

Mastering TypeScript
Second Edition

Build enterprise-ready, industrial-strength web applications
using TypeScript and leading JavaScript frameworks

Nathan Rozentals

BIRMINGHAM - MUMBAI

Mastering TypeScript

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Second edition: February 2017

Production reference: 1210217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-871-0

www.packtpub.com

http://www.packtpub.com

Credits

Author

Nathan Rozentals

Copy Editor

Safis Editing

Reviewers

Guy Fergusson

Vilic Vane

Project Coordinator

Izzat Contractor

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Nitin Dasan

Indexer

Tejal Daruwale Soni

Content Development Editor

Priyanka Mehta

Graphics

Abhinash Sahu

Technical Editor

Abhishek Sharma

Production Coordinator

Melwyn Dsa

  

About the Author
Nathan Rozentals has been building commercial software for over 26 years and
programming for a lot longer than that. Before the Internet even became a thing, he was
building statistical analysis programs on mainframes. Like many programmers at that time,
he helped save the world in the year 2000.

He has worked with and tried to master many object-oriented languages, starting by
implementing object-oriented techniques in plain old C. Having spent many years working
with C++, chasing obscure thread locking issues and recursive routines causing memory
leakage, he decided to simplify his life by embracing automatic garbage collection in Java
and then C#.

As the world moved from thick-client and n-tier to web technologies, his focus turned to
modern web programming, and so to JavaScript. In TypeScript, he found a language in
which he could bring all of the object-oriented design patterns he had learned over the
years to JavaScript.

If it were not for extreme programming techniques, agile delivery, test-driven development,
and continuous integration, he would have lost his mind many years ago.

When he is not programming, he is thinking about programming. To stop thinking about
programming, he goes windsurfing, plays soccer, or simply watches the professionals play
soccer. They are so much better at it than he is.

I would like to thank my partner, Kathy, for her support and unconditional love over the
past few years. Without you, I would not be in the great space that I am.

To Ayron and Dayna, it has been great seeing you guys grow up into mature young
adults. You are always in my thoughts.

To Matt, thanks for keeping us all laughing - everyone needs to see the lighter side of life.

To Mum, Dad, Rach, Tash, and Tam, thanks for your unwavering and whole-hearted
support – I truly appreciate all you have done for me.

Finally, to the great team at Vix, thanks for the many intense debates and discussions, and
for making work such a rewarding experience.

About the Reviewers
Guy Fergusson is a passionate web developer, open source contributor, and gamer. He has
built web applications for health, law enforcement, and the finance sector. He has worked
with the author building Typescript applications and is now an advocate of Typescript,
which he uses on a daily basis.

I would like to thank my beautiful family, my little girl, Grace, and my amazing wife,
Melisa.

Vilic Vane is a JavaScript engineer with over 8 years of experience in web development. He
started following the TypeScript project when it went public, and he is also a contributor
to the project. He is now working on frameworks, libraries, and apps written in TypeScript.
Vilic is the author of the book TypeScript Design Patterns.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786468719.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719

Table of Contents
Preface 1

Chapter 1: TypeScript - Tools and Framework Options 8

Introducing TypeScript 10
The ECMAScript standard 10
The benefits of TypeScript 11

Compiling 11
Strong typing 12

TypeScript's syntactic sugar 13
JavaScript and TypeScript definitions 13

DefinitelyTyped 15
Encapsulation 15

TypeScript classes generate closures 17
Public and private accessors 17

TypeScript IDEs 19
Node-based compilation 19

Creating a tsconfig.json file 20
Microsoft Visual Studio 22

Creating a Visual Studio project 22
Default project settings 25
Debugging in Visual Studio 27

WebStorm 29
Creating a WebStorm project 29
Default files 30
Building a simple HTML application 31
Running a web page in Chrome 32
Debugging in Chrome 32

Visual Studio Code 34
Installing VSCode 35
Exploring VSCode 35

Creating a tasks.json file 35
Building the project 36
Creating a launch.json file 36
Setting breakpoints 37
Debugging web pages 37

Other editors 40
Using Grunt 40

Summary 43

Chapter 2: Types, Variables, and Function Techniques 44

[ii]

Basic types 45
JavaScript typing 45
TypeScript typing 46
Type syntax 47
Inferred typing 50
Duck typing 50
Template strings 52
Arrays 52
for…in and for…of 53
The any type 54
Explicit casting 55
Enums 56
Const enums 58
Const values 59
The let keyword 60

Functions 62
Function return types 62
Anonymous functions 63
Optional parameters 64
Default parameters 66
Rest parameters 66
Function callbacks 68
Function signatures 70
Function overloads 72

Advanced types 73
Union types 73
Type guards 74
Type aliases 76
Null and undefined 77
Object rest and spread 79

Summary 80

Chapter 3: Interfaces, Classes, and Inheritance 81

Interfaces 82
Optional properties 83
Interface compilation 84

Classes 85
Class properties 85
Implementing interfaces 86
Class constructors 88

[iii]

Class functions 88
Interface function definitions 92
Class modifiers 93
Constructor access modifiers 95
Readonly properties 96
Class property accessors 97
Static functions 98
Static properties 99
Namespaces 100

Inheritance 101
Interface inheritance 102
Class inheritance 102
The super keyword 103
Function overloading 104
Protected class members 106
Abstract classes 107
JavaScript closures 110

Using interfaces, classes, and inheritance – the Factory Design
Pattern 111

Business requirements 112
What the Factory Design Pattern does 112

The IPerson interface 113
The Person class 113
Specialist classes 114
The Factory class 115
Using the Factory class 116

Summary 117

Chapter 4: Decorators, Generics, and Asynchronous Features 118

Decorators 119
Decorator syntax 120
Multiple decorators 121
Decorator factories 122
Class decorator parameters 123
Property decorators 125
Static property decorators 126
Method decorators 127
Using method decorators 128
Parameter decorators 130
Decorator metadata 131
Using decorator metadata 133

[iv]

Generics 134
Generic syntax 135
Instantiating generic classes 135
Using the type T 137
Constraining the type of T 139
Generic interfaces 142
Creating new objects within generics 143

Asynchronous language features 145
Promises 145
Promise syntax 147
Using promises 148
Callback versus promise syntax 150
Returning values from promises 151
Async and await 153
Await errors 154
Promise versus await syntax 155
Await messages 156

Summary 157

Chapter 5: Writing and Using Declaration Files 158

Global variables 159
Using JavaScript code blocks in HTML 161

Structured data 162
Writing your own declaration file 164

The module keyword 166
Interfaces 169
Union types 171

Module merging 172
Declaration syntax reference 173

Function overrides 173
Nested namespaces 174
Classes 174
Class namespaces 174
Class constructor overloads 175
Class properties 175
Class functions 175
Static properties and functions 176
Global functions 177
Function signatures 177
Optional properties 177

[v]

Merging functions and modules 178
Summary 178

Chapter 6: Third-Party Libraries 179

Downloading definition files 180
Using NuGet 182

Using the Extension Manager 182
Installing declaration files 183
Using the Package Manager Console 184

Installing packages 184
Searching for package names 185
Installing a specific version 185

Using Typings 185
Searching for packages 186
Typings initialize 187
Installing definition files 187
Installing a specific version 188
Re-installing definition files 188

Using Bower 189
Using npm and @types 190
Using third-party libraries 190

Choosing a JavaScript framework 191
Backbone 192

Using inheritance with Backbone 192
Using interfaces 194
Using generic syntax 195
Using ECMAScript 5 196
Backbone TypeScript compatibility 196

Angular 197
Angular classes and $scope 199
Angular TypeScript compatibility 201

Inheritance – Angular versus Backbone 201
ExtJS 202

Creating classes in ExtJS 203
Using type casting 204
ExtJS-specific TypeScript compiler 205

Summary 206

Chapter 7: TypeScript Compatible Frameworks 207

What is MVC? 208
The Model 209

[vi]

The View 209
The Controller 211
MVC summary 212
The benefits of using MVC 212
Sample application outline 213

Using Backbone 214
Rendering performance 215
Backbone setup 217
Backbone models 217
Backbone ItemView 218
Backbone CollectionView 220
Backbone application 221

Using Aurelia 223
Aurelia setup 223
Development considerations 224
Aurelia performance 224
Aurelia models 226
Aurelia views 226
Aurelia bootstrap 227
Aurelia events 228

Angular 2 229
Angular 2 setup 229
Angular 2 models 230
Angular 2 views 231
Angular performance 232
Angular events 232

Using React 233
React setup 233
React views 236
React bootstrapping 239
React events 241

Summary 242

Chapter 8: Test Driven Development 243

Test driven development 244
Unit, integration, and acceptance tests 245

Unit tests 245
Integration tests 246
Acceptance tests 246

Unit testing frameworks 247

[vii]

Jasmine 247
A simple Jasmine test 248
Jasmine SpecRunner 248
Matchers 251
Test startup and teardown 252
Data driven tests 253
Using spies 255
Spying on callback functions 256
Using spies as fakes 258
Asynchronous tests 258
Using done() 259
Jasmine fixtures 261
DOM events 263

Jasmine runners 264
Testem 264
Karma 266
Protractor 267

Using Selenium 268
Using continuous integration 270

Benefits of CI 270
Selecting a build server 271

Team Foundation Server 271
Jenkins 272
TeamCity 272

Integration test reporting 272
Summary 274

Chapter 9: Testing Typescript Compatible Frameworks 275

Testing our sample application 276
Modifying our sample for testability 276
Backbone testing 278

Complex models 278
View updates 281
DOM event updates 281
Model tests 283
Complex model tests 285
Rendering tests 286
DOM event tests 288
Backbone testing summary 290

Aurelia testing 290

[viii]

Aurelia components 290
Aurelia component view-model 290
Aurelia component view 292
Rendering a component 292
Aurelia naming conventions 293
Aurelia test setup 294
Aurelia unit tests 294
Rendering tests 296
Aurelia end-to-end tests 299
Aurelia test summary 302

Angular 2 testing 302
Application updates 303
Angular 2 test setup 304
Angular 2 model tests 305
Angular 2 rendering tests 306
Angular 2 DOM testing 307
Angular 2 testing summary 308

React testing 308
Multiple entry points 308
React modifications 309
Unit testing React components 312
React model and view tests 313
React DOM event tests 316

Summary 317

Chapter 10: Modularization 318

Module basics 319
Exporting modules 321
Importing modules 322
Module renaming 322
Default exports 323
Exporting variables 325

AMD module loading 325
AMD compilation 325
AMD module setup 328
Require configuration 328
AMD browser configuration 329
AMD module dependencies 331
Bootstrapping Require 334
Fixing Require config errors 335

[ix]

Incorrect dependencies 336
404 errors 336

SystemJs module loading 337
SystemJs installation 338
SystemJs browser configuration 338
SystemJs module dependencies 341
Bootstrapping Jasmine 344

Using Express with Node 344
Express setup 345
Using modules with Express 347
Express routing 348
Express templating 350
Using Handlebars 351
Express POST events 354
HTTP request redirection 358
Node and Express summary 360

Summary 361

Chapter 11: Object-Oriented Programming 362

Object-oriented principles 363
Program to an interface 363
SOLID principles 364

Single responsibility 364
Open closed 364
Liskov substitution 365
Interface segregation 365
Dependency inversion 365

User interface design 365
Conceptual design 365
Angular 2 setup 368
Using Bootstrap 369
Creating a side panel 371
Creating an overlay 375
Coordinating transitions 377

The State pattern 378
State interface 379
Concrete states 380

The Mediator pattern 381
Modular code 382

Navbar component 383
SideNav component 384

[x]

RightScreen component 385
Child components 388
Mediator interface implementation 389
The Mediator class 390
Using the Mediator 393
Reacting to DOM events 394

Summary 396

Chapter 12: Dependency Injection 397

Sending mail 398
Using nodemailer 398
Configuration settings 401
Using a local SMTP server 404
Object dependency 404
Service Location 405
Service Location anti-pattern 407
Dependency injection 407

Building a dependency injector 408
Interface resolution 408
Enum resolution 409
Class resolution 410
Constructor injection 411

Decorator injection 413
Using a class definition 413
Parsing constructor parameters 415
Finding parameter types 416
Injecting properties 417
Using dependency injection 418
Recursive injection 419

Summary 420

Chapter 13: Building Applications 421

The UI experience 422
Using Brackets 423
Using Emmet 425
Creating a login panel 427

An Aurelia website 430
Node and Aurelia compilation 430
Serving the Aurelia application 431
Aurelia pages in Node 432

[xi]

Aurelia components 435
Processing JSON 436
Aurelia forms 439
Posting data 441
Aurelia messaging 442

An Angular 2 website 446
Angular setup 446
Serving Angular 2 pages 446
Angular 2 components 449
Processing JSON 452
Posting data 454

An Express React website 455
Express and React 455
Serving the React application 457
Multiple package.json files 460
React components 462
Consuming REST endpoints 465
Login panel component 466
React data binding 468
Posting JSON data 469

Summary 470

Chapter 14: Let's Get Our Hands Dirty 472

Board Sales application 473
Angular 2 base application 475

Unit testing 477
State Mediator tests 478
Login screen state 482
Panel integration 486
JSON data structure 488
The BoardList component 491
Unit testing HTTP requests 492

Mocking Angular's Http module 493
Using the mock Http module 496

Rendering the board list 498
Testing UI events 500
Board detail view 503
Applying a filter 505
The login panel 510
Application architecture 514

[xii]

Summary 515

Index 516

Preface
The TypeScript language and compiler has been a huge success story since its release in late
2012. It quickly carved out a solid footprint in the JavaScript development community and
continues to go from strength to strength. Many large-scale JavaScript projects, including
projects by Adobe, Mozilla, and Asana, have made the decision to switch their code base
from JavaScript to TypeScript. Recently, the Microsoft and Google teams announced that
Angular 2.0 will be developed with TypeScript, thereby merging the AtScript and
TypeScript languages into one.

This large-scale industry adoption of TypeScript shows the value of the language, the
flexibility of the compiler, and the productivity gains that can be realized with its rich
development toolset. On top of this industry support, the ECMAScript 6 and ECMAScript 7
standards are getting closer and closer to publication, and TypeScript provides a way to use
features of these standards in our applications today by generating compatible JavaScript.

Writing JavaScript single page applications in TypeScript has been made even more
appealing with the large collection of declaration files that have been built by the
TypeScript community. These declaration files seamlessly integrate a large range of existing
JavaScript frameworks into the TypeScript development environment, bringing with it
increased productivity, early error detection, and advanced IntelliSense features.

The JavaScript language is not confined to web browsers, however. We can now write
server-side JavaScript, drive mobile phone applications using JavaScript, and even control
micro devices designed for the Internet of Things with JavaScript.

This book is a guide for both experienced TypeScript developers, as well as those who are
just beginning their TypeScript journey. With a focus on Test Driven Development, detailed
information on integration with many popular JavaScript libraries, and an in-depth look at
TypeScript's features, this book will help you with your exploration of the next step in
JavaScript development.

What this book covers
Chapter 1, TypeScript - Tools and Framework Options, sets the scene for beginning TypeScript
development. It discusses the benefits of using TypeScript as a language and compiler, and
then works through setting up a complete development environment using a number of
popular IDEs.

Preface

[2]

Chapter 2, Types, Variables, and Function Techniques, introduces the reader to the TypeScript
language, starting with basic types and type annotations, and then moves on to discuss
variables, functions, and advanced language features.

Chapter 3, Interfaces, Classes, and Inheritance, builds on the work from the previous chapter,
and introduces the object-oriented concepts and capabilities of interfaces, classes, and
inheritance. It then shows these concepts at work through the Factory Design Pattern.

Chapter 4, Decorators, Generics, and Asynchronous Features, discusses the more advanced
language features of decorators and generics, before working through the concepts of
asynchronous programming. It shows how the TypeScript language supports these
asynchronous features through promises and the use of async await constructs.

Chapter 5, Writing and Using Declaration Files, walks the reader through building a
declaration file for an existing body of JavaScript code, and then lists some of the most
common syntax used when writing declaration files. This syntax is designed to be a quick
reference guide to the declaration file syntax, or a cheat sheet.

Chapter 6, Third-Party Libraries, shows the reader how to use declaration files from the
DefinitelyTyped repository within the development environment. It then moves on to show
how to write TypeScript code that is compatible with three popular JavaScript frameworks--
Backbone, Angular 1, and ExtJs.

Chapter 7, TypeScript Compatible Frameworks, takes a look at popular frameworks that have
full TypeScript language integration. It explores the MVC paradigm, and then compares
how this design pattern is implemented in Backbone, Aurelia, Angular 2, and React.

Chapter 8, Test Driven Development, starts with a discussion on what Test Driven
Development is, and then guides the reader through the process of creating various types of
unit tests. Using the Jasmine library, it shows how to use data-driven tests, and how to test
asynchronous logic. The chapter finishes with a discussion on test runners, test reporting,
and using continuous integration build servers.

Chapter 9, Testing TypeScript Compatible Frameworks, shows how to unit test, integration
test, and acceptance test a sample application built with each of the TypeScript compatible
frameworks. It discusses the concept of testability, and shows how subtle changes in
application design and implementation can provide far better application test coverage.

Chapter 10, Modularization, explores what modules are, how they can be used, and the two
types of module generation that the TypeScript compiler supports--CommonJs and AMD. It
then shows how modules can be used with module loaders, including Require and
SystemJs. This chapter finishes with an in-depth look at using modules within Node, and
builds a sample Express application.

Preface

[3]

Chapter 11, Object-Oriented Programming, discusses the concepts of object-oriented
programming, and then shows how to arrange application components to conform to
object-oriented principles. It then takes an in-depth look at implementing object-oriented
best practices by showing how the State and Mediator design patterns can be used to
manage complex UI interactions.

Chapter 12, Dependency Injection, discusses the concepts of Service Location and
Dependency Injection, and how they can be used to solve common application design
problems. It then shows how to implement a simple Dependency Injection framework
using Decorators.

Chapter 13, Building Applications, explores the fundamental building blocks of web
application development, including generating HTML pages from Node and Express,
writing and consuming REST endpoints, and data binding. It shows how to integrate an
Express server, REST endpoints, and data binding with Aurelia, Angular 2, and React.

Chapter 14, Let’s Get Our Hands Dirty, builds a single-page application using Angular 2 and
Express by combining all of the concepts and components built throughout the book into a
single application. These concepts include Test Driven Development, the State and
Mediator Pattern, using Express REST endpoints, object-oriented design principles,
modularization, and custom CSS animations.

What you need for this book
You will need the TypeScript compiler and an editor of some sort. The TypeScript compiler
is available on Windows, MacOS, and Linux as a Node plugin. Chapter 1, TypeScript - Tools
and Framework Options, describes the setup of a development environment.

Who this book is for
Whether you are a JavaScript developer wanting to learn TypeScript, or an experienced
TypeScript developer wanting to take your skills to the next level, this book is for you. From
basic to advanced language constructs, Test Driven Development, and object-oriented
techniques, you will learn how to get the most out of the TypeScript language and compiler.
This book will show you how to incorporate strong typing, object-orientation, and design
best practices into your JavaScript applications.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We will
define a new function named MyClass, and return this new function to the outer calling
function. We then use the prototype keyword to inject a new function into the MyClass
definition."

A block of code is set as follows:

 class MyClass {
 add(x: number, y: number) {
 return x + y;
 }
 }

Any command-line input or output is written as follows:

npm install @types/express

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Run | Debug and
then edit configurations. Click on the plus (+) button, select the JavaScript debug option on
the left, and give this configuration a name."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - T y p e S c r i p t - S e c o n d - E d i t i o n . We also have other code bundles from
our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g T y p e S c r i p t S e c o n d E d i t i o n _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
TypeScript - Tools and

Framework Options
JavaScript is a truly ubiquitous language. Just about every website that you visit in the
modern world is using JavaScript to make the site more responsive, more readable, or more
attractive to use. Even traditional desktop applications are moving online. Where we once
needed to download and install a program to generate a diagram, or write a document, we
can now do all of this on the web, from within the confines of our humble browser.

This is the power of JavaScript. It enables us to rethink the way we use the web. But it also
enables us to rethink the way we use web technologies. Node, for example, allows
JavaScript to run server-side, rendering entire large scale web-sites, complete with session
handling, load balancing, and database interaction. This shift in thinking about web
technologies, however, is only the beginning.

Apache Cordova is a fully fledged web server that runs as a native mobile phone
application. This means that we can build a mobile phone application using HTML, CSS,
and JavaScript, and then interact with the phones accelerometer, geolocation services, or file
storage. With Cordova, therefore, JavaScript and web technologies have moved into the
realm of native mobile phone applications.

Likewise, projects such as Kinoma are using JavaScript to drive devices for the Internet Of
Things, running on tiny microprocessors embedded in all sorts of devices. Espruino is a
microcontroller chip purposefully designed to run JavaScript. Learning JavaScript,
therefore, means that you have the ability to build websites, mobile phone applications, and
even control microprocessors on embedded devices. JavaScript is becoming more and more
popular, is being supported on more and more hardware, and is filtering through to nearly
every corner of computing.

TypeScript - Tools and Framework Options

[9]

The JavaScript language is not a difficult language to learn, but it does present challenges
when writing large, complex programs. One of these challenges is that JavaScript is an
interpreted language and therefore has no compilation step. The only time you will know if
you have made a simple syntax error is when you run the entire application through the
run-time interpreter. Another challenge is that it is also not an object-oriented language, and
it takes great care and discipline to build good, maintainable, and understandable
JavaScript. For programmers that are moving from other object-oriented languages, such as
Java, C#, or C++, JavaScript can seem like a completely foreign environment.

TypeScript bridges this gap. It is a strongly typed, object-oriented language that uses a
compiler to generate JavaScript. It therefore allows us to use well known object-oriented
techniques and design patterns to build JavaScript applications. Bear in mind that
TypeScript-generated JavaScript is just plain JavaScript, and so will run wherever JavaScript
can run – in the browser, on the server, on a mobile device, or on an embedded device.

This chapter is divided into two main sections. The first section is a quick overview of some
of the benefits of using TypeScript, and the second section deals with setting up a
TypeScript development environment.

If you are an experienced TypeScript programmer, and already have a development
environment set up, then you might want to skip this chapter. If you have never worked
with TypeScript before, and have picked up this book because you want to understand
what TypeScript can do, then read on.

We will cover the following topics in this chapter:

The benefits of TypeScript
Compilation
Strong typing
Integration with popular JavaScript libraries
Encapsulation
Private and public member variables

Setting up a development environment
Visual Studio
WebStorm
Visual Studio Code
Other editors and grunt

TypeScript - Tools and Framework Options

[10]

Introducing TypeScript
TypeScript is both a language and a set of tools to generate JavaScript. It was designed by
Anders Hejlsberg at Microsoft (the designer of C#), and is an open source project to help
developers write enterprise-scale JavaScript.

TypeScript generates JavaScript – it's as simple as that. Instead of requiring a completely
new runtime environment, TypeScript-generated JavaScript can reuse all of the existing
JavaScript tools, frameworks, and the wealth of libraries that are already available for
JavaScript. The TypeScript language and compiler, however, bring the development of
JavaScript closer to a more traditional object-oriented experience.

The ECMAScript standard
JavaScript as a language has been around for a long time, and is governed by a language
feature standard. The language defined in this standard is called ECMAScript, and each
JavaScript interpreter must deliver functions and features that conform to this standard.
The definition of this standard helped the growth of JavaScript and the web in general, and
allowed websites to render correctly on many different browsers on many different
operating systems. The ECMAScript standard was published in 1999 and is known as
ECMA-262, third edition.

With the popularity of the language, and the explosive growth of Internet applications, the
ECMAScript standard needed to be revised and updated. This revision process resulted in
an updated draft specification for ECMAScript, called the fourth edition. Unfortunately, this
draft also suggested a complete overhaul of the language, and therefore was not well
received. Eventually, leaders from Yahoo, Google, and Microsoft tabled an alternate
proposal, which they called ECMAScript 3.1. This proposal was numbered 3.1, as it was a
smaller feature set of the third edition, and sat between edition three and four of the
standard.

The proposal for a complete language overhaul was eventually adopted as the fifth edition
of the standard, and was called ECMAScript 5. The ECMAScript fourth edition was never
published, but it was decided to merge the best features of both the fourth edition and the
3.1 feature set into a sixth edition named ECMAScript Harmony.

The TypeScript compiler has a parameter that can switch between different versions of the
ECMAScript standard. TypeScript currently supports ECMAScript 3, ECMAScript 5,
ECMAScript 6, and even ECMAScript 7 (also known as ECMAScript 2016).

TypeScript - Tools and Framework Options

[11]

When the compiler runs over your TypeScript, it will generate compile errors if the code
you are attempting to compile is not valid for that standard. The team at Microsoft has
committed to following the ECMAScript standards in any new versions of the TypeScript
compiler, so as new editions are adopted, the TypeScript language and compiler will follow
suit.

An understanding of the finer details of what is included in each release of the ECMAScript
standard is outside the scope of this book, but it is important to know that there are
differences. Some browser versions do not support ES5 (IE8 is an example), but most do.
When selecting a version of ECMAScript to target for your projects, you will need to
consider which browser versions you will be supporting, or which standard your JavaScript
runtime supports.

The benefits of TypeScript
To give you a flavor of the benefits of TypeScript (and this is by no means the full list), let's
take a very quick look at some of the things that TypeScript brings to the table:

A compilation step
Strong or static typing
Type definitions for popular JavaScript libraries
Encapsulation
Private and public member variable decorators

Compiling
One of the most frustrating things about JavaScript development is the lack of a compilation
step. JavaScript is an interpreted language, and therefore needs to be run against an
interpreter in order to test that it is valid. Every JavaScript developer has horror stories that
they can recount of hours spent trying to find bugs in their code, only to find that they have
missed a stray closing brace { , or a simple comma , - or even a double quote " where there
should have been a single quote ' . Even worse, the real headaches arrive when you
misspell a property name, or unwittingly reassign a global variable.

TypeScript will compile your code, and generate compilation errors where it finds these
sorts of syntax error. This is obviously very useful, and can help to highlight errors before
the JavaScript is even run. In large projects, programmers will often need to do large code
merges – and with today's tools doing automatic merges, it is surprising how often the
compiler will pick up these types of errors.

TypeScript - Tools and Framework Options

[12]

While tools to do this sort of syntax checking like JSLint have been around for years, it is
obviously beneficial to have these tools integrated into your development toolchain. Using
the TypeScript compiler in a continuous integration environment will also fail a build
completely when compilation errors are found, further protecting your code base against
these types of bugs.

Strong typing
JavaScript is not strongly typed. It is a language that is very dynamic, and therefore allows
objects to change their properties and behavior on-the-fly. As an example of this, consider
the following code:

var test = "this is a string";
test = 1;
test = function(a, b) {
 return a + b;
}

On the first line of this code snippet, the variable test is bound to a string. It is then
assigned to a number, and finally is redefined completely to be a function that expects two
parameters. This means that the type of the variable test has changed from being a string
to being a number, and then to being a function. Traditional object-oriented languages,
however, will not allow the type of a variable to change, hence they are called strongly
typed languages.

While all of the preceding code is valid JavaScript, and therefore could be justified, it is
quite easy to see how this could cause runtime errors during execution. Imagine that you
were responsible for writing a library function to add two numbers, and then another
developer inadvertently reassigned your function to subtract these numbers instead.

These sorts of error may be easy to spot in a few lines of code, but it becomes increasingly
difficult to find and fix these as your code base and your development team grows.

Another feature of strong typing is that the IDE you are working in understands what type
of variable you are working with, and can bring better autocomplete or Intellisense options
to the fore.

TypeScript - Tools and Framework Options

[13]

TypeScript's syntactic sugar
TypeScript introduces a very simple syntax to check the type of an object at compile time.
This syntax has been referred to as “syntactic sugar”, or more formally, type annotations.
Consider the following TypeScript code:

 var test: string = "this is a string";
 test = 1;
 test = function(a, b) { return a + b; }

Note that, on the first line of this code snippet, we have introduced a colon : and a string
keyword between our variable and its assignment. This type annotation syntax means that
we are setting the type of our variable test to be of type string, and that any code that
does not treat the variable test as a string will generate a compile error. Running the
preceding code through the TypeScript compiler will generate two errors:

hello.ts(3,1): error TS2322: Type 'number' is not assignable to type
'string'.
hello.ts(4,1): error TS2322: Type '(a: any, b: any) => any' is not
assignable
to type 'string'.

The first error is fairly obvious. We have specified that the variable test is a string, and
therefore attempting to assign a number to it will generate a compile error. The second error
is similar to the first, and is, in essence, saying that we cannot assign a function to a string.

In this way, the TypeScript compiler introduces strong or static typing to your JavaScript
code, giving you all of the benefits of a strongly typed language. TypeScript is therefore
described as a superset of JavaScript. We will explore this in more detail in the next chapter.

JavaScript and TypeScript definitions
As we have seen, TypeScript has the ability to annotate JavaScript, and bring strong typing
to the JavaScript development experience. But how do we strongly type existing JavaScript
libraries? In other words, if we have an existing JavaScript library, how do we integrate this
library for use within TypeScript? The answer is surprisingly simple–by creating a
definition file. TypeScript uses files with a .d.ts extension as a sort of header file, similar
to languages such as C++, to superimpose strongly typing on existing JavaScript libraries.
These definition files hold information that describes each available function, and/or
variables, along with their associated type annotations.

TypeScript - Tools and Framework Options

[14]

Let's take a quick look at what a definition would look like. As an example, consider the
JavaScript describe function from the popular Jasmine unit testing framework, as follows:

 var describe = function(description, specDefinitions) {
 return jasmine.getEnv().describe(description, specDefinitions);
 };

Note that this function has two parameters–description and specDefinitions.
Unfortunately JavaScript does not tell us what sort of variables these are. We would need to
have a look at the Jasmine documentation to figure out how to call this function, and what
variables are expected for both parameters. If we head over to
http://jasmine.github.io/2.0/introduction.html, we will see an example of how to use
this function:

 describe("A suite", function () {
 it("contains spec with an expectation", function () {
 expect(true).toBe(true);
 });
 });

From the documentation, then, we can easily see that the first parameter is a string, and
the second parameter is a function. However, there is nothing in JavaScript that forces us
to conform to this API definition. As mentioned before, we could easily call this function
incorrectly, with two numbers for example, or by sending a function first and a string
second. Making mistakes like these will obviously generate runtime errors. Using a simple
TypeScript definition file, however, will generate compile-time errors before we even
attempt to run this code.

Let's take a look at the corresponding TypeScript definition for this function, found in the
jasmine.d.ts definition file:

 declare function describe(
 description: string,
 specDefinitions: () => void
): void;

Here, we have the TypeScript definition for the Jasmine describe function. This definition
looks very similar to the function itself, but gives us a little more information about the
parameters.

http://jasmine.github.io/2.0/introduction.html

TypeScript - Tools and Framework Options

[15]

Clearly, the description parameter is strongly typed to a string, and the
specDefinitions parameter is strongly typed to be a function that returns void.
TypeScript uses the double-brace () syntax to declare functions, and the arrow syntax => to
show the return type of the function. So () => void is a function that does not return
anything. Finally, the describe function itself will also return void.

If our code were to try and pass in a function as the first parameter, and a string as the
second parameter (clearly breaking the definition of this function), as follows:

 describe(() => { /* function body */}, "description");

TypeScript would generate the following error:

hello.ts(11,11): error TS2345: Argument of type '() => void' is not
assignable to parameter of type 'string'.

This error is telling us that we are attempting to call the describe function with invalid
parameters. We will take a look at definition files in more detail in later chapters, but this
example clearly shows that the TypeScript compiler will generate errors if we attempt to
use external JavaScript libraries incorrectly.

DefinitelyTyped
Soon after TypeScript was released, Boris Yankov started a GitHub repository to house
definition files, called DefinitelyTyped (http://definitelytyped.org). This repository has
now become the first port of call for integrating external JavaScript libraries into TypeScript,
and it currently holds definitions for over 1,600 JavaScript libraries.

Encapsulation
One of the fundamental principles of object-oriented programming is encapsulation–the
ability to define data, as well as a set of functions that can operate on that data, into a single
component. Most programming languages have the concept of a class for this purpose,
providing a way to define a template for data and related functions.

Let's first take a look at a simple TypeScript class definition, as follows:

 class MyClass {
 add(x, y) {
 return x + y;
 }
 }

 var classInstance = new MyClass();

http://definitelytyped.org

TypeScript - Tools and Framework Options

[16]

 var result = classInstance.add(1,2);
 console.log(`add(1,2) returns ${result}`);

This code is pretty simple to read and understand. We have created a class, named
MyClass, with a simple add function. To use this class we simply create an instance of it,
and call the add function with two arguments.

JavaScript, unfortunately, does not have a class statement, but instead uses functions to
reproduce the functionality of classes. Encapsulation through classes is accomplished by
either using the prototype pattern, or by using the closure pattern. Understanding
prototypes and the closure pattern, and using them correctly, is considered a fundamental
skill when writing enterprise-scale JavaScript.

A closure is essentially a function that refers to independent variables. This means that
variables defined within a closure function remember the environment in which they were
created. This provides JavaScript with a way to define local variables, and provide
encapsulation. Writing the MyClass definition in the preceding code, using a closure in
JavaScript, would look something like the following:

 var MyClass = (function () {
 // the self-invoking function is the
 // environment that will be remembered
 // by the closure
 function MyClass() {
 // MyClass is the inner function,
 // the closure
 }
 MyClass.prototype.add = function (x, y) {
 return x + y;
 };
 return MyClass;
 }());
 var classInstance = new MyClass();
 var result = classInstance.add(1, 2);
 console.log("add(1,2) returns " + result);

We start with a variable called MyClass, and assign it to a function that is executed
immediately–note the })(); syntax near the bottom of the closure definition. This syntax is
a common way to write JavaScript in order to avoid leaking variables into the global
namespace. We then define a new function named MyClass, and return this function to the
outer calling function. We then use the prototype keyword to inject another function into
the MyClass definition. This function is named add and takes two parameters, returning
their sum.

TypeScript - Tools and Framework Options

[17]

The last few lines of the code show how to use this closure in JavaScript. Create an instance
of the closure type, and then execute the add function. Running this code will log add(1,2)
returns 3 to the console, as expected.

Looking at the JavaScript code versus the TypeScript code, we can easily see how simple the
TypeScript code looks compared to the equivalent JavaScript. Remember how we
mentioned that JavaScript programmers can easily misplace a brace { or a bracket (? Have
a look at the last line in the closure definition–})();. Getting one of these brackets or braces
wrong can take hours of debugging to find.

TypeScript classes generate closures
The JavaScript, as shown above, is actually the output of the TypeScript class definition. So
TypeScript actually generates closures for you.

Adding the concept of classes to the JavaScript language has been talked
about for years, and is currently a part of the ECMAScript sixth edition
(Harmony) standard – but this is still a work in progress. Microsoft has
committed to following the ECMAScript standard in the TypeScript
compiler, as and when these standards are published.

Public and private accessors
A further object oriented principle that is used in Encapsulation is the concept of data
hiding–the ability to have public and private variables. Private variables are meant to be
hidden from the user of a particular class, as these variables should only be used by the
class itself. Inadvertently exposing these variables can easily cause runtime errors.

Unfortunately, JavaScript does not have a native way of declaring variables private. While
this functionality can be emulated using closures, a lot of JavaScript programmers simply
use the underscore character _ to denote a private variable. At runtime, though, if you
know the name of a private variable, you can easily assign a value to it. Consider the
following JavaScript code:

 var MyClass = (function() {
 function MyClass() {
 this._count = 0;
 }
 MyClass.prototype.countUp = function() {
 this._count ++;
 }
 MyClass.prototype.getCountUp = function() {
 return this._count;

TypeScript - Tools and Framework Options

[18]

 }
 return MyClass;
 }());

 var test = new MyClass();
 test._count = 17;
 console.log("countUp : " + test.getCountUp());

The MyClass variable is actually a closure with a constructor function, a countUp function,
and a getCountUp function. The variable _count is supposed to be a private member
variable that is used only within the scope of the closure. Using the underscore naming
convention gives the user of this class some indication that the variable is private, but
JavaScript will still allow you to manipulate the variable _count. Take a look at the second
last line of the code snippet. We are explicitly setting the value of _count to 17,which is
allowed by JavaScript, but not desired by the original creator of the class. The output of this
code would be countUp : 17.

TypeScript, however, introduces public and private keywords (among others), which
can be used on class member variables. Trying to access a class member variable that has
been marked as private will generate a compile time error. As an example of this, the
JavaScript code above can be written in TypeScript, as follows:

 class CountClass {
 private _count: number;
 constructor() {
 this._count = 0;
 }
 countUp() {
 this._count ++;
 }
 getCount() {
 return this._count;
 }
 }
 var countInstance = new CountClass() ;
 countInstance._count = 17;

On the second line of our code snippet, we have declared a private member variable
named _count. Again, we have a constructor, a countUp, and a getCount function. If we
compile this file, the compiler will generate an error:

hello.ts(39,15): error TS2341: Property '_count' is private and only
accessible within class 'CountClass'.

TypeScript - Tools and Framework Options

[19]

This error is generated because we are trying to access the private variable _count in the
last line of the code.

The TypeScript compiler, therefore, is helping us to adhere to public and private accessors
by generating a compile error when we inadvertently break this rule.

Remember, though, that these accessors are a compile-time feature only,
and will not affect the generated JavaScript. You will need to bear this in
mind if you are writing JavaScript libraries that will be consumed by third
parties. Note that by default, the TypeScript compiler will still generate the
JavaScript output file, even if there are compile errors. This option can be
modified, however, to force the TypeScript compiler not to generate
JavaScript if there are compilation errors.

TypeScript IDEs
The purpose of this section of the chapter is to get you up-and-running with a TypeScript
environment so that you can edit, compile, run, and debug your TypeScript code.
TypeScript has been released as open-source, and includes both a Windows variant, as well
as a Node variant. This means that the compiler will run on Windows, Linux, OS X, and any
other operating system that supports Node. On Windows environments, we can either
install Visual Studio, which will register the tsc.exe (TypeScript compiler) in our
c:\Program Files directory, or we can use Node. On Linux and OS X environments, we
will need to use Node.

In this section, we will be looking at the following IDEs:

Node-based compilation
Visual Studio 2015
WebStorm
Visual Studio Code
Using grunt

Node-based compilation
The simplest and leanest TypeScript development environment consists of a simple text
editor, and a Node-based TypeScript compiler. Head over to the Node website (h t t p s ://n o

d e j s . o r g /) and follow the instructions to install Node on your operating system of choice.

https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/

TypeScript - Tools and Framework Options

[20]

Once Node is installed, TypeScript can be installed by simply typing:

npm install -g typescript

This command invokes the Node Package Manager (npm) to install TypeScript as a global
module (the -g option), which will make it available no matter what directory we are
currently in. Once TypeScript has been installed, we can display the current version of the
compiler by typing the following:

tsc -v

At the time of writing, the TypeScript compiler is at version 2.1.5, and therefore the
output of this command is as follows:

Version 2.1.5

Let's now create a TypeScript file named hello.ts, with the following content:

 console.log('hello TypeScript');

From the command line, we can use TypeScript to compile this file into a JavaScript file by
issuing the command:

tsc hello.ts

Once the TypeScript compiler has completed, it will have generated a hello.js file in the
current directory.

Creating a tsconfig.json file
The TypeScript compiler uses a tsconfig.json file at the root of the project directory to
specify any global TypeScript project settings and compiler options. This means that,
instead of compiling our TypeScript files one by one (by specifying each file on the
command line), we can simply type tsc from the project root directory, and TypeScript will
recursively find and compile all TypeScript files within the root directory and all sub-
directories. The tsconfig.json file that TypeScript needs in order to do this can be
created from the command line by simply typing:

tsc --init

TypeScript - Tools and Framework Options

[21]

The result of this command is a basic tsconfig.json file as follows:

 {
 "compilerOptions": {
 "module": "commonjs",
 "target": "es5",
 "noImplicitAny": false,
 "sourceMap": false
 }
 }

This is a simple JSON format file, with a single JSON property named compilerOptions,
which specifies compile options for the project. The target property indicates the
preferred JavaScript output to generate, and can be either es3, es5, es6, ES2016, ES2017,
or ESNext. The option named sourceMap is a flag indicating whether to generate source
maps that are used for debugging. The noImplicitAny option is a flag indicating that we
must attempt to strongly type all variables before use.

TypeScript allows for multiple tsconfig.json files within a directory
structure. This allows different sub directories to use different compiler
options.

With our tsconfig.json file in place, we can compile our application by simply typing:

tsc

This command will invoke the TypeScript compiler, using the tsconfig.json file that we
have created to generate a hello.js JavaScript file. In fact, any file TypeScript source file
that has a file extension of .ts will generate a JavaScript file with an extension of .js. We
can now run our application by typing:

node hello.js

As our application is simply logging some text to the command line, the output will be as
follows:

λ node hello.js
hello TypeScript

We have successfully created a simple Node-based TypeScript development environment,
with a simple text editor and access to the command line.

TypeScript - Tools and Framework Options

[22]

Microsoft Visual Studio
Let's now look at Microsoft's Visual Studio. This is Microsoft's primary IDE, and comes in a
variety of pricing combinations. At the time of writing, Microsoft had just released Visual
Studio 2017 Release Candidate, as the successor to Visual Studio 2015. Microsoft has an
Azure-based licensing model, starting at around $45 per month, all the way up to a
professional license with an MSDN subscription at around $1,199. The good news is that
Microsoft also has a Community edition, which can be used in non-enterprise environments
for both free and non-paid products. The TypeScript compiler is included in all of these
editions.

Visual Studio can be downloaded as either a web installer or an .iso CD image. Note that
the web installer will require an Internet connection during installation, as it downloads the
required packages during the installation step. Visual Studio will also require Internet
Explorer 10 or later, but will prompt you during installation if you have not upgraded as
yet. If you are using the .iso installer, just bear in mind that you may be required to
download and install additional operating system patches if you have not updated your
system in a while.

Creating a Visual Studio project
Once Visual Studio 2017 is installed, fire it up and create a new project (File | New Project).
There are many different options available for new project templates, depending on your
choice of language. Under the Templates section on the left-hand side, you will see an
Other Languages option, and under this a TypeScript option. The project templates that are
available are slightly different in Visual Studio 2017 than they are in Visual Studio 2015, and
are geared towards Node development.

TypeScript - Tools and Framework Options

[23]

Visual Studio 2015 has a template named Html Application with TypeScript, which will
create a very simple, single-page Web application for you. Unfortunately, this option has
been removed in Visual Studio 2017 as shown in the following screenshot:

Visual Studio 2017 – TypeScript project templates

To create a simple TypeScript web application in Visual Studio 2017, we will need to create
a blank web application first, and then we can add TypeScript files to this project as need
be. From our Templates dialog, then, select the Visual C# template option, and then select
the Web option. This will give us a project template named ASP.NET Web Application.
Select a Name and a Location for the new project, and then click on OK, as shown in the
following screenshot:

TypeScript - Tools and Framework Options

[24]

Visual Studio 2017 – creating an ASP.NET web application

Once we have selected the basic information for our new project, Visual Studio will
generate a second dialog box asking what sort of ASP.NET project we would like to
generate. Select the Empty template, and click on OK, as shown below:

Visual Studio 2017 – options for creating an ASP.NET web application

TypeScript - Tools and Framework Options

[25]

Visual Studio 2017 will then pop up another dialog named Create App Service, which
provides options for creating a host in Azure for your new web application. We will not be
publishing our application to Azure, so we can click on Skip at this stage.

Default project settings
Once a new Empty ASP.NET web application has been created, we can start adding files to
the project by right-clicking on the project itself and selecting Add then New Item. There
are two files that we are going to add to the project, namely an index.html file and an
app.ts TypeScript file. For each of these files, select the corresponding Visual Studio
template, as follows:

Visual Studio – adding a TypeScript file

We can now open up the app.ts file, and start typing the following code:

 class MyClass {
 public render(divId: string, text: string) {
 var el: HTMLElement = document.getElementById(divId);
 el.innerText = text;
 }
 }

TypeScript - Tools and Framework Options

[26]

 window.onload = () => {
 var myClass = new MyClass();
 myClass.render("content", "Hello World");
 };

Here, we have created a class named MyClass, that has a single render function. This
function takes two parameters, named divId and text. The function finds an HTML DOM
element that matches the divId argument, and then sets the innerText property to the
value of the text argument. We then define a function to be called when the browser calls
window.onload. This function creates a new instance of the MyClass class, and calls the
render function.

Do not be alarmed if this syntax and code is a little confusing. We will be
covering all of the language elements and syntax in later chapters. The
point of this exercise is simply to use Visual Studio as a development
environment for editing TypeScript code.

You will notice that Visual Studio has very powerful Intellisense options, and will suggest
code, function names, or variable names as and when you are typing your code. If they are
not automatically appearing, then hitting Ctrl–Space will bring up the Intellisense options
for the code you are currently typing.

With our app.ts file in place, we can compile it by hitting Ctrl–Shift–B, or F6, or by
selecting the Build option from the toolbar. If there are any errors in the TypesScript code
that we are compiling, Visual Studio will automatically pop up an Error List panel, showing
current compilation errors. Double-clicking on any one of these errors will bring up the file
in the editor panel, and automatically move the cursor to the offending code.

The generated app.js file is not included in the Solution Explorer in
Visual Studio. Only the app.ts TypeScript file is included. This is by
design. If you wish to see the generated JavaScript file, simply click on the
Show All Files button in the Solution Explorer toolbar.

To include our TypeScript file in the HTML page, we will need to edit the index.html file,
and add a <script> tag to load app.js, as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <title></title>
 <script src="app.js"></script>
 </head>
 <body>

TypeScript - Tools and Framework Options

[27]

 <div id="content"></div>
 </body>
 </html>

Here, we have added the <script> tag to load our app.js file, and have also created a
<div> element with the id of content. This is the DOM element that our code will modify
the innerHtml property of. We can now hit F5 to run our application:

Visual Studio index.html running in Chrome

Debugging in Visual Studio
One of the best features of Visual Studio is that it is truly an integrated environment.
Debugging TypeScript in Visual Studio is exactly the same as debugging C# or any other
language in Visual Studio, and includes the usual Immediate, Locals, Watch, and Call
stack windows.

To debug TypeScript in Visual Studio, simply put a breakpoint on the line you wish to
break on in your TypeScript file (move your mouse into the breakpoint area next to the
source code line, and click). In the following screenshot, we have placed a breakpoint
within the window.onload function. To start debugging, simply hit F5:

TypeScript - Tools and Framework Options

[28]

Visual Studio TypeScript editor with a breakpoint set in the code

When the source code line is highlighted in yellow, hover your mouse over any of the
variables in your source, or use the Immediate, Watch, Locals, or Call stack windows.

Note that Visual Studio only supports debugging in Internet Explorer 11.
If you have multiple browsers installed on your machine (including
Microsoft Edge), make sure that you select Internet Explorer in your
Debug toolbar, as shown in the following screenshot:

Visual Studio Debug toolbar showing browser options

TypeScript - Tools and Framework Options

[29]

WebStorm
WebStorm is a popular IDE by JetBrains (http://www.jetbrains.com/webstorm/), and will
run on Windows, Mac OS X, and Linux. Prices range from $59 per year for a single
developer to $129 per year for a commercial license. JetBrains also offers a 30-day trial
version.

WebStorm has a couple of great features, including live edit and code suggestions, or
Intellisense. Live edit allows you to keep a browser open that will automatically update
based on changes to CSS, HTML, and JavaScript as you type it. Code suggestions, which are
also available with another popular JetBrains product, ReSharper, will highlight code that
you have written and suggest better ways of implementing it. WebStorm also has a large
number of project templates. These templates will automatically download and include the
relevant JavaScript or CSS files, such as Twitter, Bootstrap, or HTML5 boilerplate.

On Windows systems, setting up WebStorm is as simple as downloading the package from
the website, and running the installer. On Linux systems, Webstorm is provided as a tar
ball. Once it's unpacked, install WebStorm by running the webstorm.sh script in the bin
directory. Note that on Linux systems, a running version of Java must be installed before
setup will continue.

Creating a WebStorm project
To create a WebStorm project, fire up WebStorm and hit File | New Project. Select a name,
location, and project type. For this project, we have selected Twitter Bootstrap:

WebStorm new project dialog box

http://www.jetbrains.com/webstorm/

TypeScript - Tools and Framework Options

[30]

Default files
WebStorm has conveniently created css and js directories as part of the new project and
downloaded and included the relevant CSS and JavaScript files for us to start building a
new Bootstrap-based site. Note that it has not created an index.html file for us, nor has it
created any TypeScript files. So let's create an index.html file.

Simply click on File | New, select HTML file, enter index as a name, and click OK.

Next, let's create a TypeScript file in a similar manner. We will call this file app (or app.ts),
in order to mirror the Visual Studio project. As we click inside the new app.ts file,
WebStorm will pop up a message at the top of the file, with a suggestion reading Compile
TypeScript to JavaScript? with three options–OK, No, and Configure, as shown in the
following screenshot:

WebStorm editing a TypeScript file for the first time showing the file watcher bar

TypeScript - Tools and Framework Options

[31]

Clicking on Configure will bring up the Settings panel for TypeScript. Click on the Enable
TypeScript compiler checkbox to enable modifications to the settings, then click on the Use
tsconfig.json radio button, and click OK. WebStorm is now configured to use the
tsconfig.json file in the projects root directory. As this file does not yet exist, a
TypeScript error panel will open, indicating that the compiler cannot find tsconfig.json
in the project. To fix this error, we will need to create a tsconfig.json file, so click on File
| New, and type tsconfig.json as the filename. Switch back to the app.ts file, hit Ctrl-S
to save, and the error message will disappear.

Building a simple HTML application
Now that we have configured WebStorm to compile our Typescript files, let's create a
simple TypeScript class and use it to modify the innerText property of an HTML div.
While you are typing, you will notice WebStorm's auto-completion or Intellisense feature
helping you with available keywords, parameters, naming conventions, and so on. This is
one of the most powerful features of WebStorm, and is similar to the enhanced Intellisense
seen in Visual Studio. Go ahead and type the following TypeScript code, during which you
will get a good feeling for WebStorm's available auto-completion:

 class MyClass {
 public render(divId: string, text: string) {
 var el: HTMLElement = document.getElementById(divId);
 el.innerText = text;
 }
 }

 window.onload = () => {
 var myClass = new MyClass();
 myClass.render("content", "Hello World");
 }

This code is the same as we used in the Visual Studio example.

If you have any errors in your TypeScript file, these will automatically show up in the
output window, giving you instant feedback while you type. With this TypeScript file
created, we can now include it in our index.html file, and try some debugging.

Open the index.html file, and add a script tag to include the app.js JavaScript file,
along with a div with an id of "content". Just as we saw with TypeScript editing, you
will find that WebStorm has powerful Intellisense features when editing HTML as well:

 <!DOCTYPE html>
 <html>
 <head lang="en">

TypeScript - Tools and Framework Options

[32]

 <meta charset="UTF-8">
 <title></title>
 <script src="app.js"></script>
 </head>
 <body>
 <div id="content"></div>
 </body>
 </html>

Again, this HTML is the same as we used earlier in the Visual Studio example.

Running a web page in Chrome
When viewing or editing HTML files in WebStorm, you will notice a small set of browser
icons popping up in the top-right corner of the editing window. Clicking on any one of the
icons will launch your current HTML page using the selected browser:

WebStorm editing an HTML file showing popup browser-launching icons

TypeScript - Tools and Framework Options

[33]

Debugging in Chrome
To debug our web application in WebStorm, we will need to set up a debug configuration
for the index.html file. Click on Run | Debug and then edit configurations. Click on the
plus (+) button, select the JavaScript debug option on the left, and give this configuration a
name. Note that WebStorm has already identified that index.html is the default page, but
this can easily be modified. Next, click on Debug at the bottom of the screen, as shown in
the following screenshot:

WebStorm debugging configuration for index.html.

WebStorm uses a Chrome plugin to enable debugging in Chrome and will prompt you the
first time you start debugging to download and enable the JetBrains IDE Support
Chrome plugin. With this plugin enabled, WebStorm has a very powerful set of tools to
inspect JavaScript code, add watchers, view the console, and many more, right inside the
IDE.

TypeScript - Tools and Framework Options

[34]

WebStorm debugging session showing debugger panels

Visual Studio Code
Visual Studio Code is a lightweight development enviroment produced by Microsoft that
runs on Windows, Linux, and Mac. It includes development features such as syntax
highlighting, bracket matching, Intellisense, and also has support for many different
languages. These languages include TypeScript, JavaScript, JSON, HTML, CSS, C#, C++ and
many more – making it ideal for TypeScript development in either web pages or Node. Its
main focus is currently ASP.NET development with C#, and Node development with
TypeScript. It has also been built with strong git support out-of-the-box.

TypeScript - Tools and Framework Options

[35]

Installing VSCode
VSCode can be installed on Windows by simply downloading and running the installer. On
Linux systems, VSCode is provided as a .deb package, an .rpm package, or a binary tar
file. Under Mac, download the .zip file, unzip it, and then copy the Visual Studio
Code.app file to your applications folder.

Exploring VSCode
Create a new directory to hold your source code and fire up VSCode. This can be done by
navigating to the directory and executing code . from the command line. On Windows
systems, fire up VSCode, and then Select File | Open folder from the menu bar. Hit Ctrl–N
to create a new file, and type the following:

 console.log("hello vscode");

Note that there is no syntax highlighting at this stage, as VSCode does not know what type
of file it is working with. Hit Ctrl–S to save the file, and name it hello.ts. Now that
VSCode understands this to be a TypeScript file, you will have full Intellisense and syntax
highlighting available.

Creating a tasks.json file
The keyboard shortcut to build a project in VSCode is Ctrl–Shift–B. If we try to build the
project at this stage, VSCode will show a message–No task runner configured, and
give us the option to Configure Task Runner. We can then select which sort of task runner
we would like to configure, including Grunt, Gulp, and a number of other options.
Selecting one of these options will automatically create a tasks.json file for us in the
.vscode directory, and open it for editing.

As an example of this let's select the TypeScript – tsconfig.json option. We will make a
single change to the generated tsconfig.json file, and set the value of the "showOutput"
option to "always", instead of "silent". This will force VSCode to open an output
window whenever it sees compilation issues.

TypeScript - Tools and Framework Options

[36]

Our tasks.json file now contains the following:

 // A task runner that calls the Typescript compiler (tsc) and
 // compiles based on a tsconfig.json file that is present in
 // the root of the folder open in VSCode
 {
 "version": "0.1.0",
 "command": "tsc",
 "isShellCommand": true,
 "showOutput": "always",
 "args": ["-p", "."],
 "problemMatcher": "$tsc"
 }

Building the project
Our sample project can now be built by hitting Ctrl–Shift–B. Note that in the base directory
of our project, we now have a hello.js and a hello.js.map file as the result of the
compilation step.

Creating a launch.json file
VSCode includes an integrated debugger that can be used to debug TypeScript projects. If
we switch to the Debugger panel, or simply hit F5 to start debugging, VSCode will ask us
to select a debugging environment. For the time being, select the Node.js option, which will
create a launch.json file in the .vscode directory, and again open it for editing. Find the
option named "program", and modify it to read "${workspaceRoot}/hello.js". Hit F5
again, and VSCode will launch hello.js as a Node program and output the results to the
debugging window:

node --debug-brk=34146 --nolazy hello.js
debugger listening on port 34146
hello vscode

TypeScript - Tools and Framework Options

[37]

Setting breakpoints
Using breakpoints and debugging at this stage will only work on the generated .js
JavaScript files. We will need to make another change to the launch.json file to enable
debugging directly in our TypeScript files. Edit the launch.json file, and change the
"sourceMaps" : false property to true. Now we can set breakpoints directly in our
.ts files for use by the VSCode debugger:

Debugging a Node application within Visual Studio Code

Debugging web pages
Debugging TypeScript running within a web page in VSCode takes a little more setup.
VSCode uses the Chrome debugger to attach to a running web page. To enable debugging
web pages, we will firstly need to modify the launch.json file and add a new launch
option, as follows:

 "configurations": [
 {
 "name": "Launch",
 ...
 },
 {
 "name": "Attach 9222",
 "type": "chrome",

TypeScript - Tools and Framework Options

[38]

 "request": "attach",
 "port": 9222,
 "sourceMaps": true
 }
]

This launch option is named "Attach 9222", and will attach to a running instance of
chrome using the debug port 9222. Save the launch.json file, and create an HTML page
named index.html at the root directory of the project, as follows:

 <html>
 <head>
 <script src="helloweb.js"></script>
 </head>
 <body>
 hello vscode
 <div id="content"></div>
 </body>
 </html>

This is a very simple page that loads the helloweb.js file, and displays the text hello
vscode. Our helloweb.ts file is as follows:

 window.onload = () => {
 console.log("hello vscode");
 };

This TypeScript code simply waits for the web page to load, and then logs "hello
vscode" to the console.

The next step is to fire up Chrome using the debug port option. On Linux systems, this is
done from the command prompt, as follows:

google-chrome --remote-debugging-port=9222

Note that you will need to ensure that there are no other instances of Chrome running in
order to use it as a debugger with VSCode.

Next, load the index.html file in the browser by using the
file://<full_path_to_file>/index.html syntax. You should see the HTML file
rendering the "hello vscode" text.

TypeScript - Tools and Framework Options

[39]

Now we can go back to VSCode, click on the debugging icon, and select the Attach 9222
option in the launcher drop-down. Hit F5, and the VSCode debugger should now be
attached to the running instance of Chrome. We will then need to refresh the page in
Chrome in order to start debugging:

Debugging web pages in Visual Studio Code

With a slight tweak to our launch.json, we can combine these manual steps into a single
launcher, as follows:

 {
 "name": "Launch chrome",
 "type": "chrome",
 "request" : "launch",
 "url" : "file:/// ... insert full path here ... /index.html",
 "runtimeArgs": [
 "--new-window",
 "--remote-debugging-port=9222"
],
 "sourceMaps": true
 }

TypeScript - Tools and Framework Options

[40]

In this launch configuration, we have changed the request property from "attach" to
"launch", which will launch a new instance of Chrome and automatically navigate to the
file path specified in the "url" property. The "runtimeArgs" property now also specifies
the remote debugging port of 9222. With this launcher in place, we can simply hit F5 to
launch Chrome, with the correct URL and debugging options for debugging of HTML
applications.

Other editors
There are a number of editors that include support for TypeScript, such as Atom, Brackets,
and even the age-old Vim editor. Each of these editors has varying levels of TypeScript
support, including syntax highlighting and Intellisense. Using these editors represents a
bare-bones TypeScript development environment, relying on the command line to
automate build tasks. They do not have built-in debugging tools, and therefore do not
qualify as an Integrated Development Environment (IDE) per se, but can easily be used to
build TypeScript applications. The basic workflow using these editors would be as follows:

Create and modify files using the editor
Invoke the TypeScript compiler from the command line
Run or debug applications using existing debuggers

Using Grunt
In a bare-bones environment, any change to a TypeScript file means that we need to re-issue
the tsc command from the command line every time we wish to compile our project.
Obviously, it is going to be very tedious to have to switch to the command prompt and
manually compile our project every time we have made a change. This is where tools like
Grunt come in handy. Grunt is an automated task runner (http://gruntjs.com) that can
automate many tedious compile, build, and test tasks. In this section, we will use Grunt to
watch our TypeScript files, and automatically invoke the tsc compiler when a file is saved.

Grunt runs in a Node environment, and therefore needs to be installed as an npm
dependency of your project. It cannot be installed globally as most npm packages can. In
order to do this, we will need to create a packages.json file in the root project. Open up a
command prompt, and navigate to the root directory of your project. Then, simply type:

npm init

http://gruntjs.com/

TypeScript - Tools and Framework Options

[41]

Then follow the prompts. You can pretty much leave all of the options at their defaults, and
always go back to edit the packages.json file that is created from this step, should you
need to tweak any changes.

Now we can install Grunt. Grunt has two components that need to be installed
independently. Firstly, we need to install the Grunt command-line interface, which allows
us to run Grunt from the command line. This can be accomplished as follows:

npm install -g grunt-cli

The second component is to install the grunt files within our project directory:

npm install grunt --save-dev

The --save-dev option will install a local version of Grunt in the project directory. This is
done so that multiple projects on your machine can use different versions of Grunt. We will
also need the grunt-exec package, as well as the grunt-contrib-watch package. These
can be installed with the following commands:

npm install grunt-exec --save-dev
npm install grunt-contrib-watch --save-dev.

Lastly, we will need a GruntFile.js. Using an editor, create a new file, save it as
GruntFile.js, and enter the following JavaScript. Note that we are creating a JavaScript
file here, not a TypeScript file. You can find a copy of this file in the sample source code that
accompanies this chapter:

 module.exports = function (grunt) {
 grunt.loadNpmTasks('grunt-contrib-watch');
 grunt.loadNpmTasks('grunt-exec');
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 watch : {
 files : ['**/*.ts'],
 tasks : ['exec:run_tsc']
 },
 exec: {
 run_tsc: { cmd : 'tsc'}
 }
 });
 grunt.registerTask('default', ['watch']);
 };

TypeScript - Tools and Framework Options

[42]

This GruntFile.js contains a simple function to initialize the Grunt environment, and
specify the commands to run. The first two lines of the function are loading grunt-
contrib-watch and grunt-exec as npm tasks. We then call initConfig to configure the
tasks to run. This configuration section has a pkg property, a watch property, and an exec
property. The pkg property is used to load the package.json file that we created earlier as
part of the npm init step.

The watch property has two sub-properties. The files property specifies what to watch
for, in this case any .ts files in our source tree, and the tasks array specifies that we
should kick off the exec:run_tsc command once a file has changed. Finally, we call
grunt.registerTask, specifying that the default task is to watch for file changes.

We can now run grunt from the command line, as follows:

grunt

As can be seen from the command line output, Grunt is running the watch task, and is
waiting for changes to any .ts files:

Running "watch" task
Waiting...

Open up any TypeScript file, make a small change (add a space or something), and then hit
Ctrl-S to save the file. Now check back on the output from the Grunt command line. You
should see something like the following:

>> File "hellogrunt.ts" changed.
Running "exec:run_tsc" (exec) task
Done, without errors.
Completed in 2.008s at Sat Mar 19 2016 20:27:17 GMT+0800
 (W. Australia Standard Time) - Waiting...

This command line output is a confirmation that the Grunt watch task has identified that
the hellogrunt.ts file has changed, run the exec:run_tsc task, and is waiting for the
next file to change. We should now also see a hellogrunt.js file in the same directory as
our Typescript file.

TypeScript - Tools and Framework Options

[43]

Summary
In this chapter, we have had a quick look at what TypeScript is and what benefits it can
bring to the JavaScript development experience. We also looked at setting up a
development environment using some popular IDEs, and had a look at what a bare-bones
development environment would look like. Now that we have a development environment
set up, we can start looking at the TypeScript language itself in a bit more detail. We will
start with types, move on to variables, and then discuss functions in the next chapter.

2
Types, Variables, and Function

Techniques
TypeScript introduces strong typing to JavaScript through a simple syntax, referred to by
Anders Hejlsberg as “syntactic sugar”. This “sugar” is what assigns a type to a variable, a
function parameter, or even the return type of a function itself. As we discussed in Chapter
1, TypeScript – Tools and Framework Options, the benefits of strong typing include better error
checking, the ability for an IDE to provide more intelligent code suggestions, and the ability
to introduce object-oriented techniques into the JavaScript coding experience. There are a
number of basic types that the language uses, such as number, string and boolean, to name
a few. There are also rules by which the TypeScript compiler identifies what the type of a
variable is. Understanding these rules and applying them to your code is a fundamental
skill when writing TypeScript code.

We will cover the following topics in this chapter:

Basic types and type syntax – strings, numbers, and booleans
Inferred typing and duck typing
Template strings
Arrays
Using for...in and for...of
The any type and explicit casting
Enums
Const enums and const values
The let keyword
Functions and anonymous functions
Optional and default function parameters

Types, Variables, and Function Techniques

[45]

Argument arrays
Function callbacks, function signatures, and function overloads
Union types, type guards, and type aliases

This chapter is an introduction to the syntax used in the TypeScript
language to apply strong typing to JavaScript. It is intended for readers
who have not used TypeScript before, and covers the transition from
standard JavaScript to TypeScript. If you already have experience with
TypeScript, and have a good understanding of the topics listed here, then
by all means have a quick read through, or skip to the next chapter.

Basic types
JavaScript variables can hold a number of data types, including numbers, strings, arrays,
objects, functions, and more. The type of an object in JavaScript is determined by its
assignment. This means that only at the point where we assign a value to a variable does
the JavaScript runtime interpreter try to determine what the type of the particular variable
is. While this may work in simple cases, the JavaScript runtime can also reassign the type of
a variable depending on how it is being used, or on how it is interacting with other
variables. It may assign a number to a string, for example, in certain cases. Let's take a look
at an example of this dynamic typing in JavaScript, and what errors it can introduce, before
exploring the strong typing that TypeScript uses, and its basic type system.

JavaScript typing
As we saw in Chapter 1, TypeScript – Tools and Framework Options, JavaScript objects and
variables can be changed or reassigned on-the-fly. As an example of this, consider the
following JavaScript code:

 function doCalculation(a,b,c) {
 return (a * b) + c;
 }
 var result = doCalculation(2,3,1);
 console.log('doCalculation():' + result);

Types, Variables, and Function Techniques

[46]

Here, we have a doCalculation function that is computing the product of the arguments
a and b, and then adding the value of c. We are then calling the function with the
arguments 2, 3 and 1, and logging the result to the console. The output of this sample
would be:

doCalculation():7

This is the expected result, as 2 * 3 = 6, and 6 + 1 = 7. Now let's take a look at what happens if
we inadvertently call the function with strings instead of numbers:

 result = doCalculation("2","3","1");
 console.log('doCalculation():' + result);

The output of this code sample is as follows:

doCalculation():61

The result of 61 is very different from our expected result of 7. So what is going on here? If
we take a closer look at the code in the doCalculation function, we start to understand
what JavaScript is doing with our variables, and their types.

The product of two numbers, that is, (a * b), returns a numeric value, so JavaScript is
automatically converting the values "2" and "3" to numbers in order to compute the
product, and correctly computing the value 6. This is a particular rule that JavaScript
applies in order to convert strings to numbers, when the result should be a number. But the
addition symbol, that is, +, does not infer that both values are numeric. Because the
argument c is a string, JavaScript is converting the value 6 into a string in order to add two
strings. This results in the string "6" being added to the string "1", which results in the
value "61". Obviously, these sorts of automatic type conversions can cause unwanted
behavior in our code.

TypeScript typing
TypeScript, on the other hand, is a strongly typed language. Once you have declared a
variable to be of type string, you can only assign string values to it. All further code that
uses this variable must treat it as though it has a type of string. This helps to ensure that
code that we write will behave as expected.

Types, Variables, and Function Techniques

[47]

JavaScript programmers have always relied heavily on documentation to understand how
to call functions, and the order and type of the correct function parameters. But what if we
could take all of this documentation and include it within the IDE? Then, as we write our
code, our compiler could point out to us automatically that we were using variables in the
wrong way. Surely this would make us more efficient, more productive programmers,
allowing us to generate code with fewer errors?

TypeScript does exactly that. It introduces a very simple syntax to define the type of a
variable to ensure that we are using it in the correct manner. If we break any of these rules,
the TypeScript compiler will automatically generate errors, pointing us to the lines of code
that are in error.

This is how TypeScript got its name. It is JavaScript with strong typing, hence TypeScript.
Let's take a look at this very simple language syntax that enables the Type in TypeScript.

Type syntax
The TypeScript syntax for declaring the type of a variable is to include a colon (:), after the
variable name, and then indicate its type. Let's rewrite our problematic doCalculation
function to only accept numbers. Consider the following TypeScript code:

 function doCalculation(
 a : number,
 b : number,
 c : number) {
 return (a * b) + c;
 }

 var result = doCalculation(3,2,1);
 console.log("doCalculation():" + result);

Here, we have specified that the doCalculation function needs to be invoked with three
numbers. Again, the TypeScript syntax for declaring a type is to include a colon, and then
the variable type, hence : number for the properties a, b, and c. If we now attempt to call
this function with strings, as we did with the JavaScript sample, as follows:

 var result = doCalculation("1", "2", "3");
 console.log("doCalculation():" + result);

The TypeScript compiler will generate the following error:

error TS2345: Argument of type 'string' is not assignable
to parameter of type 'number'.

Types, Variables, and Function Techniques

[48]

This error message clearly tells us that we cannot assign a string where a numeric value is
expected.

To further illustrate this point, consider the following TypeScript code:

 var myString : string;
 var myNumber : number;
 var myBoolean : boolean;
 myString = "1";
 myNumber = 1;
 myBoolean = true;

Here, we are telling the compiler that the myString variable is of type string, even before
the variable itself has been used. Similarly, the myNumber variable is of type number, and
the myBoolean variable is of type boolean. TypeScript has introduced the string,
number, and boolean keywords for each of these basic JavaScript types.

If we then attempt to assign a value to a variable that is not of the same type, the TypeScript
compiler will generate a compile-time error. Given the variables declared in the preceding
code, consider the following TypeScript code:

 myString = myNumber;
 myBoolean = myString;
 myNumber = myBoolean;

TypeScript build errors when assigning incorrect types

Types, Variables, and Function Techniques

[49]

The TypeScript compiler is now generating compile errors because it has detected that we
are attempting to mix these basic types. The first error is generated because we cannot
assign a number value to a variable of type string. Similarly, the second compile error
indicates that we cannot assign a string value to a variable of type boolean. Again, the
third error is generated because we cannot assign a boolean value to a variable of type
number.

The strong typing syntax that the TypeScript language introduces means that we need to
ensure that the types on the left-hand side of an assignment operator (=) are the same as the
types on the right-hand side of the assignment operator.

To fix the preceding TypeScript code, and remove the compile errors, we would need to do
something similar to the following:

 myString = myNumber.toString();
 myBoolean = (myString === "test");
 if (myBoolean) {
 myNumber = 1;
 }

Our first line of code has been changed to call the .toString() function on the myNumber
variable (which is of type number), in order to return a value that is of type string. This
line of code, then, does not generate a compile error because both sides of the equal sign (or
assignment operator) are strings.

Our second line of code has also been changed so that the right-hand side of the assignment
operator returns the result of a comparison, myString === "test", which will return a
value of type boolean. The compiler will therefore allow this code, because both sides of
the assignment resolve to a value of type boolean.

The last line of our code snippet has been changed to only assign the value 1 (which is of
type number) to the myNumber variable, if the value of the myBoolean variable is true.

Anders Hejlsberg describes this feature as “syntactic sugar”. In other words, with a little
“sugar” on top of comparable JavaScript code, TypeScript has enabled our code to transform
into a strongly typed language. Whenever you break these strong typing rules, the compiler
will generate errors for your offending code.

Types, Variables, and Function Techniques

[50]

Inferred typing
TypeScript also uses a technique called inferred typing to determine the type of a variable.
In other words, TypeScript will infer the type of a variable based on its first usage, and then
assume the same type for this variable in the rest of your code block. As an example of this,
consider the following TypeScript code:

 var inferredString = "this is a string";
 var inferredNumber = 1;
 inferredString = inferredNumber;

We start by declaring a variable named inferredString, and assign a string value to it.
TypeScript identifies that this variable has been assigned a value of type string, and will,
therefore, infer any further usage of this variable to be of type string. Our second variable,
named inferredNumber, has a number assigned to it. Again, TypeScript is inferring the
type of this variable to be of type number. If we then attempt to assign the
inferredString variable (of type string) to the inferredNumber variable (of type
number) in the last line of code, TypeScript will generate a familiar error message:

error TS2011: Build: Cannot convert 'string' to 'number'

This error is generated because of TypeScript's inferred typing rules.

Remember that if we do not explicitly specify the type of a variable by using the colon (:
type) syntax, then TypeScript will automatically infer the type of a variable based on its
first assignment.

Duck typing
TypeScript also uses a method called duck typing for more complex variable types. Duck
typing means that if it looks like a duck, and quacks like a duck, then it probably is a duck.
Consider the following TypeScript code:

 var complexType = { name: "myName", id: 1 };
 complexType = { id: 2, name: "anotherName" };

We start with a variable named complexType that has been assigned a simple JavaScript
object with a name and an id property. On our second line of code, we are reassigning the
value of this complexType variable to another object that also has an id and a name
property. The compiler will use duck typing in this instance to figure out whether this
assignment is valid. In other words, if an object has the same set of properties as another
object, then they are considered to be of the same type.

Types, Variables, and Function Techniques

[51]

To further illustrate this point, let's see how the compiler reacts if we attempt to assign an
object to our complexType variable that does not conform to this duck typing:

 var complexType = { name: "myName", id: 1 };
 complexType = { id: 2 };

The first line of this code snippet defines our complexType variable, and assigns to it an
object that contains both an id and a name property. From this point on, TypeScript will use
this inferred type on any value we attempt to assign to the complexType variable. On our
second line of code, we are attempting to reassign the complexType variable to a value that
has an id property but not a name property. This line of code will generate the following
compilation error:

error TS2322: Type '{ id: number; }' is not assignable to type
'{ name: string; id: number; }'.
 Property 'name' is missing in type '{ id: number; }'.

The error message is pretty self-explanatory. In this instance, TypeScript is using duck
typing to ensure type safety. As the complexType variable has both an id and a name
property, any value that is assigned to it must also have both an id and a name property.

Note that the following code will also generate an error message:

 var complexType = { name: "myName", id: 1 };
 complexType = { name : "extraproperty", id : 2, extraProp: true };

The error generated here is as follows:

error TS2322: Type '{ name: string; id: number;
extraProp: boolean; }' is not assignable to type '{ name: string; id:
number; }'.
Object literal may only specify known properties, and 'extraProp' does not
exist in type '{ name: string; id: number; }'.

As can be seen in this error message, the variable complexType does not have an
extraProp property, and therefore the assignment fails.

Inferred typing and duck typing are powerful features of the TypeScript language, bringing
strong typing to our code without the need to use explicit typing.

Types, Variables, and Function Techniques

[52]

Template strings
Before we continue our discussion on types, it is worth noting that TypeScript allows for
ES6 template string syntax. This syntax provides a convenient method for injecting values
into strings. Consider the following code:

 var myVariable = "test";
 console.log("myVariable=" + myVariable);

Here, we are simply assigning a value to a variable, and logging the result to the console,
with a little bit of formatting to make the message readable. Note how we are concatenating
the strings with the "string" + variable syntax. Let's now take a look at the equivalent
TypeScript code:

 var myVariable = "test";
 console.log(`myVariable=${myVariable}`);

On the second line of this code snippet, we have introduced the ES6 template string syntax
for easier manipulation of strings. There are two important things to note about this syntax.
Firstly, we have switched the string definition from a double quote (") to an apostrophe (`).
Using an apostrophe signals to the TypeScript compiler that it should look for template
values within the string enclosed by the apostrophes, and replace them with actual values.
Secondly, we have used a special ${ ... } syntax within the string to denote a template.
TypeScript will inject the value of any variable that is currently in scope into the string for
us. This is a convenient method of dealing with strings.

The TypeScript compiler will parse this ES6 style of string templates, and
generate JavaScript code that uses standard string concatenation. In this
way, the ES6 string template syntax can be used no matter what JavaScript
version is being targeted.

In the remainder of this chapter, we will use this string template syntax.

Arrays
Besides the base JavaScript types of string, number, and boolean, TypeScript has two other
basic data types that we will now take a closer look at – arrays and enums. Let's look at the
syntax for defining arrays.

Types, Variables, and Function Techniques

[53]

An array is simply marked with the [] notation, similar to JavaScript, and each array can be
strongly typed to hold a specific type, as seen in the code below:

 var arrayOfNumbers: number [] = [1,2,3];
 arrayOfNumbers = [3,4,5,6,7,8,9];
 console.log(`arrayOfNumbers: ${arrayOfNumbers}`);
 arrayOfNumbers = ["1", "2", "3"];

Here, we start by defining an array named arrayOfNumbers, and further specifying that
each element of this array must be of type number. We then reassign this array to hold some
different numerical values. Note that we can assign any number of elements to an array. We
then use a simple template string to print the array to the console.

The last line of this snippet, however, will generate the following error message:

hello_ch02.ts(51,1): error TS2322: Type 'string[]' is not assignable to
type 'number[]'.
Type 'string' is not assignable to type 'number'.

This error message is warning us that the variable arrayOfNumbers is strongly typed to
only accept values of type number. As our code is trying to assign an array of strings to this
array of numbers, an error is generated. The output of this code snippet is as follows:

arrayOfNumbers: 3,4,5,6,7,8,9

for…in and for…of
When working with arrays, it is common practice to loop through array items in order to
perform some task. This is generally accomplished within a for loop by manipulating an
array index, as shown in the following code:

 var arrayOfStrings : string[] = ["first", "second", "third"];

 for(var i = 0; i < arrayOfStrings.length; i++) {
 console.log(`arrayOfStrings[${i}] = ${arrayOfStrings[i]}`);
 }

Here, we have an array named arrayOfStrings, and a standard for loop that is using the
variable i as an index into our array. We access the array item using the syntax
arrayOfStrings[i]. The output of this code is as follows:

arrayOfStrings[0] = first
arrayOfStrings[1] = second
arrayOfStrings[2] = third

Types, Variables, and Function Techniques

[54]

TypeScript introduces the for...in syntax to simplify looping through arrays. Here is an
example of the above for loop expressed using this new syntax:

 for(var itemKey in arrayOfStrings) {
 var itemValue = arrayOfStrings[itemKey];
 console.log(`arrayOfStrings[${itemKey}] = ${itemValue}`);
 }

Here, we have simplified the for loop by using the itemKey in arrayOfStrings syntax.
Note that the value of the variable itemKey will iterate through the keys of the array, and
not the array elements themselves. Within the for loop, we are first de-referencing the
array to extract the array value for this itemKey, and then logging both the itemKey and
the itemValue to the console. The output of this code is as follows:

arrayOfStrings[0] = first
arrayOfStrings[1] = second
arrayOfStrings[2] = third

If we do not necessarily need to know the keys of the array, and are simply interested in the
values held within the array, we can further simplify looping through arrays using the
for...of syntax. Consider the following code:

 for(var arrayItem of arrayOfStrings) {
 console.log(`arrayItem = ${arrayItem} `);
 }

Here, we are using the for...of syntax to iterate over each value of the arrayOfStrings
array. Each time that the for loop is executed, the arrayItem variable will hold the next
element in the array. The output of this code is as follows:

arrayItem = first
arrayItem = second
arrayItem = third

The any type
All this type checking is well and good, but JavaScript is flexible enough to allow variables
to be mixed and matched. The following code snippet is actually valid JavaScript code:

 var item1 = { id: 1, name: "item 1" };
 item1 = { id: 2 };

Types, Variables, and Function Techniques

[55]

Here, we assign an object with an id property and a name property to the variable item1.
We then reassign this variable to an object that has an id property but not a name property.
Unfortunately, as we have seen previously, this is not valid TypeScript code, and will
generate the following error:

hello_ch02.ts(130,1): error TS2322: Type '{ id: number; }' is not
assignable to type '{ id: number; name: string; }'.
Property 'name' is missing in type '{ id: number; }'.

TypeScript introduces the any type for such occasions. Specifying that an object has a type
of any, in essence, relaxes the compiler's strict type checking. The following code shows
how to use the any type:

 var item1 : any = { id: 1, name: "item 1" };
 item1 = { id: 2 };

Note how our first line of code has changed. We specify the type of the variable item1 to be
of type : any. This special TypeScript keyword then allows a variable to follow JavaScript's
loosely defined type rules, so that anything can be assigned to anything. Without the type
specifier of : any, the second line of code would normally generate an error.

Explicit casting
As with any strongly typed language, there comes a time where you need to explicitly
specify the type of an object. This concept will be expanded upon more thoroughly in the
next chapter, but it is worthwhile to make a quick note of explicit casting here. An object
can be cast to the type of another by using the < > syntax.

This is not a cast in the strictest sense of the word; it is more of an assertion
that is used at runtime by the TypeScript compiler. Any explicit casting
that you use will be compiled away in the resultant JavaScript and will not
affect the code at runtime.

Let's take a look at an example that uses explicit casting, as follows:

 var item1 = <any>{ id: 1, name: "item 1" };
 item1 = { id: 2 };

Here, have now replaced the : any type specifier on the left-hand side of the assignment,
with an explicit cast of <any> on the right-hand side. This tells the compiler to explicitly
treat the { id: 1, name: "item 1" } object on the right-hand side of the assignment
operator as a type of any. So the item1 variable on the left-hand side of the assignment,
therefore, also has the type of any (due to TypeScript's inferred typing rules).

Types, Variables, and Function Techniques

[56]

This then allows us to assign an object with only the { id: 2 } property to the variable
item1 on the second line of code. This technique of using the < > syntax on the right-hand
side of an assignment is called explicit casting.

While the any type is a necessary feature of the TypeScript language and is used for
backward compatibility with JavaScript, its usage should really be limited as much as
possible. As we have seen with untyped JavaScript, over-use of the any type will quickly
lead to coding errors that will be difficult to find.

Rather than using the type any, try to figure out the correct type of the object you are using,
and then use this type instead. We use an acronym within our programming teams–Simply
Find an Interface for the Any Type (S.F.I.A.T) pronounced as sviat or sveat. While this
may sound silly, it brings home the point that the any type should always be replaced with
an interface, so simply find it. An interface is a way of defining custom types in TypeScript,
which we will cover in the next chapter. Just remember that, by actively trying to define
what an object's type should be, we are building strongly typed code, and therefore,
protecting ourselves from future coding errors and bugs.

Enums
Enums are a special type borrowed from other languages such as C#, C++, and Java, and
provides a solution to the problem of special numbers. An enum associates a human-
readable name for a specific number. Consider the following code:

 enum DoorState {
 Open,
 Closed,
 Ajar
 }

Here, we have defined an enum called DoorState to represent the state of a door. Valid
values for this door state are Open, Closed, or Ajar. Under the hood (in the generated
JavaScript), TypeScript will assign a numeric value to each of these human-readable enum
values. In this example, the DoorState.Open enum value will equate to a numeric value of
0. Likewise, the enum value DoorState.Closed will equate to the numeric value of 1, and
the DoorState.Ajar enum value will equate to 2. Let's take a quick look at how we would
use these enum values:

 var openDoor = DoorState.Open;
 console.log(`openDoor is: ${openDoor}`);

Types, Variables, and Function Techniques

[57]

The first line of this snippet creates a variable named openDoor, and sets its value to
DoorState.Open. The second line simply logs the value of openDoor to the console. The
output of this would be:

openDoor is: 0

This clearly shows that the TypeScript compiler has replaced the enum value of
DoorState.Open with the numeric value 0. Now let's use this enum in a slightly different
way:

 var closedDoor = DoorState["Closed"];
 console.log(`closedDoor is : ${closedDoor}`);

This code snippet uses a string value of "Closed" to lookup the enum type, and assigns the
resulting enum value to the closedDoor variable. The output of this code would be:

closedDoor is : 1

This sample clearly shows that the enum value of DoorState.Closed is the same as the
enum value of DoorState["Closed"], because both variants resolve to the numeric value
of 1. Finally, let's take a look at what happens when we reference an enum using an array
type syntax:

 var ajarDoor = DoorState[2];
 console.log(`ajarDoor is : ${ajarDoor}`);

Here, we assign the variable ajarDoor to an enum value based on the second index value
of the DoorState enum. The output of this code, though, is surprising:

ajarDoor is : Ajar

You may have been expecting the output to be simply 2, but here we are getting the string
"Ajar", which is a string representation of our original enum name. This is actually a neat
little trick allowing us to access a string representation of our enum value. The reason that
this is possible is down to the JavaScript that has been generated by the TypeScript
compiler. Let's take a look, then, at the closure that the TypeScript compiler has generated:

 var DoorState;
 (function (DoorState) {
 DoorState[DoorState["Open"] = 0] = "Open";
 DoorState[DoorState["Closed"] = 1] = "Closed";
 DoorState[DoorState["Ajar"] = 2] = "Ajar";
 })(DoorState || (DoorState = {}));

Types, Variables, and Function Techniques

[58]

This strange-looking syntax is building an object that has a specific internal structure. It is
this internal structure that allows us to use this enum in the various ways that we have just
explored. If we interrogate this structure while debugging our JavaScript, we will see that
the internal structure of the DoorState object is as follows:

 DoorState
 {...}
 [prototype]: {...}
 [0]: "Open"
 [1]: "Closed"
 [2]: "Ajar"
 [prototype]: []
 Ajar: 2
 Closed: 1
 Open: 0

The DoorState object has a property called "0", which has a string value of "Open".
Unfortunately, in JavaScript the number 0 is not a valid property name, so we cannot access
this property by simply using DoorState.0. Instead, we must access this property using
either DoorState[0] or DoorState["0"]. The DoorState object also has a property
named Open, which is set to the numeric value 0. The word Open is a valid property name
in JavaScript, so we can access this property using DoorState["Open"], or simply
DoorState.Open, which equates to the same property in JavaScript.

While the underlying JavaScript can be a little confusing, all we need to remember about
enums is that they are a handy way of defining an easily remembered, human-readable
name to a special number. Using human-readable enums, instead of just scattering various
special numbers around in our code, makes the intent of the code clearer. Using an
application-wide value named DoorState.Open or DoorState.Closed is far simpler than
remembering to set a value to 0 for Open, 1 for Closed, and 3 for Ajar. As well as making
our code more readable and more maintainable, using enums also protects our code base
whenever these special numeric values change because they are all defined in one place.

One last note on enums, is that we can set the numeric value manually, if required:

 enum DoorState {
 Open = 3,
 Closed = 7,
 Ajar = 10
 }

Here, we have overridden the default values of the enum to set DoorState.Open to 3,
DoorState.Closed to 7, and DoorState.Ajar to 10.

Types, Variables, and Function Techniques

[59]

Const enums
A slight variant of the enum type is the const enum, which simply adds the keyword
const before the enum definition, as follows:

 const enum DoorStateConst {
 Open,
 Closed,
 Ajar
 }
 var constDoorOpen = DoorStateConst.Open;
 console.log(`constDoorOpen is : ${constDoorOpen}`);

const enums have been introduced largely for performance reasons, and the resultant
JavaScript will not contain the full closure definition for the DoorStateConst enum as we
saw previously. Let's take a quick look at the JavaScript that is generated from this
DoorStateConst enum:

 var constDoorOpen = 0 /* Open */;

Note how we do not have a full JavaScript closure for the DoorStateConst at all. The
compiler has simply resolved the DoorStateConst.Open enum to its internal value of 0,
and removed the const enum definition entirely.

With const enums, we therefore cannot reference the internal string value of an enum, as
we did in our previous code sample. If we try to reference a const enum using the array
syntax, as follows:

 console.log(`${DoorStateConst[0]}`);

We get the following error message:

error TS2476: A const enum member can only be accessed using a string
literal.

We can, however, still use the string property accessor on a const enum, as follows:

 console.log(`${DoorStateConst["Open"]}`);

When using const enums, just keep in mind that the compiler will strip away all enum
definitions and simply substitute the numeric value of the enum directly into our JavaScript
code.

Types, Variables, and Function Techniques

[60]

Const values
The TypeScript language also allows us to define a variable as a constant, by using the
const keyword. If a variable has been marked as const, then its value can only be set
when the variable is defined, and cannot be changed afterwards. Consider the following
code:

 const constValue = "test";
 constValue = "updated";

Here, we have defined a variable named constValue, and indicated that it cannot be
changed by using the const keyword. Attempting to compile this code will result in the
following compile error:

error TS2450: Left-hand side of assignment expression cannot be a
constant or a read-only property.

The let keyword
Variables in JavaScript are defined by using the keyword var. The JavaScript runtime is
very lenient, however, when it comes to variable definitions. If the JavaScript runtime
comes across a variable that has not been previously defined or given a value, then the
value for this variable will be undefined. Consider the following code snippet:

 console.log(`anyValue = ${anyValue}`);
 var anyValue = 2;
 console.log(`anyValue = ${anyValue}`);

Here, we start by logging the value of a variable named anyValue to the console. Note,
however, that the variable anyValue is only defined on the second line of this code snippet.
In other words, we can use a variable in JavaScript before it is defined. The output of this
code is as follows:

anyValue = undefined
anyValue = 2

The semantics of using the var keyword presents us with a small problem. Using the var
keyword does not check to see whether the variable itself has been defined before we
actually use it. This could obviously lead to unwanted behavior, as the value of an
undefined or unallocated variable is always undefined.

Types, Variables, and Function Techniques

[61]

TypeScript introduces the let keyword, which can be used in the place of the var keyword
when defining variables. One of the advantages of using the let keyword is that we cannot
use a variable name before it has been defined. Consider the following code:

 console.log(`letValue = ${lValue}`);
 let lValue = 2;

Here, we are attempting to log the value of the variable lValue to the console even before it
has been defined, similar to how we were using the anyValue variable earlier. However,
when using the let keyword instead of the var keyword, this code will generate an error,
as follows:

error TS2448: Block-scoped variable 'lValue' used before its declaration.

Here, the TypeScript compiler generates an error if we attempt to use a variable before it is
defined. To fix this code, then, we need to define our variable lValue before it is first used,
as follows:

 let lValue = 2;
 console.log(`lValue = ${lValue}`);

This code will compile correctly, and output the following to the console:

lValue = 2

Another side-effect of using the let keyword, is that variables defined with let are block-
scoped. This means that their value and definition are limited to the block of code that they
reside in. As an example of this, consider the following code:

 let lValue = 2;
 console.log(`lValue = ${lValue}`);

 if (lValue == 2) {
 let lValue = 2001;
 console.log(`block scoped lValue : ${lValue} `);
 }
 console.log(`lValue = ${lValue}`);

Here, we define the lValue variable on the first line using the let keyword, and assign a
value of 2 to it. We then log the value of lValue to the console. On the first line within the
if statement, note how we are redefining a variable named lValue to hold the value 2001.
We are then logging the value of lValue to the console (within the if statement block).

Types, Variables, and Function Techniques

[62]

The last line of this code snippet again logs the value of the lValue variable to the console,
but this time lValue is outside the if statement block-scope. The output of this code is as
follows:

lValue = 2
block scoped lValue : 2001
lValue = 2

What these results are showing us is that let variables are confined to the scope in which
they are defined. In other words, the let lValue = 2001; statement defines a new
variable that will only be visible inside the if statement block of code. As it is a new
variable, it will also not influence the value of the lValue variable that is outside its scope.
This is why the value of lValue is 2 both before and after the if statement block, and 2001
within it.

The let statement, therefore, provides us with a safer way of declaring variables, and
limiting their validity to the current scope.

Functions
So far, we have seen how to add type annotations to variables, and have also seen how this
syntax is easily extended to function parameters. There are, however, a few more typing
rules that TypeScript uses when it comes to functions.

Function return types
Using the very simple “syntactic sugar” TypeScript syntax, we can also define the type of a
variable that a function should return. In other words, when we call a function, and it
returns a value, what type should the value be treated as ?

Consider the following TypeScript code:

 function addNumbers(a: number, b: number) : string {
 return a + b;
 }
 var addResult = addNumbers(2,3);
 console.log(`addNumbers returned : ${addResult}`);

Types, Variables, and Function Techniques

[63]

Here, we have added a :number type to both of the parameters of the addNumbers function
(a and b), and we have also added a :string type just after the () braces. Placing a type
annotation after the function definition means that we are defining the return type of the
entire function. In our example, then, the return type of the function addNumbers must be
of type string.

Unfortunately, this code will generate an error message as follows:

error TS2322: Type 'number' is not assignable to type 'string'.

What this error message is telling us is that the return type of the addNumbers function
must be a string. Unfortunately, the function itself is returning a number, and not a string –
hence the error. Taking a closer look at the code, we note that the offending code is, in fact,
return a + b. As a and b are numbers, we are returning the result of adding two
numbers, which is of type number. To fix this code, then, we need to ensure that the
function returns a string, as follows:

 function addNumbers(a: number, b: number) : string {
 return (a + b).toString();
 }

This code will now compile correctly, and will output:

addNumbers returned : 5

Anonymous functions
The JavaScript language also has the concept of anonymous functions. These are functions
that are defined on the fly and don't specify a function name. Consider the following
JavaScript code:

 var addVar = function(a,b) {
 return a + b;
 }

 var addVarResult = addVar(2,3);
 console.log("addVarResult:" + addVarResult);

Types, Variables, and Function Techniques

[64]

This code snippet defines a function that has no name and adds two values. Because the
function does not have a name, it is known as an anonymous function. This anonymous
function is then assigned to a variable named addVar. The addVar variable can then be
invoked as a function with two parameters, and the return value will be the result of
executing the anonymous function. The output of this code will be:

addVarResult:5

Let's now rewrite the preceding anonymous JavaScript function in TypeScript, as follows:

 var addFunction = function(a:number, b:number) : number {
 return a + b;
 }
 var addFunctionResult = addFunction(2,3);
 console.log(`addFunctionResult : ${addFunctionResult}`);

Here, we see that TypeScript allows anonymous functions in the same way that JavaScript
does, but also allows standard type annotations. The output of this TypeScript code is as
follows:

addFunctionResult : 5

Optional parameters
When we call a JavaScript function that is expecting parameters, and we do not supply
these parameters, then the value of the parameter within the function will be undefined.
As an example of this, consider the following JavaScript code:

 var concatStrings = function(a,b,c) {
 return a + b + c;
 }
 var concatAbc = concatStrings("a", "b", "c");
 console.log("concatAbc :" + concatAbc);

 var concatAb = concatStrings("a", "b");
 console.log("concatAb :" + concatAb);

The output of this code is as follows:

concatAbc :abc
concatAb :abundefined

Types, Variables, and Function Techniques

[65]

Here, we have defined a function called concatStrings that takes three parameters, a, b,
and c, and simply returns the sum of these values. We are then calling this function with
three arguments, and assigning the result to the variable concatAbc. As can be seen from
the output, this returns the string "abc". If, however, we only supply two arguments, as
seen with the usage of the variable concatAb, the function returns the string
"abundefined". In JavaScript, if we call a function and do not supply a parameter, then
the missing parameter will be undefined, which in this case is the parameter c.

TypeScript introduces the question mark ? syntax to indicate optional parameters. This
allows us to mimic the JavaScript calling syntax where we can call the same function with
some missing arguments. As an example of this, consider the following TypeScript code:

 function concatStrings(a: string, b: string, c?: string) {
 return a + b + c;
 }
 var concat3strings = concatStrings("a", "b", "c");
 console.log(`concat3strings : ${concat3strings}`);
 var concat2strings = concatStrings("a", "b");
 console.log(`concat2strings : ${concat2strings}`);
 var concat1string = concatStrings("a");

This is a strongly typed version of the original concatStrings JavaScript function that we
were using previously. Note the addition of the ? character in the syntax for the third
parameter: c?: string. This indicates that the third parameter is optional, and therefore,
all of the above code will compile cleanly, except for the last line. The last line will generate
an error:

error TS2081: Build: Supplied parameters do not
match any signature of call target.

This error is generated because we are attempting to call the concatStrings function with
only a single parameter. Our function definition, though, requires at least two parameters,
with only the third parameter being optional.

Any optional parameters must be the last parameters defined in the
function definition. You can have as many optional parameters as you
want, as long as non-optional parameters precede the optional parameters.

Types, Variables, and Function Techniques

[66]

Default parameters
A subtle variant of the optional parameter syntax allows us to specify the default value of a
parameter. If an optional parameter value is not supplied, we can specify what the default
value of this optional parameter should be. Let's modify our preceding function definition
to use an optional parameter with a default value, as follows:

 function concatStringsDefault(
 a: string,
 b: string,
 c: string = "c") {
 return a + b + c;
 }
 var defaultConcat = concatStringsDefault("a", "b");
 console.log(`defaultConcat : ${defaultConcat}`);

This function definition has now dropped the ? optional parameter syntax, but instead has
assigned a value of "c" to the last parameter: c:string = "c". By using default
parameters, if we do not supply a value for the final parameter named c, the
concatStringsDefault function will substitute the default value of "c" instead. The
argument c, therefore, will not be undefined. The output of this code will therefore be:

defaultConcat : abc

Note that using the default parameter syntax will automatically make the
parameter that has a default value optional.

Rest parameters
The JavaScript language also allows a function to be called with a variable number of
arguments. Every JavaScript function has access to a special variable, named arguments,
that can be used to retrieve all arguments that have been passed into the function. As an
example of this, consider the following JavaScript code:

 function testArguments() {
 if (arguments.length > 0) {
 for (var i = 0; i < arguments.length; i++) {
 console.log("argument[" + i + "] = " + arguments[i]);
 }
 }
 }
 testArguments(1,2,3);

Types, Variables, and Function Techniques

[67]

 testArguments("firstArg");

Here, we have defined a function, named testArguments, which does not have any
named parameters. Note, though, that we can use the special variable, named arguments,
to test whether the function was called with any arguments. In our sample, we simply loop
through the arguments array, and log the value of each argument to the console, by using
an array index – arguments[i]. The output of this code is as follows:

argument[0] = 1
argument[1] = 2
argument[2] = 3
argument[0] = firstArg

In order to express the equivalent function definition in TypeScript, we will need to use a
syntax that is known as the rest parameter syntax. Rest parameters use the TypeScript
syntax of three dots (...) in the function declaration to express a variable number of
function parameters. Here is the equivalent testArguments function, expressed in
TypeScript:

 function testArguments(... argArray: number []) {
 if (argArray.length > 0) {
 for (var i = 0; i < argArray.length; i++) {
 console.log(`argArray[${i}] = ${argArray[i]}`);
 // use JavaScript arguments variable
 console.log(`arguments[${i}] = ${arguments[i]}`)
 }
 }
 }

 testArguments(9);
 testArguments(1,2,3);

Note the use of the ...argArray: number[] syntax for our testArguments function
parameters. This syntax is telling the TypeScript compiler that the function can accept any
number of arguments. We can therefore call this function, as seen in the last two lines of the
preceding code, with any number of arguments. There are also two console.log
statements in this for loop. The first uses argArray[i], and the second uses the standard
JavaScript arguments variable, arguments[i].

The output of this code is as follows:

argArray[0] = 9
arguments[0] = 9
argArray[0] = 1
arguments[0] = 1
argArray[1] = 2

Types, Variables, and Function Techniques

[68]

arguments[1] = 2
argArray[2] = 3
arguments[2] = 3

The subtle difference between using argArray and arguments is the
inferred type of the argument. Since we have explicitly specified that
argArray is of type number, TypeScript will treat any item of the
argArray array as a number. However, the internal arguments array
does not have an inferred type, and so will be treated as the any type.

We can also combine normal parameters along with rest parameters in a function definition,
as long as the rest parameters are the last to be defined in the parameter list, as follows:

 function testNormalAndRestArguments(
 arg1: string,
 arg2, number,
 ...argArray: number[]
) {
 }

Here, we have two normal parameters named arg1 and arg2 and then an argArray rest
parameter. Mistakenly placing the rest parameter at the beginning of the parameter list will
generate a compile error.

Function callbacks
One of the most powerful features of JavaScript – and in fact the technology that Node was
built on – is the concept of callback functions. A callback function is a function that is
passed into another function, and is then generally invoked inside the function. Remember
that JavaScript is not strongly typed, so we can declare a variable to be either a value, or a
function. Therefore, just as we can pass a value into a function, we can also pass a function
into a function.

This is best illustrated by taking a look at some sample JavaScript code:

 var callbackFunction = function(text) {
 console.log('inside callbackFunction ' + text);
 }
 function doSomethingWithACallback(initialText, callback) {
 console.log('inside doSomethingWithCallback ' + initialText);
 callback(initialText);
 }

 doSomethingWithACallback('myText', callbackFunction);

Types, Variables, and Function Techniques

[69]

Here, we start with a variable named callbackFunction, which is a function that takes a
single parameter. This callbackFunction simply logs the text argument to the console.
We then define a function named doSomethingWithACallback that takes two parameters
– initialText and callback. The first line of this function simply logs "inside
doSomethingWithACallback" to the console. The second line of the
doSomethingWithACallback is the interesting bit. It assumes that the callback
argument is in fact a function, and invokes it, passing in the initialText variable. If we
run this code, we will get two messages logged to the console, as follows:

inside doSomethingWithCallback myText
inside callbackFunction myText

But what happens if we do not pass a function as a callback? There is nothing in the above
code that signals to us that the second parameter of doSomethingWithACallback must be
a function. If we inadvertently called the doSomethingWithACallback function with two
strings, as shown below:

 doSomethingWithACallback('myText', 'anotherText');

We would get a JavaScript runtime error:

TypeError: callback is not a function

Defensively minded programmers, however, would first check whether the callback
parameter was in fact a function before invoking it, as follows:

 function doSomethingWithACallback(initialText, callback) {
 console.log('inside doSomethingWithCallback ' + initialText);
 if (typeof callback === "function") {
 callback(initialText);
 } else {
 console.log(initialText + ' is not a function !!')
 }
 }
 doSomethingWithACallback('myText', 'anotherText');

Note the third line of this code snippet, where we check the type of the callback variable
before invoking it. If it is not a function, we then log a message to the console. The output of
the code snippet would be:

inside doSomethingWithCallback myText
anotherText is not a function !!

JavaScript programmers, therefore, need to be careful when working with callbacks. Firstly,
they need to code around the invalid use of callback functions, and secondly, they need to
document and understand which parameters are, in fact, callbacks.

Types, Variables, and Function Techniques

[70]

What if we could document our JavaScript callback functions in our code, and then warn
users when they are not passing a function when one is expected?

Function signatures
The TypeScript “syntactic sugar” that enforces strong typing on normal variables, can also
be used with callback functions. In order to do this, TypeScript introduces a new syntax,
named the fat arrow syntax, () =>. When the fat arrow syntax is used, it means that one of
the parameters to a function needs to be another function. Let's take a closer look at what
this means. We will rewrite our previous JavaScript callback sample in TypeScript, as
follows:

 function callbackFunction(text: string) {
 console.log(`inside callbackFunction ${text}`);
 }

We start with the initial callback function, which takes a single text parameter and logs a
message to the console when this function is called. We can then define the
doSomethingWithACallback function, as follows:

 function doSomethingWithACallback(
 initialText: string,
 callback : (initialText: string) => void
) {
 console.log(`inside doSomethingWithCallback ${initialText}`);
 callback(initialText);
 }

Here, we have defined our doSomethingWithACallback function with two parameters.
The first parameter is initialText, and is of type string. The second parameter is named
callback, and now uses the fat arrow syntax. Let's take a look at this syntax in a little more
detail:

 callback: (initialText: string) => void

The callback argument used here is typed (by the : syntax) to be a function, by using the
fat arrow syntax () =>. Additionally, this function takes a parameter named initialText
that is of type string. To the right of the fat arrow syntax, we can see a new TypeScript
basic type, called void. Void is a keyword to denote that a function does not return a value.

So, the doSomethingWithACallback function will only accept, as its second argument, a
function that takes a single string parameter and returns void.

Types, Variables, and Function Techniques

[71]

We can then use this function as follows:

 doSomethingWithACallback("myText", callbackFunction);

This code snippet is the same as was used in our JavaScript sample earlier. TypeScript will
check the type of the callbackFunction parameter that was passed in, and ensure that it
is, in fact, a function that accepts a single string as an argument and does not return
anything. If we try to invoke this doSomethingWithACallback incorrectly:

 doSomethingWithACallback("myText", "this is not a function");

The compiler will generate the following message:

error TS2345: Argument of type 'string' is not assignable
to parameter of type '(initialText: string) => void'.

This error message is clearly stating that the second argument, that is, "this is not a
function", is of type string, where a parameter that is a function of type (initialText:
string) => void is expected.

Given this function signature for the callback parameter, the following code would also
generate compile-time errors:

 function callbackFunctionWithNumber(arg1: number) {
 console.log(`inside callbackFunctionWithNumber ${arg1}`)
 }
 doSomethingWithACallback("myText", callbackFunctionWithNumber);

Here, we are defining a function named callBackFunctionWithNumber, which takes a
number as its only parameter. When we attempt to compile this code, we will get an error
message indicating that the callback parameter, which is now our
callBackFunctionWithNumber function, also does not have the correct function
signature, as follows:

error TS2345: Argument of type '(arg1: number) => void' is not
assignable to parameter of type '(initialText: string) => void'.

This error message is clearly stating that a parameter of type (initialText: string) =>
void is expected, but an argument of type (arg1: number) => void was used instead.

In function signatures, the parameter name (arg1 or initialText) does
not need to be the same. Only the number of parameters, their types, and
the return type of the function need to be the same.

Types, Variables, and Function Techniques

[72]

This is a very powerful feature of TypeScript – defining in code what the signatures of
functions should be, and warning users when they do not call a function with the correct
parameters. As we saw in our introduction to TypeScript, this is most significant when we
are working with third-party libraries. Before we are able to use third-party functions,
classes, or objects in TypeScript, we need to define what their function signatures are. These
function definitions are put into a special type of TypeScript file, called a declaration file,
and saved with a .d.ts extension. We will take an in-depth look at declaration files in
Chapter 4, Decorators, Generics, and Asynchronous Features.

Function overloads
As JavaScript is a dynamic language, we can often call the same function with different
argument types. Consider the following JavaScript code:

 function add(x,y) {
 return x + y;
 }

 console.log('add(1,1)=' + add(1,1));
 console.log('add("1","1")=' + add("1","1"));

Here, we are defining a simple add function that returns the sum of its two parameters, x
and y. The last two lines of the preceding code snippet simply log the result of the add
function with different types – two numbers and two strings. If we run the preceding code,
we will see the following output:

add(1,1)=2
add("1","1")=11

In order to reproduce this ability to call the same function with different types, TypeScript
introduces a specific syntax, called function overloads. If we were to replicate the above
code in TypeScript, we would need to use this function overload syntax, as follows:

 function add(a: string, b: string) : string;
 function add(a: number, b:number) : number;
 function add(a: any, b: any): any {
 return a + b;
 }

 console.log(`add(1,1)= ${add(1,1)}`);
 console.log(`add("1","1")= ${add("1","1")}`);

Types, Variables, and Function Techniques

[73]

Here, we specify a function overload signature for the add function that accepts two strings
and returns a string. We then specify a second function overload that uses the same
function name but uses numbers as parameters. These two function overloads are then
followed by the actual body of the function. The last two lines of this snippet are calling the
add function, firstly with two numbers, and then with two strings. The output of this code
is as follows:

add(1,1)= 2
add("1","1")= 11

There are three points of interest in the previous code snippet. Firstly, none of the function
signatures on the first two lines of the snippet actually have a function body. Secondly, the
final function definition uses the type specifier of any and eventually includes the function
body. To overload functions in this way, we must follow this convention, and the final
function signature (that including the body of the function) must use the any type specifier,
as anything else will generate compile-time errors.

The last point to note is that, even though the final function body uses the type of any, this
signature is essentially hidden by using this convention. We are actually limiting the add
function to only accepting either two strings, or two numbers. If we called the function with
two boolean values, as follows:

 console.log(`add(true,false)= ${add(true,false)}`);

TypeScript would generate compile errors:

error TS2345: Argument of type 'boolean' is not
assignable to parameter of type 'number'.

Advanced types
TypeScript also has some advanced language features that can be used when working with
basic types and objects. In this section of the chapter, we will take a quick look at these
advanced type features, including:

Union types
Type guards
Type aliases
Null and undefined
Object rest and spread

Types, Variables, and Function Techniques

[74]

Union types
TypeScript allows us to express a type as the combination of two or more other types. This
technique is known as union types, and uses the pipe symbol (|). Consider the following
TypeScript code:

 var unionType : string | number;

 unionType = 1;
 console.log(`unionType : ${unionType}`);

 unionType = "test";
 console.log(`unionType : ${unionType}`);

Here, we have defined a variable named unionType, which uses the union type syntax to
denote that it can hold either a string or a number. We are then assigning a number to this
variable, and logging its value to the console. We then assign a string to this variable, and
again log its value to the console. This code snippet will output the following:

unionType : 1
unionType : test

Type guards
When working with union types, the compiler will still apply its strong typing rules to
ensure that we are not mixing and matching our types. As an example of this, consider the
following code:

 function addWithUnion(
 arg1 : string | number,
 arg2 : string | number
) {
 return arg1 + arg2;
 }

Here, we are defining a function named addWithUnion, which accepts two parameters,
and returns their sum. The arg1 and arg2 arguments are union types, and can therefore be
either a string or a number. Compiling this code, however, will generate the following
error:

error TS2365: Operator '+' cannot be applied to
types 'string | number' and 'string | number'.

Types, Variables, and Function Techniques

[75]

What the compiler is telling us here is that within the body of the function it cannot tell
what type arg1 is. Is it a string, or is it a number?

This is where type guards come in. A type guard is an expression that performs a check on
our type, and then guarantees that type within its scope. Consider the following code:

 function addWithTypeGuard(
 arg1 : string | number,
 arg2 : string | number
) : string | number {
 if(typeof arg1 ==="string") {
 // arg1 is treated as string within this code
 console.log('first argument is a string');
 return arg1 + arg2;
 }
 if (typeof arg1 === "number" && typeof arg2 === "number") {
 // arg1 and arg2 are treated as numbers within this code
 console.log('both arguments are numbers');
 return arg1 + arg2;
 }
 console.log('default return');
 return arg1.toString() + arg2.toString();
 }

Here, we have a function named addWithTypeGuard that takes two arguments, and is
using our union type syntax to indicate that arg1 and arg2 can be either a string or a
number.

Within the body of the code, we have two if statements. The first if statement checks to
see if the type of arg1 is a string. If it is a string, then the type of arg1 is treated as a string
within the body of the if statement. The second if statement checks to see if both arg1
and arg2 are of type number. Within the body of this second if statement, both arg1 and
arg2 are treated as numbers. These two if statements are our type guards.

Note that our final return statement is calling the toString function on arg1 and arg2. All
basic JavaScript types have a toString function by default, so we are, in effect, treating
both arguments as strings, and returning the result. Let's take a look at what happens when
we call this function with different combinations of types:

 console.log(`addWithTypeGuard(1,2)= ${addWithTypeGuard(1,2)}`) ;

Here, we are calling the function with two numbers, and receive the following output:

both arguments are numbers
addWithTypeGuard(1,2)= 3

Types, Variables, and Function Techniques

[76]

This shows that the code has satisfied our second if statement. If we call the function with
two strings:

 console.log(`addWithTypeGuard("1","2")= ${addWithTypeGuard("1","2")}`)

We can see here that the first if statement is being satisfied:

first argument is a string
addWithTypeGuard("1","2")= 12

Lastly, when we call the function with a number and a string:

 console.log(`addWithTypeGuard(1,"2") =
 ${addWithTypeGuard(1,"2")}`) ;

In this case, both of our type guard statements return false, and so our default return code is
being hit:

default return
addWithTypeGuard(1,"2")= 12

Type guards, therefore, allow you to check the type of a variable within your code, and then
guarantee that the variable is of the type you expect within your block of code.

Type aliases
Sometimes, when using union types, it can be difficult to remember what types are allowed.
To cater for this, TypeScript introduces the concept of a type alias, where we can create a
special named type for a type union. A type alias is, therefore, a convenient naming
convention for union types. Type aliases can be used wherever normal types are used, and
are denoted by the type keyword. We can, therefore, simplify our code as follows:

 type StringOrNumber = string | number;

 function addWithAlias(
 arg1 : StringOrNumber,
 arg2 : StringOrNumber
) {
 return arg1.toString() + arg2.toString();
 }

Here, we have defined a type alias, named StringOrNumber, which is a union type that
can be either a string or a number. We are then using this type alias in our function
signature, to allow both arg1 and arg2 to be either a string or a number.

Types, Variables, and Function Techniques

[77]

Type aliases can also be used for function signatures, as follows:

 type CallbackWithString = (string) => void;

 function usingCallbackWithString(
 callback: CallbackWithString) {
 callback("this is a string");
 }

Here, we have defined a type alias, named CallbackWithString, which is a function that
takes a single string parameter and returns a void. Our usingCallbackWithString
function accepts this type alias (which is a function signature) as its callback argument
type.

When we need to use union types often within our code, type aliases provide an easier and
more intuitive way of declaring named union types.

Null and undefined
In JavaScript, if a variable has been declared, but not assigned a value, then querying its
value will return undefined. JavaScript also includes the keyword null, in order to
distinguish between cases where a variable is known, but has no value (null), and where it
has not been defined in the current scope (undefined). Consider the following JavaScript
code:

 function testUndef(test) {
 console.log('test parameter :' + test);
 }

 testUndef();
 testUndef(null);

Here, we have defined a function named testUndef, which takes a single argument named
test. Within this function, we are simply logging the value to the console. We then call it in
two different ways.

The first call to the testUndef function does not have any arguments. This is, in effect,
calling the function without knowing, or without caring, what arguments it needs.
JavaScript allows this sort of function-calling syntax. In this case, the value of the test
argument within the testUndef function will be undefined, and the output will be:

test parameter :undefined

Types, Variables, and Function Techniques

[78]

The second call to the testUndef function passes null as the first argument. This is
basically saying that we are aware that the function needs an argument, but we choose to
call it without a value. The output of this function call will be:

test parameter :null

TypeScript has included two keywords for these cases, named null and undefined. Let's
re-write this function in TypeScript, as follows:

 function testUndef(test : null | number) {
 console.log('test parameter :' + test);
 }

Here, we have defined the testUndef function to allow for the function to be called with
either a number value, or a null value. If we try to call this function in TypeScript without
any arguments, as we did in JavaScript:

 testUndef();

TypeScript will generate an error:

error TS2346: Supplied parameters do not
match any signature of call target.

Clearly, the TypeScript compiler is ensuring that we call the testUndef function with
either a number, or null. It will not allow us to call it without any arguments.

This ability to specify that a function can be called with a null value allows us to ensure
that the correct use of our function is known at compile time.

Similarly, we can define an object to allow undefined values, as follows:

 let x : number | undefined;

 x = 1;
 x = undefined;
 x = null;

Here, we have defined a variable named x, which is allowed to hold either a number or
undefined. We then attempt to assign the values 1, undefined, and null to this variable.
Compiling this code will result in the following TypeScript error:

error TS2322: Type 'null' is not assignable to type 'number | undefined'.

Types, Variables, and Function Techniques

[79]

The TypeScript compiler, therefore, is protecting our code, to make sure that the variable x
can only hold either a number or undefined, but does not allow it to hold a null value.

Object rest and spread
When working with basic JavaScript objects, we often need to copy the properties of one
object to another, or do some mixing and matching of properties from various objects. In
order to facilitate these requirements, TypeScript has adopted the ES7 proposal and
language syntax, which is called object rest and spread. Consider the following TypeScript
code:

 let firstObj = { id: 1, name : "firstObj"};

 let secondObj = { ...firstObj };
 console.log(`secondObj.id : ${secondObj.id}`);
 console.log(`secondObj.name : ${secondObj.name}`);

Here, we start by defining a simple JavaScript object named firstObj, that has an id and a
name property. We then use the new ES7 syntax to copy all of the properties of firstObj
into another object called secondObj, by specifying { ...firstObj }. To test that this
has indeed copied all properties, we then log the values of secondObj.id and
secondObj.name to the console. The output of this code is as follows:

secondObj.id : 1
secondObj.name : firstObj

Here, we can see that the values of the id and name properties have been copied from
firstObj into secondObj, using the rest and spread ES7 syntax.

We can also use this syntax to combine multiple objects together, as follows:

 let nameObj = { name : "nameObj"};
 let idObj = { id : 2};

 let obj3 = { ...nameObj, ...idObj };
 console.log(`obj3.id : ${obj3.id}`);
 console.log(`obj3.name : ${obj3.name}`);

Types, Variables, and Function Techniques

[80]

Here, we have an object named nameObj, which defines a single property named name. We
then define a second object named idObj, which also defines a single property named id.
Note then how we create obj3, with the syntax { ...nameObj, ...idObj }. This syntax
means that we intend to copy all properties from nameObj, and all properties from idObj,
into a new object named obj3. The result of this code is as follows:

 obj3.id : 2
 obj3.name : nameObj

This shows us that both object's properties have been merged into a single object.

The rest and spread syntax to copy properties will apply these properties
incrementally. In other words, if two objects both have a property with the
same name, then the object property that was specified last will take
precedence.

Summary
In this chapter, we took a look at TypeScript's basic types, variables, and function
techniques. We saw how TypeScript introduces “syntactic sugar” on top of normal
JavaScript code, to ensure strongly typed variables and function signatures. We also saw
how TypeScript uses duck typing and explicit casting, and finished up with a discussion on
TypeScript functions, function signatures, and overloading. In the next chapter, we will
build on this knowledge and see how TypeScript extends these strongly typed rules into
object-oriented concepts such as interfaces, classes, and inheritance.

3
Interfaces, Classes, and

Inheritance
We have already seen how TypeScript uses basic types, inferred types, and function
signatures to bring a strongly typed development experience to JavaScript. TypeScript also
introduces object-oriented features that are similar to other languages, including interfaces,
classes, and inheritance. These object-oriented language constructs are part of the
ECMAScript 6 standard, and as such will be included in future versions of JavaScript.
TypeScript allows us, therefore, to use these new object-oriented features from upcoming
JavaScript versions in our code base. In this chapter, we will look at these object-oriented
concepts, how they are used in TypeScript, and what benefits they bring to the JavaScript
development experience.

Note that the TypeScript compiler will take care of generating compatible ECMAScript 3 or
ECMAScript 5 JavaScript code when we use these language features. In this way,
TypeScript programmers have the benefit of using these advanced object-oriented
techniques in their code today.

This chapter is broken up into two main sections. The first section of this chapter is
intended for readers using TypeScript for the first time, and covers interfaces, classes, and
inheritance from the ground up. The second section of this chapter builds on this
knowledge, and shows how to create and use classes, interfaces, and inheritance by
building a sample Factory Design Pattern.

If you have experience with TypeScript, are actively using interfaces and classes, and
understand inheritance, then you may be more interested in the later sections of the chapter,
where we discuss the Factory Design Pattern, and abstract classes.

Interfaces, Classes, and Inheritance

[82]

This chapter will cover the following topics:

Interfaces
Classes
Class constructors
Class modifiers
Static functions and properties
Inheritance
Abstract classes
JavaScript closures
The Factory Design Pattern

Interfaces
An interface provides us with a mechanism to define what properties and methods an
object must implement, and is, therefore, a way of defining a custom type. We have already
explored the TypeScript syntax for strongly typing a variable to one of the basic types, such
as string or number. Using this syntax, we can also strongly type a variable to be of an
interface type. This means that the variable must have the same properties as described in
the interface. If an object adheres to an interface, it is said that the object implements the
interface. Interfaces are defined by using the interface keyword.

Consider the following TypeScript code:

 interface IComplexType {
 id: number;
 name: string;
 }

We start with an interface named IComplexType, which has an id and a name property.
The id property is strongly typed to be of type number, and the name property is of type
string. This interface definition can then be applied to a variable, as follows:

 let complexType : IComplexType;
 complexType = { id: 1, name : "test" };

Interfaces, Classes, and Inheritance

[83]

Here, we have defined a variable named complexType, and have strongly typed it to be of
type IComplexType. We are then creating an object instance, and assigning values to the
object's properties. Note that the IComplexType interface defines both an id and a name
property, and as such, both must be present. If we attempt to create an instance of the object
without both of these properties, as follows:

 let incompleteType : IComplexType;
 incompleteType = { id : 1};

TypeScript will generate the following error:

error TS2322: Type '{ id: number; }' is not assignable to type
'IComplexType'.
Property 'name' is missing in type '{ id: number; }'.

Optional properties
Interface definitions may also include optional properties, similar to the way that functions
may have optional properties. Consider the following interface definition:

 interface IOptionalProp {
 id: number;
 name?: string;
 }

Here, we have defined an interface named IOptionalProp, which has an id property of
type number, and an optional property called name that is of type string. Note how the
syntax for optional properties is similar to what we have seen for optional parameters in
function definitions. In other words, the ? character after the name property is used to
specify that this property is optional. We can therefore use this interface definition, as
follows:

 let idOnly : IOptionalProp = { id: 1 };
 let idAndName : IOptionalProp = { id: 2, name : "idAndName" };

 idAndName = idOnly;

Here we have two variables, both of which are implementing the IOptionalProp interface.
The first variable, named idOnly is just specifying the id property. This is valid TypeScript,
as we have marked the name property of the IOptionalProp interface as optional. The
second variable is called idAndName, and is specifying both the id and name properties.

Interfaces, Classes, and Inheritance

[84]

Note the last line of this code snippet. Because both variables are implementing the
IOptionalProp interface, we are able to assign them to each other. Without using an
interface definition that has optional properties, this code would normally have caused an
error.

If you are using an editor that has support for TypeScript, you should start to see some
auto-complete, or Intellisense options popping up as you work with interfaces. This is
because your editor is using TypeScript's language service to automatically pick up what
type you are working with, and what properties and functions are available, as follows:

Visual Studio Code showing Intellisense options for an interface

Interface compilation
Interfaces are a compile-time language feature of TypeScript, and the compiler does not
generate any JavaScript code from interfaces that you include in your TypeScript projects.
Interfaces are only used by the compiler for type checking during the compilation step.

In this book, we will be sticking to a simple naming convention for
interfaces, which is to prefix the interface name with the letter I. Using
this naming scheme helps when dealing with large projects where code is
spread across multiple files. Seeing anything prefixed with I in your code
helps you distinguish it as an interface immediately. You can, however,
call your interfaces anything.

Interfaces, Classes, and Inheritance

[85]

Classes
A class is a definition of an object, what data it holds, and what operations it can perform.
Classes and interfaces form the cornerstone of the principles of object-oriented
programming, and often work together in design patterns. A design pattern is a way of
using classes and interfaces in a certain way to help tackle common programming
problems. More on design patterns later.

Let's take a look at a simple class definition:

 class SimpleClass {
 id: number;
 print() : void {
 console.log(`SimpleClass.print() called`);
 }
 }

Here, we have used the class keyword to define a class named SimpleClass, and we
have defined this class to have a property named id, and a print function. The print
function simply logs a message to the console. We can then use this class, as follows:

 let mySimpleClass = new SimpleClass();
 mySimpleClass.print();

This code snippet shows how to create an instance of a class. We first define a variable to
hold the class instance, and then create the class using the new keyword. This code snippet
will output the following:

SimpleClass.print() called

Class properties
In order to access the properties of a class from within a class itself, we need to use the this
keyword. As an example of this, let's update our SimpleClass definition, and print out the
value of the id property within the print function, as follows:

 class SimpleClass {
 id: number;
 print() : void {
 console.log(`SimpleClass has id : ${this.id}`);
 }
 }

Interfaces, Classes, and Inheritance

[86]

Our print function is now referencing the id property of the class instance within the
template string, ${ this.id }. Whenever we are inside a class instance, we must use the
this keyword in order to access any property or function available on the class definition.
We can now set the id property of the class instance, and call the updated print function,
as follows:

 let mySimpleClass = new SimpleClass();
 mySimpleClass.id = 1001;
 mySimpleClass.print();

Here, we are creating our class instance as before, and are then setting the id property of
the class instance to 1001. The output of this code will be as follows:

SimpleClass has id : 1001

Implementing interfaces
Before we continue, let's take a look at the relationship between classes and interfaces. A
class is a definition of an object, including its properties and functions. An interface is the
definition of a custom type, also including its properties and functions. The only real
difference is that classes must implement functions and properties, whereas interfaces only
describe them. This allows us to use interfaces to describe some common behaviors of a
group of classes, and then write code that will work with any one of these classes. Consider
the following class definitions:

 class ClassA {
 print() {
 console.log('ClassA.print()')
 };
 }

 class ClassB {
 print() {
 console.log(`ClassB.print()`)
 };
 }

Here we have class definitions for two classes, ClassA and ClassB. Both of these classes
just have a print function. Suppose that we wanted to write some code that did not really
care what type of class we used; all it cares about is whether the class has a print function.
Instead of writing a complex class that needs to deal with instances of both ClassA and
ClassB, we can easily create an interface describing the behavior we need, as follows:

Interfaces, Classes, and Inheritance

[87]

 interface IPrint {
 print();
 }

 function printClass(a : IPrint) {
 a.print();
 }

Here, we have created an interface named IPrint to describe the attributes of an object that
we need within the printClass function. This interface has a single function named
print. Therefore, any variable that is passed in as an argument to the printClass function
must itself have a function named print.

We can now modify our class definitions to ensure that they can both be used by the
printClass function, as follows:

 class ClassA implements IPrint {
 print() { console.log('ClassA.print()') };
 }

 class ClassB implements IPrint {
 print() { console.log(`ClassB.print()`)};
 }

Our class definitions now use the implements keyword to implement the IPrint interface.
This allows us to use both classes within the printClass function, as follows:

 let classA = new ClassA();
 let classB = new ClassB();

 printClass(classA);
 printClass(classB);

Here, we are creating instances of ClassA and ClassB, and then calling the same
printClass function with both instances. Because the printClass function is written to
accept any object that implements the IPrint interface, it will work correctly with both
class types.

Interfaces, therefore, are a way of describing class behavior. Interfaces can also be seen as a
type of contract that classes must implement, if they are expected to provide certain
behaviors.

Interfaces, Classes, and Inheritance

[88]

Class constructors
Classes can accept parameters during their initial construction. This allows us to combine
the creation of a class and setting its parameters into a single line of code. Consider the
following class definition:

 class ClassWithConstructor {
 id: number;
 name: string;
 constructor(_id: number, _name: string) {
 this.id = _id;
 this.name = _name;
 }
 }

Here, the ClassWithConstructor class has two properties, an id property of type
number, and a name property of type string. It also has a constructor function that
accepts two parameters. The constructor function is assigning the value of the _id
argument to the class property of id, and the value of the _name argument to the class
property name. We can then construct an instance of this class, as follows:

 var classWithConstructor = new ClassWithConstructor(1, "name");

 console.log(`classWithConstructor.id =
 ${classWithConstructor.id}`);
 console.log(`classWithConstructor.name =
 ${classWithConstructor.name}`);

The first line of this code creates an instance of the ClassWithConstructor class, using
the constructor function. We are then simply logging the id and name properties to the
console. The output of this code is:

classWithConstructor.id = 1
classWithConstructor.name = name

Class functions
All functions within a class adhere to the syntax and rules that we covered in the previous
chapter on functions. As a refresher, all class functions can:

Be strongly typed
Use the any keyword to relax strong typing
Have optional parameters

Interfaces, Classes, and Inheritance

[89]

Have default parameters
Use argument arrays, or the rest parameter syntax
Allow function callbacks and specify the function callback signature
Allow function overloads

As an example of each of these rules, let's examine a class that has a number of different
function signatures, and we will then discuss each one in detail, as follows:

 class ComplexType implements IComplexType {
 id: number;
 name: string;
 constructor(idArg: number, nameArg: string);
 constructor(idArg: string, nameArg: string);
 constructor(idArg: any, nameArg: any) {
 this.id = idArg;
 this.name = nameArg;
 }
 print(): string {
 return "id:" + this.id + " name:" + this.name;
 }
 usingTheAnyKeyword(arg1: any): any {
 this.id = arg1;
 }
 usingOptionalParameters(optionalArg1?: number) {
 if (optionalArg1) {
 this.id = optionalArg1;
 }
 }
 usingDefaultParameters(defaultArg1: number = 0) {
 this.id = defaultArg1;
 }
 usingRestSyntax(...argArray: number []) {
 if (argArray.length > 0) {
 this.id = argArray[0];
 }
 }
 usingFunctionCallbacks(callback: (id: number) => string) {
 callback(this.id);
 }

 }

Interfaces, Classes, and Inheritance

[90]

The first thing to note is the constructor function. Our class definition is using function
overloading for the constructor function, allowing the class to be constructed using either
a number and a string, or two strings. The following code shows how we would use each of
these constructor definitions:

 let ct_1 = new ComplexType(1, "ct_1");
 let ct_2 = new ComplexType("abc", "ct_2");
 let ct_3 = new ComplexType(true, "test");

The ct_1 variable uses the number, string variant of the constructor function, and the ct_2
variable uses the string, string variant. The ct_3 variable will generate a compile error, as
we are not allowing a constructor to use a boolean, boolean variant. You may argue,
however, that the last constructor function specifies an any, any variant and this should
allow for our boolean, boolean usage. Just remember that constructor overloads follow the
same rules as the function overloads we discussed in Chapter 2, Types, Variables, and
Function Techniques.

We must be careful when using overloaded constructors, however. Let's take a closer look
at what happens when we call the string, string variant of the constructor:

 let ct_2 = new ComplexType("abc", "ct_2");
 ct_2.print();

Within the constructor function, we are assigning the value of the idArg argument to the id
property on the class, as follows:

 class ComplexType implements IComplexType {
 id: number;
 name: string;
 constructor(idArg: number, nameArg: string);
 constructor(idArg: string, nameArg: string);
 constructor(idArg: any, nameArg: any) {
 this.id = idArg;
 // careful - assigning a string to a number type
 this.name = nameArg;
 }

Even though we have defined the id property of the class to be of type number, when we
call the constructor function with a string (because we have a constructor overload), then
the id property will actually be "abc", which is clearly not a number type. TypeScript will
not generate an error in this case, and will not automatically try to convert the value "abc"
to a number. In cases where this type of functionality is required, we would need to use
type guards to ensure type safety, as follows:

Interfaces, Classes, and Inheritance

[91]

 constructor(idArg: any, nameArg: any) {
 if (typeof idArg === "number") {
 this.id = idArg;
 }
 // careful - assigning a string to a number type
 this.name = nameArg;
 }

Here, we have introduced a type guard to ensure that the id property (which is of type
number) is only assigned if the type of the idArg parameter is, in fact, a number.

Let's now take a look at the rest of the function definitions that we have defined for the
class, starting with the usingTheAnyKeyword function:

 ct_1.usingTheAnyKeyword(true);
 ct_1.usingTheAnyKeyword({ id: 1, name: "string"});

The first call in this sample is using a boolean value to call the usingTheAnyKeyword
function, and the second is using an arbitrary object. Both of these function calls are valid,
as the parameter arg1 is defined with the any type.

Next, the usingOptionalParameters function:

 ct_1.usingOptionalParameters(1);
 ct_1.usingOptionalParameters();

Here, we are calling the usingOptionalParameters function firstly with a single
argument, and then without any arguments. Again, these calls are valid, as the
optionalArg1 argument is marked as optional.

Now for the usingDefaultParameters function:

 ct_1.usingDefaultParameters(2);
 ct_1.usingDefaultParameters();

Both of these calls to the usingDefaultParameters function are valid. The first call will
override the default value of 0, and the second call–without an argument–will use the
default value of 0.

Next up is the usingRestSyntax function:

 ct_1.usingRestSyntax(1,2,3);
 ct_2.usingRestSyntax(1,2,3,4,5);

Interfaces, Classes, and Inheritance

[92]

Our rest function, usingRestSyntax, can be called with any number of arguments, as we
are using the rest parameter syntax to hold these arguments in an array. Both of these calls
are valid.

Finally, let's look at the usingFunctionCallbacks function:

 function myCallbackFunction(id: number): string {
 return id.toString();
 }
 ct_1.usingFunctionCallbacks(myCallbackFunction);

This snippet shows the definition of a function named myCallbackFunction, which
matches the callback signature required by the usingFunctionCallbacks function. This
allows us to pass in the myCallbackFunction as a parameter to the
usingFunctionCallbacks function.

Note that, if you have any difficulty understanding these various function signatures, then
view the relevant sections in Chapter 2, Types, Variables, and Function Techniques, regarding
functions, where each of these concepts is explained in detail.

Interface function definitions
Interfaces, like classes, follow the same rules when dealing with functions. To update our
IComplexType interface definition to match the ComplexType class definition, we need to
write a function definition for each of the new functions, as follows:

 interface IComplexType {
 id: number;
 name: string;
 print(): string;
 usingTheAnyKeyword(arg1: any): any;
 usingOptionalParameters(optionalArg1?: number);
 usingDefaultParameters(defaultArg1?: number);
 usingRestSyntax(...argArray: number []);
 usingFunctionCallbacks(callback: (id: number) => string);
 }

Interfaces, Classes, and Inheritance

[93]

This interface definition includes the id and name properties and a print function. We
then have a function signature for the usingTheAnyKeyword function. It looks surprisingly
like our actual class function, but does not have a function body. The
usingOptionalParameters function definition shows how to use an optional parameter
within an interface. The interface definition for the usingDefaultParameters function,
however, is slightly different from our class definition. Remember that an interface defines
the shape of our class or object, and therefore cannot contain variables or values. We have
therefore defined the defaultArg1 parameter as optional, and left the assignment of the
default value up to the class implementation itself. The definition of the usingRestSyntax
function contains the rest parameter syntax, and the definition of the
usingFunctionCallbacks function, shows how to define a callback function signature.
They are pretty much identical to the class function signatures.

The only thing missing from this interface is the signature for the constructor function.
Interfaces cannot include signatures for a constructor function.

Let's take a look at why this causes errors in our compilation step. Suppose we were to
include a definition for the constructor function in the IComplexType interface:

 interface IComplexType {
 constructor(arg1: any, arg2: any);
 }

The TypeScript compiler would then generate an error:

error TS2420: Class 'ComplexType' incorrectly implements
interface 'IComplexType'.
Types of property 'constructor' are incompatible.

This error shows us that when we use a constructor function, the return type of the
constructor is implicitly typed by the TypeScript compiler. Therefore, the return type of the
IComplexType constructor would be IComplexType, and the return type of the
ComplexType constructor would be ComplexType. Even though the ComplexType
function implements the IComplexType interface, they are actually two different types.
Therefore, the constructor signatures will always be incompatible.

Class modifiers
As we discussed briefly in the opening chapter, TypeScript introduces the public and
private access modifiers to mark class variables and functions as either public or
private. Additionally, we can also use the protected access modifier, which we will
discuss later.

Interfaces, Classes, and Inheritance

[94]

A public class property can be accessed by any calling code. Consider the following code:

 class ClassWithPublicProperty {
 public id: number;
 }

 let publicAccess = new ClassWithPublicProperty();
 publicAccess.id = 10;

Here, we define a class named ClassWithPublicProperty, which has a single property
named id. We then create an instance of this class, named publicAccess, and assign the
value of 10 to the id property of this instance. Let's now explore how marking a property
private will affect the access to this property, as follows:

 class ClassWithPrivateProperty {
 private id: number;
 constructor(_id : number) {
 this.id = _id;
 }
 }

 let privateAccess = new ClassWithPrivateProperty(10);
 privateAccess.id = 20;

Here, we have defined a class named ClassWithPrivateProperty, that has a single
property named id, which has now been marked as private. This class also has a
constructor function that takes a single argument, named _id, and assigns the value of
this argument to the id property. Note that we are using the this.id syntax in this
assignment.

We then create an instance of this class, named privateAccess, and then attempt to assign
the value 20 to the private id property. This code, however, will generate the following
error:

error TS2341: Property 'id' is private and
only accessible within class 'ClassWithPrivateProperty'.

As we can see from the error message, TypeScript will not allow assignment to the id
property of this class outside the class itself, as we have marked it as private. Note that we
are able to assign a value to the id property from within the class, as we have done in the
constructor function.

Interfaces, Classes, and Inheritance

[95]

Class functions are public by default. Not specifying an access modifier
of private for either properties or functions will cause their access level
to default to public. Classes can also mark functions and properties as
protected, but we will cover this keyword a little later when we discuss
inheritance.

Constructor access modifiers
TypeScript also introduces a shorthand version of the constructor function, allowing you to
specify parameters with access modifiers directly in the constructor. Consider the following
code:

 class classWithAutomaticProperties {
 constructor(public id: number, private name: string){
 }
 }

 let myAutoClass = new classWithAutomaticProperties(
 1, "className");
 console.log(`myAutoClass id: ${myAutoClass.id}`);
 console.log(`myAutoClass.name: ${myAutoClass.name}`);

This code snippet defines a class named ClassWithAutomaticProperties. The
constructor function uses two arguments–an id of type number, and a name of type
string. Notice, however, the access modifiers of public for id and private for name. This
shorthand automatically creates a public id property on the
ClassWithAutomaticProperties class, and a private name property.

This shorthand syntax is available only within the constructor function.

We then create a variable named myAutoClass and assign a new instance of the
ClassWithAutomaticProperties class to it. Once this class is instantiated, it
automatically has two properties: an id property of type number, which is public, and a
name property of type string, which is private. Compiling the previous code, however,
will produce a TypeScript compile error:

Property 'name' is private and only accessible
within class 'classWithAutomaticProperties'.

Interfaces, Classes, and Inheritance

[96]

This error is telling us that the automatic property name is declared as private, and it is
therefore unavailable to code outside the class itself.

While this shorthand technique of creating automatic member variables is
available, it can make the code more difficult to read. In the author's
opinion, it is generally better to use the more verbose class definitions that
do not use this shorthand technique. By not using this technique, and
instead listing all of the properties at the top of the class, it becomes
immediately visible to someone reading the code what variables this class
uses, and whether they are public or private. Using the constructor's
automatic property syntax hides these parameters somewhat, forcing
developers to sometimes reread the code to understand it. Whichever
syntax you choose, however, try to make it a coding standard, and use the
same syntax throughout your code base.

Readonly properties
In addition to the public, private, and protected access modifiers, we can also mark a class
property as readonly. This means that, once the value of the property has been set, it is not
able to be modified, either by the class itself, or by any users of the class. There is only one
place where a readonly property can be set, and this is within the constructor function
itself. Consider the following code:

 class ClassWithReadOnly {
 readonly name: string;
 constructor(_name : string) {
 this.name = _name;
 }
 setReadOnly(_name: string) {
 // generates a compile error
 this.name = _name;
 }
 }

Here, we have defined a class named ClassWithReadOnly that has a name property of
type string that has been marked with the readonly keyword. The constructor function is
setting this value. We have then defined a second function named setReadOnly, where we
are attempting to set this readonly property. This code will generate the following error:

error TS2540: Cannot assign to 'name' because it is
a constant or a read-only property.

Interfaces, Classes, and Inheritance

[97]

This error message is telling us that the only place where a readonly property can be set is
in the constructor function.

Class property accessors
ECMAScript 5 introduces the concept of property accessors. An accessor is simply a
function that is called when a user of our class either sets a property, or retrieves a property.
This means that we can detect when users of our class are either getting or setting a
property, and this can be used as a trigger mechanism for other logic. To use accessors, we
create a pair of get and set functions (with the same function name) in order to access an
internal property. This concept is best understood with some code samples:

 class ClassWithAccessors {
 private _id : number;
 get id() {
 console.log(`inside get id()`);
 return this._id;
 }
 set id(value:number) {
 console.log(`inside set id()`);
 this._id = value;
 }
 }

This class has a private _id property and two functions, both called id. The first of these
functions is prefixed by the get keyword. This get function is called when a user of our
class retrieves or reads the property. In our sample, the get function logs a debug message
to the console, and then simply returns the value of the internal _id property.

The second of these functions is prefixed with the set keyword and accepts a value
parameter. This set function will be called when a user of our class assigns a value, or sets
the property. In our sample, we simply log a message to the console, and then set the
internal _id property. Note that the internal _id property is private, and as such cannot be
accessed outside the class itself.

We can now use this class, as follows:

 var classWithAccessors = new ClassWithAccessors();
 classWithAccessors.id = 2;
 console.log(`id property is set to ${classWithAccessors.id}`);

Interfaces, Classes, and Inheritance

[98]

Here, we have created an instance of this class, and named it classWithAccessors. Note
how we are not using the two separate functions named get and set. We are simply using
them as a single id property.

When we assign a value to this property, the ECMAScript 5 runtime will call the set
id(value) function, and when we retrieve this property, the runtime will call the get
id() function. The output of this code is as follows:

inside set id()
inside get id()
id property is set to 2

Using getter and setter functions allows us to hook in to class properties, and execute code
when these class properties are accessed.

This feature is only available when using ECMAScript 5 and above. Be
aware that some browsers do not support ECMAScript 5 (such as Internet
Explorer 8), and will cause JavaScript runtime errors when attempting to
use class accessors.

Static functions
Static functions are functions that can be called on a class without having to create an
instance of the class first. These functions are almost global in their nature, but must be
called by prefixing the function name with the class name. Consider the following class
definition:

 class StaticClass {
 static printTwo() {
 console.log(`2`);
 }
 }

 StaticClass.printTwo();

This class definition includes a single function, named printTwo, which is marked as
static. As we can see from the last line of the code, we can call this function without
newing up an instance of the StaticClass class. We can just call the function directly, as
long as we prefix it with the class name.

Interfaces, Classes, and Inheritance

[99]

Static properties
Similar to static functions, classes can also have static properties. If a property of a class is
marked as static, then each instance of this class will have the same value for the property.
In other words, all instances of the same class will share the static property. Consider the
following code:

 class StaticProperty {
 static count = 0;
 updateCount() {
 StaticProperty.count ++;
 }
 }

This class definition uses the static keyword on the class property count. It has a single
function named updateCount, which increments the static count property. Note the
syntax within the updateCount function. Normally, we would use the this keyword to
access properties of a class. Here, however, we need to reference the full name of the
property, including the class name, that is, StaticProperty.count, to access this
property. This is similar to what we have seen for static functions. We can then use this
class, as follows:

 let firstInstance = new StaticProperty();

 console.log(`StaticProperty.count = ${StaticProperty.count}`);
 firstInstance.updateCount();
 console.log(`StaticProperty.count = ${StaticProperty.count}`);

 let secondInstance = new StaticProperty();
 secondInstance.updateCount();
 console.log(`StaticProperty.count = ${StaticProperty.count}`);

This code snippet starts with a new instance of the StaticProperty class named
firstInstance. We are then logging the value of StaticProperty.count to the console.
We then call the updateCount function on this instance of the class, and again log the value
of StaticProperty.count to the console. We then create another instance of this class,
named secondInstance, call the updateCount function, and log the value of
StaticProperty.count to the console. This code snippet will output the following:

StaticProperty.count = 0
StaticProperty.count = 1
StaticProperty.count = 2

Interfaces, Classes, and Inheritance

[100]

What this output shows us is that the static property named StaticCount.count is indeed
shared between two instances of the same class, that is, firstInstance and
secondInstance. It starts out as 0, and is incremented when
firstInstance.updateCount is called. When we create a second instance of the class, it
also retains its original value of 1 for this class instance. When secondInstance updates
this count, it will then also be updated for firstInstance.

Namespaces
When working with large projects, and particularly when working with external libraries,
there may come a time when two classes or interfaces share the same name. This will
obviously cause compilation errors. TypeScript uses the concept of namespaces to cater for
these situations.

Let's take a look at the syntax used for namespaces, as follows:

 namespace FirstNameSpace {
 class NotExported {
 }
 export class NameSpaceClass {
 id: number;
 }
 }

Here, we are defining a namespace using the namespace keyword, and have called this
namespace FirstNameSpace. A namespace declaration is similar to a class declaration, in
that it is scoped by the opening and closing braces, that is, { starts the namespace, and }
closes the namespace. This namespace has two classes defined within it. These classes are
named NotExported, and NameSpaceClass.

When using namespaces, a class definition will not be visible outside of the namespace,
unless we specifically allow this using the export keyword. To create classes that are
defined within a namespace, we must reference the class using the full namespace name.
Let's take a look at how we would create instances of these classes:

 let firstNameSpace = new FirstNameSpace.NameSpaceClass();
 let notExported = new FirstNameSpace.NotExported();

Interfaces, Classes, and Inheritance

[101]

Here, we are creating an instance of the NameSpaceClass, and an instance of the
NotExported class. Note how we need to use the full namespace name in order to correctly
reference these classes, that is, new FirstNameSpace.NameSpaceClass(). As the class
NotExported has not used the export keyword, the last line of this code will generate the
following error:

error TS2339: Property 'NotExported' does not
exist on type 'typeof FirstNameSpace'.

We can now introduce a second namespace, as follows:

 namespace SecondNameSpace {
 export class NameSpaceClass {
 name: string;
 }
 }

 let secondNameSpace = new SecondNameSpace.NameSpaceClass();

This namespace also exports a class named NameSpaceClass. On the last line of this code
snippet, we are again creating an instance of this class using the full namespace name, that
is, new SecondNameSpace.NameSpaceClass();. Using the same class name in this
instance will not cause compilation errors, as each class (prefixed by the namespace name)
is seen by the compiler as a separate class name.

Inheritance
Inheritance is another paradigm that is one of the cornerstones of object-oriented
programming. Inheritance means that an object uses another object as its base type, thereby
inheriting all of the base object's characteristics. In other words, all of the base object's
properties and functions. Both interfaces and classes can use inheritance. An interface or
class that is inherited from is known as the base interface, or base class, and the interface or
class that does the inheritance is known as the derived interface, or derived class.
TypeScript implements inheritance using the extends keyword.

Interfaces, Classes, and Inheritance

[102]

Interface inheritance
As an example of interface inheritance, consider the following TypeScript code:

 interface IBase {
 id: number;
 }

 interface IDerivedFromBase extends IBase {
 name: string;
 }

 class InterfaceInheritanceClass implements
 IDerivedFromBase {
 id: number;
 name: string;
 }

We start with an interface called IBase that defines an id property, of type number. Our
second interface definition, IDerivedFromBase, extends (or inherits) from IBase, and
therefore automatically includes the id property. The IDerivedFromBase interface then
defines a name property, of type string. As the IDerivedFromBase interface inherits from
IBase, it therefore actually has two properties–id and name. We then have a class
definition, named InterfaceInheritanceClass which implements this
IDerivedFromBase interface. This class must, therefore, define both an id and a name
property, in order to successfully implement all of the properties of the IDerivedFromBase
interface. Although we have only shown properties in this example, the same rules apply
for functions.

Class inheritance
Classes can also use inheritance in the same manner as interfaces. Using our definitions of
the IBase and IDerivedFromBase interfaces, the following code shows an example of
class inheritance:

 class BaseClass implements IBase {
 id: number;
 }

 class DerivedFromBaseClass extends BaseClass
 implements IDerivedFromBase {
 name: string;
 }

Interfaces, Classes, and Inheritance

[103]

The first class, named BaseClass, implements the IBase interface, and as such, is only
required to define a property of id, of type number. The second class,
DerivedFromBaseClass, inherits from the BaseClass class (using the extends
keyword), but also implements the IDerivedFromBase interface. As BaseClass already
defines the id property required in the IDerivedFromBase interface, the only other
property that the DerivedFromBaseClass class needs to implement is the name property.
Therefore, we only need to include the definition of the name property in the
DerivedFromBaseClass class.

TypeScript does not support the concept of multiple inheritance. Multiple inheritance
means that a single class can be derived from multiple base classes. TypeScript supports
only single inheritance and therefore any class can only have a single base class. A class can,
however, implement multiple interfaces, as follows:

 interface IFirstInterface {
 id : number
 }
 interface ISecondInterface {
 name: string;
 }
 class MultipleInterfaces implements
 IFirstInterface, ISecondInterface {
 id: number;
 name: string;
 }

Here, we have defined two interfaces named IFirstInterface and ISecondInterface.
We then have a class named MultipleInterfaces that implements both
IFirstInterface and ISecondInterface. This means that it must implement an id
property to satisfy the IFirstInterface interface, and it must implement a name property
to satisfy the ISecondInterface interface.

The super keyword
When using inheritance, both a base class and a derived class may have the same function
name. This is most often seen with class constructors. If a base class has a defined
constructor, then the derived class may need to call through to the base class constructor
and pass through some arguments. This technique is called constructor overloading. In
other words, the constructor of a derived class overloads, or supersedes, the constructor of
the base class.

Interfaces, Classes, and Inheritance

[104]

TypeScript includes the super keyword to enable calling a base class's function with the
same name. Consider the following classes:

 class BaseClassWithConstructor {
 private id: number;
 constructor(_id: number) {
 this.id = _id;
 }
 }

 class DerivedClassWithConstructor extends
 BaseClassWithConstructor {
 private name: string;
 constructor(_id: number, _name: string) {
 super(_id);
 this.name = _name;
 }
 }

In this code snippet, we define a class named BaseClassWithConstructor, which holds a
private id property. This class has a constructor function that requires an _id argument.
Our second class, named DerivedClassWithConstructor, extends (or inherits from) the
BaseClassWithConstructor class. The constructor of DerivedClassWithConstructor
takes an _id argument and a _name argument. However, it needs to pass the incoming _id
argument through to the base class. This is where the super call comes in. The super
keyword calls the function in the base class that has the same name as the function in the
derived class. The first line of the constructor function for
DerivedClassWithConstructor shows the call using the super keyword, passing the id
argument it received through to the base class constructor.

Function overloading
The constructor of a class is, however, just a function. In the same way that we can use the
super keyword in a constructor, we can also use the super keyword when a base class and
its derived class use the same function name. This technique is called function overloading.
In other words, the derived class has a function name that is the same name as that of a base
class function, and it overloads this function definition. Consider the following code
snippet:

Interfaces, Classes, and Inheritance

[105]

 class BaseClassWithFunction {
 public id : number;
 getProperties() : string {
 return `id: ${this.id}`;
 }
 }

 class DerivedClassWithFunction extends
 BaseClassWithFunction {
 public name: string;
 getProperties() : string {
 return `${super.getProperties()}`
 + ` , name: ${this.name}`;
 }
 }

Here, we have defined a class named BaseClassWithFunction, which has a public id
property, and a function named getProperties, which just returns a string representation
of the properties of the class. Our DerivedClassWithFunction class, however, also
includes a function called getProperties. This function is a function overload of the
getProperties base class function. In order to call through to the base class function, we
need to use the super keyword, as shown in the call to super.getProperties.

Let's take a look at how we would use these classes:

 var derivedClassWithFunction = new DerivedClassWithFunction();
 derivedClassWithFunction.id = 1;
 derivedClassWithFunction.name = "derivedName";
 console.log(derivedClassWithFunction.getProperties());

This code creates a variable named derivedClassWithFunction, which is an instance of
the DerivedClassWithFunction class. It then sets both the id and name properties, and
then logs to the console the result of calling the getProperties function. This code snippet
will result in the following:

id: 1 , name: derivedName

The results show that the getProperties function of the derivedClassWithFunction
variable will call through to the base class getProperties function, as expected.

Interfaces, Classes, and Inheritance

[106]

Protected class members
When using inheritance, it is sometimes logical to mark certain functions and properties as
accessible only within the class itself, or accessible to any class that is derived from it. Using
the private keyword, however, will not work in this instance, as a private class member is
hidden even from derived classes. TypeScript introduces the protected keyword for these
situations. Consider the following two classes:

 class ClassUsingProtected {
 protected id : number;
 public getId() {
 return this.id;
 }
 }

 class DerivedFromProtected extends
 ClassUsingProtected {
 constructor() {
 super();
 this.id = 0;
 }
 }

We start with a class named ClassWithProtected, which has an id property that is
marked as protected, and a public function named getId. Our next class,
DerivedFromProtected inherits from ClassUsingProtected, and has a single
constructor function. Note, within this constructor function, that we are calling this.id =
0, in order to set the protected id property to 0. Again, a derived class has access to
protected member variables. Now let's try to access this id property outside of the class, as
follows:

 var derivedFromProtected = new DerivedFromProtected();
 derivedFromProtected.id = 1;
 console.log(`getId returns: ${derivedFromProtected.getId()}`);

Here, we create an instance of the DerivedFromProtected class, and attempt to assign a
value to its protected id property. The compiler will generate the following error message:

error TS2445: Property 'id' is protected and only accessible
within class 'ClassUsingProtected' and its subclasses.

So this id property is acting like a private property outside of the class
ClassUsingProtected, but still allows access to it within the class, and any class derived
from it.

Interfaces, Classes, and Inheritance

[107]

Abstract classes
Another fundamental principle of object-oriented design is the concept of abstract classes.
An abstract class is a definition of a class that cannot be instantiated. In other words, it is a
class that is designed to be derived from. The abstract classes, sometimes referred to as
abstract base classes, are often used to provide a set of basic functionality or properties that
are shared amongst a group of similar classes. They are similar to interfaces in that they
cannot be instantiated but they can have function implementations, which interfaces cannot.

Abstract classes are a technique that allows for code reuse amongst groups of similar
objects. Consider the following two classes:

 class Employee {
 public id: number;
 public name: string;
 printDetails() {
 console.log(`id: ${this.id}`
 + `, name ${this.name}`);
 }
 }

 class Manager {
 public id: number;
 public name: string;
 public Employees: Employee[];
 printDetails() {
 console.log(`id: ${this.id} `
 + `, name ${this.name}, `
 + ` employeeCount ${this.Employees.length}`);
 }
 }

We start with a class named Employee that has an id and name property, as well as a
function called printDetails. The next class is named Manager, and is very similar to the
Employee class. It also has an id and name property, but has an extra property named
Employees, which is a list of employees that this manager oversees. There is a lot of code
that is common to these two classes. Both have an id and name property, and both have a
printDetails function. Using an abstract base class for both of these classes overcomes
this problem with common properties and code. Let's rewrite these two classes, and
introduce the concept of an abstract base class, as follows:

 abstract class AbstractEmployee {
 public id: number;
 public name: string;
 abstract getDetails(): string;

Interfaces, Classes, and Inheritance

[108]

 public printDetails() {
 console.log(this.getDetails());
 }
 }

 class NewEmployee extends AbstractEmployee {
 getDetails(): string {
 return `id : ${this.id}, name : ${this.name}`;
 }
 }

 class NewManager extends NewEmployee {
 public Employees: NewEmployee[];
 getDetails() : string {
 return super.getDetails()
 + `, employeeCount ${this.Employees.length}`;
 }
 }

Here, we have defined an abstract class named AbstractEmployee, which includes an id
and name property, common to both managers and employees. We then define what is
known as an abstract function name getDetails. Using an abstract function means that
any class that derives from this abstract class must implement this function. We then define
a printDetails function to log details of this AbstractEmployee to the console. Note
how we are calling the abstract function getDetails from within the abstract class. This
means that our code in the printDetails function will call the actual implementation of
the function in the derived class.

Our second class, named NewEmployee, extends the AbstractEmployee class. As such, it
must implement the getDetails function that has been marked as abstract in the base
class. This getDetails function returns a string representation of the NewEmployee's id
and name property.

Next, we have a class named NewManager that derives from NewEmployee. This
NewManager class, therefore, also has an id and name property, but has an extra property
named Employees. Because this class already derives from NewEmployee, it does not
necessarily need to define the function getDetails again. It could simply use the version
of the getDetails function that the NewEmployee class provides. Note, however, that we
have actually defined this getDetails function within the NewManager class. This
function calls the base class getDetails function, via the super keyword, and then adds
some extra information about its Employees property. Let's take a look at what happens
when we create and use these classes, as follows:

Interfaces, Classes, and Inheritance

[109]

 var employee = new NewEmployee();
 employee.id = 1;
 employee.name = "Employee Name";

 employee.printDetails();

Here, we have created an instance of the NewEmployee class, named employee, set its id
and name properties, and called the printDetails function from the abstract class. Recall
that the abstract class will then call the implementation of the getDetails function that we
provided in the NewEmployee class, and therefore output the following to the console:

id: 1, name : Employee Name

Now let's use our NewManager class in a similar way:

 var manager = new NewManager();
 manager.id = 2;
 manager.name = "Manager Name";
 manager.Employees = new Array();

 manager.printDetails();

Here, we have created an instance of the NewManager class, named manager, and set its id
and name properties as before. Because this class also has an array of Employees, we are
setting the Employees property to a blank array. Notice what happens, however, when we
call the abstract class printDetails function on the last line:

id: 2, name : Manager Name, employeeCount 0

The abstract class implementation of the printDetails function calls the getDetails
function of the derived class. Because the NewManager class also defines a getDetails
function, the abstract class will call this function on the NewManager instance. The
getDetails function on the NewManager instance then calls through to the base class
implementation, that is, the NewEmployee instance of the getDetails function, as seen in
the code super.getDetails(). It then appends some information about its employee
count.

Using abstract classes and inheritance allows us to write our code in a cleaner and more
reusable way. Abstraction, inheritance, polymorphism, and encapsulation are the
foundations of good object-oriented design principles. As we have seen, the TypeScript
language gives us the ability to incorporate each of these principles to help write good,
clean JavaScript code.

Interfaces, Classes, and Inheritance

[110]

JavaScript closures
Before we continue with this chapter, let's take a quick look at how TypeScript implements
classes in generated JavaScript through a technique called closures. As we mentioned in
Chapter 1, TypeScript – Tools and Framework Options, a closure is a function that refers to
independent variables. These variables essentially remember the environment in which
they were created. Consider the following JavaScript code:

 function TestClosure(value) {
 this._value = value;
 function printValue() {
 console.log(this._value);
 }
 return printValue;
 }

 var myClosure = TestClosure(12);
 myClosure;

Here, we have a function named TestClosure, which takes a single parameter named
value. The body of the function first assigns the value argument to an internal property
named this._value, and then defines an inner function named printValue. The
printValue function simply logs the value of the this._value to the console. The
interesting bit is the last line in the TestClosure function–we are returning the
printValue function.

Now take a look at the last two lines of the code snippet. We create a variable named
myClosure and assign to it the result of calling the TestClosure function. Note that,
because we are returning the printValue function from inside the TestClosure function,
this essentially also makes the myClosure variable a function. When we execute this
function on the last line of the snippet, it will execute the inner printValue function, but
remember the initial value of 12 that was used when creating the myClosure variable. The
output of the last line of the code will log the value of 12 to the console.

This is the essential nature of closures. A closure is a special kind of JavaScript object that
combines a function with the initial environment in which it was created. In our preceding
sample, since we stored whatever was passed in via the value argument into a local
variable named this._value, JavaScript remembers the environment in which the closure
was created, in other words, whatever was assigned to the this._value property at the
time of creation will be remembered, and can be reused later.

Interfaces, Classes, and Inheritance

[111]

With this in mind, let's take a look at the JavaScript that is generated by the TypeScript
compiler for the BaseClassWithConstructor class we were just working with:

 var BaseClassWithConstructor = (function () {
 function BaseClassWithConstructor(_id) {
 this.id = _id;
 }
 return BaseClassWithConstructor;
 })();

Our closure starts with function () { on the first line, and ends with } on the last line.
This closure first defines a function to be used as a constructor:
BaseClassWithConstructor(_id).

This closure is surrounded with an opening bracket, (, on the first line, and a closing
bracket,), on the last line, defining what is known as a JavaScript function expression. This
function expression is then immediately executed by the last two braces, ();. This
technique of immediately executing a function is known as an Immediately Invoked
Function Expression (IIFE). Our earlier IIFE is then assigned to a variable named
BaseClassWithConstructor, making it a first-class JavaScript object, and one that can be
created with the new keyword. This is how TypeScript implements classes in JavaScript.

The implementation of the underlying JavaScript code that TypeScript uses for class
definitions is actually a well-known JavaScript pattern known as the module pattern.

The good news is that an in-depth knowledge of closures, how to write them, and how to
use the module pattern for defining classes will all be taken care of by the TypeScript
compiler, allowing us to focus on object-oriented principles without having to write
JavaScript closures using this sort of boilerplate code.

Using interfaces, classes, and inheritance –
the Factory Design Pattern
To illustrate how we can use interfaces and classes in a large TypeScript project, we will
take a quick look at a very well-known object-oriented design pattern–the Factory Design
Pattern.

Interfaces, Classes, and Inheritance

[112]

Business requirements
As an example, let's assume that our business analyst gives us the following requirements:

You are required to categorize people, given their date of birth, into three1.
different age groups—Infants, Children, and Adults.
Indicate with a true or false flag whether they are of a legal age to sign a contract.2.
A person is deemed to be an infant if they are less than 2 years old.3.
Infants cannot sign contracts.4.
A person is deemed to be a child if they are less than 18 years old.5.
Children cannot sign contracts either.6.
A person is deemed to be an adult if they are more than 18 years of age.7.
Only adults can sign contracts.8.
For reporting purposes, each type of person must be able to print their details.9.
This should include the following:

Date of birth
Category of person
Whether they can sign contracts or not

What the Factory Design Pattern does
The Factory Design Pattern uses a Factory class to return an instance of one of several
possible classes based on the information provided to it.

The essence of this pattern is placing the decision-making logic for what type of class to
create in a separate class named the Factory class. The Factory class will then return one of
several classes that are all subtle variations of each other, and will do slightly different
things based on their specialty. As we do not know what type of class the Factory pattern
will return, we need a way to work with any variation of the different types of class
returned. Sounds like the perfect scenario for an interface.

To implement our required business functionality, we will create an Infant class, a Child
class, and an Adult class. The Infant and Child classes will return false when asked
whether they can sign contracts, and the Adult class will return true.

Interfaces, Classes, and Inheritance

[113]

The IPerson interface
According to our requirements, the class instance that is returned by the Factory must be
able to do two things–print the category of the person in the required format, and tell us
whether they can sign contracts or not. Let's start by defining an enum and an interface to
satisfy this requirement:

 enum PersonCategory {
 Infant,
 Child,
 Adult
 }

 interface IPerson {
 Category: PersonCategory;
 canSignContracts(): boolean;
 printDetails();
 }

We start with an enum to hold the valid values for a PersonCategory, that is, Infant,
Child, or Adult. We then define an interface named IPerson, which holds all of the
functionality that is common to each type of person. This includes their Category, a
function named canSignContracts that returns either true or false, and a function to
print out their details, named printDetails.

The Person class
To simplify our code, we will create an abstract base class to hold all code that is common to
infants, children, and adults. Again, abstract classes can never be instantiated, and as such
are designed to be derived from. We will call this class Person, as follows:

 abstract class Person implements IPerson {
 Category: PersonCategory;
 private DateOfBirth: Date;

 constructor(dateOfBirth: Date) {
 this.DateOfBirth = dateOfBirth;
 }
 abstract canSignContracts(): boolean
 printDetails() : void {
 console.log(`Person : `);
 console.log(`Date of Birth : `
 + `${this.DateOfBirth.toDateString()}`);
 console.log(`Category : `
 + `${PersonCategory[this.Category]}`);

Interfaces, Classes, and Inheritance

[114]

 console.log(`Can sign : `
 + `${this.canSignContracts()}`);
 }
 }

This abstract Person class implements the interface IPerson, and as such, will need three
things–A Category property, a canSignContracts function, and a printDetails
function. In order to print the person's date of birth, we also need a DateOfBirth property,
which we will set in our constructor function.

There are a couple of interesting things to note about this Person class. Firstly, the
DateOfBirth property has been declared private. This means that the only class that has
access to the DateOfBirth property is the Person class itself. Our requirements do not
mention using the date of birth outside of the printing function, so there is no need to access
or modify the date of birth once it has been set.

Secondly, the canSignContracts function has been marked as abstract. This means that
any class that derives from this class is forced to implement the canSignContracts
function, which is exactly what we wanted.

Thirdly, the printDetails function has been fully implemented in this abstract class. This
means that a single print function is automatically available for any class that derives from
Person.

Specialist classes
Now for the three types of specialist class, all derived from the Person base class:

 class Infant extends Person {
 constructor(dateOfBirth: Date) {
 super(dateOfBirth);
 this.Category = PersonCategory.Infant;
 }
 canSignContracts(): boolean { return false; }
 }

 class Child extends Person {
 constructor(dateOfBirth: Date) {
 super(dateOfBirth);
 this.Category = PersonCategory.Child;
 }
 canSignContracts(): boolean { return false; }
 }

Interfaces, Classes, and Inheritance

[115]

 class Adult extends Person {
 constructor(dateOfBirth: Date) {
 super(dateOfBirth);
 this.Category = PersonCategory.Adult;
 }
 canSignContracts(): boolean { return true; }
 }

Each of these classes uses inheritance to extend the Person class. As the DateOfBirth
property has been declared as private, and is therefore only visible to the Person class
itself, we must pass it down to the Person class in each of our constructors. Each
constructor also sets the Category property based on the class type. Finally, each class
implements the abstract function canSignContracts.

One of the benefits of using inheritance in this way is that the definitions of the actual
classes become very simple. In essence, our classes are only doing two things–setting the
Category property correctly, and defining whether or not they can sign contracts.

The Factory class
Let's now move on to the Factory class itself. This class has a single, well defined
responsibility. Given a date of birth, figure out whether it is less than two years ago, less
than 18 years ago, or more than 18 years ago. Based on these decisions, return an instance of
either an Infant, Child, or Adult class, as follows:

 class PersonFactory {
 getPerson(dateOfBirth: Date) : IPerson {
 let dateNow = new Date(); // defaults to now.
 let currentMonth = dateNow.getMonth() + 1;
 let currentDate = dateNow.getDate();

 let dateTwoYearsAgo = new Date(
 dateNow.getFullYear() - 2,
 currentMonth, currentDate);

 let date18YearsAgo = new Date(
 dateNow.getFullYear() - 18,
 currentMonth, currentDate);
 if (dateOfBirth >= dateTwoYearsAgo) {
 return new Infant(dateOfBirth);
 }
 if (dateOfBirth >= date18YearsAgo) {
 return new Child(dateOfBirth);
 }
 return new Adult(dateOfBirth);

Interfaces, Classes, and Inheritance

[116]

 }
 }

The PersonFactory class has only one function, getPerson, which returns an object of
type IPerson. The function creates a variable named dateNow, which is set to the current
date. We then find the current month and date from the dateNow variable. Note that the
JavaScript function getMonth returns 0 - 11, and not 1 - 12, so we are correcting this by
adding 1. This dateNow variable is then used to calculate two more variables,
dateTwoYearsAgo, and date18YearsAgo. The decision logic then takes over, comparing
the incoming dateOfBirth variable against these dates, and returns a new instance of a
new Infant, Child, or Adult class.

Using the Factory class
To illustrate how simple it becomes to use this PersonFactory class, consider the
following code:

 let factory = new PersonFactory();
 let p1 = factory.getPerson(new Date(2015, 0, 20));
 p1.printDetails();
 let p2 = factory.getPerson(new Date(2000, 0, 20));
 p2.printDetails();
 let p3 = factory.getPerson(new Date(1969, 0, 20));
 p3.printDetails();

We start with the creation of a variable, personFactory, to hold a new instance of the
PersonFactory class. We then create three variables, named p1, p2, and p3, by calling the
getPerson function of the PersonFactory – passing in three different dates to the same
function. The output of this code is as follows:

Output of the Factory Design Pattern

Interfaces, Classes, and Inheritance

[117]

We have satisfied our business requirements and implemented a very common design
pattern at the same time. If we look back at our code, we can see that we have a few well
defined and simple classes. Our Infant, Child, and Adult classes are only concerned with
logic relating to their classification, and whether they can sign contracts. Our Person
abstract base class is only concerned with logic related to the IPerson interface, and our
PersonFactory is only concerned with the logic surrounding the date of birth. This sample
illustrates how object-oriented design patterns and the object-oriented features of the
TypeScript language can help with writing good, extensible, and maintainable code.

Summary
In this chapter, we explored the object-oriented concepts of interfaces, classes, and
inheritance. We discussed both interface inheritance and class inheritance, and used our
knowledge of interfaces, classes, and inheritance to create a Factory Design Pattern
implementation in TypeScript. In the next chapter, we will look at advanced language
features, including generics, decorators, and asynchronous programming techniques.

4
Decorators, Generics, and

Asynchronous Features
Above and beyond the concepts of classes, interfaces, and inheritance, the TypeScript
language introduces a number of advanced language features in order to aid the
development of robust object-oriented code. These features include decorators, generics,
promises, and the use of the async and await keywords when working with asynchronous
functions. Decorators allow for the injection and query of metadata when working with
class definitions, as well as the ability to programmatically attach to the act of defining a
class. Generics provide a technique for writing routines where the exact type of an object
used is not known until runtime. Promises provide the ability to write asynchronous code
in a fluent manner, and async await functions will pause execution until an asynchronous
function has completed.

When writing large-scale JavaScript applications, these language features become part of
the programmers' toolbox and allow for the application of many design patterns within
JavaScript code.

This chapter is broken into three parts. The first part covers decorators, the second part
covers generics, and the third part deals with asynchronous programming techniques using
promises and async await. In earlier versions of TypeScript, promises and async await
could only be used in ECMAScript 6 and above, but this functionality has now been
extended to include ECMAScript 3 targets.

Decorators, Generics, and Asynchronous Features

[119]

We will cover the following topics in this chapter:

Decorators syntax
Decorator factories
Class, method, and parameter decorators
Decorator metadata
Generics syntax
Using and constraining the type of T
Generic interfaces
Promises and promise syntax
Using promises
Async and await
Handling await errors

Decorators
Decorators in TypeScript provide a way of programmatically tapping into the process of
defining a class. Remember that a class definition describes the shape of a class. In other
words, a class definition describes what properties a class has, and what methods it defines.
It is only when a class is instantiated, that is, when an instance of the class is created that
these properties and methods become available.

Decorators; however, allow us to inject code into the actual definition of a class. Decorators
can be used on class definitions, class properties, class functions, and even method
parameters. The concept of decorators exists in other programming languages, and are
called attributes in C#, or annotations in Java.

In this section, we will explore what decorators are, how they are defined, and how they
can be used. We will look at class, property, function, and method decorators.

Decorators, Generics, and Asynchronous Features

[120]

Decorators are an experimental feature of the TypeScript compiler, and have been proposed
as part of the ECMAScript 7 standard. TypeScript, however, allows for the use of decorators
in ES3 and above. In order to use decorators, a new compile option needs to be added to the
tsconfig.json file in the root of your project directory. This option is named
experimentalDecorators, and needs to be set to true, as follows:

 {
 "compilerOptions": {
 "module": "commonjs",
 "target": "es3",
 "sourceMap": true,
 "experimentalDecorators": true
 },
 "exclude": [
 "node_modules"
]
 }

Decorator syntax
A decorator is simply a function which is called with a specific set of parameters. These
parameters are automatically populated by the JavaScript runtime, and contain information
about the class to which the decorator has been applied. The number of parameters and the
types of these parameters determine where a decorator can be applied. To illustrate the
syntax used for decorators, let's define a simple class decorator, as follows:

 function simpleDecorator(constructor : Function) {
 console.log('simpleDecorator called.');
 }

Here we have defined a function named simpleDecorator that takes a single parameter,
named constructor of type Function. This simpleDecorator function simply logs a
message to the console indicating that it has been called. This function is our decorator
definition. In order to use it, we will need to apply it to a class definition, as follows:

 @simpleDecorator
 class ClassWithSimpleDecorator {
 }

Here, we have applied the decorator to the class definition of
ClassWithSimpleDecorator by using the at symbol (@), followed by the decorator name.
Running this simple decorator code will produce the following output:

simpleDecorator called.

Decorators, Generics, and Asynchronous Features

[121]

Note, however, that we have not created an instance of the class as yet. We have simply
specified the class definition, added a decorator to it, and our decorator function has
automatically been called. This indicates to us that the decorators are applied when a class
is being defined, and not when it is being instantiated. As a further example of this,
consider the following code:

 let instance_1 = new ClassWithSimpleDecorator();
 let instance_2 = new ClassWithSimpleDecorator();

 console.log(`instance_1: ${instance_1}`);
 console.log(`instance_2 : ${instance_2}`);

Here, we have created two instances of the ClassWithSimpleDecorator class, named
instance_1 and instance_2. We are then simply logging a message to the console. The
output of this code snippet is as follows:

simpleDecorator called.
instance_1 : [object Object]
instance_2 : [object Object]

What this output shows us is that the decorator function has only been called once, no
matter how many instances of the same class have been created or used. Decorators are
only invoked as the class is being defined.

Multiple decorators
Multiple decorators can be applied one after another to the same target. As an example of
this, consider the following code:

 function secondDecorator(constructor : Function) {
 console.log('secondDecorator called.')
 }

 @simpleDecorator
 @secondDecorator
 class ClassWithMultipleDecorators {
 }

Decorators, Generics, and Asynchronous Features

[122]

Here, we have created another decorator named secondDecorator which also simply logs
a message to the console. We are then applying both the simpleDecorator (from our
earlier code snippet) and the secondDecorator decorators to the class definition of the
class named ClassWithMultipleDecorators. The output of this code is as follows:

secondDecorator called.
simpleDecorator called.

The output of this code shows us an interesting point about decorators. They are called in
reverse order of their definition.

Decorators are evaluated in the order they appear in the code, but are then
called in reverse order.

Decorator factories
In order to allow for decorators to accept parameters, we need to use what is known as a
decorator factory. A decorator factory is simply a wrapper function that returns the
decorator function itself. As an example of this, consider the following code:

 function decoratorFactory(name: string) {
 return function (constructor : Function) {
 console.log(`decorator function called with : ${name}`);
 }
 }

Here, we have defined a function named decoratorFactory that accepts a single
argument, named name of type string. This function simply returns an anonymous
decorator function that takes a single argument named constructor of type Function.
The anonymous function (our decorator function) logs the value of the name parameter to
the console.

Note here how we have wrapped the decorator function within the decoratorFactory
function. This wrapping of a decorator function is what produces a decorator factory. As
long as the wrapping function returns a decorator function, this is a valid decorator factory.

We can now use our decorator factory, as follows:

 @decoratorFactory('testName')
 class ClassWithDecoratorFactory {
 }

Decorators, Generics, and Asynchronous Features

[123]

Note how we can now pass a parameter to the decorator factory, as shown in the usage of
@decoratorFactory('testName'). The output of this code is as follows:

decorator function called with : testName

There are a few things to note about decorator factories. Firstly, the decorator function itself
will still be called by the JavaScript runtime with automatically populated parameters.
Secondly, the decorator factory must return a function definition. Lastly, the parameters
defined for the decorator factory can be used within the decorator function itself.

Class decorator parameters
The examples we have seen so far are all class decorators. Remember that a decorator
function will automatically be called by the JavaScript runtime when the class is declared.
Our decorator functions up until this point have all been defined to accept a single
parameter named constructor, which is of type Function. The JavaScript runtime will
populate this constructor parameter automatically for us. Let's delve into this parameter
in a little more detail.

Class decorators will be invoked with the constructor function of the class that has been
decorated. As an example of this, consider the following code:

 function classConstructorDec(constructor: Function) {
 console.log(`constructor : ${constructor}`);
 }

 @classConstructorDec
 class ClassWithConstructor {
 }

Here, we start with a decorator function named classConstructorDec that accepts a
single argument named constructor of type Function. The first line of this function then
simply prints out the value of the constructor argument. We are then applying this
decorator to a class named ClassWithConstructor. The output of this code is as follows:

constructor : function ClassWithConstructor() {
}

This output therefore shows us that our decorator function is being called with the
constructor function of the class that it is decorating.

Decorators, Generics, and Asynchronous Features

[124]

Let's then update this decorator, as follows:

 function classConstructorDec(constructor: Function) {
 console.log(`constructor : ${constructor}`);
 console.log(`constructor.name : ${(<any>constructor).name}`);
 constructor.prototype.testProperty = "testProperty_value";
 }

Here, we have updated our classConstructorDec decorator with two new lines of code.
The first new line prints the name property of the constructor function to the console.
Note how we have had to cast the constructor parameter to a type of any in order to
successfully access the name property. This is necessary, as the name property of a function
is only available from ECMAScript 6, and is only partially available in earlier browsers.

The last line of this decorator function is actually modifying the class prototype, and adding
a property named testProperty (with the value "testProperty_value") to the class
definition itself. This is an example of how decorators can be used to modify a class
definition. We can then access this class property, as follows:

 let classConstrInstance = new ClassWithConstructor();
 console.log(`classConstrInstance.testProperty : `
 + `${(<any>classConstrInstance).testProperty}`);

Here, we are creating an instance of the ClassWithConstructor class, named
classConstrInstance. We are then logging the value of the testProperty property to
the console. Note how we need to cast the type of the variable classConstrInstance to
any in order to access the testProperty property. This is because we have not defined the
testProperty property on the class definition itself, but are injecting this property via the
decorator. The output of this code would be as follows:

constructor : function ClassWithConstructor() {
}
constructor.name : ClassWithConstructor
classConstrInstance.testProperty : testProperty_value

This output shows us that we can use the name property of the class constructor to find the
name of the class itself. We can also inject a class property, named testProperty, into the
class definition. As can be seen by the output, the value of this testProperty property is
"testProperty_value", which is being set within the decorator function.

Decorators, Generics, and Asynchronous Features

[125]

Property decorators
Property decorators are decorator functions that can be used on class properties. A property
decorator is called with two parameters–the class prototype itself, and the property name.
As an example of this, consider the following code:

 function propertyDec(target: any, propertyKey : string) {
 console.log(`target : ${target}`);
 console.log(`target.constructor : ${target.constructor}`);
 console.log(`class name : `
 + `${target.constructor.name}`);
 console.log(`propertyKey : ${propertyKey}`);
 }

 class ClassWithPropertyDec {
 @propertyDec
 name: string;
 }

Here, we have defined a property decorator named propertyDec that accepts two
parameters–target and propertyKey. The target parameter is of type any, and the
propertyKey parameter is of type string. Within this decorator, we are logging some
values to the console. The first value we log to the console is the target argument itself.
The second value logged to the console is the constructor property of the target object.
The third value logged to the console is the name of the constructor function, and the fourth
value is the propertyKey argument itself.

We are then defining a class named ClassWithPropertyDec that is now using this
property decorator on the property named name. As in the case with class decorators, the
syntax used to decorate a property is simply @propertyDec before the property to be
decorated.

The output of this code is as follows:

target : [object Object]
target.constructor : function ClassWithPropertyDec() {
}
target.constructor.name : ClassWithPropertyDec
propertyKey : name

Decorators, Generics, and Asynchronous Features

[126]

Here we can see the output of our various console.log calls. The target argument
resolves to [object Object], which simply indicates that it is an object prototype. The
constructor property of the target argument resolves to a function named
ClassWithPropertyDec, which is, in fact, our class constructor. The name property of this
constructor function gives us the name of the class itself, and the propertyKey argument is
the name of the property itself.

Property decorators, therefore, give us the ability to check whether a particular property has
been declared on a class instance.

Static property decorators
Property decorators can also be applied to static class properties. There is no difference in
calling syntax in our code, they are the same as normal property decorators. However, the
actual arguments that are passed in at runtime are slightly different. Given our earlier
definition of the property decorator propertyDec, consider what happens when this
decorator is applied to a static class property, as follows:

 class StaticClassWithPropertyDec {
 @propertyDec
 static name: string;
 }

The output of the various console.log functions in our decorator is as follows:

target : function StaticClassWithPropertyDec() {
}
target.constructor : function Function() { [native code] }
target.constructor.name : Function
propertyKey : name

Note here that the target argument (as printed in the first line of output) is not a class
prototype (as seen before), but an actual constructor function. The definition of this
target.constructor is then simply a function, named Function. The propertyKey
remains the same, that is, name.

This means that we need to be a little careful about what is being passed in as the first
argument to our property decorator. When the class property being decorated is marked as
static, then the target argument will be the class constructor itself. When the class
property is not static, the target argument will be the class prototype.

Decorators, Generics, and Asynchronous Features

[127]

Let's modify our property decorator to correctly identify the name of the class in both of
these cases, as follows:

 function propertyDec(target: any, propertyKey : string) {
 if(typeof(target) === 'function') {
 console.log(`class name : ${target.name}`);
 } else {
 console.log(`class name : ${target.constructor.name}`);
 }
 console.log(`propertyKey : ${propertyKey}`);
 }

Here, we start by checking the type of the target argument. If the typeof(target) call
returns 'function', then we know that the target argument is the class constructor, and
can then identify the class name through target.name. If the typeof(target) call does
not return 'function', then we know that the target argument is an object prototype,
and that you need to identify the class name via the target.constructor.name property.
The output of this code is as follows:

class name : ClassWithPropertyDec
propertyKey : name
class name : StaticClassWithPropertyDec
propertyKey : name

Our property decorator is correctly identifying the name of the class, whether it is used on a
normal class property, or a static class property.

Method decorators
Method decorators are decorators that can be applied to a method on a class. Method
decorators are invoked by the JavaScript runtime with three parameters. Remember that
class decorators have only a single parameter (the class prototype) and property decorators
have two parameters (the class prototype and the property name). Method decorators have
three parameters–the class prototype, the method name, and (optionally) a method
descriptor. The third parameter, the method descriptor is only populated if compiling for
ES5 and above.

Let's take a look at a method decorator, as follows:

 function methodDec (target: any,
 methodName: string,
 descriptor?: PropertyDescriptor) {
 console.log(`target: ${target}`);
 console.log(`methodName : ${methodName}`);

Decorators, Generics, and Asynchronous Features

[128]

 console.log(`target[methodName] : ${target[methodName]}`);
 }

Here, we have defined a method decorator named methodDec that accepts our three
parameters, target, methodName, and descriptor. Note that the descriptor property
has been marked as optional. The first two lines inside the decorator simply log the values
of target and methodName to the console. Note, however, the last line of this decorator.
Here, we are logging the value of target[methodName] to the console. This will log the
actual function definition to the console.

Now we can use this method decorator on a class, as follows:

 class ClassWithMethodDec {
 @methodDec
 print(output: string) {
 console.log(`ClassWithMethodDec.print`
 + `(${output}) called.`);
 }
 }

Here, we have defined a class named ClassWithMethodDec. This class has a single print
function that accepts a single parameter named output of type string. Our print function
is just logging a message to the console, including the value of the output argument. The
print function has been decorated with the methodDec decorator. The output of this code
is as follows:

target: [object Object]
methodName : print
target[methodName] : function (output) {
console.log(
"ClassWithMethodDec.print(" + output + ") called.");
}

As we can see by this output, the value of the target argument is the class prototype. The
value of the methodName argument is, in fact, print. The output of the
target[methodName] call is the actual definition of the print function.

Using method decorators
Since we have the definition of a function available to us within a method decorator, we
could use the decorator to inject new functionality into the class. Suppose that we wanted to
create an audit trail of some sort, and log a message to the console every time a method was
called. This is the perfect scenario for method decorators.

Decorators, Generics, and Asynchronous Features

[129]

Consider the following method decorator:

 function auditLogDec(target: any,
 methodName: string,
 descriptor?: PropertyDescriptor) {
 let originalFunction = target[methodName];
 let auditFunction = function() {
 console.log(`auditLogDec : overide of `
 + ` ${methodName} called `);
 originalFunction.apply(this, arguments);
 }
 target[methodName] = auditFunction;
 }

Here we have defined a method decorator named auditLogDec. Within this decorator, we
are creating a variable named originalFunction to hold the definition of the method that
we are decorating. Remember that target[methodName] returns the function definition
itself. We then create a new function named auditFunction. The first line of this function
logs a message to the console. Note, however, the last line of the auditFunction function.
We are using the JavaScript apply function to call the original function, passing in the this
parameter, and the arguments parameter.

The last line of the auditLogDec decorator function is assigning this new function to the
original class function. In essence, this is wrapping the original function with a new
function, and then calling through to the original class function. To show this in action,
consider the following class declaration:

 class ClassWithAuditDec {
 @auditLogDec
 print(output: string) {
 console.log(`ClassWithMethodDec.print`
 + `(${output}) called.`);
 }
 }

 let auditClass = new ClassWithAuditDec();
 auditClass.print("test");

Here, we are creating a class named ClassWithAuditDec, and decorating the print
function with our auditLogDec method decorator. The print function simply logs the
value of the output argument to the console. The last two lines of this code snippet are an
example of how this class would be used. Note, however, the output of this code:

auditLogDec : overide of print called
ClassWithMethodDec.print(test) called.

Decorators, Generics, and Asynchronous Features

[130]

As can be seen in this output, our decorator audit function is being called before the actual
implementation of the print function on the class. Using decorators in this way is a
powerful method of injecting extra functionality non-intrusively into a class declaration.
Any class we create can easily include the auditing functionality simply by decorating the
relevant class methods.

Parameter decorators
The final type of decorator that we will cover are parameter decorators. Parameter
decorators are used to decorate the parameters of a particular method. As an example,
consider the following code:

 function parameterDec(target: any,
 methodName : string,
 parameterIndex: number) {
 console.log(`target: ${target}`);
 console.log(`methodName : ${methodName}`);
 console.log(`parameterIndex : ${parameterIndex}`);
 }

Here, we have defined a function named parameterDec, with three arguments. The
target argument will contain the class prototype as we have seen before. The methodName
argument will contain the name of the method that contains the parameter, and the
parameterIndex argument will contain the index of the parameter. We can use this
parameter decorator function, as follows:

 class ClassWithParamDec {
 print(@parameterDec value: string) {
 }
 }

Here, we have a class named ClassWithParamDec, that contains a single print function.
This print function has a single argument named value which is of type string. We have
decorated this value parameter with the parameterDec decorator. Note that the syntax for
using a parameter decorator (@parameterDec) is the same as any other decorator. The
output of this code is as follows:

target: [object Object]
methodName : print
parameterIndex : 0

Decorators, Generics, and Asynchronous Features

[131]

As can be seen from the output, the parameter index for the value parameter is 0, and it is a
parameter on the method named print. Our target parameter is a class prototype.

Note that we are not given any information about the parameter that we are decorating. We
are not told what type it is, or even what its name is. Parameter decorators, therefore, can
only really be used to find out that a parameter has been declared on a method.

Decorator metadata
The TypeScript compiler also includes experimental support for something called decorator
metadata. Decorator metadata is metadata that is generated on class definitions in order to
supplement the information that is passed into decorators. This option is called
emitDecoratorMetadata, and can be added to the tsconfig.json file, as follows:

 {
 "compilerOptions": {
 // other options
 "experimentalDecorators": true
 ,"emitDecoratorMetadata": true
 },
 "exclude": [
 "node_modules"
]
 }

With this compile option in place, the TypeScript compiler will generate extra information
relating to our class definitions. To see the results of this compile option, we will need to
take a closer look at the generated JavaScript. Consider the following parameter decorator
and class definition:

 function metadataParameterDec(target: any,
 methodName : string,
 parameterIndex: number) {
 }

 class ClassWithMetaData {
 print(
 @metadataParameterDec
 id: number,
 name: string) : number {
 return 1000;
 }
 }

Decorators, Generics, and Asynchronous Features

[132]

Here, we have a standard parameter decorator named metadataParameterDec, and a
class definition named ClassWithMetaData. We are decorating the first parameter of the
print function. If we are not using the emitDecoratorMetadata compile option, or if this
option is set to false, our generated JavaScript would be defined as follows:

 var ClassWithMetaData = (function () {
 function ClassWithMetaData() {
 }
 ClassWithMetaData.prototype.print = function (id, name) {
 };
 __decorate([
 __param(0, metadataParameterDec)
], ClassWithMetaData.prototype, "print");
 return ClassWithMetaData;
 }());

This generated JavaScript defines a standard JavaScript closure for our
ClassWithMetaData class. The code that we are interested in is near the bottom of the
closure, where the TypeScript compiler has injected a method named __decorate. We will
not concern ourselves with the full functionality of this __decorate method, other than to
note that it contains information about the print function, and indicates that it is named
"print", and that it has a single parameter at index 0.

When the emitDecoratorMetadata option is set to true, the generated JavaScript will
contain some extra information about this print function, as follows:

 var ClassWithMetaData = (function () {
 function ClassWithMetaData() {
 }
 ClassWithMetaData.prototype.print = function (id, name) {
 };
 __decorate([
 __param(0, metadataParameterDec),
 __metadata('design:type', Function),
 __metadata('design:paramtypes', [Number, String]),
 __metadata('design:returntype', Number)
], ClassWithMetaData.prototype, "print");
 return ClassWithMetaData;
 }());

Decorators, Generics, and Asynchronous Features

[133]

Note how the __decorate function now includes extra calls to a function named
__metadata, which is called three times. The first call uses a special metadata key of
'design:type', the second uses the metadata key 'design:paramtypes', and the third
call uses the metadata key 'design:returntype'. These three function calls to the
__metadata function are, in fact, registering extra information about the print function
itself. The 'design:type' key is used to register that the print function is of type
Function. The 'design:paramtypes' key is used to register that the print function has
two parameters–the first a Number, and the second a String. The 'design:returntype'
key is used to register the return type of the print function which, in our case, is a number.

Using decorator metadata
In order to use this extra information within a decorator, we will need to use a third-party
library named reflect-metadata. We will discuss how to use third-party libraries in
detail in future chapters, but for the time being, this library can be included in our project
by typing the following from the command line:

npm install reflect-metadata --save-dev

Once this has been installed, we will need to reference it in our TypeScript file by including
the following line at the top of the file:

 import 'reflect-metadata';

Before we attempt to compile any code that is using the reflect-metadata library, we will
need to install the declaration file for this library as follows:

npm install @types/reflect-metadata --save-dev

We will discuss declaration files in detail in the next chapter.

We can now start to use this class metadata by calling the Reflect.getMetadata function
within our decorator. Consider the following update to our earlier parameter decorator:

 function metadataParameterDec(target: any,
 methodName : string,
 parameterIndex: number) {

 let designType = Reflect.getMetadata(
 "design:type", target, methodName);
 console.log(`designType: ${designType}`)
 let designParamTypes = Reflect.getMetadata(
 "design:paramtypes", target, methodName);
 console.log(`paramtypes : ${designParamTypes}`);

Decorators, Generics, and Asynchronous Features

[134]

 let designReturnType = Reflect.getMetadata(
 "design:returntype", target, methodName);
 console.log(`returntypes : ${designReturnType}`);
 }

Here, we have updated our parameter decorator, with three calls to the
Reflect.getMetadata function. The first is using the "design:type" metadata key. This
is the same metadata key that we saw earlier in the generated JavaScript, where the
compiler generated calls to the __metadata function. We are then logging the result to the
console. We then repeat this process for the "design:paramtypes" and
"design:returntype" metadata keys. The output of this code is as follows:

designType: function Function() { [native code] }
paramtypes : function Number() { [native code] }
,function String() { [native code] }
returntypes : function Number() { [native code] }

We can see from this output, then, that the type of the print function (as recorded by the
"design:type" metadata key) is a Function. We can also see that information returned
by the "design:paramtypes" key is an array that includes a Number and a String. This
array, therefore, indicates that the function has two parameters, the first of type Number,
and the second of type String. Finally, our return type for this function is a Number.

Metadata that is generated automatically by the TypeScript compiler, and that can be read
and interrogated at runtime can be extremely useful. In other languages, such as C#, this
type of metadata information is called reflection, and is a fundamental principle when
writing frameworks for dependency injection, or for generating code analysis tools.

Generics
Generics are a way of writing code that will deal with any type of object but still maintain
the object type integrity. So far, we have used interfaces, classes, and TypeScript's basic
types to ensure strongly typed (and less error-prone) code in our samples. But what
happens if a block of code needs to work with any type of object?

As an example, suppose we wanted to write some code that could iterate over an array of
objects and return a concatenation of their values. So, given a list of numbers, say [1,2,3],
it should return the string "1,2,3". Or, given a list of strings, say
["first","second","third"], return the string "first,second,third". We could
write some code that accepted values of type any, but this might introduce bugs in our
code, remember S.F.I.A.T.? We want to ensure that all elements of the array are of the same
type. This is where generics come in to play.

Decorators, Generics, and Asynchronous Features

[135]

Generic syntax
As an example of TypeScript generic syntax, let's write a class called Concatenator that
will concatenate the values in an array. We will need to ensure that each element of the
array is of the same type. This class should be able to handle arrays of strings, arrays of
numbers, and in fact, arrays of any type. In order to do this, we need to rely on functionality
that is common to each of these types. As all JavaScript objects have a toString function
(which is called whenever a string is needed by the runtime) we can use this toString
function to create a generic class that outputs all values held within an array.

A generic implementation of this Concatenator class is as follows:

 class Concatenator< T > {
 concatenateArray(inputArray: Array< T >): string {
 let returnString = "";

 for (let i = 0; i < inputArray.length; i++) {
 if (i > 0)
 returnString += ",";
 returnString += inputArray[i].toString();
 }
 return returnString;
 }
 }

The first thing we notice is the syntax of the class declaration, Concatenator < T >. This
< T > syntax is the syntax used to indicate a generic type, and the name used for this
generic type in the rest of our code is T. The concatenateArray function also uses this
generic type syntax, Array < T >. This indicates that the inputArray argument must be
an array of the type that was originally used to construct an instance of this class.

Instantiating generic classes
To use an instance of this generic class, we need to construct the class and tell the compiler
via the < > syntax what the actual type of T is. We can use any type for the type of T in this
generic syntax, including base types, classes, or even interfaces. Let's create a few versions
of this class, as follows:

 var stringConcat = new Concatenator<string>();
 var numberConcat = new Concatenator<number>();

Decorators, Generics, and Asynchronous Features

[136]

Notice the syntax that we have used to instantiate the Concatenator class. On the first line
of this sample, we create an instance of the Concatenator generic class, and specify that it
should substitute the generic type, T, with the type string in every place where T is being
used within the code. Similarly, the second line of this sample creates an instance of the
Concatenator class, and specifies that the type number should be used wherever the code
encounters the generic type T.

If we use this simple substitution principle, then for the stringConcat instance (which
uses strings), the inputArray argument must be of type Array<string>. Similarly, the
numberConcat instance of this generic class uses numbers, and so the inputArray
argument must be an array of numbers. To test this theory, let's generate an array of strings
and an array of numbers, and see what the compiler says if we try to break this rule:

 var stringArray: string[] = ["first", "second", "third"];
 var numberArray: number[] = [1, 2, 3];
 var stringResult =
 stringConcat.concatenateArray(stringArray);
 var numberResult =
 numberConcat.concatenateArray(numberArray);
 var stringResult2 =
 stringConcat.concatenateArray(numberArray);
 var numberResult2 =
 numberConcat.concatenateArray(stringArray);

Our first two lines define our stringArray and numberArray variables to hold the
relevant arrays. We then pass in the stringArray variable to the stringConcat
function–no problems there. On our next line, we pass the numberArray to the
numberConcat–still okay.

Our problems, however, start when we attempt to pass an array of numbers to the
stringConcat instance, which has been configured to only use strings. Again, if we
attempt to pass an array of strings to the numberConcat instance, which has been
configured to allow only numbers, TypeScript will generate errors as follows:

error TS2345: Argument of type 'number[]' is not assignable to parameter of
type 'string[]'.
Type 'number' is not assignable to type 'string'.
error TS2345: Argument of type 'string[]' is not assignable to parameter of
type 'number[]'.
Type 'string' is not assignable to type 'number'.

Decorators, Generics, and Asynchronous Features

[137]

Clearly, we are attempting to pass an array of numbers where we should have used strings,
and vice versa. Again, the compiler warns us that we are not using the code correctly, and
forces us to resolve these issues before continuing.

These constraints on generics are a compile-time-only feature of
TypeScript. If we look at the generated JavaScript, we will not see reams of
code jumping through hoops to ensure that these rules are carried through
into the resultant JavaScript. All of these type constraints and generic
syntax are actually compiled away. In the case of generics, the generated
JavaScript is actually a very simplified version of our code, with no type in
sight.

Using the type T
When we use generics, it is important to note that all of the code within the definition of a
generic class or a generic function must respect the properties of T as if it were any type of
object. Let's take a closer look at the implementation of the concatenateArray function in
this light:

 class Concatenator< T > {
 concatenateArray(inputArray: Array< T >): string {
 let returnString = "";

 for (let i = 0; i < inputArray.length; i++) {
 if (i > 0)
 returnString += ",";
 returnString += inputArray[i].toString();
 }
 return returnString;
 }
 }

The concatenateArray function strongly types the inputArray argument so that it
should be of type Array < T > . This means that any code that uses the inputArray
argument can use only those functions and properties that are common to all arrays, no
matter what type the array holds. We have used inputArray in two places.

Firstly, within the declaration of the for loop, note where we have used the
inputArray.length property. All arrays have a length property to indicate how many
items the array has, so using inputArray.length will work on any array, no matter what
type of object the array holds. Secondly, on the last line of the for loop, we referenced an
object within the array when we used the inputArray[i] syntax.

Decorators, Generics, and Asynchronous Features

[138]

This reference actually returns us a single object of type T. Remember that whenever we use
T in our code, we must use only those functions and properties that are common to any
object of type T. Luckily for us, we are only using the toString function, and all JavaScript
objects, no matter what type they are, have a valid toString function. So this generic code
block will compile cleanly.

Let's test this type T theory by creating a class of our own to pass into the Concatenator
class:

 class MyClass {
 private _name: string;
 constructor(arg1: number) {
 this._name = arg1 + "_MyClass";
 }
 }

Here, we have a simple class definition, named MyClass, that has a constructor function
accepting a number. This constructor function sets the internal variable _name to the value
of the arg1 argument.

Let's now create an array of MyClass instances, as follows:

 let myArray: MyClass[] = [
 new MyClass(1),
 new MyClass(2),
 new MyClass(3)];

We can now create an instance of our generic Concatenator class, as follows:

 let myArrayConcatentator = new Concatenator<MyClass>();
 let myArrayResult =
 myArrayConcatentator.concatenateArray(myArray);
 console.log(myArrayResult);

We start with an instance of the Concatenator class, specifying that this generic instance
will only work with objects that are of type MyClass. We then call the concatenateArray
function and store the result in a variable named myArrayResult. Finally, we print the
result on the console. Running this code will produce the following output:

[object Object],[object Object],[object Object]

Decorators, Generics, and Asynchronous Features

[139]

Not quite what we were expecting. This output is due to the fact that the string
representation of an object – that is not one of the basic JavaScript types – resolves to
[object type]. Any custom object that you write needs to override the toString
function to provide human-readable output. We can fix this code quite easily by providing
an override of the toString function within our class, as follows:

 class MyClass {
 private _name: string;
 constructor(arg1: number) {
 this._name = arg1 + "_MyClass";
 }
 toString(): string {
 return this._name;
 }
 }

Here, we replaced the default toString function that all JavaScript objects inherit with our
own implementation. Within this function, we simply returned the value of the _name
private variable. Running this sample now produces the expected result:

1_MyClass,2_MyClass,3_MyClass

Constraining the type of T
When using generics, it is sometimes desirable to constrain the type of T to be only a
specific type, or subset of types. In these cases, we don't want our generic code to be
available for any type of object, we only want it to be available for a specific subset of
objects. TypeScript uses inheritance to accomplish this with generics.

As an example, let's define an interface for a football team, as follows:

 enum ClubHomeCountry {
 England,
 Germany
 }

 interface IFootballClub {
 getName() : string;
 getHomeCountry(): ClubHomeCountry;
 }

Decorators, Generics, and Asynchronous Features

[140]

Here, we have defined an enum named ClubHomeCountry to indicate where the home
country is for a football club. Our IFootballClub interface then defines two methods that
any FootballClub class must implement–a getName function to return the name of the
football club, and a getHomeCountry function to return the ClubHomeCountry enum
value.

We will now define an abstract base class to implement this interface, as follows:

 abstract class FootballClub implements IFootballClub {
 protected _name: string;
 protected _homeCountry: ClubHomeCountry;
 getName() { return this._name };
 getHomeCountry() { return this._homeCountry };
 }

This class, named FootballClub implements the IFootballClub interface, by defining a
getName and getHomeCountry function, which returns the values held in the protected
variables named _name and _homeCountry respectively. As this is an abstract class, we will
need to derive from it to create concrete classes, as follows:

 class Liverpool extends FootballClub {
 constructor() {
 super();
 this._name = "Liverpool F.C.";
 this._homeCountry = ClubHomeCountry.England;
 }
 }

 class BorussiaDortmund extends FootballClub {
 constructor() {
 super();
 this._name = "Borussia Dortmund";
 this._homeCountry = ClubHomeCountry.Germany;
 }
 }

Here, we have defined two classes, named Liverpool and BorussiaDortmund that derive
from our abstract base class FootballClub. Both classes have a single constructor that sets
the internal _name and _homeCountry properties.

Decorators, Generics, and Asynchronous Features

[141]

We can now create a generic class that will work with any class implementing the
IFootballClub interface, as follows:

 class FootballClubPrinter< T extends IFootballClub >
 implements IFootballClubPrinter< T > {
 print(arg : T) {
 console.log(` ${arg.getName()} is ` +
 `${this.IsEnglishTeam(arg)}` +
 ` an English football team.`
);
 }
 IsEnglishTeam(arg : T) : string {
 if (arg.getHomeCountry() == ClubHomeCountry.England)
 return "";
 else
 return "NOT"
 }
 }

Here, we have defined a class named FootballClubPrinter that uses the generic syntax.
Note that the T generic type is now deriving from the IFootballClub interface, as
indicated by the extends keyword in < T extends IFootballClub >. Using inheritance
when defining a generic class constrains the type of class that can be used by this generic
code. In other words, any usage of the type T within the generic code will substitute the
interface IFooballClub instead. This means that the generic code will only allow functions
or properties that are defined in the IFootballClub interface to be used wherever T is
used.

These constraints can be seen within the print function, as well as within the
IsEnglishTeam function. In the print function, the argument arg is of type T, and
therefore, we are able to use arg.getName, which has been defined in the IFootballClub
interface. In the print function, we are also calling the IsEnglishTeam function, and
passing the argument arg to it. The IsEnglishTeam function is using the
getHomeCountry function that is also defined in the IFootballClub interface.

To illustrate how this generic FootballClubPrinter class can be used, consider the
following code:

 let clubInfo = new FootballClubPrinter();
 clubInfo.print(new Liverpool());
 clubInfo.print(new BorussiaDortmund());

Decorators, Generics, and Asynchronous Features

[142]

Here, we are creating an instance of the FootballClubPrinter class named clubInfo.
Note how we do not need to specify the type (as we did with our earlier class
Concatenator) when creating an instance of the class.

We are then calling the print function of the clubInfo generic class, passing in a new
instance of the Liverpool class, and then passing in an instance of the BorussiaDortmund
class. The output of this code is as follows:

Liverpool F.C. is an English football team.
Borussia Dortmund is NOT an English football team.

Generic interfaces
We can also use interfaces with the generic type syntax. If we were to create an interface for
our FootballClubPrinter generic class, the interface definition would be:

 interface IFootballClubPrinter < T extends IFootballClub > {
 print(arg : T);
 IsEnglishTeam(arg : T);
 }

This interface looks identical to our class definition, with the only difference being that the
print and the IsEnglishTeam functions do not have an implementation. We have kept
the generic type syntax using < T >, and further specified that the type T must implement
the IFootballClub interface. To use this interface with the FootballClubPrinter class,
we can modify the class definition, as follows:

 class FootballClubPrinter< T extends IFootballClub >
 implements IFootballClubPrinter< T > {

 }

This syntax seems pretty straightforward. As we have seen before, we use the implements
keyword following the class definition, and then use the interface name. Note, however,
that we pass the type T into the interface definition of IFootballClubPrinter as a generic
type IFootballClubPrinter<T>. This satisfies the IFootballClubPrinter generic
interface definition.

Decorators, Generics, and Asynchronous Features

[143]

An interface that defines our generic classes further protects our code from being modified
inadvertently. As an example of this, suppose that we tried to redefine the class definition
of FootballClubPrinter so that T is not constrained to be of type IFootballClub:

 class FootballClubPrinter< T >
 implements IFootballClubPrinter< T > {

 }

Here, we have removed the constraint on the type T for the FootballClubPrinter class.
TypeScript will automatically generate an error:

error TS2344: Type 'T' does not satisfy the constraint 'IFootballClub'.

This error points us to our erroneous class definition; the type T, as used in the code
(FootballClubPrinter<T>), must use a type T that extends from IFootballClub, in
order to correctly implement the IFootballClubPrinter interface.

Creating new objects within generics
From time to time, generic classes may need to create an object of the type that is passed in
as the generic type T. Consider the following code:

 class FirstClass {
 id: number;
 }

 class SecondClass {
 name: string;
 }

 class GenericCreator< T > {
 create(): T {
 return new T();
 }
 }

 var creator1 = new GenericCreator<FirstClass>();
 var firstClass: FirstClass = creator1.create();

 var creator2 = new GenericCreator<SecondClass>();
 var secondClass : SecondClass = creator2.create();

Decorators, Generics, and Asynchronous Features

[144]

Here, we have two class definitions, FirstClass and SecondClass. FirstClass just has
a public id property, and SecondClass has a public name property. We then have a
generic class that accepts a type T and has a single function, named create. This create
function attempts to create a new instance of the type T.

The last four lines of the sample show us how we would like to use this generic class. The
creator1 variable creates a new instance of the GenericCreator class using the correct
syntax for creating variables of type FirstClass. The creator2 variable is a new instance
of the GenericCreator class, but this time is using SecondClass. Unfortunately, the
preceding code will generate a TypeScript compile error:

error TS2304: Cannot find name 'T'.

According to the TypeScript documentation, in order to enable a generic class to create
objects of type T, we need to refer to type T by its constructor function. We also need to
pass in the class definition as an argument. The create function will need to be rewritten,
as follows:

 class GenericCreator< T > {
 create(arg1: { new(): T }) : T {
 return new arg1();
 }
 }

Let's break this create function down into its component parts. First, we pass an
argument, named arg1. This argument is then defined to be of type { new(): T }. This is
the little trick that allows us to refer to T by its constructor function. We are defining a
new anonymous type that overloads the new() function and returns a type T. This means
that the arg1 argument is a function that is strongly typed to have a single constructor
that returns a type T. The implementation of this function simply returns a new instance of
the arg1 variable. Using this syntax removes the compile error that we encountered before.

This change, however, means that we must pass the class definition to the create function,
as follows:

 var creator1 = new GenericCreator<FirstClass>();
 var firstClass: FirstClass = creator1.create(FirstClass);

 var creator2 = new GenericCreator<SecondClass>();
 var secondClass : SecondClass = creator2.create(SecondClass);

Decorators, Generics, and Asynchronous Features

[145]

Note the change in usage of the create function. We are now required to pass in the class
definition for our type of T—create(FirstClass) and create(SecondClass) as our
first argument. Try running this code to see what happens. The generic class will, in fact,
create new objects of types FirstClass and SecondClass, as we expected.

Asynchronous language features
In this section of the chapter, we will discuss some asynchronous language features, and in
particular, promises and the async and await keywords.

The code samples in this section have been designed to run on Node version 4 and above,
which provides an ECMAScript 6 runtime. You can determine which version of Node you
are running by executing the following on the command line:

node --version

You need to ensure that the return value is v4 or greater to compile and run the code
samples in this section. The information returned by the version of Node used in this
section is:

V6.1.0

Promises
Promises are a technique for standardizing asynchronous processing in JavaScript.
Remember that there are many occasions where a function is called in JavaScript, but the
actual results are only received after a period of time. These occasions typically arise when
your code is requesting a resource of some sort, such as posting a request to a web server
for some JSON data, or reading a file from disk. The standard JavaScript technique for
asynchronous processing is the callback mechanism.

Unfortunately, when working with a lot of callbacks, our code can sometimes become
rather complex and repetitive. Promises provide a way of simplifying this callback code. To
start off our discussion on promises, let's take a look at some typical callback code, as
follows:

 function delayedResponseWithCallback(callback: Function) {
 function delayedAfterTimeout() {
 console.log(`delayedAfterTimeout`);
 callback();
 }
 setTimeout(delayedAfterTimeout, 1000);

Decorators, Generics, and Asynchronous Features

[146]

 }

 function callDelayedAndWait() {
 function afterWait() {
 console.log(`afterWait`);
 }
 console.log(`calling delayedResponseWithCallback`);
 delayedResponseWithCallback(afterWait);
 console.log(`after calling delayedResponseWithCallback`);
 }

 callDelayedAndWait();

We start with a function named delayedResponseWithCallback that takes a single
argument of type Function, named callback. If we consider the last line of this function,
we see that it is calling setTimeout with a 1000 millisecond or a one second delay. This is
to simulate a delay in processing, that is, an asynchronous function, within our code. The
setTimeout function takes a function as its first parameter, which will be called after the
one second delay. In this case, we are passing the function named delayedAfterTimeout,
which simply logs a message to the console, and then calls our callback function.

The second function in this code snippet is called callDelayedAndWait. If we take a look
at the last three lines of this function, we see that it is logging a message to the console, and
then calling our delayedResponseWithCallback function. It is passing in the function
afterWait as the callback function. The last line of the code executes our
callDelayedAndWait function. The output of this code is as follows:

calling delayedResponseWithCallback
after calling delayedResponseWithCallback
delayedAfterTimeout
afterWait

What we can see from the output is the sequence of events that is happening in our code.
When we execute the callDelayedAndWait function, it sets up a callback function, and
then logs the text "calling delayedResponseWithCallback" to the console. It then
invokes the delayedResponseWithCallback function, and then continues on to the next
line, where it logs the text "after calling delayedResponseWithCallback". After a
one second delay, the function delayedAfterTimeout is invoked, which then logs the text
"delayedAfterTimeout" to the console, and finally the afterWait function is invoked,
logging the text "afterWait" to the console.

Decorators, Generics, and Asynchronous Features

[147]

While these sort of callback functions are fairly standard in JavaScript, it can make our code
difficult to read, as well as difficult to understand, especially as our code base grows larger
and larger. Promises on the other hand, provide a fluent syntax for handling asynchronous
calls.

Promise syntax
A promise is an object that is created by passing in a function that accepts two callbacks.
The first callback is used to indicate a successful response, and the second callback is used
to indicate an error response. Consider the following function definition:

 function fnDelayedPromise (
 resolve: () => void,
 reject : () => void)
 {
 function afterTimeout() {
 resolve();
 }
 setTimeout(afterTimeout, 2000);
 }

Here, we have defined a function named fnDelayedPromise that takes two functions as
arguments. These functions are named resolve and reject, and they both return a void.
Within the body of the fnDelayedPromise function, we are again calling setTimeout (on
the last line of the function) to wait for two seconds before calling the resolve callback
function.

We can now use this function to construct a promise object, as follows:

 function delayedResponsePromise() : Promise<void> {
 return new Promise<void>(
 fnDelayedPromise
);
 }

Here, we have created a function named delayedResponsePromise that returns a
new Promise<void> object. Within the body of the function, we are simply creating and
returning a new promise object, and using our earlier function definition named
fnDelayedPromise as the only argument within its constructor. Note that the type void
that is used to create a promise is using generic syntax (new Promise<void>) to indicate
some information on the return type of the promise. We will discuss the use of the generic
<void> syntax a little later, when we explore how to return values from promises.

Decorators, Generics, and Asynchronous Features

[148]

While this syntax may seem a little convoluted, in general practice, these two function
definitions are combined in a single code block. The purpose of the previous two snippets
has been to highlight two important concepts. Firstly, to use promises, you must return a
new promise object. Secondly, a promise object is constructed with a function that takes two
callback arguments.

Let's take a look at how these two steps are combined in general practice, as follows:

 function delayedPromise() : Promise<void> {
 return new Promise<void>
 (
 (resolve : () => void,
 reject: () => void
) => {
 function afterTimeout() {
 resolve();
 }
 setTimeout(afterTimeout, 1000);
 }
);
 }

Here, we have a function named delayedPromise that returns a new Promise<void>
object. The first line of this function constructs the new Promise object, and passes in an
anonymous function definition that takes two callback functions, named resolve and
reject. The body of the code is then defined after the fat arrow => , and is enclosed with
matching curly braces { and }. The body of the code is defining a function named
afterTimeout that will be called after a one second timeout. Note that the afterTimeout
function is invoking the resolve function callback.

Note that this code snippet has been carefully formatted to clearly show the matching
braces (and) and matching curly braces { and }. Remember that to use promises, we must
construct and return a new Promise object, and the constructor of a promise object takes a
function (or anonymous function) with two callback arguments.

Using promises
Promises provide a simple syntax for handling these resolve and reject functions. Let's
take a look at how we would use the promises defined in our previous code snippet, as
follows:

 function callDelayedPromise() {
 console.log(`calling delayedPromise`);

Decorators, Generics, and Asynchronous Features

[149]

 delayedPromise().then(
 () => { console.log(`delayedPromise.then()`) }
);
 }

 callDelayedPromise();

Here, we have defined a function named callDelayedPromise. This function logs a
message to the console, and then calls our delayedPromise function. We are using fluent
syntax to attach to the then function of the promise, and defining an anonymous function
that will be called when the promise is resolved. The output of this code is as follows:

calling delayedPromise
delayedPromise.then()

This promise fluent syntax also defines a catch function that is used for error handling.
Consider the following promise definition:

 function errorPromise() : Promise<void> {
 return new Promise<void>
 (
 (resolve: () => void,
 reject: () => void
) => {
 reject();
 }
);
 }

Here, we have defined a function named errorPromise using our promise syntax. Note
that within the body of the promise function, we are calling the reject callback function
instead of the resolve function. This reject function is used to indicate an error. Let's
now use the catch function to trap this error, as follows:

 function callErrorPromise() {
 console.log(`calling errorPromise`);
 errorPromise().then(
 () => { console.log(`no error.`) }
).catch(
 () => { console.log(`an error occurred`)}
);
 }

 callErrorPromise();

Decorators, Generics, and Asynchronous Features

[150]

Here, we have defined a function named callErrorPromise that is logging a message to
the console, and then invoking the errorPromise promise. Using our fluent syntax, we
have defined an anonymous function to be called within the then response (that is, on
success), and we have also defined an anonymous function to be called within the catch
response (that is, on error). The output of this code is as follows:

calling errorPromise
an error occurred

Callback versus promise syntax
As a comparison of the two techniques we have discussed, let's take a look at a simplified
version of the callback versus the promise syntax, as follows:

Our standard callback mechanism is as follows:

 function standardCallback() {
 function afterCallbackSuccess() {
 // execute this code
 }
 function afterCallbackError() {
 // execute on error
 }
 // invoke async function
 invokeAsync(afterCallbackSuccess, afterCallbackError);
 }

And our promise syntax is as follows:

 function usingPromises() {
 // invoke async function
 delayedPromise().then(
 () => {
 // execute on success
 }
).catch (
 () => {
 // execute on error
 }
);
 }

As we can see, using promises introduces a fluent syntax for handling asynchronous
programming.

Decorators, Generics, and Asynchronous Features

[151]

Returning values from promises
So far, we have defined all of our promise objects as Promise<void>. The void in this case
indicates that our promises will not return any values. If we use Promise<string>, this
indicates that our promises will return string values. Let's take a look at how to return
values from promises, as follows:

 function delayedPromiseWithParam() : Promise<string> {
 return new Promise<string>(
 (
 resolve: (str: string) => void,
 reject: (str:string) => void
) => {
 function afterWait() {
 resolve("resolved_within_promise");
 }
 setTimeout(afterWait , 2000);
 }
);
 }

Here, we have a function named delayedPromiseWithParam that constructs and returns
our promise object as usual. Note, however, that the definition of both the resolve callback
function and the reject callback functions now take a single string argument. This string
argument ties into the generic type that has been defined for this promise, that is,
Promise<string>. If we wanted to use a number type for our resolve and reject
arguments, we would need to define our return type as Promise<number>.

The inner workings of the anonymous function are similar to what we have discussed
before, with the exception that the call to resolve now includes a string as an argument.

Let's take a look at how this return value can be used, as follows:

 function callPromiseWithParam() {
 console.log(`calling delayedPromiseWithParam`);
 delayedPromiseWithParam().then((message: string) => {
 console.log(`Promise.then() returned ${message} `);
 });
 }

 callPromiseWithParam();

Decorators, Generics, and Asynchronous Features

[152]

Here, we have defined a function named callPromiseWithParam, that logs a message to
the console, and then calls our delayedPromiseWithParam function. We then use the
fluent syntax to attach an anonymous function to the then function of the promise. Note
how our anonymous function now takes a single string parameter, named message. This
corresponds to the promise callback of resolve : (str: sring). The output of this
code is as follows:

calling delayedPromiseWithParam
Promise.then() returned resolved_within_promise

As expected, our promise called the resolve callback, that is,
resolve("resolved_within_promise"), which corresponds to our then((message:
string) => { ... }).

Note that promises can only return a single value when calling either the resolve or
reject callback functions. If you need to return a message that contains multiple fields,
then you will need to use an interface, as follows:

 interface IPromiseMessage {
 message: string;
 id: number;
 }

 function promiseWithInterface() : Promise<IPromiseMessage> {
 return new Promise<IPromiseMessage> (
 (
 resolve: (message: IPromiseMessage) => void,
 reject: (message: IPromiseMessage) => void
) => {
 resolve({message: "test", id: 1});
 }
);
 }

Here, we have defined an interface named IPromiseMessage that contains a message of
type string, and an id of type number. Our function named promiseWithInterface
now returns a Promise<IPromiseMesssage>, and the resolve and reject callback
functions now use IPromiseMessage as the argument type. Our call to resolve must now
construct an object with both a message property and an id property, in order to correctly
implement the IPromiseMessage interface. Using interfaces in this way allows our
promises to return any type of data.

Decorators, Generics, and Asynchronous Features

[153]

Async and await
As a further language enhancement when working with promises, TypeScript introduces
two keywords that work together when using promises. These two keywords are async
and await. The usage of async and await can be best described by considering some
sample code, as follows:

 function awaitDelayed() : Promise<void> {
 return new Promise<void> (
 (resolve: () => void,
 reject: () => void) =>
 {
 function afterWait() {
 console.log(`calling resolve`);
 resolve();
 }
 setTimeout(afterWait, 1000);
 }
);
 }

We start with a fairly standard function named awaitDelayed that returns a promise,
similar to the examples that we have seen before. Note that in the body of the afterWait
function, we log a message to the console before calling the resolve callback. Let's now
take a look at how we can use this promise with the async and await keywords, as
follows:

 async function callAwaitDelayed() {
 console.log(`call awaitDelayed`);
 await awaitDelayed();
 console.log(`after awaitDelayed`);
 }

 callAwaitDelayed();

We start with a function named callAwaitDelayed that is prefixed by the async
keyword. Within this function, we log a message to the console, and then call the previously
defined awaitDelayed function. This time, however, we prefix the call to the
awaitDelayed function with the keyword await. We then log another message to the
console. The output of this code is as follows:

call awaitDelayed
calling resolve
after awaitDelayed

Decorators, Generics, and Asynchronous Features

[154]

What this output is showing is that the await keyword is actually waiting for the
asynchronous function to be called before continuing on with the program execution. This
produces an easy to read, and easy to follow flow of program logic by automatically
pausing execution until the promise is fulfilled.

Await errors
Our promise objects generally define both a success condition as well as an error condition
when calling asynchronous functions. In order to trap these error conditions when using
async await syntax, we can use a try...catch block. To illustrate this, let's define a
promise that returns an error, as well as an error message, as follows:

 function awaitError() : Promise<string> {
 return new Promise<string> (
 (resolve: (message: string) => void,
 reject: (error: string) => void) =>
 {
 function afterWait() {
 console.log(`calling reject`);
 reject("an error occurred");
 }
 setTimeout(afterWait, 1000);
 }
);
 }

Here, we have a function named awaitError that is defining and returning a
Promise<string>, and is using our standard promise syntax with a one second delay. The
line to note here is inside the afterWait function, where we are calling the reject
promise callback with an error message. Our corresponding async await function will be
as follows:

 async function callAwaitError() {
 console.log(`call awaitError`);
 try {
 await awaitError();
 } catch (error) {
 console.log(`error returned : ${error}`);
 }
 console.log(`after awaitDelayed`);
 }

 callAwaitError();

Decorators, Generics, and Asynchronous Features

[155]

Here, we have an async function named callAwaitError that logs a message to the
console, and then calls await awaitError() within a try...catch block. Note again
that the program logic will pause when it reaches the await keyword for the asynchronous
function to return before continuing on with code execution. In this case, however, the call
to await will result in an error being thrown, which will be trapped by the catch(error)
block. Within this block, we are logging the error message received to the console. The
output of this code is as follows:

call awaitError
calling reject
error returned : an error occurred
after awaitDelayed

As can be seen by the output, the program execution is pausing on the await
awaitError() asynchronous function to return. When an error occurs, the catch block is
activated, and the catch argument error holds the error message generated within the
promise.

Promise versus await syntax
As a refresher of promise versus async await syntax, let's compare these two techniques
side by side. Firstly, the then and catch syntax used by standard promises:

 function simplePromises() {
 // invoke async function
 delayedPromise().then(
 () => {
 // execute on success
 }
).catch (
 () => {
 // execute on error
 }
);
 // code here does NOT wait for async call
 }

Decorators, Generics, and Asynchronous Features

[156]

Note that in the promise code above, we are using .then and .catch to define anonymous
functions to be called depending on whether the asynchronous call was successful or not.
Another caveat when using promise syntax is that any code outside of the .then or .catch
block will be executed immediately, and will not wait for the asynchronous call to complete.

Secondly, the new async await syntax :

 async function usingAsyncSyntax() {
 try {
 await delayedPromise();
 // execute on success
 } catch(error) {
 // execute on error
 }
 // code here waits for async call
 }

Here, our async await syntax allows for a very simple syntax that flows logically. We know
that any call to await will block code execution until the asynchronous function has
returned, including any code defined outside our try...catch block.

As can be seen by comparing the two styles side by side, using async await syntax
simplifies our code, makes it more human readable, and as such, less error-prone.

Await messages
The final topic we will discuss on async await is how to process messages that are returned
within our promises. Consider the following promise definition:

 function asyncWithMessage() : Promise<string> {
 return new Promise<string> (
 (resolve: (message: string) => void,
 reject: (message: string) => void
) => {
 function afterWait() {
 resolve("resolve_message");
 }
 setTimeout(afterWait, 1000);
 }
);
 }

Decorators, Generics, and Asynchronous Features

[157]

Here, we have defined a standard function returning a promise after a one second delay.
The code to note here is the call to resolve within the afterWait function that is sending
a message back to the callback. In this case, it is returning a string value of
"resolve_message", which matches our Promise<string> syntax. Again, we can use
interfaces to return multiple values within a promise. Our corresponding async await
function that uses this promise is as follows:

 async function awaitMessage() {
 console.log(`calling asyncWithMessage`);
 let message: string = await asyncWithMessage();
 console.log(`message returned: ${message}`);
 }

 awaitMessage();

Here, we have defined an async function named awaitMessage that is logging a message
to the console, and then calling the asyncWithMessage function. Note how we retrieved
the message returned by the promise by simply defining a variable to hold the return value
of the await call. We are then logging the received message to the console. The output of
this code is as follows:

calling asyncWithMessage
message returned: resolve_message

As we can see by this code sample, retrieving and processing messages that are returned
when using the await keyword is very simple. All we need to do is define a variable to
hold the return result of the await call, and then we have access to our message.

Summary
In this chapter, we have had an in-depth discussion on decorators, generics, and
asynchronous programming techniques using promises and async await. We have seen
how decorators provide a way of injecting code into, or modifying class definitions. We
have also explored using experimental metadata information when working with
decorators and class definitions. Our discussion then turned to generics, what they are, and
how they are used. We worked through generic interfaces, and creating objects within
generic functions. Our final discussion revolved around asynchronous programming
techniques using callbacks, promises, and the async and await keywords.

In the next chapter, we will look at the mechanism that TypeScript uses to integrate with
existing JavaScript libraries–declaration files.

5
Writing and Using Declaration

Files
One of the most appealing facets of JavaScript development is the myriad of external
JavaScript libraries that have already been published, such as jQuery, Knockout, and
Underscore. We have already seen how TypeScript uses “syntactic sugar” to enhance our
JavaScript development experience, but how do we apply this “sugar” to existing JavaScript
or JavaScript libraries? The answer is relatively simple–declaration files.

A declaration file is a special type of file used by the TypeScript compiler. It is marked with
a .d.ts extension, and is then used by the TypeScript compiler within the compilation step.
Declaration files are similar to header files used in other languages; they simply describe the
syntax and structure of available functions and properties, but do not provide an
implementation. Declaration files, therefore, do not actually generate any JavaScript code.
They are there simply to provide TypeScript compatibility with external libraries, or to fill
in the gaps for JavaScript code that TypeScript does not know about. In order to use any
external JavaScript library within TypeScript, you will need a declaration file.

In this chapter, we will explore declaration files, show the reasoning behind them, and
build one based on some existing JavaScript code. If you are familiar with declaration files
and how to use them, then you may be interested in the Declaration Syntax Reference section,
which is designed as a quick reference guide to the module definition syntax. Since writing
declaration files is a rather small part of TypeScript development, we do not write them
very often.

Writing and Using Declaration Files

[159]

We will be looking at the following topics in this chapter:

Global variables
Using JavaScript code blocks in HTML
Writing your own declaration files
Module merging
Declaration syntax reference

Global variables
Most modern websites use some sort of server engine to generate the HTML for their web
pages. If you are familiar with the Microsoft stack of technologies, then you would know
that ASP.NET MVC is a very popular server-side engine, used to generate HTML pages
based on master pages, partial pages, and MVC views. If you are a Node developer, then
you may be using one of the popular Node packages to help you construct web pages
through templates, such as Jade, Handlebars or Embedded JavaScript (EJS).

Within these templating engines, you may sometimes need to set JavaScript properties on
the HTML page as a result of your server-side logic. As an example, let's assume that you
keep a list of contact e-mail addresses on your database, and then surface these to your
HTML page through a JavaScript global variable named CONTACT_EMAIL_ARRAY. Your
rendered HTML page would then include a <script> tag that contains this global variable
and contact e-mail addresses. You may have some JavaScript that reads this array, and then
renders the values in a footer. The following HTML sample shows what a generated script
would end up looking like:

 <body>
 <script type="text/javascript">
 var CONTACT_EMAIL_ARRAY = [
 "help@site.com",
 "contactus@site.com",
 "webmaster@site.com"
];
 </script>
 </body>

Writing and Using Declaration Files

[160]

This HTML has a <script> block and within this <script> block, some JavaScript. The
JavaScript defines a variable named CONTACT_EMAIL_ARRAY that contains some strings.
Let's assume that we wanted to write some TypeScript that can read this global variable.
Consider the following TypeScript code:

 class GlobalLogger {
 static logGlobalsToConsole() {
 for(let email of CONTACT_EMAIL_ARRAY) {
 console.log(`found contact : ${email}`);
 }
 }
 }

 window.onload = () => {
 GlobalLogger.logGlobalsToConsole();
 }

This code creates a class named GlobalLogger with a single static function named
logGlobalsToConsole. The function simply iterates through the CONTACT_EMAIL_ARRAY
global variable, and logs the items in the array to the console.

If we compile this TypeScript code, we will generate the following errors:

error TS2304: Cannot find name 'CONTACT_EMAIL_ARRAY'

This error indicates that the TypeScript compiler does not know anything about the variable
named CONTACT_EMAIL_ARRAY. It does not even know that it is an array. As this piece of
JavaScript is outside any TypeScript code, we will need to treat it in the same way as
external JavaScript.

To solve our compilation problem, and make this CONTACT_EMAIL_ARRAY variable visible
to TypeScript, we will need to use a declaration file. Let's create a file named
globals.d.ts and include the following TypeScript declaration within it:

 declare var CONTACT_EMAIL_ARRAY: string [];

The first thing to notice is that we are using a new TypeScript keyword – declare. The
declare keyword tells the TypeScript compiler that we want to define the type of
something, but that the implementation of this object (or variable or function) will be
resolved at runtime. We have declared a variable named CONTACT_EMAIL_ARRAY that is of
type string []. This declare keyword does two things for us, it allows the use of the
variable CONTACT_EMAIL_ARRAY within TypeScript code, and it also strongly types this
variable to be an array of strings.

Writing and Using Declaration Files

[161]

With this globals.d.ts file in place, our code compiles correctly. If we now run this in a
browser, the console output of our browser log will look as follows:

Using global variables in TypeScript

So, by using a declaration file named globals.d.ts, we have been able to describe the
structure of an external JavaScript variable to the TypeScript compiler. This JavaScript
variable is defined outside any of our TypeScript code, yet we are still able to work with the
definition of this variable within TypeScript.

This is what declaration files are used for. We are basically telling the TypeScript compiler
to use the definitions found within a declaration file within the compilation step, and that
the actual variables themselves will only be available at runtime.

Definition files also bring Intellisense or code completion functionality to
our IDE for external JavaScript libraries and code.

Using JavaScript code blocks in HTML
The samples we have just seen are an example of tight coupling between the generated
HTML content (that contains JavaScript code in script blocks) on your web page, and the
actual running JavaScript. You may argue, however, that this is a design flaw. If the web
page needed an array of contact e-mails, then the JavaScript application should simply send
an AJAX request to the server for the same information in JSON format. While this is a very
valid argument, there are cases where including content in the rendered HTML is actually
faster.

Writing and Using Declaration Files

[162]

There used to be a time where the Internet seemed to be capable of sending and receiving
vast amounts of information in the blink of an eye. Bandwidth and speed on the Internet
were growing exponentially, and desktops were getting larger amounts of RAM and faster
processors. As developers, during this stage of the Internet highway, we stopped thinking
about how much RAM a typical user had on their machine. We also stopped thinking about
how much data we were sending across the wire. This was because Internet speeds were so
fast and browser processing speed was seemingly limitless.

And then came along the mobile phone and it felt like we were back in the 1990s with
incredibly slow Internet connections, tiny screen resolutions, limited processing power, and
very little RAM (and popular arcade gaming experiences such as Elevator Action h t t p s

://a r c h i v e . o r g /d e t a i l s /E l e v a t o r _ A c t i o n _ 1985_ S e g a _ T a i t o _ J P _ e n). The point of this
story is that as modern web developers, we still need to be mindful of browsers that run on
mobile phones. These browsers are sometimes running on very limited Internet
connections, meaning that we must carefully measure the size of our JavaScript libraries,
JSON data, and HTML pages, to ensure that our applications are fast and usable, even on
mobile browsers.

This technique of including JavaScript variables or smaller static JSON data within the
rendered HTML page often provides us with the fastest way to render a screen on an older
browser, or in the modern age, a mobile phone. Many popular sites use this technique to
quickly render the general structure of the page (header, side panels, footers, and so on)
before the main content is delivered through asynchronous JSON requests. This technique
works well because it renders the page faster and gives the user faster visual feedback.

Structured data
Let's enhance this simple array of contact e-mails with a little more relevant data. For each
of these e-mail addresses, let's assume that we also want to include some text to render
within the footer of our page, along with the e-mail addresses. Consider the following
HTML script tag:

 <script type="text/javascript">
 var CONTACT_DATA = [
 { DisplayText: 'Help',
 Email: 'help@site.com' } ,
 { DisplayText: 'Contace',
 Email: 'contactus@site.com' },
 { DisplayText: 'Webmaster',
 Email: 'webmaster@site.com' }
];
 </script>

https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en
https://archive.org/details/Elevator_Action_1985_Sega_Taito_JP_en

Writing and Using Declaration Files

[163]

Here, we have defined a global variable named CONTACT_DATA that is an array of objects.
Each object has a property named DisplayText and a property named Email. If we are to
use this array within our TypeScript code, we will need to include a definition of this
variable in our globals.d.ts declaration file, as follows:

 interface IContactData {
 DisplayText: string;
 Email: string;
 }

 declare var CONTACT_DATA: IContactData[];

Here, we start with an interface definition named IContactData to represent the
properties of an individual item in the CONTACT_DATA array. Each item has a DisplayText
property that is of the type string, as well as an Email property which is also of the type
string. Our IContactData interface, therefore, matches the original object properties of a
single item in the CONTACT_DATA array. We then declare a variable named CONTACT_DATA
and set its type to be an array of the IContactData interfaces.

This allows us to work with the CONTACT_DATA variable within TypeScript. Let's now create
a class to process this data, as follows:

 class ContactLogger {
 static logContactData() {
 for (let contact of CONTACT_DATA) {
 console.log(`DisplayText: ${contact.DisplayText}` +
 `, Email : ${contact.Email}`);
 }
 }
 }

 window.onload = () => {
 ContactLogger.logContactData();
 }

Here, the class ContactLogger has a single static method named logContactData.
Within this method, we loop through all of the items in the CONTACT_DATA array. As we are
using the for...of syntax, the contact variable will be strongly typed to be of type
IContactData, and therefore will have two properties–DisplayText and Email. We
simply log these values to the console. The output of this code would be:

Writing and Using Declaration Files

[164]

Using advanced global variables in TypeScript

Writing your own declaration file
In any development team, there will come a time when you will need to either bug-fix, or
enhance a body of code that has already been written in JavaScript. If you are in this
situation, then you would want to try and write new areas of code in TypeScript, and
integrate them with your existing body of JavaScript. To do so, however, you will need to
write your own declaration files for any existing JavaScript that you need to reuse. This may
seem like a daunting and time-consuming task, but when you are faced with this situation,
just remember to take small steps, and define small sections of code at a time. You will be
surprised at how simple it really is.

In this section, let's assume that you need to integrate an existing helper class, one that is
reused across many projects, is well tested, and is a development team standard. This class
has been implemented as a JavaScript closure, as follows:

 ErrorHelper = (function() {
 return {
 containsErrors: function (response) {
 if (!response || !response.responseText)
 return false;

 var errorValue = response.responseText;

 if (String(errorValue.failure) == "true"
 || Boolean(errorValue.failure)) {
 return true;
 }
 return false;
 },
 trace: function (msg) {
 var traceMessage = msg;
 if (msg.responseText) {
 traceMessage = msg.responseText.errorMessage;

Writing and Using Declaration Files

[165]

 }
 console.log("[" +
 new Date().toLocaleDateString()
 + "] " + traceMessage);
 }
 }
 })();

This JavaScript code snippet defines a JavaScript object named ErrorHelper that has two
methods. The containsErrors method takes an object named response as an argument.
This response object is then checked for errors. An object does not have an error if the
following are true:

The response argument is undefined
The response.responseText is undefined

An error condition, however, is returned if the following are true:

The response.responseText.failure property is set to the string value of
"true"

The response.responseText.failure property is set to the boolean value of
true

The ErrorHelper closure also has a function called trace that can be called with a string,
or a response object similar to what the containsErrors function is expecting.

Unfortunately, this ErrorHelper function is missing a key piece of documentation. What is
the structure of the object being passed into these two methods, and what properties does it
have? Without some form of documentation, we are forced to reverse engineer the code to
determine what the structure of the response object looks like. If we can find some sample
usages of the ErrorHelper class, this may help us to guess this structure.

As an example of how this ErrorHelper is used, consider the following JavaScript code:

 var failureMessage = {
 responseText : {
 "failure" :true,
 "errorMessage" : "Message From failureMessage"
 }
 }

 var failureMessageString = {
 responseText : {
 "failure" : "true",
 "errorMessage" : "Message from failureMessageString"

Writing and Using Declaration Files

[166]

 }
 }

 var successMessage = {
 responseText : {
 "failure" : false
 }
 }

 if (ErrorHelper.containsErrors(failureMessage))
 ErrorHelper.trace(failureMessage);
 if (ErrorHelper.containsErrors(failureMessageString))
 ErrorHelper.trace(failureMessageString);
 if (!ErrorHelper.containsErrors(successMessage))
 ErrorHelper.trace("success");

Here, we start with a variable named failureMessage that has a single property
reponseText. The responseText property in turn has two child properties–failure and
errorMessage. Our next variable failureMessageString has the same structure, but
defines the responseText.failure property to be of type string, instead of type boolean.
Finally, our successMessage object just defines the responseText.failure property to
be false, but it does not have an errorMessage property.

In JavaScript JSON format, property names are required to have quotes
around them, whereas in JavaScript object format, these are optional.
Therefore, the structure {"failure" : true} is syntactically equivalent
to the structure {failure : true}.

The last couple of lines of the preceding code snippet show how the ErrorHelper closure
is used. All we need to do is call the ErrorHelper.containsErrors method with our
variable, and if the result is true, log the message to the console via the
ErrorHelper.trace function. Our output would be as follows:

ErrorHelper console output

Writing and Using Declaration Files

[167]

The module keyword
To test this JavaScript ErrorHelper closure using TypeScript, we will need an HTML page
that includes both the error_helper.js file, and a TypeScript generated JavaScript file.
Assuming that our TypeScript file is called ErrorHelperTypeScript.ts, our HTML page
would then be as follows:

 <!DOCTYPE html>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>specify.
 <title></title>
 <script src="error_helper.js"></script>
 <script src="ErrorHelperTypeScript.js"></script>
 </head>
 <body>

 </body>
 </html>

This HTML is very simple, and includes both the existing error_helper.js JavaScript
file, as well as the TypeScript generated ErrorHelperTypeScript.js file.

Within the ErrorHelperTypeScript.ts file, let's use the ErrorHelper, as follows:

 window.onload = () => {
 var failureMessage = {
 responseText : {
 "failure" : true,
 "errorMessage" : "Error Message from Typescript"
 }
 }
 if (ErrorHelper.containsErrors(failureMessage))
 ErrorHelper.trace(failureMessage);
 }

Here, we have a stripped down version of our original JavaScript sample. In fact, we can
just copy and paste the original JavaScript code into our TypeScript file. We first create a
failureMessage object with the correct properties, and then simply call the
ErrorHelper.containsErrors method, and the ErrorHelper.trace method. If we
were to compile our TypeScript file at this stage, we would receive the following error:

error TS2304: Cannot find name 'ErrorHelper'.

Writing and Using Declaration Files

[168]

This error is indicating that there is no valid TypeScript type named ErrorHelper, even
though we have the full source of ErrorHelper in our JavaScript file. TypeScript by
default, will look through all the TypeScript files in our project to find class definitions, but
it will not parse JavaScript files. We will need a new TypeScript definition file in order to
correctly compile this code.

This definition file is not included in the HTML file at all; it is only used by
the TypeScript compiler and does not generate any JavaScript.

Without a set of helpful documentation on our ErrorHelper class, we will need to reverse
engineer a TypeScript definition purely by reading the source code. This is obviously not an
ideal situation, and is not recommended, but at this stage, it is all we can do. In these
situations, the best starting point is simply to look at the usage samples and work our way
up from there.

Looking at the usage of the ErrorHelper closure in JavaScript, there are two key pieces
that should be included in our declaration file. The first is a set of function definitions for
the containsErrors and trace functions. The second is a set of interfaces to describe the
structure of the response object that the ErrorHelper closure relies upon. Let's start with
the function definitions, and create a new TypeScript file named ErrorHelper.d.ts with
the following code:

 declare module ErrorHelper {
 function containsErrors(response);
 function trace(message);
 }

This declaration file starts with the declare keyword that we have seen before, but then
uses a new TypeScript keyword–module. The module keyword must be followed by a
module name, which in this case, is ErrorHelper. This module name must match the
closure name from the original JavaScript that we are describing. In all of our usages of the
ErrorHelper, we have always pre-fixed the functions containsErrors and trace with
the closure name ErrorHelper itself. This module name is also known as a namespace. If
we had another class named AjaxHelper that also included a containsErrors function,
we would be able to distinguish between the AjaxHelper.containsErrors and the
ErrorHelper.containsErrors functions by using these namespaces, or module names.

Writing and Using Declaration Files

[169]

The second line of our module declaration indicates that we are defining a function called
containsErrors that takes one parameter. The third line of this module declaration
indicates that we are defining another function named trace that also takes a single
parameter. With this definition in place, our TypeScript code sample will compile correctly.

Interfaces
Although we have correctly defined the two functions that are available to users of the
ErrorHelper closure, we are missing the second piece of information about the functions
available on the ErrorHelper closure–the structure of the response argument. We are not
strongly typing the arguments for either of the containsErrors or trace functions. At
this stage, our TypeScript code can pass anything into these two functions because it does
not have a definition for the response or message arguments. We know, however, that
both these functions query our parameters for a specific structure. If we pass in an object
that does not conform to this structure, then our JavaScript code will cause runtime errors.

To solve this problem and to make our code more stable, let's define an interface for these
parameters:

 interface IResponse {
 responseText: IFailureMessage;
 }

 interface IFailureMessage {
 failure: boolean;
 errorMessage: string;
 }

We start with an interface named IResponse that has a single property of responseText,
the same name as the original JavaScript object. This responseText property is strongly
typed to be of type IFailureMessage. The IFailureMessage interface is strongly typed
to have two properties–failure, which is of type boolean, and errorMessage, which is
of type string. These interfaces correctly describe the proper structure of the response
argument for the containsErrors and trace functions. We can now modify our original
declaration for these functions, as follows:

 declare module ErrorHelper {
 function containsErrors(response: IResponse);
 function trace(message: IResponse);
 }

Writing and Using Declaration Files

[170]

The function definition for containsErrors and trace now strongly types the response
argument to be of type IResponse, which we defined earlier. This modification to the
definition file will now force any further usage of the containsErrors or trace functions
to send in a valid argument that conforms to the IResponse structure. Let's write some
intentionally incorrect TypeScript code and see what happens:

 var anotherFailure: IResponse = {
 responseText: {
 success: true
 }
 }

We start by creating a variable named anotherFailure and specify its type to be of type
IResponse. Unfortunately, the IResponse interface does not have a property named
success, and so we will generate the following TypeScript error:

TypeScript error message with an invalid data structure

As can be seen from this fairly verbose but informative error message, the structure of the
anotherFailure variable is causing all the errors. Even though we have correctly
referenced the responseText property of IResponse, the responseText property is
strongly typed to be of type IFailureMessage, which requires both a failure property
and an errorMessage property; hence the error.

By creating a strongly typed declaration file for the existing ErrorHelper class, we can
ensure that any further TypeScript usage of the existing ErrorHelper JavaScript closure
will not generate runtime errors.

Writing and Using Declaration Files

[171]

Union types
We are not quite finished with the declaration file for the ErrorHelper just yet. If we take a
look at the original JavaScript usage of the ErrorHelper, we will notice that the
containsErrors function also allows for the failure property of responseText to be a
string:

 var failureMessage = {
 responseText : {
 "failure" : "true",
 "errorMessage" : "Error Message from Typescript"
 }
 }

If we compile this code now, we will get the following compile error:

TypeScript error message with invalid property

In the preceding definition of the variable failureMessageString, the type of the
"failure" property is "true", which is of type string, and not true, which is of type
boolean. In order to allow for this variant on the original IFailureMessage interface, we
will need to modify our declaration file. The simplest way to allow for both types would be
to use a type union, as follows:

 interface IFailureMessage {
 failure: boolean | string;
 errorMessage: string;
 }

Here, we have simply updated the failure property on the IFailureMessage interface to
allow for both boolean and string types. Our code will now compile correctly.

This completes our definition file for the ErrorHelper JavaScript class.

Writing and Using Declaration Files

[172]

Module merging
As we now know, the TypeScript compiler will automatically search through all the .d.ts
files in our project to pick up declaration files. If these declaration files contain the same
module name, the TypeScript compiler will merge these two declaration files and use a
combined version of the module declarations.

Suppose we have a file named MergedModule1.d.ts that contains the following
definition:

 declare module MergedModule {
 function functionA();
 }

In addition, we have a second file named MergedModule2.d.ts that contains the
following definition:

 declare module MergedModule {
 function functionB();
 }

The TypeScript compiler will then merge these two modules as if they were a single
definition:

 declare module MergedModule {
 function functionA();
 function functionB();
 }

This will allow both functionA and functionB to be valid functions of the same
MergedModule namespace and allow the following usage:

 MergedModule.functionA();
 MergedModule.functionB();

Modules can also merge with interfaces, classes, and enums. Classes,
however, cannot merge with other classes, variables, or interfaces.

Writing and Using Declaration Files

[173]

Declaration syntax reference
When creating declaration files and using the module keyword, there are a number of rules
that can be used to mix and match definitions. As a TypeScript programmer, you will
generally only write module definitions every now and then, and on occasion, need to add
a new definition to an existing declaration file.

This section, therefore, is designed to be a quick reference guide to this declaration file
syntax, or a cheat sheet. Each section contains a description of the module definition rule, a
JavaScript syntax snippet, and then the equivalent TypeScript declaration file syntax.

To use this reference section, simply match the JavaScript that you are trying to emulate
from the JavaScript syntax section, and then write your declaration file with the equivalent
definition syntax. We will start with the function overrides syntax as an example.

Function overrides
Declaration files can include multiple definitions for the same function. If the same
JavaScript function can be called with different types, you will need to declare a function
override for each variant of the function.

The JavaScript syntax

 trace("trace a string");
 trace(true);
 trace(1);
 trace({ id: 1, name: "test" });

The declaration file syntax

 declare function trace(arg: string | number | boolean);
 declare function trace(arg: { id: number; name: string });

Each function definition must have a unique function signature.

Writing and Using Declaration Files

[174]

Nested namespaces
Module definitions can contain nested module definitions, which then translate to nested
namespaces. If your JavaScript uses namespaces, then you will need to define nested
module declarations to match the JavaScript namespaces.

The JavaScript syntax

 FirstNamespace.SecondNamespace.ThirdNamespace.log("test");

The declaration file syntax

 declare module FirstNamespace {
 module SecondNamespace {
 module ThirdNamespace {
 function log(msg: string);
 }
 }
 }

Classes
Class definitions are allowed within module definitions. If your JavaScript uses classes, or
the new operator, then the newable classes will need to be defined in your declaration file.

The JavaScript syntax

 var myClass = new MyClass();

The declaration file syntax

 declare class MyClass { }

Class namespaces
Class definitions are allowed within nested module definitions. If your JavaScript classes
have a preceding namespace, you will need to declare nested modules to match the
namespaces first, and then you can declare classes within the correct namespace.

The JavaScript syntax

 var myNestedClass = new OuterName.InnerName.NestedClass();

Writing and Using Declaration Files

[175]

The declaration file syntax

 declare module OuterName {
 module InnerName {
 class NestedClass {}
 }
 }

Class constructor overloads
Class definitions can contain constructor overloads. If your JavaScript classes can be
constructed using different types, or with multiple parameters, you will need to list each of
these variants in your declaration file as constructor overloads.

The JavaScript syntax

 var myClass = new MyClass();
 var myClass2 = new MyClass(1, "test");

The declaration file syntax

 declare class MyClass {
 constructor(id: number, name: string);
 constructor();
 }

Class properties
Classes can contain properties. You will need to list each property of your class within your
class declaration.

The JavaScript syntax

 var classWithProperty = new ClassWithProperty();
 classWithProperty.id = 1;

The declaration file syntax

 declare class ClassWithProperty {
 id: number;
 }

Writing and Using Declaration Files

[176]

Class functions
Classes can contain functions. You will need to list each function of your JavaScript class
within your class declaration, in order for the TypeScript compiler to accept calls to these
functions.

The JavaScript syntax

 var classWithFunction = new ClassWithFunction();
 classWithFunction.functionToRun();

The declaration file syntax

 declare class ClassWithFunction {
 functionToRun(): void;
 }

Functions or properties that are considered as private do not need to be
exposed via the declaration file, and can simply be omitted.

Static properties and functions
Class methods and properties can be static. If your JavaScript functions or properties can be
called without needing an instance of an object to work with, then these properties or
functions will need to be marked as static.

The JavaScript syntax

 StaticClass.staticId = 1;
 StaticClass.staticFunction();

The declaration file syntax

 declare class StaticClass {
 static staticId: number;
 static staticFunction();
 }

Writing and Using Declaration Files

[177]

Global functions
Functions that do not have a namespace prefix can be declared in the global namespace. If
your JavaScript defines global functions, these will need to be declared without a
namespace.

The JavaScript syntax

 globalLogError("test");

The declaration file syntax

 declare function globalLogError(msg: string);

Function signatures
A function can use a function signature as a parameter. JavaScript functions that use
callback functions or anonymous functions, will need to be declared with the correct
function signature.

The JavaScript syntax

 describe("test", function () {
 });

The declaration file syntax

 declare function describe(
 name: string, functionDef: () => void);

Optional properties
Classes or functions can contain optional properties. Where JavaScript object parameters are
not mandatory, these will need to be marked as optional properties in the declaration.

The JavaScript syntax

 var classWithOpt = new ClassWithOptionals();
 var classWithOpt1 = new ClassWithOptionals(
 {id: 1});
 var classWithOpt2 = new ClassWithOptionals(
 {name: 'test'});
 var classWithOpt3 = new ClassWithOptionals(
 {id: 1, name: 'test'});

Writing and Using Declaration Files

[178]

The declaration file syntax

 interface IOptionalProperties {
 id?: number;
 name?: string;
 }
 declare class ClassWithOptionals {
 constructor(options?: IOptionalProperties);
 }

Merging functions and modules
A function definition with a specific name can be merged with a module definition of the
same name. This means that if your JavaScript function can be called with parameters and
also has properties, then you will need to merge a function with a module.

The JavaScript syntax

 fnWithProperty(1);
 fnWithProperty.name = "name";

The declaration file syntax

 declare function fnWithProperty(id: number);
 declare module fnWithProperty { var name: string; }

Summary
In this chapter, we have outlined what we need to know in order to write and use our own
declaration files. We discussed JavaScript global variables in rendered HTML and how to
access them in TypeScript. We then moved on to a small JavaScript helper function and
wrote our own declaration file for this JavaScript. We finished off the chapter by listing a
few module definition rules, highlighting the required JavaScript syntax, and showing what
the equivalent TypeScript declaration syntax would be.

In the next chapter, we will look at how to use existing third-party JavaScript libraries, and
how to import existing declaration files for these libraries into your TypeScript projects.

6
Third-Party Libraries

Our TypeScript development environment would not amount to much if we were not able
to reuse the myriad of existing JavaScript libraries, frameworks, and general goodness
available today. As we have seen, however, in order to use a particular third-party library
with TypeScript, we will first need a matching definition file.

Soon after TypeScript was released, Boris Yankov set up a GitHub repository to house
TypeScript definition files for third-party JavaScript libraries. This repository, named
DefinitelyTyped (https://github.com/borisyankov/DefinitelyTyped) quickly became
very popular, and is currently the place to go for high-quality definition files.
DefinitelyTyped currently has over 1500 definition files, built up over time from hundreds
of contributors from all over the world. If we were to measure the success of TypeScript
within the JavaScript community, then the DefinitelyTyped repository would be a good
indication of how well TypeScript has been adopted. Before you go ahead and try to write
your own definition files, check the DefinitelyTyped repository to see if there is one already
available.

In this chapter, we will have a closer look at using these definition files, and cover the
following topics:

Downloading definition files
Using NuGet within Visual Studio
Using Typings
Using Bower
Using npm and @types
Choosing a JavaScript framework
Using TypeScript with Backbone
Using TypeScript with Angular 1
Using TypeScript with ExtJS

https://github.com/borisyankov/DefinitelyTyped

Third-Party Libraries

[180]

Downloading definition files
The simplest method of including a definition file within your TypeScript project is to
download the matching .d.ts file from DefinitelyTyped. This is a simple matter of finding
the relevant file, and downloading the raw content. Let's assume that we wanted to start
using jQuery within our project. We have found and downloaded the jQuery JavaScript
library (v2.2.3), and included the relevant files within our project, under a directory named
lib. To download the declaration file, simply browse to the jquery directory on
DefinitelyTyped
(https://github.com/borisyankov/DefinitelyTyped/tree/master/jquery). Then click on
the jquery.d.ts file. This will open up a GitHub page with an editor view of the file. On
the menu bar of this editor view, click on the Raw button. This will open a copy of the file,
and from there, simply right-click, and Save As within your project directory structure.
Create a new directory under the lib folder called typings, and save the jquery.d.ts file
there.

Your project file should look something like the following:

Visual Studio Code project structure with a downloaded jquery.d.ts file

https://github.com/borisyankov/DefinitelyTyped/tree/master/jquery

Third-Party Libraries

[181]

We can now modify our index.html file to include the jquery JavaScript file, and begin
writing TypeScript code that targets the jQuery library. Our index.html file will need to be
modified as follows:

 <html>
 <head>
 <script src="lib/jquery-2.2.3.min.js"></script>
 <script src="app.js"></script>
 </head>
 <body>
 <h1>TypeScript html app</h1>
 <p>using jquery</p>
 <div id="content">

 </div>
 </body>
 </html>

The first <script> tag of this index.html file now includes a link to
jquery-2.2.3.min.js, and the second <script> tag includes a link to the TypeScript
generated app.js. Open up the app.ts TypeScript file, delete the exiting source, and
replace it with the following TypeScript code:

 console.log(`hello app.js`);

 $(document).ready(() => {
 $("#content").html(`<h3>Hello TypeScript`);
 }
);

Here, we start by logging a message to the console, and then define an anonymous function
to execute on the jQuery event of document.ready. The document.ready function is
similar to the window.onload function we have been using previously, and will execute
once jQuery has initialized. Within the body of this anonymous function, we are simply
getting a handle to the DOM element named content using jQuery selector syntax, and
then calling the html function to set its HTML value.

Third-Party Libraries

[182]

The jquery.d.ts file that we downloaded is providing us with the relevant module
declarations that we need in order to compile jQuery within TypeScript. In other words, it
contains TypeScript definitions for $, and all of the jQuery functions that are allowed when
using the $(function) syntax.

Using NuGet
Instead of manually downloading each .d.ts declaration file for our project, we can also
use NuGet. NuGet is a popular package management platform that will download required
external libraries, and automatically include them within your Visual Studio or WebMatrix
project. It can be used for external libraries that are packaged as DLLs such as StructureMap
or it can be used for JavaScript libraries and declaration files. NuGet is also available as a
command-line utility.

Using the Extension Manager
To use the NuGet package manager dialog within Visual Studio, select the Tools option on
the main toolbar, then select NuGet Package Manager, and finally select Manage NuGet
Packages for Solution. This brings up the NuGet package manager dialog. On the left-hand
side of the dialog, click on Browse. The NuGet dialog will then query the NuGet website
and show a list of available packages. At the top left of the screen is a search box. Click
within the search box, and type jquery to show all packages available within NuGet for
jQuery, as shown in the following screenshot:

Third-Party Libraries

[183]

NuGet package manager dialog with results from a query on jQuery

Each package will have an Install button highlighted when you select the package in the
search results panel. When a package is selected, the right-hand pane will show more
details about the NuGet package in question. Note that the project details panel also shows
the version of the package that you are about to install. Clicking on the Install button will
download relevant files as well as any dependencies and include them automatically within
your project.

The installation directory that NuGet uses for JavaScript files is in fact
called Scripts and not the lib directory that we created earlier. NuGet
uses the Scripts directory as a standard, so any packages that contain
JavaScript will install the relevant JavaScript files into the Scripts
directory.

Third-Party Libraries

[184]

Installing declaration files
You will find that most of the more popular declaration files that are found on the
DefinitelyTyped GitHub repository have a corresponding NuGet package. These
packages are named <library>.TypeScript.DefinitelyTyped, as a standard naming
convention. If we type jquery typescript into the NuGet search box, we will see a list of
these DefinitelyTyped packages returned. The NuGet package we are looking for is
named jquery.TypeScript.DefinitelyTyped, created by Jason Jarret, and is, at the
time of writing, at version 3.1.1.

The DefinitelyTyped packages have their own internal version number,
and these version numbers do not necessarily match the version of the
JavaScript library that you are using.

Installing the jQuery.TypeScript.DefinitelyTyped package will create a typings
directory under the Scripts directory, and then include the jquery.d.ts definition file.
This directory naming standard has been adopted by the various NuGet package authors.

Using the Package Manager Console
Visual Studio also has a command-line version of the NuGet package manager available as
a console application, and it is also integrated into Visual Studio. Clicking on Tools, then
NuGet Package Manager, and finally on Package Manager Console, will bring up a new
Visual Studio window, and initialize the NuGet command-line interface. The command-line
version of NuGet has a number of features that are not included in the GUI version. Type
get-help NuGet to see the list of top-level command-line arguments that are available.

Installing packages
To install a NuGet package from the console command line, simply type install-
package <packageName>. As an example, to install the
jquery.TypeScript.DefinitelyTyped package, simply type the following:

Install-Package jquery.TypeScript.DefinitelyTyped

This command will connect to the NuGet server, and download and install the package into
your project.

Third-Party Libraries

[185]

On the toolbar of the Package Manager Console window are two
drop-down lists, Package Source and Default Project. If your Visual
Studio solution has multiple projects, you will need to select the correct
project for NuGet to install the package into from the Default Project
dropdown.

Searching for package names
Searching for package names from the command line is accomplished with the Find-
Package command. As an example, to find available packages that include the
definitelytyped search string, run the following command:

Find-Package definitelytyped

Installing a specific version
There are some JavaScript libraries that are not compatible with jQuery version 2.x, and will
require a version of jQuery that is in the 1.x range. To install a specific version of a NuGet
package, we will need to specify the -Version parameter from the command line. To
install the jquery v1.11.1 package, as an example, run the following from the command
line:

Install-Package jQuery -Version 1.11.1

NuGet will either upgrade or downgrade the version of the package you
are installing, if it finds another version already installed within your
project. In the preceding example, we had already installed the latest
version of jQuery (2.1.1) within our project, so NuGet will first remove
jQuery 2.1.1 before installing jQuery 1.11.1.

Using Typings
As the number of publicly available declaration files for TypeScript started to grow and
grow, a node-based command-line utility was released to help with management of
declaration files. This package was called the TypeScript definition manager for
DefinitelyTyped, or simply TSD. While TSD served a useful purpose for a few years,
there were some breaking design changes needed in order to provide a suitable long-term
solution. TSD has now been deprecated in favor of Typings.

Third-Party Libraries

[186]

Typings offers functionality similar to the NuGet Package Manager, but it is specifically
geared towards TypeScript definition files. Whereas TSD relies on definition files from the
DefinitelyTyped GitHub repository only, Typings allows definition files to be used from
any source.

To install Typings, use npm as follows:

npm install typings -g

At the time of writing, this installed Typings version 2.0.0.

Searching for packages
Typings allows for querying the package repository using the search keyword. To search
for the jquery definition files, type the following:

typings search jquery

This command will search the DefinitelyTyped repository for any definition files with
the name jquery. The results of this search show that there are a multitude of definition
files, including chai-jquery and jasmine-jquery, as follows:

Search results for Typings search jquery

Third-Party Libraries

[187]

The output of the search command shows us the full name of the package, the source of the
package, as well as the home page of the package itself. We will use the source of the
package as a prefix when we install the definition file we need.

Typings initialize
Before we start using Typings to download and install definition files, we need to create a
typings.json file that will record our dependent definition files. This is done by simply
typing the following:

typings init

This command will create the typings.json file as follows:

 {
 "name": "using_typings",
 "dependencies": {}
 }

Installing definition files
To install a definition file – jquery as an example, use the install keyword as follows:

typings install dt~jquery --global --save

Note that we have prefixed the name of the definition file with the letters dt~. This matches
the name of the source property that we saw when running our search query. This enables
us to install definition files from sources other than DefinitelyTyped, if they are listed.

The install command will download the jquery.d.ts file into the following directory:

\typings\globals\query\index.d.ts

Typings will create the \typings directory based on the current directory
where typings install was run, so make sure that you navigate to the
same base directory in your project whenever you use Typings from the
command line.

Third-Party Libraries

[188]

Typings also creates a globals\index.d.ts file that contains a reference path to all of the
definition files that we have downloaded. Our project, therefore, only needs to include a
reference to this base globals\index.d.ts file, and all other references paths will be
automatically updated.

Installing a specific version
There may be times where you require a specific version of a definition file to be included in
your project, and may not simply want the latest version. Typings allows us to view the
various versions of a definition file as follows:

typings view dt~jquery --versions

We can then install a specific version of the definition file as follows:

typings install dt~jquery@1.8.0 --global --save

Re-installing definition files
One of the benefits of using Typings is that it can interrogate its typings.json file, and re-
install any missing declaration files that are not within the project. This can be very handy if
you are branching project source code into different directories, or if you are writing a
number of projects that all have the same dependencies. Let's assume that you have the
typings.json file as follows:

 {
 "name": "using_typings",
 "dependencies": {},
 "globalDependencies": {
 "backbone": "registry:dt/backbone#1.0.0+20160316155526",
 "marionette": "registry:dt/marionette#0.0.0+20160317120654"
 }
 }

This Typings file indicates that we have two global dependencies, that is, backbone and
marionette. If we copy this file to a new directory, we can re-install these dependencies in
our new directory by simply typing the following:

typings install

Third-Party Libraries

[189]

Even if you are using Visual Studio and NuGet as a development
environment, you may want to explore using Typings within your project
instead of NuGet for definition files. Remember that not all definition files
available via Typings are available via NuGet. Also, NuGet is a separate
code repository, so it may take some time for package authors to update
their definition files.

Using Bower
Where Typings is used to download and manage TypeScript definition files, Bower is used
to download and manage the actual JavaScript libraries themselves. The Bower command-
line interface and overall functionality is very similar to Typings. Bower will also ensure
that any dependencies a library has will be downloaded with the correct versions. As an
example, let's use Bower to download the backbone.js library and its only dependency,
underscore.js.

Installation of Bower is via the standard npm installation command, as follows:

npm install -g bower

Typings and Bower have a very similar command set; in fact the Typings command set was
modeled after packages like Bower. So we can use the same workflow for initializing,
searching, and installing JavaScript packages as we did with Typings, as follows:

bower init

This will ask a couple of questions about the current project, and then create a bower.json
file to store installed packages and dependencies:

bower search backbone

This will search for Backbone libraries, similar to how Typings does:

bower install backbone --save

This will install backbone.js and its dependencies (underscore.js), and save the
dependencies list to the bower.json file.

Looking at the directory structure that Bower creates, you will notice that all libraries are
downloaded by default to ./bower_components. Each package then has its own directory,
for example, Backbone and Underscore, and within each directory are the released
JavaScript files. You will notice that Bower will download and install both the development
versions and the minified versions all in one go.

Third-Party Libraries

[190]

Using npm and @types
With the release of version 2.0 of the TypeScript compiler, we can now also install
declaration files using npm. This means that there is no difference in our toolset in order to
install project dependencies, as it is to include the declaration files. As an example, to install
the Underscore library as a project dependency, we would type:

npm install underscore --save

And to install the declaration files for underscore, we can now type

npm install @types/underscore --save

Note the @types prefix used within the npm command. This special syntax instructs npm to
install the declaration files for underscore, and is a very subtle but easily remembered
syntax.

This mechanism for including type definitions via npm has been adopted
as the standard mechanism by TypeScript moving forward.

Using third-party libraries
In this section of the chapter, we will begin to explore some of the more popular third-party
JavaScript libraries, their declaration files, and how to write compatible TypeScript for each
of these frameworks. We will compare Backbone, Angular (version 1), and ExtJS, which are
all frameworks for building rich client-side JavaScript applications. During our discussion,
we will see that some frameworks are highly compliant with the TypeScript language and
its features, some are partially compliant, and some have very low compliance.

In the next chapter, we will explore some third-party JavaScript libraries that have been
written explicitly with TypeScript in mind, or for which the TypeScript compiler has been
modified to work with. In the remainder of this chapter, however, will focus on standard
third-party libraries that were designed to support JavaScript.

Third-Party Libraries

[191]

Choosing a JavaScript framework
Choosing a JavaScript framework or library to develop Single Page Applications (SPAs) is
a difficult and sometimes daunting task. It seems that there is a new framework appearing
every other month, promising more and more functionality for less and less code. To help
developers compare these frameworks, and make an informed choice, Addy Osmani wrote
an excellent article, named Journey Through the JavaScript MVC Jungle.
(http://www.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-
jungle/).

In essence, his advice is simple; it's a personal choice, so try some frameworks out, and see
what best fits your needs, your programming mindset, and your existing skill set. The
TodoMVC project (http://todomvc.com), which Addy started, does an excellent job of
implementing the same application in a number of MV* JavaScript frameworks. This really
is a reference site for digging into a fully working application, and comparing for yourself
the coding techniques and styles of different frameworks.

Again, depending on the JavaScript library that you are using within TypeScript, you may
need to write your TypeScript code in a specific way. Bear this in mind when choosing a
framework, if it is difficult to use with TypeScript, then you may be better off looking at
another framework with better integration. If it is easy and natural to work with the
framework in TypeScript, then your productivity and overall development experience will
be much better.

In this section, we will look at some of the popular JavaScript libraries, along with their
declaration files, and see how to write compatible TypeScript. The key thing to remember is
that TypeScript generates JavaScript – so if you are battling to use a third-party library, then
crack open the generated JavaScript and see what the JavaScript code looks like that
TypeScript is emitting. If the generated JavaScript matches the JavaScript code samples in
the library's documentation, then you are on the right track. If not, then you may need to
modify your TypeScript until the compiled JavaScript starts matching up with the samples.

When trying to write TypeScript code for a third-party JavaScript framework – particularly
if you are working off the JavaScript documentation – your initial foray may just be one of
trial and error. The rest of this chapter shows how three different libraries require different
ways of writing TypeScript.

http://www.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://www.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://todomvc.com

Third-Party Libraries

[192]

Backbone
Backbone is a popular JavaScript library that gives structure to web applications by
providing models, collections and views, amongst other things. Backbone has been around
since 2010, and has gained a very large following, with a wealth of commercial websites
using the framework. According to Inforworld.com, Backbone has over 1,600 Backbone
related projects on GitHub that rate over three stars, meaning that it has a vast ecosystem of
extensions and related libraries.

Let's take a quick look at Backbone written in TypeScript.

The Backbone environment can be set up with Bower and Typings as follows:

bower install backbone --save
typings install dt~backbone-global --global --save
typings install dt~jquery --global --save
typings install dt~underscore -global --save

Using inheritance with Backbone
From the Backbone documentation, we find an example of creating a Backbone.Model in
JavaScript as follows:

 var NoteModel = Backbone.Model.extend (
 {
 initialize: function() {
 console.log("NoteModel initialized.");
 },
 author: function() {},
 coordinates : function() {},
 allowedToEdit: function(account) {
 return true;
 }
 });

This code shows a typical usage of Backbone in JavaScript. We start by creating a variable
named NoteModel that extends (or derives from) Backbone.Model. This can be seen with
the Backbone.Model.extend syntax. The Backbone extend function uses JavaScript
object notation to define an object within the outer curly braces { ... }. In this example,
the NoteModel object has four functions: initialize, author, coordinates, and
allowedToEdit.

http://inforworld.com/?zcoff=1&dherror=ProblemIpMismatch

Third-Party Libraries

[193]

According to the Backbone documentation, the initialize function will be called once a
new instance of this class is created. In our sample, the initialize function simply logs a
message to the console to indicate that the function was called. The author and
coordinates functions are blank at this stage, with only the allowedToEdit function
actually doing something–return true.

If we were to simply copy and paste the preceding JavaScript into a TypeScript file, we
would generate the following compile error:

error TS2341: Property 'extend' is private and only
accessible within class 'Model'.

When working with a third-party library, and a definition file from DefinitelyTyped, our
first port of call should be to see what the definition file is expecting from our TypeScript
code. After all, the JavaScript documentation says that we should be able to use the extend
method as shown, so why is this definition file causing an error? If we open up the
backbone-global\index.d.ts file, and then search to find the definition of the class
Model, we will find the cause of the compilation error:

 class Model extends ModelBase {

 /**
 * Do not use, prefer TypeScript's extend functionality.
 **/
 private static extend(
 properties: any, classProperties?: any): any;

This declaration file snippet shows some of the definition of the Backbone Model class.
Here, we can see that the extend function is defined as private static, and as such, it
will not be available outside the Model class itself. This, however, seems contradictory to
the JavaScript sample that we saw in the documentation. Note, however, the comment in
the code block–Do not use, prefer TypeScript's extend functionality.

This comment indicates that the declaration file for Backbone is built around TypeScript's
extends keyword – thereby allowing us to use natural TypeScript inheritance syntax to
create Backbone objects. The TypeScript equivalent to this code, therefore, must use the
extends TypeScript keyword to derive a class from the base class Backbone.Model, as
follows:

 class NoteModel extends Backbone.Model implements INoteModel {
 initialize() {
 console.log(`TypeScript NoteModel initialize called.`);
 }
 author() {}

Third-Party Libraries

[194]

 coordinates() {}
 allowedToEdit(account) {
 return true;
 }
 }

We are now creating a class definition named NoteModel that extends the
Backbone.Model base class. This class then has the functions initialize, author,
coordinates, and allowedToEdit, similar to the previous JavaScript version. Our
Backbone sample will now compile and run correctly.

With either of these versions, we can create an instance of the NoteModel object by
including the following script within an HTML page:

 <script >
 $(document).ready(function() {
 console.log('document.ready');
 var noteModel = new NoteModel();
 });
 </script>

This JavaScript sample simply waits for the jQuery document.ready event to be fired, and
then creates an instance of the NoteModel class. As documented earlier, the initialize
function will be called when an instance of the class is constructed, so we would see a
message logged to the console when we run this in a browser.

All of Backbone's core objects are designed with inheritance in mind. This means that
creating new Backbone collections, views, and routers will use the same extends syntax in
TypeScript. Backbone, therefore, is a very good fit for TypeScript, because we can use
natural TypeScript syntax for inheritance to create new Backbone objects.

Using interfaces
As Backbone allows us to use TypeScript inheritance to create objects, we can just as easily
use TypeScript interfaces with any of our Backbone objects as well. Extracting an interface
for the preceding NoteModel class would be as follows:

 interface INoteModel {
 initialize();
 author();
 coordinates();
 allowedToEdit(account);
 }

Third-Party Libraries

[195]

We can now update our NoteModel class definition to implement this interface as follows:

 class NoteModel extends Backbone.Model implements INoteModel {
 // existing code
 }

Our class definition now implements the INoteModel TypeScript interface. This simple
change protects our code from being modified inadvertently, and also opens up the ability
to work with core Backbone objects in standard object-oriented design patterns. We could, if
we needed to, apply the Factory Pattern described in Chapter 3, Interfaces, Classes and
Inheritance, to return a particular type of Backbone Model or any other Backbone object for
that matter.

Using generic syntax
The declaration file for Backbone has also added generic syntax to some class definitions.
This brings with it further strong typing benefits when writing TypeScript code for
Backbone. Backbone collections (surprise, surprise) house a collection of Backbone models,
allowing us to define collections in TypeScript as follows:

 class NoteCollection extends Backbone.Collection<NoteModel> {
 model = NoteModel;
 //model: NoteModel;
 //model: { new () : NoteModel }; // ok
 }

Here, we have a NoteCollection that derives from, or extends a
Backbone.Collection, but also uses generic syntax to constrain the collection to handle
only objects of type NoteModel. This means that any of the standard collection functions
such as at() or pluck() will be strongly typed to return NoteModel models, further
enhancing our type safety and Intellisense.

Note the syntax used to assign a type to the internal model property of the collection class
on the second line. We cannot use the standard TypeScript syntax model: NoteModel, as
this causes a compile time error. We need to assign the model property to the class
definition, as seen with the model=NoteModel syntax, or we can use the { new():
NoteModel } syntax, as seen on the last line.

Third-Party Libraries

[196]

Using ECMAScript 5
Backbone also allows us to use ECMAScript 5 capabilities to define getters and setters for
Backbone.Model classes, as follows:

 interface ISimpleModel {
 Name: string;
 Id: number;
 }
 class SimpleModel extends Backbone.Model
 implements ISimpleModel {
 get Name()
 { return this.get('Name'); }
 set Name(value: string)
 { this.set('Name', value); }
 get Id()
 { return this.get('Id'); }
 set Id(value: number)
 { this.set('Id', value); }
 }

Here, we have defined an interface with two properties, named ISimpleModel. We then
define a SimpleModel class that derives from Backbone.Model, and also implements the
ISimpleModel interface. We then have ES5 getters and setters for our Name and Id
properties. Backbone uses class attributes to store model values, so our getters and setters
simply call the underlying get and set methods of Backbone.Model.

Backbone TypeScript compatibility
As we have seen, Backbone allows us to use all of TypeScript's language features within our
code. We can use classes, interfaces, inheritance, generics, and even ECMAScript 5
properties. All of our classes also derive from base Backbone objects. This makes Backbone
a highly compatible library for building web applications with TypeScript. We will explore
more of the Backbone object model in later chapters.

Third-Party Libraries

[197]

Angular
AngularJS version 1 (or just Angular 1) has been a very popular JavaScript framework,
which was built and distributed by Google. It has, however, been superseded by Angular 2,
which uses TypeScript as its language of choice, and will be covered in the next chapter.
This section will discuss writing Angular 1 code with TypeScript, as an example of a semi-
compatible third-party library.

Angular takes a completely different approach to building JavaScript SPA's, introducing an
HTML syntax that the running Angular application understands. This provides the
application with two-way data binding capabilities, which automatically synchronizes
models, views, and the HTML page. Angular also provides a mechanism for dependency
injection (DI), and uses services to provide data to your views and models.

Let's take a look at a sample from the Angular v1.5.7 tutorial, found in step 2, where we start
to build a controller named PhoneListController. The example provided in the tutorial
shows the following JavaScript:

 var phonecatApp = angular.module('phonecatApp', []);

 phonecatApp.controller('PhoneListController', function ($scope)
 {
 $scope.phones = [
 {'name': 'Nexus S',
 'snippet': 'Fast just got faster with Nexus S.'},
 {'name': 'Motorola XOOM™ with Wi-Fi',
 'snippet': 'The Next, Next Generation tablet.'},
 {'name': 'MOTOROLA XOOM™',
 'snippet': 'The Next, Next Generation tablet.'}
];
 });

The preceding code snippet is typical of Angular 1 JavaScript syntax. We start by creating a
variable named phonecatApp, and register this as an Angular module by calling the
module function on the angular global instance. The first argument to the module function
is a global name for the Angular module, and the empty array is a place-holder for other
modules that will be injected via Angular's dependency injection routines.

Third-Party Libraries

[198]

We then call the controller function on the newly created phonecatApp variable with
two arguments. The first argument is the global name of the controller, and the second
argument is a function that accepts a specially named Angular variable named $scope.
Within this function, the code sets the phones object of the $scope variable to be an array
of JSON objects, each with a name and snippet property.

If we continue reading through the tutorial, we find a unit test that shows how the
PhoneListController controller is used:

 describe('PhoneListController', function(){
 it('should create "phones" model with 3 phones', function() {
 var scope = {},
 ctrl = new PhoneListController(scope);

 expect(scope.phones.length).toBe(3);
 });

 });

The first two lines of this code snippet use a global function called describe, and within
this function another function called it. These two functions are part of a unit testing
framework named Jasmine. We will cover unit testing in a later chapter, but for the time
being, let's focus on the rest of the code.

We declare a variable named scope to be an empty JavaScript object, and then a variable
named ctrl that uses the new keyword to create an instance of our
PhoneListController class. The new PhoneListController(scope) syntax shows
that Angular is using the definition of the controller just like we would use a normal class in
TypeScript.

Building the same object in TypeScript would allow us to use TypeScript classes, as follows:

 var phonecatApp = angular.module('phonecatApp', []);

 class PhoneListController {
 constructor($scope) {
 $scope.phones = [
 { 'name': 'Nexus S',
 'snippet': 'Fast just got faster' },
 { 'name': 'Motorola',
 'snippet': 'Next generation tablet' },
 { 'name': 'Motorola Xoom',
 'snippet': 'Next, next generation tablet' }
];
 }
 };

Third-Party Libraries

[199]

Our first line is the same as in our previous JavaScript sample. We then, however, use the
TypeScript class syntax to create a class named PhoneListController. By creating a
TypeScript class, we can now use this class as shown in our Jasmine test code–ctrl = new
PhoneListController(scope). The constructor function of our
PhoneListController class now acts as the anonymous function seen in the original
JavaScript sample:

 phonecatApp.controller('PhoneListController', function ($scope) {
 // this function is replaced by the constructor
 }

Angular classes and $scope
Let's expand our PhoneListController class a little further, and have a look at what it
would look like when completed:

 class PhoneListCtrl {
 myScope: IScope;
 constructor($scope, $http: ng.IHttpService, Phone) {
 this.myScope = $scope;
 this.myScope.phones = Phone.query();
 $scope.orderProp = 'age';
 _.bindAll(this, 'GetPhonesSuccess');
 }
 GetPhonesSuccess(data: any) {
 this.myScope.phones = data;
 }
 };

The first thing to note in this class, is that we are defining a variable named myScope, and
storing the $scope argument that is passed in via the constructor, into this internal
variable. This is again because of JavaScript's lexical scoping rules. Note the call to
_.bindAll at the end of the constructor. This Underscore utility function will ensure that
whenever the GetPhonesSuccess function is called, it will use the variable this in the
context of the class instance, and not in the context of the calling code. We will discuss the
usage of _.bindAll in detail in a later chapter.

Third-Party Libraries

[200]

The GetPhonesSuccess function uses the this.myScope variable within its
implementation. This is why we needed to store the initial $scope argument in an internal
variable.

Another thing we notice from this code is that the myScope variable is typed to an interface
named IScope, which will need to be defined as follows:

 interface IScope {
 phones : IPhone[];
 }
 interface IPhone {
 name: string;
 snippet: string;
 }

This IScope interface just contains an array of objects of type IPhone (pardon the
unfortunate name of this interface, it can hold Android phones as well).

What this means is that we don't have a standard interface or TypeScript type to use when
dealing with $scope objects. By its nature, the $scope argument will change its type
depending on when and where the Angular runtime calls it, hence our need to define an
IScope interface, and strongly type the myScope variable to this interface.

Another interesting thing to note on the constructor function of the PhoneListController
class is the type of the $http argument. It is set to be of type ng.IHttpService. This
IHttpService interface is found in the declaration file for Angular. In order to use
TypeScript with Angular variables such as $scope or $http, we need to find the matching
interface within our declaration file, before we can use any of the Angular functions
available on these variables.

The last point to note in this constructor code is the final argument, named Phone. It does
not have a TypeScript type assigned to it, and so automatically becomes of type any. Let's
take a quick look at the implementation of this Phone service, which is as follows:

 var phonecatServices = angular.module(
 'phonecatServices', ['ngResource']);

 phonecatServices.factory('Phone',
 ['$resource', ($resource) => {
 return $resource('phones/:phoneId.json', {}, {
 query: { method: 'GET',
 params: {
 phoneId: 'phones'
 },
 isArray: true

Third-Party Libraries

[201]

 }
 });
 }
]
);

The first line of this code snippet again creates a global variable named
phonecatServices, using the angular.module global function. We then call the
factory function available on the phonecatServices variable, in order to define our
Phone resource. This factory function uses a string named 'Phone' to define the Phone
resource, and then uses Angular's dependency injection syntax to inject a $resource object.
Looking through this code, we can see that we cannot easily create standard TypeScript
classes for Angular to use here. Nor can we use standard TypeScript interfaces or
inheritance on these Angular classes.

Angular TypeScript compatibility
When writing Angular code with TypeScript, we are able to use classes in certain instances,
but must rely on the underlying Angular functions such as module and factory to define
our objects in other cases. Also, when using standard Angular services, such as $http or
$resource, we will need to specify the matching declaration file interface in order to use
these services. We can therefore describe the Angular library as having medium
compatibility with TypeScript.

Inheritance – Angular versus Backbone
Inheritance is a very powerful feature of object-oriented programming, and is also a
fundamental concept when using JavaScript frameworks. Using a Backbone controller or an
Angular controller within the framework relies on certain characteristics, or functions being
available. We have seen, however, that each framework implements inheritance in a
different way.

As JavaScript does not have the concept of inheritance, each framework needs to find a way
to implement it. In Backbone, this inheritance implementation is via the extend function of
each Backbone object. As we have seen, the TypeScript extends keyword follows a similar
implementation to Backbone, allowing the framework and language to dovetail each other.

Third-Party Libraries

[202]

Angular, on the other hand, uses its own implementation of inheritance, and defines
functions on the Angular global namespace to create classes (that is angular.module). We
can also sometimes use the instance of an application (that is <appName>.controller) to
create modules or controllers. We have found, though, that Angular uses controllers in a
very similar way to TypeScript classes, and we can therefore simply create standard
TypeScript classes that will work within an Angular application.

So far, we have only skimmed the surface of both the Angular TypeScript syntax and the
Backbone TypeScript syntax. The point of this exercise was to try and understand how
TypeScript can be used within each of these two third-party frameworks.

Be sure to visit http://todomvc.com, and have a look at the full source-code for the Todo
application written in TypeScript for both Angular and Backbone. They can be found on the
Compile-to-JS tab in the example section. These running code samples, combined with the
documentation on each of these sites, will prove to be an invaluable resource when trying to
write TypeScript syntax with an external third-party library such as Angular or Backbone.

ExtJS
ExtJS is a popular JavaScript library that has a wide variety of widgets, grids, graphing
components, layout components, and more. With release 4.0, ExtJS incorporated a model,
view, controller style of application architecture to their libraries. Although it is free for
open-source development, ExtJS requires a license for commercial use. It is popular with
development teams that are building web-enabled desktop replacements, as its look and
feel is comparable to normal desktop applications. ExtJS, by default, ensures that each
application or component will look and feel exactly the same, no matter which browser it is
run in, and it requires little or no need for CSS or HTML.

The ExtJS team, however, has not released an official TypeScript declaration file for ExtJS,
despite much community pressure. Thankfully, the wider JavaScript community has come
to the rescue, beginning with Mike Aubury. He wrote a small utility program to generate
declaration files from the ExtJS documentation
(https://github.com/zz9pa/extjsTypescript).

Whether this work influenced the current version of the ExtJS definitions on
DefinitelyTyped or not, remains to be seen, but the original definitions from Mike Aubury
and the current version from brian428 on DefinitelyTyped are very similar.

http://todomvc.com
https://github.com/zz9pa/extjsTypescript

Third-Party Libraries

[203]

Creating classes in ExtJS
ExtJS is a JavaScript library that does things in its own way. If we were to categorize
Backbone, Angular, and ExtJS, we might say that Backbone is a highly compliant
TypeScript library. In other words, the language features of classes and inheritance within
TypeScript are highly compliant with Backbone. Angular in this case would be a partially
compliant library, with some elements of Angular objects complying with the TypeScript
language features. ExtJS, on the other hand, would be a minimally compliant library, with
little or no TypeScript language features applicable to the library.

Let's take a look at a sample ExtJS 4.0 application written in TypeScript. Consider the
following code:

 Ext.application(
 {
 name: 'SampleApp',
 appFolder: '/code/sample',
 controllers: ['SampleController'],
 launch: () => {

 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 xtype: 'panel',
 title: 'Sample App',
 html: 'This is a Sample Viewport'
 }]
 });

 }

 }
);

We start by creating an ExtJS application by calling the application function on the Ext
global instance. The application function then uses a JavaScript object, enclosed within
the first and last curly braces { } to define properties and functions. This ExtJS application
sets the name property to be SampleApp, the appFolder property to be /code/sample,
and the controllers property to be an array with a single entry–'SampleController'.

Third-Party Libraries

[204]

We then define a launch property, which is an anonymous function. This launch function
then uses the create function on the global Ext instance to create a class. The create
function uses the Ext.container.Viewport name to create an instance of the
Ext.container.Viewport class, which has the properties layout and items. The
layout property can only contain one specific set of values, for example 'fit', 'auto', or
'table'. The items array contains further ExtJS specific objects, which are created
depending on what their xtype property suggests.

ExtJS is one of those libraries that are not intuitive. As a programmer, you will need to have
one browser window open with the library documentation at all times, and use it to figure
out what each property means for each type of available class. It also has a lot of magic
strings in the preceding sample, the Ext.create function would fail if we mistyped the
'Ext.container.Viewport' string, or simply forgot to capitalize it in the right places. To
ExtJS, 'viewport' is different to 'ViewPort'. Remember that one of our solutions to
magic strings within TypeScript is to use enums. Unfortunately, the current version of the
ExtJS declaration file does not have a set of enums for these class types.

Using type casting
We can, however, use the TypeScript language feature of type casting to help with writing
ExtJS code. If we know what type of ExtJS object we are trying to create, we can cast the
JavaScript object to this type, and then use TypeScript to check whether the properties we
are using are correct for that type of ExtJS object. To help with this concept, let's just take the
outer definition of the Ext.application into account. Stripped of the inner code, the call
to the application function on the Ext global object would be reduced to this:

 Ext.application(
 {
 // properties of an Ext.application
 // are set within this JavaScript
 // object block
 }
);

Third-Party Libraries

[205]

Using the TypeScript declaration files, type casting, and a healthy dose of ExtJS
documentation, we know that the inner JavaScript object should be of type
Ext.app.IApplication, and we can therefore cast this object as follows:

 Ext.application(
 <Ext.app.IApplication> {
 // this JavaScript block is strongly
 // type to be of Ext.app.IApplication
 }
);

The second line of this code snippet now uses the TypeScript type casting syntax, to cast the
JavaScript object between the curly braces { } to a type of Ext.app.IApplication. This
gives us strong type checking, and Intellisense, as shown in the following screenshot:

Visual Studio Intellisense for an Ext JS configuration block.

In a similar manner, these explicit type casts can be used on any JavaScript object that is
being used to create ExtJS classes. The declaration file for ExtJS currently on Definitely
Typed uses the same names for its object definitions as the ExtJS documentation uses, so
finding the correct type should be rather simple.

The preceding technique of using explicit type casting is just about the only language
feature of TypeScript that we can use with the ExtJS library, but this still highlights how
strong typing of objects can assist us in our development experience, making our code more
robust and resistant to errors.

Third-Party Libraries

[206]

ExtJS-specific TypeScript compiler
If you are using ExtJS on a regular basis, then you may want to take a look at the work done
by Gareth Smith, Fabio Parra dos Santos, and their team at
https://github.com/fabioparra/TypeScript. This project is a fork of the TypeScript
compiler that will emit ExtJS classes from standard TypeScript classes. Using this version of
the compiler turns the tables on normal ExtJS development, allowing for natural TypeScript
class syntax, the use of inheritance via the extends keyword, as well as natural module
naming, without the need for magic strings. The work done by this team shows that
because the TypeScript compiler is open-source, it can be extended and modified to emit
JavaScript in a specific way, or to target a specific library. Hats off to Gareth, Fabio, and
their team for their ground-breaking work in this area.

Summary
In this chapter, we have had a look at third-party JavaScript libraries and how they can be
used within a TypeScript application. We started by looking at the various ways of
including community released versions of TypeScript declaration files within our projects,
from downloading the raw files, to using package managers such as NuGet and Typings.
We then looked at three types of third-party libraries, and discussed how to integrate these
libraries with TypeScript. We explored Backbone, which can be categorized as a highly
compliant third-party library, Angular 1, which is a partially compliant library, and ExtJS,
which is a minimally compliant library. We saw how various features of the TypeScript
language can co-exist with these libraries, and showed what TypeScript equivalent code
would look like in each of these cases. In the next chapter, we will look at TypeScript
specific third-party libraries, which are either built with TypeScript, or have complete
TypeScript integration.

https://github.com/fabioparra/TypeScript

7
TypeScript Compatible

Frameworks
One of the watershed moments in the story of the TypeScript language came when it was
announced that the Microsoft and Google teams had been working together on Angular 2.
Angular 2 was a much anticipated update to the popular Angular (or Angular 1)
framework. Unfortunately, this update needed a new set of language features in order to
make the Angular 2 syntax cleaner and easier to understand. Originally, Google had
proposed a new language named AtScript to facilitate these new language features, which
were also closely aligned with the ECMAScript 6 and 7 proposals.

After several months of collaboration, it was announced that all of the necessary features of
the AtScript language would be absorbed into the TypeScript language, and that Angular 2
would be written in TypeScript. This meant that the providers of new language features
(TypeScript) and the consumers of the new language features (Angular 2) were able to
agree on the requirements and immediate future of the language. This collaboration shows
that the TypeScript language has had intense scrutiny from a renowned JavaScript
framework team, and has passed with flying colors.

Angular 2, however, was not the first framework to adopt the TypeScript language, and
many third-party JavaScript libraries also offer full support for TypeScript.

In this chapter, we will take a look at some of these more popular JavaScript frameworks
that have full TypeScript language integration. We will compare the syntax used in each of
these frameworks, by building the same sample MVC application using each framework. In
doing so, we will have a side-by-side comparison that will show us how each of these
frameworks has tackled the same design problems. Before we begin though, we will start
with a general discussion on what an MVC framework is, and how it can help us in our
development experience.

TypeScript Compatible Frameworks

[208]

We will cover the following topics:

What is an MVC framework?
The benefits of using an MVC framework
Outline of our sample application
Using Backbone
Using Aurelia
Using Angular 2
Using ReactJs

What is MVC?
The acronym MVC stands for Model-View-Controller. It is a programming design pattern
that aids in the design and implementation of user interfaces. User interfaces are inherently
event driven, in other words, we display something on a screen, and then wait for the user
to do something, which will generate some sort of event. This event may be to display a
graph, or to hide a panel, or to log out of our application. Unfortunately, the exact sequence
of events that a user of our application will follow cannot be completely pre-determined. It
is this event-based paradigm that makes user interface design and programming rather
more complex than a program that follows a defined sequence of steps.

The other complexity of user interfaces is to try and make components reusable. This means
that a single component, such as a menu-bar for instance, should be able to be reused across
multiple pages. Component reuse offers its own set of challenges, which generally center
around which component is responsible for reacting to which events, and how components
communicate when many of them are interested in the same event.

The Model-View-Controller design pattern breaks up the responsibilities of a user interface
into three main components, as follows:

TypeScript Compatible Frameworks

[209]

The Model
The Model in MVC represents data. This is generally a very simple Plain Old JavaScript
Object (POJO), that has certain properties. As an example of a Model, consider the
following TypeScript class:

 interface IModel {
 displayName: string;
 id: number;
 }

 class Model implements IModel {
 displayName: string;
 id: number;
 constructor(model : IModel) {
 this.displayName = model.displayName;
 this.id = model.id;
 }
 }
 let firstModel = new Model({ id: 1, displayName: 'firstModel'});

Here, we have defined an interface named IModel that has an id and a displayName
property, and a class that implements this interface. We have provided a simple constructor
to set these properties. The last line of this snippet creates an instance of this class, with the
desired properties.

As can be seen from this snippet, the Model class is a very simple POJO that contains some
data.

Models often contain other models, building a nested structure of
information. These models often map directly to the structures that are
returned in JSON format from REST endpoints.

The View
The View in MVC represents the visual representation of a Model. In web frameworks, this
would typically be a snippet of HTML, as follows:

 <div id="viewTemplate">
 {id}
 <h1> {displayName} </h1>
 </div>

TypeScript Compatible Frameworks

[210]

Here, we have an enclosing div that contains two spans. The first span is rendered in bold,
and will display the id property from the model. The second span is rendered in h1 style,
and displays the displayName property from the model.

By separating the view elements of a user interface from the model, we can see that we are
free to modify the view as much as we like, without even touching the code for the model.
We could apply styles to each element through CSS, or even hide certain properties from
the view completely.

This separation gives us the ability to design or modify the display portion independently
of the model. This design work can even be handed off to a completely separate and
independent team, who have specialist skills in user interface design. As long as the
underlying model does not change, both parts of a model and view will work seamlessly
together.

As an example of a View, consider the following code:

 class View {
 template: string;
 constructor(_template: string) {
 this.template = _template;
 }
 render(model: Model) {
 // combine template and view
 }
 }

Here, we have defined a class named View that has a single property, named template.
When we construct this view, we give it the HTML template that it should use. This View
class also has a render method, which has a single argument named model. The render
method will combine the template and the model, and return the resulting HTML.

The preceding examples are pseudo-code meant only for illustration
purposes, and are not an example of using an MVC framework.

TypeScript Compatible Frameworks

[211]

The Controller
The Controller in an MVC framework does the job of coordinating the interaction between
the Model and the View. A Controller will generally accomplish the following steps:

Create an instance of a Model
Create an instance of the View
Pass the instance of the Model to the View
Ask the View to render itself (generate the actual HTML based on values in the
Model)
Attach the resulting HTML to the DOM tree

The Controller in MVC is also responsible for the logic of the application. This means that it
can control which views are presented when, and what to do when certain events occur.

As an example of what a Controller could look like, consider the following code:

 class Controller {
 model: Model;
 view : View;
 constructor() {
 this.model = new Model(
 {id : 1, displayName : 'firstModel'});
 this.view = new View($('#viewTemplate').html());
 }
 render() {
 $('#domElement').html(this.view.render(this.model));
 }
 }

Here, we have defined a Controller class that has a model property and a view property.
Our constructor function then creates an instance of the Model class with specific
properties, and an instance of the View. The View instance is created with the template that
is read from a DOM element named viewTemplate.

The Controller class also defines a render function, which sets the actual HTML of a
DOM element named domElement. This HTML is the result of calling the render function
on the View class, and passing in the model to be rendered.

Again, this is pseudo-code for describing the responsibilities of a
controller in MVC, and is not an actual example of using an MVC
framework.

TypeScript Compatible Frameworks

[212]

MVC summary
The following diagram shows the three elements of the MVC design pattern:

Model View Controller responsibilities

Models are simple objects holding properties, and are typically created from an object store
or a database.

Views are HTML visual elements, incorporating model properties within their templates.

Controllers combine models and views, respond to events, and orchestrate generation of the
resultant HTML.

The benefits of using MVC
Using an MVC framework brings with it a number of tangible benefits, as follows:

Decoupling of the various elements used to display information to the user
Increased flexibility and reuse
A single model may have multiple different views, which can be used at different
times
User interface design activities can be undertaken by a specialist team
Changes to the data of a model can trigger events in a completely different
controller without each component knowing about the other

TypeScript Compatible Frameworks

[213]

Views can contain other views in a nested fashion, enhancing reuse
Changes in behavior of a component can be made without changing its visual
representation (by changing the Controller and not the View)
Rapid and parallel development
Testability of individual components

Sample application outline
To enable comparison of our various TypeScript frameworks, we will build the same
application using each framework, which will accomplish the following:

Use a view to display a model property
Construct an array of data, with each array item being a single model instance
Loop through the array and render each item in a list element
Respond to a click event on each item rendered
Display the model properties that were used to render the element

We will use the same dataset for our array in each of the four sample applications. This
dataset is as follows:

 interface IClickableItem {
 DisplayName: string;
 Id: number;
 }

 let ClickableItemCollection : IClickableItem[] = ([
 { Id: 1, DisplayName : "firstItem"},
 { Id: 2, DisplayName : "secondItem"},
 { Id: 3, DisplayName : "thirdItem"},
]);

We start with an interface named IClickableItem that has an Id property of type
number, and a DisplayName property of type string. We then define an array of
IClickableItem objects, named ClickableItemCollection. The reason for using such
an array is that it is a very common structure to work with when fetching data from a REST
endpoint that returns JSON. If we can interpret a simple array like this, then we can easily
substitute this array with JSON data later on.

TypeScript Compatible Frameworks

[214]

Our resultant application will look as follows:

Sample application screenshot with alert information

Here, we have rendered a page that has three buttons, generated from our data array. When
we click on any one of these buttons, an alert box will show with the properties of the
underlying model.

Using Backbone
We will start our exploration of TypeScript frameworks by building the sample application
in Backbone. While it can be argued that Backbone is not a TypeScript framework per se, we
have already seen how it can be used naturally with the TypeScript language syntax.
Backbone is also one of the oldest frameworks around, and it is small, light, and extremely
fast.

Backbone, however, requires writing a little more code than most frameworks, as it is really
the bare-bones of an MVC framework. When working with Backbone, you will need to call
rendering functions yourself, and also attach rendered HTML to the DOM tree manually.

TypeScript Compatible Frameworks

[215]

The Marionette framework was built on top of Backbone in order to simplify and remove a
lot of this repetitive code, and to introduce new concepts that were helpful when building
web applications. Marionette is also extremely fast, as it adds a thin layer of functionality
across the top of Backbone, while still using the underlying Backbone library.

Rendering performance
If page rendering performance, CPU cycles, and RAM are critical factors in your
applications, then you cannot go past Backbone for pure rendering speed.

In a recent project, our team was involved in speed testing Marionette and Backbone
applications to determine if they were suitable for use on embedded devices. These
embedded devices had 400-600Mhz CPUs, and 128-256Mb RAM. In comparison to a
modern desktop, with a 3.6Ghz CPU and 8Gb of RAM, these are tiny machines indeed. This
test application rendered a series of three HTML screens, each with varying complexity. The
first page was a very simple page, the second had a variable menu structure, and the third
had a rather complex, detailed informational view of some data. All code was written in
TypeScript.

The processors and RAM available on each device were as follows:

400Mhz ARM9 with 128Mb RAM
400Mhz PowerPC with 256Mb RAM
624Mhz Marvell PXA300 256Mb RAM
6Ghz Core i7 8Gb RAM (desktop)

This test application ran a high-resolution timer, and sent messages via websockets to the
HTML page. The timer started when a message was sent from the timing application to the
web page. Once a message was received inside the web application, it decided which page
to display. The page display mechanism used the Model View Controller pattern to render
HTML to the browser. Once the HTML had been rendered to the screen, a message was sent
back to the timing application to stop the clock. In this way, millisecond timing information
could be obtained to determine how long it took to render HTML on each of these devices.

TypeScript Compatible Frameworks

[216]

This test was repeated three times, to gain an average rendering time. The results were as
follows, with all timings shown in milliseconds:

400Mhz ARM9
128Mb

400Mhz
PowerPC
256Mb

624Mhz
Marvel 256Mb

3.6Ghz Core
i7 8Gb

Backbone Simple page 187 ms 131 ms 187 ms 5 ms

Medium page 241 ms 151 ms 267 ms 11 ms

Complex page 380 ms 370 ms 379 ms 17 ms

Marionette Simple page 525 ms 349 ms 501 ms 7 ms

Medium page 1043 ms 769 ms 851 ms 19 ms

Complex page 1532 ms 847 ms 1014 ms 32 ms

Looking at the results in this table, we can see that standard Backbone rendering on a
slower CPU can take around 130 – 380 milliseconds. The same HTML being rendered from
Marionette, however, starts at 350 milliseconds, and can go up to 1.5 seconds. This
difference can be attributed to the higher CPU cycles that are taken up by the extra
processing that Marionette is doing on top of Backbone.

These results tell us, then, that the more logic a framework contains, and therefore the more
processing a framework does, the slower it will be on less powerful processors. So when
assessing a framework that does a lot of magic behind the scenes, bear in mind that these
features will chew up valuable CPU processing time, and may not be suitable for slower
devices.

Our decision was to pursue Backbone as an MVC framework for these devices because it
offered the fastest speed available. That said, on a modern computer with a fairly decent
processor, the difference between 5 milliseconds of rendering time and 32 milliseconds is
negligible.

TypeScript Compatible Frameworks

[217]

Backbone setup
Setting up a Backbone environment is fairly simple, and can be accomplished through tsc,
and npm as follows:

Initialize the TypeScript environment with tsc:

tsc --init

Initialize npm, and install Backbone, Bootstrap, JBone, and the declaration files for Backbone
using the @types syntax, as follows:

npm init
npm install backbone -save
npm install bootstrap --save
npm install jbone --save
npm install @types/backbone --save

JBone is an implementation of jQuery specifically built for Backbone. It
includes all jQuery functionality that Backbone requires, and is
significantly lighter and faster than the full jQuery library.

Backbone models
For our sample application, we will build two Backbone models. One model will be for each
item in our IClickableItem array, and the second model will be used to hold the entire
array. Let's take a look at the ItemModel:

 class ItemModel extends Backbone.Model implements IClickableItem {
 get DisplayName(): string
 { return this.get('DisplayName'); }
 set DisplayName(value: string)
 { this.set('DisplayName', value); }
 get Id(): number { return this.get('Id'); }
 set Id(value: number) { this.set('Id', value); }
 constructor(input: IClickableItem) {
 super();
 for (let key in input) {
 if (key) { this[key] = input[key]; }
 }
 }
 }

TypeScript Compatible Frameworks

[218]

Here, we have a class named ItemModel that is derived from Backbone.Model, and
implements the IClickableItem interface. It is using ES5 getter and setter functions for
the Id and DisplayName properties. Within these getter and setter functions, we are calling
Backbones model.get('<propertyName>') and model.set('<propertyName>')
functions. This is because Backbone stores object properties internally as attributes. Our
constructor function is simply looping through each property in the input structure, and
setting the relevant internal property name. This means that we can construct an
ItemModel instance from a JavaScript static object as follows:

 let itemModelInstance = new ItemModel(
 {Id: 1, DisplayName : 'test'});

The ability to construct an internal ItemModel in this way means that we can use any
element of our IClickableItem array, and the resulting Backbone model will hydrate
correctly.

The second Model we will construct is used to house all elements of our IClickableItem
array, and is therefore a Collection of ItemModel instances, as follows:

 class ItemCollection
 extends Backbone.Collection<ItemModel> {
 model = ItemModel;
 }

This class, named ItemCollection, derives from Backbone.Collection<ItemModel>,
and has a single property named model. This model property is set to the ItemModel class.
We can therefore construct an ItemCollection as follows:

 let itemCollection = new ItemCollection(
 ClickableItemCollection);

So, in a single line, we have created a Backbone.Collection of ItemModel instances from
our original array.

Backbone ItemView
For our sample application, we will also build two Views. One view will be used to render
each item in our array, and the other view will be used to render the entire collection. The
item view will therefore be nested inside the collection view.

TypeScript Compatible Frameworks

[219]

Let's take a look at our item view:

 class ItemView extends Backbone.View<ItemModel> {
 template: (json, options?) => string;
 constructor(
 options = < Backbone.ViewOptions<ItemModel> > {}
) {
 options.tagName = "li";
 options.events = <any>{'click': 'onClicked' };
 super(options);
 this.template = _.template(
 $('#itemViewTemplate').html()
);
 }
 render() {
 this.$el.html(
 this.template(
 this.model.toJSON()
)
);
 return this;
 }
 onClicked() {
 alert(`Item clicked : { Id: ${this.model.get('Id')},
 DisplayName : ${this.model.get('DisplayName')} }`);
 }
 }

Our ItemView class derives from Backbone.View, and uses generic syntax to strongly
type the Model used by this view to the ItemModel class that we built earlier. The
constructor function takes an optional argument named options that is of type
Backbone.ViewOptions<ItemModel>. This options argument is also set to a blank object
{} by default. By strongly typing this options argument, we ensure that the model used
by this view is always of type ItemModel.

Our constructor function sets two properties on the options object. The first is called
tagName, and Backbone will use this value as the outer HTML tag when it renders the
HTML. The second options property is called events. Backbone events are used to tie
DOM events back to functions on our view. This means that when the user clicks on an
item, the onClicked function of this ItemView class will be fired. This onClicked function
simply raises an alert popup.

TypeScript Compatible Frameworks

[220]

The options object is then passed down to the base Backbone.View object via the super
call.

The last line of the constructor sets up the template to be used for this view. Here, we are
querying the HTML DOM tree for an element with the id of itemViewTemplate. Our
HTML page will then need to include the following script in order for Backbone to be able
to pick up this template:

 <script type="text/template" id="itemViewTemplate">
 <button class="btn btn-primary"><%= DisplayName %>
 </button>
 </script>

Note that Backbone uses Underscore's templating engine by default. In order to render a
Model's property into the HTML, we use the <%= PropertyName %> syntax within the
template.

The last function in our ItemView class that is of interest is the render function. This
render function sets calls the html function of the $el internal property, and passes in the
template function and a JSON representation of the internal model property. It also returns
this, so that any code that uses it can chain commands onto the render function.

Backbone CollectionView
The second view we will build is for the overall collection itself. This view is interesting in a
couple of ways. Firstly, it will be constructed with two models. The first model is its own
internal model, and will be used to render properties to the screen, and the second model is
the collection to be used for each ItemView.

The second interesting thing about this view is that the render function will need to create
individual instances of the ItemView class for each element in the collection, and combine
the rendered HTML together with its own internal template. Our view is as follows:

 class ItemCollectionView extends Backbone.View<ItemModel> {
 template: (json, options?) => string;
 constructor(options?: any) {
 if (!options)
 options = {};
 super(options);
 this.template = _.template(
 $('#itemCollectionViewTemplate').html()
);
 }
 render() {

TypeScript Compatible Frameworks

[221]

 this.$el.html(this.template(
 this.model.toJSON()));
 this.collection.each((item) => {
 var itemView = new ItemView(
 { model : item});
 this.$el.find('#ulRegions')
 .append(itemView.render().el);
 });
 return this;
 }
 }

Here, we have created a view class named ItemCollectionView that again extends
Backbone.View<ItemModel>. The constructor function is almost identical to the
previous view, except that it is a little simpler, and just sets up the HTML template from the
DOM element named itemCollectionViewTemplate. Our HTML, therefore, must
include this as a snippet, as follows:

 <script type="text/template" id="itemCollectionViewTemplate">
 <h1> <%= DisplayName %> </h1>
 <ul id="ulRegions">

 </script>

This HTML snippet uses the <%= PropertyName %> syntax to render the DisplayName
property from the model. We also have a element that will contain the rendered
HTML for our child models.

Let's now take a look at the render function itself. The first line in the render function will
render the main ItemCollectionView template and model, similar to what we have seen
before. The second line of the render function will iterate through the ItemCollection,
and create a new child ItemView for each collection element. Each of these child views are
then rendered, and their resulting HTML appended to the ulRegions DOM element.

Backbone application
Having created a model, a collection of models, and two views, we will now create a
controller to bind these elements together. Backbone, however, does not have a specialist
controller class, but we can use a standard TypeScript class to accomplish the work of a
controller. This class will be named ScreenViewApp, as follows:

 class ScreenViewApp {
 constructor() {
 console.log(`ScreenViewApp.constructor()`);

TypeScript Compatible Frameworks

[222]

 }
 start() {
 let collectionModel = new ItemModel(
 {Id: 0, DisplayName: "Select an Option:"});
 let itemCollection =
 new ItemCollection(ClickableItemCollection);
 let itemCollectionView = new ItemCollectionView(
 {
 model: collectionModel,
 collection: itemCollection
 });
 $('#pageLayoutRegion').html(
 itemCollectionView.render().el
);
 }
 }

Here, we have created a class named ScreenViewApp with a constructor and a start
function. The constructor simply logs a message to the console. The body of the start
function shows how we create the various elements that are used to render our application
to the screen.

The first line of the start function creates an instance of the ItemModel with the
DisplayName property set to 'Select an Option:'. This property will be used to render
the text at the top of the screen. We then create an instance of an ItemCollection class,
and pass in the array of IClickableItem[] objects that we created earlier. This hydration
of the ItemCollection class would generally be accomplished through a JSON request to
a REST endpoint. The third line of this function then creates an instance of the
ItemCollectionView class, and passes in an object with two properties, model and
collection. The model property is the instance of the ItemModel named
collectionModel, and the collection property is the instance of the ItemCollection,
named itemCollection. In this way, we are passing both models to our view.

The final line of the start function simply calls the html function on the
pageLayoutRegion DOM element to set the rendered HTML. Note that once a Backbone
view has been rendered, the final HTML is placed within the el property of the view itself.
With this class in place, we can then call the start function from our index.html page, as
follows:

 <script >
 window.onload = function() {
 app = new ScreenViewApp();
 app.start();
 }
 </script>

TypeScript Compatible Frameworks

[223]

 <div id="pageLayoutRegion">
 </div>

Here, we create an instance of the ScreenViewApp class within the window.onload
function, and then call start. Below this <script> tag, we have placed a <div> with the
id of pageLayoutRegion, where the resultant HTML will be placed.

As we noted at the start of this section, Backbone requires us to write a little more code than
other frameworks in order to finish off our application. On the flip side of this coin, though,
is that the code itself is very readable and logical, and contains no magic whatsoever. It is
therefore very simple to pick up and write, and it requires a very small learning curve in
order to use.

Using Aurelia
Aurelia was one of the first SPA frameworks to offer full TypeScript integration. It is a
framework that specifically uses ECMAScript 6 features to enhance the development
experience. One of the most astounding features of the Aurelia framework is the small
amount of code that you need to write in order to get things done. Aurelia understands that
if you are writing a standard class, then you probably want to use the class properties to
render some HTML.

Aurelia setup
The simplest way to set up a development environment is to use Aurelia's command-line
interface, named aurelia-cli, which can be installed as follows:

npm install aurelia-cli -g

Once this has been installed, it can be invoked to create a new project as follows:

au new

This will take you through a simple set of questions, starting with the name of the base
directory that you would like to use. The next question is whether to use ESNext or
TypeScript as your development language, and the last question is whether or not to
download all project dependencies. Selecting TypeScript and then yes to download
dependencies will take a few minutes to set up the default project structure. Once this is
complete, a new directory will be created based on the project name you selected at the start
of the process.

TypeScript Compatible Frameworks

[224]

The aurelia-cli program has a number of options. To compile your project, type:

au build

To run your newly created Aurelia application, type:

au run

This will invoke the Aurelia compilation and bundling steps, and then set up an http-server
to serve the application, by default on port 9000. Browsing to http://localhost:9000
will show the default Aurelia screen, as follows:

Aurelia welcome page

Development considerations
Aurelia is a large framework that takes up a considerable amount of disk space. The
directory size of the default application is around 150Mb worth. It also does a lot of heavy
lifting under the hood. When working with Aurelia, just bear in mind that this may impact
the performance of your application.

Aurelia performance
When you first load your sample Aurelia application in a web browser, you will notice a
considerable pause before the page is shown. To dive a little deeper into this initial lag, we
can open up the developer toolbar in Chrome to see what is happening behind the scenes.

TypeScript Compatible Frameworks

[225]

If we reload the web page with our developer toolbar, and take a look at the network traffic,
we will notice that Aurelia is doing a lot of heavy lifting in the background, as follows:

Chrome developer tools showing Aurelia network requests

Our trusty developer tools are showing us (on the summary bar at the bottom) that the web
page itself is doing 9 separate file requests to the server, and that the total time taken to
render the page was 1.16 seconds. Using the Microsoft Edge web browser, this load time
increases to around three seconds, and using Firefox, this load time increases to between
four and five seconds. This is a far cry from the 18 milliseconds that it takes to load our
Backbone sample application.

Just bear in mind that in a production application, there may be an initial delay from when
a user first browses to your home page, and when the page is finally rendered. An Aurelia
application is considerably faster on Chrome than it is on Firefox or Microsoft Edge.

TypeScript Compatible Frameworks

[226]

Aurelia models
Aurelia is built based on the ECMAScript 2016 standard. This means that a standard class
can be used as a model. There are no getters and setters as we needed in Backbone, nor are
there any special constructors required to hydrate the model. Classes can contain other
classes, and therefore it is very easy to define complex and nested models. Let's create our
array of ClickableItems in the src/app.ts file as follows:

 export class App {
 message: string = 'Select an Option:';
 items: ClickableItem[] = [
 { id: 1, displayName : "firstItem"},
 { id: 2, displayName : "secondItem"},
 { id: 3, displayName : "thirdItem"},
];
 }

 export class ClickableItem {
 displayName: string;
 id: number;
 }

Here, we have modified the class named App, and added a new property named items that
is simply an array of ClickableItem elements.

And that's all there is to it.

In Aurelia, standard classes are used as models.

Aurelia views
Aurelia uses a naming convention to tie classes to their views. Our class is named App, and
therefore the Aurelia runtime will search within the same directory as the class to find an
HTML template with the same name. It will therefore tie app.ts to app.html, and use
app.html as a template.

We will modify this app.html with the following snippet:

 <template>
 <h1>${message}</h1>

 <li repeat.for="item of items">
 <button >${item.displayName}</button>

TypeScript Compatible Frameworks

[227]

 </template>

Here, we have wrapped an HTML fragment within a <template> tag. Within this
template, we have an <h1> tag that uses the ${propertyName} syntax to render the
model's property named message. We then have a tag, and within this an tag.

The tag in this instance is the interesting part of this template. Note how we have
injected an attribute named repeat.for="item of items". This syntax is specific to
Aurelia, and will loop through the items property of the App class, and repeat the tag
for each individual item. This will then be made available to the tag via a variable
named item. We could have called this arrayItem, in which case our code would need to
be repeat.for="arrayItem of items".

Within the tag, we are simply creating a <button> tag, and using the data-binding
syntax of ${item.displayName} to render the displayName property of each array
member.

Aurelia bootstrap
With our view and models in place, we can turn our attention to the index.html file at the
root of the project directory. This index.html file is as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Aurelia</title>
 </head>

 <body aurelia-app="main">
 <script
 src="scripts/vendor-bundle.js"
 data-main="aurelia-bootstrapper"></script>
 </body>
 </html>

This is a very simple HTML file, which simply includes a page title file within the <head>
tag, and then defines a <body> tag. There are a couple of interesting things to note about
this HTML.

Firstly, the <body> tag has an extra attribute, named aurelia-app. This attribute is telling
Aurelia that it should look for a main.js file in the src directory, as the initial starting
point for the application.

TypeScript Compatible Frameworks

[228]

This index.html file could not be simpler. It has a simple naming convention to find and
initiate the main class from the src directory. Unfortunately, reading through the main.ts
file, there does not seem to be any obvious links to the app.ts file, or the App class itself. It
seems that Aurelia uses this standard naming convention as a way of finding and
bootstrapping the Aurelia environment.

There is always a slight drawback when using naming conventions like
these, where specific magic strings are embedded within HTML attributes.
When things are working, all well and good, but when you inadvertently
mistype an attribute name, your entire web page may stop rendering
completely. Sometimes, there is precious little information available to
help track down these sorts of errors, as nothing is logged to the browser
console. This can also easily happen if you rename a file, or rename a class
as part of a refactoring exercise.

With these precious few lines of code in place, we have a running, working demo
application.

Aurelia events
The last requirement of our sample application is to display an alert when a user clicks on
one of our buttons. In order to do this, we will need to add a function to our App class, and
then bind the onclick DOM event to this function. Let's modify our app.html template
first, as follows:

 <li repeat.for="item of items"
 click.delegate="onItemClicked(item)">
 <button >${item.displayName}</button>

Here, we have added a click.delegate attribute to the tag, and within it, are calling
a function named onItemClicked with item as an argument. Note that this delegate is not
defined within the tag, but rather at the tag level. This means that the
onItemClicked function needs to be attached to our App class, and not our
ClickableItem class. This is slightly different to our Backbone implementation, where
each individual ItemView received the onclick event.

With this in place, we can modify our App class as follows:

 export class App {
 message: string = 'Select an Option:';
 items: ClickableItem[] = [

TypeScript Compatible Frameworks

[229]

 { id: 1, displayName : "firstItem"},
 { id: 2, displayName : "secondItem"},
 { id: 3, displayName : "thirdItem"},
];
 onItemClicked(event: ClickableItem) {
 alert(`App.onItemClicked , event.id
 ${event.id} - ${event.displayName}`);
 }
 }

Here, we have added an onItemClicked function with a single argument named event,
which is of type ClickableItem. Within this function, we are raising a simple alert to
display the properties of the item that was clicked.

As we have seen, building Model, View, and Controller code within Aurelia is a very
simple exercise. Using the power of ECMAScript 2016 classes, and simple HTML templates,
we are able to get a lot of work done with very little code.

Angular 2
As mentioned at the start of this chapter, Angular 2 is a complete rewrite of Angular 1, and
uses TypeScript as its language of choice. In this section of the chapter, we will take a look
at how the Model View Controller design pattern is used within Angular 2.

Angular 2 setup
Similar to Aurelia's command-line development environment setup, Angular 2 also has a
command-line project setup tool, named the Angular-CLI. This can be installed using npm
as follows:

npm install -g angular-cli

Once the command-line interface has been installed globally, we can set up an Angular 2
development environment by using the Angular-CLI as follows:

ng new my-app

TypeScript Compatible Frameworks

[230]

The Angular-CLI is named ng, and here we have specified that it should create a new
project in a new directory named my-app. Within this new directory, the Angular-CLI will
have downloaded and installed all necessary components of an Angular 2 application. To
start a development web server, and see the application running, we issue the following
command:

npm start

This start command will compile all of our application source code, and start a web server
on port 4200. Browsing to http://localhost:4200 will then run our application. One of
the benefits of using the Angular 2 development environment is that it will watch your
source files for changes, and immediately re-compile the application when a file has
changed. If you leave your browser instance open, then Angular 2 will also force a browser
refresh once the application has been compiled, allowing immediate feedback on source
code changes.

Keep an eye out on the console where you are running npm start from.
This will show any TypeScript compilation errors that occur when you
save your files.

Angular 2 models
Angular 2 models are built the same way as Aurelia models, in that they are simple classes.
Let's start by editing the file named app/app.component.ts, and add our Angular models
as follows:

 export class ClickableItem {
 displayName: string;
 id: number;
 }

 let ClickableItemArray : ClickableItem[] = [
 { id: 1, displayName : "firstItem"},
 { id: 2, displayName : "secondItem"},
 { id: 3, displayName : "thirdItem"},
];

 // existing @Component code
 export class AppComponent {
 title = 'hello angular !';
 items = ClickableItemArray;
 }

TypeScript Compatible Frameworks

[231]

Here, we have our standard ClickableItem class, which has the displayName and id
properties. We are then creating an array named ClickableItemArray to hold our array
items, as we have seen before. Our final class is called AppComponent, and has a title
property and an items property, similar to our model class for Aurelia.

Angular 2 views
Angular uses a class decorator named @Component to specify that a class can act as an
HTML component. Let's take a closer look at this decorator:

 import { Component } from '@angular/core';

 // existing ClickableItem code

 @Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
 })
 export class AppComponent {
 title = 'hello angular !';
 items = ClickableItemArray;
 }

This code starts with an import statement to define the Component decorator from a
library named '@angular/core'. This import statement is part of the modular syntax
that we will cover in a later chapter. It basically gives us the ability to easily reference other
classes from the Angular framework.

The @Component decorator defines three properties, selector, templateUrl, and
styleUrls. The selector property is used to reference an HTML DOM element where
the View will render into, similar to a standard jQuery selector. The templateUrl property
specifies where the template HTML file for this component is found, and the styleUrls
property is used to include CSS files used by the component.

Let's take a look at the app.component.html file that contains our template:

 <h1>
 {{title}}
 </h1>

 <li *ngFor="let item of items">
 <button>

TypeScript Compatible Frameworks

[232]

 {{item.displayName}}
 </button>

Within this template, we are using the Angular syntax of {{propertyName}} to reference
properties within our model. This is similar to the ${propertyName} syntax that Aurelia
uses. Our template, again similar to Aurelia, has an <h1> element to display the title
property, and then has the usual and tags.

Within the tag, we are again looping through the items property of the
AppComponent model to render each array item to the DOM. Angular uses the *ngFor
keyword within its template to indicate a loop construct. The "let item of items" is
again referencing each array element within the template via the item variable name. As
we saw with Aurelia, if we changed this to "let arrayItem of items", then we would
need to reference each array element through the arrayItem variable.

The template that will be used for each array element is to render a <button> tag, and
display the value of the item.displayName property.

With these changes in place, our Angular 2 application will render the array of
ClickableItem elements within the HTML page.

Angular performance
If we open up our handy developer tools and take a look at the number of network requests
and time taken to load our page, we will notice that Angular is doing a total of around eight
requests, and is refreshing the page in Chrome in around 517 milliseconds. Using Firefox,
this is around 960 milliseconds, and in Microsoft Edge, around 2000 milliseconds. This is a
good deal quicker than Aurelia, certainly for a development environment.

Angular events
The last step in this sample application is to wire up our DOM onclick events and show
an alert with details from the underlying model. As with Aurelia, this will require a slight
modification to our template, and the addition of a click handler on our model. Let's start by
updating the template in the app.component.html file as follows:

 <li *ngFor="let item of items"
 (click)="onSelect(item)">

TypeScript Compatible Frameworks

[233]

 <button>
 {{item.displayName}}
 </button>

Here, we have simply added a (click)="onSelect(item)" attribute to the tag
used to render each item to the DOM. Note the slight difference between Aurelia and
Angular syntax used here. Where Aurelia uses click.delegate, Angular simply uses
(click), surrounded by parentheses. We can now define the onSelect function within
our AppComponent class as follows:

 export class AppComponent {
 title = "Select an option :";
 items = ClickableItemArray;
 onSelect(selectedItem: ClickableItem) {
 alert(`onSelect : id=${selectedItem.id}
 displayName=${selectedItem.displayName}`);
 }
 }

Here, we have defined an onSelect function that has a ClickableItem object as an
argument. Within this function we are simply raising an alert to display the properties of
the model that was used to create the element. As we saw with Aurelia, this handler is also
at the AppComponent level and not at the ClickableItem as it was with Backbone. The
reason for this is again that the controlling class, that is, the class that defines the *ngFor
loop, is the AppComponent itself.

With this event handler in place, our sample application is up and running in Angular 2.

Using React
The final TypeScript framework that we will take a look at in this chapter is React. The
React framework is open source, and maintained by Facebook. React uses a specific in-line
syntax for combining HTML templates and JavaScript code, named JSX. There are no string
templates, or HTML snippets in React, as all templates are mixed in with normal JavaScript
code in an XML-like syntax. TypeScript included support for React/JSX syntax in release 1.6.
To use the new JSX syntax, however, we will need to create our TypeScript files with a .tsx
extension, instead of the normal .ts file extension.

TypeScript Compatible Frameworks

[234]

React setup
The process that React uses to generate JavaScript from JSX files creates an extra step in the
normal development workflow. Our TypeScript .tsx files, once compiled, will generate
JavaScript files that are interspersed with JSX syntax. Once these files have been created,
they need to pass through the JSX interpreter to generate standard JavaScript files. For this
reason, it is recommended to use a bundling tool such as Webpack to perform this extra
compilation step. Using Webpack will also combine our compiled .tsx files with the React
libraries correctly.

To start a new project, we will follow a few steps, as follows:

npm init

The preceding command initiates npm for our project.

npm install -g webpack

This installs webpack as a global Node module.

npm install --save react react-dom

This installs the react and react-dom libraries (instead of using bower).

npm install --save-dev ts-loader source-map-loader

This installs the ts-loader and source-map-loader Node modules.

npm link typescript

This links our global installation of typescript for use by webpack.

Once these steps are complete, we can install the React declaration files via the @types
syntax as follows:

npm install @types/react --save
npm install @types/react-dom --save

We can now create a tsconfig.json file via tsc --init, and then modify it slightly as
follows:

 {
 "compilerOptions": {
 "outDir": "./dist/",
 "module": "commonjs",
 "target": "es5",
 "noImplicitAny": true,

TypeScript Compatible Frameworks

[235]

 "sourceMap": true,
 "jsx" : "react"
 },
 "exclude": [
 "node_modules"
]
 }

Here, we have added an "outDir" property set to "./dist/", which will be the directory
that compiled JavaScript files will be written to – as well as a "jsx" property, which is set
to "react", to indicate that we are using JSX syntax in our compilation step.

The final configuration file we need for our development environment is a
webpack.config.js file, as follows:

 module.exports = {
 entry: "./app/index.tsx",
 output: {
 filename: "./dist/bundle.js",
 },

 // Enable sourcemaps for debugging webpack's output.
 devtool: "source-map",

 resolve: {
 // Add '.ts' and '.tsx' as resolvable extensions.
 extensions: ["", ".webpack.js",
 ".web.js", ".ts", ".tsx", ".js"]
 },

 module: {
 loaders: [
 // All files with a '.ts' or '.tsx' extension
 // will be handled by 'ts-loader'.
 { test: /\.tsx?$/,
 loader: "ts-loader" }
],

 preLoaders: [
 // All output '.js' files will have any
 // sourcemaps re-processed by 'source-map-loader'.
 { test: /\.js$/,
 loader: "source-map-loader" }
]
 },

 externals: {

TypeScript Compatible Frameworks

[236]

 "react": "React",
 "react-dom": "ReactDOM"
 },
 };

This file is fairly well documented, so we will not describe each option here. One of the
properties to note, however, is the "entry" property at the top of the file, specifying the
"./app/index.tsx" file. This index.tsx file will be used as the initial startup file for the
React bootstrapping process. The other property to note is the "output" property,
specifying that the results of the bundling process should be written to the
"./dist/bundle.js" file.

With our configuration files in place, we can compile and bundle all code simply by typing:

webpack

Running webpack at this stage will create an error, as we have not created
the app/index.tsx file as yet. To resolve this error, simply create a blank
index.tsx file in the app directory.

React views
React models, similar to Aurelia and Angular models, are simple TypeScript classes. As we
have covered these models in both of the previous sections, we will jump straight in and
take a look at how React composes views.

Firstly, let's create an app/ReactApp.tsx source file. Within this file, we will create two
views. The first view will be a view for each individual element of the
ClickableItemArray, and will be named ClickItemView. The second view will be
named ArrayView, and will render the entire array. This is similar to the two views that we
created in Backbone, and does not rely on template array binding, as seen in the use of the
*ngFor syntax, used in Angular. We will start with the ClickItemView as follows:

 import * as React from 'react';

 export class ClickableItem {
 displayName: string;
 id: number;
 }

 export class ClickItemView
 extends React.Component<ClickableItem,{}> {
 constructor() {

TypeScript Compatible Frameworks

[237]

 super();
 }
 render() {
 return (
 <button> {this.props.displayName}</button>
);
 }
 }

We start with an import statement to import all classes from the 'react' module, and
which specifies a namespace named React for these imports. Once again, this import
statement is part of the modularization syntax that we will cover in a later chapter. We then
define our ClickableItem model to serve as our data model, as we did in both Aurelia
and Angular previously.

This code snippet also defines a class named ClickItemView, which is our React item
view. In React, all views are referred to as modular, composable components, and so our
ClickItemView class derives from or extends the React.Component base class. This base
class uses generic syntax to define two required parameters for the generic type. The first of
these parameters is the model to which the view refers to – which in this instance, is the
ClickableItem model. The second object is the default state in which this model will take.
As we do not require a default state at this stage, we will leave this as a blank object.

Our ClickItemView has both a constructor and a render function. The constructor
function simply calls super to initiate the base React.Component class. The render
function, however, is a little more interesting.

All React render functions must return a snippet of HTML. However, taking a closer look
at this HTML snippet, we notice that it is not being handled as a string. In other words,
React components can include HTML elements within their render function as if they were
part of the standard language. This feature is the reason why React files need to be defined
with the special .tsx extension. By using the .tsx extension, we are notifying the
TypeScript compiler that we are mixing native HTML and TypeScript code within the same
file.

The render function returns an tag, and within this a <button> tag. Within the
<button> tag, we see the React templating syntax that is used to inject the model's
displayName property, through the {this.props.displayName} syntax.

TypeScript Compatible Frameworks

[238]

The second view we will define is the view that will be used to render the entire
ClickableItemArray. As mentioned earlier, React is similar to Backbone, in that we will
define a view for every individual array item, and then another view for the whole
collection. This view will be named ArrayView, as follows:

 export interface IArrayViewProps {
 items: ClickableItem[],
 title: string
 };

 export class ArrayView extends
 React.Component<IArrayViewProps, {}> {
 render() {

 let buttonNodes =
 this.props.items.map(function(item) {
 return (
 <ClickItemView {...item}/>
);
 });

 return <div>
 <h1>{this.props.title}</h1>

 {buttonNodes}

 </div>
 ;
 }
 }

We start with an interface named IArrayViewProps, which describes the properties we
will use within our ArrayView view. This IArrayViewProps interface has two properties,
a title property, which will be used to render the page title, and an items property,
which contains the data from the ClickableItem array.

Our ArrayView class extends React.Component. Again, the generic syntax for React
components requires two arguments, an object describing the properties of the view, and an
object describing its initial state. The only function in this view is the render function. The
render function is divided into two sections.

TypeScript Compatible Frameworks

[239]

The first section is the definition of a variable name, buttonNodes, which calls the map
function on the items property, as seen in the call to this.props.items.map. This map
function will loop through each item in the items array, and return an HTML snippet. The
snippet returned is an HTML element named ClickItemView. This element name is the
same as the class name of the ClickItemView class that we defined earlier. Note how the
ClickItemView element specifies a variable list of attributes, as seen in the {...item}
syntax. This syntax is a shorthand way of passing all properties of the array element to the
ClickItemView.

The second section of the render function returns the HTML snippet for the entire
ArrayView. This consists of an <h1> tag, which renders the title property via the
{this.props.title} syntax. The next tag is a tag, and within this, the
{buttonNodes} variable. This HTML snippet, therefore, will include the results of our map
function as defined by the buttonNodes variable. In this way, React allows us to use any
TypesScript variable or function within our HTML templates in a simple and intuitive
manner.

React bootstrapping
In order to see the results of our view definitions rendered in our sample application, we
will need to bootstrap our React code, similar to what we did for Aurelia. To do this, we
will modify the app/index.tsx file as follows:

 import * as React from "react";
 import * as ReactDOM from "react-dom";

 import { ArrayView, ClickableItem }
 from "./ReactApp";

 let ClickableItemArray : ClickableItem[] = [
 { id: 1, displayName : "firstItem"},
 { id: 2, displayName : "secondItem"},
 { id: 3, displayName : "thirdItem"},
];

 ReactDOM.render(
 <ArrayView items={ClickableItemArray}
 title="Select an option:" />,
 document.getElementById("example")
);

TypeScript Compatible Frameworks

[240]

Here, we are defining three import statements at the start of the file. The first two import
statements make all classes from the "react" library and "react-dom" library available
under the namespace React and ReactDOM, respectively. The third import statement
makes the ArrayView and ClickableItem classes available from the ReactApp.tsx file
that we created earlier.

We then create a variable named ClickableItemArray, which is our array of
ClickableItem objects. Finally, we call the ReactDOM.render function, to render an
element to the DOM of the ArrayItem type. Note how we have specified two attributes for
this ArrayItem element.

The first attribute is named items, and the value of this item is the instance of the array we
created named ClickableItemArray. Again, React is allowing us to use the
{variableName} syntax to inject the value of the ClickableItemArray variable into the
DOM. The second attribute in this snippet is named title, and is set to the string value of
"Select an option: ". After we have defined these DOM elements, note how we
include a comma, and then a call to document.getElementById.

This syntax is React's way of selecting a DOM element within the HTML page, and injecting
the generated HTML. The id of the element is "example", and as such will match a <div
id="example"> element within our HTML.

We will now need to create an index.html file in order to bootstrap and render our React
application. This index.html file (at the root directory of our project) is as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>
 </head>
 <body>
 <div id="example"></div>

 <!-- Dependencies -->
 <script src=
 "./node_modules/react/dist/react.js">
 </script>
 <script src=
 "./node_modules/react-dom/dist/react-dom.js">
 </script>

 <!-- Main -->
 <script src="./dist/bundle.js"></script>

TypeScript Compatible Frameworks

[241]

 </body>
 </html>

This file includes <script> tags within the <body> element to load both the react.js and
react.dom.js file, and then the bundled ./dist/bundle.js file that Webpack creates.
Note, however, that the <body> element includes a <div> tag with the id="example"
before including the script tags for React. This is slightly different to most frameworks,
where the script tags are defined as part of the <head> tag. Unfortunately, changing this
order will generate errors with the framework, and render a blank page.

Our React application is now ready to run. Simply fire up a browser, and open the
index.html file in your source directory. Note that where Aurelia and Angular require a
web server to be running within your development environment, React and Backbone do
not.

React events
We can now turn our focus onto registering an event handler for the button click event.
Again, the React framework is all about creating self-contained components, and so the
click handlers in React will be attached to the View that is responsible for rendering our
array items, similar to what we saw when working with Backbone. We will therefore
modify our ClickItemView in the app/ReactApp.tsx file as follows:

 export class ClickItemView
 extends React.Component<ClickableItem,{}> {
 constructor() {
 super();
 this.handleClick =
 this.handleClick.bind(this);
 }
 render() {
 return (
 <button onClick={this.handleClick}>
 {this.props.displayName}</button>
);
 }
 handleClick() {
 alert(`handleClick() { id : ${this.props.id}
 displayName : ${this.props.displayName} }`);
 }
 }

TypeScript Compatible Frameworks

[242]

Our ClickItemView class has been modified in three places. Firstly, we have created a new
function named handleClick, which will create an alert showing the properties of the
model that were used to create this view. This alert function is accessing the model
properties via the this.props.propertyName syntax.

The second modification we have made to this class is in the render function. We have
modified the template HTML snippet to include an onClick attribute, and bound this to
the {this.handleClick} function. This is similar to the modifications we made for
Aurelia (click.delegate="functionToCall"), and Angular
(click)=functionToCall), to bind the DOM onclick event to our function call.

The third modification we have made to this class is in the constructor function. After the
call to super, we are calling this.handleClick = this.handleClick.bind(this);.
This strange looking syntax is actually binding any call to the handleClick function to use
the instance of the class that was created to render this array item as the correct this.
Remember that when an onclick event is received by the ClickItemView class, it has
been generated by the DOM event, and so the value of this will be as set by the context of
the button (the calling context). Binding to this means that the this variable within the
class will not reference the calling context, but rather the context of the entire class. This
means that the this parameter is correctly referencing the class instance instead of the
calling context, and that we can access other properties and functions within the class
correctly.

With these DOM listeners in place, our application is complete and working with the React
framework.

Summary
In this chapter, we took a deep dive look into what an MVC framework is, and discussed
each of its elements. We discussed the role and responsibilities of the Model, the View, and
the Controller in MVC, and how they interact together to create user interfaces. We also had
a brief discussion on the benefits of using MVC frameworks. We then took a look at four
MVC frameworks that either have very tight integration with TypeScript, or have been
written with TypeScript in mind. We implemented the same basic application in each of
these frameworks, and compared the differences in concepts and syntax between Backbone,
Aurelia, Angular 2, and React. We also discussed some performance implications to think
about when working with each of these frameworks. In our next chapter, we will take a
look at automated testing – unit testing, integration testing, and acceptance testing for our
TypeScript applications.

8
Test Driven Development

In our last chapter, we took an in-depth look at the MVC design pattern, and built a sample
application using four different frameworks that all use this pattern. We saw that each
framework does things slightly differently in terms of models and views, and that each
framework had the notion of a controller component, or an application component. The
basic principles of the MVC design pattern have given rise to other similar patterns, for
instance Model View Presenter (MVP) and Model View View Model (MVVM). When
discussing this group of patterns together, they have been described by some as Model
View Whatever (MVW), or Model View Something (MV*).

Some of the benefits of this MV* style of writing applications include modularity and
separation of concerns. But this MV* style of building applications also brings with it a huge
advantage–the ability to write testable JavaScript. Using MV* allows us to unit test,
integration test, and acceptance test almost all of our beautifully hand-crafted JavaScript.
This means that we can test our rendering functions to ensure that DOM elements are
correctly shown on the page. We can also simulate button clicks, drop-down selects, and
animations. We can also extend these tests to page transitions, including login pages and
home pages. By building a large set of tests for our application, we will gain confidence that
our code works as expected, and allow us to re-factor our code at any time.

In this chapter, we will look at test driven development in relation to TypeScript. We will
discuss some of the more popular testing frameworks, write some unit tests using these
frameworks, and then discuss test runners and continuous integration techniques.

Test Driven Development

[244]

The topics that we will be looking at in this chapter are:

Test driven development
Unit, integration, and acceptance tests
Jasmine
Jasmine runners
Continuous integration

Test driven development
TDD is a development process, or a development paradigm that starts with tests, and drives
the momentum of a piece of production code through these tests. Test driven development
means asking the question–how do I know that I have solved the problem?, instead of
just–how do I solve the problem?

The basic steps of a test driven approach are the following:

Write a test that fails
Run the test to ensure that it fails
Write the code to make the test pass
Run the test so see that it passes
Run all tests to see that the new code does not break any others
Repeat

Using test driven development practices is really a mindset. Some developers follow this
approach, and write tests first, while others write their code first and their tests afterwards.
Then there are some that don't write tests at all. If you fall into the last category, then
hopefully the techniques you learn in this chapter will help you to get started in the right
direction.

There are so many excuses out there for not writing unit tests. Things like the test
framework was not in our original quote, or it will add 20% to the development time, or the
tests are outdated so we don't run them anymore. The truth is, though, that in this day and
age, we cannot afford not to write tests. Applications grow in size and complexity, and
requirements change over time. An application that has a good suite of tests can be
modified far more quickly, and will be much more resilient to future requirement changes
than one that does not have tests. This is when the real cost savings of unit testing become
apparent. By writing unit tests for your application, you are future-proofing it, and
ensuring that any change to the code base does not break existing functionality.

Test Driven Development

[245]

We also want to write our applications to stand the test of time. The code we write now
could be in a production environment for years, which means that sometimes you will need
to make enhancements or bug fixes to code that was written years ago. If an application has
a full suite of tests surrounding it, then making modifications can be done with confidence
that the changes made will not break existing functionality.

TDD in the JavaScript space also adds another layer to our code coverage. Quite often,
development teams will write tests that target only the server-side logic of an application.
As an example, in the Visual Studio space, these tests are often written to only target the
MVC framework of controllers, views, and underlying business logic. It has always been
fairly difficult to test the client-side logic of an application – in other words the actual
rendered HTML and user-based interactions.

JavaScript testing frameworks provide us with tools to fill this gap. We can now start to
unit-test our rendered HTML, as well as to simulate user interactions such as filling in
forms, and clicking on buttons. This extra layer of testing, combined with server-side
testing, means that we have a way of unit testing each layer of our application from server-
side business logic, through server-side page rendering, right through to user interactions.
This ability to unit test frontend user interactions is one of the greatest strengths of any
JavaScript MV* framework. In fact, it could even influence the architectural decisions you
make when choosing a technology stack.

Unit, integration, and acceptance tests
Automated tests can be broken up into three general areas, or types of tests–unit tests,
integration tests, and acceptance tests. We can also describe these tests as either black box or
white box tests. White box tests are tests where the internal logic or structure of the code
under test is known to the tester. Black box tests, on the other hand, are tests where the
internal design and or logic are not known to the tester.

Unit tests
A unit test is typically a white box test where all of the external interfaces to a block of code
are mocked or stubbed out. If we are testing some code that does an asynchronous call to
load a block of JSON, for example, unit testing this code would require mocking out the
returned JSON. This technique ensures that the object under test is always given a known
set of data. When new requirements come along, this known set of data can grow and
expand, of course. Objects under test should be designed to interact with interfaces, so that
those interfaces can be easily mocked or stubbed in a unit test scenario.

Test Driven Development

[246]

Integration tests
Integration tests are another form of white box tests that allow the object under test to run
in an environment close to how it would in real code. In our preceding example, where
some code does an asynchronous call to load a block of JSON, an integration test would
need to actually call the REST services that generate the JSON. If this REST service relied
upon data from a database, then the integration test would need data in the database that
matched the integration test scenario. If we were to describe a unit test as having a
boundary around the object under test, then an integration test is simply an expansion of
this boundary to include dependent objects or services.

Building automated integration tests for your applications will improve the quality of your
product immensely. Consider the case of the scenario that we have been using where a
block of code calls a REST service for some JSON data. Someone could easily change the
structure of the JSON data that the REST service returns. Our unit tests will still pass, as
they are not actually calling the REST server-side code, but our application will be broken
because the returned JSON is not what we are expecting.

Without integration tests, these types of errors will only be picked up in later stages of
manual testing. Thinking about integration tests, implementing specific datasets for
integration tests, and building them into your test suite will eliminate these sorts of bugs
early.

Acceptance tests
Acceptance tests are black box tests, and are generally scenario-based. They may
incorporate multiple user screens or user interactions in order to pass. These tests are also
generally carried out by the testing team, as it may require logging in to the application,
searching for a particular set of data, updating the data, and so on. With some planning,
and the wealth of tools already available, we can also automate these acceptance tests, so
that they are run as part of an automated test suite. The more acceptance tests a project has,
the more robust it will be.

Note that in the test driven development methodology, every bug that is
picked up by a manual testing team must result in the creation of new
unit, integration, or acceptance tests. This methodology will help to ensure
that once a bug is found and fixed, it never reappears again.

Test Driven Development

[247]

Unit testing frameworks
There are many JavaScript unit testing frameworks available, and also a few that have been
written in TypeScript. Two of the most popular JavaScript frameworks are Jasmine
(http://jasmine.github.io/) and QUnit (http://qunitjs.com/). If you are writing node-
based TypeScript code, then you might want to have a look at Mocha
(https://github.com/mochajs/mocha/wiki).

Two of the TypeScript-based testing frameworks are MaxUnit
(https://github.com/KnowledgeLakegithub/MaxUnit) and tsUnit
(https://github.com/Steve-Fenton/tsUnit). Unfortunately, both MaxUnit and tsUnit are
newcomers in this space, and therefore may not have the features that are inherent in the
older, more popular frameworks. MaxUnit, for example, did not have any documentation at
the time of writing, and tsUnit does not have a test reporting framework compatible with CI
build servers. Over time these TypeScript frameworks may grow, but seeing how easy it is
to work with third-party libraries, and using DefinitelyTyped declaration files, writing unit
tests for either QUnit or Jasmine becomes a very simple process.

For the rest of this chapter, we will be using Jasmine 2.4 as our testing framework.

Jasmine
Jasmine is a behavior-driven JavaScript testing framework. It has a very simple syntax, and
can be extended easily. It is the recommended framework for Aurelia as well as Angular 2
unit and integration testing. Installation of Jasmine using npm is as follows:

npm install jasmine --save

The relevant declaration files for Jasmine can be installed by using @types as follows:

npm install @types/jasmine --save

http://jasmine.github.io/
http://qunitjs.com/
https://github.com/mochajs/mocha/wiki
https://github.com/KnowledgeLakegithub/MaxUnit
https://github.com/Steve-Fenton/tsUnit

Test Driven Development

[248]

A simple Jasmine test
Jasmine uses a simple format for writing tests. Consider the following TypeScript code:

 describe("tests/01_SimpleJasmineTests.ts ", () => {
 it("should fail", () => {
 let undefinedValue;
 expect(undefinedValue).toBeDefined();
 });
 });

This snippet starts with a Jasmine function called describe, which takes two arguments.
The first argument is the name of the test suite, and the second is an anonymous function
that contains our test suite. The next line uses the Jasmine function named it to describe an
actual test, which also takes two arguments. The first argument is the test name, and the
second argument is an anonymous function that contains our test, in other words, whatever
is within the it anonymous function is our actual test. This test starts by defining a
variable, named undefinedValue, but it does not actually set its value. Next, we use the
Jasmine function expect. Just by reading the code of this expect statement, we can quickly
understand what the unit test is doing. It is expecting that the value undefinedValue
should be defined, that is, not equal to undefined.

The Jasmine expect function takes a single argument, and returns what is known as a
Jasmine matcher. This matcher, expect(...) uses the fluent syntax to assess the value
passed into expect against the matcher. The expect keyword is similar to the Assert
keyword in other testing libraries. The format of the expect statements is very human-
readable, making Jasmine expectations relatively simple to understand.

Jasmine SpecRunner
In order to run this test, we will need an HTML page that includes all of the relevant
Jasmine third-party libraries, as well as our test JavaScript file. We can create a
SpecRunner.html file as follows:

 <html>
 <head>
 <link rel="stylesheet" type="text/css"
 href="../node_modules/jasmine-core/
 lib/jasmine-core/jasmine.css" />
 <script type="text/javascript"
 src="../node_modules/jasmine-core/
 lib/jasmine-core/jasmine.js" >
 </script>

Test Driven Development

[249]

 <script type="text/javascript"
 src="../node_modules/jasmine-core/
 lib/jasmine-core/jasmine-html.js" />
 </script>
 <script type="text/javascript"
 src="../node_modules/jasmine-core/
 lib/jasmine-core/boot.js" >
 </script>
 <script type="text/javascript"
 src="./01_SimpleJasmineTests.js" >
 </script>
 </head>
 <body>
 </body>
 </html>

This HTML page is simply including the required Jasmine files installed by npm, that is,
jasmine.css, jasmine.js, jasmine-html.js, and boot.js. The last line includes the
compiled JavaScript file from our TypeScript test file, 01_SimpleJasmineTests.js.

If we open up this page in a browser, we should see one failing unit test:

SpecRunner.html page showing Jasmine output

Test Driven Development

[250]

Excellent. We are following the test driven development process by firstly creating a failing
unit test. The results are exactly what we expect. Our variable named undefinedVariable
has not yet had a value assigned to it, and therefore will be undefined. If we follow the
next step of the TDD process, we should write the code that makes the test pass. Updating
our test as follows will ensure that the test will pass:

 describe("tests/01_SimpleJasmineTests.ts ", () => {
 it("value that has been assigned should be defined", () => {
 let undefinedValue = "test";
 expect(undefinedValue).toBeDefined();
 });
 });

Note that we have updated our test name to describe what the test is trying to accomplish,
and to make the test pass, we are simply assigning the value "test" to our
undefinedValue variable. Running the SpecRunner.html page now will show a passing
test, as follows:

Jasmine spec runner showing passing tests

Test Driven Development

[251]

Matchers
As seen in our first simple test, Jasmine uses a fluent syntax to allow us to attach Jasmine
matchers after the expect(...) statement. In our first test, we used the .toBeDefined
matcher. Jasmine, however, has a wide range of matchers that can be used within tests, and
also allows us to write and include custom matchers. Let's take a quick look at some of these
matchers:

 it("expect value toBe(2)", () => {
 let twoValue = 2;
 expect(twoValue).toBe(2);
 })

Here, we are using the .toBe matcher to test that the value of the twoValue variable is
indeed 2:

 it("expect string toContain value ", () => {
 let testString = "12345a";
 expect(testString).toContain("a");
 });

In this test, we are testing that the string "12345a" contains the value "a":

 it("expect true to be truthy", () => {
 let trueValue = true;
 expect(trueValue).toBeTruthy();
 });

In this test, we are testing that the trueValue variable is set to the boolean value of true.

We can also reverse the value of any expectation by using the .not matcher as follows:

 it("expect false not to be truthy", () => {
 let falseValue = false;
 expect(falseValue).not.toBeTruthy();
 });

Here, we are using the .not. matcher, and then the toBeTruthy matcher to test that the
falseValue variable is indeed false. We can also use the .not matcher on other
combinations of matchers, as follows:

 it("expect value not to be null", () => {
 let definedValue = 2;
 expect(definedValue).not.toBe(null);
 });

Test Driven Development

[252]

This test is checking that the value of the definedValue variable is not null.

We can also check that two JavaScript objects are equal as follows:

 it("expect objects to be equal", () => {
 let obj1 = {a : 1, b : 2};
 let obj2 = {b : 2, a : 1};

 expect(obj1).toEqual(obj2);
 });

In this test, we have defined two objects, named obj1 and obj2 that have the same
properties. The toEqual matcher will correctly identify that these two objects have the
same properties and values, and are therefore considered equal.

Be sure to head over to the Jasmine website for a full list of matchers, as well as details on
writing custom matchers.

Test startup and teardown
As in other testing frameworks, Jasmine provides a mechanism to define functions that will
run before and after each test, or as a test start-up and tear-down mechanism. In Jasmine,
the beforeEach and afterEach functions act in this way, as can be seen from the
following test:

 describe("beforeEach and afterEach tests", () => {
 let myString;

 beforeEach(() => {
 myString = "this is a test string";
 });
 afterEach(() => {
 expect(myString).toBeUndefined();
 });

 it("should find then clear the myString variable", () => {
 expect(myString).toEqual("this is a test string");
 myString = undefined;
 });

 });

Test Driven Development

[253]

In this test, we define a variable named myString, at the start of the test. As we know from
JavaScript lexical scoping rules, this myString variable will then be available for use within
the scope of the enclosing function, which is the describe() function. This means that the
myString variable will be available within each of the following beforeEach, afterEach,
and it functions. In our beforeEach function, this variable is set to a string value of "this
is a test string". Within the afterEach function, the variable is tested to see that it
has been reset to undefined. The expectation within our test checks is that this variable has
been set via the beforeEach function. At the end of our test, we then reset the variable to
be undefined. Note that the afterEach function is also calling an expect – in this case to
ensure that the test has reset the variable back to undefined.

Version 2.1 of the Jasmine framework introduces a second version of setup
and teardown, called beforeAll and afterAll. These functions, as can
be derived from their names, will run once before or after all tests within
the describe() grouping are run.

Data driven tests
To show how extensible the Jasmine testing library is, JP Castro wrote a very short, but
powerful utility to provide data-driven tests within Jasmine. His blog on this topic can be
found here
(http://blog.jphpsf.com/2012/08/30/drying-up-your-javascript-jasmine-tests/),
and the GitHub repository can be found here
(https://github.com/jphpsf/jasmine-data-provider). This simple extension allows us to
write intuitive Jasmine tests that take a parameter as part of each test, as follows:

 describe("data driven tests", () => {
 using("valid values", [
 "first string",
 "second string",
 "third string"
], (value) => {
 it(`${value} should contain 'string'`, () => {
 expect(value).toContain("string");
 });
 });
 });

Note here the use of the using function within a describe. This using function takes
three parameters–a string description of the value set, an array of values, and a function
definition which is then calling our test itself.

http://blog.jphpsf.com/2012/08/30/drying-up-your-javascript-jasmine-tests/
https://github.com/jphpsf/jasmine-data-provider

Test Driven Development

[254]

This function definition uses the variable value, and will invoke our test with the value of
this argument. Note also in the call to it, we are also changing the test name on the fly, to
include the value parameter that is passed in. This is necessary in order for each test to
have a unique test name.

Without a TypeScript definition of this using function, we will generate TypeScript errors,
so let's define the structure of the using function as follows:

 declare function using<T>(
 name: string,
 values : T [],
 func : (T) => void
);

This TypeScript declaration defines a function named using, and uses the generic syntax
<T> to define three function arguments. The first argument is the name of the test, the
second argument is an array of values of type T, and the third argument is a function that
accepts an argument of type T. This function declaration ensures that the same type (T) is
used for both the array of values, as well as the argument for the function itself.

Our data-driven tests now just need JP Castro's Jasmine extension, which is shown as
follows in JavaScript:

 function using(name, values, func) {
 for (var i = 0, count = values.length; i < count; i++) {
 if (Object.prototype.toString.call(values[i])
 !== '[object Array]')
 {
 values[i] = [values[i]];
 }
 func.apply(this, values[i]);
 }
 }

This is a very simple function named using, that takes the three parameters that we
mentioned earlier. The function does a simple loop through the array values, and passes in
each array value to our test.

With this declaration in place, and the JavaScript using function, our code will compile
correctly, and the tests will run through once for each value in the data array:

Test Driven Development

[255]

Jasmine spec runner showing data driven tests

Using spies
Jasmine also has a very powerful feature that allows your tests to see if a particular function
was called, and also to determine the actual parameters it was called with. This is known as
spying on a function. When we create a spy, we are temporarily hijacking the function call
in order to test these parameters. Let's take a look at a simple spy, as follows:

 class MySpiedClass {
 testFunction(arg1: string) {
 console.log(arg1);
 }
 }
 describe("simple spy", () => {
 it("should spyOn a function call", () => {
 let classInstance = new MySpiedClass();
 let testFunctionSpy
 = spyOn(classInstance, 'testFunction');

 classInstance.testFunction("test");
 expect(testFunctionSpy).toHaveBeenCalled();
 });
 });

We start with a class named MySpiedClass, which has a single function–testFunction.
This function takes a single argument, and logs the argument to the console.

Test Driven Development

[256]

Our test starts by creating a new instance of MySpiedClass, and assigns it to a variable
named classInstance. We then create a Jasmine spy named testFunctionSpy, by
calling the spyOn function. This spyOn function takes two arguments–the class instance
itself, and the name of the function to spy on. In this test, the class instance is named
classInstance, and the function we wish to spy on is named testFunction. Once we
have a spy created, we can call the function, and set an expectation on whether the function
was called. This is the essence of a spy. Jasmine will watch the testFunction function of
the instance of MySpiedClass to see whether or not it was called.

Jasmine spies, by default, block the call to the underlying function. In
other words, they replace the function you are trying to call with a Jasmine
delegate. This is part of the hijacking process we mentioned earlier. If you
need to spy on a function, but also need the body of the function to still
execute, you must specify this behavior using the .and.callThrough()
fluent syntax.

While this is a very trivial example, spies become very powerful in a number of different
testing scenarios. Classes or functions that take callback parameters, for example, would
need a spy to ensure that the callback function was in fact invoked.

Spying on callback functions
Let's see how we can test that a callback function was invoked correctly using this spying
technique. Consider the following TypeScript code:

 class CallbackClass {
 doCallBack(id: number, callback: (result: string) => void) {
 let callbackValue = "id:" + id.toString();
 callback(callbackValue);
 }
 }

 class DoCallBack {
 logValue(value: string) {
 console.log(value);
 }
 }

Firstly, we define a class named CallbackClass that has a single function, doCallback.
This doCallback function takes an id argument, of type number, and also a callback
function. The callback function must take a string as an argument, and return void.

Test Driven Development

[257]

The second class that we have defined, named DoCallBack has a single function named
logValue. This function signature matches the callback function signature required on the
doCallback function we defined earlier. Using Jasmine spies, we are now able to test the
logic of the doCallBack function. This function must create a string based on the id
argument that was passed in, and then invoke the callback function. Our tests must
therefore accomplish two things. Firstly, we need to ensure that the string generated within
the doCallback function is formatted correctly, and secondly we need to ensure that our
callback function was indeed invoked with the correct parameters. Our Jasmine test for this
functionality is as follows:

 describe("using callback spies", () => {
 it("should execute callback with the correct string value",
 () => {
 let doCallback = new DoCallBack();
 let classUnderTest = new CallbackClass();

 let callbackSpy = spyOn(doCallback, 'logValue');
 classUnderTest.doCallBack(1, doCallback.logValue);

 expect(callbackSpy).toHaveBeenCalled();
 expect(callbackSpy).toHaveBeenCalledWith("id:1");

 });
 });

This test code firstly creates an instance of the CallbackClass class, and also an instance of
the DoCallBack class. We then create a spy on the logValue function of the DoCallBack
class. Remember that the logValue function is passed into the doCallBack function as the
callback function parameter. We are therefore creating a spy on the logValue function of
the DoCallBack class. When we invoke the doCallback function on the CallbackClass
instance, this should therefore call our logValue function correctly.

Our expect statements on the last two lines verify that this callback chain has indeed been
executed correctly. The first expect statement simply checks that the logValue function
was invoked, and the second expect statement checks that it was called with the correct
parameters.

Test Driven Development

[258]

Using spies as fakes
Another benefit of Jasmine spies is that they can act as fakes. In other words, instead of
calling a real function, the call is essentially hijacked, and then delegated to the function that
is specified as part of the Jasmine spy – a fake function. These fake functions can also return
values which can be very useful for generating small mocking frameworks. Consider the
following test:

 class ClassToFake {
 getValue() : number {
 return 2;
 }
 }
 describe("using fakes", () => {
 it("calls fake instead of real function", () => {
 let classToFake = new ClassToFake();
 spyOn(classToFake, 'getValue').and.callFake (() => {
 return 5;
 });
 expect(classToFake.getValue()).toBe(5);
 });
 });

We start with a class named ClassToFake that has a single function, getValue, which
returns 2. Our test then creates an instance of this class. We then call the Jasmine spyOn
function to create a spy on the getValue function, and then use the .and.callFake syntax
to attach an anonymous function as a fake function. This fake function will return 5 instead
of the original getValue function that would have returned 2. The test then checks to see
whether the call to the getValue function on the ClassToFake instance will return 5. In
this test, Jasmine will substitute our new fake function for the original getValue function,
and therefore return 5 instead of 2.

There are a number of variants of the Jasmine fake syntax, including methods to throw
errors, or return values – again consult the Jasmine documentation for a full list of its faking
capabilities.

Asynchronous tests
The asynchronous nature of JavaScript, made popular by AJAX and jQuery, has always
been one of the draw-cards of the language, and is the principle architecture behind node-
based applications. Let's take a quick look at an asynchronous class, and then describe how
we should go about testing it. Consider the following TypeScript code:

Test Driven Development

[259]

 class MockAsyncClass {
 executeSlowFunction(success: (value: string) => void) {
 setTimeout(() => {
 success("success");
 }, 1000);
 }
 }

This MockAsyncClass has a single function, named executeSlowFunction, which takes a
function callback named success. Within the executeSlowFunction code, we are
simulating an asynchronous call with the setTimeout function, and only calling the
success callback after 1000 milliseconds (1 second). This function is therefore simulating
an asynchronous function, as it will only execute the callback after a full second.

Our test for this executeSlowFunction may look as follows:

 describe("asynchronous tests", () => {
 it("failing test", () => {
 let mockAsync = new MockAsyncClass();
 let returnedValue : string;
 mockAsync.executeSlowFunction((value: string) => {
 returnedValue = value;
 });
 expect(returnedValue).toEqual("success");
 });
 });

Firstly, we instantiate an instance of the MockAsyncClass, as well as a variable named
returnedValue. We then call executeSlowFunction with an anonymous function for the
success parameter. This anonymous function sets the value of returnedValue to
whatever was passed in from the MockAsyncClass. Our expectation is that the
returnedValue should equal "success", but if we run this test now, our test will fail with
the following error message:

Expected undefined to equal 'success'.

What is happening here is that because executeSlowFunction is asynchronous, JavaScript
will not wait until the callback function is called before executing the next line of code. This
means that the expectation is being called before executeSlowFunction has had a chance
to call our anonymous callback function (setting the value of returnedValue). If you put a
breakpoint on the expect(returnValue).toEqual("success") line, and another
breakpoint on the returnedValue = value line, you will see that the expect line is called
first, and the returnedValue line is only called after a full second.

Test Driven Development

[260]

Using done()
Jasmine version 2.0 has introduced a new syntax to help us with these sorts of
asynchronous tests. In any beforeEach, afterEach, or it function, we pass an argument
named done (which is a function), and then invoke it at the end of our asynchronous code.
Let's rewrite our previous test for executeSlowFunction as follows:

 describe("asynch tests with done", () => {
 let returnedValue;

 beforeEach((done) => {
 returnedValue = "no_return_value";
 let mockAsync = new MockAsyncClass();
 mockAsync.executeSlowFunction((value: string) => {
 returnedValue = value;
 done();
 });
 });

 it("should return success after 1 second", (done) => {
 expect(returnedValue).toEqual("success");
 done();
 });
 });

In this version of our asynchronous test, we have moved the returnedValue variable
outside of our test, and have included a beforeEach function to run before our actual test.
This beforeEach function firstly resets the value of returnValue, and then sets up the
MockAsyncClass instance. Finally, it calls the executeSlowFunction on this instance.

Note how the beforeEach function takes a parameter named done, and then calls done()
after the returnedValue = value line has been called. Notice too, that the second
parameter to the it function also now takes a done parameter, and calls done() when the
test is finished.

So what have we accomplished here? We have modified our original test, and split it into
two halves. The first half is the beforeEach function, which invokes our
executeSlowFunction, storing the return value in the returnValue variable. Our actual
test, therefore, is waiting for the done() function to execute, and then runs the remainder of
the test. This test structure means that we are invoking our asynchronous function, and only
executing our test and expectations once the asynchronous function has been executed.

Test Driven Development

[261]

From the Jasmine documentation–The spec will not start until the done
function is called in the call to beforeEach, and this spec will not
complete until its done function is called. By default, Jasmine will wait for
five seconds before causing a timeout failure. This can be overridden using
the jasmine.DEFAULT_TIMEOUT_INTERVAL variable.

Jasmine fixtures
Many times, our code is responsible for either reading in, or, in most cases, manipulating
DOM elements from JavaScript. This means that any running code that relies on a DOM
element could fail if the underlying HTML does not contain the correct element, or group of
elements. In order to test functions that modify the DOM in any way, we will need to
provide either a copy of, or the real DOM elements in order for our tests to pass.

One of the extension libraries for Jasmine, named jasmine-jquery, allows us to do exactly
this. The jasmine-jquery library lets us inject HTML elements into the DOM before our
tests execute, and will then automatically remove them from the DOM after the test is run.

We can install this library using npm as follows:

npm install jquery --save
npm install jasmine-jquery --save

With the equivalent @types declaration files as follows:

npm install @types/jasmine-jquery --save

Let's take a look at an example of a class that modifies a DOM element, as follows:

 class ModifyDomElement {
 setHtml() {
 let elem = $('#my_div');
 elem.html('<p>Hello World</p>');
 }
 }

Test Driven Development

[262]

This ModifyDomElement class has a single function, named setHtml that is using jQuery
to find a DOM element with the ID of my_div. The HTML of this div is then set to a simple
"Hello world" paragraph. Obviously, this class requires the existence of a DOM element
named my_div in order to function correctly. Let's now take a look at how we can use the
setFixtures function from the jasmine-jquery library within a test to set up this DOM
element, as follows:

 describe("fixture tests", () => {
 it("should modify a dom element", () => {
 setFixtures('<div id="my_div"></div>');
 let modifyDom = new ModifyDomElement();
 modifyDom.setHtml();
 var modifiedDomElement = $('#my_div');
 expect(modifiedDomElement.length).toBeGreaterThan(0);
 expect(modifiedDomElement.html()).toContain("Hello");
 });
 });

The test starts by calling the jasmine-jquery function, setFixtures. This function will
inject the HTML provided as a string parameter directly into the DOM for the duration of
the test. The test then creates an instance of the ModifyDomElement class, and calls the
setHtml function, which will modify the my_div element.

The remainder of the test uses the jQuery $ function to find a DOM element with an id of
my_div, and stores this in the variable named modifiedElement. The modifiedElement
variable is then passed onto our two expectations. Note the first expect statement tests to
see if the length property of the modifiedDomElement variable is > 0. This is the easiest
way of figuring out if the element was in fact found in the DOM. If it was found, we are
then checking the internal HTML of the element, to ensure that it contains the string
"Hello".

The fixture methods provided by jasmine-jquery also allow for loading
raw HTML files off disk, instead of having to write out lengthy string
representations of HTML. This is also particularly useful if your MV*
framework uses HTML file snippets. In addition, jasmine-jquery also
has utilities for loading JSON from disk and purpose build matchers that
work with jQuery. Be sure to check out the documentation at
(https://github.com/velesin/jasmine-jquery).

https://github.com/velesin/jasmine-jquery

Test Driven Development

[263]

DOM events
There will be times when the code you are writing must respond to DOM events, such as
onclick or onselect. Generally, developers will build this sort of code by testing
manually, but there will come a time when these tests need to be automated. Luckily,
writing tests that need these DOM events can also be simulated by using jQuery, jasmine-
jquery, and spies as follows:

 describe("click event tests", () => {
 it("should trigger an onclick DOM event", () =>{
 setFixtures(`
 <script>
 function handle_my_click_div_clicked() {
 // do nothing at this time
 }
 </script>
 <div id='my_click_div'
 onclick='handle_my_click_div_clicked()'>
 Click Here</div>`);
 var clickEventSpy = spyOnEvent('#my_click_div', 'click');
 $('#my_click_div').click();
 expect(clickEventSpy).toHaveBeenTriggered();
 });
 });

This test is again calling the setFixtures function from the jasmine-jquery library. This
setFixtures function is doing two things. Firstly, it is defining a function within a
<script> tag named handle_my_click_div_clicked. Secondly, it is defining a <div>
with an ID of my_click_div, and then attaching the DOM event of onclick to call the
handle_my_click_div_clicked()function. This single function call is therefore setting
up all of the required HTML for the onclick event. Without this <script> tag, running
our tests will produce an error:

ReferenceError: handle_my_click_div_clicked is not defined

Our test then sets up a Jasmine spy named clickEventSpy. This spy uses the jasmine-
jquery function named spyOnEvent, which takes two parameters–a jQuery selector for the
element to spy on, and a DOM event name.

We are then using jQuery to trigger the event by calling $('#my_click_div').click().
Remember that the default behavior of a spy is to hijack the function definition, and call our
spy instead. The last line of this test is our expectation, where we are expecting the spy to
have been triggered. The toHaveBeenTriggered function is a Jasmine matcher that is
provided by the jasmine-jquery library.

Test Driven Development

[264]

jQuery and DOM manipulation provide us with a way of filling in forms,
clicking on submit, cancel, ok buttons, and generally simulating user
interaction with our application. We can easily write full acceptance or
user acceptance tests within Jasmine using these techniques, further
solidifying our application against errors and change.

Jasmine runners
Firing up a web page in order to run our tests every time we make a change to one of our
tests can quickly become labor intensive and error-prone. We have already explored the use
of Grunt in our build tools in order to detect file changes and automatically recompile our
TypeScript files when a file is saved. In this section, we will explore a few test runners that
will detect changes to our test suite, and automatically rerun our tests without intervention.
Using test runners gives us instant feedback on the status of all tests, as we are writing our
code and saving changes.

Testem
Testem is a node-based test runner. It is run from the command line, and opens up a simple
interface to view test results. Testem will automatically detect changes to JavaScript files,
and execute tests on the fly, providing instant feedback during the unit testing phase.
Testem also has a very handy feature that allows multiple browsers to connect to the same
Testem instance. This allows us to connect an instance of Chrome, Firefox, IE, Opera, Safari,
QupZilla, or pretty much any type of browser to the same Testem runner. Testem will rerun
our tests in each and every browser and present a summary view as follows:

Testem command-line interface showing connected browsers

Test Driven Development

[265]

Testem also has a continuous integration setting that can be used on build servers. More
info can be found at the GitHub repository (https://github.com/airportyh/testem)

Testem can be installed via node with the command (note that you may need to prefix with
sudo on a Linux-based system):

npm install -g testem

Testem, by default, will try to load any JavaScript files in the current directory, parse them
for any tests, and then run them when a browser is connected. Testem is therefore creating a
simple HTML page in memory, and serving this page to our browsers. This simple style
uses Jasmine 1.3 by default, so we will need to configure Testem to use Jasmine 2 by
creating a simple testem.yml file in our test directory as follows:

 {
 "framework" : "jasmine2",
 "src_files": [
 "jquery.js",
 "jasmine-jquery.js",
 "UsingExtension.js",
 "test1.js"
]
 }

This file is a simple JSON format file that specifies two properties, framework and
src_files. The framework property indicates that we are using Jasmine 2 as our test
framework, and the source_files property includes some extra JavaScript files that are
needed for our tests, along with the test1.js file itself. With this testem.yml file in place,
we are able to run our full test suite using Jasmine 2.0, jQuery, and our data-driven tests.

Testem has a number of powerful configuration options that can be specified in the
configuration file. Be sure to head over to the GitHub repository for more information.

Note that Testem is a good choice for unit testing, but is not a good choice for integration or
acceptance testing. The nature of the framework means that Testem is building an HTML
page on the fly-based on our configuration file. During integration testing, we generally
want the HTML pages to be created by a web server.

https://github.com/airportyh/testem

Test Driven Development

[266]

Karma
Karma is a test runner built by the AngularJS team, and features heavily in the Angular
tutorials. It is a unit-testing framework only, and the AngularJs team recommends end-to-
end or integration tests to be built and run via Protractor. Karma, like Testem, runs its own
instance of a web server in order to serve pages and artifacts required by the test suite, and
it has a large set of configuration options. It can also be used for unit-tests that do not target
Angular. To install Karma to work with Jasmine 2.0, we will need to install a few packages
using npm:

npm install -g karma-cli
npm install karma --save-dev
npm install karma-jasmine --save-dev
npm install karma-chrome-launcher

To run Karma, we will need a configuration file. By convention, this is generally called
karma.conf.js. A sample Karma configuration file is as follows:

 module.exports = function (config) {
 config.set({
 basePath: '../',
 files: [
 'test/UsingExtension.js',
 'node_modules/jquery/dist/jquery.js',
 'node_modules/jasmine-jquery/lib/jasmine-jquery.js',
 'test/01_SimpleJasmineTests.js'
],
 autoWatch: true,
 frameworks: ['jasmine'],
 browsers: ['Chrome'],
 plugins: [
 'karma-chrome-launcher',
 'karma-jasmine'
]
 });
 };

We start by defining a function that takes a single parameter named config, and assign
this function to the module.exports property. All configuration parameters are then set
with a call to config.set. The basePath parameter specifies what the root path is, and if
it is relevant to the directory that the karma.config.js file resides in. The files array
contains a list of files to be included in the generated HTML. Here, we have specified the list
of files that we need in order to successfully run our tests.

Test Driven Development

[267]

The autoWatch parameter keeps Karma running in the background watching files for
changes, similar to what Testem does. The frameworks parameter specifies that we will be
using jasmine as a test framework. Karma allows for a variety of browsers to be specified
within the browsers parameter. In this sample, we are only using Chrome. The final
parameter is named plugins, and includes the plugin required for launching Chrome, as
well as the plugin for Jasmine. Once this config file is in place, simply run karma start
as follows:

karma start <path to karma.config.js>.

Karma output from a simple test

Protractor
Protractor is a node-based test runner that tackles end-to-end, or integration and acceptance
testing. Unlike Testem and Karma, which create a webpage for unit testing purposes,
Protractor is used to programmatically control a web browser. Just like manual testing,
Protractor has the ability to browse to a specific page, and then interact with the page from
JavaScript. As a simple example, suppose that your website has a login page, and all further
functionality requires a valid login. Using Protractor, we can start each test by browsing to
the login page, entering valid credentials, and then continue to browse to each page that is
part of our test suite.

Test Driven Development

[268]

Using Protractor, we can also check metadata properties within the HTML page – such as
the page title, or we can fill in forms and click on buttons. Protractor can be installed with
npm as follows:

npm install -g protractor

We will get to running Protractor a little later, but first, let's discuss the engine that
Protractor uses under the hood to drive the browser.

Using Selenium
Selenium is a driver for web browsers. It allows programmatic remote-control of web
browsers, and can be used to create automated tests in Java, C#, Python, Ruby, PHP, Perl,
and even JavaScript. Protractor uses selenium under the covers to control web browser
instances. To install the selenium server for use with Protractor, run the following
command:

webdriver-manager update

To start the selenium server, run the following command:

webdriver-manager start

If all goes well, selenium will report that the server has started, and will detail the address
of the selenium server. Check your output for a line similar to the following:

RemoteWebDriver instances should connect to: http://127.0.0.1:4444/wd/hub

Note that you will need Java to be installed on your machine, as the web driver-manager
uses Java to start the selenium server.

Once the server is running, we will need a configuration file for Protractor (similar to
karma), that by convention is named protractor.conf.js. The contents of this file are as
follows:

 exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['*.js']
 }

Test Driven Development

[269]

Here, we are simply assigning some properties to the exports.config object. The first
property that we are setting is seleniumAddress, which is the instance of the selenium
server, as we saw earlier. The second property, named specs, is the list of tests to run. This
specs property is therefore looking for any .js files in the same directory as the
protractor.conf.js file.

Now for the simplest of tests:

 describe("simple protractor test", () => {
 it("should navigate to google and find a title", () => {
 browser.driver.get('http://www.google.com');
 expect(browser.driver.getTitle()).toContain("Google");
 }) ;
 });

Our test starts by opening the page at 'http://www.google.com'. It then expects to see
that the title of the page is set to 'Google'. We can now run Protractor to execute this test
as follows:

protractor .\protractor\protractor.conf.js

If you keep an eye on your screen, you will see Protractor starting a new instance of a
Chrome browser session, and then navigate to the Google home page. It will then execute
the expectation. Our command-line output is as follows:

Protractor test results

Test Driven Development

[270]

Using continuous integration
When writing unit tests for any application, it quickly becomes important to set up a build
server and run your tests as part of each source control check in. When your development
team grows beyond a single developer, using a continuous integration build server becomes
imperative. This build server will ensure that any code committed to the source control
server passes all known unit tests, integration tests, and automated acceptance tests. The
build server is also responsible for labeling a build, and generating any deployment artifacts
that need to be used during deployment. The basic steps of a build server would be as
follows:

Check out the latest version of the source code, and increase the build number
Compile the application on the build server
Run any server-side unit tests
Package the application for deployment
Deploy the package to a build environment
Run any server-side integration tests
Run any JavaScript unit, integration, or acceptance tests
Mark the change set and build number as passed or failed
If the build failed, notify those responsible for breaking it

The build server should fail if any one of the preceding steps fails.

Benefits of CI
Using a build server to run through the preceding steps brings huge benefits to any
development team. Firstly, the application is compiled on the build server – which means
that any tools or external libraries will need to be installed on the build server. This gives
your development team the opportunity to document exactly what software needs to be
installed on a new machine in order to compile or run your application.

Secondly, a standard set of server-side unit tests can be run before the packaging step is
attempted. In a Visual Studio project, these would be C# unit tests built with any of the
popular .NET testing frameworks–MsTest, nUnit, or xUnit.

Test Driven Development

[271]

Next, the entire application's packaging step is run. Let's assume for a moment that a
developer has included a new JavaScript library within the project, but forgotten to add it to
source control. In this case, all of the tests will run on their local computer, but will break
the build because of a missing library file. If we were to deploy the site at this stage,
running the application would result in 404 errors – file not found. By running a packaging
step, these sorts of errors are quickly found.

Once a successful packaging step has been completed, the build server should deploy the
site to a specially marked build environment. This build environment is only used for CI
builds, and must therefore have its own database instances, web service references, and so
on, set up specifically for CI builds. Again, actually doing a deployment to a target
environment tests the deployment artifacts, as well as the deployment process. By setting
up a build environment for automated package deployment, your team is again able to
document the requirements and process for deployment.

At this stage, we have a full instance of our website up and running on an isolated build
environment. We can then easily target specific web pages that will run our JavaScript tests,
and also run integration or automated acceptance tests – directly on the full version of the
website. In this way, we can write tests that target the real life website REST services,
without having to mock out these integration points. So in effect, we are testing the
application from the ground up. Obviously, we may need to ensure that our build
environment has a specific set of data that can be used for integration testing, or a way of
generating the required datasets that our integration tests will need.

Selecting a build server
There are a number of continuous integration build servers out there, including TeamCity,
Jenkins, and Team Foundation Server (TFS).

Team Foundation Server
TFS is a Microsoft product that will require a license for the server component, as well as a
per-developer license. TFS needs a specific configuration on its build agents to be able to
run instances of a web browser, as this is by default disabled. It also uses Windows
Workflow Foundation to configure build steps, which takes a fair amount of experience and
knowledge to modify.

Test Driven Development

[272]

Jenkins
Jenkins is an open-source, free to use CI build server. It has wide community usage, and
many plugins. Installation and configuration of Jenkins is fairly straight-forward, and
Jenkins will allow processes to run browser instances, making it compatible with browser-
based JavaScript unit tests. Jenkins build steps are command line-based, and it sometimes
takes a little nous to configure build steps correctly.

TeamCity
A very popular, and very powerful build server that is free to set up is TeamCity. TeamCity
allows for free installation if you have a small number of developers (< 20), and a small
number of projects (< 20). A full commercial license is only around $1,500.00, which makes
it affordable for most organizations. Configuring build steps in TeamCity is much easier
than in Jenkins or TFS, as it uses a wizard-style of configuration depending on the type of
build step you are creating. TeamCity also has a rich set of functionality around unit-tests,
with the ability to show graphs per unit-test, and is therefore considered best of breed for
build servers.

Integration test reporting
We have seen how to create and run tests using Jasmine, Testem, Karma, and Protractor.
Each of our samples have successfully reported the number of tests executed, and the
success or failure of the test suite. We have used simple configuration files and simple
HTML files to set up and execute our tests.

In a real-world application, however, it is often necessary to run server-side logic or use
server-side HTML rendering. For instance, most applications will require some sort of
authentication, or login, before allowing calls to custom REST endpoints via JavaScript.
Unfortunately, calling any of these REST endpoints from a normal HTML page will return
401 (Unauthorized) errors. For cases like these, we should run our tests against the full
website.

This means that we will need a way of capturing the results of our test suite, for reporting
back to our CI server. For these reporting purposes, Jasmine includes the ability to use
custom test reporters, over and above the standard HtmlReporter that we have used
previously. The GitHub project, jasmine-reporters
(https://github.com/larrymyers/jasmine-reporters), has a number of pre-built test
reporters that cater for the most popular build servers.

https://github.com/larrymyers/jasmine-reporters

Test Driven Development

[273]

We can use these jasmine reporters with Protractor by updating the protractor.conf.js
file, after installing the jasmine-reporters package via npm:

npm install jasmine-reporters --save-dev

Our updates to the protractor.conf.js file are as follows:

 exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['*.js'],
 onPrepare: function() {
 var jasmineReporters = require('jasmine-reporters');
 jasmine.getEnv().addReporter(
 new jasmineReporters.TeamCityReporter());
 }
 }

Here, we have included an onPrepare property in our configuration settings, in order to
run an anonymous function. This function simply creates a variable named
jasmineReporters via a call to require, and then adds a new TeamCityReporter to the
Jasmine runtime environment. The require function call is part of a module loading
mechanism that we will cover in a later chapter.

Running our tests with Protractor will now output messages to the command line that
TeamCity understands, as follows:

Protractor output using TeamCity format

Test Driven Development

[274]

Summary
In this chapter, we have explored test driven development from the ground up. We have
discussed the theory of TDD, explored the differences between unit, integration, and
acceptance tests, and had a look at what a continuous integration build server process
would look like. We then explored Jasmine as a testing framework, learned how to write
tests, used expectations and matchers, and also explored jasmine extensions to help with
data-driven tests and DOM on through fixtures. Finally, we had a look at test runners,
discussed where and when they are best used, and used Protractor to drive web pages
through selenium and report the results back to a build server.

In the next chapter, we will explore how to create tests for our three TypesScript
frameworks–Aurelia, Angular 2, and React.

9
Testing Typescript Compatible

Frameworks
In Chapter 7, Typescript Compatible Frameworks, we discussed TypeScript compatible
frameworks, and explored how Backbone, Aurelia, Angular 2, and React use the MVC or
the MV* design patterns to write models, views, and controllers. We implemented the same
sample application in each of these frameworks, in order to be able to compare the
similarities between them and note the subtle differences. Then, in our last chapter, we
started exploring test-driven-development, and discussed the use of Jasmine 2.0 as a test
framework. We also explored using various test runners, including Testem and Karma, and
finally explored Protractor for running integration, or end-to-end tests.

In this chapter, we will essentially be combining our work from the previous two chapters,
and discussing how to unit and integration test each of our TypeScript compatible
frameworks. For each of these frameworks, then, we will cover the following topics:

Updates to the sample application to facilitate testing
Setting up a unit testing framework
Writing unit tests
Setting up integration testing framework
Writing integration tests

Testing Typescript Compatible Frameworks

[276]

Testing our sample application
You will recall that our sample application had the following features:

Using a view to display a model property
Constructing an array of data, with each array item being a single model instance
Looping through the array and render each item in an and <button>
element
Responding to a click event on each button element:
Displaying the model properties that were used to render the element

If we were to outline some of the tests we could write, we would ideally like our tests to
cover the following scenarios:

Model tests:
Where internal models are used and assigned default values, test
that these default values are created as expected
Where models are created from raw JavaScript objects, check that
the models are created correctly
Where complex model objects are created, that is, models that
contain other models, check that these are created correctly

Application state:
Where the application starts up in a specific state, that is, internal
variables are set to default values, verify that these have been set
correctly

Rendering tests:
Check that view objects are rendering the correct HTML to the
DOM correctly, given a known model

DOM event tests:
Check that DOM events, such as clicking on a button, are handled
correctly

Acceptance tests:
Browse to the required URL
Ensure that nothing has been selected
Click on a button to select the item
Verify that the screen shows which item has been selected

Testing Typescript Compatible Frameworks

[277]

Modifying our sample for testability
You will recall that our sample application shows an alert box when a button has been
clicked. Unfortunately, if we run this version of our application within an automated unit
test suite, we will need to trap the alert, and programmatically click on the OK button.

In general testing terms, alerts are something to be avoided. If an alert suddenly appears
when it is not expected, this can cause your entire test suite to fail, as the browser is paused
waiting for human intervention. There are, however, techniques to work with alert boxes if
and when absolutely required. Bear in mind, though, that alert boxes are so 1990s, and any
web designer will want a much more appealing modal dialog box instead.

Let's rather make a few changes to our application to display the currently selected item in a
separate <div> at the bottom of the page. This has the added benefit that we are now
storing the state of which button was last clicked within our application. We could
therefore, use this technique to build a tabbed panel user interface, for example. Our
updated sample application is as follows:

Updated sample application page layout

Here, we can see that we have created a DOM element at the bottom of the page to show
the selected item's Id and DisplayName properties. Note that, when the page is first
rendered, this will show the text Selected Item : 0 – none, to indicate that nothing has been
selected as yet.

Testing Typescript Compatible Frameworks

[278]

In order to accomplish this logic, we will therefore need to set an initial state for our
application, somewhere within the application startup. This initial application state will also
use a test to ensure that this property is set correctly.

Backbone testing
In this section, we will take a look at modifying our existing Backbone sample application to
include the necessary changes, as well as writing a set of Jasmine tests to cover all of our
unit testing requirements.

Complex models
The first change that we will need to make to our Backbone application is to introduce a
complex model (that is, a model that contains other models). Remember that, in the initial
version, we had a single model, named ItemModel. This ItemModel was used to store
information about a single button, that is, its Id and DisplayName. We then created an
ItemView that would take an ItemModel, and render it to a <button> element within the
DOM. We then created an ItemCollection to house an array of ItemModels, and an
ItemCollectionView to render the entire collection. Let's overlay these models and views
onto our screen as follows:

Backbone model, collection, and view overlay

Testing Typescript Compatible Frameworks

[279]

Here, we can see that the ItemView is used to render a single element (containing a
<button>) into the DOM. The underlying Backbone model used for each of these
ItemViews is an ItemModel. An array of ItemModels is stored in an ItemCollection.
This ItemCollection is used by the ItemCollectionView to render all of the buttons on
the screen.

Our modifications to the original application include creating a complex model and an
associated view, as follows:

Updated sample application with model and view overlays

Here, we are reusing the ItemView / ItemModel combination as before. Note, however,
that the ItemCollection is now housed within a complex model named
ItemCollectionViewModel. This complex model also contains a property named
SelectedItem, as well as a property named Title. The Title property will contain the
text Select an Option:, and the SelectedItem property will be used to render the currently
selected item into the DOM. We will also modify our ItemCollectionView slightly to
render an ItemCollectionViewModel correctly.

Testing Typescript Compatible Frameworks

[280]

Let's take a look at the complex model, the ItemCollectionViewModel class, as follows:

 interface IItemCollectionViewModel {
 Title: string;
 SelectedItem : IClickableItem;
 }

 class ItemCollectionViewModel extends Backbone.Model
 implements IItemCollectionViewModel
 {
 get Title(): string
 { return this.get('Title'); }
 set Title(value: string)
 { this.set('Title', value); }
 get SelectedItem(): IClickableItem
 { return this.get('SelectedItem'); }
 set SelectedItem(value: IClickableItem)
 { this.set('SelectedItem', value); }
 constructor(input: IItemCollectionViewModel) {
 super();
 for (var key in input) {
 if (key) { this[key] = input[key]; }
 }
 }
 }

We start with an interface named IItemCollectionViewModel that has two
properties–Title of type string and SelectedItem of type IClickableItem. We then
define an ItemCollectionViewModel that extends Backbone.Model, and implements
this interface. This is a standard Backbone.Model, and therefore must have get and set
functions for each of our properties. This model also uses our standard constructor. Note,
however, that we have not included a Collection property. This is due to the way that
Backbone view classes are constructed. To understand this, let's take a look at the way an
ItemCollectionView is constructed:

 let collectionModel = new ItemCollectionViewModel({
 Title:
 'Select an Option:',
 SelectedItem :
 Id: 0, DisplayName: "none"}});

 let itemCollection =
 new ItemCollection(ClickableItemCollection);

 let itemCollectionView = new ItemCollectionView(
 {
 model: collectionModel,

Testing Typescript Compatible Frameworks

[281]

 collection: itemCollection
 });

Here, we are constructing an ItemCollectionViewModel, named collectionModel, and
setting its internal Title and SelectedItem properties. We then create an instance of an
ItemCollection, named itemCollection. The interesting point to note about this code
sample is that we are then creating an ItemCollectionView, and passing in an object with
two properties, named model and collection. All Backbone.Views have both a model
and a collection property, allowing them to render either a single model, or a collection
of models, or both. In our case, we are using the new complex model to render the Title
and SelectedItem properties, and then using the existing Backbone collection property
to render the ItemCollection.

View updates
This change in our underlying model allows us to modify the view template for our
ItemCollectionView, as follows:

 <script type="text/template" id="itemCollectionViewTemplate">
 <h1> <%= Title %> </h1>
 <ul id="ulRegions">

 <div> Selected Item :
 <%= SelectedItem.Id %> -
 <%= SelectedItem.DisplayName %> </div>
 </script>

Here, our updated HTML now includes the Title property rendered within an <h1> tag,
and the <div> tag at the bottom of the template to show the Id and DisplayName
properties of the SelectedItem property.

DOM event updates
We can now turn our attention to what happens when we click on a button. Previously, we
simply fired an alert dialog box from our ItemView, showing the value of the underlying
model, as follows:

 onClicked() {
 alert(`Item clicked : { Id: ${this.model.get('Id')},
 DisplayName : ${this.model.get('DisplayName')} }`);
 }

Testing Typescript Compatible Frameworks

[282]

What we need to implement now is a way for the ItemView to notify our
ItemCollectionView that a particular onClicked event has happened. Thankfully,
Backbone provides us with a very simple message bus that can be used for this purpose. In
order to use the Backbone event bus, we will create a simple TypeScript class that has a
static property through which we can fire event messages onto the bus, as follows:

 class EventBus {
 static Bus = _.extend({}, Backbone.Events);
 }

This class, named EventBus, has a single static property, named Bus, that uses the
underscore extend function to combine a blank JavaScript object {} with the
Backbone.Events object. This is all that is required to include a fully-fledged event bus
within our application.

Firing an appropriate event from the onClicked function then simply becomes:

 onClicked() {
 EventBus.Bus.trigger("item_clicked", this.model);
 }

Here, we are firing an event named item_clicked, and attaching the model that was used
within our ItemView as a parameter to the trigger function. Listening for this event
within the ItemCollectionView consists of two parts. Firstly, we need to register for this
event in our constructor as follows:

 class ItemCollectionView extends
 Backbone.View<ItemCollectionViewModel> {
 constructor(options?: any) {
 // ... existing code

 this.listenTo(EventBus.Bus,
 "item_clicked", this.handleEvent);
 }

Every Backbone object has access to a function named listenTo. We have included a call
to this listenTo function within our constructor with three arguments. The first argument
is the object that will generate events that we are interested in, which in our case is the
global EventBus.Bus object. The second argument is the event that we are interested in,
and the third argument is the function to call when this event is raised.

Testing Typescript Compatible Frameworks

[283]

The function call to handle this event is named handleEvent, so we will now need to
implement this handleEvent function within our ItemCollectionView, as follows:

 handleEvent(e) {
 this.model.SelectedItem = new ItemModel(e);
 this.render();
 }

Here, we have defined a function named handleEvent on our ItemCollectionView
object, which takes a single parameter named e. When this event is fired, we simply need to
update the SelectedItem property of our model (which is of type
ItemCollectionViewModel) and then call our render function to update the DOM.

That's all there is to it. As we have seen, implementing an event bus, firing events, and
listening for events are very simple processes indeed.

Model tests
We can now turn our attention to writing unit tests for our Backbone models. When we
construct a Backbone model, we use a POJO within the constructor to assign values to each
of the models properties. So, given the following interface:

 interface IClickableItem {
 DisplayName: string;
 Id: number;
 }

We construct a new instance of our ItemModel class, as follows:

itemModel = new ItemModel({Id : 1, DisplayName : 'testDisplay'});

Remember that, internally, Backbone stores these POJO values as attributes on the class
instance itself, which leads us to boilerplate code when writing a TypeScript version of a
Backbone.Model, as follows:

 class ItemModel extends Backbone.Model implements IClickableItem {
 get DisplayName(): string
 { return this.get('DisplayName'); }
 set DisplayName(value: string)
 { this.set('DisplayName', value); }
 get Id(): number { return this.get('Id'); }
 set Id(value: number) { this.set('Id', value); }
 constructor(input: IClickableItem) {
 super();
 for (var key in input) {

Testing Typescript Compatible Frameworks

[284]

 if (key) { this[key] = input[key]; }
 }
 }
 }

Each property in our interface (in this case, IClickableItem) must define a pair of get
and set functions, and use Backbone's this.get or this.set functions to store these
properties correctly. As we are writing code to get this done, we need to write unit tests to
ensure that this works correctly.

Our initial set of unit tests are as follows:

 describe('ItemModel tests', () => {
 let itemModel : ItemModel;
 beforeEach(() => {
 itemModel = new ItemModel(
 {Id : 1, DisplayName : 'testDisplay'}
);
 });
 it('should assign an Id property', () => {
 expect(itemModel.Id).toBe(1);
 });
 it('should assign a DisplayName property', () => {
 expect(itemModel.DisplayName).toBe('testDisplay');
 });
 });

Here, we are defining a variable to hold an instance of our ItemModel, named itemModel.
Note that its definition is outside the beforeAll function, and so it is available to each of
our unit tests. Our beforeEach function initializes an instance of the ItemModel class,
with default values, for each of our tests to reuse.

The first test, named 'should assign an Id property', is checking that the Id
property returns the same value as was used in the constructor. Likewise, we have another
test for the DisplayName property.

We can now extend these tests to verify that the set functions work correctly, as follows:

 it('should set an Id property', () => {
 itemModel.Id = -10;
 expect(itemModel.Id).toBe(-10);
 });
 it('should set a DisplayName property', () => {
 itemModel.DisplayName = 'updatedDisplay';
 expect(itemModel.DisplayName).toBe('updatedDisplay');
 });

Testing Typescript Compatible Frameworks

[285]

As an added set of tests, we can even bypass the set and get functions, and verify that the
underlying Backbone functions also set the properties correctly, as follows:

 it('should call set on Id property', () => {
 itemModel.set('Id', -10);
 expect(itemModel.get('Id')).toBe(-10);
 });
 it('should call set on a DisplayName property', () => {
 itemModel.set('DisplayName', 'updatedDisplay');
 expect(itemModel.get('DisplayName')).toBe('updatedDisplay');
 });

Here, we are testing that the internal set and get Backbone functions accomplish exactly
the same thing as using the TypeScript property getter and setter syntax.

Complex model tests
We can use the same techniques to test that complex models are instantiated correctly.
Consider the following test suite:

 describe('ItemCollectionViewModel tests', () => {
 let itemCollectionViewModel : ItemCollectionViewModel;
 beforeAll(() => {
 itemCollectionViewModel = new ItemCollectionViewModel(
 {
 Title :
 'testTitle',
 SelectedItem :
 { Id : 0, DisplayName : 'testDisplay'}
 }
);
 });

Here, we are creating an instance of our complex model, named
itemCollectionViewModel. The interesting bit is the construction of this complex model
with a POJO. We are calling the constructor in our beforeAll function, and simply nesting
POJOs within each other. We are setting the Title property, and then setting the
SelectedItem property to another POJO that has the Id and DisplayName properties.

These POJOs are using the same structure as what we expect to be
returned in JSON format from the backend REST endpoints. Defining
object tests like these can therefore easily extend into integration tests,
which will call an actual web service and rehydrate our models from
POJOs.

Testing Typescript Compatible Frameworks

[286]

Our unit tests for this complex model can then simply traverse the available properties to
ensure that everything is set correctly, as follows:

 it('should assign a Title property', () => {
 expect(itemCollectionViewModel.Title).toBe('testTitle');
 });
 it('should assign a SelectedItem.Id property', () => {
 expect(itemCollectionViewModel.SelectedItem.Id).toBe(0);
 });
 it('should assign a SelectedItem.DisplayName property', () => {
 expect(itemCollectionViewModel.SelectedItem.DisplayName)
 .toBe('testDisplay');
 });

Our first test checks the value of the Title property, and then the following tests check the
value of the SelectedItem property (which is a child Backbone model).

Rendering tests
Once we are happy that our Backbone models are hydrating correctly, we can turn our
attention to their views and write some tests to ensure that they render these model
properties correctly to the DOM. We will use Jasmine's setFixtures function to set up our
Backbone templates, as follows:

 describe('ItemView rendering tests', () => {
 let itemModel : ItemModel;
 beforeEach(() => {
 setFixtures(
 `<div id="itemViewElement"></div>
 <script type="text/template" id="itemViewTemplate">
 <button id='itemButton'>
 <%= DisplayName %>
 </button>
 </script>
 <script type="text/template"
 id="itemCollectionViewTemplate">
 </script>
 `);

 itemModel = new ItemModel(
 {Id : 1, DisplayName : 'testDisplay'});
 });

Testing Typescript Compatible Frameworks

[287]

Here, we have created and instantiated an ItemModel instance named itemModel for reuse
within each test. We are also calling setFixtures in order to inject the HTML <script>
tags that we will require into the DOM. The <script> tag that our ItemView will use is the
itemViewTemplate script, which defines the following HTML:

 <button id='itemButton'> <%= DisplayName %> </button>

This template uses the DisplayName property of the ItemModel instance inside a
<button> tag. Note, however, that within the actual ItemView constructor, we are
specifying a tagName property, as follows:

 options.tagName = "li";

This tagName property means that a single ItemView HTML snippet – once it has been
rendered – will contain the <button> element (from our HTML snippet) within an
element (from our tagName property). Within the HTML snippet, Backbone will also
substitute our DisplayName property, and therefore render the following HTML:

 <button id="itemButton"> testDisplay </button>

Our test, therefore, will look for these HTML elements once the ItemView has been
rendered, as follows:

 it('should render a li and button element', () => {
 let itemView = new ItemView({model : itemModel});
 let renderedHtml = itemView.render().el;
 console.log(renderedHtml.outerHTML);
 expect(renderedHtml.outerHTML).toContain('');
 expect(renderedHtml.innerHTML).toContain(
 '<button id="itemButton">');
 expect(renderedHtml.innerHTML).toContain('testDisplay')
 });

In this test, we are creating an instance of the ItemView class, and instantiating it with our
model. We then call the render function on the itemView instance, and store the value of
the el property into a variable named renderedHtml. This el property is what will be
attached to the DOM, and contains the HTML that has been generated as a result of the
render function.

Our test then checks for the existence of an element and a <button> element, and that
the <%= DisplayName %> substitution has occurred correctly.

Testing Typescript Compatible Frameworks

[288]

Our view tests, therefore, have accomplished the following:

Created an instance of an ItemModel
Created an instance of an ItemView, using the ItemModel
Called the render function on the ItemView
Verified that the rendered HTML contains the correct elements

DOM event tests
The next set of functionality within our application that we will need to test is our DOM
events. The basic flow of these tests is as follows:

Construct an instance of an ItemView, with its corresponding ItemModel
Render the HTML
Find the <button> element, and simulate a DOM click event
Ensure that the onClicked function of the ItemView is called
Ensure that the onClicked function triggers an event bus message, and that the
ItemCollectionView receives this event bus message

Our first test will simulate a click event, and use a Jasmine spy on the onClicked function
of the ItemView, as follows:

 it('should trigger onClicked', () => {
 let clickSpy = spyOn(ItemView.prototype, 'onClicked');
 let itemView = new ItemView({model : itemModel});
 itemView.render();
 itemView.$('#itemButton').trigger("click");

 expect(clickSpy).toHaveBeenCalled();

 });

The first line of this test uses the spyOn function from Jasmine to attach a spy to the
onClicked function of our ItemView. Note, however, that we are specifying
ItemView.prototype as the input to our spyOn function. Remember that, when our
Backbone view was constructed, we specified via the options.events property what
functions to bind to DOM events. By the time we have completed running the constructor,
we cannot then attach a spy to this function (as it is already bound to the DOM event). The
solution, therefore, is to bind to the view prototype before the actual view is constructed.

Testing Typescript Compatible Frameworks

[289]

Once we have a spy in place, we can construct the view and call the render function. Once
the render function has been called, we can use standard jQuery DOM searches on the
view and trigger a click, as seen in the following line:

 itemView.$('#itemButton').trigger("click");

Here, we are using a fluent syntax and jQuery $ functions to find the element with an id of
itemButton, and trigger a DOM click event.

Our test passes, as the DOM click event calls our onClicked function of the ItemView.

The final test we need to build is one to ensure that the message bus is working correctly.
Remember that, when an ItemView element is clicked, it will trigger an event on the
message bus, and include its model properties as part of this message. On the other side of
the message bus, the ItemCollectionView is listening for this event, and it will update
the DOM to show our currently selected item.

Our test, therefore, is as follows:

 it('should listen to onClicked in ItemCollectionView', () => {
 let clickSpy = spyOn(ItemCollectionView.prototype,
 'handleEvent');
 let itemCollectionView = new ItemCollectionView();

 let itemView = new ItemView({model : itemModel});
 itemView.render();

 itemView.$('#itemButton').trigger("click");

 expect(clickSpy).toHaveBeenCalled();

 });

In this test, we start with a Jasmine spy on the handleEvent function of the
ItemCollectionView.prototype. This handleEvent function is the end result of the
message bus publish and subscribe mechanism. Our ItemCollectionView is listening for
the event, and when the event is received the handleEvent function is called. So if this
function is called, we know that the message bus communication is working between an
ItemView (publisher) and an ItemCollectionView (subscriber). The rest of this test is
similar to what we have seen in our previous DOM click event tests.

Testing Typescript Compatible Frameworks

[290]

Backbone testing summary
As we have seen, when testing Backbone applications, we are able to do a wide range of
unit tests using Jasmine and Jasmine-jQuery alone. We are able to create model tests, view
rendering tests, and even DOM event tests without leaving the Jasmine environment.

Aurelia testing
In this section, we will take a look at the changes required to our Aurelia test application in
order for it to store and display the currently selected item on our HTML page. We will then
dive into writing unit tests that will check the internal state of our application, and write
some DOM rendering tests. Finally, we will create a set of integration tests that use
Protractor to click on a button within our page, and ensure that the HTML page is updated
correctly.

Aurelia components
In order to render the currently selected item to the DOM, and replace the alert that we
have been using, we will build an Aurelia component. A component is essentially a view
and view-model pairing. The view-model code is written as a standard TypeScript class,
and the view is written as a standard HTML template. Aurelia has a particular naming
convention that ties these two elements together, as we have seen with the app.ts and
app.html resources that we built earlier. Aurelia will take care of data-binding between
our view and view-model automatically, as long as they conform to this naming standard,
which will allow us to write minimal code in order to accomplish our goal.

Aurelia component view-model
Let's start by creating a local variable within our App class to hold the currently selected
item, as follows:

 import {ClickableItem} from './ClickableItem';

 export class App {
 message: string = 'Select an Option:';
 currentElement: ClickableItem;
 items: ClickableItem[] = [
 { idValue: 1, displayName : "firstItem"},
 { idValue: 2, displayName : "secondItem"},

Testing Typescript Compatible Frameworks

[291]

 { idValue: 3, displayName : "thirdItem"},
];
 constructor() {
 this.currentElement = { idValue: 0, displayName : 'none'};
 }
 onItemClicked(event: ClickableItem) {
 this.currentElement = event;
 }
 }

Here, we have made a few changes to our initial app.ts file. Firstly, we have added a line
at the top of the file that imports a new class, named ClickableItem, from the
'./ClickableItem' file. This import syntax is used for modularization, which allows us
to easily reference classes that are in other TypeScript source files. We will cover
modularization in depth in the next chapter.

The second change we have made is to add a local variable named currentElement (of
type ClickableItem), where we can store the currently selected item. We have also
created a constructor function for our class, and within this constructor we have set the
currentElement to { 0, none }. Effectively, we are setting the initial state of the
application to have nothing selected.

The third change we have made is to modify the onItemClicked function that handles the
DOM click event. Instead of creating an alert, we are now simply setting the
currentElement property of the class to the item that was passed into the function.

Let's now turn our attention to the ClickableItem component itself. As mentioned earlier,
a component consists of a view-model and a view. Our view-model will be created in a
separate TypeScript file named ClickableItem.ts. This filename matches the import {}
from statement at the top of the app.ts file ('./ClickableItem' – without the .ts
extension). The source code for our ClickableItem.ts file is a simple TypeScript class, as
follows:

 import {bindable} from 'aurelia-framework';

 export class ClickableItem {
 @bindable displayName: string;
 @bindable idValue: number;
 }

Testing Typescript Compatible Frameworks

[292]

Again, we are importing the bindable function from the 'aurelia-framework' package
at the top of the file so that we can use the @bindable property decorator within our class.
We have then defined a simple class, named ClickableItem, which has two properties,
named displayName and idValue. Each of these properties has been decorated with the
@bindable property decorator. This decorator instructs Aurelia to bind the value of each
decorated property to the view.

Aurelia component view
Now that we have a view-model defined, we can create a ClickableItem.html file that
will serve as the HTML template for the view, as follows:

 <template>
 <div id="selectedElement">
 Selected Element: ${idValue} - ${displayName}
 </div>
 </template>

This HTML template defines a <div> element with an id of selectedElement. Within
this element are two substitution tags–${idValue} and ${displayName}. These tags use
the standard Aurelia tag substitution syntax, and their names match the properties of our
view-model.

Rendering a component
The final change to our application will be to include this ClickableItem component view
as a sub-component into our existing app view. To do this, we will modify our app.html
template, as follows:

 <template>
 <require from="./ClickableItem"></require>
 <h1>${message}</h1>

 <li repeat.for="item of items"
 click.delegate="onItemClicked(item)" >
 <button id="select_button_${$index}" >
 ${item.displayName}
 </button>

 <clickable-item

Testing Typescript Compatible Frameworks

[293]

 id-value="${currentElement.idValue}"
 display-name="${currentElement.displayName}" >
 </clickable-item>
 </template>

The first change to our template is the addition of the <require
from="./ClickableItem"> tag. This tag instructs the view to load the HTML template
found at ./ClickableItem.html, and include this template for use within the app.html
file itself.

The second change to our app template is the addition of the <clickable-item> tag at the
bottom of the file. This tag has two attributes, named id-value and display-name.
Aurelia will use the value of the App's properties to pass into the component's view-model.
In other words, the value of the App.currentElement.idValue variable will be bound to
the id-value attribute. Likewise, the value of the App.currentElement.displayName
variable will be bound to the display-name attribute.

Aurelia naming conventions
A very important convention to bear in mind when building and testing Aurelia
components is the naming syntax that is used within a view-model (TypeScript class) and a
view (HTML template). As we have seen earlier, Aurelia does a lot of heavy-lifting when
automatically binding views and view-models. The key to this automated binding feature is
the naming convention.

If we create a TypeScript class named ClickableItem, then this class name must be
referred to in any HTML files as <clickable-item>. This naming convention is referred to
as kebab-case. Aurelia imposes this syntax convention as a result of HTML restrictions,
where upper case and lower case names are equivalent. In other words, an attribute
name TestAttribute='value' is syntactically equivalent to testattribute='value'.
To overcome this upper and lower case restriction, Aurelia has provided an automatic
attribute-to-JavaScript-property binding convention that uses kebab-case. Each new
uppercase letter must be converted to lowercase, and separated by a hyphen (-).

A simple way of remembering this naming convention is in the name TypeScript (note the
uppercase T and uppercase S in the word TypeScript). So a TypeScript class named
MyTypeScriptClass will be referred to in HTML views as my-type-script-class.

This naming convention also applies to HTML element attributes. So an attribute that is
bound to a TypeScript property named MyTypeScriptProperty will need to be named
my-type-script-property within any HTML view.

Testing Typescript Compatible Frameworks

[294]

One more caveat in this naming convention syntax has to do with the ${ ... } Aurelia
syntax, which is used for parameter substitution. Remember that anything inside a ${ ...
} block is considered to be JavaScript, and so it does NOT use the kebab-case naming
convention. Therefore, to reference a TypeScript property named myPropertyName, we
need to use it as is within a ${ ... } block, that is, ${myPropertyName}.

Every Aurelia developer has been bitten by this syntax naming convention at some point in
time. Once you have been bitten, however, and spent a few hours trying to figure out why
your application simply does not render, it will become second-nature (or should that be
SecondNature ?) to go back and re-check (ReCheck ?) these naming rules.

Aurelia test setup
With our application changes completed, we can now focus on unit testing our Aurelia
application. Before we do this, however, we will need to set up an Aurelia test environment.

One of the questions that the Aurelia command-line interface asks when setting up a new
Aurelia application (au new) is whether or not to configure unit testing. If we answer yes to
this question, then all of the testing configuration files and dependencies are installed
automatically. In the interests of time, we will not investigate how to retrospectively add
unit testing capabilities to an existing Aurelia application, but will instead assume that this
has already been configured.

To run Aurelia unit tests, simply type:

au test

This will invoke the built-in Karma test runner, and execute any tests found in the
/test/unit directory that match the filename convention of *spec.js.

The au build command must be executed before any tests are compiled
and included in a new test run. Aurelia provides the --watch command
line argument, which will automatically re-execute the current command
if modifications to files on disk are detected. This means that running au
test --watch will compile and rerun any Karma unit tests automatically
when our TypeScript source files are modified. This is a very useful
feature that provides instant feedback when writing unit tests.

Testing Typescript Compatible Frameworks

[295]

Aurelia unit tests
Our first set of unit tests will need to verify that the App class (our entry point) has been
constructed correctly, that is, it is in the correct state. When the application is first loaded, it
will render a title, three buttons, and also indicate that no item has been selected. These
HTML elements are bound to the message, currentElement, and items properties of the
App class itself. Let's create an app.spec.ts file in the /test/unit directory, and write a
test to verify that these properties have been set correctly, as follows:

 import {App} from '../../src/app';
 describe('App tests', function () {
 var application : App;
 beforeAll(() => {
 application = new App();
 });
 it('message property contains Select', function () {
 expect(application.message).toContain('Select');
 });
 });

The first line of this test uses the import statement to import the App class from the
'../../src/app' file. Note that the ../../ reference is necessary because any import
statement that uses that path is relevant to the file that is doing the import.

We then use the standard Jasmine describe syntax to set up a test suite, and configure a
variable named application to hold an instance of the App class. Our first test verifies that
the message property of the App class (on construction) contains the phrase "Select". This
test is therefore checking the initial state of the App class when first constructed. We can
then check each of the internal variables as follows:

 it('has a property named items', function () {
 expect(application.items).toBeDefined();
 });
 it('has an array of clickable items', function () {
 expect(application.items.length).toBe(3);
 });
 it('sets currentElement property in constructor', function () {
 expect(application.currentElement).toBeDefined();
 });
 it('sets currentElement.idValue to 0', function () {
 expect(application.currentElement.idValue).toBe(0);
 });
 it('sets currentElement.displayName to none', function () {
 expect(application.currentElement.displayName).toBe('none');
 });

Testing Typescript Compatible Frameworks

[296]

Here, we have a few tests for the items variable, which is an array of length 3, and a few
tests for the currentElement variable, which should be set to idValue = 0 and
displayName = 'none'. These tests are verifying that, when an App instance is created,
the initial state of the class is set correctly.

Rendering tests
Our next round of tests will cover rendering elements to the DOM. Aurelia provides a set of
helper classes, similar to Jamine's setFixture functionality, in order to attach HTML to the
DOM and render views using these temporary DOM elements. Our test suite, therefore,
needs to include the following two import statements at the top of the file:

 import {StageComponent} from 'aurelia-testing';
 import {bootstrap} from 'aurelia-bootstrapper';

These import statements include a class named StageComponent, and a function named
bootstrap. The StageComponent class is the helper utility that Aurelia provides in order
to house an instance of our item-under-test, which in our case is an instance of the App class.
The bootstrap function is the standard method of creating and bootstrapping an Aurelia
application.

Our test setup, then, is as follows:

 var application;
 beforeEach(function () {
 application = StageComponent
 .withResources('app')
 .inView(
 '<h1 id="messageHeader">${message}</h1>' +
 '<ul id="ulItemList">' +
 '<li repeat.for="item of items" ' +
 'click.delegate="onItemClicked(item)">' +
 '<button id="select_button_${$index}">' +
 '${item.displayName}</button>' +
 '' +
 '' +
 '<clickable-item id-value="${currentElement.idValue}" ' +
 ' display-name="${currentElement.displayName}" ' +
 ' >
 </clickable-item>').boundTo(new App());
 });

Testing Typescript Compatible Frameworks

[297]

Here, we have defined a variable named application to house an instance of our
StageComponent class. The creation of the StageComponent class uses a fluent style to
effectively chain together three commands–withResources, inView, and boundTo. The
withResources function call registers our app code with the StageComponent, and the
inView defines the HTML DOM that we need for our tests. The final boundTo function call
creates a new instance of the class App, and binds this new instance to the
StageComponent.

Our first test must verify that the message property of the App class is rendered correctly to
the DOM, as follows:

 it('should render message property', (done) => {
 application.create(bootstrap).then(() => {
 var messageHeader =
 document.querySelector('#messageHeader');
 expect(messageHeader).toBeDefined();
 expect(messageHeader.innerHTML).toContain('Select');
 done();
 });
 });

The first thing to note about this test is the use of the (done) parameter on the it function.
Aurelia uses Jasmine's asynchronous testing features whenever we use StageComponent.
We must therefore remember to pass in the done parameter as part of our test function, and
also to call the done function once our test has completed.

The test itself starts by calling the create function on the instance of the StageComponent
(which houses our App test instance), passing in the bootstrap function. This create
function returns a promise named then, where we can define the actual content of our test.
Once we are inside the promise, all of Aurelia's bootstrapping and binding has already
taken place. We are then able to query the DOM via the document.querySelector
function. In this test, we find the #messageHeader <div>, and check that the HTML
rendered contains the string 'Select'.

Our next test will verify that the array of buttons has been rendered to the DOM as follows:

 it('should render buttons', function (done) {
 application.create(bootstrap).then(function () {
 var ulItemList = document.querySelectorAll(
 '#ulItemList > li > button');
 expect(ulItemList).toBeDefined();
 for (var i = 0; i < ulItemList.length; i++) {
 var itemElement = ulItemList[i];
 expect(itemElement.innerHTML).toContain('Item');

Testing Typescript Compatible Frameworks

[298]

 }
 done();
 });
 });

In this test, we are using the document.querySelectorAll function to return an array of
button elements. Note the CSS selector syntax that we have used–#ulItemList > li >
button. This CSS selector will return each button element within an li element that are
children of the ulItemList element. We are then looping through each element returned,
and checking that the innerHTML property contains the word 'Item'. Remember that the
button text displayed on the page was firstItem, secondItem, and thirdItem, so each
of these buttons will contain the word 'Item'. While this may not be a definitive test, it
shows how we are able to use standard CSS selectors to return more than one child item.

We have one other unit test to write. When an instance of the App class is first created, the
currentElement property is set to a default value of { 0 , none }. We would like to
verify that this child component (of type ClickableItem) is rendered to the DOM the first
time that the page is loaded. Our test is as follows:

 it('should render none as selected item', (done) => {
 application.create(bootstrap).then(() => {
 var clickableItem = document.querySelector(
 'clickable-item');
 console.log(clickableItem.innerHTML);
 expect(clickableItem.innerHTML).toContain('none');
 done();
 });
 });

Here, we are constructing an instance of our application, as we have done in our other tests,
and are then using the querySelector to find the <clickable-item> element. We expect
that the innerHTML element will contain the word 'none'. Unfortunately, this test always
fails. If we take a look at the DOM that is generated via the StageComponent, we will
notice that the <clickable-item> element is in fact empty:

 <clickable-item class="au-target" au-target-id="25"></clickable-
item></div>

This problem indicates that the scope of a unit test within Aurelia does not extend to child
components, as we initially expected.

Testing Typescript Compatible Frameworks

[299]

Aurelia end-to-end tests
In order to complete our Aurelia testing, and simulate DOM clicks that will correctly update
the page to show which item is selected, we will need to switch to an integration test
strategy, and configure Protractor to run some end-to-end tests.

As we discussed in the last chapter, Protractor needs a configuration file in order to set up
our end-to-end testing environment. Our protractor.conf.js file, in the root of our
project directory, is as follows:

 exports.config = {
 directConnect: true,

 // Capabilities to be passed to the webdriver instance.
 capabilities: {
 'browserName': 'chrome'
 },

 //seleniumAddress: 'http://0.0.0.0:4444',
 specs: ['test/e2e/dist/*.js'],

 plugins: [{
 path: './node_modules/aurelia-tools/plugins/protractor.js'
 }],

 // Options to be passed to Jasmine-node.
 jasmineNodeOpts: {
 showColors: true,
 defaultTimeoutInterval: 30000
 }
 };

There are two interesting properties in this config file to make note of. Firstly, the specs
property contains the path to our integration test directory. In this instance, we have
specified test/e2e/dist/*.js. This means that Protractor will search for all .js files in
the test/e2e/dist directory to find end-to-end test suites.

The second property to make note of is the plugins property. This specifies that the
protractor.js file from Aurelia must be loaded as a plugin in order to provide Aurelia
specific extensions for Protractor.

Testing Typescript Compatible Frameworks

[300]

With this protractor.conf.js file in place, there are a few more steps that we need to go
through to integrate Protractor with our Aurelia project. These steps involve the following:

Installing dependencies
Including an aurelia.protracotor.js bootloader
Adding an e2e task to the Aurelia task list
Adding an e2eTestRunner to aurelia_project/aurelia.json

Our first setup step is to install the del and gulp-protractor dependencies as follows:

npm install del --save
npm install gulp-protractor --save

With these dependencies in place, we will need to create an aurelia-protractor.js file
to act as a bootloader in the project root directory. The source for this file is included in the
downloadable content for this chapter, and will not be discussed here.

We will also need two files in the aurelia_project/tasks directory, named
e2e.json and e2e.ts. Again, these files are included in the downloadable content and are
boilerplate configuration files, so they will not be included here.

The final step in configuring Protractor with Aurelia is to edit the
aurelia_project/aurelia.json file and include the following configuration:

 "e2eTestRunner": {
 "id": "protractor",
 "displayName": "Protractor",
 "source": "test/e2e/src/**/*.ts",
 "dist": "test/e2e/dist/",
 "typingsSource": [
 "typings/**/*.d.ts",
 "custom_typings/**/*.d.ts"
]
 },

Here, we have included an e2eTestRunner configuration section that looks in the
test/e2e/src directory for any test specification files to run as end-to-end tests.

At the time of writing, the aurelia-cli is at version 0.17.0, and does not set
up or configure end-to-end test configuration. This means that we need to
go through this process of setting up Protractor within an Aurelia project.
Future versions of the aurelia-cli may include this configuration as a
default.

Testing Typescript Compatible Frameworks

[301]

With these configuration changes in place, we can start our Aurelia application from the
command-line as usual, as follows:

au run

Once our development web site is running, we can start our Protractor tests by issuing a
similar command from the command-line as follows:

au e2e

This command is using the Aurelia-CLI to start a task named e2e, which corresponds to the
e2e.ts and e2e.json files that we created in the aurelia_project directory.

Now that we have Protractor running, we can focus on writing some end-to-end tests.

Our first end-to-end test suite is as follows:

 describe('Aurelia end-to-end tests', () => {

 beforeEach(() => {
 browser.get('http://localhost:9000');
 browser.sleep(1000);
 });

 it('should load page', () => {
 expect(browser.getTitle()).toBe('Aurelia');
 });

 it('should find an h1 element with Select an Option', () => {
 expect(element(by.css('h1')).getText()).toContain("Select");
 });

Here, we have set up the default starting page in our beforeEach function, and specified
that the browser should sleep for a second before running any of our tests. This sleep is
necessary in order to give Aurelia time to bootstrap our application correctly.

Our first test verifies that the title of the page is 'Aurelia', and the second test verifies that
the <h1> element contains the text 'Select'. All well and good so far. We can now create a
test to verify that the <clickable-item> element was rendered correctly with the text
'Selected Element : 0 - none', as follows:

 it('should find 0 as selected element', () => {
 expect(element(by.id('selectedElement'))
 .getText()).toBe('Selected Element: 0 - none');
 });

Testing Typescript Compatible Frameworks

[302]

This test could not be simpler. We find an element on the page by using its id property, and
verify that the text it contains is correct. This test is the one that we had problems with in
the unit testing phase when we were trying to use StageComponent. By using Protractor,
we are able to allow Aurelia to render the entire page, and then check that our DOM
elements have been rendered correctly.

Our final test is to click on a button and verify that the DOM has been updated correctly, as
follows:

 it('clicking a button should update selected element', () => {
 element(by.id('select_button_0')).click();
 browser.sleep(500);
 expect(element(by.id('selectedElement'))
 .getText()).toBe('Selected Element: 1 - firstItem');
 });

Here, we find the first button element on the page and call the click function. Once
clicked, we need to have the browser sleep for a very short period of time, in order to allow
Aurelia to process the click event. Finally, we verify that the selectedElement DOM
element has been updated correctly.

Aurelia test summary
This concludes our section on Aurelia unit and integration testing. We have seen that
Aurelia provides an au test option to run Karma for unit testing purposes, and that all
configuration and dependencies are automatically installed for us by the Aurelia command
line setup. We explored how to create a child component, how to test initial application
state, and then completed our test suite with an end-to-end test using Protractor.

Angular 2 testing
In this section, we will take a look at unit and integration tests for our existing Angular 2
application, similarly to what we did with Backbone and Aurelia. Before we start with
testing, however, we will need to make some small changes to our application in order to
display the currently selected item on the page.

Testing Typescript Compatible Frameworks

[303]

Application updates
Our changes for Angular 2 are very simple, compared to the changes we made using
Backbone or Aurelia. In order to track the currently selected item within our application, we
will need to do three things:

Create a property to store our currently selected item.1.
Modify our onSelect function to update this property.2.
Update our view template to show this on the page.3.

Our first change is within the AppComponent class, as follows:

 export class AppComponent {
 title = "Select an option :";
 items = ClickableItemArray;
 selectedItem : ClickableItem;
 constructor() {
 this.selectedItem = {id: 0, displayName: "none"};
 }
 onSelect(selectedItem: ClickableItem) {
 this.selectedItem = selectedItem;
 console.log(`onSelect : ${this.selectedItem.id}`);
 }
 }

Here, we have made three changes. Firstly, we have added a selectedItem property to
store the currently selected item. Secondly, we have created a constructor function that
sets the selectedItem property to hold an initial value of { 0 - none }. Thirdly, we
have updated our onSelect function to simply set the internal selectedItem property to
the item that was passed into our onSelect function.

Next, we will need to update our component template to include a <div> element to show
the currently selected item on the page. Our app.component.html file is as follows:

 <h1>{{title}}</h1>

 <li *ngFor="let item of items; let i = index"
 (click)="onSelect(item)">
 <button id='select_button_{{i}}'>
 {{item.displayName}} {{i}}
 </button>

 <div *ngIf="selectedItem">
 <div id='selectedItemText'>

Testing Typescript Compatible Frameworks

[304]

 Selected : {{selectedItem.id}} -
 {{selectedItem.displayName}}
 </div>
 </div>

The only change to this template is the inclusion of a <div> element at the end of the
template. This <div> starts with the *ngIf="selectedItem" statement. Any element can
be optionally shown or hidden using the *ngIf syntax. What this effectively means, is that
if the selectedItem property has a value, we then render the <div>. If it does not have a
value, then this <div> will not be shown.

Within our *ngIf <div> element, we have another <div>, with an id of
selectedItemText. This <div> will render the value of the selectedItem.id and
selectedItem.displayName properties, similarly to how we show the currently selected
item with Backbone and Aurelia.

These are the only changes required for our Angular 2 application in order to display the
currently selected item. Simple, right?

Angular 2 test setup
When creating a project using the Angular-CLI (by issuing the ng new command), the
default project setup already includes all of the boilerplate code to run unit tests using
Karma, and end-to-end tests using Protractor. This default setup is a very handy feature of
Angular 2, shortening the development effort of configuring a test environment and giving
us the ability to dive right in and write tests from the beginning of a project.

To run unit tests using Karma, we can type the following from the command line:

ng test

This command line option will compile and package our application, and run any tests that
it finds within the src directory. Any TypeScript file where the name matches *.spec.ts
will be designated as a test file, and any tests within this file will be executed. In addition,
running Karma in this way will also automatically watch our files for changes, and re-
compile and re-run our tests as changes are detected.

Testing Typescript Compatible Frameworks

[305]

The Angular 2 default project creates .spec.ts files within the source directory, right
alongside the components under test. This means that, within the src/app directory, we
will find both app.component.ts and app.component.spec.ts. While this is the default
setting, there is no reason why we cannot split the .spec.ts files into their own directory.
In other words, the src/app directory can contain the app.component.ts file, and the
src/test directory can contain the app.component.spec.ts file. We will use this second
approach in the remainder of the chapter.

Angular 2 model tests
To start off with, we will create a series of tests that will check the internal state of the
AppComponent class once instantiated, in a file named
src/test/app.component.spec.ts, as follows:

 import { AppComponent } from '../app/app.component';

 describe("tests/app.component.tests.ts ", () => {

 let appComponent;
 beforeAll(() => {
 appComponent = new AppComponent();
 });

 it("should construct an AppComponent", () => {
 expect(appComponent).toBeDefined();
 });
 it('should set title', () => {
 expect(appComponent.title)
 .toContain('Select an option');
 });
 it('should set selectedItem.id', () => {
 expect(appComponent.selectedItem.id).toBe(0);
 });
 it('should set selectedItem.displayName', () => {
 expect(appComponent.selectedItem.displayName)
 .toBe('none');
 });
 });

Testing Typescript Compatible Frameworks

[306]

Here, we start by importing the AppComponent class from the file in the src/app directory.
We then create an instance of the AppComponent class in our beforeAll startup function,
and then check the internal state of the AppComponent class once it has been created. Our
first test simply verifies that the constructor has succeeded, and that the appComponent
variable itself is defined. The next three tests verify that the title, selectedItem.id, and
selectedItem.displayName properties have been set as expected.

These tests are very simple and straightforward: create an instance of a class, and check that
the internal properties have been set correctly.

Angular 2 rendering tests
In order to test that our DOM elements have been rendered correctly, we will need to use
Angular 2's TestBed class, which is similar to Aurelia's StageComponent functionality. To
use the TestBed class, we will need to structure our tests in a specific way, and in
particular, configure the TestBed class to construct an instance of our AppComponent as
follows:

 describe('AppComponent rendering tests', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [
 AppComponent
],
 });
 TestBed.compileComponents();
 });

Here, we have a beforeEach function that makes a call to the static function of the
TestBed class, named configureTestingModule. This function takes a configuration
object as its only parameter, and within this configuration object, we specify a
declarations property that is an array. This declarations array currently only contains
our AppComponent module.

The configureTestingModule function is used to create a test environment for our
module, in which the module under test can interact with a controlled version of the DOM.
Placing this setup code in a beforeEach function ensures that the test environment is set
up correctly before each test, and destroyed correctly after each test. Our test environment,
and DOM structure therefore, cannot be polluted by other tests, running either before or
after.

Testing Typescript Compatible Frameworks

[307]

With this test setup in place, we can now write a unit test to ensure that the currently
selected item is rendered onto the page, as follows:

 it('should render 0 - none to the DOM', async(() => {
 const fixture = TestBed.createComponent(AppComponent);
 fixture.detectChanges();
 const element = fixture.debugElement.nativeElement;
 let selectedDiv = element.querySelector(
 '#selectedItemText');
 expect(selectedDiv.innerHTML).toContain('0 - none');
 }));

This test starts by calling the static createComponent function on the TestBed class. Note
that we are passing the name of the AppComponent class into the createComponent
function, and essentially asking the Angular 2 engine to create an instance of this class in a
test sandbox for us. The createComponent function returns a fixture variable, within
which our component is rendered and through which we can work with the DOM in our
test. Note how we call the fixture.detectChanges function. This function essentially
forces a DOM refresh, and must be called whenever we are expecting the DOM to change.

Next, our test creates a variable named element, from the
fixture.debugElement.nativeElement property. It is through this element variable
that we then start to query and verify the DOM. We are using the querySelector function
on the element variable in order to find a DOM element with the id of
selectedItemText. Our test has only one expectation that the selectedItemText div
has text that contains the words '0 - none'. Note how we are using the asynchronous
testing capability of Angular by marking the entire test function as an async function. This
means that Angular will pause test execution until the beforeEach function has completed
the construction of our test environment, before executing the unit test.

Angular 2 DOM testing
We can now create a test that will simulate a click event, and ensure that the
selectedItemText div has been updated as we expected, as follows:

 it('should update DOM when button clicked', async(() => {
 const fixture = TestBed.createComponent(AppComponent);
 fixture.detectChanges();
 const element = fixture.debugElement.nativeElement;
 let button_1 = element.querySelector('#select_button_0');
 button_1.click();

 fixture.detectChanges();

Testing Typescript Compatible Frameworks

[308]

 let selectedDiv = element.querySelector('#selectedItemText');
 expect(selectedDiv.innerHTML).toContain('firstItem');
 }));

This test is similar to our previous test, in that it also uses the standard createComponent
function of the TestBed class. The body of the test does two interesting things. Firstly, we
use the querySelector to find a specific instance of a button (1 - firstItem), and then
simply call the click function on the button. After calling the click function, we then
need to call fixture.detectChanges again in order for the test harness to update the
DOM following the button click event. Once this is done, we verify that our button click has
correctly updated the innerHTML of the selectedItemText element.

Angular 2 testing summary
The application changes that we needed to make to our Angular 2 application were very
simple, compared to Backbone and Aurelia. Angular 2 also included all of the configuration
for running both Karma unit tests and Protractor acceptance tests. Unlike Aurelia, however,
Angular provided the necessary elements within its test environment for us to write DOM
rendering and DOM event tests without having to switch to Protractor.

The sample source code for this chapter includes end-to-end tests that also
simulate button clicks through Protractor as an example of writing
integration and acceptance tests.

React testing
In the final section of this chapter, we will explore the necessary changes to our React
sample application, and build a set of unit tests. These tests will verify that our initial
application state is correct, as well as check that the page has been updated correctly after
firing DOM click events, similar to what we have done with the other frameworks.

Multiple entry points
Our React sample application uses Webpack as a compilation and bundling tool in order to
convert our TypeScript files into usable React components. During Webpack's bundling
process, we need to specify the entry point of our application, and also specify the output
filename. Therefore, given an entry point of /app/index.tsx, and an output filename of
/dist/bundle.js, all of our TypeScript code files will end up in the bundle.js file.

Testing Typescript Compatible Frameworks

[309]

This is all well and good, but when creating tests our entry point is not the application itself,
but instead the test specification. This means that we need to configure Webpack to
generate different bundles, based on different entry points. This can be accomplished fairly
simply with an update to the webpack.conf.js file, as follows:

 module.exports = {

 entry : {
 app: "./app/index.tsx",
 test: "./test/react.app.tests.tsx",
 e2e: "./test/e2e/react.app.e2e.tests.tsx"
 },

 output: {
 filename: "./dist/[name].js",
 },

Here, we have modified our entry property from a single file (entry :
"./app/index.tsx"), to a series of entry files named app, test, and e2e. This allows our
browser application to use one .tsx file as an entry point, and our test application to use
another. We have also included an entry point for end-to-end testing, in the /test/e2e
directory.

The second modification we have made is to use the [name] of the entry point as the output
of the Webpack bundling process. This means that we will end up with three bundled
packages, app.js, with an entry point of /app/index.tsx, test.js, with an entry point
of /tests/react.app.tests.tsx, and e2e.js, with an entry point of
/test/e2e/react.app.e2e.tests.tsx.

React modifications
We will now need to modify our React application in order to show the currently selected
item on the page, as we have done with the other frameworks. Our original implementation
used a parent view to render the header, and then a child view to render each button. This
allowed our child view (ClickItemView) to handle the onClick event, and display an
alert using its current model properties.

Testing Typescript Compatible Frameworks

[310]

As we saw with Backbone, in order for a child item to notify its parent when an event has
occurred, we could use a message bus. The preferred option when working with React
message buses is to use Flux, but implementations can easily work with Postal.js or any
other message bus. The use and implementation of Flux, or Postal.js, for that matter, is
enough to cover a completely new chapter, so for the time being we will refactor our React
code so that a message bus is not necessary.

The first update we need to make is to the IArrayViewProps interface to include a new
property named selectedItem. This property will hold the details of the currently
selected item, and it mirrors the modifications we made to our other applications. Secondly,
we need to set this value in the ArrayView constructor, as follows:

 export interface IArrayViewProps {
 title: string,
 items: ClickableItem[],
 selectedItem?: ClickableItem
 };

 export class ArrayView extends
 React.Component<IArrayViewProps, {}> {
 selectedItem: ClickableItem;
 constructor() {
 super();
 this.selectedItem = { id: 0, displayName: 'none'};

 }

Here, we have added a selectedItem property to the IArrayViewProps interface, and
specified that it is optional. We have made this property optional, so that we do not need to
pass in the value of this property in the DOM, but can rather defer the setting of the
property in our constructor.

The real changes to this React application are within our render function. Previously,
within our render function, we defined a buttonNodes variable as follows:

 let buttonNodes =
 this.props.items.map(function(item) {
 return (
 <ClickItemView {...item}/>
);
 });

Testing Typescript Compatible Frameworks

[311]

This buttonNodes variable used the child component named ClickItemView, and was
then used inside the ArrayView template as follows:

 return <div>
 <h1>{this.props.title}</h1>

 {buttonNodes}

 </div>;

Our updated version of the ArrayView template removes the ClickItemView as follows:

 render() {

 return (<div>
 <h1>{this.props.title}</h1>

 {this.props.items.map(function(item,i) {
 return (
 <li key={i} onClick={this.handleClick.bind(
 this, i, item)}>
 <button id={'select_button_' + item.id} >
 {item.displayName}</button>

);
 }, this)}

 <div id="selectedItem">Selected : {this.selectedItem.id} -
 {this.selectedItem.displayName}</div>
 </div>
);
 }

Here, we have essentially injected the functionality of the ClickItemView directly into the
template for the ArrayView. There are two important changes to the template to make note
of. Firstly, we have added a new parameter named i to the map function, which holds the
index of the current array item. Secondly, we have updated the onClick handler, which is
now calling the bind function with three parameters–this, i, and item. The this
parameter now references the ArrayView class itself, so that the onClick DOM event is
routed through to the ArrayView's handleClick function. The i parameter references the
index of the array element we are rendering, and the item parameter contains the model for
the array element.

Testing Typescript Compatible Frameworks

[312]

We have also updated the <button> element to include an id attribute that uses the item's
id property to generate a unique id. In this way, we will be able to reference each of the
buttons via its id attribute, which will be select_button_1, select_button_2, or
select_button_3.

Note that the this.props.items.map function takes two parameters – a function to
execute for each array element, and also an instance to bind to. We have passed this as the
instance to bind to, in order to ensure that the handleClick function will bind to the
ArrayView class's implementation of the handleClick function itself.

The final change to this template is to add a <div> for the currently selected item, which
has an id attribute of selectedItem and displays the values of the selectedItem.id and
selectedItem.displayName properties at the bottom of the page.

All we need now is to define the handleClick function on the ArrayView, as follows:

 handleClick(i : number, props: any) {
 this.selectedItem = props;
 this.forceUpdate();
 }

This function will handle the onClick DOM event from any one of the rendered <button>
elements, and does two things. Firstly, it sets the selectedItem property to the incoming
props argument, and secondly it calls the forceUpdate function. The forceUpdate
function will force an update to the DOM tree and will re-render the selectedItem
template, in order to show the currently selected item on the page.

Unit testing React components
With our application modifications in place, we can now focus on setting up a unit testing
environment, and writing some tests. Thankfully, setting up a unit testing environment is as
simple as creating a SpecRunner.html file that includes Jasmine files, React files, and our
test specs, as follows:

 <html>
 <head>
 <link rel="stylesheet" type="text/css"
 href="./bower_components/
 jasmine-core/lib/jasmine-core/jasmine.css" />
 <script type="text/javascript"
 src="./bower_components/
 jasmine-core/lib/jasmine-core/jasmine.js" >
 </script>

Testing Typescript Compatible Frameworks

[313]

 <script type="text/javascript"
 src="./bower_components/
 jasmine-core/lib/jasmine-core/jasmine-html.js" />
 </script>
 <script type="text/javascript"
 src="./bower_components/
 jasmine-core/lib/jasmine-core/boot.js" >
 </script>

 <!-- Dependencies -->
 <script src=
 "./node_modules/react/dist/react.js">
 </script>
 <script src=
 "./node_modules/react-dom/dist/react-dom.js">
 </script>

 <script src="./dist/test.js"></script>

 </head>
 <body>
 </body>

Here, we have included the standard Jasmine library files, including jasmine.css,
jasmine.js, jasmine-html.js, and boot.js. We then included the two React
dependencies, in react.js and react-dom.js. Finally, we included the test
specifications, which we bundled into the /dist/test.js output file.

React model and view tests
We can now start to write some tests for our React application. Remember that we modified
the webpack.config.js file to specify that the /test/react.app.tests.tsx file should
serve as our entry point for tests. We will now need to create this file, and write some tests
as follows:

 import * as React from "react";
 import * as ReactDOM from "react-dom";
 import * as TestUtils from "react-addons-test-utils";
 import {ArrayView, ClickableItem} from '../app/ReactApp';

 describe('ArrayView model tests', () => {
 it('should create a new ArrayView', () => {
 var app = new ArrayView();
 expect(app).toBeDefined();
 expect(app.selectedItem.id).toBe(0);

Testing Typescript Compatible Frameworks

[314]

 expect(app.selectedItem.displayName).toBe('none');
 });
 });

Here, we are importing the React and ReactDOM namespaces from their respective files.
We then import a class named TestUtils from the 'react-addons-test-utils' file.
We will use TestUtils in our rendering tests a little later. TestUtils is very similar in
functionality to Aurelia's StageComponent or Angular's TestBed, in that it will help us to
create the DOM tree for testing. Finally, we have imported the ArrayView and
ClickableItem classes from our ReactApp file.

This test is a React model test. In our React application, we are only setting the value of the
selectedItem in our constructor, and so this is really the only model test we need in order
to verify that the application is in the correct initial state. If the app is defined, and the
app.selectedItem's properties are set correctly, then this test will pass.

We can now turn our attention to view rendering tests, as follows:

 describe('ArrayView tests', () => {
 let renderer : any;

 let ClickableItemArray : ClickableItem[] = [
 { id: 1, displayName : "firstItem"},
 { id: 2, displayName : "secondItem"},
 { id: 3, displayName : "thirdItem"},
];

 beforeEach(() => {
 renderer = TestUtils.renderIntoDocument(
 <ArrayView items={ClickableItemArray}
 />);
 });

 it('should render none selected', () => {

 let domNode = ReactDOM.findDOMNode(renderer);
 let selectedItem = domNode.querySelector('#selectedItem');
 expect(selectedItem.textContent)
 .toBe('Selected : 0 - none');

 });

Testing Typescript Compatible Frameworks

[315]

Here, we have defined two variables for use within our test suite. The first is named
renderer and is of type any, and the second is an instance of a ClickableItem array,
with some default values. Note the beforeEach function. In this function, we are setting
the value of the renderer variable to the result of a call to
TestUtils.renderIntoDocument. This renderIntoDocument function takes a React
template as its only argument, and returns a handle to the generated DOM as a result of the
rendering process. Note too, the template that it is using:

 <ArrayView items={ClickableItemArray}
 />

This template is the same as the one that is used in our application's index.tsx file:

 ReactDOM.render(
 <ArrayView items={ClickableItemArray}
 />,
);

The only difference between our test rendering step and our application's rendering step is,
that in testing, we call TestUtils.renderIntoDocument, and in the web page we call
ReactDOM.render. The actual template itself, however, is exactly the same.

This template, therefore, will create an instance of the ArrayView class, and will then set
two parameters on the new class, named items and title. The items property is set to
the instance of the ClickableItemArray that we created in our test setup, and the title
property is set to 'Select an option:'.

Our test, then, starts by defining a variable named domNode, and sets this to the result of the
call to ReactDOM.findDOMNode(renderer). This call is what we are using to extract the
DOM out of the test environment that is created by TestUtils.renderIntoDocument.
Once we have the domNode variable set, we can then use standard querySelectors to find
elements rendered by our test. Within our test, we then query for the element with an id of
selectedItem, and verify that this has been set to '0 - none'.

Looking at the syntax of React's unit testing framework, it seems to be very simple and
intuitive to use. When setting up a rendering test with Aurelia, we need to call:

 StageComponent.withResources(...).inView(...).boundTo(...),

And then use the following:

 application.create(bootstrap).then(() => {})

Testing Typescript Compatible Frameworks

[316]

With Angular 2, we needed:

 beforeEach (() => {})

before we could use:

 TestBed.createComponent(...)

Whereas, in React, we simply call the following line of code:

 TestUtils.renderIntoDocument(...)

and then use this:

 ReactDOM.findDOMNode(...)

React DOM event tests
Our DOM event tests for React are a simple extension to the view tests that we have already
worked through, as follows:

 it('click select_button_1 should update dom', () => {

 let domNode = ReactDOM.findDOMNode(renderer);

 let button_1 = domNode.querySelector('#select_button_1');
 TestUtils.Simulate.click(button_1);
 let selectedItem = domNode.querySelector('#selectedItem');
 expect(selectedItem.textContent).toContain('1 - firstItem');

 });

Here, we are setting our domNode variable to the result of the call to
ReactDOM.findDOMNode, as we saw earlier. We are then querying the DOM for a button
with an id of select_button_1. Once this button has been found, we again use our
TestUtils class, and call the Simulate.click function in order to simulate a DOM click
event on the instance of the button. Once TestUtils.Simulate has done its work, we
simply query the domNode again for the currently selected <div> item, and verify that its
value has indeed changed.

Testing Typescript Compatible Frameworks

[317]

Summary
In this chapter, we covered a fair bit of ground. We took an in-depth look at how to unit test
and integration test each of our TypeScript compatible frameworks. Our tests meant that we
needed to rework our application structure slightly, in order to facilitate testing correctly.
Through this process, however, we learned a few interesting things.

Backbone has a very simple and powerful message bus implementation. We can write
model, view rendering, and DOM event tests for Backbone without leaving our unit testing
framework.

Aurelia uses a kebab-case naming convention for mapping between HTML attributes and
JavaScript class names. Aurelia only renders an item-under-test, and therefore needs end-
to-end tests written for holistic DOM render testing, and DOM click events.

Angular 2 is the simplest framework for setting up a test harness, and once set up can be
used for model and view rendering, and DOM click event testing. Angular 2 also allows for
dependency injection during a test setup.

React also has a simple test harness setup and a natural unit test syntax. React allows for
model and view rendering, and DOM event testing within the same simple syntax.
Protractor can be used on all frameworks, regardless of their underlying implementation.

In our next chapter, we will take an in-depth look at modularization, using both CommonJs
(using Node) and AMD style module loading (using Require). We will also explore the
SystemJs methods of module loading, which is a combination of both CommonJs and AMD
into a single format.

10
Modularization

Modularization is a popular technique used in modern programming languages that allows
programs to be built from a series of smaller libraries, or modules. Writing programs that
use modules encourages programmers to write code that conforms to the design principle
called Separation of Concerns. The basic principle of Separation of Concerns is that we
should program against a defined interface. This means that the code that is implementing
this interface can be refactored, improved, enhanced, or even completely replaced without
the rest of the program being affected. This also helps when testing our code, as the code
that is providing the implementation of an interface can easily be stubbed or mocked out in
a test scenario.

JavaScript, prior to ECMAScript 6, did not have a concept of modules. Popular frameworks
and libraries, such as Node and Require implemented their own module loading syntax
libraries to fill this gap. Unfortunately, two different approaches to module loading, and in
particular the module loading syntax, were adopted by the JavaScript community. These
two syntax styles were known as CommonJs (used in Node), and AMD, or Asynchronous
Module Definition (used in Require). Fortunately, TypeScript has always supported both
CommonJs and AMD code generation.

Now that the ECMAScript 6 module syntax has been published, TypeScript has adopted
and implemented it, and will automatically generate the correct module syntax for either
CommonJs or AMD based on a single compiler option.

In this chapter, we will explore what modules are, take a look at the ECMAScript 6 syntax
for modules, and highlight the differences between CommonJs and AMD module syntax.
We will then take a closer look at how Require uses AMD module syntax, and how
SystemJs allows for using CommonJs module syntax in a browser. We will then explore
CommonJs modules in regards to Node, and build a simple Node application using the
Express framework.

Modularization

[319]

We will be covering the following topics in this chapter:

Module basics
AMD module loading
System.Js module loading
Using Express with Node

Module basics
So what is a module? Essentially, a module is a separate TypeScript file that exposes classes,
interfaces, or functions for reuse in other parts of the project. Creating modules helps to
structure your code files into logical groups. As your application becomes larger and larger,
it makes sense to have each of your Models, Views, Controllers, helper functions, and so on,
in separate source files so that they can be easily found. Consider the following directory
tree:

Sample project showing multiple modules in multiple directories

Modularization

[320]

In this project structure, we have a separate directory for controllers, models, utils,
and views. Within each of these directories, we have several files. Each filename is a clear
indication of what we expect the file to contain. A FooterController.ts file, for example,
is expected to contain a controller class that handles the footer of our application. This
structure makes our programming lives much simpler.

The problem with so many source files is that each file needs to be referenced by our HTML
page in order for the application to work. Given the preceding directory structure, our
HTML page would need to name each file as a source script, as follows:

 <html>
 <head>
 <script src="./Main.js"></script>
 <script src="./controllers/FooterController.js"></script>
 <script src="./controllers/LoginController.js"></script>
 <script src="./controllers/MainPageController.js">
 </script>
 <script src="./controllers/MenuBarController.js"></script>
 <script src="./controllers/ProductListController.js">
 </script>
 <!--all other files here ..-->

 <script src="./views/ToolbarView.js"></script>

 </head>
 <body>
 </body>
 </html>

Including each JavaScript file in the HTML page is both time-consuming and error-prone.
To overcome this issue, there are two options available – either use a bundling process, or
use a module loader. Bundling essentially means that we run a post-compile step to copy
(or bundle) all of the source files into a single file, so that we only need to include a single
file in our HTML page. While this is a valid solution to our problem, it means that the
HTML page must load this bundled file all in one go before the web page is ready to render.
If this bundled file is large, it means that our browser will need to wait until the file is
loaded, which could impact on our overall page loading time.

Modularization

[321]

Module loaders, on the other hand, allow the browser to load all files simultaneously in
separate threads, meaning that our page loading time is significantly reduced. Module
loaders also allow for each of our individual JavaScript source files to define which files
they have a dependency on. In other words, if our HTML page loads the Main.js file, and
the Main.js file specifies that it needs the FooterController.js file as well as the
MainPageController.js file, the module loader will ensure that these two files are
loaded before executing the logic in the Main.js file. This technique essentially allows us to
define a dependency tree per source file.

Once a source file has been loaded by a module loader, any file that has a
dependency on this file will not need the browser to reload the file from
the website. This keeps the number of requests to the web server down to
a minimum, and speeds up our page loading time.

Exporting modules
There are two things we need in order to write and use modules. Firstly, a module needs to
be exposed to the outside world in order to be consumed. This is called exporting, and uses
the keyword export. This means that, within a particular source file, you may have
functions and classes that are considered internal, and should not be made available to the
outside world. Only components that are designed to be used outside of the source file
should be exported. As an example of this, consider a module written in a file named
lib/Module1.ts:

 export class Module1 {
 print() {
 print(`Module1.print()`);
 }
 }

 function print(functionName: string) {
 console.log(`print() called with ${functionName}`);
 }

Here, we have a class named Module1, and a function named print within the same
source file. The Module1 class, however, has added the keyword export to its class
definition, and as such the Module1 class will be available for use by the outside world.

Modularization

[322]

The print function, however, does not use the export keyword. This means that the
print function is only available for use within the Module1.ts source file and is not
available for use by the outside world. This function is therefore private in scope. The
Module1 class is very simple, and defines a print function. Within this Module1.print
function, a call is made to the private print function defined at the end of the file.

The export keyword, therefore, is exposing the entire Module1 class for use to the outside
world.

Importing modules
In order to consume a module that has been exported, any source file that needs this
module must import the module using the import keyword. In our preceding sample, if we
wish to consume the Module1 class, we would need to import it as follows:

 import {Module1} from './lib/Module1';

 let mod1 = new Module1();
 mod1.print();

Here, we are in a file named main.ts, which sits at the root of the project. The first line of
this file uses the import statement to import the definition of the Module1 class from the
lib/Module1 file. Note the syntax of this import statement. Following the import
keyword, is a name in braces {Module1} and then a from keyword, followed by the
filename of the module itself. The module name {Module1} matches the name of the
exported class in the './lib/Module1' file. Note too, that we do not specify a .ts or a
.js extension when importing modules. The module loader will take care of mapping our
import statement to the correct module filename on disk.

Once the module has been imported, we can use the class definition of Module1 as normal.
In the last two lines of the preceding code snippet, we are simply creating an instance of the
Module1 class, and calling the print function. The output of this code is as follows:

print() called with Module1.print()

As we are running in a default Node environment, we will need to invoke
our compiled main.js file by running node main from the command
line.

Modularization

[323]

Module renaming
When importing a module, we can rename the exported module name as follows:

 import {Module1 as m1} from './lib/Module1';
 let m1mod1 = new m1();
 mod1.print();

Here, we have imported the same module from './lib/Module1', but have used the as
keyword when specifying the module name, that is, {Module1 as m1}. This means that
we can now refer to the class named Module1 (as according to our export definition), as
simply m1. The last two lines of this code sample show how we can now create a class (of
type Module1) by using the new m1 name. The output of this code sample is exactly the
same as the previous code:

print() called with Module1.print()

We can also have multiple names for an exported module, but these names need to be
specified within the module itself. Consider the following module definition:

 export class Module1 {
 print() {
 print(`Module1.print()`);
 }
 }

 export {Module1 as NewModule};

Here, on the last line of this code snippet, the Module1 class has also been exported with the
name NewModule. This allows a consumer to use either the name Module1 or NewModule
when importing the module, as follows:

 import {NewModule} from './lib/Module1';
 let nm = new NewModule();
 nm.print();

Here, we are importing the Module1 class using the name NewModule, and then using the
NewModule class name to create an instance of the Module1 class. The output of this code is
exactly the same as we saw previously:

print() called with Module1.print()

Modularization

[324]

Default exports
When a module file only exports a single item, we can mark this item as a default export.
This is accomplished with the default keyword. Consider a module file named
lib/Module2.ts, as follows:

 export default class Module2Default {
 print() {
 console.log(`Module2Default.print()`);
 }
 }
 export class Module2NonDefault {
 print() {
 console.log(`Module2NonDefault.print()`);
 }
 }

Here, we have marked the Module2Default class as the default export for this module.
Note that we can only have a single default export per module, but we are able to export
other items within the file using standard export syntax. This can be seen in the second
export of the Module2NonDefault class.

If a module has a default export, we can use a simpler syntax for importing it, as follows:

 import Module2Default from './lib/Module2';

 let m2default = new Module2Default();
 m2default.print();

Here, we have removed the {...} braces, and are importing the default export as
Module2Default. The name that we use in the import statement can be anything, and it
can be renamed in our import statement as follows:

 import m2rn from './lib/Module2';

 let m2renamed = new m2rn();
 m2renamed.print();

Here, we are importing the default export from the './lib/Module2' file, as seen
previously, but we are renaming it to m2rn. Note that, just as we used renamed module
names earlier, we will need to refer to the module by the new name, as seen in the usage of
this module, that is, new m2rn().

Modularization

[325]

While it may serve a purpose in some cases, renaming modules on import
can make our code more difficult to read. As a habit, try to keep the
module names on import the same as the module names that have been
exported. This helps when reading our code, knowing exactly which
module we are referring to in the original file.

Exporting variables
As we have with other exported elements, we are also able to export variables that have
been defined within a module. Consider the following export in lib/Module1.ts:

 var myVariable = "This is a variable.";
 export { myVariable }

Here, we are defining a variable named myVariable, and setting the value within the
Module1.ts file. We are then exporting the variable itself, by wrapping the variable name
in braces, that is, { myVariable }. We can then import and use this variable as follows:

 import { myVariable } from './lib/Module1';
 console.log(myVariable);

While this may seem a little strange, and at first sight is breaking object-oriented coding
principles, this technique is used by numerous frameworks to inject functionality into
existing singleton instances. We will explore this technique later in this chapter, when we
discuss setting up routes with the Express engine.

AMD module loading
The module exporting and importing syntax that we have used thus far uses what is known
as the CommonJs syntax, and is the default mechanism for module loading when using
Node. Traditionally, this module loading syntax was not available for use within a browser,
and as such, an alternative to CommonJs became popular, named Asynchronous Module
Definition, or AMD. One of the most prevalent libraries to use AMD is Require.js, or simply
Require. In this section, we will reuse the source code for the modules we created in Node,
and recompile them for use with AMD. We will then show how to use Require to load these
modules in the browser.

Modularization

[326]

AMD compilation
In order to compile our code to use the AMD module syntax, we will need to change the
module setting in our tsconfig.json file, as follows:

 {
 "compilerOptions": {
 "module": "amd",
 "target": "es5",
 "noImplicitAny": false,
 "sourceMap": false
 },
 "exclude": [
 "node_modules"
]
 }

Here, we have specified the "module" parameter to be "amd", instead of "commonjs". This
change specifies to the TypeScript compiler that the output of the compilation step must
generate JavaScript code that uses the AMD module syntax. Let's take a look at what this
means in terms of our module files.

Consider the following TypeScript module definition, as found in our lib/Module3.ts
file:

 export class Module3 {
 print() {
 console.log(`Module3.print()`);
 }
 }

Here, we are exporting a class named Module3. When we compile this class with the
CommonJs module option, TypeScript generates the following JavaScript file:

 "use strict";
 var Module3 = (function () {
 function Module3() {
 }
 Module3.prototype.print = function () {
 console.log("Module3.print()");
 };
 return Module3;
 }());
 exports.Module3 = Module3;

Modularization

[327]

In this generated JavaScript file, we have the standard closure pattern being used to define a
JavaScript class named Module3. Note the last line of the file, however. TypeScript has
generated an exports.Module3 = Module3; line, which will attach our Module3 class to
the exports variable. This is the standard way to create modules when using JavaScript.

If we modify our compile options to "amd", instead of "commonjs", TypeScript will
generate the following JavaScript for the same lib/Module3.ts file:

 define(["require", "exports"], function (require, exports) {
 "use strict";
 var Module3 = (function () {
 function Module3() {
 }
 Module3.prototype.print = function () {
 console.log("Module3.print()");
 };
 return Module3;
 }());
 exports.Module3 = Module3;
 });

Looking closely at this file, the inner class definition for the Module3 closure and the
exports.Module3 = Module3; line are exactly the same as we saw earlier. The entire
class definition has, however, been wrapped in a function named define. This is the
difference between CommonJs and AMD modules. AMD uses a define function that takes
two parameters–an array of strings, and a function definition.

The array of strings, that is, ["require","exports"], is in fact a dependency array that
specifies which libraries must be loaded before attempting to load this module. The
function definition is called once the dependent libraries have been loaded. In addition,
each of the items specified in the dependency array then become parameters that are
available within the callback function. Hence function(require, exports) allows
access to the require and exports arguments within the callback function. By having
access to the exports global variable, we can now attach our Module3 class definition to
the exports variable that has been passed in as an argument.

We have not changed our Module3.ts TypeScript file in any way in order
to support both CommonJs and AMD module loading syntax. The
TypeScript compiler has taken care of the module definitions
automatically for us.

Modularization

[328]

AMD module setup
Now that we have our modules compiling in AMD syntax, we can focus our attention on
loading and using them in a browser. In order to load and use AMD modules in a browser,
we will make use of the Require.js module loader. Require.js, or simply Require, is a
standard JavaScript framework, and as such can be installed via npm. Once installed within
our project, we will also need the relevant declaration files. We can install Require using
npm as follows:

npm install requirejs --save

And then install the declaration files as follows:

npm install @types/requirejs --save

With the Require.js framework and our declaration file in place, we can now configure
Require to load our AMD modules.

Require configuration
Require uses a global configuration file, typically called RequireConfig.js, that serves as
the entry point to our browser application. Let's go ahead and create a TypeScript file,
named RequreConfig.ts, as follows:

 require.config({
 // baseUrl: "."
 });

 require(['main'], (main) => {
 console.log(`inside main`);

 });

Here, we start with a call to the require.config function, passing in a configuration
object that sets some default values. We have commented the baseUrl property, and as
such are calling the require.config function with a blank object. We will delve a little
deeper into the available configuration parameters a little later in this chapter.

Modularization

[329]

Following our call to require.config, we are then calling the require function with two
arguments. The require function is very similar to the define function that we saw
earlier. The first parameter to require is an array of strings, which list the files to be
loaded, and the second parameter is a callback function. As with the define function, each
dependency listed in the first array of strings will be available within the callback function
as a parameter.

In our code sample, then, the only dependency listed is main, which translates to our
main.js file. Note that Require will automatically append the .js extension when
attempting to load JavaScript files. Once the main.js file has been loaded, it will be
available within the function definition as the argument main.

AMD browser configuration
The only remaining task, then, is to incorporate this RequireConfig.js file into our
browser HTML, as follows:

 <html>
 <head>
 <script
 type="text/javascript"
 src="./node_modules/requirejs/require.js"
 data-main="./RequireConfig" >
 </script>
 </head>
 <body>
 </body>
 </html>

This is a very simple HTML file that only has a single <script> tag to load the
"./node_modules/requirejs/require.js" file. This will cause the browser to load the
require.js module loader. Note, however, that this script tag has an attribute named
data-main. This data-main attribute is used by Require to load the initial configuration
file, which in our case is RequireConfig.js. Again, Require will automatically append the
.js extension for files, so this attribute is simply specified as data-
main="./RequireConfig".

Once the require.js file has been loaded, the RequireConfig.js file will be loaded and
executed, and this will begin the module loading process.

Modularization

[330]

If we use the Network tab on our Developer Tools within the browser, we will see how
Require is loading and parsing each of our module files, and automatically downloading
them for use, as follows:

Network toolset showing modules loading in correct order

The browser starts by loading the index.html file, the require.js file, and then we see
that it is loading our RequireConfig.js file. Within our RequireConfig.js file, we
specified that we needed to load main.js, so this is the next file that Require will load. This
main.js file then used the import module syntax to import the files lib/Module1 and
lib/Module2. We can see then, that these two files are being loaded next by Require.
Interestingly, our lib/Module1 file also imports the lib/Module3 file, so Require also
loads this file.

As can be seen by the network diagnostics, Require is recursively parsing each of our
module files, starting with RequireConfig.js, and dynamically loading all modules that
it finds. In this way, we are free to define modules as and when we please all by simply
using the export and import module syntax. As long as we import our dependencies
within a module, the module loader will automatically load these files on our behalf.

Modularization

[331]

AMD module dependencies
When working with modules, it is often the case that one module must be loaded before
another. When module B needs to have module A loaded already, we can say that module
B has a dependency on module A. When building a standard HTML page, this dependency
is fairly easy to get right. All we need to do is ensure that the <script> tag for module A is
included in the web page above the <script> tag for module B. Unfortunately, this is not
so easy when using AMD module loading.

With AMD module loading, each module is loaded independently and asynchronously.
This means that the order in which we specify our modules is not enough. What we need in
this case is to be able to describe the dependencies between modules, so that the AMD
module loader can co-ordinate these module requests.

The Require AMD module loader uses settings in the call to require.config to specify
dependencies, along with other module characteristics. As an example of this configuration,
let's set up a Jasmine testing environment using AMD module loading.

If you recall in the previous chapter, we set up a SpecRunner.html file for unit testing of
Backbone samples. This SpecRunner.html file loaded three base files, as follows:

 <script type="text/javascript"
 src="./<path_to_jasmine>/jasmine.js" >
 </script>
 <script type="text/javascript"
 src="./<path_to_jasmine>/jasmine-html.js" />
 </script>
 <script type="text/javascript"
 src="./<path_to_jasmine>/boot.js" >
 </script>

The Jasmine framework has three component files that need to be loaded in the correct
order–jasmine.js first, then jasmine-html.js, and finally boot.js. Loading boot.js
before jasmine.js will generate runtime errors, and therefore boot.js has a dependency
on jasmine.js. Let's take a look at the RequireConfigSpecRunner.ts file, which shows
what the require.config file looks like for a Jasmine environment:

 require.config({
 baseUrl: ".",
 paths: {
 'jasmine' :
 './node_modules/jasmine-core/lib/
 jasmine-core/jasmine',
 'jasmine-html' :
 './node_modules/jasmine-core/lib/

Modularization

[332]

 jasmine-core/jasmine-html',
 'jasmine-boot' :
 './node_modules/jasmine-core/lib/
 jasmine-core/boot'
 },
 shim : {
 'jasmine': {
 exports: 'window.jasmineRequire'
 },
 'jasmine-html' : {
 deps: ['jasmine'],
 exports: 'window.jasmineRequire'
 },
 'jasmine-boot' : {
 deps: ['jasmine-html'],
 exports: 'window.jasmineRequire'
 }
 }
 });

Here, we have included two new properties in our call to require.config, namely paths
and shim. We will discuss the shim property in a moment, but for the time being let's focus
on the paths property. The paths property contains a property entry for each of our
Jasmine files. The important thing to note here, though, is that these are named entries, and
that the name of the entry must be used throughout the rest of the Require configuration. If
we take a look at the first entry, which is named 'jasmine', and points to
'./node_modules/jasmine-core/lib/jasmine-core/jasmine', the name of this
entry is therefore 'jasmine', and all references to this file must use the 'jasmine' name
from here on out. We could easily have named this 'jasminejs', or 'jjs', as long as the
name of the entry is used consistently throughout the Require configuration. The
'jasmine-boot' entry is a perfect example of this naming scheme, as the actual file is
simply named boot.js, and not jasmine-boot.js, but the named entry is 'jasmine-
boot'.

Also note that Require will append the .js file extension to each of these entries when it
loads the file from disk.

Modularization

[333]

The next configuration block is the shim property. This shim property contains an entry for
each of our named libraries. The shim entry for each of these libraries may contain an
exports and or a deps entry. The exports entry is used to specify the JavaScript global
namespace that this library will attach to. As a simple example of what this exports
property should contain, consider the following shim entries for jQuery, Underscore, and
Backbone (note that these are not included in our current require.config, but are shown
here for illustration purposes):

 'jquery' : {
 exports: '$'
 },
 'underscore' : {
 exports: '_'
 },
 'backbone' : {
 exports: 'Backbone'
 }

The jQuery library's exports property is simply '$'. This means that the jQuery library is
being attached to the $ namespace by Require, which allows us to use any jQuery function
by prefixing it with $, as in $('#elementId'). Likewise, the Underscore library uses the _
character as its namespace, and it is used by simply calling _.bind(...). As a final
example, the Backbone library uses the Backbone namespace, and is used by calling new
Backbone.Model, for example. Each of these libraries therefore defines the global
namespace in the exports property.

Along with the exports property in our shim configuration, each of our modules can also
specify a deps entry, which is an array of strings. The deps entry is used to describe
module dependencies. If we start at the bottom of the shim entries, we will see that the
'jasmine-boot' entry specifies the 'jasmine-html' entry as a dependency. Likewise,
the 'jasmine-html' entry specifies 'jasmine' as a dependency. Require will therefore
take note of these dependencies, and load our modules in order.

The deps property is an array of strings, which means that a single entry
can specify multiple dependencies.

Modularization

[334]

Bootstrapping Require
As we saw with our minimal implementation earlier, the module loading process is kicked
off with an initial call to the require function. Assuming that we have a very simple
Jasmine test in the test/SimpleTest.ts file, we can bootstrap our test environment at the
bottom of the RequireConfigSpecRunner.js file as follows:

 var specs = [
 'test/SimpleTest'
];

 require(['jasmine-boot'], (jasmineBoot) => {
 require(specs, () => {
 (<any>window).onload();
 });
 });

This setup is interesting for a few reasons. Firstly, we have defined a variable named specs
that is a simple string array. It contains a single entry, namely 'test/SimpleTest', which
is a reference to our Jasmine test suite. Note, then, where this specs variable is used. It is
used in a call to require, which is nested inside an outer call to require. This outer call is
telling require that it must load the 'jasmine-boot' module before executing the
callback function. As the 'jasmine-boot' module's shim entry specifies a dependency
path, this callback function will only execute once all dependencies have been met.

Once the outer callback function is executed, the body of this function is again calling the
require function, but this time with an array that lists all Jasmine files within our suite.
This inner call to require will already have the dependent modules loaded (that is, the
Jasmine files) before it is executed. Once all modules in the specs array have been loaded,
the callback function then simply calls window.onload(), which will kick off the Jasmine
test run.

Also note that the window global variable needs to be cast to a type of <any> in order to
allow TypeScript compilation.

Modularization

[335]

With this Require configuration and bootstrapping code in place, we can fire up our
browser and run the SpecRunner.html file to execute all tests. Again, firing up our
developer network tools, we can see the order in which each of our modules is loaded:

Network developer tools showing Jasmine module loading

Fixing Require config errors
Quite often, when developing AMD applications with Require, we can start to get
unexpected behavior, strange error messages, or simply blank pages. These strange results
are generally caused by the configuration for Require, either in the paths, shim, or deps
properties. Fixing these AMD errors can be quite frustrating at first, but generally, they are
caused by one of two things–incorrect dependencies or file-not-found errors.

To fix these errors, we will need to open the debugging tools within the browser that we are
using, which for most browsers is achieved by simply hitting F12.

Modularization

[336]

Incorrect dependencies
Some AMD errors are caused by incorrect dependencies in our require.config. These
errors can be found by checking the console output in the browser. Dependency errors
would generate browser errors similar to the following:

ReferenceError: jasmineRequire is not defined
ReferenceError: Backbone is not defined

This type of error might mean that the AMD loader has loaded Backbone, for example,
before loading Underscore. So, whenever Backbone tries to use an Underscore function, we
get a not defined error, as shown in the preceding output. The fix for this type of error is
to update the deps property of the library that is causing the error. Make sure that all
prerequisite libraries have been named in the deps property, and the errors should go
away. If they do not, then the error may be caused by the next type of AMD error, a file-
not-found error.

404 errors
File not found, or 404 errors are generally indicated by console output similar to the
following:

Error: Script error for: jquery
http://requirejs.org/docs/errors.html#scripterror
Error: Load timeout for modules: jasmine-boot
http://requires.org/docs/errors.html#timeout

Modularization

[337]

To find out which file is causing the preceding error, switch to the Network tab in your
debugger tools and refresh the page. Look for 404 (file not found) errors, as shown in the
following screenshot:

Firefox Network tab with 404 errors

In this screenshot, we can see that the call to jquery.js is generating a 404 error, as our
file is actually named /Scripts/jquery-2.1.1.js. These sorts of errors can be fixed by
adding an entry to the paths parameter in require.config, so that any call to jquery.js
is replaced by a call to jquery-2.1.1.js.

Require has a good set of documentation for common AMD errors
(http://requirejs.org/docs/errors.html) as well as advanced API
usages, including circular references
(http://requirejs.org/docs/api.html#circular), so be sure to check
the site for more information on possible AMD errors.

SystemJs module loading
SystemJs is a module loader that understands both CommonJs module format, AMD
module format, and even the new ES6 module format. It works in both Node and the
browser, and as such describes itself as a universal module loader. Before SystemJs came
along, Node-based solutions used CommonJs format, and browser-based solutions used
AMD format.

http://requirejs.org/docs/errors.html
http://requirejs.org/docs/api.html#circular

Modularization

[338]

Now we can use CommonJs format in the browser, and even mix and match module
syntax. In this section, we will take a look at how to configure SystemJS for loading
CommonJs modules in the browser.

SystemJs installation
SystemJs can be installed using npm as follows:

npm install systemjs --save

The relevant declaration files can be installed using @types as follows:

npm install @types/systemjs --save
npm install @types/es6-shim --save

Note that we have installed two declaration files here, namely systemjs and es6-shim.
This is because SystemJs uses Promises for asynchronous loading, but the definition of the
Promise object is not included in the SystemJs declaration file. The es6-shim package
provides es6 functionality for browsers that do not support es6, and part of this includes
Promises. The declaration file for es6-shim, therefore, provides a definition of the Promise
object.

SystemJs browser configuration
In order to use SystemJs within our browser, we will need to include the system.js source
file, and then run a configuration script for SystemJs, similar to our RequireConfig.js
file. Our HTML page is as follows:

 <html>
 <head>
 </head>
 <body>
 <script
 src="./node_modules/systemjs/dist/system.js">
 </script>
 <script src="./SystemConfig.js"></script>
 </body>
 </html>

Modularization

[339]

Here, we have included two script files. One for the system.js framework itself, and then
for a file named SystemConfig.js. This SystemConfig.js file is generated from the
following SystemConfig.ts file:

 SystemJS.config({
 packages : {
 'lib' : { defaultExtension: 'js' }
 }
 });
 SystemJS.import('main.js');

Our SystemJs configuration file starts with a call to the SystemJS.config function, and
includes a configuration object. Within this object, we have only specified one property,
named packages. This packages property specifies a lib property, and within this a
single property named defaultExtension : 'js'. SystemJs uses the packages property
to specify options for each of our source directories, or packages. The lib property
therefore relates to all files contained within the ./lib directory. The defaultExtension
property tells SystemJs that all modules within the ./lib sub-directory have a default
extension of .js.

This means that, when SystemJs encounters a module import, such as import {Module1}
from './lib/module1', it will append the default extension of '.js' to the module
filename, and therefore load a file named './lib/module1.js'.

The second part of our SystemJs configuration file is a call to the SystemJS.import
function, specifying the main.js file as the starting point for our application. Once
SystemJs has loaded the main.js file, it will begin to parse our code for all other imported
modules, and then load them for use. If we view the Network tab in our browser
Developer Tools, we will see the following files loading:

Modularization

[340]

Network developer toolset showing SystemJs module loading

Note that, with both AMD modules and SystemJs modules, the Chrome browser assumes
that these are being served from a running web server. If you attempt to load a page from
disk, that is, by hitting Ctrl–O from Chrome, and navigate to your file on disk, you will
receive a number of errors, as shown in the following screenshot:

Console errors when attempting to load a SystemJs file from disk

Modularization

[341]

Other browsers, such as FireFox, do not show these errors. Chrome does, however, supply a
command-line option that allows this behavior, --allow-file-access-from-files.
Alternatively, in order to load a page that uses SystemJs, simply run http-server from the
root directory of your project, and then browse to the URL shown on the console. When
http-server starts, it will show the IP address and port you should point your browser to,
as follows:

Starting up http-server, serving ./
Available on:
 http://127.0.0.1:8080
 http://192.168.1.101:8080

SystemJs module dependencies
So far, we have shown how to configure SystemJs to load modules as dependencies, when
they are imported using import statements within our code. Let's finish this discussion on
SystemJs by showing how to treat module dependencies, as we did with AMD. Similar to
our AMD module dependency sample, we will build a unit testing framework with Jasmine
and SystemJs. Remember that Jasmine has a specific module loading order. This means that
the core jasmine.js file must be loaded before jasmine-html.js, and then when that is
done we can load the boot.js module and run our tests.

Let's assume that we have two very simple test suites in the test directory, named
SimpleTest.ts, and SimpleTest2.ts. These two files are just executing a sanity test.
SimpleTest.ts is as follows:

 describe('SimpleTest.ts : sanity test', () => {
 it('should pass', () => {
 expect(true).toBeTruthy();
 });

 });

And SimpleTest2.ts is as follows:

 describe('SimpleTest2.ts : sanity test 2', () => {
 it('should pass', () => {
 expect(true).toBeTruthy();
 });

 });

Modularization

[342]

In order to run these tests, we will also need a SpecRunner.html file, as follows:

 <html>
 <head>
 <link rel="stylesheet"
 type="text/css"
 href="./node_modules/jasmine-core/lib
 /jasmine-core/jasmine.css" />
 </head>
 <body>
 <script src="./node_modules/system.js/dist/system.js">
 </script>
 <script src="./SystemConfigSpecRunner.js"></script>
 </body>
 </html>

Here, we have a standard HTML file that loads the jasmine.css file and system.js itself.
Note that we are then loading the SystemConfigSpecRunner.js file that holds our
configuration. This SystemConfigSpecRunner.ts file is as follows:

 SystemJS.config({
 baseUrl : '.',
 packages : {
 'lib' : { defaultExtension: 'js' }
 ,'test' : { defaultExtension: 'js' }
 },
 paths: {
 'jasmine' :
 './node_modules/jasmine-core/lib/
 jasmine-core/jasmine.js',
 'jasmine-html' :
 './node_modules/jasmine-core/lib/
 jasmine-core/jasmine-html.js',
 'jasmine-boot' :
 './node_modules/jasmine-core/lib/
 jasmine-core/boot.js'
 },
 meta : {
 'jasmine-boot' : {
 deps : ['jasmine-html']
 ,exports: 'window.jasmineRequire'
 },
 'jasmine-html' : {
 deps : ['jasmine']
 ,exports: 'window.jasmineRequire'
 },
 'jasmine' : {
 exports: 'window.jasmineRequire'

Modularization

[343]

 }
 }
 });

 SystemJS.import('jasmine-boot').then(() => {
 Promise.all([
 SystemJS.import('test/SimpleTest'),
 SystemJS.import('test/SimpleTest2')
])
 .then(() => {
 (<any>window).onload();
 })
 .catch(console.error.bind(console));

 });

There are two parts to this configuration file. Firstly, we call SystemJS.config function
with a configuration block, and then near the bottom of the file we call the function
SystemJS.import to load and boot our Jasmine test environment. Let's focus on the
configuration block to start off with.

Our configuration blocks start by specifying the baseUrl property as '.'. This tells
SystemJs that all module requests are relative to the current directory. The next property is
packages and, as we have seen before with SystemJs, this sets the default extension to js
for the 'lib' and 'test' sub-directories.

The third property in our configuration block is the paths property. This property is very
similar to the AMD version of the paths property, with one notable exception – the
inclusion of the .js file extension on each of the path properties. As we saw with the
Require version of the paths property, these paths are named properties, and as such the
name given in the paths property (for example, 'jasmine') must be used consistently
throughout the configuration block.

The next property that we need is the meta property. The format and usage of the meta
property is exactly the same as the shim property used in Require, and accomplishes the
same thing. The meta property is where our dependencies are set for each of the Jasmine
libraries. As with the Require version, we specify both the deps property (for
dependencies), and the exports property (for our global namespace).

Modularization

[344]

Bootstrapping Jasmine
Let's now take a closer look at the call to SystemJS.import at the bottom of the
SystemConfigSpecRunner.ts file:

 SystemJS.import('jasmine-boot').then(() => {
 Promise.all([
 SystemJS.import('test/SimpleTest'),
 SystemJS.import('test/SimpleTest2')
])
 .then(() => {
 (<any>window).onload();
 })
 .catch(console.error.bind(console));

 });

Here we are bootstrapping the Jasmine environment by loading the Jasmine module named
'jasmine-boot'. As with Require, SystemJs will find and load all dependencies that have
been specified in our dependency tree for 'jasmine-boot', which in this instance includes
both 'jasmine-html' and 'jasmine' itself. We then attach a fluent style .then function
to execute once Jasmine has been loaded. Within this function we are then loading our two
test suites with a call to Promise.all. This technique is similar to the one we used with
Require, where we split the loading of test specs outside of our SystemJs config block, so
that it is easier to add multiple tests without major modifications to the SystemJs
configuration. The Promise.all function loads all spec files, and again uses a fluent syntax
to attach a then function that will be executed when all files have been loaded. The function
simply calls window.onload() and, as we saw with Require, which will force Jasmine to
execute all tests. The final call is to catch, where we log any errors to the console.

Our SystemJs configuration is complete. With this in place, we can load our
SpecRunner.html file to execute our Jasmine tests.

Using Express with Node
In this section of the chapter, we will continue our exploration of modules by showing how
to build a simple Node web server application. In order to accomplish this, we will make
use of the ExpressJs (or simply Express) web framework for Node. Express provides us
with a library of reusable Node modules to handle the basic functionality required for
building a web server.

Modularization

[345]

This includes routing, a template engine for generating web pages, libraries for handling
sessions and cookies, authentication, and error messages (think 404 errors), to name a few.
Express provides a rich set of modules and APIs to cover everything you would need for a
production web server application.

Express setup
In order to build an Express application, we will need to install Express in our development
environment, as well as include the various declaration files that are needed for TypeScript
compilation. Express can be installed using npm as follows:

npm init
npm install express --save

Once Express has been installed, we will need the corresponding declaration files, as
follows:

npm install @types/express --save

Express uses a series of other npm libraries whose declaration files are not included in the
core express.d.ts declaration file. In order to allow for TypeScript compilation, we will
need to install a few other declaration files as follows:

npm install @types/express-serve-static-core --save
npm install @types/serve-static --save
npm install @types/mime --save
npm install @types/node --save

We can now write the simplest of web applications for Express, in a file named
simple_app.ts, as follows:

 import * as express from 'express';

 let app = express();

 app.get('/', (req, res) => {
 res.send('Hello World');
 });

 app.listen(3000, () => {
 console.log(`listening on port 3000`);
 });

Modularization

[346]

We start by importing the Express module, from 'express', and attaching it to a
namespace named express. Note how we are now using a slightly modified version of the
import keyword. Here, we have used the import * as express syntax in order to
import all modules available within the Express library.

We then create a local variable named app, and assign a new instance of express() to it.
The express module that we imported has a default constructor function that we are using
to create our Express application.

We then call the get function on our app instance. This will set up what is known as a route
handler in Express. The first argument is the string '/', which tells Express that any HTTP
request to '/' should be handled by our handler function, which is the second argument to
the get function. Within this function, we are simply calling the res.send function to send
the string 'Hello World' to the HTTP request.

Express allows us to set up multiple route handlers, such that '/login' can be handled by
a particular handler function, or '/users' by another. If no other handlers are specified,
Express will route the request to the closest matching handler. This means that, if a handler
for '/login' is defined; it will handle all requests that start with '/login'. In our sample
application, we have only specified a handler for '/', so all requests will be routed to this
handler.

The final part of our application calls the listen function on the app instance, and
essentially sets up the listening loop. The first argument is the port number to listen on, and
the second is a function that is called on initial application startup. Here we are simply
logging a message to the console.

We can compile and then run this Node Express application by typing:

tsc
node simple_app.js

Modularization

[347]

Our Express application will start up on port 3000, and wait for HTTP requests. Firing up a
browser and pointing it to http://locahost:3000 will trigger the request handler,
rendering Hello World to the browser, as follows:

Simple Express application rendering on port 3000

Using modules with Express
If we wrote all handlers for our application in a single file, with an app.get function for
each application route, this would become a maintenance headache very quickly. What we
really need to do is create a separate module for each of our request handlers, and then
reference them from our main application. Luckily, this is very simple using the standard
module syntax.

As an example of how to do this, let's create a handler function in a new module file. This
file will be named SimpleModuleHandler.ts, as follows:

 export function processRequest(req, res) {
 console.log(`SimpleModuleHandler.processRequest`);
 res.send('Hello World');
 };

Here, we are exporting a function named processRequest, which is a request handler
function. As such, it has two parameters, named req and res, that hold the HTTP request
and response objects. This new handler function simply logs a message to the console, and
then calls the res.send function to write a string to the response stream as we did earlier.
Our app.ts file can then be modified to use this module as follows:

 import * as express from 'express';
 import * as simpleHandler from './SimpleModuleHandler';

 let app = express();

 app.get('/', simpleHandler.processRequest);

Modularization

[348]

 app.listen(3000, () => {
 console.log(`listening on port 3000`);
 });

We have made two changes to our Express application. Firstly, we imported from the
module file named './SimpleModuleHandler', and assigned all import functions to a
namespace called simpleHandler. Secondly, we modified the app.get function call. The
app.get function call now references the processRequest function from the imported
module. This means that, when an HTTP request is received by our application, it will be
processed by the processRequest function from the SimpleModuleHandler module.
Running this application will now log a message to the console whenever a request is
processed, as seen in the following console output:

 > node simple_module_app.js
 listening on port 3000
 SimpleModuleHandler.processRequest

Express routing
So far, we have learned that we can register a request handler against a particular HTTP
request. In a more complex application, however, we would hand off all HTTP requests to a
route hander to figure out which handler function to invoke. Having a global instance of a
route handler allows us to easily attach new routes for our application.

Express provides a Router object to handle registration of new route handlers, as well as to
manage application routing as a whole. Let's create two new modules in a directory named
routes, named Login.ts and Index.ts. We will use the Index.ts module to handle
requests to '/', and the Login.ts module to handle requests to '/login'. This structure
helps us to segregate application functionality into separate modules, and helps us to
manage our code on the whole. In a production application, we may have a large number of
distinct routes, each written within their own separate modules and each handling both GET
and POST requests.

Our Index.ts file, then, is as follows:

 import * as express from 'express';
 var router = express.Router();

 router.get('/', (req, res, next) => {
 res.send(`Index module processed ${req.url}`);
 });

 export { router } ;

Modularization

[349]

Here, we start by importing the express module, as we have done before. We then call the
Router function on the express module, and assign this to a local variable named router.
This Router function acts as a kind of singleton instance, meaning that the call to
express.Router returns the same router instance no matter where it was called from. In
this way, we can attach new routes to the same global Express router handler, and specify
both the path ('/') and the route handler function ((req, res, next) => {}) for each
route. In the preceding sample, our Index route handler function simply logs a message to
the browser.

Note the last line of this module. We are exporting the variable named router, using the
variable export syntax (export { router }). Remember that this router variable was
set using the express.Router() function at the beginning of the module, and then used to
attach a new route handler, in the call to router.get. As we have modified this global
router instance, we need to re-export it for use by our application. This means that we are
essentially attaching a new route handler to the Express router singleton instance.

Let's now take a look at the Login.ts module, which is almost identical:

 import * as express from 'express';
 var router = express.Router();

 router.get('/login', (req, res, next) => {
 res.send(`Login module processed ${req.url}`);

 });

 export { router } ;

Here, the Login.ts module also modifies the global express.Router instance, and this
time attaches a route handler for the '/login' path. Again, this handler simply logs a
message to the browser. The final line in this module is again exporting the router variable
via the export { router } statement. Express, then, is giving us the ability to chain
multiple route handlers to the same express.Router instance by importing and then re-
exporting the same router variable.

Let's now update our application to use these two route handlers, as follows:

 import * as express from 'express';
 let app = express();

 import * as Index from './routes/Index';
 import * as Login from './routes/Login';

 app.use('/', Index.router);

Modularization

[350]

 app.use('/', Login.router);

 app.listen(3000, () => {
 console.log(`listening on port 3000`);
 });

Our application is now simply importing the Index and Login modules from their
respective files, and then calling the app.use function to register our route handlers. Note
how we are referencing the exported router local variable from each module, as seen in
the call to Index.router and Login.router. These two lines, therefore, are registering
our route handlers for our application to use.

With these routing modules in place, any web browser request to '/' will be handled by
the Index.ts module, and any request to '/login' will be handled by the Login.ts
module. In this way, we are starting to organize our code into logical modules, each
responsible for a distinct area of application functionality.

Express templating
Each of our route handlers are currently logging very simple messages to the browser. In a
real-world application, however, we will need to render complete HTML pages. These
pages would have a standard HTML structure, use CSS style sheets, and depending on the
creativity of the design team, could easily become very complex. To support the complexity
of generating HTML pages, most frameworks provide a templating engine.

Express also provides a complete template framework, which can use a choice of different
template engines, including Pug, Mustache, Jade, Dust, and EJS to name a few. Introducing
a template engine within our Express application is as simple as installing the template
engine of choice, and configuring Express to use this template engine.

In this sample application, we will use the Handlebars engine. Handlebars uses standard
HTML snippets, and introduces variables within the HTML templates using a simple
double brace {{ and }} syntax. Template engines such as Pug or Jade use their own
custom formats to represent HTML elements, which are a mix of HTML keywords, class
names, and variable substitution. As a quick comparison, consider a Handlebars template
as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <title>{{title}}</title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>

Modularization

[351]

 <body>
 {{{body}}}
 </body>
 </html>

This template looks very much like standard HTML, with a few elements that will be
substituted, such as {{title}} and {{{body}}. A similar Jade template would be as
follows:

 doctype
 html
 head title #{title}
 link(rel='stylesheet', href='/stylesheets/style.css'
 body

While this Jade template saves us a lot of typing, it does mean that we will need to learn
and understand the various keywords and subtle syntax used in Jade in order to render
valid HTML. Note how there are no recognizable HTML elements, which have instead been
replaced by a custom Jade syntax. For the sake of simplicity, then, and to avoid learning a
completely new syntax for HTML templates, we will use Handlebars as our template
engine, as it uses recognizable HTML syntax, interspersed with substitution variables.

Using Handlebars
Handlebars can be installed via npm as follows:

npm install hbs --save

Once Handlebars has been installed, all we need to do is add three lines to our application
source file (app.ts), as follows:

 import * as express from 'express';
 let app = express();

 import * as Index from './routes/Index';
 import * as Login from './routes/Login';

 import * as path from 'path';
 app.set('views', path.join(__dirname, 'views'));
 app.set('view engine', 'hbs');

 app.use('/', Index.router);
 app.use('/', Login.router);

Modularization

[352]

Here, we have added an import for the module named 'path'. The path module allows
us to use several handy functions when working with directory path names. One of the
variables exposed by the path module is the __dirname variable, which holds the full path
name of the current directory. We are using this __dirname variable in a call to the
path.join function, which will return the full pathname to the local views directory. We
are then setting the 'views' global Express parameter to this directory. Handlebars will by
default use this global parameter to find the path where template files are stored.

Our last change to our app.ts file is to call app.set with the argument 'view engine',
and the value 'hbs'. This function call indicates to Express that it should use Handlebars
as the template engine. These are the only changes we need to make to our Express
application.

Now that we have registered a template library, we can update our routes/Index.ts
router to use a Handlebars template, as follows:

 import * as express from 'express';
 var router = express.Router();

 router.get('/', (req, res, next) => {

 res.render('index',
 { title: 'Express'
 //,username : userName
 }
);
 });

 export { router } ;

Here, we have updated the route hander function to call res.render instead of res.send,
as was used previously. This res.render function takes the name of the template as its
first parameter, and then uses a POJO to use as input to the template engine.

If we run our web application at this stage, we will generate an error indicating that
Handlebars cannot find the view named "index", as follows:

Error: Failed to lookup view "index" in views directory
"/express_samples/views" at EventEmitter.render
(//express_samples/node_modules/express/lib/application.js:579:17)
at ServerResponse.render
(//express_samples/node_modules/express/lib/response.js:960:7)
at //express_samples/routes/Index.js:7:9
at Layer.handle [as handle_request]

Modularization

[353]

We will now need to create an index view template. This template must exist in the views
subdirectory, and as such will be named views/index.hbs. Handlebars uses the .hbs
extension to specify Handlebars template files. This file is as simple as the following:

 <h1>{{title}}</h1>
 <p>Welcome to {{title}}</p>

Our index.hbs template file contains an <h1> element and a <p> element. Both of these
elements use the {{title}} argument passed into the view template for parameter
substitution.

Our rendered HTML page is now starting to look like the real thing; however, we still need
the <doctype>, <head>, and <body> tags to be rendered in order for this to be valid
HTML. Handlebars, similar to other rendering engines, allows us to specify a base layout
template that will be used as the base layout for all pages. This is by default named
layout.hbs, as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <title>{{title}}</title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 {{{body}}}
 </body>
 </html>

Here, we have defined the basic layout template to be used for each view. Handlebars will
create HTML pages starting with this template, and then substitute any specific view
template within the {{{body}}} tag. This base template has included a style sheet in the
<link> tag in our <head> element, as we would expect in a standard HTML page. Note
how the <title> element uses the {{title}} substitution parameter. Our login request
handler renders this page with an object that includes a title property. Handlebars will
therefore use this object to replace the {{title}} parameter with the passed in object
value. Our resulting page is as follows:

Modularization

[354]

Express application showing simple index page template

And our source HTML for this page is as follows:

Page source for simple Express index page

Express POST events
Our Express application currently only renders an index page using the Handlebars
template engine. Let's now extend our application to render a login form, and then process
the results of a user completing the form, and posting this form back to our application.

We will therefore need our login route handler to accept both HTML GET actions, as well as
HTML POST actions. In order to accomplish this, we will need to modify our application in
a few areas. Firstly, we need an associated login.hbs view template to render the login
form. Secondly, we will need to render this form on a GET request. Once the user has filled
in the form, and POSTed it back to the application, we will need to parse this POST data. We
will use a few Express modules to help with parsing.

Modularization

[355]

Our new login.hbs view is created in the views directory, and it contains a simple HTML
form, as follows:

 <h1>Login</h1>
 <p>
 <form method="post">
 <p>{{ErrorMessage}}</p>
 <p>Username : <input name="username"></input></p>
 <p>Password : <input name="password"></input></p>
 <button type="submit">Login</button>
 </form>
 </p>

Here, we have created an HTML form that contains a few standard form elements. To start
with, we have a <p> element to display the view property named {{ErrorMessage}},
which will be used to display any submission errors to the user. Following this, we have
two input fields, named username and password, and a button named Login to submit
the form.

Now that we have this view in place, we can update our routes/Login.ts file to render
this view, as follows:

 import * as express from 'express';
 var router = express.Router();

 router.get('/login', (req, res, next) => {
 res.render('login',
 {
 title: 'Express Login'
 }
);
 });

 export { router } ;

Here, we have modified our route handler to simply render the 'login' view, and set the
title property to a string containing the value 'Express Login'. Running our
application now and navigating to http://localhost:3000/login will invoke our login
request handler, and display our simple login form as follows:

Modularization

[356]

Login form rendered to the browser as a result of the login.hbs template

Now that our login form has been rendered, we can focus on processing the form values
when they have been submitted. Clicking on the Login button will cause the HTML page to
generate a POST message to the login request handler. We therefore need to specify a
handler that will pick up this POST message. In order to do this, we can modify our
Login.ts handler, and include a new POST handler, as follows:

 router.post('/login', (req, res, next) => {
 if (req.body.name.length > 0) {
 req.session['username'] = req.body.username;
 res.redirect('/');
 } else {
 res.render('login', {
 title: 'Express',
 ErrorMessage: 'Please enter a user name'
 });
 }
 });

Here, we are calling the post method of the router module. As we saw with the get
function, Express uses the post function to set up a POST event handler within our module.

This post handler is checking the request.body.username property to read the form
data out of the posted form request. If the username property is valid, we store the value in
the session property named req.session['username'], and redirect the browser to the
default page. If the username property has not been entered, we simply re-render the login
view, and display an error message.

Modularization

[357]

Before we test this new login page, however, we will need to install and configure a few
node modules, as follows:

npm install body-parser --save
npm install cookie-parser --save
npm install express-session --save

The body-parser module is used to parse form data as a result of a POST event, and attach
this form data to the request object itself. This means that we can simply use req.body to
de-reference the form's data.

The cookie-parser and express-session modules are used for session handling. In our
login POST handler, we are setting a session variable to the username property of the form
data. This will not work without these two modules.

The final change we need to make is to import these modules into our application, and run
through any configuration that they need. We will therefore need to update our app.ts
application file as follows:

 // existing code
 app.set('view engine', 'hbs');

 import * as bodyParser from 'body-parser';
 import * as cookieParser from 'cookie-parser';
 import * as expressSession from 'express-session';

 app.use(bodyParser.json());
 app.use(bodyParser.urlencoded({ extended: false }));
 app.use(cookieParser());
 app.use(expressSession({ secret : 'asdf' }));

 // existing code
 app.use('/', Index.router);

Here, we are importing the new modules using our standard import * as module syntax.
We are then running through four app.use function calls, in order to configure each of our
modules. The body-parser module uses the json() function call to return middleware
that Express will use to convert incoming requests into objects attached to req.body. The
body-parser also needs to set the urlencoded property in order to allow for JSON-like
objects to be exposed. These two settings will create a POJO available via the req.body
property when receiving POST requests.

Modularization

[358]

The cookie-parser module is configured by simply using the exported constructor
function, and the express-session module is also configured in the same way. Note that
both the cookie-parser and express-session modules are needed in order to store
variables in the req.session object.

With these modules in place, our POST request handler will be able to query
req.body.username to find the username that was entered, and req.body.password to
find the corresponding password. It will also be able to store values in the session.

HTTP request redirection
Now that we have a working login module to handle a simple login request, we can redirect
the browser session back to our home page, and the Index.ts request handler via the call
to res.redirect('/'). Let's update our Index.ts request handler to work with the
username value that we have stored in the session, as follows:

 router.get('/', (req, res, next) => {
 res.render('index',
 { title: 'Express'
 ,username : req.session['username']
 }
);
 });

Here, we have simply added a new property to the object that is passed to our index.hbs
template named username. The value of this property is retrieved from our session. We can
now update our index.hbs view template as follows:

 <h1>{{title}}</h1>
 <p>Welcome to {{title}}</p>

 {{#if username}}
 <p>User : {{username}} logged in.
 {{else}}
 <p>Click here to login</p>
 {{/if}}

Modularization

[359]

Here, we have added a code block within our Handlebars template that uses some
JavaScript logic to render different HTML based on the username property. If the
username property has a value, then we show that the user has logged in. If not, we render
a link to the '/login' request handler to allow the user to log in. Our changes could not
have been simpler.

Firing up our application now, we will see the home page, with a link to login, as follows:

Express home page showing a link to the login page

Following the link to login, we will then be presented with the Login screen, as follows:

Express login form

Modularization

[360]

Once we have filled in the form and clicked on Login, the login request handler will process
our request and then redirect our browser to the home page, as follows:

Express home page after logging in

Note, how the Click here to login link has disappeared according to our logic and the value
of the username (from the session) is displayed, as the user is now logged in.

Node and Express summary
In this section of the chapter, we explored modularization as it applies to Node and the
Express engine. We started with a simple Express application, and built a simple request
handler as a Node module. We then explored the routing capability of Express, and built
two distinct modules, one to handle requests to our main page, and the other to handle
login functionality. We then introduced Handlebars as a rendering engine, and built three
views–a layout.hbs view that held the overall page structure, a view for the main page,
and a view for the login page. We then worked with a POST request handler and showed
how to parse form values and store a property in the user's session. Finally, we showed
how redirection works, and tied these two pages together to implement login functionality
in our application.

Modularization

[361]

Summary
In this chapter, we have had a look at using modules – both CommonJs and AMD. We
explored the syntax used for modularization, and showed how to both export and import
modules. We then explored the use of AMD module syntax using the Require library, and
discussed how to take care of module dependencies. We then explored the use of
CommonJs module syntax, and showed the equivalent structure for module dependencies
using SystemJs. The final portion of this chapter worked with Node and Express modules,
where we put together a sample application to render both an index and login page, and
handle logins through session information.

In the next chapter, we will tackle object-oriented programming principles, and take a look
at some useful design patterns.

11
Object-Oriented Programming

In 1995, the Gang of Four (GoF), published a book named Design Patterns: Elements of
Reusable Object-Oriented Software. In it, the authors, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, describe a number of classic software design patterns, which
present simple and elegant solutions to common software problems. If you have never
heard of design patterns such as a Factory pattern, Composite pattern, Observer pattern, or
Singleton pattern, then reading through this GoF book is highly recommended.

The design patterns presented by the GoF have been reproduced in many different
programming languages, including Java and C#. Vilic Vane has authored a book named
TypeScript Design Patterns, in which each of these GoF patterns are implemented and
discussed from a TypeScript perspective. In Chapter 3, Interfaces, Classes, and Inheritance, we
took some time to build a classic Factory pattern implementation, which is one of the more
popular design patterns described by the GoF. TypeScript, with its ES6 and ES7 language
compatible constructs is a perfect example of an object-oriented language. With classes,
abstract classes, interfaces, inheritance, and generics, TypeScript applications can now take
full advantage of any of the GoF design patterns.

Describing the implementation of each of these GoF patterns in the TypeScript language is a
subject that cannot be covered in a single chapter, and would do injustice to the excellent
coverage of the GoF patterns covered by Vilic Vane. In this chapter, therefore, we will focus
on the process of writing object-oriented code, and work through an example of two of the
GoF design patterns that work very well together when dealing with complicated UI
layouts. These are the State and Mediator design patterns, which focus on application state,
and how objects interact with each other. We will build an Angular 2 application that uses a
rather complex UI design and which includes some sophisticated CSS animated transitions.
We will then start the process of reworking our original application to apply object-oriented
design principles, and discuss how objects in our application interact. We will then
implement the State and Mediator design patterns in order to encapsulate the logic that is
used to determine what UI element should be shown when.

Object-Oriented Programming

[363]

In this chapter, we will be covering the following topics:

Object-oriented principles
Using interfaces
SOLID principles
User interface design
The State pattern
The Mediator pattern
Modular code

Object-oriented principles
Any application that we build should be assessed in terms of object-oriented best practices.
Robert Martin published what is known as the SOLID design principles, which is an
acronym for five different object-oriented best practices. Following these practices will help
to ensure that the code we write is easy to maintain, easy to understand, easy to extend, and
resilient to change. In our current fast-paced world, we generally don't have the luxury of
taking extraordinary amounts of time to modify our applications in order to keep up with
ever changing requirements. The faster we can deliver updates to satisfy our business
needs, the better chance we have of keeping ahead of our competition. Sticking to the
SOLID design principles gives us a good foundation that will enable easy modifications to
existing code, in order to satisfy these rapidly changing demands on our code base.

Program to an interface
One of the primary notions that the GoF adhere to is the idea that programmers should
Program to an interface, not an implementation. This means that programs are built using
interfaces as the defined interaction between objects. By programming to an interface, client
objects are unaware of the internal logic of their dependent objects, and are therefore much
more resilient to change. By defining an interface, we are starting to cement an API that
describes what functionality an object provides, how it should be used, and also how
multiple objects interact with each other.

Object-Oriented Programming

[364]

SOLID principles
An extension of the program to an interface principle is what has been coined as the SOLID
design principles, which are based on the ideas of Robert Martin. This is an acronym for
five different principles, and it deserves a mention whenever object-oriented programming
is discussed.

Single responsibility
The idea behind the single responsibility pattern is that an object should have just a single
responsibility. Do one thing, and do it well. We have seen examples of this principle in the
various TypeScript compatible frameworks that we have worked with. As an example, a
Model class is used to represent a single model. A Collection class is used to represent a
collection of these models, and a View class is used to render models or collections.

If any one of our classes starts to become a super class, in other words it is doing many
different types of things, then this is an indication that we are breaking this principle. As a
simple example, if your source code file for a particular class starts to get very long – then
this class is possibly doing too much. Think about what this class's primary responsibility is,
and then break out the functionality of the class into smaller classes.

Open closed
The Open-Closed principle states that an object should be open to extension, but closed for
modification. In other words, once an interface has been designed for a class, changes over
time to this interface should be achieved through inheritance, and not by modifying the
interface directly.

Note that if you are writing libraries that are consumed by third parties via an API, then
this principle is essential. Changes to an API should only be made through a new, versioned
release, and should not break the existing API or interface, to ensure backwards
compatibility of your API.

Object-Oriented Programming

[365]

Liskov substitution
The Liskov Substitution Principle (LSP) says that if one object is derived from another,
then these objects can be substituted for each other without breaking functionality. While
this principle seems fairly easy to implement, it can get pretty hairy when dealing with
subtyping rules related to more complex types, such as lists of objects or actions on objects,
which are commonly found in code that uses generics. In these instances, the concept of
variance is introduced, and objects can be either covariant, contra-variant, or invariant. We
will not discuss the finer points of variance here, but keep this principle in mind when
writing libraries or code using generics.

Interface segregation
The idea here is that many interfaces are better than one general-purpose interface. If we tie
this principle with the single responsibility principle, we will start to look at our interfaces
in terms of smaller pieces of the puzzle working together, rather than interfaces
encompassing large portions of functionality.

Dependency inversion
This idea states that we should depend on abstractions (or interfaces) rather than instances
of concrete objects. Again, this is the same principle as programming to an interface, not an
implementation.

User interface design
As an example of the use of the SOLID design principles, let's build an application that uses
a complex UI design, and see how these principles can help us break up our code into
smaller, manageable modules, separated by interfaces.

In this section, we will build an Angular 2 application that will provide a left-to-right panel
style page layout. We will use Bootstrap to provide a little styling, and some CSS-based
transitions to slide panels in from the left or right. This will provide the user with a slightly
different browsing experience to the common up-down scrolling design that most websites
utilize.

Object-Oriented Programming

[366]

Conceptual design
Let's take a look at what this left-to-right design will look like conceptually:

Conceptual view of the left-to-right UI panel design

The Viewing Panel will be our main page, with a Header Panel and a Button to control
showing or hiding the side navigation pane on the left-hand side. When the left-hand side
pane is opened, it will use a CSS animation in order to slide in from the left, and when it is
closed it will again use an animation to slide back to the left. Likewise, when a button is
clicked to show the second panel (Panel 2), this detail panel will slide in from the right,
using a CSS animation, and will end up occupying the entire Viewing Panel.

Object-Oriented Programming

[367]

The following screenshot shows the viewing panel with the header panel and left-hand side
panel visible:

Main viewing panel with left-hand side panel visible

Here, we can clearly see the header panel at the top, the left-hand side menu panel, and two
buttons. The first button is to the left of the Select an option: text, and it is simply a < arrow
that will hide the left-hand side panel. Clicking on this button uses a CSS animation to slide
the left-hand side panel to the left, so that it is out of the way. This can be seen in the
following screenshot:

Animated transition for the left-hand side panel

Object-Oriented Programming

[368]

Here, we have paused the CSS animation to show that the left-hand side panel is in the
process of collapsing, and the main panel is being expanded to fill the entire view panel.
Note that the show/hide left panel button has changed from a < arrow to a > arrow. This
subtle change indicates to the user that the side panel can be expanded by clicking on the >
button.

If the detail button is clicked, this will cause the left-hand side panel and the main page to
slide to the left, revealing the second page through another CSS animation, as can be seen in
the following screenshot:

Animated page transition for the right-hand detail panel

Here, the second page is transitioning from the right-hand side, and both the left-hand side
panel and the main page are sliding to the left.

Angular 2 setup
Now that we have a conceptual view of what our application will look like, we can start
implementing this layout, by setting up an Angular 2 application. As we have seen in
earlier Angular 2 projects, we start by issuing an ng new command to use the Angular
command line interface. This process will set up all of the required dependencies that
Angular needs, and create an initial app.component.ts and app.component.html file
for us.

Object-Oriented Programming

[369]

Our app/app.component.ts file could not be simpler:

 import { Component } from '@angular/core';

 @Component({
 selector : 'my-app',
 templateUrl : 'app/app.component.html',
 styleUrls: ['app/app.component.css']
 })
 export class AppComponent
 {
 title = "Select an option :";
 }

Here, we import the Component module as we have seen before, and then define three
properties to pass to the @Component decorator. Note, however, that instead of specifying a
template property, which normally contains HTML, we have specified a templateUrl
property. This instructs Angular to load the named file from disk, and use it as the
component template. Similarly, we have specified a CSS file to be used by our component
via the styleUrls property. Our AppComponent class, then, just has a single property
named title.

Using the templateUrl property to load a separate file containing our HTML template is
an example of the dependency inversion principle. Our AppComponent class is dependent
on an HTML template in order to render the component to the browser. When using the
template property, we have a tight coupling between the HTML template, and the class
itself. This means that any modification to the template requires recompilation of the
module. By splitting the template out into a separate loadable file, we have broken this tight
coupling, and the module class can be modified independently from its HTML template.

Our app.component.html file is currently very simple, as follows:

 <div>
 {{title}}
 </div>

 <div>
 <button>detail</button>
 </div>

Here, we have two <div> elements. The first contains our title, and the second contains a
button.

Object-Oriented Programming

[370]

Using Bootstrap
Now that we have the basics of our Angular 2 application, we can flesh out the HTML that
it will contain. In order to do this, we will use the Bootstrap framework. Bootstrap is an
HTML-based, CSS driven method of building common web components that provide much
of the functionality and styling needed in modern websites. From buttons to icons, to tabs
or alerts, and almost everything in between, Bootstrap provides a simple syntax to add
professional looking styling to our site. It has also been built as a responsive framework,
meaning that it will automatically adjust to render optimally for mobile, tablet, or desktop
devices. To include Bootstrap styling in our web page, we firstly need to install it via npm as
follows:

npm install bootstrap --save

To include the boostrap.css file into our application, we can simply edit the
angular.cli.json file in the base directory, and add an entry to the styles property as
follows:

 "styles": [
 "styles.css",
 "../node_modules/bootstrap/dist/css/bootstrap.min.css"
],

We can now start to flesh out the page design in our app.component.html page, starting
with the navigation bar at the top of the screen, as follows:

 <nav class="navbar navbar-inverse bg-inverse
 navbar-toggleable-sm">

 <div class="nav navbar-nav">
 Home
 Products
 About Us
 </div>
 </nav>

Here, we have created a top navigation bar, by specifying a <nav> link, and have set some
Bootstrap-specific CSS classes to create a dark navbar that occupies a band across the top of
the page. Within this <nav> link, we have an <a> tag, which is just a blank element, and
then we define a child <div> with three <a> links within it. These links are named Home,
Products, and About Us, and they will be rendered as navigation links.

Object-Oriented Programming

[371]

Note that the samples in this chapter use Bootstrap version 4.0.0-alpha.4, which has
some differences to earlier versions. If the preceding HTML navigation bar does not render
correctly, then check your package.json file, and ensure that the bootstrap version is
correct, as follows:

 "dependencies": {
 .. other npm libraries ...
 "bootstrap": "^4.0.0-alpha.4",
 ... other npm libraries ...
 }

Creating a side panel
We can now take a look at creating our left-hand side panel. A great resource for HTML
elements, CSS styling, and animations is the w3schools.com website. The how to section of
the documentation provides a huge library of samples, including slideshows, modal boxes,
progress bars, and responsive tables to name just a few. We will use a sample from the side
navigation section, called Sidenav Push Content. This example shows how to create a
side navigation screen that pushes the main content of the page over as it expands, instead
of creating an overlay. We will start with some HMTL added to our app.component.html
as follows:

 <div id="mySidenav" class="sidenav">
 About
 Services
 Clients
 Contact
 </div>

Here, we have described a <div> element with an id of mySideNav, and a CSS class of
sidenav. This <div> contains four sub links. To turn this into an attractive side navigation
bar, we will now need to edit our app.component.css file to add a few styles as follows:

 /* The side navigation menu */
 .sidenav {
 height: 100%; /* 100% Full-height */
 width: 250px; /* 0 width - change this with JavaScript */
 position: fixed; /* Stay in place */
 z-index: 1; /* Stay on top */
 top: 50px;
 left: 0;
 background-color: #111; /* Black*/
 overflow-x: hidden; /* Disable horizontal scroll */
 padding-top: 60px; /* Place content 60px from the top */

Object-Oriented Programming

[372]

 transition: 0.3s;
 }

 /* The navigation menu links */
 .sidenav a {
 padding: 8px 8px 8px 32px;
 text-decoration: none;
 font-size: 25px;
 color: #818181;
 display: block;
 transition: 0.3s
 }

 /* When you mouse over the navigation links, change their color */
 .sidenav a:hover, .offcanvas a:focus{
 color: #f1f1f1;
 }

With these few CSS styles in place, our side navigation panel starts to take shape, as can be
seen in the following screenshot:

Simple side navigation bar with CSS styling

Object-Oriented Programming

[373]

Here we have a nicely styled side navigation bar. Unfortunately, though, our main page
content has disappeared behind the side navigation bar, meaning that we will need to apply
a surrounding <div> and some styles to ensure that the left-hand panel pushes our main
panel content over to the right. Our main panel content then becomes:

 <div id="main" class="main-content-panel">
 <div class="row">
 <div class="col-sm-1">

 <button class="btn button-no-borders"
 (click)="showHideSideClicked()" >
 <
 </button>
 </div>
 <div class="col-sm-11 ">
 <div class="row-content-header">{{title}}</div>
 </div>
 </div>

 <div class="main-content">
 <button class="btn btn-primary"
 (click)="buttonClickedDetail()">detail</button>
 </div>
 </div>

Here, we have wrapped our main content in a <div> with an id of "main", and a class of
"main-content-panel". This <div> is then broken down into a row that consists of two
columns, of size 1 and 11. This row houses our show/hide side panel button, and the
{{title}} element. Beneath this header row is our main content, which simply includes a
single button named detail. Our corresponding CSS for this section of HTML is as
follows:

 #main {
 margin-left: 250px;
 transition: .3s;
 }

 #main-body {
 transition: .3s;
 }

 .main-content {
 padding: 20px;
 }

 .row-content-header {
 padding: 5px;

Object-Oriented Programming

[374]

 font-size: 20px;
 }

There are two key styles here that affect our page content. The first is the margin-left:
250px element of the #main style. This margin-left value is the CSS property that pushes
our main content over to the right when the left-hand panel is visible. This property
matches the corresponding side panel value of .sidenav { width: 250px; }. In other
words, the side panel has a width of 250px, and the main panel has a left margin of 250px.
These two values combined show the left-hand panel, and also push the main panel over to
the right. We will adjust these two values from 250px to 0px in order to show or hide the
left-hand panel.

The second key style is the transition: .3s; property that defines how long it takes to
animate both the side panel collapsing and expanding, and the main panel being pushed to
the right, or expanding to fill the screen. With these styles in place, we can now attach some
code to kick off an animated page transition. To get this to work we need to register a click
handler in the HTML, and then implement the click handler in our app.component.ts file.
Firstly, let's examine the button click DOM event in the app.component.html file:

 <button class="btn button-no-borders"
 (click)="showHideSideClicked()" >

 </button>

Here, we have defined a function named showHideSideClicked, which will be called
whenever we click on the show/hide button. Our changes to app.component.ts are as
follows:

 export class AppComponent
 {
 title = "Select an option :";
 isSideNavVisible = true;
 showHideSideClicked() {
 if (this.isSideNavVisible) {
 document.getElementById('main')
 .style.marginLeft = "0px";
 document.getElementById('mySidenav')
 .style.width = "0px";
 this.isSideNavVisible = false;
 } else {
 document.getElementById('main')
 .style.marginLeft = "250px";
 document.getElementById('mySidenav')
 .style.width = "250px";
 this.isSideNavVisible = true;

Object-Oriented Programming

[375]

 }
 }
 }

Here, we have added a property to the AppComponent class named isSideNavVisible,
and set it to true by default. This property is keeping track of whether the side navigation
bar is visible or not. We have then implemented the showHideSideClicked function. If the
side navigation bar is visible, we set the marginLeft style of the main panel to 0px, and
also set the width of the mySideNav element to 0px. This essentially collapses the side
panel, and makes the main panel fill the whole screen. If the side navigation bar is
collapsed, we do the opposite, and also set the isSideNavVisible property at the same
time. Running our application at this stage shows and hides the left-hand panel quite nicely,
using the transition: .3s property to apply a visually appealing animation.

Creating an overlay
We can now turn our attention to the second page, which will slide in from the right when
we click on the detail button. Our HTML snippet is as follows:

 <div id="mySidenav" class="sidenav">
 ... existing sidebar ...
 </div>

 <div id="myRightScreen" class="overlay">
 <button class="btn button-no-borders"
 (click)="closeClicked()">

 </button>
 <div class="overlay-content">
 <h1>page 2</h1>
 </div>
 </div>
 ... existing main panel ...
 <div id="main" class="main-content-panel">

Here, we have inserted a <div> element with an id of myRightScreen, and specified the
CSS class of overlay. This is a simple <div> that contains a button at the top, with a click
handler of closeClicked, and an <h1> element to show page 2. As with the side
navigation bar, we will need some CSS styling to accomplish two things.

Object-Oriented Programming

[376]

Firstly, we need to set the second page over to the right, and then we need a way to slide it
in from the right when the detail button is clicked. Our CSS is as follows:

 /* The Overlay (background) */
 .overlay {
 height: 100%;
 width: 100%;
 position: fixed; /* Stay in place */
 z-index: 1; /* Sit on top */
 left: 0;
 top: 54px;
 overflow-x: hidden; /* Disable horizontal scroll */
 transition: 0.3s;
 transform: translateX(100%);
 border-left: 1px solid;
 }

Again, there are two styles that are controlling how the second page is revealed. The first is
the transform: translateX(100%) style, and the second is the transition: 0.3s
style. The transform style in this case is essentially moving the X starting position of the
<div> to 100%. This means that by default, it is offset on the X axis 100% of the page width,
and therefore is not visible. The transition: 0.3s style is again just animating the show
or hide of the panel.

Let's implement some of the click handlers on our page to see this in action. Firstly, we need
to handle the click event of the detail button, as follows:

 buttonClickedDetail() {
 document.getElementById('myRightScreen')
 .style.transform = "translateX(0%)";
 document.getElementById('main')
 .style.transform = "translateX(-100%)";
 }

Here, we are doing two things. Firstly, we are setting the transform property of the second
page to a value of translateX(0%). This is doing the opposite of the translateX(100%),
and is setting the X starting position of the <div> to 0%. With the translate CSS property in
place, this gives us the sliding in from the right effect that we are after.

Object-Oriented Programming

[377]

The second thing that we are doing in this function is to set the transform property of our
main <div> to translateX(-100%). Again, this has the effect of sliding the main panel
over to the right. Before we test this transition, let's implement the closeClicked function
that will close the right panel, as follows:

 closeClicked() {
 document.getElementById('myRightScreen')
 .style.transform = "translateX(100%)";
 document.getElementById('main')
 .style.transform = "translateX(0%)";
 }

Here, we are doing the opposite action to the buttonClickedDetail function, in order to
slide the second page panel over to the right, and also reveal our main panel. These two
functions are working in conjunction to set the translateX properties of both the
myRightScreen<div> element, and the main <div> element.

If we fire up our page now, we will be able to click on the detail button, and see the second
page slide in from the right.

Coordinating transitions
So far, we have created a simple web application that has a main panel, a left-hand side
panel and a second page panel, and added some CSS styles and transitions to create a
visually pleasing page structure. Unfortunately, there are some issues with our current
implementation. If we are on the main page, and our left-hand side panel is visible, then
clicking on the detail button does not close the left hand panel before sliding in the right
panel. This causes the second page to show on top of the left hand panel as follows:

Object-Oriented Programming

[378]

Right hand panel showing over the top of the left hand panel

To fix this, we could call the showHideSideClicked function that we already have, in order to hide the side panel first. This seems to fix the issue, but
introduces another bug. If we have the side panel visible, and then show and hide the detail panel, the side panel remains closed. To fix this bug, we could call the

showHideSideClicked function again when we close the right hand panel, but this solution unfortunately presents its own quirky bugs.

While we could rework the logic of our application to iron out all of these bugs, we are
quickly getting into a frustrating cycle of trying to fix one thing, only to find it has another
undesired side effect. What we really need is a mechanism to keep track of all of these
visual elements, and control how the application reacts to user input. This is where the State
and Mediator design patterns come to the rescue.

The State pattern
The GoF describe two design patterns named the State pattern, and the Mediator pattern.
The State pattern uses a set of concrete classes that are derived from a base class to describe
a particular state. As an example, consider creating an enum to describe the states that a
door can be in. At first glance, a door could be either Open or Closed. In this case, a simple
if...else control flow would probably take care of any logic we wish to apply.

Consider, however, what happens to our control flow and logic if we needed a Locked and
Unlocked state, or, if it were a sliding door for a SlightlyAjar, HalfOpen,
AlmostFullyOpen, and FullyOpen state. The State design pattern allows us to easily
define these states, and adjust our logic based on the current state of an object.

Object-Oriented Programming

[379]

If we think about our application a little, we know that our screens will be in one or another
particular state at any point in time. We are either on the main screen panel or on the
second page panel. Also, the left-hand side panel is either visible or hidden. This
combination give us three states:

Main panel only
Main panel with side navigation, or
Detail panel

State interface
The State pattern helps us to define these states in code. The basic principle of the State
design pattern is that we create an interface, or an abstract base class that defines the
properties of each state, and we then create concrete classes for each specialization. In our
application, then, we have two main questions that we need to ask each state. These are:

Is the side panel visible?
Are we on the main panel or the detail panel?

Additionally, if we are on the main panel, then we also need to know whether to show the >
arrow on the top left of the main panel, or the < arrow. This is tied to whether the side panel
is visible or not. Our interface for these states is therefore the following:

 export enum StateType {
 MainPanelOnly,
 MainPanelWithSideNav,
 DetailPanel
 }

 export enum PanelType {
 Primary,
 Detail
 }

 export interface IState {
 getPanelType() : PanelType;
 getStateType() : StateType;
 isSideNavVisible() : boolean;
 getPanelButtonClass() : string;
 }

Object-Oriented Programming

[380]

Here, we start with an enum for StateType, which lets us know which of the three states
we are in. We then define the PanelType enum for whether we are on the Primary or
Detail panels. Our interface, IState, has four functions. The getPanelType returns a
PanelType enum value, and the getStateType function returns the StateType enum
value. The isSideNavVisible function simply returns a boolean value indicating if the
side navigation panel is visible or not. The final function, getPanelButtonClass, will
return a class name for switching the show hide button from a chevron left (<) to a chevron
right (>), depending on the state of the side panel.

With this interface in place, we have defined what questions we can ask each of our
concrete state classes. Depending on whether we are on the main panel or the detail panel,
the answers to this question will change slightly. This is the essence of the State design
pattern. Define an interface that gives you the answers you need for all states, and then
program to that interface. This shields any logic we build to consume these states from the
definition of the states themselves. In other words, adding or removing a new state class
will not affect any code we have written against the IState interface.

Concrete states
Let's now examine the three concrete state classes as follows:

 export class MainPanelOnly
 implements IState {
 getPanelType() : PanelType { return PanelType.Primary; }
 getStateType() : StateType { return StateType.MainPanelOnly; }
 getPanelButtonClass() : string { return 'fa-chevron-right';}
 isSideNavVisible() : boolean { return false; }
 }

We start with a state class named MainPanelOnly, which is used to describe the state when
the side navigation bar is not visible, and we are on the main viewing panel. This is a very
simple class that implements the IState interface, and as such simply returns the correct
values for each of the four functions. As we can see by the return values, we are on
PanelType.Primary, the IsSideNavVisible function returns false, and we need an
'fa-chevron-right' class to display on our show hide button. Our other two concrete
states are very similar, as follows:

 export class MainPanelWithSideNav
 implements IState {
 getPanelType() : PanelType { return PanelType.Primary; }
 getStateType() : StateType {
 return StateType.MainPanelWithSideNav; }
 getPanelButtonClass() : string { return 'fa-chevron-left';}

Object-Oriented Programming

[381]

 isSideNavVisible() : boolean { return true; }
 }

 export class DetailPanel
 implements IState {
 getPanelType() : PanelType { return PanelType.Detail; }
 getStateType() : StateType { return StateType.DetailPanel; }
 getPanelButtonClass() : string { return '';}
 isSideNavVisible() : boolean { return false; }
 }

Here, the MainPaleWithSideNav state class is the same as the MainPanel class, except
that it returns true for the isSideNavVisible function, and 'fa-chevron-left' for the
panel button class. The DetailPanel state class returns PanelType.Detail, false for the
isSideNavVisible function, and a blank class name for the panel button.

These three classes are very simple, and they are describing the state that the UI should be
in when they are the current state. These classes help us to encapsulate the logic that is used
in our application to manage the various UI elements on our screen.

The Mediator pattern
Now that we can describe the various states that our UI is in, we can begin to apply the
logic that is required to move between these states. The Mediator pattern is used to define
how a set of objects interact. This pattern injects a Mediator object in between objects that
affect each other, so that objects do not directly communicate with each other. This
promotes loose coupling between objects that are involved in working together.

There are essentially two parts to the Mediator pattern. The first part is to define an
interface that the Mediator can call in order to apply the changes that it needs. In our
application, we will need the Mediator to be able to signal the UI to either show or hide the
side navigation panel, and show or hide the detail panel. The Mediator also needs to switch
the show hide button from a < chevron to a > chevron, depending on the current application
state. Secondly, the Mediator needs a registry of all of the different states that are allowed,
and will call the UI functions to apply changes based on the movement between these
states.

By defining an interface for these interactions, we are following object-oriented best
practices, and shielding the Mediator code from the actual implementation of the UI
changing logic. We will therefore be able to code and test this Mediator logic without an
actual UI in place.

Object-Oriented Programming

[382]

Our interface for the Mediator class is, therefore, as follows:

 export interface IMediatorImpl {
 showNavPanel();
 hideNavPanel();
 showDetailPanel();
 hideDetailPanel();
 changeShowHideSideButton(fromClass: string, toClass: string);
 }

Here, we have distilled all of the UI changes required by our application into four functions.
We can either show or hide the side navigation panel, show or hide the detail panel, and
update the button CSS class.

Looking back at our work so far, we have simplified our business logic into two parts.
Firstly, we have defined the states that our UI will be in at any point in time, and secondly
we have defined the functions required to update our UI. We are already on the way to
building a modular, object-oriented, easy to understand, and easy to maintain application.
We will tackle the implementation of the Mediator logic a little later, after we have
performed some housekeeping on our existing code.

Modular code
Our application so far has all of its HTML, CSS, and business logic as part of the
AppComponent class. Although we have already broken this class down into a separate
app.component.html and app.component.css files, it really contains a number of
separate components all in one. Let's take this opportunity to modularize our code, and
create three separate classes. These will be:

A NavbarComponent class to render and handle the navigation bar at the top of
the screen
A SideNavComponent class to render the left-hand side navigation panel
A RightScreenComponent to handle the detail panel that slides in from the
right

This means that the AppComponent class becomes the central application class, and it will
be responsible for coordinating each of these components.

Object-Oriented Programming

[383]

Navbar component
Our first task is to create a NavbarComponent class that will have the sole responsibility of
rendering the navigation bar at the top of the screen. To do this we will create a
navbar.component.ts file and a navbar.component.html file in our app directory.

The contents of the HTML file are simply copied from our existing app.component.html
file as follows:

 <nav class=" navbar navbar-inverse bg-inverse
 navbar-toggleable-sm">

 <div class="nav navbar-nav">
 Home
 Products
 About Us
 </div>
 </nav>

We can then create a NavbarComponent class as follows:

 import { Component } from '@angular/core';
 @Component({
 selector: 'navbar-component',
 templateUrl: './app/navbar.component.html'
 })

 export class NavbarComponent {

 }

This is a very basic Angular 2 class that references our HTML file, and specifies a selector
property in the @Component decorator. To use this new component in our application, we
will need to register this component with Angular, and then simply drop in a <navbar-
component> tag in our current app.component.html file. Registration is accomplished by
importing this component into our app.module.ts file, as follows:

 import { AppComponent } from './app.component';

 // include here to enable html to find correct component
 import { NavbarComponent } from './navbar.component';

 @NgModule({
 declarations: [
 AppComponent,
 NavbarComponent

Object-Oriented Programming

[384]

],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [],
 bootstrap: [AppComponent]})

Here, we have added a module import statement to reference our navbar.component
module, and then we have updated the declarations array of the @NgModule decorator.
By updating the declarations array, we are registering the <nabar-component> tag for
use within any HTML template. The final change we need to make is to include this new
<navbar-component> tag into our app.component.html file. With these changes in
place, our application will use the new navbar.component module when rendering the
page.

SideNav component
In a similar manner, let's now create a component for the left-hand side navigation panel,
named SideNavComponent. This will need three source files named
sidenav.component.ts, sidenav.component.html, and sidenav.component.css.
The HTML file is again a simple cut and paste from our existing HTML file, as follows:

 <div id="mySidenav" class="sidenav">
 About
 Services
 Clients
 Contact
 </div>

The SideNavComponent class is as follows:

 import { Component } from '@angular/core';

 @Component({
 selector: 'sidenav-component',
 templateUrl: './sidenav.component.html',
 styleUrls: ['./sidenav.component.css']
 })

 export class SideNavComponent {

 closeNav() {
 document.getElementById('mySidenav')

Object-Oriented Programming

[385]

 .style.width = "0px";
 }
 showNav() {
 document.getElementById('mySidenav')
 .style.width = "250px";
 }

 }

Again, we have a fairly simple Angular 2 class that registers the selector property, the
HTML, and CSS files with the @Component decorator. Note, however, that we have created
two functions in this class, named closeNav and showNav. These two functions set the
style.width CSS property to 0px and 250px, respectively. What we have done here is to
essentially encapsulate all of the functionality surrounding the side navigation bar into the
SideNavComponent class. This is the single responsibility design principle – that a class
should just have a single responsibility.

We can now register this component in the app.module.ts file, as we did with the
NavbarComponent, and we can then drop the <sidenav-component> tag into our
app.component.html file.

RightScreen component
Let's now go ahead and create the last component in our application, which covers the right
hand or detail screen, named RightScreenComponent. Again, we will create a
rightscreen.component.ts file, an HTML file, and a CSS file for this component. We
will not focus on the HTML and CSS files for this component yet, as they are a simple cut
and paste from the existing HTML and CSS from our app.component files. Let's rather
take a look at the Angular 2 class for this component, as follows:

 import { Component, EventEmitter, Output } from '@angular/core';

 @Component({
 selector: 'rightscreen-component',
 templateUrl: './rightscreen.component.html',
 styleUrls: ['./rightscreen.component.css']
 })

 export class RightScreenComponent
 {
 @Output() notify: EventEmitter<string>
 = new EventEmitter<string>();

 closeClicked() {

Object-Oriented Programming

[386]

 this.notify.emit('Click from nested component');
 }

 closeRightWindow() {
 document.getElementById('myRightScreen')
 .style.transform = "translateX(100%)";
 }

 openRightWindow() {
 document.getElementById('myRightScreen')
 .style.transform = "translateX(0%)";
 }
 }

This class is very similar to the other component classes that we have created, in that it
species our selector tag, a templateUrl, and then the css file in the @Component
decorator. We then define the class with three functions – closeClicked,
closeRightWindow, and openRightWindow. The closeRightWindow and
openRightWindow functions set the style.transform values for this component, as we
have discussed earlier.

The really interesting part of this class is the closedClicked function, and the use of
something called an EventEmitter. Note how we have imported both the EventEmitter
class and the Output decorator in our import statement at the top of the file. Angular 2
uses the @Output property decorator and the EventEmitter generic class to enable
components to notify other components when events occur.

Remember that this panel has a button on the top left-hand side that is used to close the
panel and return to the main screen. The HTML for this button is as follows:

 <button class="btn btn-default" (click)="closeClicked()">

 </button>

We know that the Angular syntax for handling a DOM click event is to specify
(click)="<handlerFunction>". In our preceding HTML, this <handlerFunction> is
called closeClicked, and therefore must be defined in our component class itself.

However, this RightScreenComponent class is only in control of its own HTML area, and
cannot therefore include any functionality that is for the application itself. In this case, then,
all we need to do is to raise an event stating that the close button has been clicked, and leave
it up to another part of the application to react to this event and do something. Again, this
ties into our design principle of single responsibility.

Object-Oriented Programming

[387]

Let's take a closer look at this EventEmitter syntax:

 @Output() notify: EventEmitter<string>
 = new EventEmitter<string>();

 closeClicked() {
 this.notify.emit('Click from nested component');
 }

We set up our event emitter by decorating the notify property with the @Output
decorator. We then specify that the type of this property is EventEmitter<string>, and
then immediately create an instance of the EventEmitter class. The EventEmitter is a
generic class, meaning that we can substitute a <number>, or <boolean>, or even a
complex class in this declaration.

As the notify property is an instance of an EventEmitter of type string, we can call
this.notify.emit with a string argument in our closeClicked function. This takes care
of emitting an event when a user clicks on this button within our RightScreenComponent
class.

We now need to define an event handler for this event. As the AppComponent class is
responsible for both creating and controlling this RightScreenComponent, we make a
change to our app.component.html file to register for this notification event. The
inclusion of the <rightscreen-component> tag now becomes:

 <rightscreen-component (notify)='onNotifyRightWindow($event)'>
 </rightscreen-component>

Here, we have added an attribute to our <rightscreen-component> tag to register for a
(notify) event, and then called the onNotifyRightWindow function within our
AppComponent class. The implementation of this function for the time being can just pop
up an alert so that we can test that the firing and registering for this event is working
correctly:

 onNotifyRightWindow(message:string):void {
 alert('clicked');
 }

We will hook up this event handler a little later to our Mediator class in order to trigger the
switch to move to a different state.

Object-Oriented Programming

[388]

Child components
Our AppComponent class is the owner of our entire application. It renders the HTML used
for the entire page, which includes the navbar, sidenav, rightscreen, and main panel
components. As such, it is also the parent of these sub-components. In other words, all of
these components are children of the AppComponent class, and are referred to as child
components. What we need now is a way for the AppComponent class to reference the
SideNavComponent and RightScreenComponent classes within the class itself. This is to
tie in the instances of these classes that are created via the HTML tags, <sidenav-
component> and <rightscreen-component>.

Angular provides the @ViewChild property decorator for this purpose. To use this
decorator, our AppComponent class needs to be updated as follows:

 import { Component, ViewChild } from '@angular/core';
 import { SideNavComponent } from './sidenav.component';
 import { RightScreenComponent } from './rightscreen.component'
 .. @Component ...
 export class AppComponent
 {
 @ViewChild(SideNavComponent)
 private sideNav : SideNavComponent;
 @ViewChild(RightScreenComponent)
 private rightScreen: RightScreenComponent;
 .. the rest of the class ...

There a few changes that we need to make. Firstly, we need to import the ViewChild
decorator from the @angular/core module, and then import the SideNavComponent and
RightScreenComponent modules. Secondly, we need to create two private properties,
named sideNav and rightScreen, to hold the instances of our child components.

We then use Angular 2's @ViewChild decorator with the class name that we wish to
reference. This means that the @ViewChild(SideNavComponent) will connect the
private sideNav property to the correct instance of the SideNavComponent class.

Similarly, we are asking Angular 2 to connect the instance of the RightScreenComponent
class used in our HTML to the private rightScreen variable. In this way, our
AppComponent class now has programmatic access to these two classes that were
referenced in the HTML.

Object-Oriented Programming

[389]

Mediator interface implementation
Now that the AppComponent class has references to its child components, we can focus on
the implementation of the IMediatorImpl interface, as follows:

 showNavPanel() {
 this.sideNav.showNav();
 document.getElementById('main').style.marginLeft = "250px";
 }
 hideNavPanel() {
 this.sideNav.closeNav();
 document.getElementById('main').style.marginLeft = "0px";
 }
 showDetailPanel() {
 this.rightScreen.openRightWindow();
 document.getElementById('main').style.transform =
 "translateX(-100%)";
 }
 hideDetailPanel() {
 this.rightScreen.closeRightWindow();
 document.getElementById('main').style.transform =
 "translateX(0%)";
 }
 changeShowHideSideButton(fromClass: string, toClass: string) {
 if (fromClass.length > 0 && toClass.length > 0) {
 document.getElementById('show-hide-side-button')
 .classList.remove(fromClass);
 document.getElementById('show-hide-side-button')
 .classList.add(toClass);
 }
 }

We start with the showNavPanel function, which calls the implementation of the showNav
function on the sideNav child component, and then sets the marginLeft style on the main
DOM element. Likewise, the hideNavPanel function does the opposite. The
showDetailPanel function calls the implementation of the openRightWindow function on
the rightScreen child component, and then sets the transform property on the main
DOM element.

With this implementation in place, we can now focus on the Mediator class itself.

Object-Oriented Programming

[390]

The Mediator class
The Mediator class is responsible for coordinating the overall application state, and the
interactions between our various UI classes. As such, it really needs to have three key
ingredients. Firstly, it needs to have the concrete implementation of the IMediatorImpl
interface so that it can call the various functions it needs to when the UI needs updating. We
have just implemented the IMediatorImpl interface in our AppComponent class, so we
will need to pass a reference to the AppComponent instance to the Mediator class.

Secondly, the Mediator class needs a concrete instance of each of our State classes so that it
can recreate both the current state of the application, as well as the desired next state. It can
then compare the current state and the desired next state to figure out what changes will
need to occur to move from state to state.

Thirdly, the Mediator class needs to store the current state of the application. As it is
responsible for moving from state to state, it makes sense for the Mediator to be the single
source of truth for anything state related. Also, where UI functionality is dependent on the
current state of the application, we can forward any queries about what to do through to the
Mediator class to make a decision for us.

Bearing these elements in mind, let's take a look at the properties and constructor of our
Mediator class, as follows:

 export class Mediator {
 private _mainPanelState = new MainPanelOnly();
 private _detailPanelState = new DetailPanel();
 private _sideNavState = new MainPanelWithSideNav();

 private _currentState: IState;
 private _currentMainPanelState: IState;
 private _mediatorImpl: IMediatorImpl;

 constructor(mediatorImpl: IMediatorImpl) {
 this._mediatorImpl = mediatorImpl;
 this._currentState =
 this._currentMainPanelState
 = this._sideNavState;
 }

Object-Oriented Programming

[391]

We start with the three concrete instances of our three State classes, named
_mainPanelState, _detailPanelState, and _sideNavState. Following this, we have
two properties, named _currentState and _currentMainPanelState, which are both of
type IState. These properties will be used to store the current state of the application itself,
and the main panel. Remember that if we switch from the main panel to the detail panel
and then back again, the side navigation panel should reappear in the same state as we left
it. This is what the _currentMainPanel state variable will be used for.

The next function we will implement within the Mediator class is a simple factory function
to retrieve the concrete instance of a State object given the StateType as an input, as
follows:

 getStateImpl(stateType: StateType) : IState {
 var stateImpl : IState;
 switch(stateType) {
 case StateType.DetailPanel:
 stateImpl = this._detailPanelState;
 break;
 case StateType.MainPanelOnly:
 stateImpl = this._mainPanelState;
 break;
 case StateType.MainPanelWithSideNav:
 stateImpl = this._sideNavState;
 break;
 }
 return stateImpl;
 }

This is a simple helper function that returns the correct implementation of a State object
given a StateType enum value.

We can now focus on the heart of the Mediator class, managing the changes to the UI when
we move from state to state, as follows:

 moveToState(stateType: StateType) {
 var previousState = this._currentState;
 var nextState = this.getStateImpl(stateType);

 if (previousState.getPanelType() == PanelType.Primary &&
 nextState.getPanelType() == PanelType.Detail) {
 this._mediatorImpl.showDetailPanel();
 }
 if (previousState.getPanelType() == PanelType.Detail &&
 nextState.getPanelType() == PanelType.Primary) {
 this._mediatorImpl.hideDetailPanel();
 }

Object-Oriented Programming

[392]

 if (nextState.isSideNavVisible())
 this._mediatorImpl.showNavPanel();
 else
 this._mediatorImpl.hideNavPanel();

 this._mediatorImpl.changeShowHideSideButton(
 previousState.getPanelButtonClass(),
 nextState.getPanelButtonClass());

 this._currentState = nextState;
 if (this._currentState.getPanelType() == PanelType.Primary) {
 this._currentMainPanelState = this._currentState;
 }
 }

This function, named moveToState, contains all of the UI logic to handle our three
application states. We start by declaring two variables, named previousState and
nextState. The previousState variable is where we are now, and the nextState
variable is where we want to be, as passed in via the stateType argument. Once we have
these two State objects, we can start to compare their properties, and then call the
IMediatorImpl interface functions accordingly.

Consider the first if statement. The logic here simply states the following:

If we were on the primary panel, and we wish to move to the detail panel, then
tell the UI to show the detail panel

The second if statement states the following:

If we are on the detail panel, and wish to move to the primary panel, then tell the
UI to hide the detail panel

Our third if statement states the following:

If our State tells us that the side navigation panel should be visible, then show it,
otherwise hide it

We then make a call to the UI to switch the show hide button from our current state icon to
our future state icon. This will have the effect of switching the button from < to > , or vice
versa, based on the properties of our two states.

Object-Oriented Programming

[393]

Once we have finished updating the UI, we need to store our current state.

Finally, our last if statement states that if we are on the main panel, update the internal
value of the _currentMainPanelState. We need to store this value so that when we
switch to the detail panel and back again, we restore our side navigation bar correctly.

This function contains, in simple, human-readable statements, how to move from state to
state. Our logic has boiled down into asking a few simple questions, and responding
accordingly.

Using the Mediator
The last step in the implementation of the State and Mediator design pattern is to trigger the
change of state. This trigger could be purely within our code, or it could be as a result of
actions on our UI. To begin with, we will need to create a new instance of the Mediator
class, and register our AppComponent as the implementation for the IMediatorImpl
interface, as follows:

 export class AppComponent
 implements IMediatorImpl
 {
 ... existing code ...
 mediator: Mediator = new Mediator(this);

Here, we are specifying that the AppComponent class implements the IMediatorImpl
interface, and we are then defining a local variable named mediator. This local variable
calls the Mediator constructor, passing in this (our AppComponent class instance). This
call essentially registers our AppComponent class as the implementation of the
IMediatorImpl interface that the Mediator uses to make changes to the UI.

Once we have registered our AppComponent class with the Mediator, we can use the
Mediator to trigger a state change. As an example of this, let's ensure that when the
application first starts up, we only show the main panel – or in other words, move to the
StateType.MainPanelOnly state. To do this, we will need to tap into Angular's
component rendering life cycle, and implement a function named ngAfterViewInit, as
follows:

 export class AppComponent
 implements IMediatorImpl, AfterViewInit
 {
 ... existing code ...

 ngAfterViewInit() {

Object-Oriented Programming

[394]

 this.mediator.moveToState(StateType.MainPanelOnly);
 }

Here, we have indicated that the AppComponent class implements the AfterViewInit
interface. This interface defines a single function, named ngAfterViewInit, which we are
using to move to the MainPanelOnly state. The ngAfterViewInit function is
automatically called by the Angular framework after the initial view of the component has
been initialized. This means that Angular has already parsed our component's HTML,
created all child views, and has rendered the HTML to the browser. Only at this stage do
we have a reference to our SideNavComponent child view, and our
RightScreenComponent view, which are needed by the Mediator.

Our application now loads up, and is in the correct starting state.

Reacting to DOM events
We are almost there in our implementation of the State and Mediator pattern. The final
piece of the puzzle is hooking up our DOM click events to trigger a state change. Let's
modify the buttonClickedDetail function as follows:

 buttonClickedDetail() {
 this.mediator.moveToState(StateType.DetailPanel);
 }

The buttonClickedDetail function is invoked when a user clicks on the detail button on
our main panel. All that this event handler now needs to do is to call the moveToState
function on the Mediator to move to the DetailPanel state. Very simple indeed.

We also need to modify the event handler function that is called when a user is on the detail
panel, and click on the < button to return to the main panel. Remember that we hooked up
an EventEmitter in the RightScreenComponent to an event handler in our
AppComponent class named onNotifyRightWindow. We can now modify this handler as
follows:

 onNotifyRightWindow(message:string):void {
 this.mediator.moveToState(
 this.mediator.getCurrentMainPanelState());
 }

Object-Oriented Programming

[395]

Here, we are simply moving to the previous main panel state. Again, very simple indeed.

The last user interaction that we need to handle is when the user clicks on the show hide
side navigation bar button. This button will either show or hide the side navigation bar.
Remember that the effect of clicking on this button will be slightly different, depending on
whether the side navigation bar is currently open or closed. The AppComponent class,
therefore, should not be making this decision as it is based on the current state.

It makes sense, then, to simply trap this event from our AppComponent class, and then
forward the decision making to our Mediator class, as the Mediator class holds all of the
information needed about our current state.

Our event handler in our AppComponent class is as follows:

 showHideSideClicked() {
 this.mediator.showHideSideNavClicked();
 }

Here, we are simply calling the showHideSideNavClicked function on the Mediator class,
which is implemented as follows:

 showHideSideNavClicked() {
 switch (this._currentState.getStateType()) {
 case StateType.MainPanelWithSideNav:
 this.moveToState(StateType.MainPanelOnly);
 break;
 case StateType.MainPanelOnly:
 this.moveToState(StateType.MainPanelWithSideNav);
 break;
 }
 }

This function simply queries the _currentState object, and switches to the
MainPanelOnly state, or the MainPanelWithSideNav state accordingly.

Our implementation of the State and Mediator pattern is now complete.

Object-Oriented Programming

[396]

Summary
In this chapter, we have taken an in-depth look at building an Angular 2 application from
the ground up. We have experimented with a left-to-right page transition design, and
shown how to manipulate CSS styles and CSS transitions to create a visually appealing
application. Unfortunately, our initial attempts in creating this application ended up with a
lot of confusing and hard to fix local variables, as we attempted to keep all of the page
elements under control.

We then took a step back, and discussed how the State and Mediator design pattern could
help us to manage page transitions. We then refactored our application into meaningful
components, and took a deep-dive look into how to apply the State and Mediator pattern to
manage our application state, and complex page transitions.

In the next chapter, we will take a look at the concept of dependency injection, and how we
can use the new language features of TypeScript to implement this powerful and simple
object-oriented design paradigm.

12
Dependency Injection

In our last chapter, we explored the concepts of object-oriented programming, and worked
through the process of building an application that conformed to object-oriented design
principles. While the Gang of Four described a set of design patterns to handle object
construction and behavior, none of these patterns tackled the construction of large
hierarchies of objects, or large systems. In recent years, another powerful set of design
patterns has emerged that tackles exactly this problem.

When designing large systems, we should be thinking of groups of objects as services. We
may need a service to handle connections to a database, or a service to retrieve customer
information. This change in thinking helps our systems to be more loosely-coupled. When
new features are required, we should be able to call upon and merge the functionality of
various services in order to accomplish our task.

With this in mind, there are two design patterns that help us deal with locating and using
services in a large application. The first of these is named Service Location, where we build
a central registry of available services, and then request these services as needed. The
second of these is an extension of the Service Location pattern, and is named dependency
injection. With dependency injection (or DI), instead of asking for available services, these
services are automatically injected into our code ready for us to use. In this chapter, we will
work through an example where Service Location becomes very handy. We will build a
service locator, and refactor our code to use this design pattern. We will then discuss the
drawbacks of Service Location, and build a DI framework of our own, using TypeScript
decorators.

In this chapter, we will look into the following topics:

Object dependency
Service Location
Interface resolution

Dependency Injection

[398]

Constructor injection
Decorator injection
Dependency injection

Sending mail
To begin our discussion on dependency injection, let's create a simple Node application that
sends e-mails. Sending mail is a common requirement of most systems, especially when you
have a user registration process as part of your business application.

Using nodemailer
There are a variety of Node-based packages that we can import to give us e-mail capability.
In this chapter, we will use the nodemailer package, which can be installed as follows:

npm install --save nodemailer

Once installed, we will need a few declaration files using @types, as follows:

npm install @types/node --save
npm install @types/nodemailer --save
npm install @types/nodemailer-direct-transport --save
npm install @types/nodemailer-smtp-transport --save
npm install @types/nodemailer-bluebird --save

With the nodemailer package installed, and the relevant TypeScript declaration files in
place, we can follow the examples on the Nodemailer website, and send an e-mail in three
simple steps, as follows:

 import * as nodemailer from 'nodemailer';

 var transporter = nodemailer.createTransport(
 `smtps://<username>%40gmail.com:<password>@smtp.gmail.com`
);

 var mailOptions = {
 from : 'from_test@gmail.com',
 to : 'to_test@gmail.com',
 subject : 'Hello',
 text: 'Hello from node.js'
 };

 transporter.sendMail(mailOptions, (error, info) => {

Dependency Injection

[399]

 if (error) {
 return console.log(`error: ${error}`);
 }
 console.log(`Message Sent ${info.response}`);
 });

Here, we have imported the nodemailer module, and then set up a transporter variable
that contains a username and password for an account on Gmail. If you have a Gmail
account, you can try this out fairly quickly. If not, you will need access to an SMTP server to
actually send out e-mails. Most commercial e-mail systems will have a public SMTP server,
similar to smtp.gmail.com, that you can use if you have a registered account.

Once we have a connection to the SMTP server, we set up a mailOptions variable that
contains the details of our e-mail, such as the sender, recipient, subject, and e-mail body.
These properties are named from, to, subject, and text, respectively. Finally, the call to
the sendMail function on the transporter variable will send the actual e-mail.

Instead of having to call these functions every time we want to send a mail, let's create a
reusable class that encompasses all of the setup code for us, as follows:

 import * as nodemailer from 'nodemailer';

 export class GMailService {
 private _transporter: nodemailer.Transporter;
 constructor() {
 this._transporter = nodemailer.createTransport(
 `smtps://<username>%40gmail.com:<password>@smtp.gmail.com`
);
 }
 sendMail(to: string, subject: string, content: string) {
 let options = {
 from: 'from_test@gmail.com',
 to: to,
 subject: subject,
 text: content
 }

 this._transporter.sendMail(
 options, (error, info) => {
 if (error) {
 return console.log(`error: ${error}`);
 }
 console.log(`Message Sent ${info.response}`);
 });
 }
 }

Dependency Injection

[400]

Here, we have built a class named GMailService that encapsulates the internal workings
of the nodemailer package, and only exposes a simple function, named sendMail. The
sendMail function has also reduced the number of parameters that we need in order to
send an e-mail. Note that we have removed the from parameter, in favor of hardcoding this
sender mail address within the class. This will ensure that all e-mails sent from our
application will come from the same e-mail address. We will tackle the issue of hardcoding
the sender's e-mail a little later, but at least this piece of information is now centralized into
a single place.

We can use this class as follows:

 import GMailService from './app/GMailService';

 let gmailService = new GMailService();

 gmailService.sendMail(
 '<test_user>@gmail.com',
 'Hello',
 'Hello from gmailService');

Here, we have simply created an instance of the GMailService class, and called the
sendMail function to send a simple e-mail.

At this point, our GMailService class is working as expected, and is sending e-mails
correctly. Unfortunately, the call to the sendMail function does not currently provide any
feedback to the calling code. It would be far better if the sendMail function provided a
mechanism to let us know if mail has been sent correctly or not. We should, therefore,
refactor our sendMail function to expose the results of the actual e-mail send as follows:

 sendMail(to: string, subject: string, content: string)
 : Promise<void>
 {
 let options = {
 from: '<fromaddress>@gmail.com',
 to: to,
 subject: subject,
 text: content
 }

 return new Promise<void> (
 (resolve: (msg: any) => void,
 reject: (err: Error) => void) => {
 this._transporter.sendMail(
 options, (error, info) => {
 if (error) {
 console.log(`error: ${error}`);

Dependency Injection

[401]

 reject(error);
 } else {
 console.log(`Message Sent
 ${info.response}`);
 resolve(`Message Sent
 ${info.response}`);
 }
 })
 }
);
 }

Here, we have modified the signature of the sendMail function to return a Promise. The
implementation of this Promise essentially wraps the call to
this._transporter.sendMail in a new Promise object, and calls either the reject
callback, if there is an error, or the resolve callback if the e-mail was sent correctly.

By returning a Promise, we can now detect the result of the e-mail as follows:

 gmailService.sendMail(
 "test2@test.com",
 "subject",
 "content").then((msg) => {
 console.log(`sendMail result :(${msg})`);
 });

Here, we have simply used fluent syntax and called then on the Promise to execute a
function after the sendMail function completes.

Configuration settings
When writing code that is sending e-mails, it makes sense to use different settings for your
e-mail services depending on the deployment environment. When developers are working
with e-mail code, they should be able to use a local SMTP server, so that they can quickly
verify e-mails that are sent to and from different e-mail accounts, without actually sending
out e-mails. In a testing environment, testers should be able to specify which accounts they
wish to use as the sending account, and what SMTP server to use.

Dependency Injection

[402]

In a Factory Acceptance Testing (FAT) environment, these e-mail settings may change once
more, so that e-mails from any of the test environments do not affect the FAT environment.
The final settings would, of course, be set for a production environment.

Changing settings depending on where the code is deployed is a common problem that is
generally solved via a configuration file of some sort. Configuration values are read in from
a file on disk, and these are used throughout the system. Different environments use
different configuration files, and the system code does not need to be changed simply to
change these settings.

In our code samples, there are currently two values that are good candidates for
configuration settings. These are the SMTPS server connection string (which includes our
username and password), and the from e-mail address that all e-mails are sent from.

These settings can easily be expressed as an interface, as follows:

 export interface ISystemSettings {
 SmtpServerConnectionString: string;
 SmtpFromAddress: string;
 }

Here, the ISystemSettings interface defines the two properties that will need to change
when changing environments. The SmtpServerConnectionString will be used to
connect to the SMTP server, and the SmtpFromAddress will be used to specify the
originating address for all e-mails.

We can now modify our GMailService class to use this interface, as follows:

 import * as nodemailer from 'nodemailer';
 import { ISystemSettings } from './ISystemSettings';

 export default class GMailService {
 private _transporter: nodemailer.Transporter;
 private _settings: ISystemSettings;

 constructor(settings: ISystemSettings) {
 this._settings = settings;
 this._transporter = nodemailer.createTransport(
 this._settings.SmtpServerConnectionString
);
 }
 sendMail(to: string, subject: string, content: string)
 : Promise<void>
 {
 let options = {
 from: this._settings.SmtpFromAddress,

Dependency Injection

[403]

 to: to,
 subject: subject,
 text: content
 }
 // existing code

Here, we have imported the ISystemSettings interface, created a local variable named
_settings to hold this information, and modified our constructor function to accept an
instance of an object that implements the ISystemSettings interface.

This ISystemSettings interface is used in two places. Firstly, when we call the
nodemailer.createTransport function, we use the SmtpServerConnectionString
property. Secondly, when we construct the options object, we use the SmtpFromAddress
property.

Using the GMailService class now means that we must provide both of these parameters
when constructing the object, as follows:

 let gmailService = new GMailService({
 SmtpServerConnectionString : 'smtp://localhost:1025',
 SmtpFromAddress : 'smtp_from@test.com'
 });

 gmailService.sendMail(
 "test2@test.com",
 "subject",
 "content").then((msg) => {
 console.log(`sendMail result :(${msg})`);
 });

Here, we have constructed an object that conforms to the ISystemSettings interface, that
is, it has both an SmtpServerConnectionString and an SmtpFromAddress property.
This object is then passed into the GMailService constructor. Note how the setting for the
SmtpServerConnectionString is now a local SMTP server, listening on port 1025, and
therefore does not require a fully-functional e-mail address with a username and password.

Running our code now will produce the following error:

error: Error: connect ECONNREFUSED 127.0.0.1:1025

This error is telling us that an e-mail could not be sent correctly, as there is no SMTP server
running on localhost port 1025.

Dependency Injection

[404]

Using a local SMTP server
There are a number of local SMTP server implementations that we can use for development
purposes. If you are working in a Windows environment, then take a look at Papercut.
Papercut is a simple standalone executable that can be fired up to act as a local SMTP
server. If you prefer Node-based solutions, then smtp-sink is a simple package that also
provides a local SMTP server. Installation of smtp-sink is as simple as:

npm install -g smtp-sink

Once installed, it can be started by simply typing:

smtp-sink

The default options for smtp-sink will start an SMTP server on port 1025, and a web
server on port 1080, where e-mails can be viewed by pointing a browser to
http://localhost:1080/emails.

With smtp-sink running, our sample application will be able to send an e-mail to the local
SMTP server.

Object dependency
Our changes to the GMailService class have introduced an object dependency. In order
for the GMailService class to function, it is now dependent on an instance of a class that
provides the implementation of the ISystemSettings interface. GmailService is
therefore dependent on ISystemSettings.

This dependency is actually a good thing. It means that we can provide different versions of
classes that implement ISystemSettings, without making any changes to our
GmailService code. This allows us to configure the environment that the GMailService
runs within, whether in development, testing, FAT, or production.

It also allows us to test some boundary conditions. In other words, what happens if the
SMTP server is not running, or not configured correctly ? Does the GMailService correctly
report that an error has occurred? What actions does our code need to take when the service
cannot send an e-mail correctly?

Dependency Injection

[405]

Service Location
Our current implementation of the GMailService relies on the calling code to create an
instance of the ISystemSettings interface, and pass this through in the constructor. When
we write code that creates an instance of the GMailService, we are therefore forced to
provide the ISystemSettings interface at the time of construction. This is a compile-time
dependency. In other words, changing the instance of ISystemSettings requires changes
to the source code, and then recompilation. It would be far better, however, if we set these
options at runtime.

In order to accomplish this, the GMailService class needs to request the implementation of
the ISystemSettings interface at runtime.

If a class itself requests the concrete object that is currently implementing an interface, then
this process is called Service Location. In other words, the class itself is attempting to locate
the service that is providing the implementation of an interface.

In order for this to work, however, we need a central registry that can answer the following
question: “Give me the concrete class that is currently implementing this interface”. This is
the essence of the Service Location design pattern.

A service locator will need to do two things. Firstly, it needs to provide a mechanism to
register implementations of a class against an interface. Secondly, it needs to provide a
mechanism for a class to resolve the current implementation of an interface.

Let's implement a simple service locator, as follows:

 export class ServiceLocator {
 static registeredClasses : any[] = new Array();
 public static register(
 interfaceName: string, instance: any)
 {
 this.registeredClasses[interfaceName] = instance;
 }
 public static resolve(
 interfaceName: string)
 {
 return this.registeredClasses[interfaceName];
 }
 }

Dependency Injection

[406]

Here, we have defined a class named ServiceLocator that has a register function, a
resolve function, and an internal array named registeredClasses. The register
function takes two parameters–an interfaceName of type string, and a class instance of
type any. The register function then simply adds the class instance to the
registeredClasses array, using the interfaceName as a key.

The resolve function then returns the instance of the class based on the interfaceName
that is passed in as a key.

This very simple ServiceLocator class can then be used as follows:

 import { ServiceLocator } from './app/ServiceLocator';
 import { ISystemSettings } from './app/ISystemSettings';

 let smtpSinkSettings : ISystemSettings = {
 SmtpServerConnectionString : 'smtp://localhost:1025',
 SmtpFromAddress : 'smtp_from@test.com'
 };

 ServiceLocator.register('ISystemSettings', smtpSinkSettings);

 let currentSettings : ISystemSettings =
 ServiceLocator.resolve('ISystemSettings');

 console.log(`current smtp from address :
 ${currentSettings.SmtpFromAddress}`);

Here, we have constructed an instance of an object to provide the two properties required
by the ISystemSettings interface, and named it smtpSinkSettings. We then call the
register function to register this object with the 'ISystemSettings' key. Once an object
has been registered, we can then call the resolve function of the ServiceLocator class to
retrieve the currently registered object for this key. We then print the results to the console.

We can now update our GMailService class to use the ServiceLocator as follows:

 export default class GMailService {
 private _transporter: nodemailer.Transporter;
 private _settings: ISystemSettings;

 constructor() {
 this._settings =
 ServiceLocator.resolve('ISystemSettings');
 this._transporter = nodemailer.createTransport(
 this._settings.SmtpServerConnectionString
);
 }

Dependency Injection

[407]

 // existing code

Here, we have updated the constructor of the GMailService class to use the service
locator pattern. Our internal _settings property still holds the instance of the
ISystemSettings object, but the GMailService class itself is requesting the instance of
the ISystemSettings interface, from the ServiceLocator class.

We can now construct an instance of the GMailService, as follows:

 let gmailService = new GMailService();

Note how we have hidden the internal dependencies of the GMailService away from the
user of the class by using the service locator pattern. The class itself requests the resources
that it needs in order to perform its functions.

Service Location anti-pattern
The ideas behind the service locator pattern were first introduced by Martin Fowler around
2004, in a blog titled Inversion of Control Containers and the Dependency Injection pattern
(http://martinfowler.com/articles/injection.html). Since then, this pattern has been
built and field-tested in a number of different languages and environments. In his book,
Dependency Injection in .NET, Mark Seeman argues that the Service Location pattern is in fact
an anti-pattern.

Mark's reasoning is that it is too easy to misunderstand the usage of a particular class when
Service Location is used. In the extreme case, each function of a class may use different
services, which means that the user of the class needs to read through the entire code-base
to understand what dependencies a class has.

Dependency injection
Mark Seeman argues that a better way of using Service Location is to list all of the
dependencies of a class in the class constructor, and then hand over the process of
constructing a class to something that understands how to resolve all of these dependencies.
The process of constructing a class can be thought of as assembling a class instance, and
filling in the available services.

http://martinfowler.com/articles/injection.html

Dependency Injection

[408]

In this way, when a class instance is requested, the dependencies of the class are resolved
for us, and the assembler process simply gives us an instance of the class that works
correctly. In other words, all of the dependencies that a class has are injected into the class
by the assembler before the class is given to us.

This is the essence of the dependency injection design pattern.

Building a dependency injector
In this section of the chapter, we will use the learnings we have gained in writing a service
locator and combine this with TypeScript decorators in order to create a simple dependency
injection framework. Before we do, however, let's discuss the problem of interface
resolution.

Interface resolution
As we know, the interface keyword is a TypeScript language construct that we use to define
the shape of classes or objects. Wherever we need to define a custom type, and need the
TypeScript compiler to ensure that properties and functions are available on an object, we
use an interface. Interfaces are particularly handy when describing services, where any
number of services could provide the same functionality to our code. In order to create a
usable dependency injector, we need to be able to answer the question–“Given an interface,
how do we obtain the service that is currently implementing it?”.

In our current Service Location implementation, we are simply using string values to both
register and resolve an interface, as shown in the two calls to the ServiceLocator:

 ServiceLocator.register('ISystemSettings', smtpSinkSettings);

and

 this._settings = ServiceLocator.resolve('ISystemSettings');

Unfortunately, using strings in these cases is something to be avoided. It is too easy to
mistype the string itself, and to introduce runtime errors as a result. Again, we cannot use
the interface name itself in this case, as interfaces are compiled away in the resulting
JavaScript.

Dependency Injection

[409]

Enum resolution
As we have seen in previous chapters, magic strings are a prime example where we can
refactor our code to use an enum. As an example of this, let's consider a ServiceLocator
built around an enum, as follows:

 interface ISystemSettings {
 }

 interface IGMailService {
 }

 enum Interfaces {
 ISystemSettings,
 IGMailService
 }

 class ServiceLocatorTypes {
 public static register(
 interfaceName: Interfaces, instance: any) {}
 public static resolve(
 interfaceName: Interfaces) {}
 }

 ServiceLocatorTypes.register(Interfaces.ISystemSettings, {});

 ServiceLocatorTypes.resolve(Interfaces.ISystemSettings);

Here, we start with two interfaces that we wish to use with our service locator, named
ISystemSettings and IGMailService. Note that we have excluded the internal
properties of these interfaces to simplify the code under discussion.

Next, we have defined an enum named Interfaces, which contains an entry for each of the
interfaces that we wish to use. Our class definition (again without function
implementations) for the ServiceLocatorTypes class simply shows the change to the
register and resolve function signatures to use the enum named Interfaces.

The last two lines of this code snippet show how the Interfaces enum would be used
when calling the register and resolve functions. By using an enum to store our interface
names, we have eliminated the use of magic strings, and now have a central enum to
describe all interfaces that will be used by the system.

Dependency Injection

[410]

Class resolution
As an alternative to the enum implementation, we could also use special-purpose classes.
This is best illustrated by looking at a code sample, as follows:

 interface ISystemSettings { }
 class IISystemSettings { }

 interface IGMailService { }
 class IIGMailService { }

 class ServiceLocatorGeneric {
 public static register<T>(
 interfaceName: {new(): T;}, instance: any) {}
 public static resolve<T>(
 interfaceName: {new() : T}) {}
 }

 ServiceLocatorGeneric.register(IISystemSettings, {});

 ServiceLocatorGeneric.resolve(IISystemSettings);

Here, we start with an interface named ISystemSettings, which is the interface that we
wish to use with our service locator. We then define a class named IISystemSettings that
has no functions or properties, but is only used for interface resolution. The naming of this
class is important. By convention, we have named this class to be the same as the interface
that we are describing, but have added an extra 'I' to the start of the name. This means
that an interface named ITest would have a corresponding class named IITest, whose
sole purpose is to provide a unique name (in place of an enum) when used with a
dependency injection framework.

Our ServiceLocatorGeneric class has also modified the register and resolve
function signatures to accommodate the use of a class name instead of an enum. We are now
using generic syntax, and requiring that the interfaceName argument is of type { new()
: T; }. Remember from our discussion on generics that, when using a function that needs
to new() up an instance of a class when given a class name, it needs to be referenced by the
class constructor.

This generic syntax then allows us to call the register and resolve functions by simply
providing a class name, as seen in the last two lines of the code snippet. If we compare the
enum style resolution to the class name resolution style, we end up with:

 ServiceLocatorTypes.register(Interfaces.ISystemSettings, {});

Dependency Injection

[411]

As enum style resolution, and:

 ServiceLocatorGeneric.register(IISystemSettings, {});

As class name resolution.

In the rest of this chapter, we will use class name resolution for a few reasons:

The definition of an interface and the class name used for interface resolution are defined in
the same source file. With enum style resolution, interface definitions are scattered across
the code base, but the enum instance is in a single file. This gives us two places to modify
code when a new interface to be used in Service Location is needed.

Using class definitions means there is less code to type. While this may seem like a trivial
reason, it also means that there is less code to read. As developers, we spend all day reading
and writing code, and the less we need to read to get the message across, the better.

The double II interface naming standard is a visual trigger that indicates that this code is
using Service Location. Whenever we read code, and see this double II prefix, we
immediately know that Service Location is in play. This helps us distinguish between
standard interfaces and Service Location based interfaces fairly quickly.

Constructor injection
Earlier, we discussed the benefits and anti-patterns at play when using a service locator
pattern, and picked up on Mark Seeman's ideas that dependency injection should only
occur on class constructors. Our previous version of the GMailService class used Service
Location within the constructor function as follows:

 export default class GMailService {
 private _transporter: nodemailer.Transporter;
 private _settings: ISystemSettings;

 constructor() {
 this._settings =
 ServiceLocator.resolve('ISystemSettings');
 this._transporter = nodemailer.createTransport(
 this._settings.SmtpServerConnectionString
);
 }

Dependency Injection

[412]

Here, we have specified a local _settings property of type ISystemSettings, and are
using the ServiceLocator to resolve this internal property. The switch to a dependency
injection pattern using constructor injection would be as follows:

 export default class GMailServiceDi {
 private _transporter: nodemailer.Transporter;
 private _settings: ISystemSettings;

 constructor(_settings?: IISystemSettings) {
 this._transporter = nodemailer.createTransport(
 this._settings.SmtpServerConnectionString
);
 }

There are a few points to note about this code. Firstly, we still have the private _settings
property, which is typed to the ISystemSettings interface. This means that we can still
refer to this._settings within the body of the code. Secondly, we have now included a
parameter in our constructor–_settings?: IISystemSettings. We are therefore
expecting the dependency injector to find the implementation of the ISystemSettings
interface, or more correctly the class that is registered against the IISystemSettings key,
and inject this into our class so that the private _settings property contains this
implementation.

For our dependency injector to work, the name of the constructor parameter, and the name
of the private property must both be the same.

Let's take a look at what the result of the constructor injection would look like, after the
class itself has been processed by the dependency injector framework, as follows:

 export default class GMailServiceDi {
 private _transporter: nodemailer.Transporter;
 // private _settings: ISystemSettings;
 get _settings() : ISystemSettings {
 return ServiceLocatorGeneric.resolve(IISystemSettings);
 }

 constructor(_settings?: IISystemSettings) {
 this._transporter = nodemailer.createTransport(
 this._settings.SmtpServerConnectionString
);
 }
 }

Dependency Injection

[413]

Here, we have an example of what the class should look like after injection. The private
_settings property has been replaced by a get function of the same name, that is, get
_settings(). This function internally calls our ServiceLocator to resolve the interface.
By creating a simple get function, we have essentially injected our dependency.

Decorator injection
In a previous chapter, we discussed the use of decorators, and how they are invoked when
a class is defined. Decorators are not invoked when a class is instantiated, so their usage is
limited to interrogating and manipulating class definitions. Decorators, as we know, can be
applied to classes, properties, functions, and parameters. Let's build a simple class
decorator, and see what information it gives us about a class.

Remember that there are three things about a class that we are interested in during this
exercise. Firstly, we need to find the definition of the class constructor. Once we know what
the constructor looks like, we need to find the list of parameters that the constructor uses.
Each of these parameters will then become getters that use our service locator to resolve
dependencies. The last piece of information we will need to find is the type that each
constructor parameter is expecting. Once we have this information, we can build a simple
getter function to return the correct type within our decorator.

Using a class definition
Let's put together a simple class decorator, and see what information we can deduce from
the class. Our decorator is as follows:

 export function ConstructorInject(classDefinition: Function) {
 console.log(`classDefinition:`);
 console.log(`================`);
 console.log(`${classDefinition}`);
 console.log(`================`);
 }

Here, we are simply logging the value of the classDefinition argument to the console.

Note that, to use decorators, our tsconfig.json file must include the options that turn on
decorator functionality, as follows:

 "experimentalDecorators": true,
 "emitDecoratorMetadata": true

Dependency Injection

[414]

Let's now decorate our GMailServiceDi class with this decorator, and see what happens:

 import { ConstructorInject } from './ConstructorInject';

 @ConstructorInject
 export default class GMailServiceDi {
 private _transporter: nodemailer.Transporter;
 private _settings: ISystemSettings;
 constructor(_settings?: IISystemSettings) {
 }
 }

Here, we have imported our ConstructorInject decorator, and applied it to our
GmailServiceDi class. Note that, for the sake of brevity, we have removed the body of the
constructor code that configures the _transporter property. If we now create an instance
of this class as follows:

 import GMailServiceDi from './app/GMailServiceDi';
 var gmailDi = new GMailServiceDi();

We would generate the following console output from our ConstructorInject decorator:

 classDefinition:
 ================
 class GMailServiceDi {
 constructor(_settings) {
 }
 }
 ================

As we can see, the classDefinition parameter is populated with the full class definition.
This definition, however, is not the TypeScript definition of our class, but is the JavaScript
definition of our class. This means that we have lost the type information on each of our
constructor parameters, as this information is compiled away. What we do have, however,
is the name of the properties that this class uses in its constructor.

The generated JavaScript will always include the constructor as the first
function. If we add any other function at the top of the class definition,
and write the constructor at the bottom of the class definition, TypeScript
will always move the constructor function to the top of the class definition.

Dependency Injection

[415]

Parsing constructor parameters
By having access to the full class definition, we can use simple string searching to find the
properties of the class constructor. If we find the first open bracket character '(', and the
next closed bracket character ')', we can extract a string that contains all of our constructor
parameter names, as follows:

 let firstIdx = classDefinition.toString().indexOf('(') + 1;
 let lastIdx = classDefinition.toString().indexOf(')');
 let arr = classDefinition.toString().substr(
 firstIdx, lastIdx - firstIdx);

 console.log(`class parameters :`);
 console.log(`${arr}`);
 console.log(`==================`);

The output of this code is as follows:

================
class parameters :
_settings
==================

We can test this code by inserting another parameter in our constructor, and checking the
output. So if the GmailServiceDi class had two arguments, as follows:

 constructor(_settings?: IISystemSettings, testParameter?: string) {
 }

Then the parsing of the constructor would produce the following:

class parameters :
_settings, testParameter
==================

So by some simple string extrapolation, we are able to find out what property names are
required by this class. We can then easily parse this array as follows:

 let splitArr = arr.split(', ');

 for (let paramName of splitArr) {
 console.log(`found parameter named : ${paramName}`);
 }

Dependency Injection

[416]

Here, we are creating an array named splitArray from the string containing our
parameter names, and logging each entry to the console. The output of this would be as
follows:

found parameter named : _settings
found parameter named : testParameter

So we now have an array that specifies what the parameter names are for our constructor
function.

Finding parameter types
Now that we know what each of our constructor parameter names are, we need to match
these with a parameter type. In order to do this, we will need to make use of the reflect-
metadata package, as follows:

 let parameterTypeArray =
 Reflect.getMetadata("design:paramtypes", classDefinition);
 console.log(`parameterTypeArray:`);
 console.log(`===================`);
 console.log(`${parameterTypeArray}`);
 console.log(`===================`);

 for (let type of parameterTypeArray) {
 console.log(`found type : ${type.name}`);
 }

Here, we are calling the Reflect.getMetadata function, and using the
"design:paramtypes" argument to extract an array from the class definition. We then
print this array to the console, and then loop through the array to print the name property of
each element in the "design:paramtypes" array. The output of this code is as follows:

parameterTypeArray:
===================
class IISystemSettings {
},function String() { [native code] }
===================
found type : IISystemSettings
found type : String

This type information is exactly what we need to build a constructor injector. Note that the
first parameter, which we know has the name _settings, is of type IISystemSettings.
The second parameter, which is named testParameter, is of type String.

Dependency Injection

[417]

Before we continue, let's remove the testParameter parameter, which we were only using
in a test case, in order to prove that we can parse more than one parameter.

Injecting properties
We can now combine the results of both arrays to match the parameter name with the type
name, as follows:

 for (let i = 0; i < splitArr.length; i++) {
 let propertyName = splitArr[i];
 let typeName = parameterTypeArray[i];

 console.log(`
 parameterName : ${propertyName}
 is of type : ${typeName.name}
 `);
 }

Here, we are looping through the splitArr array (which contains our parameter names),
and using the same index on the parameterTypeArray to match property names with type
names. The result is as follows:

parameterName : _settings
is of type : IISystemSettings

parameterName : testParameter
is of type : String

With this information at hand, we can now use JavaScript to inject the property that we
require, as follows:

 Object.defineProperty(classDefinition.prototype, propertyName, {
 get : function() {
 return ServiceLocatorGeneric.resolve(
 eval(typeName)
);
 }

 });

Dependency Injection

[418]

Here, we are using the Object.defineProperty function that JavaScript provides to
create a property at runtime and attach it to the definition of our class. The
defineProperty function takes three parameters. The first parameter is the prototype of
the class to be modified. The second parameter is the propertyName itself, and the third
parameter is the definition of the property. Our property definition is a simple getter
function that then calls the ServiceLocatorGeneric.resolve function, passing in the
typeName. Note how we have called the eval function, passing it the typeName that we
retrieved from our parameterTypeArray. This step is necessary in order to send the class
definition to the service locator instead of a simple string.

Using dependency injection
Now that we are injecting property functions through our ConstructorInjector
decorator, we can now use our dependency injector framework as follows:

 import GMailServiceDi from './app/GMailServiceDi';
 import { ServiceLocatorGeneric } from './app/ServiceLocator';
 import { IISystemSettings } from './app/ISystemSettings';

 ServiceLocatorGeneric.register(IISystemSettings, {
 SmtpServerConnectionString : 'smtp://localhost:1025',
 SmtpFromAddress : 'smtp_from@test.com'
 });

 var gmailDi = new GMailServiceDi();

 gmailDi.sendMail("test@test.com", "testsubject", "testContent"
).then((msg) => {
 console.log(`sendMail returned : ${msg}`);
 }).catch((err) => {
 console.log(`sendMail returned : ${err}`);
 });

After importing the various modules into our sample, we call
ServiceLocatorGeneric.register to register the object that is providing the
IISystemSettings interface. We then simply create an instance of the GmailServiceDi
class, with no parameters. At this stage, our dependency injector has done all of the work
for us, and has injected the correct properties for immediate use.

Dependency Injection

[419]

Note how simple this object constructor is, that is, new GMailServiceDi(). It looks just
like any other normal instantiation of an object. Once the class has been instantiated, we can
call the sendMail function as we did before.

Recursive injection
As a final test of our dependency injection framework, let's now inject the GmailServiceDi
class into another class. This means that our new class will be dependent on the
IGmailServiceDi interface, which is itself dependent on the ISystemSettings interface.
This is an example of a recursive dependency tree.

We start by defining an interface for the GmailServiceDi class itself, as follows:

 export interface IGMailServiceDi {
 sendMail(to: string, subject: string, content: string)
 : Promise<void>;
 }

 export class IIGMailServiceDi { }

Here, we have taken the definition of the sendMail function, which returns a Promise, and
created an interface named IGMailServiceDi. We have also created the class that will be
used as a type lookup by our dependency injection framework, named
IIGMailServiceDi.

With these interfaces in place, we can create a class that is dependent on the
IGMailServiceDi interface, as follows:

 @ConstructorInject
 class MailSender {
 private gMailService : IGMailServiceDi;
 constructor(gMailService?: IIGMailServiceDi) {}
 async sendWelcomeMail(to: string) {
 await(this.gMailService.sendMail(to, "welcome", ""));
 }
 }

Here, we have created a class named MailSender, and used the ConstructorInject
decorator to decorate the class. Our class has a private property named gMailService,
which is of type IGMailServiceDi. This is the property that will be created by our
dependency injection framework.

Dependency Injection

[420]

The constructor function simply uses the IIGMailService class to indicate that the
private gMailService property should be injected. The MailSender class has a
sendWelcomeMail function that uses an async await pattern to call the
GmailServiceDi sendMail function.

To test this class, we simply need to create a new instance, and call the sendWelcomeMail
function as follows:

 let mailSender = new MailSender();
 mailSender.sendWelcomeMail("test@test.com");

The output of this code is as follows:

ServiceLocator resolving : IIGMailServiceDi
ServiceLocator resolving : IISystemSettings
Message Sent 250

Here, we can see that the dependency injection framework is calling the ServiceLocator
to resolve IIGMailServiceDi. This is during the constructor of the MailSender class. As
the GmailServiceDi class is dependent on the ISystemSettings interface, a second call
is made to resolve IISystemSettings.

Summary
In this chapter, we discussed the service locator and dependency injection design patterns.
We started by creating a class to send e-mails, and then created our own simple service
locator that could resolve instances of classes given a string name. We then moved to a
more resolute Service Location pattern that used class names instead of magic strings as the
key to both registering and resolving instances of classes. We then discussed the pitfalls of
the service locator pattern, and implemented a dependency injection framework using
decorators.

In our next chapter, we will take a look at building applications that combine a web server
such as Node and Express with our TypeScript-compatible frameworks, starting with
Angular 2.

13
Building Applications

Up until this point, we have been looking at various features of the TypeScript language,
and have worked with some of the most popular TypeScript frameworks available. We
have explored client-side frameworks such as Angular, Aurelia, React, and Backbone, as
well as server-side frameworks such as Node and Express. In this chapter, we will combine
the two, and look at how to serve a web application from Express for each of these
frameworks. We will also explore how to interact between client-side and server-side code
using REST endpoints.

In general, the server-side of an application is responsible for two things. Firstly, it will
respond to an initial web page request, compile the HTML page, and send this page to the
browser. Once the page is parsed by the browser, it may request additional resources from
the server, including JavaScript files, CSS files, images, and the like. This process is called
serving requests, and it is standard web technology.

The second major responsibility of any server-side application is to handle data interactions.
This may take the form of additional HTTP GET requests, in order to serve data to the web
page, or it may be in the form of HTTP POST requests, where the web server will need to
process a message sent to it. In this chapter, we will build a simple RESTful API that will
provide both GET and POST functionality. We will implement an Express route that will
handle a GET request and return a JSON response, as well as a POST handler to receive and
process a JSON POST request.

Once our server-side REST endpoints are in place, we will then explore the different
methods that each framework uses to issue and consume these GET and POST requests. In
any application there will come a time where a user will need to enter data into a form on a
page, and our application will need to retrieve these values to generate a POST request. This
process is called data binding. We will see how each framework accomplishes data binding
in a slightly different manner.

Building Applications

[422]

To be able to compare the implementation of these techniques across our frameworks, we
will implement a navigation bar, and a login page with each framework. The navigation bar
will issue a GET request to our web server for a JSON data packet that will drive the
rendering of the navigation buttons. In a similar manner, the login page will issue a POST
request to our web server.

In this chapter, we will be covering following topics:

The UI Experience
Serving applications from Node
Processing JSON on the server side
Using forms based input
Data binding
Posting data to our server

Each of these topics will be implemented in our TypeScript compatible frameworks:

Aurelia
Angular 2, and
React

Before we delve into these techniques, however, let's take a few moments to talk about web
page design.

The UI experience
At the start of every web-based project, the requirements around the UI start to be
discussed. What will the application look like, what style will it use, and how will our users
interact with the system? UI design is a specialist area, which can either make or break an
otherwise good website. Likewise, the UI experience is all about ease of use, intuition, and
simple workflow. As such, many companies employ specialist teams to either design the UI
for look and feel, or to design the UI experience, including workflow. In general, the output
of this exercise is a set of HTML pages and CSS files.

There will come a time, however, where every developer needs to put together a UI – so
understanding the process and working with tools that are designed for design is a
necessary step of building applications.

Building Applications

[423]

In this chapter, we will be using Bootstrap to provide the default styles for our pages, and
Brackets for the design tools. Go ahead and install Bootstrap using npm as per usual:

npm init
npm install bootstrap --save

Using Brackets
When working with HTML and CSS during the design phase, we are constantly editing and
tweaking both the HTML files and the CSS stylesheet to get our pages to look good. One of
the best tools for this job is an editor named Brackets. Brackets is an open source editor that
is specifically targeted to web designers and frontend developers. It has many features that
are geared around quick editing of HTML and CSS elements, including live preview, right-
click to edit CSS, color pickers, and more. One of the handiest features, however, is live
preview.

In live preview mode, a separate browser window is opened, and any changes made to
your HTML or CSS files will automatically be refreshed within the browser. Having instant
feedback when applying CSS styles or editing HTML is an incredible time saver. Brackets
with a live preview window is shown in the following screenshot:

Brackets editor with a live preview browser window

Building Applications

[424]

Installing Brackets is as simple as downloading the installer from its website, brackets.io,
and executing it. Once installed, we can enhance the default functionality through the use of
Brackets extensions. Brackets has a really slick and simple extension manager, which helps
to find and install available extensions. Brackets will also automatically notify us when
updates to these extensions are available.

To install an extension, click on File | Extension Manager, or click on the lego block icon on
the right-hand side vertical sidebar. We will be using a single extension named Emmet, but
there are literally hundreds of available Brackets extensions. In the search bar, type Emmet,
and then click on the Install button for the Emmet extension (authored by Sergey
Chikuyonok), as shown in the following screenshot:

Brackets extension dialog

Brackets does not have the concept of a project per se, but instead just works off a root
folder. Let's create a new folder on our filesystem, and then open this folder in Brackets
using File | Open Folder.

Building Applications

[425]

Using Emmet
Let's now create a simple HTML page, by using File | New, or simply Ctrl+N. Instead of
writing our HTML file by hand, we will use Emmet to generate our HTML. Type in the
following Emmet string:

 html>head+body>h3{index.html}+div#content

Now hit Ctrl+Alt+Enter, or from the File menu, select Emmet | Expand Abbreviation.

Voila ! Emmet has generated the following HTML in a millisecond – not bad for one line of
code:

 <html>
 <head></head>
 <body>
 <h3>index.html</h3>
 <div id="content"></div>
 </body>
 </html>

Hit Ctrl+S to save the file, and enter index.html as the filename.

Only once we have saved the file, does Brackets start to do syntax
highlighting based on the file extension.

Let's take a closer look at the Emmet abbreviation string that we entered earlier. Emmet
uses the > character to create a child, and the + character to denote a sibling. If we use { }
next to an element, then this means that the element's content will be set to the value
provided inside the braces. So the Emmet string that we entered previously said–“Create an
html tag with a child head tag. Then create another child tag of html named body. Within
this body tag, create an h3 tag with the content index.html, and then create a sibling div
tag with the id of content“. Head over to the Emmet website (emmet.io) for further
documentation, and remember to keep a cheat-sheet handy (docs.emmet.io.cheat-
sheet) when you are learning and working with Emmet string shortcuts.

Let's now add a script tag to our index.html file. Move your cursor in between the
<head></head> tags, and type the following Emmet string:

 link

http://emmet.io/

Building Applications

[426]

Now hit Ctrl+Alt+Enter to have Emmet generate a full <link> tag, and conveniently place
our cursor between the quotes ready for the filename. The filename that we are looking for
is bootstrap-min.css. Go ahead and start by typing ./. Note how Brackets understands
that you are looking for a CSS file, and will automatically start providing Intellisense, or
code-completion options to help you find the file, as follows:

Brackets showing automatic file selection for a script file

With our bootstrap.min.css file included, we can start to flesh out the content of our
HMTL page. At the beginning of the <body> tag, we can create a Bootstrap navbar with the
following Emmet string:

 nav.navbar.navbar-default.navbar-inverse

Which will generate the following HTML:

 <nav class="navbar navbar-default navbar-inverse">
 </nav>

Building Applications

[427]

Within this <nav> tag, we can create a <div> element with the class container-fluid as
follows:

 div.container-fluid

And within this generated <div>, an <a> element with the class navbar-brand as follows:

 a.navbar-brand{Home}

Under this <a> element, we can create a list element as follows:

 ul.nav.navbar-nav>li.nav-item.nav-link.active>a{About}

These Emmet commands will create the following HTML:

 <nav class="navbar navbar-default navbar-inverse">
 <div class="container-fluid">
 Home
 <ul class="nav navbar-nav">
 <li class="nav-item nav-link active">
 About

 </div>
 </nav>

Creating a login panel
With a navigation bar in place, let's now create a login panel that uses the same overlay CSS
technique that we have used in our previous chapters. The HTML for this panel is as
follows:

 <div id="sideNav" class="login_sidenav">
 <form>
 <div class="container">
 ×
 <div class="row">Please Login :</div>
 <div class="row">
 <input class="sidenav-input"
 type="text" placeholder="Username">
 </div>
 <div class="row">
 <input class="sidenav-input" type="password"
 placeholder="Password">
 </div>
 <div class="row">
 <button class="btn btn-primary

Building Applications

[428]

 btn-lg">Login</button>
 </div>

 </div>
 </form>
 </div>

Here, we have created a <div> element with the id of "sideNav", and a CSS class of
login_sidenav. We then define a <form> element, with an <input> element for a
Username and password, along with a Login button.

The corresponding CSS styles (defined in app.css) are as follows:

 .login_sidenav {
 height: 100%; /* 100% Full-height */
 width: 450px; /* 0 width - change this with JavaScript */
 position: fixed; /* Stay in place */
 background-color: #111; /* Black*/
 overflow-x: hidden; /* Disable horizontal scroll */
 padding-top: 60px; /* Place content 60px from the top */
 color: lightgray;
 }

 .login_sidenav .row {
 padding: 20px;
 font-size: 24px;
 }

 .sidenav-input {
 padding: 5px;
 font-size: 24px;
 color: midnightblue;
 }

 .login_sidenav .closebtn {
 position: absolute;
 top: 60px;
 right: 25px;
 font-size: 36px;
 margin-left: 50px;
 }

 .login_sidenav a:hover, .offcanvas a:focus{
 color: #f1f1f1;
 }

 .login_sidenav a {
 padding: 8px 8px 8px 32px;

Building Applications

[429]

 text-decoration: none;
 font-size: 25px;
 color: #818181;
 display: block;
 transition: 0.3s
 }

This CSS, combined with our HTML page, results in the following screen:

Our Brackets designed navigation bar and login screen.

Here, we can see that we have a navigation bar at the top of the page, and then a sidebar
overlay that contains a login form. This form has two input elements, which are Username
and Password, as well as a Login button.

With this HTML and CSS in place, we can use Brackets to quickly and easily create new
styles, or tweak this layout to our hearts content. We have not invested a great deal of time
or effort in creating these layouts either – we have simply been tweaking HTML and CSS.
This design phase of a project can therefore be accomplished very quickly and only relies on
minimal HTML and CSS knowledge. With template screens like these, we can also start
conversations with customers to determine if the look and feel of the site is what is
expected, without having to build an entire application.

Now that we have an initial design in place, we can start to implement these screens using
our frameworks.

Building Applications

[430]

An Aurelia website
In this section of the chapter, we will build an Aurelia application that is hosted by Node
and Express. We will also implement the login screen using Aurelia, and work through
sending and receiving JSON data from the Node website to the Aurelia application. First
up, let's get Node and Aurelia working together.

To create our Aurelia application, we simply create a new directory on disk, change to this
directory, and run the Aurelia command line interface to create an Aurelia environment:

mkdir node_aurelia
cd node_aurelia
au new .

At this stage, we can start up an Aurelia environment by simply typing au run, and
pointing our browser at http://localhost:9000.

At the time of writing, Aurelia was still using typings in order to register
and download type information for the Aurelia compilation step. This
means that Aurelia declaration files will be downloaded into the typings
directory, and registered in the typings.json file. Aurelia has not
switched to the updated npm @types declaration file syntax.

Node and Aurelia compilation
The Aurelia environment will use TypeScript to compile all of our .ts files, and package
them for use in the app-bundle.js file in the scripts directory. Note, however, that it
will not compile any files in the root directory. If we create a main.ts file at the project
root, Aurelia will not generate any .js files for this main.ts file, as it is explicitly looking
for application files in the app directory. In order to do this, then, we will need to run tsc
from the root directory.

Before we do this, however, we must update the tsconfig.json file to exclude the
aurelia_project directory and the custom_typings as follows:

 "exclude": [
 "node_modules",
 "aurelia_project"
],

Building Applications

[431]

Failing to do so will corrupt the Aurelia build process. If you run tsc without this change
to tsconfig.json, you will receive numerous errors, as follows:

aurelia_project/generators/attribute.ts(2,52):
 error TS2307: Cannot find module 'aurelia-cli'.
aurelia_project/generators/binding-behavior.ts(2,52):
 error TS2307: Cannot find module 'aurelia-cli'.
aurelia_project/generators/element.ts(2,52):
 error TS2307: Cannot find module 'aurelia-cli'.

Make sure that you update the tsconfig.json file before running tsc
from the command line.

Remember that to compile our Aurelia code, we need to issue the Aurelia build command:

au build

And to compile our Node modules, we need to issue the TypeScript build command:

tsc

Serving the Aurelia application
We can now focus on the task of creating a Node application that will serve our Aurelia
pages. Let's go ahead and create a simple Node application by creating a file named
main.ts in the project root directory. This application will listen on port 3000, just to
ensure that we can run Node from the same project root directory as Aurelia, as follows:

 import * as express from 'express';
 let app = express();

 app.listen(3000, () => {
 console.log(`express listening on port 3000`);
 });

Building Applications

[432]

Here, we are simply creating a new Express application and listening on port 3000. In order
to compile and run this app, we will need to install Express, and also the various
declaration files needed by TypeScript, as follows:

npm install --save express
typings install --save dt~express
typings install --save dt~serve-static
typings install --save dt~express-serve-static-core
typings install --save dt~mime

Before we compile this Express app, we also need to switch to commonjs module
compilation. Edit the tsconfig.json file, and change the module value as follows:

 "module": "commonjs",

With these settings in place, we can issue the node main command from the command line
at the root of the project, and ensure that Express is running:

express listening on port 3000

Aurelia pages in Node
We can now flesh out our Node implementation so that it serves up a page to include all
Aurelia components, and run our Aurelia application. Aurelia already has an index.html
page included in the project root directory, which is as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>Aurelia</title>
 </head>

 <body aurelia-app="main">
 <script src="scripts/vendor-bundle.js"
 data-main="aurelia-bootstrapper"></script>
 </body>
 </html>

All we need to do is to generate this page from our Express application. In order to do this,
we will need a few things. Firstly, we need a route object so that Express understands what
to do when an HTTP GET request is sent through. Secondly, we will need to render a view
using Handlebars, and thirdly, we will need to serve the Aurelia files themselves.

Building Applications

[433]

Let's start with a simple route object, in the routes directory, named index.ts, as follows:

 import * as express from 'express';
 var router = express.Router();

 router.get('/', (req, res, next) => {

 res.render('index',
 { title: 'ExpressAurelia'
 }
);
 });

 export { router } ;

This Express router is simply processing a GET request, and rendering the 'index' page
with the title of ExpressAurelia.

We can now create the corresponding views in the views directory, starting with
layout.hbs to cover the layout for all pages, as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <link rel='stylesheet'
 href='../node_modules/bootstrap/dist/css/bootstrap.min.css' />
 <link rel='stylesheet'
 href='../css/app.css' />
 <script src="../node_modules/underscore/
 underscore-min.js"></script>
 <title>{{title}}</title>
 </head>

 {{{body}}}

 </html>

This layout.hbs Handlebars template is very simple, and it includes the
bootstrap.min.css file, an app.css file, and a script link to underscore.min.js. As
we have used Bootstrap in our Brackets design, we will need to include the Bootstrap CSS
file for use by our HTML. We have also included an app.css file in the /css directory,
where we can include specific application styles. The last link is to Underscore, which we
will use later on. To install these files into our application, we simply need to call the
following:

npm install bootstrap --save
npm install underscore --save

Building Applications

[434]

Our index.hbs file is as follows:

 <body aurelia-app="main">
 <script src="scripts/vendor-bundle.js"
 data-main="aurelia-bootstrapper"></script>
 </body>

Note that Aurelia uses a <script> tag within the <body> tag to bootstrap our Aurelia
application. This is why our layout.hbs file did not include a <body> tag, but instead
relies on each individual Handlebars template to generate this <body> tag.

Before we fire up our application, let's install Handlebars as follows:

npm install hbs --save

With our views and routes in place, we can update our main.ts file to register Handlebars,
and serve the required Aurelia directories as follows:

 import * as express from 'express';
 import * as Index from './routes/index';
 import * as path from 'path';

 let app = express();

 app.set('views', path.join(__dirname, 'views'));
 app.set('view engine', 'hbs');

 app.use('/', Index.router);

 app.use('/scripts', express.static(__dirname + '/scripts'));
 app.use('/node_modules',
 express.static(__dirname + '/node_modules'));
 app.use('/css', express.static(__dirname + '/css'));

 app.listen(3000, () => {
 console.log(`express listening on port 3000`);
 });

Here, our main.ts file starts by importing the 'express' and 'path' modules, as well as
our 'routes/index' module. After creating the Express application, we call the set
function on the app instance. The first call registers the 'views' subdirectory for use with
Handlebars, and the second call registers Handlebars as the rendering engine, as we have
seen in earlier chapters.

Building Applications

[435]

We then register our router as a GET handler for the '/' base directory.

The last three calls to the app.use function register the /scripts,
/node_modules, and /css directories as static content. These calls will
make any files within these directories available for serving by the
application. The /scripts directory is where Aurelia generates the
vendor-bundle.js file as a result of the Aurelia compilation step. Any
directory that is serving static content must be registered in the same way
before Express will serve this content.

With this simple configuration in place, we can start our Express application by running
node main from the command line, and then browse to http://localhost:3000. This
will start up and serve our Aurelia application.

So far, so good. We have successfully integrated Aurelia and Express, and are now serving
our Aurelia application and all relevant CSS and associated files from Express.

Aurelia components
Now that we have the basic Aurelia application being served by Express, we can build the
necessary components in order to render our HTML page. Remember that the HTML and
CSS for this page is according to the design output from our Brackets exercise. Our Aurelia
App component will serve as our application's main controller, and will render our
navigation bar. We will then create a new login component that will be responsible for the
login panel.

Our app.ts file is as follows:

 interface IMenuItem {
 ButtonName: string;
 }

 export class App {
 message = 'Hello World!';
 menuItems: IMenuItem[] = [
 {ButtonName : 'About'},
 {ButtonName : 'Contact Us'}
];
 }

Building Applications

[436]

Here, we start with an interface named IMenuItem that has a single property named
ButtonName. Our App class creates an array of these IMenuItems, in a property named
menuItems. This property will be used to create a series of buttons within the navigation
panel. Our app.html can now render these menu items as follows:

 <template>

 <nav class="navbar navbar-default
 navbar-fixed-top navbar-inverse">
 <div class="container-fluid">
 Home
 <ul class="nav navbar-nav">
 <li repeat.for="item of menuItems"
 class="nav-item nav-link active">

 ${item.ButtonName}

 </div>
 </nav>

 </template>

This Aurelia template for the App class is pretty much a copy and paste of the original
Brackets HMTL that contains the navigation bar. The only change to the original HTML is
to inject a repeat.for attribute to loop through the menuItems array, and render a new <a
href> tag for each item in the array. With these simple updates in place, our page will now
render a Bootstrap navigation bar.

Processing JSON
Let's now update our Aurelia application so that the navigation buttons that we render in
the navigation panel are not hard-coded within the App class, but are instead generated
from a JSON array that is served from our Express application. In a typical large-scale web
application, there will be many times that the web server will be responsible for generating
content that the page must render. Our navigation items may be held within a database, for
example, so that the website can change dynamically. In order to do this, the Aurelia
application needs to request a JSON array from the Express application, and inject these
values into the App.menuItems property.

Building Applications

[437]

As a start, let's ensure that our Express application serves up the JSON array when a GET
request is made to the REST endpoint at /menuitems. This is easily accomplished by
creating a new route in our routes/index.ts file as follows:

 router.get('/menuitems', (req, res, next) => {
 res.json({ menuItems : [
 { ButtonName : 'About'},
 { ButtonName : 'Contact'},
 { ButtonName : 'Login'}
] });
 });

Here, we simply register another get HTTP handler by calling router.get. The first
parameter is the REST endpoint that we wish to expose, which in this case is
'/menuitems'. Within the body of this handler, we simply call res.json with the JSON
that we wish to return. We can test this handler by pointing our browser to
http://localhost:3000/menuitems, which will return this simple JSON string.

With our REST endpoint in place, we can now modify our Aurelia App class to request this
JSON as part of the constructor, and set the menuItems property once a response has
been received. Our changes to app.ts are as follows:

 import {HttpClient} from 'aurelia-http-client';

 interface IMenuItem {
 ButtonName: string;
 }

 export class App {
 message = 'Hello World!';
 menuItems: IMenuItem[] = [];
 constructor() {
 let client = new HttpClient();

 client.get('/menuitems')
 .then((data) => {
 console.log(`data: ${data.response}`);
 let jsonResponse = JSON.parse(data.response);
 this.menuItems = jsonResponse.menuItems;
 });
 }
 }

Building Applications

[438]

We start by importing the HttpClient module from 'aurelia-http-client'. This
module gives us access to Aurelia's HttpClient class that we will use as a client for our
REST endpoints. Note that we have removed the hard-coded array items for the property
menuItems, and have replaced it with an empty array.

Our constructor function creates an instance of the HttpClient class, named client,
and then calls the get function with the name of our REST endpoint (/menuitems). The
HttpClient class gives us a fluent style interface that we can use to attach a then function,
which will be called once the response is received. Remember that calls back to a web server
are asynchronous in nature. Within this then function, we are parsing the response
property of the data object into a valid JSON object, and are then setting our menuItems
property to the value of the menuItems array that was returned by the REST endpoint. This
is all that is needed to process a RESTful GET request within an Aurelia class.

Before we attempt to compile our Aurelia application, we will need to install the aurelia-
http-client module, and register it with Aurelia for use. To install this module, we
simply use npm as usual:

npm install aurelia-http-client --save

Registration with Aurelia is accomplished by modifying the
aurelia_project/aurelia.json file, and adding an entry for the aurelia-http-
client in the dependencies array as follows:

 "dependencies": [
 "aurelia-binding",
 "aurelia-bootstrapper",
 "aurelia-dependency-injection",
 "aurelia-event-aggregator",
 "aurelia-http-client",
 // other existing entries

We can now build and run our Aurelia application. The App class will now request the
JSON from our /menuitems REST endpoint, and build our navigation buttons based on the
response from our Express application.

Building Applications

[439]

Aurelia forms
Aside from receiving data from a REST endpoint, applications generally need to post data
to the server for processing. As an example of this, let's implement our login screen and see
how we post data from Aurelia to our Express application. We will use the Brackets
designed HTML within a new Aurelia component named login. Our login component is
in the src/login.ts file as follows:

 import {HttpClient} from 'aurelia-http-client';
 export class Login {
 header = 'Please login';
 userName = "";
 password = "";

 onSubmit() {
 var postMessage = {
 userName: this.userName,
 password : this.password };

 let client = new HttpClient();
 client.post('/login', postMessage)
 .then((message) => {
 console.log(`post returned : ${message.response}`);
 })
 .catch((err) => {
 console.log(`err.response: ${err.response}`);
 })
 ;
 }
 }

Here, we have created a class named Login that has three properties. The header property
is used to render a message to the screen, and the userName and password properties will
hold the values that the user has typed into the form. We have also defined an onSubmit
function that will be triggered by the HTML form when the Submit button is clicked. This
function creates a JSON object with the given userName and password values, and then
calls the post method that is available via the HttpClient class. This post function call will
POST the JSON packet to the '/login' REST endpoint, which will either return a success
or failure response. The success response will be processed by the then function, and the
error response will be caught by the catch function. For the time being, we are simply
logging the response from the REST endpoint to the console.

Building Applications

[440]

The HTML template for the login component is as follows:

 <template>
 <div id="sideNav" class="login_sidenav">
 <form role="form" submit.delegate="onSubmit()">
 <div class="container">
 ×
 <div class="row">${header}</div>
 <div class="row">
 <input
 class="sidenav-input"
 value.bind="userName"
 type="text"
 placeholder="Username">
 </div>
 <div class="row">
 <input
 class="sidenav-input"
 value.bind="password"
 type="password"
 placeholder="Password">
 </div>
 <div class="row">
 <button class="btn btn-primary btn-lg">Login
 </button>
 </div>
 </div>
 </form>
 </div>
 </template>

Again, this is a copy and paste exercise from our Brackets HTML page, with a few minor
changes to integrate with Aurelia. Firstly, we have defined the <form> tag with an attribute
named submit.delegate. The value of this attribute is the onSubmit function that we
defined earlier in our Login class. The submit.delegate attribute, therefore, binds the
form submit event to the onSubmit function.

Within the form itself, we have a <div> with the class of container, and then three <div>
elements with the class of row. The first of these uses standard Aurelia ${...} syntax to
render the value of the Login class header property into the DOM.

The two <input> elements use an attribute named value.bind to bind the text as input by
the user to the properties on the Login class itself.

Building Applications

[441]

With our login component in place, we can update the app.html file to include this
component as follows:

 <template>

 <require from="./login"></require>
 <login></login>

 // existing <nav> class

Here, we have used the <require> tag within the app.html file to indicate to Aurelia that
it needs to load the ./login component for use within the template. We then render the
login component by simply adding a <login> tag.

Posting data
Now that we have an Aurelia form in place, and are reading data as entered by the user, we
will need to implement an Express handler for this HTTP POST event. This handler is
written within the routes/index.ts file as follows:

 import * as util from 'util';

 router.post('/login', (req, res, next) => {
 console.log(`login received :
 ${util.inspect(req.body, false, null)}`);
 res.sendStatus(200);
 });

Here, we have imported a module named util, and then registered an Express handler for
a POST to the REST endpoint /login. Within this handler, we are simply logging the body
of the request to the console, and then returning an HTTP response code of 200 (OK).
Within the console.log call, we are using the util.inspect function to give us a string
representation of the req.body object. If we run our application now, and send a POST
request to this handler, the req.body will unfortunately be undefined:

express listening on port 3000
login received : undefined

Building Applications

[442]

To resolve this issue, we will need to install and register the 'body-parser' node module,
as we did in an earlier chapter. The updates to our main.ts file are as follows:

 // other includes
 import * as bodyParser from 'body-parser';
 // existing code
 app.use(bodyParser.json());
 app.use(bodyParser.urlencoded({ extended: false }));

 app.use('/', Index.router);

Here, we have included the 'body-parser' node module, and then called the app.use
function to register it with the Express engine. With our changes in place, the POST handler
for the REST endpoint /login will now correctly display the received JSON packet:

express listening on port 3000
login received: { userName: 'asdf', password: 'sadf' }

Aurelia messaging
Now that we have the login module sending our login details to the Express application,
we will need to notify the Aurelia application that a login event has occurred. In order to do
this, we need a mechanism to raise an event within the Login component that the App
component can subscribe to. Aurelia uses the modules in the 'aurelia-event-
aggregator' package to do this. Our changes to the Login module are as follows:

 import {HttpClient} from 'aurelia-http-client';
 import {EventAggregator} from 'aurelia-event-aggregator';
 import {inject} from 'aurelia-framework';

 @inject(EventAggregator)
 export class Login {
 header = 'Please login';
 userName = "";
 password = "";
 ea: EventAggregator;
 constructor(EventAggregator) {
 this.ea = EventAggregator;
 }
 // onSubmit() code

Building Applications

[443]

Here, we have included the EventAggregator class from the 'aurelia-event-
aggregator' module, as well as the inject decorator from the 'aurelia-framework'
module. We are then decorating our class definition with the @inject decorator, with the
name of the class we need to inject, which in this case is the EventAggregator. We have
also created a local variable named ea that will hold the instance of the EventAggregator
class, and then created a constructor function to set the local ea variable to the injected
value.

Note how the dependency injection framework used within Aurelia has similarities to the
dependency injection framework that we built in the last chapter. Aurelia, however,
requires us to manually set the local variable in the constructor function, which we were
able to do away with in our dependency injection framework. Aurelia also used the name of
the class to tie the @inject decorator with the corresponding constructor parameter.

We can now send a message from the Login component with a single line of code, as
follows:

 client.post('/login', postMessage)
 .then((message) => {
 console.log(`post returned : ${message.response}`);
 this.ea.publish('login_result', {success: true});
 })
 .catch((err) => {
 console.log(`err.response: ${err.response}`);
 });

Here, we have called the ea.publish function on a successful HTTP POST, with a message
subject of 'login_result', and a message body of { success: true }. The subject and
body of the messages can be literally anything, as long as both the publisher and the
subscriber understand the subject and the body.

To receive, or listen to this message, we will make the following changes to our App
module:

 import {EventAggregator, Subscription} from 'aurelia-event-aggregator';
 import {inject} from 'aurelia-framework';
 @inject(EventAggregator)
 export class App {
 message = 'Hello World!';
 menuItems: IMenuItem[] = [];
 ea: EventAggregator;
 constructor(EventAggregator?) {
 this.ea = EventAggregator;
 this.ea.subscribe('login_result', (response) => {
 console.log(`App.loginResult() : ${response.success}`);

Building Applications

[444]

 });
 // existing code

Again, we need to import the EventAggregator class and the inject decorator from their
respective modules. Similar to the changes we made in the Login module, we have
decorated the App class with the @inject decorator, and are injecting the
EventAggregator through the constructor function.

We are then calling the ea.subscribe function to subscribe to a particular event name,
and have written an anonymous function that will be called when the event is received.
While this will work correctly, it would be better for our application if we called a class
function instead of an anonymous function. Using anonymous functions in this way poses
some problems when we get to unit testing our applications. Let's split this into a named
function, as follows:

 loginResult(response) {
 console.log(`App.loginResult() : ${response.success}`);
 }

So that our subscription therefore becomes:

 this.ea.subscribe('login_result', this.loginResult);

So far, so good. The problem with this solution, however, is that when the loginResult
function is invoked from the event handler, it is running inside the scope of the event
handler callback, and therefore has no access to the instance of this inside our App class
instance. To see this in action, let's create a class variable on the App class named
isLoginVisible, as follows:

 @inject(EventAggregator)
 export class App {
 message = 'Hello World!';
 menuItems: IMenuItem[] = [];
 ea: EventAggregator;
 isLoginVisible = true;
 constructor(EventAggregator?) {
 // existing code
 this.ea.subscribe('login_result', this.loginResult);
 // exising code
 }
 loginResult(response) {
 console.log(`App.loginResult() : ${response.success}`);
 this.isLoginVisible = false;
 }
 }

Building Applications

[445]

Here we have created a variable named isLoginVisible, which is set to true when the
App class is instantiated. Our loginResult function is now attempting to set this variable
to false when a successful login result message is received. Running this code, however,
will generate the following error message:

vendor-bundle.js:14688 ERROR [event-aggregator] TypeError: Cannot set
property
'isLoginVisible' of undefined(...)

What this error message is telling us, is that the this variable inside the loginResult
function does not have a property named isLoginVisible. It is therefore a different this
context than what we expected. To fix this issue, we can use a handy function from the
Underscore library named bindAll.

Remember when we created our initial HTML files within Node, we included the
underscore.min.js script in our layout.hbs file? This is where it is used.

Our fix to the perennial this scoping error is as follows:

 _.bindAll(this, 'loginResult');
 this.ea.subscribe('login_result', this.loginResult);

Here, we have called the underscore bindAll function to bind the instance of the App class'
this variable to be used within the loginResult function. With this simple change in
place, our code works as expected.

The last thing that we need to do is to use the isLoginVisible variable within the
app.html template, as follows:

 <login if.bind="isLoginVisible"></login>

Here, we are using the Aurelia if.bind function to either show or hide the <login>
template based on the value of the isLoginVisible variable.

Our Aurelia application is now complete. We have successfully integrated a Node Express
application with Aurelia, created a REST endpoint for serving up application data, and have
shown a full POST workflow to implement a login screen. We have also set up a simple
messaging service to coordinate events between components.

Building Applications

[446]

An Angular 2 website
In this section of the chapter, we will integrate an Angular 2 application with Node and
Express, similar to what we did for Aurelia. Again, we will show how to load JSON within
an Angular component, and then build our login screen to accept input from our web form,
and post it to our Express application. The good news is that apart from a few minor
changes, most of the Express code that we built for use with Aurelia can be reused with
Angular 2. First up, let's initialize our Angular application, and integrate it with Express.

Angular setup
Setting up an Angular 2 application should be almost second nature at this stage. All we
need to do is issue an ng new command with the name of our project. To use Express, we
will need to install express using npm as follows:

npm install express --save
npm install hbs --save
npm install bootstrap --save

Serving Angular 2 pages
As we did with Aurelia, we now need to set up our Express application, which includes the
main.ts file, an index.ts file in the routes directory, and our index.hbs and
layout.hbs files in the views directory. Let's start by building the layout.hbs file in the
views directory.

The Angular 2 application that is set up via the Angular-CLI uses webpack within the
compilation step to output all compiled JavaScript files into the dist directory. To find out
what an Express index.html file should look like, we will need to issue an ng build
command, and then take a look at the dist/index.html file that Angular has created.
Using this file as a template, our views/layout.hbs file is as follows:

 <!doctype html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>{{title}}</title>
 <base href="/">
 <link rel='stylesheet'
 href='/node_modules/bootstrap/dist/css/bootstrap.min.css' />

Building Applications

[447]

 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 </head>
 <body>
 {{{body}}}
 <script type="text/javascript"
 src="/dist/inline.bundle.js"></script>
 <script type="text/javascript"
 src="/dist/polyfills.bundle.js"></script>
 <script type="text/javascript"
 src="/dist/styles.bundle.js"></script>
 <script type="text/javascript"
 src="/dist/vendor.bundle.js"></script>
 <script type="text/javascript"
 src="/dist/main.bundle.js"></script></body>
 </html>

Here, we have simply copy and pasted the contents of the dist/index.html file provided
by the Angular 2 sample, and made a few changes. We have modified the <title> tag to
load the {{title}} property from the Handlebars model, and we have added a
{{{body}}} parameter within the <body> tag. The only other changes to this file are two
CSS links to include bootstrap.min.css.

The index.hbs file is even simpler:

 <app-root>Loading...</app-root>

Here, we are using Angular syntax to load the Angular component that has the app-root
selector.

We can now create our Express application in the main.ts file at the root of the project to
serve these files, as follows:

 import * as express from 'express';
 let app = express();

 import * as Index from './routes/index';

 import * as path from 'path';
 app.set('views', path.join(__dirname, 'views'));
 app.set('view engine', 'hbs');

 import * as bodyParser from 'body-parser';

 app.use(bodyParser.json());
 app.use(bodyParser.urlencoded({ extended: false }));

Building Applications

[448]

 app.use('/', Index.router);

 app.use('/node_modules',
 express.static(__dirname + '/node_modules'));
 app.use('/dist',
 express.static(__dirname + '/dist'));

 app.listen(3000, () => {
 console.log(`listening on port 3000`);
 });

Here, we have a standard Express application that is setting up our routes, our Handlebars
views, and the body-parser module. Our app.use function calls are very similar to
Aurelia, which allows Express to load static files in the node_modules, and dist
directories.

Before we compile our application, we will need to create the Express routes/index.ts
file, which is exactly the same as we used with Aurelia, so we will not cover it here.

Compiling our Express application with tsc main.ts, and then running it with node
main should load the default “app works!” web page.

Note that the only file in the project root directory that needs compiling is the main.ts file
that serves as our Express application. Attempting to create a tsconfig.json file in the
project root directory will conflict with the Angular compilation step that relies on src
being the root directory for TypeScript files. This means that the compilation step for an
Angular 2 and Express application is a three-step process. To compile our application, we
need to issue the following commands:

ng build
tsc main.ts
tsc -p routes

The first command will build the Angular application, and output all files into the dist
directory. The second command builds our main.ts file, which is the Express application
that will serve the compiled files, and the third command will build any files in the routes
directory. Now that we have Express serving our Angular application, we can focus on the
Angular components.

Building Applications

[449]

Angular 2 components
Our Angular application needs two components–a navbar component to render the
navigation bar and a login component to render the login panel. As we wish to copy and
paste our HTML from the Brackets design output, we will also create .html files for each of
these components.

Let's start with the src/app/navbar.component.ts file, as follows:

 import { Component, Injectable } from '@angular/core';
 interface IButtonName {
 ButtonName : string;
 }

 @Component({
 selector: 'navbar-component',
 templateUrl: './navbar.component.html'
 })
 @Injectable()
 export class NavbarComponent {
 menuItems : IButtonName [] = [
 { ButtonName : 'About'},
 { ButtonName : 'Contact'}
];
 }

Here, we are importing the Component and Injectable decorators from the
'@angular/core' module. We will use the Injectable decorator a little later, but for
now, this navbar component is very simple. We register an interface named IButtonName
that is used by the NavbarComponent class to set up an internal variable named
menuItems. The rest of the class is standard Angular syntax. Our
navbar.component.html file is as follows:

 <nav class="navbar navbar-default
 navbar-fixed-top navbar-inverse">
 <div class="container-fluid">
 Home
 <ul class="nav navbar-nav">
 <li *ngFor="let item of menuItems; let i = index" >
 {{item.ButtonName}}

 </div>
 </nav>

Building Applications

[450]

This is again a copy and paste from our original HTML designed pages, with an *ngFor
directive to loop through the menuItems array of the NavbarComponent class and to
generate <a> tags for each array item, similar to what we did with Aurelia.

In order to render this navigation bar in our Angular application, we need to update our
app.component.html file as follows:

 <navbar-component></navbar-component>

Before we compile and run our application, however, we need to register this new
NavBarComponent class in the app.module.ts file, as follows:

 // exiting imports
 import { AppComponent } from './app.component';
 import { NavbarComponent } from './navbar.component';

 @NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent, NavbarComponent],
 bootstrap: [AppComponent]
 })
 export class AppModule { }

Here, we have imported the NavbarComponent as per usual, and registered it for use in our
templates by including it in the declarations array.

With these changes in place, our navigation bar will show up at the top of the page.

We will follow a similar approach for our Login component, and create a
login.component.ts file and a login.component.html file. The login.component.ts
file is as follows:

 import { Component, Injectable } from '@angular/core';

 @Component({
 selector: 'login-component',
 templateUrl: './login.component.html'
 })
 @Injectable()
 export class LoginComponent {
 userName: string ;
 password: string ;
 loginClicked() {
 console.log(`this.userName : ${this.userName}`);
 console.log(`this.password : ${this.password}`);
 }
 }

Building Applications

[451]

Again, this is a standard Angular component named LoginComponent that has two
properties, named userName and password, both of which are strings. We have also
included a loginClicked function that will be called when the user clicks on the Submit
button on our login page. At the moment, this function simply logs the values of the
userName and password properties to the console.

Our login.component.html file is as follows:

 <div id="sideNav" class="login_sidenav" >
 <form>
 <div class="container">
 ×
 <div class="row">Please Login :</div>
 <div class="row">
 <input
 class="sidenav-input"
 type="text"
 placeholder="Username"
 name="userName"
 [(ngModel)]="userName"></div>
 <div class="row">
 <input
 class="sidenav-input"
 type="password"
 placeholder="Password"
 name="password"
 [(ngModel)]="password"></div>
 <div class="row">
 <button
 class="btn btn-primary btn-lg"
 (click)="loginClicked()">Login
 </button>
 </div>
 </div>
 </form>

 </div>

Here, we have modified the HTML for use by our Angular component slightly. Note how
the userName and password input elements have the [(ngModel)] attribute, as well as a
name attribute. These attributes are what Angular uses to bind the values that our user
inputs into our class variables. We have also attached a click handler to the (click) event
of the Login button.

Building Applications

[452]

Before we compile and run our Angular application with these two components, however,
we will need to register a few more modules in the app.module.ts file, as follows:

 import { NgModule } from '@angular/core';
 import { BrowserModule } from '@angular/platform-browser';

 import { HttpModule } from '@angular/http';
 import { FormsModule } from '@angular/forms';

 import { AppComponent } from './app.component';
 import { NavbarComponent } from './navbar.component';
 import { LoginComponent } from './login.component';

 @NgModule({
 imports: [BrowserModule, HttpModule, FormsModule],
 declarations: [AppComponent, NavbarComponent, LoginComponent],
 bootstrap: [AppComponent]
 })
 export class AppModule { }

Here, we have imported the HttpModule and the FormsModule from their respective
Angular modules. These two modules are required for form-based data binding, and for
working with RESTful web services, which we will tackle next. Note how the HttpModule
and the FormsModule components have been added to the imports array. Our
declarations array has also been updated to include the LoginComponent.

We can now render the login component within our page by updating the
app.component.html page, as follows:

 <navbar-component></navbar-component>
 <login-component></login-component>

This simple change will now render both the login component and the navbar component
within our page.

Processing JSON
As we did with Aurelia, let's now work on the navbar component to use our Express
endpoint of /menuitems to load the array of navbar buttons, as follows:

 import { Http, Response, Headers, RequestOptions }
 from '@angular/http';
 // existing code
 @Injectable()
 export class NavbarComponent {

Building Applications

[453]

 menuItems : IButtonName [];

 constructor (private http: Http) {
 console.log('AppComponent constructor');
 this.http.get('/menuitems')
 .map(res => res.text())
 .subscribe(
 (data) => {
 let jsonResponse = JSON.parse(data);
 this.menuItems = jsonResponse.menuItems;
 },
 err => {
 console.log(`error : ${err}`);
 },
 () => {
 console.log(`success`);
 }
);
 }

 }

Our updates to the navbar component start with an import of a few modules from
'@angular.http'. We have also created a constructor function, and are using
Angular's dependency injection framework to inject an instance of the Http class into the
private variable http. Note how the syntax for Angular's dependency injection framework
is closer to the framework that we developed in an earlier chapter. Angular uses both a
variable name and the type of the variable to perform dependency injection.

Within the constructor function, we are using the this.http class to issue a GET request
by calling the get function with our REST endpoint name. The map function converts the
response received by the REST endpoint to text by calling the res.text function, and the
subscribe function uses an Observable pattern to allow us to attach three functions. The
first function we attach is the happy path, that is, the REST endpoint has returned a 200 OK
result, and a data packet. The second function is the error path, and the third function will
be executed after either successful or error condition calls. For our happy path, we are
converting the incoming data object to JSON, and then setting the internal menuItems
variable to the array of button data that is returned.

Building Applications

[454]

Angular will automatically update the HTML DOM with the new values returned by the
REST endpoint, as soon as we set the corresponding internal variables that have been
bound to the HTML.

Before we test this code, we will need to update our app.component.ts class to import the
map and subscribe functions, as follows:

 import { Component } from '@angular/core';

 import 'rxjs/add/operator/map';
 import 'rxjs/operator/delay';
 import 'rxjs/operator/mergeMap';
 import 'rxjs/operator/switchMap';

 @Component({
 selector: 'my-app',
 templateUrl: 'app/app.component.html'
 })
 export class AppComponent { name = 'Angular'; }

Here, we have imported a few modules from the rxjs namespace. The reason for adding it
into the app component instead of our navbar component is so that all modules have
access to these functions.

Compiling and running our application now will show the three buttons in the navbar as
served from our Express REST endpoint. So far, so good.

Posting data
Let's now turn our attention to the login component, and use the same Http class from
Angular to post our login data to our REST endpoint. We already have a loginClicked
function in this class, so all we need to do is to create the correct HTTP packet and post it as
follows:

 constructor(private http: Http) {
 }

 loginClicked() {
 console.log(`this.userName : ${this.userName}`);
 console.log(`this.password : ${this.password}`);
 var headers = new Headers();
 headers.append('Content-Type', 'application/json');

 let jsonPacket = {
 userName : this.userName ,

Building Applications

[455]

 password : this.password };

 this.http.post('/login', jsonPacket , {
 headers: headers
 })
 .map(res => res.text())
 .subscribe(
 data => data,
 err => {
 console.log(`error : ${err}`);
 },
 () => {
 console.log(`success`);
 }
);
 }

We start by adding a constructor function, as we did with the navbar component, to
inject the Http module into a private variable named http. The bulk of the changes,
however, are in the loginClicked function. In order to post data to a REST endpoint, we
will need to create a Headers object, and append the Content-Type of
application/json using the headers instance. We then construct a jsonPacket object,
using our userName and password variables that have been updated as part of the data
binding process. We then call the post method of the Http class using our endpoint name,
the jsonpacket, and our POST headers. The map and subscribe functions are similar to
our earlier GET request.

Our work with Angular in this section is complete. We have integrated a Node and Express
web server to both serve Angular web pages, and serve as a REST endpoint. We have also
successfully implemented a navigation bar component and a login component, and shown
how to both consume and post data to REST endpoints with Angular. Back in Chapter 11,
Object-Oriented Programming, we covered Angular events using the EventEmitter, so we
will not cover it again here.

An Express React website
In the last section of this chapter, we will take a look at integrating React and Express. As
we have done with Aurelia and Angular, we will start by housing our Express and React
components in the same directory, and then work through the Express layouts that we will
need to serve a React site. We will then take a look at using REST endpoints within React.

Building Applications

[456]

Express and React
As we have done before, setting up a React site is as simple as creating a package.json file
with the relevant React components and a tsconfig.json file, and then creating a
webpack.config.js file so that we can use webpack. Our package.json file is as
follows:

 {
 "name": "node_react",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo "Error: no test specified" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.15.2",
 "express": "^4.14.0",
 "hbs": "^4.0.1",
 "promise-polyfill": "^6.0.2",
 "react": "^15.4.0",
 "react-dom": "^15.4.0",
 "whatwg-fetch": "^2.0.1",
 "@types/body-parser": "0.0.33",
 "@types/core-js": "^0.9.35",
 "@types/express": "^4.0.35",
 "@types/react-dom": "^0.14.23",
 "@types/whatwg-fetch": "0.0.33"
 },
 "devDependencies": {
 "source-map-loader": "^0.1.5",
 "ts-loader": "^1.2.2"
 }
 }

Here, we have the standard React components listed in the dependencies property, which
are react and react-dom. We have also included our express, hbs, and body-parser
modules that Express will use. Along with these Express modules, we also have promise-
polyfill and whatwg-fetch. These two modules will be used by our React components
to consume our REST endpoints. We also have a number of declaration files listed as
@types. As usual, we have two devDependencies listed in source-map-loader and ts-
loader, which React uses to provide TypeScript compilation via webpack.

Building Applications

[457]

Our tsconfig.json file is as follows:

 {
 "compilerOptions": {
 "outDir" : "./dist/",
 "module": "commonjs",
 "target": "es5",
 "noImplicitAny": false,
 "sourceMap": false,
 "moduleResolution": "node",
 "jsx": "react"
 },
 "exclude": [
 "node_modules"
]
 }

Here, we have specified an output directory in the outDir property set to ./dist, and also
set the jsx property to react.

Our webpack.config.js file has not changed since Chapter 7, TypeScript Compatible
Frameworks.

Serving the React application
With these files in place, we can reuse our Express main.ts file from our Aurelia
application, with a single modification, as follows:

 // existing code
 app.use('/dist',
 express.static(__dirname));

 app.listen(3000, () => {
 console.log(`express listening on port 3000`);
 });

Here, we are specifying to Express that we need to serve the /dist directory as static files.
Remember that when we run webpack from the command line to compile our React source,
all sources are generated into the dist directory, meaning that we need a specific entry in
our Express application to serve this directory and its contents.

Building Applications

[458]

Before we run the webpack command from the command line, we need to create two files.
The first is the app/index.tsx file that serves as the entry-point to our React site, which at
this stage can be an empty file. The second is the routes/index.ts file that contains our
Express HTTP handlers. This file can be copied from either the Angular or Aurelia sample,
as both are identical.

At this stage, we can compile our React application by typing webpack from the command
line, and compile our Express application by typing tsc from the command line.

Note that both the React compilation steps and the TypeScript compilation steps are
generating JavaScript files in the /dist directory. In order to run our Express application
from the project root directory, therefore, we need to reference the main.js module in the
dist directory, as follows:

node dist/main

Which seems to serve our application correctly:

express listening on port 3000

Unfortunately, firing up a browser, and pointing it to http://localhost:3000 will
generate a few nasty errors:

React errors when running Express from the project root directory

Building Applications

[459]

Looking closely at these errors, we can see that our Express application is being served up
from the /dist directory. As such, the views directory that we specified in our Express
application is not the /views directory as we have used before, but is in fact the
/dist/views directory.

Let's therefore create a /dist/views directory, and within this, our layout.hbs file and
index.hbs files, so that Express can generate our HTML views correctly.

Our layout.hbs view is as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>
 <link rel="stylesheet" href="/css/bootstrap.min.css" />
 <link rel="stylesheet" href="/css/app.css" />
 </head>
 <body>
 {{{body}}}

 <!-- Dependencies -->
 <script src=
 "node_modules/react/dist/react.js">
 </script>
 <script src=
 "node_modules/react-dom/dist/react-dom.js">
 </script>

 <!-- Main -->
 <script src="/dist/bundle.js"></script>
 </body>
 </html>

Here, we have created the outline of a standard React web page, and included the
react.js file and react-dom.js file as <script> tags within the body of the page. Note
that we are also including the bundle.js file from the /dist directory, which serves as the
entry point to our React application. Our index.hbs file is as follows:

 <div id="app_anchor"></div>

Building Applications

[460]

With these two views in place, we can fire up our Express application and browse to
http://localhost:3000. While this may seem all well and good, if we open up our
Developer Tools in the browser, and look at the console log, we will see that we still have a
few 404 errors:

Viewing 404 errors while serving an Express React application

The first two errors indicate that we need to create some .css files in the /dist/css
directory. These files can easily be copied from our earlier samples. The next two errors,
however, indicate that we need to have a /dist/node_modules directory, which includes
the react and react-dom modules.

Multiple package.json files
Essentially, the webpack compilation step that React uses means that all of our files used by
the browser must be served from the /dist directory. Some of our files, however, come
from the / (or project root directory). This is the nature of React development
environments. Remember that any file that is statically served must be in the /dist
directory, but any file that is compiled must be in the / or root directory.

Building Applications

[461]

To overcome this problem, we can split our package.json file into two separate files – one
in the / or root directory and one in the /dist directory. The package.json file in the / or
root directory only needs to install packages that are needed by the webpack compilation
step, and can therefore be stripped back to the following:

 {
 "name": "node_react",
 "version": "1.0.0",
 "devDependencies": {
 "source-map-loader": "^0.1.5",
 "ts-loader": "^1.2.2",

 },
 "dependencies": {
 "@types/body-parser": "0.0.33",
 "@types/core-js": "^0.9.35",
 "@types/express": "^4.0.35",
 "@types/react-dom": "^0.14.23",
 "@types/whatwg-fetch": "0.0.33"
 }
 }

Here, the dependencies list only contains our @types definitions, and the
devDependencies array has been stripped back to only incude the source-map-loader
and ts-loader Node modules are all that are needed by webpack for the compilation step.

Our /dist/package.json file does not need the devDependencies, and therefore just
contains the following:

 {
 "name": "node_react_dist",
 "version": "1.0.0",
 "dependencies": {
 "body-parser": "^1.15.2",
 "cookie-parser": "^1.4.3",
 "express": "^4.14.0",
 "express-session": "^1.14.1",
 "hbs": "^4.0.1",
 "promise-polyfill": "^6.0.2",
 "react": "^15.4.0",
 "react-dom": "^15.4.0",
 "whatwg-fetch": "^2.0.1"
 }
 }

Building Applications

[462]

Having two package.json files therefore means that if we need new modules used by the
Express application, we need to modify the /dist/package.json file. Also, remember to
issue an npm install command in the /dist directory to install the required node
modules.

React components
Now that we have React and Node working side-by-side, we can focus on creating the
required React components for our navigation bar and login screen. We will start with the
app/NavBar.tsx class that will render our navigation bar as follows:

 import * as React from 'react';
 import * as ReactDOM from 'react-dom';

 export class MenuItem {
 ButtonName: string;
 }

 export class NavBarProps {
 menuItems ? : MenuItem [] ;
 }

 export default class NavBar
 extends React.Component<NavBarProps, {}> {
 state: NavBarProps;
 constructor(props?: NavBarProps) {
 super(props);
 this.state = {menuItems : []};
 }
 render() {
 return <div>
 <nav
 className="navbar navbar-default
 navbar-fixed-top navbar-inverse">
 <div className="container-fluid">
 Home
 <ul className="nav navbar-nav">
 { this.state.menuItems.map(function (item, i) {
 return(
 <li key={i}
 className="nav-item nav-link active">
 <a href="#"
 >{item.ButtonName}
);
 }, this)}

Building Applications

[463]

 </div>
 </nav>
 </div>;

 }
 }

Here, we have the definition of three classes that are all exported. The first is named
MenuItem, and contains a single property named ButtonName of type string. The second is
a class named NavBarProps that contains an array of MenuItem elements. The third is the
NavBar class itself, which extends React.Component, and uses generic syntax to specify
that it uses the NavBarProps internally. These classes put together mean that we are
constructing a NavBar React class that has access to an internal array named menuItems,
each of which has a property called ButtonName.

The NavBar class has an internal state property, also of type NavBarProps, and a
constructor function that accepts an optional class of NavBarProps. This optional
property will allow any parent React component to create an instance of this class by using
either <NavBar /> or <NavBar menuItems={...} /> syntax to construct the class.

There are a few points to note about this class. Firstly, we are setting the internal state
property to be a blank array of menuItems in the constructor. Secondly, we are looping
through the menuItems property of the state variable within the render function, and
rendering an element for each item in the array. When the class is constructed, this
state.menuItems array will have no elements, and as such we will not render any
navigation bar buttons.

Thirdly, we are using the state property and not the props property for our array of
navigation bar buttons. Note that React uses the state property to allow for automatic re-
rendering of HTML elements when the state changes. When we need to update the DOM,
we simply need to call the setState function, and React will regenerate and re-render the
DOM.

Note that the HTML that we use within the React component is slightly different to the
Brackets designed HTML that we are using. When defining a CSS class for use within a
React component, we must specify className in the HTML element instead of simply
class. This means that to render an element with the HTML <div class="css-class-
name">, we must specify <div className="css-class-name"> in a React component.

Building Applications

[464]

In order to put this navigation bar to the test, let's create the App class within the
app/index.tsx file so that we can render the NavBar component to the DOM, as follows:

 import * as React from 'react';
 import * as ReactDOM from 'react-dom';
 import NavBar from './NavBar';

 export class App
 extends React.Component<{}, {}> {
 render() {
 return <div>
 <NavBar />
 </div>;
 }
 }

 ReactDOM.render(
 <App ></App>, document.getElementById('app_anchor')
);

Here, we have a very simple App class that does not have any settable properties, and is
therefore using empty objects for the ReactComponent definition. The App class has a
single function named render, which is rendering a child NavBar React component. To
bootstrap our App class, we call ReactDOM.render.

With the App and NavBar React components in place, firing up the application will render a
NavBar component with no buttons, as follows:

React Application rendering a Navbar

Building Applications

[465]

Consuming REST endpoints
As we did with our Aurelia and Angular applications, let's now update the NavBar React
component to consume a REST endpoint. In other words, let's issue a GET request to the
/menuitems endpoint, and use the returned JSON to populate our navigation bar. Our
updates are to the NavBar component constructor, as follows:

 constructor(props?: NavBarProps) {
 super(props);
 this.state = {menuItems : []};
 fetch('/menuitems')
 .then((response) => {
 return response.json(); }
)
 .then((json) => {
 this.setState({ menuItems : json.menuItems});
 })
 .catch((err) => {
 console.log(`err : ${err}`);
 });
 }

Here, we have called the fetch function with the name of the REST endpoint just after our
existing call to set the this.state property. Again, we are using fluent syntax to attach a
then function that will be called when the call to the REST endpoint returns. Within this
first then function, we are simply returning a call to response.json. This is the syntax
that React uses to convert a REST response into JSON format.

Following the first then function, we attach a second then function that is called with a
single json parameter. This second then function will be called when the first then
function returns. Within this second then function, we are making a call to setState, as
we mentioned earlier. The call to setState will cause React to update the DOM based on
the new value of the menuItems array, and therefore render our three navigation bar
buttons.

While this syntax may seem a little convoluted, with two then functions being called in
succession, it is the preferred way of working with REST endpoints in React. If you fire up a
debugger, and watch the first response object, you will note that the response object is not
a simple JSON object, but is in fact a first-class React class, that contains the full GET request
header information, a body property, along with callable functions. Conversion of this
response property to a simple JSON package is accomplished by calling the reponse.json
function in this way.

Building Applications

[466]

Login panel component
With our NavBar component in place, we can now turn our attention to the login panel. The
login panel will need to handle data binding from the HTML form back to our React class,
as we have done with Aurelia and Angular. As a start, let's get the basics of a LoginPanel
in place, and then discuss data binding and form submission a little later.

Our app/LoginPanel.tsx file is as follows:

 import * as React from 'react';
 import * as ReactDOM from 'react-dom';

 // must export a props class
 export class LoginPanelProps {
 userName?: string;
 password?: string;
 }

 export default class LoginPanel
 extends React.Component<LoginPanelProps, {}> {
 state: LoginPanelProps;
 constructor(props?: LoginPanelProps) {
 super(props);
 this.state = { userName : '', password: ''};
 }
 render() {
 return <div id="sideNav" className="login_sidenav">
 <form onSubmit={this.handleSubmit}>
 <div className="container">
 ×
 <div className="row">Please Login :</div>
 <div className="row">
 <input className="sidenav-input"
 type="text"
 placeholder="Username"
 value={this.props.userName} /></div>
 <div className="row">
 <input className="sidenav-input"
 type="password"
 placeholder="Password"
 value={this.props.password} /></div>
 <div className="row">
 <input type="submit"
 value="Login"
 className="btn btn-primary btn-lg" /></div>
 </div>

Building Applications

[467]

 </form>
 </div>;
 }

 handleSubmit(event) {
 }

 }

Here, we have defined a class named LoginPanelProps that holds our userName and
password properties. Our LoginPanel React component again uses the generic syntax in
order to derive from the React.Component class. The constructor function again
specifies the props argument as optional, and then sets the internal state property to an
object with a blank userName and password property.

Note the HTML that we have included in the render function. We have specified a <form>
tag, with an onSubmit attribute set to {this.handleSubmit}. This is effectively binding
the onSubmit event to the handleSubmit function within our class.

On a similar note, the input element for the Username has a value attribute set to
this.props.userName. This syntax will set the value of the input element to the value of
our LoginPanel class property.

To render this LoginPanel, then, we can update our App class as follows:

 import LoginPanel from './LoginPanel';

 export class App
 extends React.Component<{}, {}> {
 render() {
 return <div>
 <LoginPanel />
 <NavBar />
 </div>;
 }
 }

Here, we have imported the LoginPanel class and included a <LoginPanel /> element
within the render function.

Building Applications

[468]

React data binding
With our LoginPanel rendering to the DOM, we can now focus on data binding between
the login panel form elements and our LoginPanel class. Remember that we are using the
userName and password properties within the LoginPanel class to hold the initial values
that are displayed on the web page. Currently they are both blank, and waiting for the user
to type in values into these input elements.

In order to trap updates to these form elements, we will need to attach to the onChange
event within our HTML elements. This is accomplished by firstly defining a function to be
called when a value on the form is changed, and secondly notifying the HTML element that
it needs to call this function when the value of the element changes. Our updates to the
LoginPanel are two-fold, as follows:

 constructor(props?: LoginPanelProps) {
 super(props);
 this.state = { userName : '', password: ''};
 this.handleUserNameChange =
 this.handleUserNameChange.bind(this);
 this.handlePasswordChange =
 this.handlePasswordChange.bind(this);
 this.handleSubmit =
 this.handleSubmit.bind(this);
 }
 handleUserNameChange(event) {
 this.setState({userName: event.target.value});
 console.log(`username change: ${event.target.value}`)
 }

 handlePasswordChange(event) {
 this.setState({password: event.target.value});
 console.log(`password change: ${event.target.value}`)
 }

Here, we have introduced two new functions named handleUserNameChange and
handlePasswordChange. Within our constructor function, we are also assigning the
value of these functions to the result of a call to bind(this). This is necessary in order to
correctly bind the value of this argument to be the class instance itself, as we have
discussed earlier when we used the Underscore bindAll function to accomplish the same
result, with a call to _.bindAll(this, 'functionName').

Within these handle functions; we are updating the state variables with the current value
of the <input> element with a call to setState. This will therefore keep our state
variable values in sync with the values that the user is entering into the <input> elements.

Building Applications

[469]

With these functions in place, we now need to update the HTML elements in order to attach
to these functions, as follows :

 <input className="sidenav-input"
 type="text"
 placeholder="Username"
 value={this.props.userName}
 onChange={this.handleUserNameChange}
 /></div>
 <input className="sidenav-input"
 type="password"
 placeholder="Password"
 value={this.props.password}
 onChange={this.handlePasswordChange}
 /></div>

Here, we have included an onChange event handler for our Username and
Password<input> elements, each targeting the correct handle event within our class.

It is worth noting that React will trigger the onChange event for every keystroke that the
user inputs. If we fire up our website, and open the Developer Tools for our browser, we
will note the following console logs:

Developer console showing onChange events

Here, we can see that the change event handler is being fired as each key in the keyboard is
hit, whether in the userName input element or on the password input element.

Building Applications

[470]

Posting JSON data
To round out our work with React, let's update our LoginPanel class to generate a POST
call to our Express REST endpoint. The changes we need to make are within the
handleSubmit event handler that will be called when the form's Submit button is clicked,
as follows:

 handleSubmit(event) {
 event.preventDefault();
 fetch('/login',{ method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-type' : 'application/json'
 }, body : JSON.stringify({
 userName : this.state.userName,
 password : this.state.password
 })

 }).then((response) => {
 console.log(`response : ${response.status}`);
 }).catch((err) => {
 console.log(`err: ${err}`);
 });
 }

Here, we have updated our handleSubmit event handler function to use the React fetch
function in order to send a POST event to our Express endpoint. In React, the fetch
function can be used to both issue a GET request, as we have seen earlier, or to issue a POST
event as we are doing here. When using a POST event, however, we need to send an object
that has three properties, namely method, headers, and body. Our method property is set
to POST, and our headers property contains the 'Accept' and 'Content-type'
properties. The body property contains the data that we wish to POST to our endpoints.

As we saw earlier, the call to fetch uses fluent syntax to attach a then function that will be
invoked once the REST endpoint returns, or a catch function that will be invoked if there is
an error.

Our work with React is complete. We have shown how to build React components for our
Brackets designed HTML, and also how to bind data from the React state property for
automated updates to the DOM. We then discussed how to use REST endpoints for both
GET and POST actions, and used data binding syntax to capture user input within our React
classes.

Building Applications

[471]

Summary
In this chapter, we have explored some of the fundamental building blocks in application
development. We have shown how to combine an Express web server with the Aurelia,
Angular 2, and React frameworks. We discussed how to create Handlebar views to serve
HTML pages for each of these frameworks, and how to register static content with Express
in order to do so. We then discussed data binding, and in particular, how to request data
from an Express REST endpoint in order to dynamically update HTML elements based on
the JSON returned. With each of the frameworks, we then explored working with and
processing HTML input elements in order to read data from a user input form. Once we
had obtained user input, we built code to post this data to an Express REST endpoint.

In our next chapter, we will put all of our learnings together and build a complete Angular
2 application that incorporates all of the building blocks that we have been working with
throughout this book.

14
Let's Get Our Hands Dirty

In our final chapter, we will use the techniques and principles that we have learnt up until
this point to build a sample web application. This application will use the left-to-right panel
design that we explored in Chapter 11, Object-Oriented Programming, and also interact with
REST endpoints, as we discussed in Chapter 13, Building Applications. We will also reuse
the State and Mediator design pattern, and show how to build unit tests for our
application, as we discussed in Chapter 9, Testing Typescript Compatible Frameworks. We
already have all of the building blocks and in-depth knowledge that is required to put
together a sample application at our fingertips, so this chapter is all about reuse and
component integration. For the sake of brevity, we will use Angular 2 as our application
framework throughout this chapter.

This chapter will cover the following topics:

Overview of the application structure
Unit testing
Testing the State and Mediator design panel
Integrating a new Login panel
Working with complex JSON structures
Testing HTTP requests
Testing UI events
Filtering data
Application architecture

Let's Get Our Hands Dirty

[473]

Board Sales application
Our application will be a rather simple one, called Board Sales, which will list a range of
windsurfing boards on the main page, and then allow the user to view details of any one of
the boards on sale by clicking on it. Clicking on a particular board will slide the board detail
panel in from the right-hand side. We will also use the left-hand side navigation panel to
provide the user with options to filter the board list. If a user clicks on a particular filter,
then the range of boards shown will be filtered to match this selection. The main page will
be as follows:

Sample application main board list with filter panel

Here, we can see that we have a top navigation bar, a side-navigation panel on the left-hand
side showing filter options, and a main panel with a series of boards displayed.

Let's Get Our Hands Dirty

[474]

Modern windsurfing boards come in a range of sizes, and are measured by volume. As we
can see in the board list view, each board is shown with a table of available sizes next to it.
Smaller volume boards are generally used for wave sailing, and larger volume boards are
using for racing, or slalom. Those boards that sit in-between can be categorized as freestyle
boards, and are used for performing acrobatic tricks on flat water. Each board has a
manufacturer, which corresponds to the logo shown next to each board. Our filter panel on
the left-hand side allows the user to select either the manufacturer, or a board type as a
filter. So to view only boards made by RRD, the user can click on the RRD filter under
Manufacturer. Likewise, to filter the board list by Slalom boards, the user can click on the
Slalom filter on the left-hand panel.

Clicking on any particular board will show the board detail screen, as follows:

Board detail view

Let's Get Our Hands Dirty

[475]

Here, we have a detailed view of a board, with a larger image, a more comprehensive
description of the board itself, along with an expanded table of available sizes.

One important aspect of choosing a windsurfing board is the range of sail sizes that it
supports. In very strong winds, smaller sails are used to allow the windsurfer to control the
power generated by the wind. Likewise, in lighter winds, larger sails are used to generate
more power. The combination of board size, board type, and available sail sizes are all used
to select the correct board for the sailor and sailing conditions. The detail view therefore
lists the minimum and maximum sail sizes that the board can support.

Angular 2 base application
Back in Chapter 11, Object-Oriented Programming, we did a fair amount of work to ensure
that our application conformed to object-oriented design principles, and implemented the
basic left-to-right screen flow that we are looking for. We also explored the State and
Mediator design pattern that helped us transition our pages from state to state. In Chapter
13, Building Applications, we integrated Node and the Express engine into an Angular
application so that we can both serve and consume web pages using JavaScript.

We will use the source code from Chapter 13, Building Applications, as our base application,
and then merge some of the files from Chapter 11, Object-Oriented Programming, to provide
the base application. The files that we will need from Chapter 13, Building Applications,
include the following:

main.ts

package.json

/src (directory)

/routes (directory)

/views (directory)

/css (directory)

With these files in place, we can issue an npm install from the command line.

We can then compile our application with the following three commands:

ng build
tsc main.ts
tsc -p routes

Let's Get Our Hands Dirty

[476]

Once compiled, we can then run node main command from the command line to start our
Express application. Browsing to the site at http://localhost:3000 will show the
default login screen from Chapter 13, Building Applications:

Our base application is now up and running, and ready for a merge of the code to create the
left-to-right panel design, and implement the State and Mediator design patterns.

We can combine these command line options into a single step by editing the
package.json file in the project root directory, and adding an entry into the scripts
configuration as follows:

 "scripts": {
 "ng": "ng",
 "start": "ng serve",
 "test": "ng test",
 "pree2e":
 "webdriver-manager update --standalone false --gecko false",
 "e2e": "protractor",
 "build_all": "ng build && tsc main.ts && tsc -p routes"
 },

Here, we have added a build_all script to our configuration which will execute all three
of our build steps one after another. In order to run this step, we can use the run-script
option of npm as follows:

npm run-script build_all

Let's Get Our Hands Dirty

[477]

Unit testing
Any production website, or indeed production source code, should be fully tested before it
is shipped. This testing process includes unit, integration, and acceptance tests that give us
confidence that the site is behaving as expected. As we did in Chapter 9, Testing Typescript
Compatible Frameworks, let's now set up a test suite for our application, so that we can follow
a test-driven development methodology. For unit testing, we will use Karma, which is the
standard process of unit testing Angular 2 applications. Our Angular application already
has all of the pre-requisites installed in order to use Karma, so we can start Karma by typing
the following on the command line:

npm test

Running npm test now will report on the command line that there are currently no tests
within our project, as follows:

Karma test runner indicating that no tests were found

Let's Get Our Hands Dirty

[478]

Remember that if a file has the word .spec. in its filename, it will be run as a test, no
matter where in the src directory the filename exists.

Our test framework is now in place.

State Mediator tests
The first module that we will merge from Chapter 11, Object-Oriented Programming, will be
the state.mediator.ts file that contains our implementation of the State and Mediator
design pattern. This file can be copied over without change, as it only contains standard
TypeScript classes, without any Angular specific code. We can then create a tests
directory under the src directory, and create a test file named state.mediator.spec.ts.

Angular recommends creating .spec files in the same directory as the
actual component under test. This would mean that the app directory
would contain both the state.mediator.ts file, and the
state.mediator.spec.ts file. While this may help to indicate which
files have tests, the amount of files within an application directory quickly
becomes very noisy. It is easier to create a separate test directory to
house test files, so that they can be located quickly, without having to
search through many files in the application directory.

Our first test will be a sanity test to prove that the testing process works, and that Karma is
finding our tests, and running them correctly, as follows:

 describe('app/tests/state.mediator.spec.ts', () => {
 it('should fail', () => {
 expect(true).toBeFalsy();
 });
 });

Let's Get Our Hands Dirty

[479]

Here, we have a simple Jasmine test that should fail. Running npm test at this stage will
pick up our state.mediator.spec.ts file as a test suite, execute the test, and report a
failure on the command line, as follows:

Karma test runner showing one test failure

Note how the test suite has been named–'src/tests/state.mediator.spec.ts'.
Naming your test suite with the exact filename that contains the test will help to identify
which test suite is responsible for the failure in the future. Instead of searching through
your source code base for the exact wording on the describe function, you will be able to
go directly to the file that contains the test. This will also help when debugging tests, as you
immediately know which file to look at.

Now that we have our test environment set up, we can focus on the tests that we need for
the State and Mediator classes.

The Mediator class contains all of the code for switching between states in our application.
It has a few important functions:

Set the application to an initial state
Call UI functions on the IMediatorImpl interface as a result of moving between
states
Store the current state
Store the current state of the main panel

Let's Get Our Hands Dirty

[480]

Our tests, therefore, will need to cover each of these scenarios. Let's start then, with a test to
ensure that the initial state of the application is correctly set, as follows:

 import { Mediator,
 IMediatorImpl,
 StateType,
 PanelType,
 MainPanelOnly,
 MainPanelWithSideNav } from '../app/state.mediator';
 class MockMediatorImpl implements IMediatorImpl {
 showNavPanel() {}
 hideNavPanel() {}
 showDetailPanel() {}
 hideDetailPanel() { }
 changeShowHideSideButton(fromClass: string, toClass: string) {};
 }
 describe('src/tests/state.mediator.spec.ts', () => {
 let mockMediatorImpl : IMediatorImpl;
 beforeEach(() => {
 mockMediatorImpl = new MockMediatorImpl();
 });
 it('should set initial state', () => {
 let mediator = new Mediator(mockMediatorImpl);
 expect(mediator.getCurrentMainPanelState())
 .toBe(StateType.MainPanelWithSideNav);
 });
 });

Here, we start with an import of the relevant modules from the state.mediator file. We
then create a class named MockMediatorImpl that implements the IMediatorImpl
interface. Remember that the constructor function of the Mediator class requires an
implementation of this interface as a parameter. Instead of using the actual AppComponent
within our test, we can simply mock out the implementation of this interface through a
mock class. Also, our tests will not actually be updating any user interface, and are
therefore not doing anything when each of these functions are called. This is again an
example of good object-oriented code. The Mediator class has a single dependency, and we
have abstracted that dependency into an interface, to allow us to inject multiple different
implementations. In this case, we are injecting a mock object simply for testing purposes.

Our first test simply creates an instance of the Mediator class, and then checks that the
current main panel state has been set correctly. This test indicates that we are expecting to
show the side navigation panel and the main panel, when the application starts up.

Let's Get Our Hands Dirty

[481]

Our next unit test will check that the hideNavPanel function of our IMediatorImpl
interface is called correctly, when we move from the initial state of
MainPanelWithSideNav to the MainPanelOnly state, as follows:

 it('should call hideNavPanel', () => {
 let spy = spyOn(mockMediatorImpl, 'hideNavPanel');
 let mediator = new Mediator(mockMediatorImpl);
 mediator.moveToState(StateType.MainPanelOnly);
 expect(spy).toHaveBeenCalled();
 });

Here, we start by creating a spy on the hideNavPanel function of our mockMediatorImpl
class. We then create an instance of the Mediator class, and call the moveToState function
with a state type of MainPanelOnly. This function call will be used within our application
to hide the left-hand side navigation panel, as we saw in Chapter 11, Object-Oriented
Programming. Note that we expect that the spy should have been called. This test is
therefore testing the following code within the Mediator class:

 if (nextState.isSideNavVisible())
 this._mediatorImpl.showNavPanel();
 else
 this._mediatorImpl.hideNavPanel();

We are moving to a state where the side navigation panel is hidden (MainPanelOnly), and
therefore should see the hideNavPanel function called when this code is executed.

Our next test will check that the state of the main panel is updated, when we move from the
MainPanelWithSideNav state to the MainPanelOnly state. Remember that we are storing
the state of the main panel so that when a user navigates to the detail panel and then back
again, the state of the main panel is restored correctly. Our test is as follows:

 it('should store current MainPanelState with SideNav hidden', () => {
 let mediator = new Mediator(mockMediatorImpl);
 mediator.moveToState(StateType.MainPanelOnly);
 expect(mediator.getCurrentMainPanelState())
 .toBe(StateType.MainPanelOnly);
 });

This test simply moves to the MainPanelState, and then calls the
getCurrentMainPanelState function directly afterwards to ensure that the stored
internal state has been updated correctly.

Let's Get Our Hands Dirty

[482]

Login screen state
Our current application does not have the side navigation components or right screen
components integrated into it as of yet, and it is simply showing a login panel. What we
need to do now is to integrate the login panel into our State and Mediator pattern so that we
can control when and where the login panel is displayed. To do this, we need a new
StateType enum entry, and a new PanelType enum entry, as follows:

 export enum StateType {
 MainPanelOnly,
 MainPanelWithSideNav,
 DetailPanel,
 LoginPanel
 }
 export enum PanelType {
 Primary,
 Detail,
 OverlayPanel
 }

Here, we have updated our StateType enum to include a LoginPanel state, and have also
updated the PanelType enum to include an OverlayPanel entry. Remember that the
panels we are displaying are either the Primary panel (with or without side navigation),
the Detail panel, or an Overlay panel. This OverlayPanel could include other screens,
such as a Contact Us panel or a Register panel. It makes sense, therefore, to create a new
PanelType so that we do not interfere with the current logic of switching between the main
and detail panels.

Our IState interface will now need to be updated to include an isLoginVisible
function, as follows:

 export interface IState {
 getPanelType() : PanelType;
 getStateType() : StateType;
 isSideNavVisible() : boolean;
 getPanelButtonClass() : string;
 isLoginVisible(): boolean;
 }

Again, this is a simple one-line change to our interface definition, but it will require that all
of the current states are updated to implement this function. Their implementation will
simply return false.

Let's Get Our Hands Dirty

[483]

We now need a new State class, as follows:

 export class LoginPanel implements IState {
 getPanelType() : PanelType { return PanelType.OverlayPanel; }
 getStateType() : StateType { return StateType.LoginPanel; }
 getPanelButtonClass() : string { return '';}
 isSideNavVisible() : boolean { return false; }
 isLoginVisible(): boolean { return true; };
 }

Here, we have created a new class named LoginPanel to represent our login panel state.
The PanelType will be OverlayPanel, the StateType will be LoginPanel, and the
isLoginVisible function now returns true. We can now create a unit test to ensure that
these values are set correctly, as follows:

 it('should create LoginPanel state object with correct
 parameters', () => {
 let loginState = new LoginPanel();
 expect(loginState.getPanelType()).toBe(PanelType.OverlayPanel);
 expect(loginState.getStateType()).toBe(StateType.LoginPanel);
 expect(loginState.isLoginVisible()).toBe(true);
 });

Here, we are creating a LoginPanel object, and ensuring that each of the parameters are set
correctly. While this may not seem like a particularly useful unit test, remember that it is
there to ensure that our objects are behaving correctly. If we need to make modifications to
these state classes, our simple tests will guard against inadvertent changes, as the properties
of each of these classes drive our application flow.

The showing or hiding of the login panel will need to be implemented by the user interface,
and then triggered by the Mediator class. In order to trigger the showing and hiding of the
login panel, we will need to update our IMediatorImpl interface to include these
functions, as follows:

 export interface IMediatorImpl {
 showNavPanel() : void;
 hideNavPanel() : void;
 showDetailPanel() : void;
 hideDetailPanel() : void;
 changeShowHideSideButton
 (fromClass: string, toClass: string) : void;
 showLoginPanel() : void;
 hideLoginPanel() : void;
 }

Let's Get Our Hands Dirty

[484]

Here, we have added two new functions, named showLoginPanel and hideLoginPanel
that will control the display of the login panel. Again, these functions will need to be
implemented by the class that implements this interface.

We need to make two more changes to the Mediator class to incorporate the new
LoginPanel state. Firstly, we need to create an instance of this state as a private variable
of the Mediator class, as follows:

 export class Mediator {
 private _mainPanelState = new MainPanelOnly();
 private _detailPanelState = new DetailPanel();
 private _sideNavState = new MainPanelWithSideNav();
 private _loginState = new LoginPanel();

Here, we have created a new private member variable named _loginState to house an
instance of the LoginPanel state class, as we have done with the other states.

Secondly, we also need to return the instance of this class in the getStateImpl function, as
follows:

 getStateImpl(stateType: StateType) : IState {
 var stateImpl : IState;
 switch(stateType) {
 case StateType.DetailPanel:
 stateImpl = this._detailPanelState;
 break;
 case StateType.MainPanelOnly:
 stateImpl = this._mainPanelState;
 break;
 case StateType.MainPanelWithSideNav:
 stateImpl = this._sideNavState;
 break;
 case StateType.LoginPanel:
 stateImpl = this._loginState;
 break;
 }
 return stateImpl;
 }

Here, we have added a new case statement to return the instance of the LoginPanel state
class within the getStateImpl function.

Let's Get Our Hands Dirty

[485]

Let's now write a unit test to ensure that these functions are called correctly, as follows:

 it('should call showLoginPanel', () => {
 let spy = spyOn(mockMediatorImpl, 'showLoginPanel');
 let mediator = new Mediator(mockMediatorImpl);
 mediator.moveToState(StateType.LoginPanel);
 expect(spy).toHaveBeenCalled();
 });

This test is simply spying on the showLoginPanel function that we created earlier, and
checking whether this function is called when we move to the LoginPanel state. Running
the test at this state, however, will fail with the following message:

As expected, the new function, named showLoginPanel, will not have been called, as we
have not made any changes to the moveToState function to handle our LoginPanel state.
Let's do so now:

 moveToState(stateType: StateType) {
 var previousState = this._currentState;
 var nextState = this.getStateImpl(stateType);
 if (nextState.isLoginVisible())
 this._mediatorImpl.showLoginPanel();
 else
 this._mediatorImpl.hideLoginPanel();

Let's Get Our Hands Dirty

[486]

Here, we are calling the isLoginVisible function to determine if we should show or hide
the login panel. Remember that all of the existing states will return false when this
function is called, and only the new LoginPanel state will return true, which will trigger
the showLoginPanel function to be called. With this change in place, our test will now
pass.

Panel integration
We can now turn our attention to integrating the left-to-right panel design that we worked
through in Chapter 11, Object-Oriented Programming, into our current Node and Express
application. Remember that this consisted of the following components:

sidenav.component: The left-hand side navigation panel that will be used for
our filter mechanism
app.component: The main application controller that coordinates UI elements
navbar.component: The top navigation panel
rightscreen.component: The right-hand side panel that will be used to display
board details
app.module: The Angular 2 component registration module

The components that need to be copied into our current application are the
sidenav.component, the app.component, and the rightscreen.component. We will
leave the navbar.component and the app.module files as they are for the time being.

Compiling the application at this stage will produce the following error:

app/app.component.ts(11,14): error TS2420: Class 'AppComponent'
incorrectly implements interface 'IMediatorImpl'.
Property 'showLoginPanel' is missing in type 'AppComponent'.

Remember that we have updated the IMediatorImpl interface to include two new
functions, named showLoginPanel and hideLoginPanel, so these functions will need to
be implemented in the app.component.ts file.

Let's Get Our Hands Dirty

[487]

Before we run the application to see if it works, we will need to make a few minor tweaks
here and there. Firstly, we need to update the app.module.ts file to register our
components for use within the HTML, as follows:

 // existing imports
 import { LoginComponent } from './login.component';
 import { SideNavComponent } from './sidenav.component';
 import { RightScreenComponent } from './rightscreen.component';

 @NgModule({
 imports: [BrowserModule, HttpModule, FormsModule],
 declarations: [
 AppComponent,
 NavbarComponent,
 LoginComponent,
 SideNavComponent,
 RightScreenComponent,
],
 bootstrap: [AppComponent]
 })
 export class AppModule { }

Here, we have imported the SideNavComponent and RightScreenComponent, and then
included them in the declarations array of the AppModule class. Remember that in order to
use any of our components within HTML files, we need to declare them first. This allows us
to use <sidenav-component> and <rightscreen-component> tags in our
app.component.html file.

Lastly, we will need to include font-awesome in our package.json file, and update our
angular-cli.json file to include the font-awesome.min.css file.

With these changes in place, we can fire up our application, and we will now have the
original left-to-right panel implementation working within our Node application, as
follows:

Let's Get Our Hands Dirty

[488]

JSON data structure
With our basic application shell in place, we can now concentrate on the data structure that
we will use to show both the board list on the main panel, and the board detail view on the
right-hand side detail panel. A class diagram of this relationship is as follows:

Here we start with the ManufacturerList object that contains an array of Manufacturer
objects. Each Manufacturer object has three properties. Firstly, a manufacturer property,
which contains the name of the manufacturer, and secondly a manufacturer_logo
property, which will contain the name of the image to render as the manufacturer's logo.
The third property is named boards, and it contains an array of Board items.

Let's Get Our Hands Dirty

[489]

Each Board item contains a name, description, image, and long_description
property, as well as the manufacturer name and manfufacturer_logo properties from
its parent. The Board item contains two array elements, named board_types and sizes.
The board_types array will contain a list of strings that hold the type of board.

Remember that any particular board could be a hybrid between a Wave board and a
Freestyle board, for example, so we need an array to hold this relationship. The sizes
array contains a list of the BoardSize elements, each with a length, volume, and width
property, along with a sail_max and sail_min property to hold minimum and maximum
sail sizes for each board.

Note that the names of the classes in this diagram are not relevant at this stage; it is only the
structure that is important.

This structure can be represented in JSON format, as follows:

 "manufacturer": "JP Australia",
 "manufacturer_logo": "jp_australia_logo.png",
 "boards": [
 {
 "name": "Radical Quad",
 "board_types": [{ "board_type": "Wave" }],
 "manufacturer": "JP Australia",
 "manufacturer_logo": "jp_australia_logo.png",
 "description": "Radical Wave Board",
 "image": "jp_windsurf_radicalquad_ov.png",
 "long_description": "There is no question",
 "sizes": [
 { "volume": 68,
 "length": 227, "width": 53,
 "sail_min": "< 5.0", "sail_max": "< 5.2" }
]
 }

Here, we have an extract of the JSON structure used to represent a single manufacturer,
along with the boards that it produces. This structure matches our preceding class diagram.

Class diagrams of JSON data structures are a very handy reference
material when working within a team-based structure, and to help
understand the capabilities of the system. It is far easier for business
analysts and even fellow developers to refer to a class diagram than it is to
trawl through reams of JSON data to understand data structures. If you
are working with complex, nested structures within your application, then
try to generate these sorts of diagrams from your code for consumption by
the rest of the team.

Let's Get Our Hands Dirty

[490]

We can now create an Express JSON endpoint to serve this JSON data to our application
within the /routes/index.ts file, as follows:

 router.get('/boards', (req, res, next) => {
 res.json(
 [
 {
 "manufacturer": "JP Australia",
 "manufacturer_logo": "jp_australia_logo.png",
 "logo_class" : "",
 "boards": [
 {
 // the rest of the JSON structure

Here, we have created a REST endpoint named '/boards' to simply return the JSON data
structure.

Data structures like this would normally be served from a database or
object store of some sort. For simplicity, we are currently returning a hard-
coded JSON data structure.

Our application will need to consume this JSON data structure, so let's create a TypeScript
file that describes this structure as a set of interfaces, in a file named IBoardList.ts, as
follows:

 export interface IBoardSizeItem {
 volume: number;
 length: number;
 width: number;
 sail_min: string;
 sail_max: string;
 }
 export interface IBoardType {
 board_type: string;
 }
 export interface IBoardListItem {
 name: string;
 description?: string;
 image?: string;
 long_description?: string;
 board_types?: IBoardType [];
 sizes?: IBoardSizeItem [];
 }
 export interface IManufacturer {
 manufacturer: string;
 manufacturer_logo: string;

Let's Get Our Hands Dirty

[491]

 boards?: IBoardListItem[];
 }

Here, we have created a set of interfaces to match our JSON data structure, as documented
in the class diagram.

The BoardList component
With our REST endpoint in place to serve the list of manufacturers and boards, we can now
start building the Angular component that will render the list of boards on the main panel.
This component will be named boardlist.component, and it will have a corresponding
.ccs and .html file. The boardlist.component.ts file is as follows:

 import { Component, Injectable, EventEmitter, Output }
 from '@angular/core';
 import { Http, Response, Headers, RequestOptions }
 from '@angular/http';
 import { Observable } from 'rxjs/Rx';
 import {
 IBoardSizeItem,
 IBoardType,
 IBoardListItem,
 IManufacturer
 } from './IBoardList';
 @Component({
 selector: 'boardlist-component',
 templateUrl: './app/boardviews/boardlist.component.html',
 styleUrls: ['app/boardviews/boardlist.component.css']
 })
 @Injectable()
 export class BoardListComponent {
 manufacturerList: IManufacturer [];
 constructor(private http: Http) {
 console.log(`BoardListComponent constructor`);
 this.http.get('/boards')
 .map(res => res.text())
 .subscribe(
 (data) => {
 let jsonResponse = JSON.parse(data);
 this.manufacturerList = jsonResponse;
 },
 err => {
 console.log(`error : ${err}`);
 },
 () => {
 console.log(`success`);

Let's Get Our Hands Dirty

[492]

 }
);
 }
 }

We start by importing the relevant modules that we need from '@angular/core',
'@angular/http', 'rxjs/Rx', and our newly created interfaces from 'IBoardList'.

The BoardListComponent class is decorated by the @Component decorator, and it specifies
the selector, templateUrl, and styleUrls properties as per usual. It is also decorated
with the @Injectable() decorator in order to inject the Http component as part of the
constructor. This class has a single property named manufacturerList that will house the
JSON data structure that is fetched from the REST endpoint.

The constructor function uses the Angular Http module to connect to our REST endpoint
named '/boards', and if successful, it will set the manufacturerList property to the
JSON data structure that is returned.

This class is no different to any REST enabled class that we have seen before, and so the
code should be pretty self-explanatory.

Unit testing HTTP requests
As we are trying to follow a test-driven development methodology for building
components for our application, let's take the time to write a set of unit tests for this
BoardListComponent class.

Our class constructor contains some internal logic that we would like to write a unit test for.
Firstly, it issues an HTTP request to a REST endpoint. Secondly, if this request was
successful, it will store the returned data structure into a property named
manufacturerList. Our unit test, therefore, will need to accomplish the following:

Set up a mock REST endpoint to be called during the unit test
Allow us to modify the JSON that is returned to the component
Inject this mock endpoint into the component
Ensure that the internal properties that house this data are correctly assigned

Let's Get Our Hands Dirty

[493]

Mocking Angular's Http module
Let us therefore create a new test, in the /src/tests/ directory named
boardlist.component.spec.ts, as follows:

 import { DebugElement } from '@angular/core';
 import { async,
 ComponentFixture,
 TestBed,
 inject } from '@angular/core/testing';
 import { By } from '@angular/platform-browser';
 import { Http,
 BaseRequestOptions,
 Response,
 Headers,
 RequestOptions,
 ResponseOptions } from '@angular/http';
 import { MockBackend, MockConnection } from '@angular/http/testing';
 import { BoardListComponent } from '../app/boardlist.component';
 describe('src/tests/boardlist.component.spec.ts', () => {
 it('should connect to a mock http provider', () => {
 expect(true).toBeFalsy();
 });
 });

Here, we are importing a number of modules from the '@angular/core',
'@angular/core/testing', '@angular/platform-browser',
'@angular/http/testing', and '@angular/http' modules. We will not go through
these in detail at this point, but we will use these modules when we construct the complete
test itself.

We are also importing the BoardListComponent class itself, and have written a simple
sanity test to ensure that the test is picked up by our Karma test environment, and is
purposely failing.

With a failing test in place, we can now start to flesh out the mock HTTP request handler.
Remember that we want to be able to inject the data that is return by the HTTP request
handler as part of each test, so that we can build a full suite of tests for our component.
Some of these tests will be edge-case tests, and may throw exceptions, or return invalid
JSON. Writing edge-case tests like these helps to insulate our application when errors occur.
In other words, what happens when the REST endpoint is unavailable? How will the
component react?

Let's Get Our Hands Dirty

[494]

Building a mock HTTP request handler in an Angular test environment is accomplished in
two phases. Firstly, we need to register a mock HTTP handler with the Angular
dependency injection framework, and secondly, we need to specify the JSON that this
handler will return within our test.

Our mock HTTP registration is written in the beforeEach function, as follows:

 beforeEach(async(() => {
 TestBed.configureTestingModule(
 {
 declarations : [BoardListComponent],
 providers : [
 MockBackend,
 BaseRequestOptions,
 {
 provide: Http,
 useFactory: (
 instance: MockBackend,
 options: BaseRequestOptions
) => {
 return new Http(
 instance,
 options
);
 },
 deps: [
 MockBackend,
 BaseRequestOptions
]
 }
]
 }
)
 .compileComponents();
 }));

This seems like a fairly confusing block of code, so let's take a look at it inside-out. In other
words, let's focus on the deepest block of code in this nested code block, and then work our
way outside from this point. If we use this technique, then the code block becomes more
understandable.

Let's Get Our Hands Dirty

[495]

We are mocking the Http object that will be injected into the BoardListComponent by the
Angular DI framework. However, in order to create an instance of an Http object, we need
two things–an instance and some base options. This can be seen in the innermost call, as
follows:

 return new Http(
 instance,
 options
);

The instance and options objects that are used here are passed into the enclosing
useFactory function, as follows:

 useFactory: (
 instance: MockBackend,
 options: BaseRequestOptions
) => {
 // return new Http
 }

The instance and options parameters that are used by this function are, in fact, provided
by the dependency injection framework, and are therefore named as dependencies by the
deps property, as follows:

 deps: [
 MockBackend,
 BaseRequestOptions
]

Then, the useFactory function is providing an instance of the Http interface, and
therefore has a provide property, as follows:

 provide: Http

This useFactory configuration must be registered as a provider for our tests, and therefore
is included in the providers property, as follows:

 providers : [
 MockBackend,
 BaseRequestOptions,
 {
 provide: Http

Let's Get Our Hands Dirty

[496]

The dependency injection framework must also know which class instance to inject these
providers into, and this is specified by the declarations property, as follows:

 declarations : [BoardListComponent],
 providers : [
 MockBackend,

Finally, the declarations and providers properties are used by the call to
TestBed.configureTestingModule.

This entire code block, therefore, can be described as a series of steps, as follows:

Call the TestBed.configureTestingModule function, passing in a
configuration object
Use the declarations property to determine which object needs dependencies
injected into it
Use the providers property to declare which objects will be available for
dependency injection
If one of the providers specifies a provide property, then use this as the interface
for injection
If one of the providers specifies a useFactory function, then call this function
to create an instance of the interface for injection
If one of the providers specifies a deps property, then use these as dependencies
to the useFactory method

Simple, right? Well, not really, but this is the nature of Angular's DI framework.

Using the mock Http module
With our beforeEach function in place, we can now focus on the test itself, which is as
follows:

 it('should connect to a mock http provider',
 async(
 inject (
 [MockBackend],
 (mockBackend : MockBackend) => {
 // configure response
 mockBackend.connections
 .subscribe((conn : any) =>
 {
 conn.mockRespond(
 new Response(new ResponseOptions(

Let's Get Our Hands Dirty

[497]

 { body: JSON.stringify(
 []
)}
)));
 }
); // end of subscribe function
 let fixture =
 TestBed.createComponent(BoardListComponent);
 let boardListInstance = fixture.componentInstance;
 expect(boardListInstance.manufacturerList)
 .toBeDefined();
 } // end of test block
) // end of inject function
) // end of async function
); // end of it function

Again, this code block seems rather complicated, so let's take a look at the inner-most code,
and work our way outward. The test starts with a call to the
mockBackend.connections.subscribe function. This function is setting up the JSON
response to return through our MockBackend instance, and it will return the JSON object
within the JSON.stringify function, which in this case is an empty array.

Once this JSON response has been constructed, we can create an instance of the
BoardListComponent class by calling the TestBed.createComponent function. The
returned value of this function is stored in the fixture variable. To access the actual
instance of the BoardListComponent, we must use the componentInstance property of
the fixture variable. Once we have a handle to the fixture.componentInstance, we
can interrogate the manufacturerList property and ensure that it is not undefined, in
other words, that it has been initialized.

Remember that our BoardListComponent class will only create the manufacturerList
property when a valid JSON response is received from the REST endpoint. This means that
our test is checking that the HTTP response is valid, by testing whether the
manufacturerList property is defined.

The mockBackend object is created through the Angular dependency injection pipeline, and
therefore needs to be wrapped in a call to the inject function. This inject function has
the same syntax as the require function that we used for module loading, and it is called
with an array of interfaces to inject, and a callback function that receives concrete
implementations of these interfaces.

Let's Get Our Hands Dirty

[498]

The inject function is then wrapped as an async function within our Jasmine test.

Now that we have the basics of a mocked Http module, let's create a new test that returns
the actual JSON that we are expecting from our REST endpoint. In the interests of brevity,
the only changes to this test are to return an updated JSON object, as follows:

 { body: JSON.stringify(
 [
 {
 manufacturer: 'test',
 boards : [
 { name : 'test1'},
 { name : 'test2'}
]
 }
]
)}

Here, we have modified the JSON response to return a single Manufacturer object within
it that has two associated boards. Our test for this JSON response is as follows:

 let fixture = TestBed.createComponent(BoardListComponent);
 let boardListInstance = fixture.componentInstance;
 expect(boardListInstance.manufacturerList.length).toBe(1);
 expect(boardListInstance.manufacturerList[0].boards.length).toBe(2);

Here, we are interrogating the manufacturerList property to ensure that it contains a
single element, and are then checking the boards property to ensure that it contains two
sub elements.

Rendering the board list
Now that we have a set of unit tests that test the internal logic of the
BoardListComponent, and ensures that it will load the list of manufacturers from our
REST endpoint, we can turn our attention to rendering the HTML within the main panel.
This will entail updating our boardlist.component.html template, as follows:

 <div *ngFor="let manufacturer of currentList">
 <div *ngFor="let board of manufacturer.boards" >
 <div class="col-sm-4 board_panel"
 (click)="boardClicked(board)">
 <div class="board_inner_panel">
 <!-- board template -->
 <!-- refer to sample code -->
 {{board.name}}

Let's Get Our Hands Dirty

[499]

 {{board.description}}
 <table>
 <tr *ngFor="let size of board.sizes">
 <td>{{size.volume}}</td>
 </tr>
 </table>
 </div>
 </div>
 </div>
 </div>

This HTML template (which has been truncated for brevity) includes three divs that use
the Angular *ngFor syntax for looping through array elements. The first *ngFor is looping
through the currentList property of the BoardListComponent class, and using the
variable manufacturer to reference each array element. Within this loop is the second
*ngFor directive that is looping through the boards array for each element in the
manufacturer array. The third *ngFor loop is rendering a <tr> element to render the
volume property of the board.sizes array.

These *ngFor loops in our HTML template correspond to the data structure that is returned
from our REST endpoint.

For the full source code for this HTML template, and the CSS styles that
are used in the boardlist.component.css file, please refer to the
sample code download included with this book purchase.

Applying some CSS styles in the boardlist.component.css file renders the board list on
the main page, as follows:

Let's Get Our Hands Dirty

[500]

The BoardListComponent class rendering the board list

Testing UI events
With the basics of the board list done, we can now turn our attention to displaying the
detail panel when a user clicks on a board in the board list. As we have done in earlier
chapters, we will use Angular's EventEmitter class to emit an event from the boardlist
component that will be picked up by the app component. When this event is received, it
will trigger a state change via the Mediator class to move to the detail panel. We already
have a click handler registered in the boardlist HTML file, as follows:

 <div *ngFor="let board of manufacturer.boards" >
 <div class="col-sm-4 board_panel"
 (click)="boardClicked(board)">

Let's Get Our Hands Dirty

[501]

Here, within the *ngFor loop for the boards array, we have registered a boardClicked
event that will raise an event. This event uses the entire board object as a parameter to the
boardClicked event handler. Our event handler is therefore rather simple, as follows:

 @Output() notify: EventEmitter<IBoardListItem>
 = new EventEmitter<IBoardListItem>();
 boardClicked(board: IBoardListItem) {
 console.log(`clicked: ${board.name}`);
 this.notify.emit(board);
 }

Here, we have registered an Angular EventEmitter named notify using the @Output()
property decorator. Note how the EventEmitter is using the IBoardListItem interface
as the model for the event. Our earlier EventEmitter implementations have previously
used simple strings, but here we are now using a more complex model.

So how do we write a unit test for this event ? The answer is relatively simple. All we need
to do is subscribe to this event in our test code, and then simulate a DOM click event on one
of the board elements. Our test is therefore as follows:

 it('should raise an event when a board has been clicked',
 async(
 inject (
 [MockBackend],
 (mockBackend : MockBackend) => {
 // configure response
 mockBackend.connections.subscribe(
 (conn : any) =>
 {
 conn.mockRespond(
 new Response(new ResponseOptions(
 { body: JSON.stringify(
 [
 {
 manufacturer: 'test',
 boards : [
 { name : 'test1'},
 { name : 'test2'}
]
 }
]
)}
)));
 }
); // end of subscribe function
 let fixture =
 TestBed.createComponent(BoardListComponent);

Let's Get Our Hands Dirty

[502]

 fixture.detectChanges();
 let boardItem =
 fixture.debugElement.query(
 By.css('.board_panel'));
 expect(boardItem).toBeDefined();
 let eventEmitted : IBoardListItem;
 let component = fixture.componentInstance;
 component.notify.subscribe(
 (event: IBoardListItem) => {
 eventEmitted = event;
 });
 boardItem.triggerEventHandler('click', null);
 expect(eventEmitted).toBeDefined();
 } // end of test block
) // end of inject function
) // end of async function
); // end of it function

The first part of this test is setting up the JSON response, with a single manufacturer and
two boards, as we have discussed earlier. Our test begins by creating an instance of the
BoardListComponent. Once this has been done, we then call the
fixture.detectChanges function. This function call is required in order to update the
DOM within our test suite. Once the DOM has been updated, we can then call the
fixture.debugElement.query function to search through the DOM for a particular
HTML element. In this case, we are simply looking for the first div that has a class named
board_panel. This is the element that we will trigger a click event on.

The next part of the test defines a variable named eventEmitted to hold the
IBoardListItem object that will be sent as part of the event handler. We then get a handle
to the actual instance of the BoardListComponent class through the
fixture.componentInstance property, as we have done previously.

Our test then calls the subscribe function on the notify property of the
BoardListComponent class, which will register an event handler within our test. This
event handler simply assigns the event that was raised to our local eventEmitted property
for interrogation later.

Let's Get Our Hands Dirty

[503]

We then call the triggerEventHandler function on the DOM element itself. This call is
simulating a DOM click event, which will then raise an event through our event handler.
Finally, we are checking that the event itself has been raised correctly, and that the name of
the board within the event matches the expected JSON value.

We now have a series of tests for our BoardListComponent class that covers its entire life
cycle, from loading JSON from the backend, to rendering elements in the browser, and
handling of DOM events. The techniques used in these tests can easily be extended for all of
the other components within the application.

Board detail view
Now that our application is raising click events on the main panel, we can turn our
attention to handling this event in the app component, and calling the Mediator class to
change application state, and show the board detail page. This is as simple as updating the
app.component.html file to trap the event itself, as follows:

 <div class="main-content">
 <boardlist-component
 (notify)='onNotifyBoardList($event)'>
 </boardlist-component>
 </div>

Here, we have specified that the onNotifyBoardList event handler should be called when
an event is raised from the boardlist component. The function within our app component
is as follows:

 onNotifyBoardList(board: IBoardListItem) {
 this.rightScreen.board = board;
 this.mediator.moveToState(StateType.DetailPanel);
 }

Here, we are simply setting the board property of the rightScreen component to the
value that was raised in the event. We then call the Mediator class to move to the
DetailPanel state.

Let's Get Our Hands Dirty

[504]

Our rightScreen component does not have a board property as of yet, so let's update this
component and the HTML file to render a board detail panel. Our update to the
rightscreen component is a simple one-liner, as follows:

 export class RightScreenComponent
 {
 board: IBoardListItem = { name: 'no board selected'};
 // existing code

Here, we have simply added a public property named board of type IBoardListItem to
hold the currently selected board. Our HTML template can then be updated, as follows:

 <div id="myRightScreen" class="overlay">
 <button class="btn btn-default" (click)="closeClicked()">

 </button>
 <div class="overlay-content">
 <!--various styling -->
 {{board.name}}
 <!--various styling-->
 {{board.description}}
 <!--various styling-->
 <tr *ngFor="let size of board.sizes">
 <td>{{size.volume}}</td>
 <td>{{size.width}}</td>
 </tr>
 </div>
 </div>

Here, we have added a few properties within the overlay-content <div>, and also have
an *ngFor loop to render each of the details of the sizes array.

Note again that this is not the full HTML content, so please refer to the
sample code.

Let's Get Our Hands Dirty

[505]

With a little CSS in place, our detail view now comes to life, as follows:

Applying a filter
With the board list and detail views completed, we can now turn our attention to the
sidenav component that will show our filter options. Before we filter items, however, we
need to define a few interfaces to cover the data structure that we will use for our filter
elements, as follows:

 export enum FilterType {
 Manufacturer,
 BoardType,
 None
 }
 interface IFilter {
 filterName: string;
 filterType: FilterType;

Let's Get Our Hands Dirty

[506]

 filterValues?: string [];
 }

 export interface IApplyFilter {
 filterType: FilterType;
 filterValue : string;
 }

Here, we have defined an enum named FilterType that represents the type of filter that
we are applying. Remember that we want to be able to filter our board list by either
Manufacturer or BoardType, hence the Manufacturer and BoardType enum values. We
will also need an enum value that represents no filters, which will in effect clear any
currently applied filter, hence the enum value of None.

The IFilter interface is the data structure that we will use to render the HTML. It has a
filterName property, which will be the top level header, a filterType property, and
then a simple array of available filter values.

The IApplyFilter interface is what will be used when we raise an event from this
component. It just has a filterType and a filterValue property to represent the filter
that was selected.

In order to render these filters within our SideNavComponent class, we will just need a few
minor changes, as follows:

 export class SideNavComponent {
 @Output() notify: EventEmitter<IApplyFilter>
 = new EventEmitter<IApplyFilter>();
 filterList: IFilter [] = [
 {
 filterName: 'Manufacturer',
 filterType: FilterType.Manufacturer,
 filterValues: ['RRD', 'JP Australia', 'Starboard']
 },
 {
 filterName: 'Board Types',
 filterType: FilterType.BoardType,
 filterValues: ['Wave', 'Freestyle', 'Slalom']
 },
 {
 filterName: 'All',
 filterType: FilterType.None,
 filterValues: ['Clear Filter']
 }
]
 closeNav() {

Let's Get Our Hands Dirty

[507]

 document.getElementById('mySidenav')
 .style.width = "0px";
 }
 showNav() {
 document.getElementById('mySidenav')
 .style.width = "250px";
 }
 }

Here, we have updated the SideNavComponent class to emit an event of type
IApplyFilter, through the standard Angular event emission syntax. We have then
defined a property named filterList, of type IFilter [] that is used to hold the data
structure for our filter elements.

We could have created a JSON endpoint within our Express application to
serve this data structure, but for the sake of brevity, we will just include
the data structure directly.

We can now update the sidenav.component.html file, as follows:

 <div id="mySidenav" class="sidenav">
 <h1>Apply Filter :</h1>
 <div *ngFor="let filter of filterList;">
 <div class="filterHeader">{{filter.filterName}}</div>
 <div *ngFor="let filterValue of filter.filterValues" >
 <a href="#"
 (click)= "filterClicked(filter, filterValue)">
 {{filterValue}}

 </div>
 </div>
 </div>

Here, we have two *ngFor loops within the template to loop through the filterList
array, and then to loop through the filterValues array of each array element.

Let's Get Our Hands Dirty

[508]

The interesting piece of this template, however, is the click event handler. Note how it is
raising an event that takes two parameters. The first parameter is the parent filter from the
outer *ngFor loop, and the second parameter is the filterValue from the inner *ngFor
loop.

The implementation of this filterClicked function therefore must include both
parameters, as follows:

 filterClicked(filter: IFilter, filterValue: string) {
 this.notify.emit(
 {
 filterType : filter.filterType,
 filterValue: filterValue
 });
 }

Here, the filterClicked event handler does indeed have two parameters–the first of the
IFilter type, and the second of the string type. As the first parameter is the full
IFilter type, we can therefore interrogate the filterType value of this parameter to
determine the filter type that was selected.

With this information at hand, we raise a new event that is of type IApplyFilter, which
includes both the filterType and the filterValue.

We can now listen for this event in our app component HTML, as follows:

 <sidenav-component (notify)='onNotifyFilter($event)'>
 </sidenav-component>

And implement the event handler in our app component itself, as follows:

 onNotifyFilter(filter: IApplyFilter) {
 this.boardList.applyFilter(filter);
 }

Here, we are simply calling the applyFilter function on the boardList component when
we receive the event. Currently, however, we have not registered the
BoardListComponent class as a view child, so we will need to do this in our
AppComponent class, as follows:

 @ViewChild(BoardListComponent)
 private boardList: BoardListComponent;

Let's Get Our Hands Dirty

[509]

And finally, we need the implementation of the applyFilter function on the boardlist
component, as follows:

 applyFilter(filter: IApplyFilter) {
 this.currentList = new Array();
 if (filter.filterType == FilterType.Manufacturer) {
 for (let manuf of this.manufacturerList) {
 if (manuf.manufacturer == filter.filterValue) {
 this.currentList.push(manuf);
 }
 }
 }
 // code for board type filter
 if (filter.filterType == FilterType.None) {
 this.currentList = this.manufacturerList;
 }
 }

Here, we have the definition of the applyFilter function, which takes a single argument
of the IApplyFilter type. The first thing that this function does is clear the currentList
property, which is currently holding the entire (unfiltered) board list. If the filterType
being passed in is of the Manufacturer type, then we loop through the master list
(this.manufacturerList), and only copy the manufacturers into the current list that
match the filter value.

If we are clearing the filter, then all we need to do is set the currentList property to the
original copy of the master list, that is, this.manufacturerList.

We have not shown the code for the filter on BoardType in this snippet, as
it generally follows the same pattern as the Manufacturer filter. Except
that it drills down into each board type to filter the board array based on
board type. Again, please refer to the sample code for a full listing.

With these changes in place, opening the side navigation bar and selecting a filter will apply
this filter to the current board list, as follows:

Let's Get Our Hands Dirty

[510]

Board list with a filter applied

The login panel
The final change that we will need to make is to show the login panel when a user clicks on
the Login button on the navigation bar. To get this working, we already have most of the
elements in place, and therefore simply need to wire up a couple of event handlers in the
right places.

Firstly, we will need to react to a click event on the navigation bar itself. This means that we
need a click handler within the navbar component, as follows:

 navClicked(item : IButtonName) {
 this.notify.emit(`${item.ButtonName}`);
 }

This event handler simply raises an event to say that one of the navigation bar items has
been clicked, and includes the button name.

Let's Get Our Hands Dirty

[511]

We will also need to register for this event in the app component, by updating the HTML as
follows:

 <navbar-component (notify)='onNotifyNavbar($event)'>
 </navbar-component>

Here, we have defined a function named onNotifyNavbar as a handler for a notification
event. The implementation of this is fairly simple, as follows:

 onNotifyNavbar(message:string) {
 if (message == "Login") {
 this.mediator.moveToState(StateType.LoginPanel);
 }
 }

Here, we are simply checking that the message has come from the "Login" button, and if
so, are we calling the Mediator class to move to the LoginPanel state. Remember that this
will trigger a call to either the showLoginPanel or the hideLoginPanel function in the
app component. The implementation of these functions is as follows:

 showLoginPanel() {
 document.getElementById('loginPanel')
 .classList.remove('login_sidenav_fade');
 document.getElementById('loginPanel')
 .style.visibility = "visible";
 };
 hideLoginPanel() {
 document.getElementById('loginPanel')
 .classList.add('login_sidenav_fade');
 setTimeout(() => {
 document.getElementById('loginPanel')
 .style.visibility = "hidden";
 }, 1000);
 };

The showLoginPanel function is removing the login_sidenav_fade CSS class, and then
setting the visibility attribute to "visible". The hideLoginPanel function is doing
the exact opposite, but is also setting a one second timeout before setting the visibility
attribute. This is done so that we get a nice fade-out animation when the login panel is
hidden.

Let's Get Our Hands Dirty

[512]

Our event handler is currently only showing the login panel, so we now need to hide it
when the user logs in successfully. Again, this is a simple matter of raising an event in the
login component, as follows:

 this.http.post('/login', jsonPacket , {
 headers: headers
 })
 .map(res => res.text())
 .subscribe(
 data => data,
 err => {
 console.log(`error : ${err}`);
 },
 () => {
 console.log(`success`);
 this.notify.emit("LOGIN_SUCCESSFUL");
 }
);

Here, we have added a notify.emit function call when the REST endpoint returns
successfully, to raise the event that will trigger the hideLoginPanel function call. Again,
we will need to register for this event in the app component, as follows:

 onNotifyLogin(message: string) {
 this.mediator.moveToState(
 this.mediator.getCurrentMainWindowState());
 }

Here, we are simply calling the Mediator class to move to the current main window state.
This function has not been implemented in our Mediator class as of yet, so let's update it to
be able to store the current state of the main window before the login overlay was shown, as
follows:

 export class Mediator {
 // exising variables
 private _mediatorImpl: IMediatorImpl;
 private _mainWindowState: Istate;
 getCurrentMainWindowState() : StateType {
 return this._mainWindowState.getStateType();
 }

Let's Get Our Hands Dirty

[513]

Here, we have created a new private variable named _mainWindowState, and defined the
getCurrentMainWindowState function to return this value. We will also need to update
our moveToState function slightly, in order to store this value at the correct time, as
follows:

 moveToState(stateType: StateType) {
 var previousState = this._currentState;
 var nextState = this.getStateImpl(stateType);
 if (nextState.isLoginVisible()) {
 this._mediatorImpl.showLoginPanel();
 this._mainWindowState = previousState;
 }
 else {
 this._mediatorImpl.hideLoginPanel();
 // existing state logic
 }
 this._currentState = nextState;
 if (this._currentState.getPanelType() == PanelType.Primary) {
 this._currentMainPanelState = this._currentState;
 }
 }

Our change to the moveToState function is to check whether the nextState we need has
the login panel visible or not. If it does, we must store the current state of the main window
in our _mainWindowState variable. If it does not, then we continue processing as per
normal. This change will allow us to show the login panel as an overlay no matter what the
state of the current main panel is. In other words, we can be on the detail panel and then
click on the Login button, and the application will respond correctly, as shown in the
following screenshot:

Let's Get Our Hands Dirty

[514]

The login overlay panel showing when in detail view

Our work with the sample application is complete.

Application architecture
If we look back at the work we have done on the sample application, we will notice that the
architecture used is of sound quality. Our application is made up of a number of
independent components. Each of these components are dedicated to one single area of
responsibility. A navbar component, for example, is only responsible for rendering and
responding to events that occur within the navigation bar itself. This component
architecture was also evident when we merged components from previous chapters
together into a single, large application. Most of the components only needed a few minor
modifications, and were then ready for use.

Let's Get Our Hands Dirty

[515]

All of our components communicate through events, and are therefore loosely-coupled. The
app component itself is the event aggregator. It is responsible for listening to various
component events, and then coordinating the application state accordingly. Our state
handling code has also been encapsulated into the State and Mediator classes, and as we
have seen, this design pattern has helped immensely in simplifying our application code.

Summary
In this chapter, we have built a sample application by piecing together components from
earlier chapters. We started with a strong focus on unit testing, and built a test framework
that covers the main features of our application. Through this test framework, we can
simulate application state, simulate REST endpoint integration, and also simulate UI events
such as button clicks.

Most of the work in putting the sample application together was a matter of minor changes
to existing components, and wiring up application events correctly.

Hopefully, you have enjoyed the journey of building this sample application, and seeing the
various techniques that we have discussed in earlier chapters, put into practice. We have
finally arrived at an industrial strength, enterprise ready, TypeScript built single-page
Angular and Node application.

Index

@
@types
 using 190

A
abstract classes 107
acceptance tests 246
advanced types
 about 73
 null types 78
 object rest and spread 79
 type aliases 76
 type guards 74
 undefined types 78
 union types 74
AMD
 browser configuration 329
 code compilation 326
 module dependencies 331
 module setup 328
 module, loading 325
 Require configuration 329
Angular 2 application
 setting up 446
Angular 2 base application
 about 475, 476
 architecture 515
 board detail view 503
 board list, rendering 498
 BoardList component 491, 492
 filter, applying 505, 507, 509
 HTTP requests, unit testing 492
 JSON data structure 488, 489, 490
 login panel 510
 login screen state 482, 483, 484, 485
 panel integration 486, 487

 state Mediator tests 478, 479, 480, 481
 UI events, testing 500, 502
 unit testing 477, 478
Angular 2 components 449
Angular 2 pages
 serving 446
Angular 2 testing
 about 302
 application updates 303
Angular 2 website 446
Angular 2
 about 229
 data, posting 454
 DOM testing 307
 JSON, processing 452
 model tests 305
 models 230
 setting up 229
 test setup 304
 tests, rendering 306
 views 231
Angular events 232
Angular performance 232
Angular TypeScript compatibility 201
Angular's Http module
 mocking 493, 496
Angular
 $scope 199
 about 197
 classes 199
 versus Backbone 201
anonymous functions 63
any type 54
Apache Cordova 8
arrays
 defining 53
async keyword 153

[517]

asynchronous language
 features 145
Aurelia application
 creating 430
 serving 431
Aurelia components 435
Aurelia forms 439
Aurelia messaging 442
Aurelia pages
 in Node 432
Aurelia performance 224
Aurelia testing 290
Aurelia
 bootstrap 227
 compiling, with Node 430
 component view 292
 component view-model 290
 component, rendering 292
 components, building 290
 data, posting 441
 development considerations 224
 end-to-end tests 299
 events 228
 models 226
 naming conventions 293
 setting up 224
 test setup 294
 tests, rendering 296
 unit tests 295
 using 223
 views 226
automated tests 245
await errors 154
await keyword 153
await messages 156
await
 versus promises 155

B
Backbone application 221
Backbone testing
 about 278
 complex model tests 285
 complex models 278
 DOM event tests 288

 DOM event updates 281
 model tests 283
 rendering tests 286
 view updates 281
Backbone TypeScript compatibility 196
Backbone
 about 192
 CollectionView 220
 ECMAScript 5, using 196
 generic syntax, using 195
 inheritance, using with 192
 interfaces, using 194
 ItemView 218
 models 217
 page rendering performance 215
 setting up 217
 using 214
 versus Angular 201
basic types 45
benefits, TypeScript
 compiling 11
 encapsulation 15
 private accessors 17
 public accessors 17
 strongly typed 12
 type definitions 13
Board Sales application 473, 474, 475
Bower
 using 189
Brackets
 about 423
 installing 424

C
callback
 versus promises 150
class constructor overloads
 JavaScript syntax 175
class constructors 88
class decorators parameters 123
class functions
 about 88
 declaration file syntax 176
 JavaScript syntax 176
class inheritance

[518]

 example 102
class modifiers 93
class namespaces
 declaration file syntax 174
 JavaScript syntax 174
class properties
 about 85
 declaration file syntax 175
 JavaScript syntax 175
class property accessors 97
class resolution 410
classes
 about 85
 abstract classes 107
 creating, in ExtJS 203
 declaration file syntax 174
 JavaScript syntax 174
 protected class members 106
closures 17
concrete states 380
const enums 59
const values, TypeScript 60
constructor access modifiers 95
constructor injection 411
continuous integration build servers
 Jenkins 272
 Team Foundation Server (TFS) 271
 TeamCity 272
continuous integration
 benefits 270
 using 270
Controller 211

D
data-driven tests, Jasmine
 reference 253
declaration file
 interfaces 169
 union types 171
 writing 164
declaration syntax reference
 about 173
 class constructor overloads 175
 class definitions 174
 class functions 176

 class namespaces 174
 class properties 175
 function overrides 173
 function signatures 177
 functions, merging with modules 178
 global functions 177
 nested namespaces 174
 optional properties 177
 static properties and functions 176
decorator injection
 about 413
 class definition, using 413
 constructor parameters, passing 415
 dependency injection, using 418
 parameter types, finding 416
 properties, injecting 417
 recursive injection, using 419
decorator metadata
 about 131
 using 133
decorators factories 122
decorators
 about 119
 method decorators 127
 multiple decorators 121
 parameter decorators 130
 property decorators 125
 static property decorators 126
 syntax 120
DefinitelyTyped
 reference 15, 180
definition files
 downloading 180
dependency injection (DI) 197
dependency injection design pattern 408
dependency injector
 building 408
dependency inversion 365
duck typing 50

E
e-mail services
 configuration settings 401
ECMA-262 10
ECMAScript 10

[519]

ECMAScript 3.1 10
ECMAScript Harmony 10
Elevator Action
 reference 162
Embedded JavaScript (EJS) 159
Emmet
 used, for generating HTML 425
Enum resolution 409
enums 56
Espruino 8
explicit casting, TypeScript 55
Express React website 455
Express
 and React 456
 HTTP Request redirection 358
 modules, using with 347
 POST events 354
 routing 348
 setting up 345
 templating 350
 using, with Node 344
ExtJs
 about 202
 classes, creating in 203
 reference 202
 specific TypeScript compiler 206
 type casting, using 204

F
Factory Acceptance Testing (FAT) 402
Factory Design Pattern
 about 111
 business requisites 112
 Factory class 115
 IPerson interface 113
 Person class 113
 specialist classes 114
 working 112
for...in loop 53
for...of loop 53
function callbacks 68
function overloading 104
function overloads 72
function overrides
 about 173

 declaration file syntax 173
 JavaScript syntax 173
function return types 62
function signatures
 about 70
 declaration syntax 177
 JavaScript syntax 177
functions
 about 62
 anonymous functions 63
 default parameters 66
 optional parameters 64
 rest parameters 66
 static functions 98

G
Gang of Four (GoF) 362
generic classes
 instantiating 135
generic interfaces 142
generics
 about 134
 new objects, creating within 143
 syntax 135
 type of T, constraining 139
 type T, using 137
global functions
 declaration file syntax 177
 JavaScript syntax 177
global variables 159
Grunt
 reference 40
 using 40

H
Handlebars
 using 351
happy path 453
HTML
 JavaScript code blocks, using in 161

I
Immediately Invoked Function Expression (IIFE)

111

inferred typing 50

[520]

inheritance
 about 101
 Angular, versus Backbone 201
 class inheritance 102
 interface inheritance 102
 using, with Backbone 192
Integrated Development Environment (IDE) 40
integration test reporting 272
integration tests 246
interface compilation 84
interface function definitions 92
interface inheritance
 example 102
interface resolution 408
interface segregation 365
interfaces
 about 82
 implementing 86
 optional properties 83

J
Jasmine runners
 about 264
 Karma 266
 Protractor 267
 Testem 264
jasmine-reporters
 reference 272
Jasmine
 about 247
 asynchronous tests 258
 bootstrapping 344
 data driven tests 253
 DOM events 263
 done() method, using 260
 fixtures 261
 matchers 251
 reference 14, 247
 SpecRunner 248
 spies, using 255
 spies, using as fakes 258
 spying on callback functions 256
 test startup 252
 test teardown 252
 tests, writing 248

JavaScript 8
JavaScript closures 110
JavaScript code blocks
 using, in HTML 161
JavaScript definitions 13
JavaScript framework
 selecting 191
JavaScript typing 45
Jenkins 272
JetBrains 29
JSLint 12

K
Karma 266

L
let keyword 60
Liskov Substitution Principle (LSP) 365
local SMTP server
 using 404

M
mail
 sending 398
 sending, nodemailer used 398, 400
MaxUnit
 reference 247
Mediator interface
 implementation 389
Mediator pattern
 about 381
 reacting to DOM events 394
 using 393
method decorators
 about 127
 using 128
Mocha
 reference 247
mock Http module
 using 496, 497
Model 209
Model-View-Controller (MVC)
 about 208
 benefits 212
 Controller 211

[521]

 elements 212
 Model 209
 sample application outline 213
 View 209
modular code
 about 382
 child components 388
 Navbar component 383
 RightScreen component 385
 SideNav component 384
module keyword 167
module merging 172
module pattern 111
modules
 basics 319, 320
 default exports 324
 exporting 321
 importing 322
 renaming 323
 using, with Express 347
multiple decorators 122

N
namespaces 100
Navbar component 383
nested namespaces
 declaration file syntax 174
 JavaScript syntax 174
node-based compilation, TypeScript
 tsconfig.json file, creating 20
Node
 Aurelia, compiling with 430
 Express, using with 344
 reference 19
nodemailer
 used, for sending mail 398, 400
npm
 using 190
NuGet Package Manager
 package names, searching 185
 packages, installing 184
 specific version, installing 185
NuGet
 declaration files, installing 184
 Extension Manager, using 182

 Package Manager Console, using 184
 using 182
null types 77

O
object dependency 404
object-oriented principles
 about 363
 program to interface 363
 SOLID principles 364
objects
 creating, within generics 143
Open-Closed principle 364
optional properties
 declaration file syntax 177
 JavaScript syntax 177

P
Papercut 404
parameter decorators 130
Plain Old JavaScript Object (POJO) 209
promises
 about 145
 syntax 147
 using 148
 values, returning from 151
 versus await 155
 versus callback 150
property decorators 125
protected class members 106
Protractor 267

Q
QUnit
 reference 247

R
React application
 serving 457
React components
 about 462
 unit testing 312
React testing
 about 308

[522]

 DOM event tests 316
 model tests 313
 modifications 309
 multiple entry points 308
 view tests 314
React
 and Express 456
 bootstrapping 239
 data binding 468
 events 241
 JSON data, posting 470
 login panel component 466
 multiple package.json files 460
 setting up 234
 using 233
 views 236
readonly properties 96
reflection 134
Require config errors
 404 errors 336
 fixing 335
 incorrect dependencies 336
Require
 bootstrapping 335
 reference 337
REST endpoints
 consuming 465
RightScreen component 385

S
sample application
 modifying, for testability 277
 testing 276
Selenium
 about 268
 using 268
Service Location 405
Service Location anti-pattern 407
SideNav component 384
Simply Find Interface for the Any Type (S.F.I.A.T)

56

Single Page Applications (SPAs) 191
single responsibility pattern 364
SOLID principles
 dependency inversion 365

 interface segregation 365
 Liskov Substitution Principle (LSP) 365
 Open-Closed principle 364
 single responsibility principle 364
State pattern
 about 378
 concrete states 380
 interface 379
static functions
 about 98
 declaration file syntax 176
 JavaScript syntax 176
static properties
 about 99
 JavaScript syntax 176
static property decorators 126
structured data 162
super keyword 103
syntactic sugar, TypeScript 13
SystemJs
 browser configuration 338
 installing 338
 module dependencies 341
 module loading 337

T
Team Foundation Server (TFS) 271
TeamCity 272
test driven development (TDD) 244
testability
 sample application, modifying for 277
Testem
 about 264
 reference 265
third-party libraries
 using 190
TodoMVC project
 reference 191
tsUnit
 reference 247
type aliases 76
type guards 74
TypeScript definition 14
TypeScript IDEs
 about 19

 Microsoft Visual Studio 22
 node-based compilation 19
 other editors 40
 Visual Studio Code 34
 WebStorm 29
TypeScript typing 47
TypeScript
 about 9, 10, 13
 any type 54
 arrays 52
 benefits 11
 const enums 59
 const values 60
 duck typing 50
 enums 56
 explicit casting 55
 for...in loop 53
 for...of loop 53
 inferred typing 50
 syntactic sugar 13
 syntax 47
 template strings 52
Typings
 definition files, installing 187
 definition files, re-installing 188
 initialize 187
 installing 186
 packages, searching 186
 specific version, installing 188
 using 186

U
UI experience
 about 422
 Brackets, using 423
 Emmet, using 425
 login panel, creating 427
undefined types 77
union types 74

unit tests 245
user interface design
 about 365
 Angular 2 setup 368
 Bootstrap, using 370
 conceptual design 366
 overlay, creating 375
 side panel, creating 371, 375
 transitions, coordinating 377

V
values
 returning, from promises 151
variables
 exporting 325
View 210
Visual Studio Code
 about 34
 breakpoints, setting 37
 exploring 35
 installing 35
 launch.json file, creating 36
 sample project, building 36
 tasks.json file, creating 35
 web pages, debugging 37
Visual Studio project
 creating 22
 default project settings 25
Visual Studio
 debugging feature 27

W
WebStorm
 about 29
 debugging feature, in Chrome 33
 reference 29
 simple HTML application, building 31
 web page, running in Chrome 32

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: TypeScript - Tools and Framework Options
	Introducing TypeScript
	The ECMAScript standard
	The benefits of TypeScript
	Compiling
	Strong typing
	TypeScript's syntactic sugar

	JavaScript and TypeScript definitions
	DefinitelyTyped

	Encapsulation
	TypeScript classes generate closures

	Public and private accessors

	TypeScript IDEs
	Node-based compilation
	Creating a tsconfig.json file

	Microsoft Visual Studio
	Creating a Visual Studio project
	Default project settings
	Debugging in Visual Studio

	WebStorm
	Creating a WebStorm project
	Default files
	Building a simple HTML application
	Running a web page in Chrome
	Debugging in Chrome

	Visual Studio Code
	Installing VSCode
	Exploring VSCode
	Creating a tasks.json file
	Building the project
	Creating a launch.json file
	Setting breakpoints
	Debugging web pages

	Other editors
	Using Grunt

	Summary

	Chapter 2: Types, Variables, and Function Techniques
	Basic types
	JavaScript typing
	TypeScript typing
	Type syntax
	Inferred typing
	Duck typing
	Template strings
	Arrays
	for…in and for…of
	The any type
	Explicit casting
	Enums
	Const enums
	Const values
	The let keyword

	Functions
	Function return types
	Anonymous functions
	Optional parameters
	Default parameters
	Rest parameters
	Function callbacks
	Function signatures
	Function overloads

	Advanced types
	Union types
	Type guards
	Type aliases
	Null and undefined
	Object rest and spread

	Summary

	Chapter 3: Interfaces, Classes, and Inheritance
	Interfaces
	Optional properties
	Interface compilation

	Classes
	Class properties
	Implementing interfaces
	Class constructors
	Class functions
	Interface function definitions
	Class modifiers
	Constructor access modifiers
	Readonly properties
	Class property accessors
	Static functions
	Static properties
	Namespaces

	Inheritance
	Interface inheritance
	Class inheritance
	The super keyword
	Function overloading
	Protected class members
	Abstract classes
	JavaScript closures

	Using interfaces, classes, and inheritance – the Factory Design Pattern
	Business requirements
	What the Factory Design Pattern does
	The IPerson interface
	The Person class
	Specialist classes
	The Factory class
	Using the Factory class

	Summary

	Chapter 4: Decorators, Generics, and Asynchronous Features
	Decorators
	Decorator syntax
	Multiple decorators
	Decorator factories
	Class decorator parameters
	Property decorators
	Static property decorators
	Method decorators
	Using method decorators
	Parameter decorators
	Decorator metadata
	Using decorator metadata

	Generics
	Generic syntax
	Instantiating generic classes
	Using the type T
	Constraining the type of T
	Generic interfaces
	Creating new objects within generics

	Asynchronous language features
	Promises
	Promise syntax
	Using promises
	Callback versus promise syntax
	Returning values from promises
	Async and await
	Await errors
	Promise versus await syntax
	Await messages

	Summary

	Chapter 5: Writing and Using Declaration Files
	Global variables
	Using JavaScript code blocks in HTML
	Structured data

	Writing your own declaration file
	The module keyword
	Interfaces
	Union types

	Module merging
	Declaration syntax reference
	Function overrides
	Nested namespaces
	Classes
	Class namespaces
	Class constructor overloads
	Class properties
	Class functions
	Static properties and functions
	Global functions
	Function signatures
	Optional properties
	Merging functions and modules

	Summary

	Chapter 6: Third-Party Libraries
	Downloading definition files
	Using NuGet
	Using the Extension Manager
	Installing declaration files
	Using the Package Manager Console
	Installing packages
	Searching for package names
	Installing a specific version

	Using Typings
	Searching for packages
	Typings initialize
	Installing definition files
	Installing a specific version
	Re-installing definition files

	Using Bower
	Using npm and @types
	Using third-party libraries
	Choosing a JavaScript framework

	Backbone
	Using inheritance with Backbone
	Using interfaces
	Using generic syntax
	Using ECMAScript 5
	Backbone TypeScript compatibility

	Angular
	Angular classes and $scope
	Angular TypeScript compatibility

	Inheritance – Angular versus Backbone
	ExtJS
	Creating classes in ExtJS
	Using type casting
	ExtJS-specific TypeScript compiler

	Summary

	Chapter 7: TypeScript Compatible Frameworks
	What is MVC?
	The Model
	The View
	The Controller
	MVC summary
	The benefits of using MVC
	Sample application outline

	Using Backbone
	Rendering performance
	Backbone setup
	Backbone models
	Backbone ItemView
	Backbone CollectionView
	Backbone application

	Using Aurelia
	Aurelia setup
	Development considerations
	Aurelia performance
	Aurelia models
	Aurelia views
	Aurelia bootstrap
	Aurelia events

	Angular 2
	Angular 2 setup
	Angular 2 models
	Angular 2 views
	Angular performance
	Angular events

	Using React
	React setup
	React views
	React bootstrapping
	React events

	Summary

	Chapter 8: Test Driven Development
	Test driven development
	Unit, integration, and acceptance tests
	Unit tests
	Integration tests
	Acceptance tests

	Unit testing frameworks
	Jasmine
	A simple Jasmine test
	Jasmine SpecRunner
	Matchers
	Test startup and teardown
	Data driven tests
	Using spies
	Spying on callback functions
	Using spies as fakes
	Asynchronous tests
	Using done()
	Jasmine fixtures
	DOM events

	Jasmine runners
	Testem
	Karma
	Protractor
	Using Selenium

	Using continuous integration
	Benefits of CI
	Selecting a build server
	Team Foundation Server
	Jenkins
	TeamCity

	Integration test reporting

	Summary

	Chapter 9: Testing Typescript Compatible Frameworks
	Testing our sample application
	Modifying our sample for testability
	Backbone testing
	Complex models
	View updates
	DOM event updates
	Model tests
	Complex model tests
	Rendering tests
	DOM event tests
	Backbone testing summary

	Aurelia testing
	Aurelia components
	Aurelia component view-model
	Aurelia component view
	Rendering a component
	Aurelia naming conventions
	Aurelia test setup
	Aurelia unit tests
	Rendering tests
	Aurelia end-to-end tests
	Aurelia test summary

	Angular 2 testing
	Application updates
	Angular 2 test setup
	Angular 2 model tests
	Angular 2 rendering tests
	Angular 2 DOM testing
	Angular 2 testing summary

	React testing
	Multiple entry points
	React modifications
	Unit testing React components
	React model and view tests
	React DOM event tests

	Summary

	Chapter 10: Modularization
	Module basics
	Exporting modules
	Importing modules
	Module renaming
	Default exports
	Exporting variables

	AMD module loading
	AMD compilation
	AMD module setup
	Require configuration
	AMD browser configuration
	AMD module dependencies
	Bootstrapping Require
	Fixing Require config errors
	Incorrect dependencies
	404 errors

	SystemJs module loading
	SystemJs installation
	SystemJs browser configuration
	SystemJs module dependencies
	Bootstrapping Jasmine

	Using Express with Node
	Express setup
	Using modules with Express
	Express routing
	Express templating
	Using Handlebars
	Express POST events
	HTTP request redirection
	Node and Express summary

	Summary

	Chapter 11: Object-Oriented Programming
	Object-oriented principles
	Program to an interface
	SOLID principles
	Single responsibility
	Open closed
	Liskov substitution
	Interface segregation
	Dependency inversion

	User interface design
	Conceptual design
	Angular 2 setup
	Using Bootstrap
	Creating a side panel
	Creating an overlay
	Coordinating transitions

	The State pattern
	State interface
	Concrete states

	The Mediator pattern
	Modular code
	Navbar component
	SideNav component
	RightScreen component
	Child components
	Mediator interface implementation
	The Mediator class
	Using the Mediator
	Reacting to DOM events

	Summary

	Chapter 12: Dependency Injection
	Sending mail
	Using nodemailer
	Configuration settings
	Using a local SMTP server
	Object dependency
	Service Location
	Service Location anti-pattern
	Dependency injection

	Building a dependency injector
	Interface resolution
	Enum resolution
	Class resolution
	Constructor injection

	Decorator injection
	Using a class definition
	Parsing constructor parameters
	Finding parameter types
	Injecting properties
	Using dependency injection
	Recursive injection

	Summary

	Chapter 13: Building Applications
	The UI experience
	Using Brackets
	Using Emmet
	Creating a login panel

	An Aurelia website
	Node and Aurelia compilation
	Serving the Aurelia application
	Aurelia pages in Node
	Aurelia components
	Processing JSON
	Aurelia forms
	Posting data
	Aurelia messaging

	An Angular 2 website
	Angular setup
	Serving Angular 2 pages
	Angular 2 components
	Processing JSON
	Posting data

	An Express React website
	Express and React
	Serving the React application
	Multiple package.json files
	React components
	Consuming REST endpoints
	Login panel component
	React data binding
	Posting JSON data

	Summary

	Chapter 14: Let's Get Our Hands Dirty
	Board Sales application
	Angular 2 base application
	Unit testing
	State Mediator tests
	Login screen state
	Panel integration
	JSON data structure
	The BoardList component
	Unit testing HTTP requests
	Mocking Angular's Http module
	Using the mock Http module

	Rendering the board list
	Testing UI events
	Board detail view
	Applying a filter
	The login panel
	Application architecture

	Summary

	Index

