// // peglib.h // // Copyright (c) 2020 Yuji Hirose. All rights reserved. // MIT License // #ifndef CPPPEGLIB_PEGLIB_H #define CPPPEGLIB_PEGLIB_H #ifndef PEGLIB_USE_STD_ANY #ifdef _MSVC_LANG #define PEGLIB_USE_STD_ANY _MSVC_LANG >= 201703L #elif defined(__cplusplus) #define PEGLIB_USE_STD_ANY __cplusplus >= 201703L #endif #endif // PEGLIB_USE_STD_ANY #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if PEGLIB_USE_STD_ANY #include #endif // guard for older versions of VC++ #ifdef _MSC_VER #if defined(_MSC_VER) && _MSC_VER < 1900 // Less than Visual Studio 2015 #error "Requires complete C+11 support" #endif #endif namespace peg { /*----------------------------------------------------------------------------- * any *---------------------------------------------------------------------------*/ #if PEGLIB_USE_STD_ANY using any = std::any; // Define a function alias to std::any_cast using perfect forwarding template auto any_cast(Args &&... args) -> decltype(std::any_cast(std::forward(args)...)) { return std::any_cast(std::forward(args)...); } #else class any { public: any() = default; any(const any &rhs) : content_(rhs.clone()) {} any(any &&rhs) : content_(rhs.content_) { rhs.content_ = nullptr; } template any(const T &value) : content_(new holder(value)) {} any &operator=(const any &rhs) { if (this != &rhs) { if (content_) { delete content_; } content_ = rhs.clone(); } return *this; } any &operator=(any &&rhs) { if (this != &rhs) { if (content_) { delete content_; } content_ = rhs.content_; rhs.content_ = nullptr; } return *this; } ~any() { delete content_; } bool has_value() const { return content_ != nullptr; } template friend T &any_cast(any &val); template friend const T &any_cast(const any &val); private: struct placeholder { virtual ~placeholder() {} virtual placeholder *clone() const = 0; }; template struct holder : placeholder { holder(const T &value) : value_(value) {} placeholder *clone() const override { return new holder(value_); } T value_; }; placeholder *clone() const { return content_ ? content_->clone() : nullptr; } placeholder *content_ = nullptr; }; template T &any_cast(any &val) { if (!val.content_) { throw std::bad_cast(); } auto p = dynamic_cast *>(val.content_); assert(p); if (!p) { throw std::bad_cast(); } return p->value_; } template <> inline any &any_cast(any &val) { return val; } template const T &any_cast(const any &val) { assert(val.content_); auto p = dynamic_cast *>(val.content_); assert(p); if (!p) { throw std::bad_cast(); } return p->value_; } template <> inline const any &any_cast(const any &val) { return val; } #endif /*----------------------------------------------------------------------------- * scope_exit *---------------------------------------------------------------------------*/ // This is based on // "http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4189". template struct scope_exit { explicit scope_exit(EF &&f) : exit_function(std::move(f)), execute_on_destruction{true} {} scope_exit(scope_exit &&rhs) : exit_function(std::move(rhs.exit_function)), execute_on_destruction{rhs.execute_on_destruction} { rhs.release(); } ~scope_exit() { if (execute_on_destruction) { this->exit_function(); } } void release() { this->execute_on_destruction = false; } private: scope_exit(const scope_exit &) = delete; void operator=(const scope_exit &) = delete; scope_exit &operator=(scope_exit &&) = delete; EF exit_function; bool execute_on_destruction; }; template auto make_scope_exit(EF &&exit_function) -> scope_exit { return scope_exit::type>( std::forward(exit_function)); } /*----------------------------------------------------------------------------- * UTF8 functions *---------------------------------------------------------------------------*/ inline size_t codepoint_length(const char *s8, size_t l) { if (l) { auto b = static_cast(s8[0]); if ((b & 0x80) == 0) { return 1; } else if ((b & 0xE0) == 0xC0) { return 2; } else if ((b & 0xF0) == 0xE0) { return 3; } else if ((b & 0xF8) == 0xF0) { return 4; } } return 0; } inline size_t encode_codepoint(char32_t cp, char *buff) { if (cp < 0x0080) { buff[0] = static_cast(cp & 0x7F); return 1; } else if (cp < 0x0800) { buff[0] = static_cast(0xC0 | ((cp >> 6) & 0x1F)); buff[1] = static_cast(0x80 | (cp & 0x3F)); return 2; } else if (cp < 0xD800) { buff[0] = static_cast(0xE0 | ((cp >> 12) & 0xF)); buff[1] = static_cast(0x80 | ((cp >> 6) & 0x3F)); buff[2] = static_cast(0x80 | (cp & 0x3F)); return 3; } else if (cp < 0xE000) { // D800 - DFFF is invalid... return 0; } else if (cp < 0x10000) { buff[0] = static_cast(0xE0 | ((cp >> 12) & 0xF)); buff[1] = static_cast(0x80 | ((cp >> 6) & 0x3F)); buff[2] = static_cast(0x80 | (cp & 0x3F)); return 3; } else if (cp < 0x110000) { buff[0] = static_cast(0xF0 | ((cp >> 18) & 0x7)); buff[1] = static_cast(0x80 | ((cp >> 12) & 0x3F)); buff[2] = static_cast(0x80 | ((cp >> 6) & 0x3F)); buff[3] = static_cast(0x80 | (cp & 0x3F)); return 4; } return 0; } inline std::string encode_codepoint(char32_t cp) { char buff[4]; auto l = encode_codepoint(cp, buff); return std::string(buff, l); } inline bool decode_codepoint(const char *s8, size_t l, size_t &bytes, char32_t &cp) { if (l) { auto b = static_cast(s8[0]); if ((b & 0x80) == 0) { bytes = 1; cp = b; return true; } else if ((b & 0xE0) == 0xC0) { if (l >= 2) { bytes = 2; cp = ((static_cast(s8[0] & 0x1F)) << 6) | (static_cast(s8[1] & 0x3F)); return true; } } else if ((b & 0xF0) == 0xE0) { if (l >= 3) { bytes = 3; cp = ((static_cast(s8[0] & 0x0F)) << 12) | ((static_cast(s8[1] & 0x3F)) << 6) | (static_cast(s8[2] & 0x3F)); return true; } } else if ((b & 0xF8) == 0xF0) { if (l >= 4) { bytes = 4; cp = ((static_cast(s8[0] & 0x07)) << 18) | ((static_cast(s8[1] & 0x3F)) << 12) | ((static_cast(s8[2] & 0x3F)) << 6) | (static_cast(s8[3] & 0x3F)); return true; } } } return false; } inline size_t decode_codepoint(const char *s8, size_t l, char32_t &out) { size_t bytes; if (decode_codepoint(s8, l, bytes, out)) { return bytes; } return 0; } inline char32_t decode_codepoint(const char *s8, size_t l) { char32_t out = 0; decode_codepoint(s8, l, out); return out; } inline std::u32string decode(const char *s8, size_t l) { std::u32string out; size_t i = 0; while (i < l) { auto beg = i++; while (i < l && (s8[i] & 0xc0) == 0x80) { i++; } out += decode_codepoint(&s8[beg], (i - beg)); } return out; } /*----------------------------------------------------------------------------- * resolve_escape_sequence *---------------------------------------------------------------------------*/ inline bool is_hex(char c, int &v) { if ('0' <= c && c <= '9') { v = c - '0'; return true; } else if ('a' <= c && c <= 'f') { v = c - 'a' + 10; return true; } else if ('A' <= c && c <= 'F') { v = c - 'A' + 10; return true; } return false; } inline bool is_digit(char c, int &v) { if ('0' <= c && c <= '9') { v = c - '0'; return true; } return false; } inline std::pair parse_hex_number(const char *s, size_t n, size_t i) { int ret = 0; int val; while (i < n && is_hex(s[i], val)) { ret = static_cast(ret * 16 + val); i++; } return std::make_pair(ret, i); } inline std::pair parse_octal_number(const char *s, size_t n, size_t i) { int ret = 0; int val; while (i < n && is_digit(s[i], val)) { ret = static_cast(ret * 8 + val); i++; } return std::make_pair(ret, i); } inline std::string resolve_escape_sequence(const char *s, size_t n) { std::string r; r.reserve(n); size_t i = 0; while (i < n) { auto ch = s[i]; if (ch == '\\') { i++; if (i == n) { throw std::runtime_error("Invalid escape sequence..."); } switch (s[i]) { case 'n': r += '\n'; i++; break; case 'r': r += '\r'; i++; break; case 't': r += '\t'; i++; break; case '\'': r += '\''; i++; break; case '"': r += '"'; i++; break; case '[': r += '['; i++; break; case ']': r += ']'; i++; break; case '\\': r += '\\'; i++; break; case 'x': case 'u': { char32_t cp; std::tie(cp, i) = parse_hex_number(s, n, i + 1); r += encode_codepoint(cp); break; } default: { char32_t cp; std::tie(cp, i) = parse_octal_number(s, n, i); r += encode_codepoint(cp); break; } } } else { r += ch; i++; } } return r; } /*----------------------------------------------------------------------------- * Trie *---------------------------------------------------------------------------*/ class Trie { public: Trie() = default; Trie(const Trie &) = default; Trie(const std::vector &items) { for (const auto &item : items) { for (size_t len = 1; len <= item.size(); len++) { auto last = len == item.size(); std::string s(item.c_str(), len); auto it = dic_.find(s); if (it == dic_.end()) { dic_.emplace(s, Info{last, last}); } else if (last) { it->second.match = true; } else { it->second.done = false; } } } } size_t match(const char *text, size_t text_len) const { size_t match_len = 0; { auto done = false; size_t len = 1; while (!done && len <= text_len) { std::string s(text, len); auto it = dic_.find(s); if (it == dic_.end()) { done = true; } else { if (it->second.match) { match_len = len; } if (it->second.done) { done = true; } } len += 1; } } return match_len; } private: struct Info { bool done; bool match; }; std::unordered_map dic_; }; /*----------------------------------------------------------------------------- * PEG *---------------------------------------------------------------------------*/ /* * Line information utility function */ inline std::pair line_info(const char *start, const char *cur) { auto p = start; auto col_ptr = p; auto no = 1; while (p < cur) { if (*p == '\n') { no++; col_ptr = p + 1; } p++; } auto col = p - col_ptr + 1; return std::make_pair(no, col); } /* * String tag */ inline constexpr unsigned int str2tag(const char *str, unsigned int h = 0) { return (*str == '\0') ? h : str2tag(str + 1, (h * 33) ^ static_cast(*str)); } namespace udl { inline constexpr unsigned int operator"" _(const char *s, size_t) { return str2tag(s); } } // namespace udl /* * Semantic values */ struct SemanticValues : protected std::vector { // Input text const char *path = nullptr; const char *ss = nullptr; const std::vector *source_line_index = nullptr; // Matched string const char *c_str() const { return s_; } size_t length() const { return n_; } std::string str() const { return std::string(s_, n_); } // Definition name const std::string &name() const { return name_; } std::vector tags; // Line number and column at which the matched string is std::pair line_info() const { const auto &idx = *source_line_index; auto cur = static_cast(std::distance(ss, s_)); auto it = std::lower_bound( idx.begin(), idx.end(), cur, [](size_t element, size_t value) { return element < value; }); auto id = static_cast(std::distance(idx.begin(), it)); auto off = cur - (id == 0 ? 0 : idx[id - 1] + 1); return std::make_pair(id + 1, off + 1); } // Choice count size_t choice_count() const { return choice_count_; } // Choice number (0 based index) size_t choice() const { return choice_; } // Tokens std::vector> tokens; std::string token(size_t id = 0) const { if (!tokens.empty()) { assert(id < tokens.size()); const auto &tok = tokens[id]; return std::string(tok.first, tok.second); } return std::string(s_, n_); } // Transform the semantic value vector to another vector template auto transform(size_t beg = 0, size_t end = static_cast(-1)) const -> vector { return this->transform(beg, end, [](const any &v) { return any_cast(v); }); } using std::vector::iterator; using std::vector::const_iterator; using std::vector::size; using std::vector::empty; using std::vector::assign; using std::vector::begin; using std::vector::end; using std::vector::rbegin; using std::vector::rend; using std::vector::operator[]; using std::vector::at; using std::vector::resize; using std::vector::front; using std::vector::back; using std::vector::push_back; using std::vector::pop_back; using std::vector::insert; using std::vector::erase; using std::vector::clear; using std::vector::swap; using std::vector::emplace; using std::vector::emplace_back; private: friend class Context; friend class Sequence; friend class PrioritizedChoice; friend class Holder; friend class PrecedenceClimbing; const char *s_ = nullptr; size_t n_ = 0; size_t choice_count_ = 0; size_t choice_ = 0; std::string name_; template auto transform(F f) const -> vector::type> { vector::type> r; for (const auto &v : *this) { r.emplace_back(f(v)); } return r; } template auto transform(size_t beg, size_t end, F f) const -> vector::type> { vector::type> r; end = (std::min)(end, size()); for (size_t i = beg; i < end; i++) { r.emplace_back(f((*this)[i])); } return r; } }; /* * Semantic action */ template ::value, std::nullptr_t>::type = nullptr, typename... Args> any call(F fn, Args &&... args) { fn(std::forward(args)...); return any(); } template ::type, any>::value, std::nullptr_t>::type = nullptr, typename... Args> any call(F fn, Args &&... args) { return fn(std::forward(args)...); } template ::value && !std::is_same::type, any>::value, std::nullptr_t>::type = nullptr, typename... Args> any call(F fn, Args &&... args) { return any(fn(std::forward(args)...)); } class Action { public: Action() = default; Action(const Action &rhs) = default; template ::value && !std::is_same::value, std::nullptr_t>::type = nullptr> Action(F fn) : fn_(make_adaptor(fn, &F::operator())) {} template ::value, std::nullptr_t>::type = nullptr> Action(F fn) : fn_(make_adaptor(fn, fn)) {} template ::value, std::nullptr_t>::type = nullptr> Action(F /*fn*/) {} template ::value && !std::is_same::value, std::nullptr_t>::type = nullptr> void operator=(F fn) { fn_ = make_adaptor(fn, &F::operator()); } template ::value, std::nullptr_t>::type = nullptr> void operator=(F fn) { fn_ = make_adaptor(fn, fn); } template ::value, std::nullptr_t>::type = nullptr> void operator=(F /*fn*/) {} Action &operator=(const Action &rhs) = default; operator bool() const { return bool(fn_); } any operator()(SemanticValues &sv, any &dt) const { return fn_(sv, dt); } private: template struct TypeAdaptor_sv { TypeAdaptor_sv(std::function fn) : fn_(fn) {} any operator()(SemanticValues &sv, any & /*dt*/) { return call(fn_, sv); } std::function fn_; }; template struct TypeAdaptor_csv { TypeAdaptor_csv(std::function fn) : fn_(fn) {} any operator()(SemanticValues &sv, any & /*dt*/) { return call(fn_, sv); } std::function fn_; }; template struct TypeAdaptor_sv_dt { TypeAdaptor_sv_dt(std::function fn) : fn_(fn) {} any operator()(SemanticValues &sv, any &dt) { return call(fn_, sv, dt); } std::function fn_; }; template struct TypeAdaptor_csv_dt { TypeAdaptor_csv_dt(std::function fn) : fn_(fn) {} any operator()(SemanticValues &sv, any &dt) { return call(fn_, sv, dt); } std::function fn_; }; typedef std::function Fty; template Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv) const) { return TypeAdaptor_sv(fn); } template Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv) const) { return TypeAdaptor_csv(fn); } template Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv)) { return TypeAdaptor_sv(fn); } template Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv)) { return TypeAdaptor_csv(fn); } template Fty make_adaptor(F fn, R (*)(SemanticValues &sv)) { return TypeAdaptor_sv(fn); } template Fty make_adaptor(F fn, R (*)(const SemanticValues &sv)) { return TypeAdaptor_csv(fn); } template Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv, any &dt) const) { return TypeAdaptor_sv_dt(fn); } template Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv, any &dt) const) { return TypeAdaptor_csv_dt(fn); } template Fty make_adaptor(F fn, R (F::*)(SemanticValues &sv, any &dt)) { return TypeAdaptor_sv_dt(fn); } template Fty make_adaptor(F fn, R (F::*)(const SemanticValues &sv, any &dt)) { return TypeAdaptor_csv_dt(fn); } template Fty make_adaptor(F fn, R (*)(SemanticValues &sv, any &dt)) { return TypeAdaptor_sv_dt(fn); } template Fty make_adaptor(F fn, R (*)(const SemanticValues &sv, any &dt)) { return TypeAdaptor_csv_dt(fn); } Fty fn_; }; /* * Semantic predicate */ // Note: 'parse_error' exception class should be be used in sematic action // handlers to reject the rule. struct parse_error { parse_error() = default; parse_error(const char *s) : s_(s) {} const char *what() const { return s_.empty() ? nullptr : s_.c_str(); } private: std::string s_; }; /* * Result */ inline bool success(size_t len) { return len != static_cast(-1); } inline bool fail(size_t len) { return len == static_cast(-1); } /* * Context */ class Context; class Ope; class Definition; typedef std::function TracerEnter; typedef std::function TracerLeave; class Context { public: const char *path; const char *s; const size_t l; std::vector source_line_index; const char *error_pos = nullptr; const char *message_pos = nullptr; std::string message; // TODO: should be `int`. std::vector> value_stack; size_t value_stack_size = 0; std::vector>> args_stack; bool in_token = false; std::shared_ptr whitespaceOpe; bool in_whitespace = false; std::shared_ptr wordOpe; std::vector> capture_scope_stack; size_t capture_scope_stack_size = 0; const size_t def_count; const bool enablePackratParsing; std::vector cache_registered; std::vector cache_success; std::map, std::tuple> cache_values; TracerEnter tracer_enter; TracerLeave tracer_leave; Context(const char *a_path, const char *a_s, size_t a_l, size_t a_def_count, std::shared_ptr a_whitespaceOpe, std::shared_ptr a_wordOpe, bool a_enablePackratParsing, TracerEnter a_tracer_enter, TracerLeave a_tracer_leave) : path(a_path), s(a_s), l(a_l), whitespaceOpe(a_whitespaceOpe), wordOpe(a_wordOpe), def_count(a_def_count), enablePackratParsing(a_enablePackratParsing), cache_registered(enablePackratParsing ? def_count * (l + 1) : 0), cache_success(enablePackratParsing ? def_count * (l + 1) : 0), tracer_enter(a_tracer_enter), tracer_leave(a_tracer_leave) { for (size_t pos = 0; pos < l; pos++) { if (s[pos] == '\n') { source_line_index.push_back(pos); } } source_line_index.push_back(l); args_stack.resize(1); push_capture_scope(); } ~Context() { assert(!value_stack_size); } Context(const Context &) = delete; Context(Context &&) = delete; Context operator=(const Context &) = delete; template void packrat(const char *a_s, size_t def_id, size_t &len, any &val, T fn) { if (!enablePackratParsing) { fn(val); return; } auto col = a_s - s; auto idx = def_count * static_cast(col) + def_id; if (cache_registered[idx]) { if (cache_success[idx]) { auto key = std::make_pair(col, def_id); std::tie(len, val) = cache_values[key]; return; } else { len = static_cast(-1); return; } } else { fn(val); cache_registered[idx] = true; cache_success[idx] = success(len); if (success(len)) { auto key = std::make_pair(col, def_id); cache_values[key] = std::make_pair(len, val); } return; } } SemanticValues &push() { assert(value_stack_size <= value_stack.size()); if (value_stack_size == value_stack.size()) { value_stack.emplace_back(std::make_shared()); } else { auto &sv = *value_stack[value_stack_size]; if (!sv.empty()) { sv.clear(); if (!sv.tags.empty()) { sv.tags.clear(); } } sv.s_ = nullptr; sv.n_ = 0; sv.choice_count_ = 0; sv.choice_ = 0; if (!sv.tokens.empty()) { sv.tokens.clear(); } } auto &sv = *value_stack[value_stack_size++]; sv.path = path; sv.ss = s; sv.source_line_index = &source_line_index; return sv; } void pop() { value_stack_size--; } void push_args(std::vector> &&args) { args_stack.emplace_back(args); } void pop_args() { args_stack.pop_back(); } const std::vector> &top_args() const { return args_stack[args_stack.size() - 1]; } void push_capture_scope() { assert(capture_scope_stack_size <= capture_scope_stack.size()); if (capture_scope_stack_size == capture_scope_stack.size()) { capture_scope_stack.emplace_back(std::map()); } else { auto &cs = capture_scope_stack[capture_scope_stack_size]; if (!cs.empty()) { cs.clear(); } } capture_scope_stack_size++; } void pop_capture_scope() { capture_scope_stack_size--; } void shift_capture_values() { assert(capture_scope_stack.size() >= 2); auto curr = &capture_scope_stack[capture_scope_stack_size - 1]; auto prev = curr - 1; for (const auto &kv : *curr) { (*prev)[kv.first] = kv.second; } } void set_error_pos(const char *a_s) { if (error_pos < a_s) error_pos = a_s; } void trace_enter(const char *name, const char *a_s, size_t n, SemanticValues &sv, any &dt) const; void trace_leave(const char *name, const char *a_s, size_t n, SemanticValues &sv, any &dt, size_t len) const; bool is_traceable(const Ope &ope) const; mutable size_t next_trace_id = 0; mutable std::list trace_ids; }; /* * Parser operators */ class Ope { public: struct Visitor; virtual ~Ope() {} size_t parse(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const; virtual size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const = 0; virtual void accept(Visitor &v) = 0; }; class Sequence : public Ope { public: template Sequence(const Args &... args) : opes_{static_cast>(args)...} {} Sequence(const std::vector> &opes) : opes_(opes) {} Sequence(std::vector> &&opes) : opes_(opes) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { auto &chldsv = c.push(); auto pop_se = make_scope_exit([&]() { c.pop(); }); size_t i = 0; for (const auto &ope : opes_) { const auto &rule = *ope; auto len = rule.parse(s + i, n - i, chldsv, c, dt); if (fail(len)) { return static_cast(-1); } i += len; } if (!chldsv.empty()) { for (size_t j = 0; j < chldsv.size(); j++) { sv.emplace_back(std::move(chldsv[j])); } } if (!chldsv.tags.empty()) { for (size_t j = 0; j < chldsv.tags.size(); j++) { sv.tags.emplace_back(std::move(chldsv.tags[j])); } } sv.s_ = chldsv.c_str(); sv.n_ = chldsv.length(); if (!chldsv.tokens.empty()) { for (size_t j = 0; j < chldsv.tokens.size(); j++) { sv.tokens.emplace_back(std::move(chldsv.tokens[j])); } } return i; } void accept(Visitor &v) override; std::vector> opes_; }; class PrioritizedChoice : public Ope { public: template PrioritizedChoice(const Args &... args) : opes_{static_cast>(args)...} {} PrioritizedChoice(const std::vector> &opes) : opes_(opes) {} PrioritizedChoice(std::vector> &&opes) : opes_(opes) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { size_t id = 0; for (const auto &ope : opes_) { auto &chldsv = c.push(); c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop(); c.pop_capture_scope(); }); auto len = ope->parse(s, n, chldsv, c, dt); if (success(len)) { if (!chldsv.empty()) { for (size_t i = 0; i < chldsv.size(); i++) { sv.emplace_back(std::move(chldsv[i])); } } if (!chldsv.tags.empty()) { for (size_t i = 0; i < chldsv.tags.size(); i++) { sv.tags.emplace_back(std::move(chldsv.tags[i])); } } sv.s_ = chldsv.c_str(); sv.n_ = chldsv.length(); sv.choice_count_ = opes_.size(); sv.choice_ = id; if (!chldsv.tokens.empty()) { for (size_t i = 0; i < chldsv.tokens.size(); i++) { sv.tokens.emplace_back(std::move(chldsv.tokens[i])); } } c.shift_capture_values(); return len; } id++; } return static_cast(-1); } void accept(Visitor &v) override; size_t size() const { return opes_.size(); } std::vector> opes_; }; class Repetition : public Ope { public: Repetition(const std::shared_ptr &ope, size_t min, size_t max) : ope_(ope), min_(min), max_(max) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { size_t count = 0; size_t i = 0; while (count < min_) { c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop_capture_scope(); }); const auto &rule = *ope_; auto len = rule.parse(s + i, n - i, sv, c, dt); if (success(len)) { c.shift_capture_values(); } else { return static_cast(-1); } i += len; count++; } auto save_error_pos = c.error_pos; while (n - i > 0 && count < max_) { c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop_capture_scope(); }); auto save_sv_size = sv.size(); auto save_tok_size = sv.tokens.size(); const auto &rule = *ope_; auto len = rule.parse(s + i, n - i, sv, c, dt); if (success(len)) { c.shift_capture_values(); } else { if (sv.size() != save_sv_size) { sv.erase(sv.begin() + static_cast(save_sv_size)); sv.tags.erase(sv.tags.begin() + static_cast(save_sv_size)); } if (sv.tokens.size() != save_tok_size) { sv.tokens.erase(sv.tokens.begin() + static_cast(save_tok_size)); } c.error_pos = save_error_pos; break; } i += len; count++; } return i; } void accept(Visitor &v) override; bool is_zom() const { return min_ == 0 && max_ == std::numeric_limits::max(); } static std::shared_ptr zom(const std::shared_ptr &ope) { return std::make_shared(ope, 0, std::numeric_limits::max()); } static std::shared_ptr oom(const std::shared_ptr &ope) { return std::make_shared(ope, 1, std::numeric_limits::max()); } static std::shared_ptr opt(const std::shared_ptr &ope) { return std::make_shared(ope, 0, 1); } std::shared_ptr ope_; size_t min_; size_t max_; }; class AndPredicate : public Ope { public: AndPredicate(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any &dt) const override { auto &chldsv = c.push(); c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop(); c.pop_capture_scope(); }); const auto &rule = *ope_; auto len = rule.parse(s, n, chldsv, c, dt); if (success(len)) { return 0; } else { return static_cast(-1); } } void accept(Visitor &v) override; std::shared_ptr ope_; }; class NotPredicate : public Ope { public: NotPredicate(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any &dt) const override { auto save_error_pos = c.error_pos; auto &chldsv = c.push(); c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop(); c.pop_capture_scope(); }); auto len = ope_->parse(s, n, chldsv, c, dt); if (success(len)) { c.set_error_pos(s); return static_cast(-1); } else { c.error_pos = save_error_pos; return 0; } } void accept(Visitor &v) override; std::shared_ptr ope_; }; class Dictionary : public Ope, public std::enable_shared_from_this { public: Dictionary(const std::vector &v) : trie_(v) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; Trie trie_; }; class LiteralString : public Ope, public std::enable_shared_from_this { public: LiteralString(std::string &&s, bool ignore_case) : lit_(s), ignore_case_(ignore_case), init_is_word_(false), is_word_(false) {} LiteralString(const std::string& s, bool ignore_case) : lit_(s), ignore_case_(ignore_case), init_is_word_(false), is_word_(false) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; std::string lit_; bool ignore_case_; mutable bool init_is_word_; mutable bool is_word_; }; class CharacterClass : public Ope, public std::enable_shared_from_this { public: CharacterClass(const std::string &s, bool negated) : negated_(negated) { auto chars = decode(s.c_str(), s.length()); auto i = 0u; while (i < chars.size()) { if (i + 2 < chars.size() && chars[i + 1] == '-') { auto cp1 = chars[i]; auto cp2 = chars[i + 2]; ranges_.emplace_back(std::make_pair(cp1, cp2)); i += 3; } else { auto cp = chars[i]; ranges_.emplace_back(std::make_pair(cp, cp)); i += 1; } } assert(!ranges_.empty()); } CharacterClass(const std::vector> &ranges, bool negated) : ranges_(ranges), negated_(negated) { assert(!ranges_.empty()); } size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any & /*dt*/) const override { if (n < 1) { c.set_error_pos(s); return static_cast(-1); } char32_t cp = 0; auto len = decode_codepoint(s, n, cp); for (const auto &range : ranges_) { if (range.first <= cp && cp <= range.second) { if (negated_) { c.set_error_pos(s); return static_cast(-1); } else { return len; } } } if (negated_) { return len; } else { c.set_error_pos(s); return static_cast(-1); } } void accept(Visitor &v) override; std::vector> ranges_; bool negated_; }; class Character : public Ope, public std::enable_shared_from_this { public: Character(char ch) : ch_(ch) {} size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any & /*dt*/) const override { if (n < 1 || s[0] != ch_) { c.set_error_pos(s); return static_cast(-1); } return 1; } void accept(Visitor &v) override; char ch_; }; class AnyCharacter : public Ope, public std::enable_shared_from_this { public: size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any & /*dt*/) const override { auto len = codepoint_length(s, n); if (len < 1) { c.set_error_pos(s); return static_cast(-1); } return len; } void accept(Visitor &v) override; }; class CaptureScope : public Ope { public: CaptureScope(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { c.push_capture_scope(); auto se = make_scope_exit([&]() { c.pop_capture_scope(); }); const auto &rule = *ope_; auto len = rule.parse(s, n, sv, c, dt); return len; } void accept(Visitor &v) override; std::shared_ptr ope_; }; class Capture : public Ope { public: typedef std::function MatchAction; Capture(const std::shared_ptr &ope, MatchAction ma) : ope_(ope), match_action_(ma) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { const auto &rule = *ope_; auto len = rule.parse(s, n, sv, c, dt); if (success(len) && match_action_) { match_action_(s, len, c); } return len; } void accept(Visitor &v) override; std::shared_ptr ope_; MatchAction match_action_; }; class TokenBoundary : public Ope { public: TokenBoundary(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; std::shared_ptr ope_; }; class Ignore : public Ope { public: Ignore(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any &dt) const override { const auto &rule = *ope_; auto &chldsv = c.push(); auto se = make_scope_exit([&]() { c.pop(); }); return rule.parse(s, n, chldsv, c, dt); } void accept(Visitor &v) override; std::shared_ptr ope_; }; typedef std::function Parser; class User : public Ope { public: User(Parser fn) : fn_(fn) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context & /*c*/, any &dt) const override { assert(fn_); return fn_(s, n, sv, dt); } void accept(Visitor &v) override; std::function fn_; }; class WeakHolder : public Ope { public: WeakHolder(const std::shared_ptr &ope) : weak_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { auto ope = weak_.lock(); assert(ope); const auto &rule = *ope; return rule.parse(s, n, sv, c, dt); } void accept(Visitor &v) override; std::weak_ptr weak_; }; class Holder : public Ope { public: Holder(Definition *outer) : outer_(outer) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; any reduce(SemanticValues &sv, any &dt) const; const char *trace_name() const; std::shared_ptr ope_; Definition *outer_; mutable std::string trace_name_; friend class Definition; }; typedef std::unordered_map Grammar; class Reference : public Ope, public std::enable_shared_from_this { public: Reference(const Grammar &grammar, const std::string &name, const char *s, bool is_macro, const std::vector> &args) : grammar_(grammar), name_(name), s_(s), is_macro_(is_macro), args_(args), rule_(nullptr), iarg_(0) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; std::shared_ptr get_core_operator() const; const Grammar &grammar_; const std::string name_; const char *s_; const bool is_macro_; const std::vector> args_; Definition *rule_; size_t iarg_; }; class Whitespace : public Ope { public: Whitespace(const std::shared_ptr &ope) : ope_(ope) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { if (c.in_whitespace) { return 0; } c.in_whitespace = true; auto se = make_scope_exit([&]() { c.in_whitespace = false; }); const auto &rule = *ope_; return rule.parse(s, n, sv, c, dt); } void accept(Visitor &v) override; std::shared_ptr ope_; }; class BackReference : public Ope { public: BackReference(const std::string &name) : name_(name) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override; void accept(Visitor &v) override; std::string name_; }; class PrecedenceClimbing : public Ope { public: using BinOpeInfo = std::map>; PrecedenceClimbing(const std::shared_ptr &atom, const std::shared_ptr &binop, const BinOpeInfo &info, const Definition &rule) : atom_(atom), binop_(binop), info_(info), rule_(rule) {} size_t parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const override { return parse_expression(s, n, sv, c, dt, 0); } void accept(Visitor &v) override; std::shared_ptr atom_; std::shared_ptr binop_; BinOpeInfo info_; const Definition &rule_; private: size_t parse_expression(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt, size_t min_prec) const; Definition &get_reference_for_binop(Context &c) const; }; /* * Factories */ template std::shared_ptr seq(Args &&... args) { return std::make_shared(static_cast>(args)...); } template std::shared_ptr cho(Args &&... args) { return std::make_shared( static_cast>(args)...); } inline std::shared_ptr zom(const std::shared_ptr &ope) { return Repetition::zom(ope); } inline std::shared_ptr oom(const std::shared_ptr &ope) { return Repetition::oom(ope); } inline std::shared_ptr opt(const std::shared_ptr &ope) { return Repetition::opt(ope); } inline std::shared_ptr rep(const std::shared_ptr &ope, size_t min, size_t max) { return std::make_shared(ope, min, max); } inline std::shared_ptr apd(const std::shared_ptr &ope) { return std::make_shared(ope); } inline std::shared_ptr npd(const std::shared_ptr &ope) { return std::make_shared(ope); } inline std::shared_ptr dic(const std::vector &v) { return std::make_shared(v); } inline std::shared_ptr lit(std::string &&s) { return std::make_shared(s, false); } inline std::shared_ptr liti(std::string &&s) { return std::make_shared(s, true); } inline std::shared_ptr cls(const std::string &s) { return std::make_shared(s, false); } inline std::shared_ptr cls(const std::vector> &ranges) { return std::make_shared(ranges, false); } inline std::shared_ptr ncls(const std::string &s) { return std::make_shared(s, true); } inline std::shared_ptr ncls(const std::vector> &ranges) { return std::make_shared(ranges, true); } inline std::shared_ptr chr(char dt) { return std::make_shared(dt); } inline std::shared_ptr dot() { return std::make_shared(); } inline std::shared_ptr csc(const std::shared_ptr &ope) { return std::make_shared(ope); } inline std::shared_ptr cap(const std::shared_ptr &ope, Capture::MatchAction ma) { return std::make_shared(ope, ma); } inline std::shared_ptr tok(const std::shared_ptr &ope) { return std::make_shared(ope); } inline std::shared_ptr ign(const std::shared_ptr &ope) { return std::make_shared(ope); } inline std::shared_ptr usr(std::function fn) { return std::make_shared(fn); } inline std::shared_ptr ref(const Grammar &grammar, const std::string &name, const char *s, bool is_macro, const std::vector> &args) { return std::make_shared(grammar, name, s, is_macro, args); } inline std::shared_ptr wsp(const std::shared_ptr &ope) { return std::make_shared(std::make_shared(ope)); } inline std::shared_ptr bkr(const std::string &name) { return std::make_shared(name); } inline std::shared_ptr pre(const std::shared_ptr &atom, const std::shared_ptr &binop, const PrecedenceClimbing::BinOpeInfo &info, const Definition &rule) { return std::make_shared(atom, binop, info, rule); } /* * Visitor */ struct Ope::Visitor { virtual ~Visitor() {} virtual void visit(Sequence & /*ope*/) {} virtual void visit(PrioritizedChoice & /*ope*/) {} virtual void visit(Repetition & /*ope*/) {} virtual void visit(AndPredicate & /*ope*/) {} virtual void visit(NotPredicate & /*ope*/) {} virtual void visit(Dictionary & /*ope*/) {} virtual void visit(LiteralString & /*ope*/) {} virtual void visit(CharacterClass & /*ope*/) {} virtual void visit(Character & /*ope*/) {} virtual void visit(AnyCharacter & /*ope*/) {} virtual void visit(CaptureScope & /*ope*/) {} virtual void visit(Capture & /*ope*/) {} virtual void visit(TokenBoundary & /*ope*/) {} virtual void visit(Ignore & /*ope*/) {} virtual void visit(User & /*ope*/) {} virtual void visit(WeakHolder & /*ope*/) {} virtual void visit(Holder & /*ope*/) {} virtual void visit(Reference & /*ope*/) {} virtual void visit(Whitespace & /*ope*/) {} virtual void visit(BackReference & /*ope*/) {} virtual void visit(PrecedenceClimbing & /*ope*/) {} }; struct IsReference : public Ope::Visitor { void visit(Reference & /*ope*/) override { is_reference = true; } bool is_reference = false; }; struct TraceOpeName : public Ope::Visitor { void visit(Sequence & /*ope*/) override { name = "Sequence"; } void visit(PrioritizedChoice & /*ope*/) override { name = "PrioritizedChoice"; } void visit(Repetition & /*ope*/) override { name = "Repetition"; } void visit(AndPredicate & /*ope*/) override { name = "AndPredicate"; } void visit(NotPredicate & /*ope*/) override { name = "NotPredicate"; } void visit(Dictionary & /*ope*/) override { name = "Dictionary"; } void visit(LiteralString & /*ope*/) override { name = "LiteralString"; } void visit(CharacterClass & /*ope*/) override { name = "CharacterClass"; } void visit(Character & /*ope*/) override { name = "Character"; } void visit(AnyCharacter & /*ope*/) override { name = "AnyCharacter"; } void visit(CaptureScope & /*ope*/) override { name = "CaptureScope"; } void visit(Capture & /*ope*/) override { name = "Capture"; } void visit(TokenBoundary & /*ope*/) override { name = "TokenBoundary"; } void visit(Ignore & /*ope*/) override { name = "Ignore"; } void visit(User & /*ope*/) override { name = "User"; } void visit(WeakHolder & /*ope*/) override { name = "WeakHolder"; } void visit(Holder &ope) override { name = ope.trace_name(); } void visit(Reference & /*ope*/) override { name = "Reference"; } void visit(Whitespace & /*ope*/) override { name = "Whitespace"; } void visit(BackReference & /*ope*/) override { name = "BackReference"; } void visit(PrecedenceClimbing & /*ope*/) override { name = "PrecedenceClimbing"; } const char *name = nullptr; }; struct AssignIDToDefinition : public Ope::Visitor { void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(Repetition &ope) override { ope.ope_->accept(*this); } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override; void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } std::unordered_map ids; }; struct IsLiteralToken : public Ope::Visitor { void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { if (!IsLiteralToken::check(*op)) { return; } } result_ = true; } void visit(Dictionary & /*ope*/) override { result_ = true; } void visit(LiteralString & /*ope*/) override { result_ = true; } static bool check(Ope &ope) { IsLiteralToken vis; ope.accept(vis); return vis.result_; } private: bool result_ = false; }; struct TokenChecker : public Ope::Visitor { void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(Repetition &ope) override { ope.ope_->accept(*this); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary & /*ope*/) override { has_token_boundary_ = true; } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } static bool is_token(Ope &ope) { if (IsLiteralToken::check(ope)) { return true; } TokenChecker vis; ope.accept(vis); return vis.has_token_boundary_ || !vis.has_rule_; } private: bool has_token_boundary_ = false; bool has_rule_ = false; }; struct DetectLeftRecursion : public Ope::Visitor { DetectLeftRecursion(const std::string &name) : name_(name) {} void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); if (done_) { break; } else if (error_s) { done_ = true; break; } } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); if (error_s) { done_ = true; break; } } } void visit(Repetition &ope) override { ope.ope_->accept(*this); done_ = ope.min_ > 0; } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); done_ = false; } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); done_ = false; } void visit(Dictionary & /*ope*/) override { done_ = true; } void visit(LiteralString &ope) override { done_ = !ope.lit_.empty(); } void visit(CharacterClass & /*ope*/) override { done_ = true; } void visit(Character & /*ope*/) override { done_ = true; } void visit(AnyCharacter & /*ope*/) override { done_ = true; } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(User & /*ope*/) override { done_ = true; } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(BackReference & /*ope*/) override { done_ = true; } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } const char *error_s = nullptr; private: std::string name_; std::set refs_; bool done_ = false; }; struct HasEmptyElement : public Ope::Visitor { HasEmptyElement(std::list> &refs) : refs_(refs) {} void visit(Sequence &ope) override { bool save_is_empty = false; const char *save_error_s = nullptr; std::string save_error_name; for (auto op : ope.opes_) { op->accept(*this); if (!is_empty) { return; } save_is_empty = is_empty; save_error_s = error_s; save_error_name = error_name; is_empty = false; error_name.clear(); } is_empty = save_is_empty; error_s = save_error_s; error_name = save_error_name; } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); if (is_empty) { return; } } } void visit(Repetition &ope) override { if (ope.min_ == 0) { set_error(); } else { ope.ope_->accept(*this); } } void visit(AndPredicate & /*ope*/) override { set_error(); } void visit(NotPredicate & /*ope*/) override { set_error(); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } bool is_empty = false; const char *error_s = nullptr; std::string error_name; private: void set_error() { is_empty = true; error_s = refs_.back().first; error_name = refs_.back().second; } std::list> &refs_; }; struct DetectInfiniteLoop : public Ope::Visitor { DetectInfiniteLoop(const char *s, const std::string &name) { refs_.emplace_back(s, name); } void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); if (has_error) { return; } } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); if (has_error) { return; } } } void visit(Repetition &ope) override { if (ope.max_ == std::numeric_limits::max()) { HasEmptyElement vis(refs_); ope.ope_->accept(vis); if (vis.is_empty) { has_error = true; error_s = vis.error_s; error_name = vis.error_name; } } else { ope.ope_->accept(*this); } } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } bool has_error = false; const char *error_s = nullptr; std::string error_name; private: std::list> refs_; }; struct ReferenceChecker : public Ope::Visitor { ReferenceChecker(const Grammar &grammar, const std::vector ¶ms) : grammar_(grammar), params_(params) {} void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(Repetition &ope) override { ope.ope_->accept(*this); } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } std::unordered_map error_s; std::unordered_map error_message; private: const Grammar &grammar_; const std::vector ¶ms_; }; struct LinkReferences : public Ope::Visitor { LinkReferences(Grammar &grammar, const std::vector ¶ms) : grammar_(grammar), params_(params) {} void visit(Sequence &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(PrioritizedChoice &ope) override { for (auto op : ope.opes_) { op->accept(*this); } } void visit(Repetition &ope) override { ope.ope_->accept(*this); } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); } void visit(Capture &ope) override { ope.ope_->accept(*this); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); } void visit(Ignore &ope) override { ope.ope_->accept(*this); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); } private: Grammar &grammar_; const std::vector ¶ms_; }; struct FindReference : public Ope::Visitor { FindReference(const std::vector> &args, const std::vector ¶ms) : args_(args), params_(params) {} void visit(Sequence &ope) override { std::vector> opes; for (auto o : ope.opes_) { o->accept(*this); opes.push_back(found_ope); } found_ope = std::make_shared(opes); } void visit(PrioritizedChoice &ope) override { std::vector> opes; for (auto o : ope.opes_) { o->accept(*this); opes.push_back(found_ope); } found_ope = std::make_shared(opes); } void visit(Repetition &ope) override { ope.ope_->accept(*this); found_ope = rep(found_ope, ope.min_, ope.max_); } void visit(AndPredicate &ope) override { ope.ope_->accept(*this); found_ope = apd(found_ope); } void visit(NotPredicate &ope) override { ope.ope_->accept(*this); found_ope = npd(found_ope); } void visit(Dictionary &ope) override { found_ope = ope.shared_from_this(); } void visit(LiteralString &ope) override { found_ope = ope.shared_from_this(); } void visit(CharacterClass &ope) override { found_ope = ope.shared_from_this(); } void visit(Character &ope) override { found_ope = ope.shared_from_this(); } void visit(AnyCharacter &ope) override { found_ope = ope.shared_from_this(); } void visit(CaptureScope &ope) override { ope.ope_->accept(*this); found_ope = csc(found_ope); } void visit(Capture &ope) override { ope.ope_->accept(*this); found_ope = cap(found_ope, ope.match_action_); } void visit(TokenBoundary &ope) override { ope.ope_->accept(*this); found_ope = tok(found_ope); } void visit(Ignore &ope) override { ope.ope_->accept(*this); found_ope = ign(found_ope); } void visit(WeakHolder &ope) override { ope.weak_.lock()->accept(*this); } void visit(Holder &ope) override { ope.ope_->accept(*this); } void visit(Reference &ope) override; void visit(Whitespace &ope) override { ope.ope_->accept(*this); found_ope = wsp(found_ope); } void visit(PrecedenceClimbing &ope) override { ope.atom_->accept(*this); found_ope = csc(found_ope); } std::shared_ptr found_ope; private: const std::vector> &args_; const std::vector ¶ms_; }; struct IsPrioritizedChoice : public Ope::Visitor { void visit(PrioritizedChoice & /*ope*/) override { result_ = true; } static bool check(Ope &ope) { IsPrioritizedChoice vis; ope.accept(vis); return vis.result_; } private: bool result_ = false; }; /* * Keywords */ static const char *WHITESPACE_DEFINITION_NAME = "%whitespace"; static const char *WORD_DEFINITION_NAME = "%word"; /* * Definition */ class Definition { public: struct Result { bool ret; size_t len; const char *error_pos; const char *message_pos; const std::string message; }; Definition() : holder_(std::make_shared(this)) {} Definition(const Definition &rhs) : name(rhs.name), holder_(rhs.holder_) { holder_->outer_ = this; } Definition(const std::shared_ptr &ope) : holder_(std::make_shared(this)) { *this <= ope; } operator std::shared_ptr() { return std::make_shared(holder_); } Definition &operator<=(const std::shared_ptr &ope) { holder_->ope_ = ope; return *this; } Result parse(const char *s, size_t n, const char *path = nullptr) const { SemanticValues sv; any dt; return parse_core(s, n, sv, dt, path); } Result parse(const char *s, const char *path = nullptr) const { auto n = strlen(s); return parse(s, n, path); } Result parse(const char *s, size_t n, any &dt, const char *path = nullptr) const { SemanticValues sv; return parse_core(s, n, sv, dt, path); } Result parse(const char *s, any &dt, const char *path = nullptr) const { auto n = strlen(s); return parse(s, n, dt, path); } template Result parse_and_get_value(const char *s, size_t n, T &val, const char *path = nullptr) const { SemanticValues sv; any dt; auto r = parse_core(s, n, sv, dt, path); if (r.ret && !sv.empty() && sv.front().has_value()) { val = any_cast(sv[0]); } return r; } template Result parse_and_get_value(const char *s, T &val, const char *path = nullptr) const { auto n = strlen(s); return parse_and_get_value(s, n, val, path); } template Result parse_and_get_value(const char *s, size_t n, any &dt, T &val, const char *path = nullptr) const { SemanticValues sv; auto r = parse_core(s, n, sv, dt, path); if (r.ret && !sv.empty() && sv.front().has_value()) { val = any_cast(sv[0]); } return r; } template Result parse_and_get_value(const char *s, any &dt, T &val, const char *path = nullptr) const { auto n = strlen(s); return parse_and_get_value(s, n, dt, val, path); } Action operator=(Action a) { action = a; return a; } template Definition &operator,(T fn) { operator=(fn); return *this; } Definition &operator~() { ignoreSemanticValue = true; return *this; } void accept(Ope::Visitor &v) { holder_->accept(v); } std::shared_ptr get_core_operator() const { return holder_->ope_; } bool is_token() const { std::call_once(is_token_init_, [this]() { is_token_ = TokenChecker::is_token(*get_core_operator()); }); return is_token_; } std::string name; const char *s_ = nullptr; size_t id = 0; Action action; std::function enter; std::function leave; std::function error_message; bool ignoreSemanticValue = false; std::shared_ptr whitespaceOpe; std::shared_ptr wordOpe; bool enablePackratParsing = false; bool is_macro = false; std::vector params; TracerEnter tracer_enter; TracerLeave tracer_leave; bool disable_action = false; private: friend class Reference; friend class ParserGenerator; Definition &operator=(const Definition &rhs); Definition &operator=(Definition &&rhs); void initialize_definition_ids() const { std::call_once(definition_ids_init_, [&]() { AssignIDToDefinition vis; holder_->accept(vis); if (whitespaceOpe) { whitespaceOpe->accept(vis); } if (wordOpe) { wordOpe->accept(vis); } definition_ids_.swap(vis.ids); }); } Result parse_core(const char *s, size_t n, SemanticValues &sv, any &dt, const char *path) const { initialize_definition_ids(); std::shared_ptr ope = holder_; if (whitespaceOpe) { ope = std::make_shared(whitespaceOpe, ope); } Context cxt(path, s, n, definition_ids_.size(), whitespaceOpe, wordOpe, enablePackratParsing, tracer_enter, tracer_leave); auto len = ope->parse(s, n, sv, cxt, dt); return Result{success(len), len, cxt.error_pos, cxt.message_pos, cxt.message}; } std::shared_ptr holder_; mutable std::once_flag is_token_init_; mutable bool is_token_ = false; mutable std::once_flag assign_id_to_definition_init_; mutable std::once_flag definition_ids_init_; mutable std::unordered_map definition_ids_; }; /* * Implementations */ inline size_t parse_literal(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt, const std::string &lit, bool &init_is_word, bool &is_word, bool ignore_case) { size_t i = 0; for (; i < lit.size(); i++) { if (i >= n || (ignore_case ? (std::tolower(s[i]) != std::tolower(lit[i])) : (s[i] != lit[i]))) { c.set_error_pos(s); return static_cast(-1); } } // Word check static Context dummy_c(nullptr, c.s, c.l, 0, nullptr, nullptr, false, nullptr, nullptr); static SemanticValues dummy_sv; static any dummy_dt; if (!init_is_word) { // TODO: Protect with mutex if (c.wordOpe) { auto len = c.wordOpe->parse(lit.data(), lit.size(), dummy_sv, dummy_c, dummy_dt); is_word = success(len); } init_is_word = true; } if (is_word) { NotPredicate ope(c.wordOpe); auto len = ope.parse(s + i, n - i, dummy_sv, dummy_c, dummy_dt); if (fail(len)) { return static_cast(-1); } i += len; } // Skip whiltespace if (!c.in_token) { if (c.whitespaceOpe) { auto len = c.whitespaceOpe->parse(s + i, n - i, sv, c, dt); if (fail(len)) { return static_cast(-1); } i += len; } } return i; } inline void Context::trace_enter(const char *name, const char *a_s, size_t n, SemanticValues &sv, any &dt) const { trace_ids.push_back(next_trace_id++); tracer_enter(name, a_s, n, sv, *this, dt); } inline void Context::trace_leave(const char *name, const char *a_s, size_t n, SemanticValues &sv, any &dt, size_t len) const { tracer_leave(name, a_s, n, sv, *this, dt, len); trace_ids.pop_back(); } inline bool Context::is_traceable(const Ope &ope) const { if (tracer_enter && tracer_leave) { IsReference vis; const_cast(ope).accept(vis); return !vis.is_reference; } return false; } inline size_t Ope::parse(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { if (c.is_traceable(*this)) { TraceOpeName vis; const_cast(*this).accept(vis); c.trace_enter(vis.name, s, n, sv, dt); auto len = parse_core(s, n, sv, c, dt); c.trace_leave(vis.name, s, n, sv, dt, len); return len; } return parse_core(s, n, sv, c, dt); } inline size_t Dictionary::parse_core(const char *s, size_t n, SemanticValues & /*sv*/, Context &c, any & /*dt*/) const { auto len = trie_.match(s, n); if (len > 0) { return len; } c.set_error_pos(s); return static_cast(-1); } inline size_t LiteralString::parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { return parse_literal(s, n, sv, c, dt, lit_, init_is_word_, is_word_, ignore_case_); } inline size_t TokenBoundary::parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { c.in_token = true; auto se = make_scope_exit([&]() { c.in_token = false; }); auto len = ope_->parse(s, n, sv, c, dt); if (success(len)) { sv.tokens.emplace_back(std::make_pair(s, len)); if (c.whitespaceOpe) { auto l = c.whitespaceOpe->parse(s + len, n - len, sv, c, dt); if (fail(l)) { return static_cast(-1); } len += l; } } return len; } inline size_t Holder::parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { if (!ope_) { throw std::logic_error("Uninitialized definition ope was used..."); } // Macro reference // TODO: need packrat support if (outer_->is_macro) { return ope_->parse(s, n, sv, c, dt); } size_t len; any val; c.packrat(s, outer_->id, len, val, [&](any &a_val) { if (outer_->enter) { outer_->enter(s, n, dt); } auto se2 = make_scope_exit([&]() { c.pop(); if (outer_->leave) { outer_->leave(s, n, len, a_val, dt); } }); auto &chldsv = c.push(); len = ope_->parse(s, n, chldsv, c, dt); // Invoke action if (success(len)) { chldsv.s_ = s; chldsv.n_ = len; chldsv.name_ = outer_->name; if (!IsPrioritizedChoice::check(*ope_)) { chldsv.choice_count_ = 0; chldsv.choice_ = 0; } try { a_val = reduce(chldsv, dt); } catch (const parse_error &e) { if (e.what()) { if (c.message_pos < s) { c.message_pos = s; c.message = e.what(); } } len = static_cast(-1); } } }); if (success(len)) { if (!outer_->ignoreSemanticValue) { sv.emplace_back(std::move(val)); sv.tags.emplace_back(str2tag(outer_->name.c_str())); } } else { if (outer_->error_message) { if (c.message_pos < s) { c.message_pos = s; c.message = outer_->error_message(); } } } return len; } inline any Holder::reduce(SemanticValues &sv, any &dt) const { if (outer_->action && !outer_->disable_action) { return outer_->action(sv, dt); } else if (sv.empty()) { return any(); } else { return std::move(sv.front()); } } inline const char *Holder::trace_name() const { if (trace_name_.empty()) { trace_name_ = "[" + outer_->name + "]"; } return trace_name_.c_str(); } inline size_t Reference::parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { if (rule_) { // Reference rule if (rule_->is_macro) { // Macro FindReference vis(c.top_args(), rule_->params); // Collect arguments std::vector> args; for (auto arg : args_) { arg->accept(vis); args.emplace_back(std::move(vis.found_ope)); } c.push_args(std::move(args)); auto se = make_scope_exit([&]() { c.pop_args(); }); auto ope = get_core_operator(); return ope->parse(s, n, sv, c, dt); } else { // Definition auto ope = get_core_operator(); return ope->parse(s, n, sv, c, dt); } } else { // Reference parameter in macro const auto &args = c.top_args(); return args[iarg_]->parse(s, n, sv, c, dt); } } inline std::shared_ptr Reference::get_core_operator() const { return rule_->holder_; } inline size_t BackReference::parse_core(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt) const { auto size = static_cast(c.capture_scope_stack_size); for (auto i = size - 1; i >= 0; i--) { auto index = static_cast(i); const auto &cs = c.capture_scope_stack[index]; if (cs.find(name_) != cs.end()) { const auto &lit = cs.at(name_); auto init_is_word = false; auto is_word = false; return parse_literal(s, n, sv, c, dt, lit, init_is_word, is_word, false); } } throw std::runtime_error("Invalid back reference..."); } inline Definition & PrecedenceClimbing::get_reference_for_binop(Context &c) const { if (rule_.is_macro) { // Reference parameter in macro const auto &args = c.top_args(); auto iarg = dynamic_cast(*binop_).iarg_; auto arg = args[iarg]; return *dynamic_cast(*arg).rule_; } return *dynamic_cast(*binop_).rule_; } inline size_t PrecedenceClimbing::parse_expression(const char *s, size_t n, SemanticValues &sv, Context &c, any &dt, size_t min_prec) const { auto len = atom_->parse(s, n, sv, c, dt); if (fail(len)) { return len; } std::string tok; auto &rule = get_reference_for_binop(c); auto action = rule.action; rule.action = [&](SemanticValues &sv2, any &dt2) -> any { tok = sv2.token(); if (action) { return action(sv2, dt2); } else if (!sv2.empty()) { return sv2[0]; } return any(); }; auto action_se = make_scope_exit([&]() { rule.action = action; }); auto save_error_pos = c.error_pos; auto i = len; while (i < n) { std::vector save_values(sv.begin(), sv.end()); auto save_tokens = sv.tokens; auto chv = c.push(); auto chl = binop_->parse(s + i, n - i, chv, c, dt); c.pop(); if (fail(chl)) { c.error_pos = save_error_pos; break; } auto it = info_.find(tok); if (it == info_.end()) { break; } auto level = std::get<0>(it->second); auto assoc = std::get<1>(it->second); if (level < min_prec) { break; } sv.emplace_back(std::move(chv[0])); i += chl; auto next_min_prec = level; if (assoc == 'L') { next_min_prec = level + 1; } chv = c.push(); chl = parse_expression(s + i, n - i, chv, c, dt, next_min_prec); c.pop(); if (fail(chl)) { sv.assign(save_values.begin(), save_values.end()); sv.tokens = save_tokens; c.error_pos = save_error_pos; break; } sv.emplace_back(std::move(chv[0])); i += chl; any val; if (rule_.action) { sv.s_ = s; sv.n_ = i; val = rule_.action(sv, dt); } else if (!sv.empty()) { val = sv[0]; } sv.clear(); sv.emplace_back(std::move(val)); } return i; } inline void Sequence::accept(Visitor &v) { v.visit(*this); } inline void PrioritizedChoice::accept(Visitor &v) { v.visit(*this); } inline void Repetition::accept(Visitor &v) { v.visit(*this); } inline void AndPredicate::accept(Visitor &v) { v.visit(*this); } inline void NotPredicate::accept(Visitor &v) { v.visit(*this); } inline void Dictionary::accept(Visitor &v) { v.visit(*this); } inline void LiteralString::accept(Visitor &v) { v.visit(*this); } inline void CharacterClass::accept(Visitor &v) { v.visit(*this); } inline void Character::accept(Visitor &v) { v.visit(*this); } inline void AnyCharacter::accept(Visitor &v) { v.visit(*this); } inline void CaptureScope::accept(Visitor &v) { v.visit(*this); } inline void Capture::accept(Visitor &v) { v.visit(*this); } inline void TokenBoundary::accept(Visitor &v) { v.visit(*this); } inline void Ignore::accept(Visitor &v) { v.visit(*this); } inline void User::accept(Visitor &v) { v.visit(*this); } inline void WeakHolder::accept(Visitor &v) { v.visit(*this); } inline void Holder::accept(Visitor &v) { v.visit(*this); } inline void Reference::accept(Visitor &v) { v.visit(*this); } inline void Whitespace::accept(Visitor &v) { v.visit(*this); } inline void BackReference::accept(Visitor &v) { v.visit(*this); } inline void PrecedenceClimbing::accept(Visitor &v) { v.visit(*this); } inline void AssignIDToDefinition::visit(Holder &ope) { auto p = static_cast(ope.outer_); if (ids.count(p)) { return; } auto id = ids.size(); ids[p] = id; ope.outer_->id = id; ope.ope_->accept(*this); } inline void AssignIDToDefinition::visit(Reference &ope) { if (ope.rule_) { for (auto arg : ope.args_) { arg->accept(*this); } ope.rule_->accept(*this); } } inline void TokenChecker::visit(Reference &ope) { if (ope.is_macro_) { ope.rule_->accept(*this); for (auto arg : ope.args_) { arg->accept(*this); } } else { has_rule_ = true; } } inline void DetectLeftRecursion::visit(Reference &ope) { if (ope.name_ == name_) { error_s = ope.s_; } else if (!refs_.count(ope.name_)) { refs_.insert(ope.name_); if (ope.rule_) { ope.rule_->accept(*this); if (done_ == false) { return; } } } done_ = true; } inline void HasEmptyElement::visit(Reference &ope) { auto it = std::find_if(refs_.begin(), refs_.end(), [&](const std::pair &ref) { return ope.name_ == ref.second; }); if (it != refs_.end()) { return; } if (ope.rule_) { refs_.emplace_back(ope.s_, ope.name_); ope.rule_->accept(*this); refs_.pop_back(); } } inline void DetectInfiniteLoop::visit(Reference &ope) { auto it = std::find_if(refs_.begin(), refs_.end(), [&](const std::pair &ref) { return ope.name_ == ref.second; }); if (it != refs_.end()) { return; } if (ope.rule_) { refs_.emplace_back(ope.s_, ope.name_); ope.rule_->accept(*this); refs_.pop_back(); } } inline void ReferenceChecker::visit(Reference &ope) { auto it = std::find(params_.begin(), params_.end(), ope.name_); if (it != params_.end()) { return; } if (!grammar_.count(ope.name_)) { error_s[ope.name_] = ope.s_; error_message[ope.name_] = "'" + ope.name_ + "' is not defined."; } else { const auto &rule = grammar_.at(ope.name_); if (rule.is_macro) { if (!ope.is_macro_ || ope.args_.size() != rule.params.size()) { error_s[ope.name_] = ope.s_; error_message[ope.name_] = "incorrect number of arguments."; } } else if (ope.is_macro_) { error_s[ope.name_] = ope.s_; error_message[ope.name_] = "'" + ope.name_ + "' is not macro."; } } } inline void LinkReferences::visit(Reference &ope) { // Check if the reference is a macro parameter auto found_param = false; for (size_t i = 0; i < params_.size(); i++) { const auto ¶m = params_[i]; if (param == ope.name_) { ope.iarg_ = i; found_param = true; break; } } // Check if the reference is a definition rule if (!found_param && grammar_.count(ope.name_)) { auto &rule = grammar_.at(ope.name_); ope.rule_ = &rule; } for (auto arg : ope.args_) { arg->accept(*this); } } inline void FindReference::visit(Reference &ope) { for (size_t i = 0; i < args_.size(); i++) { const auto &name = params_[i]; if (name == ope.name_) { found_ope = args_[i]; return; } } found_ope = ope.shared_from_this(); } /*----------------------------------------------------------------------------- * PEG parser generator *---------------------------------------------------------------------------*/ typedef std::unordered_map> Rules; typedef std::function Log; class ParserGenerator { public: static std::shared_ptr parse(const char *s, size_t n, const Rules &rules, std::string &start, Log log) { return get_instance().perform_core(s, n, rules, start, log); } static std::shared_ptr parse(const char *s, size_t n, std::string &start, Log log) { Rules dummy; return parse(s, n, dummy, start, log); } // For debuging purpose static Grammar &grammar() { return get_instance().g; } private: static ParserGenerator &get_instance() { static ParserGenerator instance; return instance; } ParserGenerator() { make_grammar(); setup_actions(); } struct Instruction { std::string type; any data; }; struct Data { std::shared_ptr grammar; std::string start; const char *start_pos = nullptr; std::vector> duplicates; std::map instructions; Data() : grammar(std::make_shared()) {} }; void make_grammar() { // Setup PEG syntax parser g["Grammar"] <= seq(g["Spacing"], oom(g["Definition"]), g["EndOfFile"]); g["Definition"] <= cho(seq(g["Ignore"], g["IdentCont"], g["Parameters"], g["LEFTARROW"], g["Expression"], opt(g["Instruction"])), seq(g["Ignore"], g["Identifier"], g["LEFTARROW"], g["Expression"], opt(g["Instruction"]))); g["Expression"] <= seq(g["Sequence"], zom(seq(g["SLASH"], g["Sequence"]))); g["Sequence"] <= zom(g["Prefix"]); g["Prefix"] <= seq(opt(cho(g["AND"], g["NOT"])), g["Suffix"]); g["Suffix"] <= seq(g["Primary"], opt(g["Loop"])); g["Loop"] <= cho(g["QUESTION"], g["STAR"], g["PLUS"], g["Repetition"]); g["Primary"] <= cho(seq(g["Ignore"], g["IdentCont"], g["Arguments"], npd(g["LEFTARROW"])), seq(g["Ignore"], g["Identifier"], npd(seq(opt(g["Parameters"]), g["LEFTARROW"]))), seq(g["OPEN"], g["Expression"], g["CLOSE"]), seq(g["BeginTok"], g["Expression"], g["EndTok"]), seq(g["BeginCapScope"], g["Expression"], g["EndCapScope"]), seq(g["BeginCap"], g["Expression"], g["EndCap"]), g["BackRef"], g["LiteralI"], g["Dictionary"], g["Literal"], g["NegatedClass"], g["Class"], g["DOT"]); g["Identifier"] <= seq(g["IdentCont"], g["Spacing"]); g["IdentCont"] <= seq(g["IdentStart"], zom(g["IdentRest"])); const static std::vector> range = { {0x0080, 0xFFFF}}; g["IdentStart"] <= cho(cls("a-zA-Z_%"), cls(range)); g["IdentRest"] <= cho(g["IdentStart"], cls("0-9")); g["Dictionary"] <= seq(g["LiteralD"], oom(seq(g["PIPE"], g["LiteralD"]))); auto lit_ope = cho(seq(cls("'"), tok(zom(seq(npd(cls("'")), g["Char"]))), cls("'"), g["Spacing"]), seq(cls("\""), tok(zom(seq(npd(cls("\"")), g["Char"]))), cls("\""), g["Spacing"])); g["Literal"] <= lit_ope; g["LiteralD"] <= lit_ope; g["LiteralI"] <= cho(seq(cls("'"), tok(zom(seq(npd(cls("'")), g["Char"]))), lit("'i"), g["Spacing"]), seq(cls("\""), tok(zom(seq(npd(cls("\"")), g["Char"]))), lit("\"i"), g["Spacing"])); // NOTE: The original Brian Ford's paper uses 'zom' instead of 'oom'. g["Class"] <= seq(chr('['), npd(chr('^')), tok(oom(seq(npd(chr(']')), g["Range"]))), chr(']'), g["Spacing"]); g["NegatedClass"] <= seq(lit("[^"), tok(oom(seq(npd(chr(']')), g["Range"]))), chr(']'), g["Spacing"]); g["Range"] <= cho(seq(g["Char"], chr('-'), g["Char"]), g["Char"]); g["Char"] <= cho(seq(chr('\\'), cls("nrt'\"[]\\^")), seq(chr('\\'), cls("0-3"), cls("0-7"), cls("0-7")), seq(chr('\\'), cls("0-7"), opt(cls("0-7"))), seq(lit("\\x"), cls("0-9a-fA-F"), opt(cls("0-9a-fA-F"))), seq(lit("\\u"), cls("0-9a-fA-F"), cls("0-9a-fA-F"), cls("0-9a-fA-F"), cls("0-9a-fA-F")), seq(npd(chr('\\')), dot())); g["Repetition"] <= seq(g["BeginBlacket"], g["RepetitionRange"], g["EndBlacket"]); g["RepetitionRange"] <= cho(seq(g["Number"], g["COMMA"], g["Number"]), seq(g["Number"], g["COMMA"]), g["Number"], seq(g["COMMA"], g["Number"])); g["Number"] <= seq(oom(cls("0-9")), g["Spacing"]); g["LEFTARROW"] <= seq(cho(lit("<-"), lit(reinterpret_cast(u8"←"))), g["Spacing"]); ~g["SLASH"] <= seq(chr('/'), g["Spacing"]); ~g["PIPE"] <= seq(chr('|'), g["Spacing"]); g["AND"] <= seq(chr('&'), g["Spacing"]); g["NOT"] <= seq(chr('!'), g["Spacing"]); g["QUESTION"] <= seq(chr('?'), g["Spacing"]); g["STAR"] <= seq(chr('*'), g["Spacing"]); g["PLUS"] <= seq(chr('+'), g["Spacing"]); ~g["OPEN"] <= seq(chr('('), g["Spacing"]); ~g["CLOSE"] <= seq(chr(')'), g["Spacing"]); g["DOT"] <= seq(chr('.'), g["Spacing"]); ~g["Spacing"] <= zom(cho(g["Space"], g["Comment"])); g["Comment"] <= seq(chr('#'), zom(seq(npd(g["EndOfLine"]), dot())), g["EndOfLine"]); g["Space"] <= cho(chr(' '), chr('\t'), g["EndOfLine"]); g["EndOfLine"] <= cho(lit("\r\n"), chr('\n'), chr('\r')); g["EndOfFile"] <= npd(dot()); ~g["BeginTok"] <= seq(chr('<'), g["Spacing"]); ~g["EndTok"] <= seq(chr('>'), g["Spacing"]); ~g["BeginCapScope"] <= seq(chr('$'), chr('('), g["Spacing"]); ~g["EndCapScope"] <= seq(chr(')'), g["Spacing"]); g["BeginCap"] <= seq(chr('$'), tok(g["IdentCont"]), chr('<'), g["Spacing"]); ~g["EndCap"] <= seq(chr('>'), g["Spacing"]); g["BackRef"] <= seq(chr('$'), tok(g["IdentCont"]), g["Spacing"]); g["IGNORE"] <= chr('~'); g["Ignore"] <= opt(g["IGNORE"]); g["Parameters"] <= seq(g["OPEN"], g["Identifier"], zom(seq(g["COMMA"], g["Identifier"])), g["CLOSE"]); g["Arguments"] <= seq(g["OPEN"], g["Expression"], zom(seq(g["COMMA"], g["Expression"])), g["CLOSE"]); ~g["COMMA"] <= seq(chr(','), g["Spacing"]); // Instruction grammars g["Instruction"] <= seq(g["BeginBlacket"], cho(g["PrecedenceClimbing"]), g["EndBlacket"]); ~g["SpacesZom"] <= zom(g["Space"]); ~g["SpacesOom"] <= oom(g["Space"]); ~g["BeginBlacket"] <= seq(chr('{'), g["Spacing"]); ~g["EndBlacket"] <= seq(chr('}'), g["Spacing"]); // PrecedenceClimbing instruction g["PrecedenceClimbing"] <= seq(lit("precedence"), g["SpacesZom"], g["PrecedenceInfo"], zom(seq(g["SpacesOom"], g["PrecedenceInfo"])), g["SpacesZom"]); g["PrecedenceInfo"] <= seq(g["PrecedenceAssoc"], oom(seq(ign(g["SpacesOom"]), g["PrecedenceOpe"]))); g["PrecedenceOpe"] <= tok(oom( seq(npd(cho(g["PrecedenceAssoc"], g["Space"], chr('}'))), dot()))); g["PrecedenceAssoc"] <= cls("LR"); // Set definition names for (auto &x : g) { x.second.name = x.first; } } void setup_actions() { g["Definition"] = [&](const SemanticValues &sv, any &dt) { Data &data = *any_cast(dt); auto is_macro = sv.choice() == 0; auto ignore = any_cast(sv[0]); auto name = any_cast(sv[1]); std::vector params; std::shared_ptr ope; if (is_macro) { params = any_cast>(sv[2]); ope = any_cast>(sv[4]); if (sv.size() == 6) { data.instructions[name] = any_cast(sv[5]); } } else { ope = any_cast>(sv[3]); if (sv.size() == 5) { data.instructions[name] = any_cast(sv[4]); } } auto &grammar = *data.grammar; if (!grammar.count(name)) { auto &rule = grammar[name]; rule <= ope; rule.name = name; rule.s_ = sv.c_str(); rule.ignoreSemanticValue = ignore; rule.is_macro = is_macro; rule.params = params; if (data.start.empty()) { data.start = name; data.start_pos = sv.c_str(); } } else { data.duplicates.emplace_back(name, sv.c_str()); } }; g["Expression"] = [&](const SemanticValues &sv) { if (sv.size() == 1) { return any_cast>(sv[0]); } else { std::vector> opes; for (auto i = 0u; i < sv.size(); i++) { opes.emplace_back(any_cast>(sv[i])); } const std::shared_ptr ope = std::make_shared(opes); return ope; } }; g["Sequence"] = [&](const SemanticValues &sv) { if (sv.size() == 1) { return any_cast>(sv[0]); } else { std::vector> opes; for (const auto &x : sv) { opes.emplace_back(any_cast>(x)); } const std::shared_ptr ope = std::make_shared(opes); return ope; } }; g["Prefix"] = [&](const SemanticValues &sv) { std::shared_ptr ope; if (sv.size() == 1) { ope = any_cast>(sv[0]); } else { assert(sv.size() == 2); auto tok = any_cast(sv[0]); ope = any_cast>(sv[1]); if (tok == '&') { ope = apd(ope); } else { // '!' ope = npd(ope); } } return ope; }; struct Loop { enum class Type { opt = 0, zom, oom, rep }; Type type; std::pair range; }; g["Suffix"] = [&](const SemanticValues &sv) { auto ope = any_cast>(sv[0]); if (sv.size() == 1) { return ope; } else { assert(sv.size() == 2); auto loop = any_cast(sv[1]); switch (loop.type) { case Loop::Type::opt: return opt(ope); case Loop::Type::zom: return zom(ope); case Loop::Type::oom: return oom(ope); default: // Regex-like repetition return rep(ope, loop.range.first, loop.range.second); } } }; g["Loop"] = [&](const SemanticValues &sv) { switch (sv.choice()) { case 0: // Option return Loop{Loop::Type::opt, std::pair()}; case 1: // Zero or More return Loop{Loop::Type::zom, std::pair()}; case 2: // One or More return Loop{Loop::Type::oom, std::pair()}; default: // Regex-like repetition return Loop{Loop::Type::rep, any_cast>(sv[0])}; } }; g["RepetitionRange"] = [&](const SemanticValues &sv) { switch (sv.choice()) { case 0: { // Number COMMA Number auto min = any_cast(sv[0]); auto max = any_cast(sv[1]); return std::make_pair(min, max); } case 1: // Number COMMA return std::make_pair(any_cast(sv[0]), std::numeric_limits::max()); case 2: { // Number auto n = any_cast(sv[0]); return std::make_pair(n, n); } default: // COMMA Number return std::make_pair(std::numeric_limits::min(), any_cast(sv[0])); } }; g["Number"] = [&](const SemanticValues &sv) { std::stringstream ss(sv.str()); size_t n; ss >> n; return n; }; g["Primary"] = [&](const SemanticValues &sv, any &dt) { Data &data = *any_cast(dt); switch (sv.choice()) { case 0: // Macro Reference case 1: { // Reference auto is_macro = sv.choice() == 0; auto ignore = any_cast(sv[0]); const auto &ident = any_cast(sv[1]); std::vector> args; if (is_macro) { args = any_cast>>(sv[2]); } std::shared_ptr ope = ref(*data.grammar, ident, sv.c_str(), is_macro, args); if (ignore) { return ign(ope); } else { return ope; } } case 2: { // (Expression) return any_cast>(sv[0]); } case 3: { // TokenBoundary return tok(any_cast>(sv[0])); } case 4: { // CaptureScope return csc(any_cast>(sv[0])); } case 5: { // Capture const auto &name = any_cast(sv[0]); auto ope = any_cast>(sv[1]); return cap(ope, [name](const char *a_s, size_t a_n, Context &c) { auto &cs = c.capture_scope_stack[c.capture_scope_stack_size - 1]; cs[name] = std::string(a_s, a_n); }); } default: { return any_cast>(sv[0]); } } }; g["IdentCont"] = [](const SemanticValues &sv) { return std::string(sv.c_str(), sv.length()); }; g["Dictionary"] = [](const SemanticValues &sv) { auto items = sv.transform(); return dic(items); }; g["Literal"] = [](const SemanticValues &sv) { const auto &tok = sv.tokens.front(); return lit(resolve_escape_sequence(tok.first, tok.second)); }; g["LiteralI"] = [](const SemanticValues &sv) { const auto &tok = sv.tokens.front(); return liti(resolve_escape_sequence(tok.first, tok.second)); }; g["LiteralD"] = [](const SemanticValues &sv) { auto &tok = sv.tokens.front(); return resolve_escape_sequence(tok.first, tok.second); }; g["Class"] = [](const SemanticValues &sv) { auto ranges = sv.transform>(); return cls(ranges); }; g["NegatedClass"] = [](const SemanticValues &sv) { auto ranges = sv.transform>(); return ncls(ranges); }; g["Range"] = [](const SemanticValues &sv) { switch (sv.choice()) { case 0: { auto s1 = any_cast(sv[0]); auto s2 = any_cast(sv[1]); auto cp1 = decode_codepoint(s1.c_str(), s1.length()); auto cp2 = decode_codepoint(s2.c_str(), s2.length()); return std::make_pair(cp1, cp2); } case 1: { auto s = any_cast(sv[0]); auto cp = decode_codepoint(s.c_str(), s.length()); return std::make_pair(cp, cp); } } return std::make_pair(0, 0); }; g["Char"] = [](const SemanticValues &sv) { return resolve_escape_sequence(sv.c_str(), sv.length()); }; g["AND"] = [](const SemanticValues &sv) { return *sv.c_str(); }; g["NOT"] = [](const SemanticValues &sv) { return *sv.c_str(); }; g["QUESTION"] = [](const SemanticValues &sv) { return *sv.c_str(); }; g["STAR"] = [](const SemanticValues &sv) { return *sv.c_str(); }; g["PLUS"] = [](const SemanticValues &sv) { return *sv.c_str(); }; g["DOT"] = [](const SemanticValues & /*sv*/) { return dot(); }; g["BeginCap"] = [](const SemanticValues &sv) { return sv.token(); }; g["BackRef"] = [&](const SemanticValues &sv) { return bkr(sv.token()); }; g["Ignore"] = [](const SemanticValues &sv) { return sv.size() > 0; }; g["Parameters"] = [](const SemanticValues &sv) { return sv.transform(); }; g["Arguments"] = [](const SemanticValues &sv) { return sv.transform>(); }; g["PrecedenceClimbing"] = [](const SemanticValues &sv) { PrecedenceClimbing::BinOpeInfo binOpeInfo; size_t level = 1; for (auto v : sv) { auto tokens = any_cast>(v); auto assoc = tokens[0][0]; for (size_t i = 1; i < tokens.size(); i++) { const auto &tok = tokens[i]; binOpeInfo[tok] = std::make_pair(level, assoc); } level++; } Instruction instruction; instruction.type = "precedence"; instruction.data = binOpeInfo; return instruction; }; g["PrecedenceInfo"] = [](const SemanticValues &sv) { return sv.transform(); }; g["PrecedenceOpe"] = [](const SemanticValues &sv) { return sv.token(); }; g["PrecedenceAssoc"] = [](const SemanticValues &sv) { return sv.token(); }; } bool apply_precedence_instruction(Definition &rule, const PrecedenceClimbing::BinOpeInfo &info, const char *s, Log log) { try { auto &seq = dynamic_cast(*rule.get_core_operator()); auto atom = seq.opes_[0]; auto &rep = dynamic_cast(*seq.opes_[1]); auto &seq1 = dynamic_cast(*rep.ope_); auto binop = seq1.opes_[0]; auto atom1 = seq1.opes_[1]; auto atom_name = dynamic_cast(*atom).name_; auto binop_name = dynamic_cast(*binop).name_; auto atom1_name = dynamic_cast(*atom1).name_; if (!rep.is_zom() || atom_name != atom1_name || atom_name == binop_name) { if (log) { auto line = line_info(s, rule.s_); log(line.first, line.second, "'precedence' instruction cannt be applied to '" + rule.name + "'."); } return false; } rule.holder_->ope_ = pre(atom, binop, info, rule); rule.disable_action = true; } catch (...) { if (log) { auto line = line_info(s, rule.s_); log(line.first, line.second, "'precedence' instruction cannt be applied to '" + rule.name + "'."); } return false; } return true; } std::shared_ptr perform_core(const char *s, size_t n, const Rules &rules, std::string &start, Log log) { Data data; any dt = &data; auto r = g["Grammar"].parse(s, n, dt); if (!r.ret) { if (log) { if (r.message_pos) { auto line = line_info(s, r.message_pos); log(line.first, line.second, r.message); } else { auto line = line_info(s, r.error_pos); log(line.first, line.second, "syntax error"); } } return nullptr; } auto &grammar = *data.grammar; // User provided rules for (const auto &x : rules) { auto name = x.first; bool ignore = false; if (!name.empty() && name[0] == '~') { ignore = true; name.erase(0, 1); } if (!name.empty()) { auto &rule = grammar[name]; rule <= x.second; rule.name = name; rule.ignoreSemanticValue = ignore; } } // Check duplicated definitions bool ret = data.duplicates.empty(); for (const auto &x : data.duplicates) { if (log) { const auto &name = x.first; auto ptr = x.second; auto line = line_info(s, ptr); log(line.first, line.second, "'" + name + "' is already defined."); } } // Check missing definitions for (auto &x : grammar) { auto &rule = x.second; ReferenceChecker vis(*data.grammar, rule.params); rule.accept(vis); for (const auto &y : vis.error_s) { const auto &name = y.first; const auto ptr = y.second; if (log) { auto line = line_info(s, ptr); log(line.first, line.second, vis.error_message[name]); } ret = false; } } if (!ret) { return nullptr; } // Link references for (auto &x : grammar) { auto &rule = x.second; LinkReferences vis(*data.grammar, rule.params); rule.accept(vis); } // Check left recursion ret = true; for (auto &x : grammar) { const auto &name = x.first; auto &rule = x.second; DetectLeftRecursion vis(name); rule.accept(vis); if (vis.error_s) { if (log) { auto line = line_info(s, vis.error_s); log(line.first, line.second, "'" + name + "' is left recursive."); } ret = false; } } if (!ret) { return nullptr; } // Set root definition auto &start_rule = (*data.grammar)[data.start]; // Check infinite loop { DetectInfiniteLoop vis(data.start_pos, data.start); start_rule.accept(vis); if (vis.has_error) { if (log) { auto line = line_info(s, vis.error_s); log(line.first, line.second, "infinite loop is detected in '" + vis.error_name + "'."); } return nullptr; } } // Automatic whitespace skipping if (grammar.count(WHITESPACE_DEFINITION_NAME)) { for (auto &x : grammar) { auto &rule = x.second; auto ope = rule.get_core_operator(); if (IsLiteralToken::check(*ope)) { rule <= tok(ope); } } start_rule.whitespaceOpe = wsp((*data.grammar)[WHITESPACE_DEFINITION_NAME].get_core_operator()); } // Word expression if (grammar.count(WORD_DEFINITION_NAME)) { start_rule.wordOpe = (*data.grammar)[WORD_DEFINITION_NAME].get_core_operator(); } // Apply instructions for (const auto &item : data.instructions) { const auto &name = item.first; const auto &instruction = item.second; auto &rule = grammar[name]; if (instruction.type == "precedence") { const auto &info = any_cast(instruction.data); if (!apply_precedence_instruction(rule, info, s, log)) { return nullptr; } } } // Set root definition start = data.start; return data.grammar; } Grammar g; }; /*----------------------------------------------------------------------------- * AST *---------------------------------------------------------------------------*/ template struct AstBase : public Annotation { AstBase(const char *a_path, size_t a_line, size_t a_column, const char *a_name, const std::vector> &a_nodes, size_t a_position = 0, size_t a_length = 0, size_t a_choice_count = 0, size_t a_choice = 0) : path(a_path ? a_path : ""), line(a_line), column(a_column), name(a_name), position(a_position), length(a_length), choice_count(a_choice_count), choice(a_choice), original_name(a_name), original_choice_count(a_choice_count), original_choice(a_choice), tag(str2tag(a_name)), original_tag(tag), is_token(false), nodes(a_nodes) {} AstBase(const char *a_path, size_t a_line, size_t a_column, const char *a_name, const std::string &a_token, size_t a_position = 0, size_t a_length = 0, size_t a_choice_count = 0, size_t a_choice = 0) : path(a_path ? a_path : ""), line(a_line), column(a_column), name(a_name), position(a_position), length(a_length), choice_count(a_choice_count), choice(a_choice), original_name(a_name), original_choice_count(a_choice_count), original_choice(a_choice), tag(str2tag(a_name)), original_tag(tag), is_token(true), token(a_token) {} AstBase(const AstBase &ast, const char *a_original_name, size_t a_position = 0, size_t a_length = 0, size_t a_original_choice_count = 0, size_t a_original_choise = 0) : path(ast.path), line(ast.line), column(ast.column), name(ast.name), position(a_position), length(a_length), choice_count(ast.choice_count), choice(ast.choice), original_name(a_original_name), original_choice_count(a_original_choice_count), original_choice(a_original_choise), tag(ast.tag), original_tag(str2tag(a_original_name)), is_token(ast.is_token), token(ast.token), nodes(ast.nodes), parent(ast.parent) {} const std::string path; const size_t line = 1; const size_t column = 1; const std::string name; size_t position; size_t length; const size_t choice_count; const size_t choice; const std::string original_name; const size_t original_choice_count; const size_t original_choice; const unsigned int tag; const unsigned int original_tag; const bool is_token; const std::string token; std::vector>> nodes; std::weak_ptr> parent; }; template void ast_to_s_core(const std::shared_ptr &ptr, std::string &s, int level, std::function fn) { const auto &ast = *ptr; for (auto i = 0; i < level; i++) { s += " "; } auto name = ast.original_name; if (ast.original_choice_count > 0) { name += "/" + std::to_string(ast.original_choice); } if (ast.name != ast.original_name) { name += "[" + ast.name + "]"; } if (ast.is_token) { s += "- " + name + " (" + ast.token + ")\n"; } else { s += "+ " + name + "\n"; } if (fn) { s += fn(ast, level + 1); } for (auto node : ast.nodes) { ast_to_s_core(node, s, level + 1, fn); } } template std::string ast_to_s(const std::shared_ptr &ptr, std::function fn = nullptr) { std::string s; ast_to_s_core(ptr, s, 0, fn); return s; } struct AstOptimizer { AstOptimizer(bool mode, const std::vector &rules = {}) : mode_(mode), rules_(rules) {} template std::shared_ptr optimize(std::shared_ptr original, std::shared_ptr parent = nullptr) { auto found = std::find(rules_.begin(), rules_.end(), original->name) != rules_.end(); bool opt = mode_ ? !found : found; if (opt && original->nodes.size() == 1) { auto child = optimize(original->nodes[0], parent); return std::make_shared(*child, original->name.c_str(), original->choice_count, original->position, original->length, original->choice); } auto ast = std::make_shared(*original); ast->parent = parent; ast->nodes.clear(); for (auto node : original->nodes) { auto child = optimize(node, ast); ast->nodes.push_back(child); } return ast; } private: const bool mode_; const std::vector rules_; }; struct EmptyType {}; typedef AstBase Ast; /*----------------------------------------------------------------------------- * parser *---------------------------------------------------------------------------*/ class parser { public: parser() = default; parser(const char *s, size_t n, const Rules &rules) { load_grammar(s, n, rules); } parser(const char *s, const Rules &rules) : parser(s, strlen(s), rules) {} parser(const char *s, size_t n) : parser(s, n, Rules()) {} parser(const char *s) : parser(s, strlen(s), Rules()) {} operator bool() { return grammar_ != nullptr; } bool load_grammar(const char *s, size_t n, const Rules &rules) { grammar_ = ParserGenerator::parse(s, n, rules, start_, log); return grammar_ != nullptr; } bool load_grammar(const char *s, size_t n) { return load_grammar(s, n, Rules()); } bool load_grammar(const char *s, const Rules &rules) { auto n = strlen(s); return load_grammar(s, n, rules); } bool load_grammar(const char *s) { auto n = strlen(s); return load_grammar(s, n); } bool parse_n(const char *s, size_t n, const char *path = nullptr) const { if (grammar_ != nullptr) { const auto &rule = (*grammar_)[start_]; auto r = rule.parse(s, n, path); output_log(s, n, r); return r.ret && r.len == n; } return false; } bool parse(const char *s, const char *path = nullptr) const { auto n = strlen(s); return parse_n(s, n, path); } bool parse_n(const char *s, size_t n, any &dt, const char *path = nullptr) const { if (grammar_ != nullptr) { const auto &rule = (*grammar_)[start_]; auto r = rule.parse(s, n, dt, path); output_log(s, n, r); return r.ret && r.len == n; } return false; } bool parse(const char *s, any &dt, const char *path = nullptr) const { auto n = strlen(s); return parse_n(s, n, dt, path); } template bool parse_n(const char *s, size_t n, T &val, const char *path = nullptr) const { if (grammar_ != nullptr) { const auto &rule = (*grammar_)[start_]; auto r = rule.parse_and_get_value(s, n, val, path); output_log(s, n, r); return r.ret && r.len == n; } return false; } template bool parse(const char *s, T &val, const char *path = nullptr) const { auto n = strlen(s); return parse_n(s, n, val, path); } template bool parse_n(const char *s, size_t n, any &dt, T &val, const char *path = nullptr) const { if (grammar_ != nullptr) { const auto &rule = (*grammar_)[start_]; auto r = rule.parse_and_get_value(s, n, dt, val, path); output_log(s, n, r); return r.ret && r.len == n; } return false; } template bool parse(const char *s, any &dt, T &val, const char * /*path*/ = nullptr) const { auto n = strlen(s); return parse_n(s, n, dt, val); } Definition &operator[](const char *s) { return (*grammar_)[s]; } const Definition &operator[](const char *s) const { return (*grammar_)[s]; } std::vector get_rule_names() { std::vector rules; rules.reserve(grammar_->size()); for (auto const &r : *grammar_) { rules.emplace_back(r.first); } return rules; } void enable_packrat_parsing() { if (grammar_ != nullptr) { auto &rule = (*grammar_)[start_]; rule.enablePackratParsing = true; } } template parser &enable_ast() { for (auto &x : *grammar_) { const auto &name = x.first; auto &rule = x.second; if (!rule.action) { rule.action = [&](const SemanticValues &sv) { auto line = sv.line_info(); if (rule.is_token()) { return std::make_shared( sv.path, line.first, line.second, name.c_str(), sv.token(), std::distance(sv.ss, sv.c_str()), sv.length(), sv.choice_count(), sv.choice()); } auto ast = std::make_shared( sv.path, line.first, line.second, name.c_str(), sv.transform>(), std::distance(sv.ss, sv.c_str()), sv.length(), sv.choice_count(), sv.choice()); for (auto node : ast->nodes) { node->parent = ast; } return ast; }; } } return *this; } void enable_trace(TracerEnter tracer_enter, TracerLeave tracer_leave) { if (grammar_ != nullptr) { auto &rule = (*grammar_)[start_]; rule.tracer_enter = tracer_enter; rule.tracer_leave = tracer_leave; } } Log log; private: void output_log(const char *s, size_t n, const Definition::Result &r) const { if (log) { if (!r.ret) { if (r.message_pos) { auto line = line_info(s, r.message_pos); log(line.first, line.second, r.message); } else { auto line = line_info(s, r.error_pos); log(line.first, line.second, "syntax error"); } } else if (r.len != n) { auto line = line_info(s, s + r.len); log(line.first, line.second, "syntax error"); } } } std::shared_ptr grammar_; std::string start_; }; } // namespace peg #endif // vim: et ts=2 sw=2 cin cino={1s ff=unix