cpp-peglib ========== [![Build Status](https://travis-ci.org/yhirose/cpp-peglib.svg?branch=master)](https://travis-ci.org/yhirose/cpp-peglib) [![Bulid Status](https://ci.appveyor.com/api/projects/status/github/yhirose/cpp-peglib?branch=master&svg=true)](https://ci.appveyor.com/project/yhirose/cpp-peglib) C++11 header-only [PEG](http://en.wikipedia.org/wiki/Parsing_expression_grammar) (Parsing Expression Grammars) library. You can start using it right away just by including `peglib.h` in your project. You can also try the online version, PEG Playground at https://yhirose.github.io/cpp-peglib. The PEG syntax is well described on page 2 in the [document](http://www.brynosaurus.com/pub/lang/peg.pdf). *cpp-peglib* also supports the following additional syntax for now: * `'...'i` (Case-insensitive literal operator) * `[^...]` (Negated character class operator) * `{2,5}` (Regex-like repetition operator) * `<` ... `>` (Token boundary operator) * `~` (Ignore operator) * `\x20` (Hex number char) * `%whitespace` (Automatic whitespace skipping) * `%word` (Word expression) * `$name(` ... `)` (Capture scope operator) * `$name<` ... `>` (Named capture operator) * `$name` (Backreference operator) * `|` (Dictionary operator) * `MACRO_NAME(` ... `)` (Parameterized rule or Macro) * `{ precedence L - + L / * }` (Parsing infix expression) This library supports the linear-time parsing known as the [*Packrat*](http://pdos.csail.mit.edu/~baford/packrat/thesis/thesis.pdf) parsing. IMPORTANT NOTE for some Linux distributions such as Ubuntu and CentOS: Need `-pthread` option when linking. See [#23](https://github.com/yhirose/cpp-peglib/issues/23#issuecomment-261126127), [#46](https://github.com/yhirose/cpp-peglib/issues/46#issuecomment-417870473) and [#62](https://github.com/yhirose/cpp-peglib/issues/62#issuecomment-492032680). How to use ---------- This is a simple calculator sample. It shows how to define grammar, associate samantic actions to the grammar, and handle semantic values. ```cpp // (1) Include the header file #include #include #include using namespace peg; using namespace std; int main(void) { // (2) Make a parser parser parser(R"( # Grammar for Calculator... Additive <- Multitive '+' Additive / Multitive Multitive <- Primary '*' Multitive / Primary Primary <- '(' Additive ')' / Number Number <- < [0-9]+ > %whitespace <- [ \t]* )"); assert((bool)parser == true); // (3) Setup actions parser["Additive"] = [](const SemanticValues& sv) { switch (sv.choice()) { case 0: // "Multitive '+' Additive" return any_cast(sv[0]) + any_cast(sv[1]); default: // "Multitive" return any_cast(sv[0]); } }; parser["Multitive"] = [](const SemanticValues& sv) { switch (sv.choice()) { case 0: // "Primary '*' Multitive" return any_cast(sv[0]) * any_cast(sv[1]); default: // "Primary" return any_cast(sv[0]); } }; parser["Number"] = [](const SemanticValues& sv) { return stoi(sv.token(), nullptr, 10); }; // (4) Parse parser.enable_packrat_parsing(); // Enable packrat parsing. int val; parser.parse(" (1 + 2) * 3 ", val); assert(val == 9); } ``` To show syntax errors in grammar text: ```cpp auto grammar = R"( # Grammar for Calculator... Additive <- Multitive '+' Additive / Multitive Multitive <- Primary '*' Multitive / Primary Primary <- '(' Additive ')' / Number Number <- < [0-9]+ > %whitespace <- [ \t]* )"; parser parser; parser.log = [](size_t line, size_t col, const string& msg) { cerr << line << ":" << col << ": " << msg << "\n"; }; auto ok = parser.load_grammar(grammar); assert(ok); ``` There are four semantic actions available: ```cpp [](const SemanticValues& sv, any& dt) [](const SemanticValues& sv) [](SemanticValues& sv, any& dt) [](SemanticValues& sv) ``` `SemanticValues` value contains the following information: - Semantic values - Matched string information - Token information if the rule is literal or uses a token boundary operator - Choice number when the rule is 'prioritized choise' `any& dt` is a 'read-write' context data which can be used for whatever purposes. The initial context data is set in `peg::parser::parse` method. `peg::any` is a simpler implementatin of std::any. If the compiler in use supports C++17, by default `peg::any` is defined as an alias to `std::any`. To force using the simpler `any` implementation that comes with `cpp-peglib`, define `PEGLIB_USE_STD_ANY` as 0 before including `peglib.h`: ```cpp #define PEGLIB_USE_STD_ANY 0 #include [...] ``` A semantic action can return a value of arbitrary data type, which will be wrapped by `peg::any`. If a user returns nothing in a semantic action, the first semantic value in the `const SemanticValues& sv` argument will be returned. (Yacc parser has the same behavior.) Here shows the `SemanticValues` structure: ```cpp struct SemanticValues : protected std::vector { // Input text const char* path; const char* ss; // Matched string std::string str() const; // Matched string const char* c_str() const; // Matched string start size_t length() const; // Matched string length // Line number and column at which the matched string is std::pair line_info() const; // Tokens std::vector< std::pair< const char*, // Token start size_t>> // Token length tokens; std::string token(size_t id = 0) const; // Choice number (0 based index) size_t choice() const; // Transform the semantic value vector to another vector template vector transform(size_t beg = 0, size_t end = -1) const; } ``` The following example uses `<` ... ` >` operator, which is *token boundary* operator. ```cpp peg::parser parser(R"( ROOT <- _ TOKEN (',' _ TOKEN)* TOKEN <- < [a-z0-9]+ > _ _ <- [ \t\r\n]* )"); parser["TOKEN"] = [](const SemanticValues& sv) { // 'token' doesn't include trailing whitespaces auto token = sv.token(); }; auto ret = parser.parse(" token1, token2 "); ``` We can ignore unnecessary semantic values from the list by using `~` operator. ```cpp peg::parser parser(R"( ROOT <- _ ITEM (',' _ ITEM _)* ITEM <- ([a-z])+ ~_ <- [ \t]* )"); parser["ROOT"] = [&](const SemanticValues& sv) { assert(sv.size() == 2); // should be 2 instead of 5. }; auto ret = parser.parse(" item1, item2 "); ``` The following grammar is same as the above. ```cpp peg::parser parser(R"( ROOT <- ~_ ITEM (',' ~_ ITEM ~_)* ITEM <- ([a-z])+ _ <- [ \t]* )"); ``` *Semantic predicate* support is available. We can do it by throwing a `peg::parse_error` exception in a semantic action. ```cpp peg::parser parser("NUMBER <- [0-9]+"); parser["NUMBER"] = [](const SemanticValues& sv) { auto val = stol(sv.str(), nullptr, 10); if (val != 100) { throw peg::parse_error("value error!!"); } return val; }; long val; auto ret = parser.parse("100", val); assert(ret == true); assert(val == 100); ret = parser.parse("200", val); assert(ret == false); ``` *enter* and *leave* actions are also avalable. ```cpp parser["RULE"].enter = [](const char* s, size_t n, any& dt) { std::cout << "enter" << std::endl; }; parser["RULE"] = [](const SemanticValues& sv, any& dt) { std::cout << "action!" << std::endl; }; parser["RULE"].leave = [](const char* s, size_t n, size_t matchlen, any& value, any& dt) { std::cout << "leave" << std::endl; }; ``` Ignoring Whitespaces -------------------- As you can see in the first example, we can ignore whitespaces between tokens automatically with `%whitespace` rule. `%whitespace` rule can be applied to the following three conditions: * trailing spaces on tokens * leading spaces on text * trailing spaces on literal strings in rules These are valid tokens: ``` KEYWORD <- 'keyword' KEYWORDI <- 'case_insensitive_keyword' WORD <- < [a-zA-Z0-9] [a-zA-Z0-9-_]* > # token boundary operator is used. IDNET <- < IDENT_START_CHAR IDENT_CHAR* > # token boundary operator is used. ``` The following grammar accepts ` one, "two three", four `. ``` ROOT <- ITEM (',' ITEM)* ITEM <- WORD / PHRASE WORD <- < [a-z]+ > PHRASE <- < '"' (!'"' .)* '"' > %whitespace <- [ \t\r\n]* ``` Word expression --------------- ```cpp peg::parser parser(R"( ROOT <- 'hello' 'world' %whitespace <- [ \t\r\n]* %word <- [a-z]+ )"); parser.parse("hello world"); // OK parser.parse("helloworld"); // NG ``` Capture/Backreference --------------------- ```cpp peg::parser parser(R"( ROOT <- CONTENT CONTENT <- (ELEMENT / TEXT)* ELEMENT <- $(STAG CONTENT ETAG) STAG <- '<' $tag< TAG_NAME > '>' ETAG <- '' TAG_NAME <- 'b' / 'u' TEXT <- TEXT_DATA TEXT_DATA <- ![<] . )"); parser.parse("This is a test text."); // OK parser.parse("This is a test text."); // NG parser.parse("This is a test text."); // NG ``` Dictionary ---------- `|` operator allows us to make a word dictionary for fast lookup by using Trie structure internally. We don't have to worry about the order of words. ```peg START <- 'This month is ' MONTH '.' MONTH <- 'Jan' | 'January' | 'Feb' | 'February' | '...' ``` Parameterized Rule or Macro --------------------------- ```peg # Syntax Start ← _ Expr Expr ← Sum Sum ← List(Product, SumOpe) Product ← List(Value, ProOpe) Value ← Number / T('(') Expr T(')') # Token SumOpe ← T('+' / '-') ProOpe ← T('*' / '/') Number ← T([0-9]+) ~_ ← [ \t\r\n]* # Macro List(I, D) ← I (D I)* T(x) ← < x > _ ``` Parsing infix expression by Precedence climbing ----------------------------------------------- Regarding the *precedence climbing algorithm*, please see [this article](https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing). ```cpp parser parser(R"( EXPRESSION <- INFIX_EXPRESSION(ATOM, OPERATOR) ATOM <- NUMBER / '(' EXPRESSION ')' OPERATOR <- < [-+/*] > NUMBER <- < '-'? [0-9]+ > %whitespace <- [ \t]* # Declare order of precedence INFIX_EXPRESSION(A, O) <- A (O A)* { precedence L + - L * / } )"); parser["INFIX_EXPRESSION"] = [](const SemanticValues& sv) -> long { auto result = any_cast(sv[0]); if (sv.size() > 1) { auto ope = any_cast(sv[1]); auto num = any_cast(sv[2]); switch (ope) { case '+': result += num; break; case '-': result -= num; break; case '*': result *= num; break; case '/': result /= num; break; } } return result; }; parser["OPERATOR"] = [](const SemanticValues& sv) { return *sv.c_str(); }; parser["NUMBER"] = [](const SemanticValues& sv) { return atol(sv.c_str()); }; long val; parser.parse(" -1 + (1 + 2) * 3 - -1", val); assert(val == 9); ``` *precedence* instruction can be applied only to the following 'list' style rule. ``` Rule <- Atom (Operator Atom)* { precedence L - + L / * R ^ } ``` *precedence* instruction contains precedence info entries. Each entry starts with *associativity* which is 'L' (left) or 'R' (right), then operator tokens follow. The first entry has the highest order level. AST generation -------------- *cpp-peglib* is able to generate an AST (Abstract Syntax Tree) when parsing. `enable_ast` method on `peg::parser` class enables the feature. ``` peg::parser parser("..."); parser.enable_ast(); shared_ptr ast; if (parser.parse("...", ast)) { cout << peg::ast_to_s(ast); std::vector exceptions = { "defenition1", "defenition2 }; ast = peg::AstOptimizer(true, exceptions).optimize(ast); cout << peg::ast_to_s(ast); } ``` `peg::AstOptimizer` removes redundant nodes to make a AST simpler. You can make your own AST optimizers to fit your needs. See actual usages in the [AST calculator example](https://github.com/yhirose/cpp-peglib/blob/master/example/calc3.cc) and [PL/0 language example](https://github.com/yhirose/cpp-peglib/blob/master/pl0/pl0.cc). Make a parser with parser combinators ------------------------------------- Instead of makeing a parser by parsing PEG syntax text, we can also construct a parser by hand with *parser combinatorss*. Here is an example: ```cpp using namespace peg; using namespace std; vector tags; Definition ROOT, TAG_NAME, _; ROOT <= seq(_, zom(seq(chr('['), TAG_NAME, chr(']'), _))); TAG_NAME <= oom(seq(npd(chr(']')), dot())), [&](const SemanticValues& sv) { tags.push_back(sv.str()); }; _ <= zom(cls(" \t")); auto ret = ROOT.parse(" [tag1] [tag:2] [tag-3] "); ``` The following are available operators: | Operator | Description | | :------- | :------------------------------ | | seq | Sequence | | cho | Prioritized Choice | | zom | Zero or More | | oom | One or More | | opt | Optional | | apd | And predicate | | npd | Not predicate | | lit | Literal string | | liti | Case-insensitive Literal string | | cls | Character class | | ncls | Negated Character class | | chr | Character | | dot | Any character | | tok | Token boundary | | ign | Ignore semantic value | | csc | Capture scope | | cap | Capture | | bkr | Back reference | | dic | Dictionary | | pre | Infix expression | | usr | User defined parser | Adjust definitions ------------------ It's possible to add/override definitions. ```cpp auto syntax = R"( ROOT <- _ 'Hello' _ NAME '!' _ )"; Rules additional_rules = { { "NAME", usr([](const char* s, size_t n, SemanticValues& sv, any& dt) -> size_t { static vector names = { "PEG", "BNF" }; for (const auto& name: names) { if (name.size() <= n && !name.compare(0, name.size(), s, name.size())) { return name.size(); // processed length } } return -1; // parse error }) }, { "~_", zom(cls(" \t\r\n")) } }; auto g = parser(syntax, additional_rules); assert(g.parse(" Hello BNF! ")); ``` Unicode support --------------- cpp-peglib accepts UTF8 text. `.` matches a Unicode codepoint. Also, it supports `\u????`. peglint - PEG syntax lint utility --------------------------------- ### Build peglint ``` > cd lint > mkdir build > cd build > cmake .. > make > ./peglint usage: grammar_file_path [source_file_path] options: --ast: show AST tree --opt, --opt-all: optimaze all AST nodes except nodes selected with --opt-rules --opt-only: optimaze only AST nodes selected with --opt-rules --opt-rules rules: comma delimitted definition rules for optimazation --source: source text --trace: show trace messages ``` ### Lint grammar ``` > cat a.peg A <- 'hello' ^ 'world' > peglint a.peg a.peg:1:14: syntax error ``` ``` > cat a.peg A <- B > peglint a.peg a.peg:1:6: 'B' is not defined. ``` ``` > cat a.peg A <- B / C B <- 'b' C <- A > peglint a.peg a.peg:1:10: 'C' is left recursive. a.peg:3:6: 'A' is left recursive. ``` ### Lint source text ``` > cat a.peg Additive <- Multitive '+' Additive / Multitive Multitive <- Primary '*' Multitive / Primary Primary <- '(' Additive ')' / Number Number <- < [0-9]+ > %whitespace <- [ \t\r\n]* > peglint --source "1 + a * 3" a.peg [commendline]:1:3: syntax error ``` ``` > cat a.txt 1 + 2 * 3 > peglint --ast a.peg a.txt + Additive + Multitive + Primary - Number (1) + Additive + Multitive + Primary - Number (2) + Multitive + Primary - Number (3) ``` ``` > peglint --ast --opt --source "1 + 2 * 3" a.peg + Additive - Multitive[Number] (1) + Additive[Multitive] - Primary[Number] (2) - Multitive[Number] (3) ``` ``` > peglint --ast --opt --opt-rules "Primary" --source "1 + 2 * 3" a.peg + Additive/0 + Multitive/1[Primary] - Number (1) + Additive/1[Multitive] + Primary/1 - Number (2) + Multitive/1[Primary] - Number (3) ``` ``` > peglint --ast --opt-only --opt-rules "Primary" --source "1 + 2 * 3" a.peg + Additive/0 + Multitive/1 - Primary/1[Number] (1) + Additive/1 + Multitive/0 - Primary/1[Number] (2) + Multitive/1 - Primary/1[Number] (3) ``` Sample codes ------------ * [Calculator](https://github.com/yhirose/cpp-peglib/blob/master/example/calc.cc) * [Calculator (with parser operators)](https://github.com/yhirose/cpp-peglib/blob/master/example/calc2.cc) * [Calculator (AST version)](https://github.com/yhirose/cpp-peglib/blob/master/example/calc3.cc) * [Calculator (parsing expressions by precedence climbing)](https://github.com/yhirose/cpp-peglib/blob/master/example/calc4.cc) * [Calculator (AST version and parsing expressions by precedence climbing)](https://github.com/yhirose/cpp-peglib/blob/master/example/calc5.cc) * [Monkey language](https://github.com/yhirose/monkey-cpp) described in [Writing An Interpreter In Go](https://interpreterbook.com/). * [PL/0 language example](https://github.com/yhirose/cpp-peglib/blob/master/pl0/pl0.cc) * [A tiny PL/0 JIT compiler in less than 700 LOC with LLVM and PEG parser](https://github.com/yhirose/pl0-jit-compiler) * [A Programming Language just for writing Fizz Buzz program. :)](https://github.com/yhirose/fizzbuzzlang) PEG debug --------- A debug viewer for Parsing Expression Grammars using cpp-peglib by [mqnc](https://github.com/mqnc). Please see [his gihub project page](https://github.com/mqnc/pegdebug) for the detail. You can see a parse result of PL/0 code [here](https://mqnc.github.io/pegdebug/example/output.html). License ------- MIT license (© 2020 Yuji Hirose)