Go to file
2016-06-08 22:17:07 -04:00
example Add test support for windows MSVC 2015 on appveyor 2016-06-07 11:51:12 +02:00
grammar Updated documentation. 2015-10-14 17:20:39 -04:00
language Add test support for windows MSVC 2015 on appveyor 2016-06-07 11:51:12 +02:00
lint Changed minimum target to be 'c++11'. 2016-06-08 22:17:07 -04:00
test No need for pthread lib in examples and tests 2016-06-07 11:51:12 +02:00
.gitignore Updated .gitignore. 2015-07-23 22:19:07 -04:00
.travis.yml Added the travis-ci build badge. 2016-06-02 18:01:07 -04:00
appveyor.yml Add test support for windows MSVC 2015 on appveyor 2016-06-07 11:51:12 +02:00
CMakeLists.txt Changed minimum target to be 'c++11'. 2016-06-08 22:17:07 -04:00
LICENSE Initial commit 2015-02-07 16:10:11 -05:00
peg.vim Added line comment syntax highlight. 2015-07-08 10:26:29 -04:00
peglib.h Fix compiler warning about reserved identifier 2016-06-07 11:51:11 +02:00
README.md Added the travis-ci build badge. 2016-06-02 18:01:07 -04:00

cpp-peglib

Build Status

C++11 header-only PEG (Parsing Expression Grammars) library.

cpp-peglib tries to provide more expressive parsing experience in a simple way. This library depends on only one header file. So, you can start using it right away just by including peglib.h in your project.

The PEG syntax is well described on page 2 in the document. cpp-peglib also supports the following additional syntax for now:

  • < ... > (Token boundary operator)
  • ~ (Ignore operator)
  • \x20 (Hex number char)
  • $< ... > (Capture operator)
  • $name< ... > (Named capture operator)

This library also supports the linear-time parsing known as the Packrat parsing.

How to use

This is a simple calculator sample. It shows how to define grammar, associate samantic actions to the grammar and handle semantic values.

// (1) Include the header file
#include <peglib.h>
#include <assert.h>

using namespace peg;
using namespace std;

int main(void) {
    // (2) Make a parser
    auto syntax = R"(
        # Grammar for Calculator...
        Additive    <- Multitive '+' Additive / Multitive
        Multitive   <- Primary '*' Multitive / Primary
        Primary     <- '(' Additive ')' / Number
        Number      <- < [0-9]+ >
        %whitespace <- [ \t]*
    )";

    parser parser(syntax);

    // (3) Setup an action
    parser["Additive"] = [](const SemanticValues& sv) {
        switch (sv.choice()) {
        case 0:  // "Multitive '+' Additive"
            return sv[0].get<int>() + sv[1].get<int>();
        default: // "Multitive"
            return sv[0].get<int>();
        }
    };

    parser["Multitive"] = [](const SemanticValues& sv) {
        switch (sv.choice()) {
        case 0:  // "Primary '*' Multitive"
            return sv[0].get<int>() * sv[1].get<int>();
        default: // "Primary"
            return sv[0].get<int>();
        }
    };

    parser["Number"] = [](const SemanticValues& sv) {
        return stoi(sv.token(), nullptr, 10);
    };

    // (4) Parse
    parser.enable_packrat_parsing(); // Enable packrat parsing.

    int val;
    parser.parse(" (1 + 2) * 3 ", val);

    assert(val == 9);
}

Here are available actions:

[](const SemanticValues& sv, any& dt)
[](const SemanticValues& sv)

const SemanticValues& sv contains semantic values. SemanticValues structure is defined as follows.

struct SemanticValues : protected std::vector<any>
{
    // Matched string
    std::string str() const;    // Matched string
    const char* c_str() const;  // Matched string start
    size_t      length() const; // Matched string length

    // Tokens
    std::vector<
        std::pair<
            const char*, // Token start
            size_t>>     // Token length
        tokens;

    std::string token(size_t id = 0) const;

    // Choice number (0 based index)
    size_t      choice() const;

    // Transform the semantic value vector to another vector
    template <typename T> vector<T> transform(size_t beg = 0, size_t end = -1) const;
}

peg::any class is very similar to boost::any. You can obtain a value by castning it to the actual type. In order to determine the actual type, you have to check the return value type of the child action for the semantic value.

any& dt is a data object which can be used by the user for whatever purposes.

The following example uses < ... > operators. They are the token boundary operators.

auto syntax = R"(
    ROOT  <- _ TOKEN (',' _ TOKEN)*
    TOKEN <- < [a-z0-9]+ > _
    _     <- [ \t\r\n]*
)";

peg pg(syntax);

pg["TOKEN"] = [](const SemanticValues& sv) {
    // 'token' doesn't include trailing whitespaces
    auto token = sv.token();
};

auto ret = pg.parse(" token1, token2 ");

We can ignore unnecessary semantic values from the list by using ~ operator.

peg::pegparser parser(
    "  ROOT  <-  _ ITEM (',' _ ITEM _)*  "
    "  ITEM  <-  ([a-z])+                "
    "  ~_    <-  [ \t]*                  "
);

parser["ROOT"] = [&](const SemanticValues& sv) {
    assert(sv.size() == 2); // should be 2 instead of 5.
};

auto ret = parser.parse(" item1, item2 ");

The following grammar is same as the above.

peg::parser parser(
    "  ROOT  <-  ~_ ITEM (',' ~_ ITEM ~_)*  "
    "  ITEM  <-  ([a-z])+                   "
    "  _     <-  [ \t]*                     "
);

Semantic predicate support is available. We can do it by throwing a peg::parse_error exception in a semantic action.

peg::parser parser("NUMBER  <-  [0-9]+");

parser["NUMBER"] = [](const SemanticValues& sv) {
    auto val = stol(sv.str(), nullptr, 10);
    if (val != 100) {
        throw peg::parse_error("value error!!");
    }
    return val;
};

long val;
auto ret = parser.parse("100", val);
assert(ret == true);
assert(val == 100);

ret = parser.parse("200", val);
assert(ret == false);

enter and leave actions are also avalable.

parser["RULE"].enter = [](any& dt) {
    std::cout << "enter" << std::endl;
};

parser["RULE"] = [](const SemanticValues& sv, any& dt) {
    std::cout << "action!" << std::endl;
};

parser["RULE"].leave = [](any& dt) {
    std::cout << "leave" << std::endl;
};

Ignoring Whitespaces

As you can see in the first example, we can ignore whitespaces between tokens automatically with %whitespace rule.

%whitespace rule can be applied to the following three conditions:

  • trailing spaces on tokens
  • leading spaces on text
  • trailing spaces on literal strings in rules

These are valid tokens:

KEYWORD  <- 'keyword'
WORD     <-  < [a-zA-Z0-9] [a-zA-Z0-9-_]* >    # token boundary operator is used.
IDNET    <-  < IDENT_START_CHAR IDENT_CHAR* >  # token boundary operator is used.

The following grammar accepts one, "two three", four.

ROOT         <- ITEM (',' ITEM)*
ITEM         <- WORD / PHRASE
WORD         <- < [a-z]+ >
PHRASE       <- < '"' (!'"' .)* '"' >

%whitespace  <-  [ \t\r\n]*

Simple interface

cpp-peglib provides std::regex-like simple interface for trivial tasks.

peg::peg_match tries to capture strings in the $< ... > operator and store them into peg::match object.

peg::match m;

auto ret = peg::peg_match(
    R"(
        ROOT      <-  _ ('[' $< TAG_NAME > ']' _)*
        TAG_NAME  <-  (!']' .)+
        _         <-  [ \t]*
    )",
    " [tag1] [tag:2] [tag-3] ",
    m);

assert(ret == true);
assert(m.size() == 4);
assert(m.str(1) == "tag1");
assert(m.str(2) == "tag:2");
assert(m.str(3) == "tag-3");

It also supports named capture with the $name< ... > operator.

peg::match m;

auto ret = peg::peg_match(
    R"(
        ROOT      <-  _ ('[' $test< TAG_NAME > ']' _)*
        TAG_NAME  <-  (!']' .)+
        _         <-  [ \t]*
    )",
    " [tag1] [tag:2] [tag-3] ",
    m);

auto cap = m.named_capture("test");

REQUIRE(ret == true);
REQUIRE(m.size() == 4);
REQUIRE(cap.size() == 3);
REQUIRE(m.str(cap[2]) == "tag-3");

There are some ways to search a peg pattern in a document.

using namespace peg;

auto syntax = R"(
    ROOT <- '[' $< [a-z0-9]+ > ']'
)";

auto s = " [tag1] [tag2] [tag3] ";

// peg::peg_search
parser pg(syntax);
size_t pos = 0;
auto n = strlen(s);
match m;
while (peg_search(pg, s + pos, n - pos, m)) {
    cout << m.str()  << endl; // entire match
    cout << m.str(1) << endl; // submatch #1
    pos += m.length();
}

// peg::peg_token_iterator
peg_token_iterator it(syntax, s);
while (it != peg_token_iterator()) {
    cout << it->str()  << endl; // entire match
    cout << it->str(1) << endl; // submatch #1
    ++it;
}

// peg::peg_token_range
for (auto& m: peg_token_range(syntax, s)) {
    cout << m.str()  << endl; // entire match
    cout << m.str(1) << endl; // submatch #1
}

Make a parser with parser combinators

Instead of makeing a parser by parsing PEG syntax text, we can also construct a parser by hand with parser combinatorss. Here is an example:

using namespace peg;
using namespace std;

vector<string> tags;

Definition ROOT, TAG_NAME, _;
ROOT     <= seq(_, zom(seq(chr('['), TAG_NAME, chr(']'), _)));
TAG_NAME <= oom(seq(npd(chr(']')), dot())), [&](const SemanticValues& sv) {
                tags.push_back(sv.str());
            };
_        <= zom(cls(" \t"));

auto ret = ROOT.parse(" [tag1] [tag:2] [tag-3] ");

The following are available operators:

Operator Description
seq Sequence
cho Prioritized Choice
zom Zero or More
oom One or More
opt Optional
apd And predicate
npd Not predicate
lit Literal string
cls Character class
chr Character
dot Any character
tok Token boundary
ign Ignore semantic value
cap Capture character

Unicode support

Since cpp-peglib only accepts 8 bits characters, it probably accepts UTF-8 text. But . matches only a byte, not a Unicode character. Also, it dosn't support \u????.

Sample codes

Tested compilers

  • Visual Studio 2015
  • Visual Studio 2013 with update 5
  • Clang 3.5

TODO

  • Unicode support (. matches a Unicode char. \u????, \p{L})

License

MIT license (© 2015 Yuji Hirose)