Nathan Rozentals

Mastering
TypeScript

Build enterprise-ready, industrial-strength web
applications using TypeScript and leading JavaScript

frameworks

L1 Packt

Mastering TypeScript

Second Edition

Build enterprise-ready, industrial-strength web applications
using TypeScript and leading JavaScript frameworks

Nathan Rozentals

BIRMINGHAM - MUMBAI

Mastering TypeScript
Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Second edition: February 2017
Production reference: 1210217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-871-0

www.packtpub.com

http://www.packtpub.com

Author

Nathan Rozentals

Reviewers
Guy Fergusson

Vilic Vane

Commissioning Editor

Kunal Parikh

Acquisition Editor

Nitin Dasan

Content Development Editor

Priyanka Mehta

Technical Editor

Abhishek Sharma

Credits

Copy Editor

Safis Editing

Project Coordinator

Izzat Contractor

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Graphics

Abhinash Sahu

Production Coordinator

Melwyn Dsa

About the Author

Nathan Rozentals has been building commercial software for over 26 years and
programming for a lot longer than that. Before the Internet even became a thing, he was
building statistical analysis programs on mainframes. Like many programmers at that time,
he helped save the world in the year 2000.

He has worked with and tried to master many object-oriented languages, starting by
implementing object-oriented techniques in plain old C. Having spent many years working
with C++, chasing obscure thread locking issues and recursive routines causing memory
leakage, he decided to simplify his life by embracing automatic garbage collection in Java
and then C#.

As the world moved from thick-client and n-tier to web technologies, his focus turned to
modern web programming, and so to JavaScript. In TypeScript, he found a language in
which he could bring all of the object-oriented design patterns he had learned over the
years to JavaScript.

If it were not for extreme programming techniques, agile delivery, test-driven development,
and continuous integration, he would have lost his mind many years ago.

When he is not programming, he is thinking about programming. To stop thinking about
programming, he goes windsurfing, plays soccer, or simply watches the professionals play
soccer. They are so much better at it than he is.

I would like to thank my partner, Kathy, for her support and unconditional love over the
past few years. Without you, I would not be in the great space that I am.

To Ayron and Dayna, it has been great seeing you guys grow up into mature young
adults. You are always in my thoughts.

To Matt, thanks for keeping us all laughing - everyone needs to see the lighter side of life.

To Mum, Dad, Rach, Tash, and Tam, thanks for your unwavering and whole-hearted
support — I truly appreciate all you have done for me.

Finally, to the great team at Vix, thanks for the many intense debates and discussions, and
for making work such a rewarding experience.

About the Reviewers

Guy Fergusson is a passionate web developer, open source contributor, and gamer. He has
built web applications for health, law enforcement, and the finance sector. He has worked
with the author building Typescript applications and is now an advocate of Typescript,
which he uses on a daily basis.

I would like to thank my beautiful family, my little girl, Grace, and my amazing wife,
Melisa.

Vilic Vane is a JavaScript engineer with over 8 years of experience in web development. He
started following the TypeScript project when it went public, and he is also a contributor

to the project. He is now working on frameworks, libraries, and apps written in TypeScript.
Vilic is the author of the book TypeScript Design Patterns.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

W Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/17864687109.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719
https://www.amazon.com/dp/1786468719

Table of Contents

Preface 1
Chapter 1: TypeScript - Tools and Framework Options 8
Introducing TypeScript 10
The ECMAScript standard 10
The benefits of TypeScript 11
Compiling 11

Strong typing 12
TypeScript's syntactic sugar 13

JavaScript and TypeScript definitions 13
DefinitelyTyped 15
Encapsulation 15
TypeScript classes generate closures 17

Public and private accessors 17
TypeScript IDEs 19
Node-based compilation 19
Creating a tsconfig.json file 20
Microsoft Visual Studio 22
Creating a Visual Studio project 22

Default project settings 25
Debugging in Visual Studio 27
WebStorm 29
Creating a WebStorm project 29

Default files 30

Building a simple HTML application 31

Running a web page in Chrome 32
Debugging in Chrome 32

Visual Studio Code 34
Installing VSCode 35
Exploring VSCode 35

Creating a tasks.json file 35

Building the project 36

Creating a launch.json file 36

Setting breakpoints 37

Debugging web pages 37

Other editors 40
Using Grunt 40
Summary 43
Chapter 2: Types, Variables, and Function Techniques 44

Basic types 45
JavaScript typing 45
TypeScript typing 46
Type syntax 47
Inferred typing 50
Duck typing 50
Template strings 52
Arrays 52
for...in and for...of 53
The any type 54
Explicit casting 55
Enums 56
Const enums 58
Const values 59
The let keyword 60

Functions 62
Function return types 62
Anonymous functions 63
Optional parameters 64
Default parameters 66
Rest parameters 66
Function callbacks 68
Function signatures 70
Function overloads 72

Advanced types 73
Union types 73
Type guards 74
Type aliases 76
Null and undefined 77
Obiject rest and spread 79

Summary 80

Chapter 3: Interfaces, Classes, and Inheritance 81

Interfaces 82
Optional properties 83
Interface compilation 84

Classes 85
Class properties 85
Implementing interfaces 86
Class constructors 88

[ii]

Class functions 88
Interface function definitions 92
Class modifiers 93
Constructor access modifiers 95
Readonly properties 96
Class property accessors 97
Static functions 98
Static properties 99
Namespaces 100
Inheritance 101
Interface inheritance 102
Class inheritance 102
The super keyword 103
Function overloading 104
Protected class members 106
Abstract classes 107
JavaScript closures 110
Using interfaces, classes, and inheritance — the Factory Design
Pattern 111
Business requirements 112
What the Factory Design Pattern does 112
The IPerson interface 113
The Person class 113
Specialist classes 114
The Factory class 115
Using the Factory class 116
Summary 117
Chapter 4: Decorators, Generics, and Asynchronous Features 118
Decorators 119
Decorator syntax 120
Multiple decorators 121
Decorator factories 122
Class decorator parameters 123
Property decorators 125
Static property decorators 126
Method decorators 127
Using method decorators 128
Parameter decorators 130
Decorator metadata 131
Using decorator metadata 133

[iii]

Generics 134
Generic syntax 135
Instantiating generic classes 135
Using the type T 137
Constraining the type of T 139
Generic interfaces 142
Creating new objects within generics 143

Asynchronous language features 145
Promises 145
Promise syntax 147
Using promises 148
Callback versus promise syntax 150
Returning values from promises 151
Async and await 153
Await errors 154
Promise versus await syntax 155
Await messages 156

Summary 157

Chapter 5: Writing and Using Declaration Files 158

Global variables 159

Using JavaScript code blocks in HTML 161
Structured data 162

Writing your own declaration file 164
The module keyword 166
Interfaces 169
Union types 171

Module merging 172

Declaration syntax reference 173
Function overrides 173
Nested namespaces 174
Classes 174
Class namespaces 174
Class constructor overloads 175
Class properties 175
Class functions 175
Static properties and functions 176
Global functions 177
Function signatures 177
Optional properties 177

[iv]

Merging functions and modules 178
Summary 178
Chapter 6: Third-Party Libraries 179
Downloading definition files 180
Using NuGet 182
Using the Extension Manager 182
Installing declaration files 183
Using the Package Manager Console 184
Installing packages 184
Searching for package names 185
Installing a specific version 185

Using Typings 185
Searching for packages 186
Typings initialize 187
Installing definition files 187
Installing a specific version 188
Re-installing definition files 188
Using Bower 189
Using npm and @types 190
Using third-party libraries 190
Choosing a JavaScript framework 191
Backbone 192
Using inheritance with Backbone 192
Using interfaces 194
Using generic syntax 195
Using ECMAScript 5 196
Backbone TypeScript compatibility 196
Angular 197
Angular classes and $scope 199
Angular TypeScript compatibility 201
Inheritance — Angular versus Backbone 201
ExtJS 202
Creating classes in ExtJS 203
Using type casting 204
ExtJS-specific TypeScript compiler 205
Summary 206
Chapter 7: TypeScript Compatible Frameworks 207
What is MVC? 208
The Model 209

[v]

The View 209
The Controller 211
MVC summary 212
The benefits of using MVC 212
Sample application outline 213
Using Backbone 214
Rendering performance 215
Backbone setup 217
Backbone models 217
Backbone ItemView 218
Backbone CollectionView 220
Backbone application 221
Using Aurelia 223
Aurelia setup 223
Development considerations 224
Aurelia performance 224
Aurelia models 226
Aurelia views 226
Aurelia bootstrap 227
Aurelia events 228
Angular 2 229
Angular 2 setup 229
Angular 2 models 230
Angular 2 views 231
Angular performance 232
Angular events 232
Using React 233
React setup 233
React views 236
React bootstrapping 239
React events 241
Summary 242
Chapter 8: Test Driven Development 243
Test driven development 244
Unit, integration, and acceptance tests 245
Unit tests 245
Integration tests 246
Acceptance tests 246
Unit testing frameworks 247

[vil

Jasmine 247
A simple Jasmine test 248
Jasmine SpecRunner 248
Matchers 251
Test startup and teardown 252
Data driven tests 253
Using spies 255
Spying on callback functions 256
Using spies as fakes 258
Asynchronous tests 258
Using done() 259
Jasmine fixtures 261
DOM events 263

Jasmine runners 264
Testem 264
Karma 266
Protractor 267

Using Selenium 268

Using continuous integration 270
Benefits of CI 270
Selecting a build server 271

Team Foundation Server 271

Jenkins 272

TeamCity 272

Integration test reporting 272

Summary 274
Chapter 9: Testing Typescript Compatible Frameworks 275

Testing our sample application 276

Modifying our sample for testability 276

Backbone testing 278
Complex models 278
View updates 281
DOM event updates 281
Model tests 283
Complex model tests 285
Rendering tests 286
DOM event tests 288
Backbone testing summary 290

Aurelia testing 290

[vii]

Aurelia components 290

Aurelia component view-model 290
Aurelia component view 292
Rendering a component 292
Aurelia naming conventions 293
Aurelia test setup 294
Aurelia unit tests 294
Rendering tests 296
Aurelia end-to-end tests 299
Aurelia test summary 302
Angular 2 testing 302
Application updates 303
Angular 2 test setup 304
Angular 2 model tests 305
Angular 2 rendering tests 306
Angular 2 DOM testing 307
Angular 2 testing summary 308
React testing 308
Multiple entry points 308
React modifications 309
Unit testing React components 312
React model and view tests 313
React DOM event tests 316
Summary 317
Chapter 10: Modularization 318
Module basics 319
Exporting modules 321
Importing modules 322
Module renaming 322
Default exports 323
Exporting variables 325
AMD module loading 325
AMD compilation 325
AMD module setup 328
Require configuration 328
AMD browser configuration 329
AMD module dependencies 331
Bootstrapping Require 334
Fixing Require config errors 335

[viii]

Incorrect dependencies 336

404 errors 336
SystemJs module loading 337
SystemdJs installation 338
SystemJs browser configuration 338
SystemdJs module dependencies 341
Bootstrapping Jasmine 344
Using Express with Node 344
Express setup 345
Using modules with Express 347
Express routing 348
Express templating 350
Using Handlebars 351
Express POST events 354
HTTP request redirection 358
Node and Express summary 360
Summary 361
Chapter 11: Object-Oriented Programming 362
Object-oriented principles 363
Program to an interface 363
SOLID principles 364
Single responsibility 364

Open closed 364

Liskov substitution 365
Interface segregation 365
Dependency inversion 365

User interface design 365
Conceptual design 365
Angular 2 setup 368
Using Bootstrap 369
Creating a side panel 371
Creating an overlay 375
Coordinating transitions 377
The State pattern 378
State interface 379
Concrete states 380
The Mediator pattern 381
Modular code 382
Navbar component 383
SideNav component 384

[ix]

RightScreen component 385
Child components 388
Mediator interface implementation 389
The Mediator class 390
Using the Mediator 393
Reacting to DOM events 394
Summary 396
Chapter 12: Dependency Injection 397
Sending mail 308
Using nodemailer 398
Configuration settings 401
Using a local SMTP server 404
Object dependency 404
Service Location 405
Service Location anti-pattern 407
Dependency injection 407
Building a dependency injector 408
Interface resolution 408
Enum resolution 409
Class resolution 410
Constructor injection 411
Decorator injection 413
Using a class definition 413
Parsing constructor parameters 415
Finding parameter types 416
Injecting properties 417
Using dependency injection 418
Recursive injection 419
Summary 420
Chapter 13: Building Applications 421
The Ul experience 422
Using Brackets 423
Using Emmet 425
Creating a login panel 427

An Aurelia website 430
Node and Aurelia compilation 430
Serving the Aurelia application 431
Aurelia pages in Node 432

[x]

Aurelia components 435

Processing JSON 436
Aurelia forms 439
Posting data 441
Aurelia messaging 442
An Angular 2 website 446
Angular setup 446
Serving Angular 2 pages 446
Angular 2 components 449
Processing JSON 452
Posting data 454

An Express React website 455
Express and React 455
Serving the React application 457
Multiple package.json files 460
React components 462
Consuming REST endpoints 465
Login panel component 466
React data binding 468
Posting JSON data 469
Summary 470
Chapter 14: Let's Get Our Hands Dirty 472
Board Sales application 473
Angular 2 base application 475
Unit testing 477
State Mediator tests 478
Login screen state 482
Panel integration 486
JSON data structure 488
The BoardList component 491
Unit testing HTTP requests 492
Mocking Angular's Http module 493

Using the mock Http module 496
Rendering the board list 498
Testing Ul events 500
Board detail view 503
Applying a filter 505
The login panel 510
Application architecture 514

[xi]

Summary 515
Index 516

[xii]

Preface

The TypeScript language and compiler has been a huge success story since its release in late
2012. It quickly carved out a solid footprint in the JavaScript development community and
continues to go from strength to strength. Many large-scale JavaScript projects, including
projects by Adobe, Mozilla, and Asana, have made the decision to switch their code base
from JavaScript to TypeScript. Recently, the Microsoft and Google teams announced that
Angular 2.0 will be developed with TypeScript, thereby merging the AtScript and
TypeScript languages into one.

This large-scale industry adoption of TypeScript shows the value of the language, the
flexibility of the compiler, and the productivity gains that can be realized with its rich
development toolset. On top of this industry support, the ECMAScript 6 and ECMAScript 7
standards are getting closer and closer to publication, and TypeScript provides a way to use
features of these standards in our applications today by generating compatible JavaScript.

Writing JavaScript single page applications in TypeScript has been made even more
appealing with the large collection of declaration files that have been built by the
TypeScript community. These declaration files seamlessly integrate a large range of existing
JavaScript frameworks into the TypeScript development environment, bringing with it
increased productivity, early error detection, and advanced IntelliSense features.

The JavaScript language is not confined to web browsers, however. We can now write
server-side JavaScript, drive mobile phone applications using JavaScript, and even control
micro devices designed for the Internet of Things with JavaScript.

This book is a guide for both experienced TypeScript developers, as well as those who are
just beginning their TypeScript journey. With a focus on Test Driven Development, detailed
information on integration with many popular JavaScript libraries, and an in-depth look at
TypeScript's features, this book will help you with your exploration of the next step in
JavaScript development.

What this book covers

Chapter 1, TypeScript - Tools and Framework Options, sets the scene for beginning TypeScript
development. It discusses the benefits of using TypeScript as a language and compiler, and
then works through setting up a complete development environment using a number of
popular IDEs.

Preface

Chapter 2, Types, Variables, and Function Techniques, introduces the reader to the TypeScript
language, starting with basic types and type annotations, and then moves on to discuss
variables, functions, and advanced language features.

Chapter 3, Interfaces, Classes, and Inheritance, builds on the work from the previous chapter,
and introduces the object-oriented concepts and capabilities of interfaces, classes, and
inheritance. It then shows these concepts at work through the Factory Design Pattern.

Chapter 4, Decorators, Generics, and Asynchronous Features, discusses the more advanced
language features of decorators and generics, before working through the concepts of
asynchronous programming. It shows how the TypeScript language supports these
asynchronous features through promises and the use of async await constructs.

Chapter 5, Writing and Using Declaration Files, walks the reader through building a
declaration file for an existing body of JavaScript code, and then lists some of the most
common syntax used when writing declaration files. This syntax is designed to be a quick
reference guide to the declaration file syntax, or a cheat sheet.

Chapter 6, Third-Party Libraries, shows the reader how to use declaration files from the
DefinitelyTyped repository within the development environment. It then moves on to show
how to write TypeScript code that is compatible with three popular JavaScript frameworks--
Backbone, Angular 1, and ExtJs.

Chapter 7, TypeScript Compatible Frameworks, takes a look at popular frameworks that have
full TypeScript language integration. It explores the MVC paradigm, and then compares
how this design pattern is implemented in Backbone, Aurelia, Angular 2, and React.

Chapter 8, Test Driven Development, starts with a discussion on what Test Driven
Development is, and then guides the reader through the process of creating various types of
unit tests. Using the Jasmine library, it shows how to use data-driven tests, and how to test
asynchronous logic. The chapter finishes with a discussion on test runners, test reporting,
and using continuous integration build servers.

Chapter 9, Testing TypeScript Compatible Frameworks, shows how to unit test, integration
test, and acceptance test a sample application built with each of the TypeScript compatible
frameworks. It discusses the concept of testability, and shows how subtle changes in
application design and implementation can provide far better application test coverage.

Chapter 10, Modularization, explores what modules are, how they can be used, and the two
types of module generation that the TypeScript compiler supports--Common]Js and AMD. It
then shows how modules can be used with module loaders, including Require and
System]s. This chapter finishes with an in-depth look at using modules within Node, and
builds a sample Express application.

[2]

Preface

Chapter 11, Object-Oriented Programming, discusses the concepts of object-oriented
programming, and then shows how to arrange application components to conform to
object-oriented principles. It then takes an in-depth look at implementing object-oriented
best practices by showing how the State and Mediator design patterns can be used to
manage complex Ul interactions.

Chapter 12, Dependency Injection, discusses the concepts of Service Location and
Dependency Injection, and how they can be used to solve common application design
problems. It then shows how to implement a simple Dependency Injection framework
using Decorators.

Chapter 13, Building Applications, explores the fundamental building blocks of web
application development, including generating HTML pages from Node and Express,
writing and consuming REST endpoints, and data binding. It shows how to integrate an
Express server, REST endpoints, and data binding with Aurelia, Angular 2, and React.

Chapter 14, Let’s Get Our Hands Dirty, builds a single-page application using Angular 2 and
Express by combining all of the concepts and components built throughout the book into a
single application. These concepts include Test Driven Development, the State and
Mediator Pattern, using Express REST endpoints, object-oriented design principles,
modularization, and custom CSS animations.

What you need for this book

You will need the TypeScript compiler and an editor of some sort. The TypeScript compiler
is available on Windows, MacOS, and Linux as a Node plugin. chapter 1, TypeScript - Tools
and Framework Options, describes the setup of a development environment.

Who this book is for

Whether you are a JavaScript developer wanting to learn TypeScript, or an experienced
TypeScript developer wanting to take your skills to the next level, this book is for you. From
basic to advanced language constructs, Test Driven Development, and object-oriented
techniques, you will learn how to get the most out of the TypeScript language and compiler.
This book will show you how to incorporate strong typing, object-orientation, and design
best practices into your JavaScript applications.

[3]

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "We will
define a new function named MyClass, and return this new function to the outer calling
function. We then use the prototype keyword to inject a new function into the MyClass
definition."

A block of code is set as follows:

class MyClass {
add (x: number, y: number) {
return x + y;
}
}

Any command-line input or output is written as follows:
npm install @types/express

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Run | Debug and
then edit configurations. Click on the plus (+) button, select the JavaScript debug option on
the left, and give this configuration a name."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub. com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk DN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Mastering-TypeScript-Second-Edition. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/down
loads/MasteringTypeScriptSecondEdition_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

[6]

https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/Mastering-TypeScript-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringTypeScriptSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]

TypeScript - Tools and
Framework Options

JavaScript is a truly ubiquitous language. Just about every website that you visit in the
modern world is using JavaScript to make the site more responsive, more readable, or more
attractive to use. Even traditional desktop applications are moving online. Where we once
needed to download and install a program to generate a diagram, or write a document, we
can now do all of this on the web, from within the confines of our humble browser.

This is the power of JavaScript. It enables us to rethink the way we use the web. But it also
enables us to rethink the way we use web technologies. Node, for example, allows
JavaScript to run server-side, rendering entire large scale web-sites, complete with session
handling, load balancing, and database interaction. This shift in thinking about web
technologies, however, is only the beginning.

Apache Cordova is a fully fledged web server that runs as a native mobile phone
application. This means that we can build a mobile phone application using HTML, CSS,
and JavaScript, and then interact with the phones accelerometer, geolocation services, or file
storage. With Cordova, therefore, JavaScript and web technologies have moved into the
realm of native mobile phone applications.

Likewise, projects such as Kinoma are using JavaScript to drive devices for the Internet Of
Things, running on tiny microprocessors embedded in all sorts of devices. Espruino is a
microcontroller chip purposefully designed to run JavaScript. Learning JavaScript,
therefore, means that you have the ability to build websites, mobile phone applications, and
even control microprocessors on embedded devices. JavaScript is becoming more and more
popular, is being supported on more and more hardware, and is filtering through to nearly
every corner of computing.

TypeScript - Tools and Framework Options

The JavaScript language is not a difficult language to learn, but it does present challenges
when writing large, complex programs. One of these challenges is that JavaScript is an
interpreted language and therefore has no compilation step. The only time you will know if
you have made a simple syntax error is when you run the entire application through the
run-time interpreter. Another challenge is that it is also not an object-oriented language, and
it takes great care and discipline to build good, maintainable, and understandable
JavaScript. For programmers that are moving from other object-oriented languages, such as
Java, C#, or C++, JavaScript can seem like a completely foreign environment.

TypeScript bridges this gap. It is a strongly typed, object-oriented language that uses a
compiler to generate JavaScript. It therefore allows us to use well known object-oriented
techniques and design patterns to build JavaScript applications. Bear in mind that
TypeScript-generated JavaScript is just plain JavaScript, and so will run wherever JavaScript
can run — in the browser, on the server, on a mobile device, or on an embedded device.

This chapter is divided into two main sections. The first section is a quick overview of some
of the benefits of using TypeScript, and the second section deals with setting up a
TypeScript development environment.

If you are an experienced TypeScript programmer, and already have a development
environment set up, then you might want to skip this chapter. If you have never worked
with TypeScript before, and have picked up this book because you want to understand
what TypeScript can do, then read on.

We will cover the following topics in this chapter:

¢ The benefits of TypeScript
e Compilation
¢ Strong typing
¢ Integration with popular JavaScript libraries
e Encapsulation

Private and public member variables
e Setting up a development environment

¢ Visual Studio

o WebStorm

¢ Visual Studio Code

¢ Other editors and grunt

[9]

TypeScript - Tools and Framework Options

Introducing TypeScript

TypeScript is both a language and a set of tools to generate JavaScript. It was designed by
Anders Hejlsberg at Microsoft (the designer of C#), and is an open source project to help
developers write enterprise-scale JavaScript.

TypeScript generates JavaScript — it's as simple as that. Instead of requiring a completely
new runtime environment, TypeScript-generated JavaScript can reuse all of the existing
JavaScript tools, frameworks, and the wealth of libraries that are already available for
JavaScript. The TypeScript language and compiler, however, bring the development of
JavaScript closer to a more traditional object-oriented experience.

The ECMAScript standard

JavaScript as a language has been around for a long time, and is governed by a language
feature standard. The language defined in this standard is called ECMAScript, and each
JavaScript interpreter must deliver functions and features that conform to this standard.
The definition of this standard helped the growth of JavaScript and the web in general, and
allowed websites to render correctly on many different browsers on many different
operating systems. The ECMAScript standard was published in 1999 and is known as
ECMA-262, third edition.

With the popularity of the language, and the explosive growth of Internet applications, the
ECMAScript standard needed to be revised and updated. This revision process resulted in
an updated draft specification for ECMAScript, called the fourth edition. Unfortunately, this
draft also suggested a complete overhaul of the language, and therefore was not well
received. Eventually, leaders from Yahoo, Google, and Microsoft tabled an alternate
proposal, which they called ECMAScript 3.1. This proposal was numbered 3.1, as it was a
smaller feature set of the third edition, and sat between edition three and four of the
standard.

The proposal for a complete language overhaul was eventually adopted as the fifth edition
of the standard, and was called ECMAScript 5. The ECMAScript fourth edition was never
published, but it was decided to merge the best features of both the fourth edition and the
3.1 feature set into a sixth edition named ECMAScript Harmony.

The TypeScript compiler has a parameter that can switch between different versions of the
ECMAScript standard. TypeScript currently supports ECMAScript 3, ECMAScript 5,
ECMAScript 6, and even ECMAScript 7 (also known as ECMAScript 2016).

[10]

TypeScript - Tools and Framework Options

When the compiler runs over your TypeScript, it will generate compile errors if the code
you are attempting to compile is not valid for that standard. The team at Microsoft has
committed to following the ECMAScript standards in any new versions of the TypeScript
compiler, so as new editions are adopted, the TypeScript language and compiler will follow
suit.

An understanding of the finer details of what is included in each release of the ECMAScript
standard is outside the scope of this book, but it is important to know that there are
differences. Some browser versions do not support ES5 (IE8 is an example), but most do.
When selecting a version of ECMAScript to target for your projects, you will need to
consider which browser versions you will be supporting, or which standard your JavaScript
runtime supports.

The benefits of TypeScript

To give you a flavor of the benefits of TypeScript (and this is by no means the full list), let's
take a very quick look at some of the things that TypeScript brings to the table:

e A compilation step
e Strong or static typing

Type definitions for popular JavaScript libraries

Encapsulation

Private and public member variable decorators

Compiling

One of the most frustrating things about JavaScript development is the lack of a compilation
step. JavaScript is an interpreted language, and therefore needs to be run against an
interpreter in order to test that it is valid. Every JavaScript developer has horror stories that
they can recount of hours spent trying to find bugs in their code, only to find that they have
missed a stray closing brace { , or a simple comma , - or even a double quote " where there
should have been a single quote ' . Even worse, the real headaches arrive when you
misspell a property name, or unwittingly reassign a global variable.

TypeScript will compile your code, and generate compilation errors where it finds these
sorts of syntax error. This is obviously very useful, and can help to highlight errors before
the JavaScript is even run. In large projects, programmers will often need to do large code
merges — and with today's tools doing automatic merges, it is surprising how often the
compiler will pick up these types of errors.

[11]

TypeScript - Tools and Framework Options

While tools to do this sort of syntax checking like JSLint have been around for years, it is
obviously beneficial to have these tools integrated into your development toolchain. Using
the TypeScript compiler in a continuous integration environment will also fail a build
completely when compilation errors are found, further protecting your code base against
these types of bugs.

Strong typing

JavaScript is not strongly typed. It is a language that is very dynamic, and therefore allows
objects to change their properties and behavior on-the-fly. As an example of this, consider
the following code:

var test = "this is a string";
test = 1;
test = function(a, b) |

return a + b;

}

On the first line of this code snippet, the variable test is bound to a string. It is then
assigned to a number, and finally is redefined completely to be a function that expects two
parameters. This means that the type of the variable test has changed from being a string
to being a number, and then to being a function. Traditional object-oriented languages,
however, will not allow the type of a variable to change, hence they are called strongly
typed languages.

While all of the preceding code is valid JavaScript, and therefore could be justified, it is
quite easy to see how this could cause runtime errors during execution. Imagine that you
were responsible for writing a library function to add two numbers, and then another
developer inadvertently reassigned your function to subtract these numbers instead.

These sorts of error may be easy to spot in a few lines of code, but it becomes increasingly
difficult to find and fix these as your code base and your development team grows.

Another feature of strong typing is that the IDE you are working in understands what type
of variable you are working with, and can bring better autocomplete or Intellisense options
to the fore.

[12]

TypeScript - Tools and Framework Options

TypeScript's syntactic sugar

TypeScript introduces a very simple syntax to check the type of an object at compile time.
This syntax has been referred to as “syntactic sugar”, or more formally, type annotations.
Consider the following TypeScript code:

var test: string = "this is a string";
test = 1;
test = function(a, b) { return a + b; }

Note that, on the first line of this code snippet, we have introduced a colon : and a string
keyword between our variable and its assignment. This type annotation syntax means that
we are setting the type of our variable test to be of type string, and that any code that
does not treat the variable test as a string will generate a compile error. Running the
preceding code through the TypeScript compiler will generate two errors:

hello.ts(3,1): error TS2322: Type 'number' is not assignable to type
'string’'.

hello.ts(4,1): error TS2322: Type '(a: any, b: any) => any' is not
assignable

to type 'string'.

The first error is fairly obvious. We have specified that the variable test isa string, and
therefore attempting to assign a number to it will generate a compile error. The second error
is similar to the first, and is, in essence, saying that we cannot assign a function to a string.

In this way, the TypeScript compiler introduces strong or static typing to your JavaScript
code, giving you all of the benefits of a strongly typed language. TypeScript is therefore
described as a superset of JavaScript. We will explore this in more detail in the next chapter.

JavaScript and TypeScript definitions

As we have seen, TypeScript has the ability to annotate JavaScript, and bring strong typing
to the JavaScript development experience. But how do we strongly type existing JavaScript
libraries? In other words, if we have an existing JavaScript library, how do we integrate this
library for use within TypeScript? The answer is surprisingly simple-by creating a
definition file. TypeScript uses files with a . d. ts extension as a sort of header file, similar
to languages such as C++, to superimpose strongly typing on existing JavaScript libraries.
These definition files hold information that describes each available function, and/or
variables, along with their associated type annotations.

[13]

TypeScript - Tools and Framework Options

Let's take a quick look at what a definition would look like. As an example, consider the
JavaScript describe function from the popular Jasmine unit testing framework, as follows:

var describe = function(description, specDefinitions) {
return jasmine.getEnv () .describe (description, specDefinitions);
}i

Note that this function has two parameters—description and specDefinitions.
Unfortunately JavaScript does not tell us what sort of variables these are. We would need to
have a look at the Jasmine documentation to figure out how to call this function, and what
variables are expected for both parameters. If we head over to
http://jasmine.github.io/2.0/introduction.html, we will see an example of how to use
this function:

describe ("A suite", function () {
it ("contains spec with an expectation", function () {
expect (true) .toBe (true);
P) i
P) i

From the documentation, then, we can easily see that the first parameter is a st ring, and
the second parameter is a function. However, there is nothing in JavaScript that forces us
to conform to this API definition. As mentioned before, we could easily call this function
incorrectly, with two numbers for example, or by sending a function first and a string
second. Making mistakes like these will obviously generate runtime errors. Using a simple
TypeScript definition file, however, will generate compile-time errors before we even
attempt to run this code.

Let's take a look at the corresponding TypeScript definition for this function, found in the
jasmine.d.ts definition file:

declare function describe (
description: string,
specDefinitions: () => void
) : void;

Here, we have the TypeScript definition for the Jasmine describe function. This definition
looks very similar to the function itself, but gives us a little more information about the
parameters.

[14]

http://jasmine.github.io/2.0/introduction.html

TypeScript - Tools and Framework Options

Clearly, the description parameter is strongly typed to a string, and the
specDefinitions parameter is strongly typed to be a function that returns void.
TypeScript uses the double-brace () syntax to declare functions, and the arrow syntax => to
show the return type of the function. So () => voidis a function that does not return
anything. Finally, the describe function itself will also return void.

If our code were to try and pass in a function as the first parameter, and a string as the
second parameter (clearly breaking the definition of this function), as follows:

describe (() => { /* function body */}, "description");

TypeScript would generate the following error:

hello.ts(11,11) : error TS2345: Argument of type '() => void' is not
assignable to parameter of type 'string'.

This error is telling us that we are attempting to call the describe function with invalid

parameters. We will take a look at definition files in more detail in later chapters, but this
example clearly shows that the TypeScript compiler will generate errors if we attempt to

use external JavaScript libraries incorrectly.

DefinitelyTyped

Soon after TypeScript was released, Boris Yankov started a GitHub repository to house
definition files, called DefinitelyTyped (http://definitelytyped.org). This repository has
now become the first port of call for integrating external JavaScript libraries into TypeScript,
and it currently holds definitions for over 1,600 JavaScript libraries.

Encapsulation

One of the fundamental principles of object-oriented programming is encapsulation—the
ability to define data, as well as a set of functions that can operate on that data, into a single
component. Most programming languages have the concept of a class for this purpose,
providing a way to define a template for data and related functions.

Let's first take a look at a simple TypeScript class definition, as follows:

class MyClass {
add (x, vy) |
return x + y;
}
}

var classInstance = new MyClass();

[15]

http://definitelytyped.org

TypeScript - Tools and Framework Options

var result = classInstance.add(1,2);
console.log(add(1,2) returns ${result}’);

This code is pretty simple to read and understand. We have created a class, named
MyClass, with a simple add function. To use this class we simply create an instance of it,
and call the add function with two arguments.

JavaScript, unfortunately, does not have a class statement, but instead uses functions to
reproduce the functionality of classes. Encapsulation through classes is accomplished by
either using the prototype pattern, or by using the closure pattern. Understanding
prototypes and the closure pattern, and using them correctly, is considered a fundamental
skill when writing enterprise-scale JavaScript.

A closure is essentially a function that refers to independent variables. This means that
variables defined within a closure function remember the environment in which they were
created. This provides JavaScript with a way to define local variables, and provide
encapsulation. Writing the MyClass definition in the preceding code, using a closure in
JavaScript, would look something like the following:

var MyClass = (function () {
// the self-invoking function is the
// environment that will be remembered
// by the closure
function MyClass () {
// MyClass is the inner function,
// the closure
t
MyClass.prototype.add = function (x, y) A
return x + y;
i
return MyClass;
PO
var classInstance = new MyClass();
var result = classInstance.add(l, 2);
console.log("add(1,2) returns " + result);

We start with a variable called MyClass, and assign it to a function that is executed
immediately-note the }) () ; syntax near the bottom of the closure definition. This syntax is
a common way to write JavaScript in order to avoid leaking variables into the global
namespace. We then define a new function named MyClass, and return this function to the
outer calling function. We then use the prototype keyword to inject another function into
the MyClass definition. This function is named add and takes two parameters, returning
their sum.

[16]

TypeScript - Tools and Framework Options

The last few lines of the code show how to use this closure in JavaScript. Create an instance
of the closure type, and then execute the add function. Running this code will log add (1, 2)
returns 3 to the console, as expected.

Looking at the JavaScript code versus the TypeScript code, we can easily see how simple the
TypeScript code looks compared to the equivalent JavaScript. Remember how we
mentioned that JavaScript programmers can easily misplace a brace { or a bracket (? Have
a look at the last line in the closure definition-}) () ;. Getting one of these brackets or braces
wrong can take hours of debugging to find.

TypeScript classes generate closures

The JavaScript, as shown above, is actually the output of the TypeScript class definition. So
TypeScript actually generates closures for you.

Adding the concept of classes to the JavaScript language has been talked
about for years, and is currently a part of the ECMAScript sixth edition
(Harmony) standard — but this is still a work in progress. Microsoft has
committed to following the ECMAScript standard in the TypeScript
compiler, as and when these standards are published.

Public and private accessors

A further object oriented principle that is used in Encapsulation is the concept of data
hiding-the ability to have public and private variables. Private variables are meant to be
hidden from the user of a particular class, as these variables should only be used by the
class itself. Inadvertently exposing these variables can easily cause runtime errors.

Unfortunately, JavaScript does not have a native way of declaring variables private. While
this functionality can be emulated using closures, a lot of JavaScript programmers simply
use the underscore character _ to denote a private variable. At runtime, though, if you
know the name of a private variable, you can easily assign a value to it. Consider the
following JavaScript code:

var MyClass = (function() {
function MyClass () {
this._count = 0;

}

MyClass.prototype.countUp = function() {
this._count ++;

}

MyClass.prototype.getCountUp = function() {
return this._count;

[17]

TypeScript - Tools and Framework Options

}

return MyClass;

PO

var test = new MyClass();
test._count = 17;
console.log("countUp : " + test.getCountUp());

The MyClass variable is actually a closure with a constructor function, a countUp function,
and a getCountUp function. The variable _count is supposed to be a private member
variable that is used only within the scope of the closure. Using the underscore naming
convention gives the user of this class some indication that the variable is private, but
JavaScript will still allow you to manipulate the variable _count. Take a look at the second
last line of the code snippet. We are explicitly setting the value of _count to 17,which is
allowed by JavaScript, but not desired by the original creator of the class. The output of this
code would be countUp : 17.

TypeScript, however, introduces public and private keywords (among others), which
can be used on class member variables. Trying to access a class member variable that has
been marked as private will generate a compile time error. As an example of this, the
JavaScript code above can be written in TypeScript, as follows:

class CountClass {
private _count: number;
constructor () {
this._count = 0;
}
countUp () A
this._count ++;
}
getCount () {
return this._count;
}
}
var countInstance = new CountClass() ;
countInstance._count = 17;

On the second line of our code snippet, we have declared a private member variable
named _count. Again, we have a constructor, a countUp, and a getCount function. If we
compile this file, the compiler will generate an error:

hello.ts(39,15): error TS2341l: Property '_count' is private and only
accessible within class 'CountClass'.

[18]

TypeScript - Tools and Framework Options

This error is generated because we are trying to access the private variable _count in the
last line of the code.

The TypeScript compiler, therefore, is helping us to adhere to public and private accessors
by generating a compile error when we inadvertently break this rule.

Remember, though, that these accessors are a compile-time feature only,
and will not affect the generated JavaScript. You will need to bear this in
mind if you are writing JavaScript libraries that will be consumed by third
parties. Note that by default, the TypeScript compiler will still generate the
JavaScript output file, even if there are compile errors. This option can be
modified, however, to force the TypeScript compiler not to generate
JavaScript if there are compilation errors.

TypeScript IDEs

The purpose of this section of the chapter is to get you up-and-running with a TypeScript
environment so that you can edit, compile, run, and debug your TypeScript code.
TypeScript has been released as open-source, and includes both a Windows variant, as well
as a Node variant. This means that the compiler will run on Windows, Linux, OS X, and any
other operating system that supports Node. On Windows environments, we can either
install Visual Studio, which will register the tsc.exe (TypeScript compiler) in our
c:\Program Files directory, or we can use Node. On Linux and OS X environments, we

will need to use Node.
In this section, we will be looking at the following IDEs:

¢ Node-based compilation
Visual Studio 2015
WebStorm

Visual Studio Code

¢ Using grunt

Node-based compilation

The simplest and leanest TypeScript development environment consists of a simple text
editor, and a Node-based TypeScript compiler. Head over to the Node website (https://no
dejs.org/) and follow the instructions to install Node on your operating system of choice.

[19]

https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/

TypeScript - Tools and Framework Options

Once Node is installed, TypeScript can be installed by simply typing:

npm install —-g typescript
This command invokes the Node Package Manager (npm) to install TypeScript as a global
module (the -g option), which will make it available no matter what directory we are

currently in. Once TypeScript has been installed, we can display the current version of the
compiler by typing the following:

tsc -v

At the time of writing, the TypeScript compiler is at version 2.1.5, and therefore the
output of this command is as follows:

Version 2.1.5

Let's now create a TypeScript file named hello.ts, with the following content:

console.log('hello TypeScript');

From the command line, we can use TypeScript to compile this file into a JavaScript file by
issuing the command:

tsc hello.ts

Once the TypeScript compiler has completed, it will have generated a hello. js file in the
current directory.

Creating a tsconfig.json file

The TypeScript compiler uses a t sconfig. json file at the root of the project directory to
specify any global TypeScript project settings and compiler options. This means that,
instead of compiling our TypeScript files one by one (by specifying each file on the
command line), we can simply type t sc from the project root directory, and TypeScript will
recursively find and compile all TypeScript files within the root directory and all sub-
directories. The tsconfig. json file that TypeScript needs in order to do this can be
created from the command line by simply typing:

tsc —--init

[20]

TypeScript - Tools and Framework Options

The result of this command is a basic t sconfig. json file as follows:

{

"compilerOptions": {
"module": "commonjs",
"target": "es5",
"noImplicitAny": false,
"sourceMap": false

}
}

This is a simple JSON format file, with a single JSON property named compilerOptions,
which specifies compile options for the project. The target property indicates the
preferred JavaScript output to generate, and can be either es3, es5, es6, ES2016, ES2017,
or ESNext. The option named sourceMap is a flag indicating whether to generate source
maps that are used for debugging. The noImplicitAny option is a flag indicating that we
must attempt to strongly type all variables before use.

TypeScript allows for multiple t sconfig. json files within a directory
structure. This allows different sub directories to use different compiler
options.

With our tsconfig. json file in place, we can compile our application by simply typing:

tsc

This command will invoke the TypeScript compiler, using the tsconfig. json file that we
have created to generate a hello. js JavaScript file. In fact, any file TypeScript source file
that has a file extension of . t s will generate a JavaScript file with an extension of . js. We
can now run our application by typing:

node hello.js

As our application is simply logging some text to the command line, the output will be as
follows:

A node hello.js
hello TypeScript

We have successfully created a simple Node-based TypeScript development environment,
with a simple text editor and access to the command line.

[21]

TypeScript - Tools and Framework Options

Microsoft Visual Studio

Let's now look at Microsoft's Visual Studio. This is Microsoft's primary IDE, and comes in a
variety of pricing combinations. At the time of writing, Microsoft had just released Visual
Studio 2017 Release Candidate, as the successor to Visual Studio 2015. Microsoft has an
Azure-based licensing model, starting at around $45 per month, all the way up to a
professional license with an MSDN subscription at around $1,199. The good news is that
Microsoft also has a Community edition, which can be used in non-enterprise environments
for both free and non-paid products. The TypeScript compiler is included in all of these
editions.

Visual Studio can be downloaded as either a web installer or an . iso CD image. Note that
the web installer will require an Internet connection during installation, as it downloads the
required packages during the installation step. Visual Studio will also require Internet
Explorer 10 or later, but will prompt you during installation if you have not upgraded as
yet. If you are using the . iso installer, just bear in mind that you may be required to
download and install additional operating system patches if you have not updated your
system in a while.

Creating a Visual Studio project

Once Visual Studio 2017 is installed, fire it up and create a new project (File | New Project).
There are many different options available for new project templates, depending on your
choice of language. Under the Templates section on the left-hand side, you will see an
Other Languages option, and under this a TypeScript option. The project templates that are
available are slightly different in Visual Studio 2017 than they are in Visual Studio 2015, and
are geared towards Node development.

[22]

TypeScript - Tools and Framework Options

Visual Studio 2015 has a template named Html Application with TypeScript, which will
create a very simple, single-page Web application for you. Unfortunately, this option has
been removed in Visual Studio 2017 as shown in the following screenshot:

Mew Project 7 X
P Recent N - 5 - Sort by:
4 |nstalled
code TypeScript
4 Templates

sole Application TypeScript

eb Application TypeScript

Express 4 Application TypeScript

Blank Azure Node.js Web Application TypeScript

Basic Azure N Express 4 Application TypeScript

4 TypeScript
Node,js

P Online

Mame:

- Browse...

Create directory fo

Visual Studio 2017 — TypeScript project templates

To create a simple TypeScript web application in Visual Studio 2017, we will need to create
a blank web application first, and then we can add TypeScript files to this project as need
be. From our Templates dialog, then, select the Visual C# template option, and then select
the Web option. This will give us a project template named ASP.NET Web Application.
Select a Name and a Location for the new project, and then click on OK, as shown in the
following screenshot:

[23]

TypeScript - Tools and Framework Options

New Praject

7 x
NET Framework 4.5.2 Sort by: f:
4 |nstalled

" '1 ASP.NET Web Application (.NET Framewo... Visual C#
4 Templates

Type: Visual C2
[—
4 Visual C# applica
Fo Pl applicati
eatures in ASI

Other Languages

ual Basic

4 TypeScript

b Online

\VisualStudio

SimpleTypeScriptApp

Visual Studio 2017 — creating an ASP.NET web application

Once we have selected the basic information for our new project, Visual Studio will

generate a second dialog box asking what sort of ASP.NET project we would like to
generate. Select the Empty template, and click on OK, as shown below:

Mew ASP.MET Web Application - SimpleTypeScriptipp

? x
Select a template:

An empty project template for creating ASP.NET
ASENET 4.5.2 Templates applications, This template does not have any content in

it
i S o Y rw R

l— Learn more
Empty Web Forms MWC Web AP| Single Page
Application
o
Azure AP App Change Authentication
Authentication: No Authentication
Add folders and core references for. 3 Microsoft Azure
[] Web Forms [MVC] Web AP (~) [Hostin the cloud
App Service =
[] Add unit tests
Test project name:

SimpleTypeScriptApp. Tests

Visual Studio 2017 — options for creating an ASP.NET web application

[24]

TypeScript - Tools and Framework Options

Visual Studio 2017 will then pop up another dialog named Create App Service, which
provides options for creating a host in Azure for your new web application. We will not be
publishing our application to Azure, so we can click on Skip at this stage.

Default project settings

Once a new Empty ASP.NET web application has been created, we can start adding files to
the project by right-clicking on the project itself and selecting Add then New Item. There
are two files that we are going to add to the project, namely an index.html file and an
app . ts TypeScript file. For each of these files, select the corresponding Visual Studio
template, as follows:

Add New Item - SimpleTypeScriptApp ? X

4 |nstalled

Visual C# : Visual ¢

A blank TypeScript source file

Visual C#

Visual CF

Visual C#

Site Map Visual C#
TypeScript File Visual G#
TypeScript ISON Configuration File Visual G

| TypeScript JSX File Visual C#

I Online

WCF Service Visual C#
Visual CF

nfiguration File Visual C#

Web Forms Master Page Visual C#

P

Visual Studio — adding a TypeScript file
We can now open up the app. ts file, and start typing the following code:

class MyClass {
public render (divId: string, text: string) {
var el: HTMLElement = document.getElementById(divId);
el.innerText = text;

[25]

TypeScript - Tools and Framework Options

window.onload = () => {
var myClass = new MyClass();
myClass.render ("content", "Hello World");

bi

Here, we have created a class named MyClass, that has a single render function. This
function takes two parameters, named divId and text. The function finds an HTML DOM
element that matches the divId argument, and then sets the innerText property to the
value of the text argument. We then define a function to be called when the browser calls
window.onload. This function creates a new instance of the MyClass class, and calls the
render function.

Do not be alarmed if this syntax and code is a little confusing. We will be
covering all of the language elements and syntax in later chapters. The
point of this exercise is simply to use Visual Studio as a development
environment for editing TypeScript code.

You will notice that Visual Studio has very powerful Intellisense options, and will suggest
code, function names, or variable names as and when you are typing your code. If they are
not automatically appearing, then hitting Ctrl-Space will bring up the Intellisense options
for the code you are currently typing.

With our app. ts file in place, we can compile it by hitting Ctrl-Shift-B, or F6, or by
selecting the Build option from the toolbar. If there are any errors in the TypesScript code
that we are compiling, Visual Studio will automatically pop up an Error List panel, showing
current compilation errors. Double-clicking on any one of these errors will bring up the file
in the editor panel, and automatically move the cursor to the offending code.

The generated app. js file is not included in the Solution Explorer in
Visual Studio. Only the app.ts TypeScript file is included. This is by
design. If you wish to see the generated JavaScript file, simply click on the
Show All Files button in the Solution Explorer toolbar.

To include our TypeScript file in the HTML page, we will need to edit the index.html file,
and add a <script> tag toload app. js, as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title></title>
<script src="app.]js"></script>
</head>
<body>

[26]

TypeScript - Tools and Framework Options

<div id="content"></div>
</body>
</html>

Here, we have added the <script> tag to load our app. js file, and have also created a
<div> element with the id of content. This is the DOM element that our code will modify
the innerHtml property of. We can now hit F5 to run our application:

[localhost:53398/indexht X
<« C | @ localhost:53398/index.htm e

Hello World

Visual Studio index.html running in Chrome

Debugging in Visual Studio

One of the best features of Visual Studio is that it is truly an integrated environment.
Debugging TypeScript in Visual Studio is exactly the same as debugging C# or any other
language in Visual Studio, and includes the usual Immediate, Locals, Watch, and Call
stack windows.

To debug TypeScript in Visual Studio, simply put a breakpoint on the line you wish to
break on in your TypeScript file (move your mouse into the breakpoint area next to the
source code line, and click). In the following screenshot, we have placed a breakpoint
within the window. onload function. To start debugging, simply hit F5:

[27]

TypeScript - Tools and Framework Options

g

appts £ X
&1 SimpleTypeScriptApp

~ @ <global>

100 % -

Visual Studio TypeScript editor with a breakpoint set in the code

When the source code line is highlighted in yellow, hover your mouse over any of the
variables in your source, or use the Immediate, Watch, Locals, or Call stack windows.

Note that Visual Studio only supports debugging in Internet Explorer 11.
If you have multiple browsers installed on your machine (including
Microsoft Edge), make sure that you select Internet Explorer in your
Debug toolbar, as shown in the following screenshot:

oq e

File

Debug Team Analyze Window Help

B-S D Debug

appts ® X SimpleTypeScriptApp

- P Internet Explorer ~ (%, ~

npleTypeScriptApp Fir

00% -
Ready Lng S 0 # 99 4 masteringtypescript 2nd %' master «

Visual Studio Debug toolbar showing browser options

[28]

TypeScript - Tools and Framework Options

WebStorm

WebStorm is a popular IDE by JetBrains (http://www.jetbrains.com/webstorm/), and will
run on Windows, Mac OS X, and Linux. Prices range from $59 per year for a single
developer to $129 per year for a commercial license. JetBrains also offers a 30-day trial
version.

WebStorm has a couple of great features, including live edit and code suggestions, or
Intellisense. Live edit allows you to keep a browser open that will automatically update
based on changes to CSS, HTML, and JavaScript as you type it. Code suggestions, which are
also available with another popular JetBrains product, ReSharper, will highlight code that
you have written and suggest better ways of implementing it. WebStorm also has a large
number of project templates. These templates will automatically download and include the
relevant JavaScript or CSS files, such as Twitter, Bootstrap, or HTMLS5 boilerplate.

On Windows systems, setting up WebStorm is as simple as downloading the package from
the website, and running the installer. On Linux systems, Webstorm is provided as a tar
ball. Once it's unpacked, install WebStorm by running the webstorm. sh script in the bin
directory. Note that on Linux systems, a running version of Java must be installed before
setup will continue.

Creating a WebStorm project

To create a WebStorm project, fire up WebStorm and hit File | New Project. Select a name,
location, and project type. For this project, we have selected Twitter Bootstrap:

Create

WebStorm new project dialog box

[29]

http://www.jetbrains.com/webstorm/

TypeScript - Tools and Framework Options

Default files

WebStorm has conveniently created css and js directories as part of the new project and
downloaded and included the relevant CSS and JavaScript files for us to start building a
new Bootstrap-based site. Note that it has not created an index.html file for us, nor has it
created any TypeScript files. So let's create an index.html file.

Simply click on File | New, select HTML file, enter index as a name, and click OK.

Next, let's create a TypeScript file in a similar manner. We will call this file app (or app. ts),
in order to mirror the Visual Studio project. As we click inside the new app. ts file,
WebStorm will pop up a message at the top of the file, with a suggestion reading Compile
TypeScript to JavaScript? with three options-OK, No, and Configure, as shown in the
following screenshot:

-

webstorm - [~/source/masteringtypescript_2nd/source/ch01/webstorm] - .../app.ts - WebStorm 11.0.
File Edit Navi Run T S ow Help

B webstorm

Ewent Log

nathanr/... (a minute : UTF-8: o,

‘WebStorm editing a TypeScript file for the first time showing the file watcher bar

[30]

TypeScript - Tools and Framework Options

Clicking on Configure will bring up the Settings panel for TypeScript. Click on the Enable
TypeScript compiler checkbox to enable modifications to the settings, then click on the Use
tsconfig.json radio button, and click OK. WebStorm is now configured to use the
tsconfig.json file in the projects root directory. As this file does not yet exist, a
TypeScript error panel will open, indicating that the compiler cannot find t sconfig. json
in the project. To fix this error, we will need to create a tsconfig. json file, so click on File
| New, and type tsconfig. json as the filename. Switch back to the app. ts file, hit Ctrl-S
to save, and the error message will disappear.

Building a simple HTML application

Now that we have configured WebStorm to compile our Typescript files, let's create a
simple TypeScript class and use it to modify the innerText property of an HTML div.
While you are typing, you will notice WebStorm's auto-completion or Intellisense feature
helping you with available keywords, parameters, naming conventions, and so on. This is
one of the most powerful features of WebStorm, and is similar to the enhanced Intellisense
seen in Visual Studio. Go ahead and type the following TypeScript code, during which you
will get a good feeling for WebStorm's available auto-completion:

class MyClass {
public render (divId: string, text: string) {
var el: HTMLElement = document.getElementById (divId);

el.innerText = text;
}
}
window.onload = () => {
var myClass = new MyClass();

myClass.render ("content", "Hello World");

}
This code is the same as we used in the Visual Studio example.

If you have any errors in your TypeScript file, these will automatically show up in the
output window, giving you instant feedback while you type. With this TypeScript file
created, we can now include it in our index.html file, and try some debugging.

Open the index.html file, and add a script tag to include the app. js JavaScript file,
along with a div with an id of "content". Just as we saw with TypeScript editing, you
will find that WebStorm has powerful Intellisense features when editing HTML as well:

<!DOCTYPE html>
<html>
<head lang="en">

[31]

TypeScript - Tools and Framework Options

<meta charset="UTF-8">
<title></title>
<script src="app.]js"></script>
</head>
<body>

<div id="content"></div>
</body>
</html>

Again, this HTML is the same as we used earlier in the Visual Studio example.

Running a web page in Chrome

When viewing or editing HTML files in WebStorm, you will notice a small set of browser
icons popping up in the top-right corner of the editing window. Clicking on any one of the
icons will launch your current HTML page using the selected browser:

v Help

app.ts

WebStorm editing an HTML file showing popup browser-launching icons

[32]

TypeScript - Tools and Framework Options

Debugging in Chrome

To debug our web application in WebStorm, we will need to set up a debug configuration
for the index.html file. Click on Run | Debug and then edit configurations. Click on the
plus (+) button, select the JavaScript debug option on the left, and give this configuration a
name. Note that WebStorm has already identified that index.html is the default page, but
this can easily be modified. Next, click on Debug at the bottom of the screen, as shown in
the following screenshot:

Debug - Index.html

v [Javascript Debug
w/ndex heml
> Defaults

bstorm/index.html

Rermote URL

~ Before launch: Activate tool window

Debug Cancel Apply

‘WebStorm debugging configuration for index.html.

WebStorm uses a Chrome plugin to enable debugging in Chrome and will prompt you the
first time you start debugging to download and enable the JetBrains IDE Support
Chrome plugin. With this plugin enabled, WebStorm has a very powerful set of tools to
inspect JavaScript code, add watchers, view the console, and many more, right inside the
IDE.

[33]

TypeScript - Tools and Framework Options

index.htm| ¥

b] index.html i app.ts

131 CRLF + UTF-8 3

WebStorm debugging session showing debugger panels

Visual Studio Code

Visual Studio Code is a lightweight development enviroment produced by Microsoft that
runs on Windows, Linux, and Mac. It includes development features such as syntax
highlighting, bracket matching, Intellisense, and also has support for many different
languages. These languages include TypeScript, JavaScript, JSON, HTML, CSS, C#, C++ and
many more — making it ideal for TypeScript development in either web pages or Node. Its
main focus is currently ASP.NET development with C#, and Node development with
TypeScript. It has also been built with strong git support out-of-the-box.

[34]

TypeScript - Tools and Framework Options

Installing VSCode

VSCode can be installed on Windows by simply downloading and running the installer. On
Linux systems, VSCode is provided as a . deb package, an . rpm package, or a binary tar
file. Under Mac, download the . zip file, unzip it, and then copy the Visual Studio

Code. app file to your applications folder.

Exploring VSCode

Create a new directory to hold your source code and fire up VSCode. This can be done by
navigating to the directory and executing code . from the command line. On Windows
systems, fire up VSCode, and then Select File | Open folder from the menu bar. Hit Ctrl-N
to create a new file, and type the following:

console.log("hello vscode");

Note that there is no syntax highlighting at this stage, as VSCode does not know what type
of file it is working with. Hit CtrI-S to save the file, and name it hello.ts. Now that
VSCode understands this to be a TypeScript file, you will have full Intellisense and syntax
highlighting available.

Creating a tasks.json file

The keyboard shortcut to build a project in VSCode is Ctrl-Shift-B. If we try to build the
project at this stage, VSCode will show a message-No task runner configured, and
give us the option to Configure Task Runner. We can then select which sort of task runner
we would like to configure, including Grunt, Gulp, and a number of other options.
Selecting one of these options will automatically create a tasks. json file for us in the
.vscode directory, and open it for editing.

As an example of this let's select the TypeScript - tsconfig.json option. We will make a
single change to the generated tsconfig. json file, and set the value of the "showOutput"
option to "always", instead of "silent". This will force VSCode to open an output
window whenever it sees compilation issues.

[35]

TypeScript - Tools and Framework Options

Our tasks. json file now contains the following;:

// A task runner that calls the Typescript compiler (tsc) and
// compiles based on a tsconfig.json file that is present in
// the root of the folder open in VSCode
{

"version": "0.1.0",

"command": "tsc",

"isShellCommand": true,

"showOutput": "always",

"args": ["-p", "."I],

"problemMatcher": "Stsc"

Building the project
Our sample project can now be built by hitting CtrI-Shift-B. Note that in the base directory

of our project, we now have ahello. js and ahello. js.map file as the result of the
compilation step.

Creating a launch.json file

VSCode includes an integrated debugger that can be used to debug TypeScript projects. If
we switch to the Debugger panel, or simply hit F5 to start debugging, VSCode will ask us
to select a debugging environment. For the time being, select the Node.js option, which will
create a launch. json file in the . vscode directory, and again open it for editing. Find the
option named "program", and modify it to read "${workspaceRoot}/hello.js". Hit F5
again, and VSCode will launch hello. js as a Node program and output the results to the
debugging window:

node —--debug-brk=34146 —--nolazy hello.js
debugger listening on port 34146
hello vscode

[36]

TypeScript - Tools and Framework Options

Setting breakpoints

Using breakpoints and debugging at this stage will only work on the generated . js
JavaScript files. We will need to make another change to the 1aunch. json file to enable
debugging directly in our TypeScript files. Edit the 1aunch. json file, and change the
"sourceMaps" : false property to true. Now we can set breakpoints directly in our
. ts files for use by the VSCode debugger:

hello.ts - vscode - Visual Studio Code

DEBUG Launch £ p = 1

4 VARIABLES
4 Local o console. log("

Ln2,Coll UTF-8 LF TypeScript @

Debugging a Node application within Visual Studio Code

Debugging web pages

Debugging TypeScript running within a web page in VSCode takes a little more setup.
VSCode uses the Chrome debugger to attach to a running web page. To enable debugging
web pages, we will firstly need to modify the 1aunch. json file and add a new launch
option, as follows:

"configurations": [
{
"name": "Launch",
}I
"name": "Attach 9222",
"type": "chrome",

[371]

TypeScript - Tools and Framework Options

"request": "attach",
"port": 9222,
"sourceMaps": true
}
]

This launch option is named "Attach 9222", and will attach to a running instance of
chrome using the debug port 9222. Save the 1aunch. json file, and create an HTML page
named index.html at the root directory of the project, as follows:

<html>
<head>
<script src="helloweb.js"></script>
</head>
<body>
hello vscode
<div id="content"></div>
</body>
</html>

This is a very simple page that loads the helloweb. js file, and displays the text hello
vscode. Our helloweb. ts file is as follows:

window.onload = () => {
console.log("hello vscode");
}i

This TypeScript code simply waits for the web page to load, and then logs "hello
vscode" to the console.

The next step is to fire up Chrome using the debug port option. On Linux systems, this is
done from the command prompt, as follows:

google—-chrome —--remote-debugging-port=9222

Note that you will need to ensure that there are no other instances of Chrome running in
order to use it as a debugger with VSCode.

Next, load the index.html file in the browser by using the
file://<full_path_to_file>/index.html syntax. You should see the HTML file
rendering the "hello vscode" text.

[38]

TypeScript - Tools and Framework Options

Now we can go back to VSCode, click on the debugging icon, and select the Attach 9222
option in the launcher drop-down. Hit F5, and the VSCode debugger should now be
attached to the running instance of Chrome. We will then need to refresh the page in
Chrome in order to start debugging:

helloweb.ts - vscode - visual Studio Code

DEBUG Attach 9222 & = helloweb.ts
4 VARIABLES winds

4 Local

b WATCH
4 CALL STACK

Ln4,Coll UTF8 LF TypeScript @

Debugging web pages in Visual Studio Code

With a slight tweak to our launch. json, we can combine these manual steps into a single
launcher, as follows:

{

"name": "Launch chrome",

"type": "chrome",

"request" : "launch",

"url" : "file:/// ... insert full path here ... /index.html",
"runtimeArgs": [

"—-—new-window",
"-—remote-debugging-port=9222"
1,

"sourceMaps": true

[39]

TypeScript - Tools and Framework Options

In this launch configuration, we have changed the request property from "attach" to
"launch", which will launch a new instance of Chrome and automatically navigate to the
file path specified in the "url" property. The "runtimeArgs" property now also specifies
the remote debugging port of 9222. With this launcher in place, we can simply hit F5 to
launch Chrome, with the correct URL and debugging options for debugging of HTML
applications.

Other editors

There are a number of editors that include support for TypeScript, such as Atom, Brackets,
and even the age-old Vim editor. Each of these editors has varying levels of TypeScript
support, including syntax highlighting and Intellisense. Using these editors represents a
bare-bones TypeScript development environment, relying on the command line to
automate build tasks. They do not have built-in debugging tools, and therefore do not
qualify as an Integrated Development Environment (IDE) per se, but can easily be used to
build TypeScript applications. The basic workflow using these editors would be as follows:

¢ Create and modify files using the editor
e Invoke the TypeScript compiler from the command line
¢ Run or debug applications using existing debuggers

Using Grunt

In a bare-bones environment, any change to a TypeScript file means that we need to re-issue
the t sc command from the command line every time we wish to compile our project.
Obviously, it is going to be very tedious to have to switch to the command prompt and
manually compile our project every time we have made a change. This is where tools like
Grunt come in handy. Grunt is an automated task runner (http://gruntjs.com) that can
automate many tedious compile, build, and test tasks. In this section, we will use Grunt to
watch our TypeScript files, and automatically invoke the t sc compiler when a file is saved.

Grunt runs in a Node environment, and therefore needs to be installed as an npm
dependency of your project. It cannot be installed globally as most npm packages can. In
order to do this, we will need to create a packages. json file in the root project. Open up a
command prompt, and navigate to the root directory of your project. Then, simply type:

npm init

[40]

http://gruntjs.com/

TypeScript - Tools and Framework Options

Then follow the prompts. You can pretty much leave all of the options at their defaults, and
always go back to edit the packages. json file that is created from this step, should you
need to tweak any changes.

Now we can install Grunt. Grunt has two components that need to be installed
independently. Firstly, we need to install the Grunt command-line interface, which allows
us to run Grunt from the command line. This can be accomplished as follows:

npm install —-g grunt-cli

The second component is to install the grunt files within our project directory:

npm install grunt —--save-dev

The —-save-dev option will install a local version of Grunt in the project directory. This is
done so that multiple projects on your machine can use different versions of Grunt. We will
also need the grunt-exec package, as well as the grunt -contrib-watch package. These
can be installed with the following commands:

npm install grunt-exec —--—-save-dev
npm install grunt-contrib-watch --save-dev.

Lastly, we will need a GruntFile. js. Using an editor, create a new file, save it as
GruntFile. js, and enter the following JavaScript. Note that we are creating a JavaScript
file here, not a TypeScript file. You can find a copy of this file in the sample source code that
accompanies this chapter:

module.exports = function (grunt) {
grunt.loadNpmTasks ('grunt-contrib-watch');
grunt.loadNpmTasks ('grunt—-exec');
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),

watch : |
files : ['"**/*.ts'],
tasks : ['exec:run_tsc']
}I
exec: {
run_tsc: { cmd : 'tsc'}
}
)i
grunt.registerTask ('default', ['watch']);

bi

[41]

TypeScript - Tools and Framework Options

This GruntFile. js contains a simple function to initialize the Grunt environment, and
specify the commands to run. The first two lines of the function are loading grunt -
contrib-watch and grunt-exec as npm tasks. We then call initConfig to configure the
tasks to run. This configuration section has a pkg property, a watch property, and an exec
property. The pkg property is used to load the package. json file that we created earlier as
part of the npm init step.

The wat ch property has two sub-properties. The £iles property specifies what to watch
for, in this case any . ts files in our source tree, and the tasks array specifies that we
should kick off the exec: run_t sc command once a file has changed. Finally, we call
grunt.registerTask, specifying that the default task is to watch for file changes.

We can now run grunt from the command line, as follows:

grunt

As can be seen from the command line output, Grunt is running the watch task, and is
waiting for changes to any . ts files:

Running "watch" task
Waiting...

Open up any TypeScript file, make a small change (add a space or something), and then hit
Ctrl-S to save the file. Now check back on the output from the Grunt command line. You
should see something like the following:

>> File "hellogrunt.ts" changed.

Running "exec:run_tsc" (exec) task

Done, without errors.

Completed in 2.008s at Sat Mar 19 2016 20:27:17 GMT+0800
(W. Australia Standard Time) - Waiting...

This command line output is a confirmation that the Grunt watch task has identified that
the hellogrunt.ts file has changed, run the exec: run_tsc task, and is waiting for the
next file to change. We should now also see a hellogrunt. js file in the same directory as
our Typescript file.

[42]

TypeScript - Tools and Framework Options

Summary

In this chapter, we have had a quick look at what TypeScript is and what benefits it can
bring to the JavaScript development experience. We also looked at setting up a
development environment using some popular IDEs, and had a look at what a bare-bones
development environment would look like. Now that we have a development environment
set up, we can start looking at the TypeScript language itself in a bit more detail. We will
start with types, move on to variables, and then discuss functions in the next chapter.

[43]

Types, Variables, and Function
Techniques

TypeScript introduces strong typing to JavaScript through a simple syntax, referred to by
Anders Hejlsberg as “syntactic sugar”. This “sugar” is what assigns a type to a variable, a
function parameter, or even the return type of a function itself. As we discussed in chapter
1, TypeScript — Tools and Framework Options, the benefits of strong typing include better error
checking, the ability for an IDE to provide more intelligent code suggestions, and the ability
to introduce object-oriented techniques into the JavaScript coding experience. There are a
number of basic types that the language uses, such as number, string and boolean, to name
a few. There are also rules by which the TypeScript compiler identifies what the type of a
variable is. Understanding these rules and applying them to your code is a fundamental
skill when writing TypeScript code.

We will cover the following topics in this chapter:

e Basic types and type syntax — strings, numbers, and booleans
¢ Inferred typing and duck typing

e Template strings

e Arrays

e Using for...inand for...of

e The any type and explicit casting

e Enums

e Const enums and const values

¢ The let keyword

¢ Functions and anonymous functions

¢ Optional and default function parameters

Types, Variables, and Function Techniques

e Argument arrays
¢ Function callbacks, function signatures, and function overloads
¢ Union types, type guards, and type aliases

This chapter is an introduction to the syntax used in the TypeScript
language to apply strong typing to JavaScript. It is intended for readers
who have not used TypeScript before, and covers the transition from
standard JavaScript to TypeScript. If you already have experience with
TypeScript, and have a good understanding of the topics listed here, then
by all means have a quick read through, or skip to the next chapter.

Basic types

JavaScript variables can hold a number of data types, including numbers, strings, arrays,
objects, functions, and more. The type of an object in JavaScript is determined by its
assignment. This means that only at the point where we assign a value to a variable does
the JavaScript runtime interpreter try to determine what the type of the particular variable
is. While this may work in simple cases, the JavaScript runtime can also reassign the type of
a variable depending on how it is being used, or on how it is interacting with other
variables. It may assign a number to a string, for example, in certain cases. Let's take a look
at an example of this dynamic typing in JavaScript, and what errors it can introduce, before
exploring the strong typing that TypeScript uses, and its basic type system.

JavaScript typing

As we saw in Chapter 1, TypeScript — Tools and Framework Options, JavaScript objects and
variables can be changed or reassigned on-the-fly. As an example of this, consider the
following JavaScript code:

function doCalculation(a,b,c) {
return (a * b) + c;
}
var result = doCalculation(2,3,1);
console.log('doCalculation():' + result);

[45]

Types, Variables, and Function Techniques

Here, we have a doCalculation function that is computing the product of the arguments
a and b, and then adding the value of c. We are then calling the function with the
arguments 2, 3 and 1, and logging the result to the console. The output of this sample
would be:

doCalculation() :7

This is the expected result, as 2 * 3 =6, and 6 + 1 =7. Now let's take a look at what happens if
we inadvertently call the function with strings instead of numbers:

result = doCalculation("2","3","1");
console.log('doCalculation():' + result);

The output of this code sample is as follows:

doCalculation() : 61

The result of 61 is very different from our expected result of 7. So what is going on here? If
we take a closer look at the code in the doCalculation function, we start to understand
what JavaScript is doing with our variables, and their types.

The product of two numbers, thatis, (a * b), returns a numeric value, so JavaScript is
automatically converting the values "2" and "3" to numbers in order to compute the
product, and correctly computing the value 6. This is a particular rule that JavaScript
applies in order to convert strings to numbers, when the result should be a number. But the
addition symbol, that is, +, does not infer that both values are numeric. Because the
argument c is a string, JavaScript is converting the value 6 into a string in order to add two
strings. This results in the string " 6" being added to the string " 1", which results in the
value "61". Obviously, these sorts of automatic type conversions can cause unwanted
behavior in our code.

TypeScript typing

TypeScript, on the other hand, is a strongly typed language. Once you have declared a
variable to be of type string, you can only assign string values to it. All further code that
uses this variable must treat it as though it has a type of st ring. This helps to ensure that
code that we write will behave as expected.

[46]

Types, Variables, and Function Techniques

JavaScript programmers have always relied heavily on documentation to understand how
to call functions, and the order and type of the correct function parameters. But what if we
could take all of this documentation and include it within the IDE? Then, as we write our
code, our compiler could point out to us automatically that we were using variables in the
wrong way. Surely this would make us more efficient, more productive programmers,
allowing us to generate code with fewer errors?

TypeScript does exactly that. It introduces a very simple syntax to define the type of a
variable to ensure that we are using it in the correct manner. If we break any of these rules,
the TypeScript compiler will automatically generate errors, pointing us to the lines of code
that are in error.

This is how TypeScript got its name. It is JavaScript with strong typing, hence TypeScript.
Let's take a look at this very simple language syntax that enables the Type in TypeScript.

Type syntax

The TypeScript syntax for declaring the type of a variable is to include a colon (:), after the
variable name, and then indicate its type. Let's rewrite our problematic doCalculation
function to only accept numbers. Consider the following TypeScript code:

function doCalculation (

a : number,

b : number,

c : number) {

return (a * b) + c;
}
var result = doCalculation(3,2,1);
console.log("doCalculation():" + result);

Here, we have specified that the doCalculation function needs to be invoked with three
numbers. Again, the TypeScript syntax for declaring a type is to include a colon, and then
the variable type, hence : number for the properties a, b, and c. If we now attempt to call
this function with strings, as we did with the JavaScript sample, as follows:

var result = doCalculation("1", "2", "3");
console.log("doCalculation():" + result);

The TypeScript compiler will generate the following error:

error TS2345: Argument of type 'string' is not assignable
to parameter of type 'number'.

[47]

Types, Variables, and Function Techniques

This error message clearly tells us that we cannot assign a string where a numeric value is
expected.

To further illustrate this point, consider the following TypeScript code:

var myString : string;
var myNumber : number;
var myBoolean : boolean;
myString = "1";

myNumber = 1;

myBoolean = true;

Here, we are telling the compiler that the myString variable is of type st ring, even before
the variable itself has been used. Similarly, the myNumber variable is of type number, and
the myBoolean variable is of type boolean. TypeScript has introduced the string,
number, and boolean keywords for each of these basic JavaScript types.

If we then attempt to assign a value to a variable that is not of the same type, the TypeScript
compiler will generate a compile-time error. Given the variables declared in the preceding
code, consider the following TypeScript code:

myString = myNumber;

myBoolean = myString;
myNumber = myBoolean;

‘number

Error List

TypeScript build errors when assigning incorrect types

[48]

Types, Variables, and Function Techniques

The TypeScript compiler is now generating compile errors because it has detected that we
are attempting to mix these basic types. The first error is generated because we cannot
assign a number value to a variable of type st ring. Similarly, the second compile error
indicates that we cannot assign a st ring value to a variable of type boolean. Again, the
third error is generated because we cannot assign a boolean value to a variable of type
number.

The strong typing syntax that the TypeScript language introduces means that we need to
ensure that the types on the left-hand side of an assignment operator (=) are the same as the
types on the right-hand side of the assignment operator.

To fix the preceding TypeScript code, and remove the compile errors, we would need to do
something similar to the following:

myString = myNumber.toString();

myBoolean = (myString === "test");
if (myBoolean) {
myNumber = 1;

}

Our first line of code has been changed to call the . toString () function on the myNumber
variable (which is of type number), in order to return a value that is of type st ring. This
line of code, then, does not generate a compile error because both sides of the equal sign (or
assignment operator) are strings.

Our second line of code has also been changed so that the right-hand side of the assignment
operator returns the result of a comparison, myString === "test", which will return a
value of type boolean. The compiler will therefore allow this code, because both sides of
the assignment resolve to a value of type boolean.

The last line of our code snippet has been changed to only assign the value 1 (which is of
type number) to the myNumber variable, if the value of the myBoolean variable is t rue.

Anders Hejlsberg describes this feature as “syntactic sugar”. In other words, with a little
“sugar” on top of comparable JavaScript code, TypeScript has enabled our code to transform
into a strongly typed language. Whenever you break these strong typing rules, the compiler
will generate errors for your offending code.

[49]

Types, Variables, and Function Techniques

Inferred typing

TypeScript also uses a technique called inferred typing to determine the type of a variable.
In other words, TypeScript will infer the type of a variable based on its first usage, and then
assume the same type for this variable in the rest of your code block. As an example of this,
consider the following TypeScript code:

var inferredString = "this is a string";
var inferredNumber = 1;
inferredString = inferredNumber;

We start by declaring a variable named inferredsString, and assign a string value to it.
TypeScript identifies that this variable has been assigned a value of type string, and will,
therefore, infer any further usage of this variable to be of type st ring. Our second variable,
named inferredNumber, has a number assigned to it. Again, TypeScript is inferring the
type of this variable to be of type number. If we then attempt to assign the
inferredString variable (of type string) to the inferredNumber variable (of type
number) in the last line of code, TypeScript will generate a familiar error message:

error TS2011l: Build: Cannot convert 'string' to 'number'
This error is generated because of TypeScript's inferred typing rules.

Remember that if we do not explicitly specify the type of a variable by using the colon (:
type) syntax, then TypeScript will automatically infer the type of a variable based on its
first assignment.

Duck typing

TypeScript also uses a method called duck typing for more complex variable types. Duck
typing means that if it looks like a duck, and quacks like a duck, then it probably is a duck.
Consider the following TypeScript code:

var complexType = { name: "myName", id: 1 };
complexType = { id: 2, name: "anotherName" };

We start with a variable named complexType that has been assigned a simple JavaScript
object with a name and an id property. On our second line of code, we are reassigning the
value of this complexType variable to another object that also has an id and a name
property. The compiler will use duck typing in this instance to figure out whether this
assignment is valid. In other words, if an object has the same set of properties as another
object, then they are considered to be of the same type.

[50]

Types, Variables, and Function Techniques

To further illustrate this point, let's see how the compiler reacts if we attempt to assign an
object to our complexType variable that does not conform to this duck typing:

var complexType = { name: "myName", id: 1 };
complexType = { id: 2 };

The first line of this code snippet defines our complexType variable, and assigns to it an
object that contains both an id and a name property. From this point on, TypeScript will use
this inferred type on any value we attempt to assign to the complexType variable. On our
second line of code, we are attempting to reassign the complexType variable to a value that
has an id property but not a name property. This line of code will generate the following
compilation error:

error TS2322: Type '{ id: number; }' is not assignable to type
'{ name: string; id: number; }'.
Property 'name' is missing in type '{ id: number; }'.

The error message is pretty self-explanatory. In this instance, TypeScript is using duck
typing to ensure type safety. As the complexType variable has both an id and a name
property, any value that is assigned to it must also have both an id and a name property.

Note that the following code will also generate an error message:

var complexType = { name: "myName", id: 1 };
complexType = { name : "extraproperty", id : 2, extraProp: true };

The error generated here is as follows:

error TS2322: Type '{ name: string; id: number;

extraProp: boolean; }' is not assignable to type '{ name: string; id:
number; }'.

Object literal may only specify known properties, and 'extraProp' does not
exist in type '{ name: string; id: number; }'.

As can be seen in this error message, the variable complexType does not have an
extraProp property, and therefore the assignment fails.

Inferred typing and duck typing are powerful features of the TypeScript language, bringing
strong typing to our code without the need to use explicit typing.

[51]

Types, Variables, and Function Techniques

Template strings

Before we continue our discussion on types, it is worth noting that TypeScript allows for
ES6 template string syntax. This syntax provides a convenient method for injecting values
into strings. Consider the following code:

var myVariable = "test";
console.log("myVariable=" + myVariable);

Here, we are simply assigning a value to a variable, and logging the result to the console,
with a little bit of formatting to make the message readable. Note how we are concatenating
the strings with the "string" + variable syntax. Let's now take alook at the equivalent
TypeScript code:

var myVariable = "test";
console.log('myVariable=${myVariable}");

On the second line of this code snippet, we have introduced the ES6 template string syntax
for easier manipulation of strings. There are two important things to note about this syntax.
Firstly, we have switched the string definition from a double quote (") to an apostrophe ().
Using an apostrophe signals to the TypeScript compiler that it should look for template
values within the string enclosed by the apostrophes, and replace them with actual values.
Secondly, we have used a special ${ ... } syntax within the string to denote a template.
TypeScript will inject the value of any variable that is currently in scope into the string for
us. This is a convenient method of dealing with strings.

The TypeScript compiler will parse this ES6 style of string templates, and
generate JavaScript code that uses standard string concatenation. In this
way, the ES6 string template syntax can be used no matter what JavaScript
version is being targeted.

In the remainder of this chapter, we will use this string template syntax.

Arrays

Besides the base JavaScript types of string, number, and boolean, TypeScript has two other
basic data types that we will now take a closer look at — arrays and enums. Let's look at the
syntax for defining arrays.

[52]

Types, Variables, and Function Techniques

An array is simply marked with the [] notation, similar to JavaScript, and each array can be
strongly typed to hold a specific type, as seen in the code below:

var arrayOfNumbers: number [] = [1,2,3];
arrayOfNumbers = [3,4,5,6,7,8,91;

console.log(arrayOfNumbers: S${arrayOfNumbers}");
arrayOfNumbers = ["1", "2", "3"];

Here, we start by defining an array named arrayOfNumbers, and further specifying that
each element of this array must be of type number. We then reassign this array to hold some
different numerical values. Note that we can assign any number of elements to an array. We
then use a simple template string to print the array to the console.

The last line of this snippet, however, will generate the following error message:

hello_ch02.ts(51,1): error TS2322: Type 'string[]' is not assignable to
type 'number[]'.
Type 'string' is not assignable to type 'number'.

This error message is warning us that the variable arrayOfNumbers is strongly typed to
only accept values of type number. As our code is trying to assign an array of strings to this
array of numbers, an error is generated. The output of this code snippet is as follows:

arrayOfNumbers: 3,4,5,6,7,8,9

for...in and for...of

When working with arrays, it is common practice to loop through array items in order to
perform some task. This is generally accomplished within a for loop by manipulating an
array index, as shown in the following code:

var arrayOfStrings : string[] = ["first", "second", "third"];

for(var 1 = 0; i < arrayOfStrings.length; i++) {
console.log(arrayOfStrings[${i}] = ${arrayOfStrings[i]});
}

Here, we have an array named arrayOfsStrings, and a standard for loop that is using the
variable i as an index into our array. We access the array item using the syntax
arrayOfstrings[i]. The output of this code is as follows:

arrayOfStrings[0] = first
arrayOfStrings[1l] = second
arrayOfStrings[2] = third

[53]

Types, Variables, and Function Techniques

TypeScript introduces the for. . .in syntax to simplify looping through arrays. Here is an
example of the above for loop expressed using this new syntax:

for(var itemKey in arrayOfStrings) {

var itemValue = arrayOfStrings[itemKey];

console.log(arrayOfStrings[${itemKey}] = ${itemValue}’);
}

Here, we have simplified the for loop by using the itemKey in arrayOfStrings syntax.
Note that the value of the variable itemKey will iterate through the keys of the array, and
not the array elements themselves. Within the for loop, we are first de-referencing the
array to extract the array value for this itemKey, and then logging both the itemKey and
the itemvValue to the console. The output of this code is as follows:

arrayOfStrings[0] = first
arrayOfStrings[1l] = second
arrayOfStrings[2] = third

If we do not necessarily need to know the keys of the array, and are simply interested in the
values held within the array, we can further simplify looping through arrays using the
for...of syntax. Consider the following code:

for(var arrayItem of arrayOfStrings) {
console.log(arrayltem = ${arrayltem});

}

Here, we are using the for. . .of syntax to iterate over each value of the arrayOfStrings
array. Each time that the for loop is executed, the arrayItem variable will hold the next
element in the array. The output of this code is as follows:

arrayItem = first
arrayItem = second
arrayItem = third

The any type

All this type checking is well and good, but JavaScript is flexible enough to allow variables
to be mixed and matched. The following code snippet is actually valid JavaScript code:

var iteml = { id: 1, name: "item 1" };
iteml = { id: 2 };

[54]

Types, Variables, and Function Techniques

Here, we assign an object with an id property and a name property to the variable iteml.
We then reassign this variable to an object that has an id property but not a name property.
Unfortunately, as we have seen previously, this is not valid TypeScript code, and will
generate the following error:

hello_ch02.ts(130,1): error TS2322: Type '{ id: number; }' is not
assignable to type '{ id: number; name: string; }'.
Property 'name' is missing in type '{ id: number; }'.

TypeScript introduces the any type for such occasions. Specifying that an object has a type
of any, in essence, relaxes the compiler's strict type checking. The following code shows
how to use the any type:

var iteml : any { id: 1, name: "item 1" };

iteml = { id: 2 };

Note how our first line of code has changed. We specify the type of the variable iteml to be
of type : any. This special TypeScript keyword then allows a variable to follow JavaScript's
loosely defined type rules, so that anything can be assigned to anything. Without the type
specifier of : any, the second line of code would normally generate an error.

Explicit casting

As with any strongly typed language, there comes a time where you need to explicitly
specify the type of an object. This concept will be expanded upon more thoroughly in the
next chapter, but it is worthwhile to make a quick note of explicit casting here. An object
can be cast to the type of another by using the < > syntax.

This is not a cast in the strictest sense of the word; it is more of an assertion
that is used at runtime by the TypeScript compiler. Any explicit casting
that you use will be compiled away in the resultant JavaScript and will not
affect the code at runtime.

Let's take a look at an example that uses explicit casting, as follows:

var iteml = <any>{ id: 1, name: "item 1" };
iteml = { id: 2 };

Here, have now replaced the : any type specifier on the left-hand side of the assignment,
with an explicit cast of <any> on the right-hand side. This tells the compiler to explicitly
treatthe { id: 1, name: "item 1" } object on the right-hand side of the assignment
operator as a type of any. So the iteml variable on the left-hand side of the assignment,
therefore, also has the type of any (due to TypeScript's inferred typing rules).

[551]

Types, Variables, and Function Techniques

This then allows us to assign an object with only the { id: 2 } property to the variable
iteml on the second line of code. This technique of using the < > syntax on the right-hand
side of an assignment is called explicit casting.

While the any type is a necessary feature of the TypeScript language and is used for
backward compatibility with JavaScript, its usage should really be limited as much as
possible. As we have seen with untyped JavaScript, over-use of the any type will quickly
lead to coding errors that will be difficult to find.

Rather than using the type any, try to figure out the correct type of the object you are using,
and then use this type instead. We use an acronym within our programming teams-Simply
Find an Interface for the Any Type (S.F.I.A.T) pronounced as sviat or sveat. While this
may sound silly, it brings home the point that the any type should always be replaced with
an interface, so simply find it. An interface is a way of defining custom types in TypeScript,
which we will cover in the next chapter. Just remember that, by actively trying to define
what an object's type should be, we are building strongly typed code, and therefore,
protecting ourselves from future coding errors and bugs.

Enums

Enums are a special type borrowed from other languages such as C#, C++, and Java, and
provides a solution to the problem of special numbers. An enum associates a human-
readable name for a specific number. Consider the following code:

enum DoorState {
Open,
Closed,
Ajar

}

Here, we have defined an enum called DoorsState to represent the state of a door. Valid
values for this door state are Open, Closed, or Ajar. Under the hood (in the generated
JavaScript), TypeScript will assign a numeric value to each of these human-readable enum
values. In this example, the DoorState.Open enum value will equate to a numeric value of
0. Likewise, the enum value Doorstate.Closed will equate to the numeric value of 1, and
the Doorstate.Ajar enum value will equate to 2. Let's take a quick look at how we would
use these enum values:

var openDoor = DoorState.Open;
console.log(openDoor is: ${openDoor}’);

[561]

Types, Variables, and Function Techniques

The first line of this snippet creates a variable named openDoor, and sets its value to
DoorState.Open. The second line simply logs the value of openDoor to the console. The
output of this would be:

openDoor is: 0

This clearly shows that the TypeScript compiler has replaced the enum value of
DoorState.Open with the numeric value 0. Now let's use this enum in a slightly different

way:

var closedDoor = DoorState["Closed"];
console.log(closedDoor is : ${closedDoor}’);

This code snippet uses a string value of "Closed" to lookup the enum type, and assigns the
resulting enum value to the closedDoor variable. The output of this code would be:

closedDoor is : 1

This sample clearly shows that the enum value of Doorstate.Closed is the same as the
enum value of DoorState["Closed"], because both variants resolve to the numeric value
of 1. Finally, let's take a look at what happens when we reference an enum using an array
type syntax:

var ajarDoor = DoorState[2];
console.log(ajarDoor is : ${ajarDoor}’);

Here, we assign the variable ajarDoor to an enum value based on the second index value
of the Doorstate enum. The output of this code, though, is surprising:

ajarDoor is : Ajar

You may have been expecting the output to be simply 2, but here we are getting the string
"Ajar", which is a string representation of our original enum name. This is actually a neat
little trick allowing us to access a string representation of our enum value. The reason that
this is possible is down to the JavaScript that has been generated by the TypeScript

compiler. Let's take a look, then, at the closure that the TypeScript compiler has generated:

var DoorState;
(function (DoorState) A

DoorState[DoorState["Open"] = 0] = "Open";
DoorState[DoorState["Closed"] = 1] = "Closed";
DoorState[DoorState["Ajar"] = 2] = "Ajar";

}) (DoorState || (DoorState = {}));

[571

Types, Variables, and Function Techniques

This strange-looking syntax is building an object that has a specific internal structure. It is
this internal structure that allows us to use this enum in the various ways that we have just
explored. If we interrogate this structure while debugging our JavaScript, we will see that
the internal structure of the Doorstate object is as follows:

DoorState
{...}
[prototype]: {...}
[0]: "Open"

[1]: "Closed"

[2]: "Ajar"
[prototypel: []
Ajar: 2

Closed: 1

Open: 0

The DoorState object has a property called "0", which has a string value of "Open™".
Unfortunately, in JavaScript the number 0 is not a valid property name, so we cannot access
this property by simply using Doorstate. 0. Instead, we must access this property using
either DoorState[0] or DoorState["0"]. The DoorState object also has a property
named Open, which is set to the numeric value 0. The word Open is a valid property name
in JavaScript, so we can access this property using DoorState ["Open"], or simply
DoorState.Open, which equates to the same property in JavaScript.

While the underlying JavaScript can be a little confusing, all we need to remember about
enums is that they are a handy way of defining an easily remembered, human-readable
name to a special number. Using human-readable enums, instead of just scattering various
special numbers around in our code, makes the intent of the code clearer. Using an
application-wide value named DoorState.Open or DoorState.Closed is far simpler than
remembering to set a value to 0 for Open, 1 for Closed, and 3 for Ajar. As well as making
our code more readable and more maintainable, using enums also protects our code base
whenever these special numeric values change because they are all defined in one place.

One last note on enums, is that we can set the numeric value manually, if required:

enum DoorState {

Open = 3,
Closed = 7,
Ajar = 10

}

Here, we have overridden the default values of the enum to set DoorState.Open to 3,
DoorState.Closedto 7, and DoorState.Ajar to 10.

[581]

Types, Variables, and Function Techniques

Const enums

A slight variant of the enum type is the const enum, which simply adds the keyword
const before the enum definition, as follows:

const enum DoorStateConst {
Open,
Closed,
Ajar
}
var constDoorOpen = DoorStateConst.Open;
console.log(constDoorOpen is : ${constDoorOpen}’);

const enums have been introduced largely for performance reasons, and the resultant
JavaScript will not contain the full closure definition for the DoorStateConst enum as we
saw previously. Let's take a quick look at the JavaScript that is generated from this
DoorStateConst enum:

var constDoorOpen = 0 /* Open */;

Note how we do not have a full JavaScript closure for the DoorsStateConst at all. The
compiler has simply resolved the DoorStateConst .Open enum to its internal value of 0,
and removed the const enum definition entirely.

With const enums, we therefore cannot reference the internal string value of an enum, as
we did in our previous code sample. If we try to reference a const enum using the array
syntax, as follows:

console.log (" ${DoorStateConst[0]}");

We get the following error message:

error TS2476: A const enum member can only be accessed using a string
literal.

We can, however, still use the string property accessor on a const enum, as follows:
console.log (' ${DoorStateConst["Open"]}) ;

When using const enums, just keep in mind that the compiler will strip away all enum
definitions and simply substitute the numeric value of the enum directly into our JavaScript
code.

[591]

Types, Variables, and Function Techniques

Const values

The TypeScript language also allows us to define a variable as a constant, by using the
const keyword. If a variable has been marked as const, then its value can only be set
when the variable is defined, and cannot be changed afterwards. Consider the following
code:

const constValue = "test";
constValue = "updated";

Here, we have defined a variable named constvalue, and indicated that it cannot be
changed by using the const keyword. Attempting to compile this code will result in the
following compile error:

error TS2450: Left-hand side of assignment expression cannot be a
constant or a read-only property.

The let keyword

Variables in JavaScript are defined by using the keyword var. The JavaScript runtime is
very lenient, however, when it comes to variable definitions. If the JavaScript runtime
comes across a variable that has not been previously defined or given a value, then the
value for this variable will be undefined. Consider the following code snippet:

console.log(anyValue = ${anyValue});
var anyValue = 2;
console.log(anyValue = ${anyValue});

Here, we start by logging the value of a variable named anyValue to the console. Note,
however, that the variable anyvalue is only defined on the second line of this code snippet.
In other words, we can use a variable in JavaScript before it is defined. The output of this
code is as follows:

undefined
2

anyValue
anyValue

The semantics of using the var keyword presents us with a small problem. Using the var
keyword does not check to see whether the variable itself has been defined before we
actually use it. This could obviously lead to unwanted behavior, as the value of an
undefined or unallocated variable is always undefined.

[60]

Types, Variables, and Function Techniques

TypeScript introduces the 1et keyword, which can be used in the place of the var keyword
when defining variables. One of the advantages of using the 1et keyword is that we cannot
use a variable name before it has been defined. Consider the following code:

console.log(letValue = ${1Value});
let 1lValue = 2;

Here, we are attempting to log the value of the variable 1value to the console even before it
has been defined, similar to how we were using the anyVvalue variable earlier. However,
when using the 1et keyword instead of the var keyword, this code will generate an error,
as follows:

error TS2448: Block-scoped variable 'lValue' used before its declaration.

Here, the TypeScript compiler generates an error if we attempt to use a variable before it is
defined. To fix this code, then, we need to define our variable 1value before it is first used,
as follows:

let 1Value = 2;
console.log (" 1lValue = ${1lvValue}’);

This code will compile correctly, and output the following to the console:

lvalue = 2

Another side-effect of using the 1et keyword, is that variables defined with 1et are block-
scoped. This means that their value and definition are limited to the block of code that they
reside in. As an example of this, consider the following code:

let 1value = 2;
console.log (' 1Value = ${1lValue});

if (1lvalue == 2) {
let 1value = 2001;
console.log('block scoped 1lValue : ${1Value} °);

}
console.log (' 1Value = ${1lValue});

Here, we define the 1vValue variable on the first line using the 1et keyword, and assign a
value of 2 to it. We then log the value of 1vValue to the console. On the first line within the
if statement, note how we are redefining a variable named 1value to hold the value 2001.
We are then logging the value of 1value to the console (within the if statement block).

[61]

Types, Variables, and Function Techniques

The last line of this code snippet again logs the value of the 1vValue variable to the console,
but this time 1Value is outside the if statement block-scope. The output of this code is as
follows:

lvalue = 2
block scoped 1lValue : 2001
lvalue = 2

What these results are showing us is that 1et variables are confined to the scope in which
they are defined. In other words, the 1et 1value = 2001; statement defines a new
variable that will only be visible inside the if statement block of code. As it is a new
variable, it will also not influence the value of the 1value variable that is outside its scope.
This is why the value of 1vValue is 2 both before and after the if statement block, and 2001
within it.

The let statement, therefore, provides us with a safer way of declaring variables, and
limiting their validity to the current scope.

Functions

So far, we have seen how to add type annotations to variables, and have also seen how this
syntax is easily extended to function parameters. There are, however, a few more typing
rules that TypeScript uses when it comes to functions.

Function return types

Using the very simple “syntactic sugar” TypeScript syntax, we can also define the type of a
variable that a function should return. In other words, when we call a function, and it
returns a value, what type should the value be treated as ?

Consider the following TypeScript code:

function addNumbers (a: number, b: number) : string {
return a + b;

}

var addResult = addNumbers (2, 3);

console.log (addNumbers returned : ${addResult}’);

[62]

Types, Variables, and Function Techniques

Here, we have added a : number type to both of the parameters of the addNumbers function
(a and b), and we have also added a : st ring type just after the () braces. Placing a type
annotation after the function definition means that we are defining the return type of the
entire function. In our example, then, the return type of the function addNumbers must be
of type string.

Unfortunately, this code will generate an error message as follows:

error TS2322: Type 'number' is not assignable to type 'string'.

What this error message is telling us is that the return type of the addNumbers function
must be a string. Unfortunately, the function itself is returning a number, and not a string —
hence the error. Taking a closer look at the code, we note that the offending code is, in fact,
return a + b.As a and b are numbers, we are returning the result of adding two
numbers, which is of type number. To fix this code, then, we need to ensure that the
function returns a string, as follows:

function addNumbers (a: number, b: number) : string {
return (a + b).toString();

}

This code will now compile correctly, and will output:

addNumbers returned : 5

Anonymous functions

The JavaScript language also has the concept of anonymous functions. These are functions
that are defined on the fly and don't specify a function name. Consider the following
JavaScript code:

var addvar = function(a,b) |
return a + b;

}

var addvVarResult = addvar (2, 3);
console.log("addVarResult:" + addVarResult);

[63]

Types, Variables, and Function Techniques

This code snippet defines a function that has no name and adds two values. Because the
function does not have a name, it is known as an anonymous function. This anonymous
function is then assigned to a variable named addvar. The addvar variable can then be
invoked as a function with two parameters, and the return value will be the result of
executing the anonymous function. The output of this code will be:

addvarResult:5

Let's now rewrite the preceding anonymous JavaScript function in TypeScript, as follows:

var addFunction = function (a:number, b:number) : number {
return a + b;

}
var addFunctionResult = addFunction (2, 3);
console.log(addFunctionResult : ${addFunctionResult}’);

Here, we see that TypeScript allows anonymous functions in the same way that JavaScript
does, but also allows standard type annotations. The output of this TypeScript code is as
follows:

addFunctionResult : 5

Optional parameters

When we call a JavaScript function that is expecting parameters, and we do not supply
these parameters, then the value of the parameter within the function will be undefined.
As an example of this, consider the following JavaScript code:

var concatStrings = function(a,b,c) {
return a + b + c;
}
var concatAbc = concatStrings("a", "b", "c");
console.log("concatAbc :" + concatAbc);

var concatAb = concatStrings("a", "b");
console.log("concatAb :" + concathAb);

The output of this code is as follows:

concatAbc :abc
concatAb :abundefined

[64]

Types, Variables, and Function Techniques

Here, we have defined a function called concatStrings that takes three parameters, a, b,
and c, and simply returns the sum of these values. We are then calling this function with
three arguments, and assigning the result to the variable concatAbc. As can be seen from
the output, this returns the string "abc". If, however, we only supply two arguments, as
seen with the usage of the variable concat2b, the function returns the string
"abundefined". In JavaScript, if we call a function and do not supply a parameter, then
the missing parameter will be undefined, which in this case is the parameter c.

TypeScript introduces the question mark 2 syntax to indicate optional parameters. This
allows us to mimic the JavaScript calling syntax where we can call the same function with
some missing arguments. As an example of this, consider the following TypeScript code:

function concatStrings(a: string, b: string, c?: string) {
return a + b + c;

}

var concat3strings = concatStrings("a", "b", "c");
console.log(concat3strings : ${concat3strings}’);
var concat2strings = concatStrings("a", "b");
console.log(concat2strings : ${concat2strings}’);
var concatlstring = concatStrings("a");

This is a strongly typed version of the original concatStrings JavaScript function that we
were using previously. Note the addition of the ? character in the syntax for the third
parameter: c?: string. This indicates that the third parameter is optional, and therefore,
all of the above code will compile cleanly, except for the last line. The last line will generate
an error:

error TS2081: Build: Supplied parameters do not
match any signature of call target.

This error is generated because we are attempting to call the concatStrings function with
only a single parameter. Our function definition, though, requires at least two parameters,
with only the third parameter being optional.

Any optional parameters must be the last parameters defined in the
function definition. You can have as many optional parameters as you
want, as long as non-optional parameters precede the optional parameters.

[65]

Types, Variables, and Function Techniques

Default parameters

A subtle variant of the optional parameter syntax allows us to specify the default value of a
parameter. If an optional parameter value is not supplied, we can specify what the default
value of this optional parameter should be. Let's modify our preceding function definition
to use an optional parameter with a default value, as follows:

function concatStringsDefault (
a: string,
b: string,
c: string = "c") {
return a + b + c;

}
var defaultConcat = concatStringsDefault ("a", "b");

console.log(defaultConcat : ${defaultConcat}’);

This function definition has now dropped the 2 optional parameter syntax, but instead has
assigned a value of "c" to the last parameter: c:string = "c". By using default
parameters, if we do not supply <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>