Merge pull request #24 from 0xacx/add-gpt3.5-turbo-model

Add gpt3.5 turbo model
This commit is contained in:
0xacx 2023-03-02 18:24:01 +02:00 committed by GitHub
commit 0901656e67
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 103 additions and 10 deletions

View File

@ -2,12 +2,12 @@
# chatGPT-shell-cli
A simple, lightweight shell script to use OpenAI's chatGPT and DALL-E from the terminal without installing python or node.js.
The script uses the `completions` endpoint and the `text-davinci-003` model for chatGPT and the `images/generations` endpoint for generating images.
A simple, lightweight shell script to use OpenAI's chatGPT and DALL-E from the terminal without installing python or node.js. The script uses the official ChatGPT model `gpt-3.5-turbo` with the OpenAI API endpoint `/chat/completions`.
The script allows the use of all other OpenAI models with the `completions` endpoint and the `images/generations` endpoint for generating images.
## Features
- [Chat](#chat-mode) with GPT from the terminal
- [Chat](#use-the-official-chatgpt-model) with the just released ✨ [official ChatGPT API](https://openai.com/blog/introducing-chatgpt-and-whisper-apis) ✨ from the terminal
- [Generate images](#commands) from a text prompt
- View your [chat history](#commands)
- [Chat context](#chat-context), GPT remembers previous chat questions and answers
@ -115,6 +115,10 @@ This script relies on curl for the requests to the api and jq to parse the json
*When you set an initial prompt you don't need to enable the chat context.
### Use the official ChatGPT model
- You can use the `gpt-3.5-turbo` model by starting the script with `--chat-completion` or `-cc` i.e. `chatgpt -cc`
### Set request parameters
- To set request parameters you can start the script like this: `chatgpt --temperature 0.9 --model text-babbage:001 --max-tokens 100 --size 1024x1024`
@ -125,7 +129,7 @@ This script relies on curl for the requests to the api and jq to parse the json
- max number of tokens, `--max-tokens`
- image size, `-s` or `--size` (The sizes that are accepted by the OpenAI API are 256x256, 512x512, 1024x1024)
- prompt, `-p` or `--prompt`
- prompt from a file in your file system, `--prompt-from-file`
- prompt from a file in your file system, `--prompt-from-file`
To learn more about these parameters you can view the [API documentation](https://platform.openai.com/docs/api-reference/completions/create)

View File

@ -2,9 +2,11 @@
CHAT_INIT_PROMPT="You are ChatGPT, a Large Language Model trained by OpenAI. You will be answering questions from users. You answer as concisely as possible for each response (e.g. dont be verbose). If you are generating a list, do not have too many items. Keep the number of items short. Before each user prompt you will be given the chat history in Q&A form. Output your answer directly, with no labels in front. Do not start your answers with A or Anwser. You were trained on data up until 2021. Today's date is $(date +%d/%m/%Y)"
SYSTEM_PROMPT="You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Current date: $(date +%d/%m/%Y). Knowledge cutoff: 9/1/2021."
CHATGPT_CYAN_LABEL="\n\033[36mchatgpt \033[0m"
# Error handling function
# error handling function
# $1 should be the response body
handle_error() {
if echo "$1" | jq -e '.error' >/dev/null; then
@ -14,7 +16,7 @@ handle_error() {
fi
}
# request to OpenAI API completetions endpoint function
# request to OpenAI API completions endpoint function
# $1 should be the request prompt
request_to_completions() {
request_prompt=$1
@ -46,7 +48,27 @@ request_to_image() {
}')
}
# build chat context before each request
# request to OpenAPI API chat completion endpoint function
# $1 should be the message(s) formatted with role and content
request_to_chat() {
message=$1
response=$(curl https://api.openai.com/v1/chat/completions \
-sS \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer $OPENAI_KEY" \
-d '{
"model": "'"$MODEL"'",
"messages": [
{"role": "system", "content": "'"$SYSTEM_PROMPT"'"},
'"$message"'
],
"max_tokens": '$MAX_TOKENS',
"temperature": '$TEMPERATURE'
}')
}
# build chat context before each request for /completions (all models except
# gpt turbo)
# $1 should be the chat context
# $2 should be the escaped prompt
build_chat_context() {
@ -60,7 +82,8 @@ build_chat_context() {
request_prompt="${chat_context//$'\n'/\\n}"
}
# maintain chat context function, builds cc from response,
# maintain chat context function for /completions (all models except gpt turbo)
# builds chat context from response,
# keeps chat context length under max token limit
# $1 should be the chat context
# $2 should be the response data (only the text)
@ -79,6 +102,46 @@ maintain_chat_context() {
done
}
# build user chat message function for /chat/completions (gpt turbo model)
# builds chat message before request,
# $1 should be the chat message
# $2 should be the escaped prompt
build_user_chat_message() {
chat_message=$1
escaped_prompt=$2
if [ -z "$chat_message" ]; then
chat_message="{\"role\": \"user\", \"content\": \"$escaped_prompt\"}"
else
chat_message="$chat_message, {\"role\": \"user\", \"content\": \"$escaped_prompt\"}"
fi
request_prompt=$chat_message
}
# adds the assistant response to the message in (chatml) format
# for /chat/completions (gpt turbo model)
# keeps messages length under max token limit
# $1 should be the chat message
# $2 should be the response data (only the text)
add_assistant_response_to_chat_message() {
chat_message=$1
response_data=$2
# replace new line characters from response with space
response_data=$(echo "$response_data" | tr '\n' ' ')
# add response to chat context as answer
chat_message="$chat_message, {\"role\": \"assistant\", \"content\": \"$response_data\"}"
# transform to json array to parse with jq
chat_message_json="[ $chat_message ]"
# check prompt length, 1 word =~ 1.3 tokens
# reserving 100 tokens for next user prompt
while (($(echo "$chat_message" | wc -c) * 1, 3 > (MAX_TOKENS - 100))); do
# remove first/oldest QnA from prompt
chat_message=$(echo "$chat_message_json" | jq -c '.[2:] | .[] | {role, content}')
done
}
# parse command line arguments
while [[ "$#" -gt 0 ]]; do
case $1 in
@ -129,6 +192,12 @@ while [[ "$#" -gt 0 ]]; do
shift
shift
;;
-cc | --chat-completion)
MODEL="gpt-3.5-turbo"
CHAT_COMPLETION=true
shift
shift
;;
*)
echo "Unknown parameter: $1"
exit 1
@ -142,6 +211,7 @@ MAX_TOKENS=${MAX_TOKENS:-1024}
MODEL=${MODEL:-text-davinci-003}
SIZE=${SIZE:-512x512}
CONTEXT=${CONTEXT:-false}
CHAT_COMPLETION=${CHAT_COMPLETION:-false}
# create history file
if [ ! -f ~/.chatgpt_history ]; then
@ -209,6 +279,24 @@ while $running; do
handle_error "$models_response"
model_data=$(echo $models_response | jq -r -C '.data[] | select(.id=="'"${prompt#*model:}"'")')
echo -e "${CHATGPT_CYAN_LABEL}Complete details for model: ${prompt#*model:}\n ${model_data}"
elif [[ "$CHAT_COMPLETION" = true ]]; then
# escape quotation marks
escaped_prompt=$(echo "$prompt" | sed 's/"/\\"/g')
# escape new lines
request_prompt=${escaped_prompt//$'\n'/' '}
build_user_chat_message "$chat_message" "$request_prompt"
request_to_chat "$request_prompt"
handle_error "$response"
response_data=$(echo $response | jq -r '.choices[].message.content')
echo -e "${CHATGPT_CYAN_LABEL}${response_data}"
response_data=$(echo "$response_data" | sed 's/"/\\"/g')
add_assistant_response_to_chat_message "$chat_message" "$response_data"
timestamp=$(date +"%d/%m/%Y %H:%M")
echo -e "$timestamp $prompt \n$response_data \n" >>~/.chatgpt_history
else
# escape quotation marks
escaped_prompt=$(echo "$prompt" | sed 's/"/\\"/g')
@ -225,10 +313,11 @@ while $running; do
echo -e "${CHATGPT_CYAN_LABEL}${response_data}"
if [ "$CONTEXT" = true ]; then
maintain_chat_context "$chat_context" "$response_data"
escaped_response_data=$(echo "$response_data" | sed 's/"/\\"/g')
maintain_chat_context "$chat_context" "$escaped_response_data"
fi
timestamp=$(date +"%d/%m/%Y %H:%M")
echo -e "$timestamp $prompt \n$response_data \n" >>~/.chatgpt_history
echo -e "$timestamp $prompt \n$escaped_response_data \n" >>~/.chatgpt_history
fi
done