Merge pull request #89 from yhirose/precedence

Expression parsing support (precedence climbing)
This commit is contained in:
yhirose 2020-02-07 14:26:13 -05:00 committed by GitHub
commit 4b25458012
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 2447 additions and 2005 deletions

View File

@ -42,23 +42,16 @@ using namespace std;
int main(void) {
// (2) Make a parser
auto grammar = R"(
parser parser(R"(
# Grammar for Calculator...
Additive <- Multitive '+' Additive / Multitive
Multitive <- Primary '*' Multitive / Primary
Primary <- '(' Additive ')' / Number
Number <- < [0-9]+ >
%whitespace <- [ \t]*
)";
)");
parser parser;
parser.log = [](size_t line, size_t col, const string& msg) {
cerr << line << ":" << col << ": " << msg << "\n";
};
auto ok = parser.load_grammar(grammar);
assert(ok);
assert((bool)parser == true);
// (3) Setup actions
parser["Additive"] = [](const SemanticValues& sv) {
@ -93,6 +86,28 @@ int main(void) {
}
```
To show syntax errors in grammar text:
```cpp
auto grammar = R"(
# Grammar for Calculator...
Additive <- Multitive '+' Additive / Multitive
Multitive <- Primary '*' Multitive / Primary
Primary <- '(' Additive ')' / Number
Number <- < [0-9]+ >
%whitespace <- [ \t]*
)";
parser parser;
parser.log = [](size_t line, size_t col, const string& msg) {
cerr << line << ":" << col << ": " << msg << "\n";
};
auto ok = parser.load_grammar(grammar);
assert(ok);
```
There are four semantic actions available:
```cpp
@ -326,6 +341,46 @@ List(I, D) ← I (D I)*
T(x) ← < x > _
```
Parsing expressions by precedence climbing altorithm
----------------------------------------------------
*cpp-peglib* supports [operator-precedence parsering](https://en.wikipedia.org/wiki/Operator-precedence_parser) by [**precedence climbing algorithm**](https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing)
```cpp
parser parser(R"(
EXPRESSION <- ATOM (OPERATOR ATOM)* {
precedence
L - +
L / *
}
ATOM <- NUMBER / '(' EXPRESSION ')'
OPERATOR <- < [-+/*] >
NUMBER <- < '-'? [0-9]+ >
%whitespace <- [ \t\r\n]*
)");
parser["EXPRESSION"] = [](const SemanticValues& sv) -> long {
auto result = any_cast<long>(sv[0]);
if (sv.size() > 1) {
auto ope = any_cast<char>(sv[1]);
auto num = any_cast<long>(sv[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); };
parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); };
long val;
parser.parse(" -1 + (1 + 2) * 3 - -1", val);
assert(val == 9);
```
AST generation
--------------

View File

@ -17,3 +17,9 @@ target_link_libraries(calc2 ${add_link_deps})
add_executable(calc3 calc3.cc)
target_link_libraries(calc3 ${add_link_deps})
add_executable(calc4 calc4.cc)
target_link_libraries(calc4 ${add_link_deps})
add_executable(calc5 calc5.cc)
target_link_libraries(calc5 ${add_link_deps})

View File

@ -1,64 +1,51 @@
//
// calc.cc
//
// Copyright (c) 2015 Yuji Hirose. All rights reserved.
// MIT License
//
#include <peglib.h>
#include <assert.h>
#include <iostream>
#include <cstdlib>
using namespace peg;
using namespace std;
int main(int argc, const char** argv)
{
if (argc < 2 || std::string("--help") == argv[1]) {
std::cout << "usage: calc [formula]" << std::endl;
return 1;
}
auto reduce = [](const SemanticValues& sv) -> long {
auto result = any_cast<long>(sv[0]);
for (auto i = 1u; i < sv.size(); i += 2) {
auto num = any_cast<long>(sv[i + 1]);
auto ope = any_cast<char>(sv[i]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
int main(void) {
// (2) Make a parser
parser parser(R"(
EXPRESSION <- _ TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' _ EXPRESSION ')' _
TERM_OPERATOR <- < [-+] > _
FACTOR_OPERATOR <- < [/*] > _
NUMBER <- < [0-9]+ > _
~_ <- [ \t\r\n]*
# Grammar for Calculator...
Additive <- Multitive '+' Additive / Multitive
Multitive <- Primary '*' Multitive / Primary
Primary <- '(' Additive ')' / Number
Number <- < [0-9]+ >
%whitespace <- [ \t]*
)");
parser["EXPRESSION"] = reduce;
parser["TERM"] = reduce;
parser["TERM_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["FACTOR_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); };
assert((bool)parser == true);
auto expr = argv[1];
long val = 0;
if (parser.parse(expr, val)) {
std::cout << expr << " = " << val << std::endl;
return 0;
// (3) Setup actions
parser["Additive"] = [](const SemanticValues& sv) {
switch (sv.choice()) {
case 0: // "Multitive '+' Additive"
return any_cast<int>(sv[0]) + any_cast<int>(sv[1]);
default: // "Multitive"
return any_cast<int>(sv[0]);
}
};
std::cout << "syntax error..." << std::endl;
parser["Multitive"] = [](const SemanticValues& sv) {
switch (sv.choice()) {
case 0: // "Primary '*' Multitive"
return any_cast<int>(sv[0]) * any_cast<int>(sv[1]);
default: // "Primary"
return any_cast<int>(sv[0]);
}
};
return -1;
parser["Number"] = [](const SemanticValues& sv) {
return stoi(sv.token(), nullptr, 10);
};
// (4) Parse
parser.enable_packrat_parsing(); // Enable packrat parsing.
int val;
parser.parse(" (1 + 2) * 3 ", val);
assert(val == 9);
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix

42
example/calc4.cc Normal file
View File

@ -0,0 +1,42 @@
#include <peglib.h>
#include <assert.h>
#include <iostream>
using namespace peg;
using namespace std;
int main(void) {
parser parser(R"(
EXPRESSION <- ATOM (OPERATOR ATOM)* {
precedence
L - +
L / *
}
ATOM <- NUMBER / '(' EXPRESSION ')'
OPERATOR <- < [-+/*] >
NUMBER <- < '-'? [0-9]+ >
%whitespace <- [ \t\r\n]*
)");
parser["EXPRESSION"] = [](const SemanticValues& sv) -> long {
auto result = any_cast<long>(sv[0]);
if (sv.size() > 1) {
auto ope = any_cast<char>(sv[1]);
auto num = any_cast<long>(sv[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); };
parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); };
long val;
parser.parse(" -1 + (1 + 2) * 3 - -1", val);
assert(val == 9);
}

69
example/calc5.cc Normal file
View File

@ -0,0 +1,69 @@
//
// calc5.cc
//
// Copyright (c) 2015 Yuji Hirose. All rights reserved.
// MIT License
//
#include <peglib.h>
#include <iostream>
#include <cstdlib>
using namespace peg;
int main(int argc, const char** argv)
{
if (argc < 2 || std::string("--help") == argv[1]) {
std::cout << "usage: calc5 [formula]" << std::endl;
return 1;
}
std::function<long (const Ast&)> eval = [&](const Ast& ast) {
if (ast.name == "NUMBER") {
return stol(ast.token);
} else {
const auto& nodes = ast.nodes;
auto result = eval(*nodes[0]);
if (nodes.size() > 1) {
auto ope = nodes[1]->token[0];
auto num = eval(*nodes[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
}
};
parser parser(R"(
EXPRESSION <- ATOM (OPERATOR ATOM)* {
precedence
L - +
L / *
}
ATOM <- NUMBER / '(' EXPRESSION ')'
OPERATOR <- < [-+/*] >
NUMBER <- < '-'? [0-9]+ >
%whitespace <- [ \t\r\n]*
)");
parser.enable_ast();
auto expr = argv[1];
std::shared_ptr<Ast> ast;
if (parser.parse(expr, ast)) {
ast = AstOptimizer(true).optimize(ast);
std::cout << ast_to_s(ast);
std::cout << expr << " = " << eval(*ast) << std::endl;
return 0;
}
std::cout << "syntax error..." << std::endl;
return -1;
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix

271
peglib.h
View File

@ -119,7 +119,7 @@ template <typename T> T &any_cast(any &val) {
return p->value_;
}
template <> any &any_cast<any>(any &val) { return val; }
template <> inline any &any_cast<any>(any &val) { return val; }
template <typename T> const T &any_cast(const any &val) {
assert(val.content_);
@ -129,7 +129,7 @@ template <typename T> const T &any_cast(const any &val) {
return p->value_;
}
template <> const any &any_cast<any>(const any &val) { return val; }
template <> inline const any &any_cast<any>(const any &val) { return val; }
#endif
/*-----------------------------------------------------------------------------
@ -532,6 +532,7 @@ private:
friend class Sequence;
friend class PrioritizedChoice;
friend class Holder;
friend class PrecedenceClimbing;
const char *s_ = nullptr;
size_t n_ = 0;
@ -671,63 +672,63 @@ private:
typedef std::function<any(SemanticValues &sv, any &dt)> Fty;
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(SemanticValues &sv) const) {
Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv) const) {
return TypeAdaptor_sv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(const SemanticValues &sv) const) {
Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv) const) {
return TypeAdaptor_csv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(SemanticValues &sv)) {
Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv)) {
return TypeAdaptor_sv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(const SemanticValues &sv)) {
Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv)) {
return TypeAdaptor_csv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (*/*mf*/)(SemanticValues &sv)) {
Fty make_adaptor(F fn, R (*)(SemanticValues &sv)) {
return TypeAdaptor_sv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (*/*mf*/)(const SemanticValues &sv)) {
Fty make_adaptor(F fn, R (*)(const SemanticValues &sv)) {
return TypeAdaptor_csv<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(SemanticValues &sv, any &dt) const) {
Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv, any &dt) const) {
return TypeAdaptor_sv_dt<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn,
R (F::* /*mf*/)(const SemanticValues &sv, any &dt) const) {
R (F::*)(const SemanticValues &sv, any &dt) const) {
return TypeAdaptor_csv_dt<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(SemanticValues &sv, any &dt)) {
Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv, any &dt)) {
return TypeAdaptor_sv_dt<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (F::* /*mf*/)(const SemanticValues &sv, any &dt)) {
Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv, any &dt)) {
return TypeAdaptor_csv_dt<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (*/*mf*/)(SemanticValues &sv, any &dt)) {
Fty make_adaptor(F fn, R (*)(SemanticValues &sv, any &dt)) {
return TypeAdaptor_sv_dt<R>(fn);
}
template <typename F, typename R>
Fty make_adaptor(F fn, R (*/*mf*/)(const SemanticValues &sv, any &dt)) {
Fty make_adaptor(F fn, R (*)(const SemanticValues &sv, any &dt)) {
return TypeAdaptor_csv_dt<R>(fn);
}
@ -1529,6 +1530,32 @@ public:
std::string name_;
};
class PrecedenceClimbing : public Ope {
public:
using BinOpeInfo = std::map<std::string, std::pair<size_t, char>>;
PrecedenceClimbing(const std::shared_ptr<Ope> &atom,
const std::shared_ptr<Ope> &binop, const BinOpeInfo &info,
const Action &action)
: atom_(atom), binop_(binop), info_(info), action_(action) {}
size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c,
any &dt) const override {
return parse_expression(s, n, sv, c, dt, 0);
}
void accept(Visitor &v) override;
std::shared_ptr<Ope> atom_;
std::shared_ptr<Ope> binop_;
BinOpeInfo info_;
const Action &action_;
private:
size_t parse_expression(const char *s, size_t n, SemanticValues &sv,
Context &c, any &dt, size_t min_prec) const;
};
/*
* Factories
*/
@ -1630,6 +1657,13 @@ inline std::shared_ptr<Ope> bkr(const std::string &name) {
return std::make_shared<BackReference>(name);
}
inline std::shared_ptr<Ope> pre(const std::shared_ptr<Ope> &atom,
const std::shared_ptr<Ope> &binop,
const PrecedenceClimbing::BinOpeInfo &info,
const Action &action) {
return std::make_shared<PrecedenceClimbing>(atom, binop, info, action);
}
/*
* Visitor
*/
@ -1656,6 +1690,7 @@ struct Ope::Visitor {
virtual void visit(Reference & /*ope*/) {}
virtual void visit(Whitespace & /*ope*/) {}
virtual void visit(BackReference & /*ope*/) {}
virtual void visit(PrecedenceClimbing & /*ope*/) {}
};
struct IsReference : public Ope::Visitor {
@ -1685,6 +1720,7 @@ struct TraceOpeName : public Ope::Visitor {
void visit(Reference &ope) override { name = "Reference"; }
void visit(Whitespace &ope) override { name = "Whitespace"; }
void visit(BackReference &ope) override { name = "BackReference"; }
void visit(PrecedenceClimbing &ope) override { name = "PrecedenceClimbing"; }
const char *name = nullptr;
};
@ -1758,6 +1794,7 @@ struct TokenChecker : public Ope::Visitor {
void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); }
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
static bool is_token(Ope &ope) {
if (IsLiteralToken::check(ope)) { return true; }
@ -1829,6 +1866,7 @@ struct DetectLeftRecursion : public Ope::Visitor {
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(BackReference & /*ope*/) override { done_ = true; }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
const char *error_s = nullptr;
@ -1878,6 +1916,7 @@ struct HasEmptyElement : public Ope::Visitor {
void visit(Holder &ope) override { ope.ope_->accept(*this); }
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
bool is_empty = false;
const char *error_s = nullptr;
@ -1938,6 +1977,7 @@ struct DetectInfiniteLoop : public Ope::Visitor {
void visit(Holder &ope) override { ope.ope_->accept(*this); }
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
bool has_error = false;
const char *error_s = nullptr;
@ -1975,6 +2015,7 @@ struct ReferenceChecker : public Ope::Visitor {
void visit(Holder &ope) override { ope.ope_->accept(*this); }
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
std::unordered_map<std::string, const char *> error_s;
std::unordered_map<std::string, std::string> error_message;
@ -2011,6 +2052,7 @@ struct LinkReferences : public Ope::Visitor {
void visit(Holder &ope) override { ope.ope_->accept(*this); }
void visit(Reference &ope) override;
void visit(Whitespace &ope) override { ope.ope_->accept(*this); }
void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); }
private:
Grammar &grammar_;
@ -2089,6 +2131,10 @@ struct FindReference : public Ope::Visitor {
ope.ope_->accept(*this);
found_ope = wsp(found_ope);
}
void visit(PrecedenceClimbing &ope) override {
ope.atom_->accept(*this);
found_ope = csc(found_ope);
}
std::shared_ptr<Ope> found_ope;
@ -2250,9 +2296,11 @@ public:
std::vector<std::string> params;
TracerEnter tracer_enter;
TracerLeave tracer_leave;
bool disable_action = false;
private:
friend class Reference;
friend class ParserGenerator;
Definition &operator=(const Definition &rhs);
Definition &operator=(Definition &&rhs);
@ -2471,7 +2519,7 @@ inline size_t Holder::parse_core(const char *s, size_t n, SemanticValues &sv,
}
inline any Holder::reduce(SemanticValues &sv, any &dt) const {
if (outer_->action) {
if (outer_->action && !outer_->disable_action) {
return outer_->action(sv, dt);
} else if (sv.empty()) {
return any();
@ -2523,7 +2571,8 @@ inline std::shared_ptr<Ope> Reference::get_core_operator() const {
inline size_t BackReference::parse_core(const char *s, size_t n,
SemanticValues &sv, Context &c,
any &dt) const {
for (int i = c.capture_scope_stack_size - 1; i >= 0; i--) {
auto size = static_cast<int>(c.capture_scope_stack_size);
for (auto i = size - 1; i >= 0; i--) {
const auto &cs = c.capture_scope_stack[i];
if (cs.find(name_) != cs.end()) {
const auto &lit = cs.at(name_);
@ -2535,6 +2584,87 @@ inline size_t BackReference::parse_core(const char *s, size_t n,
throw std::runtime_error("Invalid back reference...");
}
inline size_t PrecedenceClimbing::parse_expression(const char *s, size_t n,
SemanticValues &sv,
Context &c, any &dt,
size_t min_prec) const {
auto len = atom_->parse(s, n, sv, c, dt);
if (fail(len)) { return len; }
std::string tok;
auto &rule = dynamic_cast<Reference &>(*binop_).rule_;
auto action = rule->action;
rule->action = [&](SemanticValues &sv, any &dt) -> any {
tok = sv.token();
if (action) {
return action(sv, dt);
} else if (!sv.empty()) {
return sv[0];
}
return any();
};
auto action_se = make_scope_exit([&]() { rule->action = action; });
auto save_error_pos = c.error_pos;
auto i = len;
while (i < n) {
std::vector<any> save_values(sv.begin(), sv.end());
auto save_tokens = sv.tokens;
auto chv = c.push();
auto chl = binop_->parse(s + i, n - i, chv, c, dt);
c.pop();
if (fail(chl)) {
c.error_pos = save_error_pos;
break;
}
auto it = info_.find(tok);
if (it == info_.end()) { break; }
auto level = std::get<0>(it->second);
auto assoc = std::get<1>(it->second);
if (level < min_prec) { break; }
sv.emplace_back(std::move(chv[0]));
i += chl;
auto next_min_prec = level;
if (assoc == 'L') { next_min_prec = level + 1; }
chv = c.push();
chl = parse_expression(s + i, n - i, chv, c, dt, next_min_prec);
c.pop();
if (fail(chl)) {
sv.assign(save_values.begin(), save_values.end());
sv.tokens = save_tokens;
c.error_pos = save_error_pos;
break;
}
sv.emplace_back(std::move(chv[0]));
i += chl;
any val;
if (action_) {
sv.s_ = s;
sv.n_ = i;
val = action_(sv, dt);
} else if (!sv.empty()) {
val = sv[0];
}
sv.clear();
sv.emplace_back(std::move(val));
}
return i;
}
inline void Sequence::accept(Visitor &v) { v.visit(*this); }
inline void PrioritizedChoice::accept(Visitor &v) { v.visit(*this); }
inline void ZeroOrMore::accept(Visitor &v) { v.visit(*this); }
@ -2556,6 +2686,7 @@ inline void Holder::accept(Visitor &v) { v.visit(*this); }
inline void Reference::accept(Visitor &v) { v.visit(*this); }
inline void Whitespace::accept(Visitor &v) { v.visit(*this); }
inline void BackReference::accept(Visitor &v) { v.visit(*this); }
inline void PrecedenceClimbing::accept(Visitor &v) { v.visit(*this); }
inline void AssignIDToDefinition::visit(Holder &ope) {
auto p = static_cast<void *>(ope.outer_);
@ -2717,11 +2848,17 @@ private:
setup_actions();
}
struct Instruction {
std::string type;
any data;
};
struct Data {
std::shared_ptr<Grammar> grammar;
std::string start;
const char *start_pos = nullptr;
std::vector<std::pair<std::string, const char *>> duplicates;
std::map<std::string, Instruction> instructions;
Data() : grammar(std::make_shared<Grammar>()) {}
};
@ -2731,9 +2868,9 @@ private:
g["Grammar"] <= seq(g["Spacing"], oom(g["Definition"]), g["EndOfFile"]);
g["Definition"] <=
cho(seq(g["Ignore"], g["IdentCont"], g["Parameters"], g["LEFTARROW"],
g["Expression"]),
seq(g["Ignore"], g["Identifier"], g["LEFTARROW"], g["Expression"]));
g["Expression"], opt(g["Instruction"])),
seq(g["Ignore"], g["Identifier"], g["LEFTARROW"], g["Expression"],
opt(g["Instruction"])));
g["Expression"] <= seq(g["Sequence"], zom(seq(g["SLASH"], g["Sequence"])));
g["Sequence"] <= zom(g["Prefix"]);
g["Prefix"] <= seq(opt(cho(g["AND"], g["NOT"])), g["Suffix"]);
@ -2826,6 +2963,27 @@ private:
zom(seq(g["COMMA"], g["Expression"])), g["CLOSE"]);
~g["COMMA"] <= seq(chr(','), g["Spacing"]);
// Instruction grammars
g["Instruction"] <=
seq(g["BeginBlacket"], cho(g["PrecedenceClimbing"]), g["EndBlacket"]);
~g["SpacesZom"] <= zom(g["Space"]);
~g["SpacesOom"] <= oom(g["Space"]);
~g["BeginBlacket"] <= seq(chr('{'), g["Spacing"]);
~g["EndBlacket"] <= seq(chr('}'), g["Spacing"]);
// PrecedenceClimbing instruction
g["PrecedenceClimbing"] <=
seq(lit("precedence"), g["SpacesZom"], g["PrecedenceInfo"],
zom(seq(g["SpacesOom"], g["PrecedenceInfo"])), g["SpacesZom"]);
g["PrecedenceInfo"] <=
seq(g["PrecedenceAssoc"],
oom(seq(ign(g["SpacesOom"]), g["PrecedenceOpe"])));
g["PrecedenceOpe"] <=
tok(oom(
seq(npd(cho(g["PrecedenceAssoc"], g["Space"], chr('}'))), dot())));
g["PrecedenceAssoc"] <= cls("LR");
// Set definition names
for (auto &x : g) {
x.second.name = x.first;
@ -2834,6 +2992,8 @@ private:
void setup_actions() {
g["Definition"] = [&](const SemanticValues &sv, any &dt) {
Data &data = *any_cast<Data *>(dt);
auto is_macro = sv.choice() == 0;
auto ignore = any_cast<bool>(sv[0]);
auto name = any_cast<std::string>(sv[1]);
@ -2843,11 +3003,15 @@ private:
if (is_macro) {
params = any_cast<std::vector<std::string>>(sv[2]);
ope = any_cast<std::shared_ptr<Ope>>(sv[4]);
if (sv.size() == 6) {
data.instructions[name] = any_cast<Instruction>(sv[5]);
}
} else {
ope = any_cast<std::shared_ptr<Ope>>(sv[3]);
if (sv.size() == 5) {
data.instructions[name] = any_cast<Instruction>(sv[4]);
}
}
Data &data = *any_cast<Data *>(dt);
auto &grammar = *data.grammar;
if (!grammar.count(name)) {
@ -2928,8 +3092,7 @@ private:
}
};
g["Primary"] = [&](const SemanticValues &sv,
any &dt) -> std::shared_ptr<Ope> {
g["Primary"] = [&](const SemanticValues &sv, any &dt) {
Data &data = *any_cast<Data *>(dt);
switch (sv.choice()) {
@ -2944,10 +3107,13 @@ private:
args = any_cast<std::vector<std::shared_ptr<Ope>>>(sv[2]);
}
std::shared_ptr<Ope> ope =
ref(*data.grammar, ident, sv.c_str(), is_macro, args);
if (ignore) {
return ign(ref(*data.grammar, ident, sv.c_str(), is_macro, args));
return ign(ope);
} else {
return ref(*data.grammar, ident, sv.c_str(), is_macro, args);
return ope;
}
}
case 2: { // (Expression)
@ -3036,6 +3202,29 @@ private:
g["Arguments"] = [](const SemanticValues &sv) {
return sv.transform<std::shared_ptr<Ope>>();
};
g["PrecedenceClimbing"] = [](const SemanticValues &sv) {
PrecedenceClimbing::BinOpeInfo binOpeInfo;
size_t level = 1;
for (auto v : sv) {
auto tokens = any_cast<std::vector<std::string>>(v);
auto assoc = tokens[0][0];
for (size_t i = 1; i < tokens.size(); i++) {
const auto &tok = tokens[i];
binOpeInfo[tok] = std::make_pair(level, assoc);
}
level++;
}
Instruction instruction;
instruction.type = "precedence";
instruction.data = binOpeInfo;
return instruction;
};
g["PrecedenceInfo"] = [](const SemanticValues &sv) {
return sv.transform<std::string>();
};
g["PrecedenceOpe"] = [](const SemanticValues &sv) { return sv.token(); };
g["PrecedenceAssoc"] = [](const SemanticValues &sv) { return sv.token(); };
}
std::shared_ptr<Grammar> perform_core(const char *s, size_t n,
@ -3170,6 +3359,33 @@ private:
(*data.grammar)[WORD_DEFINITION_NAME].get_core_operator();
}
// Apply instructions
for (const auto &item : data.instructions) {
const auto &name = item.first;
const auto &instruction = item.second;
if (instruction.type == "precedence") {
auto &rule = grammar[name];
auto &seq = dynamic_cast<Sequence &>(*rule.get_core_operator());
auto &atom = seq.opes_[0];
auto &seq1 = dynamic_cast<Sequence &>(
*dynamic_cast<ZeroOrMore &>(*seq.opes_[1]).ope_);
auto &binop = seq1.opes_[0];
auto &atom1 = seq1.opes_[1];
if (atom != atom1) {
// TODO: check
}
const auto &info =
any_cast<PrecedenceClimbing::BinOpeInfo>(instruction.data);
rule.holder_->ope_ = pre(atom, binop, info, rule.action);
rule.disable_action = true;
}
}
// Set root definition
start = data.start;
@ -3241,7 +3457,6 @@ template <typename Annotation> struct AstBase : public Annotation {
template <typename T>
void ast_to_s_core(const std::shared_ptr<T> &ptr, std::string &s, int level,
std::function<std::string(const T &ast, int level)> fn) {
const auto &ast = *ptr;
for (auto i = 0; i < level; i++) {
s += " ";
@ -3266,7 +3481,6 @@ template <typename T>
std::string
ast_to_s(const std::shared_ptr<T> &ptr,
std::function<std::string(const T &ast, int level)> fn = nullptr) {
std::string s;
ast_to_s_core(ptr, s, 0, fn);
return s;
@ -3280,7 +3494,6 @@ struct AstOptimizer {
template <typename T>
std::shared_ptr<T> optimize(std::shared_ptr<T> original,
std::shared_ptr<T> parent = nullptr) {
auto found = std::find(filters_.begin(), filters_.end(), original->name) !=
filters_.end();
bool opt = optimize_nodes_ ? !found : found;
@ -3504,4 +3717,4 @@ private:
#endif
// vim: et ts=4 sw=4 cin cino={1s ff=unix
// vim: et ts=2 sw=2 cin cino={1s ff=unix

View File

@ -7,7 +7,7 @@ set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_EXTENSIONS OFF)
include_directories(..)
add_executable(test-main test.cc)
add_executable(test-main test-main.cc test1.cc test2.cc test3.cc)
target_link_libraries(test-main ${add_link_deps})
add_test(TestMain test-main)

2
test/test-main.cc Normal file
View File

@ -0,0 +1,2 @@
#define CATCH_CONFIG_MAIN
#include "catch.hh"

File diff suppressed because it is too large Load Diff

921
test/test1.cc Normal file
View File

@ -0,0 +1,921 @@
#include "catch.hh"
#include <peglib.h>
using namespace peg;
#if !defined(PEGLIB_NO_UNICODE_CHARS)
TEST_CASE("Simple syntax test (with unicode)", "[general]")
{
parser parser(
u8" ROOT ← _ "
" _ <- ' ' "
);
bool ret = parser;
REQUIRE(ret == true);
}
#endif
TEST_CASE("Simple syntax test", "[general]")
{
parser parser(R"(
ROOT <- _
_ <- ' '
)");
bool ret = parser;
REQUIRE(ret == true);
}
TEST_CASE("Empty syntax test", "[general]")
{
parser parser("");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Backslash escape sequence test", "[general]")
{
parser parser(R"(
ROOT <- _
_ <- '\\'
)");
bool ret = parser;
REQUIRE(ret == true);
}
TEST_CASE("Invalid escape sequence test", "[general]")
{
parser parser(R"(
ROOT <- _
_ <- '\'
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Action taking non const Semantic Values parameter", "[general]")
{
parser parser(R"(
ROOT <- TEXT
TEXT <- [a-zA-Z]+
)");
parser["ROOT"] = [&](SemanticValues& sv) {
auto s = any_cast<std::string>(sv[0]);
s[0] = 'H'; // mutate
return std::string(std::move(s)); // move
};
parser["TEXT"] = [&](SemanticValues& sv) {
return sv.token();
};
std::string val;
auto ret = parser.parse("hello", val);
REQUIRE(ret == true);
REQUIRE(val == "Hello");
}
TEST_CASE("String capture test", "[general]")
{
parser parser(R"(
ROOT <- _ ('[' TAG_NAME ']' _)*
TAG_NAME <- (!']' .)+
_ <- [ \t]*
)");
std::vector<std::string> tags;
parser["TAG_NAME"] = [&](const SemanticValues& sv) {
tags.push_back(sv.str());
};
auto ret = parser.parse(" [tag1] [tag:2] [tag-3] ");
REQUIRE(ret == true);
REQUIRE(tags.size() == 3);
REQUIRE(tags[0] == "tag1");
REQUIRE(tags[1] == "tag:2");
REQUIRE(tags[2] == "tag-3");
}
using namespace peg;
TEST_CASE("String capture test2", "[general]")
{
std::vector<std::string> tags;
Definition ROOT, TAG, TAG_NAME, WS;
ROOT <= seq(WS, zom(TAG));
TAG <= seq(chr('['), TAG_NAME, chr(']'), WS);
TAG_NAME <= oom(seq(npd(chr(']')), dot())), [&](const SemanticValues& sv) { tags.push_back(sv.str()); };
WS <= zom(cls(" \t"));
auto r = ROOT.parse(" [tag1] [tag:2] [tag-3] ");
REQUIRE(r.ret == true);
REQUIRE(tags.size() == 3);
REQUIRE(tags[0] == "tag1");
REQUIRE(tags[1] == "tag:2");
REQUIRE(tags[2] == "tag-3");
}
TEST_CASE("String capture test3", "[general]")
{
parser pg(R"(
ROOT <- _ TOKEN*
TOKEN <- '[' < (!']' .)+ > ']' _
_ <- [ \t\r\n]*
)");
std::vector<std::string> tags;
pg["TOKEN"] = [&](const SemanticValues& sv) {
tags.push_back(sv.token());
};
auto ret = pg.parse(" [tag1] [tag:2] [tag-3] ");
REQUIRE(ret == true);
REQUIRE(tags.size() == 3);
REQUIRE(tags[0] == "tag1");
REQUIRE(tags[1] == "tag:2");
REQUIRE(tags[2] == "tag-3");
}
TEST_CASE("Cyclic grammer test", "[general]")
{
Definition PARENT;
Definition CHILD;
PARENT <= seq(CHILD);
CHILD <= seq(PARENT);
}
TEST_CASE("Visit test", "[general]")
{
Definition ROOT, TAG, TAG_NAME, WS;
ROOT <= seq(WS, zom(TAG));
TAG <= seq(chr('['), TAG_NAME, chr(']'), WS);
TAG_NAME <= oom(seq(npd(chr(']')), dot()));
WS <= zom(cls(" \t"));
AssignIDToDefinition defIds;
ROOT.accept(defIds);
REQUIRE(defIds.ids.size() == 4);
}
TEST_CASE("Token check test", "[general]")
{
parser parser(R"(
EXPRESSION <- _ TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' _ EXPRESSION ')' _
TERM_OPERATOR <- < [-+] > _
FACTOR_OPERATOR <- < [/*] > _
NUMBER <- < [0-9]+ > _
_ <- [ \t\r\n]*
)");
REQUIRE(parser["EXPRESSION"].is_token() == false);
REQUIRE(parser["FACTOR"].is_token() == false);
REQUIRE(parser["FACTOR_OPERATOR"].is_token() == true);
REQUIRE(parser["NUMBER"].is_token() == true);
REQUIRE(parser["_"].is_token() == true);
}
TEST_CASE("Lambda action test", "[general]")
{
parser parser(R"(
START <- (CHAR)*
CHAR <- .
)");
std::string ss;
parser["CHAR"] = [&](const SemanticValues& sv) {
ss += *sv.c_str();
};
bool ret = parser.parse("hello");
REQUIRE(ret == true);
REQUIRE(ss == "hello");
}
TEST_CASE("enter/leave handlers test", "[general]")
{
parser parser(R"(
START <- LTOKEN '=' RTOKEN
LTOKEN <- TOKEN
RTOKEN <- TOKEN
TOKEN <- [A-Za-z]+
)");
parser["LTOKEN"].enter = [&](const char*, size_t, any& dt) {
auto& require_upper_case = *any_cast<bool*>(dt);
require_upper_case = false;
};
parser["LTOKEN"].leave = [&](const char*, size_t, size_t, any&, any& dt) {
auto& require_upper_case = *any_cast<bool*>(dt);
require_upper_case = true;
};
auto message = "should be upper case string...";
parser["TOKEN"] = [&](const SemanticValues& sv, any& dt) {
auto& require_upper_case = *any_cast<bool*>(dt);
if (require_upper_case) {
const auto& s = sv.str();
if (!std::all_of(s.begin(), s.end(), ::isupper)) {
throw parse_error(message);
}
}
};
bool require_upper_case = false;
any dt = &require_upper_case;
REQUIRE(parser.parse("hello=world", dt) == false);
REQUIRE(parser.parse("HELLO=world", dt) == false);
REQUIRE(parser.parse("hello=WORLD", dt) == true);
REQUIRE(parser.parse("HELLO=WORLD", dt) == true);
parser.log = [&](size_t ln, size_t col, const std::string& msg) {
REQUIRE(ln == 1);
REQUIRE(col == 7);
REQUIRE(msg == message);
};
parser.parse("hello=world", dt);
}
TEST_CASE("WHITESPACE test", "[general]")
{
parser parser(R"(
# Rules
ROOT <- ITEM (',' ITEM)*
ITEM <- WORD / PHRASE
# Tokens
WORD <- < [a-zA-Z0-9_]+ >
PHRASE <- < '"' (!'"' .)* '"' >
%whitespace <- [ \t\r\n]*
)");
auto ret = parser.parse(R"( one, "two, three", four )");
REQUIRE(ret == true);
}
TEST_CASE("WHITESPACE test2", "[general]")
{
parser parser(R"(
# Rules
ROOT <- ITEM (',' ITEM)*
ITEM <- '[' < [a-zA-Z0-9_]+ > ']'
%whitespace <- (SPACE / TAB)*
SPACE <- ' '
TAB <- '\t'
)");
std::vector<std::string> items;
parser["ITEM"] = [&](const SemanticValues& sv) {
items.push_back(sv.token());
};
auto ret = parser.parse(R"([one], [two] ,[three] )");
REQUIRE(ret == true);
REQUIRE(items.size() == 3);
REQUIRE(items[0] == "one");
REQUIRE(items[1] == "two");
REQUIRE(items[2] == "three");
}
TEST_CASE("WHITESPACE test3", "[general]") {
parser parser(R"(
StrQuot <- < '"' < (StrEscape / StrChars)* > '"' >
StrEscape <- '\\' any
StrChars <- (!'"' !'\\' any)+
any <- .
%whitespace <- [ \t]*
)");
parser["StrQuot"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == R"( aaa \" bbb )");
};
auto ret = parser.parse(R"( " aaa \" bbb " )");
REQUIRE(ret == true);
}
TEST_CASE("WHITESPACE test4", "[general]") {
parser parser(R"(
ROOT <- HELLO OPE WORLD
HELLO <- 'hello'
OPE <- < [-+] >
WORLD <- 'world' / 'WORLD'
%whitespace <- [ \t\r\n]*
)");
parser["HELLO"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == "hello");
};
parser["OPE"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == "+");
};
parser["WORLD"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == "world");
};
auto ret = parser.parse(" hello + world ");
REQUIRE(ret == true);
}
TEST_CASE("Word expression test", "[general]") {
parser parser(R"(
ROOT <- 'hello' ','? 'world'
%whitespace <- [ \t\r\n]*
%word <- [a-z]+
)");
REQUIRE(parser.parse("helloworld") == false);
REQUIRE(parser.parse("hello world") == true);
REQUIRE(parser.parse("hello,world") == true);
REQUIRE(parser.parse("hello, world") == true);
REQUIRE(parser.parse("hello , world") == true);
}
TEST_CASE("Skip token test", "[general]")
{
parser parser(
" ROOT <- _ ITEM (',' _ ITEM _)* "
" ITEM <- ([a-z0-9])+ "
" ~_ <- [ \t]* "
);
parser["ROOT"] = [&](const SemanticValues& sv) {
REQUIRE(sv.size() == 2);
};
auto ret = parser.parse(" item1, item2 ");
REQUIRE(ret == true);
}
TEST_CASE("Skip token test2", "[general]")
{
parser parser(R"(
ROOT <- ITEM (',' ITEM)*
ITEM <- < ([a-z0-9])+ >
%whitespace <- [ \t]*
)");
parser["ROOT"] = [&](const SemanticValues& sv) {
REQUIRE(sv.size() == 2);
};
auto ret = parser.parse(" item1, item2 ");
REQUIRE(ret == true);
}
TEST_CASE("Backtracking test", "[general]")
{
parser parser(R"(
START <- PAT1 / PAT2
PAT1 <- HELLO ' One'
PAT2 <- HELLO ' Two'
HELLO <- 'Hello'
)");
size_t count = 0;
parser["HELLO"] = [&](const SemanticValues& /*sv*/) {
count++;
};
parser.enable_packrat_parsing();
bool ret = parser.parse("Hello Two");
REQUIRE(ret == true);
REQUIRE(count == 1); // Skip second time
}
TEST_CASE("Backtracking with AST", "[general]")
{
parser parser(R"(
S <- A? B (A B)* A
A <- 'a'
B <- 'b'
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
bool ret = parser.parse("ba", ast);
REQUIRE(ret == true);
REQUIRE(ast->nodes.size() == 2);
}
TEST_CASE("Octal/Hex/Unicode value test", "[general]")
{
parser parser(
R"( ROOT <- '\132\x7a\u30f3' )"
);
auto ret = parser.parse("Zzン");
REQUIRE(ret == true);
}
TEST_CASE("Ignore case test", "[general]") {
parser parser(R"(
ROOT <- HELLO WORLD
HELLO <- 'hello'i
WORLD <- 'world'i
%whitespace <- [ \t\r\n]*
)");
parser["HELLO"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == "Hello");
};
parser["WORLD"] = [](const SemanticValues& sv) {
REQUIRE(sv.token() == "World");
};
auto ret = parser.parse(" Hello World ");
REQUIRE(ret == true);
}
TEST_CASE("mutable lambda test", "[general]")
{
std::vector<std::string> vec;
parser pg("ROOT <- 'mutable lambda test'");
// This test makes sure if the following code can be compiled.
pg["TOKEN"] = [=](const SemanticValues& sv) mutable {
vec.push_back(sv.str());
};
}
TEST_CASE("Simple calculator test", "[general]")
{
parser parser(R"(
Additive <- Multitive '+' Additive / Multitive
Multitive <- Primary '*' Multitive / Primary
Primary <- '(' Additive ')' / Number
Number <- [0-9]+
)");
parser["Additive"] = [](const SemanticValues& sv) {
switch (sv.choice()) {
case 0:
return any_cast<int>(sv[0]) + any_cast<int>(sv[1]);
default:
return any_cast<int>(sv[0]);
}
};
parser["Multitive"] = [](const SemanticValues& sv) {
switch (sv.choice()) {
case 0:
return any_cast<int>(sv[0]) * any_cast<int>(sv[1]);
default:
return any_cast<int>(sv[0]);
}
};
parser["Number"] = [](const SemanticValues& sv) {
return atoi(sv.c_str());
};
int val;
parser.parse("(1+2)*3", val);
REQUIRE(val == 9);
}
TEST_CASE("Calculator test", "[general]")
{
// Construct grammer
Definition EXPRESSION, TERM, FACTOR, TERM_OPERATOR, FACTOR_OPERATOR, NUMBER;
EXPRESSION <= seq(TERM, zom(seq(TERM_OPERATOR, TERM)));
TERM <= seq(FACTOR, zom(seq(FACTOR_OPERATOR, FACTOR)));
FACTOR <= cho(NUMBER, seq(chr('('), EXPRESSION, chr(')')));
TERM_OPERATOR <= cls("+-");
FACTOR_OPERATOR <= cls("*/");
NUMBER <= oom(cls("0-9"));
// Setup actions
auto reduce = [](const SemanticValues& sv) -> long {
long ret = any_cast<long>(sv[0]);
for (auto i = 1u; i < sv.size(); i += 2) {
auto num = any_cast<long>(sv[i + 1]);
switch (any_cast<char>(sv[i])) {
case '+': ret += num; break;
case '-': ret -= num; break;
case '*': ret *= num; break;
case '/': ret /= num; break;
}
}
return ret;
};
EXPRESSION = reduce;
TERM = reduce;
TERM_OPERATOR = [](const SemanticValues& sv) { return *sv.c_str(); };
FACTOR_OPERATOR = [](const SemanticValues& sv) { return *sv.c_str(); };
NUMBER = [](const SemanticValues& sv) { return stol(sv.str(), nullptr, 10); };
// Parse
long val;
auto r = EXPRESSION.parse_and_get_value("1+2*3*(4-5+6)/7-8", val);
REQUIRE(r.ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Calculator test2", "[general]")
{
// Parse syntax
auto syntax = R"(
# Grammar for Calculator...
EXPRESSION <- TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' EXPRESSION ')'
TERM_OPERATOR <- [-+]
FACTOR_OPERATOR <- [/*]
NUMBER <- [0-9]+
)";
std::string start;
auto grammar = ParserGenerator::parse(syntax, strlen(syntax), start, nullptr);
auto& g = *grammar;
// Setup actions
auto reduce = [](const SemanticValues& sv) -> long {
long ret = any_cast<long>(sv[0]);
for (auto i = 1u; i < sv.size(); i += 2) {
auto num = any_cast<long>(sv[i + 1]);
switch (any_cast<char>(sv[i])) {
case '+': ret += num; break;
case '-': ret -= num; break;
case '*': ret *= num; break;
case '/': ret /= num; break;
}
}
return ret;
};
g["EXPRESSION"] = reduce;
g["TERM"] = reduce;
g["TERM_OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); };
g["FACTOR_OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); };
g["NUMBER"] = [](const SemanticValues& sv) { return stol(sv.str(), nullptr, 10); };
// Parse
long val;
auto r = g[start].parse_and_get_value("1+2*3*(4-5+6)/7-8", val);
REQUIRE(r.ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Calculator test3", "[general]")
{
// Parse syntax
parser parser(R"(
# Grammar for Calculator...
EXPRESSION <- TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' EXPRESSION ')'
TERM_OPERATOR <- [-+]
FACTOR_OPERATOR <- [/*]
NUMBER <- [0-9]+
)");
auto reduce = [](const SemanticValues& sv) -> long {
long ret = any_cast<long>(sv[0]);
for (auto i = 1u; i < sv.size(); i += 2) {
auto num = any_cast<long>(sv[i + 1]);
switch (any_cast<char>(sv[i])) {
case '+': ret += num; break;
case '-': ret -= num; break;
case '*': ret *= num; break;
case '/': ret /= num; break;
}
}
return ret;
};
// Setup actions
parser["EXPRESSION"] = reduce;
parser["TERM"] = reduce;
parser["TERM_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["FACTOR_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["NUMBER"] = [](const SemanticValues& sv) { return stol(sv.str(), nullptr, 10); };
// Parse
long val;
auto ret = parser.parse("1+2*3*(4-5+6)/7-8", val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Calculator test with AST", "[general]")
{
parser parser(R"(
EXPRESSION <- _ TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' _ EXPRESSION ')' _
TERM_OPERATOR <- < [-+] > _
FACTOR_OPERATOR <- < [/*] > _
NUMBER <- < [0-9]+ > _
~_ <- [ \t\r\n]*
)");
parser.enable_ast();
std::function<long (const Ast&)> eval = [&](const Ast& ast) {
if (ast.name == "NUMBER") {
return stol(ast.token);
} else {
const auto& nodes = ast.nodes;
auto result = eval(*nodes[0]);
for (auto i = 1u; i < nodes.size(); i += 2) {
auto num = eval(*nodes[i + 1]);
auto ope = nodes[i]->token[0];
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
}
};
std::shared_ptr<Ast> ast;
auto ret = parser.parse("1+2*3*(4-5+6)/7-8", ast);
ast = AstOptimizer(true).optimize(ast);
auto val = eval(*ast);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Ignore semantic value test", "[general]")
{
parser parser(R"(
START <- ~HELLO WORLD
HELLO <- 'Hello' _
WORLD <- 'World' _
_ <- [ \t\r\n]*
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse("Hello World", ast);
REQUIRE(ret == true);
REQUIRE(ast->nodes.size() == 1);
REQUIRE(ast->nodes[0]->name == "WORLD");
}
TEST_CASE("Ignore semantic value of 'or' predicate test", "[general]")
{
parser parser(R"(
START <- _ !DUMMY HELLO_WORLD '.'
HELLO_WORLD <- HELLO 'World' _
HELLO <- 'Hello' _
DUMMY <- 'dummy' _
~_ <- [ \t\r\n]*
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse("Hello World.", ast);
REQUIRE(ret == true);
REQUIRE(ast->nodes.size() == 1);
REQUIRE(ast->nodes[0]->name == "HELLO_WORLD");
}
TEST_CASE("Ignore semantic value of 'and' predicate test", "[general]")
{
parser parser(R"(
START <- _ &HELLO HELLO_WORLD '.'
HELLO_WORLD <- HELLO 'World' _
HELLO <- 'Hello' _
~_ <- [ \t\r\n]*
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse("Hello World.", ast);
REQUIRE(ret == true);
REQUIRE(ast->nodes.size() == 1);
REQUIRE(ast->nodes[0]->name == "HELLO_WORLD");
}
TEST_CASE("Literal token on AST test1", "[general]")
{
parser parser(R"(
STRING_LITERAL <- '"' (('\\"' / '\\t' / '\\n') / (!["] .))* '"'
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse(R"("a\tb")", ast);
REQUIRE(ret == true);
REQUIRE(ast->is_token == true);
REQUIRE(ast->token == R"("a\tb")");
REQUIRE(ast->nodes.empty());
}
TEST_CASE("Literal token on AST test2", "[general]")
{
parser parser(R"(
STRING_LITERAL <- '"' (ESC / CHAR)* '"'
ESC <- ('\\"' / '\\t' / '\\n')
CHAR <- (!["] .)
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse(R"("a\tb")", ast);
REQUIRE(ret == true);
REQUIRE(ast->is_token == false);
REQUIRE(ast->token.empty());
REQUIRE(ast->nodes.size() == 3);
}
TEST_CASE("Literal token on AST test3", "[general]")
{
parser parser(R"(
STRING_LITERAL <- < '"' (ESC / CHAR)* '"' >
ESC <- ('\\"' / '\\t' / '\\n')
CHAR <- (!["] .)
)");
parser.enable_ast();
std::shared_ptr<Ast> ast;
auto ret = parser.parse(R"("a\tb")", ast);
REQUIRE(ret == true);
REQUIRE(ast->is_token == true);
REQUIRE(ast->token == R"("a\tb")");
REQUIRE(ast->nodes.empty());
}
TEST_CASE("Missing missing definitions test", "[general]")
{
parser parser(R"(
A <- B C
)");
REQUIRE(!parser);
}
TEST_CASE("Definition duplicates test", "[general]")
{
parser parser(R"(
A <- ''
A <- ''
)");
REQUIRE(!parser);
}
TEST_CASE("Semantic values test", "[general]")
{
parser parser(R"(
term <- ( a b c x )? a b c
a <- 'a'
b <- 'b'
c <- 'c'
x <- 'x'
)");
for (const auto& rule: parser.get_rule_names()){
parser[rule.c_str()] = [rule](const SemanticValues& sv, any&) {
if (rule == "term") {
REQUIRE(any_cast<std::string>(sv[0]) == "a at 0");
REQUIRE(any_cast<std::string>(sv[1]) == "b at 1");
REQUIRE(any_cast<std::string>(sv[2]) == "c at 2");
return std::string();
} else {
return rule + " at " + std::to_string(sv.c_str() - sv.ss);
}
};
}
REQUIRE(parser.parse("abc"));
}
TEST_CASE("Ordered choice count", "[general]")
{
parser parser(R"(
S <- 'a' / 'b'
)");
parser["S"] = [](const SemanticValues& sv) {
REQUIRE(sv.choice() == 1);
REQUIRE(sv.choice_count() == 2);
};
parser.parse("b");
}
TEST_CASE("Ordered choice count 2", "[general]")
{
parser parser(R"(
S <- ('a' / 'b')*
)");
parser["S"] = [](const SemanticValues& sv) {
REQUIRE(sv.choice() == 0);
REQUIRE(sv.choice_count() == 0);
};
parser.parse("b");
}
TEST_CASE("Semantic value tag", "[general]")
{
parser parser(R"(
S <- A? B* C?
A <- 'a'
B <- 'b'
C <- 'c'
)");
{
using namespace udl;
parser["S"] = [](const SemanticValues& sv) {
REQUIRE(sv.size() == 1);
REQUIRE(sv.tags.size() == 1);
REQUIRE(sv.tags[0] == "C"_);
};
auto ret = parser.parse("c");
REQUIRE(ret == true);
}
{
using namespace udl;
parser["S"] = [](const SemanticValues& sv) {
REQUIRE(sv.size() == 2);
REQUIRE(sv.tags.size() == 2);
REQUIRE(sv.tags[0] == "B"_);
REQUIRE(sv.tags[1] == "B"_);
};
auto ret = parser.parse("bb");
REQUIRE(ret == true);
}
{
using namespace udl;
parser["S"] = [](const SemanticValues& sv) {
REQUIRE(sv.size() == 2);
REQUIRE(sv.tags.size() == 2);
REQUIRE(sv.tags[0] == "A"_);
REQUIRE(sv.tags[1] == "C"_);
};
auto ret = parser.parse("ac");
REQUIRE(ret == true);
}
}
TEST_CASE("Negated Class test", "[general]")
{
parser parser(R"(
ROOT <- [^a-z_]+
)");
bool ret = parser;
REQUIRE(ret == true);
REQUIRE(parser.parse("ABC123"));
REQUIRE_FALSE(parser.parse("ABcZ"));
REQUIRE_FALSE(parser.parse("ABCZ_"));
REQUIRE_FALSE(parser.parse(""));
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix

769
test/test2.cc Normal file
View File

@ -0,0 +1,769 @@
#include "catch.hh"
#include <peglib.h>
using namespace peg;
TEST_CASE("Infinite loop 1", "[infinite loop]")
{
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- [a-z0-9]*
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 2", "[infinite loop]")
{
parser pg(R"(
ROOT <- WH TOKEN+ WH
TOKEN <- [a-z0-9]*
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 3", "[infinite loop]")
{
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- !'word1'
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 4", "[infinite loop]")
{
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- &'word1'
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 5", "[infinite loop]")
{
parser pg(R"(
Numbers <- Number*
Number <- [0-9]+ / Spacing
Spacing <- ' ' / '\t' / '\n' / EOF # EOF is empty
EOF <- !.
)");
REQUIRE(!pg);
}
TEST_CASE("Not infinite 1", "[infinite loop]")
{
parser pg(R"(
Numbers <- Number* EOF
Number <- [0-9]+ / Spacing
Spacing <- ' ' / '\t' / '\n'
EOF <- !.
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Not infinite 2", "[infinite loop]")
{
parser pg(R"(
ROOT <- _ ('[' TAG_NAME ']' _)*
# In a sequence operator, if there is at least one non-empty element, we can treat it as non-empty
TAG_NAME <- (!']' .)+
_ <- [ \t]*
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Not infinite 3", "[infinite loop]")
{
parser pg(R"(
EXPRESSION <- _ TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' _ EXPRESSION ')' _ # Recursive...
TERM_OPERATOR <- < [-+] > _
FACTOR_OPERATOR <- < [/*] > _
NUMBER <- < [0-9]+ > _
_ <- [ \t\r\n]*
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Precedence climbing", "[precedence]")
{
// Create a PEG parser
parser parser(R"(
# Grammar for simple calculator...
START <- _ EXPRESSION
EXPRESSION <- ATOM (OPERATOR ATOM)* {
precedence
L + -
L * /
}
ATOM <- NUMBER / T('(') EXPRESSION T(')')
OPERATOR <- T([-+/*])
NUMBER <- T('-'? [0-9]+)
~_ <- [ \t]*
T(S) <- < S > _
)");
// Setup actions
parser["EXPRESSION"] = [](const SemanticValues& sv) -> long {
auto result = any_cast<long>(sv[0]);
if (sv.size() > 1) {
auto ope = any_cast<char>(sv[1]);
auto num = any_cast<long>(sv[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); };
parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); };
bool ret = parser;
REQUIRE(ret == true);
{
auto expr = " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ";
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
{
auto expr = "-1+-2--3"; // -1 + -2 - -3 = 0
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == 0);
}
}
TEST_CASE("Packrat parser test with %whitespace%", "[packrat]")
{
peg::parser parser(R"(
ROOT <- 'a'
%whitespace <- SPACE*
SPACE <- ' '
)");
parser.enable_packrat_parsing();
auto ret = parser.parse("a");
REQUIRE(ret == true);
}
TEST_CASE("Packrat parser test with macro", "[packrat]")
{
parser parser(R"(
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
parser.enable_packrat_parsing();
auto ret = parser.parse(" 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ");
REQUIRE(ret == true);
}
TEST_CASE("Backreference test", "[backreference]")
{
parser parser(R"(
START <- _ LQUOTE < (!RQUOTE .)* > RQUOTE _
LQUOTE <- 'R"' $delm< [a-zA-Z]* > '('
RQUOTE <- ')' $delm '"'
~_ <- [ \t\r\n]*
)");
std::string token;
parser["START"] = [&](const SemanticValues& sv) {
token = sv.token();
};
{
token.clear();
auto ret = parser.parse(R"delm(
R"("hello world")"
)delm");
REQUIRE(ret == true);
REQUIRE(token == "\"hello world\"");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)")foo"
)delm");
REQUIRE(ret == true);
REQUIRE(token == "\"(hello world)\"");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)foo")foo"
)delm");
REQUIRE(ret == false);
REQUIRE(token == "\"(hello world");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)")bar"
)delm");
REQUIRE(ret == false);
REQUIRE(token.empty());
}
}
TEST_CASE("Invalid backreference test", "[backreference]")
{
parser parser(R"(
START <- _ LQUOTE (!RQUOTE .)* RQUOTE _
LQUOTE <- 'R"' $delm< [a-zA-Z]* > '('
RQUOTE <- ')' $delm2 '"'
~_ <- [ \t\r\n]*
)");
REQUIRE_THROWS_AS(
parser.parse(R"delm(
R"foo("(hello world)")foo"
)delm"),
std::runtime_error);
}
TEST_CASE("Nested capture test", "[backreference]")
{
parser parser(R"(
ROOT <- CONTENT
CONTENT <- (ELEMENT / TEXT)*
ELEMENT <- $(STAG CONTENT ETAG)
STAG <- '<' $tag< TAG_NAME > '>'
ETAG <- '</' $tag '>'
TAG_NAME <- 'b' / 'u'
TEXT <- TEXT_DATA
TEXT_DATA <- ![<] .
)");
REQUIRE(parser.parse("This is <b>a <u>test</u> text</b>."));
REQUIRE(!parser.parse("This is <b>a <u>test</b> text</u>."));
REQUIRE(!parser.parse("This is <b>a <u>test text</b>."));
REQUIRE(!parser.parse("This is a <u>test</u> text</b>."));
}
TEST_CASE("Backreference with Prioritized Choice test", "[backreference]")
{
parser parser(R"(
TREE <- WRONG_BRANCH / CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
}
TEST_CASE("Backreference with Zero or More test", "[backreference]")
{
parser parser(R"(
TREE <- WRONG_BRANCH* CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
REQUIRE_THROWS_AS(parser.parse("branchthatiswron_branchthatiscorrect"), std::runtime_error);
}
TEST_CASE("Backreference with One or More test", "[backreference]")
{
parser parser(R"(
TREE <- WRONG_BRANCH+ CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE(!parser.parse("branchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswron_branchthatiscorrect"));
}
TEST_CASE("Backreference with Option test", "[backreference]")
{
parser parser(R"(
TREE <- WRONG_BRANCH? CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
REQUIRE_THROWS_AS(parser.parse("branchthatiswron_branchthatiscorrect"), std::runtime_error);
}
TEST_CASE("Left recursive test", "[left recursive]")
{
parser parser(R"(
A <- A 'a'
B <- A 'a'
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with option test", "[left recursive]")
{
parser parser(R"(
A <- 'a' / 'b'? B 'c'
B <- A
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with zom test", "[left recursive]")
{
parser parser(R"(
A <- 'a'* A*
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with a ZOM content rule", "[left recursive]")
{
parser parser(R"(
A <- B
B <- _ A
_ <- ' '* # Zero or more
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with empty string test", "[left recursive]")
{
parser parser(
" A <- '' A"
);
REQUIRE(!parser);
}
TEST_CASE("User defined rule test", "[user rule]")
{
auto g = parser(R"(
ROOT <- _ 'Hello' _ NAME '!' _
)",
{
{
"NAME", usr([](const char* s, size_t n, SemanticValues& /*sv*/, any& /*dt*/) -> size_t {
static std::vector<std::string> names = { "PEG", "BNF" };
for (const auto& name: names) {
if (name.size() <= n && !name.compare(0, name.size(), s, name.size())) {
return name.size();
}
}
return static_cast<size_t>(-1);
})
},
{
"~_", zom(cls(" \t\r\n"))
}
});
REQUIRE(g.parse(" Hello BNF! ") == true);
}
TEST_CASE("Semantic predicate test", "[predicate]")
{
parser parser("NUMBER <- [0-9]+");
parser["NUMBER"] = [](const SemanticValues& sv) {
auto val = stol(sv.token(), nullptr, 10);
if (val != 100) {
throw parse_error("value error!!");
}
return val;
};
long val;
REQUIRE(parser.parse("100", val));
REQUIRE(val == 100);
REQUIRE(!parser.parse("200", val));
}
TEST_CASE("Japanese character", "[unicode]")
{
peg::parser parser(u8R"(
<- ? ''
<-
<-
<-
<- '' / ''
<- '' / ''
<- '' / ''
<- '' / '' / '' / '' / ''
)");
bool ret = parser;
REQUIRE(ret == true);
REQUIRE(parser.parse(u8R"(サーバーを復旧します。)"));
}
TEST_CASE("dot with a code", "[unicode]")
{
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aあb)"));
}
TEST_CASE("dot with a char", "[unicode]")
{
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aåb)"));
}
TEST_CASE("character class", "[unicode]")
{
peg::parser parser(R"(
S <- 'a' [-AさC-Eた-] 'b'
)");
bool ret = parser;
REQUIRE(ret == true);
REQUIRE(!parser.parse(u8R"(aあb)"));
REQUIRE(parser.parse(u8R"(aいb)"));
REQUIRE(parser.parse(u8R"(aうb)"));
REQUIRE(parser.parse(u8R"(aおb)"));
REQUIRE(!parser.parse(u8R"(aかb)"));
REQUIRE(parser.parse(u8R"(aAb)"));
REQUIRE(!parser.parse(u8R"(aBb)"));
REQUIRE(parser.parse(u8R"(aEb)"));
REQUIRE(!parser.parse(u8R"(aFb)"));
REQUIRE(!parser.parse(u8R"(aそb)"));
REQUIRE(parser.parse(u8R"(aたb)"));
REQUIRE(parser.parse(u8R"(aちb)"));
REQUIRE(parser.parse(u8R"(aとb)"));
REQUIRE(!parser.parse(u8R"(aなb)"));
REQUIRE(parser.parse(u8R"(aはb)"));
REQUIRE(!parser.parse(u8R"(a?b)"));
}
#if 0 // TODO: Unicode Grapheme support
TEST_CASE("dot with a grapheme", "[unicode]")
{
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aसिb)"));
}
#endif
TEST_CASE("Macro simple test", "[macro]")
{
parser parser(R"(
S <- HELLO WORLD
HELLO <- T('hello')
WORLD <- T('world')
T(a) <- a [ \t]*
)");
REQUIRE(parser.parse("hello \tworld "));
}
TEST_CASE("Macro two parameters", "[macro]")
{
parser parser(R"(
S <- HELLO_WORLD
HELLO_WORLD <- T('hello', 'world')
T(a, b) <- a [ \t]* b [ \t]*
)");
REQUIRE(parser.parse("hello \tworld "));
}
TEST_CASE("Macro syntax error", "[macro]")
{
parser parser(R"(
S <- T('hello')
T (a) <- a [ \t]*
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro missing argument", "[macro]")
{
parser parser(R"(
S <- T ('hello')
T(a, b) <- a [ \t]* b
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro reference syntax error", "[macro]")
{
parser parser(R"(
S <- T ('hello')
T(a) <- a [ \t]*
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro invalid macro reference error", "[macro]")
{
parser parser(R"(
S <- T('hello')
T <- 'world'
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro calculator", "[macro]")
{
// Create a PEG parser
parser parser(R"(
# Grammar for simple calculator...
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
// Setup actions
auto reduce = [](const SemanticValues& sv) -> long {
auto result = any_cast<long>(sv[0]);
for (auto i = 1u; i < sv.size(); i += 2) {
auto num = any_cast<long>(sv[i + 1]);
auto ope = any_cast<char>(sv[i]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["EXPRESSION"] = reduce;
parser["TERM"] = reduce;
parser["TERM_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["FACTOR_OPERATOR"] = [](const SemanticValues& sv) { return static_cast<char>(*sv.c_str()); };
parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); };
bool ret = parser;
REQUIRE(ret == true);
auto expr = " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ";
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Macro expression arguments", "[macro]")
{
parser parser(R"(
S <- M('hello' / 'Hello', 'world' / 'World')
M(arg0, arg1) <- arg0 [ \t]+ arg1
)");
REQUIRE(parser.parse("Hello world"));
}
TEST_CASE("Macro recursive", "[macro]")
{
parser parser(R"(
S <- M('abc')
M(s) <- !s / s ' ' M(s / '123') / s
)");
REQUIRE(parser.parse(""));
REQUIRE(parser.parse("abc"));
REQUIRE(parser.parse("abc abc"));
REQUIRE(parser.parse("abc 123 abc"));
}
TEST_CASE("Macro recursive2", "[macro]")
{
auto syntaxes = std::vector<const char*>{
"S <- M('abc') M(s) <- !s / s ' ' M(s* '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s+ '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s? '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(&s s+ '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s '-' !s '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(< s > '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(~s '-' '123') / s",
};
for (const auto& syntax: syntaxes) {
parser parser(syntax);
REQUIRE(parser.parse("abc abc-123"));
}
}
TEST_CASE("Macro exclusive modifiers", "[macro]")
{
parser parser(R"(
S <- Modifiers(!"") _
Modifiers(Appeared) <- (!Appeared) (
Token('public') Modifiers(Appeared / 'public') /
Token('static') Modifiers(Appeared / 'static') /
Token('final') Modifiers(Appeared / 'final') /
"")
Token(t) <- t _
_ <- [ \t\r\n]*
)");
REQUIRE(parser.parse("public"));
REQUIRE(parser.parse("static"));
REQUIRE(parser.parse("final"));
REQUIRE(parser.parse("public static final"));
REQUIRE(!parser.parse("public public"));
REQUIRE(!parser.parse("public static public"));
}
TEST_CASE("Macro token check test", "[macro]")
{
parser parser(R"(
# Grammar for simple calculator...
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
REQUIRE(parser["EXPRESSION"].is_token() == false);
REQUIRE(parser["TERM"].is_token() == false);
REQUIRE(parser["FACTOR"].is_token() == false);
REQUIRE(parser["FACTOR_OPERATOR"].is_token() == true);
REQUIRE(parser["NUMBER"].is_token() == true);
REQUIRE(parser["_"].is_token() == true);
REQUIRE(parser["LIST"].is_token() == false);
REQUIRE(parser["T"].is_token() == true);
}
TEST_CASE("Macro rule-parameter collision", "[macro]")
{
parser parser(R"(
A <- B(C)
B(D) <- D
C <- 'c'
D <- 'd'
)");
REQUIRE(parser.parse("c"));
}
TEST_CASE("Line information test", "[line information]")
{
parser parser(R"(
S <- _ (WORD _)+
WORD <- [A-Za-z]+
~_ <- [ \t\r\n]+
)");
std::vector<std::pair<size_t, size_t>> locations;
parser["WORD"] = [&](const peg::SemanticValues& sv) {
locations.push_back(sv.line_info());
};
bool ret = parser;
REQUIRE(ret == true);
ret = parser.parse(" Mon Tue Wed \nThu Fri Sat\nSun\n");
REQUIRE(ret == true);
REQUIRE(locations[0] == std::make_pair<size_t, size_t>(1, 2));
REQUIRE(locations[1] == std::make_pair<size_t, size_t>(1, 6));
REQUIRE(locations[2] == std::make_pair<size_t, size_t>(1, 10));
REQUIRE(locations[3] == std::make_pair<size_t, size_t>(2, 1));
REQUIRE(locations[4] == std::make_pair<size_t, size_t>(2, 6));
REQUIRE(locations[5] == std::make_pair<size_t, size_t>(2, 11));
REQUIRE(locations[6] == std::make_pair<size_t, size_t>(3, 1));
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix

291
test/test3.cc Normal file
View File

@ -0,0 +1,291 @@
#include "catch.hh"
#include <peglib.h>
using namespace peg;
bool exact(Grammar& g, const char* d, const char* s) {
auto n = strlen(s);
auto r = g[d].parse(s, n);
return r.ret && r.len == n;
}
Grammar& make_peg_grammar() {
return ParserGenerator::grammar();
}
TEST_CASE("PEG Grammar", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Grammar", " Definition <- a / ( b c ) / d \n rule2 <- [a-zA-Z][a-z0-9-]+ ") == true);
}
TEST_CASE("PEG Definition", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Definition", "Definition <- a / (b c) / d ") == true);
REQUIRE(exact(g, "Definition", "Definition <- a / b c / d ") == true);
REQUIRE(exact(g, "Definition", u8"Definitiond ← a ") == true);
REQUIRE(exact(g, "Definition", "Definition ") == false);
REQUIRE(exact(g, "Definition", " ") == false);
REQUIRE(exact(g, "Definition", "") == false);
REQUIRE(exact(g, "Definition", "Definition = a / (b c) / d ") == false);
REQUIRE(exact(g, "Definition", "Macro(param) <- a ") == true);
REQUIRE(exact(g, "Definition", "Macro (param) <- a ") == false);
}
TEST_CASE("PEG Expression", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Expression", "a / (b c) / d ") == true);
REQUIRE(exact(g, "Expression", "a / b c / d ") == true);
REQUIRE(exact(g, "Expression", "a b ") == true);
REQUIRE(exact(g, "Expression", "") == true);
REQUIRE(exact(g, "Expression", " ") == false);
REQUIRE(exact(g, "Expression", " a b ") == false);
}
TEST_CASE("PEG Sequence", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Sequence", "a b c d ") == true);
REQUIRE(exact(g, "Sequence", "") == true);
REQUIRE(exact(g, "Sequence", "!") == false);
REQUIRE(exact(g, "Sequence", "<-") == false);
REQUIRE(exact(g, "Sequence", " a") == false);
}
TEST_CASE("PEG Prefix", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Prefix", "&[a]") == true);
REQUIRE(exact(g, "Prefix", "![']") == true);
REQUIRE(exact(g, "Prefix", "-[']") == false);
REQUIRE(exact(g, "Prefix", "") == false);
REQUIRE(exact(g, "Prefix", " a") == false);
}
TEST_CASE("PEG Suffix", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Suffix", "aaa ") == true);
REQUIRE(exact(g, "Suffix", "aaa? ") == true);
REQUIRE(exact(g, "Suffix", "aaa* ") == true);
REQUIRE(exact(g, "Suffix", "aaa+ ") == true);
REQUIRE(exact(g, "Suffix", ". + ") == true);
REQUIRE(exact(g, "Suffix", "?") == false);
REQUIRE(exact(g, "Suffix", "") == false);
REQUIRE(exact(g, "Suffix", " a") == false);
}
TEST_CASE("PEG Primary", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Primary", "_Identifier0_ ") == true);
REQUIRE(exact(g, "Primary", "_Identifier0_<-") == false);
REQUIRE(exact(g, "Primary", "( _Identifier0_ _Identifier1_ )") == true);
REQUIRE(exact(g, "Primary", "'Literal String'") == true);
REQUIRE(exact(g, "Primary", "\"Literal String\"") == true);
REQUIRE(exact(g, "Primary", "[a-zA-Z]") == true);
REQUIRE(exact(g, "Primary", ".") == true);
REQUIRE(exact(g, "Primary", "") == false);
REQUIRE(exact(g, "Primary", " ") == false);
REQUIRE(exact(g, "Primary", " a") == false);
REQUIRE(exact(g, "Primary", "") == false);
}
TEST_CASE("PEG Identifier", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Identifier", "_Identifier0_ ") == true);
REQUIRE(exact(g, "Identifier", "0Identifier_ ") == false);
REQUIRE(exact(g, "Identifier", "Iden|t ") == false);
REQUIRE(exact(g, "Identifier", " ") == false);
REQUIRE(exact(g, "Identifier", " a") == false);
REQUIRE(exact(g, "Identifier", "") == false);
}
TEST_CASE("PEG IdentStart", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "IdentStart", "_") == true);
REQUIRE(exact(g, "IdentStart", "a") == true);
REQUIRE(exact(g, "IdentStart", "Z") == true);
REQUIRE(exact(g, "IdentStart", "") == false);
REQUIRE(exact(g, "IdentStart", " ") == false);
REQUIRE(exact(g, "IdentStart", "0") == false);
}
TEST_CASE("PEG IdentRest", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "IdentRest", "_") == true);
REQUIRE(exact(g, "IdentRest", "a") == true);
REQUIRE(exact(g, "IdentRest", "Z") == true);
REQUIRE(exact(g, "IdentRest", "") == false);
REQUIRE(exact(g, "IdentRest", " ") == false);
REQUIRE(exact(g, "IdentRest", "0") == true);
}
TEST_CASE("PEG Literal", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Literal", "'abc' ") == true);
REQUIRE(exact(g, "Literal", "'a\\nb\\tc' ") == true);
REQUIRE(exact(g, "Literal", "'a\\277\tc' ") == true);
REQUIRE(exact(g, "Literal", "'a\\77\tc' ") == true);
REQUIRE(exact(g, "Literal", "'a\\80\tc' ") == false);
REQUIRE(exact(g, "Literal", "'\n' ") == true);
REQUIRE(exact(g, "Literal", "'a\\'b' ") == true);
REQUIRE(exact(g, "Literal", "'a'b' ") == false);
REQUIRE(exact(g, "Literal", "'a\"'b' ") == false);
REQUIRE(exact(g, "Literal", "\"'\\\"abc\\\"'\" ") == true);
REQUIRE(exact(g, "Literal", "\"'\"abc\"'\" ") == false);
REQUIRE(exact(g, "Literal", "abc") == false);
REQUIRE(exact(g, "Literal", "") == false);
REQUIRE(exact(g, "Literal", "\\") == false);
REQUIRE(exact(g, "Literal", u8"'日本語'") == true);
REQUIRE(exact(g, "Literal", u8"\"日本語\"") == true);
REQUIRE(exact(g, "Literal", u8"日本語") == false);
}
TEST_CASE("PEG Class", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Class", "[]") == false); // NOTE: This is different from the Brian Ford's paper, but same as RegExp
REQUIRE(exact(g, "Class", "[a]") == true);
REQUIRE(exact(g, "Class", "[a-z]") == true);
REQUIRE(exact(g, "Class", "[az]") == true);
REQUIRE(exact(g, "Class", "[a-zA-Z-]") == true);
REQUIRE(exact(g, "Class", "[a-zA-Z-0-9]") == true);
REQUIRE(exact(g, "Class", "[a-]") == false);
REQUIRE(exact(g, "Class", "[-a]") == true);
REQUIRE(exact(g, "Class", "[") == false);
REQUIRE(exact(g, "Class", "[a") == false);
REQUIRE(exact(g, "Class", "]") == false);
REQUIRE(exact(g, "Class", "a]") == false);
REQUIRE(exact(g, "Class", u8"[あ-ん]") == true);
REQUIRE(exact(g, "Class", u8"あ-ん") == false);
REQUIRE(exact(g, "Class", "[-+]") == true);
REQUIRE(exact(g, "Class", "[+-]") == false);
REQUIRE(exact(g, "Class", "[\\^]") == true);
}
TEST_CASE("PEG Negated Class", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "NegatedClass", "[^]") == false);
REQUIRE(exact(g, "NegatedClass", "[^a]") == true);
REQUIRE(exact(g, "NegatedClass", "[^a-z]") == true);
REQUIRE(exact(g, "NegatedClass", "[^az]") == true);
REQUIRE(exact(g, "NegatedClass", "[^a-zA-Z-]") == true);
REQUIRE(exact(g, "NegatedClass", "[^a-zA-Z-0-9]") == true);
REQUIRE(exact(g, "NegatedClass", "[^a-]") == false);
REQUIRE(exact(g, "NegatedClass", "[^-a]") == true);
REQUIRE(exact(g, "NegatedClass", "[^") == false);
REQUIRE(exact(g, "NegatedClass", "[^a") == false);
REQUIRE(exact(g, "NegatedClass", "^]") == false);
REQUIRE(exact(g, "NegatedClass", "^a]") == false);
REQUIRE(exact(g, "NegatedClass", u8"[^あ-ん]") == true);
REQUIRE(exact(g, "NegatedClass", u8"^あ-ん") == false);
REQUIRE(exact(g, "NegatedClass", "[^-+]") == true);
REQUIRE(exact(g, "NegatedClass", "[^+-]") == false);
REQUIRE(exact(g, "NegatedClass", "[^^]") == true);
}
TEST_CASE("PEG Range", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Range", "a") == true);
REQUIRE(exact(g, "Range", "a-z") == true);
REQUIRE(exact(g, "Range", "az") == false);
REQUIRE(exact(g, "Range", "") == false);
REQUIRE(exact(g, "Range", "a-") == false);
REQUIRE(exact(g, "Range", "-a") == false);
}
TEST_CASE("PEG Char", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Char", "\\n") == true);
REQUIRE(exact(g, "Char", "\\r") == true);
REQUIRE(exact(g, "Char", "\\t") == true);
REQUIRE(exact(g, "Char", "\\'") == true);
REQUIRE(exact(g, "Char", "\\\"") == true);
REQUIRE(exact(g, "Char", "\\[") == true);
REQUIRE(exact(g, "Char", "\\]") == true);
REQUIRE(exact(g, "Char", "\\\\") == true);
REQUIRE(exact(g, "Char", "\\000") == true);
REQUIRE(exact(g, "Char", "\\377") == true);
REQUIRE(exact(g, "Char", "\\477") == false);
REQUIRE(exact(g, "Char", "\\087") == false);
REQUIRE(exact(g, "Char", "\\079") == false);
REQUIRE(exact(g, "Char", "\\00") == true);
REQUIRE(exact(g, "Char", "\\77") == true);
REQUIRE(exact(g, "Char", "\\80") == false);
REQUIRE(exact(g, "Char", "\\08") == false);
REQUIRE(exact(g, "Char", "\\0") == true);
REQUIRE(exact(g, "Char", "\\7") == true);
REQUIRE(exact(g, "Char", "\\8") == false);
REQUIRE(exact(g, "Char", "a") == true);
REQUIRE(exact(g, "Char", ".") == true);
REQUIRE(exact(g, "Char", "0") == true);
REQUIRE(exact(g, "Char", "\\") == false);
REQUIRE(exact(g, "Char", " ") == true);
REQUIRE(exact(g, "Char", " ") == false);
REQUIRE(exact(g, "Char", "") == false);
REQUIRE(exact(g, "Char", u8"") == true);
}
TEST_CASE("PEG Operators", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "LEFTARROW", "<-") == true);
REQUIRE(exact(g, "SLASH", "/ ") == true);
REQUIRE(exact(g, "AND", "& ") == true);
REQUIRE(exact(g, "NOT", "! ") == true);
REQUIRE(exact(g, "QUESTION", "? ") == true);
REQUIRE(exact(g, "STAR", "* ") == true);
REQUIRE(exact(g, "PLUS", "+ ") == true);
REQUIRE(exact(g, "OPEN", "( ") == true);
REQUIRE(exact(g, "CLOSE", ") ") == true);
REQUIRE(exact(g, "DOT", ". ") == true);
}
TEST_CASE("PEG Comment", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Comment", "# Comment.\n") == true);
REQUIRE(exact(g, "Comment", "# Comment.") == false);
REQUIRE(exact(g, "Comment", " ") == false);
REQUIRE(exact(g, "Comment", "a") == false);
}
TEST_CASE("PEG Space", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "Space", " ") == true);
REQUIRE(exact(g, "Space", "\t") == true);
REQUIRE(exact(g, "Space", "\n") == true);
REQUIRE(exact(g, "Space", "") == false);
REQUIRE(exact(g, "Space", "a") == false);
}
TEST_CASE("PEG EndOfLine", "[peg]")
{
auto g = ParserGenerator::grammar();
REQUIRE(exact(g, "EndOfLine", "\r\n") == true);
REQUIRE(exact(g, "EndOfLine", "\n") == true);
REQUIRE(exact(g, "EndOfLine", "\r") == true);
REQUIRE(exact(g, "EndOfLine", " ") == false);
REQUIRE(exact(g, "EndOfLine", "") == false);
REQUIRE(exact(g, "EndOfLine", "a") == false);
}
TEST_CASE("PEG EndOfFile", "[peg]")
{
Grammar g = make_peg_grammar();
REQUIRE(exact(g, "EndOfFile", "") == true);
REQUIRE(exact(g, "EndOfFile", " ") == false);
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix