example | ||
grammar | ||
lint | ||
test | ||
.gitignore | ||
CMakeLists.txt | ||
LICENSE | ||
peglib.h | ||
README.md |
cpp-peglib
C++11 header-only PEG (Parsing Expression Grammars) library.
cpp-peglib tries to provide more expressive parsing experience in a simple way. This library depends on only one header file. So, you can start using it right away just by including peglib.h
in your project.
The PEG syntax is well described on page 2 in the document. cpp-peglib also supports the following additional syntax for now:
<
...>
(Anchor operator)$<
...>
(Capture operator)$name<
...>
(Named capture operator)~
(Ignore operator)\x20
(Hex number char)
This library also supports the linear-time parsing known as the Packrat parsing.
How to use
This is a simple calculator sample. It shows how to define grammar, associate samantic actions to the grammar and handle semantic values.
// (1) Include the header file
#include <peglib.h>
#include <assert.h>
using namespace peglib;
using namespace std;
int main(void) {
// (2) Make a parser
auto syntax = R"(
# Grammar for Calculator...
Additive <- Multitive '+' Additive / Multitive
Multitive <- Primary '*' Multitive / Primary
Primary <- '(' Additive ')' / Number
Number <- [0-9]+
)";
peg parser(syntax);
// (3) Setup an action
parser["Additive"] = {
nullptr, // Default action
[](const SemanticValues& sv) {
return sv[0].get<int>() + sv[1].get<int>(); // "Multitive '+' Additive"
},
[](const SemanticValues& sv) { return sv[0]; } // "Multitive"
};
parser["Multitive"] = [](const SemanticValues& sv) {
switch (sv.choice) {
case 0: // "Multitive '+' Additive"
return sv[0].get<int>() * sv[1].get<int>();
default: // "Multitive"
return sv[0].get<int>();
}
};
parser["Number"] = [](const char* s, size_t n) {
return stoi(string(s, n), nullptr, 10);
};
// (4) Parse
parser.packrat_parsing(true); // Enable packrat parsing.
int val;
parser.parse("(1+2)*3", val);
assert(val == 9);
}
Here is a complete list of available actions:
[](const SemanticValues& sv, any& dt)
[](const SemanticValues& sv)
[](const char* s, size_t n)
[]()
const SemanticValues& sv
contains semantic values. SemanticValues
structure is defined as follows.
struct SemanticValue {
peglib::any val; // Semantic value
std::string name; // Definition name for the sematic value
const char* s; // Token start for the semantic value
size_t n; // Token length for the semantic value
// Utility method
template <typename T> T& get();
template <typename T> const T& get() const;
std::string str() const;
};
struct SemanticValues : protected std::vector<SemanticValue>
{
const char* s; // Token start
size_t n; // Token length
size_t choice; // Choice number (0 based index)
using std::vector<T>::size;
using std::vector<T>::operator[];
using std::vector<T>::begin;
using std::vector<T>::end;
// NOTE: There are more std::vector methods available...
// Transform the semantice values vector to another vector
template <typename F> auto map(size_t beg, size_t end, F f) const -> vector<typename std::remove_const<decltype(f(SemanticValue()))>::type>;
template <typename F> auto map(F f) const -> vector<typename std::remove_const<decltype(f(SemanticValue()))>::type>;
template <typename T> auto map(size_t beg = 0, size_t end = -1) const -> vector<T>;
}
peglib::any
class is very similar to boost::any. You can obtain a value by castning it to the actual type. In order to determine the actual type, you have to check the return value type of the child action for the semantic value.
const char* s, size_t n
gives a pointer and length of the matched string. This is same as sv.s
and sv.n
.
any& dt
is a data object which can be used by the user for whatever purposes.
The following example uses <
... >
operators. They are the anchor operators. Each anchor operator creates a semantic value that contains const char*
of the position. It could be useful to eliminate unnecessary characters.
auto syntax = R"(
ROOT <- _ TOKEN (',' _ TOKEN)*
TOKEN <- < [a-z0-9]+ > _
_ <- [ \t\r\n]*
)";
peg pg(syntax);
pg["TOKEN"] = [](const char* s, size_t n) {
// 'token' doesn't include trailing whitespaces
auto token = string(s, n);
};
auto ret = pg.parse(" token1, token2 ");
We can ignore unnecessary semantic values from the list by using ~
operator.
peglib::peg parser(
" ROOT <- _ ITEM (',' _ ITEM _)* "
" ITEM <- ([a-z])+ "
" ~_ <- [ \t]* "
);
parser["ROOT"] = [&](const SemanticValues& sv) {
assert(sv.size() == 2); // should be 2 instead of 5.
};
auto ret = parser.parse(" item1, item2 ");
Simple interface
cpp-peglib provides std::regex-like simple interface for trivial tasks.
peglib::peg_match
tries to capture strings in the $< ... >
operator and store them into peglib::match
object.
peglib::match m;
auto ret = peglib::peg_match(
R"(
ROOT <- _ ('[' $< TAG_NAME > ']' _)*
TAG_NAME <- (!']' .)+
_ <- [ \t]*
)",
" [tag1] [tag:2] [tag-3] ",
m);
assert(ret == true);
assert(m.size() == 4);
assert(m.str(1) == "tag1");
assert(m.str(2) == "tag:2");
assert(m.str(3) == "tag-3");
There are some ways to search a peg pattern in a document.
using namespace peglib;
auto syntax = R"(
ROOT <- '[' $< [a-z0-9]+ > ']'
)";
auto s = " [tag1] [tag2] [tag3] ";
// peglib::peg_search
peg pg(syntax);
size_t pos = 0;
auto n = strlen(s);
match m;
while (peg_search(pg, s + pos, n - pos, m)) {
cout << m.str() << endl; // entire match
cout << m.str(1) << endl; // submatch #1
pos += m.length();
}
// peglib::peg_token_iterator
peg_token_iterator it(syntax, s);
while (it != peg_token_iterator()) {
cout << it->str() << endl; // entire match
cout << it->str(1) << endl; // submatch #1
++it;
}
// peglib::peg_token_range
for (auto& m: peg_token_range(syntax, s)) {
cout << m.str() << endl; // entire match
cout << m.str(1) << endl; // submatch #1
}
Make a parser with parser operators
Instead of makeing a parser by parsing PEG syntax text, we can also construct a parser by hand with parser operators. Here is an example:
using namespace peglib;
using namespace std;
vector<string> tags;
Definition ROOT, TAG_NAME, _;
ROOT <= seq(_, zom(seq(chr('['), TAG_NAME, chr(']'), _)));
TAG_NAME <= oom(seq(npd(chr(']')), dot())), [&](const char* s, size_t n) {
tags.push_back(string(s, n));
};
_ <= zom(cls(" \t"));
auto ret = ROOT.parse(" [tag1] [tag:2] [tag-3] ");
The following are available operators:
Operator | Description |
---|---|
seq | Sequence |
cho | Prioritized Choice |
zom | Zero or More |
oom | One or More |
opt | Optional |
apd | And predicate |
npd | Not predicate |
lit | Literal string |
cls | Character class |
chr | Character |
dot | Any character |
anc | Anchor character |
cap | Capture character |
usr | User defiend parser |
Predicate control
peg parser("NUMBER <- [0-9]+");
parser["NUMBER"] = [](const char* s, size_t n) {
return stol(string(s, n), nullptr, 10);
};
parser["NUMBER"].predicate = [](const char* s, size_t n, const any& val, const any& dt) {
return val.get<long>() == 100;
};
long val;
auto ret = parser.parse("100", val);
assert(ret == true);
assert(val == 100);
ret = parser.parse("200", val);
assert(ret == false);
Adjust definitions
It's possible to add and override definitions with parser operaters.
auto syntax = R"(
ROOT <- _ 'Hello' _ NAME '!' _
)";
Rules rules = {
{
"NAME", usr([](const char* s, size_t n, SemanticValues& sv, any& c) {
static vector<string> names = { "PEG", "BNF" };
for (const auto& n: names) {
if (n.size() <= n && !n.compare(0, n.size(), s, n.size())) {
return success(n.size());
}
}
return fail(s);
})
},
{
"~_", zom(cls(" \t\r\n"))
}
};
peg g = peg(syntax, rules);
assert(g.parse(" Hello BNF! "));
Sample codes
Tested Compilers
- Visual Studio 2013
- Clang 3.5
TODO
- Optimization of grammars
- Unicode support
License
MIT license (© 2015 Yuji Hirose)