chain employeesData
 .pluck 'id'
 .max (i) -> i
 .value() + 1

5. Export our data functions so that they can be used by our express server:

module.exports =
 employees:
 fetchAll: employeesFetchAll
 fetchById: employeesFetchById
 add: employeesAddToCollection
 update: employeesUpdateExisting
 delete: employeesRemoveFromCollection

Lastly, we will create a module to register our API routes as follows:

1. Create a file named routes.coffee.

2. Export an object with a function named registerRoutes:
module.exports =
 registerRoutes: (app, data) ->

3. Inside the registerRoutes() function, create a route to handle GET /api/
employees to return all employees:
app.get '/api/employees', (req, res) ->
 res.json data.employees.fetchAll()

4. Create a route to handle GET /api/employees/:id to return a specific employee:
app.get '/api/employees/:id', (req, res) ->
 employee = data.employees.fetchById Number req.params.id
 if employee
 res.json employee
 else
 res.send(404, 'Resource not found.')

Chapter 7

219

5. Create a route to handle GET /api/employees/:id/sales to return the sales
for a specific employee:
app.get '/api/employees/:id/sales', (req, res) ->
 employee = data.employees.fetchById Number req.params.id
 if employee
 res.json employee.sales || []
 else
 res.send(404, 'Resource not found.')

6. Create a route to handle POST /api/employees to create a new employee:
app.post '/api/employees', (req, res) ->
 employee = data.employees.add req.body
 res.json employee

7. Create a route to handle POST /api/employees/:id to update the information of
an existing employee:
app.post '/api/employees/:id', (req, res) ->
 employee = data.employees.fetchById Number req.params.id
 if employee
 if req.body.firstName
 employee.firstName = req.body.firstName
 if req.body.lastName
 employee.lastName = req.body.lastName

 data.employees.update employee
 res.json employee
 else
 res.send(404, 'Resource not found.')

8. Create a route to handle POST /api/employees/:id/delete to delete an
existing employee:

app.post '/api/employees/:id/delete', (req, res) ->
 employee = data.employees.fetchById Number req.params.id
 if employee
 data.employees.delete employee
 res.json employee
 else
 res.send(404, 'Resource not found.')

How it works...
We separated our application into three files to separate responsibilities.

In server.coffee, we require express, body parser, and our modules, and then create an
express instance and assign it to the app variable. We then configure our express instance
to use body parser. Body parser is an example of middleware that can be used by express.

Building Application Services

220

Middleware are modules that participate in the request/response pipeline. They allow us to
intercept requests and make decisions based on the request or modify the request before our
application processes it. In the case of body parser, it will parse URL-encoded, JSON-encoded,
or raw form of data being sent by the request and makes this data available as properties in
the request.body object.

We then call our registerRoutes() function from our routes module passing our app and
data objects as dependencies.

The registerRoutes() function is responsible for registering our API endpoints. We
use the app.get() and app.post() functions to register a callback for each of our API
endpoints. Each callback receives a request object and a response object.

We can use the request object to get details about the sender, headers, cookies, and
parameters.

In some of our mapping URLs, we specify a token that express will parse for us as a req.
params property. For example, a request for a specific employee is made to GET /api/
employees/:id. Express will extract the URL fragment for any tokens in the mapping URL
and add a property to the res.params object with the token name. In our callback, we
access the incoming ID as req.params.id.

Note that the parameter values that are extracted from the URL are
extracted as a string. In our case, we want a number, so we force it into
a numeric value using the Number() function.

The response object allows us to send information back to the client in various formats, return
headers, status code, and to set or clear cookie values.

We use the res.send() and res.json() functions to return the results of each request.
The send method can be used to send text back to the client as in res.send('Hello
world!').

In our example, we also include a status code of 404 and the text Resource not found.
when the user requests an employee that does not exist in the collection.

We use the res.json() function to return objects to the client in a JSON format. For
example, when requesting the employee with the ID of 3 /api/employees/3, the client
receives the following response:

Chapter 7

221

There's more...
To launch the API, use the following command:

coffee server.coffee

This will display a message stating the application is listening on port 3000 and can be
stopped by pressing Ctrl + C.

We can use a free Chrome extension called Postman to test our API. Postman allows us to
make GET and POST requests to any endpoint and will display the results. It will also keep a
history of our requests that allows us to go back to a previous request and modify or resend at
any time:

Building Application Services

222

You can install this free Postman REST Client by visiting the Chrome Web
Store and searching the extensions catalog for Postman.

Using the Postman extension, you can specify the URL of the API method you want to test, the
verb to use and, in some cases, the key value pairs to add and update resources.

Test our API call to retrieve all employees by making GET requests to http://
localhost:3000/api/employees and clicking on the Send button. The result can
be seen in the following screenshot:

We can request a specific employee by ID such as http://localhost:3000/api/
employees/4. This will display the following results:

Chapter 7

223

We can update the last name for an employee by submitting form data using Postman's
interface to POST /api/employees/4. You can see in the following screenshot that
our submission is completed and the employee's last name has indeed been updated:

Building Application Services

224

Be sure to switch the encoding to x-www-form-urlencoded, so the API
receives the parameters as URL encoded parameters.

As you have seen, the Postman Chrome extension is very useful to test your API endpoints
during development and even while troubleshooting APIs that are in production.

225

8
Using External Services

In this chapter, we will cover the following topics:

 f Working with web services

 f Sending e-mails

 f Sending SMS and MMS messages

 f Working with Amazon's S3 storage

 f Transferring files via FTP

Introduction
There has been a recent explosion in the number and variety of services targeted to make
our lives as software developers easier. Companies, both large and small, provide specialized
services that allow us to take advantage of them in our own applications.

In this chapter, we will look at how we can use some popular services in our own applications.
We will see how we can use services such as Amazon's S3 storage to save files to the cloud,
services such as Twilio to send SMS text messages from our application, and more.

Working with web services
Even though it is likely that our own application exposes some form of JSON API, it may also
need to connect with other external services in order to perform its tasks.

It is becoming common for online services to provide web APIs, which allow us to use their
services in our own applications.

In this recipe, we will see how to connect to an external service, request information, and
process that information.

Using External Services

226

Getting ready
We will use the REST client for the Node.js npm module hosted on GitHub at github.com/
aacerox/node-rest-client.

This client allows us to call RESTful services and retrieve results.

To get started, we will install the REST client:

npm install node-rest-client --save

We will use a free RESTful service that provides access to geographic and weather
information. You can find out more about this free service from their website at
http://www.geonames.org.

GeoNames provides a number of web services that expose their geographical database,
including country information, weather stations, cities, and capitals.

In this example, we will connect using GeoNames' countryInfo web service to query their
database for country information by UN country code.

We will also create a configuration file called service-config.coffee with the following
code:

module.exports =
 username: 'beingmikeh'
 rootUrl: 'http://api.geonames.org'
 options:
 mimetypes:
 json: [
 'application/json;charset=UTF-8'
]

GeoNames allows 2,000 requests per hour, that is, 30,000 requests per
day for free. In the previous configuration, I referenced my account. You can
create your own account at http://www.geonames.org/login.

How to do it...
We will create a module that calls the countryInfo method. GeoNames provides an
XML and JSON version of this method. We will be using the JSON endpoint located at api.
geonames.org/countryInfoJSON.

Chapter 8

227

Node-rest-client provides two methods to execute remote methods. Node-rest-client provides
methods that mirror HTTP verbs such as get(), post(), put(), patch(), and delete().
This is helpful for simple one-time requests, but it also allows us to register methods in a way
that allows us to build our own library or domain-specific language (DSL) to communicate
with the web service.

Creating a domain-specific language is a way to extend a general purpose
language such as CoffeeScript to introduce methods, objects, and services
that are more specific to a particular domain. For example, when building a
banking system, we might create a library that allows us to work with checking
and savings accounts, perform transfers, apply interest charges, and so on.
For more information on domain-specific languages, you can reference the
Wikipedia article on this topic at en.wikipedia.org/wiki/Domain-
specific_language.

In this example, we will use node-rest-client's get() method to retrieve country information:

1. Load node-rest-client and assign its Client object to a Client variable:
Client = require('node-rest-client').Client

2. Require our service configuration:
config = require './service-config'

3. Create a new client instance to pass our configuration options:
client = new Client config.options

4. Create a function that receives a country code and a callback as arguments:
getCountryInfo = (countryCode, callback) ->
 url = "#{config.rootUrl}/countryInfoJSON"
 args =
 parameters:
 username: config.username
 country: countryCode or ''

 req = client.get url, args, (data, resp) ->
 if data.geonames
 callback null, data.geonames[0]
 else
 callback "No data returned for #{countryCode}"

 req.on 'error', (err) ->
 callback err.request.options

Using External Services

228

5. Create an array of country codes, and for each one, call our getCountryInfo()
function to pass a callback:
countries = ['ca', 'us', 'gb']
for countryCode in countries
 getCountryInfo countryCode, (err, result) ->

6. Our callback is called when the service call is completed. Display the results of the
service call as follows:

 if err
 console.log 'Error', err
 else
 console.log "Country : #{result.countryName}"
 console.log "Capital : #{result.capital}"
 console.log "Currency : #{result.currencyCode}"
 console.log "Area : #{result.areaInSqKm} (sq km)"
 console.log "Continent: #{result.continentName}\n"

How it works...
In the preceding code, we begin by requiring the REST client.

We then create an instance of our REST client (client) and declare a constant (BASE)
representing the GeoNames base URL.

Next, we declare a URL constant to contain the countryInfoJSON endpoint.

We then define a getCountryInfo() method that accepts a country code as its
only parameter. This method uses node-rest-client's get() method to make the call to
countryInfoJSON for the given country code and display the results.

The get() method takes three parameters:

 f The URL of the method to be called

 f The arguments to be passed to the method

 f The callback function that will handle the results

Inside our getCountryInfo() method, we define an arguments variable, args, as an
object literal that has a parameters property. The parameters property in turn is assigned to
an object literal that defines the URL parameters to be passed to the countryInfoJSON
method. In this case, we have the username and country parameters.

Next, we use the node-rest-client's get() method to pass our URL, the arguments, and a
callback function.

Chapter 8

229

Node-rest-client will return two parameters to our callback method:

 f The data returned from the web service

 f A response object representing the Node http.ClientRequest instance created
for the call

Node-rest-client will try to interpret the format of the data returned by
the web service, and if the data is returned with a content-type header
matching JSON or XML, node-rest-client will convert the returned data
into JSON or XML accordingly.

In our sample, when our call to countryInfoJSON returns, data contains an array of
geoname objects, each one representing the country information we queried. We grab the
first one, in this example, the only one, and then display some of the data returned.

Lastly, we create an array of country codes we want to query and then call our
getCountryInfo() method for each one.

The following output is an example of the output of this sample:

Country : United Kingdom

Capital : London

Currency : GBP

Area : 244820.0 (sq km)

Continent: Europe

Country : United States

Capital : Washington

Currency : USD

Area : 9629091.0 (sq km)

Continent: North America

Country : Canada

Capital : Ottawa

Currency : CAD

Area : 9984670.0 (sq km)

Continent: North America

Using External Services

230

There's more...
As previously mentioned, we can also register methods with node-rest-client. This gives us the
ability to provide our own method aliases. This can be a useful option when dealing with a lot
of web service endpoints and allows us to create a DSL.

We could have written the previous example using the registerMethod() approach. Follow
these steps:

1. Require our node-rest-client and configuration object:
Client = require('node-rest-client').Client
config = require './service-config'

2. Create a client instance:
client = new Client config.options

3. Register a GET method to call our JSON endpoint:
url = "#{config.rootUrl}/countryInfoJSON"
client.registerMethod 'getCountryInfo', url, 'GET'

4. Create a function that receives a country code and callback as arguments and call
the JSON endpoint using our registered method:
getCountryInfo = (countryCode, callback) ->
 args =
 parameters:
 username: config.username
 country: countryCode or ''

 req = client.methods.getCountryInfo args, (data, resp) ->
 if data.geonames
 callback null, data.geonames[0]
 else
 callback "No data returned for #{countryCode}"

 req.on 'error', (err) ->
 callback err.request.options

5. Create an array of country codes, and for each one, call our getCountryInfo()
function passing a callback that will display the results:

countries = ['ca', 'us', 'gb']
for countryCode in countries
 getCountryInfo countryCode, (err, result) ->
 if err

Chapter 8

231

 console.log 'Error', err
 else
 console.log "Country : #{result.countryName}"
 console.log "Capital : #{result.capital}"
 console.log "Currency : #{result.currencyCode}"
 console.log "Area : #{result.areaInSqKm} (sq km)"
 console.log "Continent: #{result.continentName}\n"

In this version of our sample, we register the countryInfoJSON endpoint using node-rest-
client's registerMethod() method:

client.registerMethod 'getCountryInfo', url, 'GET'

This method takes three parameters:

 f The name of the method we want to register (basically an alias)

 f The URL to call when we execute our method

 f The HTTP verb to use when we execute our method

Then, in our getCountryInfo() method, we call the method we registered:

client.methods.getCountryInfo args, (data, resp) ->

In this version, we pass our arguments and a callback to handle the response from the
web server.

Sending e-mail
Sending e-mails is a very common requirement for our applications. Use cases may include
system administration alerts, monthly reports for application stakeholders, or even performing
bulk mail operations.

In this recipe, we will send e-mails using a popular Node package called nodemailer. This will
allow us to send text and HTML-based e-mails easily through our applications.

Getting ready
To begin, we must install the nodemailer npm package:

npm install nodemailer@0.7.1 --save

Note that as of this writing, the current version of the nodemailer package
has some compatibility issues with using Gmail's SMTP server. For this
reason, we install version 0.7.1, a version known to work.

Using External Services

232

You can view the project documentation for nodemailer on its GitHub home page at http://
www.github.com/andris9/Nodemailer.

We will also create a configuration file that our examples can use. Create a file named
mailer-config.coffee with the following content:

module.exports =
 service: 'Gmail'
 auth:
 user: '***************'
 pass: '********'
 sender: 'Example Sender <example.sender@gmail.com>'

Replace the asterisk with your Google account's e-mail address, password,
and sender information.

How to do it...
Nodemailer allows us to send e-mails using a variety of services, including standard SMTP
servers and nearly two dozen online e-mail services such as Gmail, Hotmail, iCloud, and
many others.

In our example, we will send an e-mail using Google's Gmail e-mail service:

1. Require nodemailer and our configuration object:
nodemailer = require 'nodemailer'
config = require './mailer-config'

2. Create an SMTP transport object:
smtpServer = nodemailer.createTransport 'SMTP', config

3. Create an email object:
email =
 from: config.sender
 to: [
'Mike Hatfield <mwhatfield@outlook.com>'
config.sender
]
 subject: 'Test Email'
 text: 'In plain text, it worked!'
 html: 'In HTML, it worked!'

Chapter 8

233

4. Use the sendMail function passing our e-mail and a callback as arguments:

smtpServer.sendMail email, (err, response) ->
 if err
 console.log err
 else
 console.log "Message sent: #{response.message}"

 smtpServer.close()

How it works...
In the preceding code, we begin by including the nodemailer npm package.

We define a transport configuration object next. This object defines a service and an
authentication object.

Nodemailer sends e-mails through a transport. Each transport must specify a service. In our
case, we define the service as Gmail. This allows nodemailer to preconfigure a number of
settings for us, including the SMTP server, default port number, SSL configuration, and others.
The only thing left for us to define is the username and password to be used when connecting
to the Gmail service.

We execute createTransport() with two parameters: the transport type and a transport
configuration object. This will return an instance of a nodemailer transport object.

In our example, we specify a transport type of SMTP, but nodemailer also
supports Amazon Web Services' Simple Email Services (SES), sendmail,
pickup, and direct.

Next, we create an object literal that defines our e-mail properties. We specify a from and
to e-mail address, subject, and body as both text and HTML.

Lastly, we execute the transport's sendEmail() method passing our email object and
a callback to receive the send results.

Our callback receives an error and a result parameter. In our example, we use the error
object to display the error message if an error is returned. Otherwise, we display a
confirmation message.

Using External Services

234

There's more...
The nodemailer e-mail object supports several other parameters, including:

 f cc, bcc: These are comma-separated lists of addresses as a string or as an array
of strings

 f generateTextFromHTML: If true, the plaintext body will be generated from the
HTML body

 f attachments: This is an array of attachment objects

Apart from these there are many others; see http://www.nodemailer.com/docs/
messages for a complete list.

Attachment objects can be defined in a variety of ways:

 f As a file on disk with a file name specified: { fileName: 'somefile.txt',
filePath: '/path/to/somefile.txt' }

 f As a file on disk with a file name derived: { filePath: '/path/to/somefile.
txt }

 f As a stream instance: { fileName: 'somefile.txt', streamSource:
fs.createReadStream('/path/to/somefile.txt') }

 f As a URL: { fileName: 'somefile.txt', filePath: 'http://www.
someplace.com/somefile.txt' }

Sending SMS and MMS messages
In this recipe, we will demonstrate how to send SMS text messages using the very popular
Twilio service and the APIs it provides.

To use the Twilio service, you must first have an account. You can sign up for a free trial on
their website at http://www.twilio.com. Once you have signed up, you can go to your
Account page to get account SID and auth token. These will be used by your application
to communicate with the Twilio service.

Short Message Service (SMS) messages are text-based messages that are limited to 160
characters. These are messages that can be received by almost all mobile phones whether
they are a smart phone or a feature phone.

In this recipe, I will demonstrate how to send an SMS text message from our application.

Chapter 8

235

Getting ready
Once we have a Twilio account, we can use the official npm package to send SMS messages.
To begin, install the twilio package with the following command:

npm install twilio --save

Next, create a configuration file called twilio-config.coffee with the sid and token
values provided on your Twilio account settings page at http://www.twilio.com/user/
account/settings:

module.exports =
 sid: '********cd2fc611590b2e91537a8ba5b1'
 token: '********e619f238f8a9a12bec3d2bb4'
 from: '+1 777-555-1212'

How to do it...
We will create a small console application that demonstrates the basic method to send an
SMS message.

To send a message, we must:

1. Require the twilio package.

2. Create an instance of the client.

3. Use the client's message.create() method to send a message.

The following steps accomplish this:

1. Load the Twilio npm package and our configuration file:
TwilioClient = require 'twilio'
config = require './twilio-config'

2. Create a client instance to pass our SID and token as arguments:
client = new TwilioClient(config.sid, config.token)

3. Create a message object with our SMS details:
message =
 body: 'Welcome from CoffeeScript'
 to: '+1 777-440-1212'
 from: config.from

Using External Services

236

4. Use our client's messages.create() function with our message object and a
callback as arguments:

client.messages.create message, (err, msg) ->
 if err?
 console.log err
 else
 console.log msg.sid

How it works...
We begin by requiring the Twilio npm package. This returns a constructor object for our
Twilio client.

Next, we store our application SID and authentication tokens, and then we use these to create
an instance of our Twilio object.

We then create a message object using an object literal. Our message has three properties:

 f body: This represents the text of the message being sent

 f to: This represents the telephone number to receive the message

 f from: This represents the telephone number of the sender

We then execute the create() method of our client's messages object. We pass our
message object and a callback into this method.

Our callback will be called once the operation has completed either successfully or with
an error.

If an error is returned to our callback, it will be displayed on the console window.

If the call is successful, the message identifier will be displayed instead.

There's more...
We can also send Multimedia Messaging Service (MMS) messages using Twilio.

Using Twilio, we can send MMS messages containing JPEG, GIF, and PNG images. These must
be accessible via a web URL and must be returned as an image/jpeg, image/gif, or image/
png MIME type, respectively. When sending a compatible image, Twilio will format the image
to be compatible with the device.

Chapter 8

237

To send an MMS message with an image, we add a mediaUrl property to our message
object as follows:

message =
 mediaUrl: 'http://mwhatfield.com/9691OS/cover.jpg'
 to: '+1 777-440-1212'
 from: config.from

Twilio supports a number of other formats, including many audio and video formats and even
PDF files. For these attachments, however, Twilio sends the content as is without formatting
the content to be optimized with the device.

For a full list of supported formats, visit the Twilio API page at http://www.twilio.com/
docs/api/rest/accepted-mime-types.

Working with Amazon's S3 storage
Amazon provides many cloud services, including their Simple Storage Service (S3), a cloud-
based file store.

S3 provides inexpensive storage and retrieval for our digital media, large downloads, and
backups.

In this recipe, we will use Amazon's Node-based SDK to add S3 features to our applications.

Getting ready
In S3, a bucket is a storage container where we can keep our files. We can create, list, and
remove buckets using CoffeeScript.

In this section, we will demonstrate how to do this.

Before beginning, we need an AWS account. You can create an account by visiting the
http://www.amazon.com home page and clicking on the Sign Up link at the top.

Even though S3 is a paid service, it allows us to store up to 5GB for free
for the first year on new AWS accounts.

Once you have an account, you must create a user account that will be used by your
application to authenticate Amazon's web services:

1. To create an account, log on to the https://aws.amazon.com website and click
on the Security Credentials link under the My Account/Console menu located at
the top.

Using External Services

238

2. From the Security Credentials screen, click on the Groups link in the left menu.

For our example, we will create a new group that has full permissions to add, get,
and delete S3 buckets and objects.

3. On the Groups screen, click on the Create New Group button. In the Create New
Group Wizard window (seen in the following screenshot), perform the following
actions:

 � Enter our Group Name (that is, CookbookDemo) and click on Next Step

 � Select the Amazon S3 Full Access policy template and click on Next Step

 � Review your new group information and click on Create Group

This will create a new group with the permissions we will need for our
demonstrations.

4. Next, we need to create our user account. Click on the Users link on the left, and
then click on the Create New Users button.

5. You can create up to five users at the same time. We only need one for our examples.
Enter a user name and click on the Create button.

Chapter 8

239

6. When we create a new user, a window opens that allows us to download or view the
API credentials for the user, as seen in the following screenshot:

7. The user's security credentials include Access Key ID and Secret Access Key. We will
need both of these to use the Amazon SDK.

8. Lastly, we need to add our new user to the group we created.

9. Click on our newly added user and this will display its associated groups; in our case,
there are none:

10. Click on the Add User to Groups button at the bottom. This will display the Add User
to Groups window. Select the group we created and click on the Add to Groups
button.

With our S3 configured, we can now install the AWS tools package for Node using the following
command:

npm install aws-sdk --save

Using External Services

240

How to do it...
Now that we have a user account and its security credentials, we can have a sample that will
create, list, and delete a bucket.

In our sample, we will make several asynchronous calls through the AWS SDK. We want our
methods to be called in a specific order and we want to make sure one completes before the
next one starts. For example, we want to create a bucket before we delete it. Node allows us
to do this via callbacks. This can lead to an unsightly situation known in the community as
callback hell. For example, our code would look something like the following:

createNamedBucket 'demo.mwhatfield.com', ->
 listAllBuckets ->
 deleteNamedBucket 'demo.mwhatfield.com', ->
 console.log 'Completed.'

If we had a few more steps, you can imagine how deeply nested our callbacks could become,
and how quickly this could get out of hand. Instead of using callbacks, we will use promises.

Promises represent the eventual result of an asynchronous operation.

We will use the Q npm package, which implements the ECMAScript Promises/A+ specification
(draft of ES6).

Install the Q package with the following command:

npm install q --save

For security purposes, we will not include our user's security credentials directly in our
application code. Instead, we will create a configuration file named config.json with
three properties, accessKeyId, secretAccessKey, and region:

{
 "accessKeyId": "********QVBRS3G6M2KQ",
 "secretAccessKey": "********pW3oKPhKpUdPbthQr9oaQYH15JQbPtaO",
 "region": "us-west-2"
}

With our configuration file (config.json) in place, we can create a CoffeeScript file with
the following code:

1. Load the AWS SDK and Q packages:
AWS = require 'aws-sdk'
Q = require 'q'

2. Load our configuration file:
AWS.config.loadFromPath './config.json'

Chapter 8

241

3. Create an instance of the S3 object:
S3 = new AWS.S3()

4. Create a function that will create an S3 named bucket:
createNamedBucket = (name) ->
 deferred = Q.defer()

 params = { Bucket: name }

 S3.createBucket params, (err, data) ->
 if err?
 deferred.reject err
 else
 console.log "Created bucket #{name}\n#{JSON.stringify data}"
 deferred.resolve()

 deferred.promise

5. Create a function to list all buckets in our S3 account:
listAllBuckets = ->
 deferred = Q.defer()

 S3.listBuckets (err, data) ->
 if err?
 deferred.reject err
 else
 console.log 'Listing buckets:'
 for bucket in data.Buckets
 console.log " Bucket: #{bucket.Name}"

 deferred.resolve()

 deferred.promise

6. Create a function to delete an S3 bucket by name:
deleteNamedBucket = (name) ->
 deferred = Q.defer()

 params = { Bucket: name }

 S3.deleteBucket params, (err, data) ->
 if err?
 deferred.reject err
 else

Using External Services

242

 console.log "Deleted bucket: #{name}"
 deferred.resolve()

 deferred.promise

7. Call our createBucket() function and chain our calls using the promise's then()
function:

createNamedBucket('demo.mwhatfield.com')
 .then -> listAllBuckets()
 .then -> deleteNamedBucket('demo.mwhatfield.com')
 .catch (error) ->
 console.log "Error: #{error}"
 .done ->
 console.log 'Completed.'

How it works...
In our previous example, we begin by requiring the Amazon SDK npm package using the SDK's
config.loadFromPath() method to load the configuration from our config.json file.

We then create an instance of the AWS S3 object to handle all of the underlying
communications with the S3 service.

We then create three helper methods to create a bucket, list all buckets, and delete a bucket.

Our createNamedBucket() helper method relies on the S3 createBucket() method.
Our helper method takes a name for the bucket to be created and a callback. The S3
createBucket() method takes an object that specifies the parameters to be passed to
the S3 service and a callback method. In our demo, we create a params object literal with a
Bucket property.

When the operation completes, S3 will execute our createBucket() callback method
providing an error object and a result object. Our createBucket() callback simply displays
a success or error message.

Our listAllBuckets() helper method calls the S3.listBuckets() method with a
callback that takes an error and results object. If there is no error, our result object will have
a Buckets[] array that contains information for each bucket the user has permission to
access. In our helper method, we simply iterate through the buckets that are returned by
our S3 call and display the buckets' Name values.

Similar to our createNamedBucket() helper method, our deleteNamedBucket()
helper method also takes a name and callback as a parameter. This method calls S3's
deleteBucket() method passing a parameter object that specifies Bucket to be deleted.

Chapter 8

243

Lastly, we create a small chain of methods that calls our helper methods, in sequence, to:

1. Create a bucket named demo.mwhatfield.com.

2. List all buckets.

3. Delete the bucket named demo.mwhatfield.com.

When we execute this sample code, we see the output that follows:

You may have noticed that the result object of the S3 createBucket() method includes
the location of the newly created bucket. In our sample, this location is http://demo.
mwhatfield.com.s3.amazonaws.com/. This location can be used as the root URL for
the files we store in our bucket. Alternatively, you can also access the resource from the more
generally accepted URL of http://s3.amazonaws.com/bucket/.

There's more...
In the previous section, we saw how to create and delete buckets hosted with Amazon's S3
cloud storage system.

In this section, we will demonstrate how to create, list, and delete files in our bucket.

We will continue to use the AWS SDK and the user account we created in the previous section.

In this example, we will use the putObject(), listObject(), and deleteObject()
methods of S3 to add, list, and delete files in our buckets:

1. Load the AWS SDK and Q packages:
fs = require 'fs'
AWS = require 'aws-sdk'
Q = require 'q'

2. Load our configuration file:
AWS.config.loadFromPath './config.json'

3. Create an instance of the S3 object:
S3 = new AWS.S3()

Using External Services

244

4. Create a function that will upload a file to an existing bucket:
uploadFile = (bucket, filename, key) ->
 console.log "Uploading #{filename} -> #{key}"

 deferred = Q.defer()
 buffer = fs.readFileSync filename

 params =
 Bucket: bucket
 Key: key
 Body: buffer
 ACL: 'public-read'

 S3.putObject params, (err, data) ->
 if err?
 deferred.reject err
 else
 console.log 'Uploading success:', data
 deferred.resolve()

 deferred.promise

5. Create a function that will list all files inside a named bucket:
listAllFiles = (bucket) ->
 console.log 'Listing all files:'

 deferred = Q.defer()

 params =
 Bucket: bucket

 S3.listObjects params, (err, data) ->
 if err?
 deferred.reject err
 else
 if data.Contents
 for item in data.Contents
 console.log " ETag: #{item.ETag}\n" +
 " Key: #{item.Key}\n" +
 " Size: #{item.Size} bytes"
 deferred.resolve()

 deferred.promise

Chapter 8

245

6. Create a function that will fetch a remote file by its key contained inside a named
bucket:
fetchFile = (bucket, key, filename) ->
 console.log "Fetching a file #{key} -> #{filename}"

 deferred = Q.defer()

 params =
 Bucket: bucket
 Key: key

 S3.getObject params, (err, data) ->
 if err?
 deferred.reject err
 else
 fs.writeFileSync filename, data.Body
 console.log "Fetching a file success ETag: #{data.ETag}"
 deferred.resolve()

 deferred.promise

7. Create a function that will delete a remote file inside a named bucket:
deleteFile = (bucket, key) ->
 console.log "Deleting remote file #{key}"

 deferred = Q.defer()

 params =
 Bucket: bucket
 Key: key

 S3.deleteObject params, (err, data) ->
 if err?
 deferred.reject err
 else
 console.log 'Deleting success'
 deferred.resolve()

 deferred.promise

Using External Services

246

8. Call our functions in sequential order:

bucket = 'demo.mwhatfield.com'

uploadFile bucket, './cover.jpg', 'cover.jpg'
 .then -> listAllFiles bucket
 .then -> fetchFile bucket, 'cover.jpg', './cover-2.jpg'
 .then -> deleteFile bucket, 'cover.jpg'
 .catch (error) ->
 console.log "Error: #{error}"
 .done -> console.log 'Completed.'

In this example, you should reference your own bucket. You can create one easily using
the S3 Management Console located at https://console.aws.amazon.com/s3/.

We are also using a sample image named cover.jpg. You can use your own image and change
the filename accordingly or you can download a copy of cover.jpg at http://mwhatfield.
com/9691OS/cover.jpg.

In our previous sample, we begin by requiring the SDK and the Node file system (fs) library.
The fs library will allow us to read our file contents from our local file system.

Next, we load our configuration settings from config.json and create an instance of the
S3 client as we did in our section to work with buckets.

We then define four helper methods: uploadFile(), listAllFiles(), fetchFile(),
and deleteFile(). Each helper method wraps the S3 method to put objects into buckets,
list objects in a bucket, fetch an object, or delete objects from a bucket.

Our uploadFile() method takes a bucket name and the full path name of a file on our local
machine as arguments. The key is used by S3 to uniquely identify our object. If the key is new,
the object is added. If the key already exists, the object is overwritten.

In our uploadFile() method, we use Node's fs.readFileSync() method to read our
file's contents into a buffer, which is assigned to a buffer variable.

Once we have our local file read into our buffer, we prepare a parameter object similar to what
we saw previously when calling the S3 methods. This parameter object defines the Bucket,
Key, Body, and ACL properties:

 f Bucket: This is the name of the bucket in which our object will be placed

 f Key: This is our object's key

 f Body: This is the buffer containing our file's data

 f ACL: This is a string representing the level of permissions to be assigned
to this object

Chapter 8

247

The ACL value determines the level of access needed to access the file once it has been
uploaded. There are several values we can use:

ACL Scope Description
"private" Bucket and

object
The owner has full control. No one else has
access.

"public-read" Bucket and
object

The owner has full control. Everyone has read
access.

"public-read-write" Bucket and
object

The owner has full control. Everyone has read
and write access (not recommended).

"authenticated-read" Bucket and
object

The owner has full control. Authenticated
users have read access.

"bucket-owner-read" Object The object's owner has full control. The
bucket owner gets read access.

"bucket-owner-full-
control"

Object The object's owner and bucket's owner have
full control.

In our case, we set the ACL to public-read. This will permit anyone to download the file via
its URL.

Once we have defined our parameters, we execute the putObject() S3 client method to
upload our file to our S3 bucket.

If the upload completes successfully, the data object will have ETag, a string whose value
will change if the object's content changes.

Our next helper method, listAllFiles(), allows us to view the contents of a bucket.
The function takes a string value representing the bucket's name.

We use the S3 client's listObjects() method passing a parameters object that
specifies the name of the bucket in which our objects are contained and a callback. If the
listObjects() function completes successfully, the data object has a Contents property
that is an array of the result object. Each result contains a Key, LastModified, ETag, Size,
Owner, and StorageClass property.

Our fetchFile() helper accepts a bucket name, key, and a full path filename representing
the local file. We create a parameters object containing our Bucket and Key values. We
then call the S3 getObejct() client method passing our parameters object and a callback.
When this call is completed, our callback method is called with an error and a data object
parameter. If successful, the data object contains information about the file requested, which
includes the object's ETag, LastModified, ContentType, Body, and other properties. The
Body property contains a buffer of the bytes for our object. In our callback, we use Node's
fs.writeFileSync() method to write the buffer back to our local machine.

Using External Services

248

We end our sample with a deleteFile() helper method that takes a bucket name and
a key. We create a parameters object with Bucket and Key values just like we did in our
previous samples in this section. We then call S3's deleteObject() method with our
parameters object and a callback.

Lastly, we call our helper methods to store our cover.jpg file into the demo.mwhatfield.
com bucket, list all files, fetch the image from our bucket, and then delete the image from
our bucket.

When executed, the following output is displayed:

Transferring files via FTP
File Transfer Protocol (FTP) is nearly as old as the Internet itself, and is still one of the most
common methods to transfer files to and from servers.

In this recipe, we will demonstrate how to upload to and download from a remote server
using FTP.

Getting ready
We will use the Node-ftp npm module. Node-ftp provides a ride implementation of the FTP
specification and allows us to connect to FTP servers, transfer files to and from the server,
as well as manage files and directories.

You will require access to an FTP server to run the examples in this section.

To begin, we will install the Node-ftp module with the following command:

npm install ftp --save

We will also use the Q library to help with calling our methods in sequence. Install Q using
the following command:

npm install q --save

Chapter 8

249

We will also create a file that will contain our FTP configuration settings. Create a file called
ftp-config.coffee with the following code:

module.exports =
 host: 'mwhatfield.com'
 user: 'coffee@mwhatfield.com'
 password: 'c0ffeeScript!'

Use your FTP server host address (domain name or IP address), username, and password.

How to do it...
We will create a demo program capable of uploading a file to and downloading a file from
an FTP server.

The following steps are a procedure to be followed to accomplish this task:

1. Load Node's fs module, the FTP and Q packages, and our configuration file:
fs = require 'fs'
Client = require 'ftp'
Q = require 'q'
config = require './ftp-config'

2. Define a couple of constants to represent FTP transfer modes (ASCII and binary),
and create a variable to hold our active connection once it has been established:
FTP_MODE_BIN = 'binary'
FTP_MODE_ASC = 'ascii'
connection = null

3. Create a connect() function to establish a connection to the FTP server:
connect = ->
 console.log 'Connecting'
 deferred = Q.defer()

 connection = new Client()
 connection.on 'ready', ->
 console.log ' connection established'
 deferred.resolve()
 connection.on 'error', (err) ->
 console.log ' error connecting'
 deferred.reject err
 connection.connect config

 deferred.promise

Using External Services

250

4. Create a setMode() function to set our transfer mode:
setMode = (mode) ->
 console.log "Setting mode to #{mode}"
 deferred = Q.defer()

 connection[mode] (err) ->
 if err
 console.log ' error setting mode'
 deferred.reject err
 else
 console.log " mode set to #{mode}"
 deferred.resolve()

 deferred.promise

5. Create an upload() function to perform the file upload:
upload = (local, remote) ->
 console.log "Uploading #{local} to #{remote}"
 deferred = Q.defer()

 connection.put local, remote, (err) ->
 if err
 console.log ' error uploading'
 deferred.reject err
 else
 console.log ' upload complete'
 deferred.resolve()

 deferred.promise

6. Create a download() function to perform the file download:

download = (remote, local) ->
 console.log "Downloading #{remote} to #{local}"
 deferred = Q.defer()

 connection.get remote, (err, stream) ->
 if err?
 deferred.reject err
 else
 stream.once 'close', ->
 console.log ' download complete'
 deferred.resolve()

 stream.pipe fs.createWriteStream(local)

 deferred.promise

Chapter 8

251

How it works...
In this example, we begin by requiring Node's file system module fs and the node-ftp
module, as well as Q and our FTP configuration settings.

Next, we declare two constants to represent the ASCII and binary modes for FTP and a
connection variable to hold our active connection. This will be used by our connect(),
setMode(), and upload() functions.

In each of the connect(), setMode(), and upload() functions, we create a new deferred
object and return its promise. If the function's outcome is successful, we resolve our promise
with deferred.resolve(). If the function's outcome fails, we reject our promise with an
error using deferred.reject err.

Next, we define the connect() function. This function establishes a connection to the
remote FTP server using the config object. Inside connect(), we assign a new instance
of Node-ftp's client object. We then assign two event listeners, ready and error. If the
connection is successful, the ready event will be triggered and our event handler simply
resolves our deferred promise. If a connection error occurs, the error event will be raised
and we simply reject our deferred promise.

We then create a setMode() function. The FTP protocol can transfer files using ASCII or
binary modes. ASCII mode is used to send text data such as source code files (HTML, CSS,
JavaScript, and so on), while binary is used for non-text files such as images or file archives
(zip, tar.gz, and so on). Our setMode() function receives a single argument representing the
mode to use. Our FTP_MODE_ASC and FTP_MODE_BIN values represent the binary() and
ascii() functions provided by the FTP client.

We then define our upload() function. This function takes two arguments to represent the
local and remote file paths. We call the FTP client's put() function passing the local and
remote file paths as well as a callback to be called once the file transfer has finished. Inside
our callback, we check to see whether there was an error. If there was, we reject our promise
passing the error. If there was no error, we resolve our promise.

Lastly, we define the download() function. This function receives the remote and local file
paths as arguments. Inside the download() function, we call the FTP client's get() function
with two arguments: the remote file path and a callback. This callback will be called with an
error object if the get() attempt fails or with a stream object if it succeeds.

If there is an error, we reject() our promise passing the error as an argument.

If the get() request has succeeded, we do two things:

 f Pipe our stream into a new write stream created by a call to
fs.createWriteStream(), which will send the incoming file buffer to a local file.

 f Register an event listener on the returned stream object for the stream's close
event.

Using External Services

252

When the close event is triggered, we will simply resolve() our promise.

To upload a file to the FTP server, we can execute the following code:

connect()
 .then -> setMode FTP_MODE_BIN
 .then -> upload 'cover.jpg', '/cover.jpg'
 .catch (err) ->
 console.log "Error:", err
 .fin ->
 connection.end() if connection?
 console.log 'Connection closed'

Executing this script produces the following output:

To download a file from the FTP server, we can execute the following code:

connect()
 .then -> setMode FTP_MODE_BIN
 .then -> download '/cover.jpg', 'cover-downloaded.jpg'
 .catch (err) ->
 console.log "Error:", err
 .fin ->
 connection.end() if connection?
 console.log 'Connection closed'

This produces the following results:

Chapter 8

253

There's more...
We saw how to upload and download files using FTP. In this section, we will see how to
perform some other common FTP actions, including listing FTP files, creating and removing
directories, and deleting files.

We will continue to use the Node-ftp and ftp-config.coffee configuration files that we
used in our previous sections.

We can use the following FTP client functions to perform other common FTP tasks including
the following:

 f list(): This returns a list of files and directories at the desired path

 f mkdir(): This creates a new directory for the path provided

 f rmdir(): This deletes the directory specified by the path provided

 f delete(): This deletes the file specified by the file path provided

We can wrap each of these with simple functions that return promises similar to our
connection(), setMode(), and other functions earlier in this recipe.

Let's create a getDirectoryList() function that wraps the FTP client's list() function:

getDirectoryList = (rootPath) ->
 console.log "Getting list: #{rootPath}"
 deferred = Q.defer()

 connection.list rootPath, (err, data) ->
 if err?
 deferred.reject err
 else
 console.dir data
 console.log ' listing complete'
 deferred.resolve()

 deferred.promise

When executing this function, list() calls a callback that passes the results as an array of
file and directory objects. The following is a sample of a directory and file object:

[{ type: 'd',
 name: '.',
 target: undefined,
 rights: { user: 'rwx', group: 'rx', other: 'rx' },
 owner: 'oakra3',
 group: 'oakra3',

Using External Services

254

 size: 4096,
 date: Thu Jan 01 2015 14:22:00 GMT-0400 (Atlantic Standard Time)
},
 { type: '-',
 name: 'cover.jpg',
 target: undefined,
 rights: { user: 'rw', group: 'r', other: 'r' },
 owner: 'oakra3',
 group: 'oakra3',
 size: 36997,
 date: Sun Jan 04 2015 11:32:00 GMT-0400 (Atlantic Standard Time) }
]

The results include the type, name, permissions, owner, group, size, and create date for
each item.

The mkdir(), rmdir(), and delete() functions can be wrapped in a similar way as
in the following code:

createDirectory = (directoryName) ->
 console.log "Creating directory: #{directoryName}"
 deferred = Q.defer()

 connection.mkdir directoryName, (err) ->
 if err?
 deferred.reject err
 else
 console.log ' create directory completed'
 deferred.resolve()

 deferred.promise

deleteDirectory = (directoryName) ->
 console.log "Deleting directory: #{directoryName}"
 deferred = Q.defer()

 connection.rmdir directoryName, (err) ->
 if err?
 deferred.reject err
 else
 console.log ' delete directory completed'
 deferred.resolve()

 deferred.promise

Chapter 8

255

deleteFile = (filePath) ->
 console.log "Deleting file: #{filePath}"
 deferred = Q.defer()

 connection.delete filePath, (err) ->
 if err?
 deferred.reject err
 else
 console.log ' delete file completed'
 deferred.resolve()

 deferred.promise

Let's execute these functions to demonstrate their use:

connect()
 .then -> getDirectoryList '/'
 .then -> createDirectory '/temp'
 .then -> deleteDirectory '/temp'
 .then -> deleteFile '/cover.jpg'
 .catch (err) ->
 console.log "Error:", err
 .fin ->
 connection.end() if connection?
 console.log 'Connection closed'

This produces the following output (abridged for brevity):

In this recipe, we only scratched the surface of using Node-ftp. For more information
on this library and its available features, please visit the project's home page on GitHub
at https://github.com/mscdex/node-ftp/.

257

9
Testing Our

Applications

In this chapter, we will cover the following recipes:

 f Unit testing with QUnit

 f End-to-end testing with Mocha and Zombie.js

 f Stubbing and mocking with Sinon

Introduction
In this chapter, we will look at various methods of testing our CoffeeScript applications using
a variety of techniques and libraries.

For our recipes in this chapter, we will require a lightweight web server. I recommend that you
use live-server, a Node-based web service that exposes the local directory as a website.

You can install live-server via NPM using the following command:

npm install -g live-server

Once installed, we can launch the web server using the following command:

live-server

Testing Our Applications

258

Unit testing with QUnit
QUnit is a popular testing framework for JavaScript that supports a Test Driven Design (TDD)
approach to writing tests.

When using QUnit, we write our tests in the form of CoffeeScript functions that describe our
desired functionality. When these tests are run, the QUnit test runner will execute our tests
against our application's code and display the test results.

In this recipe, we will demonstrate how to configure QUnit and write a variety of tests to verify
that our CoffeeScript code is working as expected.

Getting ready
We will begin by downloading the QUnit package and configuring the test runner.

QUnit can be installed in a variety of ways. We will be using Node's bower package installer
to grab the QUnit files we need.

Bower is a package manager similar to NPM, but where NPM specializes in server-side
packages, bower specializes in frontend packages. To install bower, use the following
command:

npm install -g bower

With bower installed, we can install QUnit using bower with the following command:

bower install qunit --save-dev

We will also be using the CoffeeScript compiler within our browser to compile our source
and test files. We can install this with bower using the following command:

bower install coffee-script --save-dev

With QUnit and CoffeeScript installed, create a new HTML file called index.html; this
will be our test runner. Inside this file, add the following code:

<!DOCTYPE html>
<html>

<head>
 <meta charset="UTF-8" />
 <title>QUnit Test Suite</title>
 <link rel="stylesheet" href="bower_components/qunit/qunit/qunit.css"
type="text/css" media="screen">
</head>

Chapter 9

259

<body>
 <h1 id="qunit-header">QUnit Tests</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
 <div id="qunit-fixture">
 </div>

 <script type="text/javascript"
 src="bower_components/qunit/qunit/qunit.js"></script>

 <!-- source files -->

 <!-- tests -->

 <script type="text/javascript"
 src="bower_components/coffee-script/extras/coffee-script.js"></
script>

</body>

</html>

If we launch live-server, our browser should open automatically with our test runner
loaded. You should see the following output:

As you can see, the runner has executed zero tests. Next, we will look at adding our first test.

How to do it...
Now that we have our spec runner in place, we will write some tests for a simple calculator
module that can add, subtract, multiply, and divide numbers:

1. Create a directory named test to contain our QUnit tests.

Testing Our Applications

260

2. Inside the test directory, create a new CoffeeScript file named CalculatorTests.
coffee.

3. Inside our new test file, add the following code:
QUnit.module 'Calculator',
 beforeEach: ->
 @calculator = new Calculator()

QUnit.test 'should add two numbers', (assert) ->
 assert.equal @calculator.add(4, 5), 9

4. Update index.html to include our new test file:

<!-- tests -->
 <script type="text/coffeescript"
 src="test/CalculatorTests.coffee"></script>

When we save our test and revised index.html files, live-server will detect the files that
have changed and automatically reload our test runner. When this happens, we should see
the following output:

Chapter 9

261

You can see that we have two failures, both related to the fact that we have not yet defined
our Calculator object. Let's create a new Calculator class. Follow these steps:

1. Create a new directory to hold our source files named src.

2. Create a new file called Calculator.coffee inside the src directory.

3. Add the following code to our new Calculator file:
class window.Calculator
 add: (a, b) ->
 a + b

4. Add our new Calculator source file to index.html:
<!-- source files -->
 <script type="text/coffeescript"
 src="src/Calculator.coffee"></script>

After saving our test and test runner files, live-server reloads the test runner and should
display the following results:

As you can see, we have our first passing test.

Next, we will add a test to validate our subtraction feature. Add the following test to our
CalculatorTests.coffee file:

QUnit.test 'should subtract two numbers', (assert) ->
 assert.equal @calculator.subtract(9, 5), 4

Testing Our Applications

262

When saved, live-server will run our tests. We can see that our new test failed in the
following screenshot:

Next, we will implement the subtract function so that our test passes. Add the following
highlighted code to our Calculator.coffee file:

class window.Calculator
 add: (values...) ->
 sum = 0
 sum += value for value in values
 return sum

 subtract: (a, b) ->
 a - b

Chapter 9

263

When we save Calculator.coffee with these changes, our test runner will execute and we
see that all of our tests now pass, as shown in the following image:

The process we followed here, one of writing our tests first and then writing the code we need
to make the tests pass, is known as Test First Development or Test Driven Development
(TDD). This helps us to write only the code we need in order for our tests to pass. This
approach also helps to shape and evolve our code by providing a suite of tests that we can
run in the future when we add or change features.

How it works...
Our test file is a collection of QUnit modules and tests.

The QUnit.module() function allows us to group related tests and provides a mechanism to
execute code before and after each test. This function takes a string argument representing
the name of the module and an optional hooks object that provide a beforeEach() and
afterEach() function.

We defined our addition module in the following manner:

QUnit.module 'Adding',
 beforeEach: ->
 @calculator = new Calculator()

Testing Our Applications

264

After defining our addition module, we define the tests responsible for verifying our
calculator's addition feature using a series of QUnit.test() functions, each representing
a single test.

The QUnit.test() function receives a string representing the title of the test as well as a
callback function representing the body of our test. When the test executes, this callback will
be called with an instance of QUnit's assert object. This assert instance provides access
to QUnit's assertion functions.

Our first addition test looks like the following:

QUnit.test 'should add two numbers', (assert) ->
 assert.equal @calculator.add(4, 5), 9

In this example, we use assert's equal() function to compare the result of our calculator's
add(4, 5) function to the expected value of 9. If the results are equal, the test will pass,
otherwise it will fail.

The assert object provides a number of assertion functions including the following:

 f assert.equal(): This is a non-strict comparison between two values. The test
passes if the values are the same or if the two values are equal by type coercion
such as 9 and "9".

 f assert.strictEqual(): This is a strict comparison between two values. The test
passes if the values are the same by type and value.

 f assert.notEqual(): This is a non-strict comparison between values. The test
passes if values are not the same and cannot be coerced into the same value.

 f assert.notStrictEqual(): This is a strict comparison between two values.
The test passes if the values are not the same by type and value.

 f assert.deepEqual(): This is a non-strict recursive comparison between two
objects. The test passes if both objects contain the same properties/values and
were created using the same constructor function. Note that this function does not
compare object identities.

 f assert.propEqual(): This is a strict recursive comparison between two objects.
The test passes if both objects contain the same properties/values. This assertion
is similar to deepEqual() but does not require both objects to be created using
the same constructor function.

 f assert.notDeepEqual(): This is a non-strict recursive comparison between
two objects. The test passes if objects differ by at least one property/value or if
the objects were not created by the same constructor function.

 f assert.notPropEqual(): This is a strict recursive comparison between two
objects. The test passes if the objects contain at least one different property/value
regardless of the method of construction.

Chapter 9

265

There's more...
Out of the box, QUnit provides a great set of built-in assertions. There may be times, however,
when you need more than what is provided out of the box. For example, what would happen if
we test our Calculator object's add() method with decimal values? Here is an example:

QUnit.test 'should add decimal numbers', (assert) ->
 assert.equal @calculator.add(285.72, 142.86), 428.58

When we rerun our tests, we see that it fails, as shown in the following screenshot:

Because of the way JavaScript handles numbers, adding 285.72 and 142.86 does not
exactly equal 428.58, like it should.

It turns out that this is not a problem limited to JavaScript. Most other
languages have this problem. It is due to the fact that computers use a format
known as binary format and some numbers cannot be exactly expressed as
binary formatted decimals. You can learn more about this interesting and
sometimes confusing problem at http://floating-point-gui.de/.

In this case, it would be handy to have an assertion that verifies the result is close to the
expected value within an acceptable tolerance.

Let's define a new assertion to handle this. We will create a new CoffeeScript file inside
our test folder called TestHelper.coffee that will contain our new assertion.

We will then use QUnit's extend() function to extend its QUnit.assert instance with an
object instance that has our custom assertion.

Testing Our Applications

266

Begin by defining a function to perform the required validation by adding the following code to
a file named test/TestHelper.coffee:

closeTo = (expected, actual, tolerance) ->
 difference = if expected is actual then 0 else \
 Math.abs(expected - actual)

 result = difference <= tolerance

 message = if result
 "#{expected} is close to #{actual}"
 else
 "#{expected} is not close to #{actual}"

 QUnit.push result, expected, actual, message

In the preceding code, we create a function named closeTo() that receives the expected
value, the actual value, and the acceptable tolerance as its arguments.

In our function, we use the QUnit.push() function to add the result of our comparison.
The push() function takes four arguments:

 f test result: This returns true (pass) or false (fail)

 f expected value: This is the value we expected

 f actual value: This is the actual value we received

 f message: This is the string to be displayed as the test result in the test runner

Lastly, we use the QUnit.extend() function to add our assertion to QUnit's assert object:

QUnit.extend QUnit.assert,
 closeTo: closeTo

With our TestHelper.coffee file complete, save the file and add a reference to our
test runner:

 <!-- tests -->
 <script type="text/coffeescript"
 src="test/TestHelper.coffee"></script>
 <script type="text/coffeescript"
 src="test/CalculatorTests.coffee"></script>

Chapter 9

267

Now that our custom assertion is being loaded by our test runner, we will finish up by updating
CalculatorTests.coffee to use our new closeTo() assertion by replacing our should
add decimal numbers test:

QUnit.test 'should add decimal numbers', (assert) ->
 assert.closeTo @calculator.add(285.72, 142.86), 428.58, \
 0.000000001

When we save this and our tests are run, we should see a passing test because 285.72 plus
142.86 is indeed 428.58 within the acceptable tolerance of 0.000000001. We can see this
passing test in the following screenshot:

For the sake of completeness, if we edit our test to have an acceptable tolerance of 0, we see
that the test fails with the following error:

You can find more information in the QUnit documentation on the project's website at
http://qunitjs.com.

Testing Our Applications

268

End-to-end testing with Mocha and
Zombie.js

Mocha is a testing framework similar to QUnit but more suited for console-based testing,
as opposed to browser-based testing. It has familiar describe() and it() blocks.

Zombie.js is a headless testing tool that allows us to test our application end-to-end. Using
Zombie, we can open our application within a simulated browser environment and interact
with the server layer of our application to verify both the backend and frontend functions
as expected.

In this recipe, we will use Mocha and Zombie together as an effective tool to test our
application end-to-end.

Getting ready
In our example, we will create a test that will launch our simple Calculator app and verify that
it can add two numbers. We will have a simple HTML form with two input boxes, a button to
trigger the calculation, and then verify the answer that is displayed.

We will need to install Mocha and Zombie. These are both available as NPM packages.

Mocha has a test runner executable, so we will install this as a global NPM package using
the following command:

npm install -g mocha

Next, we will install Zombie with the following command:

npm install zombie --save

We will also need jQuery and the CoffeeScript.js compiler. We can install these with
bower using the following command:

bower install coffeescript jquery#1.11 --save-dev

Next, we will create our index.html file with the following contents:

<!DOCTYPE html>
<html>
<head>
 <title>Calculator</title>
</head>
<body>
 <h1>Calculator App</h1>

Chapter 9

269

 <div>
 <label for="firstValue">First value:</label>

 <input type="text" id="firstValue">
 </div>

 <div>
 <label for="secondValue">Second value:</label>

 <input type="text" id="secondValue">
 </div>
 <button id="calculateButton">Calculate</button>

 <div id="answer"></div>

 <script src="bower_components/jquery/dist/jquery.min.js"></script>
 <script type="text/coffeescript" src="src/Calculator.coffee"></
script>
 <script type="text/coffeescript" src="src/App.coffee"></script>
 <script src="bower_components/coffee-script/extras/coffee-script.
js"></script>
</body>
</html>

This is the user interface for our application.

Next, we will create our source files, one to define our Calculator app and another to represent
our application.

Create an src folder and inside it a Calculator.coffee file with the following code:

class window.Calculator
 add: (a, b) ->
 return a + b

Next, create our application source file as App.coffee with the following code:

class window.App
 constructor: ->
 @calculator = new Calculator()

 $('button#calculateButton').click =>
 @calculate()

Testing Our Applications

270

 firstValue: ->
 parseInt $('input#firstValue').val()

 secondValue: ->
 parseInt $('input#secondValue').val()

 displayResult: (result) ->
 $('div#answer').text "Answer: #{result}"

 calculate: ->
 result = @calculator.add @firstValue(), @secondValue()
 @displayResult result

When you open index.html, you should see the following form:

With the app open, you can enter the values 11 and 22 and click on the Calculate button,
and Answer: 33 will be displayed:

Once Mocha and Zombie have been installed and the sample application is ready, we can
write a test.

Chapter 9

271

How to do it...
We will create a new folder called e2e (end-to-end) to contain our Mocha tests. Inside the new
e2e folder, create a file named calculateTest.coffee. This will be our end-to-end test to
ensure our calculator can add two numbers.

Inside calculateTest.coffee, add the following code:

Browser = require 'zombie'
assert = require 'assert'

describe 'calculator page', ->
 before ->
 @browser = new Browser site: 'http://localhost:8080/'

 before ->
 @browser.visit '/index.html'

 it 'should load the calculator page', ->
 assert.equal @browser.text('h1'), 'Calculator App'

 it 'should add two numbers', ->
 @browser.fill '#firstValue', '4'
 @browser.fill '#secondValue', '5'
 @browser.pressButton '#calculateButton', =>
 assert.equal @browser.text('div#answer'), 'Answer: 9'

In order for the test to run, index.html must be available via the Web. I use live-server,
a lightweight static file web server available as an NPM package.

You can install live-server with the following command:

npm install -g live-server

Once installed, we can launch the server with the following command:

live-server

You can now access index.html from the browser by visiting http://localhost:8080/.

Let's try running our tests. Simply type the following command at the root of your project:

mocha --compilers coffee:coffee-script/register e2e

Testing Our Applications

272

If everything is hooked up correctly, you should see the following output:

How it works...
Our calcualteTest.coffee test begins by loading Zombie and Node's assert package,
a package that comes with Node.

Next, we describe our test using Mocha's describe() function. This is similar to the
module() function we saw in QUnit and serves the same purpose.

Inside our describe() block, we define two before() methods. These are methods that
are executed before each test is run.

In the first before() method, we instantiate a new instance of Zombie's browser object.
In Zombie, the browser object represents the web browser. It allows us to navigate URLs and
fetch DOM elements by text, ID, or CSS selector. It also allows us to interact with our
application. We do each of these in our tests.

We initialize our browser instance by passing a default value for the browser's site property.
This property is used as the default root URL for Zombie's navigation functions. In this case,
all of our navigation will be to the base URL of http://localhost:8000/.

In the second before() method, we use Zombie's browser instance to visit the /index.
html page. This ensures that for every test we run, the app will be on the correct page.

Next, we define two tests using Mocha's it() syntax. This is similar to the test() function
we saw in our QUnit section.

Our first test checks to make sure the correct page is loaded by checking an H1 tag's text
content. We do this by using the browser's text() function passing our Node selector, 'H1'
in this case. We use assert.equal() to make sure our H1 contains the text we expect.

Chapter 9

273

Zombie uses the sizzle selector engine, which is the same engine used by jQuery. This
means that our selectors can be tags, classes, IDs, and even pseudo-selectors. You can
view Zombie's CSS selector documentation for a full list of selectors at http://zombie.
labnotes.org/selectors.

Our next test is a bit more interesting. It automatically populates the INPUT boxes of First
value and Second value with test values and then simulates a click of the Calculate button.
The test then evaluates the contents of the answer DIV element to ensure the correct answer
is displayed.

We use the browser's fill() method to populate our two input boxes with our numbers to
be added for the test. This method takes a selector and a value as parameters. We have given
our two text boxes the IDs firstValue and secondValue, respectively. We can therefore fill
'#firstValue' and '#secondValue' with our desired values.

Once our first and second input boxes have been populated, we use the browser's
clickButton() function to trigger a click event on our button. The clickButton()
function takes two parameters, a selector to specify the element on our page to be clicked on
and a callback that will be called once the click event has been handled by the browser.

In our test, our clickButton() callback uses the browser's text() function again to verify
that our application correctly updates the #answer DIV with the proper answer.

There's more...
Zombie supports a number of browser automation commands we can use in our tests. Here
are some of the common functions:

 f back(): This function navigates to the previous page in history.

 f clickLink(selector, [callback]): This function clicks on a link identified by
a selector and receives a callback.

 f link(selector): This function returns a link element identified by a selector or text
value.

 f location(): This function returns the browser's location.

 f visit(selector, [callback]): This function opens a document from the
specified URL and receives an optional callback to be executed once the navigation is
completed.

 f check(selector): This function checks a checkbox DOM element identified by a
selector or label's text value.

 f choose(selector): This function selects a radio button identified by a selector or
label's text value and receives an optional callback.

 f select(selector): This function selects an option element identified by a selector
or text value.

Testing Our Applications

274

 f field(selector): This function returns the form field identified by a selector or
label's text value.

 f fill(selector): This function fills a form field (INPUT or TEXTAREA) identified by
a selector or label's text value.

 f button(selector): This function returns the button DOM element identified by a
selector or button's text value.

 f pressButton(selector, callback): This function triggers a button's click
event identified by a selector or button's text value and receives a callback to be
executed once the click event has been handled.

 f onalert(callback): This function receives a callback that will be called if an alert
is called.

 f onconfirm(question, response): This function is used to specify a response to
a specific question.

 f onconfirm(callback): This function executes a callback if the browser's
confirm() function is called.

 f onprompt(message, response): This function is used to specify a response to a
specific message.

 f onprompt(callback): This function executes a callback if the browser's
prompt() function is called.

 f wait(duration, [callback]): This function waits in seconds before proceeding
with the following statement. An optional callback will be executed once the duration
has timed out.

For full documentation on these automation functions and the others
supported by Zombie, you can view their website and downloadable
documentation at http://zombie.labnotes.org/.

Stubbing and mocking with Sinon
In this recipe, we will use a JavaScript library called Sinon to create test doubles to help
improve our tests.

Test doubles are fake objects that replace actual dependencies in our tests. Why would you
want to use a mocking library? Some of the benefits of using a library such as Sinon include
the following:

 f They allow us to focus on our code under test without having to worry that its
dependencies are working correctly, or even exist

 f They allow us to speed up our tests by faking out network calls, database access,
and other tasks that slow our tests down

Chapter 9

275

Getting ready
In this section, we create and use stubs in our tests.

A stub is a fake object that provides stand-in functionality of an external dependency of our
object under test.

For our example, we want to test an Employee Manager class that is responsible for
managing collections of employees. Employee Manager uses a data service that retrieves
employee information from an API.

Since our tests are concerned with the functionality of Employee Manager, we will create
a fake data service and use a stub to provide our Employee Manager with a predictable
collection of Employees that we can build our tests around.

Specifically, our Employee Manager will provide access to a collection of Employees and a
method called topEmployee(), which will return the Employee with the largest year-to-date
sales.

We will use Sinon to create our stub. The easiest way to get Sinon is from its website at
http://sinonjs.org/. Download the most recent version, version 1.10.3 at the time of
this writing, and save a copy in our project's lib folder.

Note that you can install Sinon using bower, but this version installs a
Node/AMD version that is more difficult to get running in a web browser.
Downloading directly from the website downloads all of Sinon's modules
in one file.

We will write our tests using a QUnit test runner. Please refer to the Unit testing with QUnit
recipe earlier for help with configuring QUnit.

Add a reference to our Sinon library and its various components to our QUnit index.html
test runner:

<script src="lib/sinon-1.10.3.js"></script>

Testing Our Applications

276

How to do it...
We will first write our test in a file called test/EmployeeManagerTest.coffee. Inside
this test, add the following code:

QUnit.module 'Employee Manager',
 beforeEach: ->
 dataService = new DataManager()
 @manager = new EmployeeManager(dataService)
 @manager.fetch()

QUnit.test 'should load Employee information', (assert) ->
 assert.equal @manager.employees.length, 4

QUnit.test 'should return the top employee with the best YTD sales',
(assert) ->
 assert.equal @manager.topEmployee().name, 'Tracy Ouellette'

If we run this, both specs fail because neither Employee Manager nor Data Manager
exists.

Let's create these now. Create our src/EmployeeManager.coffee file with the following
code:

class window.EmployeeManager
 constructor: (@dataService) ->
 @employees = []

 fetch: ->
 @employees = @dataService.fetchEmployees()

 topEmployee: ->
 comparer = (a, b) ->
 if a.ytdSales >= b.ytdSales
 return a
 else
 return b

 employee = @employees.reduce comparer, { ytdSales: -Infinity }

Chapter 9

277

We will also create a bare bones data manager class named src/DataManager.coffee
with the following code:

class window.DataManager
 constructor: ->

 fetchEmployees: ->
 # this method performs a network call to retrieve employee
 # records. When stubbed out, this version should not be
 # called
 console.log 'This should not be called'
 return []

We must update our QUnit index.html test runner with references to our new
EmployeeManager.coffee and DataManager.coffee files:

<script type="text/coffeescript"
 src="src/DataManager.coffee"></script>
<script type="text/coffeescript"
 src="src/EmployeeManager.coffee"></script>

When we run our tests, they still fail because we do not have any data to work with yet. Our
production system has a Data Manager object that makes a network call to retrieve data
via a backend API:

Testing Our Applications

278

Because we do not want to make a network call each time we run this test and also
ensure we have predictable results when running our tests, we will create a stub for the
fetchEmployees() method in our data manager that always returns the same data
when called.

We will update our Employee Manager test to stub out our data manager's
fetchEmployees() method. Update our test/EmployeeManagerTest.coffee
file to match the following:

testData = [
 {name: 'Mike Hatfield', ytdSales: 1000}
 {name: 'Tracy Ouellette', ytdSales: 2000}
 {name: 'Chris Daniels', ytdSales: 1800}
 {name: 'Jason Alexander', ytdSales: 1570}
]

QUnit.module 'Employee Manager',
 beforeEach: ->
 dataService = new DataManager()
 stub = sinon.stub dataService, 'fetchEmployees'
 stub.returns testData

 @manager = new EmployeeManager(dataService)
 @manager.fetch()

QUnit.test 'should load Employee information', (assert) ->
 assert.equal @manager.employees.length, 4

QUnit.test 'should return the top employee with the best YTD sales',
(assert) ->
 assert.equal @manager.topEmployee().name, 'Tracy Ouellette'

Now, when we run our tests, they both pass:

Chapter 9

279

How it works...
In our Employee Manager Spec, we create a Sinon stub by calling sinon.stub() with
the object we want to create the stub on and the name of the function we want to call. In this
case, we pass our data manager instance, dm, and the fetchEmployees string.

We then use the stub's returns() method to specify the return value when
dm.fetchEmployees() is called. In our case, it will return a static array of four
employee records.

We wire this up in the beforeEach() method to make sure it is properly configured
before each test is executed.

There's more...
Sinon provides a lot of flexibility when it comes to creating stubs. You can create stubs
in a variety of ways and have a degree of control on how the stubbed method behaves.

For example, you can easily create a stub for a callback in the following way:

trueStub = sinon.stub().returns true

In this case, trueStub will always return true when executed. So the following code
will always confirm that these roses are indeed red:

rosesAreRed = (predicate) ->
 if predicate()
 console.log 'Yes, these roses are red.'
 else
 console.log 'No, these roses are not red.'

rosesAreRed trueStub

We can also control how the stub will behave. The following list contains some of the common
behavior-related methods supported by stub():

 f onFirstCall().returns(value): This method defines the value to be returned
the first time the stub is executed

 f onSecondCall().returns(value): This method defines the value to be returned
the second time the stub is executed

 f onThirdCall().returns(value): This method defines the value to be returned
the third time the stub is executed

 f onCall(n).returns(value): This method defines the value to be returned the
nth time the stub is executed (0 = first, 1 = second, and so on)

Testing Our Applications

280

 f throws(): This method causes the stub to throw an exception when executed

 f throws("ErrorType"): This method causes the stub to throw an exception
of the type provided

You can see the full documentation on the Sinon.js website at
http://sinonjs.org/docs/#stubs.

We can also use Sinon to create mock objects. Mocks are very similar to stubs in that they
can provide stand-in functionality for external dependencies, but they also allow us to assert
that methods were called in these fake objects. In other words, they allow us to ensure our
code executes the functions within our faked objects that we expect them to.

For our example, we will extend our test from the previous section that had an Employee
Manager class to deal with Employee objects and a data manager that is responsible for
retrieving data from an external API.

We want to make sure that when we fetch employees from the Employee Manager that it,
in turn, fetches employees from the data service. We can use a Sinon mock for this.

Create a new test in test/EmployeeManagerTest.coffee using the following code:

QUnit.test "should call Data Manager's fetchEmployees method",
(assert) ->
 dataService = new DataManager()
 mock = sinon.mock(dataService)\
 .expects('fetchEmployees').once()

 manager = new EmployeeManager(dataService)
 manager.fetch()

 assert.ok mock.verify()

Chapter 9

281

With this new test in place, when we run the new specs, we see that they pass:

When we create a Sinon mock, it creates a wrapper around the function we are interested in
being called. As such, we created a new DataManager instance within the test itself instead
of using the one created in the beforeEach() function.

We create a mock using the sinon.mock() function passing our DataManager instance as
its only parameter. This returns an object that allows us to define our expectations describing
how we expect the data manager to be used.

In our example, we expect the data manager's fetchEmployees() function to be called
exactly one time.

We describe this using Sinon's expects() and once() functions as follows:

mock = sinon.mock(dataService).expects('fetchEmployees').once()

Sinon's fluid API makes our expectations read very much like English.

We then pass our mocked data manager instance to the new Employee Manager instance.

We then call the fetch() function of Employee Manager.

Testing Our Applications

282

Lastly, we use our mock's verify() function to determine whether our data manager's
fetchEmployees() method was called exactly once.

If fetchEmployees() was not called exactly once, verify() will throw an error with a
message indicating the issue as shown in the following examples:

 f Never called: ExpectationError: Expected fetchEmployees([...]) once
(never called)

 f More than once: ExpectationError: Unexpected call:
fetchEmployees()

In our test, we created a mock of our data manager instance. This wrapped each function
within a mocking function that can capture function invocations, allowing Sinon to verify the
function was executed as expected. Sinon allows us to remove its mock wrappers from our
instance by using the mock.restore() function.

Sinon also provides a number of expectations to help us mock our expected behaviors,
including the following:

 f expectation.atLeast(n): This ensures the method is called at least the
specified number of times

 f expectation.atMost(n): This ensures the method is called no more than the
specified number of times

 f expectation.never(): This ensures the method is never called

 f expectation.once(): This ensures the method is called exactly one time

 f expectation.twice(): This ensures the method is called exactly two times

 f expectation.exactly(n): This ensures the method is called exactly n times

As mentioned earlier, each of these expectations returns an expectation object, which means
the expectations can be chained. So, for example, we can specify that a method should be
called at least twice but no more than five times using the following syntax:

sinon.mock(dataService)\
 .expects('fetchEmployees').atLeast(2).atMost(5)

For more information on Sinon mocks and its other features,
please see Sinon's website for its full documentation at
http://sinonjs.org/.

http://sinonjs.org/
http://sinonjs.org/

283

10
Hosting Our Web

Applications

In this chapter, we will cover the following recipes:

 f Compiling our source with Grunt

 f Preparing deployments for staging and production

 f Deploying our application to Heroku

 f Deploying our application to Microsoft Azure

Introduction
In this chapter, we will look at preparing our application for deployment using a JavaScript task
runner named Grunt to compile our source, copy files, clean build folders, and much more.

Once our application files are ready for deployment, we will demonstrate how to deploy our
application to both the Heroku and Microsoft Azure cloud platforms.

Compiling our source with Grunt
In our development environment, we can get away with having our browser compile
our CoffeeScript. In production, however, this introduces an unwelcomed decrease in
performance. In this section, we will use a tool called Grunt to prepare our source for
production by compiling the CoffeeScript into JavaScript as well as combining and minifying
our code into a single source file.

Grunt is a task runner similar to Rake for Ruby developers, Ant for Java developers, or NAnt
for .NET developers.

Hosting Our Web Applications

284

In this section, we will use Grunt to compile our CoffeeScript and concatenate it into a single
JavaScript file better suited to be used by our application in production.

Getting ready
The first step is to install Grunt. Grunt comes as two NPM packages.

First is the Grunt library. This can be installed locally in our project's folder using the following
command:

> npm install grunt

Next, we need to install the Grunt command-line client tool into our global NPM package
repository:

> npm install -g grunt-cli

This will install grunt. Before we can use it, however, we must create a file that represents
the tasks we want Grunt to perform for us. This file can be in either JavaScript or CoffeeScript
and it is called gruntfile.js or gruntfile.coffee, respectively.

How to do it...
Let's create a minimal Grunt file using CoffeeScript called gruntfile.coffee. The basic
structure is as follows:

module.exports = (grunt) ->

 grunt.registerTask 'default', ->
 grunt.log.writeln 'This from the default grunt task'

Save this file, and from the command prompt, execute grunt:

> grunt

This will display the following output:

By itself, this is not very exciting, but what happened exactly?

Chapter 10

285

Inside our Grunt file, we register tasks by using the grunt.registerTask() function
passing a task name and either a function to be executed when we run the task, or an
array of dependent task names.

If we run the grunt command without any arguments, it will try to execute a task named
default.

In our sample, we registered a task named default and provided a simple function to be
executed when the default task is run.

Let's register another task called greeting by adding the following to our gruntfile.
coffee file:

 grunt.registerTask 'greeting', ->
 grunt.log.writeln 'This from the greeting grunt task'

Now, we can execute our new greeting tab by passing the task name to grunt as a
command-line parameter:

> grunt greeting

This produces the following output:

Let's look at a slightly more complex example by adding two tasks to be called either
individually or together.

We do this by registering two tasks called first and second, as well as a third task
called firstNsecond that will run them both:

grunt.registerTask 'first', ->
 grunt.log.writeln 'This from the [first] grunt task'

grunt.registerTask 'second', ->
 grunt.log.writeln 'This from the [second] grunt task'

grunt.registerTask 'firstNsecond', ['first', 'second']

Hosting Our Web Applications

286

You can see in our last task that we passed an array of tasks. Grunt will execute these tasks in
the order they are provided in the array. So, if we execute the firstNsecond task, we will get
the following screen:

We can issue the execution of the grunt --help command for guidance on the
command-line parameters we can use for Grunt and also see the list of available tasks.
If we run that now, we see the following:

Available tasks

 default Custom task.

 first Custom task.

 second Custom task.

 firstNsecond Alias for "first", "second" tasks.

 greeting Custom task.

So far, we have seen how to register tasks that can execute functions for us. How do we write
a function to compile, concatenate, and minify our CoffeeScript code for production?

Thankfully, there is an entire ecosystem of Grunt packages out there that allows us to register
Grunt tasks to do just this.

First, we will look at the grunt-contrib-coffee NPM module. This package provides
CoffeeScript compile functions for our Grunt file. Let's install it:

> npm install grunt-contrib-coffee

Once installed, we can use Grunt's grunt.loadNpmTasks() function to pass the name of
the NPM package that contains Grunt tasks. Add the following to our Grunt file:

grunt.loadNpmTasks 'grunt-contrib-coffee'

Once that has been added, we can use the --help command-line parameter again and see
that we now have a new coffee task:

Available tasks

 coffee Compile CoffeeScript files into JavaScript *

 default Custom task.

Chapter 10

287

Before we can use our new coffee task, we need to configure it so it knows where to find our
source files. We do this within the grunt.initConfig() function.

The coffee task expects a coffee property to be there for our grunt configuration object
that provides the necessary configuration. Let's add that now to our initConfig() function:

grunt.initConfig

 coffee:
 compile:
 files:
 'public/js/app.js': 'src/app/app.coffee'
 'public/js/all.js': 'src/app/*.coffee'
 'public/js/two.js': [
 'src/app/csmain.coffee', 'src/app/data.coffee'
]

In our configuration, we assign an object literal to the expected coffee property. This object
has a compile property that contains a files property. This files property contains three
entries.

These file entries specify a key-value pair, where the key represents the name of the output
file and the value represents the CoffeeScript file(s) we want to compile.

In the first case, we compile a single CoffeeScript file, app.coffee, into a single JavaScript
file, app.js, located in the public/js directory.

In the second case, we use a wildcard (*) to compile all .coffee files found in the src/app
directory into a single file called all.js in the public/js directory. Each file matching the
pattern is compiled and concatenated together.

The last case is an example of using an array of source files to be compiled and concatenated
into a single output file.

How it works...
Using Grunt and Grunt plugins allows us to create tasks that can greatly simplify our common
build tasks, but it can also do much more.

For example, we have our CoffeeScript files compiled and concatenated into a single JavaScript
file, but we should also minify this JavaScript file before we push it to our production server.

Minifying our JavaScript file is a way to compress our source code in a way that maintains the
same functionality. The process will strip out unnecessary white space, and typically rename
functions and variables. The end result can be a much smaller file that your application will
need to download from the server.

Hosting Our Web Applications

288

Again, the vast expanse of the NPM module ecosystem comes to our aid through the
grunt-contrib-uglify package. Let's install it:

> npm install grunt-contrib-uglify

Once installed, we can load its Grunt tasks by adding the following to our Grunt file:

grunt.loadNpmTasks 'grunt-contrib-uglify'

If we get a list of tasks now, we see a new uglify task as follows:

Available tasks
 coffee Compile CoffeeScript files into JavaScript *
 uglify Minify files with UglifyJS. *
 default Custom task.

Now, let's configure this new uglify task by updating the grunt.initConfig()
function again with the following code:

uglify:
 target:
 files:
 'public/js/all.min.js': 'public/js/all.js'

This is similar to our coffee configuration in that we specify a collection of file key-value
pairs that specify the key (destination) and value (source files).

In this case, we will take our large all.js file and create a minified version called all.min.
js in the same directory.

When we use this minification library, we will typically see compression rates between 40
percent and 60 percent, though your mileage may vary.

You may have noticed a dependency our uglify task has to the coffee task. More
specifically, we cannot minify a file that has not yet been created. Let's add a new build task
to our Grunt file that will compile using coffee and minify the result using uglify. Add the
following to our Grunt file:

grunt.registerTask 'build', ['coffee', 'uglify']

Now, when we want to build our source files, we can issue the following command:

> grunt build

Are you using Less or Sass in your project? If yes, then you can use the grunt-
contrib-less and grunt-contrib-sass packages to compile your
Less and Sass into CSS much in the same way we did with grunt-contrib-
coffee, and then use grunt-contrib-cssmin to minify your CSS as well.

Chapter 10

289

Preparing deployments for staging and
production

In the previous section, we created and configured a Grunt file to compile our source files.
In this section, we will look at extending our Grunt file to include options to prepare files
for deployments to staging and production environments.

Getting ready
In this section, we will use a few Grunt NPM packages to help us prepare our deployments,
including the following:

 f grunt-contrib-clean: This removes files and directories

 f grunt-contrib-copy: - This copies files and directories

 f grunt-text-replace: This replaces text found within files

Install these NPM modules with the following commands:

> npm install grunt-contrib-clean --save-dev

> npm install grunt-contrib-copy --save-dev

> npm install grunt-text-replace --save-dev

How to do it...
Let's load the copy and replace tasks in our Grunt file by adding the following lines to
gruntfile.coffee:

grunt.loadNpmTasks 'grunt-contrib-clean'
grunt.loadNpmTasks 'grunt-contrib-copy'
grunt.loadNpmTasks 'grunt-text-replace'

If we run grunt –help, we see that there are three new tasks available to us named
clean, copy, and replace.

Hosting Our Web Applications

290

In our scenario, our project has the following structure:

Our application uses RequireJS with the Require-CS library to load and compile our
CoffeeScript code as needed, and the Require-Text library to load our HTML views
as needed.

When we deploy our application to staging or production, we want to accomplish the
following tasks:

 f Remove the existing staging or release directories

 f Compile our source including our CoffeeScript and Less style sheets

 f Minify our style sheets

 f Copy our files

 f Update index.html to reference our newly versioned compiled assets

With our clean, copy, and replace tasks in place, we can configure each task
in the grunt.initConifg() function.

Chapter 10

291

First, let's look at our configuration for the clean task:

clean:
 staging: ['build', 'staging']
 release: ['build', 'release']

Next, let's review our compile configuration settings to compile our Less style sheets and our
application code via require.js:

less:
 development:
 files: [
 concat: true
 src: ['src/css/*.less']
 dest: 'build/css/styles.css'
]

requirejs:
 compile:
 options:
 out: "build/js/v#{versionNumber}.min.js"
 baseUrl: 'src/app'
 mainConfigFile: 'src/app/main.js'
 paths:
 text: '../js/text'
 app: 'app'
 underscore: '../js/underscore'
 shim:
 underscore:
 exports: '_'
 include: ['../js/require']
 insertRequire: ['main']
 name: 'main'
 removeCombined: true

We did not discuss require.js, but I have found it to be very useful to build
modern CoffeeScript applications, and it helps me keep my code modular and
more maintainable by following a simple view and view-model pattern. We can
then use Grunt's grunt-contrib-requirejs NPM module to compile,
combine, and minify our CoffeeScript and templates for us.

Hosting Our Web Applications

292

Then, we add our CSS minification settings as follows:

cssmin:
 staging:
 src: 'build/css/styles.css'
 dest: 'build/css/staging.min.css'

 release:
 src: 'build/css/styles.css'
 dest: 'build/css/release.min.css'

Next, we add our copy settings:

copy:
 staging:
 files: [{
 expand: true
 cwd: 'src'
 src: ['img/**', 'js/ba-tiny-pubsub.min.js']
 dest: 'staging/' }
 {
 expand: true
 cwd: 'build'
 src: "js/v#{versionNumber}.min.js"
 dest: 'staging/' }
 {
 src: 'build/css/styles.min.css'
 dest: "staging/css/styles.#{versionNumber}.min.css" }]
 release:
 files: [{
 expand: true
 cwd: 'src'
 src: ['img/**', 'js/ba-tiny-pubsub.min.js']
 dest: 'release/'
 filter: 'isFile' }
 {
 expand: true
 cwd: 'build'
 src: "js/v#{versionNumber}.min.js"
 dest: 'release/'
 filter: 'isFile' }
 {
 src: 'build/css/styles.min.css'
 dest: "staging/css/styles.#{versionNumber}.min.css" }]

Chapter 10

293

Lastly, we finish up by configuring our text replace task:

replace:
 staging:
 src: 'src/index-release.html'
 dest: 'staging/index.html'
 replacements: [
 from: '[BUILDNUMBER]'
 to: "#{versionNumber}"
]

 release:
 src: 'src/index-release.html'
 dest: 'release/index.html'
 replacements: [
 from: '[BUILDNUMBER]'
 to: "#{versionNumber}"
]

How it works...
The previous configuration was pretty lengthy, but once you become familiar with the Grunt
task configuration pattern, even working with new Grunt plugins will become easier.

Most Grunt tasks support what is known as a multi-task. A multi-task allows us to have
specific configurations depending on our intent. For example, the clean task is a multi-
task that has two targets: staging and release. Grunt allows us to call a target using the
task:target syntax. So, for example, we can call the staging target for the clean task by
executing the clean:staging task.

Note that executing a task without specifying a target will execute the task for
each target. For example, calling grunt clean will execute the clean task
for both staging and release.

The clean task configuration defines a target for staging and release. It takes an array of file
paths and, when run, each path is removed, including all files and directories contained within
that path. In our example, if we ran grunt clean:staging, it would delete the build and
staging directories.

The less task is configured to compile all Less files in the src/css folder and contact all
compiled CSS into a single file called styles.css in the build/css folder.

The cssmin task will minify the build/css/styles.css file into a build/css/styles.
min.css file.

Hosting Our Web Applications

294

Our copy task is larger, but it is not too complicated. There are two targets: staging and
release. Each target will copy an array of file objects from src to dest.

The copy:staging target will copy index.html, everything under the img/ folder, and
a library needed by our application under the js/ folder. Then, our compiled and minified
application code will be copied from the build/js folder into the staging/js folder. Lastly,
we copy our compiled and minified CSS into the staging/css folder. Notice that the CSS
and JS application code has been versioned with the current system date/time stamp. This
will ensure the browser loads the freshly compiled files instead of using any cached versions.

With our compiled and versioned source files, we need to update our index.html file to
reference the proper version. We use the replace task to do a textual find and replace within
the index.html file.

Inside the index.html file, we have the following HTML:

<link href="css/styles.v[BUILDNUMBER].min.css" rel="stylesheet" />
<script src="js/v[BUILDNUMBER].min.js"></script>

Our replace:staging and replace:release targets define a src and dest path and an
array of replacements to be made. Each replacement has a from and to value. In our case,
we are replacing the [BUILDNUMBER] text with our version number.

With these tasks defined, we can create compound tasks to perform our preparation for
deployment to staging or production:

grunt.registerTask 'build:staging', ['clean:staging', 'less', \
 'cssmin', 'requirejs', 'copy:staging', 'replace:staging']
grunt.registerTask 'build:release', ['clean:release', 'less', \
 'cssmin', 'requirejs', 'copy:release', 'replace:release']

Here, we declared a build:staging and a build:release task. Each will call the various
subtasks with their appropriate targets to prepare our deployment for staging and release
accordingly.

There's more...
There are other tasks that can be helpful during development. For example, there is a Grunt
module called grunt-contrib-connect that will provide an express web server to host
our development code.

You can install this with the following:

> npm install grunt-contrib-connect --save-dev

Chapter 10

295

Once installed, we can add a connect task to our Grunt file with the following:

grunt.loadNpmTasks 'grunt-contrib-connect'

Let's configure a target to host our development code. Inside the grunt.configInit()
function, add the following:

 connect:
 dev:
 options:
 keepalive: true
 hostname: 'localhost'
 port: 8080
 base: './src'
 open: true

We will register a task called server to execute the connect task:

grunt.registerTask 'server', ['connect']

Now, we can run grunt server in our command window and the express server will start
and your default browser will open your application at http://[hostname]:[port]:

Deploying our application to Heroku
Heroku is a popular cloud-hosting platform that is particularly suited for open source
platforms, including Node, Ruby on Rails, and PHP. In this section, we will look at deploying
our application to Heroku.

If you do not have a Heroku account, you can create a free account and follow along at the
Heroku website at https://signup.heroku.com.

Getting ready
Heroku provides powerful command-line tools for Mac, Windows, and Debian/Ubuntu that
allow us to easily work with our hosted application, any necessary add-ons, log files, and
other tools.

To begin, install the Heroku toolbelt for your operating system. You can download the toolbelt
from the Heroku website at https://toolbelt.heroku.com.

Hosting Our Web Applications

296

Our sample application is a very simple express website. We have an src folder with an app.
coffee file with the following code:

express = require 'express'
cool = require 'cool-ascii-faces'

app = express()

app.set 'port', (process.env.PORT or 5000)
app.set 'views', __dirname + '/views'
app.set 'view engine', 'jade'

app.use express.static(__dirname + '/public')

app.get '/', (req, res) ->
 faces = []
 times = process.env.TIMES || 5
 faces.push cool() for [0...times]
 res.render 'index', { title: 'Home', faces: faces }

app.listen app.get('port'), ->
 console.log "Node app is running at localhost:" + \
 app.get 'port'

This sample provides access to files under /public as static files and uses Jade templates
found under the /views folder. It also provides a root route that renders the index.jade
view and passes to it an array of funny ASCII faces thanks to the cool-ascii-faces
Node module.

We use Grunt to compile our CoffeeScript and Less style sheets and prepare them
for deployment.

How to do it...
Once the Heroku toolbelt is installed, we will use its heroku command-line utility to provision
a new application on Heroku.

Deployments to Heroku are performed using the Git source control system. Let's create a new
local Git repository for our application. Open a command window and navigate to the project's
root directory and enter the following command:

> git init

Chapter 10

297

Once our Git repository has been created, you can provision a new Heroku application:

> heroku create

This will display something similar to the following screenshot:

When we create a new application on Heroku, we receive the Git endpoint for
our new application. In the preceding screenshot, the endpoint is git@heroku.
com:[application-id].git.

Once we have the Git endpoint, we can add it as a remote repository for our application by
typing in the following command:

> git remote add heroku git@heroku.com:[application-id].git

Now, when we commit changes to our local repository and push them to the heroku remote
repository, Heroku will perform a deployment for you.

Before we can deploy, we need to let Heroku know how to start our application. We do this by
creating a new file called Procfile. In this file, add the following line:

web: node target/index.js

We now have everything in place for our deployment. Let's compile and commit our local
changes:

> grunt build

> git add .

> git commit -m 'Prepped for deployment.'

With our changes committed to our local repository, let's push that to Heroku:

> git push heroku

Hosting Our Web Applications

298

When we push to Heroku, we see the following output:

With our application deployed, we can open our application with the following command:

> heroku open

How it works...
Heroku's toolbelt provides some very powerful commands for us to use. Some common
commands include the following:

 f addons: This allows us to manage add-ons available to our application

 f apps: This allows us to create and destroy applications

 f config: This allows us to manage our application's configuration variables

 f logs: This displays logs for an app

 f ps: This allows us to manage the number of worker processes assigned to
our application

Chapter 10

299

Our application displays ASCII art faces in a sidebar. It uses a configuration variable called
TIMES to determine how many faces are to be displayed (five by default).

When we run it with the default value, we see an output similar to the following:

Let's set it to display three faces. In the command window, enter the following:

> heroku config:set TIMES=3

This produces the following output:

Note that updating our application's configuration also causes it to restart.

Without TIMES set to 3, we can refresh our application and see the following:

Hosting Our Web Applications

300

Deploying our application to Microsoft Azure
Azure is a cloud-hosting platform from Microsoft with support for Node and .NET applications.
In this section, we will look at deploying our application to Azure.

If you do not have an Azure account, you can create a free trial and follow along at the Azure
website at https://account.windowsazure.com/signup.

Azure also allows up to ten free websites to be hosted on their cloud and is accessible to anyone
via the World Wide Web. It is a perfect solution to learn the platform and available services.

Getting ready
Like Heroku, Azure offers an easy deployment through Git. Unlike Heroku, we manage
applications using the Azure management portal. Let's create a website.

Visit the Azure management portal at https://manage.windowsazure.com.

Click on the New button at the bottom of the screen, as shown in the following screenshot:

Chapter 10

301

In the New dialog, click on WEB SITES and then QUICK CREATE. This should display the quick
create form, as follows:

Enter a name for our new website and choose a region. Click on the CREATE WEB SITE button
at the bottom to continue.

How to do it...
The new website dialog will close and we will see that our website is being created. Once that
is completed, click on the website to view its settings.

Hosting Our Web Applications

302

Here we can view the application's dashboard, configure monitoring, change the configuration,
link resources, and manage backups:

Once the website is created, click on the application name (cs-book in the previous image).
This will display the application dashboard seen in the following screenshot:

Chapter 10

303

Next, we will configure the ability to deploy our application via pushing our code updates,
much in the same we do in the Deploying our application to Heroku recipe.

At the bottom-left corner of the dashboard, we see a quick-glance menu. Scroll down and click
on the Set up deployment from source control link. This will display the following window:

On the next screen, choose Local Git repository as our source control location. Click on the
next button.

Hosting Our Web Applications

304

After a few moments, you will see a message that the local repository has been created
successfully, as seen in the following screenshot:

Lastly, we are prompted to create the credentials we want to use when pushing our local
repository to Azure.

The last screen has instructions to configure our local repository. Step three is of particular
importance, Add remote Windows Azure repository and push your stuff, seen in the
following screenshot:

Using these instructions, create a remote branch for the application source.

Chapter 10

305

How it works...
We now have our website created on Azure and the information to configure a git remote
branch that will allow us to push our application to Azure. Next, we will configure the
application for deployment.

Like our Heroku sample, we are going to deploy a simple express application using Jade views
and Less style sheets.

We have a Grunt file that will compile our CoffeeScript source files into JavaScript files and our
Less style sheets into CSS.

We need to tell Azure how our application is to be launched. We do this in our package.json
file. Add the following to our package.json file:

"main": "target/server.js",
"scripts": {
 "start": "node target/server.js"
}

This instructs Azure to use the compiled JavaScript file to launch our application.

Next, we can check our changes and push them to Azure:

> git push azure master

When we push to Azure, we see something similar to the following:

Counting objects: 19, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (19/19), 3.74 KiB | 0 bytes/s, done.

Total 19 (delta 0), reused 0 (delta 0)

remote: Updating branch 'master'.

remote: Updating submodules.

remote: Preparing deployment for commit id '194f50e106'.

remote: Generating deployment script.

remote: Generating deployment script for node.js Web Site

remote: Generated deployment script files

remote: Running deployment command...

remote: Handling node.js deployment.

remote: KuduSync.NET from: 'D:\home\site\repository' to: 'D:\home\site\
wwwroot'

Hosting Our Web Applications

306

remote: Deleting file: 'hostingstart.html'

remote: Copying file: '.gitignore'

remote: Copying file: 'gruntfile.coffee'

remote: Copying file: 'gruntfile.js'

remote: Copying file: 'package.json'

remote: Copying file: 'public\css\style.css'

remote: Copying file: 'src\server.coffee'

remote: Copying file: 'src\css\style.less'

remote: Copying file: 'target\server.js'

remote: Copying file: 'views\index.jade'

remote: Copying file: 'views\layout.jade'

remote: Using start-up script target/server.js from package.json.

remote: Generated web.config.

remote: Node.js versions available on the platform are: 0.6.17, 0.6.20,
0.8.2, 0.8.19, 0.8.26, 0.8.27, 0.8.28, 0.10.5, 0.10.18, 0.10.21, 0.10.24,
0.10.26, 0.10.28, 0.10.29, 0.10.31.

remote: Selected node.js version 0.10.31. Use package.json file to choose
a different version.

remote: Updating iisnode.yml at D:\home\site\wwwroot\target\iisnode.yml

remote: npm WARN package.json cs-book-heroku@0.1.0 No repository field.

remote: npm WARN package.json cs-book-heroku@0.1.0 No README data

remote:

remote: cool-ascii-faces@1.3.3 node_modules\cool-ascii-faces

remote: +-- stream-spigot@3.0.4 (xtend@3.0.0, readable-stream@1.0.31)

remote:

remote: jade@1.6.0 node_modules\jade

remote: +-- character-parser@1.2.0

remote: +-- commander@2.1.0

remote: +-- void-elements@1.0.0

remote: +-- mkdirp@0.5.0 (minimist@0.0.8)

remote: +-- transformers@2.1.0 (promise@2.0.0, css@1.0.8, uglify-
js@2.2.5)

remote: +-- with@3.0.1 (uglify-js@2.4.15)

remote: +-- monocle@1.1.51 (readdirp@0.2.5)

remote: +-- constantinople@2.0.1 (uglify-js@2.4.15)

remote:

Chapter 10

307

remote: express@3.4.8 node_modules\express

remote: +-- methods@0.1.0

remote: +-- merge-descriptors@0.0.1

remote: +-- range-parser@0.0.4

remote: +-- fresh@0.2.0

remote: +-- cookie-signature@1.0.1

remote: +-- debug@0.8.1

remote: +-- buffer-crc32@0.2.1

remote: +-- cookie@0.1.0

remote: +-- mkdirp@0.3.5

remote: +-- commander@1.3.2 (keypress@0.1.0)

remote: +-- send@0.1.4 (mime@1.2.11)

remote: +-- connect@2.12.0 (uid2@0.0.3, pause@0.0.1, qs@0.6.6, raw-
body@1.1.2, batch@0.5.0, bytes@0.2.1, negotiator@0.3.0, multiparty@2.2.0)

remote: Finished successfully.

remote: Deployment successful.

To https://[username]@cs-book.scm.azurewebsites.net:443/cs-book.git

 * [new branch] master -> master

When we open our browser and navigate to our application, we see it's running as expected,
and we see our cool little ASCII art faces:

Hosting Our Web Applications

308

There's more...
Azure has a number of services, including the following:

 f Cloud services: Perfect to create highly scalable web APIs

 f SQL databases: Relational databases built on MS SQL Server

 f Table storage: Non-relational data store for blob, table, and queue storage

 f Media services: Cloud-based media service to host on-demand, live streaming,
and content protection services

 f Redis cache: Redis database that is accessible from any application within Microsoft
Azure

 f CDN: Content delivery network service to host static content with high bandwidth
and low latency

You can learn about all of these and more from the Microsoft Azure Services site at
http://azure.microsoft.com/en-us/services.

309

Scripting for DevOps

In this chapter, we will cover the following recipes:

 f Executing shell commands with exec

 f Executing shell commands with spawn

 f Copying, moving, and deleting files and directories

 f Archiving files and directories

 f Parsing CSV files

 f Parsing fixed-width files

 f Padding and aligning output

 f Formatting dates with moment.js

 f Formatting numbers with accounting.js

Introduction
In recent years, IT operations staff has turned to software development to help simplify their
day-to-day tasks through scripting and automation. In this chapter, we will look at ways that
DevOps can use CoffeeScript to perform some common tasks.

We will begin by demonstrating how we can execute shell commands from our CoffeeScript
files using Node's child_process library.

We will then see how we can manage our filesystem with our scripts, including copying,
moving, deleting, and archiving files and directories.

11

Scripting for DevOps

310

Next, we will see how we can load and parse Comma-separated Values (CSV) and
fixed-width files.

We will end the chapter by looking at ways we can format date and numeric data that
is better suited for human interpretation.

Executing shell commands with exec
Node has a built-in library called child_process that allows us to execute shell commands
using either the child_process.exec() function or the child_process.spawn()
function.

In this section, you will learn how to execute shell commands using the exec() function in
Node's child_process library.

Getting ready
We will be using the native Node library for this example.

How to do it...
In this example, we will execute the coffee command with the --help parameter to get the
help text displayed by the CoffeeScript executable:

1. Load the child_process library and grab its exec() function:
exec = require('child_process').exec

2. Execute CoffeeScript's coffee --help command, which will display the help text
for CoffeeScript:
exec 'coffee -help', (error, stdout, stderr) ->

3. The following result will be displayed:

 if stdout

 console.log "Received #{stdout.length} bytes."

 console.log stdout

 if stderr

 console.error stderr

Chapter 11

311

How it works...
The exec() function takes a string representing the shell command we wish to execute,
including parameters and a callback. The callback receives an error object, a standard
output buffer, and a standard error buffer.

If the command fails, for example if the command is not found, the error object will contain
information regarding this.

If the command succeeds, exec will capture both the output to standard out and to standard
error. Both are returned to the callback as buffer instances.

In our example, when we execute this script, we display the length of the output buffer. It tells
us that the coffee --help command will return 1,193 characters:

Usage: coffee [options] path/to/script.coffee -- [args]

If called without options, `coffee` will run your script.

 -b, --bare compile without a top-level function wrapper

 -c, --compile compile to JavaScript and save as .js files

 -e, --eval pass a string from the command line as input

 -h, --help display this help message

 -i, --interactive run an interactive CoffeeScript REPL

There's more...
We can pass an optional configuration object into the exec() function. This configuration
object can specify the encoding, timeout period, maximum buffer size, kill signal, current
working directory, and environment.

By default, the following options are used:

 f encoding : 'utf8'

 f timeout : 0 milliseconds,

 f maxBuffer : 204,800 bytes (200 KB)

 f killSignal : 'SIGTERM'

 f cwd : null

 f env : null

Scripting for DevOps

312

If a timeout is provided or if the maximum buffer size is reached, the process will be
terminated. For example, if we wanted to make sure our CoffeeScript command returns in 5
milliseconds or less, we could call exec in the following manner:

exec 'coffee --help', { timeout: 5 }, (error, stdout, stderr) ->

If you are curious, CoffeeScript did not execute this command in 5 milliseconds or less.
Instead, the following error was returned indicating the command was terminated:

{ [Error: Command failed:] killed: true, code: null, signal:
'SIGTERM' }

Executing shell commands with spawn
The spawn() function of the child_process library is very similar to the exec() function,
except that instead of returning buffers, it returns a stream. Streams are extremely handy for
certain circumstances. For example, what if we wanted to take the output of one command
and send that as the input for a second command? The spawn() function can help with this.

Getting ready
In our example, we will use spawn to execute a simple CoffeeScript statement and retrieve
the results.

We will be using the native Node library for this example.

How to do it...
In this example, we will demonstrate the use of spawn() to execute a CoffeeScript statement:

1. Begin by loading the child_process library and grabbing its spawn() function:
spawn = require('child_process').spawn

2. Define our CoffeeScript statement:
coffeeCode = 'console.log "The answer to life is #{6 * 7}"'

3. In our example, we want two processes: echo and coffee. The echo process will
place our CoffeeScript statement into the standard out stream that we will then
write to the coffee process's standard in stream:
echo = spawn 'echo', [coffeeCode]

coffee = spawn 'coffee', ['-s']

Chapter 11

313

4. Add event listeners for the data and close events:
echo.stdout.on 'data', (data) ->

 coffee.stdin.write data

echo.on 'close', (code) ->

 coffee.stdin.end()

coffee.stdout.on 'data', (data) ->

 displayResult data.toString()

5. Create a helper function to display the result of the executed CoffeeScript statement:

displayResult = (answer) ->

 console.log answer

Note that because stdin.write is an output stream, we can
shorten our echo.stdout.on 'data' handler to the following:
echo.stdout.on 'data', coffee.stdin.write

How it works...
The spawn() function takes two required parameters: the first is the name of the command
we want to execute and the second is an array of arguments to be supplied to the command.
For example, if we wanted to get a full file listing on Mac or Linux, we can execute the
following:

spawn 'ls', ['-a', '-l']

On Windows, we can run a similar command:

spawn 'cmd', ['/C', 'dir /L']

Notice however that the spawn() function does not take a callback function. This is because
the spawn() function returns an input, output, and error stream (stdin, stdout, and
stderr, respectively).

When working with Node streams, we use events to know when key actions take place.

In our example, we use the data event on both the echo.stdout and coffee.stdout
streams.

Scripting for DevOps

314

Our data event listeners provide a callback that receives a data value. For the echo process,
we are interested in the output value, our CoffeeScript statement. When our echo.stdout
stream receives its data, we write it to the coffee.stdin stream using the stream.
write() function passing out data.

We also add an event listener for the echo.stdout event handler's close event. This allows
us to end the coffee.stdin event handler's stream, which will flush any remaining bytes
from its stream.

Executing our script, we get the following result on our screen:

The answer to life is 42

However, you may ask, what was the question?

There's more...
Node's streams are very powerful and help us to load and manipulate data from even very
large files because we do not need to read the entire buffer into memory.

It turns out that reading from one stream and writing to another as we did in our echo.
stdout data event handler is a very common stream-related task. Node provides a shortcut
for doing just this.

The stream.pipe() function will pass bytes being read into a stream into a write stream.
To better clarify this, here is our earlier spawn() example using pipes:

spawn = require('child_process').spawn

coffeeCode = 'console.log "The answer to life is #{6 * 7}"'

echo = spawn 'echo', [coffeeCode]

coffee = spawn 'coffee', ['-s']

echo.stdout.pipe(coffee.stdin)

coffee.stdout.on 'data', (data) ->

 displayResult data.toString()

displayResult = (answer) ->

 console.log answer

Chapter 11

315

Here, we pipe the data from the echo.stdout event handler into the coffee.stdin event
handler. When using the pipe() function, we do not need to worry about the read or close
events as the pipe() function handles this for us. We continue to use a data event on the
coffee.stdout function so that we can get its output data and display the results. If we
execute this modified script, we achieve the same result.

Copying, moving, and deleting files and
directories

Working with files and directories is a very common task. In this recipe, we will see how we
can do this using CoffeeScript and Node.

Getting ready
In this recipe, we have a file named chinook.sqlite and a directory named src. Both are
part of the source code from Chapter 9, Testing Our Applications, but you can use any file and
directory renamed to match this setup.

How to do it...
Node provides the filesystem module to work with files and directories. It allows us to create,
open, close, read, write, and rename files and directories. To see how we can perform these
tasks, follow these steps:

1. Using Node's filesystem module, we can copy a file by creating read and write
streams and piping file contents from one to the other:
fs = require 'fs'

src = 'chinook.sqlite'

dest = 'chinook2.sqlite'

copy from a read stream into a write stream

fs.createReadStream(src).pipe fs.createWriteStream(dest)

2. We can also use the filesystem's rename() function to effectively move a file or
directory:
rename a file

fs.rename 'chinook.sqlite', 'chinook2.sqlite', (err) ->

 return console.error(err) if err

Scripting for DevOps

316

 console.log 'success'

rename a folder

fs.rename 'src', 'src2', (err) ->

 return console.error(err) if err

 console.log 'success'

3. We can use the mkdir() and rmdir() functions to create and remove directories,
respectively:
create a folder

fs.mkdir 'new-dir', (err) ->

 return console.error(err) if err

 console.log 'success'

remove a folder

fs.rmdir 'new-dir', (err) ->

 return console.error(err) if err

 console.log 'success'

4. We can use the unlink() function to remove a file:

fs.unlink 'chinook3.sqlite', (err) ->

 return console.error(err) if err

 console.log 'unlink: success'

How it works...
Though the filesystem functions are helpful, they have their limitations. For example, if we try
to remove a non-empty directory, we get a filesystem error as follows:

remove non-empty directory

fs.rmdir 'src', (err) ->

 return console.error(err) if err

 console.log 'rmdir non-empty directory: success'

Executing this code produces the following error:

{ [Error: ENOTEMPTY, rmdir 'src'] errno: 53, code: 'ENOTEMPTY', path:
'src' }

Chapter 11

317

We could create a recursive function that will delete all files and directories inside the
directory we wish to remove by doing something like the following:

deleteFolderAndContents = (path) ->

 if fs.existsSync path

 fs.readdirSync(path).forEach (file) ->

 currentPath = "#{path}/#{file}"

 if fs.statSync(currentPath).isDirectory()

 deleteFolderAndContents currentPath

 else

 fs.unlinkSync currentPath

 fs.rmdirSync path

Note that by default all of Node's functions are asynchronous. That is
usually the desirable behavior. In this case, however, we use the fs
module's synchronous versions to make sure an action does not proceed
until the previous action has completed.

There's more...
This is a lot of work to be able to delete a folder and you might expect there to be an NPM
module to make things easier for us. You would be right.

Let's look at the fs-extra module. It provides all of the features of Node's fs module, but
adds a number of very convenient methods to make our file management tasks easier.

Install it with the following command:

npm install fs-extra --save

What can we do with the fs-extra module?

We can copy all files to a path that does not exist as follows:

fs = require 'fs-extra'

copy only js files

fs.copy 'src/js', 'src2/js', '*.js', (err) ->

 return console.error(err) if err

 console.log 'copy: success'

Scripting for DevOps

318

In the previous example, we copy only JavaScript files from the src/js folder to a src2/
js directory that does not yet exist. The fs-extra module will try to create the necessary
directory structure if it does not exist. This is extremely helpful.

We can move files and directories:

fs.move 'src2', 'tmp/src3', (err) ->

 return console.error(err) if err

 console.log 'move: success'

Here we move the src2 directory and its contents into a nested directory that does not exist.
The fs-extra module will create any missing directories if necessary.

We can also remove a folder and all of its contents:

fs.remove 'tmp', (err) ->

 return console.error(err) if err

 console.log 'remove: success'

In the previous snippet, we simply call the remove() function and pass the file or directory
we want to remove. In the case of a directory with contents, the directory and contents will
be removed.

One last note, you do not need to load both the fs and fs-extra modules into your script. The
fs-extra module builds upon the standard fs module, giving us the best of both worlds.

Archiving files and directories
In this recipe, we will look at creating archives of our files and directories.

Getting ready
We will be using the archiver NPM module. Install it with the following command:

npm install archiver --save

How to do it...
With the archiver module installed, we can use it to create a backup file of our entire
workspace tree by following these steps:

1. Load the fs and archiver modules:
fs = require 'fs'

archiver = require 'archiver'

Chapter 11

319

2. Create a write stream:
output = fs.createWriteStream 'backup.zip'

3. Create an instance of a ZIP archive:
archive = archiver 'zip'

4. Add event handlers to the stream and archive:
output.on 'close', ->

 console.log "Total bytes: #{archive.pointer()}"

archive.on 'error', (err) ->

 console.error err

5. Set the archive's output pipe to our stream writer:
archive.pipe output

6. Perform the compression:

archive.bulk

 expand: yes

 cwd: 'workspace'

 src: ['**']

 dest: 'src'

archive.finalize()

How it works...
We start by requiring the fs and archiver modules.

We then create a write stream to a file named backup.zip using the
createWriteStream() function of the fs module passing in the name of the file we want
our output to be written to; backup.zip in this case. We assign our new write stream to the
variable output.

We then create an instance of the archiver module specifying the zip compression
algorithm. Out of the box, the archiver module supports the zip compression and
tar but other compression modules can be used and referenced with the archive's
registerFormat() function.

On the output stream, we add an event listener for the stream's close event. When the stream
closes, we use the archive's pointer() function to display the size of the bytes written.

We also add an event listener archive to handle any error events, which we simply display on
the console.

Scripting for DevOps

320

We then use the archive's pipe() function to set the archive's output stream.

Next, we use the archive's bulk() function to specify what file, files, and/or directories
we wish to add to our archive.

We pass an object literal to the bulk() function. This object represents our file mapping.
This is very similar to what we saw in the Grunt section of Chapter 10, Hosting Our Web
Applications. In this example, our mapping contains the following options:

 f expand : This enables dynamic expansion

 f cwd : This sets the base path for the files to be included

 f src : In this option, an array of files and / or paths to be added to our archive
based on the cwd value

 f dest : This sets the destination path prefix

Lastly, we call the archive's finalize() function. This will lock the queue and finish processing
the files. We must call finalize() to ensure the archive is fully written and closed.

Parsing CSV files
One of the common tasks we face is the processing of textual data files.

In this recipe, we will parse a CSV-formatted file by using an NPM library that supports
reading from an input stream. In our example, we want to parse a contact database collecting
customer counts by state. Our goal is to see which states have the most customers.

Getting ready
We will be using the node-csv NPM module. We will begin by installing the module:

npm install csv --save

If we inspect our sample CSV file, we see the first three lines that follow:

"first_name","last_name","company_name","address","city","county","sta
te","zip","phone1","phone2","email","web"
"James","Butt","Benton, John B Jr","6649 N Blue Gum St","New Orlean
s","Orleans","LA",70116,"504-621-8927","504-845-1427","jbutt@gmail.
com","http://www.bentonjohnbjr.com"
"Josephine","Darakjy","Chanay, Jeffrey A Esq","4 B Blue Ridge
Blvd","Brighton","Livingston","MI",48116,"810-292-9388","810-374-
9840","josephine_darakjy@darakjy.org","http://www.chanayjeffreyaes
q.com"

As you can see, the first line contains the names for our columns. This will come in
handy later.

Chapter 11

321

How to do it...
In this example, we load the contents of a CSV file as a stream and parse the file to perform
some calculations and then display the results:

1. Load the fs and csv modules:
fs = require 'fs'

csv = require('csv')

2. Declare an array to hold our countsByState values and get a CSV parser instance:
countsByState = []

parser = csv.parse columns: true

3. Add handlers for the parser's readable and end events:
parser.on 'readable', ->

 while record = parser.read()

 addOrIncrement record, countsByState

parser.on 'end', ->

 displayTopResults countsByState

4. Define helper methods to add or increment our state counters, calculate the sum of
our counts, and display the results:
addOrIncrement = (record, countsByState) ->

 items = countsByState.filter (item) -> item.state is
record.state

 if items.length is 1

 items[0].count += 1

 else

 countsByState.push state: record.state, count: 1

sumOfCounts = (array) ->

 sum = 0

 sum += item.count for item in array

 return sum

displayTopResults = (countsByState, n = 5) ->

Scripting for DevOps

322

 sortByDescComparer = (a, b) ->

 if b.count > a.count then return 1

 if a.count > b.count then return -1

 return 0

 sorted = countsByState.sort sortByDescComparer

 topN = sorted[0...n]

 console.log '\nTop Results\n-----------'

 for item in topN

 console.log "#{item.state}: #{item.count}"

 sumOfTopNCount = sumOfCounts topN

 sumOfAll = sumOfCounts countsByState

 console.log "\nTop #{n} of #{countsByState.length} states "
+ \

 "account for #{(sumOfTopNCount / sumOfAll) * 100} %\n"

5. Create a read stream to process our CSV file and use the stream's pipe() method to
send the stream to our parser:

kick off our processing

fs.createReadStream('us-500.csv').pipe(parser)

How it works...
In our script, we create an instance of the CSV parser by using the parse() method to
which we pass an object literal representing our configuration options. Some of the common
configuration options include the following:

 f delimiter : This specifies the field delimiter (defaults to comma).

 f rowDelimiter : This specifies the row delimiter. By default, it will inspect the source
file to try and determine Unix, Mac, or Windows line endings. It can be one of the
following values: auto, unix, mac, windows, or unicode (defaults to auto).

 f quote : This specifies the character used to surround a field (defaults to a double
quote).

Chapter 11

323

 f columns : This allows us to specify an array of column names or the value of true for
auto discovery of fields from the first line of the file. A null value will parse each line as
an array of fields; otherwise, each line will be parsed as an object (null by default).

 f auto_parse : If set to true, each field will be parsed into their native types
(defaults to false).

In our case, we want to automatically parse the columns by name using the first row as the
column name. As the file stream is being processed, the node-csv module will raise two
events that we are interested in:

 f readable : This indicates that a chunk of data is ready to be read from the stream

 f end : This indicates that there is no more data to be read and the stream is empty

Our readable event listener executes the parser's read() function that will return one line at
a time. When the end of the stream is reached, read() returns null.

Inside our readable handler, each record that is read is parsed automatically by the
node-csv parser and is passed to our helper function that aggregates the data.

Our end event listener simply calls our helper function to display the results.

We create three helper methods:

 f addOrIncrement() : This method extracts the aggregate information by adding a
state if it does not already exist or by incrementing the count if the state has already
been added

 f sumOfCounts() : This method returns a sum over a collection of aggregates

 f displayTopResults() : This method displays the top N results

We finish our script by creating a read stream using Node's fs.createReadStream()
function with the name of the file we wish to process and then use the stream's pipe()
function to send the data into our parser instance. Our readable and end event listeners
take it from there.

When we execute this script, we see the following output:

Scripting for DevOps

324

There's more...
The node-csv module is a powerful library to parse CSV data but it does more and includes
the following modules:

 f generate : This module creates a CSV generator for random CSV data

 f parse : This module creates a CSV parser as we saw in our example

 f transform : This module creates a process that can be used like a parser but where
records can be manipulated and returned as a stream

 f stringify : This module creates a process that converts a record or collection back
into CSV strings suitable for the output

All four of these modules can work with streams, pipes, or a simple callback mechanism
depending on your need.

We may have a scenario in which we have a CSV file and we may need to manipulate a
particular field or fields, but we still want a CSV file as a result.

The node-csv package allows us to handle this very eloquently, using pipes:

fs = require 'fs'

csv = require 'csv'

parser = csv.parse columns: yes

transformer = csv.transform (data) ->

 data.first_name = data.first_name.toUpperCase()

 data.last_name = data.last_name.toUpperCase()

 return data

stringifier = csv.stringify { header: true, quoted: true }

input = fs.createReadStream 'us-500.csv'

output = fs.createWriteStream 'us-500-upper.csv'

input

 .pipe(parser)

 .pipe(transformer)

 .pipe(stringifier)

 .pipe(output)

Chapter 11

325

Here, we create an instance of node-csv's parse, transform, and stringify objects. We
use streams for each of these which allow us to pipe the output of one process into the next
process in the chain. Effectively, this allows us to:

1. Send our input to the parser function.

2. Send our parsed values to the transformer function.

3. Send our transformed values to the stringifier function.

4. Send our stringified values to the output stream.

Our transformer function receives a data record. It then converts the record's first and last
name values to uppercase. The modified record is then returned.

Our stringifier function takes an object literal similar to our parser function. Here we
set two options; we set the header option to true, which will output a header row, and set
the quoted option to true, which will wrap each field in double quotes.

After running this simple script, we have a version of our CSV file with the first and last names
in uppercase.

For more information on the node-csv module, you can check out the project home page at
http://csv.adaltas.com.

Parsing fixed-width files
In this recipe, we will parse a fixed-width file by creating a simple streaming parser. Our
sample file will contain fixed-width columns of strings, numbers, dates, and Boolean values
of accounting data. Our goal is to count the records and get a total credit and debit amount
for all records that have been posted.

Our sample file looks like the following:

Scripting for DevOps

326

Getting ready
In this section, we will create our own parser for fixed-width files. When considering the
features we would like for our basic parser, it should:

 f Work with a stream reader to allow parsing very large data files

 f Use a schema to define our column names, positions, sizes, and data types

 f Parse data to native types

We will use Node's built-in stream reader to read our data files.

We will create our schema as an array of column objects. Each column has a name, starting
position (start), size, and type. Supported type values include string, float, date,
and Boolean.

Because of the variety of date and number formats, we will use two NPM modules to help us
process these effectively. We will use moment.js to parse date values and accounting.js to
parse floating point numbers, including currencies.

We can install both of these NPM modules using the following commands:

npm install moment --save

npm install accounting --save

How to do it...
In this example, we will load a fixed-width text file as a stream, parse each line, and calculate
some running totals:

1. Load Node's fs, readline, and stream modules along with the accounting
and moment modules we added:
fs = require 'fs'

readline = require 'readline'

stream = require 'stream'

accounting = require 'accounting'

moment = require 'moment'

2. Define our column specification. This is an array of object literals that provide the
name, starting position, size, and type for each column in our file:
spec = [

 { name: 'entry', start: 0, size: 8, type: 'string' }

 { name: 'period', start: 8, size: 4, type: 'string' }

Chapter 11

327

 { name: 'post_date', start: 12, size: 12, type: 'date' }

 { name: 'gl_account', start: 24, size: 13, type: 'string'}

 { name: 'description', start: 37, size: 27, type: 'string' }

 { name: 'source', start: 64, size: 5, type: 'string' }

 { name: 'cash_flow', start: 69, size: 4, type: 'boolean' }

 { name: 'reference', start: 73, size: 10, type: 'string' }

 { name: 'posted', start: 83, size: 5, type: 'boolean' }

 { name: 'debit', start: 88, size: 20, type: 'float' }

 { name: 'credit', start: 108, size: 20, type: 'float' }

 { name: 'allocated', start: 128, size: 4, type: 'boolean' }

]

3. Define a configuration object. At this time, we will define the date format found in our
file. This will be used by moment.js when parsing any date values:
config =

 dateFormat: 'MM/DD/YYYY'

4. Define four helper functions responsible to extract field data from a record and
handle the conversion to the native types:
parseLine = (line) ->

 item = {}

 extractSegment = (field) ->

 value = line.substr(field.start, field.size).trim()

 switch field.type

 when 'float', 'integer' then value = parseNumber value

 when 'date' then value = parseDate value

 when 'boolean' then value = parseBoolean value

 item[field.name] = value

 extractSegment(field) for field in spec

 return item

parseNumber = (value) ->

Scripting for DevOps

328

 return accounting.parse value

parseDate = (value) ->

 return moment(value, config.dateFormat).toDate()

parseBoolean = (value) ->

 return ['true', 'yes', 'on'].indexOf(value.toLowerCase()) >= 0

5. Create the counter values. We want to process our data file and do the following:

 � Count the number of records

 � Calculate the total debit and credit amount across all records

 � Determine the earliest and latest posting dates in our dataset:

recordCount = 0

totalCredit = 0.00

totalDebit = 0.00

minPostDate = moment('2100-01-01').toDate()

maxPostDate = moment('1900-01-01').toDate()

Note that we will use the minPostDate option to hold the minimum
value read from our file. We set it to a very large value so that even the
first record we read will be less than our initial value, therefore setting it
to the first value.
This is true for the maxPostDate option. We set it to a very small value
so that the first record read will set the initial value.

6. Create the read stream and use Node's readline module. This module allows
us to read from an input stream, one line of data at a time:
input = fs.createReadStream 'transactions.txt'
rl = readline.createInterface input: input, terminal: no

7. Add event listeners for readline's line event and the read stream's end event.
We use the line event to parse our line into a record object and accumulate our
desired statistics. We use the end event as our trigger to display our result summary:

rl.on 'line', (line) ->

 record = parseLine line

Chapter 11

329

 recordCount += 1

 totalDebit += record.debit

 totalCredit += record.credit

 minPostDate = record.post_date if record.post_date <
minPostDate

 maxPostDate = record.post_date if record.post_date >
maxPostDate

input.on 'end', ->

 console.log "\nBetween " +

 "#{moment(minPostDate).format(config.dateFormat)} and " +

 "#{moment(maxPostDate).format(config.dateFormat)}, " +

 "#{recordCount} records were processed.\n"

 console.log "Total DB:
#{accounting.formatMoney(totalDebit)}"

 console.log "Total CR:
#{accounting.formatMoney(totalCredit)}\n"

How it works...
The parseLine() function is responsible for converting a line from our file into an object
representing the parsed data. This function receives a full record in the form of a string from
the file being processed. For each field in the column specification, a helper function named
extractSegment() is used to extract and parse the data for that field from the line. The
extractSegment() function takes a field and uses the string's substr() method with the
field's start and size values to extract the proper sub string from the line. This value is passed
to the appropriate type parsing function.

In our parseNumber() helper function, we call the accounting module's parse()
method. This is a super flexible method that will parse numbers as the currency, with or
without commas, and even localized values.

In our parseDate() helper function, we call the moment module's constructor function with
our date-formatted string and our dateFormat string from our config object. This tells the
moment module whether it's month/day/year, day/month/year, and so on. For a date like
02/04/2014, the order is important.

We create our read stream using the fs.createReadStream() function in the same
manner we did in the CSV section.

Scripting for DevOps

330

Once we have a read stream, we configure our readline instance. We do this by calling the
createInterface() function. This takes an object with the required input and output
properties, both of which are stream instances. In our case, we do not have an output
stream, so we set the output to null. We also set the optional terminal property to false.
This prevents the output from being written to the terminal screen. By default, the readline
instance will read from the standard input stream process.stdin (a keyboard, for example)
and write to the standard output stream process.stdout (a terminal window, for example).
This is not the behavior we want for our script, so we set terminal to no.

Once we have a readline instance, we add a listener for the line event. The line event is
raised when the readline instance detects an end of line character (\n) and it provides the
line to the event handler. In our handler, we parse the line using our parseLine() function
and use the returned record object then accumulate our summary information.

On our read stream object, we add a listener for the end event. This signals us that the read
stream is empty and complete. In our handler, we display the results.

When we execute our script, we see the following results:

Padding and aligning output
It is a common requirement to pad our display values to a specified size. This may involve
padding to the left, right, or even center values. This is especially useful when generating
fixed-width output. In this recipe, we will see how to pad our values by creating a useful,
multipurpose padding function.

Getting ready
We will be using the basic tools provided by Node.

We want to create a function that will accept a string value, which will pad it to a specified size
(number of characters) with a padding character. It should be able to pad our values to the
left or right.

Padding can also provide some alignment functionality. For example, if we pad a value to the
right, it will be left aligned, while padding to the left will right align our value.

Let's look at how we can accomplish this.

Chapter 11

331

How to do it...
In this example, we will create a function called pad() to perform padding and alignment:

1. Create the function signature. This function will accept a value, a desired size, a
padding character, and a padding direction:
pad = (size, value, char = ' ', direction = 'left') ->

For convenience, we default our padding character to a blank space and our direction
to be padded right or left aligned.

2. Create a string of our padding character equal to the desired length:
 padding = ''

 padding += char for i in [0...size]

3. Examine the direction to determine whether we are to pad to the left, right, or both
sides (centered):
 switch direction

 when 'left' then return (value + padding).substr 0, size

 when 'right' then return (padding + value).substr -1 *
size

 when 'center'

 if value.length > size

 return value.substr(0, size)

 halfPadding = padding.substr(0, (size - value.length) /
2)

 return (halfPadding + value + padding).substr(0, size)

4. Define some helper functions that will allow us to perform padding and alignment
more easily in our code:
padRight = (size, value, char = ' ') ->

 pad size, value, char, 'right'

padLeft = (size, value, char = ' ') ->

 pad size, value, char, 'left'

alignCenter = (size, value, char = ' ') ->

 pad size, value, char, 'center'

Scripting for DevOps

332

5. Export the functions to be used by our programs:

module.exports =

 pad: pad

 padRight: padRight

 padLeft: padLeft

 alignLeft: padLeft

 alignRight: padRight

 center: alignCenter

Note that we export the padRight() and padLeft() functions twice,
effectively giving them each an alignment-related alias.

How it works...
Our pad() function is pretty straightforward. There are still a few interesting areas to be
pointed out.

First, we use a comprehension to create a string of our padding character of the size we need.
Our comprehension uses the exclusive range syntax [0...size]. This will iterate from 0 up
to the number before the size but not include the size. For example, [0...5] will contain the
set [0, 1, 2, 3, 4] and won't contain 5.

Next, the string.substr() method can be used with a negative integer. This instructs
substr() to return n number of characters from the end. For example, 'CoffeeScript
Rocks'.substr(-5) will return 'Rocks'.

Lastly, since we exported our function, we can easily use our padding functions from other
scripts.

The following is a small example of how to use our padding / alignment functions:

padding = require './padding'

console.log padding.alignLeft('CoffeeScript Rocks', 30, '.')

console.log padding.alignRight('CoffeeScript Rocks', 30, '.')

console.log padding.center('CoffeeScript Rocks', 30, '.')

Chapter 11

333

Executing this code will display the following output:

CoffeeScript Rocks............

............CoffeeScript Rocks

......CoffeeScript Rocks......

Here we can see the phrase CoffeeScript Rocks padded to the right (left aligned), padded
to the left (right aligned), and center all producing strings that are 30 characters in size.

Formatting dates with moment.js
In this recipe, we will look at how we can format our dates and times for display. There are a
number of options to accomplish this, such as using Node's util.format() function but
we will use a popular date processing library called moment.js.

Getting ready
We will begin by making sure the moment NPM module is installed:

npm install moment --save

How to do it...
In this example, we will demonstrate ways to use moment.js to format dates:

1. Load the moment.js library:
moment = require 'moment'

2. For the sake of our examples, create an object literal to represent a date value:
date = year: 2014, month: 11, day: 15, hour: 15

3. Format dates as strings by using the format() function.

The format() function takes a string containing several formatting tokens.

For example, if we use the string YYYY-MM-DD HH:mm:
date as 2014-12-15 15:00

console.log moment(date).format('YYYY-MM-DD HH:mm')

The following will be displayed:
2014-12-15 15:00

Scripting for DevOps

334

Likewise, let's use the string dddd, MMMM Do [at] h A:

console.log moment(date).format('dddd, MMMM Do [at] h A')

This will display the date and time as follows:

Monday, December 15th at 3 PM

How it works...
The moment.js library supports a very large number of formatting options. The following table
lists some of the more common options:

Date / time component Token Output
Month M 1 2 ... 11 12

MM 01 02 ... 11 12
MMM Jan Feb ... Nov Dec
MMMM January February ... November December

Day of month D 1 2 ... 30 31
DD 01 02 ... 30 31

Day of week ddd Sun Mon ... Fri Sat
dddd Sunday Monday ... Friday Saturday

Year YY 70 71 ... 29 30
YYYY 1970 1971 ... 2029 2030

AM/PM A AM PM
a am pm

Hour H 0 1 ... 22 23
HH 00 01 ... 22 23
h 1 2 ... 11 12
hh 01 02 ... 11 12

Minute m 0 1 ... 58 59
mm 00 01 ... 58 59

Second s 0 1 ... 58 59
ss 00 01 ... 58 59

Chapter 11

335

There's more...
The moment.js library is a very thorough library to parse and display formatted dates and
times, and provides a very flexible API.

One aspect that is particularly interesting is moment.js's ability to display localized dates
and times.

For example, you can use the localized shortcut of LL to display a date formatted as
December 15 2014 for English, 15 décembre 2014 for French, 15 de diciembre de
2014 for Spanish, and 2014年12月15日 for Mandarin.

By default, moment.js picks up the locale of the machine on which it executes. We can easily
override the locale by using the moment.locale() function passing a string or an array of
strings for the locale we desire.

The moment.js library supports more than 80 locales out of the box and allows you to easily
define your own locales as well.

For more information on moment.js, check out the project's website at http://momentjs.
com.

Formatting numbers with accounting.js
The accounting.js module can be used to parse strings into numeric values as we saw earlier
in this chapter. It is also very good at preparing numbers for display and provides a number of
functions to help with this.

In this recipe, we will look at various methods to display numbers using accounting.js.

Getting ready
Before we begin, let's make sure the accounting.js NPM module is installed:

npm install accounting --save

How to do it...
In this example, we will demonstrate ways to use accounting.js to format numbers:

1. Load the accounting module:
accounting = require 'accounting'

Scripting for DevOps

336

2. Use the formatMoney() function:
formatting as currency (default formatting)

console.log accounting.formatMoney 31415.9535

console.log accounting.formatMoney([100, 200, 300])

This will produce the following output:
$31,415.95

['$100.00', '$200.00', '$300.00']

3. Use the formatNumber() function in a similar way:
format as number

console.log accounting.formatNumber 31415.9535

console.log accounting.formatNumber([100, 200, 300])

This will produce the following results:
31,416

['100', '200', '300']

4. Use the toFixed() function to properly round a decimal value to a specified
number of digits:

toFixed

console.log accounting.toFixed 31415.9535, 3

It will produce the following:
31415.954

How it works...
The accounting.js library has three general methods to format numbers for display:

 f formatMoney() : This method formats a number as a currency with a dollar sign,
a thousand's separator using a comma, and a precision of two decimal places

 f formatNumber() : This method formats a number with a thousands separator
using a comma and a precision of zero

 f toFixed() : This method displays a number without a thousands separator and
a precision of zero, unless otherwise provided

Both the formatMoney() and formatNumber() methods accept a single number or an
array of numbers. If a single number is used, a single formatted result will be provided. If an
array is used, the result, as we can see, is an array of formatted values.

Chapter 11

337

These two functions also accept an optional configuration object. For formatMoney(), this
object contains the following:

 f symbol : The symbol to be used as the currency symbol (defaults to $)

 f decimal : The character to be used as the decimal point (defaults to .)

 f thousand : This character is to be used as the thousands separator (defaults to ,)

 f precision : This option specifies number of digits to be included after the decimal
point (defaults to 2)

 f format : This option specifies a string with %s (symbol) and %v (value) (defaults to
%s%v)

For example, the following the formatMoney() function calls different configuration options:

format as money with British pound

console.log accounting.formatMoney 31415.9535, { symbol: '£' }

format as money precision of 3

console.log accounting.formatMoney 31415.9535, { precision: 3 }

After running these two formatMoney() methods, we see the following:

£31,415.95

$31,415.954

Similarly, the formatNumber() function can take an optional configuration object with one
or more of the following properties:

 f decimal : The character to be used as the decimal point (defaults to .)

 f thousand : The character to be used as the thousands separator (defaults to ,)

 f precision : This option specifies number of digits to be included after the decimal
point (defaults to 0)

Lastly, let's look at the toFixed() function. This function has the default precision of 0, but
we can pass our desired precision with our value.

You may wonder why not simply use the toFixed() function that is built on top of the
numeric prototype.

It turns out that numbers, or more specifically precision, is one of JavaScript's weak areas. The
accounting.js toFixed() function addresses these precision issues by treating the floating
point numbers more like decimal values.

Scripting for DevOps

338

As a case in point, what happens if we use the native toFixed() function with the value of
0.615? If we round it to two digits, we should receive 0.62:

console.log (0.615).toFixed(2)

When we execute this, we receive the following:

0.61

This is incorrect. With accounting.js, we can do the following:

console.log accounting.toFixed 0.615, 2

This in fact does produce the expected result as seen here:

0.62

There's more...
The accounting.js library has another nice formatting function called formatColumn().
The format column takes an array of numbers and formats each of them as money with
the same length making them ideal to be displayed in a column.

We can see how to do this in the following snippet:

format as money column

console.log accounting.formatColumn([1025, 2500, 300])

When this runs, we receive an array of formatted strings:

['$1,025.00', '$2,500.00', '$ 300.00']

If we were to display these values, we would see them align nicely as shown in the
following code:

$1,025.00

$2,500.00

$ 300.00

Chapter 11

339

We can also format these using the same configuration object as the formatMoney()
function. Let's change the currency symbol to the Euro and add some spacing between
the currency symbol and value:

options =

 symbol: '€'

 format: '%s %v'

console.log accounting.formatColumn([1025, 2500, 300], options)

This will return an array of the following formatted values:

€ 1,025.00

€ 2,500.00

€ 300.00

For more information on the accounting.js library, you can check out the project's website
at http://openexchangerates.github.io/accounting.js/.

341

Index
A
accounting.js

formatMoney() method 336
formatNumber() method 336
toFixed() method 336
URL 339
used, for formatting dates 335-339

all() function 165
Amazon

URL 243
Amazon's S3 storage

URL 237
working with 237-248

AngularJS
application module, creating 96-98
controllers, creating 98-103
directives, creating 108, 109
inter-controller events, handling 112-114
providers, creating 104-107
routers, creating 110, 111
URL 96
working with 96

application
deploying, to Heroku 295-299
deploying, to Microsoft Azure 300-308

arrays
filtering 53, 54
iterating over 46-48
mapping 52, 53
reducing 52, 53
shuffling 50-52
sorting 49, 50
testing 54
working with 46

assert object, functions
assert.deepEqual() 264
assert.equal() 264
assert.notDeepEqual() 264
assert.notEqual() 264
assert.notPropEqual() 264
assert.notStrictEqual() 264
assert.propEqual() 264
assert.strictEqual() 264

AWS account
URL 237

Azure. See Microsoft Azure

B
Backbone

about 84, 85
collections, creating 87, 88
models, creating 85, 86
routers, creating 94, 95
UI events, handling 92, 93
URL 84
views, creating 88-92

base64 encoding
about 201
binary file, encoding as 203, 204
string, encoding as 202

base conversion methods 32-34
binary file

encoding, as base64 encoding 203, 204
binary format

URL 265

342

C
camera, Cordova application

using 147-151
character casing

converting 27-29
classes

defining 55-57
inheritance, dealing with 57-59
methods 59-61
properties 59-61
working with 55

coffee command-line utility 14
CoffeeScript

about 10-12
debugging, Node Inspector used 18, 19
debugging, source maps used 16-18
features 2
REPL 14-16
style guide, URL 13

collections, Backbone
creating 87, 88

commands
about 5
Coffee: Check Syntax 6
Coffee: Compile File 6
Coffee: Run Script 6

Comma-separated Values (CSV) 310
connection

opening, for CouchDB 191, 192
opening, for MongoDB 181, 182

contacts, Cordova application
using 155-158

controllers, Angular
creating 98-104

Cordova application
camera, using 147-150
contacts, using 155-158
creating 146
device information, getting 159, 160
geolocation, using 151-154

CouchDB
connection, opening 191, 192
documentation, URL 200
documents, creating 192, 193
documents, deleting 196, 197
documents querying, views used 197-200

documents, reading 194, 195
documents, updating 194
URL 191
working with 191

counters, Redis
using 174, 175

credit card checksum
checking 37-39

CSV files
auto_parse 323
columns 323
delimiter 322
helper methods 323
parsing 320-325
quote 322
rowDelimiter 322
URL 325

D
dates

calculations, performing 40-42
formatting, moment.js used 333-335
working with 39

degrees
and radians, converting between 35, 36

deployments
preparing, for production 289-295
preparing, for staging 289-295

device information, Cordova
getting 159, 160

directives, Angular
creating 108-110

directories
archiving 318-320
copying 315-317
deleting 315-317
moving 315-317

documents, CouchDB
creating 192, 193
deleting 196, 197
querying, views used 197-200
reading 194-196
updating 194

documents, MongoDB
deleting 190
finding 184-187

343

inserting 182, 183
updating 187-189

domain name services
hostname, retrieving 207, 208
IP address, retrieving 205, 206
URL 204
working with 204

domain-specific languages
URL 227

DOM events, jQuery
handling 68, 69

DOM, jQuery
modifying 70-74

E
each() function 165
e-mail

sending 231-234
end-to-end testing

Mocha used 268-274
Zombie.js used 268-274

environment
configuring 3

exec
used, for executing shell commands 310-312

express application
creating 213, 214

F
files

archiving 318-320
copying 315-317
deleting 315-317
moving 315-317
transferring, FTP used 248-255

find() method 184
findOne() method 184
fixed-width files

parsing 325-329
formatMoney() function

decimal 337
format 337
precision 337
symbol 337
thousand 337

formatNumber() function
decimal 337
precision 337
thousand 337

formatTime() method 45
FTP

used, for transferring files 248-255

G
geolocation, Cordova application

using 151-154
GeoNames

URL 226
get() function 165
getRandomElementFromCollection()

method 35
getRandomNumber() method 35
GitHub

URL 232, 255
Grunt

used, for compiling source 283-288

H
handlebars

URL 72
hashes, Redis

retrieving 176, 177
storing 176, 177

Heroku
application, deploying to 295-299
commands 298
URL 295

Heroku, commands
addons 298
apps 298
config 298
logs 298
ps 298

hostname
for IP address, retrieving 207, 208

I
image gallery

displaying, Lightbox used 81-84

344

inheritance, classes
dealing with 57-59

inter-controller events, Angular
handling 112-114

IP address
for domain name services,

retrieving 205, 206

J
jQuery

DOM events, handling 67-69
DOM, modifying 70-74
image gallery displaying, Lightbox used 81-84
load, executing on 66
server communicating with, AJAX used 74-76
UI widgets, using 77-81
URL 66
working with 66

jQuery API
URL 70

jQuery tmpl plugin
URL 73

jQuery UI widgets
URL 81
using 77-81

JSON endpoint
URL 226

K
Kendo

URL 140, 143
Kendo UI Core mobile widgets

using 134-143
Kendo UI Core widgets

using 121-133
keys, Redis

deleting 179, 180

L
Lightbox plugin

URL 81
linsert function 177
lists, Redis

retrieving 177-179
storing 177-179

llen function 177
load, jQuery

executing 66
lpop function 177
lpush function 177
lrange function 177
lrem function 177
ltrim function 177
Luhn algorithm

URL 39

M
Math.random() method 35
Microsoft Azure

account, URL 300
application, deploying to 300-308
management portal, URL 300
services, URL 308

Microsoft Azure, services
CDN 308
Cloud services 308
Media services 308
SQL databases 308
Table storage 308

Microsoft Express edition
URL 7

mobile
with Cordova 145

Mocha
used, for end-to-end testing 268-274

models, Backbone
creating 85, 86

moment.js
URL 335
used, for formatting dates 333-335

MongoDB
about 181
comparison operators 186
connection, opening 181, 182
documents, deleting 189, 190
documents, finding 184-187
documents, inserting 182, 183
documents, updating 187-189
URL 181

Multimedia Messaging Service
(MMS messages)

sending 234-237

345

N
node-csv module

parse 324
stringify 324
transform 324

Node Inspector
used, for debugging CoffeeScript 18, 19

Node.js
URL 3

nodemailer
about 231
e-mail object, parameters 234
URL 232, 234

Node Package Manager (NPM) 2
numbers

bases, converting between 32, 33
credit card checksum, checking 37-39
degrees and radians, converting

between 35, 36
formatting, accounting.js used 335-339
random numbers, generating 34, 35
working with 32

O
output

aligning 330-332
padding 330-333

P
package.json

used, for managing dependencies 210-212
providers, Angular

creating 104-107
purge command

URL 197

Q
queries, SQLite

executing, in parallel versus serial 169, 170
QUnit

URL 267
used, for unit testing 258-267

R
radians

and degrees, converting between 35, 36
random numbers

generating 34, 35
Read Evaluate Print Loop (REPL) 3, 14-16
records, SQLite

inserting 162-164
reading 165-168
updating 162-164

Redis
counters, using 174, 175
hashes, retrieving 175-177
hashes, storing 175, 176
keys, deleting 179, 180
lists, retrieving 177
lists, storing 177
server, connecting to 171, 172
single values, retrieving 172, 173
single values, storing 172, 173
URL 171
working with 171

regular expression
about 23
tester, URL 32
URL 32
using 30-32
visualization tool, URL 32

REST client
URL 226

RESTful web services
creating 210
dependencies managing, package.json

used 210-212
express application, creating 213, 214
web API, creating 215-224

routers
for Angular, creating 110-112
for Backbone, creating 94, 95

rpop function 177
rpush function 177

S
selectors

URL 273

346

server, jQuery
communicating with, AJAX used 74-76

shell commands
executing, exec used 310, 311
executing, spawn used 312-315

Short Message Service (SMS messages)
sending 234

shuffle() function 51
Simple Email Services (SES) 233
Sinon

expectation.atLeast(n) 282
expectation.atMost(n) 282
expectation.exactly(n) 282
expectation.never() 282
expectation.once() 282
expectation.twice() 282
mocking 274-282
stubbing 274-282
URL 275, 280, 282

snippets 6, 7
Socket.io

about 115-120
URL 115

source
compiling, Grunt used 283-288
maps, used for debugging CoffeeScript 16-18

spawn
used, for executing shell commands 312-315

spawn() function 313
SQLite

about 161, 162
commands, executing 162-164
queries, executing in parallel versus

serial 169, 170
records, inserting 162-164
records, reading 165-168
records, updating 162-164

stream.pipe() function 314
strings

character casing, converting 27-29
encoding, as base64 encoding 202
interpolation 22, 23
regular expressions, using 30-32
text, truncating 26
text, wrapping 23-25
working with 21, 22

stub() methods
onCall(n).returns(value) 279
onFirstCall().returns(value) 279
onSecondCall().returns(value) 279
onThirdCall().returns(value) 279
throws(280
throws() 280

Sublime Text
configuring 4, 5
package manager, URL 4
URL 4

T
Telerik

demo page, URL 143
URL 122, 133

template engine 72
Test First Development (TDD) 263
text

truncating 26
ThemeRoller tool

URL 81
this keyword

dealing with 61-64
timer() method 45
times

elapsed time, measuring 43-46
working with 39

tools
configuring 3

Twilio
API page, URL 237
URL 234, 235

U
UI events, Backbone

handling 92, 93
underscore

URL 73
unit testing

QUnit used 258-267
URL

parsing, into components 208, 209

347

V
views, Backbone

creating 88-92
Visual Studio

configuring 7-9

W
web API

creating 215-224
Web Essentials

installing 7
web services

working with 225-231
Windows Script Host 1
wrapText() function 24

Z
Zombie

browser automation commands 273, 274
functions 273, 274
URL 274

Zombie, functions
back() 273
button(selector) 274
check(selector) 273
choose(selector) 273
clickLink(selector, [callback]) 273
field(selector) 274
fill(selector) 274
link(selector) 273
location() 273
onalert(callback) 274
onconfirm(callback) 274
onconfirm(question, response) 274
onprompt(callback) 274
onprompt(message, response) 274
pressButton(selector, callback) 274
select(selector) 273
visit(selector, [callback]) 273
wait(duration, [callback]) 274

Zombie.js
used, for end-to-end testing 268-274

Thank you for buying

CoffeeScript Application Development
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CoffeeScript Programming
with jQuery, Rails, and
Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn CoffeeScript programming with the three most
popular web technologies around

1. Learn CoffeeScript, a small and elegant language
that compiles to JavaScript and will make your
life as a web developer better.

2. Explore the syntax of the language and see how
it improves and enhances JavaScript.

3. Build three example applications in CoffeeScript
step by step.

CoffeeScript Application
Development
ISBN: 978-1-78216-266-7 Paperback: 258 pages

Write code that is easy to read, effortless to maintain,
and even more powerful than JavaScript

1. Learn the ins and outs of the CoffeeScript
language, and understand how the transformation
happens behind the scenes.

2. Use practical examples to put your new skills
to work towards building a functional web
application, written entirely in CoffeeScript.

3. Understand the language concepts from short,
easy-to-understand examples which can be
practised by applying them to your ongoing project.

Please check www.PacktPub.com for information on our titles

Mastering Grunt
ISBN: 978-1-78398-092-5 Paperback: 110 pages

Master this powerful build automation tool to streamline
your application development

1. Master the development of your web applications
by combining Grunt with an army of other useful
tools.

2. Learn about the key tasks behind devops
integration and automation so you can utilize
Grunt in a team-working environment.

3. Accelerate your web development abilities by
employing best practices, including SEO, page
speed optimization, and responsive design.

Web Development with Jade
ISBN: 978-1-78328-635-5 Paperback: 80 pages

Utilize the advanced features of Jade to create dynamic
web pages and significantly decrease development time

1. Make your templates clean, beautiful, and
reusable.

2. Use Jade best practices right from the start.

3. Successfully automate redundant markup.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Ready
	Introduction
	Configuring your environment and tools
	Configuring Sublime Text
	Configuring Visual Studio
	A quick dive into CoffeeScript
	Debugging CoffeeScript using source maps
	Debugging CoffeeScript using Node Inspector

	Chapter 2: Starting with the Basics
	Introduction
	Working with strings
	Working with numbers
	Working with dates and times
	Working with arrays
	Working with classes
	Dealing with the this keyword

	Chapter 3: Client Applications
	Introduction
	Working with jQuery
	Working with Backbone
	Working with AngularJS
	Communicating in real time with Socket.io

	Chapter 4: Using Kendo UI for Desktop and Mobile
	Introduction
	Using the Kendo UI Core widgets
	Using the Kendo UI Core mobile widgets

	Chapter 5: Going Native with Cordova
	Introduction
	Creating a basic Cordova application
	Using the camera
	Using geolocation
	Using contacts
	Getting device information

	Chapter 6: Working with Databases
	Introduction
	Working with SQLite
	Working with Redis
	Working with MongoDB
	Working with CouchDB

	Chapter 7: Building Application Services
	Introduction
	Working with base64 encoding
	Working with domain name services
	Parsing a URL into its various components
	Creating RESTful web services

	Chapter 8: Using External Services
	Introduction
	Working with web services
	Sending e-mail
	Sending SMS and MMS messages
	Working with Amazon's S3 storage
	Transferring files via FTP

	Chapter 9: Testing Our Applications
	Introduction
	Unit testing with QUnit
	End-to-end testing with Mocha and
Zombie.js
	Stubbing and mocking with Sinon

	Chapter 10: Hosting Our Web Application
	Introduction
	Compiling our source with Grunt
	Preparing deployments for staging and production
	Deploying our application to Heroku
	Deploying our application to Microsoft Azure

	Chapter 11: Scripting for DevOps
	Introduction
	Executing shell commands with exec
	Executing shell commands with spawn
	Copying, moving, and deleting files and directories
	Archiving files and directories
	Parsing CSV files
	Parsing fixed-width files
	Padding and aligning output
	Formatting dates with moment.js
	Formatting numbers with accounting.js

	Index

