cpp-peglib/test/test2.cc
2020-11-09 13:18:38 -05:00

1068 lines
28 KiB
C++

#include "catch.hh"
#include <peglib.h>
using namespace peg;
TEST_CASE("Token boundary 1", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- 'a' 'b' 'c'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(pg.parse(" a b c "));
}
TEST_CASE("Token boundary 2", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- < 'a' 'b' 'c' >
%whitespace <- [ \t\r\n]*
)");
REQUIRE(!pg.parse(" a b c "));
}
TEST_CASE("Token boundary 3", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- < 'a' B 'c' >
B <- 'b'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(!pg.parse(" a b c "));
}
TEST_CASE("Token boundary 4", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- < A 'b' 'c' >
A <- 'a'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(!pg.parse(" a b c "));
}
TEST_CASE("Token boundary 5", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- A < 'b' C >
A <- 'a'
C <- 'c'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(!pg.parse(" a b c "));
}
TEST_CASE("Token boundary 6", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- < A > B C
A <- 'a'
B <- 'b'
C <- 'c'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(pg.parse(" a b c "));
}
TEST_CASE("Token boundary 7", "[token boundary]")
{
parser pg(R"(
ROOT <- TOP
TOP <- < A B C >
A <- 'a'
B <- 'b'
C <- 'c'
%whitespace <- [ \t\r\n]*
)");
REQUIRE(!pg.parse(" a b c "));
}
TEST_CASE("Infinite loop 1", "[infinite loop]")
{
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- [a-z0-9]*
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 2", "[infinite loop]") {
parser pg(R"(
ROOT <- WH TOKEN+ WH
TOKEN <- [a-z0-9]*
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 3", "[infinite loop]") {
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- !'word1'
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 4", "[infinite loop]") {
parser pg(R"(
ROOT <- WH TOKEN* WH
TOKEN <- &'word1'
WH <- [ \t]*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 5", "[infinite loop]") {
parser pg(R"(
Numbers <- Number*
Number <- [0-9]+ / Spacing
Spacing <- ' ' / '\t' / '\n' / EOF # EOF is empty
EOF <- !.
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 6", "[infinite loop]") {
parser pg(R"(
S <- ''*
)");
REQUIRE(!pg);
}
TEST_CASE("Infinite loop 7", "[infinite loop]") {
parser pg(R"(
S <- A*
A <- ''
)");
REQUIRE(!pg);
}
TEST_CASE("Not infinite 1", "[infinite loop]") {
parser pg(R"(
Numbers <- Number* EOF
Number <- [0-9]+ / Spacing
Spacing <- ' ' / '\t' / '\n'
EOF <- !.
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Not infinite 2", "[infinite loop]") {
parser pg(R"(
ROOT <- _ ('[' TAG_NAME ']' _)*
# In a sequence operator, if there is at least one non-empty element, we can treat it as non-empty
TAG_NAME <- (!']' .)+
_ <- [ \t]*
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Not infinite 3", "[infinite loop]") {
parser pg(R"(
EXPRESSION <- _ TERM (TERM_OPERATOR TERM)*
TERM <- FACTOR (FACTOR_OPERATOR FACTOR)*
FACTOR <- NUMBER / '(' _ EXPRESSION ')' _ # Recursive...
TERM_OPERATOR <- < [-+] > _
FACTOR_OPERATOR <- < [/*] > _
NUMBER <- < [0-9]+ > _
_ <- [ \t\r\n]*
)");
REQUIRE(!!pg); // OK
}
TEST_CASE("Precedence climbing", "[precedence]") {
parser parser(R"(
START <- _ EXPRESSION
EXPRESSION <- ATOM (OPERATOR ATOM)* {
precedence
L + -
L * /
}
ATOM <- NUMBER / T('(') EXPRESSION T(')')
OPERATOR <- T([-+/*])
NUMBER <- T('-'? [0-9]+)
~_ <- [ \t]*
T(S) <- < S > _
)");
parser.enable_packrat_parsing();
// Setup actions
parser["EXPRESSION"] = [](const SemanticValues &vs) -> long {
auto result = std::any_cast<long>(vs[0]);
if (vs.size() > 1) {
auto ope = std::any_cast<char>(vs[1]);
auto num = std::any_cast<long>(vs[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["OPERATOR"] = [](const SemanticValues &vs) { return *vs.sv().data(); };
parser["NUMBER"] = [](const SemanticValues &vs) { return vs.token_to_number<long>(); };
bool ret = parser;
REQUIRE(ret == true);
{
auto expr = " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ";
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
{
auto expr = "-1+-2--3"; // -1 + -2 - -3 = 0
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == 0);
}
}
TEST_CASE("Precedence climbing with macro", "[precedence]") {
// Create a PEG parser
parser parser(R"(
EXPRESSION <- INFIX_EXPRESSION(ATOM, OPERATOR)
INFIX_EXPRESSION(A, O) <- A (O A)* {
precedence
L + -
L * /
}
ATOM <- NUMBER / '(' EXPRESSION ')'
OPERATOR <- < [-+/*] >
NUMBER <- < '-'? [0-9]+ >
%whitespace <- [ \t]*
)");
parser.enable_packrat_parsing();
bool ret = parser;
REQUIRE(ret == true);
// Setup actions
parser["INFIX_EXPRESSION"] = [](const SemanticValues &vs) -> long {
auto result = std::any_cast<long>(vs[0]);
if (vs.size() > 1) {
auto ope = std::any_cast<char>(vs[1]);
auto num = std::any_cast<long>(vs[2]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["OPERATOR"] = [](const SemanticValues &vs) { return *vs.sv().data(); };
parser["NUMBER"] = [](const SemanticValues &vs) { return vs.token_to_number<long>(); };
{
auto expr = " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ";
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
{
auto expr = "-1+-2--3"; // -1 + -2 - -3 = 0
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == 0);
}
}
TEST_CASE("Precedence climbing error1", "[precedence]") {
parser parser(R"(
START <- _ EXPRESSION
EXPRESSION <- ATOM (OPERATOR ATOM1)* {
precedence
L + -
L * /
}
ATOM <- NUMBER / T('(') EXPRESSION T(')')
ATOM1 <- NUMBER / T('(') EXPRESSION T(')')
OPERATOR <- T([-+/*])
NUMBER <- T('-'? [0-9]+)
~_ <- [ \t]*
T(S) <- < S > _
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Precedence climbing error2", "[precedence]") {
parser parser(R"(
START <- _ EXPRESSION
EXPRESSION <- ATOM OPERATOR ATOM {
precedence
L + -
L * /
}
ATOM <- NUMBER / T('(') EXPRESSION T(')')
OPERATOR <- T([-+/*])
NUMBER <- T('-'? [0-9]+)
~_ <- [ \t]*
T(S) <- < S > _
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Precedence climbing error3", "[precedence]") {
parser parser(R"(
EXPRESSION <- PRECEDENCE_PARSING(ATOM, OPERATOR)
PRECEDENCE_PARSING(A, O) <- A (O A)+ {
precedence
L + -
L * /
}
ATOM <- NUMBER / '(' EXPRESSION ')'
OPERATOR <- < [-+/*] >
NUMBER <- < '-'? [0-9]+ >
%whitespace <- [ \t]*
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Packrat parser test with %whitespace%", "[packrat]") {
peg::parser parser(R"(
ROOT <- 'a'
%whitespace <- SPACE*
SPACE <- ' '
)");
parser.enable_packrat_parsing();
auto ret = parser.parse("a");
REQUIRE(ret == true);
}
TEST_CASE("Packrat parser test with macro", "[packrat]") {
parser parser(R"(
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
parser.enable_packrat_parsing();
auto ret = parser.parse(" 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ");
REQUIRE(ret == true);
}
TEST_CASE("Packrat parser test with precedence expression parser",
"[packrat]") {
peg::parser parser(R"(
Expression <- Atom (Operator Atom)* { precedence L + - L * / }
Atom <- _? Number _?
Number <- [0-9]+
Operator <- '+' / '-' / '*' / '/'
_ <- ' '+
)");
bool ret = parser;
REQUIRE(ret == true);
parser.enable_packrat_parsing();
ret = parser.parse(" 1 + 2 * 3 ");
REQUIRE(ret == true);
}
TEST_CASE("Backreference test", "[backreference]") {
parser parser(R"(
START <- _ LQUOTE < (!RQUOTE .)* > RQUOTE _
LQUOTE <- 'R"' $delm< [a-zA-Z]* > '('
RQUOTE <- ')' $delm '"'
~_ <- [ \t\r\n]*
)");
std::string token;
parser["START"] = [&](const SemanticValues &vs) { token = vs.token(); };
{
token.clear();
auto ret = parser.parse(R"delm(
R"("hello world")"
)delm");
REQUIRE(ret == true);
REQUIRE(token == "\"hello world\"");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)")foo"
)delm");
REQUIRE(ret == true);
REQUIRE(token == "\"(hello world)\"");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)foo")foo"
)delm");
REQUIRE(ret == false);
REQUIRE(token == "\"(hello world");
}
{
token.clear();
auto ret = parser.parse(R"delm(
R"foo("(hello world)")bar"
)delm");
REQUIRE(ret == false);
REQUIRE(token.empty());
}
}
TEST_CASE("Invalid backreference test", "[backreference]") {
parser parser(R"(
START <- _ LQUOTE (!RQUOTE .)* RQUOTE _
LQUOTE <- 'R"' $delm< [a-zA-Z]* > '('
RQUOTE <- ')' $delm2 '"'
~_ <- [ \t\r\n]*
)");
REQUIRE_THROWS_AS(parser.parse(R"delm(
R"foo("(hello world)")foo"
)delm"),
std::runtime_error);
}
TEST_CASE("Nested capture test", "[backreference]") {
parser parser(R"(
ROOT <- CONTENT
CONTENT <- (ELEMENT / TEXT)*
ELEMENT <- $(STAG CONTENT ETAG)
STAG <- '<' $tag< TAG_NAME > '>'
ETAG <- '</' $tag '>'
TAG_NAME <- 'b' / 'u'
TEXT <- TEXT_DATA
TEXT_DATA <- ![<] .
)");
REQUIRE(parser.parse("This is <b>a <u>test</u> text</b>."));
REQUIRE(!parser.parse("This is <b>a <u>test</b> text</u>."));
REQUIRE(!parser.parse("This is <b>a <u>test text</b>."));
REQUIRE(!parser.parse("This is a <u>test</u> text</b>."));
}
TEST_CASE("Backreference with Prioritized Choice test", "[backreference]") {
parser parser(R"(
TREE <- WRONG_BRANCH / CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
}
TEST_CASE("Backreference with Zero or More test", "[backreference]") {
parser parser(R"(
TREE <- WRONG_BRANCH* CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(
!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(
parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
REQUIRE_THROWS_AS(parser.parse("branchthatiswron_branchthatiscorrect"),
std::runtime_error);
}
TEST_CASE("Backreference with One or More test", "[backreference]") {
parser parser(R"(
TREE <- WRONG_BRANCH+ CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(
!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(
parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE(!parser.parse("branchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswron_branchthatiscorrect"));
}
TEST_CASE("Backreference with Option test", "[backreference]") {
parser parser(R"(
TREE <- WRONG_BRANCH? CORRECT_BRANCH
WRONG_BRANCH <- BRANCH THAT IS_capture WRONG
CORRECT_BRANCH <- BRANCH THAT IS_backref CORRECT
BRANCH <- 'branch'
THAT <- 'that'
IS_capture <- $ref<..>
IS_backref <- $ref
WRONG <- 'wrong'
CORRECT <- 'correct'
)");
REQUIRE(parser.parse("branchthatiswrongbranchthatiscorrect"));
REQUIRE(!parser.parse("branchthatiswrongbranchthatIscorrect"));
REQUIRE(
!parser.parse("branchthatiswrongbranchthatIswrongbranchthatiscorrect"));
REQUIRE(
!parser.parse("branchthatiswrongbranchthatIswrongbranchthatIscorrect"));
REQUIRE_THROWS_AS(parser.parse("branchthatiscorrect"), std::runtime_error);
REQUIRE_THROWS_AS(parser.parse("branchthatiswron_branchthatiscorrect"),
std::runtime_error);
}
TEST_CASE("Repetition {0}", "[repetition]") {
parser parser(R"(
START <- '(' DIGIT{3} ') ' DIGIT{3} '-' DIGIT{4}
DIGIT <- [0-9]
)");
REQUIRE(parser.parse("(123) 456-7890"));
REQUIRE(!parser.parse("(12a) 456-7890"));
REQUIRE(!parser.parse("(123) 45-7890"));
REQUIRE(!parser.parse("(123) 45-7a90"));
}
TEST_CASE("Repetition {2,4}", "[repetition]") {
parser parser(R"(
START <- DIGIT{2,4}
DIGIT <- [0-9]
)");
REQUIRE(!parser.parse("1"));
REQUIRE(parser.parse("12"));
REQUIRE(parser.parse("123"));
REQUIRE(parser.parse("1234"));
REQUIRE(!parser.parse("12345"));
}
TEST_CASE("Repetition {2,1}", "[repetition]") {
parser parser(R"(
START <- DIGIT{2,1} # invalid range
DIGIT <- [0-9]
)");
REQUIRE(!parser.parse("1"));
REQUIRE(parser.parse("12"));
REQUIRE(!parser.parse("123"));
}
TEST_CASE("Repetition {2,}", "[repetition]") {
parser parser(R"(
START <- DIGIT{2,}
DIGIT <- [0-9]
)");
REQUIRE(!parser.parse("1"));
REQUIRE(parser.parse("12"));
REQUIRE(parser.parse("123"));
REQUIRE(parser.parse("1234"));
}
TEST_CASE("Repetition {,2}", "[repetition]") {
parser parser(R"(
START <- DIGIT{,2}
DIGIT <- [0-9]
)");
REQUIRE(parser.parse("1"));
REQUIRE(parser.parse("12"));
REQUIRE(!parser.parse("123"));
REQUIRE(!parser.parse("1234"));
}
TEST_CASE("Left recursive test", "[left recursive]") {
parser parser(R"(
A <- A 'a'
B <- A 'a'
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with option test", "[left recursive]") {
parser parser(R"(
A <- 'a' / 'b'? B 'c'
B <- A
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with zom test", "[left recursive]") {
parser parser(R"(
A <- 'a'* A*
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with a ZOM content rule", "[left recursive]") {
parser parser(R"(
A <- B
B <- _ A
_ <- ' '* # Zero or more
)");
REQUIRE(!parser);
}
TEST_CASE("Left recursive with empty string test", "[left recursive]") {
parser parser(" A <- '' A");
REQUIRE(!parser);
}
TEST_CASE("User defined rule test", "[user rule]") {
auto g = parser(R"(
ROOT <- _ 'Hello' _ NAME '!' _
)",
{{"NAME", usr([](const char *s, size_t n, SemanticValues &,
std::any &) -> size_t {
static std::vector<std::string> names = {"PEG", "BNF"};
for (const auto &name : names) {
if (name.size() <= n &&
!name.compare(0, name.size(), s, name.size())) {
return name.size();
}
}
return static_cast<size_t>(-1);
})},
{"~_", zom(cls(" \t\r\n"))}});
REQUIRE(g.parse(" Hello BNF! ") == true);
}
TEST_CASE("Semantic predicate test", "[predicate]") {
parser parser("NUMBER <- [0-9]+");
parser["NUMBER"] = [](const SemanticValues &vs) {
auto val = vs.token_to_number<long>();
if (val != 100) { throw parse_error("value error!!"); }
return val;
};
long val;
REQUIRE(parser.parse("100", val));
REQUIRE(val == 100);
parser.log = [](size_t line, size_t col, const std::string &msg) {
REQUIRE(line == 1);
REQUIRE(col == 1);
REQUIRE(msg == "value error!!");
};
REQUIRE(!parser.parse("200", val));
}
TEST_CASE("Japanese character", "[unicode]") {
peg::parser parser(u8R"(
文 <- 修飾語? 主語 述語 '。'
主語 <- 名詞 助詞
述語 <- 動詞 助詞
修飾語 <- 形容詞
名詞 <- 'サーバー' / 'クライアント'
形容詞 <- '古い' / '新しい'
動詞 <- '落ち' / '復旧し'
助詞 <- 'が' / 'を' / 'た' / 'ます' / 'に'
)");
bool ret = parser;
REQUIRE(ret == true);
REQUIRE(parser.parse(u8R"(サーバーを復旧します。)"));
}
TEST_CASE("dot with a code", "[unicode]") {
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aあb)"));
}
TEST_CASE("dot with a char", "[unicode]") {
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aåb)"));
}
TEST_CASE("character class", "[unicode]") {
peg::parser parser(R"(
S <- 'a' [い-おAさC-Eた-とは] 'b'
)");
bool ret = parser;
REQUIRE(ret == true);
REQUIRE(!parser.parse(u8R"(aあb)"));
REQUIRE(parser.parse(u8R"(aいb)"));
REQUIRE(parser.parse(u8R"(aうb)"));
REQUIRE(parser.parse(u8R"(aおb)"));
REQUIRE(!parser.parse(u8R"(aかb)"));
REQUIRE(parser.parse(u8R"(aAb)"));
REQUIRE(!parser.parse(u8R"(aBb)"));
REQUIRE(parser.parse(u8R"(aEb)"));
REQUIRE(!parser.parse(u8R"(aFb)"));
REQUIRE(!parser.parse(u8R"(aそb)"));
REQUIRE(parser.parse(u8R"(aたb)"));
REQUIRE(parser.parse(u8R"(aちb)"));
REQUIRE(parser.parse(u8R"(aとb)"));
REQUIRE(!parser.parse(u8R"(aなb)"));
REQUIRE(parser.parse(u8R"(aはb)"));
REQUIRE(!parser.parse(u8R"(a?b)"));
}
#if 0 // TODO: Unicode Grapheme support
TEST_CASE("dot with a grapheme", "[unicode]")
{
peg::parser parser(" S <- 'a' . 'b' ");
REQUIRE(parser.parse(u8R"(aसिb)"));
}
#endif
TEST_CASE("Macro simple test", "[macro]") {
parser parser(R"(
S <- HELLO WORLD
HELLO <- T('hello')
WORLD <- T('world')
T(a) <- a [ \t]*
)");
REQUIRE(parser.parse("hello \tworld "));
}
TEST_CASE("Macro two parameters", "[macro]") {
parser parser(R"(
S <- HELLO_WORLD
HELLO_WORLD <- T('hello', 'world')
T(a, b) <- a [ \t]* b [ \t]*
)");
REQUIRE(parser.parse("hello \tworld "));
}
TEST_CASE("Macro syntax error", "[macro]") {
parser parser(R"(
S <- T('hello')
T (a) <- a [ \t]*
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro missing argument", "[macro]") {
parser parser(R"(
S <- T ('hello')
T(a, b) <- a [ \t]* b
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro reference syntax error", "[macro]") {
parser parser(R"(
S <- T ('hello')
T(a) <- a [ \t]*
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro invalid macro reference error", "[macro]") {
parser parser(R"(
S <- T('hello')
T <- 'world'
)");
bool ret = parser;
REQUIRE(ret == false);
}
TEST_CASE("Macro calculator", "[macro]") {
// Create a PEG parser
parser parser(R"(
# Grammar for simple calculator...
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
// Setup actions
auto reduce = [](const SemanticValues &vs) {
auto result = std::any_cast<long>(vs[0]);
for (auto i = 1u; i < vs.size(); i += 2) {
auto num = std::any_cast<long>(vs[i + 1]);
auto ope = std::any_cast<char>(vs[i]);
switch (ope) {
case '+': result += num; break;
case '-': result -= num; break;
case '*': result *= num; break;
case '/': result /= num; break;
}
}
return result;
};
parser["EXPRESSION"] = reduce;
parser["TERM"] = reduce;
parser["TERM_OPERATOR"] = [](const SemanticValues &vs) {
return static_cast<char>(*vs.sv().data());
};
parser["FACTOR_OPERATOR"] = [](const SemanticValues &vs) {
return static_cast<char>(*vs.sv().data());
};
parser["NUMBER"] = [](const SemanticValues &vs) { return vs.token_to_number<long>(); };
bool ret = parser;
REQUIRE(ret == true);
auto expr = " 1 + 2 * 3 * (4 - 5 + 6) / 7 - 8 ";
long val = 0;
ret = parser.parse(expr, val);
REQUIRE(ret == true);
REQUIRE(val == -3);
}
TEST_CASE("Macro expression arguments", "[macro]") {
parser parser(R"(
S <- M('hello' / 'Hello', 'world' / 'World')
M(arg0, arg1) <- arg0 [ \t]+ arg1
)");
REQUIRE(parser.parse("Hello world"));
}
TEST_CASE("Macro recursive", "[macro]") {
parser parser(R"(
S <- M('abc')
M(s) <- !s / s ' ' M(s / '123') / s
)");
REQUIRE(parser.parse(""));
REQUIRE(parser.parse("abc"));
REQUIRE(parser.parse("abc abc"));
REQUIRE(parser.parse("abc 123 abc"));
}
TEST_CASE("Macro recursive2", "[macro]") {
auto syntaxes = std::vector<const char *>{
"S <- M('abc') M(s) <- !s / s ' ' M(s* '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s+ '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s? '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(&s s+ '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(s '-' !s '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(< s > '-' '123') / s",
"S <- M('abc') M(s) <- !s / s ' ' M(~s '-' '123') / s",
};
for (const auto &syntax : syntaxes) {
parser parser(syntax);
REQUIRE(parser.parse("abc abc-123"));
}
}
TEST_CASE("Macro exclusive modifiers", "[macro]") {
parser parser(R"(
S <- Modifiers(!"") _
Modifiers(Appeared) <- (!Appeared) (
Token('public') Modifiers(Appeared / 'public') /
Token('static') Modifiers(Appeared / 'static') /
Token('final') Modifiers(Appeared / 'final') /
"")
Token(t) <- t _
_ <- [ \t\r\n]*
)");
REQUIRE(parser.parse("public"));
REQUIRE(parser.parse("static"));
REQUIRE(parser.parse("final"));
REQUIRE(parser.parse("public static final"));
REQUIRE(!parser.parse("public public"));
REQUIRE(!parser.parse("public static public"));
}
TEST_CASE("Macro token check test", "[macro]") {
parser parser(R"(
# Grammar for simple calculator...
EXPRESSION <- _ LIST(TERM, TERM_OPERATOR)
TERM <- LIST(FACTOR, FACTOR_OPERATOR)
FACTOR <- NUMBER / T('(') EXPRESSION T(')')
TERM_OPERATOR <- T([-+])
FACTOR_OPERATOR <- T([/*])
NUMBER <- T([0-9]+)
~_ <- [ \t]*
LIST(I, D) <- I (D I)*
T(S) <- < S > _
)");
REQUIRE(parser["EXPRESSION"].is_token() == false);
REQUIRE(parser["TERM"].is_token() == false);
REQUIRE(parser["FACTOR"].is_token() == false);
REQUIRE(parser["FACTOR_OPERATOR"].is_token() == true);
REQUIRE(parser["NUMBER"].is_token() == true);
REQUIRE(parser["_"].is_token() == true);
REQUIRE(parser["LIST"].is_token() == false);
REQUIRE(parser["T"].is_token() == true);
}
TEST_CASE("Macro passes an arg to another macro", "[macro]") {
parser parser(R"(
A <- B(C)
B(D) <- D
C <- 'c'
D <- 'd'
)");
REQUIRE(parser.parse("c"));
}
TEST_CASE("Nested macro call", "[macro]") {
parser parser(R"(
A <- B(T)
B(X) <- C(X)
C(Y) <- Y
T <- 'val'
)");
REQUIRE(parser.parse("val"));
}
TEST_CASE("Nested macro call2", "[macro]") {
parser parser(R"(
START <- A('TestVal1', 'TestVal2')+
A(Aarg1, Aarg2) <- B(Aarg1) '#End'
B(Barg1) <- '#' Barg1
)");
REQUIRE(parser.parse("#TestVal1#End"));
}
TEST_CASE("Line information test", "[line information]") {
parser parser(R"(
S <- _ (WORD _)+
WORD <- [A-Za-z]+
~_ <- [ \t\r\n]+
)");
std::vector<std::pair<size_t, size_t>> locations;
parser["WORD"] = [&](const peg::SemanticValues &vs) {
locations.push_back(vs.line_info());
};
bool ret = parser;
REQUIRE(ret == true);
ret = parser.parse(" Mon Tue Wed \nThu Fri Sat\nSun\n");
REQUIRE(ret == true);
REQUIRE(locations[0] == std::make_pair<size_t, size_t>(1, 2));
REQUIRE(locations[1] == std::make_pair<size_t, size_t>(1, 6));
REQUIRE(locations[2] == std::make_pair<size_t, size_t>(1, 10));
REQUIRE(locations[3] == std::make_pair<size_t, size_t>(2, 1));
REQUIRE(locations[4] == std::make_pair<size_t, size_t>(2, 6));
REQUIRE(locations[5] == std::make_pair<size_t, size_t>(2, 11));
REQUIRE(locations[6] == std::make_pair<size_t, size_t>(3, 1));
}
TEST_CASE("Dictionary", "[dic]") {
parser parser(R"(
START <- 'This month is ' MONTH '.'
MONTH <- 'Jan' | 'January' | 'Feb' | 'February'
)");
REQUIRE(parser.parse("This month is Jan."));
REQUIRE(parser.parse("This month is January."));
REQUIRE_FALSE(parser.parse("This month is Jannuary."));
REQUIRE_FALSE(parser.parse("This month is ."));
}
TEST_CASE("Dictionary invalid", "[dic]") {
parser parser(R"(
START <- 'This month is ' MONTH '.'
MONTH <- 'Jan' | 'January' | [a-z]+ | 'Feb' | 'February'
)");
bool ret = parser;
REQUIRE_FALSE(ret);
}
// vim: et ts=4 sw=4 cin cino={1s ff=unix